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Preface

It is our pleasure to present you with the proceedings of the 21st International Con-
ference on Passive and Active Measurements (PAM 2020)! PAM 2020 took place
during March 30–31, 2020, in Eugene, Oregon, USA, and was hosted by the University
of Oregon.

This year’s technical program was comprised of 19 papers, carefully selected among
a pool of 65 submissions from more than 200 authors from 100 institutions and more
than 20 countries. The technical program covered a variety of topics in networking,
ranging from routing and alias resolution, to Web-related measurements, DNS, secu-
rity, active measurements, and best practices. The work of selecting such a competitive
program would have not been possible without the hard work of the 44 members of the
Technical Program Committee (TCP). The TPC provided critical but constructive and
substantiated reviews to the assigned papers. Each submission was assigned to at least
four reviewers, with the exception of some submissions, where we felt additional
reviewers were needed. All but 6 papers received the assigned reviews, while the
remaining 6 were evaluated based on 3 reviews, but had a clear consensus. After the
review phase, the TPC engaged in a lively online discussion phase, during which all
submitted papers were discussed by the respective reviewers until a consensus was
reached. Finally, all 19 accepted papers were assigned to shepherds that had the task of
supporting the authors in addressing the review comments in the final version. In this
preface, we want to extend a warm thank you to the TPC members for the dedication
demonstrated to the PAM conference via the high-quality reviews, during the dis-
cussion phase, and in the shepherding process!

Due to the global outbreak of COVID-19 and in order to protect the health and
safety of PAM participants as well as the local host community, the PAM 2020
conference has been organized as a virtual meeting with attendees only participating
remotely.

We also want to thank the members of the Organization Committee as usually the
focus of a conference remains on the technical content, however without the help and
efforts of all the people involved in the organization, PAM 2020 would not have been
possible. Special thanks therefore go to the general chairs, Ramakrishnan Durairajan
and Reza Rejaie, who took care of the local arrangements, Pedro Casas who manned
his well-oiled publicity machine, Burkhard Stiller who handled communications with
LNCS, and finally Soheil Jamshidi who kept the website continously up to date. Last,
we would like to thank PAM 2020 authors and participants, and we hope that these two
days of novel research and interesting discussions were of use to your future work.

February 2020 Anna Sperotto
Alberto Dainotti
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Discovering the IPv6 Network Periphery

Erik C. Rye(B) and Robert Beverly

Naval Postgraduate School, Monterey, CA, USA
rye@cmand.org, rbeverly@nps.edu

Abstract. We consider the problem of discovering the IPv6 network
periphery, i.e., the last hop router connecting endhosts in the IPv6
Internet. Finding the IPv6 periphery using active probing is challenging
due to the IPv6 address space size, wide variety of provider address-
ing and subnetting schemes, and incomplete topology traces. As such,
existing topology mapping systems can miss the large footprint of the
IPv6 periphery, disadvantaging applications ranging from IPv6 census
studies to geolocation and network resilience. We introduce “edgy,” an
approach to explicitly discover the IPv6 network periphery, and use it
to find >64M IPv6 periphery router addresses and >87M links to these
last hops – several orders of magnitude more than in currently available
IPv6 topologies. Further, only 0.2% of edgy’s discovered addresses are
known to existing IPv6 hitlists.

Keywords: IPv6 · Topology · Discovery · Reconnaissance · Security

1 Introduction

Among the unique properties inherent to IPv6’s large address space size are
ephemeral and dynamic addressing, allocation sparsity and diversity, and a lack
of address translation. These well-known properties complicate efforts to map
the infrastructure topology of the IPv6 Internet. While previous research has
tackled problems of target selection, speed, and response rate-limiting in active
IPv6 topology probing [7], the IPv6 periphery – last hop routed infrastructure
connecting end hosts – is challenging to discover, and difficult to discern.

Discovery of the IPv6 periphery is important not only to the completeness
of network topology mapping, but provides a crucial supporting basis for many
applications. For instance, IPv6 adoption [12,27,34], census [26], and reliabil-
ity and outage studies [21] all depend in part on a complete and accurate map
of the IPv6 topology inclusive of the periphery, while understanding provider
address allocation policies and utilization also requires completeness [15,29].
Similarly, work on IPv4 to IPv6 network congruence [13,20] and IPv6 geolo-
cation [5] can utilize IPv6 topologies. Further, our work illuminates potential
security and privacy vulnerabilities inherent in the way today’s IPv6 periphery
is deployed [11,31].

We present “edgy,” a new technique to explicitly discover the IPv6 periphery.
In contrast to IPv6 scanning [17,23], passive collection [26], or hitlists [14,16],

This is a U.S. government work and not under copyright protection
in the U.S.; foreign copyright protection may apply 2020
A. Sperotto et al. (Eds.): PAM 2020, LNCS 12048, pp. 3–18, 2020.
https://doi.org/10.1007/978-3-030-44081-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44081-7_1&domain=pdf
http://orcid.org/0000-0002-8151-8252
http://orcid.org/0000-0002-5005-7350
https://doi.org/10.1007/978-3-030-44081-7_1
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CustomerPoint-to-point
CPEProvider

Router
Subnet Subnet

Router

IPv6 Periphery

Fig. 1. Common IPv6 architecture: an IPv6 subnet is assigned to the link between the
provider and last hop CPE routers. There is no NAT or private addressing; a separate
distinct routed IPv6 subnet is assigned to devices attached to the last hop CPE.

which, by construction, target endhosts, edgy is specifically designed to find last
hop routers and subnetworks in the IPv6 Internet. Our contributions include:

1. Edgy, an algorithm to discover, identify, and enumerate the IPv6 periphery.
2. Active measurement using edgy to find 64.8M last hop router addresses and

87.1M edges to these last hops from a single vantage.
3. Discovery of periphery addresses that are 99.8% disjoint from current IPv6

hitlists [16] and orders of magnitude larger than existing IPv6 topology snap-
shots [8], suggesting that edgy is complementary to these prior approaches.

4. Discovery of 16M EUI-64 last hop addresses, suggesting a potential vulnera-
bility to security and privacy.

2 Background and Related Work

In this work, we define the “periphery” not to be servers or clients, but rather
the last hop router connecting network endhosts. Whereas significant prior work
has developed techniques for IPv6 endhost discovery [16,17,23], comparatively
little work has explored the IPv6 periphery.

The large address space in IPv6 removes the need for address translation;
thus, while many IPv4 hosts are connected via NATs [32], the IPv6 periph-
ery typically extends into customer premises. Indeed, in IPv6, the Customer
Premises Equipment (CPE) is a router, implying that in conjunction with the
rapid increase in IPv6 adoption [12,34], the IPv6 periphery is considerably larger
than in IPv4, especially for residential networks.

Figure 1 shows an example of the IPv6 periphery we attempt to discover.
Here, the point-to-point subnet between the provider and the CPE is assigned
a public IPv6 prefix; the subnet on the other side of the CPE (e.g., in the
customer’s home) is also a publicly-routed prefix. While this example shows a
common residential IPv6 architecture, similar designs exist in the enterprise.

Consider an IPv6 traceroute to a random address within a provider’s globally
advertised BGP prefix, such as is routinely performed by existing production
topology mapping systems [18]. The traceroute (Fig. 2): (i) is unlikely to hit the
prefix allocated to a customer CPE or her network; (ii) is even less likely to reach
a host within the customer’s network; and (iii) does not illuminate the scope,
characteristics, or breadth of subnets within the prefix. When a traceroute does
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traceroute to 2a03:4980:2b6:9624:8643:b70f:adae:4f40

. . .

5 2001:7f8:1::a502:4904:1 16.862 ms

6 2a03:4980::6:0:2 25.948 ms

7 2a03:4980::b:0:5 39.560 ms

8 *

9 *

Fig. 2. Randomly chosen trace targets are unlikely to discover subnets within a prefix,
or to elicit a response. It is thus ambiguous whether hop 7 is a periphery address in
this example, even though the trace reaches into the destination’s /32.

not reach its target destination it is ambiguous: does the last responsive hop
belong to the core of the network, or the periphery?

Passive techniques suffer similar problems in revealing the network periphery.
For instance, BGP, by design aggregates routes such that the aggregate visible
in a looking glass does not reveal the subnets within. And, while there has been
significant prior work in characterizing the IPv6 address space, these primarily
focus on endhosts. For example, Plonka and Berger examine and analyze the
addresses and behaviors of IPv6 clients connecting to a large CDN [26]. How-
ever, this passive collection of client requests alone does not reveal the network
periphery on the path to those clients.

3 Methodology

Our work seeks to perform active probing in a way that elicits responses from
the last hop IPv6 periphery, rather than network core infrastructure, servers or
other endhosts. Enumerating last hop router addresses, e.g., CPE, and inferring
networks beyond the last hops are the principal goals of edgy.

Edgy is divided into an initialization stage, followed by active probing that
proceeds in rounds. Results from one round of probing are used to guide probing
in subsequent rounds. This section describes edgy; the complete algorithm is
given in Appendix A.

3.1 Edgy

Because of the massive size of the IPv6 address space, edgy relies on an input
set of “seed traces” to focus and guide its discovery. Thus, the ability of edgy
to discover the network periphery depends strongly on the input seed traces
it uses. In Sect. 3.2 we describe two specific realistic seed traces we utilize: (i)
BGP-informed; and (ii) hitlist-informed.

Algorithm 1 describes edgy’s initialization stage. Edgy iterates through the
input seed and examines the last responsive hop in each trace, regardless of
whether a sequence of same last IP responses or loops occur. It maintains the
set of targets that, when used as the traceroute destination, had a given last
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hop. Edgy then finds unique last hops – those that were only discovered by
probing destinations that reside within a single /48 prefix. The intuition is to
find candidate /48 prefixes that are likely to be subnetted, and hence contain
periphery routers. By contrast, if there are two or more probes to targets in
different /48s that elicit the same last hop, those /48s are less likely to be
subnetted, or traces to targets in these /48s are unresponsive beyond the middle
of the network. In either case, edgy terminates exploration of these target /48s
rather than continuing to probe them.

These candidate target /48 prefixes are fed to Algorithm 2 which probes
targets within the input prefixes at progressively finer granularities until a stop-
ping condition (a discovery threshold η) is reached. A random Interface IDenti-
fier (IID) (the 64 least significant bits in an IPv6 address) for each target subnet
is used as the trace destination. Figure 3 depicts an illustration of edgy’s first
round behavior targeting an example /48 belonging to Cox Communications.

The first subnet discovery round probes different /56 prefixes and serves as a
coarse filter to determine which candidate /48s exhibit an appreciable amount of
subnetting and merit further probing. /56s are used initially as [28] recommends
this as a potential subnet size for residential customers; therefore, if a /48 is
allocated entirely to residential customers with /56s, the initial probing round
should discover all of the /56 allocations. We note, however, that these prefix
delegation boundaries are not mandatory, that it is impossible to know a priori
what prefix delegation strategy a provider has chosen, and that networks can be
subdivided in a non-uniform manner for allocations to customers. If the number
of distinct last hops found during a probing round exceeds the threshold η, we
further subdivide responsive prefixes for additional probing in the next round.
The choice and sensitivity of η are discussed in [30].

It has been shown that aliased networks are common in the IPv6 Internet,
where every address within a prefix is responsive despite no actual host being
present. We remove last hops equal to the probe target, as well as networks and
addresses present in the publicly curated list of aliases from Gasser et al. [16].
In addition, we remove replies from non-routable prefixes – we observe site-
and link-local addresses that fall into this category – as well as IPv4-in-IPv6
addresses and replies that appear to be spoofed.

After removing aliases and bogus replies, target /48s that generate >η unique
last hop addresses proceed to the second round of probing. In the second round,
edgy sends probes to addresses within each /60 of the target /48. Figure 4 depicts
an illustration of edgy’s second round behavior, again for the same Cox Commu-
nications /48. Target /48 networks that generate >η unique last hop addresses
(exclusive of aliases) move to the next round. The third probing round sends
probes to a random IPv6 address in each /62 of the target networks. Finally,
target /48s that exhibit subnetting beyond the /60 level (as evidenced by four
unique last hops for each /62 within any /60), are probed at /64 granularity.

Note that, during testing, we initially explored other periphery discovery
mechanisms. For instance, intuitively, a binary-tree discovery process that bisects
prefixes and probes each half would programmatically explore subnets. Unfortu-



Discovering the IPv6 Network Periphery 7

Fig. 3. A portion of a target /48
(2600:8805:9200::/48) is shown; colors
correspond to the true delegated cus-
tomer subnet sizes that edgy discov-
ers. Green represents /64, yellow /60,
and red /56. In the first probing round,
edgy sends probes to each /56 in a tar-
get /48 (represented by arrows). (Color
figure online)

Fig. 4. In the second round, probes
are sent to each /60 in the target /48.
New addresses are discovered in the
upper half of this portion of the tar-
get address space where subnet allo-
cation is finer-grained, but not in the
lower half. Many operators mix alloca-
tion sizes within the same /48.

nately, such an efficient approach performs poorly as providers do not allocate
subnets uniformly. In this case, a core router can falsely appear as the common
last hop for destinations in a common prefix, even when significant subnetting is
present. Additionally, the third round of probing was added to limit time spent
probing target networks at the /64 granularity to those proven to subnet within
the final nybble of the network prefix.

3.2 Edgy Input

Edgy takes as input a seed set of traces. These seed traces are created from run-
ning traceroutes to corresponding seed targets. We consider two realistic poten-
tial seed target lists: BGP-informed and hitlist-informed. The BGP-informed
targets assume no prior knowledge other than global BGP advertisements. Since
BGP routes are readily available from looking glasses, this scenario is easily
replicated by anyone and models what CAIDA uses to inform their probing.
In our experiments, we utilize publicly available BGP-informed seed traces col-
lected as part of an August 2018 effort to uniformly probe every /48 in the IPv6
Internet [9,29]. Herein, we term this trace seed data as the BGP-informed seed.

Second, we consider a target set informed by prior knowledge in the form of
passive traces, server logs, or hitlists. In our experiments, we utilize a publicly
available IPv6 hitlist [16] that was used to generate a seed set of hitlist-informed
traces [7]. Herein, we term this trace seed the hitlist-informed seed.
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3.3 Limitations

There are several potential complications that edgy may encounter, and corre-
sponding limitations of our approach and evaluation. First, during probing, we
depend on receiving a response from the penultimate traceroute hop along the
data path to a destination. However, the last responsive hop may instead be a
different router due to filtering, loss, or rate-limiting, i.e., if the last hop remains
anonymous. This case does not cause false inferences of periphery addresses, but
instead causes edgy to terminate probing of a prefix prematurely.

Second, we do not have ground-truth in order to determine whether the
periphery we discover is indeed the last hop before a destination endhost. While
various, and at times conflicting, guidance exists regarding the size of delegated
prefixes [10,19,25] discovery of unique /64s is strongly indicative of discover-
ing the periphery. Additionally, the periphery addresses we find are frequently
formed using EUI-64 addresses where we can infer the device type based on the
encoded MAC address (see Sect. 4.5). These MAC addresses specifically point
to CPE. Further, we examine several metrics of “edginess” to better understand
the results in Sect. 4.3. In particular, we determine whether traces enter their
target network and, if so, quantify how far inside the target network they reach.
We also analyze the last hop addresses edgy discovers in order to understand
how many also appear as intermediate hops to different targets. As intermediate
hops, such addresses are unlikely to exist in the IPv6 periphery.

3.4 Probing

Probing consists of sending hop-limited ICMPv6 packets; we used the high-speed
randomized yarrp topology prober [6] due to the large number of traces required
during edgy’s exploration, as well as to minimize the potential for ICMPv6 rate
limiting (which is mandated and common in IPv6 [7]).

We use ICMPv6 probes as these packets are designed for diagnostics and
therefore are less intrusive than UDP probes. Further, we send at a conservative
rate while yarrp, by design, randomizes its probing in order to minimize network
impact. Last, we follow best established practices for performing active topology
probing: we coordinated with the network administrators of the vantage point
prior to our experiments and hosted an informative web page on the vantage
point itself describing the experiment and providing opt-out instructions. We
received no opt-out requests during this work.

4 Results

From Sept. to Oct. 2019 we ran edgy from a well-connected server in Lausanne,
Switzerland. Edgy used yarrp at less than 10 kpps with the neighborhood TTL
setting to reduce load on routers within five hops of the vantage point.
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Table 1. BGP and hitlist-informed routable address discovery by round

Round BGP-informed Hitlist-informed

Prefixes

probed

Unique

last hops

Unique

last hop

/48s

Cum.

unique

last hops

Prefixes

probed

Unique

last hops

Unique

last hop

/48s

Cum.

unique

last hops

1 (/56) 130,447 4,619,692 33,831 4,619,692 111,670 9,217,137 89,268 9,217,137

2 (/60) 34,520 12,228,916 26,082 13,410,601 67,107 11,021,329 74,302 11,365,910

3 (/62) 12,014 14,770,061 11,675 24,832,391 4,462 5,428,992 19,942 15,569,221

4 (/64) 2,641 15,326,298 7,833 37,169,357 1,531 15,340,591 32,718 29,248,703

4.1 BGP-Informed Seed Results

Initializing edgy with the BGP-informed seed data yielded 130,447 candidate
/48 prefixes. Following Algorithm 2, edgy traced to a random IID in each of the
256 constituent /56 subnets in each /48s (a total of 33,394,432 distinct traces).

This first round of probing 33.4M targets discovered 4.6M unique, non-aliased
last hop IPv6 addresses residing in 33,831 distinct /48 prefixes (Table 1). Often,
the last hop address is not contained within the target /48 prefix but in a different
/48 prefix belonging to the same Autonomous System (AS). Further, probing
different target /48 prefixes in round one resulted in last hops within the same
/48 (but different than the target /48). This phenomenon of a many-to-one
relationship between the target prefix and the last hop prefix persists across
rounds as the probing granularity increases.

The density of discovered last hop addresses across target prefixes is non-
uniform: nearly 75% of the targeted /48 prefixes produce 16 or fewer distinct
last hops. The prefixes in which the last hops reside is also highly non-uniform.
Of the 33,831 /48s in which last hop addresses reside, 11,064 were responsible for
only a single last hop address. This is likely indicative of a /48 allocation to an
end site. On the other end of the spectrum, a single /48 (2001:1970:4000::/48)
contained over 200,000 unique last hop addresses. 2001:1970:4000::/48 was the
last hop prefix in traces to 1,008 distinct /48 target prefixes, the most extreme
example of many target /48s mapping to a single last hop prefix.

Because a /48 prefix entirely subnetted into /52s should exhibit 16 distinct
last hops, we choose η = 16 empirically as a baseline indication of more granular
subnetting. The choice and sensitivity of η are discussed in detail in [30].

34,520 of the input 130,447 /48 target prefixes passed the η threshold in
round one. Each of these /48 prefixes were then probed at a /60 granularity
(4,096 probes to each /48). Edgy discovers significantly more unique non-aliased
last hop addresses in this round, ∼12.2M, as the probing is focused on known
address-producing target subnetworks identified in the first round.

To select target /48s for round three, we use η = 256 as an indicator of
subnetting at a granularity finer than /56. 12,014 /48s meet this criteria, and
were used as targets for probing at the /62 granularity (∼196.8M traces).

Round three, while probing <10% of the input target seed prefixes, is focused
on those with fine-grained subnetting and helps to expose subnetting strategies.
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Fig. 5. Top 10 last hop ASN Fig. 6. Top 10 last hop country

As the IETF now discourages, but does not forbid, /64 or more-specific sub-
netting [25], we are interested in the prevalence of fine-grained subnetting, but
must balance inferring this delegation behavior with probing load. Because sub-
netting generally occurs on nybble boundaries [25], by probing /62s, we are able
to detect when target prefixes are subnetted beyond /60s, which is an indica-
tion that perhaps the operator is allocating /64 subnets. The /62 probing round
produced ∼14.7M unique last hop addresses.

The final round is designed to enumerate last hop addresses for /64 subnets.
Edgy selects any prefix with η = 4 prefix-unique last hops within a /60 (because
we probe each /62, each /60 contains four targets). We surmise that four prefix-
unique last hops is an indication that either the operator subnets at the /62
level, or is assigning /64 networks to their customers. The final /64 probing
round discovered 15.3M distinct IPv6 addresses through exhaustive probing of
2,641 /48 target prefixes that met the η threshold to be in round four.

Cumulatively, edgy discovers more than 37M distinct IPv6 last hop addresses
using the BGP-informed seed. Table 1 quantifies discovery across probing rounds.
3,989 ASs are represented in the last hop addresses, corresponding to 143 coun-
tries, as reported by Team Cymru’s IP to ASN service [33]. Figures 5 and 6
summarize the ASes and countries that produced the largest number of periph-
ery last hop addresses.

4.2 Hitlist-Informed Seed Results

We replicate the experiment described in Sect. 4.1 seeded with the hitlist-
informed seed traces (from [7]). Table 1 shows the per-round results for both
the BGP-informed and hitlist-informed seeds. Algorithm 1 on this input seed
yielded 111,670 target /48 prefixes, about 20k fewer than the BGP-informed
seed. However, the initial /56 probing round discovered nearly twice as many
unique last hop addresses. The hitlist-informed seed led to almost double the
number of target prefixes in the /60 round as compared to the BGP-informed
seed, but discovered nearly 1M fewer last hops. As a result, only 4,462 /48 tar-
get prefixes were probed in the /62 probing round, discovering 5.4M last hops
from 19,942 /48 prefixes. 1,531 target /48s were exhaustively probed at the /64
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granularity in the fourth round, about 1% of the input hitlist seed prefixes. The
/64 probing round discovered over 15M unique last hops, indicating that the
1,500 target /48s each contributed about 10,000 unique addresses on average.
We attribute the differences between the BGP-informed and hitlist-informed
seed data results to differences in how the original source data was collected.
For example, the BGP-informed seed data was derived from a uniform sweep of
the advertised IPv6 space, while the hitlist-informed seed data derived from a
measurement campaign aimed at networks known to be dense in customers.

