
Time Control or Size Control? Reducing
Complexity and Improving Accuracy

of Genetic Programming Models

Aliyu Sani Sambo1(B) , R. Muhammad Atif Azad1 ,
Yevgeniya Kovalchuk1 , Vivek Padmanaabhan Indramohan2,

and Hanifa Shah3

1 School of Computing and Digital Technology, Birmingham City University,
Birmingham, UK

aliyu.sambo@mail.bcu.ac.uk,
{atif.azad,yevgeniya.kovalchuk}@bcu.ac.uk

2 School of Health Science, Birmingham City University, Birmingham, UK
vivek.indramohan@bcu.ac.uk

3 Faculty of Computing, Engineering and the Built Environment,
Birmingham City University, Birmingham, UK

hanifa.shah@bcu.ac.uk

Abstract. Complexity of evolving models in genetic programming (GP)
can impact both the quality of the models and the evolutionary search.
While previous studies have proposed several notions of GP model com-
plexity, the size of a GP model is by far the most researched measure
of model complexity. However, previous studies have also shown that
controlling the size does not automatically improve the accuracy of GP
models, especially the accuracy on out of sample (test) data. Further-
more, size does not represent the functional composition of a model,
which is often related to its accuracy on test data. In this study, we
explore the evaluation time of GP models as a measure of their com-
plexity; we define the evaluation time as the time taken to evaluate a
model over some data. We demonstrate that the evaluation time reflects
both a model’s size and its composition; also, we show how to mea-
sure the evaluation time reliably. To validate our proposal, we leverage
four well-known methods to size-control but to control evaluation times
instead of the tree sizes; we thus compare size-control with time-control.
The results show that time-control with a nuanced notion of complex-
ity produces more accurate models on 17 out of 20 problem scenarios.
Even when the models have slightly greater times and sizes, time-control
counterbalances via superior accuracy on both training and test data.
The paper also argues that time-control can differentiate functional com-
plexity even better in an identically-sized population. To facilitate this,
the paper proposes Fixed Length Initialisation (FLI) that creates an
identically-sized but functionally-diverse population. The results show
that while FLI particularly suits time-control, it also generally improves
the performance of size-control. Overall, the paper poses evaluation-time
as a viable alternative to tree sizes to measure complexity in GP.

c© Springer Nature Switzerland AG 2020
T. Hu et al. (Eds.): EuroGP 2020, LNCS 12101, pp. 195–210, 2020.
https://doi.org/10.1007/978-3-030-44094-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44094-7_13&domain=pdf
http://orcid.org/0000-0001-7069-1933
http://orcid.org/0000-0002-4013-5415
http://orcid.org/0000-0003-4306-4680
https://doi.org/10.1007/978-3-030-44094-7_13

196 A. S. Sambo et al.

Keywords: Genetic Programming · Complexity · Evaluation time

1 Introduction

Motivations for controlling the complexity of machine learning (ML) models
vary and so does the notion of complexity [3]. One reason for managing the
complexity of ML models is to attain models that are only complex enough
to explain the phenomenon generating the given data but not too complex to
reflect noise in the data. Doing so means that the predictions produced by the
models on previously unseen data are accurate [18]; in other words, the model
generalises well. However, the challenge in this goal is determining when the
complexity is just enough. Another incentive for managing complexity is the
requirement for models to use computational resources efficiently. For example,
some computational environments such as the Internet of Things (IoT) devices
constrain the evaluation time of an acceptable model even if this compromises
its accuracy [13]. In Genetic Programming (GP), preventing the models from
growing too complex is also necessary to prevent the evolutionary search from
becoming ineffective [11]. A further motivation for managing complexity is the
demand for interpretable models: simple models can be more interpretable [14],
and the interpretability of ML models is now important. For example, the EU
General Data Protection Regulation (GDPR) stipulates a right to explanation
where ML algorithms are applied to make a decision affecting a person.

