
Ting Hu · Nuno Lourenço ·
Eric Medvet · Federico Divina (Eds.)

LN
CS

 1
21

01

23rd European Conference, EuroGP 2020
Held as Part of EvoStar 2020
Seville, Spain, April 15–17, 2020, Proceedings

Genetic
Programming

Lecture Notes in Computer Science 12101

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Ting Hu • Nuno Lourenço •

Eric Medvet • Federico Divina (Eds.)

Genetic
Programming
23rd European Conference, EuroGP 2020
Held as Part of EvoStar 2020
Seville, Spain, April 15–17, 2020
Proceedings

123

Editors
Ting Hu
Queen’s University
Kingston, ON, Canada

Nuno Lourenço
University of Coimbra
Coimbra, Portugal

Eric Medvet
University of Trieste
Trieste, Italy

Federico Divina
Pablo de Olavide University
Seville, Spain

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-44093-0 ISBN 978-3-030-44094-7 (eBook)
https://doi.org/10.1007/978-3-030-44094-7

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-6382-0602
https://orcid.org/0000-0002-2154-0642
https://orcid.org/0000-0001-5652-2113
https://orcid.org/0000-0002-0964-9506
https://doi.org/10.1007/978-3-030-44094-7

Preface

The 23rd European Conference on Genetic Programming (EuroGP 2020) took place at
the Universidad Pablo de Olavide (UPO) in Sevilla, Spain, 15–17 April, 2020.

Genetic Programming (GP) is an evolutionary computation branch that has been
developed to automatically solve design problems, in particular the computer program
design, without requiring the user to know or specify the form or structure of the
solution in advance. It uses the principles of Darwinian evolution to approach problems
in the synthesis, improvement, and repair of computer programs. The universality of
computer programs, and their importance in so many areas of our lives, means that the
automation of these tasks is an exceptionally ambitious challenge with far-reaching
implications. It has attracted a very large number of researchers and a vast amount
of theoretical and practical contributions are available by consulting the GP
bibliography.1

Since the first EuroGP event in Paris in 1998, EuroGP has been the only conference
exclusively devoted to the evolutionary design of computer programs and other
computational structures. In fact, EuroGP represents the single largest venue at which
GP results are published. It plays an important role in the success of the field, by
serving as a forum for expressing new ideas, meeting fellow researchers, and initiating
collaborations. It attracts scholars from all over the world. In a friendly and welcoming
atmosphere authors presented the latest advances in the field, also presenting GP-based
solutions to complex real-world problems.

EuroGP 2020 received 36 submissions from around the world. The papers have
undergone a rigorous double-blind peer review process, each being reviewed by
multiple members of an international Program Committee.

Among the papers presented in this volume, 12 were accepted for full-length oral
presentation (33% acceptance rate) and 6 as short talks. Authors of both categories of
papers also had the opportunity to present their work in poster sessions to promote the
exchange of ideas in a carefree manner.

The wide range of topics in this volume reflects the current state of research in the
field. With a special focus on GP and artificial intelligence (AI) in 2020, the collection
of papers cover interesting topics including designing GP algorithms for ensemble
learning, comparing GP with popular machine learning algorithms, and customising
GP algorithms for more explainable AI applications to real-world problems.

Together with three other co-located evolutionary computation conferences
(EvoCOP 2020, EvoMusArt 2020, and EvoApplications 2020), EuroGP 2020 was part
of the EvoStar 2020 event. This meeting could not have taken place without the help of
many people. The EuroGP 2020 Organizing Committee is particularly grateful to the
following:

1 http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html.

http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html

– SPECIES, the Society for the Promotion of Evolutionary Computation in Europe
and its Surroundings, aiming to promote evolutionary algorithmic thinking within
Europe and wider, and more generally to promote inspiration of parallel algorithms
derived from natural processes.

– The high-quality and diverse EuroGP 2020 Program Committee. Each year the
members freely devote their time and expertise, in order to maintain the high
standards of EuroGP and provide constructive feedback to help the authors to
improve their papers.

– Francisco Fernández de Vega from the University of Extremadura, Spain, and
Federico Divina from UPO, Spain, as well as their local organizing teams.

– João Correia from the University of Coimbra, Portugal, for the EvoStar 2020
publicity and website.

– The School of Engineering at UPO in Sevilla, Spain, for supporting the local
organization.

– Our invited speakers, José Antonio Lozano and Roberto Serra, who gave inspiring
and enlightening keynote talks.

– The EvoStar 2020 coordinators: Anna I Esparcia-Alcázar, from Universitat Poli-
tècnica de València, Spain, and Jennifer Willies.

April 2020 Ting Hu
Nuno Lourenço

Eric Medvet
Federico Divina

vi Preface

Organization

Program Co-chairs

Ting Hu Queen’s University, Canada
Nuno Lourenço University of Coimbra, Portugal

Publication Chair

Eric Medvet University of Trieste, Italy

Local Chairs

Francisco Fernández
de Vega

Universidad de Extremadura, Spain

Federico Divina Universidad Pablo de Olavide, Spain

Publicity Chair

João Correia University of Coimbra, Portugal

Conference Administration

Anna I Esparcia-Alcazar EvoStar Coordinator

Program Committee

Ignacio Arnaldo Universidad Complutense de Madrid, Spain
R. Muhammad Atif Azad Birmingham City University, UK
Wolfgang Banzhaf Michigan State University, USA
Helio Barbosa Federal University of Juiz de Fora, Brazil
Heder Bernardino Federal University of Juiz de Fora, Brazil
Anthony Brabazon University College Dublin, Ireland
Stefano Cagnoni University of Parma, Italy
Mauro Castelli Universidade Nova de Lisboa, Portugal
Ernesto Costa University of Coimbra, Portugal
Marc Ebner Universität Greifswald, Germany
Anna Esparcia-Alcazar Universitat Politècnica de València, Spain
Francisco Fernández

de Vega
Universidad de Extremadura, Spain

Gianluigi Folino ICAR-CNR, Italy
James Foster University of Idaho, USA
Christian Gagné Université Laval, Canada

Jin-Kao Hao University of Angers, France
Erik Hemberg Massachusetts Institute of Technology, USA
Malcolm Heywood Dalhousie University, Canada
Ignacio Hidalgo Universidad Complutense de Madrid, Spain
Ting Hu Queen’s University, Canada
Domagoj Jakobovió University of Zagreb, Croatia
Colin Johnson University of Kent, UK
Ahmed Kattan Loughborough University, UK
William B. Langdon University College London, UK
Nuno Lourenço University of Coimbra, Portugal
Penousal Machado University of Coimbra, Portugal
James McDermott National University of Ireland, Ireland
Eric Medvet University of Trieste, Italy
Quang Uy Nguyen Military Technical Academy, Vietnam
Miguel Nicolau University College Dublin, Ireland
Julio Cesar Nievola Pontificia Universidade Catolica do Parana, Brazil
Michael O’Neill University College Dublin, Ireland
Ender Ozcan University of Nottingham, UK
Gisele Pappa Universidade Federal de Minas Gerais, Brazil
Andrew J. Parkes University of Nottingham, UK
Tomasz Pawlak Poznań University of Technology, Poland
Stjepan Picek Delft University of Technology, The Netherlands
Clara Pizzuti Institute for High Performance Computing

and Networking, Italy
Thomas Ray University of Oklahoma, USA
Peter Rockett University of Sheffield, UK
Álvaro Rubio-Largo Universidad de Extremadura, Spain
Conor Ryan University of Limerick, Ireland
Marc Schoenauer Inria, France
Lukas Sekanina Brno University of Technology, Czech Republic
Sara Silva University of Lisbon, Portugal
Moshe Sipper Ben-Gurion University, Israel
Lee Spector Hampshire College, USA
Jerry Swan University of York, UK
Ivan Tanev Doshisha University, Japan
Ernesto Tarantino ICAR-CNR, Italy
Leonardo Trujillo Instituto Tecnológico de Tijuana, Mexico
Leonardo Vanneschi Universidade Nova de Lisboa, Portugal
Zdenek Vasicek Brno University of Technology, Czech Republic
David White University of Sheffield, UK
Man Leung Wong Lingnan University, Hong Kong
Bing Xue Victoria University of Wellington, New Zealand
Mengjie Zhang Victoria University of Wellington, New Zealand

viii Organization

Contents

Hessian Complexity Measure for Genetic Programming-Based Imputation
Predictor Selection in Symbolic Regression with Incomplete Data 1

Baligh Al-Helali, Qi Chen, Bing Xue, and Mengjie Zhang

Seeding Grammars in Grammatical Evolution to Improve Search Based
Software Testing . 18

Muhammad Sheraz Anjum and Conor Ryan

Incremental Evolution and Development of Deep Artificial
Neural Networks . 35

Filipe Assunção, Nuno Lourenço, Bernardete Ribeiro,
and Penousal Machado

Investigating the Use of Geometric Semantic Operators in Vectorial
Genetic Programming . 52

Irene Azzali, Leonardo Vanneschi, and Mario Giacobini

Comparing Genetic Programming Approaches for Non-functional
Genetic Improvement: Case Study: Improvement of MiniSAT’s
Running Time . 68

Aymeric Blot and Justyna Petke

Automatically Evolving Lookup Tables for Function Approximation 84
Oliver Krauss and William B. Langdon

Optimising Optimisers with Push GP. 101
Michael A. Lones

An Evolutionary View on Reversible Shift-Invariant Transformations 118
Luca Mariot, Stjepan Picek, Domagoj Jakobovic, and Alberto Leporati

Benchmarking Manifold Learning Methods on a Large Collection
of Datasets . 135

Patryk Orzechowski, Franciszek Magiera, and Jason H. Moore

Ensemble Genetic Programming . 151
Nuno M. Rodrigues, João E. Batista, and Sara Silva

SGP-DT: Semantic Genetic Programming Based on Dynamic Targets 167
Stefano Ruberto, Valerio Terragni, and Jason H. Moore

Effect of Parent Selection Methods on Modularity. 184
Anil Kumar Saini and Lee Spector

Time Control or Size Control? Reducing Complexity and Improving
Accuracy of Genetic Programming Models. 195

Aliyu Sani Sambo, R. Muhammad Atif Azad, Yevgeniya Kovalchuk,
Vivek Padmanaabhan Indramohan, and Hanifa Shah

Challenges of Program Synthesis with Grammatical Evolution 211
Dominik Sobania and Franz Rothlauf

Detection of Frailty Using Genetic Programming: The Case of Older
People in Piedmont, Italy . 228

Adane Tarekegn, Fulvio Ricceri, Giuseppe Costa, Elisa Ferracin,
and Mario Giacobini

Is k Nearest Neighbours Regression Better Than GP? 244
Leonardo Vanneschi, Mauro Castelli, Luca Manzoni, Sara Silva,
and Leonardo Trujillo

Guided Subtree Selection for Genetic Operators in Genetic Programming
for Dynamic Flexible Job Shop Scheduling . 262

Fangfang Zhang, Yi Mei, Su Nguyen, and Mengjie Zhang

Classification of Autism Genes Using Network Science and Linear
Genetic Programming . 279

Yu Zhang, Yuanzhu Chen, and Ting Hu

Author Index . 295

x Contents

Hessian Complexity Measure for Genetic
Programming-Based Imputation
Predictor Selection in Symbolic
Regression with Incomplete Data

Baligh Al-Helali(B), Qi Chen(B), Bing Xue(B), and Mengjie Zhang(B)

School of Engineering and Computer Science, Victoria University of Wellington,
PO Box 600, Wellington 6400, New Zealand

{baligh.al-helali,Qi.Chen,Bing.Xue,Mengjie.Zhang}@ecs.vuw.ac.nz

Abstract. Missing values bring several challenges when learning from
real-world data sets. Imputation is a widely adopted approach to esti-
mating missing values. However, it has not been adequately investigated
in symbolic regression. When imputing the missing values in an incom-
plete feature, the other features that are used in the prediction process
are called imputation predictors. In this work, a method for imputation
predictor selection using regularized genetic programming (GP) models
is presented for symbolic regression tasks on incomplete data. A com-
plexity measure based on the Hessian matrix of the phenotype of the
evolving models is proposed. It is employed as a regularizer in the fitness
function of GP for model selection and the imputation predictors are
selected from the selected models. In addition to the baseline which uses
all the available predictors, the proposed selection method is compared
with two GP-based feature selection variations: the standard GP feature
selector and GP with feature selection pressure. The trends in the results
reveal that in most cases, using the predictors selected by regularized GP
models could achieve a considerable reduction in the imputation error
and improve the symbolic regression performance as well.

Keywords: Symbolic regression · Genetic programming · Incomplete
data · Feature selection · Imputation · Model complexity

1 Introduction

Researchers in different fields often face the problem of having missing values
when dealing with real-world data sets. One common way to work on incomplete
data is called complete case analysis (CCA) [4], which restricts the analysis to
complete instances causing a reduction in the sample size which in turn may
result in biased estimates. Imputation is an alternative approach, which works by
replacing the missing values with the estimated values using estimation models
based on the available data. Statistically speaking, even very simple imputation

c© Springer Nature Switzerland AG 2020
T. Hu et al. (Eds.): EuroGP 2020, LNCS 12101, pp. 1–17, 2020.
https://doi.org/10.1007/978-3-030-44094-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44094-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-44094-7_1

2 B. Al-Helali et al.

approaches can provide less biased estimates than CCA [4]. In machine learning,
imputation is utilized in many tasks, however, very few studies have been con-
ducted on imputation for symbolic regression with incomplete data [1]. This is
probably because most symbolic regression studies are conducted on data which
are generated using artificial functions for benchmark problems rather than real-
world data. Unlike real-world data sets, artificial data sets can be guaranteed
not to contain missing values.

In 1605, Johannes Kepler launched a scientific revolution by discovering that
Mars’ orbit has an ellipse shape based on planetary orbits data tables [15]. This
is an example of symbolic regression: discovering a symbolic expression that fits
a given data set [30]. Such a problem is a core challenge for both statistics and
artificial intelligence (AI). Although it is likely to be an NP-hard problem [30],
symbolic regression plays an important role in many prediction analysis tools,
especially because of its so called “WhiteBox” properties [14]. Another advantage
of symbolic regression over traditional regression methods is the non-requirement
of pre-assumptions on the structure of the regression model [16].

Although there are various methods to address symbolic regression problems
[5], the most commonly used one is genetic programming (GP) which is outlined
in [16] and also used successfully in commercial softwares such as Eureqa [10].
GP is a biological evolution inspired technique for evolving programs to solve
a particular task by applying nature-inspired operations. When producing the
prediction models, GP has the ability of selecting the features implicitly. GP has
been successfully used for feature selection to enhance the performance of differ-
ent learning tasks such as clustering, classification, and symbolic regression [35].
However, one of the most serious issues of GP is model complexity. GP tends
to produce overcomplex models which could not generalise well on unseen data
and have a low interpretablity. Therefore, model complexity measures and reduc-
ing the model complexity have received considerable interest from the research
community [17].

Model selection refers to the task of choosing the best model among a set
of candidate models. The term “best” has different interpretations based on
the research perspective. When comparing models with similar empirical per-
formance, the model with lower complexity is usually preferred hoping that it
has good generalization properties. This is often described as Occam’s razor in
machine learning [26]. Its main idea is that given two models with similar per-
formance, the simpler one should be preferred as simplicity is desirable in itself
[17]. Therefore, it is essential in model selection to avoid choosing unnecessarily
complex models rather than just relying on their goodness of fit.

Although the primary use of model complexity measures is in model selec-
tion, some of these methods can also be used for feature selection. For example,
the Lasso technique can also be used for feature selection in addition to regular-
ization. Another example is Akaike information criterion (AIC), which has been
suggested as a useful technique for assessing the relative importance of features
[3]. This can be done by summing the AIC weights across all models in which
each feature appears and the relative importance is assessed via a rank ordering

Genetic Programming for Imputation Predictor Selection 3

of the sums for all features. The larger the sums, the higher relative importance
for the feature [22].

This work proposes a GP-based feature selection method based on a new com-
plexity measure. The main goal is to construct regularized GP models for each
incomplete feature using other features as predictors. The predictors selected by
these GP programs are then utilized to impute the missing values using different
imputation methods. The imputation methods are applied to symbolic regression
on incomplete data. The specific objectives of this study are as follows:

– Proposing a new complexity measure for GP programs based on the analytical
characteristics of the produced GP phenotypes.

– Utilizing the proposed measure to regularize GP models and using these mod-
els for feature selection.

– Investigating the impact of the proposed method on imputing predictor selec-
tion in symbolic regression with missing values.

– Comparing the proposed method with different GP-based feature selection
variations.

2 Background

2.1 Missing Value Imputation

According to [19], there are three missingness mechanisms that cause incom-
pleteness. If the probability of having a missing value does not depend on any
other data, the missingness is called missing completely at random (MCAR).
However, it is called missing at random (MAR) if this probability depends on
the observed data, but not the missing data, whereas the missingness is missing
not at random (MNAR) if the probability depends on both observed and missing
data.

Missing value imputation (MVI) has been considered as a basic solution
method for incomplete data set problems [18]. Unlike the complete case analysis
strategy, where incomplete cases are deleted, missing value imputation does not
have the risk of reducing the data size. In general, imputation is a process in
which the missing data are replaced with the estimated values. Imputed data
can be produced using two approaches: single imputation and multiple impu-
tation [9]. Single imputation provides a specific value in place of the missing
data directly. However, multiple imputation selects such an imputed value from
several possible responses based on the variance/confidence interval analysis.

2.2 Model Complexity in GP

Model selection should not only be based on goodness-of-fit, but also model
complexity must be considered [17]. Model complexity can be measured using
different characteristics of the learned models such as non-linearity or/and num-
ber of parameters [17]. For example, in polynomial regression, the higher the
degree of the polynomial, the more degrees of freedom, and the more capacity

4 B. Al-Helali et al.

to overfit the training data. Therefore, the polynomial degree can be used as a
complexity measure [33]. However, there are some more sophisticated complexity
measures.

In addition to reducing the empirical error of the learned model, it is desired
for the model complexity to be as small as possible (i.e. without suppressing the
model performance). This goal can be achieved by minimising a fitness function
augmented with a regularisation term as in Eq. (1).

fitness = empirical error + λ × complexity penalty (1)

where fitness is the regularised fitness function, empirical error is the training
error, and complexity penalty works as a regulariser which is a measure of the
model complexity. The influence of the model complexity on the fitness function
is controlled by the regularisation parameter λ, that is, complexity has an impact
on the selection process only if the models have comparable performance. This
happens only if λ � 1.

Some of the regularisers that have been proposed for genetic programming are
derivative-based complexity measures. A regulariser based on curvature (second
order Tikhonov functional) of evolved polynomial models is applied in [25]. In
[34], curvature is used as a regulariser. Regularisers based on the first derivatives
of the evolved functions and their curve length are used in [36]. An approximation
of the Vapnik–Chervonenkis (VC) dimension is used as a regularizer in [6,8],
while in [28], Rademacher complexity is incorporated into the fitness function of
GP individuals to control their functional complexity.

2.3 GP for Feature Selection

Feature selection is the process of choosing a subset of relevant features [35].
In feature selection, the two main components are the search strategy and the
evaluation criteria. The search strategy tries to find the best feature subset(s). A
feature selection method employs an evaluation criterion to measure the quality
of the feature subsets. Feature selection methods can be classified as the wrap-
per, filter and embedded approaches based on the way of involving a learning
algorithm in the evaluation procedure.

GP performs implicit feature selection as the features used in a GP program
represent a set of selected features. For example, in tree-based GP, the target vari-
able is represented as an expression tree in which the leaf nodes can be chosen from
a terminal set that contains the independent features. Any feature appears in the
constructed program is considered as a selected feature by this program. GP has
been successfully used for feature selection to enhance the performance of different
learning tasks such as clustering, classification, and symbolic regression [29].

For symbolic regression, a feature selection method to improve the generalisa-
tion ability of GP is proposed in [7]. This method works by obtaining the features
that appear in the best-of-run GP individuals, and uses a permutation measure
to get the features importance. Artificial bee colony programming is proposed

Genetic Programming for Imputation Predictor Selection 5

for symbolic regression with feature selection in [2]. In [14], deep learning fea-
ture selection is utilized in symbolic regression-classification. In these feature
selection for symbolic regression studies, the missing data are removed.

2.4 Symbolic Regression with Incomplete Data

The existing research on dealing with missing values mainly focus on the classi-
fication tasks. In symbolic regression, removing the incomplete cases is the most
common strategy to deal with missing vales [1]. The symbolic regression research
is mostly focusing on artificial functions that have no missing values.

In [32], missing values in certain ranges of the feature space are considered as
an imbalanced data problem. To handle this problem, a framework for automatic
weighting the data points is suggested, which considers the relative importance
of the points using four importance weighting schemes according to the prox-
imity, remoteness, surrounding, and nonlinear deviation from nearest neighbors.
The methods are used to balance synthetic data sets drawn from mathematical
functions. The limitation of these method is that the unability to estimate the
missing values and their applicability is not validated on real-world incomplete
data.

A hybrid imputation method called GP-KNN is presented in [1]. This method
is employed for symbolic regression with missing values. The main idea of this
method is to combine the regression-based imputation of GP and the instance-
based selection of KNN. This method is evaluated using two measures; the impu-
tation accuracy and the symbolic regression error. The experimental results show
that GP-KNN outperforms state-of-the-art imputation methods on both impu-
tation accuracy and the symbolic regression performance. However, the main
limitation of the GP-KNN method is the time complexity of the imputation
process. This drawback is due to the need for building new imputation models
for each missing value in the test data using the training data.

3 The Proposed Method

In order to perform symbolic regression on incomplete data, the missing values
can be imputed and the resulting complete data are then used. To impute an
incomplete feature in a data set, other features are used in predicting its missing
values. These features are called imputation predictors for the incomplete feature
to be imputed. The main goal of the proposed method is to select imputation
predictors for each incomplete feature using regularized GP models. A good
selection of the predictors can improve the imputation performance and reduce
its computation time as well.

3.1 The Overall System

There are three main components of the adopted framework in this work: the
predictor selection process, the imputation process, and the symbolic regression

6 B. Al-Helali et al.

process. These processes are carried out in two stages, one for training and the
other for testing, as shown in Fig. 1.

In the process of predictor selection, the incomplete training data set is used
by several GP runs to select a set of predictive features (predictors) for each
incomplete feature. GP is used to evolve prediction models from independent
runs and the predictors that appear in the best-of-run of models are selected.
For the imputation process, the selected predictors are fed into an imputation
method for estimating the missing values in the associated incomplete features.
The imputed complete data sets are then used for the symbolic regression pro-
cess.

Incomplete
training data

Incomplete
test data

GP-based imputation
predictor selection

Apply an imputation
method

Imputed
training data

Imputed test
data

Symbolic
regression training

Symbolic
regression models

Symbolic regression
performance

Selected imputation
predictors

Te
st

 s
ta

g
e

Tr
ai

n
in

g
 s

ta
g

e

Predictor selection Imputation
Symbolic regression

Fig. 1. The overall framework.

3.2 Standard GP-Based Predictor Selection

Given an incomplete data set, GP can be used to select the predictors for imput-
ing the incomplete features. For an incomplete feature, f , the data set is reformed
to consider this feature as the target variable for the GP modeling process. The
other features (predictors) are used as input variables. Although all the other
features including those containing missing values are considered, only the com-
plete instances are used.

The fitness of the prediction model is measured based on the data type of the
target incomplete feature. If it is numerical, the prediction process is a regression
task and its goodness is measured by the regression error computed using relative
squared error (RSE) shown in Eq. (2).

RSE =

n∑

i=1

(yi − ŷi)2

n∑

i=1

(yi − ȳ)2
(2)

where n is the number of instances, yi (ŷi) is the target value (predicted value)
of the ith instance, and ȳ is the average of the target values.

For categorical incomplete features, GP classifiers are constructed and the
empirical error is the classification error rate shown in Eq. (3). The translation

Genetic Programming for Imputation Predictor Selection 7

of the numerical outputs of GP individuals into class labels is done following [37]
using Eq. (4).

Error rate =
#incorrectly classified instances

#instances
(3)

class(output) = Classj , if (j − 1) ∗ T < output ≤ j ∗ T, (4)

where Classj , j = 1, 2, ..., C are class labels representing the available C distinct
values in the feature of interest (classes), output is the output of the evolved GP
individual, and T is a random positive constant. In summary,

fitness1 = empirical error =

{
error rate (Eq. (3)), for categorical,
regression error (Eq. (2)), otherwise.

(5)

3.3 GP-Based Predictor Selection with Feature Selection Pressure

To select the imputation predictors for an incomplete feature, f , the GP-process
can be designed to emphasize reducing the number of involved predictors by
using a selection pressure based on the generation number and the number of
selected features as in Eq. (6). The first factor is the ratio of the number of
the current generation, g, to the maximum number of generations, G. When
the value of g increases, the importance weight of feature reduction increases
monotonically. It is designed in this way to allow including more predictors in
the early generations and then in the later generations, where individuals are
supposed to be fitter, have more contribution to selecting the predictors.

The other factor is the ratio of the number of selected predictors, ps (i.e. the
features that are used in the individual), to the number of all available predictors
in the data set, p. If two individuals in a generation have the same prediction
error, a lower fitness value is given to the one with fewer predictors.

selection pressure =
g

G
∗ ps

p
(6)

This pressure function is combined with the empirical error to form the fitness
function for the evolving GP models to minimise the number of predictors in
addition to minimising the prediction error. As shown in Eq. (7), the fitness
function has two parts: the empirical error (empirical error) and the selection
pressure (selection pressure). The empirical error measures how accurately the
current GP individual fits the incomplete feature, whereas the selection pressure
pushes towards using a smaller number of features.

fitness2 = empirical error ∗ (1 + α ∗ selection pressure) (7)

where α is a positive real value less than 1 used to control the balance between
the empirical error and the feature selection pressure, and it is set empirically to

8 B. Al-Helali et al.

be 0.2 because the prediction performance is more important. In order to ensure
that the selection pressure will not be the dominant part of the fitness function,
especially when the empirical error is very small, it is multiplied by the empirical
error to be a proportional ratio of the prediction performance.

3.4 The Proposed Method: GP-Based Predictor Selection with
Model Complexity Pressure

The complexity of GP models can be indicated by different factors such as the
involvement of complex functions or more complicated building blocks. Geomet-
rically, the function sin(x) is more complicated than x3 which is in turn more
complicated than x2. Similarly, for more than one variable, the complexity can
be indicated from the containing algebraic term and obviously a term like x1 ∗x2

is more complex than x1 + x2. Complexity is usually used to select the model,
however, it can be also utilized for feature selection. For example, the GP model
with the expression y1 = x7

1+x5
2 is more complex than the model y2 = x2

1+x3. If
the empirical error difference between the two models is not significant, the less
complex one is preferred. This implies that if it is planned to rely on the model
for feature selection, the feature set {x1, x3}, which is selected by the model y2,
is more likely to be chosen over the one selected by y1, {x1, x2}.

The key idea of the proposed complexity measure is that instead of check-
ing the mathematical form for each term, partial derivatives are considered to
measure whether the input predictors are involved in complex models. For each
independent predictor, xi, the partial derivative of the dependent variable y is
derived w.r.t xi, i.e. ∂y

∂xi
. If the obtained derivative is 0, the predictor xi has no

impact on y at all (it does not appear in y). If ∂y
∂xi

= c for a non-zero constant,
c �= 0, xi is linearly related to y. Otherwise, the relationship is functional which
can be further examined by taking higher order derivatives and the above rela-
tional types still hold true. The predictor xi is linearly related to y with order
n if ∂ny

∂xn
i

= c. However, to take into account the interaction between different
features, the mixed partial derivatives are also considered. For example, if n = 2,

∂2y
∂xi∂xj

are also considered in addition to ∂2y
∂x2

i
.

Let y be the symbolic expression of a GP individual whose terminal set is
X = {xi}p

i=1. The partial derivative of y w.r.t X can be denoted by the Jacobian
matrix of y as in Eq. (8). If all second partial derivatives of y exist, then the
Hessian matrix H of y is a square n×n matrix, usually represented as in Eq. (9).

J(y) =
[

∂y
∂x1

· · · ∂y
∂xn

]

(8)

Genetic Programming for Imputation Predictor Selection 9

H(y) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂2y

∂x2
1

∂2y

∂x1 ∂x2
· · · ∂2y

∂x1 ∂xn

∂2y

∂x2 ∂x1

∂2y

∂x2
2

· · · ∂2y

∂x2 ∂xn
...

...
. . .

...
∂2y

∂xn ∂x1

∂2y

∂xn ∂x2
· · · ∂2y

∂x2
n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9)

By stating an equation for the coefficients using indices i and j, the entries of
the Hessian matrix are denoted as H(y)i,j = ∂2y

∂xi∂xj
. The mixed partial deriva-

tives of y are the entries off the main diagonal in the Hessian. Assuming that
they are continuous, the order of differentiation does not matter (Symmetry of
second derivatives, Schwarz’s theorem). Thus, ∂

∂xi

(
∂f
∂xj

)
= ∂

∂xj

(
∂f
∂xi

)
.

To measure the complexity of an evolved mathematical expression y, we count
the number of predictors that are involved in highly non-linear terms. This is
done by counting the number of predictors that survive after taking a specific
number of derivatives. In the case of n = 2, the second order derivatives, the
model complexity can be calculated as the ratio of the non-constant Hessian
entries of the constructed GP model, C(2)(y) defined as in Eq. (10), then the
model complexity can be calculated as in Eq. (11).

C(2)(y) = {H(y)i,j ,H(y)i,j �= c, for any real constant c} (10)

model complexity =
|C(2)(y)|

| ∂2y
∂X2 | (11)

Model selection can be done by searching for a model that directly minimizes
the weighted sum of empirical loss (goodness of fit) and the complexity of the
model, as follows:

fitness3 = empirical error ∗ (1 + λ ∗ model complexity) (12)

where λ ∈ [0, 1] is a constant value that assigns weight for the contribution of
the model complexity in the fitness value. If the model complexity is given a
high weight then the model is pushed towards being too simple which has the
risk of underfitting, hence, λ is set empirically to 0.2. Similar to fitness2, the
complexity is multiplied by the empirical error to guarantee that the focus will
be always on minimizing the empirical error even when there is a big difference
between the two factors.

4 Experiment Setup

For evaluation purposes, real-world regression data sets with various numbers
of features and instances are used. The statistics of the data sets are shown

10 B. Al-Helali et al.

in Table 1. A reference is made to the data repository OpenML [31] for more
details. Each data set is split randomly into 70:30 as training and test sets. For
each data set, 30 synthetic incomplete data sets are generated by imposing 30%
missing at random (MAR) probability on 20% of the features. The synthetic
incomplete data sets are generated using the R package SIMSEM [27].

Table 1. Statistics of the data sets

Data set #Instances #Features

fri c0 100 25 (Fri) 100 25

CPMP-2015-runtime-regression (CPMP) 2108 24

Bank32nh (Bank) 8192 33

Selwood 31 54

MIP 1090 145

Mtp 4450 203

The effectiveness of the selected predictors is evaluated by the effect on
enhancing the imputation performance of some widely used imputation meth-
ods including linear regression (LR), predictive mean matching (PMM), and
K-nearest neighbour (KNN) [12]. These methods represent different imputation
strategies and we use their implementations in the R package Simputation [20].
For GP-based methods, Table 2 shows the settings used for predictor selection
and symbolic regression. The two processes have different settings (e.g. number of
generation, population size, and tree depth) due to the difference in their objec-
tives. The selection process is more tolerant regarding the prediction accuracy. It
works by selecting the features that appear in a set of weaker prediction models.
However, symbolic regression tries to deliver more accurate models. The imple-
mentation of these methods is carried out under the GP framework provided
by distributed evolutionary algorithms in python (DEAP) [11]. The analytical
derivatives are calculated using the python package SymPy (symbolic computing
in Python) [21]. SymPy provides all the basic operations of calculus, such as cal-
culating limits, derivatives, integrals, or summations. Derivatives are computed
with the diff function, which recursively uses the various differentiation rules.

As the Hessian matrix requires calculating the partial derivatives of the
evolved programs, all GP-generated individuals have be to analytic [24]. Conven-
tional (un)protected division can produce discontinuities [13] and lead to indi-
viduals which are non-differentiable. So, it is replaced with an analytic quotient
operator [23], defined in Eq. (13), which satisfies the differentiability condition.
In addition to eliminating discontinuities, using analytic quotient systematically
has been shown to improve the performance compared to conventional protected
division [23].

AQ(x, y) =
x

√
1 + y2

(13)

Genetic Programming for Imputation Predictor Selection 11

Table 2. GP settings

Parameter GP predictor selection Symbolic regression

Generations 50 100

Population size 256 1024

Crossover rate 0.9 0.9

Mutation rate 0.1 0.1

Elitism Top-1 individual Top-5 individual

Selection method Tournament Tournament

Tournament size 3 7

Maximum depth 17 9

Initialization Ramped-half and half Ramped-half and half

Function set +, −, *, AQ +, −, *, protected %

Terminal set Predictors and constants Features and constants

Fitness function Eq. (5)/Eq. (7)/Eq. (12) Eq. (2)

5 Results and Discussions

To evaluate the different predictor selection methods, three measures are used:
the imputation accuracy, the symbolic regression performance, and the ability
of reducing the number of selected predictors.

5.1 Imputation Performance

The imputation error is the difference between the original complete data and the
imputed data computed using RSE (Eq. (2)). The imputation results obtained
using the imputation methods LR, KNN, and PMM are shown in Table 3. For
each data set, the average imputation error of 30 copies of synthetically gen-
erated incomplete (test) data sets is shown. The table presents the imputation
performance of each imputation method using different predictor selection meth-
ods. Column “Full” refers to the use of all the available predictors to impute the
incomplete features, “GP” to the use of the predictors selected by standard GP
(fitness1 Eq. (5)), “GPFS” to the use of the predictors selected by GP with
feature selection pressure (fitness2 Eq. (7)), and “GPMC” to the use of the
predictors selected by GP with model complexity measure (fitness3 Eq. (12)).

Column “ST” refers to the significance of the difference between the results
of different predictor selection methods based on pair-wise Wilcoxon test with a
significance level of 0.05. The symbol “+” (“−”) means that the corresponding
method outperforms (is outperformed by) the compared method, whereas “=”
refers to no significant difference. However, # means no comparison with the
same method. These symbols are shown in an ordered 4-tuple form to show the
test sign of the comparison with the methods in order. For example, (+, =, #,
−) for the LR method using GPFS on the Fri data set (Table 3) means that the

12 B. Al-Helali et al.

result of applying LR to impute Fri using the predictors selected by GPFS, is sig-
nificantly better/equal/the same method/worse compared to applying LR using
the predictors selected by Full/GP/GPFS/GPMC. To compute the number of
the selected predictors, the average of number of predictors used to impute each
incomplete feature is computed and then these averages are averaged.

From the shown results, it can be seen that the use of GPMC to select the
predictors has more win cases than the use of other selection methods by any of
the considered imputation methods. For example, when using LR imputation, it
outperforms Full predictors on all data sets. Out of six imputation comparisons,
GPMC outperforms GPFS and GP in five and four cases respectively. This
reveals the superiority of the proposed method over the benchmark methods.
Similar conclusions can be deducted from the results of using KNN and PMM.

Table 3. The imputation performance of using imputation methods with different
predictor sets (Symbols “+”, “−”, “=”, and # mean that the method in the column is
significantly better, significantly worse, similar, and the same compared to the method
in the corresponding row)

Full GP GPFS GPMC

Err ST Err ST Err ST Err ST

LR Fri 0.0564 (#, −, −, −) 0.0553 (+, #, =, −) 0.0561 (+, =, #, −) 0.0533 (+, +, +, #)

CPMP 0.1976 (#, −, −, −) 0.1850 (+, #, +, +) 0.1901 (+, −, #, =) 0.1886 (+, −, =, #)

Bank 0.1349 (#, =, −, −) 0.1351 (=, #, −, −) 0.1339 (+, +, #, =) 0.1194 (+, +, =, #)

Selwood 0.2141 (#, −, −, −) 0.2106 (+, #, +, −) 0.2130 (+, −, #, −) 0.2025 (+, +, +, #)

Pah 0.0733 (#, −, −, −) 0.0679 (+, #, =, −) 0.0660 (+, =, #, −) 0.0488 (+, +, +, #)

Mtp 0.1712 (#, −, −, −) 0.1674 (+, #, =, −) 0.1667 (+, =, #, −) 0.1593 (+, +, +, #)

KNN Fri 0.0536 (#, −, −, −) 0.0513 (+, #, =, −) 0.0512 (+, =, #, −) 0.0503 (+, +, +, #)

CPMP 0.1764 (#, −, −, −) 0.1501 (+, #, +, +) 0.1560 (+, −, #, +) 0.1576 (+, −, −, #)

Bank 0.1229 (#, −, −, −) 0.1205 (+, #, −, −) 0.1196 (+, +, #, −) 0.1141 (+, +, +, #)

Selwood 0.1874 (#, −, −, −) 0.1756 (+, #, +, −) 0.1772 (+, −, #, −) 0.1744 (+, +, +, #)

Pah 0.0545 (#, −, −, −) 0.0505 (+, #, =, −) 0.0513 (+, =, #, −) 0.0402 (+, +, +, #)

Mtp 0.1312 (#, =, −, −) 0.1328 (=, #, −, −) 0.1318 (+, +, #, =) 0.1314 (+, +, =, #)

PMM Fri 0.0511 (#, −, −, −) 0.0503 (+, #, −, −) 0.0490 (+, +, #, =) 0.0489 (+, +, =, #)

CPMP 0.1489 (#, =, =, =) 0.1480 (=, #, =, =) 0.1487 (=, =, #, =) 0.1466 (=, =, =, #)

Bank 0.1166 (#, −, −, −) 0.1157 (+, #, =, −) 0.1016 (+, =, #, −) 0.1051 (+, +, +, #)

Selwood 0.1551 (#, =, +, =) 0.1554 (=, #, +, =) 0.1603 (−, −, #, −) 0.1556 (=, =, +, #)

Pah 0.04953 (#, −, −, −) 0.0488 (+, #, =, −) 0.0498 (+, =, #, −) 0.0374 (+, +, +, #)

Mtp 0.1122 (#, −, −, −) 0.1028 (+, #, =, =) 0.1075 (+, =, #, =) 0.1014 (+, =, =, #)

5.2 Symbolic Regression Performance

Regarding the symbolic regression performance, after applying each imputation
method on each incomplete data set, 30 sets of experiments on GP for symbolic
regression are performed. Table 4 shows the amount of the win cases when com-
paring the symbolic regression performance associated with different predictor
selection method. Each value in the table refers to the number of times in which
the column method is significantly better than the row method.

Genetic Programming for Imputation Predictor Selection 13

Table 4. Number of comparisons in which the method in the column has a significantly
better symbolic regression performance than the method in the row

Method LR PMM KNN

Full GP GPFS GPMC Full GP GPFS GPMC Full GP GPFS GPMC

Fri Full 0 17 19 22 0 18 19 17 0 14 15 22

GP 1 0 5 13 2 0 7 18 3 0 17 21

GPFS 1 3 0 14 2 6 0 17 3 5 0 8

GPMC 0 2 5 0 0 6 7 0 3 5 6 0

Sum 2 22 29 49 4 30 33 52 9 24 38 51

CPMP Full 0 18 14 12 0 14 18 19 0 5 6 5

GP 5 0 6 12 6 0 4 6 4 0 7 8

GPFS 5 16 0 6 3 16 0 8 1 6 0 5

GPMC 2 13 7 0 2 15 17 0 1 7 6 0

Sum 12 47 27 30 11 45 39 33 6 18 19 18

Bank32nh Full 0 6 17 16 0 17 16 21 0 17 14 16

GP 4 0 15 17 5 0 17 16 4 0 5 13

GPFS 4 8 0 5 4 5 0 12 5 6 0 17

GPMC 3 4 4 0 4 4 5 0 5 4 7 0

Sum 11 18 36 38 13 26 38 49 14 27 26 46

Selwood Full 0 13 21 19 0 16 17 17 0 5 5 7

GP 5 0 5 15 2 0 14 15 8 0 8 6

GPFS 4 16 0 17 4 7 0 16 12 17 0 17

GPMC 2 5 6 0 3 3 5 0 4 5 7 0

Sum 11 34 32 51 9 26 36 48 24 27 20 30

MIP Full 0 14 12 19 0 17 19 21 0 12 16 19

GP 6 0 8 15 6 0 5 18 3 0 5 18

GPFS 7 7 0 17 6 4 0 13 5 6 0 17

GPMC 1 3 2 0 4 6 5 0 1 2 7 0

Sum 14 24 22 51 16 27 29 52 9 20 28 54

Mtp Full 0 11 14 18 0 6 17 14 0 17 17 21

GP 7 0 5 10 4 0 14 12 3 0 5 8

GPFS 6 7 0 15 4 6 0 7 6 7 0 8

GPMC 3 3 4 0 7 6 6 0 3 3 5 0

Sum 16 21 23 43 15 18 37 33 12 27 27 37

All Total 66 166 169 262 68 172 212 267 74 143 158 236

As shown in Table 4, GPMC leads to better symbolic regression performance
in most of the considered cases compared to any other method. Comparing the
symbolic regression results along with the corresponding imputation results, it
has been noticed that the better imputation accuracy, the better symbolic regres-
sion performance. For instance, when using PMM imputation on the Fri data
set, GPMC wins the majority of the symbolic regression comparisons against
Full and GP but not GPFS. This is because GPMC significantly outperforms
Full and GP in the imputation performance, whereas, there is no significant
imputation difference between GPFS and GPMC. Such a pattern is clearer on
the CPMP data set, where all methods are almost equivalent in the imputation
performance. Similar patterns can be observed for the different methods.

14 B. Al-Helali et al.

Regarding the performance per data set, GPMC has better performance on
four data sets. On CPMP, GPMC could not have better symbolic regression
performance. This might be due to the poor imputation performance. For the
imputation methods, the lowest errors are obtained when using PMM to impute
the missing values on all data sets regardless of the used predictor selection
methods.

5.3 The Number of Selected Predictors

For the number of selected predictors, the average number of selected predictors
using different methods is shown in Table 5. GPFS reduces the number of pre-
dictors more than any other method. This is not surprising since the number of
features is introduced into the fitness function in GPFS. However, it does not
guarantee the improvement of the performance over the standard GP. Overall,
the use of the full set of predictors results in the worst performance.

On the other hand, although GPMC can reduce the imputation predictors
more than Full and GP in most cases, the GPMC method usually has a larger
number of predictors compared to GP. An example of this situation is on the
data set CPMP. This is because the GPMC method prefers models with a smaller
number of predictors in complex terms rather than models with a small number
of predictors in general. For example, if the models y1 = x3

1 + x3
3 ∗ x1 and

y2 = x3
1 + x2 + x3 + x4 have comparable performance, the model y2 is more

preferred although it has more predictors. This is because y1 contains more
predictors with non-constant Hessian entries (i.e. 2-order derivatives).

Table 5. The average number of selected predictors using different methods

Data set Full GP GPFS GPMC

Fri 25 9 6 7

CPMP 24 7 4 9

Bank 33 16 9 15

Selwood 54 31 17 21

MIP 145 54 16 22

Mtp 203 73 31 44

6 Conclusions and Future Work

This work designed a feature selection method that incorporates the number of
features in an analytical complexity measure. The results show that the pro-
posed method mostly provides better performance in terms of both imputation
accuracy and symbolic regression performance. The contribution of this study is

Genetic Programming for Imputation Predictor Selection 15

three fold. First, proposing a new analytical complexity measure for GP models.
Second, utilizing model selection for feature selection. Third, we conduct exper-
iments to demonstrate that our approach is effective in symbolic regression with
missing values.

The main drawback of the proposed method is the need for explicit derivative
of the produced expressions. Such requirement may not be hold when using more
complicated function set (some cause discontinuity). This limitation is a subject
of more research. Another future work is testing the generalizability of the pro-
posed complexity measure considering the regularized GP models. Moreover, new
analytical complexity measures can be examined using some mathematical-based
characteristics such as higher order derivatives and determinant of Hessian. Fur-
thermore, the computation cost of the proposed method will be addressed and
its complexity will be analysed. Meanwhile, the applicability of the developed
method can also be extended to other machine learning tasks such as classifica-
tion and clustering.

References

1. Al-Helali, B., Chen, Q., Xue, B., Zhang, M.: A hybrid GP-KNN imputation for
symbolic regression with missing values. In: Mitrovic, T., Xue, B., Li, X. (eds.) AI
2018. LNCS (LNAI), vol. 11320, pp. 345–357. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03991-2 33

2. Arslan, S., Ozturk, C.: Multi hive artificial bee colony programming for high dimen-
sional symbolic regression with feature selection. Appl. Soft Comput. 78, 515–527
(2019)

3. Burnham, K.P., Anderson, D.R.: Model Selection and Multi-model Inference: A
Practical Information-Theoretic Approach, 2nd edn. Springer, New York (2002).
https://doi.org/10.1007/b97636

4. Camargos, V.P., César, C.C., Caiaffa, W.T., Xavier, C.C., Proietti, F.A.: Multiple
imputation and complete case analysis in logistic regression models: a practical
assessment of the impact of incomplete covariate data. Cadernos de saude publica
27(12), 2299–2313 (2011)

5. Chen, Q.: Improving the generalisation of genetic programming for symbolic regres-
sion. Ph.D. thesis, Victoria University of Wellington (2018)

6. Chen, Q., Xue, B., Shang, L., Zhang, M.: Improving generalisation of genetic pro-
gramming for symbolic regression with structural risk minimisation. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference 2016, pp. 709–716.
ACM (2016)

7. Chen, Q., Zhang, M., Xue, B.: Feature selection to improve generalization of genetic
programming for high-dimensional symbolic regression. IEEE Trans. Evol. Com-
put. 21(5), 792–806 (2017)

8. Chen, Q., Zhang, M., Xue, B.: Structural risk minimisation-driven genetic pro-
gramming for enhancing generalisation in symbolic regression. IEEE Trans. Evol.
Comput. (2018)

9. Donders, A.R.T., Van Der Heijden, G.J., Stijnen, T., Moons, K.G.: A gentle intro-
duction to imputation of missing values. J. Clin. Epidemiol. 59(10), 1087–1091
(2006)

https://doi.org/10.1007/978-3-030-03991-2_33
https://doi.org/10.1007/978-3-030-03991-2_33
https://doi.org/10.1007/b97636

16 B. Al-Helali et al.

10. Dubčáková, R.: Eureqa: software review. Genet. Program. Evolvable Mach. 12(2),
173–178 (2011). https://doi.org/10.1007/s10710-010-9124-z

11. Fortin, F.A., Rainville, F.M.D., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP:
evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012)

12. Heidt, K.: Comparison of imputation methods for mixed data missing at random
(2019)

13. Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scal-
ing. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds.)
EuroGP 2003. LNCS, vol. 2610, pp. 70–82. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-36599-0 7

14. Korns, M.F., May, T.: Strong typing, swarm enhancement, and deep learning
feature selection in the pursuit of symbolic regression-classification. In: Banzhaf,
W., Spector, L., Sheneman, L. (eds.) Genetic Programming Theory and Practice
XVI. GEC, pp. 59–84. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
04735-1 4

15. Koyré, A.: The Astronomical Revolution: Copernicus-Kepler-Borelli. Routledge,
New York (2013)

16. Koza, J.R.: Genetic Programming II, Automatic Discovery of Reusable Subpro-
grams. MIT Press, Cambridge (1992)

17. Le, N., Xuan, H.N., Brabazon, A., Thi, T.P.: Complexity measures in genetic
programming learning: a brief review. In: IEEE Congress on Evolutionary Com-
putation (CEC), pp. 2409–2416. IEEE (2016)

18. Lin, W.-C., Tsai, C.-F.: Missing value imputation: a review and analysis of the
literature (2006–2017). Artif. Intell. Rev. 53, 1487–1509 (2020)

19. Little, R.J., Rubin, D.B.: Statistical Analysis with Missing Data, vol. 793. Wiley,
New York (2019)

20. van der Loo, M.: Simputation: Simple Imputation. R package version 0.2.2 (2017)
21. Meurer, A., et al.: SymPy: Symbolic computing in Python. PeerJ Comput. Sci. 3,

e103 (2017)
22. Murray, K., Conner, M.M.: Methods to quantify variable importance: implications

for the analysis of noisy ecological data. Ecology 90(2), 348–355 (2009)
23. Ni, J., Drieberg, R.H., Rockett, P.I.: The use of an analytic quotient operator in

genetic programming. IEEE Trans. Evol. Comput. 17(1), 146–152 (2012)
24. Ni, J., Rockett, P.: Tikhonov regularization as a complexity measure in multiob-

jective genetic programming. IEEE Trans. Evol. Comput. 19(2), 157–166 (2014)
25. Nikolaev, N.Y., Iba, H.: Regularization approach to inductive genetic program-

ming. IEEE Trans. Evol. Comput. 5(4), 359–375 (2001)
26. Niyogi, P., Girosi, F.: On the relationship between generalization error, hypothesis

complexity, and sample complexity for radial basis functions. Neural Comput. 8(4),
819–842 (1996)

27. Pornprasertmanit, S., Miller, P., Schoemann, A., Quick, C., Jorgensen, T.,
Pornprasertmanit, M.S.: Package ‘SIMSEM’ (2016)

28. Raymond, C., Chen, Q., Xue, B., Zhang, M.: Genetic programming with
Rademacher complexity for symbolic regression. In: IEEE Congress on Evolution-
ary Computation (CEC), pp. 2657–2664. IEEE (2019)

29. Tran, C.T., Zhang, M., Andreae, P.: A genetic programming-based imputation
method for classification with missing data. In: Heywood, M.I., McDermott, J.,
Castelli, M., Costa, E., Sim, K. (eds.) EuroGP 2016. LNCS, vol. 9594, pp. 149–
163. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30668-1 10

30. Udrescu, S.M., Tegmark, M.: Ai Feynman: a physics-inspired method for symbolic
regression. arXiv preprint arXiv:1905.11481 (2019)

https://doi.org/10.1007/s10710-010-9124-z
https://doi.org/10.1007/3-540-36599-0_7
https://doi.org/10.1007/3-540-36599-0_7
https://doi.org/10.1007/978-3-030-04735-1_4
https://doi.org/10.1007/978-3-030-04735-1_4
https://doi.org/10.1007/978-3-319-30668-1_10
http://arxiv.org/abs/1905.11481

Genetic Programming for Imputation Predictor Selection 17

31. Vanschoren, J., Van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science
in machine learning. ACM SIGKDD Explor. Newsl. 15(2), 49–60 (2014)

32. Vladislavleva, E., Smits, G., Den Hertog, D.: On the importance of data balancing
for symbolic regression. IEEE Trans. Evol. Comput. 14(2), 252–277 (2010)

33. Vladislavleva, E.J., Smits, G.F., Den Hertog, D.: Order of nonlinearity as a com-
plexity measure for models generated by symbolic regression via pareto genetic
programming. IEEE Trans. Evol. Comput. 13(2), 333–349 (2008)

34. Wu, Y., Lu, J., Sun, Y.: Genetic programming based on an adaptive regularization
method. In: International Conference on Computational Intelligence and Security,
vol. 1, pp. 324–327. IEEE (2006)

35. Xue, B., Zhang, M.: Evolutionary feature manipulation in data mining/big data.
ACM SIGEVOlution 10(1), 4–11 (2017)

36. Yeun, Y.S., Lee, K.H., Han, S.M., Yang, Y.S.: Smooth fitting with a method for
determining the regularization parameter under the genetic programming algo-
rithm. Inf. Sci. 133(3–4), 175–194 (2001)

37. Zhang, M., Ciesielski, V.: Genetic programming for multiple class object detec-
tion. In: Foo, N. (ed.) AI 1999. LNCS (LNAI), vol. 1747, pp. 180–192. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-46695-9 16

https://doi.org/10.1007/3-540-46695-9_16

Seeding Grammars in Grammatical
Evolution to Improve Search Based

Software Testing

Muhammad Sheraz Anjum(B) and Conor Ryan

Biocomputing and Developmental Systems Group, Department of Computer Science
and Information Systems, Lero - The Irish Software Research Centre,

University of Limerick, Limerick, Ireland
{sheraz.anjum,conor.ryan}@ul.ie

Abstract. Software-based optimization techniques have been increas-
ingly used to automate code coverage analysis since the nineties.
Although several studies suggest that interdependencies can exist
between condition constructs in branching conditions of real life pro-
grams e.g. (i <= 100) or (i == j), etc., to date, only the Ariadne
system, a Grammatical Evolution (GE)-based Search Based Software
Testing (SBST) technique, exploits interdependencies between variables
to efficiently automate code coverage analysis.

Ariadne employs a simple attribute grammar to exploit these depen-
dencies, which enables it to very efficiently evolve highly complex test
cases, and has been compared favourably to other well-known techniques
in the literature. However, Ariadne does not benefit from the interdepen-
dencies involving constants e.g. (i <= 100), which are equally important
constructs of condition predicates. Furthermore, constant creation in GE
can be difficult, particularly with high precision.

We propose to seed the grammar with constants extracted from the
source code of the program under test in order to enhance and extend
Ariadne’s capability to exploit richer types of dependencies (involving all
combinations of both variables and constant values). We compared our
results with the original system of Ariadne against a large set of bench-
mark problems which include 10 numeric programs in addition to the
ones originally used for Ariadne. Our results demonstrate that the seed-
ing strategy not only dramatically improves the generality of the system,
as it improves the code coverage (effectiveness) by impressive margins,
but it also reduces the search budgets (efficiency) often up to an order
of magnitude.

Keywords: Automatic test case generation · Code coverage ·
Evolutionary Testing · Grammatical Evolution

1 Introduction

An important aspect of software quality assurance is software testing and, in
practice, manual testing of a software system is laborious. It has been reported in
c© Springer Nature Switzerland AG 2020
T. Hu et al. (Eds.): EuroGP 2020, LNCS 12101, pp. 18–34, 2020.
https://doi.org/10.1007/978-3-030-44094-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44094-7_2&domain=pdf
http://orcid.org/0000-0002-3600-8931
http://orcid.org/0000-0002-7002-5815
https://doi.org/10.1007/978-3-030-44094-7_2

Seeding Grammars in Grammatical Evolution to Improve SBST 19

the various studies that manual testing can consume up to 50% of the total devel-
opment budget [1,2]. In order to reduce the associated cost, many researchers
[3–6] have been investigating the use of metaheuristic techniques to reduce the
need of human intervention in the testing process; this field of study is referred
to as Search Based Software Testing (SBST).

Genetic Algorithms (GAs) [7] are the most widely employed heuristic-based
search techniques [5,8] in SBST and this subfield of SBST is referred to as
Evolutionary Testing (ET). The most commonly targeted test adequacy criterion
in SBST is full branch coverage [5], which ensures that all parts of the code are
reachable. For the purpose of this paper, we have chosen full condition-decision
coverage as the target which is an extended and thus more challenging to achieve
as compared to branch coverage (detailed in Sect. 2).

Condition predicates of real life programs often contain interdependencies
between variables and constant values, e.g. a condition to check if two vari-
ables are equal or if the value of a particular variable is between 100 and 500,
as branching conditions often include the boundary values as constants. These
facts are well established and have been reported in several research studies,
for example, [9] studied 120 production PL/I programs and reported that 98%
expressions included less than two operators while 62% of them were relational
operators. In another study [10], 50 COBOL programs were analyzed and it was
reported that 64% of the total predicates were equality checks and 77% of the
predicates contained only a single variable; which means that majority of these
predicates contained the comparison between variables and constant values.

To the best of our knowledge, Ariadne [11] is the only SBST technique
proposed to date that exploits the interdependencies between input variables;
however, it does not benefit from interdependencies involving constants which
are equally important constructs of condition predicates as also apparent from
the studies discussed above. Furthermore, Ariadne is a Grammatical Evolu-
tion (GE) [12,13] based system and constant creation in GE can be diffi-
cult [14,15], particularly with high precision. Therefore, it can be very difficult
for Ariadne to find test data that can satisfy conditions containing any depen-
dencies on constant values, particularly in cases where search spaces are large
and complex.

GE is a grammar-based evolutionary algorithm that uses a grammar-based
mapping process to separate search space from solution space. In recent years,
GE has been successfully adopted to solve many software engineering prob-
lems from a wide variety of domains, including software effort estimation [16],
vulnerability testing [17], integration and test order problem [18], game develop-
ment [19], failure reproduction [20], software project scheduling [21] and software
product line testing [22]. To the best of our knowledge, Ariadne is the only sys-
tem proposed to date that targets the structural coverage testing of procedural
C/C++ programs.

In this paper, we propose an improved attribute grammar for Ariadne that
enhances and extends its capability to exploit interdependencies between con-
dition constructs, by harvesting constants from the code under test and then

20 M. S. Anjum and C. Ryan

seeding the grammar with them, thus making them directly available to indi-
viduals, obviating the need to evolve specific constants, and hence improving
Ariadne’s ability to achieve higher code coverage. The new design of grammar
allows variables to take values dependent on both the previously generated vari-
ables and the extracted constant values (detailed in Sect. 4), which enables the
system to exploit all kinds of interdependencies (involving both variables and
constant values) during the whole of evolutionary process.

For the purpose of our experimentation, we employed a large set of bench-
mark programs which includes 10 numeric programs (that heavily rely on con-
stant values) in addition to the ones adopted by [11]. We also created three new,
extremely difficult to test programs, which contain deep levels of nesting, com-
pound conditions and interdependencies involving both variables and constant
values. We adopted condition-decision coverage as the test adequacy criterion
to make a fair comparison with both original results of Ariadne and well-known
results from the literature [23,24].

Our results suggest that the improved grammar dramatically improves the
effectiveness of Ariadne by achieving a 100% coverage (also referred to as full
coverage) on all benchmark programs, while the original system was not able to
achieve full coverage for any of the programs that heavily used constant values.
Our results also demonstrate that the improved grammar does not trade off the
efficiency of the system to improve its generality as it further reduces the search
budgets often up to an order of magnitude.

This paper begins with an overview of search based test data generation
techniques (Sect. 2), followed by an introduction to Ariadne: A GE-based test
data generator (Sect. 3). In Sect. 4, we present our improved grammar for Ariadne
and also the philosophy behind the proposed changes in the original grammar.
Finally, in Sect. 5, we empirically evaluate the performance of our improved
system of Ariadne on a large selection of benchmark problems.

2 Background and Related Work

Structural testing inspects the code based on knowledge of its internal structure.
There are multiple code coverage criteria which are essentially conditions with
varying strictness. A coverage criterion, if met, ensures the absence of certain
types of errors in the code. For example, to achieve 100% condition-decision
coverage (also referred to as full condition-decision coverage), a piece of code
must be executed with a test suite (set of input values) such that all of both
the condition predicates and branching conditions take both possible outcomes
of TRUE and FALSE at least once.

Manually achieving any type of code coverage is a laborious and difficult
task as a human tester has to find a set of input values that can satisfy the
respective condition(s). In order to reduce this testing cost, researchers have
been trying to minimize the need for human intervention in the testing process
since the 1960s [25]. It has been the subject of increasing research interest in
recent years [26].

Seeding Grammars in Grammatical Evolution to Improve SBST 21

In any SBST technique, the goal is to heuristically search for a test suite
that satisfies a chosen test adequacy criterion for the given program. One of the
earliest SBST techniques [25] used random search for this purpose. Random test
data generation can adequately deal with simpler problems but its scalability
can be a challenge when dealing with problems having significantly complex and
large search spaces.

Another SBST paradigm, known as static test data generation, employs some
mathematical system to find the test suite. Symbolic Execution (SE) [27] is
one such technique, in which a mathematical expression is formulated by plac-
ing some symbolic values at the place of program variables. The result of this
expression is a set of input values that can satisfy the adequacy criterion. SE is
generally supposed to resolve constraints and variable interdependencies in order
to execute the required parts of the program but it has its own shortcomings
which include handling procedure calls, loops, pointers and complexity of con-
straints. Other notable static test data generation techniques include domain
reduction [28] and dynamic domain reduction [29]. These techniques address
some of the inherent challenges of SE but handling of loops and pointers remains
an open question.

A relatively more refined SBST approach found in the literature is dynamic
test data generation, which essentially involves running the program under test.
The execution behavior of the program is observed and this information is used to
guide the search towards the required test data. This approach was first proposed
by [30] and later extended/improved by various researchers [31,32]. All the above
mentioned research works employed some Local Search Algorithm (LSA) and
hence involve the inherent risk of getting stuck in some local minima.

To address some of the inherent challenges associated with LSAs, some global
search based techniques including GA-based techniques [23,33–36] and simulated
annealing-based techniques [37] have been proposed by researchers. Further, to
get the benefits of both local and global search algorithms, some Memetic Algo-
rithm (MA) based techniques [24,38] have also been investigated in the litera-
ture.

SBST techniques conventionally search for one sub-goal at a time e.g. in
the case of condition coverage, the set of input values that can result into a
particular outcome of a specific condition predicate is searched at one time.
Some proposed techniques including whole test suite generation [39], [38] and
many-objective optimization [40], search for multiple targets simultaneously.

2.1 Evolutionary Testing

In Evolutionary Testing (ET), a GA is employed to find the test suite from the
domain of all possible input values for the program under test. Each individual
in the population represents one possible set of input values and its fitness is
calculated based on the execution of target program when run with the respective
input values (test case). The code of the target program is usually instrumented
to monitor its execution behavior; this instrumentation is done in conjunction

22 M. S. Anjum and C. Ryan

with GA’s fitness function as both are designed according to the chosen test
adequacy criterion.

Many variations of fitness functions can be found in the literature, but most
of them rely on one or both of two measures, namely, branch distance and
control flow information. The interested reader can refer to [31] and [35] for the
concepts of branch distance and approximation level (control flow information)
respectively.

The earliest ET technique to use a branch distance based fitness function was
proposed by [41] and the earliest works that used control flow information for
measuring the fitness include [33] and [34]. The fitness function deployed in [33]
was primarily based on branch distance but some control flow information was
also incorporated for loop testing, whereas [34] used a purely control flow based
fitness function. Later, [35] proposed a hybrid fitness measures in order to attain
the benefits associated with both of the measures.

2.2 SBST Techniques Benefitting from Seeding

As one of the key observations underpinning this work is the exploitation of
domain knowledge in the process of test data generation, here we present some
other SBST techniques that also take advantage of some related knowledge.
In general, use of any previous knowledge to help solve a problem can also be
referred to as seeding.

There are several papers in the literature on SBST that have shown that
different seeding strategies can strongly influence the search process. For exam-
ple, [42] proposed seeding the evolutionary algorithm with structural test data
to efficiently find worst-case execution times of real-time systems. Later, [43]
proposed to extract knowledge from source code, documentation and program-
mers and seed it to reduce qualitative human oracle costs. In another study, [44]
investigated the impact of exploiting common object usage for the problem of
automatic test data generation. Soon after that, seeding strategies were also
explored in the domain of software product lines [45]. More recently [46,47]
studied the impact of injecting knowledge, through different seeding strategies,
for the problem of service composition.

Previous work has also shown that extracting and directly seeding the con-
stant values from source code of program can significantly improve the structural
coverage testing [48–51], particular for programs heavily relying on constant
values. However, the impact of seeding is prominent only in earlier phases of
search as the seeded values can be modified (through the genetic operators of
crossover and mutation) during the evolutionary process. In this paper, we pro-
pose to inject the extracted constants values in the attribute grammar of Ariadne
(described in Sect. 4). This will permit the system to evolve the required depen-
dencies involving both constants and variables throughout the search process.
In other words, seeding the grammar allows the system to exploit the provided
knowledge (i.e. the constant values) at any stage of the evolutionary process.

Seeding Grammars in Grammatical Evolution to Improve SBST 23

3 Ariadne: GE-Based Test Data Generation

Ariadne is an SBST technique that uses GE as a search algorithm to find/evolve
the required test data from the set of all possible input values for the program
under test. It uses a simple attribute grammar (presented in Sect. 3.2) to exploit
interdependencies present among input variables.

Ariadne targets full condition-decision coverage, which is an extended and
thus more challenging form of branch coverage. The overall operation of Ariadne
is shown in Fig. 1, where o1 to on represent the list of separate search objectives
consisting of TRUE and FALSE outcomes of all the branching nodes (b1 to bl)
and condition predicates (c1 to cm).

Fig. 1. System flow diagram of Ariadne: a GE-based test data generator.

Ariadne linearly selects its target from the list of search objectives and then
performs a GE-based search to find the set of input values that can satisfy the
current search objective. The GE-based search terminates as soon as the current
target is achieved, otherwise, it keeps on running until the number of allowed
generations are exhausted. This whole search process is repeated once for all
the uncovered objectives, as some of the objectives are covered serendipitously
(accidental coverage). The efficiency and effectiveness of any ET technique is
measured in terms of total number of fitness evaluations and percentage of cov-
ered search objectives, respectively.

24 M. S. Anjum and C. Ryan

3.1 Grammatical Evolution

GE is essentially a GA that separates the search space (genotype) from solution
space (phenotype) using a grammar-based mapping process. A problem-specific
grammar is designed for this purpose which is comprised of four elements, i.e.,
terminals (T), non-terminals (N), productions rules (P) and a start symbol
(S). Here, terminals are the only items that can appear in the final phenotype,
while non-terminals are intermediate elements which are associated with the
production rules. The mapping process always begins with the start symbol
and, as it proceeds, production rules direct the mapping process.

In GE, the genotype is simply a list of integers which, in general, is rep-
resented using a binary string. GE consumes the genotype (integer-by-integer)
in the process of making choices among available production rules using the
following formula:

Rule = (integer value) mod (# of choices for the non-terminal at hand)

Let us consider an example where the non-terminal of <operator> is about to
be expanded, while it is associated with the following four production rules:

<operator> ::= * [0]
| / [1]
| + [2]
| - [3]

Assume that the next integer to be consumed by GE engine is 62, then 62
mod 4=2, so option #2 is selected for the further expansion of <operator> i.e.
(<operator> ::= +). A sample grammar with a complete genotype to phenotype
mapping is presented in Fig. 2.

3.2 Grammar

In this section, we present the attribute grammar used in Ariadne [11] to exploit
the commonly found characteristics of real life programs. The start symbol, in
this case, is linked to the following production rule:

<start> ::= <var1><var2><var3> · · · <varN> (1)

where N represents the total number of input variables required by the target
program. Each of the above non-terminals of the form <varM > is further linked
with the following set of production rules:

<varM> ::=0|1| − 1| <rand> | <depvar1> | <depvar2> | . . . |
<depvarM−2> | <depvarM−1>

(2)

The first three choices of the above rule enable Ariadne to quickly satisfy the
commonly found zero, positive and negative value checks as the values of 0, 1 and
−1 represent these domains, respectively. The next production rule of <rand>
is responsible for the production of 32 bit signed random numbers.

Seeding Grammars in Grammatical Evolution to Improve SBST 25

The remaining non-terminals of the form <depvarX> implement the depen-
dency rules. These dependency rules essentially enable the system to exploit vari-
able interdependencies as they allow the input variables to take values dependent
on previously generated variables. These non-terminals of the form <depvarX>
are expanded using the following set of production options:

<depvarX>:= varX |(varX + 1)|(varX − 1) (3)

where varX refers to a previously generated variable. These newly generated
values will be equal-to, greater-than or less-than the value of some previously
generated variable; hence, the conditions involving comparisons/dependencies
between the variables can be quickly satisfied.

4 Improved Grammar

A key distinguishing feature of Ariadne is its use of GE as a search algorithm
(in place of conventional GAs). Design of a grammar is crucial and can have
huge implications on the performance of any GE system; ideally the grammar
used for test data generation should be both generic (so that it can be effectively
applied to a wide range of programs) and efficient.

This section presents our newly proposed grammar design while its implica-
tions and the underpinning philosophy are detailed below in Sect. 4.1.

In our improved design, the non-terminal of <varM> is linked to the follow-
ing set of production rules for their expansion:

<varM> ::=0|1| − 1| <const> | <rand> | <depvar1> | <depvar2>

| . . . | <depvarM−2> | <depvarM−1>
(4)

The newly introduced production rule of < const > is further associated with
the following choices of production rules:

<const> ::= 0|C1|C2|C3| . . . |CN (5)

where C1 to CN represent the list of seeded constant values which are sim-
ply extracted from the condition predicates in the source code. This innovation
allows the variables to take values directly from the pool of seeded constants by
right combinations of Rule 4 and 5. Once generated, these values become part of
the grammar and remain available to be exploited by the dependency rules of the
form <depvarX>, as described in Sect. 3.2. Consequently, the improved Ariadne
can quickly evolve test data required to satisfy complex branching conditions
that contain dependencies involving both variables and constant values.

The rest of the design is kept the same as that of the original grammar
(presented in Sect. 3.2). An example with a complete grammar and grammar-
based genotype to phenotype mapping for a program with three input variables
and nine seeded constants is presented as Fig. 2. Note that this same generic
grammar is used for all our experiments; only the number of input variables and
the list of extracted constants (seeds) were modified as per each program.

26 M. S. Anjum and C. Ryan

Fig. 2. An example with the genotype on the top, grammar on the right and the
mapping sequence on the left.

4.1 Philosophy Behind the Proposed Changes

Ariadne, by design, does not solely rely on the evolutionary process to search
for the required solution, but it also exploits variable interdependencies using
its grammar, as described in Sect. 3. Results reported in [11] demonstrate that
Ariadne clearly outperformed the well-known GA-based techniques by impressive
margins. However, the original system of Ariadne is not capable of exploiting
any dependencies involving constant values; furthermore, constant creation in
GE with such an enormous range is a very difficult task.

Dependencies involving constant values are very common as discussed in
Sect. 1. For example, a branching condition may contain a boundary value and
look like this:

x > y && z == 5000 (6)

In general, it is very difficult for a conventional GA to fortuitously generate test
data that can satisfy these kinds of branching condition, particularly when the
search space is large. It becomes even more difficult for the original system of
Ariadne as it additionally faces difficulties in the creation of constant values. To
address this problem, we proposed an improved grammar for Ariadne that is
capable of exploiting all kinds of interdependencies/comparisons involving both
variables and constant values.

It is worth noting that the seeded constants stay available (as a part of gram-
mar rules) throughout the search process; hence, they can also play their role
in the evolution of the values required for satisfying some deeper level nested

Seeding Grammars in Grammatical Evolution to Improve SBST 27

conditions, which are only reached after some initial generations of the evolution-
ary process. To conclude, our novel design greatly improves Ariadne’s capability
to exploit interdependencies present among all kinds of condition constructs by
enabling it to exploit dependencies involving constant values.

5 Experimental Results and Discussion

An empirical study was performed using three different sets of benchmark func-
tions. The first set, Set 1, contains ten numeric functions1 that heavily rely on
constant values. The second, Set 2, includes the same well-known numeric and
validity-check functions2 that were originally adopted by [11] to compare with
the earlier GA based techniques proposed in [23,36] and [24].

Set 1 contains seven real life programs and three synthetic programs of vary-
ing complexity. The real life programs include Tax Calculator, Admission Merit,
Vitamin D Levels, Birth-Time Weights, HBA1c Levels (blood glucose levels),
Grade Point Average (GPA) Calculator and Volume Discount. These programs
are well-known and self-explanatory and their branching conditions often con-
tain the boundary values (which are essentially constant values). The synthetic
programs S1, S2 and S3, are artificially created to be difficult coverage targets
of varying complexity as they contain deep nesting (up to four levels), com-
pound conditions and interdependencies among the condition constructs (involv-
ing both variables and constant values).

We employed Set 2 to make a fair comparison with the original system of
Ariadne and also with earlier well-known results from the literature [23,24]. For
the purpose of this paper, we adopted only those numeric functions that had
average search costs of at least 10 fitness evaluations in the previously reported
results [11] as the rest of the benchmark functions proved trivial for grammar-
based approach. The adopted numeric function include Days, Quadratic Formula
(QCF) and Triangle Classification which is one of the most commonly adopted
functions in SBST [23,32,34,36] etc. While two validity-check functions named
check ISBN and check ISSN are a part of an open source program, bibclean-
2.08 [52]. These all are among popular benchmark functions in SBST and their
short descriptions as well as justifications for their selection can be found in [11].

5.1 Experimental Setup

We first conducted some initial experiments to identify reasonable settings for
GE run. We noticed that the maximum of 200 generations with a population
size of 50 were found appropriate for all but some synthetic functions. So the
synthetic functions, being more complex, were run with a population size of 200
and maximum number of generations was kept at 500. For a fair comparison
1 In order to facilitate future comparisons we have made available the source code at

http://bds.ul.ie/?page id=390/.
2 The source code of these benchmark functions was made available by [11] at http://

bds.ul.ie/?page id=390/.

http://bds.ul.ie/?page_id=390/
http://bds.ul.ie/?page_id=390/
http://bds.ul.ie/?page_id=390/

28 M. S. Anjum and C. Ryan

with [11], the crossover and mutation operators (i.e. One Point Crossover & Bit
Mutation) and their probabilities (crossover: 0.9, mutation: 0.05) were kept the
same as that of original system of Ariadne.

The input values generated by our improved grammar lie in the same
range as that of the original system (i.e. from the range of −2, 147, 483, 648
to 2, 147, 483, 647) as both systems generate 32-bit signed integers. These inte-
ger values directly serve as input values for most of the benchmark functions; for
the functions of Days, check ISBN and check ISSN, an extra mod based step was
deployed by [11] to convert these integer values into valid input formats as per
the respective functions. For the sake of our experiments, we also used a similar
mapping step for both input and seeding in order to have a fair comparison with
the original system.

5.2 Detailed Analysis of Experiments

We performed 200 independent runs for all the benchmarks and present their
mean performance. We also repeated the same set of experiments using the
original grammar in order to have a better statistical comparison with [11]; our
results were very similar to the originally reported results.

We report our results in terms of three metrics, i.e., Maximum Cover-
age (MC), Success Rate (SR) and average number of fitness evaluations (AE).
MC is the best performance (maximum achieved coverage) of all 200 runs. SR
for each coverage target is the percentage of 200 runs/times that the target was
successfully covered. AE is the average number of benchmark function executions
that were performed in each run.

It can be clearly seen in Table 1 that the original system was not able to
achieve a full coverage for any of the benchmark programs from Set 1 (which
requires the generation of specific constant values). Despite being given a decent
search budget, the maximum coverages achieved by the original system remain
in the range of 25% to 75%. On the other hand, our improved system exhibited
a full coverage (i.e a 100% coverage) in all of its runs; hence achieving a 100%
SR for all the benchmark functions from Set 1.

The original system was never able to attain a full coverage as all these
benchmark functions contain boundary values in their branching conditions.
In other words, they contain interdependencies involving constant values. The
original system is neither able to exploit these interdependencies nor able to
successfully evolve constant values, therefore, it could never generate the test
data required to satisfy these branching conditions. On the other hand, our
improved system was able to exploit the presence of these boundary values as
they were directly seeded in the grammar, and hence it was able to quickly
evolve the test data containing all the dependencies (involving both variables
and constant values) needed to satisfy these branching conditions.

For all the benchmark functions from Set 2, both the original system and our
improved system were able to exhibit a 100% SR as presented in Table 2. As it
was also reported in [11] that the original system was already able to achieve a
full coverage for these programs, the purpose of adopting these benchmarks here

Seeding Grammars in Grammatical Evolution to Improve SBST 29

Table 1. A comparison of our improved Ariadne with the original system of Ari-
adne [11] on ten benchmark functions in Set 1. MC, SR and AE are maximum coverage,
success rate and average number of fitness evaluations, respectively.

Branch ID Original Ariadne [11] Improved Ariadne

MC SR AE MC SR AE

Tax Calculator 67% 0% 20108 100% 100% 27

Admission Merit 25% 0% 150759 100% 100% 827

Vitamin D Levels 63% 0% 30157 100% 100% 34

Birth-time Weights 67% 0% 20108 100% 100% 20

HBA1c Levels 75% 0% 10058 100% 100% 11

GPA Calculator 56% 0% 70359 100% 100% 96

Volume Discount 58% 0% 50259 100% 100% 57

S1 38% 0% 501003 100% 100% 134

S2 70% 0% 601223 100% 100% 2608

S3 56% 0% 801606 100% 100% 11202

was to study if our improved system was also able to retain similar good results
(both in terms of effectiveness and efficiency) for these well-known benchmarks
in SBST. In order to have a fair comparison with [11,24], the experiments for
the validity check functions were performed on the same lines and the results
were separately reported for all the non-trivial branches.

Table 2 shows that our improved system retained a 100% SR while consuming
significantly smaller search budgets, particularly for the validity-check functions
where the AE was reduced to anything just from 9% to 14% of that of the
original system. The reason behind this dramatic improvement in efficiency is
the presence of interdependencies involving constant values, which were success-
fully exploited by our improved system via seeding strategy. For example, the
validity-check functions contained many constants in the condition predicates,
which were made a part of the grammar using Rule 5. The conditions containing
comparisons/dependencies involving these (seeded) constant were quickly satis-
fied by the function of dependency rules as described in Sect. 3.2. In can also be
clearly seen that these improvements are even more impressive when compared
to other GA-based techniques.

To conclude, the results presented in this section demonstrate that the gram-
mar is made more generic without compromising on its efficiency as our improved
system clearly outperforms the original system of Ariadne as well as the other
GA based SBST techniques (both in terms of effectiveness and efficiency) by
wide margins.

30 M. S. Anjum and C. Ryan

Table 2. A comparison of our improved Ariadne with the original system of Ari-
adne [11] and with earlier GA-based techniques [23,24]. MC, SR and AE are maximum
coverage, success rate and average number of fitness evaluations, respectively.

Branch ID Conventional GAs Original ariadne [11] Improved ariadne

MC SR AE MC SR AE MC SR AE

GADGET [23]

Tri 94% N/A 8000 100% 100% 958 100% 100% 355

Days 100% N/A N/A 100% 100% 288 100% 100% 218

QCF 75% N/A N/A 100% 100% 16 100% 100% 13

Harman and McMinn [24]

B3-ISBN 100% 95% 7986 100% 100% 591 100% 100% 69

B4-ISBN 100% 95% 7986 100% 100% 581 100% 100% 69

B6-ISBN 100% 95% 8001 100% 100% 718 100% 100% 70

B7-ISBN 100% 95% 9103 100% 100% 4215 100% 100% 594

B3-ISSN 100% 98% 5273 100% 100% 525 100% 100% 47

B4-ISSN 100% 98% 5273 100% 100% 522 100% 100% 50

B6-ISSN 100% 98% 5324 100% 100% 584 100% 100% 53

B7-ISSN 100% 98% 6380 100% 100% 3755 100% 100% 344

6 Conclusion and Future Work

We have proposed to seed the grammar with constants extracted from source
code in order to improve its effectiveness/generality; this improved grammar is
capable of exploiting a richer class of dependencies (involving both variables and
constant values). We compared our results with the original system of Ariadne
against the same sets of benchmark functions that were originally used as well as
against an additional set of 10 numeric programs. The results of our experiments
show that the seeding strategy improves the effectiveness/generality of the sys-
tem by impressive margins without compromising on its efficiency as it further
reduces the search budgets often up to an order of magnitude. In other words,
the improved system clearly outperforms both the original system of Ariadne as
well as the other GA based SBST techniques both in terms of effectiveness and
efficiency.

We believe that there is much potential to further improve this GE based
SBST technique. For example, the seeding strategy can be further improved
by adding support for numeric values observed at run time (dynamic seed-
ing) and/or by exploring the possibility of accommodating other data types
such as strings, as currently only numeric values are seeded in the grammar.
The grammar can also be improved by systematically adding additional domain
knowledge. Further, we are also conducting a rigorous study to investigate the
scalability of GE-based test data generation.

Seeding Grammars in Grammatical Evolution to Improve SBST 31

This paper is the first to propose, investigate and discuss the implications
of seeding the grammars in GE. Although we have used the seeding strategy in
the area of SBST, we believe that there is huge potential to benefit from this
strategy in other GE-based systems from different domains in which constants
and other low level structures are present in the problem description.

Acknowledgments. The authors would like to thank Aidan Murphy, Muhammad
Hamad Khan and Sehrish Saeed for their help with conceptualization of the idea,
graphic designs and benchmark functions, respectively. This work is supported by the
Science Foundation of Ireland (SFI) Grant Number 16/IA/4605.