In total, periphery on the hitlist-informed seed discovers over 29M unique
last hop router addresses. Nearly half of those addresses are found in the /64
probing round, during which edgy exhaustively probes all of the /64s in 1,531 /48
target prefixes. This suggests that a small number of prefixes have fine-grained
subnetting, and that substantial periphery topology can be gained by probing a
carefully selected set of target prefixes. Figures 5 and 6 display the top ten ASes
and countries from which we obtain last hops; for the hitlist-informed seed, 141
countries and 3,578 ASNs contribute to the total.

4.3 Edginess Metrics

To better understand the extent to which edgy discovers IPv6 periphery infras-
tructure, we introduce three metrics of “edginess.” The first coarse metric is
simply the fraction of traces with a last hop within the same AS as the probe
destination. Clearly, this condition does not imply that the last hop is truly an
interface of the periphery router. However, it provides a rudimentary measure
of whether traces are reaching the target network’s AS. In contrast, a trace to a
non-existent network will be dropped at an earlier hop in a default-free network.

We compare edgy’s results against a day’s worth of CAIDA’s IPv6 Ark tracer-
oute results from 105 different vantage points on Oct 1, 2019 [8]. Across nearly
17M traceroutes performed on that day, 1.7M (10%) produced a response from
the target destination. However, of those 1.7M traceroutes that reached the
destination, 86.2% were from probing the ::1 address, while 13.3% came from
destinations known to be aliased, i.e., a fake reply. Unsurprisingly, fewer than
0.5% of the probes to random targets reached the destination.

40.2% of the CAIDA traces elicit a response from a last hop address that
belongs to a BGP prefix originated by the same AS as the destination. In con-
trast, 87.1% of edgy’s traces reach the target AS. While these results cannot be
directly compared – edgy performs two orders of magnitude more traces than
CAIDA; see Sect. 4.7 – it does demonstrate that the probing performed by edgy
is in fact largely reaching the target network, if not the periphery.

Our second edginess metric is a more granular measure of how deep into the
target network, and hence how close to the periphery, traces traverse. For each
trace, we find the number of most significant bits (MSBs) that match between
the target and the last hop response, i.e., the netmask of the most specific IPv6
prefix that encompasses the target and last hop. As before, this metric does not
provide a definitive measure of reaching the periphery. Indeed, we empirically
observe many networks that use very different IPv6 prefixes for the last hop
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point-to-point subnetwork as compared to the customer’s prefix. However, the
basis of this metric is that hierarchical routing implies more matching MSBs the
closer the trace gets to the target.

Figure 7 shows the distribution of matching bits across the traceroutes from
both CAIDA and edgy. Whereas the median size of the matching prefix is a /13
for CAIDA, it is nearly a /32 for edgy. The target and last hop share the same
/48 for more than 5% of the edgy traces, but just 2% of the CAIDA traces.
Thus, again, we see edgy’s probing reaching more of the network periphery.

Finally, we quantify how many of our last hop addresses appear only as
periphery addresses in our traces, and therefore do not appear as an interme-
diate hop in traceroutes to other target addresses. In the BGP-informed seed’s
first round, 0.9% of discovered last hop addresses to a target appear as an inter-
mediate hop to another target. In the second round, the same is true of 21% of
last hops, 23% in the third round, and 4% in the fourth probing round. However,
closer examination indicates that these numbers, particularly in the second and
third round, are skewed by providers that frequently cycle periphery prefixes.
For example, in the second round, 1.6M of the 2.5M addresses seen both as a
last and an intermediate hop are located in ASN8881, which we observe cycling
customer prefixes on a daily basis [30]. This often causes traces to appear to
“bounce” between two (or more) different addresses toward the end of a trace.
Sorting by the time the response was received shows that a single IPv6 address
was responsible for high hop count responses until after a distinct point at which
a second address becomes responsive. This erroneously causes the address that
was not responsible for the highest hop count response to appear as if it were
an intermediate hop for the target.

We also observe a second class of IPv6 address that appears both as a last
hop and an intermediate hop to other targets. These addresses appear as the last
hop for a large number of target networks that are most likely unallocated by
the provider; these addresses typically have low entropy IID (e.g., ::1 or ::2) and
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are likely provider infrastructure. These last hop addresses also appear on the
path to addresses that appear to be CPE, based on the high entropy or EUI-64
last hop returned when they are an intermediate hop.

4.4 Consolidated Results and Seed Data Comparison

Although both probing campaigns began with approximately the same number
of target /48 prefixes in the first probing round (130,447 and 111,670 in the BGP
and hitlist-informed seeds, respectively), only 9,684 /48s are common between
the two data sets. The number of target prefixes in common decreases at each
round, reaching 177 in /64 probing round. Only ∼1.6M (2.5%) last hop IPv6
addresses are present in both data sets. These results demonstrate edgy’s sensi-
tivity to seed input, and suggest that additional seed sources may aid discovery.

Of the top ten ASNs, only four are common between the two data sets – ASNs
852, 8881, 45899, and 45609. Of the top ten countries, however, six are common:
Germany, Vietnam, Canada, Brazil, India, and Japan, with Germany ranking
first in both. While the US is the second-leading producer of last hop addresses
in the BGP-informed seed data with ∼6.9M unique last hops, it is fourteenth
in the hitlist-informed data with only 357,877 addresses. Finally, we consider
the last hop provider type using CAIDA’s AS type classification [3]. By this
classification, edgy’s results come overwhelmingly from transit/access networks
(99.9%) rather than content or enterprise ASes. This matches our intent for edgy
to focus on IPv6 periphery discovery.

4.5 EUI-64 Addresses

Previous studies, e.g., [7,16] identified the presence of many EUI-64 addresses in
IPv6 traceroutes, where the host identifier in the IPv6 address is a deterministic
function of the interface’s Media Access Control (MAC) address. Our study sim-
ilarly found a significant fraction of EUI-64 addresses, despite the introduction of
privacy extensions for Stateless Address Autoconfiguration (SLAAC) addresses
in 2007 [24]. We discover slightly more than 16M EUI-64 last hop addresses,
identifiable from the ff:fe at byte positions 4 and 5 in an IID, using the BGP-
informed seed data, or approximately 42% of the total last hops. However, only
5.4M (34%) of the MAC addresses in these 16M last hops are unique.

The discrepancy between unique EUI-64last hop addresses and MAC
addresses appears to have two root causes. The first is delegated prefix rotation.
Although 3.5M of the 5.4M unique MAC addresses observed appear in only one
last hop address, 1.9M appear multiple times. Of these, the vast majority appear
in only several addresses in the same /48, suggesting that the provider period-
ically rotates the remaining 16 bits of the network address portion [1,30,31].
We observe some providers rotating the prefix delegated to their customers on a
daily basis, and further examination of forced prefix cycling is a topic of future
work. The second cause behind the disparity between number of MAC addresses
and EUI-64 last hop addresses is due to what we believe is MAC address reuse.
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For instance, the MAC address 58:02:03:04:05:06 occurs in more than
266k BGP-informed seed last hop addresses in 76 /48s allocated to providers
throughout Asia and Africa. Because our probing took place over a period of
several weeks, we believe it is unlikely that a combination of provider prefix
rotation and mobility substantially contributed to these; its simple incremental
pattern in bytes 2 through 6 further suggest it is likely a hard-coded MAC
address assigned to every model of a certain device. Support forums indicate that
some models of Huawei LTE router [2,4] use 58:02:03:04:05 as an arbitrary
MAC address for their LTE WAN interface.

4.6 Comparison to the IPv6 Hitlist Service

We compare our results to an open-source, frequently updated hitlist [16]. In
mid-October 2019, the hitlist provides approximately 3.2M addresses responsive
to ICMPv6, and TCP and UDP probes on ports 80 and 443.

Both the structure and magnitude of the addresses we discover differentiate
our work from [16], which is unsurprising given our focus on finding addresses
at the network periphery. Unlike our results, the addresses in the hitlist are less
likely to be EUI-64 addresses. Only ∼441,000 EUI-64 addresses (with ∼338,000
unique MAC addresses) appear in the hitlist, representing approximately 14% of
the total responsive addresses. Figure 8 plots the normalized Shannon entropies
of the IIDs of addresses in our datasets compared with addresses in the IPv6
hitlist service. We see that the IPv6 hitlist contains a far greater proportion of
low-entropy IIDs addresses than the last hop addresses edgy discovers. As periph-
ery devices, particularly CPE in residential ISPs, are unlikely to be statically
assigned a small constant IID and instead generate a high-entropy address via
SLAAC, this reinforces edgy’s discovery of a different portion of the IPv6 Inter-
net than prior work. Further emphasizing the complementary nature of edgy’s
probing, only 0.2% of the addresses we discover appear in this hitlist, indicating
that edgy discovers different topology. Finally, while the last hops edgy dis-
covers overwhelmingly (99.9%) reside in access networks (Sect. 4.4), CAIDA’s
AS-type classifier categorizes 1.8M of the hitlist’s IPv6 addresses as residing in
access/transit networks, 1.2M in content networks, and 48k in enterprise net-
works.

4.7 Comparison with CAIDA IPv6 Topology Mapping

We again examine a day’s worth of CAIDA’s IPv6 Ark traceroute results from
105 different vantage points on Oct 1, 2019 [8], to understand edgy’s comple-
mentary value. Because edgy sends nearly two orders of magnitude more probes
(544M vs 8.5M), these are not directly comparable; however, we note that edgy
discovers 64.8M non-aliased, routable last hop addresses that CAIDA does not.
CAIDA finds 163,952 unique, non-aliased, routable last hop addresses. However,
despite focusing on only target networks that are dense in last hops, edgy still
discovers ∼25% of the last hop addresses that CAIDA does. Edgy similarly finds
87.1M links to the last hop address that CAIDA does not, but discovers 54,024
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of the 365,822 edges that contain only routable addresses from CAIDA’s prob-
ing. Edgy’s discovery of ∼37M unique periphery last hops from ∼544M targets
probed in the BGP-informed seed yields 0.068 unique last hops per target, while
the Ark traceroutes discover 0.019 unique last hops per target.

4.8 Comparison with Seed Data Source

Edgy, by design, extends topology discovery methodologies and is complemen-
tary to existing topology mapping campaigns. However, because we believe edgy
provides increased address discovery over existing mapping systems, we compare
the results obtained with edgy to the trace seeds used as input to edgy.

The BGP-informed seed source consists of traces conducted in August,
2018 to every /48 in the routed IPv6 Internet conducted from CAIDA’s
Archipelago [9]. These traces to ∼711M unique targets produce ∼5.8M unique
last edges and ∼5.4M unique last hops after removing non-routable addresses. By
contrast, edgy discovers ∼59.5M unique final edges and ∼37.1M unique IPv6 last
hops by probing to ∼545M targets when seeded with the BGP-informed data.
Thus, edgy significantly expands the discovered topology of an input seed.

Likewise, edgy discovers significantly more last hop addresses and edges than
the hitlist-informed seed. The hitlist-informed seed discovers 434,560 unique last
hops and 656,849 unique final edges, while edgy, informed by this data, discovers
∼29.2M unique last hops and ∼32.0M final edges.

5 Conclusions and Future Work

We introduce edgy, an algorithm to discover previously unknown portions of the
IPv6 Internet, namely, the IPv6 periphery. Edgy extends and augments existing
IPv6 discovery mapping systems, and the last hop periphery addresses that it
discovers are nearly entirely disjoint from previous topology mapping campaigns.
Because of privacy concerns involved with EUI-64 addresses and the ephemeral
nature of many addresses, we are not releasing the periphery addresses edgy
discovers at this time; however, we expect our results to be reproducible.

Several topics are planned for future work. First, we observe service providers
that cycle their customers’ periphery prefix periodically. This rotation leads to
high levels of address discovery for these providers, but, based on examining IID
reuse, over counts the number of actual device interfaces present. We plan to: (i)
discover which networks implement high-frequency prefix rotation; (ii) quantify
the rates at which new prefixes are issued; and (iii) determine whether the prefix
issuing mechanism is deterministic and predictable. Second, we discover large
numbers of EUI-64 IPv6 addresses more than a decade after the introduction of
SLAAC privacy extensions [24]. Because edgy discovers periphery devices like
CPE, quantifying device types present in networks may be possible by cross-
referencing the models providers issue to customers, and through correlation with
protocols that leak model information [22]. Third, we wish to obtain more ground
truth information on the IPv6 periphery as well as explicit validation of our
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results and algorithm. Fourth, we plan to improve edgy’s efficiency by training
it with historical data and leveraging multiple vantage points. For instance,
periphery networks that exhibit frequent customer prefix cycling may need to
be probed on a regular basis, while those with stable last hops may be re-probed
infrequently. Finally, because of the ephemeral nature of some of the addresses we
discover, we intend to couple other measurements tightly with address discovery.
For example, to further elucidate these addresses’ value, we will send ICMPv6
Echo Requests and capture service banners immediately after receiving probe
responses.
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Appendix A: Algorithm Details

Algorithm 1. Discover Init(seed traces)
density = []
targets = []
for (hops, dst) ∈ seed traces do

dst48 ← dst & (248 − 1 � 80)
LH ← hops[−1]
density[LH] ← density[LH] ∪ dst48

for LH ∈ density do
if |LH| = 1 then

targets ← density[LH]

for prefix ∈ targets do
Discover(prefix)

Algorithm 2. Discover(prefix)
masks = {56, 60, 62, 64}
LH ← {}
t ← rand(0, 264)
for n ∈ masks do

for i ← {0 . . . 2n−48 − 1} do
hops ← yarrp(prefix + (i � (128 − n)) + t)
LH ← hops[−1]

if |LH| ≤ η or n = 64 then
break
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Abstract. There is a growing interest in carefully observing the relia-
bility of the Internet’s edge. Outage information can inform our under-
standing of Internet reliability and planning, and it can help guide oper-
ations. Active outage detection methods provide results for more than
3M blocks, and passive methods more than 2M, but both are challenged
by sparse blocks where few addresses respond or send traffic. We propose
a new Full Block Scanning (FBS) algorithm to improve coverage for
active scanning by providing reliable results for sparse blocks by gath-
ering more information before making a decision. FBS identifies sparse
blocks and takes additional time before making decisions about their
outages, thereby addressing previous concerns about false outages while
preserving strict limits on probe rates. We show that FBS can improve
coverage by correcting 1.2M blocks that would otherwise be too sparse to
correctly report, and potentially adding 1.7M additional blocks. FBS can
be applied retroactively to existing datasets to improve prior coverage
and accuracy.

1 Introduction

Internet reliability is of concern to all Internet users, and improving reliability is
the goal of industry and governments. Yet government intervention, operational
misconfiguration, natural disasters, and even regular weather all cause network
outages that affect many. The challenge of measuring outages has prompted a
number of approaches, including active measurements of weather-related behav-
ior [15], passive observation of government interference [4], active measurement of
most of the IPv4 Internet [12], passive observation from distributed probes [16],
analysis of CDN traffic [14], and statistical modeling of background radiation [6].

Broad coverage is an important goal of outage detection systems. Since out-
ages are rare, it is important to look everywhere. Active detection systems report
coverage for more than 3M /24 blocks [12], and passive systems using CDN
data report coverage for more than 2M blocks [14]. More specialized systems
focus coverage on areas with bad weather (ThunderPing [15]), or provide broad,
country-level or regional coverage, but perhaps without /24-level granularity
inside the regions (CAIDA darknet outage analysis [4] and Chocolatine [6]).
Although each of the systems provide broad coverage, each recognizes there are
c© Springer Nature Switzerland AG 2020
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Table 1. Coverage comparison in /24 blocks of different measuring approaches.

Approach Coverage

UCSD-NT Darknet 3.2M observed [3]

Akamai Passive/CDN 5.1M observed/2.3M trackable [14]

ThunderPing Active/addrs 10.8M US IP addresses [11]

Disco TCP disconnections 10.5k [16]

Trinocular Active/blocks 5.9M responsive/3.4M trackable [12]

portions of the Internet that it cannot measure because the signal it measures
is not strong enough. Systems typically detect and ignore areas where they have
insufficient signal (in Trinocular, blocks with fewer than 15 addresses; in Thun-
derPing, events with fewer than 100 addresses in its region; the Akamai/MIT
system, blocks fewer than 40 active addresses; in Chocolatine, blocks with fewer
than 20 active IPs). Setting thresholds too high reduces coverage, yet setting
them too low risks false outages from misinterpreting a weak signal.

The first contribution of our paper is two new algorithms: Full Block Scanning
(FBS), to improve coverage in outage detection with active probing, while retain-
ing accuracy and limits on probing rates (Sect. 3.1), and Lone-Address-Block
Recovery (LABR), to increase coverage by providing partial results blocks with
very few active addresses (Sect. 3.2). Our insight is to recognize that sparse blocks
signal outages more weakly than other blocks, and so they require more infor-
mation to make a decision. We chose to delay decisions until all block addresses
(the full block) have been observed, thus gathering more information while main-
taining limits on the probing rate. (An alternative we decline is to probe more
aggressively.) We evaluate FBS as an extension to Trinocular Sect. 4.2, but the
concept may apply to other outage detection systems.

Our second contribution is to show that FBS can increase coverage in two
ways (Sect. 4.5). First, it correctly handles 1.2M blocks that would otherwise be
too sparse to correctly report. Second, it allows addition of 1.7M sparse blocks
that were previously excluded as unmeasurable. Together, coverage for 2017q4
can be 5.7M blocks. Moreover, FBS improves accuracy by reducing the number of
false outage events seen in sparse blocks (Sect. 4.1). We confirm that it addresses
most previously reported false outage events (Sect. 4.3).

The cost of FBS is reduced temporal precision, since it takes more time to
gather more information (assuming we hold the probe rate fixed). We show that
this cost is limited (Sect. 4.4): FBS is required for about one-fifth of blocks (only
sparse blocks, about 22% of all blocks). Timing for non-sparse majority of blocks
is unaffected, and 74% of recovered uptime for sparse blocks is within 22 min.
About 40% of accepted outages in sparse blocks are reported within 33 min, and
nearly all within 3.3 h. (Reanalysis of old data shows the same results for non-
sparse and recovered uptime, but requires twice the time for accepted outages.)
Finally, we examine false uptime by testing against a series of known outages
that affected Iraq in February 2017.
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All of the datasets used in this paper that we created are available at no
cost [17]. Our work was IRB reviewed and identified as non-human subjects
research (USC IRB IIR00001648).

2 Challenges to Broad Coverage

Our goal is to detect Internet outages with broad coverage. Table 1 shows cov-
erage of several methods that have been published, showing that active probing
methods like Trinocular provide results for about 3.4M /24 blocks [12] and CDN-
based passive methods provide good but somewhat less coverage (2.3M blocks for
the Akamai/MIT system [14]). Passive methods with network telescopes provide
very broad coverage (3.2M blocks [3]), but less spatial precision (for example,
for entire countries, but not individual blocks in that country). Combinations
of methods will provide better coverage: Trinocular and the Akamai/MIT sys-
tem have a 1.6M blocks overlap, and unique contributions, each providing 1.9M
unique 0.7M, from [14]. However, Akamai/MIT data is not publicly available.

Here we examine how to improve coverage of active probing systems like
Trinocular. Trinocular gets results for 3.4M blocks, and another 2.5M blocks
have some response but are not considered “trackable” since they have too few
reliably responding addresses.

Our goal in this paper is to expand coverage by making these previously
untrackable blocks trackable. We face two problems: sparse blocks and lone
addresses, each described below. In the next section we describe two new algo-
rithms to make these blocks trackable: Full Block Scanning (FBS), which retains
spatial precision and limited probing rates, but loses some temporal precision;
and Lone Address Block Recovery (LABR), an approach that allows confirma-
tion that lone-address blocks are up, although it cannot definitively identify
when they are down.

Other active probing systems that follow the Trinocular algorithms (such as
the active part of IODA [1]) might benefit from solutions to these problems.
We seek algorithms that can reevaluate existing years of Trinocular data, so we
follow Trinocular’s use of IPv4 /24-prefix blocks and 11-min rounds.

2.1 Problem: Sparse Blocks

Sparse blocks limit coverage: active scanning requires responses, so we decline
to measure blocks with long-term sparsity, and we see a large number of false
outages in blocks that are not sparse long-term, but often are temporarily sparse.

Sparse blocks challenge accuracy because of a tension between the amount of
probing and likelihood of getting a response. To constrain traffic to each block,
and to track millions of blocks, Trinocular limits each block to 15 probes per
round. Limited probing can cause false outages in two ways: First, it may fail
to reach a definitive belief and mark the block as unknown. Alternatively, if the
block is usually responsive, a few non-responses may produce a down belief.
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Fig. 1. A sample block over time (columns). The bottom (d) shows individual address
as rows, with colored dots when the address responds to Trinocular. Bar (c) shows
Trinocular status (up, unknown, and down), bar (b) is Full Block Scanning, and the
top bar (a), Lone Address Block Recovery. (Color figure online)

As an example, Fig. 1 shows four different levels of sparsity, (each starting
2017-10-06, 2017-10-27, 2017-11-14 and 2017-12-16) as (d) individual address
responses to Trinocular probes, and (c) Trinocular state inferences. As the block
gets denser, Trinocular improves its inference correctness.

Furthermore, every address in this block has responded in the past. But for
the first three periods, only a few are actually used, making the block temporarily
sparse. For precision, we use definitions from [12]: E(b) are the addresses in
block b that have ever responded, and A(E(b)) is the long-term probability that
these addresses will respond. We also consider a short-term estimate, Â(E(b)).
Thus problematic blocks have low A(E(b)) or Â(E(b)). We provide further block
examples in AppendixA.

Prior systems sought to filter out these sparse blocks, both before and
after measurement. Trinocular marks very sparse blocks as untrackable (when
A(E(b)) < 0.10 or |E(b)| < 15). It also marked blocks as untrackable when
observed A doesn’t match predicted A [12], and later used an adaptive estimate
for A [13]. Trinocular notes that its unmeasurability test is not strict enough:
indeterminate belief can occur when the A(E(b)) < 0.3 and |E(b)| ≥ 15. Accord-
ingly, Richter’s use of Trinocular data dropped all blocks with 5 or more outages
in 3 months [14], based on our recommendation.

