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Abstract. Ensemble learning is a powerful paradigm that has been
used in the top state-of-the-art machine learning methods like Random
Forests and XGBoost. Inspired by the success of such methods, we have
developed a new Genetic Programming method called Ensemble GP.
The evolutionary cycle of Ensemble GP follows the same steps as other
Genetic Programming systems, but with differences in the population
structure, fitness evaluation and genetic operators. We have tested this
method on eight binary classification problems, achieving results signif-
icantly better than standard GP, with much smaller models. Although
other methods like M3GP and XGBoost were the best overall, Ensemble
GP was able to achieve exceptionally good generalization results on a
particularly hard problem where none of the other methods was able to
succeed.
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1 Introduction

Genetic Programming (GP) [25] is one of the most proficient Machine Learning
(ML) methods. It is capable of addressing multiple tasks such as classification
and regression, using a variety of techniques from the most classical [17] to the
most recent, like the geometric semantic approaches [28] and the cluster-based
multiclass classification [22].

Ensemble learning [9] is a powerful ML paradigm where multiple models are
induced and their predicted outputs are combined in order to obtain predictions
that are more accurate than the individual ones. Some of the most successful
ML methods are based on ensemble learning, like Random Forests (RF) [4] and
XGBoost (XG) [7]. On the other hand, their performance may vary substantially
depending on the setting of some crucial parameters, like the number of trees and
their maximum depth, which in turn depend on the properties of each dataset.

Inspired by the success of such methods, and motivated by the need to auto-
matically find the right settings for these parameters, we have developed a new
GP method called Ensemble GP (eGP). The evolutionary cycle of eGP follows
the same steps as other GP systems, but with differences in the population
structure, fitness evaluation and genetic operators. In particular, the population
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is composed of two subpopulations, trees and forests, where each subpopula-
tion uses its own fitness function and genetic operators. The approach can be
described as co-evolutionary, cooperative and compositional, and involves sub-
sampling of both observations and features.

The rest of the paper is organized as follows. Section 2 describes related work,
while Sect. 3 provides the details of the eGP method. Section 4 specifies the
experimental setup, and Sects. 5 and 6 report and discuss the results obtained.
Finally, Sect. 7 contains the conclusions and future work.

2 Related Work

Evolutionary computation and other bio-inspired methods have been linked to
ensemble learning from early on (see [11] and references therein). An obvious way
to build ensembles is to combine different individuals of a population, whether
they are GP individuals (e.g. [31]) or other types, like neural networks (review
in [15]). Many other types of ensembles have been built using evolutionary and
other bio-inspired methods, like ensembles of clustering algorithms [8], Decision
Trees [5], Support Vector Machines [1], or a mix of different types [10]. Diver-
sity is important among ensemble members, and multiobjective evolutionary
approaches have been often used to address this issue (e.g. [2,6,24] and refer-
ences therein).

A multitude of publications focus on single specific aspects of ensemble learn-
ing, like selecting and combining the members of the ensemble (e.g. [10] and ref-
erences therein), or evolving the functions that combine the different members
(e.g. [10,16,19]). Others focus on building complete ensembles from scratch, but
even if we limit ourselves to the ones that use GP exclusively (e.g. [3,13,29]),
we find a large diversity of designs, goals and scales of application. A system-
atic review of this extremely vast and diverse literature is much needed in both
evolutionary and ensemble learning communities.

3 Ensemble GP

Now, we describe the method we call ensemble GP (eGP) with all the variants we
implemented and tested. The evolutionary cycle of eGP follows the same steps
as other GP systems, but with differences in the population structure, fitness
evaluation and genetic operators. In particular, the population is composed of
two subpopulations, where each subpopulation uses its own fitness function and
genetic operators. The approach can be described as co-evolutionary, cooperative
and compositional, and involves subsampling of both observations and features.
Algorithm 1 describes the main steps of eGP.

