
SGP-DT: Semantic Genetic Programming
Based on Dynamic Targets

Stefano Ruberto1(B), Valerio Terragni2, and Jason H. Moore1

1 Institute for Biomedical Informatics, University of Pennsylvania,
Philadelphia, USA

stefano.ruberto@pennmedicine.upenn.edu, jhmoore@upenn.edu
2 Faculty of Informatics, Universitá della Svizzera italiana USI, Lugano, Switzerland

valerio.terragni@usi.ch

Abstract. Semantic GP is a promising approach that introduces seman-
tic awareness during genetic evolution. This paper presents a new Seman-
tic GP approach based on Dynamic Target (SGP-DT) that divides the
search problem into multiple GP runs. The evolution in each run is
guided by a new (dynamic) target based on the residual errors. To obtain
the final solution, SGP-DT combines the solutions of each run using lin-
ear scaling. SGP-DT presents a new methodology to produce the off-
spring that does not rely on the classic crossover. The synergy between
such a methodology and linear scaling yields to final solutions with low
approximation error and computational cost. We evaluate SGP-DT on
eight well-known data sets and compare with ε-lexicase, a state-of-the-
art evolutionary technique. SGP-DT achieves small RMSE values, on
average 23.19% smaller than the one of ε-lexicase.

Keywords: Semantic GP · Genetic Programming · Natural selection ·
Symbolic Regression · Residuals · Linear scaling · Crossover · Mutation

1 Introduction

Recently, researchers successfully applied Semantic methods to Genetic Pro-
gramming (SGP) on different domains, showing promising results [1–3]. While
the classic GP operators (e.g., selection, crossover and mutation) act at the syn-
tactic level, blindly to the semantic (behavior) of the individuals (e.g., programs),
the key idea of SGP is to apply semantic evaluations [1]. More specifically, clas-
sic GP operators ignore the behavioral characteristic of the offspring, focusing
only on improving the fitness of the individuals. Differently, SGP uses a richer
feedback during the evolution that incorporates semantic awareness, which has
the potential to improve the power of genetic programming [1].

In this paper, we are considering the Symbolic Regression domain, and thus
assuming the availability of training cases (defined as m pairs of inputs and
desired output). Following the most popular SGP approaches [1], we intend
“semantics” as the set of output values of a program on the training cases [4].
c© Springer Nature Switzerland AG 2020
T. Hu et al. (Eds.): EuroGP 2020, LNCS 12101, pp. 167–183, 2020.
https://doi.org/10.1007/978-3-030-44094-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44094-7_11&domain=pdf
https://doi.org/10.1007/978-3-030-44094-7_11


168 S. Ruberto et al.

Such an approach obtains a richer feedback during the evolution relying on the
evaluation of the individuals on the training cases. More formally, the semantics
of an individual I is a vector sem(I) = 〈y1, y2, · · · , ym〉 of responses to the m
inputs of the training cases. Let sem(ŷ) = 〈ŷ1, ŷ2, · · · , ŷm〉 denote the semantic
vector of the target (as defined in the training set), where ŷ1, ŷ2, · · · , ŷm are
the desired outputs. SGP defines semantic space [1] with a metric that char-
acterizes the distance between the semantic vectors of the individuals sem(I)
and the target sem(ŷ). SGP often relies on such a distance to compute the fit-
ness score, inducing a unimodal fitness landscape, which avoids local optima by
construction [5].

The effectiveness of SGP depends on the availability of GP operators that
can move in the semantic space towards the global optimum. An example of
semantic operator is the geometric crossover proposed by Moraglio et al. [5]. It
produces an offspring with a semantic vector that lies on the line connecting
the parents in the semantic space. Thus, it guarantees that the offspring is no
worse than the worst of the parents [5]. However, such crossover operator has
the major drawback of producing individuals with an exponentially increasing
size (i.e., exponential bloat) [1,5]. To avoid the exponential bloat, researchers
proposed variants of this operator that minimize bloating [2] but at the cost of
dropping the important guarantee of non-worsening crossover operations.

In this paper, we present a new SGP approach called SGP-DT (Semantic
Genetic Programming based on Dynamic Targets) that minimizes the expo-
nential bloat problem and at the same time gives a bound on the worsening of
the offspring. SGP-DT divides the search problem into multiple GP runs. Each
run is guided by a different dynamic target, which SGP-DT updates at each run
based on the residual errors of the previous run. Then, SGP-DT combines the
results of each run into a “optimized” final solution.

In a nutshell, SGP-DT works as follows. SGP-DT runs the GP algorithm (see
Algorithm 1) a fixed number of times (Next) depending on the available budget.
We call these runs external iterations. As opposed to the internal iterations
(i.e., generations) that the GP algorithm performs to evolve the individuals.
Each GP run performs a fixed number of internal iterations and returns a model
(i.e., the best solution) that we call partial model. The next external iteration
runs the GP algorithm with a modified training set, where SGP-DT replaces
the m desired outputs ŷi = 〈ŷ1, ŷ2, · · · , ŷm〉 with the residual errors of the par-
tial model returned by the previous iteration. That is, the difference between
sem(Ii) and sem(ŷi−1), where Ii is the partial model at the ith iteration. Thus,
at each external iteration, the fitness function evaluates differently the individu-
als (because the fitness functions predicates on different training sets). As such,
each partial model focuses on a different portion of the problem, the one that
most influences the fitness value. As a result, our approach leads to dynamic
targets that change at each external iteration incorporating the semantic infor-
mation. SGP-DT obtains the final solution after Next iterations with a linear
combination in the form

∑Next
i=0 ai + bi · Ii, where ai and bi are computed with

the well-known linear scaling [6]. There is a key advantage of using linear scaling.



SGP-DT: Semantic Genetic Programming Based on Dynamic Targets 169

Keijzers showed that linear scaling gives a bound on the error of those generated
individuals that are linear scaled [6]. Therefore, SGP-DT entails a bound on the
worsening of the offspring at each internal and external iteration.