References

1. Beizer, B.: Software Testing Techniques, 2nd edn. Van Nostrand Reinhold Inc.,
New York (1990). ISBN 0-442-20672-0

2. Myers, G.J., Badgett, T., Thomas, T.M., Sandler, C.: The Art of Software Testing,
vol. 2. Wiley Online Library (2004)

3. McMinn, P.: Search-based software test data generation: a survey. Softw. Test.
Verif. Reliab. 14(2), 105–156 (2004)

4. Afzal, W., Torkar, R., Feldt, R.: A systematic review of search-based testing for
non-functional system properties. Inf. Softw. Technol. 51(6), 957–976 (2009)

5. Ali, S., Briand, L.C., Hemmati, H., Panesar-Walawege, R.K.: A systematic review
of the application and empirical investigation of search-based test case generation.
IEEE Trans. Software Eng. 36(6), 742–762 (2010)

6. Anand, S., et al.: An orchestrated survey of methodologies for automated software
test case generation. J. Syst. Softw. 86(8), 1978–2001 (2013)

7. Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)
8. Aleti, A., Buhnova, B., Grunske, L., Koziolek, A., Meedeniya, I.: Software architec-

ture optimization methods: a systematic literature review. IEEE Trans. Software
Eng. 39(5), 658–683 (2013)

9. Elshoff, J.L.: An analysis of some commercial PL/I programs. IEEE Trans. Soft-
ware Eng. 2, 113–120 (1976)

10. Cohen, E.I.: A finite domain-testing strategy for computer program testing. Ph.D.
thesis, The Ohio State University (1978)

11. Anjum, M.S., Ryan, C.: Ariadne: evolving test data using grammatical evolu-
tion. In: Sekanina, L., Hu, T., Lourenço, N., Richter, H., Garćıa-Sánchez, P. (eds.)
EuroGP 2019. LNCS, vol. 11451, pp. 3–18. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-16670-0 1

12. Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: evolving programs for
an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C.
(eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0055930

13. O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Trans. Evol. Comput. 5(4),
349–358 (2001)

14. Dempsey, I., O’Neill, M., Brabazon, A.: Constant creation in grammatical evolu-
tion. Int. J. Innovative Comput. Appl. 1(1), 23–38 (2007)

15. Azad, R.M.A., Ryan, C.: The best things don’t always come in small packages:
constant creation in grammatical evolution. In: Nicolau, M., et al. (eds.) EuroGP
2014. LNCS, vol. 8599, pp. 186–197. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44303-3 16

https://doi.org/10.1007/978-3-030-16670-0_1
https://doi.org/10.1007/978-3-030-16670-0_1
https://doi.org/10.1007/BFb0055930
https://doi.org/10.1007/978-3-662-44303-3_16
https://doi.org/10.1007/978-3-662-44303-3_16

32 M. S. Anjum and C. Ryan

16. Barros, R.C., Basgalupp, M.P., Cerri, R., da Silva, T.S., de Carvalho, A.C.: A
grammatical evolution approach for software effort estimation. In: Proceedings of
the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 1413–
1420. ACM (2013)

17. Sparks, S., Embleton, S., Cunningham, R., Zou, C.: Automated vulnerability anal-
ysis: leveraging control flow for evolutionary input crafting. In: Twenty-Third
Annual Computer Security Applications Conference (ACSAC 2007), pp. 477–486.
IEEE (2007)

18. Mariani, T., Guizzo, G., Vergilio, S.R., Pozo, A.T.: Grammatical evolution for the
multi-objective integration and test order problem. In: Proceedings of the Genetic
and Evolutionary Computation Conference 2016, pp. 1069–1076. ACM (2016)

19. Patten, J.V., Ryan, C.: Procedural content generation for games using grammatical
evolution and attribute grammars (2014)

20. Kifetew, F.M., Jin, W., Tiella, R., Orso, A., Tonella, P.: Reproducing field failures
for programs with complex grammar-based input. In: 2014 IEEE Seventh Interna-
tional Conference on Software Testing, Verification and Validation, pp. 163–172.
IEEE (2014)

21. de Andrade, J., Silva, L., Britto, A., Amaral, R.: Solving the software
project scheduling problem with hyper-heuristics. In: Rutkowski, L., Scherer, R.,
Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2019.
LNCS (LNAI), vol. 11508, pp. 399–411. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-20912-4 37

22. Lima, J.A.P., Vergilio, S.R., et al.: Automatic generation of search-based algo-
rithms applied to the feature testing of software product lines. In: Proceedings of
the 31st Brazilian Symposium on Software Engineering, pp. 114–123. ACM (2017)

23. Michael, C.C., McGraw, G., Schatz, M.A.: Generating software test data by evo-
lution. IEEE Trans. Software Eng. 12, 1085–1110 (2001)

24. Harman, M., McMinn, P.: A theoretical and empirical study of search-based test-
ing: local, global, and hybrid search. IEEE Trans. Software Eng. 36(2), 226–247
(2010)

25. Sauder, R.L.: A general test data generator for COBOL. In: Proceedings of the
May 1–3, 1962, Spring Joint Computer Conference, pp. 317–323. ACM (1962)

26. Harman, M., Jia, Y., Zhang, Y.: Achievements, open problems and challenges
for search based software testing. In: 2015 IEEE 8th International Conference on
Software Testing, Verification and Validation (ICST), pp. 1–12. IEEE (2015)

27. Clarke, L.A.: A system to generate test data and symbolically execute programs.
IEEE Trans. Software Eng. 3, 215–222 (1976)

28. DeMilli, R., Offutt, A.J.: Constraint-based automatic test data generation. IEEE
Trans. Software Eng. 17(9), 900–910 (1991)

29. Offutt, A.J., Jin, Z., Pan, J.: The dynamic domain reduction procedure for test
data generation. Softw.: Pract. Exp. 29(2), 167–193 (1999)

30. Miller, W., Spooner, D.L.: Automatic generation of floating-point test data. IEEE
Trans. Software Eng. 3, 223–226 (1976)

31. Korel, B.: Automated software test data generation. IEEE Trans. Software Eng.
16(8), 870–879 (1990)

32. Ferguson, R., Korel, B.: The chaining approach for software test data generation.
ACM Trans. Softw. Eng. Methodol. (TOSEM) 5(1), 63–86 (1996)

33. Jones, B.F., Sthamer, H.H., Eyres, D.E.: Automatic structural testing using genetic
algorithms. Softw. Eng. J. 11(5), 299–306 (1996)

34. Pargas, R.P., Harrold, M.J., Peck, R.R.: Test-data generation using genetic algo-
rithms. Softw. Test. Verif. Reliab. 9(4), 263–282 (1999)

https://doi.org/10.1007/978-3-030-20912-4_37
https://doi.org/10.1007/978-3-030-20912-4_37

Seeding Grammars in Grammatical Evolution to Improve SBST 33

35. Wegener, J., Baresel, A., Sthamer, H.: Evolutionary test environment for automatic
structural testing. Inf. Softw. Technol. 43(14), 841–854 (2001)

36. Miller, J., Reformat, M., Zhang, H.: Automatic test data generation using genetic
algorithm and program dependence graphs. Inf. Softw. Technol. 48(7), 586–605
(2006)

37. Tracey, N., Clark, J., Mander, K., McDermid, J.: An automated framework for
structural test-data generation. In: ASE, p. 285. IEEE (1998)

38. Fraser, G., Arcuri, A., McMinn, P.: A memetic algorithm for whole test suite
generation. J. Syst. Softw. 103, 311–327 (2015)

39. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Trans. Software Eng.
39(2), 276–291 (2013)

40. Panichella, A., Kifetew, F.M., Tonella, P.: Reformulating branch coverage as a
many-objective optimization problem. In: 2015 IEEE 8th International Conference
on Software Testing, Verification and Validation (ICST), pp. 1–10. IEEE (2015)

41. Xanthakis, S., Ellis, C., Skourlas, C., Le Gall, A., Katsikas, S., Karapoulios, K.:
Application of genetic algorithms to software testing. In: Proceedings of the 5th
International Conference on Software Engineering and Applications, pp. 625–636
(1992)

42. Tlili, M., Wappler, S., Sthamer, H.: Improving evolutionary real-time testing. In:
Proceedings of the 8th Annual Conference on Genetic and Evolutionary Compu-
tation, pp. 1917–1924. ACM (2006)

43. McMinn, P., Stevenson, M., Harman, M.: Reducing qualitative human oracle costs
associated with automatically generated test data. In: Proceedings of the First
International Workshop on Software Test Output Validation, pp. 1–4. ACM (2010)

44. Fraser, G., Zeller, A.: Exploiting common object usage in test case generation. In:
2011 Fourth IEEE International Conference on Software Testing, Verification and
Validation, pp. 80–89. IEEE (2011)

45. Lopez-Herrejon, R.E., Ferrer, J., Chicano, F., Egyed, A., Alba, E.: Comparative
analysis of classical multi-objective evolutionary algorithms and seeding strategies
for pairwise testing of software product lines. In: 2014 IEEE Congress on Evolu-
tionary Computation (CEC), pp. 387–396. IEEE (2014)

46. Chen, T., Li, M., Yao, X.: On the effects of seeding strategies: a case for search-
based multi-objective service composition. In: Proceedings of the Genetic and Evo-
lutionary Computation Conference, pp. 1419–1426. ACM (2018)

47. Chen, T., Li, M., Yao, X.: Standing on the shoulders of giants: seeding search-based
multi-objective optimization with prior knowledge for software service composition.
Inf. Softw. Technol. 114, 155–175 (2019)

48. Alshahwan, N., Harman, M.: Automated web application testing using search based
software engineering. In: Proceedings of the 2011 26th IEEE/ACM International
Conference on Automated Software Engineering, pp. 3–12. IEEE Computer Society
(2011)

49. Fraser, G., Arcuri, A.: The seed is strong: seeding strategies in search-based soft-
ware testing. In: 2012 IEEE Fifth International Conference on Software Testing,
Verification and Validation, pp. 121–130. IEEE (2012)

50. Rojas, J.M., Fraser, G., Arcuri, A.: Seeding strategies in search-based unit test
generation. Softw. Test. Verif. Reliab. 26(5), 366–401 (2016)

34 M. S. Anjum and C. Ryan

51. Bidgoli, A.M., Haghighi, H.: A new approach for search space reduction and seeding
by analysis of the clauses. In: Colanzi, T.E., McMinn, P. (eds.) SSBSE 2018. LNCS,
vol. 11036, pp. 343–348. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-99241-9 19

52. bibclean.c (1995). http://www.cs.bham.ac.uk/∼wbl/biblio/tools/bibclean.c.
Accessed 15 Sept 2019

https://doi.org/10.1007/978-3-319-99241-9_19
https://doi.org/10.1007/978-3-319-99241-9_19
http://www.cs.bham.ac.uk/~wbl/biblio/tools/bibclean.c

Incremental Evolution and Development
of Deep Artificial Neural Networks

Filipe Assunção1,2(B) , Nuno Lourenço1 , Bernardete Ribeiro1 ,
and Penousal Machado1

1 CISUC, Department of Informatics Engineering,
University of Coimbra, Coimbra, Portugal
{fga,naml,bribeiro,machado}@dei.uc.pt

2 LASIGE, Department of Informatics, Faculdade de Ciencias,
Universidade de Lisboa, Lisbon, Portugal

Abstract. NeuroEvolution (NE) methods are known for applying Evo-
lutionary Computation to the optimisation of Artificial Neural Networks
(ANNs). Despite aiding non-expert users to design and train ANNs, the
vast majority of NE approaches disregard the knowledge that is gath-
ered when solving other tasks, i.e., evolution starts from scratch for each
problem, ultimately delaying the evolutionary process. To overcome this
drawback, we extend Fast Deep Evolutionary Network Structured Rep-
resentation (Fast-DENSER) to incremental development. We hypothe-
sise that by transferring the knowledge gained from previous tasks we
can attain superior results and speedup evolution. The results show
that the average performance of the models generated by incremental
development is statistically superior to the non-incremental average per-
formance. In case the number of evaluations performed by incremental
development is smaller than the performed by non-incremental develop-
ment the attained results are similar in performance, which indicates that
incremental development speeds up evolution. Lastly, the models gener-
ated using incremental development generalise better, and thus, without
further evolution, report a superior performance on unseen problems.

Keywords: Incremental development · NeuroEvolution ·
Convolutional Neural Networks

1 Introduction

Automated Machine Learning (AutoML) is a sub-field of Artificial Intelligence
(AI) that automates with little or no human-intervention the application of
Machine Learning (ML) approaches to the user’s problem, avoiding the need for
the manual tuning of the data pre-processing, the design and extraction of fea-
tures, and/or the selection and parameterisation of the most suitable ML model.
The current work focuses on a branch of AutoML: NeuroEvolution (NE) [1]. NE
applies Evolutionary Computation (EC) to search for Artificial Neural Networks

c© Springer Nature Switzerland AG 2020
T. Hu et al. (Eds.): EuroGP 2020, LNCS 12101, pp. 35–51, 2020.
https://doi.org/10.1007/978-3-030-44094-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44094-7_3&domain=pdf
http://orcid.org/0000-0002-0915-8475
http://orcid.org/0000-0002-2154-0642
http://orcid.org/0000-0002-9770-7672
http://orcid.org/0000-0002-6308-6484
https://doi.org/10.1007/978-3-030-44094-7_3

36 F. Assunção et al.

(ANNs), enabling the optimisation of their structure (e.g., number of neurons,
layers, connectivity), and/or learning (i.e., weights, or learning algorithm and its
parameters). In other words, the ultimate goal of NE is to empower non-expert
ML users with the ability to design effective ANNs.

One of the main limitations of NE lies in the fact that the majority of the
methods only address a specific problem, i.e., the ANNs are evolved for one task,
and when there is the need to solve a new problem the entire search procedure is
re-started from scratch. Therefore, the methods do not take advantage of any of
the information available from addressing previous similar tasks. In addition, NE
approaches tend to evolve large populations of individuals that are continuously
optimised throughout a usually large number of generations. The evaluation of
a single ANN is time-consuming, because it often requires the training of the
networks with a defined (or evolved) learning strategy. Consequently, the search
for effective ANNs resorting to NE tends to be slow. This problem is even more
striking when optimising Deep Artificial Neural Networks (DANNs).

In this work we extend Fast Deep Evolutionary Network Structured Rep-
resentation (Fast-DENSER) [2] to incremental development, i.e., we transfer
and re-use the knowledge acquired when optimising DANNs (architectures and
learning strategies) to previous problems, and cumulatively apply it to learn new
classification tasks. The main contributions of this work are the following:

– The extension of the Fast-DENSER framework to incremental development;
– The demonstration that DANNs evolved by incremental development statis-

tically outperform the canonical approach;
– The indication that incremental development speeds up evolution. When

given the same number of generations, incremental development surpasses
the performance of the evolution from scratch. For the same level of perfor-
mance fewer generations are necessary;

– The evidence that the method works as expected in terms of evolution, i.e.,
knowledge from previously solved problems is introduced in any stage;

– The conclusion that the DANNs that are evolved by incremental develop-
ment generalise better than those obtained by the non-incremental version.
The performance of the incrementally generated DANNs is superior to their
independent evolution counterparts in previously addressed, and in yet unad-
dressed problems.

The remainder of the document is organised as follows. Section 2 surveys
related works in the field of NE applied to DANNs, and incremental development;
Sect. 3 details Fast-DENSER; Sect. 4 introduces the extension of Fast-DENSER
to incremental development; Sect. 5 presents the experimental setup and results;
and Sect. 6 draws conclusions and addresses future work.

2 Related Work

NeuroEvolution (NE) approaches are usually grouped according to the target
of evolution, i.e., topology [3,4], learning (i.e., weights, parameters, or learning

Incremental Evolution and Development of DANNs 37

policies) [5–7], or the simultaneous evolution of the topology and learning [8,9].
Nonetheless, more recent efforts have been put towards the proposal of methods
that deal with the optimisation DANNs, and thus we feel that it is more intuitive
to divide them into small-scale [5,8] and large-scale [7,10–13] NE. The current
paper focuses on the latter; a complete survey can be found in [14].

The problem of most of the methods that target the evolution of DANNs
is that, even aided by Graphics Processing Units (GPUs) they tend to take a
lot of time to find effective models. For example, CoDeepNEAT [10] trains on
100 GPUs, and Real et al. use 450 GPUs for 7 days to perform each run [15].
Fast-DENSER takes approximately 4.7 days with a single GPU to perform each
run, and that is the reason why we have selected Fast-DENSER for the cur-
rent paper. There are methods that are computationally cheaper, e.g., Lorenzo
and Nalepa [16] take about 120 min to obtain results; however, the speedup is
obtained at the cost of the performance of the model.

To speedup evolution some authors have investigated the use of transfer
learning in NE. The main goal of transfer learning is to make use of the knowl-
edge acquired when solving previous tasks to facilitate the resolution of others,
enhancing lifelong learning [17]. One of the most recurrent ideas is that of using
past knowledge to provide a better start than random seeding (e.g., [18,19]).

A key problem on transfer (and even multi-task) learning is the represen-
tation. Verbancsics and Stanley [20] demonstrate that transfer learning is most
effective when the representation is the same for the multiple problems that
are to be addressed. That is one of the advantages of using a grammar-based
NE approach such as Fast-DENSER: the grammar nature of the method makes
passing from one task to the next one transparent, and requires no changes to
the individuals’ representation.

Whilst some transfer learning works seek to learn high-level features that
are generalisable across multiple domains (e.g., [21]), our objective is to port
individuals to warm start evolution to another problem, and in theory help to
reach high performing solutions in less time. An example of a similar work, but
where a hand designed network is used is introduced by Ciresan et al. [22], where
there is the transfer of knowledge from Latin digits recognition to uppercase
letters, and from Chinese characters to uppercase Latin letters.

3 Fast-DENSER

Fast-DENSER [2] is an extension of Deep Evolutionary Network Structured
Representation (DENSER) [13]: a general-purpose grammar-based NE approach
for optimising DANNs. DENSER can search for any type of DANN, and the
target of evolution is specified in a Context-Free Grammar (CFG). An example
of a CFG for encoding Convolutional Neural Networks (CNNs) is provided in
Fig. 1. The typical structure of CNNs divides the topology into two parts: (i)
layers for feature extraction (convolutional and pooling, lines 1–3), and layers
for classification (fully-connected, line 11). The grammar of Fig. 1 explores these
layer types, and also regularisation layers (dropout and batch normalisation, lines

38 F. Assunção et al.

<features> ::=<convolution> |<convolution> (1)

|<pooling> |<pooling> (2)

|<dropout> |<batch-norm> (3)

<convolution> ::= layer:conv [num-filters,int,1,32,256] [filter-shape,int,1,2,5] (4)

[stride,int,1,1,3]<padding><activation><bias> (5)

<batch-norm> ::=layer:batch-norm (6)

<pooling> ::=<pool-type> [kernel-size,int,1,2,5] (7)

[stride,int,1,1,3]<padding> (8)

<pool-type> ::= layer:pool-avg | layer:pool-max (9)

<padding> ::= padding:same | padding:valid (10)

<classification> ::=<fully-connected> |<dropout> (11)

<fully-connected> ::= layer:fc<activation> (12)

[num-units,int,1,128,2048<bias> (13)

<dropout> ::=layer:dropput [rate,float,1,0,0.7] (14)

<activation> ::= act:linear | act:relu | act:sigmoid (15)

<bias> ::= bias:True | bias:False (16)

<softmax> ::= layer:fc act:softmax num-units:10 bias:True (17)

<learning> ::=<bp><early-stop> [batch size,int,1,50,500] (18)

|<rmsprop><early-stop> [batch size,int,1,50,500] (19)

|<adam><early-stop> [batch size,int,1,50,500] (20)

<bp> ::= learning:gradient-descent [lr,float,1,0.0001,0.1] (21)

[momentum,float,1,0.68,0.99] (22)

[decay,float,1,0.000001,0.001]<nesterov> (23)

<nesterov> ::= nesterov:True | nesterov:False (24)

<adam> ::= learning:adam [lr,float,1,0.0001,0.1] [beta1,float,1,0.5,1] (25)

[beta2,float,1,0.5,1] [decay,float,1,0.000001,0.001] (26)

<rmsprop> ::= learning:rmsprop [lr,float,1,0.0001,0.1] (27)

[rho,float,1,0.5,1] [decay,float,1,0.000001,0.001] (28)

<early-stop> ::= [early)92(]02,5,1,tni,pots

Fig. 1. CFG for the optimisation of the topology and learning strategy of CNNs.

1–3, and 11). Furthermore, the grammar enables the optimisation of the learning
strategy (learning, lines 18–20). The parameters of each evolutionary unit (in the
current work layers or learning algorithms) are kept in the grammar, and can
be integer (e.g., the filter shape in line 4), float (e.g., the momentum in line
22) or closed choice (e.g., the bias in line 16). The integer and float parameters
are represented by a block with the format: [variable-name, variable-type, num-
values, min-value, max-value].

In addition to the CFG we need to define the macro-structure, that estab-
lishes the search space, and points directly to the grammar production rules. The
macro-structure sets the sequence of evolutionary units that the individuals are
allowed to use, and is encoded as a list of tuples, where each position indicates
the non-terminal symbol (that establishes a one-to-one mapping to the gram-
mar, and is used as starting symbol), and the minimum and maximum number
of expansions for that non-terminal symbol. For example, for CNNs, an example
of a macro-structure is [(features, 1, 10), (classification, 1, 2), (softmax, 1, 1),

Incremental Evolution and Development of DANNs 39

(learning, 1, 1)]. This macro-structure allows for CNNs with between 3 and 13
layers, and where the learning strategy is optimised.

Fig. 2. Example of the genotype of a candidate solution that encodes a CNN.

Fig. 3. Phenotype of the layer specified by the inner-level of Fig. 2

The genotype of the candidate solutions is organised into two levels: (i) the
outer-level encodes the sequence of evolutionary units (with respect to the macro-
structure), and sets the non-terminal symbol that is used as initial symbol for the
grammatical derivation; and (ii) the inner-level corresponds to each outer-level
position and encodes the parameters of a specific evolutionary unit. The inner-
level genotype is similar to the genotype of Dynamic Structured Grammatical
Evolution (DSGE); for more details on DSGE refer to [23]. An example of the
genotype and corresponding phenotype of a candidate solution are represented
in Figs. 2 and 3, respectively.

The representation of the candidate solutions in DENSER and Fast-DENSER
is the same. The differences between the two approaches lie in the evolution of the
population and in the evaluation of the candidate solutions. In DENSER evolu-
tion is conducted as in a standard Genetic Algorithm, where in each generation a
large population of individuals is evaluated and offspring is generated. Contrary,
Fast-DENSER follows a (1+λ) Evolutionary Strategy (ES), and therefore in
each generation fewer individuals are evaluated. The results have demonstrated
that Fast-DENSER, with the same individual evaluation scheme, can generate
individuals that have the same quality as those generated by DENSER, in a
fraction of the time. More precisely, there is a speedup of 20x from DENSER
to Fast-DENSER. In addition, Fast-DENSER is extended to enable the gener-
ation of fully-trained DANNs, i.e., networks that need no further training by
the end of the evolutionary process. To this end, Fast-DENSER evaluates the
individuals for a maximum GPU training time. However, the maximum training

40 F. Assunção et al.

Fig. 4. Incremental development Fast-DENSER flow-chart.

time granted to each individual can grow continuously as required. The networks
that are likely to benefit from longer training cycles are given access to a greater
evaluation time as evolution proceeds.

4 Incremental Development of Deep Neural Networks

Experiments on previous work have shown that Fast-DENSER, given the same
computational time budget, can obtain results that are superior to those reported
by DENSER. The results are achieved without taking advantage of any of the
knowledge acquired when solving other problems. In this paper we investigate
the impact of building the networks incrementally, i.e., we take into account the
DANNs that are generated for solving previous related problems, speeding up
evolution, and possibly finding more effective solutions.

The flow-chart that illustrates the extension of Fast-DENSER to incremental
development is depicted in Fig. 4. It shows how the method proceeds to address
two different tasks A and B. For the first problem, task A, the method works
similarly to Fast-DENSER: an initial population is randomly created and evolves

Incremental Evolution and Development of DANNs 41

until the stop criterion is met. The difference occurs when we solve a new prob-
lem, given that we have information on a prior one. For task B, the creation
of the initial population takes into account the best model found for a previous
problem (in this case task A). During evolution the past knowledge can also be
incorporated. This rationale is generalised for more than two problems, i.e., in
case we later address a task C, we use the knowledge obtained when addressing
tasks A and B. Next, we will discuss how the prior knowledge is introduced in
the initial population, and during evolution.

The initial population is formed by individuals that can be either entirely gen-
erated at random or that can use sets of evolutionary units from past models. The
evolutionary units are transferred taking into account the macro-structure. For
example, considering the macro-structure introduced above for CNNs, [(features,
1, 10), (classification, 1, 2), (softmax, 1, 1), (learning, 1, 1)], the initial popula-
tion can contain individuals that (i) have all the layers comprising the feature
extraction, and generate the classification layers at random; (ii) generate at ran-
dom the feature extraction layers, and copy the layers that perform classification
from previous models; (iii) copy only the learning evolutionary unit, and gen-
erate all the remaining ones at random; (iv) generate all evolutionary units at
random, not using any previous knowledge; or (v) any other possible combina-
tion. It is important to mention that this incremental development approach only
focuses on the evolutionary units, and consequently the weights are not trans-
ferred from previous models. At most we allow the learning strategy (which is
an evolutionary unit) to be ported.

The models generated for solving each of the previously addressed problems
are also important during evolution. The mutations in Fast-DENSER are tailored
for manipulating DANNs: they enable the addition, removal, and/or duplication
of any evolutionary unit, and the perturbation of the integer and/or float values.
The duplication mutation, as the name suggests, replicates a given evolutionary
unit by reference, and thus, any mutation that later affects this evolutionary
unit changes all of its copies. In the incremental development version of Fast-
DENSER the duplication can copy evolutionary units either from the individual
or from any of the best models that were generated for solving previous tasks.

The individuals are evaluated only on the new problem. Therefore, up to the
moment, this method is incremental in the sense that the DANNs for solving
new and unseen problems do not kick off evolution from scratch. The incremental
development does not mean that by the end of evolution the generated models
can solve multiple tasks. However, it is expected that the models that are built
considering previous knowledge generalise better than those that are always
evolved from a random population. That is, we expect the models generated by
incremental development to perform well in other tasks when re-trained.

5 Experimentation

To compare the incremental and non-incremental versions of Fast-DENSER we
consider four computer vision datasets: MNIST, SVHN, Fashion-MNIST, and

42 F. Assunção et al.

Table 1. Description of the datasets.

Dataset Train set size Test set size Number of classes Shape

MNIST 60000 10000 10 28× 28× 1

SVHN 73257 26032 10 32× 32× 3

Fashion-MNIST 60000 10000 10 28× 28× 1

CIFAR-10 50000 10000 10 32× 32× 3

CIFAR-10 (summarised in Sect. 5.1). In particular, we conduct experiments for
the following setups: (i) MNIST; (ii) SVHN; (iii) Fashion-MNIST; (iv) CIFAR-
10; (v) MNIST → SVHN; (vi) MNIST → SVHN → Fashion-MNIST; (vii)
MNIST → SVHN → CIFAR-10. The symbol → denotes the incremental build
of the model from one task to the next. The setups are chosen according to the
relatedness and expected difficulty of the tasks: the MNIST and SVHN datasets
are composed by digits, and then transferred to two different domains, Fashion-
MNIST, and CIFAR-10. The parameters required for the conducted experiments
are detailed in Sect. 5.2. The experimental results are divided into three sec-
tions. First, in Sect. 5.3 we analyse the evolutionary performance when evolving
DANNs for MNIST, SVHN, Fashion-MNIST, and CIFAR-10 with and without
incremental development. Second, in Sect. 5.4 we investigate the incremental
development of the topologies. Third, in Sect. 5.5, we analyse the generalisa-
tion ability of the different models. The experimental results are discussed in
Sect. 5.6.

5.1 Datasets

The experiments are conducted in 4 datasets: MNIST, SVHN, Fashion-
MNIST, and CIFAR-10. The characteristics of the datasets are summarised in
Table 1. The shape of the instances is formatted as width × height × number
of channels; grayscale images have one channel, and RGB images have three
channels. A brief overview of the dataset instances is provided next.

MNIST [24] – handwritten digits from 0 to 9. The instances are pre-processed:
size-normalized, and centered;

SVHN [25] – digits gathered from real-world images from house numbers in
Google Street View images;

Fashion-MNIST [26] – similar to MNIST, where the images of handwritten
digits are replaced by fashion clothing items: top, trouser, pullover, dress,
coat, sandal, shirt, sneaker, bag, and ankle boot;

CIFAR-10 [27] – real-world pictures of objects that are of one of the following
classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.

Incremental Evolution and Development of DANNs 43

5.2 Experimental Setup

The experimental parameters are detailed in Table 2. The table is organised
into 4 sections: (i) evolutionary engine – parameters related to Fast-DENSER
(1+λ)-ES; (ii) dataset – parameters concerned with the dataset partitioning; (iii)
training – parameters associated with the training of the DANNs; and (iv) data
augmentation – parameters required for the dataset augmentation strategy.

The number of generations is different for each of the datasets. In particular,
we perform 20, 30, 50, and 100 generations for the MNIST, Fashion-MNIST,
SVHN, and CIFAR-10 datasets, respectively. The number of generations for
each dataset was set empirically based on previous experiments, and according
to how challenging each problem is expected to be. The grammatical mutation
rate is a DSGE parameter that stands for the probability of changing any of the
grammar expansion possibilities or integer/float parameter values.

The dataset section of Table 2 defines how we partition the train set of each
dataset, i.e., for each run the train set is divided (in a stratified way) into three
independent folds: (i) evolutionary train – used for training the DANNs; (ii)
evolutionary validation – used to perform early stop; and (iii) evolutionary test
– used to measure the fitness of the individual, which is measured using the
accuracy. The test set (that is different from the evolutionary test set) is kept

Table 2. Experimental parameters.

Evolutionary engine parameter Value

Number of runs 10

Number of generations 20/30/50/100

λ 5

Add layer rate 25%

Duplicate layer rate 15%

Remove layer rate 25%

Grammatical mutation rate 15%

Dataset parameter Value

Evolutionary Validation set 3500 instances

Evolutionary Test set 3500 instances

Evolutionary Train set Remaining instances

Test set Check Table 1

Training parameter Value

Training Time 10 min

Loss Categorical Cross-entropy

Data augmentation parameter Value

Padding 4

Random crop 4

Horizontal flipping 50%

44 F. Assunção et al.

out of evolution and is used only after the end of the evolutionary search. It
measures how well the models behave beyond the data used during evolution,
and enables the unbiased evaluation of the performance.

The datasets, as discussed in Sect. 5.1, have different shapes: MNIST and
Fashion-MNIST are 28× 28×1, and SVHN and CIFAR-10 are 32× 32 × 3. To
facilitate the application of the optimised DANNs to all datasets we reshape
the MNIST and Fashion-MNIST to 32× 32 × 3. The image width and height are
resized using the nearest neighbour method, and to pass from one to three chan-
nels we replicate the single channel three times. All the datasets are applied the
same data augmentation strategy: padding, random cropping, horizontal flip-
ping, and re-scaling to [0, 1]. We do not subtract the mean image nor normalize.

Table 3. Average performance of the optimised DANNs. The results are averages of
10 independent runs. Bold marks the highest average performance values.

Dataset Evolutionary accuracy Test accuracy

MNIST 98.86 ± 0.465 98.80 ± 0.298

SVHN 93.28 ± 0.863 93.31 ± 0.955

MNIST � SVHN 94.01 ± 0.891 94.04 ± 0.887

Fashion 92.42 ± 1.224 91.41 ± 1.049

MNIST � SVHN � Fashion 93.92 ± 0.930 92.96 ± 0.742

CIFAR-10 87.18 ± 1.242 86.19 ± 1.672

MNIST � SVHN � CIFAR-10 89.06 ± 1.488 88.19 ± 1.669

The networks are trained for an initial maximum GPU time of 10 min, and
thus it is important to mention that we are performing each evolutionary run in a
GeForce GTX 1080 Ti GPU. For the experiments conducted on this paper we use
the grammar of Fig. 1, and the macro-structure: [(features, 1, 30), (classification,
1, 10), (softmax, 1, 1), (learning, 1, 1)]. The code for Fast-DENSER can be found
in the GitHub repository https://github.com/fillassuncao/fast-denser3.

5.3 Experimental Results: Incremental Development

We start by comparing the DANNs generated by Fast-DENSER with and with-
out incremental development in terms of performance. The results are sum-
marised in Table 3. We report the evolutionary accuracy (i.e., fitness), and the
test accuracy (i.e., the accuracy of the models on an unseen partition of the
datasets). The results are averages of 10 independent runs. The first conclusion
is that given the same computational time (number of generations), the results
reported by the incremental development are always superior to those of when
evolution starts from scratch. In particular, the performance of MNIST � SVHN
is superior to the performance of SVHN, the performance of MNIST � SVHN
� Fashion is superior to the performance of Fashion, and the performance of
MNIST � SVHN � CIFAR-10 is superior to the performance of CIFAR-10.

https://github.com/fillassuncao/fast-denser3

Incremental Evolution and Development of DANNs 45

To better acknowledge the differences between the fittest DANNs generated
with and without incremental development we use statistical tests. To check
if the samples follow a Normal Distribution we use the Kolmogorov-Smirnov
and Shapiro-Wilk tests, with α = 0.05. The tests reveal that the data does not
follow any distribution and thus the non-parametric Mann-Whitney U test (α
= 0.05) is used to perform the comparisons between the setups. The statisti-
cal tests show that the results of MNIST � SVHN � Fashion, and MNIST �

SVHN � CIFAR-10 are statistically superior (in evolution and test) to Fash-
ion (evolutionary p-value = 00736, test p-value = 0.00278), and CIFAR-10 (evo-
lutionary p-value = 0.00804, test p-value = 0.01552), respectively. The effect size
is large for all the statistically significant comparisons (r> 0.5). The difference
between MNIST � SVHN and SVHN is not statistically significant (evolutionary
p-value = 0.05876, test p-value = 0.0536). With only 20 generations the MNIST
setup is the one that attains the highest average accuracy results. This indi-
cates that it is an easy to solve problem and consequently no much knowledge is
acquired from addressing it. This is a well-known fact: a simple fully-connected
network is able to attain good performances in the MNIST dataset.

The above results prove that incremental development, given the same num-
ber of generations, designs DANNs that outperform those generated without
incremental development. On the other hand, what happens when, for each
setup, we only let evolution to be conducted for a smaller amount of generations,
so that the cumulative number of generations is not superior to that of when
evolution is conducted from scratch? The cumulative number of generations is
the sum of the number of generations of each incremental step. For example,
for the MNIST � SVHN, the cumulative number of generations is 70 (20 + 50).
In this scenario we consider 30, 0, and 30 generations for the MNIST � SVHN,
MNIST � SVHN � Fashion, and MNIST � SVHN � CIFAR-10 setups, respec-
tively. The average evolutionary performance of the 10 fittest networks slightly
decreases to 93.69 ± 0.912, 92.91 ± 1.15, and 87.13 ± 2.225, respectively for the
MNIST � SVHN, MNIST � SVHN � Fashion, and MNIST � SVHN � CIFAR-10
setups. With these results there is no statistical difference for any of the setups,
i.e., with incremental development, given a cumulative search time that equals
the search time from scratch, we are able to generate DANNs that report the
same performance as those optimised without incremental development for more
generations. In other words, the use of previous knowledge speeds up evolution.

In addition to analysing the average performance over the 10 evolutionary
runs we also focus on the overall best found DANN, i.e., the fittest DANN among
the conducted runs. This analysis is important considering that in a real-world
scenario by the end of evolution what really interests the user is the best found
model, which is the one to potentially be deployed live. To avoid an unbiased
choice of the best model for each dataset, the decision is taken only with regard
to the evolutionary performance. The results are reported in Table 4, and once
again show that the best results are obtained by incremental development. The
most striking result is the one of CIFAR-10, where the difference introduced by
incremental development is the highest.

46 F. Assunção et al.

Table 4. Accuracy of the best performing DANN for each of the setups. Bold marks
the highest performance value.

Dataset Evolutionary accuracy Test accuracy

MNIST 99.46 99.12

SVHN 94.20 93.88

MNIST � SVHN 94.80 94.14

Fashion 93.91 92.92

MNIST � SVHN � Fashion 94.80 93.92

CIFAR-10 88.74 88.14

MNIST � SVHN � CIFAR-10 91.06 89.79

Fig. 5. Overview of the evolution on the incremental development setup MNIST �

SVHN � CIFAR-10. We provide a snapshot of the feature-layers of the best individual
on the 1st, 25th, 50th, 75th, and 100th generations. For space constraints we focus
on the feature extraction layers: Convolutional (C), Pooling (P), Batch-Normalization
(B), and Dropout (D).

5.4 Experimental Results: Topology Analysis

To analyse the behaviour of incremental development from a structural point
of view we inspect the topology of the best networks as evolution proceeds.
Figure 5 shows the evolution of the structure of the networks on the setup MNIST
� SVHN � CIFAR-10. Because of space constraints we select the setup where
more generations were performed, and present the snapshots of the run that gen-
erates the DANN with the median fitness value, i.e., we order the runs according
to the fitness of the best generated DANN and select the 6th run. We choose
the median run to avoid a biased selection over the worst or best results. We
focus only on the feature extraction layers. The figure’s goal is to illustrate the
exploration of knowledge incorporation, and thus the parameters of the layers
are omitted.

Incremental Evolution and Development of DANNs 47

The figure makes it evident that the amount of layers that come from pre-
viously addressed tasks without any change diminishes as evolution proceeds.
That is the expected behaviour: in the initial generation the fittest DANN re-
uses all layers from the best network generated to address the SVHN, and across
generations these layers are adapted to tackle the CIFAR-10 (e.g., convolutional
in generation 75). During evolution new layers are also randomly created (e.g.,
batch-normalization in generation 50), and others removed (e.g., dropout in gen-
eration 100). Similarly to the the non-incremental approach, new random layers
can be added, but in addition, in the incremental development strategy we can
also add layers that come from the previously solved tasks (e.g., convolutional
layer that is transferred from the MNIST in generation 50).

The snapshots prove that incremental development is able to generate better
results based on the re-use of evolutionary units that aid solving previous prob-
lems. The evolutionary units are not only incorporated in the generation of the
initial population, but also during evolution. We also inspect the evolutionary
results of other setups and the conclusions are inline with the reported.

5.5 Experimental Results: Generalisation of the Models

With the objective of studying the generalisation ability of the generated models
we measure their performance on all the considered datasets. For example, we
take the best generated solutions for the MNIST dataset and apply them to
the SVHN, Fashion and CIFAR-10 datasets without further evolutionary opti-
misation. The networks are re-trained on the target datasets with the same
topology and learning strategy that is optimised for the source task. Table 5
summarises the test results for all the setups. The values in bold mark the best
generalisation performance, i.e., the best performance of the setup (row) that
has not yet seen the dataset (column), e.g., for the CIFAR-10 dataset (last col-
umn), except for the setups that specifically target this dataset (CIFAR-10, and
MNIST �SVHN �CIFAR-10), the setup that attains the highest performance is
MNIST �SVHN �Fashion, and thus this is the setup that is marked in bold.

The analysis of the results shows that incremental development always
generates better results, even for tasks that have not been addressed previ-
ously. To better understand the differences we perform a statistical analysis,
and compare the performances reported by the non-incremental and incremen-
tal approaches. Therefore we compare the SVHN and MNIST �SVHN setups
on the MNIST, Fashion, and CIFAR-10 datasets, and we do similarly with
the remaining pairs: Fashion vs. MNIST �SVHN �Fashion, and CIFAR-10 vs.
MNIST �SVHN �CIFAR-10. The same conditions of the above statistical com-
parison are applied. The statistical tests reveal that there are only significant dif-
ferences between the Fashion, and MNIST �SVHN �Fashion setups, with p-values
of 0.02574, and 0.01732, respectively for the SVHN and CIFAR-10 datasets (the
effect size is large). The direct comparison for the dataset used for evolution (in
this case Fashion) was performed above and revealed a statistical significance in
favour of incremental development for the setups that include two incremental
development steps.

48 F. Assunção et al.

Table 5. Performance of the evolved DANNs when applied to other datasets. The
results are averages of 10 independent runs, where each DANN is trained 5 times. The
setups are the table rows, and the datasets the columns.

MNIST SVHN Fashion CIFAR-10

MNIST 98.80± 0.298 71.31± 29.60 90.17± 1.842 63.63± 23.29

SVHN 96.87± 5.426 93.31± 0.955 91.60± 1.289 78.49± 7.899

MNIST �SVHN 98.93± 0.266 94.04± 0.887 91.83± 1.312 82.58± 2.414

Fashion 92.73± 16.75 89.16± 3.551 91.41± 1.049 77.32± 4.893

MNIST �SVHN �Fashion 98.89± 0.273 92.48 ± 2.167 92.96± 0.742 83.47 ± 2.294

CIFAR-10 99.06± 0.039 90.18± 9.282 92.91± 0.479 86.19± 1.672

MNIST �SVHN �CIFAR-10 99.11±0.071 90.08± 5.924 93.16±0.3328 88.19± 1.669

In case we order the datasets by difficulty, given by the non-incremental test
performance on each dataset, we have MNIST, SVHN, Fashion, and CIFAR-10,
where the leftmost is the easiest one, and the rightmost is the most challenging.
From these results we hypothesise that superior generalisation performances are
obtained by incremental development, when passing from more simple to more
challenging datasets. That is the reason why there is no statistical difference
in the CIFAR-10 vs. MNIST �SVHN �CIFAR-10 setups: the CIFAR-10 is per-se
more challenging to solve than the remaining ones, and therefore, as already
noticed in a previous article [13], the DANNs generated for addressing CIFAR-
10 tend to be able to solve other easier problems. The remarkable aspect of
incremental development is when a DANN optimised for Fashion is able to get
better results on the CIFAR-10, compared to when the DANNs for Fashion are
not evolved in an incremental fashion.

5.6 Discussion

The results presented in the previous sections compare in terms of performance,
topology, and generalisation ability the search conducted by non-incremental
and incremental development. The evolutionary results show that given the same
search time the DANNs obtained by incremental development statistically out-
perform the non-incremental counterparts. On the other hand, the incremental
strategy speeds up evolution, and given the same cumulative search time reports
results that match the non-incremental performances.

The speedup in evolution is facilitated by the warm-start of incremental
development, and possibility to still incorporate knowledge from previous tasks
by mutation as generations proceed. We show an example of this by repre-
senting several snapshots of a network across generations. In particular for the
selected run of the MNIST �SVHN �CIFAR-10 setup, on the first generation the
best individual replicates all the layers from the MNIST �SVHN setup, which
are continuously modified and adapted to the CIFAR-10. During evolution the
parameters of the layers that are copied from the previous setup are changed,
new layers (random, and from previous setups) are added, and others removed.
That is, the behaviour of the incremental development evolution is the expected.

Incremental Evolution and Development of DANNs 49

Finally, we analyse the generalisation ability of the generated DANNs. With-
out further evolution, i.e., with the same topology and learning strategy obtained
when optimising a DANN for a specific task, we re-train the DANNs on the
remaining datasets. The results show that, on average, the incremental develop-
ment results are superior to the non-incremental results. Moreover, the results
are statistically significant when the generated DANNs are applied to a more
difficult task than that where they were generated. This indicates that incre-
mental development helps in learning increasingly more challenging tasks, and
that there are not major differences when performing the opposite.

6 Conclusions and Future Work

Motivated by the difficulty and burden in the design of DANNs we investigate
how to incorporate past knowledge to aid evolution. In particular, we extend
Fast-DENSER – a general-purpose grammar-based NE framework – to take
advantage of the evolutionary units acquired when optimising DANNs for pre-
vious tasks. This novel incremental developmental approach enables the incor-
poration of knowledge from any of the previously addressed tasks in any stage
of evolution: both during the generation of the initial population, and by the
application of mutations, as the generations proceed.

The results prove that incremental development improves the search per-
formed by Fast-DENSER enabling it to obtain statistically superior results.
Additionally, incremental development speeds up evolution, being able to obtain
the same results as non-incremental evolution given the same cumulative search
time, i.e., less generations are used for the target dataset. In addition, the DANNs
obtained by the end of evolution generalise better when we use incremental devel-
opment in the search: the networks designed for easy problems perform better
in more challenging and yet unseen tasks.

The future work will target three different directions: (i) apply the incremen-
tal development methodology to a wider set of tasks and domains; (ii) extend
the approach to modular evolution; and (iii) seek ways to transfer not only the
evolutionary unit but also the weights (in case the evolutionary units are layers).

Acknowledgments. This work is partially funded by: Fundação para a Ciência e
Tecnologia (FCT), Portugal, under the PhD grant agreement SFRH/BD/114865/2016,
the project grant DSAIPA/DS/0022/2018 (GADgET), and is based upon work from
COST Action CA15140: ImAppNIO, supported by COST (European Cooperation in
Science and Technology): www.cost.eu.

References

1. Floreano, D., Dürr, P., Mattiussi, C.: Neuroevolution: from architectures to learn-
ing. Evol. Intell. 1(1), 47–62 (2008)

2. Assunção, F., Lourenço, N., Machado, P., Ribeiro, B.: Fast DENSER: efficient
deep neuroevolution. In: Sekanina, L., Hu, T., Lourenço, N., Richter, H., Garćıa-
Sánchez, P. (eds.) EuroGP 2019. LNCS, vol. 11451, pp. 197–212. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-16670-0 13

www.cost.eu
https://doi.org/10.1007/978-3-030-16670-0_13

50 F. Assunção et al.

3. Gruau, F., Whitley, D., Pyeatt, L.: A comparison between cellular encoding and
direct encoding for genetic neural networks. In: Proceedings of the 1st Annual
Conference on Genetic Programming, pp. 81–89. MIT Press, Cambridge (1996)

4. Miller, G.F., Todd, P.M., Hegde, S.U.: Designing neural networks using genetic
algorithms. In: ICGA, pp. 379–384. Morgan Kaufmann (1989)

5. Whitley, D.: Applying genetic algorithms to neural network learning. In: Proceed-
ings of the Seventh Conference (AISB89) on Artificial Intelligence and Simulation
of Behaviour, pp. 137–144. Morgan Kaufmann Publishers Inc. (1989)

6. Gomez, F.J., Schmidhuber, J., Miikkulainen, R.: Accelerated neural evolution
through cooperatively coevolved synapses. J. Mach. Learn. Res. 9, 937–965 (2008)

7. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolv-
ing large-scale neural networks. Artif. Life 15(2), 185–212 (2009)

8. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evol. Comput. 10(2), 99–127 (2002)

9. Turner, A.J., Miller, J.F.: Cartesian genetic programming encoded artificial neural
networks: a comparison using three benchmarks. In: GECCO, pp. 1005–1012. ACM
(2013)

10. Miikkulainen, R., et al.: Evolving deep neural networks. CoRR abs/1703.00548
(2017)

11. Suganuma, M., Shirakawa, S., Nagao, T.: A genetic programming approach
to designing convolutional neural network architectures. In: Proceedings of the
Genetic and Evolutionary Computation Conference, pp. 497–504. ACM (2017)

12. Real, E., et al.: Large-scale evolution of image classifiers. In: ICML. Proceedings
of Machine Learning Research, vol. 70, pp. 2902–2911. PMLR (2017)

13. Assunção, F., Lourenço, N., Machado, P., Ribeiro, B.: Denser: deep evolutionary
network structured representation. Genet. Program. Evolvable Mach. 20, 5–35
(2018). https://doi.org/10.1007/s10710-018-9339-y

14. Baldominos, A., Saez, Y., Isasi, P.: On the automated, evolutionary design of neural
networks: past, present, and future. Neural Comput. Appl. 32(2), 519–545 (2019).
https://doi.org/10.1007/s00521-019-04160-6

15. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image clas-
sifier architecture search. arXiv preprint arXiv:1802.01548 (2018)

16. Lorenzo, P.R., Nalepa, J.: Memetic evolution of deep neural networks. In: GECCO,
pp. 505–512. ACM (2018)

17. Thrun, S.: Is learning the n-th thing any easier than learning the first? In: NIPS,
pp. 640–646. MIT Press (1995)

18. Tirumala, S.S., Ali, S., Ramesh, C.P.: Evolving deep neural networks: a new
prospect. In: ICNC-FSKD, pp. 69–74. IEEE (2016)

19. Wong, C., Houlsby, N., Lu, Y., Gesmundo, A.: Transfer learning with neural
AutoML. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi,
N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 31, pp.
8356–8365. Curran Associates, Inc. (2018)

20. Verbancsics, P., Stanley, K.O.: Evolving static representations for task transfer. J.
Mach. Learn. Res. 11, 1737–1769 (2010)

21. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with
deep adaptation networks. arXiv preprint arXiv:1502.02791 (2015)

22. Ciresan, D.C., Meier, U., Schmidhuber, J.: Transfer learning for Latin and Chinese
characters with deep neural networks. In: IJCNN, pp. 1–6. IEEE (2012)

https://doi.org/10.1007/s10710-018-9339-y
https://doi.org/10.1007/s00521-019-04160-6
http://arxiv.org/abs/1802.01548
http://arxiv.org/abs/1502.02791

Incremental Evolution and Development of DANNs 51

23. Lourenço, N., Assunção, F., Pereira, F.B., Costa, E., Machado, P.: Structured
grammatical evolution: a dynamic approach. In: Ryan, C., O’Neill, M., Collins,
J.J. (eds.) Handbook of Grammatical Evolution, pp. 137–161. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78717-6 6

24. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

25. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits
in natural images with unsupervised feature learning. In: NIPS Workshop on Deep
Learning and Unsupervised Feature Learning 2011 (2011)

26. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms (2017)

27. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images. Technical report, Citeseer (2009)

https://doi.org/10.1007/978-3-319-78717-6_6

Investigating the Use of Geometric
Semantic Operators in Vectorial

Genetic Programming

Irene Azzali1(B) , Leonardo Vanneschi2,3 , and Mario Giacobini1

1 DAMU - Data Analysis and Modeling Unit, Department of Veterinary Sciences,
University of Torino, Turin, Italy

{irene.azzali,mario.giacobini}@unito.it
2 NOVA Information Management School (NOVA IMS),

Universidade Nova de Lisboa, Campus de Campolide, 1070-312 Lisbon, Portugal
lvanneschi@novaims.unl.pt

3 LASIGE, Departamento de Informática, Faculdade de Ciências,
Universidade de Lisboa, 1749-016 Lisbon, Portugal

Abstract. Vectorial Genetic Programming (VE GP) is a new GP app-
roach for panel data forecasting. Besides permitting the use of vectors as
terminal symbols to represent time series and including aggregation func-
tions to extract time series features, it introduces the possibility of evolv-
ing the window of aggregation. The local aggregation of data allows the
identification of meaningful patterns overcoming the drawback of con-
sidering always the previous history of a series of data. In this work, we
investigate the use of geometric semantic operators (GSOs) in VE GP,
comparing its performance with traditional GP with GSOs. Experiments
are conducted on two real panel data forecasting problems, one allowing
the aggregation on moving windows, one not. Results show that classical
VE GP is the best approach in both cases in terms of predictive accu-
racy, suggesting that GSOs are not able to evolve efficiently individuals
when time series are involved. We discuss the possible reasons of this
behaviour, to understand how we could design valuable GSOs for time
series in the future.

Keywords: Vector-based genetic programming · Time series · Sliding
windows · Geometric semantic operators

1 Introduction

A panel dataset is a dataset consisting of observations collected during time from
multiple subjects [11]. As such, these datasets combine static features with time
series data. An important issue involving panel datasets arises when we face the
problem of predicting one of the time series variables. Table 1 shows a simple
example of a panel dataset for three stores in U.S. regions over the course of
several weeks, in which the data include the fuel price in the region (Fuel pr),
c© Springer Nature Switzerland AG 2020
T. Hu et al. (Eds.): EuroGP 2020, LNCS 12101, pp. 52–67, 2020.
https://doi.org/10.1007/978-3-030-44094-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44094-7_4&domain=pdf
http://orcid.org/0000-0002-5808-7044
http://orcid.org/0000-0003-4732-3328
http://orcid.org/0000-0002-7647-5649
https://doi.org/10.1007/978-3-030-44094-7_4

Investigating the Use of Geometric Semantic Operators in VE GP 53

the unemployment rate of the region (Unempl r), and the distance of the store
from the nearest metro station (Dist M). The goal is to predict the total sales
(Sales) of each week, based on the explanatory variables introduced before.

Table 1. Example of a standard panel dataset.

Store ID Fuel pr Unempl r Dist M Week Sales

1 2.7 5.4 1800 12 3000

1 2.6 5.4 1800 13 1750

2 2.3 6.2 1400 11 440

2 2.3 6.2 1400 12 4100

2 2.6 6.5 1400 13 1800

3 2.1 2.2 8000 10 650

Classical machine learning (ML) techniques such as neural networks, random
forests and genetic programming (GP) can be applied to forecast panel datasets,
but their performance might suffer from considering independently each obser-
vation, therefore losing information on their temporal order. This would result
in difficulties caused by the lack of meaningful predictive characteristics of time
series such as peaks and regularities. In this perspective, besides known advanced
ML techniques such as recurrent neural networks, a new approach of GP called
vectorial genetic programming (VE GP) was recently proposed in [4]. VE GP
extends the terminal set to vectors, providing a suitable representation for time
series. In this way, the time series variables collected from each subject can be
kept intact, making it possible to fully exploit the knowledge about the behaviour
of the series. To clarify, Table 2 shows how the panel dataset of Table 1 changes
representation in order to feed a VE GP algorithm.

Table 2. The same data as in Table 1, but with the representation used for VE GP.

Store ID Fuel pr Unempl r Dist M Week Sales

1 [2.7, 2.6] [5.4, 5.4] 1800 [12, 13] [3000, 1750]

2 [2.3, 2.3, 2.6] [6.2, 6.2, 6.5] 1400 [11, 12, 13] [440, 1100, 1800]

3 [2.1] [2.2] 8000 [10] [650]

To efficiently use the information contained in time series, VE GP includes
aggregation functions as primitives, as well as new strategies in the different
steps of the classical GP search process.

VE GP has already revealed advantages in benchmark problems [4], but note-
worthy are the results on a real prediction of panel data [3]. In this last work,
the predictive accuracy and the generalization ability of VE GP were ascribed

54 I. Azzali et al.

to the key feature of keeping together ordered sequences in vectors. This repre-
sentation, in fact, lets the evolution discover the most informative aggregation
functions to be used in the predictive model, which are responsible of inferring
information on the time series behaviour.

Nonetheless, one of the major advantages of VE GP was claimed to be its
ability to evolve the window of time where the new aggregation functions are
applied. VE GP, in fact, adds to all the aggregation functions their paramet-
ric version, so that they can be applied only on a portion of the whole vector.
The search for the best parameters, the ones that determine the most infor-
mative portion of the vector, is part of the evolutionary process, thanks to the
introduction of a parameter mutation operator.

In recent years, the use of geometric semantic operators (GSOs) in GP [18]
became popular and showed some interesting advantages with respect to GP
with classical genetic operators [7,8,10,17]. GSOs, thus, deserve to be explored
even in VE GP approach to see if they still bring advantages in panel data
forecasting, although they can not include a semantic parameter mutation. In
this article, we investigate the use of GSOs in VE GP by presenting a compar-
ative study of GP techniques on two panel data forecasting problems. The first
one consists in predicting mosquito abundance from climatic and environmental
factors, a problem recently approached with standard GP in [12]. This dataset
allows the inclusion of parametric aggregation functions as primitives, offering
the possibility to explore the role of the windows evolution for the accuracy of
predictions. The second dataset deals with the prediction of ventilation flow of
running people, based on physiological parameters including the heart rate flow.
In this case, the fact that the time series among different subjects have different
lengths suggests the use of aggregation functions without parameters. Further
explanations on the different use of aggregation functions will be provided in
Sect. 5. The methods we compare are VE GP and classical GP (ST GP), both
using classical and semantic genetic operators.

The paper is organized as follows: Sect. 2 presents an overview on previ-
ous attempts to apply GP to panel datasets. Section 3 introduces the problems
used in the experimental investigation. Section 4 describes the use of GSOs in
VE GP. Section 5 presents the experimental setting and proposes an analysis of
the obtained results. Finally, Sect. 6 draws the conclusions of the investigation.

2 Panel Datasets in GP: Literature Review

When dealing with panel datasets, researchers have employed a common strategy
to avoid the use of the standard representation of panel data, the aggregation
of vectorial information into a summarizing scalar value. However, such app-
roach usually results in a loss of information. In [13], ECG signals recorded from
different patients are substituted by important signal characteristics, such as
the mean, the energy etc. This is the typical “collapse approach” where instead
of letting the data reveal the most important series characteristics, these are
a priori fixed before the evolutionary process. Again, in [20], the signals mea-
sured to be the predictors or the target are pre-processed before feeding the

Investigating the Use of Geometric Semantic Operators in VE GP 55

GP algorithm. In [14], instead, GP is used to predict glucose values of diabetic
people based on insulin values and food intakes without a pre-processing of time
series variables. However, the panel data regression problem is transformed into
4 simple regression problems by fixing 4 time values of glucose as the target. As
stated by the authors, the main drawback of this approach is the impossibility
of predicting a continuous time series of glucose.

Some works have already explored the idea of using vectors to represent time
series as terminals. In [15] the authors designed a vector-based GP to discover
signal processing algorithm by means of evolution. As well as in VE GP, they
introduced functions to combine scalars and vectors, and advance signal pro-
cessing functions specific for vectors. In [5] again vectors and vectorial functions
are included in the primitive set. Even if VE GP is strongly influenced by these
contributions, the evolution of time windows to capture the most informative
signal behaviours is totally new in the field.

3 Problem Description and the Datasets

3.1 Mosquito Abundance (P Mosq)

The surveillance plan established in Italy in 2008 aimed at quantifying mosquito
abundance in order to predict the emergence and the spread of West Nile virus.
Predictive models of mosquitoes dynamics were therefore a valuable tool to fulfil
the goal. For this reason, modelling techniques with the objective of forecasting
mosquito abundance based on environmental factors were explored [6,12]. In this
article, we use the dataset produced by the Casale Monferrato Agreement for
mosquitoes control from 2002 to 2006 in the context of the Piedmont surveillance
program, already used in [6,12]. Mosquitoes were weekly collected from 36 CO2-
baited traps from May to September with a total of 20 collections per year for
each trap.

We consider the same scalar predictive variables selected by [6] and reported
in Table 3.

Table 3. Scalar mosquitoes predictors.

Variable Description

ELEV Elevation of the sampling location

DISTU Distance of the sampling location from the nearest urban area

DISTR Distance of the sampling location from the nearest rice field

DISTW Distance of the sampling location from the nearest woodland

RICEA Area of the nearest rice field

Regarding the time series predictors considered by [6], we introduce some
novelties according to the results of [12]. First, we discard the variable SIN.

56 I. Azzali et al.

In fact, according to [12], SIN, which is a sinusoidal curve with a phase of 1
year included as a suggester of mosquitoes seasonality, is too frequently used in
all the evolved models. This fact prevents the discovery of how environmental
variables interact to determine the peaks in abundance of mosquitoes. However,
the function SIN plays a key role in exploiting the knowledge on the time order
of the observations, since it gives a “score” to each collection according to the day
in which it took place. As suggested in [12], the use of VE GP makes it possible
to avoid SIN without losing the time order information. Thus, our results will
also contribute to confirm the advantages of the vector representation proposed
by VE GP. Second, to highlight the benefit of evolving temporal windows, we
remove for VE GP the prior aggregations of the time series predictors considered
by [6]. Therefore, VE GP handles daily values of land surface temperatures,
normalized difference vegetation index and rainfalls which are the environmental
time series predictor selected by [6]. On the contrary, ST GP keeps the same
variables aggregated as in [6]. Table 4 describes the time series variables for the
two approaches of GP.

Table 4. Time series mosquitoes predictors.

Variable ST GP description VE GP description

TWEEK [2] The average land surface
temperature 8–15 days prior to
trapping

Daily value of land surface
temperature

NDVI [2] 16-days average of normalized
difference vegetation index

Daily value of normalized
difference vegetation index

RAIN [1] Cumulative rainfall 10–17 days prior
to trapping registered by the nearest
weather station

Daily rainfall registered by
the nearest weather station

The variables involved as predictors are therefore the time series NDVI,
TWEEK and RAIN (with different definitions depending on the GP approach)
plus the scalar variables ELEV, DISTU, DISTR, DISTW and RICEA. The tar-
get is the number of mosquitoes collected Mosq. We have two different dataset
representation:

– ST GP with classical and geometric semantic operators: the dataset is a
matrix of 3600 rows and 9 columns. Columns one to eight indicate a pre-
dictor while the rightmost is the target; each row corresponds to a day of
collection.

– VE GP with classical and geometric semantic operators: the dataset is a
matrix of 180 rows and 9 columns. Columns one to eight indicate a predictor
while the rightmost is the target; time series variables (NDVI, TWEEK and
RAIN) are represented as vectors of length 173 since they contain daily values
from April 1st (37 days before the first collection of the year) to September

Investigating the Use of Geometric Semantic Operators in VE GP 57

20th (the last collection day of the year). The target Mosq is instead a vector
of length 20 representing the 20 collections per year from each trap. Each row
corresponds to the collections from a trap during a year.

3.2 Ventilation Flow (P Physio)

This task was proposed by the Centre of Preventive Medicine and Sport - SUISM
- University Structure of Hygiene and Sport Sciences of Turin. The goal is to
predict ventilation flow during outdoor activities based on physiological variables
in order to monitor the intake of air pollution. We use the dataset employed in [3],
which consists of static physiological data and time series variables such as heart
rate and ventilation, recorded every 10 s from people running on a treadmill. We
must point out that each person ran as long as he/she could, thus the heart rate
and ventilation series have different lengths among people. The predictors are
therefore the gender (SEX), the age (AGE), the body mass index (BMI) and
the heart rate (HR). We use the acronym VE to indicate the target which is
the ventilation. The dataset representation changes again according to the GP
approach:

– ST GP with classical and geometric semantic operators: the dataset is a
matrix of 3600 rows and 5 columns. Columns one to four indicate a pre-
dictor while the rightmost is the target; each row corresponds to a recording
instant of the heart rate from a person.

– VE GP with classical and geometric semantic operators: the dataset is a
matrix of 262 rows and 5 columns. Columns one to four indicate a predictor
while the rightmost is the target; HR and VE are represented as vectors
of variable length depending on the running time of the person. Each row
corresponds to a person.

4 Methodology

4.1 Vectorial Genetic Programming

Vectorial genetic programming (VE-GP) is a recently developed approach of GP
to properly deal with time series as predictors or targets. VE-GP allows vectors
as terminals, providing a suitable representation for all time series. Besides the
simple adjustments needed to cope with this new terminal structure, VE-GP
includes other innovations to fully exploit vector representation. Here we describe
the main novelties of this approach that we are going to use to carry out the
experiments. Further details can be found in [4].

Primitive Set. In GP the primitive set consists of functions and terminals com-
bined to build the individuals. In VE-GP, vectors join the classical scalar ter-
minals and new functions are included as possible primitives. To avoid inconsis-
tencies, vectors of length 1 and scalars are considered the same terminal form.

58 I. Azzali et al.

Functions of Arity 1. Aggregate functions are included in the primitive set in
order to capture the behaviour of a vector. These functions group together mul-
tiple values to return a single summary value. Two main versions of aggregation
functions are available in VE-GP: standard and cumulative. While standard
aggregation functions collapse the whole vector into a single value, cumulative
aggregation functions collapse only a portion of the vector. To clarify, let v =
[v1, . . . , vn] be a vector terminal and Cf be the cumulative version of the aggre-
gation function f ; then Cf(v) = [w1, . . . , wn] where wj = f([v1, . . . , vj−1, vj]) for
each j = 1, . . . , n. Standard aggregation functions are meant for problems where
the recording time of predictors and target time series is different, cumulative
aggregation functions are meant instead for problems where the predictors and
the target time series are simultaneous. Both these versions have their paramet-
ric form that apply the aggregation function only to a window of the vector. In
case of standard aggregation functions the window defined by the parameters can
slide all the vector, while for cumulative aggregation functions the window slides
only backwards. To explain, let p and q be two integer numbers where p < q;
then fp,q(v) = f([vp, . . . , vq]). Let p and q, instead, be two integer numbers where
p > q; then Cfp,q(v) = f([z1, . . . , zn]) where zj = f([vj−p, . . . , vj−p+q]) for each
j = 1, . . . , n. In both cases, if the window extends to not existing elements of the
vector they are simply not included in the calculation. For a detailed explanation
of these functions joined with numerical examples see Section 3, Table 3 of [4].

Functions of Arity 2. Regarding functions of arity 2, they are simply extended
in order to manage the new vector inputs. In particular, when the inputs of a
function are two vectors of length greater than 1, the shortest is completed with
the null element of the function up to the length of the longest before applying
the function itself. Differently, when a scalar and a vector of length greater
than 1 are the inputs, the scalar is initially replicated up to the length of the
other vector input. This different input preparation highlights the static nature
of scalars: since scalars are constant over time we can not “complete” a scalar
with the value representing missing values (the null element); we know that its
value for every time instant is always the same, thus we have to “complete”
the scalar with its value. To clarify, see Section 3 of [4] where Table 4 reports
all the aggregation functions of arity 2 available in VE GP, with an example of
application.

Initialization. VE-GP proposes a new initialization strategy in order not to
misuse the aggregation functions added to the primitive set.

– n1 individuals, during the generation with one of the classical techniques [19],
are forced to apply aggregation functions only to vectorial variables;

– n2 individuals are generated with one of the classical techniques [19] and
checked in their output. If individual t returns scalars for each observation, a
vectorial terminal X and an arity 2 function F are randomly selected and the

Investigating the Use of Geometric Semantic Operators in VE GP 59

individual t is replaced with the following individual, using post-fix notation,
(F t X);

– the remaining n3 individuals are generated with one of the classical tech-
niques [19].

Parameter Mutation. The genetic operator of parameter mutation (PM) is devel-
oped in VE GP in order to let the evolution find the most informative windows
of time. PM simply looks in an individual for parametric functions, randomly
selects one of them and randomly changes one of its parameters. Depending on
the kind of function, standard or cumulative, the parameter is mutated without
violating the rule of superiority, i.e. p < q for standard functions and p > q for
cumulative functions.

Fitness Evaluation. Some individuals may output a scalar for each observation,
when the target instead is supposed to be a vector. In order to evaluate their
fitness, each scalar is preliminary replicated up to the length of the corresponding
target vector. Moreover, these individuals are penalized by multiplying their
fitness for a huge constant (panel data prediction problems belong to the area
of minimization problem). The wrong size of their output suggests, in fact, that
they unlikely to be good predictive models.

4.2 Geometric Semantic Operators

Geometric semantic operators (GSOs) are genetic operators recently introduced
for GP [18] to replace the traditional syntax-based crossover and mutation. The
term semantic in GP community indicates the vector of outputs an individ-
ual produce on the training instances. Thus, any GP individual can be identi-
fied as a point (its semantic) in a multidimensional space (dimension equal to
the number of observations) called semantic space. While traditional crossover
and mutation manipulate individuals only considering their syntax, GSOs define
transformation on the syntax of individuals that correspond to the genetic algo-
rithms operators of geometric crossover and ball mutation in the semantic space.
Geometric crossover generates an offspring that stand on the segment joining the
parents; ball mutation is a weak perturbation of the coordinates of an individual.
We report the definition of the GSOs as given in [18] for individuals with real
domain and considering Euclidean distance as the fitness function, since these
are the operators we are going to use in the experimental phase.

Geometric semantic crossover (GSXO) returns, as the offspring of the par-
ents T1, T2 : Rn → R, the individual:

TX0 = (T1 · TR) + ((1 − TR) · T2)

where TR is a random number in [0, 1]. Geometric semantic mutation (GSM)
transforms the individual T : Rn → R according to the expression:

TM = T + ms · (TR1 − TR2)

60 I. Azzali et al.

where TR1 and TR2 are random real individuals with codomain in [0, 1] and ms

is the mutation step. We refer to [18] for a proof of the fact that GSXO cor-
responds to geometric crossover in the semantic space, while GSM corresponds
to ball mutation in the semantic space. The main advantage of these semantic
operators is that they induce a unimodal fitness landscape, thus an error surface
characterized by the absence of locally suboptimal solution, on every supervised
learning problems. This property should enhance GP evolvability on all these
problems. The main drawback that afflicts GSOs is that the size of the offsprings
is larger than the one of their parent(s). To overcome this problem we use the
implementation of GSOs proposed by [22] and the strategy of elitist replacement
suggested in [9].

Unfortunately it is not possible to define the semantic equivalent of parameter
mutation as described in Sect. 4.1. To clarify, let us assume that this operator
exists, we call it geometric semantic parameter mutation (GSPM). GSPM has to
change one of the parameter of a parametric aggregation function determining,
as a result, a weak perturbation of the semantic of T , the individual containing
the parametric aggregation function. However, modifying the window in which
the aggregation function is applied means considering different values of the
time series observed, thus the perturbation of the semantic of T depends on the
semantic of T itself. Surely this fact is in contrast with the hypothesis of weak
perturbation.

5 Experiments

5.1 Experimental Settings

We have adopted the Matlab implementations of ST GP and VE GP based on
GPLab toolbox [21]. We have extended both implementations in order to include
GSOs. The methods involved in the experiments are therefore ST GP, VE GP,
ST GP with GSOs (GSGP) and VE GP with GSOs (GSVEGP). With each
technique we have performed a total of 50 runs on both P Mosq and P Physio.
Here we lay out the design of the experiments conducted on both problems. For
the remainder of this paper, the training set is the portion of the dataset used to
feed the algorithm in order to make it learn, while the test set is the remaining
portion of the dataset which consists of unseen data used to validate the trained
model performance.

P Mosq. In each experimental run we have considered the same partition of
training and test sets that follows the natural order of years: collections from
2002 to 2005 were used as the training set, while collections of 2006 formed the
test set.

Fitness was calculated as the Root Mean Square Error (RMSE) between
the output and the target. In case of vector based GP (VE GP and GSVEGP)
the output are the predictions of mosquito abundance over 173 days (April 1st–
September 20th), thus for the evaluation of fitness we have considered as the

Investigating the Use of Geometric Semantic Operators in VE GP 61

actual output the predictions corresponding to the collection days. Since the
output of trees built by VE GP and GSVEGP is supposed to be a vector, for
these latter algorithms we have calculated the RMSE vertically disbanding both
output and target; in this way the measures of fitness were ensured to be com-
parable among all the techniques.

All the runs used population of 100 individuals and the evolution stopped
after 50 generations. ST GP and GSGP initialized populations using the Ramped
Half-and-Half (RHH) method [16] with a maximum initial depth equal to 6,
while VE GP and GSVEGP initialized populations using the process proposed
in [4] based on RHH with maximum initial depth again equal to 6. The func-
tions set for ST GP and GSGP contained the four binary arithmetic operators
+,−,× and / protected as in [16]. The days of mosquitoes collection are the
same across years and traps, thus it is reasonable to look for common informa-
tive windows of time among all the observations. For this reason, the functions
set for VE GP contained the binary operators VSUMW, V W, VprW, VdivW plus
the parametric cumulative aggregation functions C maxp,q, C minp,q, C meanp,q,
C sump,q. GSVEGP can not handle parametric functions, thus its functions set
consisted of the binary operators VSUMW, V W, VprW, VdivW plus the cumulative
aggregation functions C max, C min, C mean, C sum. All the functions of the vec-
torial approaches are defined in [4]. The terminal sets contained the 8 variables
as described in Sect. 3.1 plus random constants r between 0 and 1 generated
in run time when building individuals. To select parents we used a tournament
selection involving 4 individuals. To create new individuals, ST GP used stan-
dard crossover and subtree mutation [16] with probabilities equal to 0.9 and 0.1
respectively. Besides crossover and mutation, VE GP used parameter mutation
with probabilities respectively 0.5, 0.1 and 0.4. The semantic algorithms of GSGP
and GSVEGP, instead, used GSXO and GSM with probabilities respectively 0.1,
0.9 and 0.7, 0.3; the mutation steps were respectively 1 and 0.01. The different
probabilities and mutation rates depends on a preliminary experimental study
performed to find the best parameter setting. Survival of individuals was elitist
for ST GP and VE GP, while we used the elitist replacement [9] for GSGP and
GSVEGP. Maximum tree depth was fixed at 17 for ST GP and VE GP while
no depth limit have been imposed in GSGP and GSVEGP.

P Physio. Differently from the previous problem, a distinct partition of the
training and test sets has been considered in each run. In particular, 70% of the
data instances were randomly selected at the beginning of each run as training
set, while the remaining 30% were used as the test set.

Fitness was calculated as the RMSE between the output and the target. In
case of vector based GPs we followed the procedure described above to guarantee
comparable measures.

All the runs used population of 100 individuals and the evolution stopped
after 50 generations. ST GP and GSGP initialized populations using the RHH
with a maximum initial depth equal to 6, while VE GP and GSVEGP initialize
populations using the process proposed in [4] based on RHH with maximum

62 I. Azzali et al.

initial depth again equal to 6. The functions set for ST GP and GSGP contained
the four binary arithmetic operators +,−,× and / protected as in [16]. The
subjects of the trial ran on the trade mill as long as they could, thus the HR
and VE series have different lengths among the people. Looking for a common
informative window of time across all the people may weaken the learning phase.
In fact, some time windows may be more adequate for long time series compared
to shorter ones, causing a loss of generalization ability. For this reason, the
functions set for both VE GP and GSVEGP contained the binary operators
VSUMW, V W, VprW, VdivW plus the cumulative aggregation functions C minp,q and
C meanp,q as in [3]. All the terminal sets contained the 4 variables as described
in Sect. 3.2 plus random constants r between 0 and 1 generated in runtime when
building individuals. To select parents we used a tournament selection involving
4 individuals. To create new individuals, ST GP used standard crossover and
subtree mutation [16] with probabilities equal to 0.9 and 0.1 respectively. Besides
crossover and mutation, VE GP used parameter mutation with probabilities
respectively 0.5, 0.1 and 0.4. The semantic algorithms of GSGP and GSVEGP,
instead, used GSXO and GSM with probabilities respectively 0.3, 0.7 and 0.5,
0.5; the mutation steps were respectively 1 and 0.1. Also in this case, the different
probabilities and mutation rates depends on a preliminary experimental study
performed to find the best parameter setting. Survival of individuals was elitist
for ST GP and VE GP, while we used the elitist replacement [9] for GSGP and
GSVEGP. Maximum tree depth was fixed at 17 for ST GP and VE GP while
no depth limit have been imposed in GSGP and GSVEGP.

5.2 Experimental Results

In this section, we report the results that we have obtained in terms of training
and test RMSE. In particular, at each generation we stored the value of RMSE
on the training and on the test set of the best individual in the population, i.e.
the one with the smallest RMSE on the training data. The curves report the
median over the 50 runs of all these values collected at each generation. The
median was preferred over the mean due to its robustness to outliers which are
common in stochastic methods. Figure 1 reports the training and test errors for
P Mosq and P Physio.

These plots clearly show that VE GP in both problems is the fastest in learn-
ing, with perspective of further improvement going on with generations, at least
for the P Mosq problem. Moreover, the fast decreasing of the test error confirms
that VE GP is learning with generalization ability. On the contrary, both GSGP
and GSVEGP exhibit a slow and almost static (GSVEGP in particular) learning
phase. We claim that the main reason behind this fact is the huge size of the
semantic space. Considering in fact GSVEGP, in P Physio problem the semantic
space has dimension (length(p1) × · · · × length(p183)) where 183 is the number
of people in the training set (70% of data instances) and length(pi) is the length
of the time series recorded for person pi; in P Mosq the size is still huge, being
(20)144 where 20 is the number of mosquitoes collections over a year and 144 is
the number of collections in the training set (36 traps× 4 year).

Investigating the Use of Geometric Semantic Operators in VE GP 63

Fig. 1. ST GP, GSGP, VE GP and GSVEGP fitness evolution plots.

Since the goal of the paper is to understand how parametric functions influ-
ence the performance, we compared the RMSE on the test set of the models
found out in the 50 runs by all the techniques. We consider as a model the best
individual on the training set at the end of the evolution. Statistical significance
of the null hypothesis of no difference among the methods was determined with
pairwise Kruskal-Wallis non-parametric ANOVAs at p = 0.05. In both problems
the resulting p − value stated that there was a significant difference in per-
formance among techniques, thus we performed multiple two-sample Wilcoxon
signed rank tests to understand which method differs from the other. The sig-
nificance level for each test depends on the Bonferroni correction. We report the
values of the statistical tests in Table 5, as well as the boxplots of models test

Table 5. Results of comparison between techniques on P Mosq and P Physio. Signifi-
cance level of Wilcoxon test after Bonferroni correction p = 0.05/3 = 0.02.

P Mosq: Kruskal-Wallis ANOVA p < 10−16

VE GP vs GSVEGP VE GP vs GSGP VE GP vs GP

p < 10−16 p = 5.7 · 10−16 p = 2.2 · 10−14

P Phisio: Kruskal-Wallis ANOVA p < 10−16

VE GP vs GSVEGP VE GP vs GSGP VE GP vs GP

p = 2.6 · 10−10 p = 2.1 · 10−7 p = 1.1 · 10−5

64 I. Azzali et al.

fitness in Fig. 2. According to the statistical tests, VE GP performance differs
from all the other methods for both problems. Moreover, boxplots in Fig. 2 show
that VE GP is outperforming all the other techniques. This outcome confirms
that VE GP is the better GP approach when dealing with panel data, rather
than classical GP approach.

Fig. 2. Test fitness boxplots of models found out by each technique. Figure (a) refers
to P Mosq, while figure (b) refers to P Physio.

Regarding P Mosq, the results confirm our intuition on the benefit of evolving
time windows to discover the most informative ones without prior fixing them
just by means of experts knowledge. Surely GSVEGP’s slow learning is due to
the semantic space dimension, but we claim that considering always all the data
points of previous collections (classical cumulative functions) rather than an
evolving windows over previous times may cause a loss in population diversity
and thus be another reason of slow learning. In fact, in VE GP we find individuals
containing different aggregations that span different time series portion, while in
GSVEGP we find surely individuals containing different aggregations, but they
all span the same time series portion. To confirm this observation we report the
median (over the 50 runs) diversity curves along generations for GSVEGP and
VE GP. We use as a subjective measure of diversity the standard deviation of
the fitness values in the population at each generation. Figure 3 clearly shows
that GSVEGP is unable to keep good diversity levels which is a key feature
of a successful search process. We tried to give an explanation of other reason-
able reasons responsible of this GSVEGP diversity drop. GSOs seems to quickly
direct the diversified initial population towards the target; however, after the
individuals have converged, the improvements are thinner and thinner and the
weak perturbation of one of the components of one of the output time series
results in a weak perturbation of the individual fitness. At a certain point, thus,
GSOs seems to be less efficient due to the high dimension of the semantic space.
In addition, the elitist replacement used to control individual growth [9], at that

Investigating the Use of Geometric Semantic Operators in VE GP 65

Fig. 3. Diversity evolution for VE GP and GSVEGP on P Mosq. Curves are plotted
in logarithmic scale.

certain point, causes more frequently the replication of individuals instead of
the offspring replacements. In fact, if the weak perturbations are not efficient
(produce offsprings with bigger fitness) parents are preferred rather then their
offsprings. All these behaviours are feasible reasons of GSVEGP loss of diversity.

Concerning P Physio results, we expected GSVEGP to be the outperform-
ing method, since parametric functions are not involved in any primitive set.
However, statistical tests and the boxplots reveal that VE GP is the method
with the best performance. These results confirm that GSOs are not suitable to
deal with time series variables, probably because of the high dimension of the
semantic space induced.

6 Conclusions

This paper contains an investigation on the usefulness of evolving parametric
aggregation functions for panel data forecasting. Aggregations of values may
return informative features of predictors time series for the target, however aggre-
gations on all historical times of predictors may not be needed to forecast the
target series. The behaviour of the predictors over a window of time may in
fact be more meaningful for the target. To clarify, let us consider the P Mosq
problem of predicting the abundance of mosquitoes during a year: mosquitoes
collected at day t are more likely to be affected by the rainfalls over the week
before t rather than on all the rainfalls of the days before t; mosquitoes growth
in fact, lasts more or less one week, thus rainfalls over a week may cause the loss
of eggs and thus adult mosquitoes at day t.

The recently developed vectorial genetic programming (VE GP) includes
in the functions set aggregation function depending on parameters to define
time window in which to apply the function. The genetic operator of parameter
mutation, moreover, gives the possibility to parameters to evolve in order to
catch the most informative windows. The objective of the paper was therefore
to highlight the benefits of tackling panel dataset forecasting using VE GP. In
particular, we compared VE GP performance against VE GP with geometric
semantic operators (GSVEGP) on two problems. While the first one, P Mosq,

66 I. Azzali et al.

demanded for parametric aggregation functions in the functions set, the second
problem, P Physio, did not require evolving time windows. We chose GSVEGP
as a benchmark because although geometric semantic operators should improve
the performance, the geometric semantic awareness does not allow parameter
mutation as a genetic operator.

The main contribution of this work consisted in showing that parametric
aggregation functions can further improve the performance when the dataset
hypothesis allow for their inclusion (P Mosq). Moreover we found out that con-
sidering all the history of time series may influence the maintenance of diversity
in the evolving population. Surprisingly, however, results achieved on P Physio
revealed a weakness of GP algorithms with geometric semantic operators. We
impute this result to the high dimension of the semantic space caused by time
series variables that slow the learning process.

The outcomes paved the way for future works on the design of more efficient
geometric semantic operators for problems involving time series. A wider result
is, however, the highlight of VE GP as a successful approach in panel data
forecasting, making the GP community aware of its value.

Acknowledgments. This work was partially supported by FCT, Portugal through
funding of LASIGE Research Unit (UID/CEC/00408/2019), and projects PREDICT
(PTDC/CCI-CIF/29877/2017), BINDER (PTDC/CCI-INF/29168/2017), GADgET
(DSAIPA/DS/0022/2018) and AICE (DSAIPA/DS/0113/2019).

References

1. Arpa Piemonte. http://www.arpa.piemonte.it
2. NASA MODIS Web. https://modis.gsfc.nasa.gov/
3. Azzali, I., Vanneschi, L., Bakurov, I., Silva, S., Ivaldi, M., Giacobini, M.: Towards

the use of vector based GP to predict physiological time series. App. Soft Comput.
(forthcoming)

4. Azzali, I., Vanneschi, L., Silva, S., Bakurov, I., Giacobini, M.: A vectorial approach
to genetic programming. In: Sekanina, L., Hu, T., Lourenço, N., Richter, H., Garćıa-
Sánchez, P. (eds.) EuroGP 2019. LNCS, vol. 11451, pp. 213–227. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-16670-0 14

5. Bartashevich, P., Bakurov, I., Mostaghim, S., Vanneschi, L.: Evolving PSO algo-
rithm design in vector fields using geometric semantic GP. In: GECCO 2018: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, pp. 262–263
(2018). https://doi.org/10.1145/3205651.3205760

6. Bisanzio, D., et al.: Spatio-temporal patterns of distribution of West Nile virus
vectors in eastern Piedmont Region, Italy. Parasites Vectors 4 (2011). https://doi.
org/10.1186/1756-3305-4-230

7. Castelli, M., et al.: An efficient implementation of geometric semantic genetic pro-
gramming for anticoagulation level prediction in pharmacogenetics. In: Correia,
L., Reis, L.P., Cascalho, J. (eds.) EPIA 2013. LNCS (LNAI), vol. 8154, pp. 78–89.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40669-0 8

8. Castelli, M., Vanneschi, L., Felice, M.D.: Forecasting short-term electricty con-
sumption using a semnatics-based genetic programming framework: the South Italy
case. Energy Econ. 47, 37–41 (2015). https://doi.org/10.1016/j.eneco.2014.10.009

http://www.arpa.piemonte.it
https://modis.gsfc.nasa.gov/
https://doi.org/10.1007/978-3-030-16670-0_14
https://doi.org/10.1145/3205651.3205760
https://doi.org/10.1186/1756-3305-4-230
https://doi.org/10.1186/1756-3305-4-230
https://doi.org/10.1007/978-3-642-40669-0_8
https://doi.org/10.1016/j.eneco.2014.10.009

Investigating the Use of Geometric Semantic Operators in VE GP 67

9. Castelli, M., Vanneschi, L., Popovic, A.: Controlling individuals growth in semantic
genetic programming through elitist replacement. Comput. Intell. Neurosci. (2016).
https://doi.org/10.1155/2016/8326760

10. Castelli, M., Vanneschi, L., Silva, S.: Prediction of the unified Parkinson’s dis-
ease rating scale assessment using a genetic programming system with geometric
semantic genetic operators. Expert Syst. Appl. 41(10), 4608–4616 (2014). https://
doi.org/10.1016/j.eswa.2014.01.018

11. Dermofal, D.: Time-series cross-sectional and panel data models. Spat. Anal. Soc.
Sci. 32, 141–157 (2015). https://doi.org/10.1017/CBO9781139051293.009

12. Gervasi, R., Azzali, I., Bisanzio, D., Mosca, A., Bertolotti, L., Giacobini, M.: A
genetic programming approach to predict mosquitoes abundance. In: Sekanina, L.,
Hu, T., Lourenço, N., Richter, H., Garćıa-Sánchez, P. (eds.) EuroGP 2019. LNCS,
vol. 11451, pp. 35–48. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
16670-0 3

13. Guo, H., Jack, L.B., Nandi, A.K.: Automated feature extraction using genetic
programming for bearing condition monitoring. In: Proceedings of the 14th IEEE
Signal Processing Society Workshop Machine Learning for Signal Processing, pp.
519–528 (2004). https://doi.org/10.1109/MLSP.2004.1423015

14. Hidalgo, J.I., Colmenar, J.M., Kronberger, G., Winkler, S.M., Garnica, O., Lan-
chares, J.: Data based prediction of blood glucose concentrations using evolutionary
methods. J. Med. Syst. 41(9), 1–20 (2017). https://doi.org/10.1007/s10916-017-
0788-2

15. Holladay, K., Robbins, K.A.: Evolution of signal processing algorithm using vector
based genetic programming. In: 15th International Conference on Digital Signal
Processing, pp. 503–506 (2007). https://doi.org/10.1109/ICDSP.2007.4288629

16. Koza, J.: Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge (1992)

17. Vanneschi, L., Silva, S., Castelli, M., Manzoni, L.: Geometric semantic genetic
programming for real life applications. In: Riolo, R., Moore, J.H., Kotanchek, M.
(eds.) Genetic Programming Theory and Practice XI. GEC, pp. 191–209. Springer,
New York (2014). https://doi.org/10.1007/978-1-4939-0375-7 11

18. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic program-
ming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone,
M. (eds.) PPSN 2012. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32937-1 3

19. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming.
Lulu Enterprises, UK Ltd. (2008)

20. Sannino, G., Falco, I.D., Pietro, G.D.: Non-invasive estimation of blood pressure
through genetic programming - preliminary results. In: SmartMedDev 2015, pp.
241–249 (2015). https://doi.org/10.5220/0005318002410249

21. Silva, S., Almeida, J.: GPLAB a genetic programming toolbox for MATLAB
(2007). http://gplab.sourceforge.net/index.html

22. Vanneschi, L., Castelli, M., Manzoni, L., Silva, S.: A new implementation of geo-
metric semantic GP and its application to problems in pharmacokinetics. In: Kraw-
iec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013. LNCS,
vol. 7831, pp. 205–216. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-37207-0 18

https://doi.org/10.1155/2016/8326760
https://doi.org/10.1016/j.eswa.2014.01.018
https://doi.org/10.1016/j.eswa.2014.01.018
https://doi.org/10.1017/CBO9781139051293.009
https://doi.org/10.1007/978-3-030-16670-0_3
https://doi.org/10.1007/978-3-030-16670-0_3
https://doi.org/10.1109/MLSP.2004.1423015
https://doi.org/10.1007/s10916-017-0788-2
https://doi.org/10.1007/s10916-017-0788-2
https://doi.org/10.1109/ICDSP.2007.4288629
https://doi.org/10.1007/978-1-4939-0375-7_11
https://doi.org/10.1007/978-3-642-32937-1_3
https://doi.org/10.5220/0005318002410249
http://gplab.sourceforge.net/index.html
https://doi.org/10.1007/978-3-642-37207-0_18
https://doi.org/10.1007/978-3-642-37207-0_18

Comparing Genetic Programming
Approaches for Non-functional

Genetic Improvement
Case Study: Improvement of MiniSAT’s Running Time

Aymeric Blot(B) and Justyna Petke

CREST, University College London, London WC1E 6BT, UK
a.blot@cs.ucl.ac.uk, j.petke@ucl.ac.uk

Abstract. Genetic improvement (GI) uses automated search to find
improved versions of existing software. While most GI work use genetic
programming (GP) as the underlying search process, focus is usually
given to the target software only. As a result, specifics of GP algorithms
for GI are not well understood and rarely compared to one another.
In this work, we propose a robust experimental protocol to compare
different GI search processes and investigate several variants of GP- and
random-based approaches. Through repeated experiments, we report a
comparative analysis of these approaches, using one of the previously
used GI scenarios: improvement of runtime of the MiniSAT satisfiability
solver. We conclude that the test suites used have the most significant
impact on the GI results. Both random and GP-based approaches are
able to find improved software, even though the percentage of viable
software variants is significantly smaller in the random case (14.5% vs.
80.1%). We also report that GI produces MiniSAT variants up to twice
as fast as the original on sets of previously unseen instances from the
same application domain.

Keywords: Genetic improvement (GI) · Genetic programming (GP) ·
Search-based software engineering (SBSE) · Boolean satisfiability
(SAT)

1 Introduction

Genetic improvement (GI) [11,19] uses automated search to find improved ver-
sions of existing software. GI literature focuses on both improvement of func-
tional properties, such as automated bug repair or introduction of new function-
ality, as well as improvement of non-functional properties such as running time,
or memory or energy consumption.

Genetic programming (GP) has been used most often so far as the GI search
process [11]. Even though previous work use GP as a theoretic common frame-
work, most of it implements or uses very specific variants and parameter values
for the GP algorithms that led to evolution of improved software. In order to
c© Springer Nature Switzerland AG 2020
T. Hu et al. (Eds.): EuroGP 2020, LNCS 12101, pp. 68–83, 2020.
https://doi.org/10.1007/978-3-030-44094-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44094-7_5&domain=pdf
http://orcid.org/0000-0003-0485-5279
http://orcid.org/0000-0002-7833-6044
https://doi.org/10.1007/978-3-030-44094-7_5

Comparing GP Approaches for Non-functional Genetic Improvement 69

shift the focus from the target software to the GI process itself, so it can be
better understood, it becomes increasingly necessary to be able to compare and
analyse all these proposed search processes.

In this paper, we aim to provide insights on how to compare GI approaches
and improve the protocol for applying GI techniques. We consider an existing
non-functional improvement GI scenario used in previous work [3,12,13], the
improvement of the running time of MiniSAT [4] on combinatorial interaction
testing instances, and a diverse range of various GP-based and random-based
search processes. We consider the following research questions:

RQ1 (Effectiveness): How often are noticeable improvements found?
RQ2 (Efficiency): How significant are the improvements found?
RQ3 (Robustness): How critical are the GP parameter values for GI?
RQ4 (Consistency): What is the impact of test cases on the results of GI?

This paper is structured as follows. First, Sect. 2 provides the necessary GI
background. Next, Sect. 3 presents the GP structure that will be used in the
experiments. Section 4 then describes the experimental protocol and which spe-
cific GI search processes are compared. Experimental results are presented and
discussed in Sect. 5. Finally, Sect. 6 concludes this paper.