We consider blocks sparse when it is less than a threshold (Âs(E(b)) <
Tsparse), where Âs(E(b) is a short-term estimate of the current availability of
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the block, and Tsparse is a threshold, currently 0.2. Blocks have frequent outages
(like Fig. 1) when they are sparse. We find that 80% of blocks with 10 or more
down events are sparse, and yet sparse blocks represent only 22% of all blocks
(see CDFs in AppendixB).

2.2 Problem: Lone Addresses

The second challenge to coverage are blocks where only one or two addresses are
active—we call this problem lone address blocks. When a single address is active,
then lack of a response may be a network outage, but it may also be a reboot of a
single specific computer or other causes—the implication of non-response from a
single address is ambiguous. Trinocular has avoided blocks with few addresses as
untrackable (when |E(b)| < 15). ThunderPing [15] tracks individual addresses,
but recognizing the risk of decisions on single addresses, they typically probe
multiple targets per weather event [11].

An example block with a lone-address is in Fig. 1. Of the four phases of
use, the second phase, starting 2017-10-27, and for 18 days, only the .85 address
replies. Our goal is to handle this block correctly in both of its active states,
with many addresses and with a lone address.

3 Improving Outage Detection

3.1 Full Block Scanning for Sparse Blocks

The challenge of evaluating sparse blocks is that Trinocular makes decisions
on too little information, forcing a decision after 15 probes, each Trinocular
Round (TR, 11 min), even without reaching a definitive belief. We address this
problem with more information: we consider a Full Round (FR), combining
multiple TRs until all active addresses (all of E(b)) have been scanned. This
Full Block Scanning algorithm makes decisions only on complete information,
while retaining the promise of limiting scanning rate.

Formally, a Full Round ends at time t when the minimum N TRs before t
that cover all E(b) ever-active addresses of the block:

∑t
i=t−N (|TRi|) ≥ |E(b)|.

Trinocular probes all addresses in E(b) in a pseudo-random sequence that is
fixed once per quarter, so we can guarantee each address is probed when we count
enough addresses across sequential TRs. (Versions of Trinocular prior to 2020q1
reverse direction at end of sequence, reanalysis of data before this time must
sense 2|E(b)| addresses to guarantee observing each. We call this retrospective
version the 2FR version of FBS, and will use 1FR FBS for new data. They differ
in temporal precision, see Sect. 4.4.)

Full Block Scanning (FBS) layers over Trinocular outage detection, re-
evaluating outages it reports and reverting some decisions. If the block is cur-
rently sparse (Âs < Tsparse) and the most recent Full Round included a pos-
itive response, then we override the outage. That is, if there are any posi-
tive responses in the last Full Round FRt, we convert any outages to up if
∀TRi where i ∈ [t − N, t].
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The cost of FBS is that combining multiple TRs loses temporal precision, so
we use FBS only when it is required: for blocks that are currently sparse. A block
is currently sparse if the short-term running average of the response rate for the
block Â3FR

s , computed over the last three FRs, is below the sparse threshold
(Â3FR

s < Tsparse). (We choose three FRs to smooth Â from multiple estimates.)
The reduction in temporal precision depends on how many addresses are

scanned in each TR and the size of FR (that is, E(b)). When FBS verifies an
outage, we know the block was up at the last positive response, and we know
it is down after the full round of non-responses, so an outage could have begun
any time in between. We therefore select a start time as the time of the last
confirmed down event (the first known lit address, now down). That time has
uncertainty of the difference between the earliest possible start time and the
confirmed start time. Theoretically, if all 256 addresses in a block are in use and
15 addresses are scanned each TR, a FR lasts 187 min. In practice, timing is
often better; we show empirical results in Sect. 4.4.

3.2 Lone-Address-Block Recovery

The FBS algorithm repairs any block with at least one responsive address in the
last FR, allowing us to extend coverage to many sparse blocks. However, when
a block has only a single active address, a non-reply may indicate an outage of
the network or a problem with that single host.

To avoid false down events resulting from non-outage problems with a lone
address, we define Lone-Address-Block Recovery (LABR). We accept up events,
but because outages are rare (much rarer than packet loss), we convert down
events to “unknown” for blocks with very few recently active addresses. We
define “few” as one or two active addresses, and recently as the last three Full
Rounds, so we use LABR when |Ê3FR| < 3. We require at least three addresses
to avoid making decisions on one or two addresses where packet loss could change
results.

This algorithm gives an asymmetric outcome: we can confirm blocks are
up, but not that they are down. We believe that outcome is preferable to the
alternatives: completely ignoring the block, or tolerating false outages. However,
we identify LABR blocks to allow researchers wanting an estimator that can be
both up and down to omit them.

4 Evaluation

4.1 Full Block Scanning Reduces Noise

Case Study of One Block. Figure 1 shows one block in CenturyLink (AS209,
a U.S. ISP) with outage analysis as a case study.

This block has initially only 8 addresses responding. On 2017-10-27, there is a
usage change that causes a down event with no address response for ∼13 h. This
event is matched in other blocks for the same AS. Then, we see a lone address
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Fig. 2. Iraqi Government mandated outages Feb 2–9, 2017. Whole quarter (left), and
exam week (right). Dataset A27. FBS processed using 2FR. (Color figure online)

responding for 18 days. On 2017-11-14, the block starts receiving new users, and
once again starting 2017-12-17. On 2017-11-16, it shows a partial outage that is
observed only from our Los Angeles site, not from other Trinocular sites.

Trinocular results ((b), third bar) show frequent unknown states that result
in false down events, particularly when block usage is sparse in October and
early November.

By contrast, Full Block Scanning ((b), the second graph), resolves this uncer-
tainty. FBS’ more information confirms the block is usually up, while recogniz-
ing the usage change and the partial outage. However, in between, there are two
down events inferred by a lone address which are changed to unknown by LABR
((a), the top graph).

False Outages: Does FBS Remove Noise? From this single block example,
we next consider a country’s Internet. Our goal is to see if FBS reduces noise by
examining false down events (blocks correctly recovered by FBS because they
were observation noise).

We study series of known outages that affected Iraq in February 2017. That
country had seven government-mandated Internet outages (the local mornings
on February 2, and also the 4th through 9th) with the goal of preventing cheating
during academic placement exams [5]. This is a particularly challenging scenario
to FBS, as closely spaced short outages test the algorithm’s accuracy and pre-
cision. Furthermore, the fraction of sparse blocks is high in this country. We
identified 1176 Iraqi blocks using Maxmind’s city-level database [9]; 666 of these
are sparse.

Figure 2 shows Iraqi outages in 2017q1, grouped in 660 s timebins. We show
outages without Full Block Scanning (the purple, top line) and with it (the green
line). The Iraqi exam week is highlighted in gray on the left, and we plot that
week with a larger scale on the right.
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Table 2. Confusion matrix of 5200 Trinocular detected down events in 50 random
blocks. Dataset A30, 2017q4.

FBS True condition (manually observed)

UP (Trinocular false down events) DOWN (Trinocular true down events)

UP 4133 (79%, FBS fixes) 0

DOWN 621 (12%, FBS misses) 446 (9%, FBS confirms)

In each of the seven large peaks during exam week, most Iraqi blocks (nearly
900, or 76%) are out—our true outages. Outside the peaks, a few blocks (the 20
to 40 purple line, without FBS) are often down, likely false outages.

FBS suppresses most of the background outages (85% of outage area), from
a median of 26 to a median of 1; these differences can be seen comparing the
higher purple line to the lower green line. We confirm this reduction was due
to noise by examining blocks that FBS recovers in 10 randomly-selected time
periods with 34 down events. Nearly all down events (33 events, 97% of purple)
were in sparse blocks that resemble Fig. 1; the other block was diurnal. This
study confirms that FBS recovers false outages due to sparseness.

True Outages: Does FBS Remove Legitimate Outages? We next look
at how Full Block Scanning interacts with known outage events. Its goal is to
remove noise and false outages, but if FBS is too aggressive it may accidentally
remove legitimate outages (a “true down event”) (Fig. 3).

We treat the seven nationwide outages corresponding with Iraqi exams as
true down events and compare this ground truth, with and without FBS.

The seven peaks in Fig. 2 (right) show known Iraqi outages, with purple dots
at “peak outage” without FBS, and lower, green dots with FBS. FBS removes
somewhat less than half of the down events, with peaks around 440 to 560 instead
of 790 to 910 blocks.

To understand this reduction we looked at the duration of the Iraqi events.
FBS affects only the 35% of events in the red box in the lower left corner. (Exam-
ination of just sparse blocks confirms that they are the source of attenuation.)

It is important to note that these are worst case for FBS—many blocks are
sparse, and the events are just shorter than one full round. If the event was
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Fig. 4. Comparison of per-block down time (left) and number of down events (right)
between 2FR-FBS and Trinocular during 2017q4 as seen from six sites. Dataset A30.

longer or more blocks were not sparse, there would be no attenuation. A lower
FBS threshold (Â3FR) of 0.15 trims only 15% of events. However, we choose to
leave FBS threshold at 0.2 to avoid overfitting our parameters to Iraq.

Random Sampling of Outage Events. Finally, we confirm our results with
a random sample of events. We select 50 random blocks that show some outage
from the Trinocular 2017q4 dataset, then a best-estimate ground truth through
manual examination. Table 2 shows the confusion matrix after applying FBS. Of
the total 5200 down events detected by Trinocular, FBS fixes 4133 (79% are false
outages), misses 621 down events (12% are not fixed, but should have been), and
confirms 446 true down events (9% are not changed). The FBS Error Rate is
0.12 (621 false outages of 5200 events), so it is fairly successful at removing noise.
Many of the false outages are due to moderately sparse blocks (0.2 < A(E(b)) <
0.4) where FBS does not trigger.

4.2 How Often Does FBS and LABR Change Outages?

We next evaluate how FBS and LABR change the overall down event duration
and the number of down events. We expect FBS to repair false down events, so
it should show less downtime and fewer down events.

We evaluate merged results from six Trinocular sites as measured during
2017q4 (dataset A30) and compute fraction of time and number of occurrences
across the whole quarter each block was observed down. We repeat the procedure
with data processed with FBS.

We compare outages for 2017q4 (dataset A30), processing and merging
results from six sites with and without FBS. We found similar results when
we repeated this study on a different quarter (2017q2, dataset A28).

FBS and Down Time: Figure 4 (left) compares the fraction of total down time
(0.0130) with FBS (0.0027). First, the vast majority of blocks (91%) have both
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Table 3. Trinocular-detected disruptions in CDN logs. Dataset A28, 2017q2.

Trinocular Filtered
trinocular

FBS

# disruptions 380k 132k 119k

Confirmed 103k 27% 98k 74% 92k 77%

Reduced activity 49k 13% ∼13k 10% 16k 14%

No change 228k 60% ∼21k 16% 11k 9%

values less than 0.02—they have little or no down time. (see AppendixC). Many
of the remaining blocks are on the diagonal, with prior and new values within
0.005. We also see most of the changed blocks (9% of all blocks) appear below
the diagonal, showing that FBS usually decreases downtime.

Surprisingly, 0.5% of blocks show more downtime after FBS. We examined
a sample of these blocks and found that some sparse blocks did not transition
from up-to-down in one round when 15 negative results did not fully change
belief. FBS gathers more information and retrospectively marks the block down
earlier. We believe this result better reflects truth.

FBS and Down Events: We can also evaluate how FBS affects the number of
down events in addition to down time in Fig. 4 (right). FBS reduces the number
of down events by 6% of blocks, often considerably (see the large number of
blocks near the x-axis). In these cases FBS is repairing false outages. Again, we
see a small number of blocks (0.1%) where FBS shows more down events than
without. Examination of these cases shows that FBS sometimes breaks longer
down events into several shorter ones, interspersed with an up event. We believe
these results better reflect the true state of the block.

LABR: In 2017q4, LABR affects only a few blocks (250k, 6% of trackable),
where it resets 4M down events to unknown. LABR affects only a few blocks,
but it allows them to be reported up much of the time, increasing coverage.

4.3 Comparing FBS Active and Passive Outages

Prior CDN-based results showed the large number of false outages that come
from a few blocks [14]. To match their system, they compare the subset of 1.6M
blocks from 2017q2 that are trackable in both Trinocular and their system and
that are at least 1 h or longer in Trinocular. We next review that result and show
that FBS solves the problem they identified.

Table 3 shows this comparison of CDN events to Trinocular with both filtering
(discarding blocks with more than 5 events, a short-term fix proposed for their
paper at the time) and FBS. To recap prior results: The CDN-based results
summarized in confirm that 27% of outage events found by Trinocular without
FBS also appear in the CDN-based passive analysis. The remaining outages
are either false outages in Trinocular (likely, since 60% show no change in the
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CDN) or false uptimes from the CDN. Given sparse blocks produce many events,
discarding blocks with 5 or more events (the “filtered Trinocular” column) should
avoid most false outages, although it may cause false uptime. As expected, most
events (74%) that remain after this filter are confirmed by the CDN.

While CDN-data is proprietary and is not available, we thank Philipp Richter
for redoing this comparison with a similar subset of our data updated, but now
with FBS. The FBS column of Table 3 shows analysis of Trinocular with FBS
compared to the same CDN results, now filtered only by the CDN requirements
(1 h events, and reported in the CDN system). FBS brings an even larger frac-
tion of disruptions in-line with the CDN, with 77% of events being confirmed.
Moreover, FBS is much more sensitive than the 5-event filter, applying only to
the 22% of blocks that are sparse blocks. FBS therefore preserves Trinocular’s
11-min timing for the majority of blocks, reducing temporal precision only where
necessary while providing generally good accuracy for outage detection across
all blocks.

This result suggests that FBS addresses the majority of false outages, and
confirms that most false outages are due to a small set of sparse blocks. (Address-
ing false outages due to ISP renumbering is ongoing work [2].)

Finally, we note that FBS provides much larger coverage: 5.7M blocks com-
pared to 2.3M trackable blocks in the CDN-system. We discuss coverage in detail
in Sect. 4.5.

4.4 FBS Effects on Temporal Precision

We first examine how FBS affects temporal precision of outages. In sparse blocks,
FBS will repair down events that are shorter than a Full Round. But the exact
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Table 4. IPv4 address space coverage of Trinocular and FBS. (a), (b) and (c) different
methods for filtering sparse blocks. (d) blocks fixed by FBS.

Threshold Blocks (in M) %Tri

Reject Accept %resp

IPv4 responsive |E(b)| ≥ 1 8.6 5.9 100

Trinocular trackable |E(b)| ≥ 15 ∧ A ≥ 0.1 1.9 4.0 67 100

(a) mostly up blocks up time > 0.8 0.2 3.8 64 95

(b) infrequently down blocks # down events < 5 0.3 3.7 63 93

(c) non-sparse blocks A ≥ 0.2 0.9 3.1 53 78

(d) FBS considered Â3FR < 0.2 2.8 1.2 – 30

overlap with (c) 0.6 0.8 – –

FBS trackable |E(b)| ≥ 3 0.2 5.7 96 142

duration of a FR depends how many addresses are considered in the block (E(b))
and how active they are (Â(E(b))).

To analyze FBS changes to temporal precision, we consider repaired events,
false down events corrected by FBS, and accepted events, true down events that
pass through FBS unchanged. LABR does not affect temporal precision.

We study FBS effects by examining the 2017q4 outage dataset (A30) from
one site (Los Angeles). Most blocks (2.8M blocks, 70%) are never affected by
FBS because they are not sparse or do not have an outage. For the remaining
1.2M blocks that are at some point sparse (Â3FR < 0.2) and for which Trinocular
reports an outage, we examine each outage event.

We first examine the 308M events that FBS repairs (the top left, red line in
Fig. 5, 1.2M blocks). We see that for about half the cases (53% of the events),
FBS repairs a single-round of outage in 11 min. Almost all the remaining events
are recovered in 15 or fewer rounds, as expected. Only a tiny fraction (0.5%)
require longer than 18 rounds, for the few times when Trinocular is slow to
detect large changes in Â because it thinks the block may be down.

The light green solid line in the middle Fig. 5 shows how long full rounds last
for outages that pass FBS. Of 5.1M events, we see that 60% are approved in
less than one hour (five or fewer TRs). About 8% of events take longer than our
expected maximum of 18 TRs. We examined these cases and determined these
are cases where Trinocular has such confidence the block should be up it does
not probe all 15 tries. We confirm this result examining 50 random blocks within
the tail.

Use of FBS on old Trinocular data requires the 2FR variant of FBS, with
more TRs per FR (see Sect. 3.1). Dashed lines in Fig. 5 show 2FR analysis. We
see almost no change in temporal precision of repaired events (nearly all the
range of the solid and dashed red lines overlap). Accepted outages take roughly
twice as long as with 1FR FBS, and the number drops to roughly one half (3.1M
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accepted down events); fortunately only 0.13% of all 4M blocks require 2FR and
have actual outages in 2017q4.

We currently use FBS in batch processing, and we plan to implement it in our
near-realtime (NRT) outage pipeline soon. For NRT processing one can either
delay results while FBS is considered, or report preliminary results and then
change them if FBS corrects.

4.5 Increasing Coverage

Sparse blocks limit coverage. If historical information suggests they are sparse,
they may be discarded from probing as untrackable. Blocks that become sparse
during measurement can create false outages and are discarded during post-
processing. We next show how FBS and LABR allow us to increase coverage by
correctly handling sparse blocks.

Correctly Tracking Sparse Blocks. We first look at how the accuracy
improvements with our algorithms increase coverage. Three thresholds have been
used to identify (and discard) sparse blocks: a low response probability (A < 0.2,
quarter average, from [12]), low up time (up time < 0.8, from [13]), and high
number of down events (5 or more down events, from [14]).

We use these three thresholds over one quarter of Trinocular data (2017q4-
A30W), reporting on coverage with each filter in Table 4. With 5.9M responsible
blocks, but only 4M of those (67%) are considered trackable by Trinocular. Fil-
tering removes another 0.2M to 0.9M blocks, leaving an average of 53 to 64%.

Trinocular with FBS gets larger coverage than other methods of filtering or
detection. FBS repairs 1.2M blocks, most sparse: of 0.9M sparse blocks, we find
that FBS fixes 0.8M. The remaining 100k correspond to either good blocks that
went dark due to usage change and therefore pushing the quarterly average of
A down, or sparse blocks with few active addresses (for example, |E(b)| < 100)
where Trinocular can make a better job inferring the correct state.

Can FBS+LABR Expand Baseline Coverage? Finally, we examine the
number of blocks discarded as untrackable from historical data, and are not
tracked for outages. For instance, Trinocular looks at the last 16 surveys [7], and
filter all blocks with |E(b)| < 15 and A < 0.1, left with its baseline of 4M blocks.

In a similar approach, we use the 2017-04-27 survey as our upper bound of
the responsive Internet [8]. As Table 4 shows, we find 5.9M responsive blocks, of
which 5.7M had at least three active addresses during the measured period. That
is 1.7M (43%) more blocks than the baseline become trackable. When adding
1.7M with the number of FBS-repaired blocks (1.2M), our effective coverage
increment adds to 2.9M blocks.

5 Related Work

Several groups have methods to detect outages at the Internet’s edge: Thun-
derPing first used active measurements to track weather-related outages on the
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Internet [11,15]. Dainotti et al. use passive observations at network telescope
to detect disasters and government censorship [4], providing the first view into
firewalled networks. Chocolatine provides the first published algorithm using pas-
sive network telescope data [6], with a 5 min detection delay, but it requires AS
or country level granularity, much more data than /24s. Trinocular uses active
probes to study about 4M, /24-block level outages [12] every 11 min, the largest
active coverage. Disco observes connectivity from devices at home [16], providing
strong ground truth, but limited coverage. Richter et al. detect outages that last
at least one hour with CDN-traffic, confirming with software at the edge [14].
They define disruptions, showing renumbering and frequent disagreements in a
few blocks are false down events in prior work. Finally, recent work has looked
at dynamic addressing, one source of sparsity [10]. Our work builds on prior
active probing systems and the Trinocular data and algorithms, and addresses
problems identified by Richter, ultimately due to sparsity and dynamics.

6 Conclusions

This paper defines two algorithms: Full Block Scanning (FBS), to address false
outages seen in active measurements of sparse blocks, and Lone Address Block
Recovery (LABR), to handle blocks with one or two responsive addresses. We
show that these algorithms increase coverage, from a nominal 67% (and as low
as 53% after filtering) of responsive blocks before to 5.7M blocks, 96% of respon-
sive blocks. We showed these algorithms work well using multiple datasets and
natural experiments; they can improve existing and future outage datasets.
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A Other Block Examples

Section 2.1 described the problem of sparse blocks and why FBS is needed. Here
we provide examples of other blocks where sparsity changes to illustrate when
FBS is required.

The block in the left part of Fig. 6 has no activity for three weeks, then
sparse use for a week, then moderate use, and back to sparse use for the last
two weeks. Reverse DNS suggests this block uses DHCP, and gradual changes in
use suggest the ISP is migrating users. The block was provably reachable after
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Fig. 6. Sample blocks over time (columns). The bottom (d) shows individual address
as rows, with colored dots when the address responds to Trinocular. Bar (c) shows
Trinocular status (up, unknown, and down), bar (b) is Full Block Scanning, and the
top bar (a), Lone Address Block Recovery. (Color figure online)

the first three weeks. Before then it may have been reachable but unused, a false
outage because the block is inactive.

The third bar from the top (c) of the left of Fig. 6 we show that Trinocular
often marks the block unknown (in red) for the week starting 2017-10-30, and
again for weeks after 2017-12-12. Every address in this block has responded in the
past. But for these two periods, only a few are actually used, making the block
temporarily sparse. Figure 6 (left, bar b) shows how FBS is able to accurately fix
Trinocular’s pitfalls in such a DHCP scenario.

Figure 6 (right) shows a block example with a lone address. This block has
three phases of use: before 2017-02-16, many addresses are in use; then for about
9 days, nothing replies; then, starting on 2017-02-25 only the .1 address replies.
During the last phase, Trinocular (Fig. 6 (right, bar c)) completely ignores that
there is one address responding, while FBS (Fig. 6 (right, bar b)) sets block sta-
tus depending on responses of this lone-address. However, LABR (Fig. 6 (right,
bar a)) changes all the FBS detected down events to unknown, as there is not
information to claim a down event, in contrast to what the end of phase one
shows.