To reduce the exponential bloat problem, SGP-DT performs the internal
GP iterations relying on classic mutation operators only. It does not rely on
any form of crossover, neither geometric nor classic, and thus avoiding their
fundamental limitations. Geometric crossover leads to exponential bloat and
classic crossover decreases the chance to obtain a fitness improvement because
it exchanges random functionalities at random points [7]. Despite the absence
of crossovers, SGP-DT implicitly recombines different functionalities, similarly
to a geometric crossover [5]. This is because, each partial model focuses on a
different characteristic of the problem that the fitness function recognized as
important (at that iteration). This makes the search more efficient because the
evolution focuses on a single characteristic at a time leaving unaltered other
(already optimized) characteristics.

We evaluated our approach on eight well-known regression problems. We
compared SGP-DT with two baselines: lasso a least square regression technique
by Efron et al. [8]; and ε-lexicase a state-of-the-art SGP approach by La Cava
et al. [9]. The results show that our approach obtains a median RMSE on 50
runs that is, on average, 51.47% and 23.19% smaller than the one of lasso and
ε-lexicase, respectively. Moreover, SGP-DT requires as much as 9.26× fewer
tree computations than ε-lexicase (4.81× on average).

The remainder of this paper is organized as follows. Section 2 describes our
approach. Section 3 discusses the related work. Section 4 reports our experimen-
tal evaluation and discusses the results. Section 5 concludes the paper.

2 Methodology

Algorithm 1 overviews the SGP-DT approach. Given the values of the indepen-
dent (x) and dependent (ŷ) variables of the training cases, and the number
of external (Next) and internal (Nint) iterations, it returns the final solution
(finalModel).

SGP-DT considers tree-like individuals with the usual non-terminal sym-
bols: +,−, ·, / (the protected division), ERC (between −1 and 1). In addition,
SGP-DT considers the functions Min and Max that returns the minimum and
maximum between two numbers, respectively. The rationale of adding the two
latter symbols is to inject discontinuity to make the linear combinations more
adaptable. Although also the protected division adds discontinuity in the form
of asymptotes, such discontinuity often promotes overfitting [6,10]. With Min
and Max functions, we introduce valid discontinuities alternatives that do not
suffer from the limitation of the protected division.

Algorithm 1 holds out a portion of the training cases for validation
(lines 1–3). SGP-DT will use such validation sets to construct the final solution
(line 22). Lines 4–5 initialize the current target with ŷ and the lists of the best
models with the empty list. Line 6 starts the external loop, which re-assigns P



170 S. Ruberto et al.

Algorithm 1: SGP-DT

input : x : values of the independent variables of the training cases
ŷ : values of the dependent variables of the training cases
Next : number of external iterations
Nint : number of internal iterations

output : finalModel : final regression model

1 〈xval, ŷval〉 ← split(x, ŷ)
2 x ← {x\xval}
3 ŷ ← {ŷ\ŷval}
4 target ← ŷ
5 models ← ∅
6 for ext-iter 1 . . . Next do
7 P ← get-random-initial-population()
8 for int-iter 1 . . . Nint do
9 for each I ∈ P do

10 Ils ← compute-ls(I, x, target) // linear scaling

11 fitness(I) ← σ2(sem(Ils(x)) − target) // σ2 variance

12 I�
ls ← get-best-individual(P)

13 error ← target − sem(I�
ls(x))

14 add I�
ls to models

15 P ′ ← ∅
16 add elite(P) to P ′

17 while P ′ is not full do
18 I ← tournament-selection(P)
19 add mutate(I) to P ′

20 P ← P ′

21 target ← error // update the target

22 bestModels ← validate-and-select(xval, ŷval, models) // best MSE models on val

23 finalModel ← ∑
model∈bestModels model

24 return finalModel

to a fresh randomly generated population with the ramped-half-and-half app-
roach (function get-random-initial-population of Algorithm 1). Starting
every external iteration with a new population alleviates the overfitting prob-
lem. Indeed, the syntactic structures of already evolved individuals can be too
complex to adapt to a new fitness landscape or to generalize on unseen data. To
further reduce overfitting and the cost of fitness evaluation, SGP-DT generates
the initial population with individuals with low complexity (i.e., a few nodes).

At line 8, SGP-DT starts the Nint internal iterations, which resembles the
classic GP but with the addition of linear scaling and the absence of crossover.
Before line 11 computes the fitness of each individual I in P, line 10 performs
the linear scaling of I [6]. Linear scaling has the advantage of transforming
the semantic of individuals so that their potential fit with the current target is
immediately given: we do not need to wait for GP to produce a partial model that
reaches the same result [6]. And thus, linear scaling reduces the number of both
external and internal iterations. Fewer iterations means populations with simpler



SGP-DT: Semantic Genetic Programming Based on Dynamic Targets 171

structural complexity and less computational cost. Reducing the complexity of
the solutions may reduce overfitting [11].

Linear scaling has another important property: it gives an upper bound on the
error [6]. Recall that SGP-DT considers errors on dynamic targets, which change
at each iteration (at the first iteration the dynamic target is ŷ). To exploit such
a situation, we propose a fitness function based on this upper bound. Following
Keijzer [6], we compute the linear scaling of an individual I as follows:

Ils = a + b · I (1)

where a = ŷ − b · y and b =
∑n

i=1[(ŷi − ŷ) · (yi − y)]
∑n

i=1[(yi − y)2]
(2)

We define the following fitness function of an individual I:

fitness(I) = σ2(sem(Ils(x)) − ŷ) (3)

The rationale of this function is that the Mean Square Error (MSE) of Ils has
the variance (σ2) of the current target as an upper bound [12]:

MSE =
∑m

i=0(yi − ŷi)2

m
≤ σ2(ŷ) (4)

where m is the number of training cases (y).
At each new external iteration the residual error becomes the new target
(line 21).

target = ŷ − sem(I�
ls(x)) (5)

where sem(I�
ls(x)) is the evaluation of the best individual at the current iteration,

which we call partial model.
The inequality 4 does not guarantee that the external iterations converge

to a lower MSE because we do not know if σ2(error) ≤ σ2(ŷ), where error =
target − sem(I�

les(x)). Thus, by optimizing the variance of the error shown in
Eq. 3, we act directly on the minimization of the upper bound, so that the next
external iteration can benefit from a lower bound.