2 Genetic Improvement (GI)

Genetic improvement (GI) uses automated search to find improved versions of
existing software. In this section, we detail on how the software to be improved
will be represented, how it will be modified, and how mutant fitness is assessed.
In addition to the related work mentioned in this section see [11] for a more
comprehensive survey of GI work.

2.1 Software Representations

This work focuses, as a lot of previous work [11], on processing software source
code based on its underlying abstract syntax tree (AST). The main advantage of
producing mutated source code, in contrast to, for example, producing mutated
binary code [15], is that source code mutations and, in particular, patches can
be expected to be much more easily understood and thus accepted by software
developers [17].

Source Code Representation. Implementation-wise, this paper uses the lat-
est version of the PyGGI1 framework, and in particular its XML tree representa-
tion introduced in [1]. SrcML2 is used to obtain an XML tree for the AST of the
original source code file, which is then stripped down to only consider statements
inside functions. No specific instrumentation is performed; the only source code
1 https://github.com/coinse/pyggi.
2 https://www.srcml.org/.

https://github.com/coinse/pyggi
https://www.srcml.org/

70 A. Blot and J. Petke

modification applied is the addition of explicit brackets around pseudo blocks
(e.g., if statements containing a single line statement with no surrounding
bracket) so that modifications of the AST are correctly translated back when gen-
erating the modified source code. A successful alternative to AST-based represen-
tations is BNF grammar-based representation (e.g., GISMOE [3,6,7,12–14]).

Mutants Representation. In contrast to the earliest GI work [2], in which
populations of entire programs were evolved, most GI work nowadays con-
sider intermediary representations for mutants, focusing on the changes that are
applied to the original software. In this paper, the possible changes (or edits)
considered are deletions, replacements, and insertions, relatively to any sub-tree
of the original software AST. Mutants are then simply represented as a sequence
of edits, only translated into source code and compiled for fitness assessment.

2.2 Fitness Assessment

The non-functional software property to be optimised is computational speed of
software, in particular, its average running time. For all purposes, the original
software will be considered already functionally correct and the correctness of
mutants will be assessed in comparison with the original software execution (e.g.,
by providing the same output). Non-functional mutant will be discarded imme-
diately. Previous work have shown that considering a multi-objective approach
and using degree of functionality as another objective is a viable alternative that
can sometimes even lead to a semantic gain [7].

Running time can be an extremely unreliable property to measure precisely,
strongly impacted by the environment, with good measurements only achievable
after a sufficient number of repetitions. As a proxy measure, previous work used,
for example, the number of lines of code executed by the software (e.g., [11]).
Major drawbacks include heavy source code instrumentation, same weight given
to every statement, omission of impact of standard or external libraries, and an
arguably strong impact of the compiler optimisation procedure. Instead, we pro-
pose to use the total number of executed CPU instructions as reported through
the perf UNIX kernel monitoring tool3. While the number of CPU instruc-
tions still does not provide a deterministic measure [16], preliminary results have
shown it to be well correlated with running time and several orders of magnitude
more stable even when executing experiments in parallel on a single machine.

3 Genetic Programming (GP)

Since the inception of genetic improvement (GI), many variants of genetic pro-
gramming (GP) have been successfully applied to the task of improving existing
software. In this work, we focus on and extend a GP structure that has been
used in recent non-functional GI work [7,12,13], and particularly has already
been used on the specific software improvement scenario that we will consider.
3 https://perf.wiki.kernel.org/index.php/Main Page.

https://perf.wiki.kernel.org/index.php/Main_Page

Comparing GP Approaches for Non-functional Genetic Improvement 71

This structure is detailed in Fig. 1. It considers a fixed size population of n
individuals that it will evolve until the training budget is exhausted. Individuals
of the first generation are generated by considering a single random mutation
of the original source code. Then, for all subsequent generations, offspring are
generated in five successive steps.

Selection. The fittest individuals of the previous population are selected as
parents. In this paper, selection simply amounts to discarding invalid mutants
and sorting the remaining individuals according to their fitness.

Elitism. The best pe parents are simply added back untouched to better ensure
gene transmission.

Crossover. The best pc parents are considered successively and crossed with
another parent picked uniformly at random to produce a single offspring.
GP crossovers in the GI literature include concatenation (e.g., in [7,12,13]),
1-point crossover (e.g., in [5,10,18]), or uniform crossover (e.g., in [9]).

Mutation. The first pm best parents are considered successively again and
mutated once. The most common mutations include either removing an edit
from the edit sequence, selected uniformly at random, or appending a new
edit at the end of the edit sequence.

Regrow. Finally, if not enough offspring have been generated (e.g., if the pre-
vious generation could not yield enough valid parents) then new individuals
are generated at random with a single mutation.

This structure differs from the previous one by two major points: it includes
an elitism step and enables explicit parameterisation. In the previous work up to
n/2 parents were selected, and each of them had two offspring, one through
crossover and one through mutation, with the risk of completely discarding the
genetic material of a parent when both offspring are unsuccessful. In the worst
case, the entire population can be decimated in a single population only to
restart evolution from scratch [7]. The elitism step tries to alleviate this issue by
providing a way to safely carry the best mutations over to the next generation.

4 Experimental Setup

In this section, we present the GI scenario—i.e., the target software to be
improved, MiniSAT [4], together with the application scenario, combinatorial
interaction testing instances—, clarify implementation specifics such as how the
source code of MiniSAT is represented, how it will be modified, and how perfor-
mance is assessed, before finally detailing the experimental protocol.

4.1 MiniSAT

This paper targets the automatic improvement of MiniSAT [4], a well-known
Boolean satisfiability (SAT) solver. MiniSAT is open-source and can be down-
loaded online4. It has been used several times in previous GI work, such as
in [1,3,12–14].
4 http://minisat.se/MiniSat.html.

http://minisat.se/MiniSat.html

72 A. Blot and J. Petke

� n: population size
� pe, pc, pm: number of parents selected for elitism, crossover, mutation
procedure GP(n, pe, pc, pm)

� Initial generation, generated at random
pop ← []
while |pop| < n do

mutant ← new mutant
append mutant to pop

end while
� Subsequent generations
repeat

offspring ← []
� (1) Selection (here: filter and sort)
parents ← selection(pop)
� (2) Offspring by elitism
for all parent ∈ parents[0 . . . ke] do

append parent to offspring
end for
� (3) Offspring by crossover
for all parent1 ∈ parents[0 . . . kc] do

parent2 ← individual from parents (uniformly at random)
mutant ← crossover(parent1 , parent2) or crossover(parent2 , parent1)
append mutant to offspring

end for
� (4) Offspring by mutation
for all parent ∈ parents[0 . . . km] do

mutant ← mutation(parent1)
append mutant to offspring

end for
� (5) If not enough parents: fill with random mutants
while |offspring | < n do

mutant ← new mutant
append mutant to offspring

end while
pop ← offspring

until training budget exhausted
return overall best mutant ever evaluated

end procedure

Fig. 1. Genetic programming search

Two versions of MiniSAT were previously considered, minisat2-070721
and minisat-2.2.0, based on the winning entries of SAT-Race 2006 and
2009, respectively. We used the latest version and focus on a single file,
core/Solver.cc, which contains the code pertaining to the search process.

Comparing GP Approaches for Non-functional Genetic Improvement 73

As input, we use combinatorial interaction testing (CIT) instances, a GI
scenario proposed in [12] and reused in later work. In particular, we use the
130 instances described in [13], split following the 5 “bins” according to their
satisfiability (SAT or UNSAT) and the time taken by MiniSAT to solve them5.

4.2 Experimental Protocol

The purpose of GI is to obtain, from a given software, a better software, in terms
of either functional or non-functional property. In previous work, especially in
the case of automated bug fixing, only one test suite was often used, leading
frequently to overfitting, as pointed out in [8]. For that reason, it is necessary
to split data into at least two disjoint sets of inputs in order to properly con-
trol for generalisation, which has been done in the non-functional work to-date.
Additionally, previous GI work [7,11] has shown that, especially using GP and
edit list as representation for the mutated software, an intermediary filtering
step was extremely useful to reduce bloat, focus on fewer edits, and improve
generalisation. Our experimental protocol thus consists of the following steps:

Pre-processing. The set of inputs is disjointly split between training, valida-
tion, and test inputs. When considering multiple bins of input, all of them
are split independently and then interwoven so that each of the training, val-
idation, and test input sets also contains the same number of sub-bins, thus
ensuring that they all follow the same distribution of bins as the entire set of
inputs.

Training. Training is the main, most important, and most computationally
expensive part of the experimental protocol. Starting from an initially empty
mutant, the search process (e.g., GP) produces incrementally better individ-
uals, before returning a single mutated software when the training budget is
exhausted. The final training mutant can, for example, be the best individual
of the last GP generation, or the best overall mutant for random search. No
new software modification is to be investigated beyond this point.

Validation. The final training mutant very often overfits to the training data.
The validation steps tries, by considering previously unseen input, to filter
out mutations that do not seem to generalise. This step also allows for a
simpler and more understandable software to be returned.

Test. Again, new unseen data is used to reassess the performance of the final
validated mutant. It is extremely important that the final software is not
modified: any decision or analysis process, including singling out individual
mutations, should have been performed during the validation process.
Additionally, we also reassess the performance of the final training mutant to
control the impact of the filtering performed during the validation step.

Additionally, to select the training, validation, and test sets, we propose to
use a repeated procedure based on nested k-fold cross-validation. This procedure,
5 Fastest SAT instances, fastest UNSAT instances, SAT instances, UNSAT instances,

and slowest (both SAT or UNSAT) instances. Respective bin sizes: 50, 37, 17, 18, 8.

74 A. Blot and J. Petke

a:X
b:V

c:T

d:T
e:T

a:V
b:X

c:T

d:T
e:T

a:T
b:T

c:X

d:V
e:T

a:T
b:V

c:T

d:X
e:T

a:T
b:T

c:V

d:T
e:X

Fig. 2. Example of nested 5-fold cross validation using a single fold for test (X) and
k − 1 folds for both validation (V: single random fold from the remaining k − 1 folds)
and training (T: all remaining k − 2 folds). Each of the five folds is successively used
once for the test step (X).

illustrated in Fig. 2, ensures a fair usage of every instance across the multiple
steps and control the consistency of the GI process. Firstly, inputs (indepen-
dently for each bin) are shuffled and split into k disjoint subsets (or folds). For
k successive sets of experiments, each of the k folds is successively used during
the test step, leaving k − 1 folds for both training and validation. Within these
k − 1 folds, one is picked uniformly at random for the validation subset, leaving
the last k− 2 for the training subset. In the experiments, we use k = 5, thus five
sets of experiments will be conducted, each using 60% of each bin of inputs in
the training step, 20% in the validation step, and 20% in the test step.

Note that while the validation and test steps will use every single of their
respective instances, search processes will not necessarily use all the training
instances during the training step. For example, previous GI work using GP
advocated sampling a single instance from each bin before every generation [7],
while for random search we will simply use a fixed subset of instances. The reason
is the computational cost of evaluating software on all instances: impractical and
inefficient for each and every mutant generated during training, but necessary
to reliably assess performance in the two other much shorter steps. Finally,
so that multiple approaches can be fairly compared, it is critical that every
search process, disregarding their specific instance usage strategy, is given equal
opportunity to all training instances: in no circumstance should the training set
be tailored to a specific search process.

4.3 Search Processes

A total of eight GP search processes are compared, together with a baseline con-
stituted of four random searches. The GP search processes follow the structure
introduced in Fig. 1, with four different population sizes n ∈ {10, 20, 50, 100}
for a total budget of 2000 mutant evaluations. Half of them will use the elitism
mechanism with pe = 0.1 · n and pc = pm = 0.45 · n, carrying the best 10%
individuals to the next population6, while the other half will follow previous
work with pe = 0 and pc = pm = 0.5 · n. These very small populations sizes are

6 After rounding, we use {pe, pc, pm} = {1, 5, 4}, {2, 9, 9}, {5, 23, 22}, and {10, 45, 45}.

Comparing GP Approaches for Non-functional Genetic Improvement 75

justified by the large amount of computational time used for fitness computa-
tion; the successful use of a population of n = 10 is corroborated in [7] while
n = 100 is used, for example, in [13]. Furthermore, we deviate from previous
work using a similar GP structure with a concatenation crossover in favour of a
1-point crossover, preliminary experiments having shown that the former gener-
ates unreasonable and unsustainable amount of bloat, especially with very small
populations (thus at equal training budget, more generations).

In addition to these eight GP search processes, four random searches are
included as a baseline, in which new individuals are simply generated indepen-
dently and uniformly at random and the final mutant is the one with overall best
fitness. These random searches are parameterised with the maximum number m
of edits that are generated for each new mutant. We consider m = 1 (i.e., each
mutant contains a single random edit), and m = 2, 5, 10 to enable generating
more complex mutants.

The only difference between the two types of search processes is the number
of training instances used and therefore the subsequent training budget. On the
one hand, to compute fitness GP will use as in previous work five instances that
are resampled at the start of every generation (a single instance from each bin).
It arguably implies an initial very unreliable fitness in terms of both functional
and non-functional properties, but the evolutionary process ensures that the
longer a mutation lives in the population, the more instances it has been trained
on and thus increasing reliability. On the other hand, fitness in random search
cannot rely on subsequent evaluations so instead more instances are used: twenty
in total, four instances from each bin. As a direct consequence, to keep the overall
same number of software execution and ensure fair comparison, the training
budget is reduced to 500 mutant evaluations, one forth of the GP training budget.

In the experiments the four approaches using GP without elitism will be
referred to as GP (n), with GPe(n) used for the four approaches using GP with
elitism and Rand(m) for the four random-based approaches.

4.4 Filtering

Two successive filtering procedures are applied during the validation step. The
first filtering is based on the assumption that GP-based search may produce a
large amount of bloat. Every edit is successively removed from the edit sequence
and discarded if its omission has no impact on the mutated source code. More
precisely, this filtering targets patterns in which, for example, a single statement
is deleted multiple times, modified, then deleted. It is usually very cheap as it
does not require any fitness computation, but has, however, no impact on the
mutant performance.

The second filtering (from [13]) aims to improve generalisation by discarding
edits that fail to generalise on previously unseen instances. The fitness of every
edit is first computed independently, then edits are sorted by fitness, and the
final mutant is constructed by adding edits one at a time if their addition has a
positive impact. This process consumes at most twice as many fitness evaluations
as the size of the edit sequence. This specific filtering works best when edits are
independent.

76 A. Blot and J. Petke

0% 50% 100%

compile
error

runtime
error

timeout

output
error

success

72%

6.7%

2.4%

4.5%

14.5%

14.3%

2.6%

1.2%

1.8%

80.1%

Fraction of mutants

Rand
GP

50% 100% 150%
0%

20%

40%

60%

80%

100%

CPU instructions executed

Fr
ac

ti
on

of
su

cc
es

sf
ul

m
ut

an
ts

Rand
GP

Fig. 3. Distribution of evaluation outcomes for random- and GP-based approaches

5 Results and Discussion

Training and validation step were conducted in parallel on four cores of a dedi-
cated (8× 3.4 GHz, 16 GB RAM) Intel i7-2600 machine, running CentOS-7 with
Linux kernel 3.10.0 and GCC 4.8.5. The testing step was conducted sequentially
on a single core.

5.1 Overall Training Results

The 40 GP training runs required between 7 to 13 h to complete, with an average
of 10 h. The four random-based approaches required between 30 min to 5 h, with
an average of about 2 h. Variance in training time can be explained by instances
with different processing time being sampled.

Figure 3 shows the distribution of outcome of every mutant during the train-
ing step, separated between random search and GP, together with the empiri-
cal cumulative distribution function (ECDF), i.e., the fraction of the successful
mutants better than a given fitness. Because fitness values are computed using
different instances they are normalised and indicated as a ratio with the fitness of
the original software on the same instances. Random-based approaches generated
10000 mutants, with only 14.5% of them viable and very few with a noticeable
impact. 72% failed to compile, and the remaining 13.5% either crashed, stalled,
or produced an incorrect satisfiability output. GP-based approaches generated
80000 mutants, within which only 14.3% failed to compile while 80.1% were suc-
cessful, with a very large fraction of them reporting large improvements over
the original software. This indicates that a very high efficiency for the 1-point
crossover for combining existing mutations and generating valuable mutants.

Comparing GP Approaches for Non-functional Genetic Improvement 77

Table 1. Experimental results for all variants (first split).

Training Validation Test

Search Size CPU Size’ CPU Size� CPU� CPU Time CPU� Time�

GP (10) 16 99.9% 11 99.9% 7 99.9% 99.9% 99.2% 99.9% 100.4%

GP (20) 32 92.7% 12 123.4% 5 93.5% 40.5% 52.7% 67.4% 76.1%

GP (50) 23 69.6% 11 102.6% 3 99.4% 77.7% 91.3% 99.6% 98.8%

GP (100) 16 63.8% 13 111.3% 4 99.9% 87.7% 100.3% 99.9% 100.6%

GPe(10) 1304 33.5% 26 114.4% 13 90.8% 44.1% 50.5% 62.8% 70.6%

GPe(20) 268 57.7% 21 105.5% 4 91.0% 43.7% 57.1% 63.0% 71.1%

GPe(50) 15 78.2% 7 123.6% 5 96.7% 80.0% 87.9% 98.5% 99.6%

GPe(100) 6 64.8% 6 107.1% 2 100.0% 36.2% 45.7% 100.0% 99.3%

Rand(1) 1 66.5% 1 114.0% 0 – 89.2% 101.4% – –

Rand(2) 2 67.0% 2 114.5% 0 – 89.7% 102.5% – –

Rand(5) 1 75.0% 1 109.0% 0 – 60.5% 66.9% – –

Rand(10) 2 74.9% 2 107.2% 1 100.0% 63.3% 66.3% 100.0% 99.3%

Size, Size’, Size�: patch size (number of edits) of the final training mutant, of the
cleaned-up mutant, and of the final validation mutant.
CPU, CPU� (Time, Time�): percentage of CPU instructions (running time) of the
final training and validation mutant, compared to the unmodified software.

5.2 Comparison of Approaches

Tables 1, 2, 3, 4 and 5 respectively report on the performance of the twelve
approaches over the five repetitions and splits of instances. For each approach
we first report, for the training step, the size and fitness estimate of the final
training mutant. Then, for the validation step we report the cleaned-up size of
the final training mutant and its fitness, and the size and fitness after filtering.
Finally, for the test step, we report, for both the final training mutant and
the final validation mutant, the fitness in terms of both the number of CPU
instructions and the actual running time. Again, fitness values are indicated
as a ratio of the fitness with the original software on the same instances. An
illustration of the relationships between these results is presented in Fig. 4.

Firstly, while the results are mostly consistent within a single instance split,
they greatly differ from one split to another. Furthermore, the instance sets of
the validation and the test steps induce extremely different results, albeit being
from identical size and sampled from the same distribution. This difference in
results points towards a high heterogeneity in the data set, easily explained by
the small number of SAT instances used (only 130 CIT instances).

The results do not show any noticeable impact on neither the size of the
population nor the use of elitism on the performance of the GI process. While
a statistical analysis using a considerably larger amount of GI runs for each
approach might yield better insight on the impact of GP parameters, significant
difference in performance within the selected parameter values is unlikely. The
four random-based approaches also show no significant difference in performance.

Focusing on the very first set of experiments (Table 1), most of GP-based and
random-based approaches report final mutants using around 70% of the num-

78 A. Blot and J. Petke

Table 2. Experimental results for all variants (second split).

Training Validation Test

Search Size CPU Size CPU Size� CPU� CPU Time CPU� Time�

GP (10) 71 38.6% 27 155.3% 3 93.6% 127.1% 135.8% 88.0% 88.2%

GP (20) 40 20.0% 13 117.7% 6 99.7% 98.5% 113.4% 99.6% 99.7%

GP (50) 16 54.9% 13 165.7% 5 99.9% 151.9% 205.6% 100.0% 100.1%

GP (100) 5 55.6% 5 136.6% 1 100.0% 126.4% 154.0% 100.0% 99.8%

GPe(10) 45 38.6% 29 100.7% 2 100.0% 90.9% 91.5% 100.0% 99.8%

GPe(20) 62 15.7% 19 117.7% 7 100.0% 102.9% 119.8% 100.0% 99.7%

GPe(50) 31 44.2% 12 118.8% 5 99.7% 97.8% 112.7% 99.7% 99.6%

GPe(100) 19 49.9% 12 123.8% 3 93.4% 90.7% 105.5% 81.2% 84.6%

Rand(1) 1 48.3% 1 151.1% 0 – 114.9% 123.0% – –

Rand(2) 2 44.4% 2 107.9% 1 100.0% 105.1% 106.8% 100.0% 99.7%

Rand(5) 2 70.2% 2 108.0% 1 100.0% 89.9% 86.8% 100.0% 100.5%

Rand(10) 1 51.8% 1 107.4% 0 – 91.9% 96.1% – –

Table 3. Experimental results for all variants (third split).

Training Validation Test

Search Size CPU Size CPU Size� CPU� CPU Time CPU� Time�

GP (10) 28 69.4% 9 102.5% 6 99.8% 76.5% 76.0% 99.7% 100.8%

GP (20) 63 86.7% 10 107.7% 6 100.0% 130.2% 138.0% 100.0% 99.8%

GP (50) 7 26.2% 7 151.1% 1 100.0% 74.9% 71.6% 100.0% 100.3%

GP (100) 8 60.8% 6 109.3% 1 100.0% 62.9% 64.1% 100.0% 98.4%

GPe(10) 19 69.3% 5 93.2% 3 100.0% 98.5% 98.2% 100.0% 99.5%

GPe(20) 1 100.0% 1 100.0% 1 100.0% 100.0% 100.4% 100.0% 99.4%

GPe(50) 21 25.7% 9 111.2% 3 100.0% 102.2% 113.2% 100.0% 100.8%

GPe(100) 5 48.2% 5 109.2% 2 93.6% 76.3% 74.6% 76.3% 74.7%

Rand(1) 1 64.9% 1 107.7% 0 – 50.1% 49.0% – –

Rand(2) 1 65.7% 1 118.1% 0 – 100.3% 108.4% – –

Rand(5) 2 52.2% 2 107.9% 1 100.0% 86.9% 89.0% 100.0% 100.3%

Rand(10) 3 69.0% 3 98.8% 2 98.8% 104.3% 105.3% 104.3% 106.9%

ber of CPU instructions executed compared to the original software, with the
best mutant reporting using only as much as 33.5%. Mutants generated by GP
approaches used between 6 and 26 edits, with the best mutants of random-based
approaches containing only a single or two edits. The training performance of
all mutants failed to generalise to the set of validation instances, with only three
mutants surviving the filtering process with more that 5% fitness improvement.
All three mutants did then further generalise on the final test set of instances,
with a final improvement of 25% to 30% in running time. However, many unfil-
tered mutants, albeit slower on the validation set, showed on the test set much
larger improvements in both number of CPU instructions and running time.

For this first split of instances, it appears that mutants generalised to the
test instances but not the validation instances. The same situation occurs in
Table 3, while Tables 4 and 5 show the inverse to be true. Finally, on the three

Comparing GP Approaches for Non-functional Genetic Improvement 79

Table 4. Experimental results for all variants (fourth split).

Training Validation Test

Search Size CPU Size CPU Size� CPU� CPU Time CPU� Time�

GP (10) 26 93.8% 9 91.6% 6 91.6% 126.9% 121.4% 126.9% 121.1%

GP (20) 54 22.2% 13 55.0% 6 50.2% 126.3% 129.7% 124.7% 128.2%

GP (50) 9 82.8% 7 91.0% 6 54.0% 126.0% 120.7% 115.8% 111.8%

GP (100) 7 57.8% 5 75.4% 3 75.4% 92.0% 91.8% 92.0% 91.7%

GPe(10) 2 99.8% 2 99.9% 2 99.9% 99.8% 101.0% 99.8% 101.1%

GPe(20) 49 22.2% 9 54.9% 8 49.8% 126.2% 127.7% 123.8% 124.9%

GPe(50) 6 82.8% 6 99.7% 4 99.7% 130.6% 135.6% 130.6% 134.6%

GPe(100) 10 48.9% 9 119.6% 5 50.1% 111.2% 118.1% 124.7% 127.8%

Rand(1) 1 57.4% 1 77.2% 1 77.2% 122.8% 115.6% 122.8% 114.8%

Rand(2) 1 77.1% 1 75.4% 1 75.4% 92.0% 90.9% 92.0% 92.1%

Rand(5) 3 57.7% 3 99.9% 1 99.8% 96.4% 98.3% 96.1% 99.2%

Rand(10) 1 77.1% 1 75.4% 1 75.4% 92.0% 91.2% 92.0% 91.1%

Table 5. Experimental results for all variants (fifth split).

Training Validation Test

Search Size CPU Size CPU Size� CPU� CPU Time CPU� Time�

GP (10) 0 100.0% − − − − − − − −
GP (20) 36 21.6% 16 105.6% 4 75.1% timeout timeout 97.1% 96.9%

GP (50) 6 83.9% 5 91.5% 3 53.5% 89.0% 81.7% 119.8% 115.0%

GP (100) 4 54.7% 4 130.1% 1 100.0% 109.1% 108.8% 100.0% 99.4%

GPe(10) 0 100.0% − − − − − − − −
GPe(20) 88 29.6% 15 53.2% 11 53.2% 119.2% 116.6% 119.2% 116.5%

GPe(50) 14 79.1% 9 54.1% 4 49.2% 73.5% 74.3% 98.6% 103.3%

GPe(100) 20 55.1% 12 57.6% 5 53.4% 103.4% 99.9% 119.8% 116.8%

Rand(1) 1 65.4% 1 74.9% 1 74.9% 98.4% 96.4% 98.4% 98.9%

Rand(2) 1 65.4% 1 74.9% 1 74.9% 98.4% 96.7% 98.4% 96.8%

Rand(5) 1 65.6% 1 75.0% 1 75.0% 98.6% 95.7% 98.6% 95.5%

Rand(10) 1 69.8% 1 75.3% 1 75.3% 97.3% 94.6% 97.3% 95.6%

cases (first three folds) in which the validation step is able to catch overfitting
on the training step, it efficiently is able to fix it on the test step.

5.3 Comparative Analysis

Figure 4 illustrates various relationships between mutant performance at differ-
ent points of the experiments. Dashed lines highlight 100% thresholds and the
identity function (x = y). Data points are simply denoted by the index of the
fold they used in the test step.

Figure 4(a) shows the overfitting of the final training mutants on the valida-
tion set of instances. As expected, almost every single mutant overfits on the
training set, with roughly half of the mutants using more CPU instructions than
the original software on the previously unseen validation instances.

80 A. Blot and J. Petke

20% 40% 60% 80% 100%
50%

100%

150%

1

1

1
11

1

1

1
11 11

2

2

2

2

2

2 2 2

2

2 22 3 3

3

3

3
3

3 3 3
3

3
3

4

4

4
4

4

4

4

4

4 4

4

4

5
5

5

5 55

5555

CPU (training)

C
P

U
(v

al
id

at
io

n)

(a) Overfit on the validation set

50% 100% 150%

50%

100%

150%

1

1

1
1

11

1

1

11

11

2

2

2

2

2
22
2

2
2
22

3

3

3
3

33 3

3

3

3
3

3

44 4

4
4

4 4

4
4

4 44 5

5
5

5

5 5555

CPU (validation)

C
P

U
(t

es
t)

(b) Overfit comparison

50% 100% 150%

60%

80%

100%

120%

1

1

1 1

11

11 1

2

2 222 22

2

223 333 333

3

3
3

44
4

4
4

4
4

4 4

4
4

4

5

5

5

5

5

5555

CPU (test)

C
P

U
�

(t
es

t)

(c) Filtering impact

50% 100% 150%

50%

100%

150%

200%

1

1

1 1

11

1

1

11

11

2
2

2

2

2

222
2

2
2
2

3

3

33

33
3

3

3

3
3

3
444

4 4

44
4 4

4445

5 5

5

55555

CPU (test)

T
im

e
(t

es
t)

(d) CPU/Time correlation

Fig. 4. Results correlations after the training, validation, and test steps

Figure 4(b) should ideally show very correlated results, as performance should
be similar on both validation and test sets of instances, both unseen and following
the same distribution. Instead, it highlights a previous conclusion: the set of CIT
instances is too small to be randomly divided in five fair subsets.

Figure 4(c) shows the impact of the filtering step, comparing the performance
on the test step of the final training mutant and the filtered one. Unfortunately,
filtering had in most cases either no impact or a negative impact. This is due to
validation and test sets of instances being inconsistent.

Figure 4(d), finally, shows the clear correlation between performance in terms
of the number of CPU instructions executed and the running time. This, together
with the very high stability of CPU instructions readings even in parallel con-
texts, confirms it as an excellent measure of computational speed.

Comparing GP Approaches for Non-functional Genetic Improvement 81

5.4 Research Questions

RQ1 (Effectiveness): How often are noticeable improvements found?
In all but five GI runs improvements from 5% to 79% in the number of CPU
instructions were found on training instances. In slightly more than half of
the runs some of the mutations had a noticeable (>5%) impact during either
the validation or the test step. However, considering only the performance
on the filtered mutants, only nine GI runs had a noticeable positive impact
during the test step. Seven of these GI runs used a GP search process, while
the two other used random search.

RQ2 (Efficiency): How significant are the improvements found?
The improvements of the nine most successful GI runs vary between 8% and
37% in terms of the number of CPU instructions, and between 8% and 30% in
terms of running time. Furthermore, among the many results with significant
(>5%) improvements on unseen instances (validation and test) about two-
thirds show improvements of at least 25%.

RQ3 (Robustness): How critical are the GP parameter values?
No particular impact of parameter values is noticed for neither GP-based
approaches nor random-based approaches. While more GI runs based on
GP ultimately produced significant improvements, performance of GP-based
approaches was similar to the performance of random-based approaches. This
could be partly attributed to the data set heterogeneity.

RQ4 (Consistency): What is the impact of test cases on the results of GI?
As clearly demonstrated in the experiments, results are strongly impacted
by the way instances are split. The same final mutant trained on 60% of the
instances can be reported as 50% faster on 20% of previously unseen instances
while being at the same time 25% slower of the remaining 20% of equally
unseen instances. As a consequence, it is highly recommended for future GI
work to report repeated performance using multiple data splits, following,
for example, the experimental protocol described in this paper. Failure to do
so might result in overlooking major weaknesses in the dataset and highly
overestimated final software performance.

6 Conclusions

This paper presented and compared several GP approaches for a GI scenario in
which a Boolean satisfiability solver, MiniSAT, was evolved to optimise running
time on combinatorial interaction testing instances. Number of CPU instructions
was proposed as an alternative to source code instrumentation and was shown
to be a reliable indicator of computational speed. Following a protocol based on
repeated experiments, it showed that performance of GI processes was highly
impacted by heterogeneity in the data set. While the training steps resulted
in a very high number of mutants with excellent performance on either of the
validation or test steps, very few of them had a significant impact after the
complete GI process. Overall, GP approaches are mostly indistinguishable from

82 A. Blot and J. Petke

one another and yet more efficient and effective than random search, suggesting
that more consistent and reliable approaches are yet to be proposed.

The proposed protocol, with repeated experiments and disjoint validation
and test sets, shows the potential for obtaining even better results than in pre-
vious work. Moreover, it shows that the largest impact on the performance lies
in the set of test suites used, which requires further investigation in future work.
Regardless, even in the simplest random search case, improvements can be found.
However, the question of which is the most efficient and effective search process
in GI remains open with this work being the first step towards answering that
question.

Acknowledgement. This work is supported by UK EPSRC Fellowship EP/P023
991/1.

References

1. An, G., Blot, A., Petke, J., Yoo, S.: PyGGI 2.0: language independent genetic
improvement framework. In: Proceedings of the 27th ACM Joint Meeting on Euro-
pean Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE 2019), pp. 1100–1104. ACM (2019). https://doi.org/
10.1145/3338906.3341184

2. Arcuri, A., Yao, X.: A novel co-evolutionary approach to automatic software bug
fixing. In: Proceedings of the Congress on Evolutionary Computation (CEC 2008),
pp. 162–168 (2008). https://doi.org/10.1109/CEC.2008.4630793

3. Bruce, B.R., Petke, J., Harman, M.: Reducing energy consumption using genetic
improvement. In: Proceedings of the 10th Genetic and Evolutionary Computation
Conference (GECCO 2015), pp. 1327–1334. ACM (2015). https://doi.org/10.1145/
2739480.2754752

4. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

5. Forrest, S., Nguyen, T., Weimer, W., Le Goues, C.: A genetic programming app-
roach to automated software repair. In: Proceedings of the 4th Genetic and Evo-
lutionary Computation Conference (GECCO 2009), pp. 947–954. ACM (2009).
https://doi.org/10.1145/1569901.1570031

6. Langdon, W.B., Harman, M.: Evolving a CUDA kernel from an nVidia template.
In: Proceedings of the Congress on Evolutionary Computation (CEC 2010), pp.
1–8 (2010). https://doi.org/10.1109/CEC.2010.5585922

7. Langdon, W.B., Harman, M.: Optimizing existing software with genetic program-
ming. IEEE Trans. Evol. Comput. 19(1), 118–135 (2015). https://doi.org/10.1109/
TEVC.2013.2281544

8. Le, X.D., Chu, D., Lo, D., Le Goues, C., Visser, W.: S3: syntax- and semantic-
guided repair synthesis via programming by examples. In: Proceedings of the ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE 2017), pp. 593–604. ACM
(2017). https://doi.org/10.1145/3106237.3106309

https://doi.org/10.1145/3338906.3341184
https://doi.org/10.1145/3338906.3341184
https://doi.org/10.1109/CEC.2008.4630793
https://doi.org/10.1145/2739480.2754752
https://doi.org/10.1145/2739480.2754752
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1145/1569901.1570031
https://doi.org/10.1109/CEC.2010.5585922
https://doi.org/10.1109/TEVC.2013.2281544
https://doi.org/10.1109/TEVC.2013.2281544
https://doi.org/10.1145/3106237.3106309

Comparing GP Approaches for Non-functional Genetic Improvement 83

9. Le Goues, C., Dewey-Vogt, M., Forrest, S., Weimer, W.: A systematic study of
automated program repair: fixing 55 out of 105 bugs for $8 each. In: Proceedings
of the 34th International Conference on Software Engineering (ICSE 2012), pp. 3–
13. IEEE Computer Society (2012). https://doi.org/10.1109/ICSE.2012.6227211

10. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: GenProg: a generic method for
automatic software repair. IEEE Trans. Softw. Eng. 38(1), 54–72 (2012). https://
doi.org/10.1109/TSE.2011.104

11. Petke, J., Haraldsson, S.O., Harman, M., Langdon, W.B., White, D.R., Woodward,
J.R.: Genetic improvement of software: a comprehensive survey. IEEE Trans. Evol.
Comput. 22(3), 415–432 (2018). https://doi.org/10.1109/TEVC.2017.2693219

12. Petke, J., Harman, M., Langdon, W.B., Weimer, W.: Using genetic improvement
and code transplants to specialise a C++ program to a problem class. In: Nicolau,
M., et al. (eds.) EuroGP 2014. LNCS, vol. 8599, pp. 137–149. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44303-3 12

13. Petke, J., Harman, M., Langdon, W.B., Weimer, W.: Specialising software for
different downstream applications using genetic improvement and code transplan-
tation. IEEE Trans. Softw. Eng. 44(6), 574–594 (2018). https://doi.org/10.1109/
TSE.2017.2702606

14. Petke, J., Langdon, W.B., Harman, M.: Applying genetic improvement to
MiniSAT. In: Ruhe, G., Zhang, Y. (eds.) SSBSE 2013. LNCS, vol. 8084, pp. 257–
262. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39742-4 21

15. Schulte, E.M., DiLorenzo, J., Weimer, W., Forrest, S.: Automated repair of binary
and assembly programs for cooperating embedded devices. In: Proceedings of the
18th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS 2013), pp. 317–328 (2013). https://doi.
org/10.1145/2451116.2451151

16. Weaver, V.M., Terpstra, D., Moore, S.: Non-determinism and overcount on mod-
ern hardware performance counter implementations. In: Proceedings of the 2013
International Symposium on Performance Analysis of Systems & Software (ISSTA
2013), pp. 215–224. IEEE (2013). https://doi.org/10.1109/ISPASS.2013.6557172

17. Weimer, W.: Patches as better bug reports. In: Proceedings of the 5th Inter-
national Conference on Generative Programming and Component Engineering
(GPCE 2006), pp. 181–190 (2006). https://doi.org/10.1145/1173706.1173734

18. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically finding patches
using genetic programming. In: Proceedings of the 31st International Conference on
Software Engineering (ICSE 2009), pp. 364–374. IEEE Computer Society (2009).
https://doi.org/10.1109/ICSE.2009.5070536

19. White, D.R., Arcuri, A., Clark, J.A.: Evolutionary improvement of programs. IEEE
Trans. Evol. Comput. 15(4), 515–538 (2011). https://doi.org/10.1109/TEVC.2010.
2083669

https://doi.org/10.1109/ICSE.2012.6227211
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1109/TEVC.2017.2693219
https://doi.org/10.1007/978-3-662-44303-3_12
https://doi.org/10.1109/TSE.2017.2702606
https://doi.org/10.1109/TSE.2017.2702606
https://doi.org/10.1007/978-3-642-39742-4_21
https://doi.org/10.1145/2451116.2451151
https://doi.org/10.1145/2451116.2451151
https://doi.org/10.1109/ISPASS.2013.6557172
https://doi.org/10.1145/1173706.1173734
https://doi.org/10.1109/ICSE.2009.5070536
https://doi.org/10.1109/TEVC.2010.2083669
https://doi.org/10.1109/TEVC.2010.2083669

Automatically Evolving Lookup Tables
for Function Approximation

Oliver Krauss1,2(B) and William B. Langdon3

1 Johannes Kepler University Linz, Linz, Austria
2 AIST, University of Applied Sciences Upper Austria, Wels, Austria

oliver.krauss@fh-hagenberg.at
3 CREST, Computer Science, UCL, London, UK

W.Langdon@cs.ucl.ac.uk

Abstract. Many functions, such as square root, are approximated and
sped up with lookup tables containing pre-calculated values.

We introduce an approach using genetic algorithms to evolve such
lookup tables for any smooth function. It provides double precision and
calculates most values to the closest bit, and outperforms reference imple-
mentations in most cases with competitive run-time performance.

Keywords: Genetic Improvement · Objective function · Covariance
matrix adaptation

1 Introduction

Newton-Raphson [11] is a widely applied method to approximate smooth math-
ematical functions. We present an approach that allows the fully automated gen-
eration of a lookup table for any given mathematical function, across a defined
range. Newton-Raphson requires a known approximation and its derivative. Our
approach is more accurate than comparable approximation methods and, except
where hardware acceleration is provided, e.g. square root, it is also faster.

To validate the method we compare our approach to several reference imple-
mentations, including square root and cube root, in C, C++, Java. We give a
detailed overview of the design of the fitness function and influencing factors,
such as algorithm design and the occurrence of inflection points in the functions
to be approximated.

The approach improves the performance of Newton-Raphson by reducing the
amount of iterations required, and provides:

– High precision function approximation - all functions are calculated with dou-
ble precision accuracy, and are more accurate than reference implementations
in most cases.

– Auto generated lookup tables - Lookup tables are automatically generated
without the need for configuration.

c© Springer Nature Switzerland AG 2020
T. Hu et al. (Eds.): EuroGP 2020, LNCS 12101, pp. 84–100, 2020.
https://doi.org/10.1007/978-3-030-44094-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44094-7_6&domain=pdf
http://orcid.org/0000-0002-8136-2606
http://orcid.org/0000-0002-6388-4160
https://doi.org/10.1007/978-3-030-44094-7_6

Automatically Evolving Lookup Tables for Function Approximation 85

– Fast run-time performance compared to algorithms that are not hardware
accelerated.

The approach can be directly applied to various domains. Gauss-Newton, a
modification of the original Newton-Raphson algorithm, is used in Genetic Pro-
gramming [6] to guide the search through the search space [14]. Lookup tables are
also used in Genetic Programming as function lookups [2,9]. Newton-Raphson
is used in distributed optimization to drive the consensus between the different
agents on a shared optimization problem, both synchronously [12] and asyn-
chronously [1]. It is also used in Data Science to solve equations to categorize,
group or predict data. In the case of Yap et al. [13], it is used for parameter
estimation to fit the Lee-Carter numerical forecasting algorithm. When hard-
ware architectures do not offer hardware acceleration, the square root and divi-
sion operations as defined in the IEEE Standard for Floating-Point Arithmetic
[5,10] are often implemented using Newton-Raphson in reference implementa-
tions. To further speed up these implementations reference implementations pro-
vide lookup tables to reduce the amount of Newton-Raphson iterations needed.

Previously Langdon and Petke [8] introduced a way to automatically generate
the cube root function 3

√
x (cbrt) into the C Math library and automatically

generate the lookup table required for it by using CMA-ES. We expand on their
work, and show a way to generate a lookup table for any given mathematical
function, within a predefined range. The goal is to provide a speedup for functions
that need to be solved often during algorithmic evaluations and do not have
hardware acceleration.

2 Background

2.1 Covariance Matrix Adaption - Evolution Strategy (CMA-ES)

The CMA-ES algorithm can be used to solve n-dimensional continuous numeri-
cal problems. It has been proven to work for local [4] and global [3] optimization.
At the core of the algorithm is the covariance matrix of which a centroid is calcu-
lated that guides the search over several iterations of new population-generations
by evolving a probability distribution. The essential operators in CMA-ES are
mutation and crossover. Mutation happens around a standard deviation that
is continuously updated during the run. Crossover is done by combining several
individuals in the population to new points. Crossover and mutator are CMA-ES
internal functions that are closely tied to the core covariance matrix, and were
not adapted for our approach [4].

CMA-ES also does not require parameter tuning, as all values are calculated,
and updated in regular intervals, internally around the core centroid [4]. Several
parameters can be set, such as the initial standard deviation, an initial search
position (centroid), but they only serve to speed up the algorithm by moving
closer to an already known, or at least assumed, good global optimum, and an
appropriate mutation size around it. Parameters relevant to the approach of this
article will be discussed in the next section.

86 O. Krauss and W. B. Langdon

2.2 Evolving Better Software Parameters

The publication of Langdon and Petke [8] discusses the need to automatically
evolve software parameters, and emphasizes on applications in the domains of
automated bug-fixing, maintenance of legacy code as applications in the field of
Genetic Improvement [7]. As a proof of concept that software parameters can
be improved automatically their publication shows how to generate the cube
root (cbrt) function for the GNU C library (glibc) which does not implement
it. The cbrt algorithm itself was not generated, but rather copied and modified
from the IEEE square root implementation as is provided in glibc. CMA-ES was
used to generate the lookup table that cbrt used with only three iterations of
Newton-Raphson. The goal was to achieve IEEE 754 double precision accuracy
(1 sign bit, 11 bit exponent, 52 bit fractional [5]).

Algorithmic Implementation of Cube Root - Langdon and Petke [8]
adapted the existing cube root function of glibc, which does not perform a pure
Newton-Raphson approximation, but does several refinements to extend the lim-
ited range of the lookup table (between 0.5 and 2) to the entire range of values
double can take. This includes splitting the double value into two 32 bit com-
ponents and performing bitwise operations on them. Three Newton-Raphson
iterations are taken, and finally the values last bit is modified to ensure the
closest possible rounding [10].

CMA-ES parameters - All parameters were left as default except the
following. The problem size in [8] was of N = 2 as they selected values for both
32 bit components in cbrt. All stopping conditions in [8] were set to 0 to ensure
the algorithm would only stop when it found the exact values required for the
lookup table. The seed for the random number generation was set externally for
reproducibility.

Restarting Strategies - CMA-ES can have several reasons why it fails to
produce an exact result. The primary reason when generating lookup tables is
that the fitness landscape becomes too flat in the area it is searching for, as all
individuals in the population come close to perfect accuracy, but will not reach
it, due to bitwise imprecision, or due to not randomly mutating to the final
correct bit. [8] opted for a restart in this case with a different seed. In all cases
of their function it was enough to run CMA-ES no more than 3 times to reach
the closest possible answer.

Fitness function - When generating a lookup table for cube root every value
in the lookup table represents a sub-range of the range the table was generated
for. The fitness function in [8] used three test points, the lower end, the higher
end and the middle of the range, for each table entry. The fitness function was
evaluated by calling the cube-root with the spot in the lookup table initialized
with the values in the evaluated individual of the CMA-ES population.

The fitness function did a logarithm conversion. All values except 0 had the
absolute logarithm of DBL EPSILON added to it. DBL EPSILON in C is the
minimal difference when added to 1 changes results in a different double value.
All values below 1 had the logarithm taken as well. This essentially ‘zooms’ into
the fitness when values extremely close to zero are dealt with.

Automatically Evolving Lookup Tables for Function Approximation 87

Table 1. Analysis of Langdon and Petkes fitness function [8]. Modifying the fitness
function with a logarithm has no effect. Their method is more accurate than the
Java and C++ reference implementations. Total Error is the difference between x
and cbrt(x)3 over 512 test values.

Implementation Distribution Total error ×10−10

C - with log Even 3.1451

Random 3.3231

C - without log Even 3.1451

Random 3.3231

Java Even 3.3322

Random 3.6071

C++ Even 6.2851

random 7.2275

Listing 1.1. Conversion of qualities close to 0.

i f (qua l i t y ==0.0) return qua l i t y ;
i f (qua l i ty< 1 . 0) return (− l og (DBL EPSILON))+ log (qua l i t y) ;
return (− l og (DBL EPSILON))+ qua l i t y ;

2.3 Investigating Evolving Better Software Parameters

As the CMA-ES stopping condition is targeted towards 0 already, and the stan-
dard deviation does reduce its size to a DBL EPSILON during runs, this adap-
tion to the fitness function should not impact the algorithm. To check this
assumption we compared two different versions of Langdon and Petkes code.
One of them was modified to not apply the logarithm in their fitness function.
A batch file then applied this compilation process:

1. Compilation of the entire project, to ensure the CMA-ES algorithm runs no
old versions.

2. Running the original Genetic Improvement script with a seed that the com-
pilation script takes as input.

3. A script then created the new lookup table from the compilation results.
4. Recompilation of the project with the new lookup table.

A test harness generated values ranged between 0.5 and 10000. The amount
of positions in the lookup table, 512 values, were evenly spaced inside the range
(e.g. 0.5, 20, 30.5, ..., 9980.5, 10000). An additional 512 values were randomly
selected inside the range. The test harness then randomly created 1000 seeds
between 1 and 1000000. The compilation batch file was run with every seed,
and all 1024 values were tested on that seed. The measurement was done by
taking the result values given by the implementation and cubing them again.
The difference between the original value and the re-cubed cube root values was

88 O. Krauss and W. B. Langdon

calculated as the error. The total error is the sum of these over all test-values as
shown in Table 1. On all executed tests the results were equivalent, with every
single seed, and in both versions of the code. This means that neither applying
a log, nor selecting a seed has an impact in their approach.

Accuracy of the results - One noteworthy finding that is not mentioned
in [8] is that their generated cube root function outperforms implementations
of other programming languages as shown in Table 1 with Java and C++. We
compared their algorithm not only to our adaption, but to the Java and C++
implementations of cbrt as well, and [8] outperforms all implementations.

3 Methods

We extended the original approach of [8], to be used for any function that can
be approximated with the Newton-Raphson method. The method generates only
the lookup table for a function defined by a developer. Our method can generate
a lookup table with the parameters:

– Range - from a lower end to a higher end. The range restricts the space in
the double values the lookup table is being generated for. This is necessary
as not all functions can benefit from refinements such as the cube root.

– Table Size - The number of entries in the table essentially splits the range into
sub-ranges. By increasing the size of the table precision in a smaller range
can be improved. Alternatively a larger range can be covered with no loss of
precision.

– User Function - the user function allows the user to define an entry point to
handle operations in addition to the Newton-Raphson approach.

– Approximation function and its derivative - are required by the approach.
They are used both in the fitness function of CMA-ES to generate the lookup
table, and in the Newton-Raphson approach that uses the lookup table.

– Iterations - the number of iterations in the Newton-Rapson approach. Increas-
ing the number of iterations can improve the range the lookup table can be
used for, and improve upon the precision.

3.1 CMA-ES Settings

Listing 1.2. Cube Root implementation.

// Function f o r Newton−Raphson
double fn (const double approx) {

return approx ∗ approx ∗ approx ;
}

// Der i va t i v e o f fn
double der ivat iveFn (const double approx) {

return 3 ∗ approx ∗ approx ;
}

Automatically Evolving Lookup Tables for Function Approximation 89

// Function t ha t a l l ow s user to modify input and r e s u l t
double userFunct ion (const double x) {

// accep t nega t i v e numbers in cube roo t
i f (x < 0) return approximate (0 . 0 − x) ;
i f (x > 0) return approximate (x) ;
return x ;

}

Table 2. Analysis of the strategy to restart the algorithm if no exact value is found.
Not restarting has a higher (better) mean. Restarting is not relevant.

Mean Std. deviation Median Min. exact values Max. exact values

No restarts 496.33 1.9646 496 491 502

3 restarts 495.87 1.7271 496 492 499

Algorithmic Implementation - The algorithmic implementation was done
with only Newton-Raphson. An example of the approximation function for cube
root can be seen in Listing 1.2.

CMA-ES parameters - Similar to [8] we did not change any of the default
parameters of CMA-ES except the stopping conditions, which were set to 0 for
the fitness as well. The seed is provided externally as well. Our method takes a
problem size of 1 instead of 2, as the values will be selected for the entire double
value instead of its 32 bit components.

Restarting Strategies - Langdon and Petke [8] opted to apply a restart
in case the CMA-ES run did not find an exact value according to their fitness
function. Their results showed that no more than 3 restarts were necessary and
in most cases the first seed was acceptable. To check if this option impacts the
results we compared 100 different runs without restarting, and 100 runs with
restarting.

As Table 2 shows, the runs without any restarting have a higher mean and
a higher maximum in the amount of exact numbers found. An analysis of the
medians over 100 runs (same values used for no restarts/3 restarts) showed that
the differences are not statistically significant (expecting 5 out of 100 - p of 0.05).
Shapiro Wilk shows (p 0.0023) which means the data is not normally distributed,
Mann-Whitney-U for two independent samples shows a normalized (p 0.0566).
Repeating the test multiple times with different sets of 100 runs showed similar
behavior, sometimes even with statistical significance, with both no-restarts and
3 restarts having the better mean. This lets us assume that the restarts have less
impact on the run than the random seed values. While restarts can positively
impact the results due to choosing a new seed, omitting them greatly improves
the runtime of the approach.

90 O. Krauss and W. B. Langdon

3.2 Test Setup and Measurements

To enable a better comparability over all tested root functions, as well as the
different applied fitness functions, the range of the lookup table was set from
0.5 to 2. For all tests the table size was set to 512. All functions depend only
upon the approximation and its derivative, with no additional steps taken to
improve or change the results. To enable comparability with reference approaches
the iterations of Newton-Raphson were fixed at 3. The tests in Subsect. 3.3 are
conducted with 3 restarts, while the tests in Sect. 4 were done with no restarts
as the runs with inflection points proved to be too time-consuming.

The tests were always conducted over two separate sets of 512 values. One
set was evenly spaced in the given range of 0.5 to 2, the second set was generated
randomly using a uniform distribution. These two sets were always generated
for one group of tests. The only thing changing when repeating the tests was the
random seed value which was randomly selected between 1 and 1000000.

The tests show two different quality measurements:

– Total Error - which is calculated from applying the approximation function fn
to the approximated value of a given input, and then subtracting that input
from it. The error value is always summed over all test-values to produce the
total error.

err = abs(fn(approximation) − input)

– Exact Values - Which are the amount of values that were met exactly by
Newton-Raphson using the fitness function. In the double range not all con-
tinuous numbers can be represented, so this measure takes into account if the
approximation is the closest that could be represented with double. This is
done by comparing the error of the approximation, as well as one bit lower
and one bit higher. The bit addition and substraction are conducted by copy-
ing the value into a long with memcpy adding or removing 1, and conducting
another memcpy back to double.

exact = err(appr.) ≤ err(appr. − 1bit)&&err(appr.) ≤ err(appr. + 1bit)

3.3 Fitness Function Design

In Subsect. 2.2 we showed that applying a log to the fitness function had no
impact. To check if this depends on the implementation of the algorithm we
redid the test with our implementation of cube root as shown in Listing 1.2.

The results (see Table 3) show that applying the logarithm not only has an
effect, but that effect is statistically significant, with the logarithm application
achieving better results. The fact that there is a deviation from the mean as well,
means that the seed also seems to have an impact. We assume that this is due to
the additional steps that the algorithm implements, which allows finding exact
values with different initial seed values, making the algorithm more robust.

Automatically Evolving Lookup Tables for Function Approximation 91

As applying a logarithm to CMA-ES does significantly impact the results we
chose to compare several other methods of modifying the fitness function:

– No mod. - the fitness function without any modification.
– Log. - as was done in [8] adding log(quality) + log(DBL EPSILON).
– Inc. Log. - it stands to reason that if the fitness function does benefit

from applying a log that increasing the log value (== getting the value
closer to zero) should provide more benefit. Thus, we applied log(quality)
+ log(DBL EPSILON × DBL EPSILON ×DBL EPSILON) instead of just
log(DBL EPSILON).

– Mul. - Adding a logarithm has the benefit of representing smaller changes
in the fitness function. A multiplication log(quality) ∗1000 should have the
same effect.

– Bitwise - The actual double fitness value is copied into a long with memcpy,
and then cast back to double. This sets the value equal to all bits that were off
from zero. This modification brings the largest transformation, and ensures
that all values that are just one bit off will result in a fitness of 1, while all
exact values will have a fitness of 0.

In their original work Langdon and Petke decided on a fitness function that
takes three values for every value in the lookup table. Those three values were
the lower end, the upper end and the center of the range an entry in the lookup
table represented (see a in Fig. 1) [8]. The lookup table for Newton-Raphson does
require a good staring point for all values covered in the range. Selecting both
ends and the center of the sub-range, that one individual position represents,
ensure a good starting position for the entire range.

There are other ways to represent the fitness function, and arguments to be
made for each of them. We selected several options for comparison:

(a) Outer - The outer points - upper and lower end - and center of the range,
which is the original from [8] (see a in Fig. 1)

Table 3. Analysis of the influence of applying log in our approach. Log improves the
accuracy and makes a significant difference in most cases (bold).

Distribution Value Fitness Mean Min Max Significance (p)

Even Total error ×10−14 No log 9.02 8.93 9.13 1.5 × 10−133

(yes)

Log 8.62 8.49 8.73

Exact values No log 472.64 467 478 3.7 × 10−124

(yes)

Log 493.06 487 501

Random Total error ×10−14 No log 9.03 8.78 9.16 5.58 × 10−7

(yes)

Log 8.97 8.8 9.15

Exact values No log 480.79 473 492 0.8929 (no)

Log 480.86 471 489

92 O. Krauss and W. B. Langdon

Fig. 1. Sampling point options (a–c) used in the fitness functions when generating a
cell in the lookup table.

(b) Inner - 1⁄3, the center and 2⁄3 of the range (see b in Fig. 1). The argument
for this option is that the points are more evenly distributed over the entire
range, than (a).

(c) Center - Only the center of the range (see c in Fig. 1). To verify that there
is cause in the assumptions of (a) and (b) that multiple points per lookup
table entry make a difference.

In these fitness functions there are several approaches as to what can be used
to calculate the target for the lookup table positions. In all of them the goal is
to set the currently searched lookup table position with the individual in the
population to be evaluated and check that value for accuracy by applying it to
the test-positions:

1. Approx - By comparing the result of the Newton-Raphson approximation,
exactly as how the error in the tables is calculated

2. Rem.Err - By taking the last error after applying Newton-Raphson, essen-
tially returning the difference instead of the desired result

3. Direct - By simply taking the individual of the population and applying the
error function without applying Newton-Raphson at all. This is the most run-
time efficient way to calculate a lookup table position as it requires only one
call to fn(x) instead of three iterations, it is only viable when applying it to
the center of the range.

When creating all valid combinations of the options above from the fitness
function adaptions, test points and evaluation options a total of 35 functions
have to be considered.

Automatically Evolving Lookup Tables for Function Approximation 93

4 Results

To evaluate and validate our approach we selected these functions for testing:

– Square Root - as this has a reference implementation available in all languages
(C, C++, Java)

– Cube Root - to offer a comparison with the work in [8]
– Super Root (4

√
x) - to provide new functionality in a similar area

– A polynomial with inflection point - to test how the lookup table behaves
with an inflection point, which have difficulties for Newton-Raphson

– A function with many inflection points - to test what happens with multiple
inflection points

Figure 2 shows the mathematical definitions of the above function and provides
plots for them. For the polynomial with only one inflection point the lookup
table range is outside of where the inflection occurs (around 0).

The results show that the approach is best suited for smooth functions, as
the single inflection point influences the outcome. While most results can provide
acceptable results (Error ≤ 1.5E−8) some runs fail to produce a valid lookup
table. This happens even though the inflection is outside of the generated range
for the lookup table. With multiple inflections inside the range not a single
attempt generated an acceptable solution.

With the smooth square- cube- and super- root functions the fitness functions
only taking the center point, and applying fn(x) instead of Newton-Raphson
continuously provided good results in the random range. Using the outer test
points and Newton-Raphson tended to produce better results in the even range.
The fitness function continuously providing the worst results was using the center
point and applying Newton-Raphson with the logarithm.

We attempted to test all algorithms with all fitness functions. This was
achievable for square-, cube-, and super root. All results except the multiple
inflection were calculated from 100 repeats. For the single inflection function we
were only able to test 23 of the 35 defined fitness functions, as several took mul-
tiple hours per run to finish. For the multiple inflection function we were only
able to test 15 repeats for all fitness functions.

The results for square root (see Table 4) cannot compete with the existing
square root functions of all reference languages (C, C++ and Java). They do
however show a trend that in the even distribution fitness functions that use
the outer test values and approximate produce perfect results in the evenly
distributed test set. This is similar over all functions without an inflection (see
Tables 5 and 6).

The results of Cube root (see Table 5) show the same trend as square root
concerning the even distribution. Similar to the super root the fitness functions
which only use the center point and apply the value of the approximation func-
tion directly instead of Newton-Raphson produce much better results in the
randomly distributed set. Unlike the square root our approach is more accurate
than C++ and Java in both test distributions.

94 O. Krauss and W. B. Langdon

0.5 1 1.5 2

0.8

1

1.2

1.4

x

√ x

(a) Square root
√
x

Approximation: x2, Derivative: 2×x

0.5 1 1.5 2

0.8

0.9

1

1.1

1.2

1.3

x

3√ x

(b) Cube root 3
√
x

Approximation: x3, Derivative: 3×x2

0.5 1 1.5 2

0.9

1

1.1

1.2

x

4√ x

(c) Super root 4
√
x

Approximation: x4, Derivative: 4×x3

0.5 1 1.5 2

−1

−0.5

0

0.5

1

x

si
n(
x
× 4

0)

(d) Multiple Inflections sin(x×40)
Approx.: sin(40x), Deriv.: 40× cos(40x)

0.5 1 1.5 2

0

50

100

150

200

x

27
x
3

−
3x

+
1

(e) Polynomial with inflection 27x3−3x+1
Approx.: 27x3 − 3x+ 1, Deriv.: 81x2 − 3

−2 −1 0 1 2

−200

−100

0

100

200

x

27
x
3

−
3 x

+
1

(f) Polynomial with inflection
Inflection at 0, outside table range

Fig. 2. Plots of functions under test in the 0.5 to 2 range the lookup tables were
generated for. (f) shows an extended range of (e) which includes the inflection point
around 0.

Automatically Evolving Lookup Tables for Function Approximation 95

Table 4. Square root - comparison of lookup tables generated with different fitness
functions. Our approach is less accurate than C, C++ and Java.

Distribution Value Fitness Median Min Max

Even Total error ×10−14 C comparison 5.31 – –

C++ comparison 5.31 – –

Java comparison 5.31 – –

(Bitwise- Inc. Log.-
Mul.- NoLog.-)
Outer approx

5.31 5.31 5.31

Log center approx 6.58 5.55 12.5

Exact value (Bitwise- Inc. Log.-
Mul.- NoLog.-)
Outer approx

512 512 512

Log center approx 465 284 500

Random Total error ×10−14 C comparison 5.27 – –

C++ comparison 5.27 – –

Java comparison 5.27 – –

(Bitwise- Inc. Log-
Log- Mul.- No
Mod.-)
Center direct

5.37 5.37 5.37

Log inner approx 6.55 5.50 9.63

Exact value Log Center Rem.
Err.

506.5 499 511

Log center approx 466.5 352 501

The super root function behaves nearly exactly the same as the cube root
concerning which fitness function works. The functions that used only the center
test point and directly applied the approximation instead of Newton-Raphson
had nearly the same results. This indicates that the smoother the function, the
more consistent the approach becomes. The accuracy of the reference implemen-
tation is not a valid comparison as we simulated the super root by applying the
square root twice which results in a consequential error.

Table 7 shows that the approach can still work with a single inflection point.
While the margin of error becomes considerable, several runs still managed
to provide accurate results. Considering the amount of exactly calculated val-
ues it seems that points influenced by the inflection point can be problematic.
A results table for the multi-inflection function is not provided as not a single
run produced any value below a total error of 100 over 512 test values. Between
150–250 values still are calculated exactly, so this supports the assumption that
points influenced by the inflection(s) are the source of the problem.

96 O. Krauss and W. B. Langdon

4.1 Run-Time Performance

The Run-Time performance of our approach is faster than Java, and slightly
slower than the approach of Langdon and Petke. It is slower than approaches
that are hardware accelerated. To enable a comparison we tested the cube root
approximation of the approach against the C cube root of [8], and the native
C++ and Java implementations. To have a baseline comparison for hardware
accelerated functions in C we tested against the C square root as well.

Table 5. Cube root - comparison of lookup tables generated with different fitness
functions. Our approach is more accurate than C++ and Java.

Distribution Value Fitness Median Min Max

Even Total error × 10−14 Langdon and Petkes
cbrt

8.33 – –

C++ comparison 14.5 – –

Java comparison 8.72 – –

(Bitwise- Inc. Log.-
Mul.- NoLog.-)
Outer approx

8.33 8.33 8.33

Log center approx 10 9.07 14

Exact value (Bitwise- Inc. Log.-
Mul.- NoLog.-)
Outer approx

512 512 512

Log center approx 449 361 480

Random Total error × 10−14 Langdon and Petkes
cbrt

8.78 – –

C++ comparison 17.0 – –

Java comparison 9.34 – –

(Bitwise- Inc. Log-
Log- No Mod.-)
Center direct

9.13 9.1 9.17

Log center approx 10.6 9.69 14

Exact value (Bitwise- Inc. Log-
Log- No Mod.-)
Center direct

492 491 493

Log center approx 448 369 474

Automatically Evolving Lookup Tables for Function Approximation 97

Table 6. Super root - comparison of lookup tables generated with different fitness
functions. Our approach is more accurate than C, C++ and Java, possibly due to the
consequential error introduced by applying square root twice. This had to be done as
the languages do not implement super root.

Distribution Value Fitness Median Min Max

Even Total error × 10−13 C comparison 1.32 – –

C++ comparison 1.32 – –

Java comparison 1.32 – –

(Bitwise- Inc. Log.-
Mul.- NoLog.-)
Outer approx

1.18 1.18 1.18

Log Center Approx 1.37 1.23 1.79

Exact value (Bitwise- Inc. Log.-
Mul.- NoLog.-)
Outer approx

512 512 512

Log center approx 459 371 490

Random Total error × 10−13 C comparison 1.30 – –

C++ comparison 1.30 – –

Java comparison 1.30 – –

Log Outer Rem.
Error

1.19 1.17 1.21

Log center approx 1.42 1.28 1.68

Exact value Log Outer Rem.
Error

490 482 496

Log center approx 451.5 400 480

Table 7. Single Inflection function - comparison of lookup tables generated with dif-
ferent fitness functions. Our approach can still produce satisfying results though the
inflection, which is outside of the lookup table range, has a negative impact on the
achieved accuracy as shown by the large medians (1027).

Distr. Value Fitness Median Min Max

Even Total error Mul. Outer Rem. Error 1.38 × 10−8 7.14 × 10−14 1.78

(Mul.- No Mod.-) center

direct

2.2× 1028 3.26× 1025 1.65 × 1033

Exact value (Mul.- No Mod.-)

Outer appprox.

510.5 488 512

Log center approx 242 228 301

Random Total error Mul. Outer Rem. Error 1.9 × 10−11 7.51 × 10−14 19.36

(Mul.- No Mod.-) center

direct

6.15 × 1027 3.11 × 1024 3.75 × 1031

Exact value (Mul. Center- No

Mod.-) Center Rem.

Error

435 410 451

(Bitwise- Mul.- No Mod.-)

center direct

239 229 295

98 O. Krauss and W. B. Langdon

Table 8 shows the run-time comparison from the total time taken when calling
the respective functions 1,000,000 times. The benchmark was repeated 1000
times, and the means over all tests is reported. For all executions the same
argument was provided, and the function signature is the same, fn(double val).

Table 8. Run-time performance of root functions (average of 1,000,000 calls). Our
approach is faster Java and nearly matches Langdon and Petkes approach, but can not
compete with hardware acceleration.

Mean (in nanoseconds per call)

Language sqrt cbrt surt

Hardware Accelerated C 0.88 0.88 0.88*

Hardware Accelerated C++ 4.10 21.35 8.10*

Langdon and Petkes cbrt

Our approach 25.33 27.46 29.58

Java 1.02 69.51 1.03*

*surt implemented as sqrt(sqrt(x))

Our approach is slightly slower than [8]. The difference is likely due to the
number of multiplications, which is higher in our approach. It can not compete
with the hardware accelerated functions of C and C++. All approaches for cube
root perform better than Java. The approach was designed to enable generation
of lookup tables for user provided functions, such as trust regions in Genetic
Programming [14]. Hardware acceleration is not likely to exist for these cases.

4.2 Limitations

The greatest limitation of our approach is that it will not work on the entire range
that the double data type can provide, but rather only for the range generated.
As discussed in Sect. 2.2, reference implementations contain additional logic to
ensure that algorithms like square root work over the entire double range. Our
work concentrates on generating lookup tables for any given function, so these
steps cannot be implemented since they would reduce the accuracy of the results
when applied to a different function than intended.

The only currently known workarounds are increasing the size of the gen-
erated lookup table with the range allows keeping precision intact, while also
increasing memory consumption. Alternatively increasing the allowed amount
of Newton-Raphson iterations increases the range the lookup table can be gen-
erated for, at the cost of run-time performance.

The second limitation of the approach is that, due to Newton-Raphson, it
cannot deal with functions that have inflections. While a single inflection point
has a strong negative impact on result quality and the time it takes CMA-ES
to generate the lookup table, a valid table can still be generated. With multiple
inflection points generating a lookup table is not possible anymore.

Automatically Evolving Lookup Tables for Function Approximation 99

5 Conclusions and Outlook

Generating lookup tables works well with smooth functions and can achieve dou-
ble precision accuracy. Nearly all values can be approximated to the closest bit of
a double. The run-time performance is in some instances faster than comparable
software solutions, but can not compete with hardware accelerated functions.

That it is not able to equal [8] still shows that a well considered algorithm is
more important than a good generation of constants with CMA-ES. The com-
bination of robust algorithms with CMA-ES does provide the best results. In
smooth functions however the approach consistently provides more accuracy
than the reference implementation of C++ and to a lesser extent Java.

The results support the original findings of [8], that the application of genetic
improvement techniques can be applied to create or update constants in pro-
grams. CMA-ES is especially a good fit as it manages its experiment parameters
internally, and can deal with small (1 × 10−14) differences in the search space.
It is not robust against functions with inflection points. Even a single inflection
in the function can hinder the approach.

The approach may also be applicable to any approximation function, such
Gauss Newton, Aitken Extrapolation or Gradient Descent. Additionally, special-
izations to the resulting function (such as [10]) should be considered to reduce
the range limitation. In the future we also intend to use CMA-ES in Genetic
Improvement as an operator to improve constant values in the population.

The source code, scripts and full results for Tables 4, 5, 6 and 7 are available
via https://github.com/oliver-krauss/EuroGP2020-LookupTables.

References

1. Carli, R., Notarstefano, G., Schenato, L., Varagnolo, D.: Analysis of Newton-
Raphson consensus for multi-agent convex optimization under asynchronous and
lossy communications. In: 2015 54th IEEE Conference on Decision and Control
(CDC), December 2015. https://doi.org/10.1109/CDC.2015.7402236

2. Gordon, T.G.W.: Exploiting development to enhance the scalability of hardware
evolution. Ph.D. thesis, University of London (2005)

3. Hansen, N.: Benchmarking a BI-population CMA-ES on the BBOB-2009 function
testbed. In: GECCO 2009. ACM (2009). https://doi.org/10.1145/1570256.1570333

4. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evol. Comput. 9(2), 159–195 (2001)

5. IEEE: Standard for Floating-Point Arithmetic. Std 754–2008, August 2008.
https://doi.org/10.1109/IEEESTD.2008.4610935

6. Koza, J.R.: Genetic programming: a paradigm for genetically breeding populations
of computer programs to solve problems. Technical report (1990)

7. Langdon, W.B.: Genetic improvement of software for multiple objectives. In:
Barros, M., Labiche, Y. (eds.) SSBSE 2015. LNCS, vol. 9275, pp. 12–28. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-22183-0 2

8. Langdon, W.B., Petke, J.: Evolving better software parameters. In: Colanzi, T.E.,
McMinn, P. (eds.) SSBSE 2018. LNCS, vol. 11036, pp. 363–369. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-99241-9 22

https://github.com/oliver-krauss/EuroGP2020-LookupTables
https://doi.org/10.1109/CDC.2015.7402236
https://doi.org/10.1145/1570256.1570333
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1007/978-3-319-22183-0_2
https://doi.org/10.1007/978-3-319-99241-9_22

100 O. Krauss and W. B. Langdon

9. Lenser, S.R., Tan, D.S.: Genetic algorithms for synthesizing data value predictors.
Technical report, Carnegie Mellon University, November 1999

10. Markstein, P.W.: Computation of elementary functions on the IBM RISC Sys-
tem/6000 processor. IBM J. Res. Dev. 34(1), 111–119 (1990). https://doi.org/10.
1147/rd.341.0111

11. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes
3rd Edition: The Art of Scientific Computing. Cambridge University Press, Cam-
bridge (2007). http://dl.acm.org/citation.cfm?id=1403886

12. Varagnolo, D., Zanella, F., Cenedese, A., Pillonetto, G., Schenato, L.: Newton-
Raphson consensus for distributed convex optimization. IEEE Trans. Autom. Con-
trol 61(4) (2016). https://doi.org/10.1109/tac.2015.2449811

13. Yap, S.Z.Z., Zahari, S.M., Derasit, Z., Shariff, S.S.R.: An iterative Newton-Raphson
(NR) method on Lee-Carter parameter’s estimation for predicting hospital admis-
sion rates. Am. Inst. Phys. (AIP) Conf. Proc. 1974(1) (2018). https://doi.org/10.
1063/1.5041580

14. Z-Flores, E., Trujillo, L., Schütze, O., Legrand, P.: A local search approach to
genetic programming for binary classification. In: GECCO 2015, pp. 1151–1158.
ACM (2015). https://doi.org/10.1145/2739480.2754797

https://doi.org/10.1147/rd.341.0111
https://doi.org/10.1147/rd.341.0111
http://dl.acm.org/citation.cfm?id=1403886
https://doi.org/10.1109/tac.2015.2449811
https://doi.org/10.1063/1.5041580
https://doi.org/10.1063/1.5041580
https://doi.org/10.1145/2739480.2754797

Optimising Optimisers with Push GP

Michael A. Lones(B)

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh, UK

m.lones@hw.ac.uk

Abstract. This work uses Push GP to automatically design both local
and population-based optimisers for continuous-valued problems. The
optimisers are trained on a single function optimisation landscape, using
random transformations to discourage overfitting. They are then tested
for generality on larger versions of the same problem, and on other
continuous-valued problems. In most cases, the optimisers generalise
well to the larger problems. Surprisingly, some of them also generalise
very well to previously unseen problems, outperforming existing general
purpose optimisers such as CMA-ES. Analysis of the behaviour of the
evolved optimisers indicates a range of interesting optimisation strate-
gies that are not found within conventional optimisers, suggesting that
this approach could be useful for discovering novel and effective forms of
optimisation in an automated manner.

Keywords: Genetic Programming · Optimisation · Metaheuristics

1 Introduction

This work is motivated by two issues. First, due to the innate constraints and
biases of human thought, it is likely that manual design of optimisers explores
only a subspace of optimiser designs. It is unlikely that this subspace contains
optimal optimisers for all optimisation problems. Second, recent attempts to
create novel optimisers from models of natural systems have been largely unsuc-
cessful in broadening the scope of optimiser designs, instead tending only to gen-
erate variants of existing metaheuristic frameworks [9,16]. This work attempts
to address both of these issues by using Genetic Programming (GP) to explore
the broader space of optimisation algorithms, with the aim of discovering novel
optimisation behaviours that differ from those used by existing algorithms. In
order to make the optimiser search space as broad as possible, a Turing-complete
language, Push, is used to represent the optimisers, and the Push GP system is
used to optimise them [17]. In [8], this approach was used to evolve local opti-
misers that can solve continuous-valued problems. In this work, this approach is
extended to the population-based case, using Push GP to automatically design
both local and population-based optimisers from primitive instructions.

The paper is organised as follows. Section 2 reviews existing work on the
automated design of optimisers. Section 3.1 gives a brief overview of the Push
c© Springer Nature Switzerland AG 2020
T. Hu et al. (Eds.): EuroGP 2020, LNCS 12101, pp. 101–117, 2020.
https://doi.org/10.1007/978-3-030-44094-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44094-7_7&domain=pdf
http://orcid.org/0000-0002-2745-9896
https://doi.org/10.1007/978-3-030-44094-7_7

102 M. A. Lones

language and the Push GP system, Sect. 3.2 describes how Push GP has been
modified to support the evolution of population-based optimisers, and Sect. 3.3
outlines how the optimisers are evaluated. Section 4 presents results and analysis.
Section 5 concludes.

2 Related Work

There is a significant history of using GP to optimise optimisers. This can be
divided into two areas: using GP to optimise GP, and using GP to optimise
other kinds of optimiser. The former approaches use a GP system to optimise
the solution generation operators of a GP framework [4,6,17]. Autoconstructive
evolution [17] is a particularly open-ended approach to doing this in which pro-
grams contains code that generates their own offspring; also notable is that, like
our work, it uses the Push language.

However, more relevant is previous work on using GP to optimise non-GP
optimisers. Much of this work has taken place within the context of hyperheuris-
tics, which involves specialising existing optimisation frameworks so that they
are better suited to solving particular problem classes. In this context, GP has
been used to re-design components of evolutionary algorithms, such as their
mutation [23], recombination [5] and selection operators [13], with the aim of
making them better adapted to particular solution landscapes. Other hyper-
heuristic approaches have used GP to generate new optimisation algorithms
by recombining the high-level building blocks of existing metaheuristic frame-
works [3,10,12,15]. Recently, this kind of approach has also been used to explore
the design space of swarm algorithms, using grammatical evolution to combine
high-level building blocks derived from existing metaheuristics [3]. Our app-
roach differs from this, and previous work in hyperheuristics, in that it focuses
on designing optimisers largely from scratch. By not reusing or building upon
components of existing optimisers, the intention is to reduce the amount of bias
in the exploration of optimiser design space, potentially allowing the exploration
of previously unexplored areas.

Another recent development, which has some similarities to our work, is the
use of deep learning to optimise optimisers [1,11,21]. So far these approaches
have focused on improving the training algorithms used by deep learners, i.e.
they are somewhat akin to using GP to optimise GP, though it is plausible that
deep learning could be applied to the task of designing optimisers for non-neural
domains. However, this is arguably an area in which GP is better suited than
deep learning, since the optimisers produced by GP are likely to be far more
efficient (in terms of runtime) than those produced by deep learning. Runtime
efficiency is an important consideration for optimisers, since the same code is
typically called over and over again during the course of an optimisation tra-
jectory. Another advantage of GP is the relative interpretability of its solutions
when compared to deep learning, and the potential that more general insights
could be made into the design of optimisers by studying the code of evolved
solutions.

Optimising Optimisers with Push GP 103

3 Methods

3.1 Push and Push GP

In this work, optimisation behaviours are expressed using the Push language.
Push was designed for use within a GP context, and has a number of features that
promote evolvability [17–19]. These include the use of stacks, a mechanism that
enables evolving programs to maintain state with less fragility than using con-
ventional indexed memory instructions [7]. However, it is also Turing-complete,
meaning that it is more expressive that many languages used within GP sys-
tems. Another notable strength is its type system, which is designed so that
all randomly generated programs are syntactically valid, meaning that (unlike
type systems introduced to more conventional forms of GP) there is no need to
complicate the variation operators or penalise/repair invalid solutions. This is
implemented by means of multiple stacks; each stack contains values of a partic-
ular type, and all instructions are typed, and will only execute when values are
present on their corresponding type stacks. There are stacks for primitive data
types (booleans, floats, integers) and each of these have both special-purpose
instructions (e.g. arithmetic instructions for the integer and float stacks, logic
operators for the boolean stack) and general-purpose stack instructions (push,
pop, swap, duplicate, rot etc.) associated with them. Another important stack
is the execution stack. At the start of execution, the instructions in a Push pro-
gram are placed onto this stack and can be manipulated by special instructions;
this allows behaviours like looping and conditional execution to be carried out.
Finally, there is an input stack, which remains fixed during execution. This pro-
vides a way of passing non-volatile constants to a Push program; when popped
from the input stack, corresponding values get pushed to the appropriate type
stack. Push programs are evolved using the Push GP system. Since a Push pro-
gram is basically a list of instructions, it can be represented as a linear array
and manipulated using genetic algorithm-like mutation and crossover operators.

3.2 Evolving Population-Based Optimisers

In order to evolve population-based optimisers, this work uses a modified version
of Psh (http://spiderland.org/Psh/), a Java implementation of Push GP. To
allow programs to store and manipulate search points, an extra vector type
has been added to the Push language. This represents search points as fixed-
length floating point vectors, and these can be manipulated using the special-
purpose vector instructions shown in Table 2; see [8] for more details about these
instructions. Evolutionary parameters are shown in Table 1.

Algorithm 1 outlines the procedure for evaluating evolved Push optimisers.
To reduce evolutionary effort, a Push program is only required to carry out a
single move, or optimisation step, each time it is called. In order to generate
an optimisation trajectory within a given search space, the Push program is
then called multiple times by an outer loop until a specified evaluation budget
has been reached. After each call, the value at the top of the Push program’s

http://spiderland.org/Psh/

104 M. A. Lones

Table 1. Psh parameter settings

Population size = 200

Maximum generations = 50

Tournament size = 5

Program size limit = maximum of 100 instructions

Execution limit = maximum of 100 instruction executions per move

Instructions = boolean/float/integer/vector.{dup flush pop rand

rot shove stackdepth swap yank yankdup}; boolean.{= and fromfloat

frominteger not or xor}; exec.{= do*count do*range do*times if iflt

noop}; float.{% * + - / < = > abs cos erc exp fromboolean frominteger

ln log max min neg pow sin tan}; input.{inall inallrev index};
integer.{% * + - / < = > abs erc fromboolean fromfloat ln log max

min neg pow}; vector.{* / + - apply between dim+ dim* dprod mag pop

scale urand wrand zip}; false; true

Table 2. Vector stack instructions

Instruction Pop from Push to Description

vector.+ vector, vector vector Add two vectors

vector.- vector, vector vector Subtract two vectors

vector.* vector, vector vector Multiply two vectors

vector./ vector, vector vector Divide two vectors

vector.scale vector, float vector Scale vector by scalar

vector.dprod vector, vector float Dot product of two vectors

vector.mag vector float Magnitude of vector

vector.dim+ vector, float, int vector Add float to specified component

vector.dim* vector, float, int vector Multiply specified component by float

vector.apply vector, code vector Apply code to each component

vector.zip vector, vector, code vector Apply code to each pair of components

vector.between vector, vector, float vector Generate point between two vectors

vector.rand vector Generate random vector of floats

vector.urand vector Generate random unit vector

vector.wrand float vector Generate random vector within bounds

vector.current integer vector Get current point of given pop member

vector.best integer vector Get best point of given pop member

vector stack is popped and the corresponding search point is evaluated. The
objective value of this search point, as well as information about whether it was
an improving move and whether it moved outside the problem’s search bounds,
are then passed back to the Push program via the relevant type stacks. Since
the contents of a program’s stacks are preserved between calls, Push programs
have the capacity to build up their own internal state during the course of an
optimisation run, and consequently the potential to carry out different types of
moves as search progresses.

Optimising Optimisers with Push GP 105

Algorithm 1. Evaluating an evolved Push GP optimiser
1: fitness ← 0
2: for repeats do � Measure fitness over multiple optimisation runs
3: pbest ← ∞
4: for p ← 1, popsize do � Initialise population state
5: progp ← copy of evolved Push program
6: clearstacks(progp)
7: pointp ← random initial point within search bounds
8: valuep ← evaluate(pointp)
9: push(pointp, progp.vector) � Pass initial search point to program

10: push(valuep, progp.float) � Pass initial objective value to program
11: push(true, progp.boolean)
12: push(bounds, progp.input) � Put search space bounds on input stack
13: bestvalp ← valuep

14: if bestvalp < pbest then
15: pbest ← bestvalp, pbestindex ← p
16: end if
17: end for
18: for m ← 1,moves do
19: for p ← 1, popsize do
20: push(m, progp.integer) � Pass move number to program
21: push(p, progp.integer) � Pass population index to program
22: push(pbestindex, progp.integer) � Pass index of pbest to program
23: previous ← valuep

24: execute(progp)
25: pointp ← peek(progp.vector) � Get next search point from program
26: if pointp is within search bounds then
27: valuep ← evaluate(pointp)
28: if valuep < bestvalp then
29: bestvalp ← valuep, bestp ← pointp
30: end if
31: if valuep < previous then
32: push(true, progp.boolean) � Tell program it improved
33: else
34: push(false, progp.boolean) � Tell program it didn’t improve
35: push(bestp, progp.vector) � and remind it of its best point
36: end if
37: push(valuep, progp.float) � Pass new objective value
38: else
39: push(false, progp.boolean)
40: push(∞, progp.float) � Or indicate move was out of bounds
41: end if
42: if bestp < pbest then pbest ← bestp
43: end for
44: end for
45: fitness ← fitness + pbest
46: end for
47: fitness ← fitness/repeats � Mean of best objective values found in each repeat

106 M. A. Lones

To handle population-based optimisation, multiple copies of the Push pro-
gram are run in parallel, one for each population member. Each copy of the
program has its own stacks, so population members are able to build up their
internal state independently. Population members are persistent, meaning there
is no explicit mechanism to create or destroy them during the course of an opti-
misation run. To allow coordination between population members, two extra
instructions are provided, vector.current and vector.best. These both look
up information about another population member’s search state, returning either
its current or best seen point of search. The target population member is deter-
mined by the value at the top of the integer stack (modulus the population size
to ensure a valid number); if this stack is empty, or contains a negative value,
the current or best search point of the current population member is returned.
This sharing mechanism, combined with the use of persistent search processes,
means that the evolved optimisers resemble swarm algorithms in their general
mechanics. However, there is no selective pressure to use these mechanisms in
any particular way, so evolved optimisers are not constrained by the design space
of existing swarm optimisers.

3.3 Evaluation

Evolved optimisers are evaluated using a selection of functions taken from the
widely used CEC 2005 real-valued parameter optimisation benchmarks [20].
These are all minimisation problems, meaning that the aim is to find the input
vector (i.e. the search point) that generates the lowest value when passed as an
argument to the function. The functions used during fitness evaluation, which
were selected to provide a diverse range of optimisation landscapes, are:

– F1, the sphere function, a separable unimodal bowl-shaped function. It is the
simplest of the benchmarks, and can be solved by gradient descent.

– F9, Rastrigin’s function, has a large number of regularly spaced local optima
whose magnitudes curve towards a bowl where the global minimum is found.
The difficulty of this function lies in avoiding the many local optima on the
path to the global optimum, though it is made easier by the regular spacing,
since the distance between local optima basins can in principle be learnt.

– F12, Schwefel’s problem number 2.13, is multimodal and has a small number of
peaks that can be followed down to a shared valley region. Gradient descent
can be used to find the valley, but the difficulty lies in finding the global
mimimum, since it contains multiple irregularly-spaced local optima.

– F13 is a composition of Griewank’s and Rosenbrock’s functions. This compo-
sition leads to a complex surface that is highly multimodal and irregular, and
hence challenging for optimisers to navigate.

– F14, a version of Schaffer’s F6 Function, comprises concentric elliptical ridges.
In the centre is a region of greater complexity where the global optimum lies.
It is challenging due to the lack of useful gradient information in most places,
and the large number of local optima.

Optimising Optimisers with Push GP 107

To discourage overfitting to a particular problem instance, random transforma-
tions are applied to each dimension of these functions when they are used to
measure fitness during the course of an evolutionary run. Random translations
(of up to ±50% for each axis) prevent the evolving optimisers from learning
the location of the optimum, random scalings (50–200% for each axis) prevent
them from learning the distance between features of the landscape, and random
axis flips (with 50% probability per axis) prevent directional biases, e.g. learning
which corner of the landscape contains the global optimum. Fitness is the mean
of 10 optimisation runs, each with random initial locations and random trans-
formations. The 10-dimensional versions of the problems are used for training,
with an evaluation budget of 1E+3 fitness evaluations (FEs). For the results
tables and figures shown in the following section, the best-of-run optimisers are
reevaluated over the CEC 2005 benchmark standard of 25 optimisation runs,
and random transformations are not applied.