B Block Usage Change

As mentioned in Sect. 2.1, when blocks become temporarily sparse (showing a
small A(E(b))), the number of false outages increases. On the other hand, denser
blocks offer higher inference correctness.

Our prior work dynamically estimated A [13], but Richter et al. showed that
block usage changes dramatically, so blocks can become overly sparse even with
tracking [14].
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Fig. 7. Blocks distributed according to the number of outages versus their A(E(b))
(left), and cumulative distribution function of the A value per block (right) as collected
during 2017q4 for the whole responsive IPv4 address scope. Dataset A30. (Color figure
online)

We first show that sparse blocks cause the majority of outage events. In
Fig. 7 (left) we compare the number of outages in all 4M responsive blocks with
their measured A(E(b)) value during 2017q4. Blocks with a higher number of
outages tend to have a lower A(E(b)) value. In particular those closer to the
lower bound. Trinocular does not track blocks with long term A(E(B)) < 0.1,
however as blocks sparseness changes, this value does change during measure
time.

The correlation between sparse blocks and frequent outage events is clearer
when we look at a cumulative distribution. Figure 7 (right) shows the cumulative
distribution of A for all 4M responsive blocks (light green, the lower line), and
for blocks with 10 or more down events (the red, upper line) as measured during
2017q4. These lines are after merging observations obtained from six Trinocular
vantage points. We find that 80% of blocks with 10 or more down events have an
A < 0.2, at around the knee of the curve, and yet these sparse blocks represent
only 22% of all blocks. The figure suggests a correlation between high number
of down events and low A(E(b)) per block due to the faster convergence of the
line representing blocks with multiple down events. (It confirms the heuristic of
“more than 5 events” that was used to filter sparse Trinocular blocks in the 2017
CDN comparison [14].)

Although we observe from multiple locations, merging results from different
vantage points is not sufficient to deal with sparse blocks, because these multiple
sites all face the same problem of sparseness leading to inconsistent results.
Addressing this problem is a goal of FBS, and it also allows us to grow coverage.

C Comparing Trinocular and FBS

In Sect. 4.2 we discuss how often FBS changes outages when compared to Trinoc-
ular. We examine two different metrics: total block down time and number of
down events. Here we provide further information distribution about the distri-
bution of these metrics.
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Fig. 8. Cumulative distribution of down fraction difference (left) and number of down
events difference (right) between Trinocular and FBS for 2017q4. Dataset A30.

In Fig. 8 (left) we show block distribution of Trinocular and FBS down time
fraction difference. The majority of blocks (91%) have little or no change. Blocks
on the left side of the figure representing 9% of the total, have a higher down
time fraction when processed only with Trinocular than when processed with
FBS. For example, a −1 shows a block that was down for Trinocular during
the whole quarter, while FBS was able to completely recover it. This outcome
occurs when a historically high |E(b)| block has temporarily dropped to just a
few stable addresses.

We also see a small percentage (0.5%) where FBS has a higher down fraction
than Trinocular. This increase in outages fraction happens when Trinocular erro-
neously marks a block as UP. With more information, FBS is able to correctly
change block state and more accurately reflect truth.

In Fig. 8 (right) we look to the distribution of blocks when compared by the
number of down events observed in FBS and Trinocular. Similarly, the num-
ber of down events remains mostly unchanged for the majority of blocks (94%).
Trinocular has more down events for 6% of blocks, and FBS shows more events
for 0.1%. FBS can increase the absolute number of events in a block when break-
ing long events into shorter pieces.
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Abstract. Active measurement tools are important to understand and
diagnose performance bottlenecks on the Internet. However, their over-
head is a concern because a high number of additional measurement
packets can congest the network they try to measure. To address this
issue, prior work has proposed in-band approaches that piggyback appli-
cation traffic for active measurements. However, prior approaches are
hard to deploy because they require either specialized hardware or mod-
ifications in the Linux kernel. In this paper, we propose FlowTrace–a
readily deployable user-space active measurement framework that lever-
ages application TCP flows to carry out in-band network measurements.
Our implementation of pathneck using FlowTrace creates recursive
packet trains to locate bandwidth bottlenecks. The experimental evalu-
ation on a testbed shows that FlowTrace is able to locate bandwidth
bottlenecks as accurately as pathneck with significantly less overhead.

1 Introduction

Background. Internet performance measurement plays an important role in
diagnosing network paths, improving web application performance, and inferring
quality of experience (QoE). A notable example is the use of available bandwidth
measurement in adaptive video streaming [15,20]. ISPs and content providers
are motivated to build web-based measurement tests (e.g., M-Lab NDT [19],
Ookla speed test, and Netflix fast.com [8]) to provide throughput measurement
services for end-users. These platforms estimate access link capacity by flooding
the network with one or more concurrent TCP flows [2], which result in very high
overhead [9]. Note that while such tools can be used by the end-users to measure
network performance, large scale deployment (e.g. by CDNs) to conduct Internet-
wide network measurements poses scalability concerns due to high overheads.

Limitations of Prior Work. Over the last decade, many light-weight end-
to-end active network measurement methods have been proposed to accurately
measure network path metrics, including latency [17], packet loss rate [26], avail-
able bandwidth [13,25,28], and capacity [3,5,14]. These tools inject crafted probe
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A. Sperotto et al. (Eds.): PAM 2020, LNCS 12048, pp. 37–51, 2020.
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packets into the network with a specific packet sending pattern, and analyze the
timing or events of responses to compute the network metrics. However, these
tools are not widely adopted for measuring web service performance for two main
reasons.

(1) Out-of-band. The measurement probes often used different flow tuples (types
of packets, source/destination ports) to user traffic [21]. The network path
traversed by the measurement flow could be different from the user traf-
fic, and thus the results may not be representative. In addition, some mea-
surement tools (e.g., pathload [13], pathChirp [25]) typically generate a
significant amount of traffic—carrying no useful data—to interact with and
measure the network.

(2) Prior solutions are hard to deploy. Various solutions such as MGRP [24]
and minProbe [29] have been proposed to mitigate the impact of these
measurement tools on the network, by leveraging application traffic to con-
duct measurements. Ideally, such tools can be deployed at the server-side to
leverage ongoing downstream traffic to conduct end-to-end measurements to
the client-side. However, these solutions are limited in terms of feasibility of
deployment. For instance, MGRP requires modifications in the Linux ker-
nel, making it OS-specific, while minProbe requires dedicated FPGA-based
SoNIC hardware.

Proposed Approach. In this paper, we propose FlowTrace, a user-space
measurement framework to deploy in-band network measurement systems.
FlowTrace overcomes the limitations of prior work as follows. First, it con-
ducts in-band measurements by intercepting and rescheduling application data
packets. Second, it only uses commodity Linux utilities such as iptables and
NFQUEUE, thereby avoiding the need to patch the kernel or additional hardware,
making it feasible to deploy across large scale infrastructures such as Content
Delivery Networks or measurement platforms such as M-Lab. Overall, Flow-
Trace intercepts packets from the application flows and shapes them so as to
implement different measurement algorithms.

Evaluation. We have implemented a prototype of FlowTrace and evaluated
it using Emulab. Specifically, we demonstrate the effectiveness of FlowTrace
by implementing a well-known measurement tool pathneck [10] over Flow-
Trace, and comparing the measurements done using both implementations.
Note that pathneck uses recursive packet trains (RPTs) to locate the bottle-
neck by analyzing the packet dispersion of the ICMP TTL exceeded messages
returned by the intermediate hops. We show in our evaluation that measure-
ments done using pathneck implemented on FlowTrace closely follow the
measurements done using pathneck. Lastly, we show that using FlowTrace
only increases the application-perceived latency by at most 1.44 ms.

We remark that FlowTrace can be used by various measurement platforms
to efficiently implement a vast array of measurement algorithms, that would
otherwise be infeasible to deploy at large scale.
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2 Background

There is a long line of research on active network measurements to measure dif-
ferent network performance metrics such as round-trip-time (RTT), packet loss
rate, and bandwidth [10–13,18,25,28]. These active measurement tools provide
useful insights for network performance diagnosis, management, and even pro-
tocol design. For instance, ping [16] is a simple yet effective tool to measure
RTT and packet loss between two hosts by constructing specially-crafted ICMP
messages that, when received by a receiver, are echoed back to the sender. iPerf
[6] is commonly used to measure bandwidth between two hosts by measuring the
time it takes to complete a bulk transfer between the two hosts. These tools and
their variants are used to conduct Internet-scale measurements using dedicated
measurement platforms such as M-Lab [18].

Prior work has proposed more sophisticated active measurement tools such
as pathload [12] and pathChirp [25] to measure available bandwidth as well as
pathneck [10] to localize the bandwidth bottleneck between two hosts. Instead
of relying on bulk data transfers, these tools probe the network and measure the
timing information of the responses to estimate the bandwidth characteristics.
More specifically, these tools craft probe packets that traverses the end-to-end
path between a source and a destination host and interacts with the underlying
network along the path. As a result, the underlying network modulates the probe
traffic (such as packet transmission rates at the links) and generates a “response”
(such as inter-packet gaps) as the probe packets move forward through the links
along the path. The tools then analyze this timing information to estimate the
bandwidth characteristics of the underlying network.

Even though these more sophisticated bandwidth measurement tools gener-
ate relatively less traffic as compared to iPerf, they still introduce non-trivial
probe traffic that can cause congestion in the very network they are trying to
measure. For instance, pathneck identifies the location of the bottleneck along
the path by constructing recursive packet trains (RPTs), consisting of large pay-
load packets wrapped around with small probe packets. Note that even though
the probe packets in the RPTs are negligible in size, payload packets are typi-
cally much larger and carry dummy payload that can congest the network. Such
non-trivial overheads make it infeasible to deploy these bandwidth measurement
tools on a large-scale.

To address this issue, prior work has proposed methods that allow these
measurement tools to piggyback useful application traffic onto the measurement
traffic [24,29]. More specifically, MGRP [24] was designed to mitigate the over-
heads of measurement tools such as pathload and pathChirp by piggybacking
payload data from all application flows destined to the remote host—to which
the measurement is to be done—into probe packets. These probe packets are
received and demultiplexed into the constituent application flows by the remote
host, while the measurement is done by observing the arrival times of the MGRP
probes. In the same vein, minProbe was proposed to leverage application traffic
in a middlebox environment for Gigabit-speed networks. Specifically, minProbe
[29] intercepts application flows destined to the target host at middleboxes and
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modulates (and measures) the transmission (and arrival) times of these packets
with nanosecond precision to allow for high-speed network measurements.

While existing methods such as MGRP [24] and minProbe [29] do mini-
mize measurement overheads by leveraging application traffic for probing, their
deployment requires specialized hardware or kernel-level modifications at the
hosts. minProbe requires specialized hardware such as FPGA pluggable boards
and Software-defined Network Interface Cards (SoNIC) making it infeasible for
Internet-scale deployment. MGRP requires changes to the Linux Kernel, making
it OS- and Kernel-specific and severely limiting its deployability as acknowledged
by [24].

3 FLOWTRACE

In this section, we first discuss some design goals of FlowTrace (Sect. 3.1), and
then describe the technical challenges we tackled in implementing FlowTrace
(Sect. 3.2).

3.1 Overview

The design of FlowTrace revolves around two main goals. First, FlowTrace
leverages ongoing TCP flows to conduct in-band network measurement. By
embedding measurement probes into the flows nwe make sure that the measure-
ment traffic follows the same path as the application traffic, thereby enabling
measurements along the paths undertaken by the application traffic. In addition,
leveraging application traffic to conduct measurements can significantly reduce
the measurement overheads. Second, FlowTrace can be feasibly deployed by
various server-end entities such as content-providers and measurement platforms
(such as M-lab) to measure the application of web services and conduct Internet-
wide measurements, without requiring significant changes to the Linux Kernel
and additional hardware respectively.

We use FlowTrace to perform pathneck-like measurements to locate net-
work bottlenecks. Identifying under-provisioned links is useful for load-balancing
traffic and improving the service quality. FlowTrace is implemented as an in-
band, user-space tool that leverages ongoing TCP flows for measurement.

FlowTrace monitors traffic to identify new TCP flows and decides which
flows to be measurement flows, and then intercepts packets from measurement
flows to construct RPTs, which comprise of large payload packets wrapped around
with TTL-limited probe packets. The routers on the path subsequently drop the
first and the last probe packets and generate TTL-exceeded ICMP response mes-
sages [10]. FlowTrace captures these response messages to infer the location of
the bottleneck. To this end, FlowTrace treats data packets in the flow as pay-
load packets, and inserts leading and trailing probe packets—called head packets
and tail packets, respectively. FlowTrace conducts bottleneck identification
and localization by analyzing the arrival time of the response packets triggered
by the dropped hand and tail packets. FlowTrace does not manipulate the
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TTL of data packets, allowing them to be received by the remote host without
any disruptions. Note that a large amount of data in the constructed RPT is
the original payload packets carrying useful application data, with FlowTrace
inserting only a number of small probe packets to conduct measurement.

3.2 Technical Challenges

While the basic concept behind FlowTrace is intuitive, as we discuss below,
it presents a unique set of technical challenges.

Lack of Kernel-Level Visibility. The first and foremost challenge in lever-
aging ongoing application traffic to deploy active measurement techniques in
user-space is the lack of kernel-space visibility and packet-level control. Specif-
ically, when an application generates data that is to be sent to a remote host,
it passes the data down to the kernel where it is fragmented and formed into
TCP/IP packets after filling all the corresponding packet header fields, and is
finally sent over the wire. Prior approaches such as MGRP implemented an
in-kernel solution to intercept and piggyback application layer packets in probe
packets to implement various active measurement techniques. However, as men-
tioned before, MGRP requires changes in Linux kernel, and is OS-specific, which
makes it difficult to deploy at a large scale.

On the contrary, we use commodity Linux-based utilities such as firewalls and
basic user-space libraries to implement FlowTrace. More specifically, Flow-
Trace relies on utilities such as iptables and NFQUEUE to obtain fine-grained
per-packet control in user-space. In this manner, FlowTrace intercepts packets
from application traffic, modifies (or modulates) packet transmission times, and
inserts probe packets to create RPTs. All in all, these commodity Linux-based util-
ities provide relatively fine-grained control and visibility over application layer
traffic without compromising on the feasibility for large-scale deployment.

Interception vs. “Respawning”. In addition to fine-grained control over
application traffic, active measurement techniques require control over the trans-
mission rate of the measurement traffic. Specifically, pathneck transmits a
“well-packed” RPTs at line rate from the source host to effectively locate bottle-
necks along the path. However, since FlowTrace leverages application layer
traffic to construct RPTs and conduct measurement, it is limited by the traffic
characteristics of the application. For instance, if the application generates pay-
load data at a rate slower than the line rate, FlowTrace will be unable to
construct “well-packed” RPTs, resulting in inaccurate network measurements.

To enable FlowTrace to send RPTs at line rate, we can buffer application
packets in the kernel using NFQUEUE, and transmit a “well-packed” RPT when
FlowTrace has received enough packets from the application layer. However,
a limitation of using NFQUEUE is that FlowTrace only has visibility at the head
of the queue, with no information about the number of packets in the queue. To
solve this, FlowTrace “respawns” the application layer traffic in the user space.
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FlowTrace retrieves and copies available packets in NFQUEUE, and notifies the
kernel to discard the original packet by returning NF DROP. Lastly, upon receiving
the specified number of application layer packets, FlowTrace constructs a
“well-packed” RPT using the buffered data packets, and (re-)transmits them using
pcap at line rate.

Minimizing the Impact of Packet Buffering. Lastly, FlowTrace largely
depends on the traffic generation behavior of the application conduct measure-
ments. Note that traffic generation patterns and volume of traffic can vary sig-
nificantly across applications, ranging from small short-lived flows generated by
web browsing to long-lived flows for video streaming services. As a result, Flow-
Trace may not be able to receive and intercept sufficient data packets to gen-
erate measurement traffic according to the specified measurement configuration.
To this end, we can increase the time FlowTrace waits for the next packet
to accumulate more data packets. However, application packets may perceive
excessive buffering period before they are sent, thereby hurting the throughput
and responsiveness of the application.

To reduce the impact on the application performance, FlowTrace employs
an opportunistic approach to conduct measurement. FlowTrace continuously
monitors the inter-arrival delays of the new data packets. Whenever the inter-
arrival delay exceeds a certain time threshold, tipa, FlowTrace gives up on that
round of measurement, and immediately sends out all the buffered packets over
the wire using pcap, thereby resuming the flow. After resuming the flow, Flow-
Trace waits for the next chance to conduct the required measurement using
subsequent application packets. Note that the value of tipa governs the tradeoff
between the capability of FlowTrace to consistently conduct measurements
and application layer performance.

Another alternative approach to minimize the impact of buffering is to intro-
duce additional dummy data packets when the number of data packets from the
application is not enough. However, this approach introduces additional conges-
tion to the network which is against the design goal for FlowTrace. Therefore,
in this paper, we use tipa to configure the wait time and resume application flows
when FlowTrace receives insufficient data packets.

3.3 Implementation

FlowTrace employs NFQUEUE [22], which is a user-space library to intercept an
ongoing network flow from the system. FlowTrace identifies a flow of inter-
est based on the IP address provided by the operator, and sets up iptables
to intercept the application flow. Specifically, FlowTrace sets up iptables
rules inside the Linux kernel with NFQUEUE as the target, effectively redirecting
packets from the flow of interest to NFQUEUE. Consequently, whenever a packet
satisfies an iptables rule with an NFQUEUE target, the firewall enqueues the
packet and its metadata (a Linux kernel skb) into a packet queue such that the
decision regarding the corresponding packets can be delegated to a user-space
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Fig. 1. High level work flow of FlowTrace. FlowTrace first identifies an application
flow based on the 5-tuple. It then configures iptables rules such that the packets
from the application flow are directed towards the NFQUEUE target. NFQUEUE delegates
the decision of each packet to a user-space program spawned by FlowTrace, which
buffers the payload from each packet in user-space and directs NFQUEUE to drop the
packets. When FlowTrace receives enough application packets, it creates a “well-
packed” RPT out of the buffered application packets and transmits them on the wire
via pcap. Otherwise, FlowTrace transmits the buffered application packets without
any additional probe packets.

program. To this end, the kernel then executes a callback registered by the user-
space program, and sends the enqueued packet with the metadata using nfnetlink
protocol. The user-space program then parses the packet information and pay-
load, and can decide a verdict on dropping (NF DROP) or releasing (NF ACCEPT)
the packet. At a high-level, FlowTrace intercepts the packets from the flow
of interest, then handles these packets in the user-space and modulates traffic
accordingly to implement the measurement algorithm specified by the user. We
implemented a prototype of FlowTrace using GO programming language, that
supports lightweight concurrency using goroutine. As a result, we can conduct
measurement to multiple concurrent flows with small overheads.

Implementing Pathneck. Based on the high-level idea described above, we
now describe how FlowTrace can be used to implement pathneck, as illus-
trated in Fig. 1.

1. Identifying the flow of interest. To avoid process all incoming/outgoing pack-
ets, the operator provides the IP address and port information of the flows,
directed towards the clients that we are interested in measuring (such as
port 80 and 443 for web servers). Consequently, FlowTrace can initialize
iptables rules and pcap filters to reduce workload. All the flows matched
the specified IP and ports consider as the flow of interest.

2. Intercepting flows. Once the initialization completed, FlowTrace creates
a map of flows using the 5-tuple (source IP, destination IP, source port,
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destination port, protocol), and starts to handle packets using NFQUEUE and
record the state of the flows. We do not perform any measurement in the
beginning of the flows, because the TCP congestion window during the slow-
start phase is too small for us to receive sufficient data packets to construct
measurement probes. In our implementation, we do not manipulate the first
10 packets of the flows.

3. Constructing measurement probes. We use the flows that transferred more
than 10 data packets to conduct measurements. FlowTrace waits for n
load packets from the TCP flow to construct a “well-packed” RPT. Figure 2
depicts the construction of one RPT. As the application data arrives, Flow-
Trace first buffers the load packets and drops the original packets (using
NF DROP) (Sect. 3.2). When FlowTrace has n payload packets from the
application flow in the buffer, it first sends m TTL-limited zero-size mea-
surement packets, followed by the n load packets, and m tail packets. This
way, FlowTrace injects a “well-packed” RPT constructed from the appli-
cation traffic, into the network.

4. Capturing and analyzing response packets. The final step is to monitor the
incoming traffic using pcap for the ICMP messages triggered by the RPT. Based
on the ICMP response messages from each hop, FlowTrace computes the
per-hop packet train dispersion and determine the network bottleneck.

Fig. 2. Details of RPT generation. Light blue squares are data packets from the appli-
cation, and green rectangles are probe packets. The number inside the green rectangles
are the TTL values of the packet.

Minimizing the Impact of Packet Buffering. In step 3, the flow is effectively
stopped while we wait to receive n flow packets. Because the amount of applica-
tion data is unpredictable, it is possible that FlowTrace intercepts less than n
packets and keeps waiting for the next data packet to arrive. This can seriously
affect the throughput, RTT, and congestion control mechanisms of the applica-
tion. Therefore, we choose a small inter-packet-arrival timeout, tipa = 1, 000µs,
to ensure that FlowTrace does not wait and hold the flow packets for too
long while constructing RPTs. When FlowTrace receives a flow packet in user-
space, it sets up a timer of tipa for receiving the next flow packet. Upon the
arrival of the next packet, FlowTrace resets the timer.

In the event that timer expired, FlowTrace decides to not generate the RPT
and instead just reconstructs and sends the intercepted flow packets to recover
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Fig. 3. Emulab topology configurations for our evaluation of the performance of both
pathneck and FlowTrace. The bottleneck hops in both Fig. 3(a) and (b) are high-
lighted. (Color figure online)

the flow. This way FlowTrace ensures that the flow RTT and congestion con-
trol mechanisms are not significantly affected as we will demonstrate in Sect. 4.3.

4 Evaluation

We now evaluate the implementation of pathneck on FlowTrace in a con-
trolled testbed environment for different network conditions. Specifically, we
want to see how closely the measurements done using pathneck implemented
on FlowTrace agree with the measurements done using pathneck. Emulab
[23] allows us to test and compare the measurements of the two against known
traffic workloads in a controlled testbed environment.