Before describing the details regarding the population, fitness and genetic
operators of eGP, we briefly describe a GP system called M3GP [22] (Multidi-
mensional Multiclass GP with Multidimensional Populations), not only because
it is one of the baselines in our experiments, but also because some elements of
eGP are highly inspired in M3GP.
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Algorithm 1. eGP
procedure eGP(Dataset(Ds), nt, nf )

Split Ds into training, testing and sub samples Φ
Tlist ← Generate Trees(Φ, nt)
Flist ← Generate Forests(nf )
while generation(g) < max generations do

Tparents ← Selection(Tlist)
Fparents ← Selection(Flist)
Toffspring ← Breeding(Tparents)
Foffspring ← Breeding(Fparents)
Flist ← Prune(Foffspring) � Prune only the best forest
g + +

end while
end procedure

3.1 M3GP

In terms of representation of the solutions, the main difference between M3GP
and standard tree-based GP is the number of trees that are part of the same
individual. While a standard GP individual is a single tree, a M3GP individual
may be composed of several trees, called dimensions. Originally developed for
performing multiclass classification [14,22], M3GP evolves each individual as a
set of hyperfeatures, each one represented by a different tree/dimension. After
remapping the input data into this new multidimensional feature space, it cal-
culates the accuracy by forming clusters based on the data labels and classifying
each observation as the class of the closest centroid according to the Mahalanobis
distance. M3GP has also been used for evolving hyperfeatures for regression [23]
and for classification in other GP systems [18].

Starting with only one tree/dimension per individual, M3GP uses standard
subtree crossover and mutation between individuals, and three other operators
designed for removing a tree/dimension from an individual, adding a randomly
created tree/dimension to an individual, and swapping trees/dimensions between
individuals. Additionally, a pruning operator is applied to the best individual of
each generation, removing the trees/dimensions that do not improve its accuracy.

3.2 eGP Population Structure

The population is composed of two types of individuals: trees and forests. A tree
is not the output model, but only a part of it. The output model is a forest,
built as an ensemble of trees. Each tree may be part of many different forests,
and some trees may be part of none.

Trees have the same structure as those used in standard GP, but instead of
having access to all the observations and features of the training dataset, each
individual only sees a subset of observations, and in many cases also a subset
of features. Different variants of eGP use different sampling options: (1) 60%
of all observations, all features included; (2) between one and all observations,
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one to all features included, these numbers being randomly chosen before each
sampling. In both options, the sampling is done uniformly without replacement,
and repeated whenever a new subset of training data is required for allocating
to a new tree.

Forests have the same structure as the M3GP individuals, with each dimen-
sion being a tree from the subpopulation of trees.

3.3 eGP Fitness Functions

The subpopulation of trees uses a standard fitness function based on the error
between expected and predicted outputs, like the Root Mean Squared Error
(RMSE). In classification problems, the class labels are interpreted as the
numeric expected outputs. The fitness of each tree is calculated using only the
subset of observations allowed for this tree.

The subpopulation of forests uses a fitness function based on the accuracy
obtained on all the observations of the training set. Each forest gathers, for each
observation, a vote (on a class) from each of the trees that compose its ensemble.
This vote is obtained by adopting the class label that is closer to the predicted
output. The votes from the different trees of the ensemble can be combined by
normal majority voting or by weighted voting.

In normal voting, for each observation the class that receives more votes
wins, and ties are solved by randomly choosing one of the classes. In weighted
voting (Algorithm 2), for each observation a certainty value is calculated for each
class prediction of each tree, based on the vector of predicted values by all the
trees of the ensemble (1). The sum of certainty values for each class is then
calculated, and divided by the sum of certainty values for both classes. The class
with highest results is chosen as the prediction.