At lines 17–19, Algorithm 1 runs a classic GP algorithm without crossovers,
using only mutations. We use a tree-based mutation operator because SGP-DT
uses trees as syntactic structures for the individuals. The operator randomly
generates a subtree from a randomly chosen node. To increase the synergy with
linear scaling, we set two constraints during mutation. First, the node selec-
tion is biased towards the leaves of the tree, so that the mutated tree does not
diverge too much from the original semantic (locality principle). Producing a
mutation that is close to the original semantic of the tree preserves the valid-
ity of the selection performed after the linear scaling. And thus, we only allow
minor changes to improve the fitness. Second, for the same reason, the mutation is
biased towards replacing the selected node with a sub-tree of limited depth. Note
that, we decided not to limit the maximum size (number of nodes in the tree) or



172 S. Ruberto et al.

depth of an individual. By doing so, GP can grow and choose the right solution
complexity for the problem at hand. These two constraints help us to mitigate
the overfitting and bloat problem without preventing the SGP-DT to effectively
search for competitive individuals. As linear scaling helps GP to find useful indi-
viduals (thanks to the upper bound). Moreover, additional external iterations
will further refine other aspects of the problem not yet addressed.

We decided to exclude the classic crossover operator in the internal iterations,
as several researchers argued about the effectiveness of crossover in relation to the
problem of modularity of GP [13]. There is a consensus that an effective GP algo-
rithm needs a crossover that preserves the semantics of the parts swapped among
individuals respecting the boundaries of a useful functionality within the individ-
ual’s structure [2,7,14]. According to McPhee et al. [4] and Ruberto et al. [11] most
classic crossover operators do not obtain a meaningful variation (or any varia-
tion at all) in the program semantics, when dealing with Boolean and real value
symbolic regression domains. The main issue is that classic crossover operators
do not preserve a common context [4] among the building blocks of the indi-
viduals exchanged during crossover, which is important to increase the chance
of obtaining a semantically meaningful offspring [14]. The idea of determining a
common context has been introduced by Poli and Langdon with the one-point
crossover operator [7]. But how to identify a meaningful common context among
trees structures is still an open problem.

Instead, SGP-DT exchanges functionalities among individuals by relying on
the linear combination of the partial models (i.e., the fittest individuals at each
external iteration, line 12 Algorithm1) and on a specific mechanism for selecting
and mutating the individuals during the GP runs. In light of this, we exclude the
crossover operators in the presence of these semantic recombination alternatives.
To have an effective exchange of functionalities among individuals we need to:
(i) preserve building blocks semantics (ii) preserve the context of building blocks
(iii) make the exchange of functionalities directed towards producing new and
interesting semantics. SGP-DT achieves these objectives by (i) mapping each
building block to a single partial model (this would avoid arbitrary fragmenta-
tions of the blocks); (ii) preserving the context of the building blocks because in
our scenario the partial models obtained at previous iterations represent the con-
text; and (iii) using mutation only, which promotes diversity in the population.
Despite the absence of crossover, SGP-DT exchanges building blocks because
each partial model is a building block. Differently from the classical crossover
that exchanges random fragments, SGP-DT obtains the final model by summing
the linear scaled partial models. This approach makes the exchange of function-
alities more effective, as each partial model (building block) characterizes a specif
functionality.

The for-loop at line 6 terminates when SGP-DT concludes all external iter-
ations. We decide not to introduce a different stopping criterion based on the
stagnation of fitness improvement. This is because it is difficult to predict if
the fitness will not escape stagnation in future iterations. After all the external
iterations, the function validate-and-select at line 22 of Algorithm 1 returns



SGP-DT: Semantic Genetic Programming Based on Dynamic Targets 173

the partial models that will be combined into the final solution. Such models are
selected as follows. The validation takes in input the ordered sequence of best
individuals (models) collected after each internal iteration (line 14 Algorithm1)
and the validation sets (xval and ŷval) obtained at line 1. Note that, SGP-DT
saves the computed linear scaling parameters (a and b Eq. (2)) at line 10 and do
not recompute them during the validation and test phases. Internally, the valida-
tion scans the sequence models and progressively computes the MSE evaluating
the individuals on the validation set to find the point in the sequence where MSE
is the smallest. SGP-DT finds the smallest MSE using the rolling mean of the
validation set error at a fixed window size to minimize the short-term fluctua-
tions. The function validate-and-select returns the sequence (bestModels) of
the partial models that were produced before the smallest MSE. Such sequence
represents the transformation chain of the dynamic targets. In case SGP-DT
obtained the model with the smallest MSE during the internal iterations, it
appends this individual at the end of bestModels. Line 23 of Algorithm1 com-
putes the final model by summing all the models in bestModels.

3 Related Work

This section divides the related work of SGP-DT in three groups. Each group
refers to techniques that are relevant to a main characteristic of SGP-DT: (i)
having dynamic or semantic objectives, (ii) using linear combinations or geomet-
ric operators, (iii) using an iterative approach on residual errors.

Dynamic or Semantic Objectives. The GP techniques proposed by Krawiec
et al. [15] and Liskowski et al. [16] present semantic approaches that consider
interactions between individuals and the training set. These approaches cluster
such interactions to derive new targets for a multi-objective GP.