To this end, we create a linear network topology in Emulab as shown in
Fig. 3 similar to that studied in [10]. Our network consists of a sender and a
receiver machine, connected to each other via a series of intermediate routers.
In our evaluation, we evaluate the performance of both pathneck and Flow-
Trace in “two-bottlenecks scenario” and “three-bottlenecks scenario” as shown
in Fig. 3(a) and (b) respectively.

In addition to the routers along the path from the sender to the receiver
machine, we generate background traffic as well, across the network as shown in
Fig. 3. The background traffic comprises of two kinds of flows, (1) the background
flow from the source machine to the destination machine, and (2) the hop-by-
hop cross-traffic flows that traverse the links between the intermediate routers.
In our setup, we use iPerf to set up bandwidth-constrained TCP flows as the
hop-by-hop cross-traffic flows. On the other hand, we set up a large file transfer
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(a) Two bottlenecks (b) Three bottlenecks

Fig. 4. Comparison of gap values reported by pathneck and FlowTrace across and
end-to-end network without cross traffic in a controlled emulab testbed.

between a web server at the sender machine and a wget client at the receiver
machine as the background flow. Note that since FlowTrace leverages ongoing
traffic to construct RPTs and conduct measurement, we configure it to leverage
the background flow from source machine to the destination machine in our
experiments. In particular, each RPT constructed by FlowTrace is composed
of n = 10 payload packets, intercepted from the background flow, and n = 15
TTL-limited probe packets. Lastly, we configure the link characteristics such as
link delays and link bandwidths, along the path, using commodity Linux utilities
such as tc and netem to create the aforementioned testbed scenarios.

4.1 Minimal Cross Traffic

We first consider the “bare-bones” scenario where there is minimal cross traffic
along the links in the network and the choke points and bottlenecks are primarily
dictated by the change in link capacities along the end-to-end path. This scenario
is ideal for pathneck, as the RPTs are affected only by the capacity of the links
along the path without any interference from the cross traffic, making it easier
to identify choke points and locate bottleneck. To this end, we configure the
hop-by-hop cross traffic across all the links in Fig. 3 to be only 0.01 Mbps.

Figure 4 plots the median gap values along with the standard deviation (for 15
runs each), across the hops in the end-to-end path reported by both pathneck
and FlowTrace for both “two-bottlenecks” and “three-bottlenecks” scenarios.
We note that both pathneck and FlowTrace report similar gap values across
the hops for both scenarios. For instance, FlowTrace exhibits a gap value
increase of 2.41 ms and 8.05 ms, whereas pathneck exhibits a gap value increase
of 2.59 ms and 8.27 ms in gap values at hops 2 and 3, where the link capacities
decrease by 50 Mbps and 20 Mbps respectively, in Fig. 4(a). On the other hand,
FlowTrace exhibits a gap value increase of 0.77 ms, 0.97 ms, and 1.95 ms,
whereas pathneck exhibits a gap value increase of 0.62 ms, 1.0 ms, and 1.88 ms
in gap values at hops 3, 6, and 8, where the link capacities decrease from 100
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(a) Two bottlenecks (b) Three bottlenecks

Fig. 5. Comparison of gap values reported by pathneck and FlowTrace across and
end-to-end network with cross traffic in a controlled emulab testbed.

Mbps to 80 Mbps, 60 Mbps, and 40 Mbps respectively, in Fig. 4(a). All in all,
our results show that both pathneck and FlowTrace largely agree with one
another in terms of reported gap values for various network configurations given
that cross-traffic is minimal—which has been shown to be largely the case across
the Internet in prior literature [10].

4.2 With Cross-Traffic

We now evaluate the impact of cross-traffic along the links in the end-to-end
path, on the gap values reported by both pathneck and FlowTrace. To this
end, we consider the impact of forward (upstream) cross-traffic—the downstream
links do not experience any cross-traffic1. Note that ideally, in this scenario,
the returning ICMP messages from each hop should be received by the sender
machine without experiencing any interference from cross-traffic. In this case,
we configure the hop-by-hop iPerf clients to generate cross-traffic equal to 5%
of the corresponding link capacities.

Figure 5 plots the median gap values along with the standard deviation (for
15 runs each), across each hop in the end-to-end path as reported by both path-
neck and FlowTrace for both “two-bottlenecks” and “three-bottlenecks” sce-
nario. We again note that both pathneck and FlowTrace report similar
gap values across the hops in the end-to-end path. For instance, FlowTrace
exhibits a gap value increase of 2.38 ms and 9.16 ms, whereas pathneck exhibits
a gap value increase of 2.55 ms and 8.04 ms in gap values at hops 2 and 3, where
the link capacities decrease by 50 Mbps and 20 Mbps respectively, in Fig. 5(a).
We observe similar pattern for the “three-bottlenecks” scenario in Fig. 5(b). We

1 Hu et al. [10] reported that reverse path effects may impact the performance of
pathneck as they may perturb the gaps between the ICMP response messages on the
way back. Our goal is that FlowTrace performs well when pathneck performs well.
Therefore, we do not evaluate the impact of reverse path effects on the performance
of FlowTrace in this work for brevity.
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do note that the forward cross-traffic results in significantly higher variance as
compared to the scenarios without cross-traffic, especially for the hops farther
away from the sender machine in both scenarios in Fig. 5. For instance, the
standard deviation for FlowTrace increased from 0.05 ms at hop 1 to 2.01 ms
at the last hop, whereas the standard deviation for pathneck increased from
0.23 ms at hop 1 to 2.31 ms at the last hop in Fig. 5(a). This is because the error
in gap values accumulates as the packets traverse the network.

4.3 Latency Overhead

Fig. 6. Latency overheads involved in
FlowTrace perceived by the application.

Since FlowTrace leverages applica-
tion flows to construct RPTs and con-
duct measurement, we evaluate the
impact of FlowTrace on the latency
experienced by the application flows.
Specifically, since FlowTrace buffers
and “respawns” the application pack-
ets in the user-space, we report the
additional latency each application
packet experienced by the application
flow for different values of the inter-
arrival delay threshold, tipa, in Fig. 6.
As expected, we observe a piece-wise
linear pattern in Fig. 6. This is because the first packet generated by the appli-
cation, when intercepted by FlowTrace, has to be buffered all the while Flow-
Trace waits for more application packets. On the other hand, as soon as Flow-
Trace received enough application packets, it creates a RPT and transmits it on
the wire, thereby adding minimal latency for the last application packet in the
RPT.

Note that this overhead is primarily dictated by tipa and traffic characteristics
of the application as discussed in Sect. 3.2—the higher the value of tipa, the longer
the packets can potentially be buffered and therefore, the higher the overheads
in Fig. 6. This may result in FlowTrace affecting the latency characteristics—
such as RTT and jitter—perceived by the application. In our evaluation, from
Fig. 6, we observe that an application flow may experience an inflation of at
most 1.44 ms increase in application perceived latency, for tipa = 1 ms, when
leveraged by FlowTrace to conduct measurements. This overhead decreases
to 0.75 ms for tipa = 0.25 ms, because FlowTrace waits for a shorter period
of time for application packets before releasing the buffered packets without
constructing the RPT. To summarize, these latency overheads are dictated by
the traffic patterns of the underlying application—burst of packets generated by
the application may result in FlowTrace having to wait for a lesser amount
of time as compared to spaced out traffic patterns.
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5 Related Work

Prior literature has proposed various tools and techniques to measure path per-
formance in terms of metrics such as available bandwidth [4,11,13,25,28], bot-
tleneck location [1,10], and loss rates [26]. However, most of these tools can only
perform measurement out-of-band.

Few existing works adopted in-band measurement paradigm. Prior research
has proposed different approaches such as paratrace [7], Service traceroute [21],
and TCP Sidecar [27] to map Internet paths more effectively. These tech-
niques rely on embedding TTL-limited measurement probes alongside the non-
measurement application traffic, evading firewalls and NATs, and increasing the
coverage of measurement systems across the Internet. Papageorge et al. proposed
MGRP [24]—an in-kernel service that allows users to write measurement algo-
rithms which are subsequently implemented by piggybacking application data
inside probe traffic to minimize overheads and lower the impact of conduct-
ing measurements on competing application traffic. However, MGRP requires
changes to the kernel at both the client- and the server-side machines, making
it difficult to deploy at a large scale. In the similar vein, Wang et al. proposed
minProbe [29]—a middlebox architecture that used application network traffic
as probe traffic to conduct measurements such as available bandwidth by modu-
lating packet transmissions with high fidelity. However minProbe requires spe-
cialized hardware and physical access to both end-points, which is often hard to
deploy.

QDASH [20] integrates pathload [13] into adaptive streaming flows. It
reshapes video data packets into different sending rates to detect the highest
video bitrate the network can support. However, QDASH can only obtain end-
to-end available bandwidth information. It cannot locate the bottleneck on the
path. In this paper, we leverage application traffic to deploy pathneck, locat-
ing choke points along the path and facilitate the measurements of bandwidth
characteristics of the network at a large scale.

6 Conclusion

We presented FlowTrace, an active measurement framework that conducts
in-band network measurements by piggybacking application data. We showed
that FlowTrace can transparently create recursive packet trains to locate
bandwidth bottlenecks with minimal impact on application performance. Flow-
Trace not only significantly reduces the overhead of active measurements but
can also be readily deployed in user-space without needing kernel modifications
or specialized hardware. The experimental evaluation showed that pathneck’s
implementation of using FlowTrace as well as the original pathneck imple-
mentation can both accurately locate bandwidth bottlenecks. As part of our
future work, we are interested in extending FlowTrace to implement other
active bandwidth measurement techniques. Furthermore, we aim to study the
impact of FlowTrace on the performance of different types of applications,
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such as realtime video and web. We are also interested in large-scale deployment
of FlowTrace to conduct Internet measurements in the wild.
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Abstract. Recently, as various detection approaches of malicious
domains and malware are proposed, the malware which connects to its
command and control (C&C) server using techniques like domain flux
can be identified effectively. Therefore, cybercriminals seek new alterna-
tive methods and discover that DNS based on blockchains can be used
to connect C&C servers. Because of the distributed ledger technology,
domain names resolved by blockchain DNS, called blockchain domain
names (BDNs), are of inherent anonymity and censorship-resistance. We
analyzed the work mechanism of this new type of malware. In order to
detect malicious BDNs, we propose a prototype system, named Leopard,
which analyzes DNS traffic patterns and resource records of BDNs. To
our best knowledge, we are the first to propose the automatic detection
of malicious BDNs. In Leopard, we extracted 17 features from collected
traffic and distinguished between malicious BDNs and domains operated
by generic and country-code top-level domains registries from the Alexa
top 5000 using a random forest model. In our experiments, we evalu-
ate Leopard on a nine-day real-world dataset. The experimental results
show that Leopard can effectively detect malicious BDNs with an AUC
of 0.9980 and discover 286 unknown malicious BDNs from the dataset.

Keywords: BDN-based malware · Malicious domain · Random forest

1 Introduction

Modern botnets adopt IP flux or domain flux techniques to connect to their com-
mand and control (C&C) servers [2,3]. Recently, cybercriminals rely on a new
type of domain names which have special top-level domains (TLDs) beyond the
namespace of the root zone authorized by Internet Corporation for Assigned
Names and Numbers (ICANN) and the domain names can not be resolved
by standard DNS servers. We named them blockchain domain names (BDNs).
BDNs leverage a new decentralized domain name system (DNS) to map domain
names to IP addresses. The new decentralized DNS stores resource records on
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the blockchains instead of zone files, and we call it blockchain DNS (BDNS).
Because of the distributed ledger technology of blockchains, BDNs are of the
inherent anonymity and censorship-resistance.

The abuse of inconspicuous BDNs is increasingly popular. Over 106,000
BDNs in total had been registered until 2013 [6] and now the number has
exceeded 140,000 [26]. BDN-based malware issue queries about BDN using DNS
protocol, to DNS servers which provide BDNs resolution service. However, only
a few DNS servers are providing BDNs resolution service1, so IP addresses or
domain names of the DNS servers usually are hard-coded in BDN-based mal-
ware. At present, some cybercriminals have already adopted BDNs. For instance,
security researchers of FireEye shared the analysis of a Neutrino sample which
uses a BDN to host the C&C server. More miscreants add the feature of support-
ing BDNs into their malware [5]. Therefore, BDN-based malware is becoming a
real threat to Internet users.

In this paper, we propose a novel system, called Leopard, which distinguishes
between malicious BDNs and domains operated by generic and country-code
TLDs registries from the Alexa top 5000. Leopard uses the supervised learning
algorithm, specifically the random forest, and automatically detects BDNs of
C&C servers in a real-world network environment based on the extracted 17
features. We implemented a prototype system and evaluated it on the large
volume of DNS traffic obtained from an Internet service provider (ISP). Leopard
can identify known and unknown malicious BDNs.

This paper makes the following contributions:

– To our best knowledge, we present the first prototype of the automatic detec-
tion of malicious BDNs, named Leopard, which analyzes the large volume of
DNS traffic in a real-world network environment.

– Leopard has a great performance on the real-world datasets, reaching a mean
AUC of 0.9945 in the cross-validation phase and reaching an AUC of 0.9980 on
the testing dataset. Also, Leopard discovered 286 unknown malicious BDNs.

– We published two datasets2: (1) The set of malicious BDNs that are identified
by Leopard or labeled manually by us; (2) The list of DNS servers providing
BDNs resolution service. It is the first time to collect and publish information
about BDN-supported infrastructures.

The remainder of the paper is organized as follows. In Sect. 2 we introduce the
background related to BDNS and BDNs. We elaborate on an overview of Leop-
ard, the properties of datasets and the features we selected in Sect. 3. Section 4
presents the results of experimental evaluations. Then, we discuss the limita-
tions of Leopard in Sect. 5 while the related works are illustrated in Sect. 6. We
conclude this paper in Sect. 7.

1 In the remainder of the paper, DNS servers we discuss refer to the servers which
provide BDNs resolution service.

2 The link of the public datasets is https://drive.google.com/open?id=1YzVB7cZi
MspnTAERBATyvqWKGj0CqGT.

https://drive.google.com/open?id=1YzVB7cZiMspnTAERBATyvqWKGj0CqGT
https://drive.google.com/open?id=1YzVB7cZiMspnTAERBATyvqWKGj0CqGT
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2 Background

In this section, we briefly introduce the background of BDNS. Then, the work
mechanism of BDNS will be presented. At last, we show a real-world case that
a BDN hosts the C&C server of a malware sample.

Blockchain DNS. In recent years, some cryptocurrency companies apply the
blockchain technology to domain resolution and build the public and decentral-
ized BDNS. It is different from the standard DNS that we daily use. The standard
DNS resolves domains ending with TLDs authorized by ICANN and users can
obtain the ownership of the domain through the whois service. However, BDNS
has the special TLD namespaces (shown in Table 1) and there is no informa-
tion about the ownership of a BDN and hence no whois service you can query.
The query process of the standard DNS includes the recursive query and the
iterative query. The resolution process of a domain is hierarchical. However, the
resolution process of a BDN is quite different, which we discuss later. Besides,
the blockchain technology ensures that no one can tamper with resource records
except the domain owner. Hence, BDN is of some inherent properties: anonymity,
privacy, and censorship-resistance [1,6] and BDN provides cybercriminals with
a reliable method to host malicious content.

Table 1. A part of organizations which has the BDN-related services.

Organizations TLDs DNS servers

Namecoin [17] .bit –

Emercoin [18] .coin .emc .lib .bazar seed1.emercoin.com

seed1.emercoin.com

OpenNIC .bbs .chan .cyb .dyn ns1.any.dns.opennic.glue

.geek .gopher .indy ns3.any.dns.opennic.glue

.libre .neo .null .o ns1.ca.dns.opennic.glue

.oss .oz .parody .pirate . . .

BitName – dns1.bitname.ru

dns2.bitname.ru

DNSPod – a.dnspod.com

b.dnspod.com

c.dnspod.com

BDNS Resolution Process. Here we discuss BDN resolution. The ways
of BDN resolution can be divided into Local BDNS and Third-party BDNS.
(1) Local BDNS: This method requires command-line usage and downloading
blockchain data in advance. In other words, the blockchain data is a large ver-
sion of the ‘hosts’ file. If a client queries A records of example.bit using the
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command lines, it will look up the local data without generating DNS traffic.
(2) Third-party BDNS: This method leverages third-party DNS servers that
provide BDN resolution service and it can be implemented in three ways, web
proxy, browser plugin, and public DNS. The first two ways use the configured
proxy server and the special plugins to forward DNS queries to the specific DNS
servers. The third way means setting the third-party DNS servers as the default
DNS resolver. Because of the flexibility and practicality of malware, BDN-based
malware usually directly issue queries to the third-party DNS servers.

Real-World Case. In this case, we obtained a sample of AZORult family from
Abuse.ch [7]. The sample ran in the ThreatBook Cloud Sandbox [8]. We analyzed
the DNS traffic of the sample and found that the IP addresses of the DNS servers
queried by the malware and the BDN of the C&C server were hard-coded. In
Fig. 1, the malware failed to resolve voda.bit at 151.80.147.153, and then sent
DNS queries to 91.217.137.44 where the domain was successfully resolved. We
manually validated the records of voda.bit with DiG [9] and discovered that
BitName [10] was an organization providing BDNs resolution service.

Fig. 1. One sample of AZORult family issues DNS queries (voda.bit) to the third-party
DNS server (dns.bitname.ru).

3 Automatic Detection

In this section, we first provide a high-level overview of the malicious BDNs
detection system Leopard and then elaborate on the datasets used in the exper-
iments. At last, we describe the features used to distinguish malicious BDNs
and benign ordinary domain names (ODNs) which refer to domains operated by
generic TLDs and country-code TLDs registries.

3.1 Overview

In Fig. 2, Leopard consists of three main modules: the Data Collection module,
the Data Processing module, and the Malicious BDNs Discovery module. We
discuss the functions of these modules and how they collaborate.
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Fig. 2. The workflow of Leopard.

Data Collection. We collected and analyzed the traffic generated by BDN-
based malware3 using ThreatBook Cloud Sandbox. We noted that the malware
iteratively queried the hard-coded DNS servers. Unfortunately, most of BDNs in
the collected traffic cannot be resolved correctly, because they might be blocked
by DNS servers like OpenNIC or abandoned by cybercriminals. We want to
capture DNS traffic generated by the active BDN-based malware in a real-world
network environment. First, we collected 169 BDNs from 400 captured traffic
files of the BDN-based malware. Then, we gathered NS records of the 169 BDNs
with DiG. Finally, combined the DNS servers in the captured traffic with the NS
records, we built a name server list (NS-list), including 152 servers. We captured
DNS packets which matched the IPs in the NS-list assisted by the ISP and
dumped the packets as DNS logs.

Data Processing. Most of the servers in the NS-list provide both BDNs and
ODNs resolution services. We filtered out the ODNs which were after the top
5000 in the Alexa [15], so as to eliminate the influence of suspicious ODNs such
as algorithmically generated domains. The rest of DNS logs in the epoch E (e.g.
1 day) are aggregated in the designed format. Furthermore, we found that about
60.02% of BDNS requests are routed to the servers of OpenNIC and the servers
of OpenNIC are owned by volunteers [14]. We had successfully set up a server
of OpenNIC and stayed online for a week. Therefore, these servers are unstable
and they probably resulted in the failure of BDNs resolution. We had to look
up the original data of the BDNs that failed in resolution. Finally, we extracted
the features for the downstream training and classification tasks.

Malicious BDNs Discovery. In this module, we trained different classifiers
based on different techniques, the support vector machine, the random forest, the

3 The samples of BDN-based malware are obtained from Abuse.ch.
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neural network, and the logistic regression. After comparing the performances
of four classifiers, the best one was tested on real-world datasets. At last, the
detection result was given by Leopard.

3.2 Dataset

The DNS traffic was provided by the ISP located in China. We collected 9-day
traffic (from July 29 to August 6, 2019) and observed a total of 13035 IPs. The
raw packets were represented by the necessary fields like time, IP, port, etc.
Take the D1

4 as an example, we elaborate on the details of data processing. The
processed results are summarized in Tables 2 and 3.

Filter. Because the DNS servers also ran ODNs resolution service, we considered
that DNS traffic included some suspicious ODNs. Meanwhile, compared with
ODNs, it is difficult to verify whether a BDN is benign. Hence, to build benign
samples, we removed ODNs which ranked after the top 5000 in the Alexa list [15].
It reduced about 68.44%–78.75% volume of daily traffic.

Aggregation. We designed an aggregation format of DNS logs. The final aggre-
gated result is formatted as follow:

(domain name, requested IP ) : src list, rdata set

src list = [(IP1, port1, time1), (IP2, port2, time2), . . . )]
rdata set = {(record1, ttl1), (record2, ttl2), . . . }

and where requested IP is the destination IP of the DNS queries,
(IP i, porti, timei) are respectively the source IP, the source port, and the times-
tamp of the DNS queries, (recordi, ttli) are respectively the resource records
and the corresponding time-to-live (TTL) values of the DNS responses. All the
packets which are related to the specific domain name and server, are formatted
into one record. The schema provides a server-side view to observe the behavior
of clients who have queried the domain name.

Label. We assumed the ODNs which ranked in the top 5000 in the Alexa list
were benign. As for malicious BDNs, a BDN is regarded as the malicious if
it satisfied any of the following conditions: (1) The domain is in the blacklist.
We built up a BDN blacklist, including 169 BDNs, grounded upon the traffic
of the BDN-based malware; (2) The domain is blocked by the DNS servers.
We noted that some malicious BDNs were blocked by a part of DNS servers like
OpenNIC5; (3) VirusTotal (VT) [16] has detected the domain. In a total of 13458
BDNs, 306 BDNs are blocked by the servers and 6028 BDNs are detected by
VT. Unfortunately, some BDNs are still unlabeled, due to non-existent domain
(NXDomain), server-failure responses and not be detected by VT.

4 We named July 29 dataset as D1, July 30 dataset as D2, and so on.
5 If BDNs are blocked by OpenNIC, the servers responded the A records of the special

IPs such as 192.168.0.1, 0.0.0.0, 127.0.0.1, and 192.0.2.1.
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Table 2. The summary of the daily datasets.