We chose to use L2 normalization (2) for consistency with the cosine similar-
ity used for the eCrossover (described next), which also uses L2. Other normal-
ization methods were considered. Min-Max was discarded due to its inability for
dealing with outliers; Z-Score was discarded because the resulting array was not
contained in the [0, 1] range.

certainty = 1 − l2(X),X =

⎛
⎜⎜⎜⎝

x1

x2

...
xn

⎞
⎟⎟⎟⎠ (1)

l2 normalization =

√√√√
n∑

k=1

|xk|2 (2)

3.4 eGP Genetic Operators

The trees and forests of eGP use different genetic operators. Trees use what can
be described as protected versions of the standard subtree crossover and muta-
tion, designated here as eCrossover and eMutation, respectively. The protection
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Algorithm 2. Weighted Voting
procedure weighted voting(predictions, certainties)

votes ← [ ]
for row in predictions do

zeros, ones ← 0
for col in certainties do

if predictions[row][col] == 1
ones+ = certainties[row][col]

else
zeros+ = certainties[row][col]

end for
votes.append(0 if zeros/(zeros + ones) ≥ ones/(zeros + ones) else 1)

end for
end procedure

is needed when parent trees are not allowed to see all the features due to feature
sampling (see Sect. 3.2). In this case, the offspring must inherit feature restric-
tions from their parents, otherwise after a number of generations all the trees
will be using all the features. Without feature sampling, these operators behave
the same as the standard ones.

eMutation simply has to ensure that the new subtree created to replace a
random branch of the parent is restricted to the same subset of features as the
parent. eCrossover must guarantee that each swapped branch is also restricted
to the subset of features inherited by the receiving offspring. Each of the two off-
spring inherits from one of its two parents. Instead of relying on a careful choice
of compatible couples and branches to swap, eCrossover relies on a repair pro-
cedure that replaces features on the received branches whenever these features
are not allowed by the inherited restrictions (Algorithm3). Each illegal feature
is compared to all the legal ones on the complete training set, using the cosine
similarity measure (3). The chosen replacement is the most similar feature to
the one that was removed. Unlike the euclidean distance, the cosine similarity
can compare and recognize two vectors of similar meaning even if they have very
different magnitudes.

S(X,Y ) =
∑n

k=1 |xk||yk|√∑n
k=1 |xk|2

√∑n
k=1 |yk|2

(3)

Regarding the subpopulation of forests, it uses the same genetic operators
as M3GP, namely two mutation operators to add and remove trees from the
ensemble, and one crossover operator to swap trees between different ensembles.

4 Experimental Setup

This section describes our experimental setup for the eGP methods, comparing
them against two baselines, standard GP and M3GP, and two state-of-the-art
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Algorithm 3. eCrossover
procedure subtree crossover(parent1, parent2)

cp1, cp2 ← choose crossover points � crossover point 1 and 2
refact tree(parent1, parent2, cp1, cp2, bag1, bag2, DataTraining)

end procedure

procedure refact tree(parent1, parent2, cp1, cp2, bag1, bag2, DataTraining)
parent1, parent2 ← swap branches(cp1, cp2)
fix terminals(p1, bag1, bag2, DataTraining)
fix terminals(p2, bag2, bag1, DataTraining)

end procedure

classifiers, Random Forests (RF) and XGBoost (XG). Six different variants of
eGP were tested, and the results were analysed in terms of training and test
accuracy, number of trees and number of nodes of the final solutions. When com-
paring accuracy, statistical significance is determined using the non-parametric
Kruskal-Wallis test at p < 0.01. Next, we describe all the 10 methods tested,
their main parameter settings, and the eight datasets used for obtaining the
reported results.

4.1 Methods

Table 1 contains the acronyms and descriptions of all the methods used, and will
serve as a memory aid for the remainder of this paper. The six eGP variants are
eGP-N and eGP-W (normal and weighted voting with sampling of features and
observations); eGP-N5 and eGP-W5 (same as previous but with populations of
500 trees and 500 forests, instead of 250 each); eGPn and eGPw (same as eGP-N
and eGP-W but without feature sampling).