Otero et al. proposed an approach with dynamic objectives that combines
intermediate solutions in a final Boolean tree [17]. This technique progressively
eliminates from the training cases the ones perfectly predicted from the current
intermediate solution and operates exclusively in a Boolean domain.

Krawiec and O’Reilly [18] proposed a GP approach that explicitly models
the semantic behavior of a solution during the computation of training cases.

BPGP by Krawiec and O’Reilly [18] explicitly models the semantic behavior
of a solution during the computation of training cases. BPGP proposes an oper-
ator that mutates an individual by replacing a randomly selected sub-tree with a
random one. According to Krawiec and O’Reilly this “mutation-like” [18] opera-
tor is intended as a “form of crossover”. We think that this is similar in principle
to our design choice of dropping crossover altogether and instead choosing among
mutated alternatives in the population. However, Krawiec and O’Reilly still use
the traditional crossover alongside with this new mutation [18].

We differ from all of these techniques because we build our solution pro-
gressively crystallizing the intermediate achievements. Most of these approaches
use auxiliary objectives during their search and use a single GP run. Conversely,
SGP-DT uses a non-predetermined number of objectives in subsequent GP runs.



174 S. Ruberto et al.

The approach of Otero et al. [17] is the only one that progressively builds the
solution but it uses a strategy that works for Boolean trees only.

Linear Combinations. MRGP [19] uses multiple linear regression to combine
the semantics of sub-programs (subtrees) to form the semantic of an individual.

Ruberto et al. proposed ESAGP [20], which derives the target semantics by
relying on a specific linear combination between two “optimally aligned” individ-
uals in the error space. Leveraging such geometric alignment property, Vanneschi
et al. proposed NA-GP [21], which performs linear combinations between two
aligned chromosomes belonging to the same individual.

Gandomi et al. proposed MGGP [22], where each individual is composed of
multiple trees. MGGP produces the final solution with a linear combination of
the tree’s semantics, deriving the values of the coefficients from the training data
with a classic least squares method. However, the number of trees in the linear
combination is fixed and the fitness landscape is not dynamic.

Moraglio et al. proposed the Geometric Semantic GP (GSGP) crossover oper-
ator [5], which uses linear combinations to guarantee offspring that is not worse
than the worst of the parents. Unfortunately, GSGP suffers from the exponential
bloat problem and requires many generations to converge, especially if the target
is not in the convex hull spanned by the initial population [5].

Notably, all the approaches described in this second group use a single run
to search for the final solution. Differently from SGP-DT, they fix the number
of components in advance (the only exception is GSGP but it suffers from the
exponential bloat problem [5]). In addition, all of the techniques in the first and
second groups have a static target, and thus they continuously evolve a popula-
tion without re-initialization. This limits the diversity of the genetic alternatives
when the population converges at later generations. Conversely, SGP-DT has a
dynamic target and it starts with a fresh population at each internal iteration
(see Algorithm 1).

Iterative Approaches Based on Residual Errors. Sequential Symbolic
Regression (SSR) [23] uses the crossover operator GSGP [5] to iteratively trans-
form the target using a semantic distance that resembles the classical residual
approach. However, no statistical difference (on the errors) from the classical
GP approach was found [23]. Differently from SGP-DT, SSR considers residu-
als that do not optimize the linear combinations with a least square method.
Although SSR overcomes the exponential bloat, it weakens the advantage of
using residuals.

Medernach et al. presented the wave technique [24,25] that similarly to
SGP-DT, executes multiple GP runs using the same definition of residual errors
(Eq. 5) and obtains the final model by summing the intermediate models. wave
produces a sequence of short and heterogeneous GP runs, obtained by “fuzzing”
the settings of system parameters (e.g, population size, number of internal itera-
tions) and by alternating the use of linear scaling. However, SGP-DT drastically
differs from wave. The heterogeneity nature of wave emulates this dynamic
evolutionary environment by simulating periods of a rapid change [24,25].
The effectiveness of such an approach requires specif combinations of system



SGP-DT: Semantic Genetic Programming Based on Dynamic Targets 175

parameters that converges to a fitter solution. Due to the huge space of possible
system parameters, finding such combinations often requires a large number of
iterations [24,25]. Conversely, SGP-DT steers the evolution with a novel app-
roach that gradually evolves the building blocks of the final solution without
exploring the huge space of possible combinations of system parameters.

All the techniques of this group use residuals differently from SGP-DT. More-
over, they rely on the classic or geometric crossover. Conversely, one of the key
novel aspects of SGP-DT is to avoid crossover altogether.

Table 1. Data sets of regression problems.

Name # attributes # instances Source Name # attributes # instances Source

airfoil 5 1,503 UCI [26] housing 14 506 UCI [26]

concrete 8 1,030 tower 25 3,135

enc 8 768 yacht 6 309

enh 8 768 uball5d 5 6,024 [27]

4 Evaluation

Data Sets. We performed our experiments on eight well-known data sets of
regression problems that have been used to evaluate most of the techniques
discussed in Sect. 3 [9,19,21,22,24,25]. Table 1 shows the name, number of
attributes, and number of instances for each data set. For uball5d1 we followed
the same configuration used by Cava et al. [28].

4.1 Methods

We compared SGP-DT with two techniques (lasso [8] and ε-lexicase [9]) and
two variants of SGP-DT (DT-EM and DT-NM).

LASSO. Both SGP-DT and lasso [8] use the least square regression method
to linearly combine solution components. More specifically, lasso incorporates
a regularization penalty into least-squares regression using an �1 norm of the
model coefficients and uses a tuning parameter λ to specify the weight of this
regularization [8]. We relied on the lasso implementation by Efron et al. [8],
which automatically chooses λ using cross-validation.