The challenge of defining a notion of complexity is compounded in the con-
text of Genetic programming (GP). For example, while ridge regression penalises
the growth in the magnitude of numeric coefficients in an otherwise fixed regres-
sion model, this penalty does not necessarily work in GP because GP evolves
the model itself. Moreover, GP is a versatile tool that can also evolve compilable
programs; therefore, minimising the coefficients does not automatically make
sense. Also, since during evolution the GP models grow in size, controlling this
growth (bloat control) has dominated the landscape of complexity control in
GP. However, some previous work [21] shows that controlling the size alone does
not automatically produce models that generalise as might have been expected.
Moreover, [2] shows that size does not indicate functional composition (or com-
plexity): after all, a very large GP tree may compose a simple linear function;
likewise, a small GP tree can compose a highly non-linear function. Together the
above challenges show that universally defining complexity is difficult.

This paper uses the evaluation time – the computational time required to
evaluate a model on the given data – to indicate its complexity. Due to different
functional and syntactic compositions of models in the evolving populations,
the evaluation time of the models varies. For example, the models made up of
computationally expensive functions or exceptionally large syntactic structures
take long to evaluate. Unlike size, the evaluation time thus indicates both the
syntactic and functional complexity; Sect. 2.2 expands further on that. However,
since evaluation times vary from one measurement to another, Sect. 2.3 shows
how to measure them reliably.

Time Control or Size Control? 197

To control evaluation times, we use four well-known techniques for bloat-
control to control evaluation time. However, instead of controlling size, we control
evaluation times using the same mechanisms; the techniques thus effect time-
control. We then compare the effect of time-control with that of size (or bloat)
control on the composition, size and accuracy of the evolving models.

The results of our experiments suggest that time-control with a nuanced
notion of complexity outperforms size-control in model-accuracy on 17 out of 20
problem scenarios. Even when time-control produces models with slightly greater
times and sizes, it counterbalances via superior accuracy on both training and
test data. The paper also shows that time-control can differentiate functional
complexity even better in an identically-sized population. To facilitate this, the
paper proposes Fixed Length Initialisation (FLI) that creates an identically-sized
but functionally-diverse population. The results show that while FLI particularly
suits time-control, it also generally improves the performance of size-control.

Following this introductory part, Sect. 2 of this paper provides some back-
ground; Sect. 3 details the experiments; Sect. 4 presents the results; and Sect. 5
covers future works and concludes the paper.

2 Background

2.1 Complexity in Genetic Programming

Traditionally, controlling complexity in GP means controlling structural com-
plexity such as the size (bloat control) of the evolved expressions, or the number
of encapsulated sub-trees and layers, while ignoring the underlying functional or
computational complexity [6,7,9,17,21]. For example, bloat control penalises a
large yet linear expression 4x+8x+2x+x+x, which is functionally and computa-
tionally less complex than a smaller expression sin(x) [2], which is equivalent to
its Taylor series expansion

∑∞
n=0(−1)n x2n+1

(2n+1)! . Clearly, the smaller expression
sin(x) needs more computational resources than its linear counterpart. Thus,
complexity in GP is more than merely the expression size.

Approaches based on functional complexity recognise that small structures
may be more complex than larger ones and hence focus on the functionality
of structures. To elicit functional complexity, one approach approximates the
evolving expressions by polynomials [23]; complex expressions are approximated
by polynomials of a high degree owing to large oscillations in the response of the
function. This degree of approximating polynomials is thus minimised in [23].
However, the minimisation requires the evolving expressions to be twice differ-
entiable, a property that is not always guaranteed. To alleviate this constraint,
Vanneschi et al. [21] defined a less rigorous measure of functional complexity,
whereby the slope of an expression is approximated by a simpler but error prone
measure. As such Vanneschi et al. did not control the complexity; instead, they
only measured the complexity of evolving expressions. Another approach [1] used
the variance of the outputs of the evolving expressions to measure the functional
complexity; this approach explicitly minimised the variance and maximised accu-
racy using a multi-objective optimisation approach. Note, however, that slope

198 A. S. Sambo et al.

of the evolving functions can not indicate complexity when evolving compilable
programs for tasks such as robot navigation.

Similarly, statistical learning theory measures the complexity of a space of
functions that can be learned using statistical classification. The main techniques
include generalisation error bound VC theory and VC dimensions [12,22].