Table 1. Acronyms and descriptions of the methods

GP Standard Genetic Programming

M3GP Multidimensional Multiclass GP with Multidimensional Populations

eGP-N Ensemble GP, feature sampling, normal voting

eGP-W Ensemble GP, feature sampling, weighted voting

eGP-N5 Ensemble GP, feature sampling, normal voting, larger population

eGP-W5 Ensemble GP, feature sampling, weighted voting, larger population

eGPn Ensemble GP, no feature sampling, normal voting

eGPw Ensemble GP, no feature sampling, weighted voting

RF Random Forests

XG XGBoost
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Table 2. Main parameter settings

Runs 30

Generations 100

Population size GP/M3GP=500, eGP= {250+250, 500+500}
Function set {+,−,×, /, log,

√} (protected)

Fitness GP=RMSE, M3GP/eGP=Accuracy

Selection Tournament size 5 (GP/M3GP=Double Tournament)

Crossover/Mutation GP=0.95/0.05, M3GP/eGP=0.5/0.5

Number of estimators {50, 100, 150, 200}
Maximum depth {2, 4, 6, 8}
Impurity measure RF= {Gini, Entropy}

4.2 Parameters

Table 2 summarizes the main parameters used in the GP-based methods and in
the RF and XG methods. Each experiment is performed 30 times, with each
run using a different partition of the dataset in 70% training and 30% test.
The GP-based methods run for 100 generations. GP and M3GP use populations
of 500 individuals, while eGP initializes each subpopulation with 250 (or 500)
individuals, for a total of 500 (or 1000) trees + forests. Trees are initialized using
Ramped Half-and-Half, as suggested by Koza [17], while forests are initialized
in a similar fashion to M3GP, with only one tree per forest [22]. The arithmetic
operators of the function set are protected in the following way: when dividing a
value by zero, we return the numerator; when trying to square root or logarithm
a negative number, we return the number untouched. Therefore, the protection
is to ignore the presence of the operator whenever it raises an exception. No
constants are used. The fitness guiding the evolution is the RMSE in GP, and
the accuracy in M3GP and eGP. In order to obtain the accuracy from GP, the
predicted outputs are transformed into the closest numeric class labels. Selection
for breeding is made with Double Tournament [21] in GP and M3GP, and regular
tournament in eGP, size 5. Regarding genetic operators, the crossover/mutation
probabilities are 0.95/0.05 for GP, and 0.5/0.5 for both M3GP and eGP. This
means choosing between crossover and mutation with equal probability, but for
M3GP and eGP forests the specific type of crossover or mutation must then be
chosen, also with equal probability. Elitism guarantees that the best parent is
copied into the new population.

Regarding RF and XG (last three rows of the table), both were 10-fold cross-
validated for number of estimators and maximum depth, and RF was also cross-
validated for the impurity criterion.

4.3 Datasets

Table 3 describes the main characteristics of the datasets used in our experi-
ments. We have selected eight problems from various domains, all being binary
classification tasks, with a different number of features and observations.
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Table 3. Number of features, observations and negative/positive ratio on each dataset.

Datasets BCW BRAZIL GAMETES HEART IONO PARKS PPI SONAR

Features 11 8 1000 13 33 23 3 61

Observations 683 4872 1600 270 351 195 31320 208

Neg/Pos Ratio 35/65 42/58 50/50 45/55 65/35 75/25 52/48 46/54

BCW, HEART, IONO, PARKS. Breast Cancer Wisconsin, Heart Disease,
Ionosphere and Parkinsons are datasets included in the UCI ML repository [20].

BRAZIL. Brazil is a dataset for detecting burned areas in satellite imagery,
containing the radiance values of a set of pixels from a Landsat 8 OLI image
over Brazil, and corrected unburned/burned labels [26].

GAMETES. GAMETES Epistasis 2-Way 1000atts 0.4H EDM-1 EDM-1 1 is
a simulated Genome-Wide Association Studies (GWAS) dataset generated using
the GAMETES tool [18], available in OpenML [12].