4 Results

For a population-based optimiser, the 1E+3 evaluation budget can be split
between the population size and the number of iterations/generations in differ-
ent ways. In these experiments, splits of (population size × iterations) 50× 20,
25× 40, 5× 200 and 1× 1000 are used. The latter is included to give a compar-
ison against local search, i.e. optimisers which only use a single point of search.
Figure 1 shows the fitness distributions over 50 evolutionary runs for each of these
configurations, where fitness is the mean error when the best-of-run optimisers
are reevaluated over 25 optimisation runs. To give an idea of how these error
rates compare to established general purpose optimisers, Fig. 1 also reproduces
the mean errors achieved by two algorithms from the original CEC 2005 competi-
tion. G-CMA-ES [2] is a variant of the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) with the addition of restarts and an increasing population
size at each restart; it is a relatively complex algorithm and is generally regarded
as the overall winner of the CEC 2005 competition. Differential Evolution (DE)
[14], although less successful than G-CMA-ES in the competition, is another
example of a well-regarded population-based optimiser.

Figure 1 compares the ability of Push GP to find optimisers with different
trade-offs between population size and number of iterations. The distributions
show that this trade-off is more important for some problems than others. For
F1, better optimisers are generally found for smaller population sizes, with the
1× 1000 distribution having the lowest mean error. This makes sense, because
the unimodal F1 landscape favours intensification over diversification. For F12,
the sweet spot appears to be for 5× 200, possibly reflecting the number of peaks
in the landscape, i.e. 5. For the other problems, the differences appear rela-
tively minor, and effective optimisers could be evolved for all configurations.
In most cases, the best optimiser for a particular problem is an outlier within
the distributions, so may not reflect any intrinsic benefit of one configuration

108 M. A. Lones

1e−04

1e−02

1e+00

1e+02

1e+04

F1_1x1000 F1_5x200 F1_25x40 F1_50x20F1_1x1000 F1_5x200 F1_25x40 F1_50x20

0.1

0.5
1.0

5.0
10.0

50.0
100.0

500.0

F9_1x1000 F9_5x200 F9_25x40 F9_50x20F9_1x1000 F9_5x200 F9_25x40 F9_50x20

1e+03

5e+03
1e+04

5e+04
1e+05

5e+05
1e+06

F12_1x1000 F12_5x200 F12_25x40 F12_50x20F12_1x1000 F12_5x200 F12_25x40 F12_50x20

1e+00

1e+02

1e+04

1e+06

F13_1x1000 F13_5x200 F13_25x40 F13_50x20F13_1x1000 F13_5x200 F13_25x40 F13_50x20

3.8

4.0

4.2

4.4

4.6

4.8
5.0
5.2

F14_1x1000_25082019 F14_5x200_26082019 F14_25x40_25082019 F14_50x20_26082019F14_1x1000_25082019 F14_5x200_26082019 F14_25x40_25082019 F14_50x20_26082019

Fig. 1. Fitness distributions of 50 runs for each problem and configuration. The value
shown for each run is the mean fitness of the best solution over 25 reevaluations.
Published results for CMA-ES (blue) and DE (green) are also shown. (Color figure
online)

Optimising Optimisers with Push GP 109

over another. That said, four of these best-in-problem classifiers used small pop-
ulations (2 with 1× 1000 and 2 with 5× 200), so maybe it is easier to find
effective optimisers that use small populations than larger ones.

Perhaps more importantly, Fig. 1 shows that the Push GP runs found at least
one optimiser that performed better, on average, than CMA-ES and DE. For the
simplest problem F1, there was only one evolved optimiser that beat the general
purpose optimisers. For the other problems, many optimisers were found that
performed better. This reflects the results in [8], and is perhaps unsurprising
given that the capacity to overfit problems is a central motivation for existing
work on hyperheuristics. However, an important difference in this paper is the
use of random problem transformations during training, since this causes the
problems to exhibit greater generality, preventing optimisers from over-learning
specific features of the landscape. The results suggest that this does not affect
the ability of evolved optimisers to out-perform general purpose optimisers.

This ability to out-perform general purpose optimisers on the problem on
which they were trained is arguably not that important. Of more interest is how
they generalise to larger and different problems. Table 3 gives an insight into
this, showing how well the best evolved optimiser for each training problem gen-
eralises to larger instances of the same problem and to the other four problems.
Mean error rates are shown both for the 10-dimensional problems with the 1E+3
evaluation budget used in training, and for 30-dimensional versions of the same
problems and 1E+4 evaluation budgets. First of all, these figures show that the
evolved optimisers do not stop progressing after the 1E+3 solution evaluations
on which they were trained, since they make significantly more progress on the
same problem when given a budget of 1E+4 solution evaluations. Also, it is
evident that most of the optimisers generalise well to 30-dimensional versions
of the same problem. The best optimisers evolved on the 10D F12, F13 and F14

problems do particularly well in this regard, outperforming CMA-ES and DE on
both the 10D and 30D versions of the problems. The F1 optimiser is the only one
which generalises relatively poorly, being beaten by CMA-ES, DE and several
of the other optimisers on the 30D version.

The most interesting insight from Table 3 is that many of the optimisers also
generalise to other problems. For the 10D, 1E+3 evaluations case, all of the
optimisers do better than DE when their average rank is taken across all five
problems. More surprisingly, the F12 optimiser does as well as CMA-ES across
all problems, despite only having been trained on one of them. Its average rank
does drop slightly when its F12 rank is removed from the calculation of its
average rank, suggesting it does not generalise quite as well as CMA-ES on the
10D problems. However, the figures for the 30D case are even more surprising,
with the F12 optimiser doing better across the five problems (even with F12

discounted) than CMA-ES. Also notable is that the F13 optimiser comes first in
three out of the five 30D problems, though this is balanced by coming last in the
other two. CMA-ES does do slightly better than the F12 optimiser when given
a budget of 1E+4 solution evaluations, but the difference is slight, and the best
mean error rates for the four most difficult problems are found by the evolved
optimisers.

110 M. A. Lones

Table 3. Generality of evolved optimisers. For each optimiser, mean errors are shown
for 25 optimisation runs on 10D and 30D problems. The mean rank including (and
excluding) the problem the optimiser was trained on is also shown, and the best result
for each combination of problem dimensionality (D) and fitness evaluation budget (FEs)
is underlined for each problem number and ranking.

D FEs Optimiser F1 F9 F12 F13 F14 Rank

10 1E+3 CMA-ES 1.70E−2 3.07E+1 3.59E+4 3.84E+0 4.28E+0 3.4

DE 4.21E+2 3.11E+1 7.48E+4 1.62E+3 4.34E+0 5.0

F1 best 2.48E−3 7.28E+1 3.29E+4 5.26E+0 4.47E+0 4.0 (4.8)

F9 best 1.32E+4 3.27E−1 9.32E+3 1.18E+0 4.86E+0 3.6 (4.3)

F12 best 3.10E+3 7.28E+0 2.79E+3 2.43E+0 4.52E+0 3.4 (4.0)

F13 best 3.56E+4 2.44E+0 4.63E+4 1.05E+0 4.82E+0 4.2 (5.0)

F14 best 4.11E+2 7.76E+1 9.97E+4 2.69E+2 4.04E+0 4.4 (5.3)

1E+4 CMA-ES 5.20E−9 6.21E+0 2.98E+3 9.71E−1 3.91E+0 2.8

DE 2.00E+1 5.49E−9 1.64E+4 9.05E+0 4.02E+0 4.2

F1 best 2.44E−6 8.05E+1 2.36E+4 3.60E+0 4.50E+0 4.8 (5.5)

F9 best 1.45E−3 2.06E−1 7.72E+3 7.04E−1 4.85E+0 3.8 (3.8)

F12 best 5.96E−4 7.47E−2 3.93E+2 4.98E−1 4.21E+0 3.0 (3.5)

F13 best 1.51E−4 3.66E−6 3.07E+4 3.45E−1 4.90E+0 4.0 (4.8)

F14 best 1.37E+1 5.16E+1 3.77E+4 1.62E+1 3.57E+0 5.4 (6.5)

30 1E+3 CMA-ES 8.16E+2 2.53E+2 1.67E+6 1.14E+2 1.42E+1 3.2

DE 2.06E+4 3.77E+2 1.53E+6 1.62E+5 1.41E+1 4.2

F1 best 7.75E+4 4.36E+2 1.07E+6 3.47E+4 1.45E+1 5.2 (5.0)

F9 best 7.63E+4 3.24E+2 1.07E+6 4.00E+3 1.45E+1 4.2 (4.3)

F12 best 5.74E+4 1.18E+2 3.46E+5 3.62E+1 1.44E+1 2.8 (3.0)

F13 best 1.63E+5 1.00E+2 1.73E+5 1.84E+1 1.47E+1 3.4 (4.0)

F14 best 2.14E+4 4.15E+2 2.19E+6 3.52E+4 1.38E+1 4.6 (5.5)

1E+4 CMA-ES 5.42E−9 4.78E+1 2.51E+5 3.80E+0 1.38E+1 2.2

DE 4.71E+0 9.85E+1 9.29E+5 1.02E+2 1.39E+1 4.0

F1 best 1.36E+2 3.68E+2 4.08E+5 4.18E+1 1.44E+1 4.8 (5.0)

F9 best 6.40E+4 3.27E+2 1.09E+6 3.52E+3 1.46E+1 6.0 (6.3)

F12 best 5.97E−2 5.76E+0 3.43E+4 5.00E+0 1.41E+1 2.4 (2.8)

F13 best 2.44E+4 5.04E−2 1.26E+5 1.42E+0 1.47E+1 3.4 (4.0)

F14 best 1.64E+2 3.33E+2 1.17E+6 3.97E+3 1.33E+1 5.2 (6.3)

Table 4 shows the evolved Push expression used by each best-in-problem opti-
miser, in each case slightly simplified by removing instructions that have no effect
on their fitness. Whilst it is difficult to understand their behaviour by looking at
these expressions alone, it is usually possible to gain more insight by observing
the interpreter’s stack states as they run, and by observing their trajectories on

Optimising Optimisers with Push GP 111

Table 4. Evolved Push expressions of best-in-problem optimisers

F1 (exec.dup float.- vector.- float.pop vector.zip vector.zip

integer.swap float.cos float.- float.cos float.- float.yank

vector.best vector.wrand float.abs float.dup float.frominteger

vector.- vector.dim*)

F9 (input.stackdepth float.frominteger vector.yank vector.wrand

boolean.dup integer.fromboolean vector.swap integer.rot

float.frominteger float.sin vector.yank vector.shove

vector.dim+ vector.yank 0.0 float.> input.inall boolean.not

1 boolean.dup vector.pop boolean.stackdepth)

F12 (vector.stackdepth vector.swap float.fromboolean

integer.fromboolean integer.rand vector.dim+ float.+

vector.swap integer.rand 0 vector.swap integer.max

integer.= vector.stackdepth integer.dup vector.- integer.dup

integer.rand vector.- vector.dim+ vector.mag float.frominteger

float.tan integer.rot vector.dim+)

F13 (integer.- float.sin vector.wrand integer.yankdup vector.dim*

vector.- input.inall float.sin vector.-)

F14 (float.< float./ vector.best vector.yankdup float.ln float.max

float.stackdepth 0.48999998 float.abs vector.between

vector.wrand vector.scale integer.yank input.index

vector.- float.rand float.neg 0.97999996 float.- 0.97999996

vector.wrand vector.scale vector.-)

2D versions of the problems on which they were trained. Figure 2 shows examples
of the latter; in almost all cases, optimisers generalise well to these easier 2D
problems, and it can be seen in each case that the global optimum is found. It
can also be seen from the trajectories that the behaviours of the five optimisers
are quite diverse, and this is reflected in their program-level behaviours:

– Each particle in the F1 optimiser looks up the population best and then adds
a random vector to this to generate a new search point. Notably, the size of
this random vector is determined using a trigonometric expression based on
the components of the particle’s current and best search points, meaning that
the move size carried out by each particle in the population is different.

– The F9 optimiser (which uses only one point of search) continually switches
between searching around the best-seen search point and evaluating a ran-
dom search point. When searching around the best point, at each iteration it
adds the sine of the move number to a single dimension, moving along two
dimensions each time; in essence, this causes it to systematically explore the
nearby search space, building up the space-filling pattern seen in Fig. 2.

– The F12 optimiser is the most complex, and its behaviour at the instruction
level is hard to understand. However, it does use the particle’s index and the
index (but not the vector) of the population best, and both the improvement
and out-of-bounds Boolean signals to determine each move. By observing its

112 M. A. Lones

Fig. 2. Example trajectories of the best-in-problem optimisers (F1, F9 & F12 top, F13

& F14 bottom) on the 2D versions of the benchmark problems they were trained on.
The global minimum is shown as a black circle. The best point reached by the optimiser
is shown as a black cross. Each population member’s trajectory is shown as a separate
colour, with each search point shown as a point. Initial search points are surrounded by
small coloured circles. The search landscape is shown in the background as a contour
plot. (Color figure online)

search trajectories, it is evident that it builds up a geometric pattern that
causes it to explore moves with a power series distribution—in essence, a
novel form of variable neighbourhood search.

– The F13 optimiser, by comparison, has the simplest program. Each iteration,
it adds a random value to one of the dimensions of the best-seen search
point, cycling through the dimensions on each subsequent move (hence why
it generates a cross-shaped trajectory). The size of the move (the upper bound
of the random value) is determined by both the sine of the objective value
of the current point and the sine of the maximum dimension size, the former
causing it to vary cyclically as search progresses, and the latter allowing it to
adapt the move size to the search area.

– The F14 optimiser is the only one which uses both a larger population and the
vector.between instruction. Each iteration, it uses this to generate a new
population of search points half-way between the population best and one
of each particle’s previous positions. Interestingly, which previous position is
used for a particular particle is determined by its index; the first particle uses
its current position, higher numbered particles go back further in time. This
may allow backtracking, which could be useful for landscapes that are decep-
tive and have limited gradient information (such as F14). A small random
vector is added to each half-way point, presumably to inject further diversity.

Optimising Optimisers with Push GP 113

Fig. 3. Examples of the best evolved optimisers for each problem (top to bottom: F1,
F9, F12, F13, F14) applied to each of the other problems (left-right: F1, F9, F12, F13,
F14). See caption of Fig. 2 for more information.

Figure 3 shows examples of trajectories when each of these optimisers are
applied to 2D versions of the other four problems. These suggest that optimisers
may fail to generalise not because of intrinsic assumptions about properties of
landscapes, but because they make assumptions about the dimensions of the
search area. For example, the F9 and F13 optimisers appear to fail on the F14

landscape because they are making moves, or sampling regions, which are only
appropriate for a landscape with much smaller overall dimensions. Using a larger
range of random scalings during training might help with this.

However, these optimisers were not evolved for generality, so the fact that
most of them generalise to other problems is a fortunate bi-product. Further-
more, it is likely that the optimisers that do best on one problem are not likely

114 M. A. Lones

Fig. 4. Trajectories of other evolved optimisers. One example is shown for each com-
bination of problem (top to bottom: F1, F9, F12, F13, F14) and population size (left to
right: 1, 5, 25, 50). See caption of Fig. 2 for more information.

to be the best in terms of generality. Hence, in practice there is likely to be a
benefit to looking at the best optimisers from the other 245 runs depicted in
Fig. 1. Figure 4 gives a snapshot of these, showing one example for each combi-
nation of training problem and optimiser population size. These illustrate some

Optimising Optimisers with Push GP 115

of the broad diversity seen amongst the solutions. Many of these trajectories
look nothing like conventional optimisers, so it is likely that interesting ideas
of how to do optimisation could be gained by looking more closely at them.
Another interesting direction for future work would be to consider ensembles
of optimisers. There are many potential ways of doing this. For example, early
results suggest that it may be advantageous, in terms of generality, to form a
heterogenous population-based optimiser by combining the best programs from
multiple runs.

5 Conclusions

In recent years, there has been a lot of criticism of the ad hoc design of new
optimisers through mimicry of natural phenomena. Despite early success with
evolutionary algorithms and particle swarm optimisation, this trend has increas-
ingly resulted in optimisers that are technically novel, but which differ in minor
and often arbitrary ways from existing optimisers. If we are to create new opti-
misation algorithms (and the no free lunch theorem [22] suggests a need for
diverse optimisers), then perhaps it is better to do this in a more systematic,
objective and automated manner. This paper contributes towards this direction
of research by investigating the utility of Push GP for exploring the space of
optimisers. The results show that Push GP can both discover and express opti-
misation behaviours that are effective, complex and diverse. Encouragingly, the
evolved optimisers scale to problems they did not see during training, and often
out-perform general purpose optimisers on these previously unseen problems.
The behavioural analysis shows that the evolved optimisers use a diverse range
of metaheuristic strategies to explore optimisation landscapes, using behaviours
that differ significantly from existing local and population-based optimisers. Fur-
thermore, these are only the tip of the iceberg; the evolved optimiser populations
appear to contain broad behavioural diversity, and there are many potential ways
of combining diverse optimisers to create ensembles.

References

1. Andrychowicz, M., et al.: Learning to learn by gradient descent by gradient descent.
In: Advances in Neural Information Processing Systems (2016)

2. Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing popu-
lation size. In: Proceedings of the IEEE Congress on Evolutionary Computation,
IEEE CEC 2005, vol. 2, pp. 1769–1776. IEEE (2005)

3. Bogdanova, A., Junior, J.P., Aranha, C.: Franken-swarm: grammatical evolution
for the automatic generation of swarm-like meta-heuristics. In: Proceedings of the
Genetic and Evolutionary Computation Conference Companion, GECCO 2019,
pp. 411–412. ACM (2019)

4. Edmonds, B.: Meta-genetic programming: Co-evolving the operators of variation.
Technical report CPM Report 98–32, Manchester Metropolitan University (1998)

116 M. A. Lones

5. Goldman, B.W., Tauritz, D.R.: Self-configuring crossover. In: Proceedings of the
Genetic and Evolutionary Computation Conference Companion, GECCO 2011,
pp. 575–582. ACM (2011)

6. Kantschik, W., Dittrich, P., Brameier, M., Banzhaf, W.: Meta-Evolution in Graph
GP. In: Poli, R., Nordin, P., Langdon, W.B., Fogarty, T.C. (eds.) EuroGP 1999.
LNCS, vol. 1598, pp. 15–28. Springer, Heidelberg (1999). https://doi.org/10.1007/
3-540-48885-5 2

7. Langdon, W.B.: Genetic Programming And Data Structures: Genetic Program-
ming + Data Structures = Automatic Programming!. Springer, New York (2012).
https://doi.org/10.1007/978-1-4615-5731-9

8. Lones, M.A.: Instruction-level design of local optimisers using push GP. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference Companion,
GECCO 2019, pp. 1487–1494. ACM (2019)

9. Lones, M.A.: Mitigating metaphors: a comprehensible guide to recent nature-
inspired algorithms. SN Comput. Sci. 1(1), 49 (2020)

10. Martin, M.A., Tauritz, D.R.: Evolving black-box search algorithms employing
genetic programming. In: Proceedings of the Genetic and Evolutionary Compu-
tation Conference Companion, GECCO 2013, pp. 1497–1504. ACM (2013)

11. Metz, L., Maheswaranathan, N., Nixon, J., Freeman, D., Sohl-dickstein, J.: Learned
optimizers that outperform SGD on wall-clock and test loss. In: Proceedings of the
2nd Workshop on Meta-Learning. MetaLearn 2018 (2018)

12. Oltean, M.: Evolving evolutionary algorithms using linear genetic programming.
Evol. Comput. 13(3), 387–410 (2005)

13. Richter, S.N., Tauritz, D.R.: The automated design of probabilistic selection meth-
ods for evolutionary algorithms. In: Proceedings of the Genetic and Evolutionary
Computation Conference Companion, GECCO 2018, pp. 1545–1552. ACM (2018)

14. Ronkkonen, J., Kukkonen, S., Price, K.V.: Real-parameter optimization with dif-
ferential evolution. In: Proceedings of the IEEE Congress on Evolutionary Com-
putation, IEEE CEC 2005, vol. 1, pp. 506–513. IEEE (2005)

15. Ryser-Welch, P., Miller, J.F., Swan, J., Trefzer, M.A.: Iterative cartesian genetic
programming: creating general algorithms for solving travelling salesman problems.
In: Heywood, M.I., McDermott, J., Castelli, M., Costa, E., Sim, K. (eds.) EuroGP
2016. LNCS, vol. 9594, pp. 294–310. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-30668-1 19

16. Sörensen, K.: Metaheuristics–the metaphor exposed. Int. Trans. Oper. Res. 22(1),
3–18 (2015)

17. Spector, L.: Autoconstructive evolution: push, pushGP, and pushpop. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference, GECCO 2019, vol.
137 (2001)

18. Spector, L., Perry, C., Klein, J., Keijzer, M.: Push 3.0 programming language
description. Technical report, HC-CSTR-2004-02, School of Cognitive Science,
Hampshire College (2004)

19. Spector, L., Robinson, A.: Genetic programming and autoconstructive evolution
with the push programming language. Genet. Program Evolvable Mach. 3(1), 7–40
(2002)

20. Suganthan, P.N., et al.: Problem definitions and evaluation criteria for the CEC
2005 special session on real-parameter optimization, KanGAL report, 2005005
(2005)

21. Wichrowska, O., et al.: Learned optimizers that scale and generalize. In: Proceed-
ings of the 34th International Conference on Machine Learning-Volume 70, ICML
2017, pp. 3751–3760 (2017)

https://doi.org/10.1007/3-540-48885-5_2
https://doi.org/10.1007/3-540-48885-5_2
https://doi.org/10.1007/978-1-4615-5731-9
https://doi.org/10.1007/978-3-319-30668-1_19
https://doi.org/10.1007/978-3-319-30668-1_19

Optimising Optimisers with Push GP 117

22. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Trans. Evol. Comput. 1(1), 67–82 (1997)

23. Woodward, J.R., Swan, J.: The automatic generation of mutation operators for
genetic algorithms. In: Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO 2012, pp. 67–74. ACM (2012)

An Evolutionary View on Reversible
Shift-Invariant Transformations

Luca Mariot1(B), Stjepan Picek1, Domagoj Jakobovic2, and Alberto Leporati3

1 Cyber Security Research Group, Delft University of Technology,
Mekelweg 2, Delft, The Netherlands
{L.Mariot,S.Picek}@tudelft.nl

2 Faculty of Electrical Engineering and Computing, University of Zagreb,
Unska 3, Zagreb, Croatia

domagoj.jakobovic@fer.hr
3 DISCo, Università degli Studi di Milano-Bicocca,

Viale Sarca 336/14, 20126 Milano, Italy
alberto.leporati@unimib.it

Abstract. We consider the problem of evolving a particular kind of
shift-invariant transformation – namely, Reversible Cellular Automata
(RCA) defined by conserved landscape rules – using GA and GP. To this
end, we employ three different optimization strategies: a single-objective
approach carried out with GA and GP where only the reversibility con-
straint of marker CA is considered, a multi-objective approach based
on GP where both reversibility and the Hamming weight are taken into
account, and a lexicographic approach where GP first optimizes only the
reversibility property until a conserved landscape rule is obtained, and
then maximizes the Hamming weight while retaining reversibility. The
results are discussed in the context of three different research questions
stemming from exhaustive search experiments on conserved landscape
CA, which concern (1) the difficulty of the associated optimization prob-
lem for GA and GP, (2) the utility of conserved landscape CA in the
domain of cryptography and reversible computing, and (3) the relation-
ship between the reversibility property and the Hamming weight.

Keywords: Shift-invariant transformations · Cellular automata ·
Reversibility · Genetic Programming · Genetic Algorithms

1 Introduction

The property of shift-invariance plays an important role in studying and mod-
eling several types of discrete dynamical systems. In particular, any translation
of the input state results in the same translation of the output state in a system
governed by a shift-invariant transformation. When the state of the system is
described by a finite array, shift-invariant transformations are cellular automata
(CA), i.e., functions defined by a local update rule which is uniformly applied at

c© Springer Nature Switzerland AG 2020
T. Hu et al. (Eds.): EuroGP 2020, LNCS 12101, pp. 118–134, 2020.
https://doi.org/10.1007/978-3-030-44094-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44094-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-44094-7_8

An Evolutionary View on Reversible Shift-Invariant Transformations 119

all sites of the array. Due to their simplicity and versatility, CA have been studied
as models for simulating a wide variety of dynamical systems (see e.g. [1]).

Reversible shift-invariant transformations, and in particular Reversible CA
(RCA) have the additional characteristic of preserving information. Thus, the
dynamics of an RCA can be reversed backward in time starting from any state,
and the inverse mapping is itself a CA. This makes RCA especially interesting for
the design of energy-efficient computing devices since as stated by Landauer’s
principle [2] any irreversible logical operation implemented in hardware leads
to the dissipation of heat, hence posing a physical lower bound on the minia-
turization of devices based on irreversible gates. Another domain of interest
is cryptography, where RCA can be used to design encryption and decryption
algorithms [3].

Despite the extensive body of literature about RCA, up to now only a few
classes of reversible CA are known (see [4] for a concise survey). Moreover,
although such RCA are characterized in terms of relatively simple combinato-
rial definitions, there are no straightforward ways to construct them by taking
into account further criteria that are of interest for practical applications. In
this regard, Evolutionary Algorithms (EAs) represent an interesting method to
investigate known RCA classes concerning these additional design criteria, since
exhaustively searching for all possible RCA becomes unfeasible for large local
rule sizes. To the best of our knowledge, this research method has not been pur-
sued before, although some authors employed EA to evolve CA featuring certain
properties other than reversibility [5,6].

The aim of this paper is to start the investigation of RCA by means of Genetic
Algorithms (GA) and Genetic Programming (GP), focusing in particular on the
class of reversible marker CA. There, the local update rule flips the state of a
cell if its neighbors take on a set of patterns (or landscapes), which are conserved
by the resulting shift-invariant transformation [7]. The motivation of our goal is
twofold. First, the local rules of marker CA have a simple description through
their generating functions, which leads to a natural formulation of the optimiza-
tion objective for the reversibility property by minimizing the compatibility of
its flipping landscapes. Second, the Hamming weight of a generating function
in a marker CA is a good indicator of its nonlinearity, a fundamental property
in cryptography, as well as of its dynamical behavior, which is relevant in the
design of reversible computing devices. Consequently, maximizing the Hamming
weight of the generating function can be considered as a further optimization
objective in addition to reversibility.

After defining the genotype encodings for GA and GP to represent the candi-
date marker CA and the fitness function for reversibility, we set up three different
research questions which consider the difficulty of the optimization problem for
GA and GP, the utility of reversible marker CA for applications, and the rela-
tionship between reversibility and Hamming weight. We address this questions
by organizing our experiments in three phases. In the first phase, we adopt
a single-objective approach where only the reversibility of marker CA is opti-
mized. In particular, our results show that both GA and GP always manage to

120 L. Mariot et al.

generate reversible marker CA over all considered problem instances, although
with different performances. In the second phase, we consider a multi-objective
(MO) approach with GP, where we optimize both the reversibility and the Ham-
ming weight of marker CA. The Pareto fronts approximated by our MOGP algo-
rithm clearly show that there is a trade-off between these two properties: the
higher is the Hamming weight of a generating function, the lower will be the
reversibility of the resulting marker CA. Finally, in the third phase, we use a
lexicographic optimization strategy, where we first use GP to optimize only the
reversibility property, and then maximize the Hamming weight when a reversible
solution is found. With this approach, we manage to obtain a better coverage of
reversible marker CA in terms of the Hamming weights.

The rest of this paper is organized as follows. Section 2 covers the necessary
background notions about shift-invariant transformations and reversible CA.
Section 3 defines the optimization problem for reversible marker CA with con-
served landscapes, discusses the genotype encodings for GA and GP, and defines
the fitness function for the reversibility property. Section 4 briefly reviews the
existing literature about the use of evolutionary algorithms to design CA for
specific purposes, such as in cryptography. Section 5 presents and discusses the
results of our experiments organized into three phases. Finally, Sect. 6 sums up
the main findings of the paper and sketches some directions for future work.

2 Background

2.1 Shift-Invariant Transformations and Cellular Automata

Let A be a finite alphabet and AZ be the full-shift space of bi-infinite strings
over A. In the field of symbolic dynamics, shift-invariant transformations are
those mappings F : AZ → AZ that commute with the shift operator. Cellular
Automata (CA) are a particular class of shift-invariant transformations whose
output is determined by the uniform application of a single local update rule over
all components (or cells) of a bi-infinite string. In this work, we focus only on
shift-invariant transformations over finite arrays, which coincide with finite CA;
thus, in what follows we will use the term CA and shift-invariant transformation
interchangeably.

Various models of CA can be defined depending on the dimension of the
lattice, the alphabet of the cells, and the boundary conditions. In this work, we
focus on one-dimensional periodic Boolean CA, defined as follows:

Definition 1. A one-dimensional periodic Boolean CA (for short, a PBCA) of
length n, diameter d, offset ω, and local rule f : {0, 1}d → {0, 1} is defined by
a vectorial function F : {0, 1}n → {0, 1}n where for all vectors x ∈ {0, 1}n and
0 ≤ i ≤ n − 1 the i-th component of the output is defined as:

F (x)i = f(x[i−ω,i−ω+d−1]) = f(xi−ω, xi−ω+1, · · · , xi−1, xi, xi+1, · · · , xi−ω+d−1)
(1)

with all indices being computed modulo n. Function F is also called the global
rule of the CA.

An Evolutionary View on Reversible Shift-Invariant Transformations 121

1 0 0 1 0 0

⇓ F

10 0 1 1 1 0 1

Fig. 1. Example of CA based on rule 150.

In other words, a PBCA is composed of a one-dimensional vector of n cells that
can be either in state 0 or 1, where each cell simultaneously updates its state
by applying the local rule f on the neighborhood formed by itself, the ω cells
on its left and the d − 1 − ω cells on its right. Here, “periodic” refers to the fact
that all indices are computed modulo n: in this way, the leftmost ω cells and
the rightmost d−1−ω ones respectively have enough left and right neighboring
cells in order to apply the local rule. In particular, the state vector of a PBCA
can be seen as a ring, with the first cell following the last one. In the following,
we will refer to PBCA simply as CA, since the former is the main CA model
considered in this work.

Since the cells of a CA take binary values, the local rule can be seen as a
Boolean function f : Fd

2 → F2 of d variables where F2 = {0, 1} is the finite field
of two elements, and thus it can be represented by its truth table, which specifies
for each of the possible 2d input vectors x ∈ F

d
2 the corresponding output value

f(x) ∈ F2. Assuming that the input vectors of Fd
2 are sorted lexicographically, one

can encode the truth table as a single binary string Ωf ∈ F
2d

2 , which is basically
the output column of the table. In the CA literature, the decimal encoding of
Ωf is also called the Wolfram code of the local rule f [8]. Figure 1 reports an
example of CA with n = 6 cells, diameter d = 3, offset ω = 1, and local rule
defined as f(xi−1, xi, xi+1) = xi−1 ⊕ xi ⊕ xi+1, which corresponds to Wolfram
code 150. Hence, each cell looks at itself and its left and right neighbors in order
to compute its next state through rule 150. The two cells shaded in grey in Fig. 1
represent “copies” respectively of the first and the last cell, in order to better
visualize the neighborhoods of the cells at the boundaries.

2.2 Reversible CA

Reversibility is a particular property featured by certain dynamical systems
where the orbits are cycles without transient parts or pre-periods. In partic-
ular, the orbits of a reversible system can also be run backward in time, since
each state has exactly one predecessor, and the “inverse system” is analogous to
the original one. In the CA context, this means that the global rule of a reversible
CA must be bijective (to ensure that each global state of the cellular array has
exactly one predecessor) and its inverse must also be a CA, that is, F−1 must
be defined by a local rule.

122 L. Mariot et al.

Hedlund [9] showed that an infinite CA is reversible if and only if its global
rule is bijective. On the other hand, the relationship between bijectivity and
reversibility is more complicated in the case of finite CA. In particular, if we
know that a local rule f induces a bijective global rule on a CA of a certain
length n ∈ N, then the inverse global rule is not necessarily defined by a local
rule, nor it is the case, in general, that the global rule remains bijective for
different lengths of the CA using the same local rule.

Local rules that generate bijective global rules only for certain lengths n ∈
N of the CA array and whose inverses cannot be described by local rules are
also called globally invertible. An example is the χ transformation used in the
Keccak sponge construction for hash functions [10], which corresponds to a CA
of length n = 5 and it is defined by the local rule of diameter d = 3 with Wolfram
code 210. The offset of this CA is ω = 0, which means that each cell applies rule
210 over itself and the two cells to its right to update its state. Daemen [11]
showed that rule 210 is globally invertible, since it induces a bijective global rule
only for odd CA lengths.

On the other hand, a local rule that induces a bijective global function for all
finite lengths n ∈ N of the CA array is called locally invertible. In this case, the
inverse mapping is also defined by a local rule, possibly of a different diameter,
and thus the resulting CA is reversible. In what follows, we will consider the
search of locally invertible rules as an optimization problem, focusing on the
class of marker CA.

2.3 Marker CA

A marker CA (or complementing landscape CA [7]) is defined by a local rule that
always complements the bit of the cell whose state is being updated whenever
the cells in its neighborhood form a particular pattern (or marker, hence the
name). Otherwise, the cell keeps its current state. The set of patterns defining
a local rule of a marker CA can be conveniently formalized through the concept
of landscape, which we define below:

Definition 2. Let d, ω ∈ N with ω < d. A landscape of width d and center ω is
a string L = l0l1 · · · lω−1 � lω+1 · · · ld−1 where li ∈ {0, 1,−} for all i �= ω.

The � symbol in a landscape L is used to indicate the origin of the neighborhood
in the local rule (that is, the cell whose state is being updated), and thus it
occurs at position ω. The − symbol represents a “don’t care”, meaning that
the corresponding cell can be either in state 0 or 1. Hence, landscapes can be
considered as a restricted form of regular expressions over the binary alphabet
{0, 1}, where the don’t care symbol stands for the regular expression (0+1) (i.e.,
both 0 and 1 match).

A local rule of a marker CA can be described by one or more landscapes, all
having the same width d and center ω. In particular, in the multiple landscape
case, a cell is flipped if its neighborhood partakes on any of the patterns included
in the union

⋃k
i=1 Li of the landscapes L1, · · · , Lk that define the locale rule.

Observe that it is possible to define a partial order ≤C over the set of landscapes.

An Evolutionary View on Reversible Shift-Invariant Transformations 123

Namely, given two landscapes L = l0 · · · ld−1 and M = m0 · · · md−1 with the
same width d and center ω, we define

L ≤C M ⇔ li = mi or li ∈ {0, 1} and mi = − (2)

for all 0 ≤ i ≤ d − 1. Intuitively, this partial order describes the “generality” of
a landscape: the more don’t care symbols it has, the more patterns it contains.
The extreme cases are the atomic landscapes that do not contain any don’t care
symbol, which describe only single patterns, and the landscape composed only
of don’t cares, which includes all possible patterns. In what follows, we will refer
to ≤C as the compatibility partial order relation. In particular, we will call two
landscapes L1, L2 with the same width d and center ω compatible if L1 ≤C L2

or L2 ≤C L1. Otherwise, if L1 and L2 are not comparable with respect to the
partial order relation ≤C , we will say that they are incompatible.

The compatibility order relation can be used to characterize a subset of
reversible marker CA, namely those of the conserved landscape type. In such
CA, a cell that is in a particular landscape L defined by the local rule will still
be in the same landscape upon application of the global rule. This property can
be formalized by requiring that the cells in the neighborhood are in landscapes
that are incompatible with L, as shown in the following result proved in [7]:

Lemma 1. Let f : Fd
2 → F2 be a local rule of a marker CA defined by a set of

k landscapes L1, · · · , Lk of width d and center ω. Further, for all i ∈ {1, · · · , k}
let Mi,0, · · · ,Mi,ω−1,Mi,ω+1, · · · ,Mi,d−1 be the set of d − 1 landscapes associ-
ated to the neighborhood of Li. Then, if Mi,j is incompatible with all landscapes
L1, · · · , Lk for all i ∈ {1, · · · , k} and j ∈ {0, · · · , ω − 1, ω + 1, · · · , d − 1}, rule f
induces a locally invertible marker CA.

When the conditions of Lemma 1 are fulfilled, we also say that f is a conserved
landscape rule. As noted in [7], a conserved landscape local rule induces an
involution, i.e., the global rule of the resulting marker CA equals its own inverse.
This is due to the fact that any cell being in one of the marker landscapes will still
be in the same landscape after applying the local rule. After a further application
of the local rule, the cell will go back to its initial state.

Hence, conserved landscape rules define a particular type of reversible CA,
since all cycles have length 2. Daemen [11] argued that such CA can be useful
in those cryptographic applications where both the encryption and decryption
functions must be implemented in hardware. As noted in [7], one can relax the
conditions of Lemma 1 by allowing the landscapes of the local rule to partially
overlap one another. In this case, a cell that is in a landscape defined by the
local rule will be in any of the other landscapes defined by the local rule after
applying the global rule. As a consequence, the resulting marker CA can exhibit
more complex behaviors, with longer cycle lengths.

124 L. Mariot et al.

�0 1 0

�− − 1

�− 0 −

�1 − −

xi

xi−1

xi+1

xi+2

(a) Landscape tabulation for rule 0 � 10.

0 1 1 0 0 1

0 0 1 0 1 1

(b) Example of cycle of length 2.

Fig. 2. A locally invertible CA defined by the single landscape 0 � 10.

To better illustrate the idea, we conclude this section by showing an example
of a single conserved landscape rule of diameter d = 4, originally discovered by
Patt [12]:

Example 1. Let d = 4 and ω = 1, and let f : F4
2 → F2 be the local rule defined

by the single landscape L = 0 � 10. The tabulation depicted in Fig. 2a shows
that all three landscapes of the neighboring cells are incompatible with L. In
particular, when xi is in landscape L, then:

– Cell xi−1 is in landscape −�−1, which is incompatible with 0�10 since there
is a mismatch in position 3.

– Cell xi+1 is in landscape −�0−, which is incompatible with 0�10 since there
is a mismatch in position 2.

– Cell xi+2 is in landscape 1�−−, which is incompatible with 0�10 since there
is a mismatch in position 0.

Figure 2b displays an example of cycle starting from the initial state 011001. The
two cells shaded in grey are in the landscape 0 � 10.

3 Optimizing Landscapes

3.1 Genotype Representation for Marker CA

Lemma 1 states that a conserved landscape CA can be constructed by search-
ing for a set of landscapes L1, · · · , Lk such that their associated neighborhood
landscapes are incompatible with them. To perform such a search through Evo-
lutionary Algorithms such as GA and GP, the first question is how to encode
the genotype of the candidate solutions. In particular, since GA usually works
on a bitstring encoding of the candidate solutions while GP relies on a tree rep-
resentation, directly using the landscape specification of a marker CA rule does
not seem a straightforward choice for encoding the genotype.

Let L1, · · · , Lk be a set of landscapes of diameter d and center ω defining
a local rule f : F

d
2 → F2. Additionally, let L =

⋃k
i=1 Li be the union of the

landscapes, and define ν = xi−ω · · · xi−1xi+1 · · · xi+d−1−ω be the vector of d − 1

An Evolutionary View on Reversible Shift-Invariant Transformations 125

variables describing the states of the cells in the neighborhood of the cell at
position i. Consider now the generating function g : Fd−1

2 → F2 that outputs 1
if and only if the pattern formed by inserting the origin symbol � in vector ν at
position ω belongs to L. Then, the local rule of the marker CA can be defined as:

f(xi−ω · · · xi−1xixi+1 · · · xi+d−1−ω) = xi ⊕ g(xi−ω · · · xi−1xi+1 · · · xi+d−1−ω)
(3)

for all neighborhood configuration xi−ω · · · xi−1xixi+1 · · · xi+d−1−ω ∈ F
d
2. Hence,

the algebraic expression of the local rule of a marker CA can be expressed as
the XOR of the cell in the origin with the generating function g computed on
the surrounding cells. This is due to the fact that g evaluates to 1 if and only if
the neighborhood takes on any of the landscapes in L.

Consequently, we can reduce the representation of the local rule f of a marker
CA to its generating function g. In particular, for GA we take the 2d−1-bit string
of the truth table Ωg as encoding for the candidate solution. For GP, we use
a tree where the terminal nodes represent the input variables of g, while the
internal nodes are Boolean operators combining the values received from their
child nodes and propagating their output to their parent node. The output of
the root node will be the output of the whole generating function g.

3.2 Fitness Functions

We can now define the fitness function used to drive the search of conserved land-
scape CA rules. Suppose that we have the truth table of a generating function g,
and let supp(g) = {x ∈ F

d−1
2 : g(x) �= 0} be the support of g, i.e., the set of input

vectors over which g evaluates to 1. By construction, the elements of supp(g)
coincide with all patterns that the cells surrounding the origin must feature to
flip the state of the central cell. To obtain the list of atomic landscapes, it just
suffices to insert the origin symbol � in position ω to each vector of the support.
The set of atomic landscapes obtained from the support can be used to check
if a rule is of the conserved landscape type or not. In fact, it is not difficult to
see that two landscapes with don’t care symbols in them are incompatible if and
only if all the atomic landscapes that they describe are incompatible between
themselves. This means that we can directly use the support of the generating
function to count the number of pairs of landscapes that are compatible.

Given that we want to minimize such number to get a conserved landscape
rule, we define the following fitness function. Let g : Fd−1

2 → F2 be a generating
function of a marker CA rule f : Fd

2 → F2 of diameter d and offset ω, and let
supp(g) be its support. Further, let L1, · · · , Lk be the set of atomic landscapes
obtained by adding the origin symbol � in position ω to each vector in supp(g),
and for each i ∈ {1, · · · , k} let Mi,0, · · · ,Mi,ω−1,Mi,ω+1, · · · ,Mi,d−1 be the set
of neighborhood landscapes associated to Li obtained through the tabulation
procedure. Then, the reversibility fitness value of g is defined as:

fit1(g) =
∑

i,t∈[k],j∈[d−1]ω

comp(Mi,j , Lt), (4)

126 L. Mariot et al.

where [k] = {1, · · · , k}, [d − 1]ω = {0, · · · , ω − 1, ω + 1, · · · , d − 1}, and the
function comp(·, ·) returns 1 if the two landscapes passed as arguments are com-
patible, and 0 otherwise. Hence, the fitness function loops over all neighborhood
landscapes Mi,j induced by each atomic landscape Li, compares each of these
neighborhood landscapes with all atomic landscapes L1, · · · , Lk through the
function comp(·, ·), and adds 1 whenever a compatible pair is found. Therefore,
the fitness function fit1 measures the degree of compatibility of a set of atomic
landscapes induced by the support of a generating function g. Consequently, the
optimization objective is to minimize fit1, with fit1(g) = 0 corresponding to an
optimal solution where all neighborhood landscapes are incompatible with the
atomic landscapes, and thus the latter define a conserved landscape rule.

A good indicator of the complexity of the dynamical behavior of a marker
CA is the Hamming weight of its generating function g, i.e., the cardinality
of its support. This can be used both as a utility measure of a marker CA in
cryptography (where it is related to the nonlinearity of the CA) and in designing
reversible computing circuits. Given a generating function g, we thus define a
second optimization objective by maximizing the following fitness function:

fit2(g) = |supp(g)|. (5)

4 Related Work

As already stated, this work is the first to use Evolutionary Algorithms to evolve
reversible shift-invariant transformations. As such, there are no related works on
the topic. Still, we mention several characteristic works where EAs are used to
evolve shift-invariant transformations or related objects.

Bäck and Breukelaar used genetic algorithms to evolve behavior in CA where
the authors explored different neighborhood shapes [6]. Sipper and Tomassini [13]
proposed a cellular programming algorithm to co-evolve the rule map of non-
uniform CA for designing random number generators. For a somewhat outdated,
but very detailed overview of works using GA to evolve CA, we refer readers
to [5]. Picek et al. demonstrated that GP can be used to evolve CA rules that
then produce S-boxes with good cryptographic properties [14]. Next, Picek et al.
used the same technique to further demonstrate that the S-boxes obtained from
the CA rules have good implementation properties [15]. Mariot et al. conducted
a more detailed analysis of the S-boxes based on CA where they also proved what
are the best possible values for relevant cryptographic properties if one uses CA
rules of a certain size [3]. There, the authors used GP to experimentally validate
their findings but also to reverse engineer a CA rule from a given S-box. Mariot et
al. used EA to construct orthogonal Latin squares based on CA [16]. Finally, the
evolution of CA rules for cryptographic purposes is connected with the evolution
of Boolean functions with good cryptographic properties. There, there are several
works considering various evolutionary approaches, see for example [17,18].

An Evolutionary View on Reversible Shift-Invariant Transformations 127

5 Experiments

5.1 Research Questions and Experimental Setting

As noted in Sect. 3.1, the local rule of a marker CA of diameter d can be identi-
fied with its generating function g of d − 1 variables which is computed on the
neighborhood cells surrounding the origin, since the state of the central cell is
simply XORed with the result of g. Given a diameter d ∈ N, this means that
we can define the phenotype space as the set P(d) = {g : Fd−1

2 → F2} of all
Boolean functions of d−1 variables. The genotype space, on the other hand, will
correspond to the set of all binary strings of length 2d−1 specifying the truth
tables Ωg of the generating functions in P(d), while for GP it will be the space
of all Boolean trees whose terminals represent the d − 1 input variables and the
internal nodes represent Boolean operators. In what follows, we will assume that
the offset ω is always fixed to �(d − 1)/2	, i.e., when d is odd the neighborhood
origin will be the middle cell, while for d even it will be the left middle cell. This
does not hinder the scope of our investigation since as shown in [7] reversible
marker rules in different offsets are symmetric under rotations and reflection.

Note that, since the number of Boolean functions of d − 1 variables is 22
d−1

,
the phenotype space P(d) can be exhaustively searched for reversible marker
CA rules up to diameter d = 6, since there are at most 232 ≈ 4.3 · 109 gen-
erating functions to check for the conserved landscape property. As far as we
are aware, an exhaustive search of reversible marker CA rules has been carried
out only by Patt [12], who considered diameters up to d = 4. For completeness,
Table 1 reports the numbers of conserved-landscape rules we found by exhaus-
tively searching the sets of generating functions up to d = 6, along with the
length of the truth table (2d−1), the size of the phenotype space (#P(d)), and
the observed Hamming weights. Recall that the Hamming weight of the gen-
erating function corresponds to the number of atomic landscapes over which a
cell flips its state. Further, we excluded from the count the identity rule which
simply copies the state of the central cell, since it is trivially reversible for any
diameter. As a general remark, one can see from Table 1 that the number of
conserved landscape rules is much smaller than the size of the whole generating
function set. Moreover, the number of observed Hamming weights is quite lim-
ited, since for the largest considered instance of diameter d = 6 we only found
reversible rules defined by at most 3 landscapes, which are thus not very useful for

Table 1. Numbers of conserved landscape rules found by exhaustive search.

d 2d−1 #P(d) #REV Weights

3 4 16 0 −
4 8 256 1 1

5 16 65 536 10 1, 2

6 32 4.3 · 109 46 1, 2, 3

128 L. Mariot et al.

cryptographic and reversible computing purposes. Nevertheless, these findings
prompt us with three interesting research questions:

– RQ1: Does the limited number of conserved landscape rules with respect to
the search space size imply a difficulty for evolutionary algorithms to find
them?

– RQ2: Do there exist conserved landscapes rules of a larger diameter which
are useful for cryptographic and reversible computing applications, i.e., having
larger Hamming weights with respect to the size of the generating function
truth table?

– RQ3: Is there a trade-off between the reversibility of a marker CA rule (as
measured by the fitness function fit1 defined in Sect. 3.2) and its Hamming
weight?

We employed Genetic Algorithms (GA) and Genetic Programming (GP) to
investigate the three questions above, by optimizing the fitness functions fit1
and fit2. The reason for comparing GA and GP was to assess whether the rep-
resentation of the solutions as bitstrings or trees affected the convergence to an
optimal solution on this particular problem. We considered the spaces of marker
CA rules of diameter between d = 8 and d = 13 as problem instances for our
experiments, using the d = 7 case for tuning our evolutionary algorithms. Both
our GA and GP employed a steady-state tournament selection operator, which
randomly samples three individuals from the populations. Next, the crossover
is applied to the best two individuals of the tournament to produce a child
candidate solution, which is then mutated and inserted into the population by
replacing the worst individual of the tournament. For GA, we employed one-
point, two-point, and uniform crossover operators (selected at random at each
iteration), while we adopted a classic bit-flip operator for mutation. In the case
of GP, we used a function set for the Boolean trees composed of the binary
operators AND, OR, XOR, XNOR, and the unary operator NOT. Addition-
ally, we included the ternary function IF, which returns the second argument if
the first one is true, and the third one otherwise. Although this function set is
redundant, since any Boolean function can be formulated with a smaller set, the
choice of these elements is based on our previous experience evolving Boolean
expressions with GP that define CA [3]. To avoid bloat, we observed through
preliminary experiments that setting the maximum tree depth equal to the num-
ber of variables of the generating functions (d−1) was a good choice in terms of
GP performance. Further, for crossover in GP, we employed five different oper-
ators, namely simple subtree crossover, uniform crossover, size fair, one-point,
and context preserving crossover, again selected at random at each iteration.
Analogously to GA, for mutation we adopted a single operator, namely sub-
tree mutation. Concerning the population size and the mutation probability, we
performed a tuning phase over the d = 7 problem instance, which resulted in
population sizes of 25 and 500 individuals for GA and GP, respectively, and a
mutation probability of 0.8 and 0.5 for GA and GP. Similarly to previous works
on related optimization problems [16,18], we set a budget of 500 000 fitness

An Evolutionary View on Reversible Shift-Invariant Transformations 129

evaluations for both GA and GP, and we performed 30 runs for each considered
problem instance.

5.2 Single-Objective Approach

As a first attempt to investigate the research questions stated in the previ-
ous section, we employed a single-objective approach where GA and GP only
minimized the reversibility fitness function fit1 as an optimization criterion,
analyzing the Hamming weights of the best solutions in a second moment. The
motivation was to address research question RQ1, i.e., investigate how difficult
it is for GA and GP to optimize fit1, especially considering the scarcity of
conserved landscape rules assessed by our exhaustive search experiments.

The first remarkable finding is that GA and GP achieved a full success rate
over all considered problem instances, i.e., both algorithms always converged to
a reversible rule in all 30 experimental runs for each diameter between d = 8 and
d = 13. In particular, using the fitness function fit1 as defined in Eq. (4), GP
always converged to the trivial solution 0, which corresponds to the identity rule.
For this reason, we slightly tweaked fit1 for our GP experiments by adding a
penalty factor that punishes a candidate solution having a null Hamming weight.
After this modification, GP again obtained a full success rate over all problem
instances, thus finding non-trivial conserved landscape rules. Interestingly, this
finding is analogous to what was observed in [16] for the optimization of orthog-
onal Latin squares based on cellular automata, where GP always converged to
“simple” solutions – which in that context were represented by linear local rules
– when optimizing only the orthogonality constraint.

The remarks above seem to answer question RQ1 in negative: the limited
number of conserved landscape rules as compared to the size of the search space
does not seem to pose a problem for GA and GP to converge to an optimal
solution. However, the comparison shown in Fig. 3 on the number of fitness eval-
uations performed by GA and GP tells us a more precise story. As can be seen,
the number of fitness evaluations required by GA to find a reversible rule scales
exponentially with respect to the rule diameter (note that we adopted a logarith-
mic scale in Fig. 3 for the sake of comparison). In particular, the median number
of fitness evaluations performed by GA approximately doubles every time the
diameter increases by 1. On the contrary, GP features a much more stable and
slower growth in the number of fitness evaluations that are necessary for converg-
ing to an optimal solution. Further, this number is always smaller by at least one
order of magnitude than the number of GA fitness evaluations over all problem
instances. This observation indicates that GP is a better suited heuristic than
GA for this optimization problem, for which reason we employed only GP in our
subsequent experiments on multi-objective and lexicographic optimization. The
superiority of GP with respect to GA is also reflected in the Hamming weights of
the optimal solutions found by the two heuristics: although GA provides a better
coverage of distinct weights over all 30 experimental runs for each instance, the
maximum weight found by GP is always consistently greater than the maximum
achieved by GA. We refer the reader to Table 2 for a comparison of the Hamming
weights found by all optimization approaches.

130 L. Mariot et al.

Fig. 3. Comparison of fitness evaluations performed by GA and GP.

5.3 Multi-objective Approach

To investigate the interaction between the reversibility of a marker CA rule and
the Hamming weight of its generating function, we adopted a multi-objective
strategy as a second optimization approach. In particular, we considered only a
multi-objective version of GP (MOGP), since in the single-objective approach we
observed that GP outperformed GA in terms of fitness evaluations. The MOGP
approach used the well-known NSGA-II algorithm, where we minimized the
reversibility fitness value fit1 and maximized the Hamming weight as measured
by fit2. For each considered problem instance, we run the MOGP algorithm
with the same experimental parameters adopted for the single-objective setting
described in Sect. 5.1, and at the end of each run, we recorded all Pareto optimal
solutions in the population and added them to a list. Figure 4 plots the Pareto
front approximated by MOGP for the instance d = 8. The main observation one
can draw from the plot is that there is a clear trade-off between reversibility and
the Hamming weight, thereby providing an empirical answer to research question
RQ3: the closer a marker CA rule is to being of the conserved landscape type,
the lower the Hamming weight of its generating function must be. Incidentally,
the left tail of the Pareto front also provides some hints with respect to research
question RQ2. Indeed, there are only a few points aligned on the fit1 = 0 value,
all having small Hamming weights with respect to the truth table size of the
generating function (which for d = 8 equals 128). This finding seems to hinder
the applicability of conserved landscape rules in cryptography, and in particular
in the design of S-boxes based on CA [3], since a local rule with a low Hamming
weight will induce an S-box with low nonlinearity.

An Evolutionary View on Reversible Shift-Invariant Transformations 131

Fig. 4. Pareto front for d = 8.

5.4 Lexicographic Optimization

Our third experiment consisted of a lexicographic optimization approach, to
assess whether a better coverage of the Hamming weights of conserved landscape
rules could be obtained. In the first optimization stage, GP minimized only the
reversibility fitness value fit1. After obtaining a conserved landscape solution,
in the second stage GP maximized fitness fit2, logging each new solution that
was still reversible and with a higher Hamming weight.

Table 2 compares in terms of solutions diversity the four optimization
approaches adopted in our experiments – single-objective GA (SOGA) and GP
(SOGP), multi-objective GP (MOGP), and lexicographic GP (LEXGP). In par-
ticular, each entry of the table is a triplet of the form (UHW, MHW, USol)
where UHW denotes the number of distinct Hamming weights found, MHW
is the maximum Hamming weight observed, and USol is the number of dis-
tinct optimal solutions found. For single-objective GA and GP, we report only
the data of the best solutions found over all 30 experimental runs, while for
MOGP and lexicographic GP we consider the whole populations after finishing
the 30 runs. In particular, one can see that LEXGP is the method achieving
the best trade-off in terms of distinct weights coverage, maximum weight, and
uniqueness of solutions produced. SOGA is the heuristic that reaches the widest
diversity of distinct Hamming weights but its maximum weights are the lowest
among all four methods. SOGP, on the other hand, reaches higher maximum
weights than GA, but with a quite low variety of the Hamming weights. MOGP
further improves on the maximum weights and have similar coverage of dis-
tinct weights to SOGP, but the number of distinct solution is quite low (recall
that with MOGP we recorded all Pareto optimal solutions in the population

132 L. Mariot et al.

Table 2. Diversity of the solutions produced by all optimization methods.

d SOGA SOGP MOGP LEXGP

UHW MHW USol UHW MHW USol UHW MHW USol UHW MHW USol

8 5 6 30 4 8 27 4 10 24 5 10 47

9 6 7 30 4 16 29 2 20 22 8 20 60

10 7 11 30 3 16 30 4 32 48 6 28 65

11 9 15 30 3 32 29 6 56 40 6 56 64

12 11 23 30 4 64 30 4 72 29 7 80 71

13 12 29 30 2 64 29 4 128 50 7 160 73

over all runs). Finally, LEXGP is the one obtaining a good coverage of distinct
weights, although not as good as SOGA. This is compensated by the fact that
LEXGP achieved the highest maximum weights among all four methods (except
for the case d = 10 where it was outperformed by MOGP). Moreover, LEXGP
generated more distinct reversible solutions than MOGP.

6 Conclusions and Future Work

In this paper, we used GA and GP to study a particular class of reversible shift-
invariant transformations – namely CA defined by conserved landscape rules –
using three different optimization approaches. We now sum up the main findings
of our experiments and suggest some possible future developments in the context
of the three research questions that we posed.

Regarding the first research question, the results obtained with the single-
objective approach seems to indicate that evolutionary algorithms, and in par-
ticular GP, can find relatively easily conserved landscape CA rules, despite the
limited size of the optimal solutions set. Although this makes the associated
optimization problem unsuitable for benchmark purposes, it would be interest-
ing to investigate the performance difference between GA and GP, for example
by analyzing the fitness landscapes induced by fit1 on the two genotype spaces.

For the second research question, our findings show that the relevance of con-
served landscape CA for cryptography and reversible computing is quite limited
since their Hamming weights are too low concerning the truth table size of their
generating functions. Nevertheless, as remarked in Sect. 2.3, one can easily relax
the definition of conserved landscape rules by allowing partial overlapping of the
landscapes, and obtain a larger class of reversible CA with more complex behav-
iors. A possible idea worth exploring in this direction would be to adapt the
fitness function fit1 to allow for this partial overlapping, and use GP to investi-
gate the Hamming weights of the resulting reversible CA, in particular with the
lexicographic optimization method that proved to be the best performing one.

An Evolutionary View on Reversible Shift-Invariant Transformations 133

References

1. Chopard, B.: Cellular automata and lattice Boltzmann modeling of physical sys-
tems. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds.) Handbook of Natural Com-
puting, pp. 287–331. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
540-92910-9 9

2. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 5(3), 183–191 (1961)

3. Mariot, L., Picek, S., Leporati, A., Jakobovic, D.: Cellular automata based S-
boxes. Cryptogr. Commun. 11(1), 41–62 (2018). https://doi.org/10.1007/s12095-
018-0311-8

4. Kari, J.: Reversible cellular automata: from fundamental classical results to recent
developments. New Gener. Comput. 36(3), 145–172 (2018). https://doi.org/10.
1007/s00354-018-0034-6

5. Mitchell, M., Crutchfield, J.P., Das, R., et al.: Evolving cellular automata with
genetic algorithms: a review of recent work. In: Proceedings of the First Inter-
national Conference on Evolutionary Computation and Its Applications (EvCA
1996), vol. 8 (1996)

6. Bäck, T., Breukelaar, R.: Using genetic algorithms to evolve behavior in cellular
automata. In: Calude, C.S., Dinneen, M.J., Păun, G., Pérez-J́ımenez, M.J., Rozen-
berg, G. (eds.) UC 2005. LNCS, vol. 3699, pp. 1–10. Springer, Heidelberg (2005).
https://doi.org/10.1007/11560319 1

7. Toffoli, T., Margolus, N.H.: Invertible cellular automata: a review. Phys. D 45(1–
3), 229–253 (1990)

8. Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55(3),
601 (1983)

9. Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical
systems. Math. Syst. Theory 3(4), 320–375 (1969). https://doi.org/10.1007/
BF01691062

10. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak reference (2011)
11. Daemen, J.: Cipher and hash function design strategies based on linear and dif-

ferential cryptanalysis. Ph.D. thesis, Doctoral Dissertation, KU Leuven, March
1995

12. Patt, Y.: Injections of neighborhood size three and four on the set of configurations
from the infinite one-dimensional tessellation automata of two-state cells. Technical
report, Army Electronics Command Fort Monmouth, NJ (1972)

13. Sipper, M., Tomassini, M.: Co-evolving parallel random number generators. In:
Voigt, H.-M., Ebeling, W., Rechenberg, I., Schwefel, H.-P. (eds.) PPSN 1996.
LNCS, vol. 1141, pp. 950–959. Springer, Heidelberg (1996). https://doi.org/10.
1007/3-540-61723-X 1058

14. Picek, S., Mariot, L., Leporati, A., Jakobovic, D.: Evolving S-boxes based on cel-
lular automata with genetic programming. In: Proceedings of the Genetic and
Evolutionary Computation Conference Companion, GECCO 2017, pp. 251–252
(2017)

15. Picek, S., Mariot, L., Yang, B., Jakobovic, D., Mentens, N.: Design of S-boxes
defined with cellular automata rules. In: Proceedings of the Computing Frontiers
Conference, CF 2017, pp. 409–414 (2017)

16. Mariot, L., Picek, S., Jakobovic, D., Leporati, A.: Evolutionary algorithms for the
design of orthogonal latin squares based on cellular automata. In: Proceedings of
the Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 306–
313 (2017)

https://doi.org/10.1007/978-3-540-92910-9_9
https://doi.org/10.1007/978-3-540-92910-9_9
https://doi.org/10.1007/s12095-018-0311-8
https://doi.org/10.1007/s12095-018-0311-8
https://doi.org/10.1007/s00354-018-0034-6
https://doi.org/10.1007/s00354-018-0034-6
https://doi.org/10.1007/11560319_1
https://doi.org/10.1007/BF01691062
https://doi.org/10.1007/BF01691062
https://doi.org/10.1007/3-540-61723-X_1058
https://doi.org/10.1007/3-540-61723-X_1058

134 L. Mariot et al.

17. Picek, S., Carlet, C., Guilley, S., Miller, J.F., Jakobovic, D.: Evolutionary algo-
rithms for Boolean functions in diverse domains of cryptography. Evol. Comput.
24(4), 667–694 (2016)

18. Mariot, L., Jakobovic, D., Leporati, A., Picek, S.: Hyper-bent Boolean functions
and evolutionary algorithms. In: Sekanina, L., Hu, T., Lourenço, N., Richter, H.,
Garćıa-Sánchez, P. (eds.) EuroGP 2019. LNCS, vol. 11451, pp. 262–277. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-16670-0 17

https://doi.org/10.1007/978-3-030-16670-0_17

Benchmarking Manifold Learning
Methods on a Large Collection

of Datasets

Patryk Orzechowski1,2(B), Franciszek Magiera2, and Jason H. Moore1

1 Institute for Biomedical Informatics, University of Pennsylvania,
Philadelphia, PA 19104, USA

patryk.orzechowski@gmail.com
2 Department of Automatics, AGH University of Science and Technology,

al. Mickiewicza 30, 30-059 Krakow, Poland

Abstract. Manifold learning, a non-linear approach of dimensionality
reduction, assumes that the dimensionality of multiple datasets is artifi-
cially high and a reduced number of dimensions is sufficient to maintain
the information about the data. In this paper, a large scale comparison
of manifold learning techniques is performed for the task of classification.
We show the current standing of genetic programming (GP) for the task
of classification by comparing the classification results of two GP-based
manifold leaning methods: GP-Mal and ManiGP - an experimental man-
ifold learning technique proposed in this paper. We show that GP-based
methods can more effectively learn a manifold across a set of 155 different
problems and deliver more separable embeddings than many established
methods.

Keywords: Manifold learning · Genetic programming · Machine
learning · Dimensionality reduction · Benchmarking

1 Introduction

Dimensionality reduction has been a very important area of research over the
past few years because of its pivotal role in machine learning (ML) and related
fields. Feature extraction, which is determining the most informative and non-
redundant features derived from the original features, reduces the feature space
and allows multiple ML methods to be applied to increasingly large datasets. It
also allows to create human interpretable visualization of the data in two or three
dimensional space and to better understand underlying associations between the
features. An extensive review of different dimensionality reduction approaches
can be found in the literature [8,9,14,16,18,22,36,48].

Over the years, multiple methods of dimensionality reduction have been
developed. The most popular linear dimensionality reduction methods include
principal component analysis (PCA) [30,39], linear discriminant analysis (LDA)
[12,33], canonical correlations analysis [17] and factor analysis (FA) [37].
c© Springer Nature Switzerland AG 2020
T. Hu et al. (Eds.): EuroGP 2020, LNCS 12101, pp. 135–150, 2020.
https://doi.org/10.1007/978-3-030-44094-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44094-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-44094-7_9

136 P. Orzechowski et al.

Manifold learning is one of the approaches for non-linear dimensional-
ity reduction. The most popular approaches include multidimensional scaling
(MDS) [4,40], locally linear embeddings (LLE) [35], Laplacian eigenmaps [2],
isomaps [38], local tangent space alignment (LTSA) [47], maximum variance
unfolding [44], diffusion maps [7], and t-distributed stochastic neighbor embed-
ding (t-SNE) [25]. Apart from visualization purposes, manifold learning has been
also used as a preprocessing step before classification [41,42].

Among multiple dimensionality reduction techniques, a couple of notable
methods of feature extraction exist that use genetic algorithms (GA) [34,45]
or genetic programming (GP) [6,15]. Over the recent years multiple attempts
were also taken to use genetic programming for classification [3,11,20]. The main
advantage of GP-based approaches is delivering a fully interpretable model that
could be used for describing the data structure. In a recent paper Lensen et al.
proposed a manifold learning method based on GP called GP-MaL. The method
was shown to outperform other popular manifold learning techniques in terms of
accuracy in at least half of 10 datasets considered [23]. This approach inspired
us to design a study on separability of data using manifold learning techniques.
We designed a GP-based method focusing in optimizing the same goal used in
benchmarking the methods, which is providing observable separation of classes
in the embedded space.

The major contribution of this paper is performing a large-scale comparison
of different manifold learning methods with their sets of parameters on the large
collection of 155 datasets from Penn Machine Learning Benchmark (PMLB) [27].
To our knowledge, this is the largest and the most comprehensive comparison of
manifold learning techniques on the collection of real world problems. As man-
ifold learning methods are usually applied to create convincing visualizations,
we check if manifold learning methods can deliver easily separable embeddings
in two dimensional space. To measure the performance of the methods, we used
unsupervised clustering algorithm and verified the performance of the methods
for the task of classification, for which the ground truth is already known. As
some of the considered datasets in PMLB are multi-class problems with different
numbers of instances per class, a balanced accuracy score [5] is used in order to
account for the class imbalance. Type of the data (e.g. categorical or ordinal)
was not taken into account.

The second contribution of the paper is providing a convenient open-source
framework for testing new manifold learning methods. All source code for our
analysis is available at https://github.com/athril/manigp. An important input
here is providing a scikit-learn friendly wrapper for GP-MaL, a GP-based man-
ifold learning method proposed at EuroGP track of EvoStar 2019, which inves-
tigated application of genetic programming to manifold learning.

Thirdly, we propose a novel manifold learning technique based on genetic
programming called ManiGP which uses a multi-tree representation, a popular
k-means clustering [24] and balanced accuracy to verify their integrity. The pro-
posed method could be considered a thought experiment that would answer a
question if a method intentionally designed to exploit the benchmark has unfair

https://github.com/athril/manigp

Benchmarking Manifold Learning Methods on a Large Collection of Datasets 137

advantage over its competitors. We show over a large collection of problems that,
albeit its extensive running time, a method based on genetic programming can
learn a manifold significantly better than multiple other techniques. Therefore,
we touch on a broader subject of the fairness of comparisons of the methods
which feature GP.

2 Methods

In our study we covered eight well established manifold learning methods and
two methods that use GP: GP-MaL, a winner of a best paper award at EvoStar
2019, and ManiGP, which is introduced in this paper. All the methods were
benchmarked against the collection of 155 datasets from Penn Machine Learning
Benchmark (PMLB). The input data was standardized using RobustScaler and
split into training and test set with stratification maintained. Manifold learning
method were launched with different combinations of input parameters (apart
from GP-MaL, which was launched with default parameters). The embeddings
provided by the methods were later clustered using K-Means, a popular clus-
tering algorithm. Hungarian (Kuhn-Munkres) algorithm was used for obtaining
optimal assignment of clusters to the actual classes [26]. The distance to the
nearest centroid served as a basis for predicting a class label for unseen data
points. Balanced accuracy was used as a metric for measuring performance (i.e
separability) of the embeddings. As the major application of manifold learn-
ing is visualization, we have focused on distinction between the classes in two
dimensional space. The detailed information on the design of the experiment is
provided in the methodology section.

2.1 Manifold Learning Methods

We have included the methods that are part of scikit-learn [31], a popular
machine learning library. We have also adapted the source code GP-MaL and
created a Python wrapper.

Isomap is a manifold learning method partly based on MDS [38]. Isomap
improves on standard MDS by aiming to preserve geodesic distances between
points instead of straight-line distances. This change leads to the creation of
more adequate embeddings compared to MDS for manifolds with characteristics
akin to the Swiss Roll for which the small euclidean distance between two points
does not imply that they are similar. Isomap is computationally efficient and
scales well to high-dimensional datasets.

Locally Linear Embedding (LLE) is based on a premise that finding linear trans-
formations preserving local structures and applying them to overlaying neighbor-
hoods can retain a non-linear global structure of a dataset [35]. Local structures
are maintained by expressing each data instance as a linear combination of its
neighbors using the same weights in high and low-dimensional space. LLE can
perform poorly when data is separated and has tendencies to collapse the low-
dimensional mapping to a single point.

138 P. Orzechowski et al.

Hessian Locally Linear Embedding (HLLE) is a variant of LLE that uses
quadratic form based on Hessian matrix to preserve the local structure of the
data [10]. HLLE was shown to perform better on non-convex manifolds than
standard LLE, but it suffers from high computational complexity and does not
scale well to large datasets, partly due to the necessity of estimating second order
derivatives.

Modified Locally Linear Embedding (MLLE) is a variant of LLE that looks for
more than one linear combinations of every point’s neighbors to embed the data
in a low-dimensional space while maintaining the local structure of a manifold
[46]. This change results in a more robust embedding compared to standard LLE.

Local Tangent Space Alignment (LTSA) is a modification of LLE that repre-
sents local structures using tangent spaces and aligns them in a global structure
to derive a coordinate system to describe manifold [47]. Similarly to LLE, the
method is susceptible to the noise.

Mutidimensional Scaling (MDS) is one of the oldest methods which can be
applied to non-linear dimensionality reduction [4]. It focuses on maintaining the
euclidean distances between the points in the low-dimensional embedding. This
approach works well if distance is a good measure of similarity between points,
because then related points are grouped together.

Laplacian Eigenmaps - Spectral embedding (SE) is another manifold learning
method which focuses on preserving the local structures of the data [2]. This
is achieved by representing the dataset as a graph and using the eigenvectors
of the Laplacian matrix of that graph for dimensionality reduction. Laplacian
Eigenmaps have also been used for data clustering.

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a popular method for
visualizing high-dimensional datasets [25]. Similarity of points in the dataset is
evaluated using conditional probabilities which measure how likely a certain
point would be to choose another point as its neighbor. The method looks
for a low-dimensional embedding of the dataset that minimizes the difference
between the distributions of high and low-dimensional sets which is expressed
by Kullback-Leibler divergence [19]. t-SNE was shown to create high quality
visualizations of high-dimensional datasets [25]. In addition, it is a powerful tool
for data exploration and can be used after feature extraction to assess what
characteristics of the data the extraction really captured. Nonetheless, t-SNE
has some disadvantages. Firstly, it is not easily interpretable [43]. Secondly, new
points cannot be embedded in low-dimensional space1.

1 https://lvdmaaten.github.io/tsne/.

https://lvdmaaten.github.io/tsne/

Benchmarking Manifold Learning Methods on a Large Collection of Datasets 139

GP-MaL is a recently proposed manifold learning method based on genetic pro-
gramming [23]. The method uses interpretable trees to evolve mappings from
high to low dimensional space. The mappings are measured on how well they
maintain dataset’s structure with a similarity metric based on neighbor ordering.
GP-Mal was shown to be a competitive dimensionality reduction technique for
the tasks of classification, data visualization and establishing feature importance.
The mappings produced by the method while interpretable, suffered from exces-
sive complexity. GP-MaL demonstrated the potential of GP in dimensionality
reduction and manifold learning applications.

2.2 ManiGP - A New Manifold Learning Method Based on Genetic
Programming

ManiGP is a manifold learning method which, similar to GP-MaL, uses a multi-
tree representation of an individual and focuses on delivering highly separable
mappings of distinct classes.

Motivation. The intuition behind the method is as follows. As manifold learning
techniques are primarily used for creating convincing visualizations, our aim
was to provide a highly interpretable method, which would clearly distinguish
classes for the task of classification and also have potential for being adapted
to unsupervised data analysis. Thus, despite its susceptibility to outliers and
noise, a k-means clustering [24] was chosen as a base for finding groupings of
the instances in the embedded space. The number of clusters is always set to
the number of classes in the data. Each of the clusters was later assigned to the
closest classes using Hungarian algorithm. Finally, a balanced accuracy metric is
used as a fitness score for each of the individual in order to become independent
of the size of each class in the original data. The goal of the method is maximizing
the fitness score, which should lead to higher separability of the classes and thus
to more convincing visualizations. The predictions for the unseen instances were
made based on the distance to the closest centroid.

Allowable Operators. The primitive set of a GP syntax tree for ManiGP com-
prises various mathematical operations, random ephemeral constants and termi-
nals equal to 0 or 1. The allowable operations are addition, subtraction, multi-
plication, safe division (to prevent division by 0), modulo, modulo-2 summation;
equal, not equal, less than, greater than comparisons; logical and, or, xor and
not; bitwise and, or and xor; abs, factorial, power, logarithm a of b, permutation,
choose; left, right, min and max. A maximal permissible height is used as a bloat
control to prevent the excessive growth of trees.

The Method. The concept of the method is visualized on the example of the
appendicitis dataset in Fig. 1. Each point represents an instance of the original
dataset, which was mapped into a new space. The color of the point corresponds
to its original class. The coordinates of the new space are determined by syntax

140 P. Orzechowski et al.

Fig. 1. A concept of ManiGP. A population of the algorithm contains evolving tuples
of trees that create a manifold to separate classes.

trees which were evolved using GP. Each of the trees is responsible for construct-
ing a single embedding in a low-dimensional space. This means that the number
of trees in the individual is equal to the dimensionality of the reduced dataset.
In this example, the balanced accuracy on the training dataset is equal to 93.7%,
whereas on the testing data 80.9% (both were plotted in the same chart).

The evolution process in ManiGP is set up as follows.

1. A number of best individuals from the previous population is selected to
the next generation. The selection operator sorts the individuals by their
fitness function values in descending order and then chooses the ones from
the beginning of the list. The number of individuals chosen is equal to the
size of the initial population.

2. The population is randomly shuffled and individuals are assigned to pairs
based on their position in the population. Specifically, the first individual on
the list is paired with the second one, the third one with the fourth one and
so on.

3. A crossover operator is applied on each pair of individuals with a certain
probability. Corresponding coordinates of the trees are crossed over using a

Benchmarking Manifold Learning Methods on a Large Collection of Datasets 141

one point crossover operator which chooses random nodes in each of the two
trees and swaps the subtrees that have a root in that randomly chosen node
creating two new trees. In this way, two new individuals are created. If all
of the trees comprising the new individual are of admissible height, then the
individual is added to the population. The resulting population contains both
parents and children.

4. Each individual in the population - including the children created with a
crossover operator - is mutated with a certain probability. Each tree of an
individual is mutated using the mutation operator. Within each of the trees,
the operator chooses randomly a subtree and swaps it with a randomly gen-
erated one.

5. A bloat control check (i.e. verification of the height of the tree) is performed
before admitting it to the population.

6. Each of the instances is mapped into the new space using trees. On the
reduced space, a k-means clustering is run to find groupings of instances. The
number of clusters used in k-means is equal to the number of classes. As clus-
tering does not use information on the class labels, an additional assignment
needs to be made in order to match clusters to classes. This is performed
using Hungarian algorithm [26].

7. The fitness function of each individual is defined as a balanced accuracy across
all classes.

8. The evolution stops after a predefined number of iterations. If the predefined
number of iterations is not met, the next population is created using selection
of best individuals2. Otherwise, the instances of the data are transformed
using the individual with the highest fitness.

Implementation. ManiGP was implemented in Python using Distributed Evo-
lutionary Algorithms in Python (DEAP) framework [13,32] and other popular
Python libraries such as NumPy, pandas, and sklearn.

Related Work. GP and nearest centroid classifiers were shown to be powerful
tools for improving classification accuracy and feature selection [1]. Although in
some ways similar, the approach taken in this study applies GP and K-means
in a different context than in the research conducted by Al-Madi et al., which
focused more on improving classification results derived from GP with a k-means
based algorithm. The design of the method used in this paper is very closely
related to M4GP, the method of dimensionality reduction by La Cava et al.
[20] with four major differences. Firstly, the representation of the individual is
different. ManiGP represents individual as multi-tree structure, whereas M4GP
use a stack-based representation. Secondly, ManiGP uses the simplest possible
strategies (e.g. selection of best individuals), whereas M4GP uses advanced selec-
tion operators, such as epsilon lexicase selection and Age-fitness Pareto survival.

2 Empirical tests have surprisingly shown the superior performance of this technique
in comparison to tournament selection.

142 P. Orzechowski et al.

Thirdly, the fitness objective is different [20]. Finally, ManiGP presets the result-
ing dimensionality, whereas M4GP dynamically determines it in the course of
evolution.

It needs to be emphasized, that ManiGP by no means was designed to be
a fully fledged classifier. It emerged as an experiment during designing a fair
methodology for the comparison of the methods. Our hypothesis was that it is
possible to design a method that would work at least as well as the state-of-the-
art methods for a large set of problems, if it is given a leverage and optimizes
the same metric used later in benchmarking. This, in our opinion, not only puts
the method in favourable position over the others, but also adds an interesting
layer in the discussion on existence of the objective comparison methodology.

2.3 Datasets

Penn Machine Learning Benchmark (PMLB) is one of the largest available col-
lections of publicly available dataset for classification and regression. Multiple
problems included in the benchmark suite were pulled from popular reposito-
ries, such as UCI, OpenML or Kaggle and transformed into a machine learning
friendly format [27]. In this paper our focus was classification task, for which we
pulled 166 classification datasets. The following 11 datasets were excluded from
the comparison because of issues with convergence or running times exceeding
168 h for at least 2 methods: ‘adult’, ‘connect-4’, ‘fars’, ‘kddcup’, ‘krkopt’, ‘let-
ter’, ‘magic’, ‘mnist’, ‘poker’, ‘shuttle’, and ‘sleep’. As the result, the collection
included in this analysis contained 155 different datasets.

2.4 Methodology of Comparison

One of the greatest challenges in benchmarking manifold learning methods is the
fact that not every method supports mapping of the previously unseen data. For
example a very popular t-SNE learns a non-parametric mapping, which means
there is no function learned that would map the point from the input space to the
embedded one. A similar issue involves also MDS and Spectral Embeddings, two
other popular manifold learning techniques. This has far-reaching consequences,
as the performance of the methods on test data can’t be reported for the method.
It also means that cross-validation can’t be used for finding the optimal setting
of the input parameters.

There are two potential ways of getting around this fact, but none of them
could be considered a good strategy. First, a regressor could be proposed which
for each of the samples in the test data finds the closest sample (or samples) and
assigns its score (or performs a form of majority voting). Unfortunately, this
may be erroneous for some of the datasets, which contain categorical, or ordinal
values. The second approach is learning manifold on full data and reporting the
score only for the test points. In this scenario, however, testing data is used in
training, which creates additional bias. After consideration we have decided not
to report the performance of aforementioned methods on test data. This resulted
in abandoning k-fold cross validation in favor of running method with 5 different

Benchmarking Manifold Learning Methods on a Large Collection of Datasets 143

random seeds with a grid of the parameters and using the best performance
within training data for testing.

The second challenge was proposing an objective metric for assessing perfor-
mance. After learning the manifold, multiple existing classifiers could be adapted
and trained on the data with reduced dimensionality. Our choice was using k-
means, a popular clustering technique. This unsupervised technique could be
considered as unbiased measure of separability of the classes as it does not use
real class labels for the analysis. The correct assignments to the classes are han-
dled using Hungarian algorithm in similar way as in Orzechowski and Boryczko
[28]. Although we are aware that k-means isn’t perfect, as doesn’t handle well
clusters of different densities, irregular shapes as well as outliers, the simplicity
and linear division of the classes in the embedded space were the reasons why
k-means was chosen as the base for the analysis.

The workflow for benchmarking manifold learning method was constructed
as follows:

1. For each of the datasets 5 different randomly initialized seeds were selected.
The seeds were used for splitting each of the dataset to train and testing sets
with proportion 75%–25%. Stratified split was used to maintain the propor-
tion of the representatives of each class in both training and testing set and
RobustScaler was used for preprocessing data.

2. Each manifold learning method was initialized with the same random seed.
For each of the methods we have used a grid of input parameters. The methods
with their parameters are presented in Table 1.

3. In order to better understand separability of the classes, the resulting two
dimensional embedding from each manifold learning methods served as a
base for performing k-means clustering with the number of clusters equal to
the number of classes.

4. Hungarian algorithm [26] was used to assign class label to the clusters.
5. For the methods that allow projection of a test set, the distance to the center

of the nearest cluster was used to assign label to the point.
6. As class imbalance is an issue with different datasets, a popular metric called

balanced accuracy was used as a measure of performance.
7. For each of the methods and a given seed the highest balanced accuracy score

was considered across a grid of the parameters.

3 Results

For benchmarking we have included all of the manifold learning methods
described in the previous chapter. For the sake of clarity, we have narrowed
down our analysis to manifold learning methods only and decided not to include
linear dimensionality reduction techniques, as they remain out of scope for this
paper. The detailed results of the analysis have been added to our project repos-
itory3.
3 https://github.com/athril/manigp/.

https://github.com/athril/manigp/

144 P. Orzechowski et al.

Table 1. Parameters settings of the analyzed methods. The names of the parameters
refer to scikit-learn implementation.

Algorithm Parameter Values

ManiGP ‘(xover rate, mut rate)’ {(0.9,0.1), (0.5,0.5), (0.1,0.9)}
‘generations’ 500

‘pop size’ 100

GP-MaL ‘generations’ 1000

pop size 1024

Isomap ‘n neighbors’ [5,6,7,8,9,10,15,20],

‘eigen solver’ [‘arpack’,‘dense’],

LLE ‘reg’ [1e−4, 1e−3, 0.001, 0.1, 1, 10]

‘n neighbors’ [5,6,7,8,9,10,15,20]

‘eigen solver’ [‘dense’]

Hessian ‘reg’ [1e−4, 1e−3, 0.001, 0.1, 1, 10]

‘n neighbors’ [5,6,7,8,9,10,15,20]

‘eigen solver’ [‘dense’]

Modified LLE ‘reg’ [1e−4, 1e−3, 0.001, 0.1, 1, 10]

‘n neighbors’ [5,6,7,8,9,10,15,20]

‘eigen solver’ [‘dense’]

LTSA ‘reg’ [1e−4, 1e−3, 0.001, 0.1, 1, 10]

‘n neighbors’ [5,6,7,8,9,10,15,20]

‘eigen solver’ [‘dense’]

MDS ‘max iter’ [300,500]

‘metric’ [True,False]

‘dissimilarity’ [‘euclidean’]

Spectral ‘affinity’ [‘nearest neighbors’]

‘n neighbors’ [5,6,7,8,9,10]

‘eigen solver’ [None, ‘arpack’, ‘lobpcg’,‘amg’]

or

‘affinity’ [‘rbf’]

‘eigen solver’ [None, ‘arpack’, ‘lobpcg’,‘amg’]

t-SNE ‘perplexity’ [5,10,15,20,25,30,35,40,45,50]

‘n iter’ [1000,5000]

All of the methods were run starting from 5 different seeds on a reduced
PMLB benchmark suite with grid of the parameters presented in Table 1. For
each of the seeds, the setting with the highest balanced accuracy score on the
training data was chosen for the subsequent analysis. The median score across
the seeds served for ranking the methods.

The performance for the task of classification on the training dataset is pre-
sented in Fig. 2. This analysis compares the methods on separating labeled data,
what makes it a good benchmark for providing clarity of visualization.

Benchmarking Manifold Learning Methods on a Large Collection of Datasets 145

Fig. 2. The ranking of the manifold learning on the training dataset. The lower, the
better.

Three of the methods, namely MDS and SE and t-SNE are not suitable
for making predictions for the unseen data. Thus, they were removed from the
assessment in the test data, which is presented in Fig. 3. This analysis shows the
potential of the methods to be used as dimensionality reduction techniques.

Fig. 3. The ranking of the manifold learning on the testing dataset. The lower, the
better. Some of the methods (PCA, t-SNE and SE) had to be excluded as they don’t
provide the mapping that would allow to make predictions for unseen data.

To inspect the significant differences, we ran a Friedman test using balanced
accuracy scores for the test data. As the number of datasets is large, the analysis
has higher statistical power. P-values less than 0.005 suggest significant differ-
ences between the methods. Post-hoc pairwise tests are presented in Table 2.

Summary. Ranking the methods on the training data shows ManiGP as the
leader, followed by t-SNE and LLE. The other methods performed visibly worse,
with a few exceptions of MDS and GP-MaL.

146 P. Orzechowski et al.

Table 2. Friedman’s asymptotic general symmetry test. P-values lower than 0.005
were boldfaced.

GPMaL Isomap LLE HLLE MLLE LTSA

ManiGP 2.2e−16 2.2e−16 3.3e−14 2.2e−16 2.2e−16 2.2e−16

GPMaL – 0.99 2.0e−02 6.6e−03 4.1e−02 2.9e−02

Isomap – – 4.8e−03 0.02 0.12 0.09

LLE – – – 4.6e−10 3.5e−09 2.0e−09

HLLE – – – – 0.99 0.99

MLLE – – – – – 0.99

Considering the results on testing data, the clear leader is again ManiGP,
which statistically outperformed each of the considered methods. The runner
up is LLE, which significantly outperformed all methods, but ManiGP and GP-
MaL. The remaining comparisons showed no significant differences.

Considering running times, both GP methods were a couple of orders of mag-
nitude slower than the rest of approaches. Additionally, ManiGP was far slower
than GP-MaL. GP-MaL was run for 1000 iterations with population of 1024 and
was faster than ManiGP, which was run for 500 iterations with population of 100.
The other methods had comparable running times, counted in seconds/minutes
instead of hours/dozens of hours, as was the case with GP approaches. Notice
however, that for the fairness all the methods were run with a single thread and
GP methods could be run in parallel. Among the non-GP methods, MDS and
t-SNE were an order of magnitude slower than the remaining approaches.