As the discussion highlights, the above techniques are either specialised to
various domains or challenging to implement. In contrast, the present study
simply measures the complexity of a model with its evaluation time.

2.2 Evaluating Time Is More Than Measuring Size

Fig. 1. Relationship between evaluation time, size and the composition of models is
shown. Individuals made up of COS and SIN operators have higher average evaluation
times than the same-sized individuals from other functions sets. Also, note that size
correlates with evaluation time.

While the previous section argues why measuring size is fundamentally different
to evaluating time, it is also important to empirically verify that. After all, the
evaluation time also increases when the expression size increases; however, we
must also ascertain if the evaluation time also practically increases with the
functional complexity. Otherwise, measuring time becomes simply a proxy for
measuring size. Clearly, that is undesirable.

To this end, we used four different functions sets to generate symbolic regres-
sion models of different complexities; Fig. 1 details the functions sets. For each
functions set, we generated differently sized individuals (10, 20, 30, ..., 300), and
in turn for each size we generated 30 random expressions. All the models were
then evaluated 50 times, each with the same data. Figure 1 presents the average
evaluation times of individuals according to their size and complexity.

Two trends are clearly visible in Fig. 1: (1) given the same size, the evalua-
tion times of functionally complex individuals are consistently higher than those
for their counterparts; and (2) evaluation times are also strongly correlated with

Time Control or Size Control? 199

the expression sizes, as expected. Hence, the evaluation times indeed differenti-
ate between functional complexities; however, if a simple function is inefficiently
coded as an excessively large expression, it evaluates slower. Therefore, evalu-
ation time control impacts conditionally: it prefers functional simplicity if the
sizes of a competing set of individuals are within a certain tolerance (or range);
otherwise, it prefers smaller sizes. Note, this tolerance increases as the size of
individuals increases. For example, the evaluation time of size 75 with functions
set COS-SIN is the same as that for size 175 with the functions set ADD-SUB.

The above findings also predict the limiting behaviour of evaluation time
control in GP. In a functionally diverse but a size-converged population – where
bloat control is impotent – evaluation times discriminate between functional
complexities, whereas in a functionally converged but a size-diverse population,
evaluation times discriminate between sizes.

The idea that time control discriminates between functional complexities
when sizes have converged prompted us to try a new initialisation scheme. The
new scheme starts with a population of identically sized but functionally diverse
individuals. We tested the impact of this new initialisation on all methods before
applying it to our experiments. Section 3.4 details this scheme and its impact.

2.3 Stabilising Evaluation Time Measurements

A problem with measuring evaluation times is that they vary across multiple
executions, and if this variability is high, one cannot reliably estimate the com-
plexity of a given model from a single evaluation. Since this variation results from
CPU scheduling that is under the control of the operating system, we can not
eliminate this variation totally. However, we found ways to significantly minimise
this variation across evaluations.

We found that CPU management options can help minimise this variation.
These options include: (1) stopping all background services, (2) locking the CPU
speed to prevent the operating system power management from interfering, (3)
executing the experiments on dedicated processors and (4) assigning the exper-
imental tasks a high priority. Figure 2 illustrates the impact of these changes.
Each box-plot represents multiple evaluation times for an individual of a given
size. Clearly the variation decreases significantly after CPU management. Thus,
we were able to use a single evaluation to measure the evaluation time.

3 Experiments

We used four existing bloat control techniques to compare size-control with time-
control. When controlling time, the evaluation time replaces size in each of the
bloat control techniques.

3.1 Bloat Control Techniques

(a) Death by Size (DS) [16] is a steady state replacement method that replaces
the larger individuals from the present population with a given probability

200 A. S. Sambo et al.

Fig. 2. Using CPU management options decreases variability in evaluation times.

(typically 0.7; we use the same). To replace an individual, DS selects two indi-
viduals randomly and replaces the larger one probabilistically. By necessity, DS
uses steady-state GP.

(b) Double Tournament (DT) [15,16] increases the probability of choosing
smaller individuals as parents to encourage the reproduction of similarly small
offspring. DT runs two rounds of tournaments. In the first round, it runs n
probabilistic tournaments each with a tournament of size 2 to select a set of
n individuals. Each of these tournaments selects the smaller individual with a
probability of 0.7. Then, in the second round, DT selects the fittest out of the n
individuals. We implemented the DT experiments using steady-state GP.