PPI. GRID/HPRD-unbal-HS is a dataset built from a Protein-Protein Interac-
tion benchmark of the human species [30], containing the ResnikMax semantic
similarity measure between each pair of proteins on three different semantic
aspects [27].

SONAR. sonar.all-data is a dataset for binary classification of sonar returns,
available in Kaggle [32].

5 Results

Figures 1, 2, 3, 4, 5, 6, 7 and 8 show boxplots of the training and test accuracy
obtained by all the methods on all the problems. For each problem there are
two whiskered boxes, the left one for training and the right one for test. On
the BRAZIL problem, five outliers were removed for visualization purposes, two
on training (90.97% and 67.92%, both for GP) and three on test (90.70% and
68.95% for GP, 77.29% for eGP-N5).

Between the two baselines, as expected M3GP is better than standard GP,
achieving significantly better training accuracy on all eight problems, and also
significantly better test accuracy on five of them (BRAZIL, IONO, PARKS, PPI
and SONAR). In fact, in all pairwise comparisons with the other methods in all
the problems, standard GP is significantly worse in 96% of the cases on training,
and 46% on test. The only exception where it performs significantly better is on
the HEART problem, against RF on the test data.

Regarding the two proposed methods eGP-N and eGP-W, a comparison
between them reveals that the weighted voting (eGP-W) does not seem to
improve performance over the normal voting (eGP-N), as the weighted vot-
ing resulted in one significantly worse training accuracy in the PARKS problem
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(and another borderline worse in IONO), all other results being equal to the
ones of normal voting. Also between eGP-N5 and eGP-W5 the weighted voting
resulted in one significantly worse training accuracy in the IONO problem, all
other results showing no significant differences.

Increasing the population size from 250 to 500 proved to be only marginally
beneficial, more to weighted than to normal voting. eGP-N5 achieved signifi-
cantly better results than eGP-N on four problems (GAMETES, IONO, PARKS
and SONAR) on training, and none on test, all other results being statistically
equal. eGP-W5 was significantly better than eGP-W on five problems (BCW,
HEART, IONO, PARKS and SONAR) on training, and on one problem (IONO)
on test, all other results equal.

Regarding the eGP methods without feature sampling (eGPn and eGPw), in
several cases they revealed to be significantly better than their feature sampling
counterparts (eGP-N and eGP-W), more often on training but also on two test
cases, on problems IONO and PARKS. Even when compared to the 500 indi-
vidual counterparts, they were often better on training and never worse on test.
The weighted voting did not improve or worsen the obtained accuracy.

When comparing the eGP methods with the M3GP baseline, we realize that
on training accuracy M3GP is better than all eGP methods on four problems
(GAMETES, HEART, PARKS and SONAR), worse than all eGP methods on
two problems (BCW and PPI), and on the remaining problems it is better or
equal to most eGP methods, except one case where it is worse (than eGPw,
on BRAZIL). On test accuracy M3GP is better than all eGP methods on four
problems (IONO, PARKS, PPI and SONAR), statistically the same as all eGP
methods on three problems (BCW, GAMETES, HEART), and on the remaining
problem M3GP is better than all eGP feature sampling methods and statistically
the same as eGPn and eGPw.

When comparing the eGP methods with the state-of-the-art RF and XG,
on training both are significantly better than practically all eGP methods on
all problems (except SONAR, where RF is significantly worse than all except
eGP-N and eGP-W). On test accuracy, on two problems (BCW and GAMETES)
there are few significant differences (XG is better than eGP-N and eGP-W), on
two other problems (IONO, PARKS) both RF and XG are better than all eGP
methods, and on the remaining problems RF is either the same (BRAZIL and
PPI), worse (HEART) or better (SONAR) in most cases, while XG is better in
all except a few cases (eGPn and eGPw on BRAZIL, eGP-N on HEART, with
no significant differences).