Dataset # Packets # Remaining
Packets

# Blockchain
Domains
Packets

# Aggregated
Records

D1 38,258,120 10,431,757 215,095 104,132

D2 32,269,248 9,235,243 818,722 191,564

D3 29,418,020 8,486,445 413,467 139,957

D4 33,177,324 8,938,011 398,898 136,488

D5 33,195,292 10,477,746 390,216 102,825

D6 26,940,188 7,770,275 383,729 132,534

D7 25,767,291 6,010,492 388,978 118,139

D8 25,370,998 6,227,078 390,026 124,657

D9 30,977,692 6,582,441 316,279 134,590

Table 3. The datasets for training and testing.

Dataset # Benign Records # Malicious Records # Aggregated Records

Dtrain val 329,850 709 330,559

Dtest 147,879 160 148,039

Dunknown – – 403

Data Supplement. Blockchain explorer6 is a type of software which lets users
browse the information of blocks using browsers like Chrome, Firefox, etc. Lever-
aging blockchain explorers, we found out the latest resource records of NXDo-
mains, blocked domains and domains getting server-failure responses. Then, we
updated the rdata set of these BDNs.

In practice, we excluded the domains which were queried only once in epoch
E and removed the ODNs which lacked the resource records. Then, we combined
the data from the first day to the sixth day as Dtrain val, and merged the rest of
them as Dtest. Moreover, all the unlabeled records were organized as Dunknown.

3.3 Features

After analyzing the datasets, some notable characteristics were extracted to
distinguish the malicious BDNs from the benign traffic. The features can be
divided into three categories: the time sequence features, the source IPs features,
and the resource records features (shown in Table 4).

Time Sequence Features. When BDN-based malware do not receive com-
mands, they only issue DNS queries in low frequency to keep in touch with C&C

6 The explorer of Namecoin is https://namecha.in and the explorer of Emercoin is
https://explorer.emercoin.com/nvs.

https://namecha.in
https://explorer.emercoin.com/nvs
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Table 4. Feature selection

Category Feature Feature domain Novelty

Time Sequence TimeDiffMin (f1) Real New

TimeDiffMax (f2) Real New

TimeDiffMedian (f3) Real New

TimeDiffStd (f4) Real New

PktNumPerMinMin (f5) Real New

PktNumPerMinMax (f6) Real New

PktNumPerMinMedian (f7) Real New

PktNumPerMinStd (f8) Real New

Source IP SrcIPNum (f9) Integer [27]

ASNNum (f10) Integer [22]

CountryNum (f11) Integer [27]

Resource Records ARecordNum (f12) Integer New

NSRecordNum (f13) Integer New

TTLMin (f14) Integer New

TTLMax (f15) Integer New

TTLMedian(f16) Integer New

TTLStd(f17) Real [27]

servers. In comparison, the access of benign ODNs is more consistent. To vector-
ize this information, we calculated the statistics of the time difference between
the adjacency packets (f1–f4). Also, BDN-based malware always act simultane-
ously. When the BDN-based malware locate their C&C servers, the frequency
of accessing malicious BDNs increases rapidly. Thus, the features (f5–f8) were
considered to quantify the information.

Source IP Features. Compared with a benign ODN query, a malicious BDN
query has fewer unique source IPs, and the geographical distribution of the
source IPs of the malicious BDNs is limited. As such, we counted the number
of the unique source IPs for each record (f9), the number of the deduplicated
autonomous system numbers (ASNs) which IPs belong to (f10), and the number
of the countries where IPs are located (f11).

Resource Records Features. We noted that there were some differences in
resource records between common ODNs and malicious BDNs. The number of
resource records of a benign ODN is usually more than the number of malicious
BDN’s(f12, f13). Besides, as for common ODNs, TTL values usually are set to
relatively small values, because of flexibly updating business. Conversely, mis-
creants prefer to set longer TTLs for resource records, so malicious BDNs can
cause a long time effect (f14–f17). However, the dataset is biased. TTL values of
popular domains are relatively short (as later discussed in Sect. 5).
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4 Evaluation

4.1 Cross-Validation on Dtrain val

We used the scikit-learn library [19] to implement four popular classifiers includ-
ing the support vector machine (SVM) with a linear kernel, the random forest,
the neural network, and the L2-regularized logistic regression. Then we trained
four classifiers on Dtrain val using 5-fold cross-validation. In order to keep the
dataset balanced, we randomly sampled 5000 records from benign records and
mixed them with all malicious records. In each round, we randomly selected one
fifth of the mixed data for validation and used the rest of them to train the
models.

The metric used to evaluate the model is the area under ROC curve7 (AUC).
The x-axis of the ROC curve is the false positive rate (FPR) and the y-axis is
the true positive rate (TPR). The TPR and the FPR are separately defined as
TPR = TP

TP+FN , FPR = FP
FP+TN .

Fig. 3. ROC curves of the different classifiers based on 5-fold cross-validation.

As Fig. 3 shows, the random forest classifier outperforms the other classi-
fiers. We noticed that the non-linear models (the random forest and the neural
network) are more suitable for this problem. Meanwhile, the malicious samples
account for about 12% in each round, which suggests that the random forest is
good at handling the unbalanced dataset [20]. In the experiment, the number
of trees used in the random forest is 370 and the maximum iterations of other
classifiers are 10000. The rest of the parameters are the default configurations.
In each round, the random forest reaches a TPR of 98% and the FPR is always
less than 1.5%. Thus, we selected the random forest as the detection model.

7 ROC curve is the receiver operating characteristic curve.
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4.2 Feature Analysis

We assessed the importance of each feature through the mean decrease impu-
rity [21] which is defined as follows:

MDI(Xm) =
1

NT

∑

T

∑

t∈T :v(st)=Xm

p(t)Δf(st, t) (1)

and where Xm is a feature, NT is the number of trees, p(t) is the proportion
of samples reaching node t, v(st) is the variable which is used to split st, and
f(st, t) is the impurity decrease measure (Gini index in our experiment). The
MDIs of our features are presented in Table 5. The result proves that the selected
features are effective. Also, it is worth to mention that the feature set of resource
records are most important (f12–f17), accounting for six in the top seven.

Moreover, we assessed the contribution of the different feature sets which
are shown in Table 4 to the TPR. We compared the performances of the random
forest classifier which used different combinations of the feature sets. The baseline
classifier used all the features. In Table 6, the classifier using the feature set of
resource records reaches an AUC of 0.9935 and exceeds the classifiers using
only the feature set of source IP and of time sequence. It also illustrates that
the feature set of resource records are the most important among the three
independent feature sets.

Because the classifier using the feature set of source IP performs poorly, we
inspected the nine-day dataset and found that the numbers of unique source IPs
in ODNs records (NODN ) vary from 1 to 339, but the proportion of the numbers
which are less than 10 (PODN ) is 95.64% and the mean value of the numbers
(MODN ) is 1.994. For malicious BDNs, the NBDN range from 1 to 188, the
PBDN is 93.51% and the MBDN is 2.185. It is obvious that unpopular ODNs
accounts for a large part. Hence, the feature set of source IP is not so suitable
to distinguish between malicious BDNs and benign ODNs.

Table 5. MDIs of the features.

Rank Feature Score Rank Feature Score Rank Feature Score

1 f16 0.23220529 7 f13 0.02745297 13 f7 0.01823298

2 f15 0.21952513 8 f9 0.02673914 14 f1 0.01623537

3 f14 0.21214118 9 f8 0.02664864 15 f3 0.01490099

4 f12 0.05541738 10 f11 0.02521994 16 f10 0.01249088

5 f17 0.03356060 11 f6 0.02384570 17 f5 0.00369699

6 f2 0.02831889 12 f4 0.02336793

As for the combined feature sets, the results of the three groups are extremely
close and also close to the baseline. A probability is the size of Dtrain val is small
and most of the noises have been filtered out by data processing.
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Table 6. AUCs of the classifiers using the different combinations of the feature sets.

Combinations AUC

All Features 0.9945

Time Sequence 0.8850

Source IP 0.7920

Resource Records 0.9935

Resource Records + Source IP 0.9944

Resource Records + Time Sequence 0.9944

Time Sequence + Source IP 0.9944

4.3 Evaluation on Dtest

We evaluated Leopard on the Dtest which simulates the real-world situation.
Leopard predicted the labels of all records in the Dtest using the trained classifier.
In Fig. 4, Leopard reaches an AUC of 0.9980. When the detection rate reaches
98.125%, the FPR is 1.010%. Thus, Leopard can accurately detect malicious
BDNs in the real-world network.

4.4 Evaluation on Dunknown

Some BDNs are unlabeled due to several reasons: (1) The BDN has already
expired and results in the NXDomain response. (2) The server does not provide
the BDNs resolution service anymore. (3) The malicious BDN is still active but
has not been discovered by vendors like VT.

Fig. 4. The AUC of Leopard on Dtest.

In order to identify unknown malicious BDNs, we trained the classifier on the
whole nine-day dataset. The trained classifier predicted the labels of the records
in Dunknown and reported 309 malicious records out of 403.
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To verify the results, we considered a series of rules: (1) Any of the historical
IPs of the BDN is malicious. (2) Any of the client IPs of the BDN is compro-
mised. (3) Any threat intelligence related to the BDN exists. If a BDN satisfies
one of them, we deemed it is malicious. We manually verified the IPs leveraging
VT and searched the threat intelligence using Google. All the reported records
were verified as malicious and the 309 records included 286 unique BDNs and 23
server IPs. However, it is strange that 271 BDNs which come from 87.98.175.85
are meaningless and look like randomly generated. The rest 15 BDNs are read-
able (presented in Table 7). Besides, all the BDNs from 87.98.175.85 are the
NXDomains, even not existed on the blockchains. We believe that cybercrimi-
nals may try to combine the domain generation algorithm (DGA) technique with
BDNs. Leveraging DGArchive [29], we confirmed that BDNs from 87.98.175.85
were generated by Necurs [30]. It suggests that Necurs is the known DGA family
that combines DGA technique with BDNs.

Table 7. Examples of the malicious BDNs.

BDNs from 87.98.175.85 BDNs from the other IPs

bafometh.bit goshan.bit

nenhqlbxxiewmflyckqa.bit thereis.null

gkgyrwtocxrkrixcxou.bit log.null

jjffpcvbsyayrluwidxo.bit ali2.null

lcqpwfvim.bit systemblink.bit

Besides, we found that most of the server IPs were located in Internet Data
Centers (IDC) (22 out of 23), which implied that most of the DNS servers were
virtual private servers (VPS). There are eight servers belong to AS37963 which
is operated by CNNICALIBABA-CN-NET-AP Hangzhou Alibaba Advertising
Co., Ltd., CN. It illustrates that virtual private servers of companies like Alibaba
are becoming vital infrastructures of botnets.

5 Discussion

Although Leopard has great performances in the experiments, the limitations of
the system still exist.

Leopard is designed for BDN-based malware. If the malware adopts other
techniques more than BDNs (e.g., the combination of BDNs and DGA), Leop-
ard may fail the detection. However, this upgrade of malware will increase the
attacker’s development cost. In response, we adopt the existing methods [2,4],
to complement the shortage of Leopard. Besides, an attacker who knows the
features we used to detect malicious BDNs, changes the strategies like sending
DNS queries in batches or spreading malware to a wider range of IP addresses,
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to bypass the system. However, it will increase the operational difficulty of BDN-
based malware. Furthermore, adding the resource records of malicious BDNs is
a low-cost way to evade the detection of Leopard. For instance, an attacker adds
the A record pointing to the backup C&C server or the NS record pointing to
other DNS servers, and the corresponding TTLs are set to short values. Although
Leopard might fail to detect it, meanwhile, it risks their backup C&C servers
and the innocent accomplices. In short, evading detection requires the meticu-
lous adjustment to simulate the behavior of benign ODNs, while the side-effects
are inevitable.

Also, the dataset we used is biased. We just randomly sampled 5000 records
from benign records corresponding to domains listed in Alexa top 5000. TTL
values of popular domains (Alexa top 5000) are short but in general the TTLs
in use range from as short as 5 min to one or two days for common domains [28].
The data processing and experiments need to be improved in the future.

Besides, lacking valid methods to label benign BDNs, we failed to collect
benign BDNs which should be very important samples and did not know how
many benign BDNs were active. Thus, it is unwise to filter out all domains using
TLDs that are not ICANN approved or filter all DNS packets that were sent to
the local resolver. Next, it is significant to collect benign BDNs to comprehen-
sively observe the current situation of BDN.

Leopard does not consider the features of domain name strings, merely
depending on the behavior of DNS traffic and the information of resource records.
If the features of other types of malicious domains are similar to the features of
BDNs, they may be detected by Leopard as well.

Unfortunately, the performance of Leopard mainly depends on the training
data, but the high-quality DNS traffic of BDNs is in shortage, which may weaken
the ability of Leopard. It is still a challenge that collecting the large volume
of the BDN traffic over the world. According to the NS-list, the DNS servers
are scattered and most of them are the virtual private servers of the different
companies. We deem that the survey on the passive DNS resources (e.g., Farsight
PDNS sharing program) of the different organizations is worth try.

6 Related Work

A wealth of researches has been conducted on detecting malware and malicious
domains. Some works focus on the error information (e.g., NXDomain and HTTP
errors) generated by malware [2,12,24], and others concentrate on DNS traffic
analysis [13,22,23]. Gu et al. detected botnets based on the clustering analysis
of network traffic of the bots [11] and Prasse et al. detected the HTTPS traffic
of malware communication [25]. However, there are few prior works related to
BDNs. Patsakis et al. discussed the threats of BDNS and mentioned that BDNS
provided botnets with a more stealthy way of C&C communication [31], but did
not propose a specific method to detect them. Then, the approaches that are
similar to Leopard will be discussed.
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Pleiades, FANCI. Antonakakis et al. [2] noted that most of the DGA-generated
domains would result in NXDomain responses and designed a DGA detection
system named Pleiades. Pleiades can detect known and unknown DGAs. Com-
pared with Pleiades, FANCI does not require tracking of DNS responses for
feature extraction and more efficient than Pleiades. In addition, FANCI was
evaluated on the malicious data generated by 59 DGAs.

Error-Sensor. Error-Sensor exploits the error intelligence of HTTP when mal-
ware fails to communicate with C&C servers. It can detect both compromised
servers and malicious servers, with a high detection rate (99.79%) and a low false
positive (0.005%) on the real-world enterprise network.

HTTPS-Based Method, BotMiner. Prasse et al. [25] proposed a detection
method of malware based on the analysis of HTTPS traffic. Leveraging the
features of domain names and packet heads, the system achieved a great result
on the collected dataset. However, this method is limited to the specific protocol.
BotMiner [11] can detect botnets on the campus network and it is a protocol- and
structure- independent detection. Compared with the HTTPS-based method,
BotMiner has greater generalizability.

7 Conclusion

In this paper, we analyze the working mechanism of the BDN-based malware and
are the first to propose an automatic detection of malicious BDNs. Leopard iden-
tifies malicious BDNs based on the features of DNS traffic and resource records
using the random forest. It distinguishes between malicious BDNs and domains
from the Alexa top 5000. In the experiments, we compared the performances
of the different classifiers and accessed the importance of the features. More-
over, Leopard has been evaluated on the real-world dataset. The experimental
results showed that Leopard can effectively detect malicious BDNs and discover
unknown malicious BDNs. Last but not least, we published two datasets: (1)
The malicious BDNs which manually labeled by us or identified by Leopard. (2)
The list of DNS servers which provide the BDNs resolution service.
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Abstract. Securing the Internet’s inter-domain routing system against
illicit prefix advertisements by third-party networks remains a great con-
cern for the research, standardization, and operator communities. After
many unsuccessful attempts to deploy additional security mechanisms
for BGP, we now witness increasing adoption of the RPKI (Resource
Public Key Infrastructure). Backed by strong cryptography, the RPKI
allows network operators to register their BGP prefixes together with the
legitimate Autonomous System (AS) number that may originate them
via BGP. Recent research shows an encouraging trend: an increasing
number of networks around the globe start to register their prefixes in
the RPKI. While encouraging, the actual benefit of registering prefixes
in the RPKI eventually depends on whether transit providers in the
Internet enforce the RPKI’s content, i.e., configure their routers to val-
idate prefix announcements and filter invalid BGP announcements. In
this work, we present a broad empirical study tackling the question: To
what degree does registration in the RPKI protect a network from illicit
announcements of their prefixes, such as prefix hijacks? To this end, we
first present a longitudinal study of filtering behavior of transit providers
in the Internet, and second we carry out a detailed study of the visibility
of legitimate and illegitimate prefix announcements in the global routing
table, contrasting prefixes registered in the RPKI with those not regis-
tered. We find that an increasing number of transit and access providers
indeed do enforce RPKI filtering, which translates to a direct benefit for
the networks using the RPKI in the case of illicit announcements of their
address space. Our findings bode well for further RPKI adoption and for
increasing routing security in the Internet.

Keywords: Internet security · Routing · RPKI · BGP

1 Introduction

The inter-domain routing system of the Internet continues to suffer from
major routing incidents, including accidental route leaks causing widespread
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disruptions [28], and intentional prefix hijacks for malicious purposes [8,14,29].
At the heart of the problem lies BGP’s lack of mechanisms for route authenti-
cation: a network that receives a route advertisement from a neighbor has no
easy means to validate its correctness. The RPKI [20] represents one of the most
recent attempts to increase BGP security, providing networks in the Internet
with a trustworthy database that maps BGP prefixes to the Autonomous Sys-
tem (AS) number that is authorized to originate them. The RPKI is backed
by strong cryptography, with the Regional Internet Registries (RIRs) serving as
trust anchors. Networks can leverage this data to validate that incoming BGP
announcements point to the correct origin AS. Recent research shows an encour-
aging trend of both increasing global registration of prefixes in the RPKI (17%
of routed prefixes are registered in the RPKI as of September 2019), as well
as increasing data quality of actual RPKI records [11]. The RPKI has thus the
potential to finally provide a universally trusted route origins database, a major
building block to greatly improve routing security.

While encouraging, we point out that increasing registration of prefixes in the
RPKI only represents a first step towards securing BGP. The eventual benefit
of RPKI registration depends on whether the networks of the Internet enforce
the RPKI’s contents, i.e., drop invalid announcements and hence do not prop-
agate them to their neighbors. Recently, AT&T, a major transit ISP, publicly
announced that they started filtering BGP announcements that are invalid as
per the RPKI [2], suggesting increasing acceptance and trust by major transit
providers in the RPKI. However, besides such anecdotal evidence, we know little
about current levels of RPKI enforcement in the Internet and, as of today, have
no way to assess the resulting benefits of RPKI registration.

To tackle these questions, we empirically study to what degree networks in the
Internet filter BGP announcements based on RPKI validation and show to what
extent registration in the RPKI benefits networks in situations in which RPKI
is needed the most: instances of conflicting prefix announcements in the global
routing table, such as those caused by misconfiguration and prefix hijacking. Our
key contributions are as follows:

• Leveraging historical snapshots of the global routing table and validated
RPKI records, we develop a passive method to detect filtering of RPKI
invalid prefixes for IPv4 and IPv6 and study filtering deployment over time.
While RPKI filtering was virtually nonexistent just two years ago, RPKI
enforcement has increased substantially: we found that—as of January 2020—
approximately 10% of the networks we considered, including major transit
providers, filter invalid announcements.

• We study the effect of RPKI filtering on global prefix reachability in the case
of conflicting announcements: Multiple-Origin AS (MOAS) conflicts, and sub-
prefix announcements, contrasting our findings with a baseline of non-RPKI-
registered prefixes. We find that, already as of today, RPKI filtering starts
to show effect in real-world cases: in all considered scenarios, registration of
prefixes in the RPKI results in limited reachability of conflicting and invalid
(potentially illicit) prefix announcements in the global routing table.
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Our findings are encouraging for the research, standardization, and operator
communities. Increasing RPKI enforcement starts to translate to a direct benefit
for a network registering its prefixes. Our results bode well for increasing routing
security in the Internet, and our metrics allow for easy assessment of current
levels of filtering and the resulting benefit in conflicting-announcement scenarios.
Our study is entirely based on publicly available datasets, allowing both for
reproducibility, and for continuous monitoring.

2 Background and Datasets

2.1 Related Work

The IETF has devoted substantial efforts to develop, and document in detail, the
RPKI over the last years [9,15–17,19–21,24]. Recently, the research community
started to measure RPKI deployment in the Internet. Chung et al. provide both
an accessible overview of today’s RPKI deployment and an extensive study of
RPKI registration and usage patterns. They find increasing registration of pre-
fixes and networks in the RPKI, and overall higher data quality of RPKI records,
resulting in lower numbers of RPKI-invalid prefixes caused by misconfiguration
by the respective operators [11]. Iamartino et al. had previously measured prob-
lems with RPKI registered ROAs and the potential impact that validation and
filtering of RPKI-invalid announcements could have in production [18].

To the best of our knowledge, only two previous academic studies, using two
different methods, touched upon the adoption of RPKI-invalid filtering, finding
only negligible RPKI filtering in 2016 and 2017. Gilad et al. analyze a month of
BGP RIB dumps from 44 ASes [13]. Their passive approach uses all the ASes
but the last hop in the AS path of RPKI-valid and -invalid announcements to
identify ASes filtering invalid announcements. They find that, in July 2016, only
3 of the top 100 ASes (by customer cone size) were enforcing RPKI-invalid fil-
tering. Reuter et al. instead, actively advertise RPKI-valid and -invalid prefixes
of address space under their control [26]. They infer which ASes filter RPKI-
invalid announcements based on the propagation path of their announcements,
finding only 3 ASes filtering in 2017. Measuring RPKI filtering also caught atten-
tion from the operator community: Cartwright-Cox uses active measurements to
infer filtering based on presence or absence of ICMP responses from probed IP
addresses in RPKI-valid and -invalid prefixes [10].

Our study complements and extends prior work: our passive method to detect
filtering of RPKI-invalid announcement focuses on networks that provide a direct
and full feed to BGP collectors, which allows for definitive and detailed assess-
ment of RPKI filtering of these networks. Our study is longitudinal, revealing a
strong uptake in RPKI filtering deployment in recent years. Most importantly,
however, we present a first-of-its-kind assessment of RPKI enforcement and its
actual impact and benefit in situations in which the RPKI is needed the most:
instances of conflicting prefix announcements in the global routing table.
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2.2 RPKI and BGP Datasets

To study the visibility of RPKI-valid and RPKI-invalid announcements in the
global routing table, we leverage the following datasets.