(c) Operator Equalisation (OpEq) [4,20] allows the sizes of individuals to
grow only when fitness is improving. It controls the distribution of the popula-
tion by employing two core functions. The first determines the target distribution
(by size) of individuals in the next generation; the second ensures that the next
generation matches the target distribution. To define the target distribution,
OpEq puts the current individuals into bins according to their sizes and calcu-
lates the average fitness score of each bin. This average score is then used to
calculate the number of individuals to be allowed in a corresponding bin in the
next generation (target distribution). Thus, from one generation to the next the
target distribution changes to favour the sizes that produce fit individuals. The
width of the bins can vary and thus is a parameter. Bin width of 1 to 10 has
been successfully used previously [20]. In our experiments we used the better
performing Dynamic OpEq variant [20] and used bin width = 5. Note, OpEq
uses generational replacement.

To adapt OpEq to control evaluation time, we had to estimate the time
equivalent of the bin width. This value is then used to create bins to classify
individuals according their evaluation times in the same way as bin width size is
used to create bins to classify individuals by their sizes. To get a reliable estimate
we used multiple samples, evaluated multiple times and used the median of
several estimates. This is done only once at the beginning of the GP run.

Time Control or Size Control? 201

(d) The Tarpeian (TP) [19] method controls size-growth by assigning the
worst fitness to a fraction W (recommended W = 0.3; we use the same) of the
individuals that have above-average size. TP uses generational replacement and
calculates the average size of the population at every generation.

To adapt this method to control evaluation time we simply replaced the
average size with the average evaluation time.

3.2 Test Problems

We use five tough problems to compare the results in this paper. The problems
are tough because the results in Sect. 4 show that the accuracy scores are low
(less than 41%). Hence, these problems require GP to run long and thus present
a good test bed for complexity control because at least the size-complexity in
GP grows with long runs. Four of these problems are multi-dimensional (with
five or more input variables). The data set for problems 1–4 are available at [5];
Problem 5 is a bi-variate version of the function used in [8]. A summary of the
data sets is available in Table 1.

Table 1. Overview of test problems

ID Problem label No. of variables No. of instances

1 Airfoil 5 1503

2 Boston housing 13 506

3 Concrete strength 8 1030

4 Energy efficiency 8 768

5 y2x6 − 2.13y4x4 + y6x2 2 250 (x= min:−0.3, step: 0.012; y= x + 0.03)

3.3 Configuration and Parameters

The basic parameters for all the methods are summarised in Table 2. The other
key experimental decisions are as follows. First, the individuals with divide-by-
zero errors were assigned the worst fitness; as discussed in [10], the protected
operators commonly used in GP lead to poor generalisation. Next, the data-
sets were randomly split (without replacement) into 80% for training and 20%
testing. Finally, the fitness was computed as the normalised mean squared error
(MSE) and maximised as follows: 1

1+ 1
nΣn

i=1(yi−ŷi)2
.

The experiments were run on Windows 10 (64-bit) with 32 GB RAM, and
Intel Core i7-6700 CPU @ 3.40 GHz (Quad-Core).

3.4 Initialising the Population

Section 2.2 motivated the need for an initialisation scheme that produces func-
tionally diverse but identically sized individuals; such a scheme can increase

202 A. S. Sambo et al.

Table 2. Summary of Parameters

Parameter Setting

Number of runs 50

Population size 500

Run terminates After 35,000 evaluations (≡ 70 generations)

Random tree/subtree generation Ramped half-and-half(1 =< depth =< 4); and
Fixed Length Initialisation (see Sect. 3.4)

Operators & probabilities One point crossover = 0.9; Point mutation
= 0.1

Depth Limit 17

Function set +,−, ∗, /, sin, cos, neg

Constants (ERC) |ERC| = 100 (min = 0.05, step: 0.05)

Terminal set {Input variables} U ERC

Selection tournament size = 3

Replacement steady state/generational as per each method

the focus of the time-control on differentiating functional complexity. Therefore,
we created a Fixed-Length Initialisation scheme (FLI) for these experiments.
Henceforth, we call the Ramped-Half-and-Half initialisation the Variable Length
Initialisation (VLI).