6 Discussion

In order to better understand how each of the 10 methods scored relatively
to each other, we have counted how many significantly better results each one
obtained among all 72 + 72 = 144 (training + test) pairwise comparisons on all
problems. Table 4 shows the counting (totals are the sum of all problems) and
ranks the methods according to the test totals (training + test in case of tie).
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Fig. 1. Boxplot for the training (left) and test (right) accuracy of each method in the
BCW dataset.

Fig. 2. Boxplot for the training (left) and test (right) accuracy of each method in the
BRAZIL dataset. Outliers removed for visualization purposes: on training, 90.97% and
67.92%, both for GP; on test, 90.70% and 68.95% for GP, and 77.29% for eGP-N5.

Fig. 3. Boxplot for the training (left) and test (right) accuracy of each method in the
GAMETES dataset.
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Fig. 4. Boxplot for the training (left) and test (right) accuracy of each method in the
HEART dataset.

Fig. 5. Boxplot for the training (left) and test (right) accuracy of each method in the
IONO dataset.

Fig. 6. Boxplot for the training (left) and test (right) accuracy of each method in the
PARKS dataset.
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Fig. 7. Boxplot for the training (left) and test (right) accuracy of each method in the
PPI dataset.

Fig. 8. Boxplot for the training (left) and test (right) accuracy of each method in the
SONAR dataset.

Fig. 9. Number of nodes of final models. For each problem, the four boxes are: GP
(black), M3GP (cyan), eGP-N + eGP-W + eGP-N5 + eGP-W5 all together (magenta),
and eGPn + eGPw together (blue). All outliers removed for visualization purposes.
(Color figure online)
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Table 4. Counting of how many significantly better results each method obtained
among all pairwise comparisons. The totals are the sum for all problems. Order of the
problems: BCW, BRAZIL, GAMETES, HEART, IONO, PARKS, PPI, SONAR.

Method Training Test

XG 3 + 9 + 9 + 7 + 9 + 9 + 8 + 9 =63 2 + 6 + 0 + 8 + 8 + 7 + 8 + 8 =47

M3GP 1 + 1 + 7 + 8 + 5 + 7 + 1 + 8 =38 0 + 6 + 0 + 1 + 7 + 7 + 8 + 8 =37

RF 9 + 6 + 8 + 9 + 8 + 8 + 9 + 1 =58 0 + 1 + 0 + 0 + 8 + 8 + 2 + 4 =23

eGPw 5 + 5 + 3 + 5 + 1 + 4 + 2 + 4 =29 0 + 1 + 0 + 1 + 2 + 1 + 1 + 0 = 6

eGPn 2 + 1 + 5 + 5 + 5 + 4 + 3 + 4 =29 0 + 1 + 0 + 1 + 2 + 0 + 1 + 0 = 5

eGP-N5 2 + 1 + 2 + 2 + 5 + 3 + 3 + 4 =22 0 + 1 + 0 + 1 + 2 + 0 + 1 + 0 = 5

eGP-W5 4 + 1 + 1 + 3 + 2 + 1 + 2 + 4 =18 0 + 1 + 0 + 1 + 2 + 0 + 1 + 0 = 5

eGP-N 2 + 1 + 1 + 1 + 2 + 1 + 2 + 1 =11 0 + 1 + 0 + 1 + 1 + 0 + 1 + 0 = 4

eGP-W 2 + 1 + 1 + 1 + 1 + 0 + 2 + 1 = 9 0 + 1 + 0 + 0 + 0 + 0 + 1 + 0 = 2

GP 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 = 0 0 + 0 + 0 + 1 + 0 + 0 + 0 + 0 = 1

These numbers confirm what had already been observed in the boxplots: (1) the
eGP methods, although better than standard GP, were not able to outperform
M3GP or the state-of-the-art RF and XG, (2) the eGP variants without feature
sampling (eGPn and eGPw) are better than the other eGP methods, and (3)
normal voting is generally better than weighted voting.