4 Conclusions

In this paper a comparison of 10 different manifold learning methods was per-
formed on a large collection of real world datasets. The comparison was per-
formed using rigorous machine learning standards [21,29] over a large collection
of 155 datasets from PMLB [27]. The study aimed at empirical verification of
how well the manifold learning approaches separate instances for the task of
classification. All the source code of our analysis is open source and publicly
available. Two of the methods included in the study were based on genetic pro-
gramming: GP-MaL and ManiGP. To perform this study, we have created an
open source framework for benchmarking of manifold learning techniques, as
well as created a wrapper for GP-MaL.

Due to the nature of some of the manifold learning methods, such as MDS, SE
and t-SNE, which are unable to transform an unseen instance, our benchmark is
split into two parts: the training part, which could be considered benchmarking
of potential of manifold learning techniques for visualization, and the testing
part, in which the potential of the methods to serve as dimensionality reduction
techniques could be more thoroughly assessed.

Benchmarking Manifold Learning Methods on a Large Collection of Datasets 147

As for the visualization purposes, we have confirmed that ManiGP – an exper-
imental technique proposed in this paper – delivers the most separable charts
in comparison to any other manifold learning technique for the vast majority
of datasets. Due to its excessive time however, its practical use remains highly
limited. Among the methods with reasonable execution time, t-SNE can be con-
sidered the first choice and LLE the second.

Taking into account potential of using the methods toward further data anal-
ysis, ManiGP provides by far more separable results than any other manifold
learning technique included in the comparison. The obtained results of ManiGP
in terms of balanced accuracy were also significantly better compared to any
other method included in the study. Another advantage of the method is inter-
pretability, as it uses two (or more) syntax trees with arithmetic-logical opera-
tions. This makes the method easily adaptable to an unseen data. The greatest
downside of the method is excessive running time, which we consider not feasi-
ble for larger datasets. On the other hand, the method wasn’t optimized for the
purpose of this study and a couple possible improvements might be taken out of
the box. The further experiments suggest that the results are also comparable
with some of the leading machine learning classifiers in the field. Once again,
we would emphasize that the development of a method wasn’t the major goal
of this study and this method shouldn’t be considered a valid classifier, which
could be used in production.

Our analysis showed that GP-based approaches are capable of delivering
fully interpretable, better separable and even significantly better results than
multiple well established manifold learning approaches. Despite its excessive run
times for larger datasets, ManiGP proposed in this paper outperformed other
methods, although it used only very basic evolutionary techniques and evaluated
over 20 times less individuals than GP-MaL. Among non-GP methods, consid-
ering potential of using a method to predict an unseen data, we believe that
LLE remains a good trade off between the speed and performance, as it offers
superior results to multiple other manifold learning methods within reasonable
time frame. For the pure aspect of visualization, t-SNE remains a convenient
approach, as it provides better separation.

Finally, we would like to elaborate more on the fairness of the presented
comparison. One of the aspects of our study was proposing a method that delib-
erately optimizes the same score used later for evaluation. We have discovered
that this approach performed statistically better than the approaches based on
other merits. The question that should be asked is how objective could any com-
parison be considered, assuming that one method intentionally used the evalua-
tion metric. The answer is not straightforward; it is necessary however that the
designers of the study put as much effort as possible into designing as objective
a comparison as possible with support for their results from multiple tests.

In summary, we believe that this paper set new standards in benchmarking
manifold learning techniques and addresses not only their visualization potential,
but far beyond. An important findings in this study are as follows: (1) not every
manifold learning method provides the possibility to analyze unseen data, (2) the

148 P. Orzechowski et al.

advantage of GP in manifold learning lies in providing interpretable results, (3)
because of excessive running time of GP-based methods, their potential of creat-
ing convincing visualizations is highly limited, (4) application of GP in manifold
learning is justified if the focus of the study is interpretability of the model and
excessive running time will later be rewarded by instantaneous testing, (5) the
fairness of benchmarking requires further research. Even those benchmarks that
seem to be objective may be exploited by the methods that purposefully exploit
the design of the study.

Acknowledgements. This research was supported in part by PL-Grid Infrastructure
and by National Institutes of Health (NIH) grant LM012601. The authors would like
to thank Dr. Andrew Lensen from Victoria University of Wellington for his help in
running GP-MaL.

References

1. Al-Madi, N., Ludwig, S.A.: Improving genetic programming classification for
binary and multiclass datasets. In: 2013 IEEE Symposium on Computational Intel-
ligence and Data Mining (CIDM), pp. 166–173. IEEE (2013)

2. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding
and clustering. In: Advances in Neural Information Processing Systems, pp. 585–
591 (2002)

3. Bhowan, U., Zhang, M., Johnston, M.: Genetic programming for classification with
unbalanced data. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar,
A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 1–13. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-12148-7 1

4. Borg, I., Groenen, P.: Modern multidimensional scaling: theory and applications.
J. Educ. Meas. 40(3), 277–280 (2003)

5. Brodersen, K.H., Ong, C.S., Stephan, K.E., Buhmann, J.M.: The balanced accu-
racy and its posterior distribution. In: 2010 20th International Conference on Pat-
tern Recognition, pp. 3121–3124. IEEE (2010)

6. Cano, A., Ventura, S., Cios, K.J.: Multi-objective genetic programming for feature
extraction and data visualization. Soft. Comput. 21(8), 2069–2089 (2015). https://
doi.org/10.1007/s00500-015-1907-y

7. Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmonic Anal. 21(1),
5–30 (2006)

8. Cunningham, J.P., Ghahramani, Z.: Linear dimensionality reduction: survey,
insights, and generalizations. J. Mach. Learn. Res. 16(1), 2859–2900 (2015)

9. De Backer, S., Naud, A., Scheunders, P.: Non-linear dimensionality reduction tech-
niques for unsupervised feature extraction. Pattern Recogn. Lett. 19(8), 711–720
(1998)

10. Donoho, D.L., Grimes, C.: Hessian eigenmaps: locally linear embedding techniques
for high-dimensional data. Proc. Nat. Acad. Sci. 100(10), 5591–5596 (2003)

11. Espejo, P.G., Ventura, S., Herrera, F.: A survey on the application of genetic
programming to classification. IEEE Trans. Syst. Man Cybern. Part C (Appl.
Rev.) 40(2), 121–144 (2009)

12. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann.
Eugen. 7(2), 179–188 (1936)

https://doi.org/10.1007/978-3-642-12148-7_1
https://doi.org/10.1007/s00500-015-1907-y
https://doi.org/10.1007/s00500-015-1907-y

Benchmarking Manifold Learning Methods on a Large Collection of Datasets 149

13. Fortin, F.A., De Rainville, F.M., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP:
evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012)

14. Gisbrecht, A., Hammer, B.: Data visualization by nonlinear dimensionality reduc-
tion. Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. 5(2), 51–73 (2015)

15. Guo, H., Zhang, Q., Nandi, A.K.: Feature extraction and dimensionality reduction
by genetic programming based on the fisher criterion. Expert Syst. 25(5), 444–459
(2008)

16. Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.A.: Feature Extraction: Foundations
and Applications. STUDFUZZ, vol. 207. Springer, Heidelberg (2006). https://doi.
org/10.1007/978-3-540-35488-8

17. Hotelling, H.: Relations between two sets of variates. In: Kotz, S., Johnson, N.L.
(eds.) Breakthroughs in Statistics. SSS, pp. 162–190. Springer, New York (1992).
https://doi.org/10.1007/978-1-4612-4380-9 14

18. Khalid, S., Khalil, T., Nasreen, S.: A survey of feature selection and feature extrac-
tion techniques in machine learning. In: 2014 Science and Information Conference,
pp. 372–378. IEEE (2014)

19. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1),
79–86 (1951)

20. La Cava, W., Silva, S., Danai, K., Spector, L., Vanneschi, L., Moore, J.H.: Multidi-
mensional genetic programming for multiclass classification. Swarm Evol. Comput.
44, 260–272 (2019)

21. La Cava, W., Williams, H., Fu, W., Moore, J.H.: Evaluating recommender systems
for AI-driven data science. arXiv preprint arXiv:1905.09205 (2019)

22. Lee, J.A., Verleysen, M.: Nonlinear Dimensionality Reduction. Springer, New York
(2007). https://doi.org/10.1007/978-0-387-39351-3

23. Lensen, A., Xue, B., Zhang, M.: Can genetic programming do manifold learning
too? In: Sekanina, L., Hu, T., Lourenço, N., Richter, H., Garćıa-Sánchez, P. (eds.)
EuroGP 2019. LNCS, vol. 11451, pp. 114–130. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-16670-0 8

24. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2),
129–137 (1982)

25. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.
Res. 9(Nov), 2579–2605 (2008)

26. Munkres, J.: Algorithms for the assignment and transportation problems. J. Soc.
Ind. Appl. Math. 5(1), 32–38 (1957)

27. Olson, R.S., La Cava, W., Orzechowski, P., Urbanowicz, R.J., Moore, J.H.: PMLB:
a large benchmark suite for machine learning evaluation and comparison. BioData
Min. 10(1), 36 (2017)

28. Orzechowski, P., Boryczko, K.: Parallel approach for visual clustering of protein
databases. Comput. Inform. 29(6+), 1221–1231 (2012)

29. Orzechowski, P., La Cava, W., Moore, J.H.: Where are we now?: a large benchmark
study of recent symbolic regression methods. In: Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 1183–1190. ACM (2018)

30. Pearson, K.: LIII. On lines and planes of closest fit to systems of points in space.
Lond. Edinb. Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901)

31. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

32. Rainville, D., Fortin, F.A., Gardner, M.A., Parizeau, M., Gagné, C., et al.: DEAP: a
python framework for evolutionary algorithms. In: Proceedings of the 14th Annual
Conference Companion on Genetic and Evolutionary Computation, pp. 85–92.
ACM (2012)

https://doi.org/10.1007/978-3-540-35488-8
https://doi.org/10.1007/978-3-540-35488-8
https://doi.org/10.1007/978-1-4612-4380-9_14
http://arxiv.org/abs/1905.09205
https://doi.org/10.1007/978-0-387-39351-3
https://doi.org/10.1007/978-3-030-16670-0_8
https://doi.org/10.1007/978-3-030-16670-0_8

150 P. Orzechowski et al.

33. Rao, C.R.: The utilization of multiple measurements in problems of biological
classification. J. Roy. Stat. Soc.: Ser. B (Methodol.) 10(2), 159–203 (1948)

34. Raymer, M.L., Punch, W.F., Goodman, E.D., Kuhn, L.A., Jain, A.K.: Dimension-
ality reduction using genetic algorithms. IEEE Trans. Evol. Comput. 4(2), 164–171
(2000)

35. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear
embedding. Science 290(5500), 2323–2326 (2000)

36. Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction
techniques. arXiv preprint arXiv:1403.2877 (2014)

37. Spearmen, C.: General intelligence objectively determined and measured. Am. J.
Psychol. 15, 107–197 (1904)

38. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for
nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

39. Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. J. Roy.
Stat. Soc.: Ser. B (Stat. Methodol.) 61(3), 611–622 (1999)

40. Torgerson, W.S.: Multidimensional scaling: I. Theory and method. Psychometrika
17(4), 401–419 (1952). https://doi.org/10.1007/BF02288916

41. Vural, E., Guillemot, C.: Out-of-sample generalizations for supervised manifold
learning for classification. IEEE Trans. Image Process. 25(3), 1410–1424 (2016)

42. Vural, E., Guillemot, C.: A study of the classification of low-dimensional data with
supervised manifold learning. J. Mach. Learn. Res. 18(1), 5741–5795 (2017)

43. Wattenberg, M., Viégas, F., Johnson, I.: How to use t-SNE effectively. Distill
(2016). https://doi.org/10.23915/distill.00002. http://distill.pub/2016/misread-
tsne

44. Weinberger, K.Q., Saul, L.K.: An introduction to nonlinear dimensionality reduc-
tion by maximum variance unfolding. In: AAAI, vol. 6, pp. 1683–1686 (2006)

45. Yao, H., Tian, L.: A genetic-algorithm-based selective principal component analysis
(GA-SPCA) method for high-dimensional data feature extraction. IEEE Trans.
Geosci. Remote Sens. 41(6), 1469–1478 (2003)

46. Zhang, Z., Wang, J.: MLLE: modified locally linear embedding using multiple
weights. In: Advances in Neural Information Processing Systems, pp. 1593–1600
(2007)

47. Zhang, Z., Zha, H.: Principal manifolds and nonlinear dimensionality reduction via
tangent space alignment. SIAM J. Sci. Comput. 26(1), 313–338 (2004)

48. Zhao, D., Lin, Z., Tang, X.: Laplacian PCA and its applications. In: 2007 IEEE
11th International Conference on Computer Vision, pp. 1–8. IEEE (2007)

http://arxiv.org/abs/1403.2877
https://doi.org/10.1007/BF02288916
https://doi.org/10.23915/distill.00002
http://distill.pub/2016/misread-tsne
http://distill.pub/2016/misread-tsne

Ensemble Genetic Programming

Nuno M. Rodrigues(B) , João E. Batista , and Sara Silva

LASIGE, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
{nmrodrigues,jebatista,sara}@fc.ul.pt

Abstract. Ensemble learning is a powerful paradigm that has been
used in the top state-of-the-art machine learning methods like Random
Forests and XGBoost. Inspired by the success of such methods, we have
developed a new Genetic Programming method called Ensemble GP.
The evolutionary cycle of Ensemble GP follows the same steps as other
Genetic Programming systems, but with differences in the population
structure, fitness evaluation and genetic operators. We have tested this
method on eight binary classification problems, achieving results signif-
icantly better than standard GP, with much smaller models. Although
other methods like M3GP and XGBoost were the best overall, Ensemble
GP was able to achieve exceptionally good generalization results on a
particularly hard problem where none of the other methods was able to
succeed.

Keywords: Genetic Programming · Ensemble learning · Binary
classification · Machine Learning

1 Introduction

Genetic Programming (GP) [25] is one of the most proficient Machine Learning
(ML) methods. It is capable of addressing multiple tasks such as classification
and regression, using a variety of techniques from the most classical [17] to the
most recent, like the geometric semantic approaches [28] and the cluster-based
multiclass classification [22].

Ensemble learning [9] is a powerful ML paradigm where multiple models are
induced and their predicted outputs are combined in order to obtain predictions
that are more accurate than the individual ones. Some of the most successful
ML methods are based on ensemble learning, like Random Forests (RF) [4] and
XGBoost (XG) [7]. On the other hand, their performance may vary substantially
depending on the setting of some crucial parameters, like the number of trees and
their maximum depth, which in turn depend on the properties of each dataset.

Inspired by the success of such methods, and motivated by the need to auto-
matically find the right settings for these parameters, we have developed a new
GP method called Ensemble GP (eGP). The evolutionary cycle of eGP follows
the same steps as other GP systems, but with differences in the population
structure, fitness evaluation and genetic operators. In particular, the population

c© Springer Nature Switzerland AG 2020
T. Hu et al. (Eds.): EuroGP 2020, LNCS 12101, pp. 151–166, 2020.
https://doi.org/10.1007/978-3-030-44094-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44094-7_10&domain=pdf
http://orcid.org/0000-0001-5312-8276
http://orcid.org/0000-0002-2997-8550
http://orcid.org/0000-0001-8223-4799
https://doi.org/10.1007/978-3-030-44094-7_10

152 N. M. Rodrigues et al.

is composed of two subpopulations, trees and forests, where each subpopula-
tion uses its own fitness function and genetic operators. The approach can be
described as co-evolutionary, cooperative and compositional, and involves sub-
sampling of both observations and features.

The rest of the paper is organized as follows. Section 2 describes related work,
while Sect. 3 provides the details of the eGP method. Section 4 specifies the
experimental setup, and Sects. 5 and 6 report and discuss the results obtained.
Finally, Sect. 7 contains the conclusions and future work.

2 Related Work

Evolutionary computation and other bio-inspired methods have been linked to
ensemble learning from early on (see [11] and references therein). An obvious way
to build ensembles is to combine different individuals of a population, whether
they are GP individuals (e.g. [31]) or other types, like neural networks (review
in [15]). Many other types of ensembles have been built using evolutionary and
other bio-inspired methods, like ensembles of clustering algorithms [8], Decision
Trees [5], Support Vector Machines [1], or a mix of different types [10]. Diver-
sity is important among ensemble members, and multiobjective evolutionary
approaches have been often used to address this issue (e.g. [2,6,24] and refer-
ences therein).

A multitude of publications focus on single specific aspects of ensemble learn-
ing, like selecting and combining the members of the ensemble (e.g. [10] and ref-
erences therein), or evolving the functions that combine the different members
(e.g. [10,16,19]). Others focus on building complete ensembles from scratch, but
even if we limit ourselves to the ones that use GP exclusively (e.g. [3,13,29]),
we find a large diversity of designs, goals and scales of application. A system-
atic review of this extremely vast and diverse literature is much needed in both
evolutionary and ensemble learning communities.

3 Ensemble GP

Now, we describe the method we call ensemble GP (eGP) with all the variants we
implemented and tested. The evolutionary cycle of eGP follows the same steps
as other GP systems, but with differences in the population structure, fitness
evaluation and genetic operators. In particular, the population is composed of
two subpopulations, where each subpopulation uses its own fitness function and
genetic operators. The approach can be described as co-evolutionary, cooperative
and compositional, and involves subsampling of both observations and features.
Algorithm 1 describes the main steps of eGP.

Before describing the details regarding the population, fitness and genetic
operators of eGP, we briefly describe a GP system called M3GP [22] (Multidi-
mensional Multiclass GP with Multidimensional Populations), not only because
it is one of the baselines in our experiments, but also because some elements of
eGP are highly inspired in M3GP.

Ensemble Genetic Programming 153

Algorithm 1. eGP
procedure eGP(Dataset(Ds), nt, nf)

Split Ds into training, testing and sub samples Φ
Tlist ← Generate Trees(Φ, nt)
Flist ← Generate Forests(nf)
while generation(g) < max generations do

Tparents ← Selection(Tlist)
Fparents ← Selection(Flist)
Toffspring ← Breeding(Tparents)
Foffspring ← Breeding(Fparents)
Flist ← Prune(Foffspring) � Prune only the best forest
g + +

end while
end procedure

3.1 M3GP

In terms of representation of the solutions, the main difference between M3GP
and standard tree-based GP is the number of trees that are part of the same
individual. While a standard GP individual is a single tree, a M3GP individual
may be composed of several trees, called dimensions. Originally developed for
performing multiclass classification [14,22], M3GP evolves each individual as a
set of hyperfeatures, each one represented by a different tree/dimension. After
remapping the input data into this new multidimensional feature space, it cal-
culates the accuracy by forming clusters based on the data labels and classifying
each observation as the class of the closest centroid according to the Mahalanobis
distance. M3GP has also been used for evolving hyperfeatures for regression [23]
and for classification in other GP systems [18].

Starting with only one tree/dimension per individual, M3GP uses standard
subtree crossover and mutation between individuals, and three other operators
designed for removing a tree/dimension from an individual, adding a randomly
created tree/dimension to an individual, and swapping trees/dimensions between
individuals. Additionally, a pruning operator is applied to the best individual of
each generation, removing the trees/dimensions that do not improve its accuracy.

3.2 eGP Population Structure

The population is composed of two types of individuals: trees and forests. A tree
is not the output model, but only a part of it. The output model is a forest,
built as an ensemble of trees. Each tree may be part of many different forests,
and some trees may be part of none.

Trees have the same structure as those used in standard GP, but instead of
having access to all the observations and features of the training dataset, each
individual only sees a subset of observations, and in many cases also a subset
of features. Different variants of eGP use different sampling options: (1) 60%
of all observations, all features included; (2) between one and all observations,

154 N. M. Rodrigues et al.

one to all features included, these numbers being randomly chosen before each
sampling. In both options, the sampling is done uniformly without replacement,
and repeated whenever a new subset of training data is required for allocating
to a new tree.

Forests have the same structure as the M3GP individuals, with each dimen-
sion being a tree from the subpopulation of trees.

3.3 eGP Fitness Functions

The subpopulation of trees uses a standard fitness function based on the error
between expected and predicted outputs, like the Root Mean Squared Error
(RMSE). In classification problems, the class labels are interpreted as the
numeric expected outputs. The fitness of each tree is calculated using only the
subset of observations allowed for this tree.

The subpopulation of forests uses a fitness function based on the accuracy
obtained on all the observations of the training set. Each forest gathers, for each
observation, a vote (on a class) from each of the trees that compose its ensemble.
This vote is obtained by adopting the class label that is closer to the predicted
output. The votes from the different trees of the ensemble can be combined by
normal majority voting or by weighted voting.

In normal voting, for each observation the class that receives more votes
wins, and ties are solved by randomly choosing one of the classes. In weighted
voting (Algorithm 2), for each observation a certainty value is calculated for each
class prediction of each tree, based on the vector of predicted values by all the
trees of the ensemble (1). The sum of certainty values for each class is then
calculated, and divided by the sum of certainty values for both classes. The class
with highest results is chosen as the prediction.

We chose to use L2 normalization (2) for consistency with the cosine similar-
ity used for the eCrossover (described next), which also uses L2. Other normal-
ization methods were considered. Min-Max was discarded due to its inability for
dealing with outliers; Z-Score was discarded because the resulting array was not
contained in the [0, 1] range.

certainty = 1 − l2(X),X =

⎛
⎜⎜⎜⎝

x1

x2

...
xn

⎞
⎟⎟⎟⎠ (1)

l2 normalization =

√√√√
n∑

k=1

|xk|2 (2)

3.4 eGP Genetic Operators

The trees and forests of eGP use different genetic operators. Trees use what can
be described as protected versions of the standard subtree crossover and muta-
tion, designated here as eCrossover and eMutation, respectively. The protection

Ensemble Genetic Programming 155

Algorithm 2. Weighted Voting
procedure weighted voting(predictions, certainties)

votes ← []
for row in predictions do

zeros, ones ← 0
for col in certainties do

if predictions[row][col] == 1
ones+ = certainties[row][col]

else
zeros+ = certainties[row][col]

end for
votes.append(0 if zeros/(zeros + ones) ≥ ones/(zeros + ones) else 1)

end for
end procedure

is needed when parent trees are not allowed to see all the features due to feature
sampling (see Sect. 3.2). In this case, the offspring must inherit feature restric-
tions from their parents, otherwise after a number of generations all the trees
will be using all the features. Without feature sampling, these operators behave
the same as the standard ones.

eMutation simply has to ensure that the new subtree created to replace a
random branch of the parent is restricted to the same subset of features as the
parent. eCrossover must guarantee that each swapped branch is also restricted
to the subset of features inherited by the receiving offspring. Each of the two off-
spring inherits from one of its two parents. Instead of relying on a careful choice
of compatible couples and branches to swap, eCrossover relies on a repair pro-
cedure that replaces features on the received branches whenever these features
are not allowed by the inherited restrictions (Algorithm3). Each illegal feature
is compared to all the legal ones on the complete training set, using the cosine
similarity measure (3). The chosen replacement is the most similar feature to
the one that was removed. Unlike the euclidean distance, the cosine similarity
can compare and recognize two vectors of similar meaning even if they have very
different magnitudes.

S(X,Y) =
∑n

k=1 |xk||yk|√∑n
k=1 |xk|2

√∑n
k=1 |yk|2

(3)

Regarding the subpopulation of forests, it uses the same genetic operators
as M3GP, namely two mutation operators to add and remove trees from the
ensemble, and one crossover operator to swap trees between different ensembles.

4 Experimental Setup

This section describes our experimental setup for the eGP methods, comparing
them against two baselines, standard GP and M3GP, and two state-of-the-art

156 N. M. Rodrigues et al.

Algorithm 3. eCrossover
procedure subtree crossover(parent1, parent2)

cp1, cp2 ← choose crossover points � crossover point 1 and 2
refact tree(parent1, parent2, cp1, cp2, bag1, bag2, DataTraining)

end procedure

procedure refact tree(parent1, parent2, cp1, cp2, bag1, bag2, DataTraining)
parent1, parent2 ← swap branches(cp1, cp2)
fix terminals(p1, bag1, bag2, DataTraining)
fix terminals(p2, bag2, bag1, DataTraining)

end procedure

classifiers, Random Forests (RF) and XGBoost (XG). Six different variants of
eGP were tested, and the results were analysed in terms of training and test
accuracy, number of trees and number of nodes of the final solutions. When com-
paring accuracy, statistical significance is determined using the non-parametric
Kruskal-Wallis test at p < 0.01. Next, we describe all the 10 methods tested,
their main parameter settings, and the eight datasets used for obtaining the
reported results.

4.1 Methods

Table 1 contains the acronyms and descriptions of all the methods used, and will
serve as a memory aid for the remainder of this paper. The six eGP variants are
eGP-N and eGP-W (normal and weighted voting with sampling of features and
observations); eGP-N5 and eGP-W5 (same as previous but with populations of
500 trees and 500 forests, instead of 250 each); eGPn and eGPw (same as eGP-N
and eGP-W but without feature sampling).

Table 1. Acronyms and descriptions of the methods

GP Standard Genetic Programming

M3GP Multidimensional Multiclass GP with Multidimensional Populations

eGP-N Ensemble GP, feature sampling, normal voting

eGP-W Ensemble GP, feature sampling, weighted voting

eGP-N5 Ensemble GP, feature sampling, normal voting, larger population

eGP-W5 Ensemble GP, feature sampling, weighted voting, larger population

eGPn Ensemble GP, no feature sampling, normal voting

eGPw Ensemble GP, no feature sampling, weighted voting

RF Random Forests

XG XGBoost

Ensemble Genetic Programming 157

Table 2. Main parameter settings

Runs 30

Generations 100

Population size GP/M3GP=500, eGP= {250+250, 500+500}
Function set {+,−,×, /, log,

√} (protected)

Fitness GP=RMSE, M3GP/eGP=Accuracy

Selection Tournament size 5 (GP/M3GP=Double Tournament)

Crossover/Mutation GP=0.95/0.05, M3GP/eGP=0.5/0.5

Number of estimators {50, 100, 150, 200}
Maximum depth {2, 4, 6, 8}
Impurity measure RF= {Gini, Entropy}

4.2 Parameters

Table 2 summarizes the main parameters used in the GP-based methods and in
the RF and XG methods. Each experiment is performed 30 times, with each
run using a different partition of the dataset in 70% training and 30% test.
The GP-based methods run for 100 generations. GP and M3GP use populations
of 500 individuals, while eGP initializes each subpopulation with 250 (or 500)
individuals, for a total of 500 (or 1000) trees + forests. Trees are initialized using
Ramped Half-and-Half, as suggested by Koza [17], while forests are initialized
in a similar fashion to M3GP, with only one tree per forest [22]. The arithmetic
operators of the function set are protected in the following way: when dividing a
value by zero, we return the numerator; when trying to square root or logarithm
a negative number, we return the number untouched. Therefore, the protection
is to ignore the presence of the operator whenever it raises an exception. No
constants are used. The fitness guiding the evolution is the RMSE in GP, and
the accuracy in M3GP and eGP. In order to obtain the accuracy from GP, the
predicted outputs are transformed into the closest numeric class labels. Selection
for breeding is made with Double Tournament [21] in GP and M3GP, and regular
tournament in eGP, size 5. Regarding genetic operators, the crossover/mutation
probabilities are 0.95/0.05 for GP, and 0.5/0.5 for both M3GP and eGP. This
means choosing between crossover and mutation with equal probability, but for
M3GP and eGP forests the specific type of crossover or mutation must then be
chosen, also with equal probability. Elitism guarantees that the best parent is
copied into the new population.

Regarding RF and XG (last three rows of the table), both were 10-fold cross-
validated for number of estimators and maximum depth, and RF was also cross-
validated for the impurity criterion.

4.3 Datasets

Table 3 describes the main characteristics of the datasets used in our experi-
ments. We have selected eight problems from various domains, all being binary
classification tasks, with a different number of features and observations.

158 N. M. Rodrigues et al.

Table 3. Number of features, observations and negative/positive ratio on each dataset.

Datasets BCW BRAZIL GAMETES HEART IONO PARKS PPI SONAR

Features 11 8 1000 13 33 23 3 61

Observations 683 4872 1600 270 351 195 31320 208

Neg/Pos Ratio 35/65 42/58 50/50 45/55 65/35 75/25 52/48 46/54

BCW, HEART, IONO, PARKS. Breast Cancer Wisconsin, Heart Disease,
Ionosphere and Parkinsons are datasets included in the UCI ML repository [20].

BRAZIL. Brazil is a dataset for detecting burned areas in satellite imagery,
containing the radiance values of a set of pixels from a Landsat 8 OLI image
over Brazil, and corrected unburned/burned labels [26].

GAMETES. GAMETES Epistasis 2-Way 1000atts 0.4H EDM-1 EDM-1 1 is
a simulated Genome-Wide Association Studies (GWAS) dataset generated using
the GAMETES tool [18], available in OpenML [12].

PPI. GRID/HPRD-unbal-HS is a dataset built from a Protein-Protein Interac-
tion benchmark of the human species [30], containing the ResnikMax semantic
similarity measure between each pair of proteins on three different semantic
aspects [27].

SONAR. sonar.all-data is a dataset for binary classification of sonar returns,
available in Kaggle [32].

5 Results

Figures 1, 2, 3, 4, 5, 6, 7 and 8 show boxplots of the training and test accuracy
obtained by all the methods on all the problems. For each problem there are
two whiskered boxes, the left one for training and the right one for test. On
the BRAZIL problem, five outliers were removed for visualization purposes, two
on training (90.97% and 67.92%, both for GP) and three on test (90.70% and
68.95% for GP, 77.29% for eGP-N5).

Between the two baselines, as expected M3GP is better than standard GP,
achieving significantly better training accuracy on all eight problems, and also
significantly better test accuracy on five of them (BRAZIL, IONO, PARKS, PPI
and SONAR). In fact, in all pairwise comparisons with the other methods in all
the problems, standard GP is significantly worse in 96% of the cases on training,
and 46% on test. The only exception where it performs significantly better is on
the HEART problem, against RF on the test data.

Regarding the two proposed methods eGP-N and eGP-W, a comparison
between them reveals that the weighted voting (eGP-W) does not seem to
improve performance over the normal voting (eGP-N), as the weighted vot-
ing resulted in one significantly worse training accuracy in the PARKS problem

Ensemble Genetic Programming 159

(and another borderline worse in IONO), all other results being equal to the
ones of normal voting. Also between eGP-N5 and eGP-W5 the weighted voting
resulted in one significantly worse training accuracy in the IONO problem, all
other results showing no significant differences.

Increasing the population size from 250 to 500 proved to be only marginally
beneficial, more to weighted than to normal voting. eGP-N5 achieved signifi-
cantly better results than eGP-N on four problems (GAMETES, IONO, PARKS
and SONAR) on training, and none on test, all other results being statistically
equal. eGP-W5 was significantly better than eGP-W on five problems (BCW,
HEART, IONO, PARKS and SONAR) on training, and on one problem (IONO)
on test, all other results equal.

Regarding the eGP methods without feature sampling (eGPn and eGPw), in
several cases they revealed to be significantly better than their feature sampling
counterparts (eGP-N and eGP-W), more often on training but also on two test
cases, on problems IONO and PARKS. Even when compared to the 500 indi-
vidual counterparts, they were often better on training and never worse on test.
The weighted voting did not improve or worsen the obtained accuracy.

When comparing the eGP methods with the M3GP baseline, we realize that
on training accuracy M3GP is better than all eGP methods on four problems
(GAMETES, HEART, PARKS and SONAR), worse than all eGP methods on
two problems (BCW and PPI), and on the remaining problems it is better or
equal to most eGP methods, except one case where it is worse (than eGPw,
on BRAZIL). On test accuracy M3GP is better than all eGP methods on four
problems (IONO, PARKS, PPI and SONAR), statistically the same as all eGP
methods on three problems (BCW, GAMETES, HEART), and on the remaining
problem M3GP is better than all eGP feature sampling methods and statistically
the same as eGPn and eGPw.

When comparing the eGP methods with the state-of-the-art RF and XG,
on training both are significantly better than practically all eGP methods on
all problems (except SONAR, where RF is significantly worse than all except
eGP-N and eGP-W). On test accuracy, on two problems (BCW and GAMETES)
there are few significant differences (XG is better than eGP-N and eGP-W), on
two other problems (IONO, PARKS) both RF and XG are better than all eGP
methods, and on the remaining problems RF is either the same (BRAZIL and
PPI), worse (HEART) or better (SONAR) in most cases, while XG is better in
all except a few cases (eGPn and eGPw on BRAZIL, eGP-N on HEART, with
no significant differences).

6 Discussion

In order to better understand how each of the 10 methods scored relatively
to each other, we have counted how many significantly better results each one
obtained among all 72 + 72 = 144 (training + test) pairwise comparisons on all
problems. Table 4 shows the counting (totals are the sum of all problems) and
ranks the methods according to the test totals (training + test in case of tie).

160 N. M. Rodrigues et al.

Fig. 1. Boxplot for the training (left) and test (right) accuracy of each method in the
BCW dataset.

Fig. 2. Boxplot for the training (left) and test (right) accuracy of each method in the
BRAZIL dataset. Outliers removed for visualization purposes: on training, 90.97% and
67.92%, both for GP; on test, 90.70% and 68.95% for GP, and 77.29% for eGP-N5.

Fig. 3. Boxplot for the training (left) and test (right) accuracy of each method in the
GAMETES dataset.

Ensemble Genetic Programming 161

Fig. 4. Boxplot for the training (left) and test (right) accuracy of each method in the
HEART dataset.

Fig. 5. Boxplot for the training (left) and test (right) accuracy of each method in the
IONO dataset.

Fig. 6. Boxplot for the training (left) and test (right) accuracy of each method in the
PARKS dataset.

162 N. M. Rodrigues et al.

Fig. 7. Boxplot for the training (left) and test (right) accuracy of each method in the
PPI dataset.

Fig. 8. Boxplot for the training (left) and test (right) accuracy of each method in the
SONAR dataset.

Fig. 9. Number of nodes of final models. For each problem, the four boxes are: GP
(black), M3GP (cyan), eGP-N + eGP-W + eGP-N5 + eGP-W5 all together (magenta),
and eGPn + eGPw together (blue). All outliers removed for visualization purposes.
(Color figure online)

Ensemble Genetic Programming 163

Table 4. Counting of how many significantly better results each method obtained
among all pairwise comparisons. The totals are the sum for all problems. Order of the
problems: BCW, BRAZIL, GAMETES, HEART, IONO, PARKS, PPI, SONAR.

Method Training Test

XG 3 + 9 + 9 + 7 + 9 + 9 + 8 + 9 =63 2 + 6 + 0 + 8 + 8 + 7 + 8 + 8 =47

M3GP 1 + 1 + 7 + 8 + 5 + 7 + 1 + 8 =38 0 + 6 + 0 + 1 + 7 + 7 + 8 + 8 =37

RF 9 + 6 + 8 + 9 + 8 + 8 + 9 + 1 =58 0 + 1 + 0 + 0 + 8 + 8 + 2 + 4 =23

eGPw 5 + 5 + 3 + 5 + 1 + 4 + 2 + 4 =29 0 + 1 + 0 + 1 + 2 + 1 + 1 + 0 = 6

eGPn 2 + 1 + 5 + 5 + 5 + 4 + 3 + 4 =29 0 + 1 + 0 + 1 + 2 + 0 + 1 + 0 = 5

eGP-N5 2 + 1 + 2 + 2 + 5 + 3 + 3 + 4 =22 0 + 1 + 0 + 1 + 2 + 0 + 1 + 0 = 5

eGP-W5 4 + 1 + 1 + 3 + 2 + 1 + 2 + 4 =18 0 + 1 + 0 + 1 + 2 + 0 + 1 + 0 = 5

eGP-N 2 + 1 + 1 + 1 + 2 + 1 + 2 + 1 =11 0 + 1 + 0 + 1 + 1 + 0 + 1 + 0 = 4

eGP-W 2 + 1 + 1 + 1 + 1 + 0 + 2 + 1 = 9 0 + 1 + 0 + 0 + 0 + 0 + 1 + 0 = 2

GP 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 = 0 0 + 0 + 0 + 1 + 0 + 0 + 0 + 0 = 1

These numbers confirm what had already been observed in the boxplots: (1) the
eGP methods, although better than standard GP, were not able to outperform
M3GP or the state-of-the-art RF and XG, (2) the eGP variants without feature
sampling (eGPn and eGPw) are better than the other eGP methods, and (3)
normal voting is generally better than weighted voting.

Not being an ensemble method, it is noteworthy how well M3GP scored, bet-
ter than RF and all other methods except XG. It is also important to empha-
size that the only methods where the running parameters were tuned by cross-
validation were RF and XG (see Sect. 4.2). Therefore, we have no doubt regard-
ing the superiority of M3GP over RF, and raise the question of whether it could
surpass XG had its parameters also been tuned.

Regarding the ranking of the eGP methods, it is possible that feature sam-
pling is not necessary for a GP ensemble, due to the feature selection that most
GP trees naturally do. We must also consider that the feature replacement per-
formed by eCrossover may have highly destructive effects on the fitness of the
offspring. Another thing to consider is the possible inadequacy of our certainty
measure to weight the voting of the ensembles.

Although the results of the eGP methods seem disappointing, they are no
doubt a viable alternative to standard GP, not only in terms of fitness but also
in terms of the size of the evolved models. Figure 9 shows the total number of
nodes of the best models found by the GP-based methods, grouped in four sets:
(1) GP only (black); (2) M3GP only (cyan); (3) eGP methods with feature sam-
pling (eGP-N+ eGP-W + eGP-N5+ eGP-W5 all together, magenta); (4) eGP
methods without feature sampling (eGPn + eGPw together, blue), results per
problem.

The variants with feature sampling exhibit values with much less dispersion
than the ones produced by GP (except on the IONO problem), and significantly

164 N. M. Rodrigues et al.

lower on three problems (BCW, GAMETES, HEART). This result becomes
even more important when we recall that GP used Double Tournament for bloat
control (see Sect. 4.2) and is composed of a single tree, while eGP did not use
any bloat control and is composed of an ensemble of trees. M3GP produced
the smallest solutions of all GP-based methods, however it also used Double
Tournament. Regarding the number of trees that form the evolved ensembles
(not shown), the eGP methods revealed a remarkable consistency among the
different problems, with different runs always using between 2(±1) and 13(±2)
trees on the best forest. This is in sharp contrast to the number of dimensions
used by M3GP, with some problems using as few as 1–4 (BCW) and others using
as many as 11–24 (SONAR), 13–30 (HEART) and 20–36 (GAMETES).

The GAMETES problem posed the largest difficulties to all the methods,
but special attention must be given to the results obtained by some of the eGP
methods, precisely the ones that scored worse in general: eGP-N, eGP-W, eGP-
N5, eGP-W5. Looking back at Fig. 3, we observe a large amount of outliers
of much higher accuracy than normal. On the test data, these are by far the
best results achieved, similar to the ones reported in [18], and only the four
mentioned eGP methods were able to achieve them. Although out of the scope
of this paper, these methods were indeed the only ones able to find, among the
1000 features of this problem, the right combinations that allowed such a big
“jump” in accuracy. Therefore, they deserve more investigation, despite their
apparent modest performance.

7 Conclusions and Future Work

We have developed a new GP method called Ensemble GP (eGP) and tested
it on eight binary classification problems from various domains, with a different
number of features and observations. Different variants of eGP were compared
to standard GP and M3GP baselines, and to the Random Forests and XGBoost
state-of-the-art methods. The results show that eGP consistently evolves smaller
and more accurate models than standard GP. M3GP and XGBoost were the
best methods overall, but on a particularly hard problem the eGP variants were
able to reach exceptionally good generalization results, way above all the other
methods.

As future work, we will investigate ways to improve eGP in different fronts,
making it more competitive with M3GP and XGBoost while maintaining the
characteristics that granted its current success. For example, bloat control and
some parameter tuning are two elements that other methods are benefiting from,
and that we will incorporate also in eGP. Different voting schemes may also
prove beneficial, as well as alternative ways to sample features and observations.
Additionally, we will also work towards extending eGP in order to give it the
ability to address also regression problems and multiclass classification problems.

Ensemble Genetic Programming 165

Acknowledgement. This work was partially supported by FCT through funding of
LASIGE Research Unit UIDB/00408/2020 and projects PTDC/CCI-INF/29168/2017,
PTDC/CCI-CIF/29877/2017, DSAIPA/DS/0022/2018, PTDC/ASP-PLA/28726/2017
and PTDC/CTA-AMB/30056/2017.

References

1. Okayama,de Araújo Padilha, C.A., Barone, D.A.C., Neto, A.D.D.: A multi-level
approach using genetic algorithms in an ensemble of least squares support vector
machines. Knowl.-Based Syst. 106, 85–95 (2016). https://doi.org/10.1016/j.knosys.
2016.05.033

2. Bhowan, U., Johnston, M., Zhang, M., Yao, X.: Evolving diverse ensembles using
genetic programming for classification with unbalanced data. IEEE Trans. Evol.
Comput. 17(3), 368–386 (2013). https://doi.org/10.1109/TEVC.2012.2199119

3. Brameier, M., Banzhaf, W.: Evolving teams of predictors with linear genetic pro-
gramming. Genet. Program Evolvable Mach. 2(4), 381–407 (2001). https://doi.
org/10.1023/A:1012978805372

4. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.
1023/A:1010933404324

5. Cantu-Paz, E., Kamath, C.: Inducing oblique decision trees with evolutionary algo-
rithms. IEEE Trans. Evol. Comput. 7(1), 54–68 (2003)

6. Chandra, A., Yao, X.: Ensemble learning using multi-objective evolutionary algo-
rithms. J. Math. Model. Algorithms 5(4), 417–445 (2006). https://doi.org/10.1007/
s10852-005-9020-3

7. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. ArXiv
abs/1603.02754 (2016)

8. Coelho, A.L.V., Fernandes, E., Faceli, K.: Multi-objective design of hierarchical
consensus functions for clustering ensembles via genetic programming. Decis. Sup-
port Syst. 51(4), 794–809 (2011). https://doi.org/10.1016/j.dss.2011.01.014

9. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F.
(eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-45014-9 1

10. Escalante, H.J., Acosta-Mendoza, N., Morales-Reyes, A., Gago-Alonso, A.: Genetic
programming of heterogeneous ensembles for classification. In: Ruiz-Shulcloper,
J., Sanniti di Baja, G. (eds.) CIARP 2013. LNCS, vol. 8258, pp. 9–16. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-41822-8 2

11. Gagné, C., Sebag, M., Schoenauer, M., Tomassini, M.: Ensemble learning for free
with evolutionary algorithms? In: Proceedings of the 9th Annual Conference on
Genetic and Evolutionary Computation (GECCO 2007), pp. 1782–1789. ACM,
New York (2007). https://doi.org/10.1145/1276958.1277317

12. Gijsbers,P.:Gametes epistasis 2-way 1000atts 0.4h edm-1 edm-1 1(2017).https://
www.openml.org/d/40645

13. Iba, H.: Bagging, boosting, and bloating in genetic programming. In: Proceedings of
the 1st Annual Conference on Genetic and Evolutionary Computation (GECCO
1999), vol. 2, pp. 1053–1060. Morgan Kaufmann Publishers Inc., San Francisco
(1999). http://dl.acm.org/citation.cfm?id=2934046.2934063

14. Ingalalli, V., Silva, S., Castelli, M., Vanneschi, L.: A multi-dimensional genetic pro-
gramming approach for multi-class classification problems. In: Nicolau, M., et al.
(eds.) EuroGP 2014. LNCS, vol. 8599, pp. 48–60. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44303-3 5

https://doi.org/10.1016/j.knosys.2016.05.033
https://doi.org/10.1016/j.knosys.2016.05.033
https://doi.org/10.1109/TEVC.2012.2199119
https://doi.org/10.1023/A:1012978805372
https://doi.org/10.1023/A:1012978805372
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/s10852-005-9020-3
https://doi.org/10.1007/s10852-005-9020-3
https://doi.org/10.1016/j.dss.2011.01.014
https://doi.org/10.1007/3-540-45014-9_1
https://doi.org/10.1007/3-540-45014-9_1
https://doi.org/10.1007/978-3-642-41822-8_2
https://doi.org/10.1145/1276958.1277317
https://www.openml.org/d/40645
https://www.openml.org/d/40645
http://dl.acm.org/citation.cfm?id=2934046.2934063
https://doi.org/10.1007/978-3-662-44303-3_5

166 N. M. Rodrigues et al.

15. Islam, M.M., Yao, X.: Evolving artificial neural network ensembles. IEEE Comput.
Intell. Mag. 3, 31–42 (2008)

16. Johansson, U., Lofstrom, T., Konig, R., Niklasson, L.: Building neural network
ensembles using genetic programming. In: The 2006 IEEE International Joint Con-
ference on Neural Network Proceedings, pp. 1260–1265, July 2006. https://doi.org/
10.1109/IJCNN.2006.246836

17. Koza, J.R.: Genetic Programming (1992)
18. La Cava, W., Silva, S., Vanneschi, L., Spector, L., Moore, J.: Genetic programming

representations for multi-dimensional feature learning in biomedical classification.
In: Squillero, G., Sim, K. (eds.) EvoApplications 2017. LNCS, vol. 10199, pp. 158–
173. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55849-3 11

19. Langdon, W.B., Buxton, B.F.: Genetic programming for combining classifiers. In:
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO
2001), pp. 66–73. Morgan Kaufmann (2001)

20. Lichman, M.: UCI Machine Learning Repository (2013). https://archive.ics.uci.
edu/ml/index.php

21. Luke, S., Panait, L.: Fighting bloat with nonparametric parsimony pressure.
In: Guervós, J.J.M., Adamidis, P., Beyer, H.-G., Schwefel, H.-P., Fernández-
Villacañas, J.-L. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 411–421. Springer, Hei-
delberg (2002). https://doi.org/10.1007/3-540-45712-7 40

22. Muñoz, L., Silva, S., Trujillo, L.: M3GP – multiclass classification with GP. In:
Machado, P., et al. (eds.) EuroGP 2015. LNCS, vol. 9025, pp. 78–91. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-16501-1 7

23. Muñoz, L., Trujillo, L., Silva, S., Castelli, M., Vanneschi, L.: Evolving multidi-
mensional transformations for symbolic regression with M3GP. Memetic Comput.
11(2), 111–126 (2018). https://doi.org/10.1007/s12293-018-0274-5

24. de Oliveira, D.F., Canuto, A.M.P., de Souto, M.C.P.: Use of multi-objective genetic
algorithms to investigate the diversity/accuracy dilemma in heterogeneous ensem-
bles. In: 2009 International Joint Conference on Neural Networks, pp. 2339–2346
(2009)

25. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming.
Lulu Enterprises, UK Ltd., Essex (2008)

26. Silva, S., Vanneschi, L., Cabral, A.I., Vasconcelos, M.J.: A semi-supervised genetic
programming method for dealing with noisy labels and hidden overfitting. Swarm
Evol. Comput. 39, 323–338 (2018). https://doi.org/10.1016/j.swevo.2017.11.003

27. Sousa, R.T., Silva, S., Pesquita, C.: Evolving knowledge graph similarity for super-
vised learning in complex biomedical domains. BMC Bioinform. 21, 6 (2020).
https://doi.org/10.1186/s12859-019-3296-1

28. Vanneschi, L.: An introduction to geometric semantic genetic programming. In:
Schütze, O., Trujillo, L., Legrand, P., Maldonado, Y. (eds.) NEO 2015. SCI, vol. 663,
pp. 3–42. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-44003-3 1

29. Veeramachaneni, K., Arnaldo, I., Derby, O., O’Reilly, U.M.: FlexGP. J. Grid Com-
put. 13, 391–407 (2015)

30. Yu, J., Guo, M., Needham, C.J., Huang, Y., Cai, L., Westhead, D.R.: Simple
sequence-based kernels do not predict protein-protein interactions. Bioinformatics
26(20), 2610–2614 (2010). https://doi.org/10.1093/bioinformatics/btq483

31. Zhang, B., Joung, J.G.: Enhancing robustness of genetic programming at the
species level. In: Genetic Programming Conference (GP 1997), pp. 336–342. Mor-
gan Kaufmann (1997)

32. Zhang, S.: sonar.all-data (2018). https://www.kaggle.com/ypzhangsam/sonarall
data

https://doi.org/10.1109/IJCNN.2006.246836
https://doi.org/10.1109/IJCNN.2006.246836
https://doi.org/10.1007/978-3-319-55849-3_11
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
https://doi.org/10.1007/3-540-45712-7_40
https://doi.org/10.1007/978-3-319-16501-1_7
https://doi.org/10.1007/s12293-018-0274-5
https://doi.org/10.1016/j.swevo.2017.11.003
https://doi.org/10.1186/s12859-019-3296-1
https://doi.org/10.1007/978-3-319-44003-3_1
https://doi.org/10.1093/bioinformatics/btq483
https://www.kaggle.com/ypzhangsam/sonaralldata
https://www.kaggle.com/ypzhangsam/sonaralldata

SGP-DT: Semantic Genetic Programming
Based on Dynamic Targets

Stefano Ruberto1(B), Valerio Terragni2, and Jason H. Moore1

1 Institute for Biomedical Informatics, University of Pennsylvania,
Philadelphia, USA

stefano.ruberto@pennmedicine.upenn.edu, jhmoore@upenn.edu
2 Faculty of Informatics, Universitá della Svizzera italiana USI, Lugano, Switzerland

valerio.terragni@usi.ch

Abstract. Semantic GP is a promising approach that introduces seman-
tic awareness during genetic evolution. This paper presents a new Seman-
tic GP approach based on Dynamic Target (SGP-DT) that divides the
search problem into multiple GP runs. The evolution in each run is
guided by a new (dynamic) target based on the residual errors. To obtain
the final solution, SGP-DT combines the solutions of each run using lin-
ear scaling. SGP-DT presents a new methodology to produce the off-
spring that does not rely on the classic crossover. The synergy between
such a methodology and linear scaling yields to final solutions with low
approximation error and computational cost. We evaluate SGP-DT on
eight well-known data sets and compare with ε-lexicase, a state-of-the-
art evolutionary technique. SGP-DT achieves small RMSE values, on
average 23.19% smaller than the one of ε-lexicase.

Keywords: Semantic GP · Genetic Programming · Natural selection ·
Symbolic Regression · Residuals · Linear scaling · Crossover · Mutation

1 Introduction

Recently, researchers successfully applied Semantic methods to Genetic Pro-
gramming (SGP) on different domains, showing promising results [1–3]. While
the classic GP operators (e.g., selection, crossover and mutation) act at the syn-
tactic level, blindly to the semantic (behavior) of the individuals (e.g., programs),
the key idea of SGP is to apply semantic evaluations [1]. More specifically, clas-
sic GP operators ignore the behavioral characteristic of the offspring, focusing
only on improving the fitness of the individuals. Differently, SGP uses a richer
feedback during the evolution that incorporates semantic awareness, which has
the potential to improve the power of genetic programming [1].

In this paper, we are considering the Symbolic Regression domain, and thus
assuming the availability of training cases (defined as m pairs of inputs and
desired output). Following the most popular SGP approaches [1], we intend
“semantics” as the set of output values of a program on the training cases [4].
c© Springer Nature Switzerland AG 2020
T. Hu et al. (Eds.): EuroGP 2020, LNCS 12101, pp. 167–183, 2020.
https://doi.org/10.1007/978-3-030-44094-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44094-7_11&domain=pdf
https://doi.org/10.1007/978-3-030-44094-7_11

168 S. Ruberto et al.

Such an approach obtains a richer feedback during the evolution relying on the
evaluation of the individuals on the training cases. More formally, the semantics
of an individual I is a vector sem(I) = 〈y1, y2, · · · , ym〉 of responses to the m
inputs of the training cases. Let sem(ŷ) = 〈ŷ1, ŷ2, · · · , ŷm〉 denote the semantic
vector of the target (as defined in the training set), where ŷ1, ŷ2, · · · , ŷm are
the desired outputs. SGP defines semantic space [1] with a metric that char-
acterizes the distance between the semantic vectors of the individuals sem(I)
and the target sem(ŷ). SGP often relies on such a distance to compute the fit-
ness score, inducing a unimodal fitness landscape, which avoids local optima by
construction [5].

The effectiveness of SGP depends on the availability of GP operators that
can move in the semantic space towards the global optimum. An example of
semantic operator is the geometric crossover proposed by Moraglio et al. [5]. It
produces an offspring with a semantic vector that lies on the line connecting
the parents in the semantic space. Thus, it guarantees that the offspring is no
worse than the worst of the parents [5]. However, such crossover operator has
the major drawback of producing individuals with an exponentially increasing
size (i.e., exponential bloat) [1,5]. To avoid the exponential bloat, researchers
proposed variants of this operator that minimize bloating [2] but at the cost of
dropping the important guarantee of non-worsening crossover operations.

In this paper, we present a new SGP approach called SGP-DT (Semantic
Genetic Programming based on Dynamic Targets) that minimizes the expo-
nential bloat problem and at the same time gives a bound on the worsening of
the offspring. SGP-DT divides the search problem into multiple GP runs. Each
run is guided by a different dynamic target, which SGP-DT updates at each run
based on the residual errors of the previous run. Then, SGP-DT combines the
results of each run into a “optimized” final solution.

In a nutshell, SGP-DT works as follows. SGP-DT runs the GP algorithm (see
Algorithm 1) a fixed number of times (Next) depending on the available budget.
We call these runs external iterations. As opposed to the internal iterations
(i.e., generations) that the GP algorithm performs to evolve the individuals.
Each GP run performs a fixed number of internal iterations and returns a model
(i.e., the best solution) that we call partial model. The next external iteration
runs the GP algorithm with a modified training set, where SGP-DT replaces
the m desired outputs ŷi = 〈ŷ1, ŷ2, · · · , ŷm〉 with the residual errors of the par-
tial model returned by the previous iteration. That is, the difference between
sem(Ii) and sem(ŷi−1), where Ii is the partial model at the ith iteration. Thus,
at each external iteration, the fitness function evaluates differently the individu-
als (because the fitness functions predicates on different training sets). As such,
each partial model focuses on a different portion of the problem, the one that
most influences the fitness value. As a result, our approach leads to dynamic
targets that change at each external iteration incorporating the semantic infor-
mation. SGP-DT obtains the final solution after Next iterations with a linear
combination in the form

∑Next
i=0 ai + bi · Ii, where ai and bi are computed with

the well-known linear scaling [6]. There is a key advantage of using linear scaling.

SGP-DT: Semantic Genetic Programming Based on Dynamic Targets 169

Keijzers showed that linear scaling gives a bound on the error of those generated
individuals that are linear scaled [6]. Therefore, SGP-DT entails a bound on the
worsening of the offspring at each internal and external iteration.

To reduce the exponential bloat problem, SGP-DT performs the internal
GP iterations relying on classic mutation operators only. It does not rely on
any form of crossover, neither geometric nor classic, and thus avoiding their
fundamental limitations. Geometric crossover leads to exponential bloat and
classic crossover decreases the chance to obtain a fitness improvement because
it exchanges random functionalities at random points [7]. Despite the absence
of crossovers, SGP-DT implicitly recombines different functionalities, similarly
to a geometric crossover [5]. This is because, each partial model focuses on a
different characteristic of the problem that the fitness function recognized as
important (at that iteration). This makes the search more efficient because the
evolution focuses on a single characteristic at a time leaving unaltered other
(already optimized) characteristics.

We evaluated our approach on eight well-known regression problems. We
compared SGP-DT with two baselines: lasso a least square regression technique
by Efron et al. [8]; and ε-lexicase a state-of-the-art SGP approach by La Cava
et al. [9]. The results show that our approach obtains a median RMSE on 50
runs that is, on average, 51.47% and 23.19% smaller than the one of lasso and
ε-lexicase, respectively. Moreover, SGP-DT requires as much as 9.26× fewer
tree computations than ε-lexicase (4.81× on average).

The remainder of this paper is organized as follows. Section 2 describes our
approach. Section 3 discusses the related work. Section 4 reports our experimen-
tal evaluation and discusses the results. Section 5 concludes the paper.

2 Methodology

Algorithm 1 overviews the SGP-DT approach. Given the values of the indepen-
dent (x) and dependent (ŷ) variables of the training cases, and the number
of external (Next) and internal (Nint) iterations, it returns the final solution
(finalModel).

SGP-DT considers tree-like individuals with the usual non-terminal sym-
bols: +,−, ·, / (the protected division), ERC (between −1 and 1). In addition,
SGP-DT considers the functions Min and Max that returns the minimum and
maximum between two numbers, respectively. The rationale of adding the two
latter symbols is to inject discontinuity to make the linear combinations more
adaptable. Although also the protected division adds discontinuity in the form
of asymptotes, such discontinuity often promotes overfitting [6,10]. With Min
and Max functions, we introduce valid discontinuities alternatives that do not
suffer from the limitation of the protected division.

Algorithm 1 holds out a portion of the training cases for validation
(lines 1–3). SGP-DT will use such validation sets to construct the final solution
(line 22). Lines 4–5 initialize the current target with ŷ and the lists of the best
models with the empty list. Line 6 starts the external loop, which re-assigns P

170 S. Ruberto et al.

Algorithm 1: SGP-DT

input : x : values of the independent variables of the training cases
ŷ : values of the dependent variables of the training cases
Next : number of external iterations
Nint : number of internal iterations

output : finalModel : final regression model

1 〈xval, ŷval〉 ← split(x, ŷ)
2 x ← {x\xval}
3 ŷ ← {ŷ\ŷval}
4 target ← ŷ
5 models ← ∅
6 for ext-iter 1 . . . Next do
7 P ← get-random-initial-population()
8 for int-iter 1 . . . Nint do
9 for each I ∈ P do

10 Ils ← compute-ls(I, x, target) // linear scaling

11 fitness(I) ← σ2(sem(Ils(x)) − target) // σ2 variance

12 I�
ls ← get-best-individual(P)

13 error ← target − sem(I�
ls(x))

14 add I�
ls to models

15 P ′ ← ∅
16 add elite(P) to P ′

17 while P ′ is not full do
18 I ← tournament-selection(P)
19 add mutate(I) to P ′

20 P ← P ′

21 target ← error // update the target

22 bestModels ← validate-and-select(xval, ŷval, models) // best MSE models on val

23 finalModel ← ∑
model∈bestModels model

24 return finalModel

to a fresh randomly generated population with the ramped-half-and-half app-
roach (function get-random-initial-population of Algorithm 1). Starting
every external iteration with a new population alleviates the overfitting prob-
lem. Indeed, the syntactic structures of already evolved individuals can be too
complex to adapt to a new fitness landscape or to generalize on unseen data. To
further reduce overfitting and the cost of fitness evaluation, SGP-DT generates
the initial population with individuals with low complexity (i.e., a few nodes).

At line 8, SGP-DT starts the Nint internal iterations, which resembles the
classic GP but with the addition of linear scaling and the absence of crossover.
Before line 11 computes the fitness of each individual I in P, line 10 performs
the linear scaling of I [6]. Linear scaling has the advantage of transforming
the semantic of individuals so that their potential fit with the current target is
immediately given: we do not need to wait for GP to produce a partial model that
reaches the same result [6]. And thus, linear scaling reduces the number of both
external and internal iterations. Fewer iterations means populations with simpler

SGP-DT: Semantic Genetic Programming Based on Dynamic Targets 171

structural complexity and less computational cost. Reducing the complexity of
the solutions may reduce overfitting [11].

Linear scaling has another important property: it gives an upper bound on the
error [6]. Recall that SGP-DT considers errors on dynamic targets, which change
at each iteration (at the first iteration the dynamic target is ŷ). To exploit such
a situation, we propose a fitness function based on this upper bound. Following
Keijzer [6], we compute the linear scaling of an individual I as follows:

Ils = a + b · I (1)

where a = ŷ − b · y and b =
∑n

i=1[(ŷi − ŷ) · (yi − y)]
∑n

i=1[(yi − y)2]
(2)

We define the following fitness function of an individual I:

fitness(I) = σ2(sem(Ils(x)) − ŷ) (3)

The rationale of this function is that the Mean Square Error (MSE) of Ils has
the variance (σ2) of the current target as an upper bound [12]:

MSE =
∑m

i=0(yi − ŷi)2

m
≤ σ2(ŷ) (4)

where m is the number of training cases (y).
At each new external iteration the residual error becomes the new target
(line 21).

target = ŷ − sem(I�
ls(x)) (5)

where sem(I�
ls(x)) is the evaluation of the best individual at the current iteration,

which we call partial model.
The inequality 4 does not guarantee that the external iterations converge

to a lower MSE because we do not know if σ2(error) ≤ σ2(ŷ), where error =
target − sem(I�

les(x)). Thus, by optimizing the variance of the error shown in
Eq. 3, we act directly on the minimization of the upper bound, so that the next
external iteration can benefit from a lower bound.

At lines 17–19, Algorithm 1 runs a classic GP algorithm without crossovers,
using only mutations. We use a tree-based mutation operator because SGP-DT
uses trees as syntactic structures for the individuals. The operator randomly
generates a subtree from a randomly chosen node. To increase the synergy with
linear scaling, we set two constraints during mutation. First, the node selec-
tion is biased towards the leaves of the tree, so that the mutated tree does not
diverge too much from the original semantic (locality principle). Producing a
mutation that is close to the original semantic of the tree preserves the valid-
ity of the selection performed after the linear scaling. And thus, we only allow
minor changes to improve the fitness. Second, for the same reason, the mutation is
biased towards replacing the selected node with a sub-tree of limited depth. Note
that, we decided not to limit the maximum size (number of nodes in the tree) or

172 S. Ruberto et al.

depth of an individual. By doing so, GP can grow and choose the right solution
complexity for the problem at hand. These two constraints help us to mitigate
the overfitting and bloat problem without preventing the SGP-DT to effectively
search for competitive individuals. As linear scaling helps GP to find useful indi-
viduals (thanks to the upper bound). Moreover, additional external iterations
will further refine other aspects of the problem not yet addressed.

We decided to exclude the classic crossover operator in the internal iterations,
as several researchers argued about the effectiveness of crossover in relation to the
problem of modularity of GP [13]. There is a consensus that an effective GP algo-
rithm needs a crossover that preserves the semantics of the parts swapped among
individuals respecting the boundaries of a useful functionality within the individ-
ual’s structure [2,7,14]. According to McPhee et al. [4] and Ruberto et al. [11] most
classic crossover operators do not obtain a meaningful variation (or any varia-
tion at all) in the program semantics, when dealing with Boolean and real value
symbolic regression domains. The main issue is that classic crossover operators
do not preserve a common context [4] among the building blocks of the indi-
viduals exchanged during crossover, which is important to increase the chance
of obtaining a semantically meaningful offspring [14]. The idea of determining a
common context has been introduced by Poli and Langdon with the one-point
crossover operator [7]. But how to identify a meaningful common context among
trees structures is still an open problem.

Instead, SGP-DT exchanges functionalities among individuals by relying on
the linear combination of the partial models (i.e., the fittest individuals at each
external iteration, line 12 Algorithm1) and on a specific mechanism for selecting
and mutating the individuals during the GP runs. In light of this, we exclude the
crossover operators in the presence of these semantic recombination alternatives.
To have an effective exchange of functionalities among individuals we need to:
(i) preserve building blocks semantics (ii) preserve the context of building blocks
(iii) make the exchange of functionalities directed towards producing new and
interesting semantics. SGP-DT achieves these objectives by (i) mapping each
building block to a single partial model (this would avoid arbitrary fragmenta-
tions of the blocks); (ii) preserving the context of the building blocks because in
our scenario the partial models obtained at previous iterations represent the con-
text; and (iii) using mutation only, which promotes diversity in the population.
Despite the absence of crossover, SGP-DT exchanges building blocks because
each partial model is a building block. Differently from the classical crossover
that exchanges random fragments, SGP-DT obtains the final model by summing
the linear scaled partial models. This approach makes the exchange of function-
alities more effective, as each partial model (building block) characterizes a specif
functionality.

The for-loop at line 6 terminates when SGP-DT concludes all external iter-
ations. We decide not to introduce a different stopping criterion based on the
stagnation of fitness improvement. This is because it is difficult to predict if
the fitness will not escape stagnation in future iterations. After all the external
iterations, the function validate-and-select at line 22 of Algorithm 1 returns

SGP-DT: Semantic Genetic Programming Based on Dynamic Targets 173

the partial models that will be combined into the final solution. Such models are
selected as follows. The validation takes in input the ordered sequence of best
individuals (models) collected after each internal iteration (line 14 Algorithm1)
and the validation sets (xval and ŷval) obtained at line 1. Note that, SGP-DT
saves the computed linear scaling parameters (a and b Eq. (2)) at line 10 and do
not recompute them during the validation and test phases. Internally, the valida-
tion scans the sequence models and progressively computes the MSE evaluating
the individuals on the validation set to find the point in the sequence where MSE
is the smallest. SGP-DT finds the smallest MSE using the rolling mean of the
validation set error at a fixed window size to minimize the short-term fluctua-
tions. The function validate-and-select returns the sequence (bestModels) of
the partial models that were produced before the smallest MSE. Such sequence
represents the transformation chain of the dynamic targets. In case SGP-DT
obtained the model with the smallest MSE during the internal iterations, it
appends this individual at the end of bestModels. Line 23 of Algorithm1 com-
putes the final model by summing all the models in bestModels.

3 Related Work

This section divides the related work of SGP-DT in three groups. Each group
refers to techniques that are relevant to a main characteristic of SGP-DT: (i)
having dynamic or semantic objectives, (ii) using linear combinations or geomet-
ric operators, (iii) using an iterative approach on residual errors.

Dynamic or Semantic Objectives. The GP techniques proposed by Krawiec
et al. [15] and Liskowski et al. [16] present semantic approaches that consider
interactions between individuals and the training set. These approaches cluster
such interactions to derive new targets for a multi-objective GP.

Otero et al. proposed an approach with dynamic objectives that combines
intermediate solutions in a final Boolean tree [17]. This technique progressively
eliminates from the training cases the ones perfectly predicted from the current
intermediate solution and operates exclusively in a Boolean domain.

Krawiec and O’Reilly [18] proposed a GP approach that explicitly models
the semantic behavior of a solution during the computation of training cases.

BPGP by Krawiec and O’Reilly [18] explicitly models the semantic behavior
of a solution during the computation of training cases. BPGP proposes an oper-
ator that mutates an individual by replacing a randomly selected sub-tree with a
random one. According to Krawiec and O’Reilly this “mutation-like” [18] opera-
tor is intended as a “form of crossover”. We think that this is similar in principle
to our design choice of dropping crossover altogether and instead choosing among
mutated alternatives in the population. However, Krawiec and O’Reilly still use
the traditional crossover alongside with this new mutation [18].

We differ from all of these techniques because we build our solution pro-
gressively crystallizing the intermediate achievements. Most of these approaches
use auxiliary objectives during their search and use a single GP run. Conversely,
SGP-DT uses a non-predetermined number of objectives in subsequent GP runs.

174 S. Ruberto et al.

The approach of Otero et al. [17] is the only one that progressively builds the
solution but it uses a strategy that works for Boolean trees only.

Linear Combinations. MRGP [19] uses multiple linear regression to combine
the semantics of sub-programs (subtrees) to form the semantic of an individual.

Ruberto et al. proposed ESAGP [20], which derives the target semantics by
relying on a specific linear combination between two “optimally aligned” individ-
uals in the error space. Leveraging such geometric alignment property, Vanneschi
et al. proposed NA-GP [21], which performs linear combinations between two
aligned chromosomes belonging to the same individual.

Gandomi et al. proposed MGGP [22], where each individual is composed of
multiple trees. MGGP produces the final solution with a linear combination of
the tree’s semantics, deriving the values of the coefficients from the training data
with a classic least squares method. However, the number of trees in the linear
combination is fixed and the fitness landscape is not dynamic.

Moraglio et al. proposed the Geometric Semantic GP (GSGP) crossover oper-
ator [5], which uses linear combinations to guarantee offspring that is not worse
than the worst of the parents. Unfortunately, GSGP suffers from the exponential
bloat problem and requires many generations to converge, especially if the target
is not in the convex hull spanned by the initial population [5].

Notably, all the approaches described in this second group use a single run
to search for the final solution. Differently from SGP-DT, they fix the number
of components in advance (the only exception is GSGP but it suffers from the
exponential bloat problem [5]). In addition, all of the techniques in the first and
second groups have a static target, and thus they continuously evolve a popula-
tion without re-initialization. This limits the diversity of the genetic alternatives
when the population converges at later generations. Conversely, SGP-DT has a
dynamic target and it starts with a fresh population at each internal iteration
(see Algorithm 1).

Iterative Approaches Based on Residual Errors. Sequential Symbolic
Regression (SSR) [23] uses the crossover operator GSGP [5] to iteratively trans-
form the target using a semantic distance that resembles the classical residual
approach. However, no statistical difference (on the errors) from the classical
GP approach was found [23]. Differently from SGP-DT, SSR considers residu-
als that do not optimize the linear combinations with a least square method.
Although SSR overcomes the exponential bloat, it weakens the advantage of
using residuals.

Medernach et al. presented the wave technique [24,25] that similarly to
SGP-DT, executes multiple GP runs using the same definition of residual errors
(Eq. 5) and obtains the final model by summing the intermediate models. wave
produces a sequence of short and heterogeneous GP runs, obtained by “fuzzing”
the settings of system parameters (e.g, population size, number of internal itera-
tions) and by alternating the use of linear scaling. However, SGP-DT drastically
differs from wave. The heterogeneity nature of wave emulates this dynamic
evolutionary environment by simulating periods of a rapid change [24,25].
The effectiveness of such an approach requires specif combinations of system

SGP-DT: Semantic Genetic Programming Based on Dynamic Targets 175

parameters that converges to a fitter solution. Due to the huge space of possible
system parameters, finding such combinations often requires a large number of
iterations [24,25]. Conversely, SGP-DT steers the evolution with a novel app-
roach that gradually evolves the building blocks of the final solution without
exploring the huge space of possible combinations of system parameters.

All the techniques of this group use residuals differently from SGP-DT. More-
over, they rely on the classic or geometric crossover. Conversely, one of the key
novel aspects of SGP-DT is to avoid crossover altogether.

Table 1. Data sets of regression problems.

Name # attributes # instances Source Name # attributes # instances Source

airfoil 5 1,503 UCI [26] housing 14 506 UCI [26]

concrete 8 1,030 tower 25 3,135

enc 8 768 yacht 6 309

enh 8 768 uball5d 5 6,024 [27]

4 Evaluation

Data Sets. We performed our experiments on eight well-known data sets of
regression problems that have been used to evaluate most of the techniques
discussed in Sect. 3 [9,19,21,22,24,25]. Table 1 shows the name, number of
attributes, and number of instances for each data set. For uball5d1 we followed
the same configuration used by Cava et al. [28].

4.1 Methods

We compared SGP-DT with two techniques (lasso [8] and ε-lexicase [9]) and
two variants of SGP-DT (DT-EM and DT-NM).

LASSO. Both SGP-DT and lasso [8] use the least square regression method
to linearly combine solution components. More specifically, lasso incorporates
a regularization penalty into least-squares regression using an �1 norm of the
model coefficients and uses a tuning parameter λ to specify the weight of this
regularization [8]. We relied on the lasso implementation by Efron et al. [8],
which automatically chooses λ using cross-validation.

ε-LEXICASE. This evolutionary technique adapts the lexicase selection oper-
ator for continuous domains [9]. The idea behind ε-lexicase selection is to
promote candidate solutions that perform well on unique subsets of samples in
the training set, and thereby maintain and promote diverse building blocks of
solutions [9]. Each parent selection begins with a randomized ordering of both

1 f(x) = 10/(5 +
∑5

i=1(xi − 3)2).

176 S. Ruberto et al.

the training cases and the solutions in the selection pool (i.e., population). Indi-
viduals are iteratively removed from the selection pool if they are not within
a small threshold (ε) of the best performance among the pool on the current
training sample. The selection procedure terminates when all but one individual
is left in the pool, or until all individuals have tied performance. In the latter
case, a random one is chosen. The recent study of Orzechowski et al. shows that
ε-lexicase [9] outperforms many GP-inspired algorithms [29]. We relied on the
publicly available implementation of ε-lexicase, ellyn2, which uses stochastic
hill climbing to tune the scalar values of each generated individual. It also relies
on a 25% validation hold-out from the training data to choose the final model
from a bi-dimensional Pareto archive, which ellyn constantly updates during the
evolution. The two dimensions are the number of nodes and the fitness.

DT-EM. We considered a variant of SGP-DT (called DT-EM) with a modified
fitness function as the only difference with SGP-DT:

fitness(I) = MSE =
∑m

i=0(yi − ŷi)2

m
(6)

While the original fitness of SGP-DT minimizes the upper bound of the MSE
in Eq. 3, this function directly minimizes the MSE in Eq. 6. This variant helps
to evaluate the impact of a direct error minimization with respect to a more
qualitative and indirect measure of the error, such as the variance (σ2).

DT-NM. We considered another variant, called DT-NM, that excludes the Min
and Max non-terminal symbols (as the only difference with SGP-DT), and thus
evaluating the advantage of different discontinuity types during the evolution.

4.2 Evaluation Setup

Following the setup of Orzechowski et al. [29] for ε-lexicase, we set for all the
four GP techniques (SGP-DT, ε-lexicase, DT-EM, and DT-NM) a population
size of 1,000 and a budget of 1,000 generations. We ran 50 trials for every tech-
nique on each data set using 25% of the data for testing and 75% for training.

SGP-DT and its two variants share the same configuration: We divided the
1,000 generations in 20 external iterations (Next = 20), and thus the number of
internal iterations (Nint) is 50. We used ramped half&half initialization up to a
maximum depth of four (function get-random-initial-population at line 7
of Algorithm 1). The probability of mutation is 100% and the maximum depth
of the sub-trees generated by the mutation operators is five. The probability of
a sub-tree mutation happening at the leaf level is 70%. We set no limits on the
number of nodes in the trees and on the depth of the trees. We set the Elitism
to keep only the best individual at each internal iteration (function elite at
line 16 of Algorithm1). We obtained the validation set by extracting 10% of the
training cases (function split at line 1 of Algorithm 1). The fixed window size
for the rolling-mean is 20. We chose this configuration after a preliminary tuning
phase and kept uniform for all the eight data sets.
2 https://github.com/EpistasisLab/ellyn.

https://github.com/EpistasisLab/ellyn

SGP-DT: Semantic Genetic Programming Based on Dynamic Targets 177

4.3 Results and Discussion

Errors’ Comparison. Following previous work we use the Root Mean Square
Error (RMSE) to evaluate the final solution with the test set. The first five
columns of Table 2 show for each technique the median RMSE of the 50 trials.
The last four columns of Table 2 indicate the percentage decrease of the RMSE
medians with respect to the competitor techniques3. A positive percentage value
means that the RMSE median of SGP-DT is lower (i.e., better), while a negative
value means a worst median RMSE. Figure 1 shows the box plots of the RMSE
values of the 50 trials4. When comparing the RMSE values we performed a non-
parametric pairwise Wilcoxon rank-sum test with Holm correction for multiple-
testing, with a confidence level of 95% (p-value <0.05).

Table 2. Median RMSE of the 50 trials.

Data setRoot mean square error (RMSE) Median RMSE % decrease of SGP-DT over:

SGP-DT lasso ε-lexicaseDT-EMDT-NM lasso ε-lexicaseDT-EM DT-NM

airfoil 2.4634 4.8484 3.6505 2.5643 2.9237 49.19% 32.52% 3.94% 15.75%

concrete 6.5123 10.5383 7.0707 6.4476 6.4132 38.20% 7.90% −1.00% −1.55%

enc 1.4838 3.2498 1.8647 1.4993 1.4584 54.34% 20.43% 1.03% −1.75%

enh 0.5560 2.9645 1.2952 0.5714 0.5410 81.25% 57.07% 2.70% −2.76%

housing 4.4700 4.9155 4.2785 4.4377 4.5273 9.06% −4.48% −0.73% 1.26%

tower 0.2606 0.2953 0.2975 0.2900 0.2900 11.75% 12.39% 10.12% 10.12%

uball5d 0.0402 0.1939 0.0618 0.0430 0.0372 79.29% 35.00% 6.63% −7.87%

yacht 1.0221 9.0237 1.3577 1.2849 1.1786 88.67% 24.72% 20.45% 13.28%

Average RMSE % decrease: 51.47% 23.19% 5.39% 3.31%

SGP-DT achieves a smaller RMSE than lasso for all the data sets, obtaining
always statistical significance. The decrease of the RMSE medians ranges from
9.06% for housing to 88.67% for yacht (51.47% on average). SGP-DT has smaller
RMSE medians than ε-lexicase for all data sets but housing (decrease −4.48%).
This is the only comparison of SGP-DT and ε-lexicase without statistically sig-
nificance. The decrease of the RMSE medians ranges from −4.48% for housing
to 57.07% for ench (23.19% on average). This is a remarkable result consider-
ing that ε-lexicase outperforms many GP-inspired algorithms [29]. Compar-
ing with the variant DT-EM, SGP-DT achieves the only statistically significant
differences with DT-EM on the data sets uball5d and yacht, with percentage
decreases of 6.63% and 20.45%, respectively. For such datasets SGP-DT per-
forms better than DT-EM indicating that our fitness function that minimizes
the upper bound achieves a better final solution. SGP-DT has statistically sig-
nificant differences of the median RMSE with DT-NM only with the data sets

3 calculated with ((MT −MD)/MT) ·100, where MD is the median RMSE of SGP-DT
and MT is the one of the competing technique.

4 for readability reasons we omitted 4 out-layers for lasso, 13 for ε-lexicase, 30 for
SGP-DT, 30 for DT-NM and 35 for DT-EM.

178 S. Ruberto et al.

airfoil, tower and uball5d. SGP-DT performs better than DT-NM on the airfoil
and tower datasets: 3.94% and 10.12% of percentage decrease, respectively. This
means that the Min and Max non-terminal symbols provide an advantage only
in these two datasets. However, Fig. 1 indicates that using such non-terminal
symbols does not penalize the outcome in any other dataset, except for uball5d
where the difference is statistically significant (the decrease is −7.87%).

Error Comparison with Related Work. Unfortunately, the implementation
of wave [24,25] is not publicly available, and thus a direct comparison would
be difficult. We extracted the median RMSE from the GECCO 2016 paper [25]
for our two common subjects: 4.1 (concrete) and 8.7 (yacht). SGP-DT achieves
a median RMSE percentage decrease of 25.17% (concrete) and 75.12% (yacht),
see Table 2 for the reference values. Note that, the computational cost reported
in the GECCO paper has the same order of magnitude with the one of SGP-DT.

Fig. 1. RMSE of test set for all the techniques and for all the eight data sets.

SGP-DT: Semantic Genetic Programming Based on Dynamic Targets 179

From the paper of Vanneschi et al. [21], we extracted the median RMSE on
the data set concrete of the following GP techniques: 10.44 (NA-GP [21]), 8.1
(NA-GP-50 [21]), 12.50 (GSGP [5]), and 9.43 (GSGP-LS [30]). SGP-DT has a
percentage decrease of 37.64%, 19.62%, 47.92% and 30.96%, respectively. These
results are only indicative because their evaluation setup differs from ours.

Computational Effort. To evaluate the computational effort of the evolution-
ary techniques we decided not to rely on execution time because it depends on
implementation details. Instead, we relied on the total number of evaluated nodes
(being not a GP technique this metric is not applicable to lasso). Both SGP-DT
and ε-lexicase operate on nodes, SGP-DT on tree-like data structures, while
ε-lexicase on stack-based ones. Following Ruberto et al. [11], we count a node
operation every time a technique evaluates a node regardless the purpose of the
operation (e.g., mutation, fitness computation). We excluded the computational
effort of linear scaling because it does not perform operations on nodes. However,
it has a linear computational cost of O(m ·P), where m is the size of the training
set and P the population size. For comparing the number of evaluated nodes,
we used the Wilcoxon rank-sum test with Holm correction for multiple-testing,
with a confidence level of 95% (p-value < 0.05). The test show that all the com-
parisons between each pair of techniques are statically significance, except the
comparison with SGP-DT and DT-NM on subject uball5d.

Table 3. Median number of evaluated nodes and reduction ratio of SGP-DT.

Data set Median number of evaluated nodes Reduction ratio of SGP-DT over

SGP-DT ε-lexicase DT-EM DT-NM ε-lexicase DT-EM DT-NM

airfoil 1.00E+10 9.28E+10 1.00E+10 9.03E+09 9.26× 1.00× 0.90×
concrete 1.14E+10 6.43E+10 1.14E+10 8.82E+09 5.64× 1.00× 0.77×
enc 1.18E+10 4.99E+10 1.17E+10 9.37E+09 4.25× 0.99× 0.80×
enh 1.18E+10 5.08E+10 1.17E+10 9.27E+09 4.30× 0.99× 0.78×
housing 7.70E+09 3.09E+10 7.63E+09 6.03E+09 4.02× 0.99× 0.78×
tower 7.21E+10 1.94E+11 7.12E+10 4.45E+10 2.69× 0.99× 0.62×
uball5d 9.83E+10 3.94E+11 9.76E+10 7.50E+10 4.01× 0.99× 0.76×
yacht 4.62E+09 2.00E+10 4.58E+09 3.47E+09 4.34× 0.99× 0.75×
Average reduction ratio: 4.81× 0.99× 0.77×

Table 3 reports the median number of nodes (of the 50 runs) that the GP
techniques evaluate to produce the final solution. The last three columns of
Table 3 report the ratio between the number of node evaluations of SGP-DT
with those of ε-lexicase, DT-EM and DT-NM. A ratio greater (lower) than
one means that SGP-DT evaluates a lower (higher) number of nodes. Comparing
with ε-lexicase, SGP-DT reduces the amount of node evaluations by a factor
between 4.01× and 9.26×, obtaining statistically significant better RMSE values
than ε-lexicase for seven out of eight data sets. This result can be explained

180 S. Ruberto et al.

by (i) SGP-DT computes only a fraction of the entire solution (partial models)
at a time; (ii) the size of the individuals is kept at minimum (see Sect. 2).

The number of evaluated nodes of SGP-DT and DT-EM are almost identical
(0.99× on average). This indicates that guiding the evolution with the fitness
function of SGP-DT and with the one of DT-EM yield to the same computational
cost but SGP-DT achieves better median RMSE (5.39% on average). DT-NM
always evaluated less nodes than SGP-DT (0.77× on average).

Size of the Final Solutions. SGP-DT has no limits on the maximum com-
plexity of the individuals, while ε-lexicase has a limit of 50 nodes because
at higher limits the computational effort of ε-lexicase becomes prohibitively
expensive [9]. SGP-DT produces solutions with size ranging from 442 to 1,184
nodes (760 on average), which is on average 15× larger than the one produced by
ε-lexicase and is not large enough to be considered (exponential) bloat. This
extra complexity of the final solutions positively contributes at the performance
of the algorithm. We are investigating a post-processing phase to simplify the
final solutions.

On average, DT-EM produces solutions with 806 nodes and DT-NM with
591. DT-NM generates smaller solutions than DT-EM, this could be due to the
fact that DT-NM has a smaller search space (DT-NM omits the Min and Max
symbols). Evaluating smaller solutions require less computation, this explains
why DT-NM requires less computation than SGP-DT and DT-EM (see Table 3).

Overfitting. Figure 2 plots for each data set the median of the best RMSE by
computational effort (number of evaluated tree nodes) for SGP-DT and its two
variants. Unfortunately, the implementation of ε-lexicase that we used does not
report the intermediate RMSE on test. We use the computational effort, rather
the number of generations, for a fair comparison of the three techniques. This is
because the number of evaluated nodes is not uniform across the generations.

The eight plots indicate that SGP-DT slightly overfits on the data sets tower
and yacht, while on housing produces a substantial overfitting, which is com-
parable to the one of DT-EM but less severe than the one of DT-NM. DT-EM
overfits four data sets: airfoil (Fig. 2a), housing (Fig. 2e), tower (Fig. 2f), yacht
(Fig. 2h). The worst performance is from DT-NM that shows severe overfitting
on airfoil (Fig. 2a), housing (Fig. 2e), tower (Fig. 2f) and yacht (Fig. 2h). Note
that all three techniques overfit for the data sets yacht (Fig. 2h) and housing
(Fig. 2e). This can be explain by their relatively low number of instances (see
Table 1).

For the data sets concrete (Fig. 2b), enc (Fig. 2c) and enh (Fig. 2d) all three
techniques do not manifest overfitting (yet). Interestingly, in these three cases
DT-NM arrives to a low RMSE with less computations than SGP-DT and
DT-EM. We conjecture that this is because concrete, enc and enh are problems
that do not need the additional expressiveness of the Min and Max symbols.

DT-NM is the technique that yields to the smallest individuals, as such we
would expect less overfitting. Surprisingly, this is not the case. We believe that, to
compensate the absence of discontinuity that Max and Min introduce, DT-NM

SGP-DT: Semantic Genetic Programming Based on Dynamic Targets 181

Fig. 2. Median RMSE of the best so far on the test set by computational effort.

used the protected divisions more frequently. This may lead to many asymptotic
discontinuities, which are known to increase the overfitting [6].

When considering each data set individually, SGP-DT and DT-EM mostly
manifest similar overfitting, while DT-NM manifests overfitting much earlier.
This suggests that (i) the non-terminal symbols Max and Min help to alleviate
the overfitting problem; and (ii) relying on the variance (SGP-DT) rather than
MSE (DT-EM) in the fitness function indeed contributes to reduce RMSE (5.39%
on average, see Table 2) but not to influence overfitting.

5 Conclusion

In this paper, we proposed SGP-DT, a new evolutionary technique that dynam-
ically discovers and resolves intermediate dynamic targets. Our key intuition
is that the synergy of the linear scaling and mutation helps to exchange good
genetic materials during the evolution. Notably, SGP-DT does not rely on any
form of crossover, and thus without suffering from its intrinsic limitations [2,7].
Our experimental results confirm our intuitions and show that SGP-DT outper-
forms ε-lexicase in both lower RMSE and less computational cost. This is a
promising result as ε-lexicase outperforms many GP-inspired algorithms [29].