ε-LEXICASE. This evolutionary technique adapts the lexicase selection oper-
ator for continuous domains [9]. The idea behind ε-lexicase selection is to
promote candidate solutions that perform well on unique subsets of samples in
the training set, and thereby maintain and promote diverse building blocks of
solutions [9]. Each parent selection begins with a randomized ordering of both

1 f(x) = 10/(5 +
∑5

i=1(xi − 3)2).



176 S. Ruberto et al.

the training cases and the solutions in the selection pool (i.e., population). Indi-
viduals are iteratively removed from the selection pool if they are not within
a small threshold (ε) of the best performance among the pool on the current
training sample. The selection procedure terminates when all but one individual
is left in the pool, or until all individuals have tied performance. In the latter
case, a random one is chosen. The recent study of Orzechowski et al. shows that
ε-lexicase [9] outperforms many GP-inspired algorithms [29]. We relied on the
publicly available implementation of ε-lexicase, ellyn2, which uses stochastic
hill climbing to tune the scalar values of each generated individual. It also relies
on a 25% validation hold-out from the training data to choose the final model
from a bi-dimensional Pareto archive, which ellyn constantly updates during the
evolution. The two dimensions are the number of nodes and the fitness.

DT-EM. We considered a variant of SGP-DT (called DT-EM) with a modified
fitness function as the only difference with SGP-DT:

fitness(I) = MSE =
∑m

i=0(yi − ŷi)2

m
(6)

While the original fitness of SGP-DT minimizes the upper bound of the MSE
in Eq. 3, this function directly minimizes the MSE in Eq. 6. This variant helps
to evaluate the impact of a direct error minimization with respect to a more
qualitative and indirect measure of the error, such as the variance (σ2).

DT-NM. We considered another variant, called DT-NM, that excludes the Min
and Max non-terminal symbols (as the only difference with SGP-DT), and thus
evaluating the advantage of different discontinuity types during the evolution.

4.2 Evaluation Setup

Following the setup of Orzechowski et al. [29] for ε-lexicase, we set for all the
four GP techniques (SGP-DT, ε-lexicase, DT-EM, and DT-NM) a population
size of 1,000 and a budget of 1,000 generations. We ran 50 trials for every tech-
nique on each data set using 25% of the data for testing and 75% for training.

SGP-DT and its two variants share the same configuration: We divided the
1,000 generations in 20 external iterations (Next = 20), and thus the number of
internal iterations (Nint) is 50. We used ramped half&half initialization up to a
maximum depth of four (function get-random-initial-population at line 7
of Algorithm 1). The probability of mutation is 100% and the maximum depth
of the sub-trees generated by the mutation operators is five. The probability of
a sub-tree mutation happening at the leaf level is 70%. We set no limits on the
number of nodes in the trees and on the depth of the trees. We set the Elitism
to keep only the best individual at each internal iteration (function elite at
line 16 of Algorithm1). We obtained the validation set by extracting 10% of the
training cases (function split at line 1 of Algorithm 1). The fixed window size
for the rolling-mean is 20. We chose this configuration after a preliminary tuning
phase and kept uniform for all the eight data sets.
2 https://github.com/EpistasisLab/ellyn.

https://github.com/EpistasisLab/ellyn


SGP-DT: Semantic Genetic Programming Based on Dynamic Targets 177

4.3 Results and Discussion

Errors’ Comparison. Following previous work we use the Root Mean Square
Error (RMSE) to evaluate the final solution with the test set. The first five
columns of Table 2 show for each technique the median RMSE of the 50 trials.
The last four columns of Table 2 indicate the percentage decrease of the RMSE
medians with respect to the competitor techniques3. A positive percentage value
means that the RMSE median of SGP-DT is lower (i.e., better), while a negative
value means a worst median RMSE. Figure 1 shows the box plots of the RMSE
values of the 50 trials4. When comparing the RMSE values we performed a non-
parametric pairwise Wilcoxon rank-sum test with Holm correction for multiple-
testing, with a confidence level of 95% (p-value <0.05).

Table 2. Median RMSE of the 50 trials.

Data setRoot mean square error (RMSE) Median RMSE % decrease of SGP-DT over:

SGP-DT lasso ε-lexicaseDT-EMDT-NM lasso ε-lexicaseDT-EM DT-NM

airfoil 2.4634 4.8484 3.6505 2.5643 2.9237 49.19% 32.52% 3.94% 15.75%

concrete 6.5123 10.5383 7.0707 6.4476 6.4132 38.20% 7.90% −1.00% −1.55%

enc 1.4838 3.2498 1.8647 1.4993 1.4584 54.34% 20.43% 1.03% −1.75%

enh 0.5560 2.9645 1.2952 0.5714 0.5410 81.25% 57.07% 2.70% −2.76%

housing 4.4700 4.9155 4.2785 4.4377 4.5273 9.06% −4.48% −0.73% 1.26%

tower 0.2606 0.2953 0.2975 0.2900 0.2900 11.75% 12.39% 10.12% 10.12%

uball5d 0.0402 0.1939 0.0618 0.0430 0.0372 79.29% 35.00% 6.63% −7.87%

yacht 1.0221 9.0237 1.3577 1.2849 1.1786 88.67% 24.72% 20.45% 13.28%

Average RMSE % decrease: 51.47% 23.19% 5.39% 3.31%

SGP-DT achieves a smaller RMSE than lasso for all the data sets, obtaining
always statistical significance. The decrease of the RMSE medians ranges from
9.06% for housing to 88.67% for yacht (51.47% on average). SGP-DT has smaller
RMSE medians than ε-lexicase for all data sets but housing (decrease −4.48%).
This is the only comparison of SGP-DT and ε-lexicase without statistically sig-
nificance. The decrease of the RMSE medians ranges from −4.48% for housing
to 57.07% for ench (23.19% on average). This is a remarkable result consider-
ing that ε-lexicase outperforms many GP-inspired algorithms [29]. Compar-
ing with the variant DT-EM, SGP-DT achieves the only statistically significant
differences with DT-EM on the data sets uball5d and yacht, with percentage
decreases of 6.63% and 20.45%, respectively. For such datasets SGP-DT per-
forms better than DT-EM indicating that our fitness function that minimizes
the upper bound achieves a better final solution. SGP-DT has statistically sig-
nificant differences of the median RMSE with DT-NM only with the data sets

3 calculated with ((MT −MD)/MT ) ·100, where MD is the median RMSE of SGP-DT
and MT is the one of the competing technique.