Not being an ensemble method, it is noteworthy how well M3GP scored, bet-
ter than RF and all other methods except XG. It is also important to empha-
size that the only methods where the running parameters were tuned by cross-
validation were RF and XG (see Sect. 4.2). Therefore, we have no doubt regard-
ing the superiority of M3GP over RF, and raise the question of whether it could
surpass XG had its parameters also been tuned.

Regarding the ranking of the eGP methods, it is possible that feature sam-
pling is not necessary for a GP ensemble, due to the feature selection that most
GP trees naturally do. We must also consider that the feature replacement per-
formed by eCrossover may have highly destructive effects on the fitness of the
offspring. Another thing to consider is the possible inadequacy of our certainty
measure to weight the voting of the ensembles.

Although the results of the eGP methods seem disappointing, they are no
doubt a viable alternative to standard GP, not only in terms of fitness but also
in terms of the size of the evolved models. Figure 9 shows the total number of
nodes of the best models found by the GP-based methods, grouped in four sets:
(1) GP only (black); (2) M3GP only (cyan); (3) eGP methods with feature sam-
pling (eGP-N+ eGP-W + eGP-N5+ eGP-W5 all together, magenta); (4) eGP
methods without feature sampling (eGPn + eGPw together, blue), results per
problem.

The variants with feature sampling exhibit values with much less dispersion
than the ones produced by GP (except on the IONO problem), and significantly
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lower on three problems (BCW, GAMETES, HEART). This result becomes
even more important when we recall that GP used Double Tournament for bloat
control (see Sect. 4.2) and is composed of a single tree, while eGP did not use
any bloat control and is composed of an ensemble of trees. M3GP produced
the smallest solutions of all GP-based methods, however it also used Double
Tournament. Regarding the number of trees that form the evolved ensembles
(not shown), the eGP methods revealed a remarkable consistency among the
different problems, with different runs always using between 2(±1) and 13(±2)
trees on the best forest. This is in sharp contrast to the number of dimensions
used by M3GP, with some problems using as few as 1–4 (BCW) and others using
as many as 11–24 (SONAR), 13–30 (HEART) and 20–36 (GAMETES).

The GAMETES problem posed the largest difficulties to all the methods,
but special attention must be given to the results obtained by some of the eGP
methods, precisely the ones that scored worse in general: eGP-N, eGP-W, eGP-
N5, eGP-W5. Looking back at Fig. 3, we observe a large amount of outliers
of much higher accuracy than normal. On the test data, these are by far the
best results achieved, similar to the ones reported in [18], and only the four
mentioned eGP methods were able to achieve them. Although out of the scope
of this paper, these methods were indeed the only ones able to find, among the
1000 features of this problem, the right combinations that allowed such a big
“jump” in accuracy. Therefore, they deserve more investigation, despite their
apparent modest performance.

7 Conclusions and Future Work

We have developed a new GP method called Ensemble GP (eGP) and tested
it on eight binary classification problems from various domains, with a different
number of features and observations. Different variants of eGP were compared
to standard GP and M3GP baselines, and to the Random Forests and XGBoost
state-of-the-art methods. The results show that eGP consistently evolves smaller
and more accurate models than standard GP. M3GP and XGBoost were the
best methods overall, but on a particularly hard problem the eGP variants were
able to reach exceptionally good generalization results, way above all the other
methods.

As future work, we will investigate ways to improve eGP in different fronts,
making it more competitive with M3GP and XGBoost while maintaining the
characteristics that granted its current success. For example, bloat control and
some parameter tuning are two elements that other methods are benefiting from,
and that we will incorporate also in eGP. Different voting schemes may also
prove beneficial, as well as alternative ways to sample features and observations.
Additionally, we will also work towards extending eGP in order to give it the
ability to address also regression problems and multiclass classification problems.
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