For the present study, we used the FLI to produce an initial population of
unique individuals each having the same length (or size) of 10 nodes. Given
the functions set size, a fixed length of 10 can easily produce populations of a
few hundred unique individuals; we leave studying the impact of varying the
lengths to future work. To encourage functional diversity, we do not consider
two individuals different if they only differ by numeric constants.

Before applying FLI to our experiments, we examined its impact on all the
methods. The charts in Fig. 3 show the mean test fitness accuracy by generation
for all the methods and problems. The significance of the differences of the final
populations as established by the Mann-Whitney U test are captured in Fig. 4.
The figure is colour coded so that green indicates where the accuracy of the
final populations produced by FLI are significantly higher, brown where VLI is
higher, and yellow where the difference is not significant. FLI produced better
results in 16 out of 20 for Time-control and 11 out of 20 for size-control.

We observed that when using OpEq, size-control with VLI was better than
size-control with FLI on all the problems. Therefore, for OpEq we compare time-
control with the result of size-control with VLI (the better result). For all other
methods we used the proposed FLI.

Time Control or Size Control? 203

4 Results

We compare the accuracy, complexity and compositions of the models produced
by each method to controlling size and time. For accuracy, although our key
measure is test fitness (accuracy on out-of-sample data), we also report training
fitness; the higher the value the better. For complexity we report both the size
and evaluation times of the models; the lower the values the better. Finally, to
give further insight into the complexity of the evolved models, we report the
composition of final populations as to what percentage of the genetic material
comprised of more or less complex mathematical functions.

Fig. 3. Comparing the test fitness of initialisation schemes, VLI and FLI. The mean
test fitness values are plotted by generation. The thick lines represent FLI and the
thin VLI; the green and red lines represent time-control and size-control respectively.
(Color figure online)

Figures 6, 7, 8 and 9 show how the test set accuracy, size and evaluation
times of both time-control and size-control evolve with each of DS, DT, OpEq
and TP. The figures show that for all the methods the values of all the measures
increase continuously through to the final generations. Therefore, we evaluate

204 A. S. Sambo et al.

the statistical significance of the differences in the performances in the final
generations and report it in Fig. 5. Also, unless stated otherwise, henceforth, the
discussion of results concerns Fig. 5.

Statistical Significance: Figure 5 shows the colour-coded results of the Mann-
Whitney U statistical test comparing the final populations of time-control and
size-control. The table contains results for all the test problems and techniques.
The attributes tested include the evaluation time, size, training and test fitness
(accuracy on out-of-sample data). The p-values included in Fig. 5 statistically
compare the metrics of time-control against those of size-control. The rows are
green when time-control is significantly better (more for accuracy, and less for
both size and evaluation time), brown when it is significantly worse, and yellow
when the difference is not significant.

Fig. 4. Testing the significance of the impact of the new FLI initialisation scheme. In
the final populations, FLI test fitness accuracy improved 16 of 20 for time-control and
11 of 20 for size-control. (Color figure online)

Accuracy of Models: Time-control produced significantly more accurate mod-
els (on both training and test data) across all problems and all control techniques
except on three occasions. The exceptions are problem 1 on TP (the difference is
not significant), and problem 2 on DS and problem 5 on TP where size-control
outperformed time-control. Overall, time-control outperformed size-control on
training and test accuracy on 17 of the 20 occasions and matched size-control
on one occasion.

Complexity of Models: Time-control produced less complex (evaluation time
and size) models with 2 out of the 4 control techniques; the techniques are DS
and DT. As seen in Fig. 5, DS produced simpler models on all the problems
except on problem 2 where the difference in evaluation times is not significant.

Time Control or Size Control? 205

Likewise, DT produced simpler models on 4 out of 5 problems, the exception
being problem 3.