4 for readability reasons we omitted 4 out-layers for lasso, 13 for ε-lexicase, 30 for
SGP-DT, 30 for DT-NM and 35 for DT-EM.



178 S. Ruberto et al.

airfoil, tower and uball5d. SGP-DT performs better than DT-NM on the airfoil
and tower datasets: 3.94% and 10.12% of percentage decrease, respectively. This
means that the Min and Max non-terminal symbols provide an advantage only
in these two datasets. However, Fig. 1 indicates that using such non-terminal
symbols does not penalize the outcome in any other dataset, except for uball5d
where the difference is statistically significant (the decrease is −7.87%).

Error Comparison with Related Work. Unfortunately, the implementation
of wave [24,25] is not publicly available, and thus a direct comparison would
be difficult. We extracted the median RMSE from the GECCO 2016 paper [25]
for our two common subjects: 4.1 (concrete) and 8.7 (yacht). SGP-DT achieves
a median RMSE percentage decrease of 25.17% (concrete) and 75.12% (yacht),
see Table 2 for the reference values. Note that, the computational cost reported
in the GECCO paper has the same order of magnitude with the one of SGP-DT.

Fig. 1. RMSE of test set for all the techniques and for all the eight data sets.



SGP-DT: Semantic Genetic Programming Based on Dynamic Targets 179

From the paper of Vanneschi et al. [21], we extracted the median RMSE on
the data set concrete of the following GP techniques: 10.44 (NA-GP [21]), 8.1
(NA-GP-50 [21]), 12.50 (GSGP [5]), and 9.43 (GSGP-LS [30]). SGP-DT has a
percentage decrease of 37.64%, 19.62%, 47.92% and 30.96%, respectively. These
results are only indicative because their evaluation setup differs from ours.

Computational Effort. To evaluate the computational effort of the evolution-
ary techniques we decided not to rely on execution time because it depends on
implementation details. Instead, we relied on the total number of evaluated nodes
(being not a GP technique this metric is not applicable to lasso). Both SGP-DT
and ε-lexicase operate on nodes, SGP-DT on tree-like data structures, while
ε-lexicase on stack-based ones. Following Ruberto et al. [11], we count a node
operation every time a technique evaluates a node regardless the purpose of the
operation (e.g., mutation, fitness computation). We excluded the computational
effort of linear scaling because it does not perform operations on nodes. However,
it has a linear computational cost of O(m ·P ), where m is the size of the training
set and P the population size. For comparing the number of evaluated nodes,
we used the Wilcoxon rank-sum test with Holm correction for multiple-testing,
with a confidence level of 95% (p-value < 0.05). The test show that all the com-
parisons between each pair of techniques are statically significance, except the
comparison with SGP-DT and DT-NM on subject uball5d.

Table 3. Median number of evaluated nodes and reduction ratio of SGP-DT.

Data set Median number of evaluated nodes Reduction ratio of SGP-DT over

SGP-DT ε-lexicase DT-EM DT-NM ε-lexicase DT-EM DT-NM

airfoil 1.00E+10 9.28E+10 1.00E+10 9.03E+09 9.26× 1.00× 0.90×
concrete 1.14E+10 6.43E+10 1.14E+10 8.82E+09 5.64× 1.00× 0.77×
enc 1.18E+10 4.99E+10 1.17E+10 9.37E+09 4.25× 0.99× 0.80×
enh 1.18E+10 5.08E+10 1.17E+10 9.27E+09 4.30× 0.99× 0.78×
housing 7.70E+09 3.09E+10 7.63E+09 6.03E+09 4.02× 0.99× 0.78×
tower 7.21E+10 1.94E+11 7.12E+10 4.45E+10 2.69× 0.99× 0.62×
uball5d 9.83E+10 3.94E+11 9.76E+10 7.50E+10 4.01× 0.99× 0.76×
yacht 4.62E+09 2.00E+10 4.58E+09 3.47E+09 4.34× 0.99× 0.75×
Average reduction ratio: 4.81× 0.99× 0.77×

Table 3 reports the median number of nodes (of the 50 runs) that the GP
techniques evaluate to produce the final solution. The last three columns of
Table 3 report the ratio between the number of node evaluations of SGP-DT
with those of ε-lexicase, DT-EM and DT-NM. A ratio greater (lower) than
one means that SGP-DT evaluates a lower (higher) number of nodes. Comparing
with ε-lexicase, SGP-DT reduces the amount of node evaluations by a factor
between 4.01× and 9.26×, obtaining statistically significant better RMSE values
than ε-lexicase for seven out of eight data sets. This result can be explained



180 S. Ruberto et al.

by (i) SGP-DT computes only a fraction of the entire solution (partial models)
at a time; (ii) the size of the individuals is kept at minimum (see Sect. 2).

The number of evaluated nodes of SGP-DT and DT-EM are almost identical
(0.99× on average). This indicates that guiding the evolution with the fitness
function of SGP-DT and with the one of DT-EM yield to the same computational
cost but SGP-DT achieves better median RMSE (5.39% on average). DT-NM
always evaluated less nodes than SGP-DT (0.77× on average).

Size of the Final Solutions. SGP-DT has no limits on the maximum com-
plexity of the individuals, while ε-lexicase has a limit of 50 nodes because
at higher limits the computational effort of ε-lexicase becomes prohibitively
expensive [9]. SGP-DT produces solutions with size ranging from 442 to 1,184
nodes (760 on average), which is on average 15× larger than the one produced by
ε-lexicase and is not large enough to be considered (exponential) bloat. This
extra complexity of the final solutions positively contributes at the performance
of the algorithm. We are investigating a post-processing phase to simplify the
final solutions.