182 S. Ruberto et al.

This paper sparks interesting future work:
We do not perform any type of post-processing of the final solutions to reduce

their size. Indeed, the solutions may contain redundant elements. We are cur-
rently investigating a post-processing step to minimize the size of the final solu-
tions.

A possible future research direction is to automatically identify the proper
number of iterations of SGP-DT. Indeed, problems with different complexity
and nature may require a different number of external and internal iterations.

References

1. Vanneschi, L., Castelli, M., Silva, S.: A survey of semantic methods in genetic
programming. Genet. Program. Evolvable Mach. 15(2), 195–214 (2014). https://
doi.org/10.1007/s10710-013-9210-0

2. Pawlak, T.P., Wieloch, B., Krawiec, K.: Review and comparative analysis of
geometric semantic crossovers. Genet. Program. Evolvable Mach. 16(3), 351–386
(2015). https://doi.org/10.1007/s10710-014-9239-8

3. O’Neill, M.: Semantic methods in genetic programming. Genet. Program. Evolvable
Mach. 17(1), 3–4 (2016). https://doi.org/10.1007/s10710-015-9254-4

4. McPhee, N.F., Ohs, B., Hutchison, T.: Semantic building blocks in genetic pro-
gramming. In: O’Neill, M., et al. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 134–
145. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78671-9 12

5. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic program-
ming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone,
M. (eds.) PPSN 2012. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32937-1 3

6. Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scal-
ing. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds.)
EuroGP 2003. LNCS, vol. 2610, pp. 70–82. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-36599-0 7

7. Poli, R., Langdon, W.B.: Schema theory for genetic programming with one-point
crossover and point mutation. Evol. Comput. 6(3), 231–252 (1998)

8. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., et al.: Least angle regression.
Ann. Stat. 32(2), 407–499 (2004)

9. La Cava, W., Spector, L., Danai, K.: Epsilon-Lexicase selection for regression.
In: Proceedings of the Conference on Genetic and Evolutionary Computation
(GECCO 2016), pp. 741–748 (2016)

10. Nicolau, M., Agapitos, A.: On the effect of function set to the generalisation of
symbolic regression models. In: Proceedings of the Companion of the Conference
on Genetic and Evolutionary Computation (GECCO 2018), pp. 272–273 (2018)

11. Ruberto, S., Vanneschi, L., Castelli, M.: Genetic programming with semantic equiv-
alence classes. Swarm Evol. Comput. 44, 453–469 (2019)

12. Keijzer, M.: Scaled symbolic regression. Genet. Program. Evolvable Mach. 5(3),
259–269 (2004). https://doi.org/10.1023/B:GENP.0000030195.77571.f9

13. Gerules, G., Janikow, C.: A survey of modularity in genetic programming. In: the
IEEE Congress on Evolutionary Computation (CEC 2016), pp. 5034–5043 (2016)

14. Krawiec, K., Pawlak, T.: Locally geometric semantic crossover: a study on the roles
of semantics and homology in recombination operators. Genet. Program. Evolvable
Mach. 14(1), 31–63 (2013). https://doi.org/10.1007/s10710-012-9172-7

https://doi.org/10.1007/s10710-013-9210-0
https://doi.org/10.1007/s10710-013-9210-0
https://doi.org/10.1007/s10710-014-9239-8
https://doi.org/10.1007/s10710-015-9254-4
https://doi.org/10.1007/978-3-540-78671-9_12
https://doi.org/10.1007/978-3-642-32937-1_3
https://doi.org/10.1007/3-540-36599-0_7
https://doi.org/10.1007/3-540-36599-0_7
https://doi.org/10.1023/B:GENP.0000030195.77571.f9
https://doi.org/10.1007/s10710-012-9172-7

SGP-DT: Semantic Genetic Programming Based on Dynamic Targets 183

15. Krawiec, K., Liskowski, P.: Automatic derivation of search objectives for test-based
genetic programming. In: Machado, P., et al. (eds.) EuroGP 2015. LNCS, vol. 9025,
pp. 53–65. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16501-1 5

16. Liskowski, P., Krawiec, K.: Online discovery of search objectives for test-based
problems. Evol. Comput. 25(3), 375–406 (2017)

17. Otero, F.E.B., Johnson, C.G.: Automated problem decomposition for the boolean
domain with genetic programming. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-
Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 169–180. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37207-0 15

18. Krawiec, K., O’Reilly, U.M.: Behavioral programming: a broader and more detailed
take on semantic GP. In: Proceedings of the Conference on Genetic and Evolution-
ary Computation (GECCO 2014), pp. 935–942 (2014)

19. Arnaldo, I., Krawiec, K., O’Reilly, U.M.: Multiple regression genetic program-
ming. In: Proceedings of the Conference on Genetic and Evolutionary Computation
(GECCO 2014), pp. 879–886 (2014)

20. Ruberto, S., Vanneschi, L., Castelli, M., Silva, S.: ESAGP – a semantic GP frame-
work based on alignment in the error space. In: Nicolau, M., et al. (eds.) EuroGP
2014. LNCS, vol. 8599, pp. 150–161. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44303-3 13

21. Vanneschi, L., Castelli, M., Scott, K., Trujillo, L.: Alignment-based genetic pro-
gramming for real life applications. Swarm Evol. Comput. 44, 840–851 (2019)

22. Gandomi, A.H., Alavi, A.H.: A new multi-gene genetic programming approach to
nonlinear system modeling. Neural Comput. Appl. 21(1), 171–187 (2012)

23. Oliveira, L.O.V.B., Otero, F.E.B., Pappa, G.L., Albinati, J.: Sequential symbolic
regression with genetic programming. In: Riolo, R., Worzel, W.P., Kotanchek, M.
(eds.) Genetic Programming Theory and Practice XII. GEC, pp. 73–90. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-16030-6 5

24. Medernach, D., Fitzgerald, J., Azad, R.M.A., Ryan, C.: Wave: a genetic program-
ming approach to divide and conquer. In: Proceedings of the Companion of the
Conference on Genetic and Evolutionary Computation. (GECCO 2015), pp. 1435–
1436 (2015)

25. Medernach, D., Fitzgerald, J., Azad, R.M.A., Ryan, C.: A new wave: a dynamic
approach to genetic programming. In: Proceedings of the Conference on Genetic
and Evolutionary Computation (GECCO 2016), pp. 757–764 (2016)

26. Asuncion, A., Newman, D.: UCI Machine Learning Repository (2007)
27. White, D.R., Mcdermott, J., Castelli, M., et al.: Better GP benchmarks: commu-

nity survey results and proposals. Genet. Program. Evolvable Mach. 14(1), 3–29
(2013). https://doi.org/10.1007/s10710-012-9177-2

28. Cava, W.L., Helmuth, T., Spector, L., Moore, J.H.: A probabilistic and multi-
objective analysis of Lexicase selection and ε-Lexicase selection. Evol. Comput.
27, 1–28 (2018)

29. Orzechowski, P., Cava, W.L., Moore, J.H.: Where are we now?: A large benchmark
study of recent symbolic regression methods. In: Proceedings of the Conference on
Genetic and Evolutionary Computation (GECCO 2018), pp. 1183–1190 (2018)

30. Castelli, M., Trujillo, L., Vanneschi, L., Silva, S. Geometric semantic genetic pro-
gramming with local search. In: Proceedings of the Conference on Genetic and
Evolutionary Computation (GECCO 2015), pp. 999–1006 (2015)

https://doi.org/10.1007/978-3-319-16501-1_5
https://doi.org/10.1007/978-3-642-37207-0_15
https://doi.org/10.1007/978-3-662-44303-3_13
https://doi.org/10.1007/978-3-662-44303-3_13
https://doi.org/10.1007/978-3-319-16030-6_5
https://doi.org/10.1007/s10710-012-9177-2

Effect of Parent Selection Methods
on Modularity

Anil Kumar Saini1(B) and Lee Spector1,2,3

1 University of Massachusetts, Amherst, MA 01002, USA
aks@cs.umass.edu

2 Hampshire College, Amherst, MA 01002, USA
lspector@hampshire.edu

3 Amherst College, Amherst, MA 01002, USA

Abstract. The effects of various genetic operators and parent selection
algorithms on the performance of a genetic programming system on dif-
ferent problems have been well studied. In this paper, we analyze how
different selection algorithms influence modularity in the population of
evolving programs. In particular, we observe how the number of individu-
als with some form of modular structure, i.e., the presence of code blocks
executed multiple times, changes over generations for various selection
algorithms.

Keywords: Parent selection algorithms · Reuse metric · Lexicase
selection

1 Introduction

In genetic programming, a parent selection method is employed to select indi-
viduals from the current generation that can be used to produce individuals for
the next generation. All selection methods take into account the performance of
individuals on a set of test cases to determine which individuals would be selected
as parents. Although the selection algorithms use only errors on the test cases,
they can influence other properties of the evolving population, which in turn
can influence the chances of that population producing a successful individual
program.

In this paper, we look at how the number of modular individuals changes over
generations. For the purpose of this paper, we define a modular individual as the
one containing at least one code block, which is executed multiple times while
appearing only once in the program code. In other words, the program should
have some form of loops or other control structures that allow for a group of
instructions to be executed multiple times. We compare three parent selection
methods—lexicase, tournament, and fitness proportionate—on a number of soft-
ware synthesis problems. We observe that, in general, lexicase selection leads to
a high number of modular individuals in a given generation. Although we are

c© Springer Nature Switzerland AG 2020
T. Hu et al. (Eds.): EuroGP 2020, LNCS 12101, pp. 184–194, 2020.
https://doi.org/10.1007/978-3-030-44094-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44094-7_12&domain=pdf
https://doi.org/10.1007/978-3-030-44094-7_12

Effect of Parent Selection Methods on Modularity 185

using stack-based genetic programming, the experiments can be easily repeated
for tree-based genetic programming as well.

We believe the analysis presented in the paper can offer insights into why
some selection algorithms are better at producing solutions than others, and
whether there is a connection between an individual being modular and the
chances of it solving a particular problem.

We start with some related work in Sect. 2. The parent selection algorithms
used in our analysis are described in Sect. 3. While Sect. 4 discusses the features
of Push language that allow for the evolution of modularity, Sect. 5 describes
the metric used to calculate the modularity in the evolving programs. Section 6
describes the experimental set-up, and the results of the experiments are given
in Sect. 7. We analyze the results in detail in Sect. 8 and conclude our discussion
in Sect. 9.

2 Related Work

Population dynamics in terms of different kinds of diversity during evolution have
been well studied in genetic programming. In [1], the authors list various types of
diversity measures—measuring the number of unique individuals based on their
genotype, phenotype, edit distance from the best individual in the population,
etc.—and analyses their relationship with the best fitness in the population.
Mean behavioral diversity, i.e., the number of unique individuals with respect to
outputs on the test cases, has been studied in [6]; the authors present the mean
behavioral diversity of the population of various software synthesis problems
for different selection algorithms. In the field of genetic algorithms, [8] analyzes
how the genotypic diversity in the population is different for different selection
algorithms. Although our analysis looks similar to the ones described above,
instead of measuring the number of unique individuals, we measure the number
of individuals in the population with a specific property.

Other works in evolutionary computation analyze the evolving populations
at the level of modules. While [14] looks at how different modules are used—how
often they are used and how fit the individual using them are—during evolution
for grammatical evolution, [7] analyzes the role of explicit loops for some simple
problems in genetic programming. In the analysis presented in this paper, we
only consider whether an individual has modules and do not focus on individual
modules and how they are used.

3 Parent Selection Algorithms

In this section, we describe three parent selection algorithms that are used in
our experiments. These algorithms are used widely in the genetic programming
literature and differ significantly in how they use the errors on the test cases.

186 A. K. Saini and L. Spector

3.1 Lexicase Selection

Lexicase selection, introduced in [11] and [6], is a parent selection method,
whereby for each selection event, the pool of prospective parents is winnowed
down based on their error on a set of test cases ordered randomly. In other
words, whenever a parent is needed, the set of test cases is ordered randomly,
and then for each test case, only the individuals which perform best on that test
case are kept, and the rest are removed from the pool. This winnowing down
continues until only one individual remains; if there are multiple individuals
remaining after going over all the test cases, one individual is randomly selected.
The pseudo-code for this method is given in Algorithm 1. Note that unlike other
parent selection algorithms, lexicase selection does not aggregate errors on all
test cases into a single value.

Input: All individuals in the population
Result: A parent individual
candidates := all individuals in the population;
test cases := test cases ordered randomly;
for t in test cases do

candidates := those individuals from candidates that perform best on t ;
if candidates contain only one individual then

return candidates
end

end
return one individual randomly from candidates;

Algorithm 1: Lexicase Selection

3.2 Tournament Selection

Tournament selection is a popular parent selection method used in evolutionary
computation. With a given tournament size s, for each selection event, s number
of individuals are randomly chosen, and then the individual with the least total
error is selected as a parent. Algorithm 2 describes the exact procedure to select
one parent from the population of evaluated individuals.

Input: All individuals in the population;
tournament size

Result: A parent individual
tour size := tournament size;
candidates := select tour size individuals from the population randomly;
return the individual from candidates with the least total error;

Algorithm 2: Tournament Selection

Effect of Parent Selection Methods on Modularity 187

3.3 Fitness-Proportionate Selection

In this method, all individuals in the population have a certain probability of
getting selected as a parent. The probability for a given individual is calculated
as:

fitnessi =
1

1 + totalErrori

probabilityi =
fitnessi∑n
j=1 fitnessj

,

where fitnessi is the fitness of ith individual in the population containing n
individuals, totalErrori is the sum of its errors on all test cases, and probabilityi
is the probability of ith individual getting selected as a parent.

4 Push and the Evolution of Modularity

In this paper, we evolve programs in Push programming language. Push [12,13] is
a stack-based programming language in which a program consists of instructions
that can take their inputs from and place their outputs on different stacks. Each
data type has a separate stack. Program code is placed on the :exec stack, and
in each step, the top item of the :exec is executed. Code itself is a data type
with a dedicated stack, which allows programs to manipulate code blocks while
running: code blocks can be repeated a certain number of times, they can be
executed in a different order than the one specified in the program code, etc.
This allows for the evolution of loop-like control structures in the push programs.
Some example :exec instructions are given in Table 1.

Table 1. Examples of looping instructions in Push.

Instruction Explanation

exec do ∗ range while the counter moves from the second item of :integer stack
to the first item of :integer stack by 1 (+ or −), keep executing
the top item of :exec stack

exec dup execute the top item of :exec stack twice

Push has been used in the experiments because it allows for the evolution of
the kind of modularity we are trying to measure; it contains certain instructions
which allow a group of instructions to execute multiple times.

Although there are different kinds of modularity in natural systems like mor-
phological, evolutionary, developmental, etc. [2], the modularity used in this
paper is defined in a specific sense. It relates to modules, which are chunks of
code being executed multiple times but appearing only once in the program
code. This means that even if a program has looping instructions, but the loop
only executes once, it will not be considered in our analysis.

188 A. K. Saini and L. Spector

5 Reuse Metric

We use the reuse metric introduced in [9] to calculate the modularity of a given
program. It measures how many times a group of instructions gets executed.
Specifically, for modules of different sizes appearing only once in the program, it
measures how frequently they appear in the execution trace of the program. Note
that if a group of instructions appears twice in the program code at different
locations and the instructions at those locations execute only once, it will not
be considered as reuse despite the fact that the group of instructions appears
twice in the execution trace.

A module is defined in a simple way. A group of instructions in a program
is considered a module if it is executed multiple times. In other words, a group
of instructions appearing at least twice in the execution trace is considered a
module provided the order in which the instructions appearing in the execution
trace is the same as the order in which they appear in the program code. The
subset of a module is also a module. For example, if the group of instructions
‘ABC’ appears twice in the execution trace, ‘A’, ‘B’, ‘C’, ‘AB’, ‘BC’, ‘ABC’ all are
modules, provided ‘ABC’ appears in the program code. The reuse is calculated
from the execution trace using the following formulation:

Reuse =
∑m

i=1 li · 2fi
2u

, (1)

where there are m modules such that the length of the ith module is li, and it
appears fi number of times in the execution trace. The term u is the number
of the instructions of the program that are actually executed; the instructions
which are present in the program but not executed are not counted.

A given program will have higher reuse if it has any of the following types of
control structures:

1. Loop-like: instructions falling in this category takes a group of instructions
as input and execute those instructions multiple times.

2. Function-like: instructions of this category label a group of instructions with
some identifier. Whenever that label is called, the same set of instructions are
executed.

Although for the purpose of this paper, we only need to check whether or
not an individual has reuse which can be computed quite easily—if there is any
code block that is repeated more than once in the execution trace of a given
program, it has non-zero reuse—we use the full reuse measure given in Eq. 1 so
as to get additional insights for future work.

We follow the procedure given in [10] to calculate the reuse metric from
Push programs. Additionally, since we are measuring modularity in the programs
by calculating their reuse values, we will use terms ‘reuse’ and ‘modularity’
interchangeably in this paper.

Effect of Parent Selection Methods on Modularity 189

6 Experimental Set-Up

We conduct experiments on some of the problems from the benchmark suite of
[5]. The description of the problems is reproduced here:

1. Last Index of Zero: Given a vector of integers, at least one of which is 0,
return the index of the last occurrence of 0 in the vector.

2. Digits: Given an integer, print that integer’s digits each on their own line,
starting with the least significant digit. A negative integer should have a
negative sign printed before the most significant digit.

3. Compare String Lengths: Given three strings n1, n2, and n3, return true
if length(n1) < length(n2) < length(n3), and false otherwise.

We use Clojush1, a genetic programming system written in Clojure that
evolves programs in Push language.

We use three selection algorithms in this analysis: lexicase, tournament, and
fitness proportionate. The results presented in [6] suggest that tournament sizes
between 4 and 10 perform better than other smaller tournament sizes. Therefore,
a tournament size of 7 has been chosen for the experiments conducted in this
paper.

The genetic programming parameters used in the experiments are given in
Table 2. We do not perform crossover and only use a mutation operator called
Uniform Mutation by Addition and Deletion, introduced in [4]. UMAD leads
to an increase in the success rates for many software synthesis problems in the
benchmark suite of [5]. For each combination of software synthesis problem and
selection algorithm, 50 independent runs were launched. All other parameters
use standard values found in the literature.

For every generation in all the runs, we calculate the reuse value as described
in Sect. 5 for every individual in the population. For each individual, we first
choose one test case randomly from the set of test cases, run the program on
that test case to obtain the execution trace, and use that execution trace to
calculate the reuse metric. Note that while calculating errors, the individual
is run on all test cases, but while calculating reuse, it is run only on one test
case. This is done to make sure that the evaluation time per individual does not
increase considerably since calculating the reuse metric can be computationally
expensive.

7 Results

The results of the experiments are shown in Fig. 1. Each line represents a single
run and denotes the number of individuals, out of 1000 in a given generation,
which have non-zero value of the reuse metric. The incomplete lines are the ones
that produced a successful solution before hitting the generation limit of 300.
(The data for the digits problem with lexicase selection include only 49 runs,

1 https://github.com/lspector/Clojush.

https://github.com/lspector/Clojush

190 A. K. Saini and L. Spector

Table 2. Common genetic programming parameters.

Parameter Value

Population size 1000

Number of generations 300

Parent selection algorithms Lexicase, tournament, fitness
proportionate

Mutation rate Uniform Mutation by Addition and
Deletion (UMAD)

Mutation rate 0.09

Number of runs per selection algorithm 50

since one run was terminated for system-related reasons. The general results
hold regardless of how that run would have turned out.)

From the plots, it is evident that with lexicase selection, most of the lines
are concentrated in the upper half, whereas with tournament selection, there
is a much broader distribution of the number of modular individuals across all
generations. With fitness proportionate selection, the lines are concentrated in
the lower half for all problems.

Table 3 shows the number of individuals with non-zero reuse averaged over
all generations of all runs for a given problem. The numbers are calculated in the
following way. For each run of a given problem under a specific condition (for
example, with lexicase selection), we calculate the average number of modular
individuals across all generations in that run. Note that, if a run succeeds before
hitting the generation limit of 300, we do not consider the generations after the
generation at which it succeeded. After we have one number for each run, we
calculate the average over all the runs. In each row of the table, we also mark
the value, which is significantly higher than the other two values in the same
row.

To give a sense of the success rate under each condition presented in Table 3,
we report the number of successful runs out of 50 for all problems in Table 4.
The successful run is the one that evolves a program having zero error on all test
cases. To test statistical significance in Tables 3 and 4, we use pairwise chi-square
test at 0.05 significance level.

There seems to be a relation between the number of individuals with non-
zero reuse in the population with the number of successful runs. But do solution
programs themselves have any reuse? Table 5 shows the number of solution pro-
grams that have non-zero values of the reuse metric. Each solution program has
also been simplified for 5000 steps to remove unnecessary instructions, and the
reuse metric is again calculated on the simplified program. Simplification [3] is a
technique whereby, in every step, a small number of instructions or a parenthesis
pair chosen randomly are removed from the program as long as the errors on the
test cases do not change. Note that the value of the reuse metric can be different
for the solutions programs before and after simplification due to two reasons:

Effect of Parent Selection Methods on Modularity 191

Generation

#
in
di
vi
du

al
s
w
it
h
no

n-
ze
ro

re
us
e

Fig. 1. The number of individuals in a given generation with a non-zero value of reuse.
Each line represents one single run on the problem specified in the respective row using
the parent selection method specified in the respective column.

some instructions may be removed from the program during simplification, and
we choose a test case randomly each time we calculate the reuse metric. Hence,
a program can have zero value of reuse before simplification and non-zero value
after simplification and vice-versa. We observe that the number of such individ-
uals is very low, and hence there is no significant effect on the analysis presented
in this paper.

It is clear from the table that almost all of the solutions have a non-zero
value of reuse. This means that most of the solution programs make use of the
looping instructions provided by the system.

8 Discussion

While we do not investigate why the selection methods produce the plots given
in Fig. 1, they certainly have some features which might be responsible for this
behavior.

While tournament and fitness proportionate selection methods aggregate
errors of an individual on all the test cases to produce a single value and use
that value as input, lexicase selection, by virtue of its design, does not need to
aggregate the errors. This allows lexicase selection to choose ‘specialists’, the
individuals which are best on some test cases, but might not be good on others.

192 A. K. Saini and L. Spector

Table 3. The average number of individuals with non-zero reuse in a generation aver-
aged over all runs for different problems. Underline indicates that the value is signifi-
cantly higher (p > 0.05) than the other two values in the same row. The value of ‘NA’
indicates the absence of any successful run.

Problem Condition Lexicase Tournament Fitness proportionate

Last Index of Zero Successful 744.68 655.19 195.22

Non-successful 743.65 675.59 153.02

All 744.64 671.51 153.86

Digits Successful 845.05 713.62 NA

Non-successful 846.86 640.95 403.92

All 846.28 643.86 403.92

Compare String Lengths Successful 820.90 441.88 NA

Non-successful 778.07 444.06 140.18

All 803.77 443.98 140.18

Table 4. The number of successful runs out of 50 under various treatments. Underline
indicates that the value is significantly higher than the other two values in the same
row.

Problem Lexicase Tournament Fitness proportionate

Last Index of Zero 48 10 1

Digits 16 2 0

Compare String Lengths 30 2 0

Table 5. The number of simplified and non-simplified solution programs with non-
zero reuse under various treatments. For each solution program, we calculate the reuse
metric on both simplified and non-simplified version.

Problem Condition Lexicase Tournament Fitness proportionate

Last Index of Zero Non-simplified 46 8 0

Simplified 47 9 1

Digits Non-simplified 16 2 0

Simplified 16 1 0

Compare String Lengths Non-simplified 27 0 0

Simplified 25 0 0

The selection methods considered in this paper also show different levels
of tolerance towards individuals having high values of total error. In fitness
proportionate selection, if an individual has a very high error on one test case or
high values of errors on multiple cases, its probability of getting selected reduces
drastically. In contrast, in lexicase selection, if an individual is best on even
one test case, the magnitude of errors on all other test cases does not matter.
Tournament selection falls midway between these two extremes: an individual

Effect of Parent Selection Methods on Modularity 193

with high total error can be selected as a parent if it gets selected in a tournament
and has a slightly better fitness than other individuals in the population.

Although the number of individuals with non-zero reuse in the population is
highly correlated with the success rates for different selection methods, whether
there is a causal relationship between the two is not yet clear. Two possibilities
arise: having some form of reuse is essential if we want to increase success rate
above a certain threshold, or, some other property of individuals or populations
is essential to having high success rate and that property indirectly also causes
individuals to have reuse.

9 Conclusions and Future Work

From our experiments, it is clear that in addition to affecting the fitness of indi-
viduals in the population, parent selection methods also influence their modu-
larity. In particular, we have shown how the number of individuals with non-zero
reuse in their execution traces is affected by different parent selection algorithms.
Our analysis also shows that the number of individuals with non-zero reuse is
highly correlated with the success rates for different selection methods. For exam-
ple, lexicase selection, which has the highest success rate among the selection
methods considered in the study, also has the highest number of individuals with
non-zero reuse. Whether having more modular individuals in the population is
responsible for the high success rate can be taken up as future work. Similarly,
what aspects of lexicase selection lead to more modular individuals can also be
considered in a future study.

While we have only considered whether or not an individual has a non-zero
value of the reuse metric in this paper, analyzing the magnitude of reuse can shed
some more light on the relationship between modularity and different selection
methods. Finally, other metrics of modularity—like the repetition metric of [9]—
can also be analyzed for evolving populations.

Acknowledgements. We would like to thank Michael Garcia and other members of
Hampshire College Institute for Computational Intelligence for their valuable inputs.

This material is based upon work supported by the National Science Foundation
under Grant No. 1617087. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

This work was performed in part using high performance computing equipment
obtained under a grant from the Collaborative R&D Fund managed by the Mas-
sachusetts Technology Collaborative.

References

1. Burke, E.K., Gustafson, S., Kendall, G.: Diversity in genetic programming: an
analysis of measures and correlation with fitness. IEEE Trans. Evol. Comput. 8(1),
47–62 (2004)

194 A. K. Saini and L. Spector

2. Callebaut, W., Rasskin-Gutman, D., Simon, H.A.: Modularity: Understanding the
Development and Evolution of Natural Complex Systems. MIT Press, Cambridge
(2005)

3. Helmuth, T., McPhee, N.F., Pantridge, E., Spector, L.: Improving generalization of
evolved programs through automatic simplification. In: Proceedings of the Genetic
and Evolutionary Computation Conference, pp. 937–944. ACM (2017)

4. Helmuth, T., McPhee, N.F., Spector, L.: Program synthesis using uniform muta-
tion by addition and deletion. In: Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 1127–1134. ACM (2018)

5. Helmuth, T., Spector, L.: General program synthesis benchmark suite. In: Proceed-
ings of the 2015 Annual Conference on Genetic and Evolutionary Computation,
pp. 1039–1046. ACM (2015)

6. Helmuth, T., Spector, L., Matheson, J.: Solving uncompromising problems with
lexicase selection. IEEE Trans. Evol. Comput. 19(5), 630–643 (2014)

7. Li, X., Ciesielski, V.: An analysis of explicit loops in genetic programming. In: 2005
IEEE Congress on Evolutionary Computation, vol. 3, pp. 2522–2529. IEEE (2005)

8. Metevier, B., Saini, A.K., Spector, L.: Lexicase selection beyond genetic program-
ming. In: Banzhaf, W., Spector, L., Sheneman, L. (eds.) Genetic Programming
Theory and Practice XVI. GEC, pp. 123–136. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-04735-1 7

9. Saini, A.K., Spector, L.: Modularity metrics for genetic programming. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference Companion,
pp. 2056–2059. ACM (2019)

10. Saini, A.K., Spector, L.: Using modularity metrics as design features to guide
evolution in genetic programming. In: Genetic Programming Theory and Practice
XVII. Springer (2020)

11. Spector, L.: Assessment of problem modality by differential performance of lexi-
case selection in genetic programming: a preliminary report. In: McClymont, K.,
Keedwell, E. (eds.) 1st workshop on Understanding Problems (GECCO-UP), pp.
401–408. ACM, Philadelphia, Pennsylvania, USA, 7–11 July 2012 (2012). https://
doi.org/10.1145/2330784.2330846, http://hampshire.edu/lspector/pubs/wk09p4-
spector.pdf

12. Spector, L., Klein, J., Keijzer, M., Keijzer, M.: The push3 execution stack and the
evolution of control. In: Proceedings of the 7th Annual Conference on Genetic and
Evolutionary Computation, pp. 1689–1696. ACM (2005)

13. Spector, L., Robinson, A.: Genetic programming and autoconstructive evolu-
tion with the push programming language. Genet. Program. Evolvable Mach.
3(1), 7–40 (2002). https://doi.org/10.1023/A:1014538503543, http://hampshire.
edu/lspector/pubs/push-gpem-final.pdf

14. Swafford, J.M., Hemberg, E., O’Neill, M., Brabazon, A.: Analyzing module usage
in grammatical evolution. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S.,
Nicosia, G., Pavone, M. (eds.) PPSN 2012. LNCS, vol. 7491, pp. 347–356. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32937-1 35

https://doi.org/10.1007/978-3-030-04735-1_7
https://doi.org/10.1007/978-3-030-04735-1_7
https://doi.org/10.1145/2330784.2330846
https://doi.org/10.1145/2330784.2330846
http://hampshire.edu/lspector/pubs/wk09p4-spector.pdf
http://hampshire.edu/lspector/pubs/wk09p4-spector.pdf
https://doi.org/10.1023/A:1014538503543
http://hampshire.edu/lspector/pubs/push-gpem-final.pdf
http://hampshire.edu/lspector/pubs/push-gpem-final.pdf
https://doi.org/10.1007/978-3-642-32937-1_35

Time Control or Size Control? Reducing
Complexity and Improving Accuracy

of Genetic Programming Models

Aliyu Sani Sambo1(B) , R. Muhammad Atif Azad1 ,
Yevgeniya Kovalchuk1 , Vivek Padmanaabhan Indramohan2,

and Hanifa Shah3

1 School of Computing and Digital Technology, Birmingham City University,
Birmingham, UK

aliyu.sambo@mail.bcu.ac.uk,
{atif.azad,yevgeniya.kovalchuk}@bcu.ac.uk

2 School of Health Science, Birmingham City University, Birmingham, UK
vivek.indramohan@bcu.ac.uk

3 Faculty of Computing, Engineering and the Built Environment,
Birmingham City University, Birmingham, UK

hanifa.shah@bcu.ac.uk

Abstract. Complexity of evolving models in genetic programming (GP)
can impact both the quality of the models and the evolutionary search.
While previous studies have proposed several notions of GP model com-
plexity, the size of a GP model is by far the most researched measure
of model complexity. However, previous studies have also shown that
controlling the size does not automatically improve the accuracy of GP
models, especially the accuracy on out of sample (test) data. Further-
more, size does not represent the functional composition of a model,
which is often related to its accuracy on test data. In this study, we
explore the evaluation time of GP models as a measure of their com-
plexity; we define the evaluation time as the time taken to evaluate a
model over some data. We demonstrate that the evaluation time reflects
both a model’s size and its composition; also, we show how to mea-
sure the evaluation time reliably. To validate our proposal, we leverage
four well-known methods to size-control but to control evaluation times
instead of the tree sizes; we thus compare size-control with time-control.
The results show that time-control with a nuanced notion of complex-
ity produces more accurate models on 17 out of 20 problem scenarios.
Even when the models have slightly greater times and sizes, time-control
counterbalances via superior accuracy on both training and test data.
The paper also argues that time-control can differentiate functional com-
plexity even better in an identically-sized population. To facilitate this,
the paper proposes Fixed Length Initialisation (FLI) that creates an
identically-sized but functionally-diverse population. The results show
that while FLI particularly suits time-control, it also generally improves
the performance of size-control. Overall, the paper poses evaluation-time
as a viable alternative to tree sizes to measure complexity in GP.

c© Springer Nature Switzerland AG 2020
T. Hu et al. (Eds.): EuroGP 2020, LNCS 12101, pp. 195–210, 2020.
https://doi.org/10.1007/978-3-030-44094-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44094-7_13&domain=pdf
http://orcid.org/0000-0001-7069-1933
http://orcid.org/0000-0002-4013-5415
http://orcid.org/0000-0003-4306-4680
https://doi.org/10.1007/978-3-030-44094-7_13

196 A. S. Sambo et al.

Keywords: Genetic Programming · Complexity · Evaluation time

1 Introduction

Motivations for controlling the complexity of machine learning (ML) models
vary and so does the notion of complexity [3]. One reason for managing the
complexity of ML models is to attain models that are only complex enough
to explain the phenomenon generating the given data but not too complex to
reflect noise in the data. Doing so means that the predictions produced by the
models on previously unseen data are accurate [18]; in other words, the model
generalises well. However, the challenge in this goal is determining when the
complexity is just enough. Another incentive for managing complexity is the
requirement for models to use computational resources efficiently. For example,
some computational environments such as the Internet of Things (IoT) devices
constrain the evaluation time of an acceptable model even if this compromises
its accuracy [13]. In Genetic Programming (GP), preventing the models from
growing too complex is also necessary to prevent the evolutionary search from
becoming ineffective [11]. A further motivation for managing complexity is the
demand for interpretable models: simple models can be more interpretable [14],
and the interpretability of ML models is now important. For example, the EU
General Data Protection Regulation (GDPR) stipulates a right to explanation
where ML algorithms are applied to make a decision affecting a person.

The challenge of defining a notion of complexity is compounded in the con-
text of Genetic programming (GP). For example, while ridge regression penalises
the growth in the magnitude of numeric coefficients in an otherwise fixed regres-
sion model, this penalty does not necessarily work in GP because GP evolves
the model itself. Moreover, GP is a versatile tool that can also evolve compilable
programs; therefore, minimising the coefficients does not automatically make
sense. Also, since during evolution the GP models grow in size, controlling this
growth (bloat control) has dominated the landscape of complexity control in
GP. However, some previous work [21] shows that controlling the size alone does
not automatically produce models that generalise as might have been expected.
Moreover, [2] shows that size does not indicate functional composition (or com-
plexity): after all, a very large GP tree may compose a simple linear function;
likewise, a small GP tree can compose a highly non-linear function. Together the
above challenges show that universally defining complexity is difficult.

This paper uses the evaluation time – the computational time required to
evaluate a model on the given data – to indicate its complexity. Due to different
functional and syntactic compositions of models in the evolving populations,
the evaluation time of the models varies. For example, the models made up of
computationally expensive functions or exceptionally large syntactic structures
take long to evaluate. Unlike size, the evaluation time thus indicates both the
syntactic and functional complexity; Sect. 2.2 expands further on that. However,
since evaluation times vary from one measurement to another, Sect. 2.3 shows
how to measure them reliably.

Time Control or Size Control? 197

To control evaluation times, we use four well-known techniques for bloat-
control to control evaluation time. However, instead of controlling size, we control
evaluation times using the same mechanisms; the techniques thus effect time-
control. We then compare the effect of time-control with that of size (or bloat)
control on the composition, size and accuracy of the evolving models.

The results of our experiments suggest that time-control with a nuanced
notion of complexity outperforms size-control in model-accuracy on 17 out of 20
problem scenarios. Even when time-control produces models with slightly greater
times and sizes, it counterbalances via superior accuracy on both training and
test data. The paper also shows that time-control can differentiate functional
complexity even better in an identically-sized population. To facilitate this, the
paper proposes Fixed Length Initialisation (FLI) that creates an identically-sized
but functionally-diverse population. The results show that while FLI particularly
suits time-control, it also generally improves the performance of size-control.

Following this introductory part, Sect. 2 of this paper provides some back-
ground; Sect. 3 details the experiments; Sect. 4 presents the results; and Sect. 5
covers future works and concludes the paper.

2 Background

2.1 Complexity in Genetic Programming

Traditionally, controlling complexity in GP means controlling structural com-
plexity such as the size (bloat control) of the evolved expressions, or the number
of encapsulated sub-trees and layers, while ignoring the underlying functional or
computational complexity [6,7,9,17,21]. For example, bloat control penalises a
large yet linear expression 4x+8x+2x+x+x, which is functionally and computa-
tionally less complex than a smaller expression sin(x) [2], which is equivalent to
its Taylor series expansion

∑∞
n=0(−1)n x2n+1

(2n+1)! . Clearly, the smaller expression
sin(x) needs more computational resources than its linear counterpart. Thus,
complexity in GP is more than merely the expression size.

Approaches based on functional complexity recognise that small structures
may be more complex than larger ones and hence focus on the functionality
of structures. To elicit functional complexity, one approach approximates the
evolving expressions by polynomials [23]; complex expressions are approximated
by polynomials of a high degree owing to large oscillations in the response of the
function. This degree of approximating polynomials is thus minimised in [23].
However, the minimisation requires the evolving expressions to be twice differ-
entiable, a property that is not always guaranteed. To alleviate this constraint,
Vanneschi et al. [21] defined a less rigorous measure of functional complexity,
whereby the slope of an expression is approximated by a simpler but error prone
measure. As such Vanneschi et al. did not control the complexity; instead, they
only measured the complexity of evolving expressions. Another approach [1] used
the variance of the outputs of the evolving expressions to measure the functional
complexity; this approach explicitly minimised the variance and maximised accu-
racy using a multi-objective optimisation approach. Note, however, that slope

198 A. S. Sambo et al.

of the evolving functions can not indicate complexity when evolving compilable
programs for tasks such as robot navigation.

Similarly, statistical learning theory measures the complexity of a space of
functions that can be learned using statistical classification. The main techniques
include generalisation error bound VC theory and VC dimensions [12,22].

As the discussion highlights, the above techniques are either specialised to
various domains or challenging to implement. In contrast, the present study
simply measures the complexity of a model with its evaluation time.

2.2 Evaluating Time Is More Than Measuring Size

Fig. 1. Relationship between evaluation time, size and the composition of models is
shown. Individuals made up of COS and SIN operators have higher average evaluation
times than the same-sized individuals from other functions sets. Also, note that size
correlates with evaluation time.

While the previous section argues why measuring size is fundamentally different
to evaluating time, it is also important to empirically verify that. After all, the
evaluation time also increases when the expression size increases; however, we
must also ascertain if the evaluation time also practically increases with the
functional complexity. Otherwise, measuring time becomes simply a proxy for
measuring size. Clearly, that is undesirable.

To this end, we used four different functions sets to generate symbolic regres-
sion models of different complexities; Fig. 1 details the functions sets. For each
functions set, we generated differently sized individuals (10, 20, 30, ..., 300), and
in turn for each size we generated 30 random expressions. All the models were
then evaluated 50 times, each with the same data. Figure 1 presents the average
evaluation times of individuals according to their size and complexity.

Two trends are clearly visible in Fig. 1: (1) given the same size, the evalua-
tion times of functionally complex individuals are consistently higher than those
for their counterparts; and (2) evaluation times are also strongly correlated with

Time Control or Size Control? 199

the expression sizes, as expected. Hence, the evaluation times indeed differenti-
ate between functional complexities; however, if a simple function is inefficiently
coded as an excessively large expression, it evaluates slower. Therefore, evalu-
ation time control impacts conditionally: it prefers functional simplicity if the
sizes of a competing set of individuals are within a certain tolerance (or range);
otherwise, it prefers smaller sizes. Note, this tolerance increases as the size of
individuals increases. For example, the evaluation time of size 75 with functions
set COS-SIN is the same as that for size 175 with the functions set ADD-SUB.

The above findings also predict the limiting behaviour of evaluation time
control in GP. In a functionally diverse but a size-converged population – where
bloat control is impotent – evaluation times discriminate between functional
complexities, whereas in a functionally converged but a size-diverse population,
evaluation times discriminate between sizes.

The idea that time control discriminates between functional complexities
when sizes have converged prompted us to try a new initialisation scheme. The
new scheme starts with a population of identically sized but functionally diverse
individuals. We tested the impact of this new initialisation on all methods before
applying it to our experiments. Section 3.4 details this scheme and its impact.

2.3 Stabilising Evaluation Time Measurements

A problem with measuring evaluation times is that they vary across multiple
executions, and if this variability is high, one cannot reliably estimate the com-
plexity of a given model from a single evaluation. Since this variation results from
CPU scheduling that is under the control of the operating system, we can not
eliminate this variation totally. However, we found ways to significantly minimise
this variation across evaluations.

We found that CPU management options can help minimise this variation.
These options include: (1) stopping all background services, (2) locking the CPU
speed to prevent the operating system power management from interfering, (3)
executing the experiments on dedicated processors and (4) assigning the exper-
imental tasks a high priority. Figure 2 illustrates the impact of these changes.
Each box-plot represents multiple evaluation times for an individual of a given
size. Clearly the variation decreases significantly after CPU management. Thus,
we were able to use a single evaluation to measure the evaluation time.

3 Experiments

We used four existing bloat control techniques to compare size-control with time-
control. When controlling time, the evaluation time replaces size in each of the
bloat control techniques.

3.1 Bloat Control Techniques

(a) Death by Size (DS) [16] is a steady state replacement method that replaces
the larger individuals from the present population with a given probability

200 A. S. Sambo et al.

Fig. 2. Using CPU management options decreases variability in evaluation times.

(typically 0.7; we use the same). To replace an individual, DS selects two indi-
viduals randomly and replaces the larger one probabilistically. By necessity, DS
uses steady-state GP.

(b) Double Tournament (DT) [15,16] increases the probability of choosing
smaller individuals as parents to encourage the reproduction of similarly small
offspring. DT runs two rounds of tournaments. In the first round, it runs n
probabilistic tournaments each with a tournament of size 2 to select a set of
n individuals. Each of these tournaments selects the smaller individual with a
probability of 0.7. Then, in the second round, DT selects the fittest out of the n
individuals. We implemented the DT experiments using steady-state GP.

(c) Operator Equalisation (OpEq) [4,20] allows the sizes of individuals to
grow only when fitness is improving. It controls the distribution of the popula-
tion by employing two core functions. The first determines the target distribution
(by size) of individuals in the next generation; the second ensures that the next
generation matches the target distribution. To define the target distribution,
OpEq puts the current individuals into bins according to their sizes and calcu-
lates the average fitness score of each bin. This average score is then used to
calculate the number of individuals to be allowed in a corresponding bin in the
next generation (target distribution). Thus, from one generation to the next the
target distribution changes to favour the sizes that produce fit individuals. The
width of the bins can vary and thus is a parameter. Bin width of 1 to 10 has
been successfully used previously [20]. In our experiments we used the better
performing Dynamic OpEq variant [20] and used bin width = 5. Note, OpEq
uses generational replacement.

To adapt OpEq to control evaluation time, we had to estimate the time
equivalent of the bin width. This value is then used to create bins to classify
individuals according their evaluation times in the same way as bin width size is
used to create bins to classify individuals by their sizes. To get a reliable estimate
we used multiple samples, evaluated multiple times and used the median of
several estimates. This is done only once at the beginning of the GP run.

Time Control or Size Control? 201

(d) The Tarpeian (TP) [19] method controls size-growth by assigning the
worst fitness to a fraction W (recommended W = 0.3; we use the same) of the
individuals that have above-average size. TP uses generational replacement and
calculates the average size of the population at every generation.

To adapt this method to control evaluation time we simply replaced the
average size with the average evaluation time.

3.2 Test Problems

We use five tough problems to compare the results in this paper. The problems
are tough because the results in Sect. 4 show that the accuracy scores are low
(less than 41%). Hence, these problems require GP to run long and thus present
a good test bed for complexity control because at least the size-complexity in
GP grows with long runs. Four of these problems are multi-dimensional (with
five or more input variables). The data set for problems 1–4 are available at [5];
Problem 5 is a bi-variate version of the function used in [8]. A summary of the
data sets is available in Table 1.

Table 1. Overview of test problems

ID Problem label No. of variables No. of instances

1 Airfoil 5 1503

2 Boston housing 13 506

3 Concrete strength 8 1030

4 Energy efficiency 8 768

5 y2x6 − 2.13y4x4 + y6x2 2 250 (x= min:−0.3, step: 0.012; y= x + 0.03)

3.3 Configuration and Parameters

The basic parameters for all the methods are summarised in Table 2. The other
key experimental decisions are as follows. First, the individuals with divide-by-
zero errors were assigned the worst fitness; as discussed in [10], the protected
operators commonly used in GP lead to poor generalisation. Next, the data-
sets were randomly split (without replacement) into 80% for training and 20%
testing. Finally, the fitness was computed as the normalised mean squared error
(MSE) and maximised as follows: 1

1+ 1
nΣn

i=1(yi−ŷi)2
.

The experiments were run on Windows 10 (64-bit) with 32 GB RAM, and
Intel Core i7-6700 CPU @ 3.40 GHz (Quad-Core).

3.4 Initialising the Population

Section 2.2 motivated the need for an initialisation scheme that produces func-
tionally diverse but identically sized individuals; such a scheme can increase

202 A. S. Sambo et al.

Table 2. Summary of Parameters

Parameter Setting

Number of runs 50

Population size 500

Run terminates After 35,000 evaluations (≡ 70 generations)

Random tree/subtree generation Ramped half-and-half(1 =< depth =< 4); and
Fixed Length Initialisation (see Sect. 3.4)

Operators & probabilities One point crossover = 0.9; Point mutation
= 0.1

Depth Limit 17

Function set +,−, ∗, /, sin, cos, neg

Constants (ERC) |ERC| = 100 (min = 0.05, step: 0.05)

Terminal set {Input variables} U ERC

Selection tournament size = 3

Replacement steady state/generational as per each method

the focus of the time-control on differentiating functional complexity. Therefore,
we created a Fixed-Length Initialisation scheme (FLI) for these experiments.
Henceforth, we call the Ramped-Half-and-Half initialisation the Variable Length
Initialisation (VLI).

For the present study, we used the FLI to produce an initial population of
unique individuals each having the same length (or size) of 10 nodes. Given
the functions set size, a fixed length of 10 can easily produce populations of a
few hundred unique individuals; we leave studying the impact of varying the
lengths to future work. To encourage functional diversity, we do not consider
two individuals different if they only differ by numeric constants.

Before applying FLI to our experiments, we examined its impact on all the
methods. The charts in Fig. 3 show the mean test fitness accuracy by generation
for all the methods and problems. The significance of the differences of the final
populations as established by the Mann-Whitney U test are captured in Fig. 4.
The figure is colour coded so that green indicates where the accuracy of the
final populations produced by FLI are significantly higher, brown where VLI is
higher, and yellow where the difference is not significant. FLI produced better
results in 16 out of 20 for Time-control and 11 out of 20 for size-control.

We observed that when using OpEq, size-control with VLI was better than
size-control with FLI on all the problems. Therefore, for OpEq we compare time-
control with the result of size-control with VLI (the better result). For all other
methods we used the proposed FLI.

Time Control or Size Control? 203

4 Results

We compare the accuracy, complexity and compositions of the models produced
by each method to controlling size and time. For accuracy, although our key
measure is test fitness (accuracy on out-of-sample data), we also report training
fitness; the higher the value the better. For complexity we report both the size
and evaluation times of the models; the lower the values the better. Finally, to
give further insight into the complexity of the evolved models, we report the
composition of final populations as to what percentage of the genetic material
comprised of more or less complex mathematical functions.

Fig. 3. Comparing the test fitness of initialisation schemes, VLI and FLI. The mean
test fitness values are plotted by generation. The thick lines represent FLI and the
thin VLI; the green and red lines represent time-control and size-control respectively.
(Color figure online)

Figures 6, 7, 8 and 9 show how the test set accuracy, size and evaluation
times of both time-control and size-control evolve with each of DS, DT, OpEq
and TP. The figures show that for all the methods the values of all the measures
increase continuously through to the final generations. Therefore, we evaluate

204 A. S. Sambo et al.

the statistical significance of the differences in the performances in the final
generations and report it in Fig. 5. Also, unless stated otherwise, henceforth, the
discussion of results concerns Fig. 5.

Statistical Significance: Figure 5 shows the colour-coded results of the Mann-
Whitney U statistical test comparing the final populations of time-control and
size-control. The table contains results for all the test problems and techniques.
The attributes tested include the evaluation time, size, training and test fitness
(accuracy on out-of-sample data). The p-values included in Fig. 5 statistically
compare the metrics of time-control against those of size-control. The rows are
green when time-control is significantly better (more for accuracy, and less for
both size and evaluation time), brown when it is significantly worse, and yellow
when the difference is not significant.

Fig. 4. Testing the significance of the impact of the new FLI initialisation scheme. In
the final populations, FLI test fitness accuracy improved 16 of 20 for time-control and
11 of 20 for size-control. (Color figure online)

Accuracy of Models: Time-control produced significantly more accurate mod-
els (on both training and test data) across all problems and all control techniques
except on three occasions. The exceptions are problem 1 on TP (the difference is
not significant), and problem 2 on DS and problem 5 on TP where size-control
outperformed time-control. Overall, time-control outperformed size-control on
training and test accuracy on 17 of the 20 occasions and matched size-control
on one occasion.

Complexity of Models: Time-control produced less complex (evaluation time
and size) models with 2 out of the 4 control techniques; the techniques are DS
and DT. As seen in Fig. 5, DS produced simpler models on all the problems
except on problem 2 where the difference in evaluation times is not significant.

Time Control or Size Control? 205

Likewise, DT produced simpler models on 4 out of 5 problems, the exception
being problem 3.

Composition of Models: Table 3 counts and differentiates the nature of nodes
constituting the GP trees in the final populations to understand the composition
of the genetic material therein. Consistent with the results on evaluation times
and sizes, time-control with DS and DT used smaller percentages of complex
mathematical functions: the percentages of tree nodes containing SIN and COS
with time-control are smaller than the respective figures for size-control. Like-
wise, OpEq and TP – much like their results on evaluation times and sizes – use
greater percentages of SIN and COS.

Fig. 5. Results of Mann-WhitneyU test for significance in the differences between the
final populations of time-control and size-control. Time-control produced more accurate
training and test scores in 17 out of 20 tests. While time-control with the steady-state
methods (DS and DT) produced simpler (smaller sizes and evaluation times) models
than size-control in 9 out of 10 tests, time-control with the generational methods (OpEq
and TP) produced more complex models in 8 out of 10 tests. (Color figure online)

4.1 Discussion

Section 1 argued that sensible management of complexity should produce models
that are only complex enough to explain the phenomenon generating the given
data but not too complex. The results show that time control almost consistently
delivers superior accuracy despite splitting results on complexity measures. Even
so, the increased complexity with time-control with OpEq and TP is not off the
scale as is typically the case with the standard, unrestrained GP.

206 A. S. Sambo et al.

Fig. 6. Death By Size: Comparing changes in metrics by generation between time-
control and size-control using DS.

Fig. 7. Double Tournament: Comparing changes in metrics by generation between
time-control and size-control using DT.

Time Control or Size Control? 207

Fig. 8. Operator Equalisation: Comparing changes in metrics by generation between
time-control and size-control using OpEq.

Fig. 9. Tarpeian: Comparing changes in metrics by generation between time-control
and size-control using TP.

208 A. S. Sambo et al.

Table 3. Composition of the final populations.

As to why time-control with OpEq and TP produces greater complexity is
not exactly clear at present; however, it is worth noting that these two meth-
ods require generational replacement where the size (or time) distributions of
the entire generations must be computed before allowing new individuals in. In
contrast, DT and DS are steady state methods where a new individual replaces
the loser of a tournament.

Interestingly, Fixed Length Initialisation (FLI) improved the results with not
only time control but more often than not even with size control. The results
encourage further investigation into this initialisation technique. FLI is designed
to promote compositional (functional) diversity and thus allow time-control to
distinguish complexity based more on composition than on size. However, FLI
can not enforce size similarity beyond the initial generation; therefore, further
work must investigate the effects of promoting size similarity in the remaining
evolution and see if that further intensifies the effect of time-control.

5 Conclusions and Future Work

This paper asks the question - why not use time instead of size to measure
complexity in GP? Unlike model size, evaluation time is a function of both
syntactic and computational characteristics of a model. This measure is broadly
applicable, and although this paper studies regression problems, in principle,
evaluation time can represent complexity in other domains as well.

A criticism of evaluation time is the variability in its repeated measurements;
therefore, this paper shows how to minimise this variability.

The results indicate that the nuanced notion of complexity in time-control
almost consistently produces superior accuracy on both training and test data.
Even when time-control produces slightly greater sizes or times, the correspond-
ingly superior accuracy counter-weighs these increases. After all, the complexity-
control is not the end-goal alone; instead, it should also accompany better accu-
racy. Even so, the increase in complexity is not off the scale as is typically the
case with unrestrained GP.

Time Control or Size Control? 209

The paper also shows that time-control can differentiate functional complex-
ity especially when the population has identically-sized individuals. To facili-
tate this, the paper proposes Fixed Length Initialisation (FLI) that creates an
identically-sized but functionally-diverse population. The results show that while
FLI particularly suits time-control, it also generally improves the performance
of size-control.

Overall, the paper poses evaluation time as a promising alternative to count-
ing nodes in GP.

References

1. Azad, R.M.A., Ryan, C.: Variance based selection to improve test set performance
in genetic programming. In: Proceedings of the 13th Annual Conference on Genetic
and Evolutionary Computation, pp. 1315–1322. ACM, Dublin (2011). http://dl.
acm.org/citation.cfm?id=2001754

2. Azad, R.M.A., Ryan, C.: A simple approach to lifetime learning in genetic
programming based symbolic regression. Evol. Comput. 22(2), 287–317 (2014).
https://doi.org/10.1162/EVCO a 00111. http://www.mitpressjournals.org/doi/
abs/10.1162/EVCOa00111

3. Couture, M.: Complexity and chaos-state-of-the-art; formulations and measures
of complexity. Technical report, Defence research and development Canada Val-
cartier, Quebec (2007)

4. Dignum, S., Poli, R.: Operator equalisation and bloat free GP. In: O’Neill, M., et
al. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 110–121. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-78671-9 10

5. Dua, D., Karra Taniskidou, E.: UCI machine learning repository (2017). http://
archive.ics.uci.edu/ml

6. Falco, I.D., Iazzetta, A., Tarantino, E., Cioppa, A.D., Trautteur, G.: A kolmogorov
complexity-based genetic programming tool for string compression. In: Proceedings
of the 2nd Annual Conference on Genetic and Evolutionary Computation, pp. 427–
434. Morgan Kaufmann Publishers Inc., Las Vegas (2000)

7. Griinwald, P.: Introducing the minimum description length principle. Adv. Mini-
mum Description Length: Theory Appl. 3, 3–22 (2005)

8. Gustafson, S., Burke, E.K., Krasnogor, N.: On improving genetic program-
ming for symbolic regression. In: Corne, D., et al. (eds.) Proceedings of the
2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 912–919. IEEE
Press, Edinburgh, 2–5 September 2005. http://ieeexplore.ieee.org/servlet/opac?
punumber=10417&isvol=1

9. Iba, H., de Garis, H., Sato, T.: Genetic programming using a minimum description
length principle. In: Kinnear, Jr., K.E. (ed.) Advances in Genetic Programming,
chap. 12, pp. 265–284. MIT Press, Cambridge, MA, USA (1994). http://cognet.mit.
edu/sites/default/files/books/9780262277181/pdfs/9780262277181 chap12.pdf

10. Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scal-
ing. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds.)
EuroGP 2003. LNCS, vol. 2610, pp. 70–82. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-36599-0 7

11. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992). http://mitpress.mit.edu/
books/genetic-programming

http://dl.acm.org/citation.cfm?id=2001754
http://dl.acm.org/citation.cfm?id=2001754
https://doi.org/10.1162/EVCO_a_00111
http://www.mitpressjournals.org/doi/abs/10.1162/EVCOa00111
http://www.mitpressjournals.org/doi/abs/10.1162/EVCOa00111
https://doi.org/10.1007/978-3-540-78671-9_10
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://ieeexplore.ieee.org/servlet/opac?punumber=10417&isvol=1
http://ieeexplore.ieee.org/servlet/opac?punumber=10417&isvol=1
http://cognet.mit.edu/sites/default/files/books/9780262277181/pdfs/9780262277181_chap12.pdf
http://cognet.mit.edu/sites/default/files/books/9780262277181/pdfs/9780262277181_chap12.pdf
https://doi.org/10.1007/3-540-36599-0_7
https://doi.org/10.1007/3-540-36599-0_7
http://mitpress.mit.edu/books/genetic-programming
http://mitpress.mit.edu/books/genetic-programming

210 A. S. Sambo et al.

12. Kulkarni, S.R., Harman, G.: Statistical learning theory: a tutorial. Wiley Interdisc.
Rev.: Comput. Stat. 3(6), 543–556 (2011). https://doi.org/10.1002/wics.179

13. Kumar, A., Goyal, S., Varma, M.: Resource-efficient machine learning in 2 KB
RAM for the internet of things. In: Precup, D., Teh, Y.W. (eds.) Proceedings of
the 34th International Conference on Machine Learning. Proceedings of Machine
Learning Research, PMLR, International Convention Centre, vol. 70, pp. 1935–
1944. Sydney, 06–11 August 2017

14. Lipton, Z.C.: The mythos of model interpretability. Commun. ACM 61(10), 36–43
(2018). https://doi.org/10.1145/3233231

15. Luke, S., Panait, L.: Fighting bloat with nonparametric parsimony pressure. In:
Guervós, J.J.M., Adamidis, P., Beyer, H.-G., Schwefel, H.-P., Fernández-
Villacañas, J.-L. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 411–421. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45712-7 40. http://www.
springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=2439&
spage=411

16. Luke, S., Panait, L.: A comparison of bloat control methods for genetic program-
ming. Evol. Comput. 14(3), 309–344 (2006). https://doi.org/10.1162/evco.2006.14.
3.309. http://cognet.mit.edu/system/cogfiles/journalpdfs/evco.2006.14.3.309.pdf

17. Mei, Y., Nguyen, S., Zhang, M.: Evolving time-invariant dispatching rules in job
shop scheduling with genetic programming. In: McDermott, J., Castelli, M., Sekan-
ina, L., Haasdijk, E., Garćıa-Sánchez, P. (eds.) EuroGP 2017. LNCS, vol. 10196, pp.
147–163. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55696-3 10

18. Paris, G., Robilliard, D., Fonlupt, C.: Exploring overfitting in genetic programming.
In: Liardet, P., Collet, P., Fonlupt, C., Lutton, E., Schoenauer, M. (eds.) EA 2003.
LNCS, vol. 2936, pp. 267–277. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24621-3 22

19. Poli, R.: A simple but theoretically-motivated method to control bloat in genetic
programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa,
E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 204–217. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36599-0 19. http://www.springerlink.com/
openurl.asp?genre=article&issn=0302-9743&volume=2610&spage=204

20. Silva, S., Dignum, S., Vanneschi, L.: Operator equalisation for bloat free genetic
programming and a survey of bloat control methods. Genet. Program Evolvable
Mach. 13(2), 197–238 (2012). https://doi.org/10.1007/s10710-011-9150-5

21. Vanneschi, L., Castelli, M., Silva, S.: Measuring bloat, overfitting and functional
complexity in genetic programming. In: GECCO 2010: Proceedings of the 12th
Annual Conference on Genetic and Evolutionary Computation, pp. 877–884. ACM,
Portland, 7–11 July 2010. https://doi.org/10.1145/1830483.1830643

22. Vapnik, V.N.: Statistical Learning Theory. Adaptive and Learning Systems for
Signal Processing, Communications, and Control. Wiley, New York (1998). OCLC:
845016043

23. Vladislavleva, E.J., Smits, G.F., Den Hertog, D.: Order of nonlinearity as a com-
plexity measure for models generated by symbolic regression via pareto genetic
programming. IEEE Trans. Evol. Comput. 13(2), 333–349 (2009). https://doi.
org/10.1109/TEVC.2008.926486. http://ieeexplore.ieee.org/document/4632147/

https://doi.org/10.1002/wics.179
https://doi.org/10.1145/3233231
https://doi.org/10.1007/3-540-45712-7_40
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=2439&spage=411
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=2439&spage=411
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=2439&spage=411
https://doi.org/10.1162/evco.2006.14.3.309
https://doi.org/10.1162/evco.2006.14.3.309
http://cognet.mit.edu/system/cogfiles/journalpdfs/evco.2006.14.3.309.pdf
https://doi.org/10.1007/978-3-319-55696-3_10
https://doi.org/10.1007/978-3-540-24621-3_22
https://doi.org/10.1007/978-3-540-24621-3_22
https://doi.org/10.1007/3-540-36599-0_19
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=2610&spage=204
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=2610&spage=204
https://doi.org/10.1007/s10710-011-9150-5
https://doi.org/10.1145/1830483.1830643
https://doi.org/10.1109/TEVC.2008.926486
https://doi.org/10.1109/TEVC.2008.926486
http://ieeexplore.ieee.org/document/4632147/

Challenges of Program Synthesis
with Grammatical Evolution

Dominik Sobania(B) and Franz Rothlauf

Johannes Gutenberg University, Mainz, Germany
{dsobania,rothlauf}@uni-mainz.de

Abstract. Program synthesis is an emerging research topic in the field
of EC with the potential to improve real-world software development.
Grammar-guided approaches like GE are suitable for program synthesis
as they can express common programming languages with their required
properties. This work uses common software metrics (lines of code,
McCabe metric, size and depth of the abstract syntax tree) for an analy-
sis of GE’s search behavior and the resulting problem structure. We find
that GE is not able to solve program synthesis problems, where correct
solutions have higher values of the McCabe metric (which means they
require conditions or loops). Since small mutations of high-quality solu-
tions strongly decrease a solution’s fitness and make a high percentage of
the solutions non-executable, the resulting problem constitutes a needle-
in-a-haystack problem. To us, one of the major challenges of future GP
research is to come up with better and more adequate fitness functions
and problem specifications to turn the current needle-in-a-haystack prob-
lems into problems that can be solved by guided search.

Keywords: Program synthesis · Genetic programming · Grammatical
evolution · Software engineering · Needle-in-a-haystack

1 Introduction

Program synthesis, a technique to generate source code in a high-level program-
ming language that meets a certain specification [9], is a relevant research topic
in the field of evolutionary computation (EC) with the potential to improve real-
world software development. An example showing this potential is the work by
Harman et al. [10] in which a translation feature was synthesized by using EC
and automatically integrated into the Pidgin instant messaging system.

Grammatical evolution (GE) [22] is a variant of genetic programming (GP)
that is suitable for program synthesis, because the used Backus-Naur-Form
(BNF) grammar allows GE to express high-level programming languages or sub-
sets of these languages with all their required properties (e.g., conditions, loops,
or typing constraints). Inspired by the benchmark suite by Helmuth et al. [13,14],
which contains several program synthesis problems selected from introductory
programming tasks, some recent work uses grammar-guided approaches for solv-
ing program synthesis problems [5,6,15]. For example, Forstenlechner et al. [7]
c© Springer Nature Switzerland AG 2020
T. Hu et al. (Eds.): EuroGP 2020, LNCS 12101, pp. 211–227, 2020.
https://doi.org/10.1007/978-3-030-44094-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44094-7_14&domain=pdf
http://orcid.org/0000-0001-8873-7143
http://orcid.org/0000-0003-3376-427X
https://doi.org/10.1007/978-3-030-44094-7_14

212 D. Sobania and F. Rothlauf

sorted and classified the problems of the benchmark suite according to the suc-
cess of G3P, a grammar-guided approach. They found that some problems were
easy, whereas others could not be solved a single time. As the reasons for these
huge differences in performance are unclear, the next logical step is to study the
complexity of the problems and what makes difficult problems difficult for GE.

This work analyzes the behavior of GE as well as the structure of a repre-
sentative set of program synthesis benchmark problems with common metrics
from the EC and software development domains. In a first step, we analyze how
robust human-designed reference implementations (solutions that correctly solve
a given benchmark problem) are with respect to small modifications of its geno-
type. In the second step, we analyze by using common and standard software
metrics the functions generated by GE during search as well as the resulting
problem structure and problem complexity.

Section 2 presents work relevant to the domain of program synthesis with GE.
In Sect. 3, we describe the used software metrics, the selected program synthesis
problems from the benchmark suite, and the structure of the used GE approach.
Following this, in Sect. 4, we describe our experimental setting and discuss the
findings. Section 5 concludes the paper.

2 Related Work

There are two major trends for the synthesis of source code with EC: grammar-
guided approaches [5–7,15,24] in contrast to approaches based on the stack-
based programming language Push [11,12,17]. Both types of methods support
the use of multiple data types (e.g., Boolean, integer, float, or string). Grammar-
guided approaches, like GE [22], enforce syntax rules and the typing of a pro-
gramming language by using a BNF grammar, whereas Push [25] ensures correct
typing by using separate stacks for each required data type.

For program synthesis with EC, Krawiec [18] already identified some chal-
lenges. The most obvious challenge is the large search space. Every additional
programming language construct (e.g., a control structure, or a function) leads to
a dramatic increase of possible combinations. Even worse, the influence of a pro-
gramming language construct on the program’s behavior is context-dependent
as the same instruction in a different setting may lead to completely different
results. Furthermore, in a programming language, desired functionality can be
expressed in multiple ways (see the multiple-attractor problem [1]). This makes
it hard for guided evolutionary search to find a program with the desired func-
tionality and structure. This is also relevant if the evolved program should be
improved or maintained by human software developers as they expect human-
readable code and not overly complex, but correct, synthesized program code.
Therefore, evolved code should not only have the desired functionality but also
follow a human-like coding style [24]. Another unsolved problem is how to mea-
sure whether a program has the desired functionality. For example, the well-
known benchmark suite for program synthesis [13,14] checks the correctness of a
program with large sets of test cases. Unfortunately, the use of test cases does not

Challenges of Program Synthesis with Grammatical Evolution 213

allow to appropriately measure generalization as even Dijkstra [2, p. 864] pointed
out that “program testing can be a very effective way to show the presence of
bugs, but it is hopelessly inadequate for showing their absence”.

A variety of GE papers analyzed different aspects of the algorithm, like the
influence of grammars [16,20], the genotype-phenotype mapping [4,21], or the
initialization method [3,24]. However, to our knowledge, there is no work so far
that performs a systematic analysis of GE’s behavior on a representative set of
program synthesis benchmark problems using standard and common software
metrics.

3 Methodology

This section presents the software metrics required for analysis, the selected
benchmark problems, and the structure of the GE approach.

3.1 Software Metrics

In our experiments, we use software metrics that are directly applied to a func-
tion’s source code as well as metrics that measure properties of a function’s
abstract syntax tree (AST). For generating the AST from a given Python func-
tion, we use the Python module astdump1. We use the following software metrics:

– Lines of code (LOC): the number of lines of a function’s source code includ-
ing the function’s signature. Comments and empty lines are not relevant in
this work because the used grammar does not support them.

– McCabe metric: the number of decision branches defined by a piece of
code added to the minimum value which is one [19]. Decision branches arise
in source code, e.g., through conditions and loops. For calculating the McCabe
metric, we use the Python module radon2.

– AST depth: the number of edges on the path from an AST root node to its
deepest leaf node.

– AST nodes: the number of nodes in an AST.

3.2 Program Synthesis Problems

For our experiments, we selected four problems from the 29 problems defined in
the program synthesis benchmark suite [13,14]. To obtain a representative subset
of test problems, we selected problems with different complexity and different
data types necessary for a correct solution. We selected the following problems:

– Number IO: return the sum of a given integer and a float.
– Small or Large: for a given integer n, return “small” if n < 1, 000, “large”

if n ≥ 2, 000, and an empty string if 1, 000 ≤ n < 2, 000.
1 https://pypi.org/project/astdump/.
2 https://pypi.org/project/radon/.

https://pypi.org/project/astdump/
https://pypi.org/project/radon/

214 D. Sobania and F. Rothlauf

– Count Odds: return the number of odds in a given vector of integers.
– Smallest: return the smallest of four given integers.

The training sets consist of 100 cases for each problem, except for Number IO
where it consists of 25 and Count Odds where it consists of 200. The test sets
consist of 1, 000 cases for each problem, except for Count Odds (2, 000).

def count_odds(numlist0):

num0 = num1 = num2 = num3 = num4 = 0 # Initialization

for num1 in numlist0:

if num1 % 2 == 1:

num0 = num0 + 1

return num0

Fig. 1. The reference implementation for the Count Odds problem. We shortened the
initialization part.

For each of the considered benchmark problems, we defined a hand-written
reference implementation that correctly solves the problem and which resembles
a solution written by a human software developer. Figure 1 exemplarily shows
the reference implementation for the Count Odds problem. Since the reference
implementations are consistent with the BNF grammar used in the experiments
(see Sect. 3.3), they also contain an initialization part for all possible variables
(shortened for readability in the figure). For reproducibility, all reference imple-
mentations are available online3.

Table 1. Properties of the reference implementations. The values in brackets are with-
out the not required part of the initialization.

Benchmark problem LOC McCabe metric AST depth AST nodes

Number IO 12 (3) 1 (1) 5 (5) 74 (19)

Small or Large 18 (9) 3 (3) 6 (6) 92 (35)

Count Odds 13 (6) 3 (3) 7 (7) 84 (34)

Smallest 12 (3) 1 (1) 7 (7) 85 (34)

To assess the structure and complexity of the problems, Table 1 shows the
calculated software metrics (see Sect. 3.1) for our reference implementations. The
values in brackets show the software metrics without the not required part of
the variable initialization.

As we can see, the selected benchmark problems cover a range from 12 to 18
LOC, respectively 3 to 9 LOC without the not required part of the initialization.
3 https://gitlab.rlp.net/dsobania/ge-program-synthesis/tree/master/reference.

https://gitlab.rlp.net/dsobania/ge-program-synthesis/tree/master/reference

Challenges of Program Synthesis with Grammatical Evolution 215

The complexity, measured by the McCabe metric, ranges from 1 to 3. The AST-
based metrics are distributed in a similar way. As expected, the initialization
part has no influence on the McCabe metric and the AST depth.

3.3 GE Grammar and Fitness Function

For our experiments, we use a standard GE approach with a BNF grammar.
Since the GE only uses the training set during a run (which means that we make
no assumptions on the type of problem), we created a very expressive grammar
which supports all 29 problems from the program synthesis benchmark suite
[13,14]. The resulting BNF grammar consists of 31 production rules and supports
conditions, loops, numbers, strings, Booleans, and lists. Slicing of strings and
lists is also possible. Figure 2 shows an excerpt of the used BNF grammar. For
reproducibility, the complete grammar is available online4.

<main > ::= def small_or_large(num0): NEWLINE INDENT num1 = num2 =

num3 = num4 = 0 NEWLINE bool0 = bool1 = bool2 = False

NEWLINE numlist0 = [] NEWLINE numlist1 = [] NEWLINE

numlist2 = [] NEWLINE str0 = str1 = str2 = "" NEWLINE

strlist0 = [] NEWLINE strlist1 = [] NEWLINE

strlist2 = [] NEWLINE <stmt > return <expr_string >

<stmt > ::= <stmt > <stmt > | <var_numeric > = <expr_numeric > NEWLINE |

<var_bool > = <expr_bool > NEWLINE | ...

Fig. 2. An excerpt of the used BNF grammar. The shown first production rule is
designed for the Small or Large benchmark problem.

The only problem-specific adaptation of the BNF grammar is the first pro-
duction rule, which defines – for each considered problem – the function argu-
ments, ensures an initialization of all variables, and defines the return type. For
example, Fig. 2 lists inter alia the first production rule for the Small or Large
benchmark problem. The rest of the grammar is identical for all problems. The
indentation style, which is mandatory in the Python programming language, is
realized by newline, indent, and dedent markers in the grammar. These markers
are replaced before the evaluation.

For the evaluation of a solution (function), we use the same fitness function
for all benchmark problems defined as

f(S, T, pinv, perr) =

⎧
⎪⎨

⎪⎩

pinv |T | if S is invalid,
perr |T | if S causes a run-time error,∑

ti∈T

d(S, ti) else,
(1)

where S is a candidate solution (a generated Python function), T is the training
set, ti is the ith element of T , pinv is the penalty for invalid solutions, perr
4 https://gitlab.rlp.net/dsobania/ge-program-synthesis/tree/master/grammar.

https://gitlab.rlp.net/dsobania/ge-program-synthesis/tree/master/grammar

216 D. Sobania and F. Rothlauf

is the penalty for candidate solutions causing a run-time error, and d(S, ti) is a
function that returns 0 if the candidate solution produces the correct output and
1 otherwise. Thus, the fitness of a candidate solution is increased by 1 for every
element of the training set that is not correctly solved. If a candidate solution
is invalid, because the genotype-phenotype mapping is not successful, we assign
the penalty pinv to all elements of the training set. If a candidate solution causes
a run-time error (e.g., an index error, a division by zero error, or an endless
loop), we apply analogously the penalty perr.

4 Experiments and Discussion

Sections 4.1 and 4.2 analyze the neighborhood (fitness and structure) of the ref-
erence implementations for the selected program synthesis problems. Section 4.3
analyzes the properties of the Python functions evolved during a GE run. In
Sect. 4.4, we study how the fitness of solutions depend on the number of AST
nodes, the AST depth, and the McCabe metric.

4.1 Robustness of Reference Implementations: Part I

We use random walks to study how robust the reference implementations are
with respect to small modifications of the genotype. A problem (or more precise,
the GE genotype of a reference implementation of a problem) is robust if small
modifications of the genotype have only low effect on the properties and fitness
of the corresponding phenotype. We use robustness in the sense of locality [21],
where small changes of a genotype should correspond to small changes of the
phenotype.

For our study, we created a corresponding GE genotype for each of the ref-
erence implementations (phenotypes). Then, we iteratively apply random muta-
tions to the active codons of the GE genotype. After each mutation, we calculate
the fitness (Eq. 1) of the solution, the number of not correctly solved training
cases as well as the percentage of invalid solutions, solutions that cause a run-
time error, and solutions that are still executable.

Since we have defined a large and expressive BNF grammar, we use an
integer-based genome with a length of 250 (number of codons) and a codon
size of 1, 000. As we do not need all codons of the genotype for encoding a refer-
ence implementation, we fill all non-used (inactive) codons with random integers.
As the mutations may introduce endless loops, we limit the fitness evaluation to
3 s. If the evaluation is not completed within this time, it will be aborted and
the solution counts as a run-time error. In all experiments, we set the invalid
penalty pinv = 2 and the run-time error penalty perr = 1.5. Furthermore, we use
no wrapping in the genotype-phenotype mapping process.

Figures 3, 4, 5, 6, 7, 8, 9 and 10 show results for all four benchmark problems.
The plots on the left show the average fitness as well as the average number of
not correctly solved training cases (denoted as wrong cases) over the number
of random mutations. For the fitness plot, we consider all solutions including

Challenges of Program Synthesis with Grammatical Evolution 217

the ones that cause a run-time error or are invalid. For the plots showing the
number of not correctly solved training cases, we consider only solutions that
are executable. We average results over 5, 000 runs. In each run, we iteratively
apply a finite number of random mutation steps starting from the (correctly
working) reference implementation. As intended, the reference implementations
always have a fitness of zero. The worst solutions, which are functions that are
invalid, have a fitness of pinv times the number of training cases. The plots on
the right show the percentage of invalid solutions, solutions causing a run-time
error, and executable solutions over the number of random mutations (averaged
over 5, 000 runs).

The fitness plots (left) show similar behavior for all problems. Even very
few changes of the GE genotype of only one or two mutations strongly decrease
the fitness of a solution. For example, one or two mutations applied to the
reference implementation of the Small or Large problem reduces the average
fitness from 0 (reference implementation) to 85 or 128, respectively. After a
few more mutations, the average fitness is close to 200, which indicate invalid
solutions. There are small differences in how fast the solutions become infeasible
depending on the considered problem. For example, the fitness slope for the
Smallest problem (Fig. 9) is slightly lower compared to the other benchmark

Fig. 3. Fitness/wrong cases over muta-
tions for the Number IO problem.

Fig. 4. Percentage of result types over
mutations for the Number IO problem.

Fig. 5. Fitness/wrong cases over muta-
tions for the Small or Large problem.

Fig. 6. Percentage of result types over
mutations for the Small or Large problem.

218 D. Sobania and F. Rothlauf

Fig. 7. Fitness/wrong cases over muta-
tions for the Count Odds problem.

Fig. 8. Percentage of result types over
mutations for the Count Odds problem.

Fig. 9. Fitness/wrong cases over muta-
tions for the Smallest problem.

Fig. 10. Percentage of result types over
mutations for the Smallest problem.

problems. Since the number of invalid solutions and run-time errors strongly
influence a solution’s fitness, we also plot the average number of wrongly solved
training cases (denoted as wrong cases). For the Number IO (Fig. 3) and the
Count Odds problem (Fig. 7), only a few mutations strongly increase the number
of wrongly solved training cases; for the Small or Large (Fig. 5) and the Smallest
problem (Fig. 9), the mutations have a slightly lower negative influence.

The figures on the right side plotting the percentage of invalid solutions,
solutions with a run-time error, and executable solutions confirm the findings
and show that after only a few mutations, a large percentage of the solutions are
non-executable. For example, for the Small or Large problem, two random muta-
tions of the genotype lead to an average percentage of less than 50% executable
solutions. One reason for this high percentage of invalids is the large grammar
with many non-terminals. To make the grammar more robust, Schweim et al.
[23] suggest to reduce the grammar’s average branching factor, e.g., by a lower
arity of the functions or adding more terminals to the grammar. Another way to
downsize the grammar is the use of domain knowledge, e.g. the textual problem
description of the program to be synthesized (cf. Hemberg et al. [15]).

In summary, the reference solutions are not robust against small changes of
the genotype. Step-wise random mutations strongly reduce the percentage of

Challenges of Program Synthesis with Grammatical Evolution 219

executable functions. After about 10 mutations, less than 20% of the solutions
are executable. We expect that the high percentage of non-executable solutions
in the neighborhood of the reference implementations make it difficult for guided
search approaches like GE to find correct solutions.

4.2 Robustness of Reference Implementations: Part II

We also present results for the robustness of the reference implementations with
respect to the software metrics defined in Sect. 3.1. For the same experimental
setting and identical experimental runs as described in the previous section,
we now present results on how the structure and complexity (measured by the
software metrics presented in Sect. 3.1) of the reference implementations change
when applying subsequent mutations.

Figures 11, 12, 13 and 14 present the average LOC, McCabe metric, number
of AST nodes, and AST depth over the number of random mutations. The
software metrics are calculated for the complete functions including the variable
initialization part (e.g., for Number IO the smallest possible value of LOC is
12). For the analysis, we excluded invalid solutions because for such solutions no
well-formed phenotype exists.

The results show only small changes of LOC and McCabe metric over the
number of mutations. We observe a slight difference between the Number IO
problem (Fig. 11) and Smallest Problem (Fig. 14) on the one hand, where the ref-
erence implementations have low LOC and McCabe metric values, and the more
complex Small or Large problem (Fig. 12) and Count Odds problem (Fig. 13)
on the other hand, where the reference implementations have slightly higher
values for LOC and McCabe metric. For the easier problems (Number IO and
Smallest), iterative mutations do not significantly change the LOC and McCabe
metric values; for the more complex problems (Small or Large and Count Odds),
mutations slightly decrease LOC and McCabe metric. For example, for the Small
or Large problem, the average LOC decreases from 18 to around 15. Thus, on

Fig. 11. Software metrics over muta-
tions for the Number IO problem.

Fig. 12. Software metrics over muta-
tions for the Small or Large problem.

220 D. Sobania and F. Rothlauf

Fig. 13. Software metrics over muta-
tions for the Count Odds problem.

Fig. 14. Software metrics over muta-
tions for the Smallest problem.

average small iterative random changes of the genotype of the reference imple-
mentations tend to either reduce or keep constant a solution’s size measured by
LOC and complexity measured by the McCabe metric.

In contrast, iterative random mutations of the reference implementation
strongly increase the average number of AST nodes as well as AST depth for
all benchmark problems. 20 random mutations increase the average number of
AST nodes by more than 25 nodes; analogously, average AST depth goes up
by about 4 nodes. For example, the largest AST depth values of the reference
implementations is 7 (Count Odds and Smallest), which increases to more than
10 after about 18 mutations.

Thus, random mutations do not significantly increase the number of lines of
code of a function but strongly increase the average length and complexity of each
line of code. This leads to more complex and long lines of code. The resulting
programs (with high complexity and length of a line of code) are difficult to
understand (and not really maintainable) by human programmers.

4.3 Search Behavior of GE

Human programmers that develop correct solutions for the existing benchmark
problems often make use of conditions and loops (compare Table 1 for the result-
ing properties of our – human-coded – reference implementations). This section
studies the metrics of functions evolved during a GE run.

The GE uses a population of 25, 000 individuals, an integer-based genome of
length 250 with a codon size of 1, 000. As before, we use no wrapping. We use
tournament selection of size 7 and set the crossover probability to 0.7 and the
mutation probability to 0.03. As before, we stop the evaluation of a solution after
3 s and set pinv = 2.0 and perr = 1.5. We stop each GE run after 50 generations.

Table 2 shows the number of test cases, the average and the standard devi-
ation of correctly solved test cases, and the success rate (number of runs that
found a correct solution) for the benchmark problems. Results are averaged over
100 runs. We show results for the best solution found during a run.

Challenges of Program Synthesis with Grammatical Evolution 221

Table 2. GE performance for the benchmark problems.

Benchmark problem #Test cases #Correctly solved cases Success rate

Average Std. dev.

Number IO 1000 1000.0 0.0 100

Small or Large 1000 531.5 20.2 0

Count Odds 2000 243.9 81.6 0

Smallest 1000 805.5 106.2 14

For the Number IO problem, all GE runs find a correct solution; for the
Smallest problem, only 14% of the runs find a correct solution. For the two other
benchmark problems, GE does not find a correct solution, nevertheless, evolves
solutions that solve some of the test cases. Thus, GE finds correct solutions only
for relatively simple problems (Number IO and Smallest), where the reference
implementation has a McCabe metric value of one (see Table 1). For the two
other, more difficult, problems, where the reference solutions implemented by a
human programmer have a McCabe metric of three (see Table 1), GE is not able
to evolve a single solution that solves the problem.

Fig. 15. Software metrics over genera-
tions for the Smallest problem.

Fig. 16. Software metrics over genera-
tions for the Small or Large problem.

To better understand the differences in GE performance, we analyze the
development of the software metrics during a GE run. Figures 15 and 16 plot
the average LOC, McCabe metric, number of AST nodes, and AST depth of
the solutions evolved by the GE over the number of generations for the Smallest
and the Small or Large problem. For both problems, LOC, McCabe metric, and
AST depth slightly decrease in the first generations. Afterwards, these values
remain about constant. More interestingly, the average number of AST nodes
slightly decreases in the first generations (from around 95 down to 87) followed
by a slight increase approaching a value lower than the initial one. Compar-
ing these findings with the metrics of the reference implementations (Table 1),

222 D. Sobania and F. Rothlauf

the GE finds solutions with similar values of LOC, AST depth, and number
of AST nodes. A major difference lies in the McCabe metric, where the GE
only evolves solutions with average McCabe metrics of around one. However, to
solve the (more difficult) Small or Large problem, higher McCabe metric values
would be necessary. For the Smallest problem, the reference implementation has
a McCabe metric of only one, which makes the problem easy and allows GE
to sometimes solve the problem. The results for the other studied benchmark
problems are similar, but are omitted due to space limitations.

The results indicate that evolutionary search is not able to generate more
complex solutions with a higher McCabe metric. Thus, GE has problems to
correctly use conditions and loops within a solution. Indeed, to evolve a solution
with high fitness that uses a condition or loop, many elements of a programming
language must fit together and the parameters of the condition or loop must be
appropriately set.

def smallest(num1 , num2 , num3 , num4):

Initialization

numlist0.append (5)

return min((num1), min(min((num4), num3), num2))

Fig. 17. Correct solution found for the Smallest problem (initialization part is omitted).

def small_or_large(num0):

num1 = num2 = num3 = num4 = 0 # Initialization

numlist0 = list(reversed(list(range(num0 + num2 + (-1000), 2))))

return "small"[:len(numlist0)]

Fig. 18. Best solution found for the Small or Large problem (shortened initialization).

Consequently, we perform a visual inspection of the source code of the solu-
tions found by GE. Figure 17 shows an example of a (correct) solution found for
the Smallest problem. A solution for this problem should return the smallest of
four given integers. Unfortunately, the BNF grammar only contains a minimum
function min(a, b) that accepts two inputs a and b. Thus, the solutions evolved
by GE combines min() multiple times with the four input variables as parame-
ters. The solution found by GE is similar to the reference implementation.

Figure 18 shows the best found solution for the Small or Large problem. To
solve this problem, a human programmer would use conditions. GE is not able to
solve the problem, but only finds solutions that are correct for some cases. In none
of the solutions returned by the GE, conditions have been used in some useful
way. Instead, GE finds solutions that mimic conditions by performing many
nested simple operations on inputs. For example, the shown example solution

Challenges of Program Synthesis with Grammatical Evolution 223

uses string slicing and the length of a generated list to return either “small” or
an empty string solving correctly around two thirds of the test cases.

In summary, problems are difficult for evolutionary search if they require the
usage of conditions and loops (solutions with a higher McCabe metric). Finding
such structures is difficult for GE as correct solutions with conditions and loops
are difficult to construct (many variables and programming language constructs
have to be set correctly to get a useful condition or loop) and solutions using
loops easily become non-executable when applying mutations.

4.4 Search for the Needle in a Haystack

To better understand what makes a problem difficult for GE, we study how
the fitness of solutions depend on the number of AST nodes, the AST depth,
and the McCabe metric. For the Smallest problem, Figs. 19, 20 and 21 plot the
average as well as the absolute best fitness of all visited solutions of all 100 runs
over the number of AST nodes, AST depth, and McCabe metric, respectively.
Figures 22, 23 and 24 show results for the Small or Large problem. We also plot
the position of the reference implementation (with fitness 0). The plots include
all non-invalid solutions that have been generated during the 100 GE runs.

For the Smallest problem, the reference implementation has a McCabe met-
ric of only 1, an AST size of 85, and an AST depth of 7. The plots show that
GE finds many solutions that have similar metric values compared to the refer-
ence implementation and high fitness (relevant is the best solution found for a
given number of AST nodes, depth, or McCabe metric). Solutions with lower or
higher values of AST nodes and depth tend to be worse (higher fitness values).
Analogously, a higher value of the McCabe metric leads to worse solutions.