Longitudinal BGP Dataset: To study long-term trends of RPKI filtering
behavior, we download and process—using CAIDA BGPStream [25]—snapshots
of the routing tables (RIB dumps) of all RouteViews and RIPE RIS collectors
on the first day of each month1 from April 1, 2017 until January 22, 2020.

Fine-Grained BGP Dataset: To assess the visibility of RPKI-invalid
announcements in detail, we process all the BGP updates generated over the
month of September 2019 by RouteViews and RIPE RIS collector peers’ and we
compute 5-min snapshots of their routing tables using CAIDA BGPStream [25].

RPKI Data: We take daily snapshots of validated Route Origin Authorizations
(ROAs) for every day in September 2019, made available through the RIPE NCC
RPKI validator [5]. For longitudinal analysis, we instead leverage the historical
dataset of validated ROAs made publicly available by Chung et al. [11], selecting
snapshots that align with our BGP dataset. A validated ROA consists of a prefix
and the AS number authorized to originate that prefix in BGP according to
cryptographically signed records in the RPKI. ROAs may include a maxLen
attribute specifying up to which prefix length the de-aggregation of the ROA
prefix is to be considered valid.

2.3 Preprocessing

From BGP Snapshots to Prefix-Origin Pairs: As a first step, we remove
bogon prefixes from our BGP dataset, these include IETF reserved address space,
and portions of address space not allocated by IANA to RIRs [3]. We further
remove any IPv4 prefixes more specific than /24 or less specific than /8 (more
specific than /64 or less specific than /8 for IPv6). Then we extract, for each
BGP snapshot (both RIB dumps and those we derive from updates), all visible
prefixes together with the advertised origin AS, obtaining prefix-origin pairs.2

For each prefix-origin pair, we save the set of feeders—that is, ASes that directly
peer with any of the RouteViews and RIPE RIS route collectors—that have
a route to the given prefix-origin in their routing table. In the following, we
will leverage the set of feeders to assess filtering and to estimate visibility of
prefix-origin pairs in the global routing table.

Tagging Prefix-Origin Pairs: We next tag each individual prefix-origin pair
in our dataset with its corresponding RPKI state. For each prefix-origin pair, we
find the closest snapshot available of validated ROAs and tag the prefix-origin
pair with one of the following states: (i) unknown: the prefix is not covered by

1 Or the closest day for which validated historical RPKI data is available.
2 Note that a prefix can have multiple origins in the global routing table, in this case

we extract multiple prefix-origin pairs.
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any prefix of validated ROAs in the RPKI; (ii) valid : the prefix is covered by a
validated ROA, the AS number in BGP matches the one in the ROA, and the
prefix length in BGP is at most the maxLen attribute of the ROA; (iii) invalid
ASN: the prefix is covered by a validated ROA, but the origin AS in BGP does
not match the origin AS in any ROA covering the prefix; (iv) invalid length:
the prefix is covered by a validated ROA, the origin AS in BGP matches the
origin AS in the ROA, but the prefix length in BGP is longer than the maxLen
attribute, i.e., the prefix is more specific than what is allowed as per the ROA.

3 To Filter or Not to Filter: Longitudinal Study

In this section, we provide a macroscopic perspective on RPKI filtering deploy-
ment in today’s Internet. In particular, we study to which extent some of the
transit networks in the Internet do filter BGP announcements with invalid RPKI
state and how this filtering behavior evolved over time.

3.1 Detecting Filtering

While there is no practical way to comprehensively study filtering behavior of
all networks, we introduce a method to infer RPKI filtering with high confidence
for a small but relevant set of ASes. At a high-level, our method is made of two
steps: (i) we select full-feeder ASes, i.e., ASes that share with BGP collectors a
number of routes (and thus prefix-origin pairs) comparable to what is globally
visible in BGP—in other words, they tend to share the vast majority of, if not
all, their preferred routes; (ii) we leverage our set of RPKI-invalid prefix-origin
pairs to look for significant presence/absence of them in what full-feeders share.

The essence of this approach is to look for statistically significant absence of
RPKI-invalid prefix-origin pairs: e.g., the absence of a single invalid pair in the
routes shared by a full-feeder is not a strong indication of RPKI-based filtering;
similarly, the absence of a large number of invalid pairs in a shared routing table
that is already missing many other valid routes (i.e., from a partial-feeder) is not
a strong indication of RPKI-based filtering either. The combination of the two
factors instead, provides a high degree of confidence. In Sect. 3.3, we validate
our method for a few ASes that have publicly stated when they started applying
RPKI-based filtering. In detail, we operate as follows.

(i) Selecting full-feeders: We consider a collector’s peer a full-feeder if the
number of prefix-origin pairs shared by that AS is at least 75% of the maxi-
mum prefix-origin pair count sent by all feeders. We perform our analysis for
IPv4 and IPv6 independently. In Fig. 1a, the orange line shows this threshold
for IPv4 in September 2019: out of 578 ASes peering with the collectors, we
consider 276 to be full-feeders for IPv4 (232 for IPv6, see the Appendix). We
chose 75%, since it separates recent and historical snapshots well.

(ii) Detecting filtering of RPKI-invalid announcements: From the set of
full-feeder ASes, we infer an AS to be filtering RPKI-invalid announcements
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if the number of RPKI-invalid prefix-origin pairs received from that AS is less
than 20% of the maximum number of invalid records sent by all full-feeders.
Here, we leave some leeway, since previous research [26] has shown that, even
if ASes are filtering most RPKI-invalid announcements, they usually never
filter all invalid announcements due to churn in RPKI records and selective
filtering (cf. Sect. 3.3). The green dashed line in Fig. 1a, shows this threshold
for IPv4, we infer 21 ASes were filtering RPKI-invalids announcements in
September 2019.

(a) Count of RPKI-invalid prefix-
origin pairs and total count of prefix-
origin pairs by feeder AS to BGP col-
lectors on Sept. 1st, 2019. We infer the
group on the upper left corner is filter-
ing RPKI-invalid announcements.

(b) Fraction of RouteViews and RIPE
RIS collector full-feeder ASes filter-
ing RPKI-invalid announcements over
time. A major increase happens be-
tween April and August 2019.

Fig. 1. Full-feeder ASes filtering of RPKI-invalid announcements.

The representativeness of our approach is limited by the comparably small
number of full-feeder ASes: 290 ASes for IPv4 and 246 ASes for IPv6 in January
2020. However, we find that these networks include many global transit providers
and mid-sized networks: 187 transit and access ASes (of which 12 are Tier-1
ASes), 36 content providers, and 47 educational/non-profit networks, according
to PeeringDB [4]. In total there are 36 ASes in the top 100 CAIDA AS rank and
93 in the top 1,000. This set of ASes thus provides a reasonable approximation
to study macroscopic filtering trends of major networks in the Internet.

3.2 Filtering Networks: Longitudinal Trends and Current Status

With our method in hand, we now present a longitudinal analysis of RPKI-
invalid filtering behavior. Figure 1b shows the evolution of the fraction of full-
feeder ASes that filter RPKI-invalid announcements for IPv4 and IPv6. Both
protocols follow a similar trend, with slightly fewer ASes filtering RPKI-invalid
IPv6 announcements compared to IPv4. We detect that in April 2017, less than
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Fig. 2. RPKI-invalid IPv4 prefix-origin pairs from networks that publicly announced
RPKI filtering deployment, vertical lines show the announcement date of deployment
completion (dashed) or beginning of deployment (dotted).

2% full-feeders were filtering RPKI invalid announcements: 3 out of 219 full-
feeder ASes for IPv4 and 2 out of 176 for IPv6. We witness overall low levels
of RPKI filtering until April 2018, when a few full-feeder ASes start to filter
each month, reaching about 3% one year later in March 2019. From April until
August 2019, we see a 3-fold increase in the rate of RPKI filtering adoption. In
late January 2020, 11% of full-feeder ASes filter RPKI-invalid announcements
in IPv4 and 10% in IPv6, 30 out of 290 and 23 out of 246 respectively.

The bulk of the networks filtering RPKI-invalid announcements are either
transit or access network providers (17 ASes, 9% of such networks) or
educational-research/non-profit networks (9 ASes, 19% of such networks). We
find lower levels of filtering deployment in larger networks: only 2 of the 36 full-
feeder ASes in the top 100 CAIDA AS Rank do filter invalid prefix-origins and
10 out of the 93 ASes in the top 1,000 CAIDA AS Rank filter. We only find
one out of 36 content providers filtering invalid prefix-origins. RIPE, ARIN and
APNIC are the regions with most full-feeder ASes, and we find 22, 5, 1 filter-
ing ASes, representing 13%, 8% and 3% of full-feeders ASes from these regions
respectively.

3.3 A Closer Look at Filtering Networks

Comparison with Public Announcements of RPKI Filtering: Five tran-
sit ISPs that provide direct and full BGP feeds to one of our considered collectors
have publicly stated that they have deployed or are currently deploying RPKI-
invalid filtering: AT&T (AS7018), KPN (AS286), Seacom (AS37100), Workon-
line Communications (AS37271) and Telia (AS1299) [1,2,6,7]. Figure 2 shows the
count of invalid prefix-origin pairs propagated by these five ASes during 2019,
annotated with their public announcement date of filtering implementation.

In our data, we see over 4,000 invalid prefix-origins from all networks in early
2019. In mid February 2019, AT&T publicly stated that they started filtering
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RPKI-invalid route announcements and afterwards we only detect a few hun-
dred invalid prefix-origins sent to collectors by AT&T. In early April 2019, two
major African ISPs, Workonline Communication and Seacom, announced com-
pletion of deployment of RPKI filtering, after which we observe only several hun-
dred invalid prefix-origins from these two networks. However, these ASes have
encountered operational issues when deploying RPKI filtering and have (par-
tially) stopped filtering for some periods of time, see intermittent upticks [22].

In late June 2019, KPN announced completion of deployment of RPKI-
filtering and has only propagated a few dozen invalid prefix-origins to collectors
since. Finally, in mid September 2019, Telia announced that it began to deploy
RPKI filtering. Shortly after their announcement, we detect a continual decline
in the number of invalid prefix-origins forwarded by Telia. However, since RPKI
enforcement deployment is not finished at the time of this writing, we still see
over 2,000 invalid prefix-origins from Telia in early 2020, hence not meeting our
detection thresholds yet. Our method detected RPKI-invalid filtering after all
announcements of completion of full deployment of RPKI filtering.

Partial RPKI Filtering: In our longitudinal study, no full-feeder network
ever filters all RPKI-invalid announcements. Besides some expected short-term
churn, e.g., caused by delays when updating filtering rules, we identified 3 main
reasons for persistent partial RPKI filtering: (i) selective RPKI Trust Anchor
(TA) filtering: we find 6 networks not validating ROAs from the ARIN TA,
resulting in a higher share of propagated invalid prefix-origins. Indeed, legal bar-
riers limiting availability of ARIN ROAs have been reported [30]. (ii) Selective
filtering depending on AS relationships: several network operators announced
to implement filtering only for routes received from peers, but not customer
networks [2]. (iii) Operational deployment issues: network operators reported
compatibility issues with RPKI validator implementations and router software,
prompting them to deploy RPKI-filtering in a subset of their border routers [22].

4 RPKI to the Rescue: Conflicting Announcements

Our findings of increasing deployment of RPKI filtering in the recent years moti-
vate us to study the effect of filtering in more detail. We first introduce how
we process our dataset to allow for analysis of visibility of individual routing
events and study the overall visibility of valid/invalid prefixes. Next, we show-
case several relevant real-world case studies of conflicting, and hence potentially
malicious, prefix announcements. Visibility of a prefix in the global routing table
translates directly into its reachability, and thus serves as a proxy to study the
benefit of RPKI filtering in the wild. In this section, we present our findings for
IPv4. Our findings for IPv6 are similar and can be found in the Appendix.

4.1 Tracking Visibility in the Global Routing Table

Aggregating Prefix-Origin Snapshots into Timelines: To study the
visibility of RPKI-registered prefixes, we leverage our fine-grained BGP dataset,
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Table 1. Properties of our IPv4 prefix-
origin timelines and their respective RPKI
validity states (September 2019).

Prefix-origin timelines Count %

IPv4 total 883,400 100%

RPKI covered 147,870 16.7%

RPKI-valid 139,537 15.8%

RPKI-invalid ASN 4,203 0.47%

RPKI-invalid length 4,130 0.46%
Fig. 3. CDF of IPv4 prefix-origin pairs by
visibility during September 2019 for dif-
ferent RPKI states. (Color figure online)

consisting of per-feeder snapshots of all prefix-origin pairs every 5 min in Septem-
ber 2019 (cf. Sect. 2.2). As a first step, we aggregate adjacent prefix-origin pairs
into continuous timelines. We require (i) that the maximum deviation in visibil-
ity within each timeline is less than 10%, otherwise we terminate the timeline
and start a new one. We express visibility of a prefix-origin pair timeline as the
fraction of active feeder ASes that propagate a route to given prefix and origin
AS. Secondly, (ii) we require consistent RPKI state (valid/invalid ASN/invalid
length/unknown) for each prefix-origin timeline.3 The resulting timelines con-
sist of a tuple of a prefix, an origin AS, a visibility level, its RPKI state, and
timestamps. We filter prefix-origin timelines with a private AS number or AS-Set
as origin, and prefix-origin timelines with very low visibility, i.e., seen by 3 or
fewer peers, since such very low visibility prefixes are unlikely to represent actual
events in the global routing table. Table 1 shows the properties of our resulting
dataset.

Overall Prefix-Origin Visibility by RPKI State: Figure 3 shows CDFs of
the visibility of prefix-origin timelines, expressed as percentage of active feeder
ASes seeing a prefix-origin. Overall, we find that RPKI-valid as well as RPKI-
unknown prefix-origins (i.e., prefixes not covered by validated ROAs) show sim-
ilar visibility levels, with 80% of all prefix-origins seen by 80% or more of feeder
ASes (see green and blue lines). RPKI invalid prefix-origins, however, show vastly
different visibility: some 20% of these prefix-origins are very localized announce-
ments (seen by less than 5% of feeder ASes, see orange and red lines), and we
speculate that these cases are instances of misconfigurations, whether in BGP
or RPKI records, which happen to also show up as RPKI-invalid artifacts. More
importantly, we find that even invalid prefix-origins with higher visibility show
distinctively lower visibility when compared to valid prefix-origins (see concen-
tration of RPKI-invalid at around 70%, compared to over 80% for RPKI-valid).

3 For 0.37% IPv4 prefix-origin timelines, the RPKI state changed due to churn in the
RPKI database caused by changes of RPKI entries during our measurement window.
We remove these instances.
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This difference in prefix-origin propagation is the direct result of filtering of
RPKI-invalid announcements.

4.2 Conflicting Prefix Announcement Scenarios

Next, we study RPKI in action, i.e., we want to understand if registration in
the RPKI benefits networks in cases of conflicting announcements. In particular,
we cover 3 scenarios: (i) Multiple Origin AS (MOAS) announcements: instances
where two equal prefixes are announced with two different origins, often caused
by intentional or unintentional prefix hijacks; (ii) subMOAS announcements:
instances where an announcement of a more specific prefix points to a different
origin AS, also a potential prefix hijack scenario; (iii) same-origin subprefixes,
instances where a more specific prefix is visible, points to the same origin AS
as its parent, but fails RPKI validation due to max length restrictions. This
scenario is what we would expect to see in the case of a path hijack, the most
advanced form of prefix hijacks [27]. We note that in this work, we do not attempt
to classify instances of conflicting prefix announcements into malicious activity
vs. misconfigurations. Instead, we base our notion of illicit announcements on
the RPKI state of the involved prefixes: if two prefix announcements are in
conflict, and only one of them passes RPKI validation, in our analysis we treat
the invalid one as if it is an illicit announcement (while it might also be due to
incorrect/unissued ROAs). Our argument here is that, irrespective of the root
cause of these conflicts, we can study the effectiveness of RPKI filtering under
the same conditions that would also hold when a malicious actor injects BGP
prefixes to hijack address space.

4.3 Visibility of Multiple Origin as (MOAS) Prefixes

To study the visibility of prefixes that are concurrently originated by multiple
origin ASes, we first isolate our prefix-origin timelines that show (i) two origin
ASes for the same prefix and (ii) one of these prefix-origins is registered in the
RPKI and valid. In total, we find about 90,000 instances of MOAS prefix-origin
pairs in September 2019 for IPv4, of which some 10% are cases in which at least
one prefix-origin is RPKI-valid, while others are not. Of these cases, about 20%
(N = 1898) are cases of exactly 2 MOAS prefix-origin pairs one valid and the
other invalid according to RPKI records.

Figure 4 shows the distribution of the maximum visibility of prefix-origin
timelines during MOAS conflicts of two prefix-origin pairs, where we partition
RPKI-valid and -invalid state, see positive y-dimension in Fig. 4. We see a stark
difference: RPKI-valid prefixes clearly dominate visibility, with more than 70% of
valid prefixes having visibility greater than 70%, and we only see few instances of
RPKI-valid prefixes with low visibility (only 12% of instances with less than 30%
visibility). Their invalid counterparts, on the other hand, show distinctively lower
visibility: some 60% have a visibility level lower than 30%. Some invalid prefixes
do reach substantial visibility levels, but we do point out that even those higher-
visibility invalid prefixes cluster at around ≈65%, that is, significantly lower
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when compared to valid prefixes, which cluster at around ≈80%. These results
are consistent with our expectations: the RPKI benefit should be significant in
instances of exact MOAS conflicts, since two prefixes compete for reachability
in the global routing table, and even when RPKI filtering is not enforced, some
routers still give preference to RPKI-valid announcements over RPKI-invalid
announcements as part of the route selection process (discarding an invalid route
only if a valid one is available) [12].

Fig. 4. Visibility of prefix-origin pairs during MOAS conflicts: RPKI-valid and invalid
ASN MOAS prefix pairs in the positive y-dimension, RPKI-unknown MOAS prefix
pairs in the negative y-dimension, partitioned as stable/unstable according to total
advertisement time during September 2019.

To assess the potential benefit of registering a prefix in the RPKI vs. not
registering it, we next compare the above studied instances of MOAS conflicts
in which the concerning prefix is registered in the RPKI against vanilla cases of
MOAS, in which the concerning prefix is not registered, and hence both prefix-
origins are of type RPKI-unknown. Here, in the absence of RPKI information, we
face the difficult problem of determining which of the conflicting announcements
represents the legitimate announcement vs. the illicit one. Taking a pragmatic
approach, we leverage stability of announcements as a proxy: In the case of a
MOAS conflict where neither prefix-origin is registered in the RPKI, we tag
the prefix-origin that was visible for a longer period of time as stable, and the
conflicting prefix-origin that was visible for a shorter period of time as unstable.
We pick only MOAS cases where the stable prefix-origin is announced for a period
at least 3 times longer4 than the unstable prefix-origin counterpart (N = 6,374
MOAS events for IPv4). We acknowledge that this heuristic is not a hard-and-
fast rule, since there are many potential root causes for unstable announcements
4 We tested different thresholds, finding that the modes of the distribution do not

change much.
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(e.g., rewiring, address space transfers, etc.) but it allows us to present a one-
to-one comparison of RPKI vs. non-RPKI scenarios.

We plot the distribution of prefix-origin visibility of RPKI-unknown pre-
fixes in the negative y-dimension in Fig. 4. We find that, overall, stable prefixes
show much greater visibility when a MOAS conflict happens, when compared to
their conflicting unstable counterparts. However, contrasting the vanilla case (no
RPKI registration, negative y-dimension) against the case in which the prefix
is registered in the RPKI (positive y-dimension), we see a difference: unstable
RPKI-unknown prefixes generally reach higher levels of visibility when compared
to RPKI-invalid prefixes. This difference manifests both for very low visibility
cases, where RPKI-unknown cluster at around ≈15% visibility, higher than their
RPKI-invalid counterparts which cluster at ≈8%, as well as for cases of higher
visibility: unstable RPKI-unknown prefixes reach visibility levels of some 70%,
while RPKI-invalid cluster below 60%. Indeed, less than 14% of RPKI-invalid
MOAS instances reach a visibility over 60% compared to 37% for unstable RPKI-
unknown MOAS instances. RPKI registration shows a clear effect on prefix vis-
ibility when MOAS conflicts happen.

(a) Visibility of RPKI-covered prefix-
origins during subMOAS conflicts.

(b) Visibility of RPKI-covered prefix-
origins during subprefix conflicts.

Fig. 5. Impact of RPKI registration in subMOAS and subprefix conflicts.

4.4 Visibility of Subprefix Announcements

We next study instances of subprefix announcements, which instead do not
compete with the covering prefix for visibility, since routers use longest-prefix
matching, preferring more-specific routes for packet forwarding. For this reason,
subprefix announcements can be a powerful and dangerous tool to, e.g., hijack
address space and redirect traffic, and their effect has been also evidenced in
large-scale routing incidents, including route leaks [23,28].

To study the impact of RPKI registration on subprefix announcements, we
first isolate all incidents of subprefix announcements in our dataset, i.e., we
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observe a covering (that is, less specific) prefix, covered by a validated ROA
in the RPKI, and concurrently a more specific prefix announcement that does
not pass RPKI validation—either because of an invalid ASN (subMOAS) or
invalid prefix length (subprefix). In total, we find 10,450 instances of RPKI-
invalid subprefix and subMOAS announcements in IPv4, conflicting with 2,291
RPKI-valid covering prefixes. Figure 5a shows the distribution of prefix visibility
in the case of subMOAS: if a more-specific prefix announcement fails RPKI vali-
dation because it has a different origin AS (N = 5,401 subMOAS prefixes, N = 966
covering prefixes). While the RPKI-valid covering prefixes show high visibility,
their invalid counterpart, subMOAS prefixes, show two modes of visibility: some
35% of invalid subMOAS show very low visibility, i.e., lower than 10%. More
importantly, however, is the finding that none of the subMOAS prefixes reach
the same visibility level as their valid parent: while subMOAS prefixes barely
exceed 75% visibility, their valid covering prefixes typically reach some 85%–90%
visibility and 75% reach at least 80% visibility. These observations are consistent
with our earlier findings of increasing RPKI filtering, and highlight that RPKI
registration also benefits registrants in the case of difficult-to-combat subMOAS
situations.