On average, DT-EM produces solutions with 806 nodes and DT-NM with
591. DT-NM generates smaller solutions than DT-EM, this could be due to the
fact that DT-NM has a smaller search space (DT-NM omits the Min and Max
symbols). Evaluating smaller solutions require less computation, this explains
why DT-NM requires less computation than SGP-DT and DT-EM (see Table 3).

Overfitting. Figure 2 plots for each data set the median of the best RMSE by
computational effort (number of evaluated tree nodes) for SGP-DT and its two
variants. Unfortunately, the implementation of ε-lexicase that we used does not
report the intermediate RMSE on test. We use the computational effort, rather
the number of generations, for a fair comparison of the three techniques. This is
because the number of evaluated nodes is not uniform across the generations.

The eight plots indicate that SGP-DT slightly overfits on the data sets tower
and yacht, while on housing produces a substantial overfitting, which is com-
parable to the one of DT-EM but less severe than the one of DT-NM. DT-EM
overfits four data sets: airfoil (Fig. 2a), housing (Fig. 2e), tower (Fig. 2f), yacht
(Fig. 2h). The worst performance is from DT-NM that shows severe overfitting
on airfoil (Fig. 2a), housing (Fig. 2e), tower (Fig. 2f) and yacht (Fig. 2h). Note
that all three techniques overfit for the data sets yacht (Fig. 2h) and housing
(Fig. 2e). This can be explain by their relatively low number of instances (see
Table 1).

For the data sets concrete (Fig. 2b), enc (Fig. 2c) and enh (Fig. 2d) all three
techniques do not manifest overfitting (yet). Interestingly, in these three cases
DT-NM arrives to a low RMSE with less computations than SGP-DT and
DT-EM. We conjecture that this is because concrete, enc and enh are problems
that do not need the additional expressiveness of the Min and Max symbols.

DT-NM is the technique that yields to the smallest individuals, as such we
would expect less overfitting. Surprisingly, this is not the case. We believe that, to
compensate the absence of discontinuity that Max and Min introduce, DT-NM



SGP-DT: Semantic Genetic Programming Based on Dynamic Targets 181

Fig. 2. Median RMSE of the best so far on the test set by computational effort.

used the protected divisions more frequently. This may lead to many asymptotic
discontinuities, which are known to increase the overfitting [6].

When considering each data set individually, SGP-DT and DT-EM mostly
manifest similar overfitting, while DT-NM manifests overfitting much earlier.
This suggests that (i) the non-terminal symbols Max and Min help to alleviate
the overfitting problem; and (ii) relying on the variance (SGP-DT) rather than
MSE (DT-EM) in the fitness function indeed contributes to reduce RMSE (5.39%
on average, see Table 2) but not to influence overfitting.

5 Conclusion

In this paper, we proposed SGP-DT, a new evolutionary technique that dynam-
ically discovers and resolves intermediate dynamic targets. Our key intuition
is that the synergy of the linear scaling and mutation helps to exchange good
genetic materials during the evolution. Notably, SGP-DT does not rely on any
form of crossover, and thus without suffering from its intrinsic limitations [2,7].
Our experimental results confirm our intuitions and show that SGP-DT outper-
forms ε-lexicase in both lower RMSE and less computational cost. This is a
promising result as ε-lexicase outperforms many GP-inspired algorithms [29].



182 S. Ruberto et al.

This paper sparks interesting future work:
We do not perform any type of post-processing of the final solutions to reduce

their size. Indeed, the solutions may contain redundant elements. We are cur-
rently investigating a post-processing step to minimize the size of the final solu-
tions.

A possible future research direction is to automatically identify the proper
number of iterations of SGP-DT. Indeed, problems with different complexity
and nature may require a different number of external and internal iterations.

References

1. Vanneschi, L., Castelli, M., Silva, S.: A survey of semantic methods in genetic
programming. Genet. Program. Evolvable Mach. 15(2), 195–214 (2014). https://
doi.org/10.1007/s10710-013-9210-0

2. Pawlak, T.P., Wieloch, B., Krawiec, K.: Review and comparative analysis of
geometric semantic crossovers. Genet. Program. Evolvable Mach. 16(3), 351–386
(2015). https://doi.org/10.1007/s10710-014-9239-8

3. O’Neill, M.: Semantic methods in genetic programming. Genet. Program. Evolvable
Mach. 17(1), 3–4 (2016). https://doi.org/10.1007/s10710-015-9254-4

4. McPhee, N.F., Ohs, B., Hutchison, T.: Semantic building blocks in genetic pro-
gramming. In: O’Neill, M., et al. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 134–
145. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78671-9 12

5. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic program-
ming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone,
M. (eds.) PPSN 2012. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32937-1 3

6. Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scal-
ing. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds.)
EuroGP 2003. LNCS, vol. 2610, pp. 70–82. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-36599-0 7

7. Poli, R., Langdon, W.B.: Schema theory for genetic programming with one-point
crossover and point mutation. Evol. Comput. 6(3), 231–252 (1998)

8. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., et al.: Least angle regression.
Ann. Stat. 32(2), 407–499 (2004)

9. La Cava, W., Spector, L., Danai, K.: Epsilon-Lexicase selection for regression.
In: Proceedings of the Conference on Genetic and Evolutionary Computation
(GECCO 2016), pp. 741–748 (2016)

10. Nicolau, M., Agapitos, A.: On the effect of function set to the generalisation of
symbolic regression models. In: Proceedings of the Companion of the Conference
on Genetic and Evolutionary Computation (GECCO 2018), pp. 272–273 (2018)