Composition of Models: Table 3 counts and differentiates the nature of nodes
constituting the GP trees in the final populations to understand the composition
of the genetic material therein. Consistent with the results on evaluation times
and sizes, time-control with DS and DT used smaller percentages of complex
mathematical functions: the percentages of tree nodes containing SIN and COS
with time-control are smaller than the respective figures for size-control. Like-
wise, OpEq and TP – much like their results on evaluation times and sizes – use
greater percentages of SIN and COS.

Fig. 5. Results of Mann-WhitneyU test for significance in the differences between the
final populations of time-control and size-control. Time-control produced more accurate
training and test scores in 17 out of 20 tests. While time-control with the steady-state
methods (DS and DT) produced simpler (smaller sizes and evaluation times) models
than size-control in 9 out of 10 tests, time-control with the generational methods (OpEq
and TP) produced more complex models in 8 out of 10 tests. (Color figure online)

4.1 Discussion

Section 1 argued that sensible management of complexity should produce models
that are only complex enough to explain the phenomenon generating the given
data but not too complex. The results show that time control almost consistently
delivers superior accuracy despite splitting results on complexity measures. Even
so, the increased complexity with time-control with OpEq and TP is not off the
scale as is typically the case with the standard, unrestrained GP.

206 A. S. Sambo et al.

Fig. 6. Death By Size: Comparing changes in metrics by generation between time-
control and size-control using DS.

Fig. 7. Double Tournament: Comparing changes in metrics by generation between
time-control and size-control using DT.

Time Control or Size Control? 207

Fig. 8. Operator Equalisation: Comparing changes in metrics by generation between
time-control and size-control using OpEq.

Fig. 9. Tarpeian: Comparing changes in metrics by generation between time-control
and size-control using TP.

208 A. S. Sambo et al.

Table 3. Composition of the final populations.

As to why time-control with OpEq and TP produces greater complexity is
not exactly clear at present; however, it is worth noting that these two meth-
ods require generational replacement where the size (or time) distributions of
the entire generations must be computed before allowing new individuals in. In
contrast, DT and DS are steady state methods where a new individual replaces
the loser of a tournament.

Interestingly, Fixed Length Initialisation (FLI) improved the results with not
only time control but more often than not even with size control. The results
encourage further investigation into this initialisation technique. FLI is designed
to promote compositional (functional) diversity and thus allow time-control to
distinguish complexity based more on composition than on size. However, FLI
can not enforce size similarity beyond the initial generation; therefore, further
work must investigate the effects of promoting size similarity in the remaining
evolution and see if that further intensifies the effect of time-control.

5 Conclusions and Future Work

This paper asks the question - why not use time instead of size to measure
complexity in GP? Unlike model size, evaluation time is a function of both
syntactic and computational characteristics of a model. This measure is broadly
applicable, and although this paper studies regression problems, in principle,
evaluation time can represent complexity in other domains as well.

A criticism of evaluation time is the variability in its repeated measurements;
therefore, this paper shows how to minimise this variability.

The results indicate that the nuanced notion of complexity in time-control
almost consistently produces superior accuracy on both training and test data.
Even when time-control produces slightly greater sizes or times, the correspond-
ingly superior accuracy counter-weighs these increases. After all, the complexity-
control is not the end-goal alone; instead, it should also accompany better accu-
racy. Even so, the increase in complexity is not off the scale as is typically the
case with unrestrained GP.

Time Control or Size Control? 209

The paper also shows that time-control can differentiate functional complex-
ity especially when the population has identically-sized individuals. To facili-
tate this, the paper proposes Fixed Length Initialisation (FLI) that creates an
identically-sized but functionally-diverse population. The results show that while
FLI particularly suits time-control, it also generally improves the performance
of size-control.

Overall, the paper poses evaluation time as a promising alternative to count-
ing nodes in GP.