The situation is different for the more difficult Small or Large problem, where
the reference implementation has a McCabe metric of 3, an AST size of 92, and
an AST depth of 6. GE finds solutions with similar values for AST size and depth
as well as McCabe metric, but none of the found solutions has high fitness.
Instead, for a given value of a metric, all best found solutions have relatively
high fitness values independently of the value of the McCabe metric, number of
AST nodes, and AST depth. Thus, the fitness landscape (with respect to metrics

Fig. 19. Fitness over AST
nodes (Smallest problem).

Fig. 20. Fitness over AST
depth (Smallest problem).

Fig. 21. Fitness over McCabe
metric (Smallest p.).

224 D. Sobania and F. Rothlauf

Fig. 22. Fitness over num-
ber of AST nodes (Small or
Large problem).

Fig. 23. Fitness over AST
depth (Small or Large
problem).

Fig. 24. Fitness over
McCabe metric (Small or
Large problem).

measuring size, complexity, or structure of a solution) does not guide (in contrast
to the Smallest problem) evolutionary search towards promising solutions but the
problem of finding a correct solution is a needle-in-a-haystack problem [8]. When
searching through the search space, GE cannot exploit relevant information on
where promising solutions are, but finding a correct solution becomes the task
of finding a solution with fitness 0 (the needle) in a search space where all other
solutions have a fitness of around 50 or worse (the haystack).

5 Conclusions

Program synthesis is an emerging EC research topic with the potential to
improve real-world software development. Grammar-guided approaches like GE
are suitable for program synthesis as they can express high-level programming
languages or subsets of these languages with all their required properties like
conditions, loops, or typing constraints. However, program synthesis is a com-
plex problem and researchers as well as practitioners should know about the
challenges of this domain. Therefore, this work analyzed the behavior of GE on
a representative set of program synthesis benchmark problems using standard
and common software metrics like LOC, McCabe metric, or the number of nodes
and depth of an AST.

First, we analyzed how robust reference implementations – where each of the
hand-written implementations is a correct solution for a benchmark problem –
are with respect to small modifications of its genotype. We found that small
changes strongly decrease a solution’s fitness, make a high percentage of the
solutions non-executable, and also have a negative impact on a solution’s struc-
ture measured by the software metrics. Iterative mutations generate solutions
with sometimes a lower number of LOC and McCabe metric but simultaneously
strongly increase the number of AST nodes and AST depth. Such solutions do
not make use of conditions or loops but contain complex and long code lines.

Second, we studied the properties of functions generated during a GE run.
We found that GE is not able to solve program synthesis problems, where correct
solutions have higher values of the McCabe metric (which means they require
conditions or loops). Evolving such high-quality solutions with higher values of

Challenges of Program Synthesis with Grammatical Evolution 225

the McCabe metric is a difficult task for GE, as a reasonable use of conditions
or loops requires the correct and simultaneous setting of many variables and
programming language constructs. Our analysis shows that finding high-quality
solutions with a McCabe metric larger than one becomes the task of finding a
solution with fitness 0 (the needle) in a search space where all other solutions
have a worse fitness value (the haystack).

We conclude that program synthesis is a highly relevant problem and the col-
lection and formulation of program synthesis benchmark problems provides the
EC researchers relevant goals. However, the current problem specification and
especially the definition of the fitness functions do not allow guided search as
the resulting problem constitutes a needle-in-a-haystack problem. The structure
of the search space provides no meaningful information for heuristic search to
evolve more complex optimal solutions that require conditions or loops. There-
fore, we see one of the main challenges for future GP research to come up with
better fitness functions and problem specifications to turn the current needle-in-
a-haystack problems into problems that can be solved by guided search.

References

1. Altenberg, L.: Open problems in the spectral analysis of evolutionary dynamics.
In: Menon, A. (ed.) Frontiers of Evolutionary Computation. GENA, vol. 11, pp.
73–102. Springer, Boston (2004). https://doi.org/10.1007/1-4020-7782-3 4

2. Dijkstra, E.W.: The humble programmer. Commun. ACM 15(10), 859–866 (1972)
3. Fagan, D., Fenton, M., O’Neill, M.: Exploring position independent initialisation

in grammatical evolution. In: IEEE Congress on Evolutionary Computation, pp.
5060–5067. IEEE (2016)

4. Fagan, D., O’Neill, M., Galván-López, E., Brabazon, A., McGarraghy, S.: An anal-
ysis of genotype-phenotype maps in grammatical evolution. In: Esparcia-Alcázar,
A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol.
6021, pp. 62–73. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
12148-7 6

5. Forstenlechner, S., Fagan, D., Nicolau, M., O’Neill, M.: A grammar design pattern
for arbitrary program synthesis problems in genetic programming. In: McDermott,
J., Castelli, M., Sekanina, L., Haasdijk, E., Garćıa-Sánchez, P. (eds.) EuroGP 2017.
LNCS, vol. 10196, pp. 262–277. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-55696-3 17

6. Forstenlechner, S., Fagan, D., Nicolau, M., O’Neill, M.: Extending program synthe-
sis grammars for grammar-guided genetic programming. In: Auger, A., Fonseca,
C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018.
LNCS, vol. 11101, pp. 197–208. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99253-2 16

7. Forstenlechner, S., Fagan, D., Nicolau, M., O’Neill, M.: Towards understanding and
refining the general program synthesis benchmark suite with genetic programming.
In: IEEE Congress on Evolutionary Computation. IEEE (2018)

8. Goldberg, D.E.: Genetic algorithms as a computational theory of conceptual
design. In: Rzevski, G., Adey, R.A. (eds.) Applications of Artificial Intelligence
in Engineering VI, pp. 3–16. Springer, Dordrecht (1991). https://doi.org/10.1007/
978-94-011-3648-8 1

https://doi.org/10.1007/1-4020-7782-3_4
https://doi.org/10.1007/978-3-642-12148-7_6
https://doi.org/10.1007/978-3-642-12148-7_6
https://doi.org/10.1007/978-3-319-55696-3_17
https://doi.org/10.1007/978-3-319-55696-3_17
https://doi.org/10.1007/978-3-319-99253-2_16
https://doi.org/10.1007/978-3-319-99253-2_16
https://doi.org/10.1007/978-94-011-3648-8_1
https://doi.org/10.1007/978-94-011-3648-8_1

226 D. Sobania and F. Rothlauf

9. Gulwani, S., Polozov, O., Singh, R., et al.: Program synthesis. Found. Trends R©
Program. Lang. 4(1–2), 1–119 (2017)

10. Harman, M., Jia, Y., Langdon, W.B.: Babel Pidgin: SBSE can grow and graft
entirely new functionality into a real world system. In: Le Goues, C., Yoo, S. (eds.)
SSBSE 2014. LNCS, vol. 8636, pp. 247–252. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-09940-8 20

11. Helmuth, T., McPhee, N.F., Pantridge, E., Spector, L.: Improving generalization of
evolved programs through automatic simplification. In: Proceedings of the Genetic
and Evolutionary Computation Conference, pp. 937–944. ACM, New York (2017)

12. Helmuth, T., McPhee, N.F., Spector, L.: Program synthesis using uniform muta-
tion by addition and deletion. In: Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 1127–1134. ACM, New York (2018)

13. Helmuth, T., Spector, L.: Detailed problem descriptions for general program syn-
thesis benchmark suite. Technical report, University of Massachusetts Amherst,
School of Computer Science (2015)

14. Helmuth, T., Spector, L.: General program synthesis benchmark suite. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, pp. 1039–1046.
ACM, New York (2015)

15. Hemberg, E., Kelly, J., O’Reilly, U.M.: On domain knowledge and novelty to
improve program synthesis performance with grammatical evolution. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference, pp. 1039–1046.
ACM (2019)

16. Hemberg, E., McPhee, N., O’Neill, M., Brabazon, A.: Pre-, in-and postfix gram-
mars for symbolic regression in grammatical evolution. In: IEEE Workshop and
Summer School on Evolutionary Computing 2008, pp. 18–22 (2008)

17. Jundt, L., Helmuth, T.: Comparing and combining lexicase selection and novelty
search. In: Proceedings of the Genetic and Evolutionary Computation Conference,
pp. 1047–1055. ACM, New York (2019)

18. Krawiec, K.: Behavioral Program Synthesis with Genetic Programming, vol. 618.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27565-9

19. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. SE-2(4), 308–320
(1976)

20. O’Neill, M., Ryan, C., Nicolau, M.: Grammar defined introns: an investigation
into grammars, introns, and bias in grammatical evolution. In: Proceedings of the
Genetic and Evolutionary Computation Conference, pp. 97–103. Morgan Kauf-
mann Publishers Inc., San Francisco (2001)

21. Rothlauf, F., Oetzel, M.: On the locality of grammatical evolution. In: Collet,
P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006.
LNCS, vol. 3905, pp. 320–330. Springer, Heidelberg (2006). https://doi.org/10.
1007/11729976 29

22. Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: evolving programs for
an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C.
(eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0055930

23. Schweim, D., Thorhauer, A., Rothlauf, F.: On the non-uniform redundancy of
representations for grammatical evolution: the influence of grammars. In: Ryan,
C., O’Neill, M., Collins, J.J. (eds.) Handbook of Grammatical Evolution, pp. 55–
78. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78717-6 3

https://doi.org/10.1007/978-3-319-09940-8_20
https://doi.org/10.1007/978-3-319-09940-8_20
https://doi.org/10.1007/978-3-319-27565-9
https://doi.org/10.1007/11729976_29
https://doi.org/10.1007/11729976_29
https://doi.org/10.1007/BFb0055930
https://doi.org/10.1007/978-3-319-78717-6_3

Challenges of Program Synthesis with Grammatical Evolution 227

24. Sobania, D., Rothlauf, F.: Teaching GP to program like a human software devel-
oper: using perplexity pressure to guide program synthesis approaches. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, pp. 1065–1074.
ACM, New York (2019)

25. Spector, L., Robinson, A.: Genetic programming and autoconstructive evolution
with the push programming language. Genet. Program Evolvable Mach. 3(1), 7–40
(2002). https://doi.org/10.1023/A:1014538503543

https://doi.org/10.1023/A:1014538503543

Detection of Frailty Using Genetic
Programming

The Case of Older People in Piedmont, Italy

Adane Tarekegn1(B) , Fulvio Ricceri2,3 , Giuseppe Costa2,3, Elisa Ferracin3,
and Mario Giacobini4(B)

1 Department of Mathematics “Andrea Peano”, University of Turin, Turin, Italy
adanenega.tarekegn@unito.it

2 Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
{fulvio.ricceri,giuseppe.costa}@unito.it

3 Unit of Epidemiology, Regional Health Service ASL TO3, Grugliasco, TO, Italy
elisa.ferracin@epi.piemonte.it

4 Data Analysis and Modeling Unit, Department of Veterinary Sciences,
University of Turin, Turin, Italy
mario.giacobini@unito.it

Abstract. Frailty appears to be the most problematic expression of
elderly people. Frail older adults have a high risk of mortality, hospi-
talization, disability and other adverse outcomes, resulting in burden to
individuals, their families, health care services and society. Early detec-
tion and screening would help to deliver preventive interventions and
reduce the burden of frailty. For this purpose, several studies have been
conducted to detect frailty that demonstrates its association with mortal-
ity and other health outcomes. Most of these studies have concentrated
on the possible risk factors associated with frailty in the elderly popu-
lation; however, efforts to identify and predict groups of elderly people
who are at increased risk of frailty is still challenging in clinical set-
tings. In this paper, Genetic Programming (GP) is exploited to detect
and define frailty based on the whole elderly population of the Piedmont,
Italy, using administrative databases of clinical characteristics and socio-
economic factors. Specifically, GP is designed to predict frailty according
to the expected risk of mortality, urgent hospitalization, disability, frac-
ture, and access to the emergency department. The performance of GP
model is evaluated using sensitivity, specificity, and accuracy metrics
by dividing each dataset into a training set and test set. We find that
GP shows competitive performance in predicting frailty compared to the
traditional machine learning models. The study demonstrates that the
proposed model might be used to screen future frail older adults using
clinical, psychological and socio-economic variables, which are commonly
collected in community healthcare institutions.

Keywords: Frailty · Prediction · Genetic Programming · Imbalanced
data

c© Springer Nature Switzerland AG 2020
T. Hu et al. (Eds.): EuroGP 2020, LNCS 12101, pp. 228–243, 2020.
https://doi.org/10.1007/978-3-030-44094-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44094-7_15&domain=pdf
http://orcid.org/0000-0002-4005-1238
http://orcid.org/0000-0001-8749-9737
http://orcid.org/0000-0002-7647-5649
https://doi.org/10.1007/978-3-030-44094-7_15

Detection of Frailty Using Genetic Programming 229

1 Introduction

An increase in longevity results in older people struggling with age-related dis-
eases and functional conditions [1]. This presents enormous challenges towards
establishing new approaches for maintaining health at a higher age. An essen-
tial aspect of age-related health problems of the general patient condition is the
onset of frailty. Even though there are a wide number of studies that have been
developed to conceptualize and operationalize frailty, a gold standard definition
of frailty still lacks [3–5]. Frailty in elderly people was first characterized as a
physical phenotype by Fried et al. [6]. According to this study, frailty is defined
on the basis of five physical components: exhaustion, weight loss, slow gait speed,
weakness, and low levels of physical activity. People who meet three or more of
the above mentioned physical components are classified as frail. Those people
who meet one or two criteria as pre-frail and people who meet none of these
criteria are classified as not frail. This research was only phenotypic and didn’t
consider other causes such as psychological and cognitive factors to measure
frailty. On the other hand, Rockwood et al. [7] developed a model to detect
frailty based on accumulated deficits. In [9,10], the comparison of the frailty
phenotype and the frailty index models were also widely discussed. As indicated
in the literature, several frailty scores based on different frailty concepts have
been developed. However, each of the available tools intended to detect frailty
poorly agrees with each other when applied to the same population [11].

The frailty syndrome is associated with a high risk for injurious falls, urgent
hospitalization, preventable hospitalization, disability, fracture, access to emer-
gency admissions with red code, and mortality. Using predictive modeling,
administrative data allows the detection of potential risk factors and can be
used as a clinical decision support system, which provides health profession-
als with information on the probable clinical patient outcome. This enables the
physicians to react quickly and to avoid the likely adverse effects in advance. The
identification of elderly people at risk of frailty is essential to provide appropri-
ately tailored care and effectively manage healthcare resources [2].

Most existing studies in the relevant literature for detection of frailty rely
on clinical information to investigate the effects of frailty outcomes in the
elderly, although these detailed and accurate clinical data may not be adequately
available [29]. Models that incorporated patient-level factors such as medical
comorbidities and basic demographic data with variables from clinical assess-
ment scores and included numerous social factors have gained good explanatory
results. However, prediction remains a poorly understood and complex endeavor,
especially when it comes to using available large administrative data. Adminis-
trative databases can be used as a better source to implement models able to
define, detect, and measure frailty [12]. In [13,14] retrospective studies based
on logistic regression models are proposed to develop frailty risk index and vali-
date their content using health record data. There are also few models that are
derived from a single source of information, like primary care electronic health
record data and only insurance claims data [15]. More recent work on frailty was
proposed by F. Bertini et al. [16] using logistic regression. In this paper, they

230 A. Tarekegn et al.

proposed a frailty prediction model using a broad set of socio-clinical and socio-
economic variables. Their model was designed to detect and categorize frailty
according to the expected risk of hospitalization or death. In general, the frailty
indexes proposed in most literature have focused on the possible risk factors
associated with frailty in the elderly population, but predicting who is at risk of
frailty problems is still requires further investigation. In our work, we proposed
a frailty prediction model using Genetic Programming (GP) to detect frailty
based on different outcomes of frailty conditions, including mortality, disability,
hospitalization, fracture, and access to the emergency department with red code.

To date, various literature on frailty pays particular attention to the statis-
tical methods to detect and predict frailty. However, evolutionary algorithms,
such as GP, could also have the capability to address the frailty problems. The
ability of GP to produce high performance results depends on the nature of the
problem as there is no single algorithm that works best for every problem. As a
result, we compared the results of GP with the other commonly used machine
learning models in terms of prediction performance on the six different prob-
lems of frailty: mortality, access to the emergency department with red code,
disability, fracture, urgent hospitalization and preventable hospitalization. On
each of the six problems, the results of GP were compared with support vector
machine, random forest, artificial neural network and decision tree. The detailed
descriptions of these machine learning methods can be found in [8].

2 Methods

2.1 Data Source

We used medical administrative data, which capture patient demographics,
healthcare utilization, chronic conditions, and recorded diagnoses to develop
predictive models for frailty. The data is based on the Piedmontese Longitudinal
Study, an individual record linkage that is available for about 4 millions of Pied-
mont (Italy) inhabitants between the Italian 2011 census and the administrative
and health databases (enrollees registry, hospital discharges, drug prescriptions,
outpatient clinical investigation database, and health exemptions) and that is
included in the Italian Statistical National Plan. About one million patients
aged 65 and above are included in the study. For each patient, a total of 64
different variables are recorded describing histories of frailty related conditions
and outcomes. 58 different input variables and 6 different output variables for
each subject are included in the dataset. All outcomes and comorbidity vari-
ables are represented by Boolean values. The demographic variables such as age,
marital status, citizenship, education level, income status, family size, and oth-
ers are specified using the dummy variables. The ‘age’ variable is grouped into
six categories, with 65–69 used as the first category. The output variables are
described as outcomes or measurable changes in the health status of patients.
All the 58 input variables were collected in 2016, while the 6 output variables
were collected in 2017. So, GP model development was based on using the 2016

Detection of Frailty Using Genetic Programming 231

variables as input and the 2017 variables as unwanted output. Table 1 presents
the description of the 6 output variables in the dataset.

2.2 Data Transformation

The dataset is large in volume and multidimensional, consisting of 58 input vari-
ables and 6 different output variables that are assigned simultaneously to each
elderly person. This type of data is what we call ‘multi-output’ dataset. The
way the data set is organized is such that one patient can have multiple out-
comes. In particular, we identified 6 different outcomes that are associated with
frailty conditions namely, mortality, disability, urgent hospitalization, fracture,
preventable hospitalization, and access to the emergency department (ED) with
red code. This multi-output dataset is transformed into six single-output prob-
lems associated with each output variable. Decomposing the original data into
six independent datasets helps to study each output independently for the given
number of similar risk factors. Transforming the original problem into single
independent problems is a straightforward way to implement using GP since it
involves transforming the data rather than the algorithm. Additionally, with this
method, we can take full advantage of GP since it considers learning problems
that contain only one output, i.e., each instance is associated with one single
nominal target variable characterizing its property. The six problems with their
respective datasets are analysed independently. The descriptive statistics of each
dataset are presented in Table 1.

Table 1. Descriptive statistics of datasets in each problem.

Problem (variable) Category Code Number Percent

Mortality No 0 1, 053, 790 96.18

Yes 1 41, 823 3.82

Access to ED with red code No 0 1, 088, 124 99.32

Yes 1 7, 489 0.68

Disability No 0 1, 064, 186 97.13

Yes 1 31, 427 2.87

Fracture No 0 1, 088, 530 99.35

Yes 1 7, 083 0.65

Urgent hospitalization No 0 1, 056, 695 96.45

Yes 1 38, 918 3.55

Preventable hospitalization No 0 1, 076, 541 98.26

Yes 1 19, 072 1.74

232 A. Tarekegn et al.

2.3 Learning from Imbalanced Data

Imbalanced data sets are common in medicine and other domains, such as fraud
detection [25]. The issue of imbalanced datasets has gathered wide attention from
researchers during the last several years [25,34]. It occurs when the samples repre-
sented in a problem show a skewed distribution, i.e., when there is a majority (or
negative samples) and a minority (or positive samples). Analyzing such a complex
nature of the dataset becomes an issue in the machine learning community includ-
inggeneticprogramming [24] and it is observed thatmost of the traditionalmachine
learning algorithms are very sensitive with imbalanced data [26,27]. Usually, accu-
rate classification of minority class samples is more important than majority class
samples especially in medical diagnosis [24]. The datasets of the six problems in
Table 1 (mortality, access to ED with red code, disability, fracture, urgent hospi-
talization and preventable hospitalization) are imbalanced because the negative
class (class ‘0’) contains more samples than the other (class ‘1’). For all datasets,
the imbalanced rate ranges approximately between 1%–4% (that is, the percent
range of the data samples that belong to the positive class). In such cases, it is chal-
lenging to create an appropriate testing and training datasets for the GP, given
that GP is built with the assumption that the test dataset is drawn from similar
distribution as the training dataset [17]. Providing imbalanced data to a classifier
will produce undesirable results such asmuch lower performance and increasing the
number of false negatives. Among the techniques that deal with imbalanced data,
we used the data-level approach to rebalance the class distribution. This is done by
either employing under-sampling or oversampling to reduce the imbalance ratio in
the dataset [18]. Under-sampling balances the dataset by reducing the size of the
abundant class [19,20], while over-sampling duplicates samples from the minority
class [21,22]. This would possibly improve the performance of classification, as long
as the re-sampling does not cause information loss. The oversampling technique is
used when the data set is quite small in size. In our case, since the amount of col-
lected data is sufficient, we adopted under-sampling to rebalance the sample dis-
tribution. We applied this strategy for all problems with their respective dataset.
After performing the undersampling of the majority class, we found a balanced
proportion between the positive and negative classes for each dataset, as shown in
Table 2.

Table 2. Positive and negative classes in each dataset

Class category

Dataset Positive class Negative class

Count Percent Count Percent

Mortality 41823 50% 41823 50%

Access to ED with red code 7489 7489

Disability 31427 31427

Femur fracture 7083 7083

Urgent hospitalization 38918 38918

Preventable hospitalization 19072 19072

Detection of Frailty Using Genetic Programming 233

3 Experiments

In the present study, we investigated the applicability of GP in the prediction of
frailty among patients in elderly people, as explained in the previous section. The
experiments include learning a binary classification of the data to frail and non-
frail classes by considering the profiles of each individual patient over two years.
In analysing the data for prediction, the output variables represent an occurrence
in the next year, and the GP predictive model is proposed to detect and clas-
sify frailty according to the expected risk of urgent hospitalization, preventive
hospitalization, disability, fracture, emergency admissions with a red code and
death within a year. The GP model is trained using the training dataset (70%)
and tested using test dataset (30%). The training dataset was used for building
the model, and the test dataset was used to evaluate the prediction capabilities.

To build an effective predictive model, it is essential to train the model and
perform testing using a dataset that comes from the same target distribution.
All the six different datasets were randomly split into training and testing using
the following steps.

1. Split the samples with negative class into 70% training and 30% testing.
2. Split the samples with positive class into 70% training and 30% testing set.
3. Combine the 70% samples with negative class obtained from step 1 and the

70% samples with positive class obtained from step 2.
4. Combine the 30% samples with negative class obtained from step 1 and the

30% samples with positive class obtained from step 2.
5. Perform a chi-square test with a significance level of 0.05 between the training

set obtained from step (3) and the test set obtained from step (4). A statistical
test was needed to check if the training set and testing set are representative
of each other. A Chi-square independence test is used to determine if there is
evidence of a difference between the training set (70%) and the test set (30%)
with respect to the 58 categorical input variables. The produced test results
are assessed based on the chi-square statistic, and statically significant results
were found with respect to all variables.

3.1 GP Parameter Setup

In GP, setting the control parameters is an important first step to manipulate
data and to obtain good results. In our datasets, we tried several experiments for
classification tasks by using the control parameters of GP proposed in Heuristi-
cLab [33], such as population size, selection method, number of elite individuals,
initialization method, number of generations, crossover probability rates, and
mutation probability rates. Due to the stochastic nature of GP, 30 runs were
performed in all problems, each with a different random number generator seed.
For our frailty problem, we specifically focused on the two common parame-
ters of GP: Maximum number of generations and Population size. In order to
investigate the effect of few generation over larger population and small popu-
lation over more generations and also to get an advantage from either of these

234 A. Tarekegn et al.

GP parameter settings, we run two different algorithms of GP (GP1 and GP2)
under varying population size and the maximum number of generations, keep-
ing all other parameters set to default. The maximum number of generations
and population size for GP1 is set to be 1000 and 100, respectively. In GP2,
we set a maximum number of generations to be 100 and population size 1000.
For all frailty problems, GP1 and GP2 were applied, and for each experiment,
30 runs were performed with the same initial configurations of parameters. We
clearly observed that the runs with a population size of 1000 and generation 100
are related to the immense runtime requirements, comparing with the runs of
population size 100 and generation 1000. In fitness, it is apparent that a large
population running for a small number of generations behaves differently from
the small population running for a large number of generations. The fitness of
GP1 and GP2 across generations were compared for mortality and fracture prob-
lems using mean squared error (MSE). The MSE is used as fitness to compare
the quality of the two models (GP1 and GP2), and it was observed that GP2
produced lower error rates, which is ranging from 0.18 to 0.25 for mortality and
from 0.19 to 0.25 for fracture problems. While for GP1 the MSE is much higher,
which is ranging from 0.20 to 0.30 for mortality problem and from 0.22 to 0.29
for fracture problem. The results show that a large population is more likely
than a small population to make more significant improvements in fitness from
one generation to the next, given that it generates more new trees in each gen-
eration. Generally, for frailty problems, it seems that results with GP2 are more
stable and that larger population is a better choice than many generations. As a
result of this, we preferred GP with larger population size and smaller number of
generations for the prediction of frailty conditions. The summary of parameters
used for running GP2 experiments is presented in Table 3.

Table 3. GP parameters used in the experiment.

Parameter Name Value

Algorithm GP2

Maximum number of generations 100

Population size 1000

Mutation rate 15%

Crossover rate 90%

Solution creator Ramped Half-and-Half

Maximum tree depth 10

Maximum tree length 100

Elites 1

Terminal set Constant, variables

Detection of Frailty Using Genetic Programming 235

4 Results

In this section, we investigated the performance of GP for the prediction of
frailty status in terms of the six problems or outcomes. The predictors common
to all problems and which were also included in the final model produced by
GP were the age, the number of urgent hospitalization, charlson comorbidity
index, dementia and mental disease. The final prediction model of each problem
generated by GP is a binary parse tree representing the classification model.

4.1 GP Prediction Performance

The different frailty prediction models obtained from GP were evaluated in terms
of overall accuracy, sensitvity and specificity on the training and test dataset. In
the context of this study, sensitivity measures the frail subjects who are correctly
identified as having the event and specificity refers to the nonfrail subjects who
are correctly identified as not having the event. The three performance measures
were considered for mortality, urgent hospitalization, preventable hospitalization,
disability, fracture, and access to ED with a red code. Detecting these adverse out-
comes among a large number of subjects is important when applied in real-world
practice. Hence, the true positive rate (TPR), also called sensitivity, was the main
metric to consider. The overall accuracy (Acc) and true negative rate (TNR), also
called specificity, were measured as additional performance metrics. The accuracy,
TPR, and TNR were formulated using the true positives (TP), false positives (FP),
true negatives, and false negatives (FN) [28].

In analysing GP for classification, the most important aspect is to know the
number of samples that are classified correctly and those, which are classified
incorrectly. The results averaged from 30 runs of GP experiments are presented
in Table 4 on the training set and Table 5 on the testing set. In these problems,
using sensitivity and specificity allows to correctly identify those with the dis-
ease condition (frail people) and to correctly identify those without the disease
(non frail people), respectively. The standard deviation (SD) for mean sensitiv-
ity, specificity and accuracy are also calculated, since each problem is run 30
times, as shown in Tables 4 and 5. For mortality problem GP produced the best
performance in all measurements. For access to ED with red code, the overall

Table 4. Performance of GP on the training set.

Problem Sensitivity (SD) Specificity (SD) Accuracy (SD)

Mortality 0.75(0.05) 0.75(0.06) 0.75(0.02)

Access to ED with red code 0.76(0.24) 0.45(0.37) 0.58(0.09)

Disability 0.72(0.04) 0.69(0.05) 0.72(0.02)

Fracture 0.71(0.04) 0.67(0.14) 0.74(0.08)

Urgent Hosptalization 0.65(0.22) 0.63(0.29) 0.64(0.13)

Preventable Hosptalization 0.71(0.18) 0.63(0.33) 0.67(0.11)

236 A. Tarekegn et al.

Table 5. Performance of GP on the testing set.

Problem Sensitivity (SD) Specificity (SD) Accuracy (SD)

Mortality 0.75(0.05) 0.76(0.06) 0.75(0.02)

Access to ED with red code 0.73(0.24) 0.43(0.36) 0.58(0.08)

Disability 0.70(0.04) 0.73(0.05) 0.71(002)

Fracture 0.71(0.14) 0.67(0.08) 0.72(0.04)

Urgent Hosptalization 0.66(0.22) 0.62(0.29) 0.63(0.13)

Preventable Hosptalization 0.73(0.18) 0.64(0.33) 0.68(0.11)

accuracy and specificity of GP are slightly lowered. For the remaining problems
the performance of GP is at an acceptable level. These results confirmed the
predictive capability of GP on frailty problems.

4.2 Performance of Other Non-GP Classifiers

In this section, we assessed the theoretical and performance comparison of GP
with the statistical and machine learning methods. In the literature, there are
some studies which compare GP with other statistical and machine learning
methods [23,35]. The studies suggest that GP may be better at representing the
potentially non-linear relationship of (a smaller subset of) the strongest predic-
tors, although the complexity of the GP-derived model was found to be much
higher. The fact that GP required fewer predictors to achieve similar performance
may have an advantage in practical application of the developed cliniccal predic-
tion models. Therefore, a prediction model that requires fewer inputs, especially
if the information relating to these inputs is in practice recorded easily and to
a good quality, would considerably increase adoption and utility. Comparison of
GP with statistical models, such as cox regression techniques, was attempted by
[30] in terms of the performance of a cardiovascular risk score using a prospective
cohort study of patients with symptomatic cardiovascular disease. The predic-
tive ability of cox regression model and GP was evaluated in terms of their risk
discrimination and calibration using the validation set. Their findings indicated
that the discrimination of both models was comparable. Using the calibration of
these models, which was assessed based on calibration plots and the generaliza-
tion of the Hosmer-Lemeshow test statistic, was also similar, but with the Cox
model is better calibrated to the validation data. In [36], a comparison of GP
and NN in metamodeling of discrete-event simulation was studied. The results
of this study concluded that GP provides greater accuracy in validation tests,
demonstrating a better generalization capability than NN, despite the fact that
GP when compared to NN requires more computation in model development.
Most machine learning methods are usually straightforward to implement and
work well with minimum resources; however their blackbox nature makes them
non user friendly. On the other hand, GP results are often human friendly and
provide an explicit mathematical formula as its output, although developing such

Detection of Frailty Using Genetic Programming 237

an efficient algorithm and realizing its full potential to solve real-world problems
can be challenging. GP algorithms are expected to require a computing time that
grows exponentially with the size of the problem [32]. In this study, GP predic-
tion capability was compared with the well-known machine learning classifiers
on mortality, disability, fracture, access to ED with red code and hospitalization
problems.

Fig. 1. Performance of GP on Mortality (upper plot) and Disability (lower plot) prob-
lems compared to the performance of SVM, RF, NN and DT. The box plots represent
the 30 runs of GP with performance measured using sensitivity and the coloured points
represent the sensitivity of SVM, RF, NN and DT. Top3 represents the top three vari-
ables and so on for each problem.

238 A. Tarekegn et al.

Fig. 2. Performance of GP on Urgent hospitalization (upper plot) and Fracture (lower
plot) problems compared to the performance of SVM, RF, NN and DT. The box plots
represent the 30 runs of GP with performance measured using sensitivity and the
coloured points represent the sensitivity of SVM, RF, NN and DT. Top3 represents
the top three variables and so on for each problem.

The most commonly used classifiers such as support vector machines (SVM),
artificial neural networks (NN), random forests (RF) and decision trees (DT)
were applied in all problems. The results obtained in each problem using the
non-GP classifiers are compared with the results of GP using sensitivity. The
comparison is based on the ability to identify the positive subjects in the frailty

Detection of Frailty Using Genetic Programming 239

problems using their respective datasets. The performance of predictions by the
different classifiers is shown in Figs. 1 and 2. The figures depict the performance
of all classifiers using sensitivity on the testing part of the data. From the figures,
the performance values were obtained using different subset of ranked features,
the boxplots represent the performance at every 30 runs of GP, and the different
colored dots represent the performance of the other machine learning algorithms.
In all plots, the x-axis represents the number of features and y-axis represents
the performance of GP using sensitivity.

Looking at each box plot of GP in Figs. 1 and 2, we can observe that some
runs are outliers in each problem due to the stochastic nature of GP. For exam-
ple, in urgent hospitalization, there are three runs beyond the whiskers for the
top 5 and top 10 variables. These runs are outliers of the 30 runs of GP, plot-
ted as points. In all problems with all variables, the performance of SVM, RF,
NN, and DT are displayed under the upper quartile of the GP box plots, indi-
cating the maximum performance obtained from the 30 runs of GP is always
greater than the performance of the machine learning models. Comparing all
algorithms, decision tree followed by random forest has the lowest performance
in all problems for the number of variables greater 10. The average sensitivity
of GP overlaps with the performance of NN. However, the accuracy of GP is
lowered compared to SVM and NN.

For making the fairest comparison possible between GP and other machine
learning models, a pairwise statistical test between the 30 runs of GP and each
individual machine learning model was also performed. The statistical test used
was the Wilcoxon signed rank test. The Wilcoxon statistical test is a nonpara-
metric test that ranks the differences in performances of GP and other algorithms
over each frailty problem. The test was based on the sensitivity score of each
algorithm in each problem on the test data at the significance level of 0.01.
From the test results, it is found that the results between SVM and GP are
statistically significant only in disability, urgent hospitalization and preventable
hospitalization problems. Combining the experimental results (Figs. 1 and 2)
and Wilcoxon-rank test results, it is concluded that for mortality and fracture
problems SVM outperforms GP in sensitivity score, while for access to ED with
a red code SVM performs lower than GP. GP outperforms DT in all problems
except for urgent hospitalization. NN has a similar performance with GP for all
problems excluding mortality and femur fracture.

4.3 Feature Selection Comparison of GP and Chi-Square

The performance of GP feature selection is compared with the well-known Chi-
Square feature selection method. The top three variables (age, Charlson index,
and the number of urgent hospitalization) selected by GP are also selected by
chi-square as top three variables in the mortality problem. After three variables,
there is slightly a little difference in the position of variables. Table 6 presents
the prediction accuracy of the classification model using the features selected
by GP and Chi-square for all problems. For each problem, the best average
accuracy of the 30 runs of GP is taken to compare the classification performance

240 A. Tarekegn et al.

of GP and Chi-square feature selection methods. From this table, Chi-square
performed the best in the mortality problem with an accuracy of 76% followed
by GP with an accuracy of 75%, a difference of only 1%. This condition holds
also for disability and fracture problems. For urgent hospitalization, both GP
and chi-square produce a similar performance. The results show that GP can
perform the feature selection task with competitive results.

Table 6. Prediction accuracy via feature selection of GP and Chi-square

Problem GP feature selection Chi-Square feature selection

Mortality 0.75 0.76

Urgent hospitalization 0.64 0.64

Disability 0.72 0.73

Preventable hospitalization 0.68 0.71

Red code emergency 0.58 0.68

Fracture 0.71 0.73

5 Discussions and Conclusions

The goals of this study were to develop models to predict the risk of hospitaliza-
tion, disability, mortality, fracture and emergency admissions among the older
people in Piedmont, Italy. In this study, we inspected the possibility of using
an administrative dataset to detect frailty in older adults using Genetic pro-
gramming (GP), which was used as a potential tool for developing a prediction
model. Six different models were developed, and the performance of each model
relies on the input data provided to the learning algorithm. The performances
of models created by GP were assessed by splitting the data into training set
and test set. The test set was untouched during the entire training and model
selection process and only used for the final model evaluation.

To find what works for our frailty problems, we performed several experi-
ments by varying the parameter values of genetic programming. Typically, we
tried to discover the optimal parameter choice between two genetic parameters:
the population size and the number of generations. In order to get the efficient
GP algorithm that best fits our data, many runs of small populations over many
generations and large populations over a few generations are compared. For clas-
sification problems, the results demonstrated that large populations running for
a small number of generations achieve better fitness than small population run-
ning for a large number of generations. After selecting the best GP algorithm
for our data, several experiments with 30 runs of GP are conducted by adjusting
the remaining parameters. The performance of the models obtained by GP is
evaluated using sensitivity, specificity, and accuracy. From the results obtained,
it is evident that GP algorithms perform well in separating the positive cases

Detection of Frailty Using Genetic Programming 241

from the negative cases of frailty outcomes. The overall classification perfor-
mance for both training and testing are comparable with the existing machine
learning techniques like artificial neural network, random forest and support vec-
tor machines. Overall, the results are encouraging, and further studies on frailty
can be investigated to extend the findings on multiple outcomes simultaneously
using evolutionary algorithms.

Overall, GP demonstrated substantial potential as a method for the auto-
mated development of clinical prediction models for diagnostic and prognostic
purposes. The experiments of GP on administrative data acquired from different
hospital discharges and drug prescriptions provide comparable accuracy to con-
ventional models in the assessment of the risk of mortality, disability, fracture,
access to the emergency department with red code and hospitalization.

References

1. Kojima, G., Liljas, A., Iliffe, S.: Frailty syndrome: implications and challenges for
health care policy. Risk Manag. Healthc. Policy 12, 23–30 (2019). https://doi.org/
10.2147/RMHP.S168750

2. Comans, T.A., Peel, N.M., Hubbard, R.E., Mulligan, A.D., Gray, L.C., Scuffham,
P.A.: The increase in healthcare costs associated with frailty in older people dis-
charged to a post-acute transition care program. Age Ageing 45, 317–320 (2016).
https://doi.org/10.1093/ageing/afv196

3. Clegg, A., Young, J., Iliffe, S., Rikkert, M.O., Rockwood, K.: Frailty in elderly peo-
ple. Lancet 381, 752–762 (2013). https://doi.org/10.1016/S0140-6736(12)62167-9

4. Wennberg, D., Siegel, M., Darin, B., Filipova, N.: Combined predictive model: final
report and technical documentation (2006)

5. Lally, F., Crome, P.: Understanding frailty (2007). https://doi.org/10.1136/pgmj.
2006.048587

6. Fried, L.P., et al.: Frailty in older adults: evidence for a phenotype. J. Gerontol. Ser.
A Biol. Sci. Med. Sci. 56, M146–M157 (2001). https://doi.org/10.1093/gerona/56.
3.M146

7. Rockwood, K., et al.: A global clinical measure of fitness and frailty in elderly
people. CMAJ 173, 489–495 (2005). https://doi.org/10.1503/cmaj.050051

8. Kotsiantis, S.B., et al.: Machine learning: a review of classification and combining
techniques. Artif. Intell. Rev. 26, 159–190 (2006). https://doi.org/10.1007/s10462-
007-9052-3

9. Rockwood, K., Andrew, M., Mitnitski, A.: A comparison of two approaches to
measuring frailty in elderly people. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 62,
738–743 (2007). https://doi.org/10.1093/gerona/62.7.738

10. Blodgett, J., Theou, O., Kirkland, S., Andreou, P., Rockwood, K.: Frailty in
NHANES: comparing the frailty index and phenotype. Arch. Gerontol. Geriatr.
60, 464–470 (2015). https://doi.org/10.1016/j.archger.2015.01.016

11. Theou, O., Brothers, T.D., Mitnitski, A., Rockwood, K.: Operationalization of
frailty using eight commonly used scales and comparison of their ability to predict
all-cause mortality. J. Am. Geriatr. Soc. 61, 1537–1551 (2013). https://doi.org/10.
1111/jgs.12420

12. Katz, A., Wong, S., Williamson, T., Taylor, C., Peterson, S.: Identification of frailty
using EMR and admin data: a complex issue. Int. J. Popul. Data Sci. 3 (2018).
https://doi.org/10.23889/ijpds.v3i4.832

https://doi.org/10.2147/RMHP.S168750
https://doi.org/10.2147/RMHP.S168750
https://doi.org/10.1093/ageing/afv196
https://doi.org/10.1016/S0140-6736(12)62167-9
https://doi.org/10.1136/pgmj.2006.048587
https://doi.org/10.1136/pgmj.2006.048587
https://doi.org/10.1093/gerona/56.3.M146
https://doi.org/10.1093/gerona/56.3.M146
https://doi.org/10.1503/cmaj.050051
https://doi.org/10.1007/s10462-007-9052-3
https://doi.org/10.1007/s10462-007-9052-3
https://doi.org/10.1093/gerona/62.7.738
https://doi.org/10.1016/j.archger.2015.01.016
https://doi.org/10.1111/jgs.12420
https://doi.org/10.1111/jgs.12420
https://doi.org/10.23889/ijpds.v3i4.832

242 A. Tarekegn et al.

13. Chen, C.-Y., Wu, S.-C., Chen, L.-J., Lue, B.-H.: The prevalence of subjective frailty
and factors associated with frailty in Taiwan. Arch. Gerontol. Geriatr. 50, S43–S47
(2010). https://doi.org/10.1016/s0167-4943(10)70012-1

14. Lee, D.H., Buth, K.J., Martin, B.J., Yip, A.M., Hirsch, G.M.: Frail patients are at
increased risk for mortality and prolonged institutional care after cardiac surgery.
Circulation 121, 973 (2010). https://doi.org/10.1161/CIRCULATIONAHA.108.
841437

15. Homer, M.L., Palmer, N.P., Fox, K.P., Armstrong, J., Mandl, K.D.: Predicting
falls in people aged 65 years and older from insurance claims. Am. J. Med. 130,
744.e17–744.e23 (2017). https://doi.org/10.1016/j.amjmed.2017.01.003

16. Bertini, F., Bergami, G., Montesi, D., Veronese, G., Marchesini, G., Pandolfi,
P.: Predicting frailty condition in elderly using multidimensional socioclinical
databases. Proc. IEEE 106, 723–737 (2018). https://doi.org/10.1109/JPROC.
2018.2791463

17. Amari, S.: Machine learning. In: Amari, S. (ed.) Information Geometry and Its
Applications. AMS, vol. 194, pp. 231–278. Springer, Tokyo (2016). https://doi.
org/10.1007/978-4-431-55978-8 11

18. Japkowicz, N., Stephen, S.: The class imbalance problem: a systematic study. Intell.
Data Anal. 6, 429–449 (2018). https://doi.org/10.3233/ida-2002-6504

19. Barandela, R., Sánchez, J.S., Garćıa, V., Rangel, E.: Strategies for learning in
class imbalance problems. Pattern Recogn. 36, 849–851 (2003). https://doi.org/
10.1016/S0031-3203(02)00257-1

20. McCarthy, K., Zabar, B., Weiss, G.: Does cost-sensitive learning beat sampling
for classifying rare classes? In: Proceedings of the 1st International Workshop on
Utility-based Data Mining - UBDM 2005, pp. 69–77. ACM Press, New York (2005).
https://doi.org/10.1145/1089827.1089836

21. Chen, J.X., Cheng, T.H., Chan, A.L.F., Wang, H.Y.: An application of classifi-
cation analysis for skewed class distribution in therapeutic drug monitoring - the
case of vancomycin. In: Proceedings - IDEAS Workshop on Medical Information
Systems: The Digital Hospital, IDEAS 2004-DH (2005)

22. Orriols, A., Bernad́ı-Mansilla, E.: Class imbalance problem in UCS classifier sys-
tem: fitness adaptation. In: 2005 IEEE Congress on Evolutionary Computation,
IEEE CEC 2005, Proceedings (2005)

23. Azimlu, F., Rahnamayan, S., Makrehchi, M., Kalra, N.: Comparing genetic pro-
gramming with other data mining techniques on prediction models. In: 2019 14th
International Conference on Computer Science & Education (ICCSE), pp. 785–791.
IEEE (2019). https://doi.org/10.1109/ICCSE.2019.8845381

24. Amal, S., Periwal, V., Scaria, V.: Predictive modeling of anti-malarial molecules
inhibiting Apicoplast formation. BMC Bioinf. 14, 55 (2013). https://doi.org/10.
1186/1471-2105-14-55

25. Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., Bing, G.: Learn-
ing from class-imbalanced data: review of methods and applications. Expert Syst.
Appl. 73, 220–239 (2017). https://doi.org/10.1016/j.eswa.2016.12.035

26. Kang, Q., Chen, X.S., Li, S.S., Zhou, M.C.: A noise-filtered under-sampling scheme
for imbalanced classification. IEEE Trans. Cybern. 47, 4263–4274 (2017). https://
doi.org/10.1109/TCYB.2016.2606104

27. Leevy, J.L., Khoshgoftaar, T.M., Bauder, R.A., Seliya, N.: A survey on addressing
high-class imbalance in big data. J. Big Data 5(1), 1–30 (2018). https://doi.org/
10.1186/s40537-018-0151-6

28. Han, J., Kamber, M., Pei, J.: Data Mining. Elsevier, Amsterdam (2012). https://
doi.org/10.1016/C2009-0-61819-5

https://doi.org/10.1016/s0167-4943(10)70012-1
https://doi.org/10.1161/CIRCULATIONAHA.108.841437
https://doi.org/10.1161/CIRCULATIONAHA.108.841437
https://doi.org/10.1016/j.amjmed.2017.01.003
https://doi.org/10.1109/JPROC.2018.2791463
https://doi.org/10.1109/JPROC.2018.2791463
https://doi.org/10.1007/978-4-431-55978-8_11
https://doi.org/10.1007/978-4-431-55978-8_11
https://doi.org/10.3233/ida-2002-6504
https://doi.org/10.1016/S0031-3203(02)00257-1
https://doi.org/10.1016/S0031-3203(02)00257-1
https://doi.org/10.1145/1089827.1089836
https://doi.org/10.1109/ICCSE.2019.8845381
https://doi.org/10.1186/1471-2105-14-55
https://doi.org/10.1186/1471-2105-14-55
https://doi.org/10.1016/j.eswa.2016.12.035
https://doi.org/10.1109/TCYB.2016.2606104
https://doi.org/10.1109/TCYB.2016.2606104
https://doi.org/10.1186/s40537-018-0151-6
https://doi.org/10.1186/s40537-018-0151-6
https://doi.org/10.1016/C2009-0-61819-5
https://doi.org/10.1016/C2009-0-61819-5

Detection of Frailty Using Genetic Programming 243

29. Volrathongchai, K., Brennan, P.F., Ferris, M.C.: Predicting the likelihood of falls
among the elderly using likelihood basis pursuit technique. In: AMIA Annual Sym-
posium, Proceedings (2005)

30. Bannister, C.A., Halcox, J.P., Currie, C.J., Preece, A., Spasić, I.: A genetic pro-
gramming approach to development of clinical prediction models: a case study in
symptomatic cardiovascular disease. PLoS One (2018). https://doi.org/10.1371/
journal.pone.0202685

31. Bannister, C.A., Currie, C.J., Preece, A., Spasic, I.: Automatic development of
clinical prediction models with genetic programming: a case study in cardiovascular
disease. Value Health 17, A200–A201 (2014). https://doi.org/10.1016/j.jval.2014.
03.1171

32. Poli, R., Koza, J.: Genetic programming. In: Burke, E., Kendall, G. (eds.) Search
Methodologies, pp. 143–185. Springer, Boston (2014). https://doi.org/10.1007/
978-1-4614-6940-7 6

33. HeuristicLab homepage. https://dev.heuristiclab.com/trac.fcgi/wiki
34. Vluymans, S.: Learning from imbalanced data. In: Studies in Computational Intel-

ligence, pp. 81–110 (2019). https://doi.org/10.1007/978-3-030-04663-7 4
35. Ulloa-Cazarez, R.L., López-Mart́ın, C., Abran, A., Yáñez-Márquez, C.: Prediction

of online students performance by means of genetic programming. Appl. Artif.
Intell. 32, 858–881 (2018). https://doi.org/10.1080/08839514.2018.1508839

36. Can, B., Heavey, C.: A comparison of genetic programming and artificial neural
networks in metamodeling of discrete-event simulation models. Comput. Oper. Res.
39, 424–436 (2012). https://doi.org/10.1016/j.cor.2011.05.004

https://doi.org/10.1371/journal.pone.0202685
https://doi.org/10.1371/journal.pone.0202685
https://doi.org/10.1016/j.jval.2014.03.1171
https://doi.org/10.1016/j.jval.2014.03.1171
https://doi.org/10.1007/978-1-4614-6940-7_6
https://doi.org/10.1007/978-1-4614-6940-7_6
https://dev.heuristiclab.com/trac.fcgi/wiki
https://doi.org/10.1007/978-3-030-04663-7_4
https://doi.org/10.1080/08839514.2018.1508839
https://doi.org/10.1016/j.cor.2011.05.004

Is k Nearest Neighbours Regression
Better Than GP?

Leonardo Vanneschi1,2(B), Mauro Castelli1, Luca Manzoni3, Sara Silva2,
and Leonardo Trujillo4

1 NOVA Information Management School (NOVA IMS),
Universidade Nova de Lisboa, Campus de Campolide, 1070-312 Lisboa, Portugal

{lvanneschi,mcastelli}@novaims.unl.pt
2 LASIGE, Departamento de Informática, Faculdade de Ciências,

Universidade de Lisboa, 1749-016 Lisboa, Portugal
{lvanneschi,sara}@fc.ul.pt

3 Department of Mathematics and Geosciences, University of Trieste,
Via Valerio 12/1, 34127 Trieste, Italy

lmanzoni@units.it
4 Tecnológico Nacional de México/IT de Tijuana, Tijuana, BC, Mexico

leonardo.trujillo@tectijuana.edu.mx

Abstract. This work starts from the empirical observation that k near-
est neighbours (KNN) consistently outperforms state-of-the-art tech-
niques for regression, including geometric semantic genetic program-
ming (GSGP). However, KNN is a memorization, and not a learn-
ing, method, i.e. it evaluates unseen data on the basis of training
observations, and not by running a learned model. This paper takes
a first step towards the objective of defining a learning method able to
equal KNN, by defining a new semantic mutation, called random vectors-
based mutation (RVM). GP using RVM, called RVMGP, obtains results
that are comparable to KNN, but still needs training data to evaluate
unseen instances. A comparative analysis sheds some light on the rea-
son why RVMGP outperforms GSGP, revealing that RVMGP is able to
explore the semantic space more uniformly. This finding opens a ques-
tion for the future: is it possible to define a new genetic operator, that
explores the semantic space as uniformly as RVM does, but that still
allows us to evaluate unseen instances without using training data?

1 Introduction

Geometric Semantic Genetic Programming (GSGP) [1,2] is a variant of Genetic
Programming (GP) [3] that uses Geometric Semantic Operators (GSOs) instead
of the standard crossover and mutation. It induces a unimodal fitness landscape
for any supervised learning problem; so it is an extremely powerful optimizer and,
at the same time, it can limit overfitting [4]. The popularity of GSGP has steadily
grown in the last few years, and it is nowadays a well established Machine Learn-
ing (ML) method. Nevertheless, GSGP generates very large predictive models,

c© Springer Nature Switzerland AG 2020
T. Hu et al. (Eds.): EuroGP 2020, LNCS 12101, pp. 244–261, 2020.
https://doi.org/10.1007/978-3-030-44094-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44094-7_16&domain=pdf
https://doi.org/10.1007/978-3-030-44094-7_16

Is KNN Regression Better than GP? 245

which are extremely hard to read and understand [1,2]. Even though several
implementations have been introduced, that make GSGP usable and efficient [5–
7], the lack of interpretability of the model is still an issue. Aware that in GSGP
the most important GSO is mutation, and that GSGP without crossover can
often outperform GSGP that uses crossover [8,9], in this paper, we introduce a
mutation intending to ease a model’s interpretability.

The mutation traditionally used by GSGP, called Geometric Semantic Muta-
tion (GSM) uses two random trees. The evaluation of those random trees on
training instances is used to obtain a different (random) value for each observa-
tion, which is subsequently used to calculate the modification caused by mutation
to the outputs of the individual. The operator we introduce in this work, called
Random Vectors-based Mutation (RVM), replaces the random trees with a vec-
tor of random numbers of the same length as the number of training instances.
In this way, for each observation, one different random number is used to decide
the modification of the output. GP using RVM as the sole genetic operator
will be called RVMGP. Clearly, at the end of a RVMGP evolution, we do not
have a real “model” (intended as a program that can be executed on unseen
data), and so a different strategy has to be designed for generalizing. In this
paper, we adopt a method that is very similar to the one used by k Near-
est Neighbours (KNN) [10,11]: the output on an unseen instance is calculated
using the similarity between the unseen instance and the training observations.
Given that RVMGP works similarly to KNN on unseen data, it makes sense to
compare RVMGP not only to GSGP, but also to KNN itself. To make the exper-
imental comparison more complete, we also compare these methods to Random
Forest (RF) regression [12], that is currently considered by several researchers
as the state of the art for regression with ML, at least for “non-big data” prob-
lems [13,14]. The outcome of this experimental study, carried on six real-life
regression problems, paves the way to fundamental questions on the relevance
itself of using GP, a discussion that is tackled at the end of this paper.

The manuscript is organized as follows: Sect. 2 introduces GSGP. Section 3
introduces RVM. Section 4 presents our experimental study; after present-
ing the test problems and the employed experimental settings, the com-
parison between RVMGP and GSGP is presented in Sect. 4.2 and the one
between RVMGP, KNN and RF regression in Sect. 4.3. Finally, Sect. 5 concludes
the paper.

2 Geometric Semantic Genetic Programming

Let X = {−→x1,
−→x2, ...,

−→xn} be the set of input data (training instances, observations
or fitness cases) of a symbolic regression problem, and

−→
t = [t1, t2, ..., tn] the

vector of the respective expected output or target values (in other words, for
each i = 1, 2, ..., n, ti is the expected output corresponding to input −→xi). A GP
individual (or program) P can be seen as a function that, for each input vector−→xi returns the scalar value P (−→xi). Following [2], we call semantics of P the
vector −→sP = [P (−→x1), P (−→x2), ..., P (−→xn)]. This vector can be represented as a point

246 L. Vanneschi et al.

in a n-dimensional space, that we call semantic space. Remark that the target
vector

−→
t itself is a point in the semantic space.

As explained above, GSGP is a variant of GP where the standard crossover
and mutation are replaced by new operators called Geometric Semantic Opera-
tors (GSOs). The objective of GSOs is to define modifications on the syntax of
GP individuals that have a precise effect on their semantics. More in particular:
geometric semantic crossover generates one offspring, whose semantics stands
in the line joining the semantics of the two parents in the semantic space and
geometric semantic mutation, by mutating an individual i, allows us to obtain
another individual j such that the semantics of j stands inside a ball of a given
predetermined radius, centered in the semantics of i. One of the reasons why
GSOs became popular in the GP community is probably related to the fact that
GSOs induce an unimodal error surface (on training data) for any supervised
learning problem, where fitness is calculated using an error measure between
outputs and targets. In other words, using GSOs the error surface on training
data is guaranteed to not have any locally optimal solution. This property holds,
for instance, for any regression or classification problem, independently on how
big and how complex data are (reference [1] contains a detailed explanation of
the reason why the error surface is unimodal and its importance). The definitions
of the GSOs are, as given in [2], respectively:

Geometric Semantic Crossover (GSC). Given two parent functions T1, T2 :
R

n → R, the geometric semantic crossover returns the real function TXO =
(T1 · TR) + ((1 − TR) · T2), where TR is a random real function whose output
values range in the interval [0, 1].

Geometric Semantic Mutation (GSM). Given a parent function T : Rn →
R, the geometric semantic mutation with mutation step ms returns the real
function TM = T + ms · (TR1 − TR2), where TR1 and TR2 are random real
functions.

The reason why GSM uses two random trees TR1 and TR2 is that the amount
of modification caused by GSM must be centered in zero. In other words, a
random expression is needed that has the same probability of being positive
or negative. Even though this is not in the original definition of GSM, later
contributions [1,4,9] have clearly shown that limiting the codomain of TR1 and
TR2 in a predefined interval (for instance [0, 1], as it is done for TR in GSC) helps
to improve the generalization ability of GSGP. As in several previous works [1,5],
we constrain the outputs of TR, TR1, and TR2 by wrapping them in a logistic
function. Only the definitions of the GSOs for symbolic regression problems are
given here, since they are the only ones used in this work. For the definition of
GSOs for other domains, the reader is referred to [2].

As reported in [1,2], the property of GSOs of inducing a unimodal error sur-
face has a price. The price, in this case, is that GSOs always generate larger
offspring than the parents, and this entails a rapid growth of the size of the
individuals in the population. To counteract this problem, in [5–7] implemen-
tations of GSOs were proposed, that make GSGP not only usable in practice,
but also significantly faster than standard GP. This is possible through a smart

Is KNN Regression Better than GP? 247

representation of GP individuals, that allows us to not store their genotypes
during the evolution. The implementation presented in [5] is the one used here.
Even though this implementation is efficient, it does not solve the problem of
the size of the final model: the genotype of the final solution returned by GSGP
can be reconstructed, but it is so large that it is practically impossible to under-
stand it. This turns GSGP into a “black-box” system, as many other popular
ML systems are, including deep neural networks.

Several previous contributions (see for instance [8]) have clearly demonstrated
that, in GSGP, the most important genetic operator is GSM and in many cases
a GSGP system using only GSM, and no GSC, can obtain comparable (or even
better) results to the ones of a system using both these operators. Even though
GSM limits the problem of the rapid growth of code inside the population (this
growth is exponential for GSC, but slower for GSM), the issue remains. In other
words, even using only GSM, the final model is often so large that it is hardly
readable and practically impossible to understand. Trying to solve this issue is
one of the motivations for introducing the novel mutation operator presented in
the next section.

3 Random Vector Based Mutation

The rapid code growth caused by GSM can be explained by the fact that the
offspring (TM in the definition of GSM given in Sect. 2) contains the genotype
of the parent (T), plus the genotype of two random trees (TR1 and TR2) and
4 further nodes. Replacing the two random trees with a random number (i.e. a
scalar constant) would vastly limit the code growth. Nevertheless, as explained
in [1], this would not allow us to implement ball mutation on the semantic space,
which is the objective. Such a mutation would, in fact, modify the semantics of
parent T of the same constant amount for all its coordinates. On the other hand,
the optimization power of GSM is given by the fact that GSM can modify the
semantics of T by a different amount for each one of its coordinates, since TR1

and TR2 typically return different values when evaluated on the different training
observations. To understand the importance of this, one may consider the case
in which one coordinate of T is extremely “close” to the corresponding target,
while another coordinate is extremely “far”. Modifying both these coordinates of
the same quantity would never allow us to transform T into the global optimum.

In this work, we propose to use a vector of random numbers −→v , of the same
length as the number of training observations, to modify the semantics of the
individuals by different quantities for each one of its coordinates. Each element−→v [i] of vector −→v stores the particular modification that mutation apports to
the ith coordinate of the semantics of T . In GSM, if the codomain of TR1 and
TR2 is constrained in [0, 1] (as it is customary [1,4,9]), then, for each coordinate
of the semantic vector, the modification is given by a random number included
in [−ms,ms]. To simulate as closely as possible this behaviour of GSM, in this
work each coordinate −→v [i] of vector −→v will contain a random number extracted
with uniform distribution from [−ms,ms].

248 L. Vanneschi et al.

The functioning should be clarified by the following example. Let us assume
that we have the following training set D, composed by 3 observations (lines)
and 2 features (columns), and the following corresponding target vector

−→
t :

D =

⎡
⎣

1 2
3 4
40 20

⎤
⎦ −→

t =

⎡
⎣

4
10
100

⎤
⎦

Let us also assume that we have a GP individual P = x1 + x2. The semantics
of P is equal to: −→sP = [3, 7, 60]. Let us also assume, for simplicity, that ms = 1.
All we have to do to mutate P is to generate a vector −→v of random numbers
in [−1, 1], of the same length as the number of training observations; for instance:−→v = [0.75,−0.25, 0.4]. In this way, the offspring PM of the mutation of P will
be an individual whose semantics is:

−−→sPM
= −→sP + −→v (1)

or, in other words: −−→sPM
= [3.75, 6.75, 60.4]. As we can see, each coordinate of −→v

has been used to update the corresponding coordinate of −→sP . We call this type
of mutation Random Vector based Mutation (RVM), and GP that uses RVM as
the unique genetic operator RVMGP. Both GSM and RVM can be defined as
follows:

TM = T + ΔT (2)

where the only difference between GSM and RVM is given by a different ΔT :
ΔT is equal to ms · (TR1 −TR2) for GSM (as in the definition of Sect. 2) and it is
equal to a different random number in [−ms,ms] for each training observation
for RVM.

At this point, a question comes natural: how can RVMGP be used to calculate
the output on unseen observations? The idea proposed in this work is inspired
by the KNN algorithm. In particular, given that only regression applications will
be used as test problems, the inspiration is taken from KNN regression [10]. It
consists in calculating the average of the outputs of the model on the k nearest
training observations. Considering the previous example again, let us consider
an unseen observation like, for instance: −→u = [2, 3]. What is the output of
individual PM on observation −→u ? If we assume, for instance, that k = 2, all we
have to do is to calculate the two closest instances to −→u in the training set D
and calculate the average of the outputs of PM on those instances. Considering,
for instance, Euclidean distance as the metric used to calculate the k nearest
training observations, the two observations that are closer to −→u in D are the
first and the second observations, i.e. [1, 2] and [3, 4]. Considering the output
values of PM on those two observations, i.e. the first two coordinates of sPM

, the
output of PM on unseen instance −→u is equal to:

PM (−→u) =
3.75 + 6.75

2
= 5.25 (3)

Let us now take a moment to ponder what is the final model (i.e. the minimum
amount of information to calculate the output on unseen instances) for RVMGP.

Is KNN Regression Better than GP? 249

Actually, the model can be seen from two different viewpoints: the first one is to
consider the initial tree, plus the vector of random numbers used to translate its
semantics, plus the training set. For instance, for the previous example, if PM

was the final individual returned by RVMGP, one may say that the model is
given by:

P = x1 + x2,
−→v = [0.75 − 0.25 0.4], D =

⎡
⎣

1 2
3 4
40 20

⎤
⎦ (4)

It should be noticed that, if a new generation is executed by RVMGP, PM will
probably be mutated, generating a new individual P ′

M , where the semantic of P ′
M

can be obtained by summing the semantics of PM to a vector of random trees:

−−→sP ′
M

= −−→sPM
+ −→v1 (5)

But, replacing Eq. (1) into Eq. (5), we obtain: −−→sP ′
M

= −→sP + −→v + −→v1, and if we
define −→w = −→v + −→v1, we obtain: −−→sP ′

M
= −→sP + −→w . In other words, also sP ′

M
can be

defined using the semantics of the initial individual P and a vector of random
numbers. This reasoning can be generalized to any number of generations. So,
independently from the number of generations performed by RVMGP, it will
always be possible to interpret the final model as an individual from the initial
population, plus a vector of random numbers, plus the training set (as in Eq. (4)).

A second possible way of interpreting the model returned by RVMGP is to
consider the semantics of the final individual, plus the training set. Considering
the previous example, and assuming that PM is the final solution returned by
RVMGP, the model would be:

−−→sPM
= [3.75 6.75 60.4], D =

⎡
⎣

1 2
3 4
40 20

⎤
⎦ (6)

It should be noticed that this second way of interpreting the RVMGP
model (reported in Eq. (6)) is completely equivalent to the first one (reported
in Eq. (4)), since sPM

can be obtained directly by evaluating P on each line of D,
and summing −→v . It is only a different way of presenting the same information:
while the first interpretation (Eq. (4)) still contains a GP tree, and so vaguely
reminds a traditional GP model, the second interpretation (Eq. (6)) allows us to
save memory space and to calculate the output on unseen instances faster. If the
model is stored as in Eq. (4), to calculate the output on an unseen instance −→u
we have to evaluate o = P (−→u), calculate the k nearest instances to −→u in D, and
sum to o the average of the corresponding coordinates in −→v . On the other hand,
if the model is stored as in Eq. (6), all we have to do is to calculate the k nearest
instances to −→u in D and return the average of the corresponding coordinates
in −−→sPM

. It is not hard to convince oneself that these two processes lead exactly
to the same result, but the second one is faster because it does not involve the
evaluation of a program on the unseen instance. We are aware that, in the pres-
ence of vast training sets, this could be a large amount of information to store

250 L. Vanneschi et al.

(as vastly discussed in the literature as a drawback of KNN [10]). However, this
is still convenient, in terms of memory occupation, compared to storing the huge
models generated by GSGP, when GSM is employed.

Finally, it is worth pointing out that the only difference between RVMGP
and KNN regression is that KNN regression uses the target values corresponding
to the k nearest training observations, instead of the corresponding output of an
individual. In other words, considering the previous example, the output of KNN

regression for observation −→u would have been equal to: KNN(−→u) =
4 + 10

2
= 14.

4 Experimental Study

This section is organized as follows: Sect. 4.1 presents the test problems used
for our experimental study and the employed parameter settings. Section 4.2
contains an experimental comparison between GSGP using GSM and RVMGP
using RVM (no crossover is considered in this study). Finally, Sect. 4.3 extends
the experimental comparison, by including also KNN regression and RF regres-
sion. From now on, for simplicity, GP using only GSM will be indicated as GSGP.
The notation GSGP-log will be used to indicate the variant of GSGP in which
the codomain of random trees TR1 and TR2 used by GSM are constrained in [0, 1]
by wrapping them with a logistic function, as in [1,4,9]. The notation GSGP-
nolog will be used to indicate the variant in which the codomains of TR1 and
TR2 are not constrained at all. Finally, to indicate the variant of RVMGP using
a particular value k = x, we will use the notation RVM-kx.

4.1 Test Problems and Experimental Settings

The six real-life datasets used as test problems are described in Table 1. The table
shows, for each dataset, the number of features, the number of observations, and
a reference where more information about the data and the application can be
found. The six datasets have already been used as test problems for GP before.

Table 1. Description of the test prob-
lems. For each dataset, the number of
features (independent variables) and the
number of instances (observations) are
reported.

Dataset # Features # Instances

Bioavailability [15] 241 359

Concrete [16] 8 1029

Energy [17] 8 768

Park Motor [18] 18 5875

Park Total [18] 18 5875

PPB [15] 628 131

Table 2. Parameter setting used in our
experiments for the studied GP variants.

Parameter Setting

Population size 100

Max. # of generations 2000

Initialization Ramped H-H

Crossover rate 0

Mutation rate 1

Max. depth for initialization 6

Tournament selection, size 4

Is KNN Regression Better than GP? 251

Previous contributions, including the ones referenced in Table 2, clearly show
that GSGP outperforms standard GP (i.e. GP using the standard Koza’s genetic
operators [3]) on all these test problems. For this reason, standard GP is not
studied here. For each one of these datasets, 30 independent runs of each one of
the studied methods where performed. For each run, a different partition of the
dataset into training and test set was used, where 70% of the instances, randomly
selected with uniform distribution, form the training set and the remaining 30%
were used as a test set.

Table 2 reports the values of the parameters that were used in our GP exper-
iments. Besides, elitism was applied by copying the best individual in the next
population at each generation. The mutation step, for all the studied meth-
ods, was a random number, extracted with uniform distribution from [0, 1],
as proposed in [9]. Concerning RVMGP, different values of k were studied
(k = 1, 5, 10, 20, 50) and experimentally compared. Concerning KNN, the same
values of k as for RVMGP were studied. For both algorithms, the measure used
to calculate the similarity between instances was the Euclidean distance, calcu-
lated using all the features in the dataset. Concerning RF, least-squares boosting
was used, with a maximum of 10 splits per tree and 100 trees.

4.2 Experimental Results: RVMGP vs GSGP

Figure 1 reports the results on the training set obtained by RVMGP,
GSGP-log and GSGP-nolog. On training data, RVMGP clearly outperforms
both GSGP-log and GSGP-nolog for all the studied test problems. Figure 2
reports the results on the test set. Concerning RVMGP, to avoid cluttering the
plots, only the best and worse values of k for each test problem are reported.
Concerning GSGP, only the curve of GSGP-log is reported, because, for each
studied problem, GSGP-nolog returns results on the test set that are so much
worse than the other studied methods that reporting the curve of GSGP-nolog
would not allow us to appreciate the mutual differences between the other meth-
ods. The fact that GSGP-nolog has a poor generalization ability, hence the need
of constraining the output of the random trees generated by GSM, was already
known in the literature [1,4], and our study is a further confirmation of this
finding.

Concerning Fig. 2, let us not consider, for the moment, the horizontal straight
lines, that represent the results returned by KNN regression. Those results will
be discussed in Sect. 4.3. Figure 2 clearly shows that RVMGP with the best-
studied k consistently outperforms GSGP on all the studied test problems, while
RVMGP with the worst studied k outperforms GSGP in 4 cases over 6. To assess
the statistical significance of these results, a set of tests has been performed.
The Lilliefors test has shown that the data are not normally distributed and
hence a rank-based statistic has been used. The Wilcoxon rank-sum test for
pairwise data comparison with Bonferroni correction has been used, under the
alternative hypothesis that the samples do not have equal medians at the end of
the run, with a significance level α = 0.05. The p-values are reported in Table 3,
where statistically significant differences are highlighted with p-values in bold.
As we can observe, all the differences are statistically significant, except the

252 L. Vanneschi et al.

0 500 1000 1500 2000
Generations

0

10

20

30

40

50

60

R
M
S
E

GSGP-log
GSGP-nolog
RVM

0 500 1000 1500 2000
Generations

0

5

10

15

20

25

30

35

R
M
S
E

GSGP-log
GSGP-nolog
RVM

(a) (b)

0 500 1000 1500 2000
Generations

0

2

4

6

8

10

12

14

R
M
S
E

GSGP-log
GSGP-nolog
RVM

0 500 1000 1500 2000
Generations

6

7

8

9

10

R
M
S
E

GSGP-log
GSGP-nolog
RVM

(c) (d)

0 500 1000 1500 2000
Generations

8

9

10

11

12

13

14

15

R
M
S
E

GSGP-log
GSGP-nolog
RVM

0 500 1000 1500 2000
Generations

0

10

20

30

40

50

60

70

R
M
S
E

GSGP-log
GSGP-nolog
RVM

(e) (f)

Fig. 1. Median best RMSE on the training set obtained by GSGP-log, GSGP-
nolog and RVM. (a) = Bioavailability; (b) = Concrete; (c) = Energy; (d) = ParkMotor;
(e) = ParkTotal; (f) = PPB.

difference between GSGP and RVMGP with the worst k for the Concrete and
PPB datasets. The fact that, for different problems, the best value of k changes is
an issue that has been already discussed in the literature for KNN regression [19].
The experimental results reported here seem to confirm that this issue also
exists for RVMGP.

Is KNN Regression Better than GP? 253

0 500 1000 1500 2000
Generations

25

30

35

40

45

50

55

R
M
S
E

GSGP-log
RVM-k1
RVM-k20
KNN1
KNN20

0 500 1000 1500 2000
Generations

5

10

15

20

25

30

35

R
M
S
E

GSGP-log
RVM-k5
RVM-k50
KNN5
KNN50

(a) (b)

0 500 1000 1500 2000
Generations

2

4

6

8

10

12

14

R
M
S
E

GSGP-log
RVM-k1
RVM-k5
KNN1
KNN5

0 0.5 1 1.5 2
Generations 104

0

5

10

15

20
R
M
S
E

GSGP-log
RVM-k1
RVM-k10
KNN1
KNN10

(c) (d)

0 0.5 1 1.5 2
Generations 104

5

10

15

20

R
M
S
E

GSGP-log
RVM-k1
RVM-k10
KNN1
KNN10

0 500 1000 1500 2000
Generations

30

40

50

60

70

80

R
M
S
E

GSGP-log
RVM-k1
RVM-k50
KNN1
KNN50

(e) (f)

Fig. 2. Median RMSE on the test set obtained by GSGP-log and RVMGP. For RVMGP,
only the values of k that have allowed us to obtain the best and the worse results are
reported. The best is represented with a black-continuous line, the worst with a black
line annotated with points. For KNN, the same k values as for RVMGP are reported.
The results of KNN are shown as horizontal straight lines. (a) = Bioavailability;
(b) = Concrete; (c) = Energy; (d) = Park Motor; (e) = Park Total; (f) = PPB.

254 L. Vanneschi et al.

Table 3. p-values of the Wilcoxon rank-sum test on unseen data for the experiments
of Fig. 2, under the alternative hypothesis that the samples do not have equal medians.
Bold denotes statistically significant values.

GSGP-log vs best RVM GSGP-log vs worst RVM best RVM vs worst RVM

Bioavailability 7.70× 10−8 1.46× 10−10 3.02× 10−11

Concrete 3.82× 10−9 0.0933 3.34× 10−11

Energy 3.02× 10−11 4.08× 10−5 3.02× 10−11

Park Motor 7.39× 10−11 6.12× 10−10 4.62× 10−10

Park Total 3.02× 10−11 2.19× 10−8 3.02× 10−11

PPB 1.33× 10−10 0.1154 3.16× 10−10

All this considered, we can state that RVMGP, once the best value of k is
discovered, is preferable to GSGP for the quality of the returned solutions. An
attempt to motivate this result is given in Fig. 3. In this figure, the amounts of
modification of the different studied mutation operators (i.e. the quantities ΔT
in Eq. (2)) are reported. More in particular, for each individual in the popula-
tion to which mutation was applied, the used value of ΔT for each fitness case
was stored. Given that there is no reason why the values of ΔT should change
along the evolution, only the values at the first generation are reported. The
scatterplots of Fig. 3 have the fitness cases (i.e. the training instances) on the
horizontal axis, ordered randomly. In other words, the values on the horizontal
axis are discrete and they consist in the integer values 1, 2, ..., N , where N is the
number of training instances. For each one of the values on the horizontal axis
(i.e. for each fitness case) a “column” of points is reported, one for each individ-
ual in the population. For each one of those points, the value on the vertical axis
corresponds to the ΔT value that mutation applied to that individual. To save
space, only the results concerning one of the studied test problems are reported
here (specifically, Fig. 3 reports the results on the Concrete dataset), but on the
other five test problems, the situation is qualitatively the same, leading to the
same conclusions.

Figure 3 offers a clear picture of the differences between the mutation opera-
tors used by RVMGP (plot (a)), GSGP-log (plot (b)) and GSGP-nolog (plot (c)).
Let us begin by discussing the case of GSGP-nolog (plot (c)). Since the codomain
of the random trees is not limited, ΔT often assumes very large (positive and
negative) values (up to 1016). As a consequence, GSGP-nolog can cause huge
modifications in the semantics of the individuals. This may be the cause for an
unstable search process, and thus the poor generalization ability of GSGP-nolog.

Let us now focus on the ΔT values of RVMGP (Fig. 3(a)) and GSGP-
log (Fig. 3(b)). First of all, it is worth pointing out that, observing the scat-
terplots, one should not be surprised by the concentration of points around
ΔT = 0. In fact, the mutation step ms is a different random number in [0, 1] at
each mutation event, and not a constant value. Given that ΔT ∈ [−ms,ms], the
interval of variation of ΔT changes at each mutation event, and it is expected

Is KNN Regression Better than GP? 255

Fig. 3. The modifications ΔT (see Eq. (2)) made by the studied mutations on each
training case for each one of the individuals in the population at the first generation
for the Concrete dataset. (a) = RVMGP, (b) = GSGP-log, (c) = GSGP-nolog.

that more points are concentrated around zero, while a smaller number of points
appear close to the values ΔT = 1 and ΔT = −1. Secondly, one important differ-
ence between the scatterplot of RVMGP and the one of GSGP-log is visible: the
scatterplot of RVMGP is clearly more “dense” and “uniform”. In other words,

256 L. Vanneschi et al.

practically all possible values of ΔT have been achieved for each fitness case.
On the other hand, observing the scatterplot of GSGP-log, we can see that it is
less uniform, which makes us hypothesize that some values of ΔT are harder to
obtain than others. This depends on the data and on the particular random trees
that were generated. From this observation, it is straightforward to infer that
there are some points (or even “regions”) in the semantic space that are harder
than others to reach by GSM, while this is not the case for RVM. We could say
that RVM induces a dense and regular semantic space, while GSM induces a
sparse and irregular semantic space. Also, more diverse semantic values appear
in a RVMGP population than in a GSGP-log population. In other words, more
semantic diversity is offered by RVMGP than by GSGP-log. Given that semantic
diversity has been demonstrated as one of the factors promoting generalization
ability [20], we hypothesize that the better results achieved by RVMGP in Fig. 2
can be motivated by the different behaviour highlighted in Fig. 3.

4.3 Experimental Results: RVMGP vs KNN Regression vs RF
Regression

It is now time to look back at Fig. 2, and consider the horizontal lines, that
correspond to the median value of the RMSE achieved by KNN regression on
the test set (the same values of k as for RVMGP are reported). Of course, this
value is a constant (there is no evolution in KNN), but reporting that value
as a horizontal line in the plots helps visibility. Two facts can be observed:
first of all, KNN consistently outperforms GSGP on all studied problems; as a
consequence, KNN also outperforms standard GP, given that GSGP was able
to obtain better results than standard GP on all these problems, as discussed
above. Secondly, the evolution of RVMGP approximates KNN, until a point in
which it obtains practically identical results, without being able to significantly
improve them. That point arrives within generation 2000 for all the studied test
problems, except Park Motor and Park Total (Fig. 2(d) and (e), respectively).
To see the same behaviour, for those two problems we have extended the runs
until generation 20000. Table 4 reports, for each studied problem, the numeric
values of the median errors for the worst and best KNN and the worst and
best RVMGP. To have a more complete vision of how these results compare with
other ML algorithms, also the results obtained by RF regression [12] are reported,
since RF regression is often considered the ML state of the art for regression.
The interested reader is referred to [13,14] to support the use of RF. To assess
the statistical significance of these results, once again the Wilcoxon rank-sum
test for pairwise data comparison with Bonferroni correction has been used,
under the alternative hypothesis that the samples do not have equal medians,
with a significance level α = 0.05. The p-values are reported in Table 5, where
statistically significant differences are highlighted with p-values in bold.

As we can observe, RF regression outperforms the other studied methods
only on two of the six studied problems. Discussing the results of RF is beyond
the scope of this paper, nevertheless it is worth pointing out the RF outperforms
the other methods for the two problems that have the smaller dimensionality of

Is KNN Regression Better than GP? 257

Table 4. Median error over 30 independent runs returned by the worst and best KNN,
the worst and best RVM and RF regression. The best result for each test problem is
highlighted in bold.

worst KNN best KNN worst RVM best RVM RF Regr.

Bioavailability 40.64 30.01 40.61 29.99 36.45

Concrete 12.13 9.86 11.76 9.48 5.84

Energy 3.31 2.33 3.08 2.31 0.40

Park Motor 3.75 3.29 4.20 3.34 3.80

Park Total 4.69 4.23 5.10 4.28 4.62

PPB 43.85 32.29 43.88 32.29 42.0

Table 5. p-values of the Wilcoxon rank-sum test on unseen data for the experiments of
Table 4, under the alternative hypothesis that the samples do not have equal medians.
Bold denotes statistically significant values.

best RVM vs best KNN best RVM vs RF Regr. best KNN vs RF Regr.

Bioavailability 0.95 5.49× 10−11 6.70× 10−11

Concrete 0.92 3.02× 10−11 3.02× 10−11

Energy 0.34 3.02× 10−11 3.02× 10−11

Park Motor 0.02 4.50× 10−11 3.02× 10−11

Park Total 0.23 4.20× 10−10 1.33× 10−10

PPB 0.92 8.99× 10−11 8.99× 10−11

the feature space. For the other problems, that are characterized by a larger
dimensionality of the feature space, RFs are consistently outperformed both
by KNN and by RVMGP. All the differences are statistically significant, with
the only exception of the differences between RVMGP and KNN, that are not
statistically significant for any of the studied problems.

These observations lead to questions that may look dramatic for the GP
community: is KNN better than GP? Are we missing the boat by using GP,
while KNN, that is a simpler algorithm, can achieve better results?

Answering these questions is not straightforward, and possibly a single answer
does not even exist. It is worth pointing out that the excellent generalization
ability of KNN, when compared to other ML algorithms, was already known [21],
and has recently been discussed in [22]. In the latter contribution, Cohen and
colleagues offer an interesting discussion about the difference between learning
and memorizing. It is clear that KNN is memorizing, and not learning. KNN,
in fact, does not even have a learning phase, and does not have a real model,
intended as a program that can be executed on observations. The model is
replaced by the training set and generalization is achieved only by comparing
an unseen instance to the training observations. However, as pointed out by
Cohen et al., memorization and generalization, which are traditionally considered
to be contradicting to each other, are compatible and complementary in ML, and
this explains the excellent generalization ability of KNN.

258 L. Vanneschi et al.

On the other hand, having a model of the data can be convenient in many
cases. First of all, because a model, if readable, can be interpreted by a domain
expert. If a model can be understood and “makes sense” to a domain expert,
she will also more likely trust the predictions. Secondly, KNN bases its function-
ing on the similarity between training and unseen data, which implies that the
functioning of KNN is strongly dependent on the distance metric used to quan-
tify this similarity. This dependence can be avoided, in principle, if we have a
model, that can potentially make predictions based on concepts that go beyond
the immediate similarity between data.

All this considered, instead of answering the previous questions, one may
ask another question: is it possible to obtain the same results as KNN, but by
means of learning instead of memorization? Our answer is that, in some senses,
this is exactly what RVMGP is doing. Furthermore, although only on two test
problems, RF regression was able to outperform KNN, and RF regression is
learning and not memorizing.

RVMGP is obtaining the same results as KNN, but after a learning process.
However, what leaves us unsatisfied with RVMGP is that, as for KNN, also
with RVMGP we need the training data to be able to generalize. But why does
RVMGP need the training data? Simply because RVM uses a vector of random
numbers, one for each training observation, and there is no other available ele-
ment, unless data similarity, that can let us have the appropriate corresponding
number to use on unseen data.

From these considerations, a new and final question comes to our mind:
is it possible to simulate the behaviour of RVM using random trees, so that
generalization can be obtained simply evaluating the final expression? In the
end, as explained in Sect. 4.2, our interpretation of what makes RVMGP able
to outperform GSGP comes from the difference in the scatterplots of the ΔT s
reported in Fig. 3. So, what if we were able to obtain a “dense” and “regular”
scatterplot as the one of Fig. 3(a), but using random trees, instead of vectors
of random numbers? We hypothesize that this would allow us to obtain results
that are comparable to the ones of KNN, but with the big advantage of having
a final, executable, expression, that can be evaluated on unseen data.

These ideas open to new and exciting research questions: why is the scatter-
plot of the ΔT s of GSM different from the one in Fig. 3(a)? Does it depend on the
way we are normalizing data? Does it depend on the primitive operators we are
using to build the random trees? Does it depend on their size and shape? Is there
any way to obtain a behaviour like the one of Fig. 3(a) using random trees, or is
it impossible after all? And even further: can we use trained expressions, instead
of random expressions, to obtain a scenario like the one in Fig. 3(a)? Can novelty
search [23] help learn such expressions? In the end, from Fig. 3(b) it is clear that
GSM is sampling similar values of ΔT several times, while disregarding others.
Can we simply reward diversity in the creation of the random expressions used
by GSM? Is it enough to obtain an algorithm that works like KNN, but learns
instead of memorizing? All these questions deserve future work and answering
those questions is one of the main interests of our current research.

Is KNN Regression Better than GP? 259

5 Conclusions and Future Work

A new geometric semantic mutation, called Random Vector-based Mutation
(RVM) was presented in this paper. It has the advantage of reducing the size of
the model compared to traditional geometric semantic mutation, and it clearly
outperforms it on six real-life regression problems. On the other hand, as for the
k Nearest Neighbors (KNN), the only way to evaluate unseen instances is by
using the similarity with the training observations, which forces us to include
the training set in the model. Furthermore, RVM can approximate KNN, until
a point in which it is able to return practically identical results, but it is not
able to outperform it significantly. The presented results highlighted an excel-
lent generalization ability of KNN, often better than a state-of-the-art method
like Random Forest regression. Furthermore, KNN is a much simpler algorithm
than GP. These considerations force GPers to a basic reflection on the reason why
we are using GP, questioning whether it even makes sense at all. We conclude
that learning, as GP does, can be more important than memorizing, as KNN.
This puts our future research in front of a clear and ambitious challenge: obtain-
ing the same results as KNN through a GP-based learning process. The first
attempt will come from a deeper analysis of the density of the semantic space,
induced by different mutation operators.

Acknowledgments. This work was partially supported by FCT, Portugal,
through funding of LASIGE Research Unit (UIDB/00408/2020) and projects
BINDER (PTDC/CCI-INF/29168/2017), GADgET (DSAIPA/DS/0022/2018), AICE
(DSAIPA/DS/0113/2019), INTERPHENO (PTDC/ASP-PLA/28726/2017), OPTOX
(PTDC/CTA-AMB/30056/2017) and PREDICT (PTDC/CCI-CIF/29877/2017), and
by the Slovenian Research Agency (research core funding No. P5-0410). We also thank
Reviewer 2 for the interesting comments, and apologize for not having had enough time
to follow all the helpful suggestions.