11. Ruberto, S., Vanneschi, L., Castelli, M.: Genetic programming with semantic equiv-
alence classes. Swarm Evol. Comput. 44, 453–469 (2019)

12. Keijzer, M.: Scaled symbolic regression. Genet. Program. Evolvable Mach. 5(3),
259–269 (2004). https://doi.org/10.1023/B:GENP.0000030195.77571.f9

13. Gerules, G., Janikow, C.: A survey of modularity in genetic programming. In: the
IEEE Congress on Evolutionary Computation (CEC 2016), pp. 5034–5043 (2016)

14. Krawiec, K., Pawlak, T.: Locally geometric semantic crossover: a study on the roles
of semantics and homology in recombination operators. Genet. Program. Evolvable
Mach. 14(1), 31–63 (2013). https://doi.org/10.1007/s10710-012-9172-7

https://doi.org/10.1007/s10710-013-9210-0
https://doi.org/10.1007/s10710-013-9210-0
https://doi.org/10.1007/s10710-014-9239-8
https://doi.org/10.1007/s10710-015-9254-4
https://doi.org/10.1007/978-3-540-78671-9_12
https://doi.org/10.1007/978-3-642-32937-1_3
https://doi.org/10.1007/3-540-36599-0_7
https://doi.org/10.1007/3-540-36599-0_7
https://doi.org/10.1023/B:GENP.0000030195.77571.f9
https://doi.org/10.1007/s10710-012-9172-7


SGP-DT: Semantic Genetic Programming Based on Dynamic Targets 183

15. Krawiec, K., Liskowski, P.: Automatic derivation of search objectives for test-based
genetic programming. In: Machado, P., et al. (eds.) EuroGP 2015. LNCS, vol. 9025,
pp. 53–65. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16501-1 5

16. Liskowski, P., Krawiec, K.: Online discovery of search objectives for test-based
problems. Evol. Comput. 25(3), 375–406 (2017)

17. Otero, F.E.B., Johnson, C.G.: Automated problem decomposition for the boolean
domain with genetic programming. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-
Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 169–180. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37207-0 15

18. Krawiec, K., O’Reilly, U.M.: Behavioral programming: a broader and more detailed
take on semantic GP. In: Proceedings of the Conference on Genetic and Evolution-
ary Computation (GECCO 2014), pp. 935–942 (2014)

19. Arnaldo, I., Krawiec, K., O’Reilly, U.M.: Multiple regression genetic program-
ming. In: Proceedings of the Conference on Genetic and Evolutionary Computation
(GECCO 2014), pp. 879–886 (2014)

20. Ruberto, S., Vanneschi, L., Castelli, M., Silva, S.: ESAGP – a semantic GP frame-
work based on alignment in the error space. In: Nicolau, M., et al. (eds.) EuroGP
2014. LNCS, vol. 8599, pp. 150–161. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44303-3 13

21. Vanneschi, L., Castelli, M., Scott, K., Trujillo, L.: Alignment-based genetic pro-
gramming for real life applications. Swarm Evol. Comput. 44, 840–851 (2019)

22. Gandomi, A.H., Alavi, A.H.: A new multi-gene genetic programming approach to
nonlinear system modeling. Neural Comput. Appl. 21(1), 171–187 (2012)

23. Oliveira, L.O.V.B., Otero, F.E.B., Pappa, G.L., Albinati, J.: Sequential symbolic
regression with genetic programming. In: Riolo, R., Worzel, W.P., Kotanchek, M.
(eds.) Genetic Programming Theory and Practice XII. GEC, pp. 73–90. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-16030-6 5

24. Medernach, D., Fitzgerald, J., Azad, R.M.A., Ryan, C.: Wave: a genetic program-
ming approach to divide and conquer. In: Proceedings of the Companion of the
Conference on Genetic and Evolutionary Computation. (GECCO 2015), pp. 1435–
1436 (2015)

25. Medernach, D., Fitzgerald, J., Azad, R.M.A., Ryan, C.: A new wave: a dynamic
approach to genetic programming. In: Proceedings of the Conference on Genetic
and Evolutionary Computation (GECCO 2016), pp. 757–764 (2016)

26. Asuncion, A., Newman, D.: UCI Machine Learning Repository (2007)
27. White, D.R., Mcdermott, J., Castelli, M., et al.: Better GP benchmarks: commu-

nity survey results and proposals. Genet. Program. Evolvable Mach. 14(1), 3–29
(2013). https://doi.org/10.1007/s10710-012-9177-2

28. Cava, W.L., Helmuth, T., Spector, L., Moore, J.H.: A probabilistic and multi-
objective analysis of Lexicase selection and ε-Lexicase selection. Evol. Comput.
27, 1–28 (2018)

29. Orzechowski, P., Cava, W.L., Moore, J.H.: Where are we now?: A large benchmark
study of recent symbolic regression methods. In: Proceedings of the Conference on
Genetic and Evolutionary Computation (GECCO 2018), pp. 1183–1190 (2018)

30. Castelli, M., Trujillo, L., Vanneschi, L., Silva, S. Geometric semantic genetic pro-
gramming with local search. In: Proceedings of the Conference on Genetic and
Evolutionary Computation (GECCO 2015), pp. 999–1006 (2015)

https://doi.org/10.1007/978-3-319-16501-1_5
https://doi.org/10.1007/978-3-642-37207-0_15
https://doi.org/10.1007/978-3-662-44303-3_13
https://doi.org/10.1007/978-3-662-44303-3_13
https://doi.org/10.1007/978-3-319-16030-6_5
https://doi.org/10.1007/s10710-012-9177-2

	SGP-DT: Semantic Genetic Programming Based on Dynamic Targets
	1 Introduction
	2 Methodology
	3 Related Work
	4 Evaluation
	4.1 Methods
	4.2 Evaluation Setup
	4.3 Results and Discussion

	5 Conclusion
	References