References

1. Azad, R.M.A., Ryan, C.: Variance based selection to improve test set performance
in genetic programming. In: Proceedings of the 13th Annual Conference on Genetic
and Evolutionary Computation, pp. 1315–1322. ACM, Dublin (2011). http://dl.
acm.org/citation.cfm?id=2001754

2. Azad, R.M.A., Ryan, C.: A simple approach to lifetime learning in genetic
programming based symbolic regression. Evol. Comput. 22(2), 287–317 (2014).
https://doi.org/10.1162/EVCO a 00111. http://www.mitpressjournals.org/doi/
abs/10.1162/EVCOa00111

3. Couture, M.: Complexity and chaos-state-of-the-art; formulations and measures
of complexity. Technical report, Defence research and development Canada Val-
cartier, Quebec (2007)

4. Dignum, S., Poli, R.: Operator equalisation and bloat free GP. In: O’Neill, M., et
al. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 110–121. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-78671-9 10

5. Dua, D., Karra Taniskidou, E.: UCI machine learning repository (2017). http://
archive.ics.uci.edu/ml

6. Falco, I.D., Iazzetta, A., Tarantino, E., Cioppa, A.D., Trautteur, G.: A kolmogorov
complexity-based genetic programming tool for string compression. In: Proceedings
of the 2nd Annual Conference on Genetic and Evolutionary Computation, pp. 427–
434. Morgan Kaufmann Publishers Inc., Las Vegas (2000)

7. Griinwald, P.: Introducing the minimum description length principle. Adv. Mini-
mum Description Length: Theory Appl. 3, 3–22 (2005)

8. Gustafson, S., Burke, E.K., Krasnogor, N.: On improving genetic program-
ming for symbolic regression. In: Corne, D., et al. (eds.) Proceedings of the
2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 912–919. IEEE
Press, Edinburgh, 2–5 September 2005. http://ieeexplore.ieee.org/servlet/opac?
punumber=10417&isvol=1

9. Iba, H., de Garis, H., Sato, T.: Genetic programming using a minimum description
length principle. In: Kinnear, Jr., K.E. (ed.) Advances in Genetic Programming,
chap. 12, pp. 265–284. MIT Press, Cambridge, MA, USA (1994). http://cognet.mit.
edu/sites/default/files/books/9780262277181/pdfs/9780262277181 chap12.pdf

10. Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scal-
ing. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds.)
EuroGP 2003. LNCS, vol. 2610, pp. 70–82. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-36599-0 7

11. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992). http://mitpress.mit.edu/
books/genetic-programming

http://dl.acm.org/citation.cfm?id=2001754
http://dl.acm.org/citation.cfm?id=2001754
https://doi.org/10.1162/EVCO_a_00111
http://www.mitpressjournals.org/doi/abs/10.1162/EVCOa00111
http://www.mitpressjournals.org/doi/abs/10.1162/EVCOa00111
https://doi.org/10.1007/978-3-540-78671-9_10
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://ieeexplore.ieee.org/servlet/opac?punumber=10417&isvol=1
http://ieeexplore.ieee.org/servlet/opac?punumber=10417&isvol=1
http://cognet.mit.edu/sites/default/files/books/9780262277181/pdfs/9780262277181_chap12.pdf
http://cognet.mit.edu/sites/default/files/books/9780262277181/pdfs/9780262277181_chap12.pdf
https://doi.org/10.1007/3-540-36599-0_7
https://doi.org/10.1007/3-540-36599-0_7
http://mitpress.mit.edu/books/genetic-programming
http://mitpress.mit.edu/books/genetic-programming

210 A. S. Sambo et al.

12. Kulkarni, S.R., Harman, G.: Statistical learning theory: a tutorial. Wiley Interdisc.
Rev.: Comput. Stat. 3(6), 543–556 (2011). https://doi.org/10.1002/wics.179

13. Kumar, A., Goyal, S., Varma, M.: Resource-efficient machine learning in 2 KB
RAM for the internet of things. In: Precup, D., Teh, Y.W. (eds.) Proceedings of
the 34th International Conference on Machine Learning. Proceedings of Machine
Learning Research, PMLR, International Convention Centre, vol. 70, pp. 1935–
1944. Sydney, 06–11 August 2017

14. Lipton, Z.C.: The mythos of model interpretability. Commun. ACM 61(10), 36–43
(2018). https://doi.org/10.1145/3233231

15. Luke, S., Panait, L.: Fighting bloat with nonparametric parsimony pressure. In:
Guervós, J.J.M., Adamidis, P., Beyer, H.-G., Schwefel, H.-P., Fernández-
Villacañas, J.-L. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 411–421. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45712-7 40. http://www.
springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=2439&
spage=411