References

1. Vanneschi, L.: An introduction to geometric semantic genetic programming. In:
Schütze, O., Trujillo, L., Legrand, P., Maldonado, Y. (eds.) NEO 2015. SCI, vol.
663, pp. 3–42. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-44003-
3 1

2. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic program-
ming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone,
M. (eds.) PPSN 2012. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32937-1 3

3. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

4. Gonçalves, I., Silva, S., Fonseca, C.M.: On the generalization ability of geometric
semantic genetic programming. In: Machado, P., et al. (eds.) EuroGP 2015. LNCS,
vol. 9025, pp. 41–52. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
16501-1 4

5. Castelli, M., Silva, S., Vanneschi, L.: A C++ framework for geometric semantic
genetic programming. Genetic Program. Evolvable Mach. 16(1), 73–81 (2015)

https://doi.org/10.1007/978-3-319-44003-3_1
https://doi.org/10.1007/978-3-319-44003-3_1
https://doi.org/10.1007/978-3-642-32937-1_3
https://doi.org/10.1007/978-3-319-16501-1_4
https://doi.org/10.1007/978-3-319-16501-1_4

260 L. Vanneschi et al.

6. Moraglio, A.: An efficient implementation of GSGP using higher-order functions
and memoization. In: Semantic Methods in Genetic Programming, Workshop at
Parallel Problem Solving from Nature (2014)

7. Martins, J.F.B.S., Oliveira, L.O.V.B., Miranda, L.F., Casadei, F., Pappa, G.L.:
Solving the exponential growth of symbolic regression trees in geometric semantic
genetic programming. In: Proceedings of the Genetic and Evolutionary Computa-
tion Conference, GECCO 2018, pp. 1151–1158. ACM, New York (2018)

8. Moraglio, A., Mambrini, A.: Runtime analysis of mutation-based geometric seman-
tic genetic programming for basis functions regression. In: Proceedings of the 15th
Annual Conference on Genetic and Evolutionary Computation, GECCO 2013, pp.
989–996. ACM, New York (2013)

9. Vanneschi, L., Silva, S., Castelli, M., Manzoni, L.: Geometric semantic genetic
programming for real life applications. In: Riolo, R., Moore, J.H., Kotanchek, M.
(eds.) Genetic Programming Theory and Practice XI. GEC, pp. 191–209. Springer,
New York (2014). https://doi.org/10.1007/978-1-4939-0375-7 11

10. Kramer, O.: K-nearest neighbors. In: Kramer, O. (ed.) Dimensionality Reduction
with Unsupervised Nearest Neighbors. Intelligent Systems Reference Library, vol.
51, pp. 13–23. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38652-7 2

11. Mucherino, A., Papajorgji, P.J., Pardalos, P.M.: k-nearest neighbor classification.
In: Mucherino, A., Papajorgji, P.J., Pardalos, P.M. (eds.) Data Mining in Agri-
culture. Springer Optimization and Its Applications, vol. 34, pp. 83–106. Springer,
New York (2009). https://doi.org/10.1007/978-0-387-88615-2 4

12. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
13. Verikas, A., Gelzinis, A., Bacauskiene, M.: Mining data with random forests: a

survey and results of new tests. Pattern Recogn. 44(2), 330–349 (2011)
14. Ziegler, A., König, I.: Mining data with random forests: current options for real-

world applications. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 4, 55–63 (2014)
15. Archetti, F., Lanzeni, S., Messina, E., Vanneschi, L.: Genetic programming for

computational pharmacokinetics in drug discovery and development. Genetic Pro-
gram. Evolvable Mach. 8(4), 413–432 (2007)

16. Castelli, M., Vanneschi, L., Silva, S.: Prediction of high performance concrete
strength using genetic programming with geometric semantic genetic operators.
Expert Syst. Appl. 40(17), 6856–6862 (2013)

17. Castelli, M., Trujillo, L., Vanneschi, L., Popovič, A.: Prediction of energy perfor-
mance of residential buildings: a genetic programming approach. Energy Buildings
102, 67–74 (2015)

18. Castelli, M., Vanneschi, L., Silva, S.: Prediction of the unified Parkinson’s dis-
ease rating scale assessment using a genetic programming system with geometric
semantic genetic operators. Expert Syst. Appl. 41(10), 4608–4616 (2014)

19. Cheng, D., Zhang, S., Deng, Z., Zhu, Y., Zong, M.: kNN algorithm with data-
driven k value. In: Luo, X., Yu, J.X., Li, Z. (eds.) ADMA 2014. LNCS (LNAI),
vol. 8933, pp. 499–512. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
14717-8 39

20. Galván, E., Schoenauer, M.: Promoting semantic diversity in multi-objective
genetic programming. In: Proceedings of the Genetic and Evolutionary Compu-
tation Conference, GECCO 2019, pp. 1021–1029. ACM, New York (2019)

https://doi.org/10.1007/978-1-4939-0375-7_11
https://doi.org/10.1007/978-3-642-38652-7_2
https://doi.org/10.1007/978-3-642-38652-7_2
https://doi.org/10.1007/978-0-387-88615-2_4
https://doi.org/10.1007/978-3-319-14717-8_39
https://doi.org/10.1007/978-3-319-14717-8_39

Is KNN Regression Better than GP? 261

21. Chen, G.H., Shah, D.: Explaining the success of nearest neighbor methods in pre-
diction. Found. Trends R© in Mach. Learn. 10(5–6), 337–588 (2018)

22. Cohen, G., Sapiro, G., Giryes, R.: DNN or k-NN: that is the generalize vs. memorize
question. ArXiv abs/1805.06822 (2018)

23. Slavinec, M., et al.: Novelty search for global optimization. Appl. Math. Comput.
347, 865–881 (2019)

Guided Subtree Selection for Genetic
Operators in Genetic Programming

for Dynamic Flexible Job Shop
Scheduling

Fangfang Zhang1(B) , Yi Mei1 , Su Nguyen2 , and Mengjie Zhang1

1 School of Engineering and Computer Science,
Victoria University of Wellington,

PO BOX 600, Wellington 6140, New Zealand
{fangfang.zhang,yi.mei,mengjie.zhang}@ecs.vuw.ac.nz

2 Centre for Data Analytics and Cognition,
La Trobe University, Melbourne, VIC 3086, Australia

P.Nguyen4@latrobe.edu.au

Abstract. Dynamic flexible job shop scheduling (DFJSS) has been
widely studied in both academia and industry. Both machine assignment
and operation sequencing decisions need to be made simultaneously as
an operation can be processed by a set of machines in DFJSS. Using
scheduling heuristics to solve the DFJSS problems becomes an effective
way due to its efficiency and simplicity. Genetic programming (GP) has
been successfully applied to evolve scheduling heuristics for job shop
scheduling automatically. However, the subtrees of the selected parents
are randomly chosen in traditional GP for crossover and mutation, which
may not be sufficiently effective, especially in a huge search space. This
paper proposes new strategies to guide the subtree selection rather than
picking them randomly. To be specific, the occurrences of features are
used to measure the importance of each subtree of the selected parents.
The probability to select a subtree is based on its importance and the
type of genetic operators. This paper examines the proposed algorithm
on six DFJSS scenarios. The results show that the proposed GP algo-
rithm with the guided subtree selection for crossover can converge faster
and achieve significantly better performance than its counterpart in half
of the scenarios while no worse in all other scenarios without increasing
the computational time.

Keywords: Guided subtree selection · Scheduling heuristic · Dynamic
flexible job shop scheduling · Genetic programming

1 Introduction

Job shop scheduling (JSS) [1] is an important combinatorial optimisation prob-
lem that can be applied to almost all areas of our lives such as manufacturing
c© Springer Nature Switzerland AG 2020
T. Hu et al. (Eds.): EuroGP 2020, LNCS 12101, pp. 262–278, 2020.
https://doi.org/10.1007/978-3-030-44094-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44094-7_17&domain=pdf
http://orcid.org/0000-0001-5516-3972
http://orcid.org/0000-0003-0682-1363
http://orcid.org/0000-0002-1153-5022
http://orcid.org/0000-0003-4463-9538
https://doi.org/10.1007/978-3-030-44094-7_17

Guided Subtree Selection for Genetic Operators in GP for DFJSS 263

[2] and cloud computing [3]. The task in JSS is to process a number of jobs by
a set of machines. Each job has a sequence of operations. The goal of JSS is
to find a good schedule to complete the processing task. An effective scheduling
decision-making scheme is the key to enhancing the competitiveness of a modern
enterprise. Flexible JSS (FJSS) [4], as a variant of JSS, better reflects the real-
world applications than ordinary JSS. In FJSS, one operation can be processed
on a set of machines. Except for choosing an operation as the next operation to
be processed by an idle machine (operation sequencing), we need to assign an
operation to a particular machine (machine assignment). These two decisions
need to be made simultaneously. In addition, many practical scheduling prob-
lems are changing over time, for example, due to new job arrivals [5–7]. Dynamic
FJSS (DFJSS) is to consider flexible JSS under dynamic environments.

Scheduling heuristics such as dispatching rules [8] are widely used to handle
DFJSS. A scheduling heuristic is a heuristic that works like a priority function
to evaluate the priorities of operations and machines. To be specific, in DFJSS, a
machine that has the highest priority value based on the routing rule (i.e. routing
scheduling heuristic) will be assigned a job to be processed. An operation with
the highest priority value based on the sequencing rule (i.e. sequencing scheduling
heuristic) will be chosen as the next operation to be processed. There are some
rules such as SPT (i.e. shortest processing time) and WIQ (i.e. the workload in
the queue of a machine) which have been identified as effective rules for JSS.
However, they are manually designed by experts, which is time-consuming. In
practice, it is hard to manually design effective rules due to the complexity and
diversity of the investigated job shop environments.

Genetic programming (GP) [9], as a hyper-heuristic (GPHH) method, has
been successfully applied to automatically evolve scheduling heuristic for JSS
[10,11]. GP uses crossover, mutation and reproduction to generate offspring for
the next generation. In a typical subtree-based crossover, offspring are created by
swapping the subtrees of the parents. On the other hand, mutation is generally to
maintain diversity within the population and prevent premature convergence. In
the common subtree-based mutation, an individual (i.e. parent) is selected, and
an offspring is generated by replacing one of its subtrees with a new randomly
generated subtree.

In traditional GP, subtrees (i.e. function nodes) are randomly chosen to gen-
erate individuals. However, the importance of subtrees in each individual can be
different. Some subtrees are redundant or less important and removing them
might not affect the fitness of an individual too much. On the other hand,
some subtrees play important roles for an individual, and losing them will cause
considerable loss to the fitness. It may not be an effective way to randomly
select subtrees without considering the importance of subtrees. To this end, this
paper proposes subtree selection strategies for crossover and mutation to help
GP improve the effectiveness of generating new offspring.

The overall goal of this paper is to develop novel guided subtree selection
strategies based on the occurrence of features for crossover and mutation to help
GP find more effective scheduling heuristics for DFJSS efficiently. The proposed

264 F. Zhang et al.

algorithms are expected to speed up the convergence of GP and find effective
rules in a shorter time. In particular, this paper has the following research objec-
tives:

– Develop guided subtree selection strategies both for crossover and mutation
with the information of the occurrence of features to improve the effectiveness
of the evolutionary process.

– Verify the effectiveness and efficiency of the proposed GP algorithm with the
guided subtree selection strategy by comparing its performance and conver-
gence curve with the baseline GP counterpart.

– Analyse how the subtree selection strategy affects the evolutionary process of
GP.

2 Background

2.1 Dynamic Flexible Job Shop Scheduling

In FJSS problem [12], n jobs J = {J1, J2, ..., Jn} need to be processed by m
machines M = {M1,M2, ...,Mm}. Each job Jj has an arrival time at(Ji) and
a sequence of operations Oj = (Oj1, Oj2, ..., Oji). Each operation Oji can only
be processed by one of its optional machines π(Oji) and its processing time
δ(Oji) depends on the machine that processes it. It indicates that there are two
decisions which are routing decision and sequencing decision in FJSS. In DFJSS,
not only the two decisions need to be made simultaneously, but also the dynamic
events are necessary to be taken into account when making schedules. This paper
focuses on one dynamic event (i.e. continuously arriving new jobs). That is, the
information of a job is unknown until its arrival time.

2.2 Genetic Programming Hyper-heuristic for DFJSS

A hyper-heuristic [13] is a heuristic search method that seeks to select or generate
heuristics to efficiently solve hard computational search problems. The unique
characteristic is that the search space of hyper-heuristic is heuristics instead of
solutions. Hyper-heuristic is often incorporated with machine learning techniques
to achieve its goal.

GP, as a hyper-heuristic method [14], has been successfully applied to more
informative scheduling heuristics for combinatorial optimisation problems such
as packing [15,16], timetabling [17], arc routing [18], and JSS [19–22]. Scheduling
heuristics, including routing and sequencing rules, are needed in DFJSS in our
research. To follow the sequence constraint of operations of a job, we only start to
allocate an operation when it becomes a ready operation. There are two sources of
ready operations. One is the first operation of a job. The second is the operation
that its proceeding operation is just finished. Once an operation becomes a
ready operation (routing decision point), it will be allocated to the machine by
the routing rule. When a machine becomes idle, and its queue is not empty

Guided Subtree Selection for Genetic Operators in GP for DFJSS 265

(sequencing decision point), the sequencing rule will be triggered to choose the
next operation to be processed.

Although GP has been successfully applied to DFJSS [19,20], to the best
of our knowledge, little research has been conducted on genetic operators to
improve the effectiveness of generating offspring. To this end, this paper aims to
propose subtree selection strategies for both crossover and mutation to help GP
evolve more effective scheduling heuristics for DFJSS.

3 The Proposed GP with Subtree Selection

Figure 1 shows the flowchart of the proposed algorithm. The main process is
the same as the traditional GP. There are three different parts. After evaluating
all the individuals in the population, the occurrence of each feature is counted
based on promising individuals. The occurrence information of features is used
to calculate the importance of subtrees of the selected parents. During the evo-
lutionary process, crossover and mutation are conducted based on the proposed
corresponding subtree selection strategies. In this way, when generating new
offspring by crossover and mutation, the subtrees are selected with guidance.

Initialisation

Subtree Importance Calculation

Population Evaluation Occurrence of Features

Stop?

Parent Selection

Evolution
Reproduction

Mutation with Guided Subtree Selection
Crossover with Guided Subtree Selection

End

No

Yes

Fig. 1. The flowchart of the proposed algorithm.

According to the proposed algorithm framework, the three research questions
in this paper are how to extract feature information to assess the importance
of subtrees, how to measure the importance of subtrees, and how to apply the
subtree importance information to crossover and mutation. These three questions
are studied in the following three sections, separately.

266 F. Zhang et al.

3.1 The Occurrences of Features

An advantage of GP is that it can automatically select important features to
build individuals. The features of individuals with good fitness are more likely to
be important features. On the other hand, the individuals that contain important
features are more likely to be promising individuals. This means that the features
involved in promising individuals can be used to measure the importance of
subtrees.

Fig. 2. The occurrence of features in the top three individuals.

In this paper, the occurrence of features in the top ten individuals is further
used to assess the importance of subtrees. Our preliminary studies show that
top ten individuals tend to have promising fitness which is good for detecting
feature characteristics. Another advantage of using the occurrence information
of features is that we do not need to put too much extra effort to obtain useful
information since the information is already generated during the evolutionary
process.

Figure 2 shows an example of how to extract feature occurrence information
based on three individuals. These three individuals contain different numbers of
features and have different structures. Assuming that they are top three individ-
uals in the population based on the fitness. According to the three individuals,
the occurrence of features in all three individuals is counted. The occurrences of
feature A, B, and C are 5, 3, and 2, respectively. This information will be used
to measure the importance of subtrees in an individual.

3.2 The Importance of Subtrees

An individual (i.e. a tree) can be considered to be composed of multiple subtrees.
After a function node is selected, the subtree is determined. The importance
of subtrees is measured from bottom to top, and this paper uses the concept
score to indicate the importance of a subtree. Each feature has its occurrence
information at the bottom level of an individual, and the score of their parent
node (i.e. the importance of subtree) is set as the average occurrence number of
its child nodes. Assuming that importance (i.e. occurrence) of feature A, B and
C are ranked as A > B > C. If only considering the simplest subtrees (i.e. depth

Guided Subtree Selection for Genetic Operators in GP for DFJSS 267

is two) and only take two features, there will be three possible combinations for
the subtree which are A and B, A and C, and B and C. The importance of the
subtrees should be ranked as subtree(A,B) > subtree(A,C) > subtree(B,C).

Figure 3 shows an example of how to measure the importance of each subtree
for an individual. For example, the subtree1 (i.e. in the bottom-left corner)
contains two features (i.e. A and B), the score of their parent node is set as 4
(i.e. (5 + 3)/2). The importance of subtree3 is assigned as the average scores of
its two subtrees (i.e. subtree1 and subtree2). By analogy, all score of subtrees
will be assigned, as shown in Fig. 3.

Fig. 3. The importance (i.e. score) of subtrees in an individual.

Taking the subtrees that the depth is two into consideration, there are three
subtrees (i.e. indicated by subtree 1, 2 and 4), whose importance are marked as
4, 3.5 and 2.5, respectively. The importance of subtree 1, 2 and 4 are ranked
as subtree1 > subtree2 > subtree4, which is consistent with the importance
measurement design. When looking at all the subtrees, the importance rank of
all subtrees in this individual is subtree1 > subtree3 > subtree2 > subtree5 >
subtree4.

3.3 Subtree Selection

Based on the importance of subtrees, the probability of the subtrees that will
be selected can be calculated. There are two different techniques to calculate
the probability for different purposes (i.e. one for mutation, and the other for
both crossover and mutation). The probability is designed proportionally to the
scores.

Figure 4 shows the two different techniques to calculate the probability of each
subtree in an individual. Figure 4(a) shows the technique that tends to choose the
important subtree (i.e. the subtree with a larger score, the higher the probability
it will be selected). Let us continue with the previous example in Fig. 3, there are
five subtrees with score [3.125, 3.75, 2.5, 4, 3.5]. If we prefer to choose the impor-
tant subtree, the larger the score of the subtree, the higher the probability it will
have. First, we sum up the total score (i.e. 16.875 = 3.125 + 3.75 + 2.5 + 4 + 3.5).
Then, the probability of subtrees is assigned as [0.185, 0.222, 0.148, 0.237, 0.207]

268 F. Zhang et al.

(i.e. [3.125/16.875, 3.75/16.875, 2.5/16.875, 4/16.875, 3.5/16.875]). The rank
of probability of subtrees is subtree1 > subtree3 > subtree2 > subtree5 >
subtree4.

Figure 4(b) shows the technique that tends to choose the unimportant subtree
(i.e. the subtree with a larger score, the lower the probability it will be selected).
If we prefer to choose the unimportant subtree, the larger the score of the subtree,
the lower the probability it will have. Thus, the score is converted to [1/3.125,
1/3.75, 1/2.5, 1/4, 1/3.5] first. Then, we sum up the total score and get the final
probability as we just mentioned. The probabilities of subtrees are shown beside
the function nodes. The rank of probability of subtrees is subtree4 > subtree5 >
subtree2 > subtree3 > subtree1.

Fig. 4. Two different ways to calculate the probability of each subtree for an individual.
(a) Tends to choose important subtree while (b) tends to choose unimportant subtree.

Crossover with Guided Subtree Selection. For the crossover, there are two
parents (i.e. parent1 and parent2) which are both promising individuals that are
selected as parents. Without loss of generality, this paper assumes that parent1
is no worse than parent2. The unimportant subtree from parent1 is expected to
be swapped with an important subtree from parent2 to make parent1 an even
better individual. Therefore, for parent1, the larger the score of the subtree, the
lower the probability it will have. For parent2, the larger the score of the subtree,
the higher the probability it will have.

Mutation with Guided Subtree Selection. For mutation, we expect to make
the parent produce a better individual by replacing unimportant subtree with
a newly generated subtree. We prefer to choose an unimportant subtree, and a
larger score of the subtree leads to a lower probability it will be chosen.

3.4 Summary

The purpose of the proposed algorithms is to improve the effectiveness of
crossover and mutation by introducing subtree selection strategies instead of
choosing subtrees randomly. The occurrence information of features is utilised
to measure the importance of subtrees. Then, the subtrees importance informa-
tion is used to determine the probability that the subtrees will be selected along
with the characteristics of crossover and mutation.

Guided Subtree Selection for Genetic Operators in GP for DFJSS 269

4 Experiment Design

To investigate the effectiveness of the proposed subtree selection strategies for
crossover and mutation, a set of experiments have been conducted. In this
section, the experiment design is shown in detail.

4.1 Simulation Model

Assuming that there are 5000 jobs need to be processed by ten machines. The
importance of jobs might be different, which are indicated by weights. The
weights of 20%, 60%, and 20% of jobs are set as one, two and four, respectively.
The number of operations of each job varies by a uniform discrete distribution
between one and ten. The processing time of each operation is set by uniform
discrete distribution with the range [1, 99]. The number of candidate machines
for an operation follows a uniform discrete distribution between one and ten.

In each problem instance, jobs arrive stochastically according to a Poisson
process with rate λ. To improve the generalisation ability of the evolved rules for
DFJSS problems, the seeds used to stochastically generate the jobs are rotated
in the training process at each generation. In addition, in order to make sure the
accuracy of the collected data, a warm-up period of 1000 jobs is used.

4.2 Parameter Settings

In our experiment, the terminal and function set are shown in Table 1. The
“/” operator is protected division, returning one if divided by zero. The other
parameter settings of GP are shown in Table 2.

Table 1. The terminal and function sets.

Terminals Description

Machine-related NIQ The number of operations in the queue

WIQ Current work in the queue

MWT Waiting time of a machine

Operation-related PT Processing time of an operation

NPT Median processing time for next operation

OWT The waiting time of an operation

Job-related WKR The median amount of work remaining of a job

NOR The number of operations remaining of a job

W Weight of a job

TIS Time in system

Functions +, −, ∗, /, max, min As usual meaning

270 F. Zhang et al.

Table 2. The parameter setting of GP.

Parameter Value

Number of subpopulations 2

Subpopulation size 512

Method for initialising population Ramped-half-and-half

Initial minimum/maximum depth 2/6

Maximal depth of programs 8

The number of elites 10

Crossover/mutation/reproduction rate 80%/15%/5%

Parent selection Tournament selection with size 7

Number of generations 51

Terminal/non-terminal selection rate 10%/90%

4.3 Comparison Design

Four algorithms are taken into the comparison in this paper. The cooperative
coevolution genetic programming (CCGP) [5] which can be used to evolve rout-
ing rule and sequencing rule simultaneously, is selected as the baseline algorithm.
Our proposed algorithm, which incorporates subtree selection strategy into the
crossover, is named as CCGPc (i.e. choose subtrees for crossover). The algorithm
that incorporates subtree selection into the mutation (i.e. choose subtrees for
mutation) is called CCGPm. The proposed algorithm, which incorporates sub-
tree selection by both crossover and mutation, is named as CCGPcm. CCGPc,
CCGPm and CCGPcm are compared with CCGP, respectively.

The proposed algorithms are tested on six different scenarios. The scenarios
consist of three objectives (i.e. max flowtime, mean flowtime, and mean weighted
flowtime) and two utilisation levels (i.e. 0.85 and 0.95) [20]. For the sake of
convenience, Fmax, Fmean, and WFmean are used to indicate max flowtime,
mean flowtime, and mean weighted flowtime, respectively. The evolved best rule
at each generation is tested on 50 different test instances, and the mean objective
value of them is reported as the objective value of this best rule. This aims to
guarantee the accuracy of measuring the performance.

5 Results and Discussions

Thirty independent runs are conducted for the comparison. Wilcoxon rank-sum
test with a significance level of 0.05 is used to verify the performance of proposed
algorithms. In the following results, “−” and “+” indicate the corresponding
result is significantly better or worse than its counterpart. If there is no mark
there, that means the performance between them is similar.

Guided Subtree Selection for Genetic Operators in GP for DFJSS 271

5.1 Performance of Evolved Rules

Table 3 shows the mean and standard deviation of the objective value of the
four algorithms over 30 independent runs for six DFJSS scenarios. CCGPc per-
forms significantly better than CCGP for three scenarios (i.e. <Fmean,0.85>,
<WFmean,0.85> and <WFmean,0.95>). For the remaining three scenarios,
CCGPc performs as well as the CCGP. In scenario <Fmax,0.85>, although
CCGPc does not achieve significantly better performance than that of CCGP,
the mean and standard deviation are smaller than that of CCGP (i.e. still better).
However, CCGPm performs significantly better than that of CCGP only in sce-
nario <Fmean,0.85> and achieves better performance in scenario <Fmax,0.95>.
In general, it seems like it is not that effective to apply subtree selection strategy
to mutation as it does not get better results in most scenarios. The effectiveness
of CCGPcm is similar to CCGPc. Its performance might be mainly due to the
role played by applying subtree selection strategy into the crossover.

Table 3. The mean (standard deviation) of the objective value of CCGP, CCGPc,
CCGPm, and CCGPcm over 30 independent runs for six DFJSS scenarios.

Scenario CCGP CCGPc CCGPm CCGPcm

<Fmax,0.85> 1211.84(35.27) 1211.68(30.21) 1217.81(28.24) 1215.76(26.41)

<Fmax,0.95> 1942.06(31.70) 1944.84(31.52) 1936.62(23.11) 1955.04(56.65)

<Fmean,0.85> 386.07(3.53) 384.80(1.67)(−) 384.40(2.02)(−) 384.88(1.60)(−)

<Fmean,0.95> 550.99(5.28) 551.94(4.94) 551.20(4.70) 551.12(3.87)

<WFmean,0.85> 832.46(7.25) 829.70(4.83)(−) 832.03(7.33) 830.14(4.26)

<WFmean,0.95> 1110.04(10.82) 1107.59(12.49)(−) 1109.44(12.33) 1107.76(8.08)(−)

Figure 5 shows the convergence curves of the average objective value on
the test instances of the four algorithms. To better show the performance of
the proposed algorithms, only the curves between generation 20 and 50 are
shown in Fig. 5. Except for max-flowtime related scenarios (i.e. <Fmax,0.85>
and <Fmax,0.95>) and scenario <Fmean,0.95>, the three proposed algorithms
(i.e. CCGPc, CCGPm, and CCGPcm) can achieve better performance than that
of CCGP. In <Fmean,0.85>, all the proposed three algorithms show their advan-
tages in both convergence speed and final performance, especially CCGPm. In
scenario <WFmean,0.85>, CCGPc has the best convergence speed and perfor-
mance. In scenario <WFmean,0.95>, CCGPm convergence faster than CCGPc

before generation 30 roughly, however, it loses to CCGPc after generation 30.
Finally, CCGPc achieves better performance than that of CCGPm. For minimis-
ing max-flowtime, the proposed three algorithms have no obvious advantages.
It might be because max-flowtime is more sensitive to the worst case, which is
more complex and hard to optimise.

272 F. Zhang et al.

Fig. 5. The convergence curves of CCGP, CCGPc, CCGPm, and CCGPcm from gen-
eration 20 to generation 50 in six scenarios.

Summary. Based on the results, CCGPc is the most promising algorithm which
shows the effectiveness of improving the crossover operator by subtree selection
strategy. CCGPm is not as promising as CCGPc. One possible reason is that
the mutation rate is low and can not affect the evolutionary process too much.
That might also be the reason why the performance of CCGPcm is similar to
that of CCGPc. The other possible reason is that mutation aims to maintain the
diversity of the population, and it is better not to guide its direction.

5.2 The Probability Difference

The main idea in this paper is to differentiate the probability of subtrees to be
chosen instead of choosing subtrees randomly. The probability difference (Ps −
Pu) is defined as the difference between the assigned probability (Ps) and the
uniform probability (Pu) of the selected subtree. The probability difference can
be positive, negative, and zero. If the probability is a positive number, that would
mean the current subtree is selected with a higher chance compared with uniform
probability. If the probability is a negative number, that means the current
subtree is selected with a lower chance compared with uniform probability. If
the probability is zero, that means the assigned probability is the same as the
uniform one, which will not affect the crossover and mutation operators.

This paper takes CCGPc in scenario <WFmean,0.85> as an example to show
how the proposed subtree selection strategy affects the selection probability on
crossover since CCGPc performs significantly better than other algorithms in this
scenario. Figure 6 shows the histogram plot of the probability difference in early

Guided Subtree Selection for Genetic Operators in GP for DFJSS 273

generation (i.e. generation 1), middle generation (i.e. generation 25) and late
generation (i.e. generation 45) of CCGPc in scenario <WFmean, 0.85> based
on 30 independent runs. The small in the subtitles means the smaller the score
of the subtree, the higher probability it will be chosen (i.e. for parent1 in the
crossover). The big in the subtitles means the larger the score of the subtree, the
higher probability it will be chosen (i.e. for parent2 in the crossover). In general,
most of the probability differences are positive numbers and much larger (i.e.
more than 0.5) than uniform probability. At the early state (i.e. generation 1), the
probability difference is not that higher than that of in the late generation (i.e.
generation 25 and 45). This means that the proposed subtree selection strategy
for crossover can successfully influence the selection of nodes of individuals.

Fig. 6. The histogram plot of probability difference of CCGPc in generation 1, 25, and
45 in scenario <WFmean, 0.85> based on 30 independent runs.

Figure 7 shows the histogram plot of the probability difference in generation
1, 25, and 45 of CCGPm in scenario <Fmean, 0.85> based on 30 independent
runs. There are only three blocks because CCGPm only works on the mutation
to choose the unimportant subtree (i.e. the smaller the score of the subtree,
the higher probability it will be chosen). It is obvious that the number of sub-
tree selections is not that high as that in Fig. 6, because the mutation rate is
lower than the crossover rate. The same trend is shown in Fig. 6, the probability
difference is becoming larger and larger as the number of generations increases.

274 F. Zhang et al.

Fig. 7. The histogram plot of probability difference of CCGPm in generation 1, 25,
and 45 in scenario <Fmean, 0.85> based on 30 independent runs.

5.3 The Occurrences of Features

It is interesting to see the trend of the feature occurrence that carries the infor-
mation. Figure 8 shows the curves of the occurrence of features in routing rules
during the evolutionary process of CCGPc. The MWT (i.e. machine waiting
time) is the most important feature for the routing rules in all scenarios. The
importance of MWT is much higher than other features. In the scenarios whose
utilisation levels are 0.85, WIQ (i.e. the workload in the queue) also plays a
second important role. In the scenarios whose have a higher utilisation level (i.e.
0.95), NIQ (i.e. the number of operations in the queue) plays a significant role.

Fig. 8. The curves of the occurrence of features in routing rules during the evolutionary
process of CCGPc.

Guided Subtree Selection for Genetic Operators in GP for DFJSS 275

Intuitively, both WIQ and NIQ are important indicators for measuring the work-
load for machines, they might have the same functions, and one might take over
another one. However, we do not know how they work in different scenarios. It
is interesting to see that the role of NIQ is significantly higher than that of WIQ
in the scenarios that have higher utilisation level. One possible reason is that
NIQ is an important factor in busy scenarios, which is an important finding.

Figure 9 shows the curves of the occurrence of terminals in sequencing rules
during the evolutionary process of CCGPc. Different from routing rules, there
are three terminals (i.e. WKR, TIS, and PT) play a vital role in minimising max-
flowtime. PT and WKR also are two important terminals in minimising mean-
flowtime and weighted mean-flowtime. Except for them, W plays a dominant role
in weighted mean-flowtime, which is consistent with our intuition. In addition,
W plays its role mainly in sequencing rules instead of routing rules.

Fig. 9. The curves of the occurrence of features in sequencing rules during the evolu-
tionary process of CCGPc.

5.4 Training Time

Table 4 shows the mean and standard deviation of training time of CCGP,
CCGPc, CCGPm, and CCGPcm in six different scenarios. There is no significant
difference between the four algorithms. It means the proposed subtree selection
strategies do not need extra computational cost. This verifies the advantages of
utilising the information generated during the evolutionary process of GP.

276 F. Zhang et al.

Table 4. The mean (standard deviation) of training time (in minutes) obtained by
the involved four algorithms over 30 independent runs for six scenarios.

Scenario CCGP CCGPc CCGPm CCGPcm

<Fmax,0.85> 74(10) 75(11) 83(36) 75(11)

<Fmax,0.95> 86(16) 84(13) 84(12) 83(12)

<Fmean,0.85> 73(10) 73(11) 72(11) 75(13)

<Fmean,0.95> 79(11) 78(14) 77(13) 83(14)

<WFmean,0.85> 73(13) 70(10) 70(10) 73(11)

<WFmean,0.95> 82(13) 81(14) 80(14) 82(13)

6 Conclusions and Future Work

The goal of this paper was to develop subtree selection strategies to improve
the effectiveness of crossover and mutation operators to guide GP to improve
its convergence speed and evolve more effective scheduling heuristics for DFJSS.
The goal was achieved by proposing the guided subtree selection strategy that
can utilise the information of the occurrence of features information obtained
during the evolutionary process.

The results show that using the proposed guided subtree selection in crossover
can speed up the convergence and achieve better performance in half scenarios
while no worse in all other scenarios without increasing the computational cost.
The proposed subtree selection can successfully guide GP to select important or
unimportant subtrees according to the need of genetic operators. The evolved
rules have better test performance of given complex job shop scenarios, espe-
cially for minimising mean-flowtime and weighted mean-flowtime. An advantage
of the proposed algorithms is that incorporating the occurrence of features infor-
mation needs no extra computational cost. This shows the benefits of making
better use of the information during the evolutionary process. In addition, this
paper discovered that although both NIQ and WIQ can be used to measure the
workload of a machine, NIQ has an important role in busy scenarios while WIQ
has a significant role in less busy scenarios.

Some interesting directions can be further investigated in the near future.
This work already shows the potential to improve the effectiveness of crossover
by choosing subtrees. We would like to find more promising ways to select the
subtrees for crossover to further improve its effectiveness.

References

1. Manne, A.S.: On the job-shop scheduling problem. Oper. Res. 8(2), 219–223 (1960)
2. Tay, J.C., Ho, N.B.: Evolving dispatching rules using genetic programming for

solving multi-objective flexible job-shop problems. Comput. Ind. Eng. 54(3), 453–
473 (2008)

Guided Subtree Selection for Genetic Operators in GP for DFJSS 277

3. Nguyen, S.B.S., Zhang, M.: A hybrid discrete particle swarm optimisation method
for grid computation scheduling. In: 2014 IEEE Congress on Evolutionary Com-
putation (CEC), pp. 483–490. IEEE (2014)

4. Brucker, P., Schlie, R.: Job-shop scheduling with multi-purpose machines. Com-
puting 45(4), 369–375 (1990)

5. Yska, D., Mei, Y., Zhang, M.: Genetic programming hyper-heuristic with coopera-
tive coevolution for dynamic flexible job shop scheduling. In: Castelli, M., Sekanina,
L., Zhang, M., Cagnoni, S., Garćıa-Sánchez, P. (eds.) EuroGP 2018. LNCS, vol.
10781, pp. 306–321. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
77553-1 19

6. Zhang, F., Mei, Y., Zhang, M.: Genetic programming with multi-tree represen-
tation for dynamic flexible job shop scheduling. In: Mitrovic, T., Xue, B., Li, X.
(eds.) AI 2018. LNCS (LNAI), vol. 11320, pp. 472–484. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03991-2 43

7. Zhang, F., Mei, Y., Zhang, M.: Evolving dispatching rules for multi-objective
dynamic flexible job shop scheduling via genetic programming hyper-heuristics.
In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), pp.
1366–1373. IEEE (2019)

8. Durasevic, M., Jakobovic, D.: A survey of dispatching rules for the dynamic unre-
lated machines environment. Expert Syst. Appl. 113, 555–569 (2018)

9. Koza, J.R., Poli, R.: Genetic programming. In: Burke, E.K., Kendall, G. (eds.)
Search Methodologies, pp. 127–164. Springer, Boston (2005). https://doi.org/10.
1007/0-387-28356-0 5

10. Miyashita, K.: Job-shop scheduling with genetic programming. In: Proceedings of
the 2nd Annual Conference on Genetic and Evolutionary Computation, pp. 505–
512. Morgan Kaufmann Publishers Inc. (2000)

11. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: Genetic programming for evolving
due-date assignment models in job shop environments. Evol. Comput. 22(1), 105–
138 (2014)

12. Maccarthy, B.L., Liu, J.: Addressing the gap in scheduling research: a review of
optimization and heuristic methods in production scheduling. Int. J. Prod. Res.
31(1), 59–79 (1993)

13. Branke, J., Nguyen, S., Pickardt, C.W., Zhang, M.: Automated design of produc-
tion scheduling heuristics: a review. IEEE Trans. Evol. Comput. 20(1), 110–124
(2016)

14. Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Ozcan, E., Woodward, J.R.:
Exploring hyper-heuristic methodologies with genetic programming. In: Mumford,
C.L., Jain, L.C. (eds.) Computational Intelligence. ISRL, vol. 1, pp. 177–201.
Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-01799-5 6

15. Burke, E.K., Hyde, M.R., Kendall, G., Woodward, J.R.: A genetic programming
hyper-heuristic approach for evolving 2-D strip packing heuristics. IEEE Trans.
Evol. Comput. 14(6), 942–958 (2010)

16. Hyde, M.R.: A genetic programming hyper-heuristic approach to automated pack-
ing. Ph.D. thesis, University of Nottingham, UK (2010)

17. Bader-El-Den, M.B., Poli, R., Fatima, S.: Evolving timetabling heuristics using a
grammar-based genetic programming hyper-heuristic framework. Memet. Comput.
1(3), 205–219 (2009)

18. Ansari Ardeh, M., Mei, Y., Zhang, M.: A novel genetic programming algorithm
with knowledge transfer for uncertain capacitated arc routing problem. In: Nayak,
A.C., Sharma, A. (eds.) PRICAI 2019. LNCS (LNAI), vol. 11670, pp. 196–200.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29908-8 16

https://doi.org/10.1007/978-3-319-77553-1_19
https://doi.org/10.1007/978-3-319-77553-1_19
https://doi.org/10.1007/978-3-030-03991-2_43
https://doi.org/10.1007/0-387-28356-0_5
https://doi.org/10.1007/0-387-28356-0_5
https://doi.org/10.1007/978-3-642-01799-5_6
https://doi.org/10.1007/978-3-030-29908-8_16

278 F. Zhang et al.

19. Zhang, F., Mei, Y., Zhang, M.: A new representation in genetic programming for
evolving dispatching rules for dynamic flexible job shop scheduling. In: Liefooghe,
A., Paquete, L. (eds.) EvoCOP 2019. LNCS, vol. 11452, pp. 33–49. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-16711-0 3

20. Zhang, F., Mei, Y., Zhang, M.: A two-stage genetic programming hyper-heuristic
approach with feature selection for dynamic flexible job shop scheduling. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp.
347–355. IEEE (2019)

21. Durasević, M., Jakobović, D.: Evolving dispatching rules for optimising many-
objective criteria in the unrelated machines environment. Genet. Program Evolv-
able Mach. 19(1), 9–51 (2017). https://doi.org/10.1007/s10710-017-9310-3

22. Hildebrandt, T., Heger, J., Scholz-Reiter, B.: Towards improved dispatching rules
for complex shop floor scenarios: a genetic programming approach. In: Proceedings
of the 12th Annual Conference on Genetic and Evolutionary Computation, pp.
257–264. ACM (2010)

https://doi.org/10.1007/978-3-030-16711-0_3
https://doi.org/10.1007/s10710-017-9310-3

Classification of Autism Genes Using
Network Science and Linear Genetic

Programming

Yu Zhang1, Yuanzhu Chen1, and Ting Hu1,2(B)

1 Department of Computer Science, Memorial University,
St. John’s, NL A1B 3X5, Canada

{yu.zhang,yzchen,ting.hu}@mun.ca
2 School of Computing, Queen’s University,

Kingston, ON K7L 2N8, Canada

Abstract. Understanding the genetic background of complex diseases
and disorders plays an essential role in the promising precision medicine.
Deciphering what genes are associated with a specific disease/disorder
helps better diagnose and treat it, and may even prevent it if predicted
accurately and acted on effectively at early stages. The evaluation of
candidate disease-associated genes, however, requires time-consuming
and expensive experiments given the large number of possibilities. Due
to such challenges, computational methods have seen increasing appli-
cations in predicting gene-disease associations. Given the intertwined
relationships of molecules in human cells, genes and their products can
be considered to form a complex molecular interaction network. Such
a network can be used to find candidate genes that share similar net-
work properties with known disease-associated genes. In this research,
we investigate autism spectrum disorders and propose a linear genetic
programming algorithm for autism gene prediction using a human molec-
ular interaction network and known autism-genes for training. We select
an initial set of network properties as features and our LGP algorithm
is able to find the most relevant features while evolving accurate predic-
tive models. Our research demonstrates the powerful and flexible learn-
ing abilities of GP on tackling a significant biomedical problem, and is
expected to inspire further exploration of wide GP applications.

Keywords: Linear genetic programming · Autism spectrum
disorders · Human molecular interaction network · Complex networks ·
Disease-gene association

1 Introduction

Understanding the genetic etiology of complex diseases and disorders is one of
the greatest challenges in modern biomedical research [1]. Many common dis-
eases are speculated to have complex genetic architecture, and multiple genes

c© Springer Nature Switzerland AG 2020
T. Hu et al. (Eds.): EuroGP 2020, LNCS 12101, pp. 279–294, 2020.
https://doi.org/10.1007/978-3-030-44094-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44094-7_18&domain=pdf
https://doi.org/10.1007/978-3-030-44094-7_18

280 Y. Zhang et al.

may contribute collectively to the manifestation of a disease [2,3]. Understanding
the association of genes with a specific disease helps better diagnose it, design
therapeutic strategies, and even prevent it. The identification of genes associ-
ated with a disease, however, requires time-consuming and expensive biological
experiments to evaluate a considerable number of possible candidates [4–6].

Computational methods in silico can successfully facilitate more targeted
downstream biological evaluation experiments [7]. Cooperative endeavors are
requested from various research fields, ranging from computer science and statis-
tics to biochemistry. Due to the interdependencies of molecular components,
identifying genetic variants contributory to a disease needs not only to sys-
tematically study molecular functionality independently but also to look into
the interconnectivity of molecular components [8]. In order to identify disease-
associated genes, systems biology has seen increasing applications of compu-
tational approaches that model the interactions among multiple constitutes in
human cellular systems [9–15].

Machine learning and heuristic search algorithms, including artificial neu-
ral networks [16], principal component analysis [17], and ensemble algorithms
[18,19], have seen increasing and successful applications in biomedicine. Never-
theless, genetic programming, as a powerful learning and modeling algorithm,
has not caught up with other comparable algorithms in wide applications.

Genetic programming (GP), as a branch of evolutionary computation, has
emerged as a powerful tool to solve machine learning problems [20,21]. This is
not only because GP can automatically evolve complex predictive models that
map the input instances to the expected outcome [22], but also because of its
stochastic and robust nature of the search for diversity and novelty [23–26].
GP has been applied to solve classification and regression problems in physics,
economics, engineering, and biology [27–32].

The nature of GP makes it a very promising approach to solving classifica-
tion problems for autism-associated genes in the molecular interaction network
[33–35]. First, it can discover novel non-linear models for high-dimensional data
by constructing executable computer programs using arithmetic functions, log-
ical functions, and branching statements. Second, the automatic feature selec-
tion of GP is embedded in the process of model evolution. This intrinsic selec-
tion of relevant features distinguishes GP from many approaches that manually
select features using domain-expertise, or perform feature selection and construct
classification models in separate stages. Third, the stochastic population-based
search property of evolutionary algorithms allows generating diverse high-quality
classification models, which enriches the analysis of model interpretation and
feature importance.

Many existing computational methods try to predict new genes with a dis-
ease association based on their direct relationships with known disease genes.
It is later found that only a relatively small fraction of disease-associated
genes/proteins physically interact with each other [36,37]. Genes associated with
the same diseases have been found spread on multiple connected components in
the molecular interaction network that represents the direct interactions among
genes and their protein products.

LGP for Autism Gene Classification 281

In this research, we follow the new paradigm that genes involved in the
development of a disease may not directly interact with each other but may
exhibit similar topological properties in the molecular interaction network. We
design a linear GP algorithm in order to learn classification models for predicting
autism-associated genes. We first construct a human molecular interaction net-
work (HMIN), which provides a scaffold of the connectivity patterns and struc-
tural properties of autism-associated genes. We then evolve classification models
represented as linear genetic programs using the network properties of genes in
the HMIN as features. The classification performance of our LGP algorithm is
evaluated using multiple metrics and the set of predicted novel autism-genes is
validated using an independent genetic sequencing dataset.

2 Methods

In this section, we first describe the data collection of positive and negative
autism-genes and the construction of the human molecular interaction network.
We then present the design and configuration of our LGP algorithm.

2.1 Data Collection

We compile a training set of both positive and negative genes using the databases
of SFARI Gene 2.0 [38] and Online Mendelian Inheritance in Man (OMIM) [39].
The SFARI Gene 2.0 database is curated for the autism research community
and has a collection of manually annotated autism-associated genes. It assigns
each gene a score ranging from 1 (highest association confidence) to 6 (no role in
autism) in order to quantify its association with autism. Scores 1 and 2 represent
the strongest evidence of autism association, scores 3 and 4 show relaxed criteria
of autism association, score 5 marks genes hypothesized but without tested asso-
ciations, and score 6 genes have no existing evidence supporting their relation to
autism. Our second data source, the OMIM, is a comprehensive, authoritative,
and updated genetic knowledge base, including thousands of genetic disorders
and their associated genes.

For this study, we collect 732 genes of scores 1 to 4 from the SFARI database
and 28 genes from OMIM using the entry of autism (all data retrieved in Novem-
ber 2018). Overall, a total number of 760 autism-associated genes are used as
positive instances for the supervised training of LGP. Please note that although
these 760 autism genes have various association significance levels assessed by
the SFARI and OMIM databases, we treat them equally as positive instances for
the training of binary classifiers. On the other hand, we collect 1,146 genes that
have shown no association as the negative instances curated by brain-disease
experts [40]. These positive and negative instances (genes) are used by our LGP
algorithm to train classification models.

282 Y. Zhang et al.

2.2 Human Molecular Interaction Network

We construct the human molecular interaction network (HMIN) in order to
provide a scaffold of gene-gene relationships that helps identify candidate genes
according to their structural similarities to known autism genes. We base on
a previously well-established human protein-protein interaction network [37],
which includes data curated up to the year of 2015, and update it by integrating
newly discovered protein-protein interactions using BioGRID version 3.5.167,
released on November 25th, 2018 [41].

Our HMIN is an unweighted and undirected network with 23,472 nodes,
representing genes, and 405,618 edges, representing their pairwise relationships.
The HMIN covers 760 positive autism-associated genes and 1,102 negative genes
in our training set (see Sect. 2.1). It includes physical interactions experimentally
annotated in human cells, such as transcription factor regulatory interactions,
metabolic enzyme-coupled interactions, and protein-protein interactions. The
hypothesis is that the manifestation of autism is unlikely the consequence of
the dysfunction of a single gene product, but is possibly resulted by various
pathological processes that interact, which may be captured in the HMIN [8].
Therefore, we use such an interaction network and aim to discover candidate
genes that are structurally similar to known autism-genes.

We use 6 network metrics and graphlet orbit frequencies to describe the local
structural properties xv of a node (gene) v, which serve as features in order to
train our LGP algorithm. These 6 network metrics include degree, betweenness,
closeness, eigenvector centrality, personalized PageRank centrality [42], and core-
ness [43], which are the most common node importance measurements in the lit-
erature of complex networks [44]. A graphlet is a small connected non-isomorphic
induced subgraph of a large network [45]. These network properties are defined
as follows:

– Degree centrality is the number of edges connected to a node.
– Betweenness centrality measures the extent to which a node lies on paths

between other nodes.
– Closeness centrality measures the mean distance from a node to all other

nodes in the network.
– Eigenvector centrality is an extension of degree centrality, which awards a

node using the centrality scores of its direct neighbors.
– Personalized PageRank is a weighted version of the conventional PageRank.

The weights are initialized and customized by users.
– The k-core of graph is a maximal subgraph in which each node has at least

a degree of k. The coreness of a node is k if it belongs to the k-core but not
to the (k + 1)-core.

– Orbits refer to distinct positions of vertices in a graphlet. There are 69 dif-
ferent orbits in 4- and 5-node graphlets [45].

2.3 Linear Genetic Programming Algorithm

Linear genetic programming (LGP) is a GP algorithm that uses a sequence of
imperative instructions as its representation [46]. Such a compact representation

LGP for Autism Gene Classification 283

allows efficient reuses of code and LGP is often considered as having fast fit-
ness evaluations comparing to other GP paradigms [46]. Therefore, LGP holds
great potential in applications of analyzing high-dimensional, large-volume data
[32,47,48].

In our study, a genetic program is a classification model, whose instruc-
tions can be either an assignment or a branching statement. In an assignment
statement, an arithmetic operation uses its operands and computes a value that
is subsequently stored in a return register. A branching statement breaks the
sequential execution of a program. We use IF-GREATER-THEN to skip one subse-
quent instruction when the condition in the IF statement is evaluated to FALSE.

A feature register stores the value of a feature. In our study, each training
instance (gene) has 75 network features (6 network measures plus 69 graphlet
orbit frequencies). Feature registers are read-only and write-protected, meaning
that they can only serve as an operand on the right-hand side of an assignment
statement. Calculation registers are provided to enhance computational capacity
and can be used on both left- and right-hand sides of an assignment statement.
The calculation register r[0] is designated as the output register, and when a
genetic program is executed, the final value stored in r[0] is the outcome of
the program. Since we treat the current study as a binary classification problem,
Sigmoid function S(x) is used to project the output value into the range of (0, 1).
If S(r[0]) is greater than 0.5, the instance is classified as autism-associated gene
(class one), otherwise, it is predicted not associated with autism (class zero).

For initialization, we randomly generate a population of linear genetic pro-
grams with various lengths. The fitness of a program measures the performance
of the classifier it represents. We define the fitness function as the F-measure of
binary classification [49,50], i.e., the harmonic mean of precision and recall. The
definitions are as follows.

Precision =
TP

TP + FP
, (1)

Recall =
TP

TP + FN
, (2)

F-measure = 2 · Precision · Recall
Precision + Recall

, (3)

where TP and FP denote true and false positive cases, respectively, and FN is
the number of false negative cases.

A set of programs are selected as parents based on their fitness, and we apply
two types of variation operators to the parents, including mutation and recom-
bination. We use both macro and micro mutations. A macro mutation inserts a
new randomly generated instruction or deletes a randomly selected instruction
from a program. A micro mutation alters an element of a randomly selected
instruction, such as replacing a operator or a register by randomly generating
a new operator or register. Recombination swaps randomly chosen segments of
instructions of two parent programs.

284 Y. Zhang et al.

Table 1. The parameter configuration of LGP algorithm for classification.

Parameter Configuration

Fitness function F -measure

Operator set +,−,×,÷ (protected), xy, |x|, IF >

Program length [1, 300]

Population size 500

Crossover rate 0.9

Mutation rate 0.1

Mutation operators Macro and micro mutations

Number of calculation registers 200

Number of constant registers 10

Constant bound [−2, 2]

Parent selection Tournament with size 10

Survival selection Truncation

Number of generations 1000

Number of runs 200

Survival selection picks fitter programs among the current generation and the
offspring to update the population for the next generation. After iterating such
an evolutionary process for a predefined number of generations, the program
with the best fitness (highest F -measure) serves as the final best model of a run.

2.4 Implementation Settings

We implement our LGP algorithm in C programming language using GCC 8.1.
Table 1 shows the parameter configuration for the implementation. The division
primitive operator is protected by replacing dividing zero with multiplying one.
We adopt a 5-fold cross-validation scheme to detect overfitting. That is, we divide
the collected set of positive and negative genes into 5 equally-sized partitions
with the same positive/negative ratio, and in each cross-validation iteration, we
use the 4 out of 5 partitions to train the LGP algorithm, while the remaining
partition serves as a testing set. Therefore, each run of the algorithm produces
5 best classification models on the 5 testing sets.

We carry out 200 independent runs of the LGP algorithm using 200 distinct
seed values for random number generator. We perform intron removal before
executing each linear genetic program in order to accelerate the fitness evalua-
tion [46]. Every algorithm run produces 5 best classification models as a result
of the 5-fold cross-validation scheme. Therefore, we obtain a total of 1000 best
evolved classification models after 200 runs.

LGP for Autism Gene Classification 285

3 Results

3.1 Properties of the HMIN

First, we analyze the global network properties of the HMIN. Table 2 shows
some fundamental network properties of the HMIN. Each node has a degree
ranging from 1 to 2,393 with an average of 34.562. The network is divided into 4
connected components with sizes {23465, 3, 2, 2}. The network appears sparsely
connected and the clustering coefficient is low, which indicates that direct neigh-
bors of the same node may not be direct neighbors themselves. The network
shows the small-world effect with an average shortest path length of 3.2 and a
diameter of 8.

Table 2. Network properties of the HMIN.

Property Value

Number of nodes 23,472

Number of edges 405,618

Number of connected components 4

Network diameter 8

Network density 0.001

Clustering coefficient 0.107

Average node degree 34.562

Average shortest path length 3.203

10−4

10−3

10−2

10−1

100 101 102

Log of degree d

Lo
g

of
 fr

eq
ue

nc
y
P
(d
)

Fig. 1. The node degree distribution of the HMIN. The distribution is approximately
power-law, suggested by the straight line correlation in a log-log scale.

The degree distribution of the HMIN is shown in Fig. 1. It approximately
follows a power-law distribution, suggesting a scale-free structure of the network.

286 Y. Zhang et al.

This indicates that most of the nodes (genes) only interact with a handful of
other genes, while some can interact with one or two thousands of others.

3.2 Best Classification Models

Figure 2 shows the fitness (F -measure) distribution of the 1000 best classification
models we find. We see that the testing fitness values are more centralized around
the mean. The small discrepancy between the training and testing results also
suggests a low level of over-fitting.

Training Testing

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

Fitness (F−measure)

F
ra

ct
io

n

Fig. 2. Fitness distribution of the 1000 best evolved classification models found by the
LGP algorithm. The fitness function is defined using the F -measure of classification.
A higher F -measure value indicates a better classification performance.

Table 3. The statistics of the classification performance of the 1000 best models.

MCE Precision Recall AUC

Min 0.301 0.283 0.161 0.217

Median 0.609 0.578 0.598 0.616

Mean 0.613 0.554 0.603 0.624

Max 0.783 1.000 1.000 0.783

Std dev 0.098 0.134 0.112 0.116

5% confidence 0.339 0.325 0.299 0.297

95% confidence 0.577 0.803 0.829 0.696

In addition to fitness, we further look at other statistics of the best clas-
sification models. Table 3 summaries the statistics of the testing classification
performance of the 1000 best models. The best model achieves a classification
error of 0.301, and the area under the curve (AUC) of 0.783.

LGP for Autism Gene Classification 287

3.3 Assessment of Feature Importance

Given the stochastic nature of evolutionary algorithms, GP can automatically
select a subset of features that are relevant to the classification, as part of the
evolution. As a result of such an intrinsic feature selection, the importance of a
feature can be assessed based on how often it is selected.

We now investigate how frequently a feature is selected and influential in a
best evolved LGP model. Here, an effective feature refers to any feature that
remains in a linear genetic program after intron removal, and modifies the value
stored in the r[0] register when the program is executed. Figure 3(a) illustrates
the distribution of the number of effective features in the 1000 best predictive
models. Although any subsets of features can be selected by a predictive model,
as evolution proceeds the LGP algorithm picks up the most relevant features for

mean = 42.792

0.000

0.015

0.030

0.045

0.060

0.075

0.090

0 15 30 45 60 75
Number of effective features

(a)

F
ra

ct
io

n

11

23

33

50

5

6Degree

Orbit 6

Closeness

Orbit 5

Orbit 50

Coreness

Orbit 33

Orbit 23

Orbit 11

Betweenness

0.0 0.2 0.4 0.6 0.8
Occurrences in the 1000 best models

(b)

Fig. 3. (a) The distribution of the number of effective features in the 1000 best classi-
fication models. An effective feature is defined as any feature that remains in the best
models after intron removal. The average number of effective features across the 1000
best models is 42.792. (b) The top 10 most frequent effective features in the 1000 best
models. A graphlet visualization is shown next to each orbit feature. The red-colored
nodes are the corresponding orbits, and note that there could be multiple nodes in a
graphlet locating at the same orbit. (Color figure online)

Table 4. The statistics of the classification performance of the 1000 best classifiers
after feature selection.

MCE Precision Recall AUC

Min 0.228 0.239 0.172 0.187

Median 0.502 0.611 0.607 0.667

Mean 0.476 0.597 0.583 0.667

Max 0.722 1.000 1.000 0.811

Std dev 0.094 0.105 0.122 0.098

5% confidence 0.213 0.302 0.256 0.299

95% confidence 0.667 0.816 0.831 0.773

288 Y. Zhang et al.

making a prediction. The majority of the best models select between 30 and 55
effective features. The average number of effective features chosen by the 1000
best classification models is 42.792.

We then only use the top 43 more relevant features and re-run the LGP
algorithm for a second round of analysis. Table 4 shows the results of this more
focused model search (with feature selection). The best MCE is now 0.228, and
the average MCE is reduced by 0.137, comparing to the result of the initial
implementation using the full feature set. The average AUC is improved by 0.043
and the best AUC is improved by 0.028. The results suggest that the automatic
feature selection of LGP is effective and indeed helps improve the classification
performance.

Figure 3(b) shows the top 10 most frequent/important features and their
occurrences in the 1000 best predictive models. Four node property measures,
including betweenness, corness, closeness, and degree, are among the most impor-
tant features. In addition, six automorphism orbits from 4-node and 5-node
graphlets are found highly relevant to the prediction.

(a)

0.03

0.06

0.09

0.12

0 2000
4000

6000
8000

10000
12000

14000
16000

18000
20000

22000

k

A
ve

ra
ge

 p
re

ci
si

on
@

k

using full feature set
with feature selection (b)

0

30

60

90

0 2000
4000

6000
8000

10000
12000

14000
16000

18000
20000

22000

k

N
um

be
r

of
 h

its

using full feature set with feature selection

Fig. 4. (a) Precision@k and (b) number of hits in each 1000-gene bins averaged across
the 1000 best classification models found by the LGP algorithm.

(a)

0.01

0.02

0.03

0.04

0.05

0.06

0 2000
4000

6000
8000

10000
12000

14000
16000

18000
20000

22000

k

A
ve

ra
ge

 F
D

R
@

k

using full feature set
with feature selection

(b)

0

30

60

90

0 2000
4000

6000
8000

10000
12000

14000
16000

18000
20000

22000

k

N
um

be
r

of
 fa

ls
e

po
si

tiv
e

using full feature set with feature selection

Fig. 5. (a) FDR@k and (b) number of false positive cases in each 1000-gene bins aver-
aged across the 1000 best classification models found by the LGP algorithm.

LGP for Autism Gene Classification 289

3.4 Evaluation of Autism-Gene Prioritization

We perform further evaluation of the prediction abilities of the LGP algorithm
by analyzing other classification performance metrics. Note that a linear genetic
program outputs a numerical value projected to the range of (0, 1) for each
instance/gene. We consider this output value as the probability of a gene being
associated with autism. Thus, we can rank genes based on such an association
probability. Please also note that we collect 1000 best evolved models as an
ensemble to make the final prediction.

We first calculate precision@k for each best model and then average it across
the total 1000 best models to obtain the average precision@k. They are defined
as follows:

precision@k =
|Δtop-k ∩ Δpositive|

k
, (4)

average precision@k =
precision@k

1000
. (5)

0.00

0.06

0.12

0.18

1 2 3 4 5 6 7 8 9 10
Decile

F
ra

ct
io

n
of

 g
en

es

(a) DN−LGD in probands

(58/353, p = 1.224 × 10−4)

0.0

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 10
Decile

(b) Recurrent DN−LGD in probands

(8/27, p = 3.871 × 10−3)

0.00

0.05

0.10

0.15

1 2 3 4 5 6 7 8 9 10
Decile

(c) DN−LGD in unaffected siblings
(21/176, p = 0.228)

Fig. 6. Distribution of positive (a, b) and negative (c) autism-genes identified in the
independent exome-sequencing study in each decile of our LGP prediction rank list. (a)
Genes with de novo likely gene-disrupting (DN-LGD) mutations in probands (autism
affected children). (b) Genes with recurrent DN-LGD in probands. (c) DN-LGD genes
identified in unaffected siblings. The first decile is highlighted in blue. (Color figure
online)

Here, Δtop-k is the set of top k genes from a genetic program’s predicted rank
list and Δpositive is the set of known autism-genes (positive training instances).
The notion ∩ is the operation of set intersection, which gives the number of hits
at k.

We compute the average precision@k on both rounds of LGP implementation,
i.e., without and with feature selection, and compare their results. Moreover, we
count the number of hits in each bin of 1000 genes in the rank list. Figure 4
shows the average precision@k and the number of hits in 1000-gene bins. We see
that precision drops when k increases, and our LGP algorithm is able to cor-
rectly predict positive genes in its top ranks. In addition, using feature selection
improves the average precision@k among the high ranks.

290 Y. Zhang et al.

We also investigate to what extend our LGP algorithm predicts actual nega-
tive genes as being associated with autism. We compute the false discovery rate,
FDR@k, by replacing Δpositive with Δnegative in Eq. (4). We then average the
value across 1000 best evolved classification models. Figure 5 shows the average
FDR@k using full feature set and selected features, separately. We see that the
false discovery rate increases as k increases, and higher ranking bins have less
false positive cases than lower bins. In addition, using feature selection consid-
erably reduces the false discoveries.

3.5 Independent Validation of Autism-Gene Prediction

Considering the currently limited understanding of the genetic background of
autism, our curated training set of positive genes based on the literature is
likely to be incomplete. Therefore, further validation of our prediction results
using independent study is necessary. We use a whole exome-sequencing study
on autism for this purpose [51]. This study examined 2,508 autism probands
(autism affected children), 1,911 unaffected siblings, and their parents in the
Simons Simplex Collection (SSC) [52]. The focus of this study is to identify de
novo likely gene-disrupting (DN-LGD) mutations. It reported 353 target pos-
itive genes identified in autism probands, including 27 recurrent genes with a
more significant association with autism, and 176 negative DN-LGD genes in
unaffected siblings.

We choose the 10, out of the 1000, best LGP models (having the highest
testing fitness) with feature selection in order to assess the autism association of
each gene in the HMIN. Each LGP best model gives an association probability
for a gene, and we average this probability across all 10 best models. This results
in a single rank list R̄ for all the genes. We look at the genes in each decile of
this rank list R̄, and compare them with the three gene sets, i.e., DN-LGD in
probands, recurrent DN-LGD in probands, and DN-LGD in unaffected siblings,
reported in the independent validation study.

For each comparison, we apply a one-tail binomial test in order to assess the
significance level. Figure 6 shows the overlap of these independently discovered
autism-genes with the genes in our LGP rank list R̄. DN-LGD genes are found
enriched in our top 10% of the ranking list (58/353, p = 1.244 × 10−4). The
recurrent DN-LDG genes are further found enriched in the first decile (8/27, p =
3.871×10−3) too. No significant enrichment of the DN-LGD genes in unaffected
siblings (negative genes) is found in the rank list (21/176, p = 0.228). These
results further verify the findings of our approach, i.e., the LGP algorithm is
able to find novel candidate genes which are likely associated with autism.

4 Discussion

Many common human diseases and disorders are observed to be inheritable.
Understanding what genes and proteins, when mutated or altered in the cell,

LGP for Autism Gene Classification 291

lead to a specific disease/disorder has the power to illuminate mechanistic expla-
nations of complex phenotypes. Such a knowledge helps better diagnose and
treat the disease, and may even prevent it if predicted accurately and acted on
effectively at early stages. However, such disease-gene association discovery is
a very challenging computational task. It has been found that genes associated
with the same disease may not be directly connected in the molecular inter-
action network. Only a relatively small fraction of disease-associated proteins
physically interact with each other. This suggests that the proximity-based gene
prediction approaches that search for dense connected communities of interact-
ing genes/proteins in the molecular interaction network, may be ineffective in
discovering the collection of candidate disease genes.

Machine learning methods are often employed for modeling the complex non-
linear relationships of combinations of features and the outcome, and has been
extensively explored for predicting disease-associated genes. Genetic program-
ming (GP), positioned at the intersection of machine learning and evolutionary
computing, has not seen much utilization in such an important application area.

In this study, we designed an algorithm of using network science and linear
genetic programming (LGP) to predict autism-associated genes. We constructed
the human molecular interaction network (HMIN) and used it as a scaffold for
characterizing the structural patterns of autism-associated genes. Then, the LGP
algorithm was able to utilize the network features of autism-associated genes in
the HMIN in order to predict novel autism-genes, as well as to select the most
important network features based on their occurrence frequencies in the best
classification models.

A linear genetic program may pick any subsets of features, but only the
most influential ones will stay in the final evolved programs. Therefore, the
feature selection process is intrinsic and co-evolved with the fitness in the LGP
algorithm. We designed a two-stage learning scheme where the full set of network
features was used in the first round, and a subset of more important features
was used for a focused model search in the second round. Our results showed
that the classification performance was improved considerably using the reduced
feature set comparing with using all features initially.

Our LGP algorithm achieved good classification performance, quantified
using the F -measure, accuracy, precision, recall, area under the curve (AUC),
and the false discovery rate (FDR). The predicted genes were successfully val-
idated using an independent sequencing study with newly discovered autism-
genes that were not included in our training set of autism-genes.

Our next step is to explore other machine learning techniques that can take
network features as input and classify the disease-gene association as the output.
These techniques include deep learning, especially graph neural networks, sup-
port vector machines, random forests, and gradient boosting machines. It will
also be interesting to test other feature selection/engineering methods. We plan
to compare their results with that of using our LGP algorithm.

292 Y. Zhang et al.

In summary, our research showcased the novel and successful application of a
GP algorithm in complex classification model search and automatic feature selec-
tion. The advances in biological data collection and computational techniques
have equipped us with large volumes of data that describe the properties of
biological systems at different levels as well as a comprehensive toolbox of intel-
ligent and powerful learning algorithms. We hope our study can inspire more
interdisciplinary research using evolutionary algorithms to better solve complex
biomedical problems.

Acknowledgments. This research was supported by the Natural Science and Engi-
neering Research Council (NSERC) of Canada Discovery Grant RGPIN-2016-04699
to TH.

References

1. Loscalzo, J., Kohane, I., Barabási, A.L.: Human disease classification in the postge-
nomic era: a complex systems approach to human pathobiology. Mol. Syst. Biol.
3(1), 124 (2007)

2. Griffiths, A.J., Miller, J.H., Suzuki, D.T., Lewontin, R.C., et al.: An Introduction
to Genetic Analysis. WH Freeman and Company, New York (2000)

3. Glazier, A.M., Nadeau, J.H., Aitman, T.J.: Finding genes that underlie complex
traits. Science 298(5602), 2345–2349 (2002)

4. Zhu, M., Zhao, S.: Candidate gene identification approach: progress and challenges.
Int. J. Biol. Sci. 3(7), 420–427 (2007)

5. Kwon, J.M., Goate, A.M.: The candidate gene approach. Alcohol Res. Health
24(3), 164–168 (2000)

6. Tabor, H.K., Risch, N.J., Myers, R.M.: Candidate-gene approaches for studying
complex genetic traits: practical considerations. Nat. Rev. Genet. 3(5), 391–397
(2002)

7. Di Ventura, B., Lemerle, C., Michalodimitrakis, K., Serrano, L.: From in vivo to
in silico biology and back. Nature 443(7111), 527–533 (2006)

8. Barabási, A.L., Gulbahce, N., Loscalzo, J.: Network medicine: a network-based
approach to human disease. Nat. Rev. Genet. 12(1), 56–68 (2011)

9. Almasi, S.M., Hu, T.: Measuring the importance of vertices in the weighted human
disease network. PLoS ONE 14(3), e0205936 (2019)

10. Hu, T., Sinnott-Armstrong, N.A., Kiralis, J.W., Andrew, A.S., Karagas, M.R.,
Moore, J.H.: Characterizing genetic interactions in human disease association stud-
ies using statistical epistasis networks. BMC Bioinf. 12(1), 364 (2011)

11. Hu, T., et al.: An information-gain approach to detecting three-way epistatic inter-
actions in genetic association studies. J. Am. Med. Inf. Assoc. 20(4), 630–636
(2013)

12. Hu, T., Tomassini, M., Banzhaf, W.: Complex network analysis of a genetic pro-
gramming phenotype network. In: Sekanina, L., Hu, T., Lourenço, N., Richter, H.,
Garćıa-Sánchez, P. (eds.) EuroGP 2019. LNCS, vol. 11451, pp. 49–63. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-16670-0 4

13. Goh, K.I., Cusick, M.E., Valle, D., Childs, B., Vidal, M., Barabási, A.L.: The
human disease network. Proc. Nat. Acad. Sci. 104(21), 8685–8690 (2007)

14. Kafaie, S., Chen, Y., Hu, T.: A network approach to prioritizing susceptibility genes
for genome-wide association studies. Genet. Epidemiol. 43(5), 477–491 (2019)

https://doi.org/10.1007/978-3-030-16670-0_4

LGP for Autism Gene Classification 293

15. Sun, K., Gonçalves, J.P., Larminie, C., Pržulj, N.: Predicting disease associations
via biological network analysis. BMC Bioinf. 15(1), 304 (2014)

16. Ott, J.: Neural networks and disease association studies. Am. J. Med. Genet.
105(1), 60–61 (2001)

17. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometr.
Intell. Lab. Syst. 2(1–3), 37–52 (1987)

18. Yang, P., Li, X., Chua, H.N., Kwoh, C.K., Ng, S.K.: Ensemble positive unlabeled
learning for disease gene identification. PLoS ONE 9(5), e97079 (2014)

19. Dorani, F., Hu, T., Woods, M.O., Zhai, G.: Ensemble learning for detecting gene-
gene interactions in colorectal cancer. PeerJ 6, e5854 (2018)

20. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming.
Published via http://lulu.com (2008)

21. Pappa, G.L., Ochoa, G., Hyde, M.R., Freitas, A.A., Woodward, J., Swan, J.: Con-
trasting meta-learning and hyper-heuristic research: the role of evolutionary algo-
rithms. Genet. Program. Evol. Mach. 15(1), 3–35 (2014). https://doi.org/10.1007/
s10710-013-9186-9

22. Brameier, M., Banzhaf, W.: A comparison of linear genetic programming and neu-
ral networks in medical data mining. IEEE Trans. Evol. Comput. 5(1), 17–26
(2001)

23. Guven, A.: Linear genetic programming for time-series modelling of daily flow rate.
J. Earth Syst. Sci. 118(2), 137–146 (2009)

24. Agapitos, A., O’Neill, M., Brabazon, A.: Adaptive distance metrics for nearest
neighbour classification based on genetic programming. In: Krawiec, K., Moraglio,
A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp.
1–12. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37207-0 1

25. Nguyen, S., Mei, Y., Zhang, M.: Genetic programming for production scheduling:
a survey with a unified framework. Complex Intell. Syst. 3(1), 41–66 (2017)

26. Parkins, A.D., Nandi, A.K.: Genetic programming techniques for hand written
digit recognition. Signal Process. 84(12), 2345–2365 (2004)

27. Chen, S.H., Yeh, C.H.: Evolving traders and the business school with genetic pro-
gramming: a new architecture of the agent-based artificial stock market. J. Econ.
Dyn. Control 25(3–4), 363–393 (2001)

28. Liu, K.H., Xu, C.G.: A genetic programming-based approach to the classification
of multiclass microarray datasets. Bioinformatics 25(3), 331–337 (2009). https://
doi.org/10.1093/bioinformatics/btn644

29. Link, J., et al.: Application of genetic programming to high energy physics event
selection. Nucl. Instrum. Methods Phys. Res., Sect. A 551(2–3), 504–527 (2005)

30. Hu, T., et al.: An evolutioanry learning and network approach to identifying key
metabolites for osteoarthritis. PLoS Comput. Biol. 14(3), e1005986 (2018)

31. Hu, T., Oksanen, K., Zhang, W., Randell, E., Furey, A., Zhai, G.: Analyzing feature
importance for metabolomics using genetic programming. In: Castelli, M., Sekan-
ina, L., Zhang, M., Cagnoni, S., Garćıa-Sánchez, P. (eds.) EuroGP 2018. LNCS,
vol. 10781, pp. 68–83. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
77553-1 5

32. Zhang, Y., Hu, T., Liang, X., Ali, M.Z., Shabbir, M.N.S.K.: Fault detection and
classification for induction motors using genetic programming. In: Sekanina, L.,
Hu, T., Lourenço, N., Richter, H., Garćıa-Sánchez, P. (eds.) EuroGP 2019. LNCS,
vol. 11451, pp. 178–193. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-16670-0 12

33. Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Berlin
(2013)

http://lulu.com
https://doi.org/10.1007/s10710-013-9186-9
https://doi.org/10.1007/s10710-013-9186-9
https://doi.org/10.1007/978-3-642-37207-0_1
https://doi.org/10.1093/bioinformatics/btn644
https://doi.org/10.1093/bioinformatics/btn644
https://doi.org/10.1007/978-3-319-77553-1_5
https://doi.org/10.1007/978-3-319-77553-1_5
https://doi.org/10.1007/978-3-030-16670-0_12
https://doi.org/10.1007/978-3-030-16670-0_12

294 Y. Zhang et al.

34. Guo, H., Jack, L.B., Nandi, A.K.: Feature generation using genetic programming
with application to fault classification. IEEE Trans. Sys. Man Cybern. Part B
(Cybern.) 35(1), 89–99 (2005)

35. Witczak, M., Obuchowicz, A., Korbicz, J.: Genetic programming based approaches
to identification and fault diagnosis of non-linear dynamic systems. Int. J. Control
75(13), 1012–1031 (2002)

36. Ghiassian, S.D., Menche, J., Barabasi, A.L.: A DIseAse MOdule Detection (DIA-
MOnD) algorithm derived from a systematic analysis of connectivity patterns of
disease proteins in the human interactome. PLoS Comput. Biol. 11(4), e1004120
(2015)

37. Menche, J., et al.: Uncovering disease-disease relationships through the incomplete
interactome. Science 347(6224), 1257601 (2015)

38. Abrahams, B.S., et al.: FARI gene 2.0: a community-driven knowledgebase for the
autism spectrum disorders (ASDs). Mol. Autism 4(1), 36 (2013)

39. Hamosh, A., Scott, A.F., Amberger, J.S., Bocchini, C.A., McKusick, V.A.: Online
Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and
genetic disorders. Nucleic Acids Res. 33(suppl-1), 514–517 (2005)

40. Duda, M., Zhang, H., Li, H.D., Wall, D.P., Burmeister, M., Guan, Y.: Brain-specific
functional relationship networks inform autism spectrum disorder gene prediction.
Trans. Psychiatry 8(1), 56 (2018)

41. Oughtred, R., et al.: The biogrid interaction database: 2019 update. Nucleic Acids
Res. 47(D1), D529–D541 (2018)

42. Gleich, D.F.: Pagerank beyond the web. SIAM Rev. 57(3), 321–363 (2015)
43. Batagelj, V., Zaversnik, M.: An o(m) algorithm for cores decomposition of net-

works. arXiv preprint cs/0310049 (2003)
44. Newman, M.E.J.: Networks, 2nd edn. Oxford University Press, Oxford (2018)
45. Pržulj, N.: Biological network comparison using graphlet degree distribution. Bioin-

formatics 23(2), e177–e183 (2007)
46. Brameier, M.F., Banzhaf, W.: Linear Genetic Programming. Springer, New York

(2007)
47. Abraham, A., Ramos, V.: Web usage mining using artificial ant colony clustering

and linear genetic programming. In: The 2003 Congress on Evolutionary Compu-
tation, CEC 2003, vol. 2, pp. 1384–1391. IEEE (2003)

48. Nag, K., Pal, N.R.: A multiobjective genetic programming-based ensemble for
simultaneous feature selection and classification. IEEE Trans. Cybern. 46(2), 499–
510 (2015)

49. Powers, D.M.: Evaluation: from precision, recall and F-measure to ROC, informed-
ness, markedness and correlation. J. Mach. Learn. Technol. 1, 37–63 (2011)

50. Buckland, M., Gey, F.: The relationship between recall and precision. J. Am. Soc.
Inf. Sci. 45(1), 12–19 (1994)

51. Iossifov, I., et al.: The contribution of de novo coding mutations to autism spectrum
disorder. Nature 515(7526), 216 (2014)

52. Fischbach, G.D., Lord, C.: The simons simplex collection: a resource for identifi-
cation of autism genetic risk factors. Neuron 68(2), 192–195 (2010)

Author Index

Al-Helali, Baligh 1
Anjum, Muhammad Sheraz 18
Assunção, Filipe 35
Azad, R. Muhammad Atif 195
Azzali, Irene 52

Batista, João E. 151
Blot, Aymeric 68

Castelli, Mauro 244
Chen, Qi 1
Chen, Yuanzhu 279
Costa, Giuseppe 228

Ferracin, Elisa 228

Giacobini, Mario 52, 228

Hu, Ting 279

Indramohan, Vivek Padmanaabhan 195

Jakobovic, Domagoj 118

Kovalchuk, Yevgeniya 195
Krauss, Oliver 84

Langdon, William B. 84
Leporati, Alberto 118
Lones, Michael A. 101
Lourenço, Nuno 35

Machado, Penousal 35
Magiera, Franciszek 135
Manzoni, Luca 244
Mariot, Luca 118

Mei, Yi 262
Moore, Jason H. 135, 167

Nguyen, Su 262

Orzechowski, Patryk 135

Petke, Justyna 68
Picek, Stjepan 118

Ribeiro, Bernardete 35
Ricceri, Fulvio 228
Rodrigues, Nuno M. 151
Rothlauf, Franz 211
Ruberto, Stefano 167
Ryan, Conor 18

Saini, Anil Kumar 184
Sambo, Aliyu Sani 195
Shah, Hanifa 195
Silva, Sara 151, 244
Sobania, Dominik 211
Spector, Lee 184

Tarekegn, Adane 228
Terragni, Valerio 167
Trujillo, Leonardo 244

Vanneschi, Leonardo 52, 244

Xue, Bing 1

Zhang, Fangfang 262
Zhang, Mengjie 1, 262
Zhang, Yu 279

	Preface
	Organization
	Contents
	Hessian Complexity Measure for Genetic Programming-Based Imputation Predictor Selection in Symbolic Regression with Incomplete Data
	1 Introduction
	2 Background
	2.1 Missing Value Imputation
	2.2 Model Complexity in GP
	2.3 GP for Feature Selection
	2.4 Symbolic Regression with Incomplete Data

	3 The Proposed Method
	3.1 The Overall System
	3.2 Standard GP-Based Predictor Selection
	3.3 GP-Based Predictor Selection with Feature Selection Pressure
	3.4 The Proposed Method: GP-Based Predictor Selection with Model Complexity Pressure

	4 Experiment Setup
	5 Results and Discussions
	5.1 Imputation Performance
	5.2 Symbolic Regression Performance
	5.3 The Number of Selected Predictors

	6 Conclusions and Future Work
	References

	Seeding Grammars in Grammatical Evolution to Improve Search Based Software Testing
	1 Introduction
	2 Background and Related Work
	2.1 Evolutionary Testing
	2.2 SBST Techniques Benefitting from Seeding

	3 Ariadne: GE-Based Test Data Generation
	3.1 Grammatical Evolution
	3.2 Grammar

	4 Improved Grammar
	4.1 Philosophy Behind the Proposed Changes

	5 Experimental Results and Discussion
	5.1 Experimental Setup
	5.2 Detailed Analysis of Experiments

	6 Conclusion and Future Work
	References

	Incremental Evolution and Development of Deep Artificial Neural Networks
	1 Introduction
	2 Related Work
	3 Fast-DENSER
	4 Incremental Development of Deep Neural Networks
	5 Experimentation
	5.1 Datasets
	5.2 Experimental Setup
	5.3 Experimental Results: Incremental Development
	5.4 Experimental Results: Topology Analysis
	5.5 Experimental Results: Generalisation of the Models
	5.6 Discussion

	6 Conclusions and Future Work
	References

	Investigating the Use of Geometric Semantic Operators in Vectorial Genetic Programming
	1 Introduction
	2 Panel Datasets in GP: Literature Review
	3 Problem Description and the Datasets
	3.1 Mosquito Abundance (P_Mosq)
	3.2 Ventilation Flow (P_Physio)

	4 Methodology
	4.1 Vectorial Genetic Programming
	4.2 Geometric Semantic Operators

	5 Experiments
	5.1 Experimental Settings
	5.2 Experimental Results

	6 Conclusions
	References

	Comparing Genetic Programming Approaches for Non-functional Genetic Improvement
	1 Introduction
	2 Genetic Improvement (GI)
	2.1 Software Representations
	2.2 Fitness Assessment

	3 Genetic Programming (GP)
	4 Experimental Setup
	4.1 MiniSAT
	4.2 Experimental Protocol
	4.3 Search Processes
	4.4 Filtering

	5 Results and Discussion
	5.1 Overall Training Results
	5.2 Comparison of Approaches
	5.3 Comparative Analysis
	5.4 Research Questions

	6 Conclusions
	References

	Automatically Evolving Lookup Tables for Function Approximation
	1 Introduction
	2 Background
	2.1 Covariance Matrix Adaption - Evolution Strategy (CMA-ES)
	2.2 Evolving Better Software Parameters
	2.3 Investigating Evolving Better Software Parameters

	3 Methods
	3.1 CMA-ES Settings
	3.2 Test Setup and Measurements
	3.3 Fitness Function Design

	4 Results
	4.1 Run-Time Performance
	4.2 Limitations

	5 Conclusions and Outlook
	References

	Optimising Optimisers with Push GP
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Push and Push GP
	3.2 Evolving Population-Based Optimisers
	3.3 Evaluation

	4 Results
	5 Conclusions
	References

	An Evolutionary View on Reversible Shift-Invariant Transformations
	1 Introduction
	2 Background
	2.1 Shift-Invariant Transformations and Cellular Automata
	2.2 Reversible CA
	2.3 Marker CA

	3 Optimizing Landscapes
	3.1 Genotype Representation for Marker CA
	3.2 Fitness Functions

	4 Related Work
	5 Experiments
	5.1 Research Questions and Experimental Setting
	5.2 Single-Objective Approach
	5.3 Multi-objective Approach
	5.4 Lexicographic Optimization

	6 Conclusions and Future Work
	References

	Benchmarking Manifold Learning Methods on a Large Collection of Datasets
	1 Introduction
	2 Methods
	2.1 Manifold Learning Methods
	2.2 ManiGP - A New Manifold Learning Method Based on Genetic Programming
	2.3 Datasets
	2.4 Methodology of Comparison

	3 Results
	4 Conclusions
	References

	Ensemble Genetic Programming
	1 Introduction
	2 Related Work
	3 Ensemble GP
	3.1 M3GP
	3.2 eGP Population Structure
	3.3 eGP Fitness Functions
	3.4 eGP Genetic Operators

	4 Experimental Setup
	4.1 Methods
	4.2 Parameters
	4.3 Datasets

	5 Results
	6 Discussion
	7 Conclusions and Future Work
	References

	SGP-DT: Semantic Genetic Programming Based on Dynamic Targets
	1 Introduction
	2 Methodology
	3 Related Work
	4 Evaluation
	4.1 Methods
	4.2 Evaluation Setup
	4.3 Results and Discussion

	5 Conclusion
	References

	Effect of Parent Selection Methods on Modularity
	1 Introduction
	2 Related Work
	3 Parent Selection Algorithms
	3.1 Lexicase Selection
	3.2 Tournament Selection
	3.3 Fitness-Proportionate Selection

	4 Push and the Evolution of Modularity
	5 Reuse Metric
	6 Experimental Set-Up
	7 Results
	8 Discussion
	9 Conclusions and Future Work
	References

	Time Control or Size Control? Reducing Complexity and Improving Accuracy of Genetic Programming Models
	1 Introduction
	2 Background
	2.1 Complexity in Genetic Programming
	2.2 Evaluating Time Is More Than Measuring Size
	2.3 Stabilising Evaluation Time Measurements

	3 Experiments
	3.1 Bloat Control Techniques
	3.2 Test Problems
	3.3 Configuration and Parameters
	3.4 Initialising the Population

	4 Results
	4.1 Discussion

	5 Conclusions and Future Work
	References

	Challenges of Program Synthesis with Grammatical Evolution
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Software Metrics
	3.2 Program Synthesis Problems
	3.3 GE Grammar and Fitness Function

	4 Experiments and Discussion
	4.1 Robustness of Reference Implementations: Part I
	4.2 Robustness of Reference Implementations: Part II
	4.3 Search Behavior of GE
	4.4 Search for the Needle in a Haystack

	5 Conclusions
	References

	Detection of Frailty Using Genetic Programming
	1 Introduction
	2 Methods
	2.1 Data Source
	2.2 Data Transformation
	2.3 Learning from Imbalanced Data

	3 Experiments
	3.1 GP Parameter Setup

	4 Results
	4.1 GP Prediction Performance
	4.2 Performance of Other Non-GP Classifiers
	4.3 Feature Selection Comparison of GP and Chi-Square

	5 Discussions and Conclusions
	References

	Is k Nearest Neighbours Regression Better Than GP?
	1 Introduction
	2 Geometric Semantic Genetic Programming
	3 Random Vector Based Mutation
	4 Experimental Study
	4.1 Test Problems and Experimental Settings
	4.2 Experimental Results: RVMGP vs GSGP
	4.3 Experimental Results: RVMGP vs KNN Regression vs RF Regression

	5 Conclusions and Future Work
	References

	Guided Subtree Selection for Genetic Operators in Genetic Programming for Dynamic Flexible Job Shop Scheduling
	1 Introduction
	2 Background
	2.1 Dynamic Flexible Job Shop Scheduling
	2.2 Genetic Programming Hyper-heuristic for DFJSS

	3 The Proposed GP with Subtree Selection
	3.1 The Occurrences of Features
	3.2 The Importance of Subtrees
	3.3 Subtree Selection
	3.4 Summary

	4 Experiment Design
	4.1 Simulation Model
	4.2 Parameter Settings
	4.3 Comparison Design

	5 Results and Discussions
	5.1 Performance of Evolved Rules
	5.2 The Probability Difference
	5.3 The Occurrences of Features
	5.4 Training Time

	6 Conclusions and Future Work
	References

	Classification of Autism Genes Using Network Science and Linear Genetic Programming
	1 Introduction
	2 Methods
	2.1 Data Collection
	2.2 Human Molecular Interaction Network
	2.3 Linear Genetic Programming Algorithm
	2.4 Implementation Settings

	3 Results
	3.1 Properties of the HMIN
	3.2 Best Classification Models
	3.3 Assessment of Feature Importance
	3.4 Evaluation of Autism-Gene Prioritization
	3.5 Independent Validation of Autism-Gene Prediction

	4 Discussion
	References

	Author Index