16. Luke, S., Panait, L.: A comparison of bloat control methods for genetic program-
ming. Evol. Comput. 14(3), 309–344 (2006). https://doi.org/10.1162/evco.2006.14.
3.309. http://cognet.mit.edu/system/cogfiles/journalpdfs/evco.2006.14.3.309.pdf

17. Mei, Y., Nguyen, S., Zhang, M.: Evolving time-invariant dispatching rules in job
shop scheduling with genetic programming. In: McDermott, J., Castelli, M., Sekan-
ina, L., Haasdijk, E., Garćıa-Sánchez, P. (eds.) EuroGP 2017. LNCS, vol. 10196, pp.
147–163. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55696-3 10

18. Paris, G., Robilliard, D., Fonlupt, C.: Exploring overfitting in genetic programming.
In: Liardet, P., Collet, P., Fonlupt, C., Lutton, E., Schoenauer, M. (eds.) EA 2003.
LNCS, vol. 2936, pp. 267–277. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24621-3 22

19. Poli, R.: A simple but theoretically-motivated method to control bloat in genetic
programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa,
E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 204–217. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36599-0 19. http://www.springerlink.com/
openurl.asp?genre=article&issn=0302-9743&volume=2610&spage=204

20. Silva, S., Dignum, S., Vanneschi, L.: Operator equalisation for bloat free genetic
programming and a survey of bloat control methods. Genet. Program Evolvable
Mach. 13(2), 197–238 (2012). https://doi.org/10.1007/s10710-011-9150-5

21. Vanneschi, L., Castelli, M., Silva, S.: Measuring bloat, overfitting and functional
complexity in genetic programming. In: GECCO 2010: Proceedings of the 12th
Annual Conference on Genetic and Evolutionary Computation, pp. 877–884. ACM,
Portland, 7–11 July 2010. https://doi.org/10.1145/1830483.1830643

22. Vapnik, V.N.: Statistical Learning Theory. Adaptive and Learning Systems for
Signal Processing, Communications, and Control. Wiley, New York (1998). OCLC:
845016043

23. Vladislavleva, E.J., Smits, G.F., Den Hertog, D.: Order of nonlinearity as a com-
plexity measure for models generated by symbolic regression via pareto genetic
programming. IEEE Trans. Evol. Comput. 13(2), 333–349 (2009). https://doi.
org/10.1109/TEVC.2008.926486. http://ieeexplore.ieee.org/document/4632147/

https://doi.org/10.1002/wics.179
https://doi.org/10.1145/3233231
https://doi.org/10.1007/3-540-45712-7_40
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=2439&spage=411
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=2439&spage=411
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=2439&spage=411
https://doi.org/10.1162/evco.2006.14.3.309
https://doi.org/10.1162/evco.2006.14.3.309
http://cognet.mit.edu/system/cogfiles/journalpdfs/evco.2006.14.3.309.pdf
https://doi.org/10.1007/978-3-319-55696-3_10
https://doi.org/10.1007/978-3-540-24621-3_22
https://doi.org/10.1007/978-3-540-24621-3_22
https://doi.org/10.1007/3-540-36599-0_19
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=2610&spage=204
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=2610&spage=204
https://doi.org/10.1007/s10710-011-9150-5
https://doi.org/10.1145/1830483.1830643
https://doi.org/10.1109/TEVC.2008.926486
https://doi.org/10.1109/TEVC.2008.926486
http://ieeexplore.ieee.org/document/4632147/

	Time Control or Size Control? Reducing Complexity and Improving Accuracy of Genetic Programming Models
	1 Introduction
	2 Background
	2.1 Complexity in Genetic Programming
	2.2 Evaluating Time Is More Than Measuring Size
	2.3 Stabilising Evaluation Time Measurements

	3 Experiments
	3.1 Bloat Control Techniques
	3.2 Test Problems
	3.3 Configuration and Parameters
	3.4 Initialising the Population

	4 Results
	4.1 Discussion

	5 Conclusions and Future Work
	References