Figure 5b shows the visibility for invalid-length subprefix announcements
having the same origin AS as their covering RPKI-valid counterpart (N = 5,049
subprefix, N = 1,325 covering prefixes). Recall that the RPKI permits to specify
a maxLength attribute, limiting the prefix length of any prefix matching the
RPKI record, irrespective of the origin AS. Besides cases of misconfiguration,
this scenario also applies in the case of path hijacks: instances where an attacker
injects a subprefix that allegedly points to the same origin AS as its valid cover-
ing prefix, but in fact the attacker redirects traffic to its network. Such attacks
can, e.g., be carried out by prepending the valid origin AS at the end of the
path after the hijacker’s AS number. Such path hijacks present advanced forms
of prefix hijacks and are difficult to detect using today’s methods [27]. In Fig. 5b,
we see similarly lowered levels of visibility for RPKI-invalid subprefix announce-
ments, even if they point to the registered origin AS. Invalid announcements
reach some 70% of visibility, substantially lower when compared to their valid
covering prefix. These results show that RPKI registration can benefit networks
even in this most advanced case of illicit announcements: subprefix path hijacks.

5 Discussion and Conclusion

Recent research has shown increasing registration in the RPKI by networks
around the globe. Our work complements these observations, adding an impor-
tant dimension: RPKI enforcement. We find that a substantial, and growing,
number of ISPs in the Internet begin to filter invalid RPKI announcements,
including major players such as AT&T. Increasing RPKI enforcement starts to
bring direct value to networks, since registration in the RPKI benefits them in
real-world scenarios, such as prefix hijacks. Our findings show that already as of
today, registration in the RPKI limits the propagation of illicit announcements,
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in MOAS conflicts as well as in instances of subMOAS and subprefix announce-
ments. Evidence of direct value for networks could incentivize even more transit
providers to deploy RPKI filtering to benefit their customers. While the RPKI
protects its registrants in the case of such illicit announcements, we can also
expect that increasing RPKI enforcement provides further incentives for net-
works to keep their RPKI records up-to-date, since stale records and other mis-
configurations will have a direct impact on reachability of the respective address
blocks. Our method provides a simple way to track current levels of RPKI filter-
ing and to study its impact on illicit prefix announcements. Continuous monitor-
ing of deployment of filtering allows for more transparency in the process, and
empirical evidence of benefits of registration provides further incentives for net-
work operators to join the growing group of networks that protect their prefixes
by registering them in the RPKI.
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Appendix: IPv6 Results

Detecting RPKI-Filtering in IPv6: We apply the method described in
Sect. 3.1, setting equivalent thresholds to those used for IPv4. In September
2019, out of 402 ASes peering with collectors for IPv6, we consider 232 to be
full-feeders, and of those 232 we infer 18 are filtering RPKI-invalid announce-
ments (Fig. 6).

Tracking Visibility in the Global IPv6 Routing Table: Using the method-
ology described in Sect. 4.1, we build prefix-origin timelines for IPv6 prefixes5.
Table 2 shows the properties of our resulting dataset.

Overall IPv6 Prefix-Origin Visibility by RPKI State: Figure 7 shows
CDFs of the visibility of prefix-origin timelines, which show very similar behavior
to the ones described in Sect. 4.1 for IPv4. In IPv6, there are even fewer RPKI-
valid prefix-origins with low visibility compared to IPv4: less than 10% IPv6
prefix-origins have less than 80% visibility compared to 20% for IPv4.

5 0.13% of IPv6 prefix-origin timelines whose RPKI state changed during our mea-
surement window were removed.
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Fig. 6. Count of RPKI-invalid IPv6
prefix-origin pairs and total count of
prefix-origin pairs by feeder AS to BGP
collectors on Sept. 1st, 2019.

Fig. 7. CDF of IPv6 prefix-origin pairs
by visibility during September 2019 for
different RPKI states.

Table 2. Properties of our IPv6 prefix-
origin timelines and their respective RPKI
validity state.

Prefix-origin timelines Count %

IPv6 Total 91,313 100%

RPKI covered 19,173 20.1%

RPKI-valid 17,656 19.3%

RPKI-invalid ASN 362 0.40%

RPKI-invalid length 1155 1.26% Fig. 8. Visibility of RPKI covered IPv6
prefix-origin pairs during MOAS conflicts.

(a) Visibility of RPKI-covered IPv6
prefix-origins during subMOAS con-
flicts.

(b) Visibility of RPKI-covered IPv6
prefix-origins during subprefix con-
flicts.

Fig. 9. Impact of RPKI registration in subMOAS and subprefix conflicts.
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Visibility of Multiple Origin AS (MOAS) IPv6 Prefixes: In total, we find
about 41,000 instances of MOAS prefix-origin pairs in September 2019 for IPv6,
of which some 133 are cases in which at least one prefix-origin is RPKI-valid
while others are not. Figure 8 shows the distribution of the maximum visibility
of prefix-origin timelines during MOAS conflicts.

Visibility of IPv6 Subprefix Announcements: We find 575 subMOAS prefix
conflicting with 102 covering prefixes (Fig. 9a) and 1,903 subprefixes conflicting
with 235 covering prefixes (Fig. 9b).

Issuing RPKI records for IPv6 prefixes also benefit networks in the case of
conflicting (and potentially malicious) announcements.
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Abstract. The depletion of the unallocated IPv4 addresses and the slow
pace of IPv6 deployment have given rise to the IPv4 transfer market,
the trading of allocated IPv4 prefixes between organizations. Despite
the policies established by RIRs to regulate the IPv4 transfer market,
IPv4 transfers pose an opportunity for malicious networks, such as spam-
mers and bulletproof ASes, to bypass reputational penalties by obtaining
“clean” IPv4 address space or by offloading blacklisted addresses. Addi-
tionally, IP transfers create a window of uncertainty about the legitimate
ownership of prefixes, which leads to inconsistencies in WHOIS records
and routing advertisements. In this paper we provide the first detailed
study of how transferred IPv4 prefixes are misused in the wild, by syn-
thesizing an array of longitudinal IP blacklists, honeypot data, and AS
reputation lists. Our findings yield evidence that transferred IPv4 address
blocks are used by malicious networks to address botnets and fraudulent
sites in much higher rates compared to non-transferred addresses, while
the timing of the attacks indicate efforts to evade filtering mechanisms.

Keywords: IPv4 transfers · Routing · BGP · Blacklists

1 Introduction

The depletion of the unallocated IPv4 addresses combined with the slow tran-
sition to IPv6 has led to the emergence of a secondary market for ownership
transfers of IPv4 addresses. However, the IPv4 market has been poorly reg-
ulated due to the lack of widely adopted IP prefix ownership authentication
mechanisms, inconsistent contractual requirements between legacy and allocated
address space [44], and policy incongruences among Regional Internet Registries
(RIRs). As a result, IPv4 transfers have become target of fraud and abuse by
malefactors who try to bypass the legal IP ownership processes [19]. RIRs have
responded to the emergence of the IPv4 market by establishing policy frame-
works that aim to safeguard the hygiene of the accuracy of registered IP blocks
and provide oversight and transparency on how organizations trade IPv4 address
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blocks [19,38]. However, the effectiveness of these policies in preventing abuse of
the IPv4 market remains unclear. Additionally, these policies focus only owner-
ship and utilization issues, and they do not have provisions for malicious usage of
the transferred space, for instance by bulletproof hosters who seek clean address
space to address botnets and fraudulent sites. Exchanges between operators in
mailing lists and messaging boards show that the operational community is wor-
ried about these dangers but still face significant difficulties when purchasing or
selling address space [32,43].

In this paper we aim to shed light on the misuse and abuse of the IP transfer
market. To this end, we combine a large collection of longitudinal control-plane
and data-plane data to analyze and verify the information reported by RIRs on
IP transfers. We find that the reported transfer dates and recipient organizations
do not reflect the state of WHOIS registries and BGP routing for more than
65% of the transferred prefixes. Additionally, 6% of the prefixes covered with
ROAs have an inconsistent origin ASN. We then compile and analyze a large-
scale dataset of malicious activities that covers a period of more than a decade,
derived from IP traffic traces and control-plane paths, including IP blacklists,
honeypots, prefix hijacking detection and AS reputation mechanisms. Our find-
ings reveal that the transferred IP space is between 4x to 25x more likely to be
blacklisted depending on the type of malicious activity, while the majority of the
transferred IPs are blacklisted after the transfer date, even when the transferred
address space was deployed and visible to IP scans at least a month before the
transfer. The disproportionate representation of transferred prefixes in blacklists
persists even when we filter-out the address space used by well-known legitimate
networks, such as cloud platforms (e.g. Amazon Web Services, Google Cloud)
whose Infrastructure-as-a-Serive (IaaS) is often abused to host malware in short-
lived Virtual Machines (VMs). Finally, we provide evidence that ASes detected
to be serial BGP hijackers or bulletproof hosters are over-represented in the IPv4
market and exhibit suspicious patterns of transactions both as buyers and sell-
ers. These results offer new insights on agile blacklist evasion techniques that can
inform the development of more timely and accurate blacklisting mechanisms.
Additionally, our work can inform debates on developing and evaluating RIR
policies on IP transfers to improve the hygiene of the ecosystem.

2 Background and Related Work

2.1 IP Transfer Market

Today, the available IPv4 address space of all Regional Internet Registries (RIRs)
except AFRINIC has been depleted [21]. Despite increasing pressure on network
operators to enable IPv6, less than 30% of the ASes are currently originating
IPv6 prefixes [22]. Since RIRs are unable to allocate additional IPv4 addresses,
many network operators try to prolong the lifespan of IPv4 by buying address
space allocated to other networks, which has led to the emergence of a secondary
IP market. This market has been characterized as murky [44], due to the lack of
transparency and mechanisms to authenticate the ownership of IP space.
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In an effort to prevent abuse of this secondary IP market, all RIRs have
devised intra-registry transfer policies, starting with RIPE in 2008 [3,6,9,29,51,
51]. All RIRs, except RIPE, have imposed restrictions on IP transactions, that
require a minimum size of transferred address space and adequate justification
of need from the side of buyers. Inter-regional transfers have been approved by
ARIN, APNIC and RIPE. Organizations involved in such transactions have to
comply with the inter-RIR transfer policies of their local registry [10,52]. ARIN
and APNIC follow the same need-based policy for intra-RIR and inter-RIR trans-
actions. RIPE, in contrast to its intra-RIR policy, requires inter-RIR buyers to
document the utilization of at least 50% of the transferred address space for
five years. However, these regulations do not apply in the case of transfers that
occur due to mergers and acquisitions. Under these policies, the first intra-RIR
and inter-RIR transfers occurred October 2009 and October 2012, respectively.
The IPv4 transfer market size has significantly increased over the years, from
17, 408 to 40, 463, 872 IPs for intra-RIR transfers, and from 1, 792 to 1, 885, 440
IPs for inter-RIR transfers, with the highest activity occurring within RIPE and
ARIN. Moreover, 96% of the IPv4 addresses are exchanged within the same reg-
istry and most of these IP transactions occur within the North America region,
while 85% of the inter-RIR transfers originate from ARIN. Despite the increas-
ing prominence of the IPv4 market, there are only a few studies of its ecosystem.
Periodically, RIRs and IPv4 address brokers report on the trends and evolution
of the IP transactions [1,8,47–50,58], but also a portion of buyers have reported
their experiences [7,19,37]. Early academic studies [17,30] discussed the possi-
ble implications of market-based mechanisms for reallocating IPv4 addresses.
Mueller et al. [34,35] used the list of published transfers to analyze the emerging
IPv4 transfer market by quantifying the amount of legacy allocations exchanged
on the markets and the impact of the need-based policies on the utilization of
the transferred blocks. Livadariu et al. [23] provided a comprehensive study on
the IPv4 transfer market evolution, the exchanged IPv4 blocks, and the impact
on the routing table and IPv6 adoption. The authors also proposed a method for
inferring IP transfers from publicly available data, i.e., routing advertisements,
DNS names, RIR allocation and assignment data. To the best of our knowl-
edge, no prior work has studied the IPv4 transfer market from the perspective
of fraudulent behavior and misuse.

2.2 Malicious Internet Activities

An IP blacklist is an access control mechanism that aims to block traffic from
IP addresses which have been detected to originate fraudulent activities, such
as spamming, denial of service, malware or phishing. Such blacklists are com-
piled using spamming sinkholes, honeypots, logs from firewalls, Intrusion Detec-
tion Systems (IDS), and anti-virus tools distributed across the Internet. Several
works have studied malicious Internet activities based on IP blacklists [4,65].
Ramachandran et al. [39] provided one of the first studies, by analyzing over
10 million messages received by a spam sinkhole over a period of 18 months,
and by correlating them with lookups to 8 blacklists. Their results showed that
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Fig. 1. Overview of datasets and measurement methodology.

combined use of blacklists detects 80% of the spamming hosts. Moreover, the
network behavior of serial spammers has distinctive characteristics which can be
exploited to develop behavioral and predictive blacklisting [40]. Shina et al. [56]
evaluated the accuracy of four spamming blacklists, and found that blacklists
have a very low False-Positive Rate, with 2 of the blacklists having less than 1%
FPR, but high false-negative rate (above 36%) when used individually. A similar
study by Kührer et al. [28] evaluated the effectiveness of 18 blacklists, 15 public
and 3 by AntiVirus (AV) vendors. The authors found that blacklists derived
from AntiVirus vendors are able to detect at least 70% of the malicious domains
for 13 types of malware, and at least 90% for 7 of these types, outperforming
significantly public blacklists. Zhao et al. [64] compiled an extensive historical
blacklist dataset to analyze the trends and evolution of malicious activity over
the span of a decade.

In addition to detecting malicious activity through monitoring data-plane
traffic, an array of studies developed techniques to detect attacks through
control-plane data. Shue et al. [55] studied the connectivity of ASes that are
over-represented in 10 popular blacklists. They found that a small number of
ASes with a disproportionate fraction of blacklisted address space are more
likely to have dense peering connectivity and exhibit higher frequency of peering
changes. Konte et al. proposed ASwatch [27], a system that aims to identify
bulletproof hosting ASes by inferring irregularities in the routing and connec-
tivity patterns. Testart et al. [60] profiled serial prefix hijackers by developing
a supervised machine learning model, based on which they analyzed 5 years of
BGP data to infer 934 ASes that exhibit persistent misbehavior.

We utilize insights and data from the above works to conduct a comprehensive
analysis of malicious activity involving transferred IP prefixes and organizations
that participate in the transfer market. We combine both data-plane and control-
plane data to compile an extensive dataset of attacks. Our blacklist dataset
combines a large number of blacklists compiled by AV vendors, which was found
to be the best approach to maximize coverage and minimize false-positives.
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3 Datasets and Methodology

In this section we present the data and methods that we employ to analyze
malicious activities and misuse of transferred IP address space. Figure 1 shows
how we synthesize and process an array of chosen datasets.

3.1 Processing of IPv4 Transfers

Collection of Reported IP Transfers. As a first step of our methodology
we collect the list of reported intra-RIR and inter-RIR IP transfers, as published
by the RIRs. For each transferred resource, we extract the IPv4 address block,
the transfer date, and the names of the seller and buyer organizations. Note that
none of the RIRs provides the AS Number (ASN) of the organizations involved
in the transfer. In the case of inter-RIR IP transactions we also retrieve the
RIR for both the seller and the buyer organizations. For intra-RIR IP transfers,
ARIN and RIPE also indicate the transfer type, namely if a transfer occurred
due to changes within an organization (merger and acquisitions), or as a sale
of address space between distinct organizations. However, this information is
not available for inter-RIR transfers and for transfers within the APNIC and
LACNIC regions. Overall, we collected 30, 335 transfers involving 28, 974 prefixes
between 2009-10-12 and 2019-08-24. Of these transfers, 9, 564 (31.5%) are labeled
as Mergers/Acquisitions, 17, 934 (59.1%) as IP sales, while the rest 2, 837 (9.4%)
are not labeled.

Mapping of Organization Names to ASNs. We aim next to find the ASes
that map to the organizations active on the IP transfer markets. To this end,
we collect historical WHOIS records every 3 months throughout the IP transfers
collection period, i.e., from October 2009 to August 2019. For each allocated ASN
we extract the AS name and the corresponding organization name, and we try
to match the organization names in the RIR transfer lists against the extracted
WHOIS fields. We were able to map 8, 413 out of the 15, 666 organizations
involved in the transfer market, 54% of the buyers and 57% of the sellers. Overall,
for 48% of the transfers we managed to map both the seller and the buyer, for
68% only the seller, and for 64% of the transfer only the buyers. Organizations
may not be mapped to an ASN for multiple reasons: an organization may not
have an ASN and instead advertise the transferred address space through its
upstream providers, some Local Internet Registries (LIRs) may have operate no
ASNs, while other organizations may operate ASNs under different names [54].

Inference of Transfer Types. For the 9.4% of the transfers without reported
transfer type (merger/acquisition, or IP prefix sale), we try to infer if the trans-
fer occurred between siblings. For organizations which we successfully mapped
to ASNs, we use CAIDA’s AS-to-Organization inference [14] closest to the date
of the transfer. Additionally, for inter-RIR transfers and for organizations not
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Fig. 2. The visibility of transferred address space in BGP advertisments.

mapped to an ASN, we compare the organization names using the string compar-
ison algorithm introduced by Myers [36]. The algorithm returns a value between
0 and 1, where 1 indicates identical strings. For values above 0.8 we consider
the organizations as siblings. To improve the accuracy of string comparison, we
filter-out from the organization names stop words, and the 100 most common
words across all names (e.g. Ltd, corporation, limited). Based on the above pro-
cess we infer 841 (29.6%) of the unlabeled transfers to be between sibling ASes
(Fig. 3).

Fig. 3. Shift of origin AS in relation to
transfer date

Correlation of Transfers to BGP
Activity. We use daily routing tables
from all the Routeviews [62] and RIPE
RIS [46] collectors, to investigate how
the transferred IP address space is
advertised across time. For each trans-
fer for which we mapped the organiza-
tions to ASNs, we check whether the
transferred IP blocks are routed within
one year before and one year after their
reported transferred date. As shown in
Fig. 2, 97.05% of the IPs and 64% of
the prefixes are advertised consistently
across the entire period. ≈10% of the prefixes are only advertised after the trans-
fer, while about ≈5% are advertised only before the transfer, a practice that may
indicate speculative “hoarding” of IP addresses to resell at a higher price, which
has been a concern with removing needs-based address allocation [5]. However,
the reported transfer date does not correlate with a change in prefix origin for
65% of the transferred prefixes. In 15% of the cases the buyer advertises the
prefix one year before the transfer, while in 22% of the cases the seller contin-
ues to advertise the prefix one year after the transfer. These disparities can be
explained if the buyer organization uses the seller AS as its single-homed transit
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provider and does not use its ASN to advertise the prefix. Additionally, it is
possible that a transfer may unofficially occur before it is reported to the RIR.

We utilize BGP dynamics to expand the mapping of organization names in
reported transfers to ASNs. For each transferred prefix for which we did not
manage to map both buyer and seller to an ASN through WHOIS, we check
whether the prefix was originated by two different ASNs before and after the
transfer date. We map the seller to the origin ASN before the switch, and the
seller to the origin ASN after the switch if the following three conditions are true:
(i) the time difference between the switch in the BGP origin and the transfer
date is less than two months, (ii) the prefix advertisements are visible by at least
10% of the BGP collector peers, and (iii) the origin ASNs advertise the prefix
consecutively for at least one month. We require condition (i) to ensure that the
routing shifts correlate with the transfer, and conditions (ii) and (iii) to filter-
out transient misconfigurations or hijacking incidents. Through this process we
are able to map the buyer and seller ASNs for an additional 23% of the transfers
(70% of the transfers in total).

Measuring the Deployed Transferred IP Space. The behavior of BGP
paths will help us interpret more accurately the observed malicious activities,
nonetheless routed address space is not necessarily deployed and used in prac-
tice [16,45]. To study the malicious behavior of the deployed transferred address
space we collect Internet-wide IP scans every 3 months between 2012-01-02 and
2019-09-01. We first collect the ICMP ECHO REQUEST scans from the USC/ISC
project LANDER [18], which sweeps the IANA allocated IP ranges, and records
all the IPs that respond with an ICMP ECHO REPLY message. We complement
these data with Internet-wide UDP and TCP scans collected by RAPID7’s
project Sonar [41,42], which records the IPs that respond to ZMAP probes
against popular UDP and TCP services.

3.2 Detection of Malicious IPs and ASes

After we compile and process the IP transfers, we construct an extensive dataset
of cyber-attack sources to analyze the hygiene of the transferred address blocks
and the players within the IPv4 market.

Real-time BlackLists (RBLs) provide one of the most popular techniques to
detect networks responsible for attacks. Unfortunately, most blacklist providers
do not offer historical snapshots, but typically they only publish the blacklist
at a certain web location that is refreshed periodically – daily or even hourly –
so that firewalls can automatically update their rules. However, we were able
to find two large-scale historical blacklist datasets compiled and archived by
third-parties.

FinalBlacklist. Zhao et al. [64] compiled the FinalBlacklist dataset that
contains over 51 million blacklisting reports for 662K IPs between January 2007
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and June 2017, as part of a decade-long analysis of malicious Internet activ-
ity. To construct the FinalBlacklist, the authors collected historical black-
list snapshots through the Wayback Machine [24], which they extended using
VirusTotal [63], an API that aggregates periodic data from more than 70 Anti-
Virus and blacklist data feeds. 7.6 million (15%) of the blacklisting reports is
labeled by the original source with the type of the malicious activity, which the
authors abstract into six classes: Exploits, Malware, Fraudulent Services (FS),
Spammers, Phishing, and Potentially Unwanted Programs (PUP). Based on the
labeled subset they employed a random forest classifier to predict the class of the
remaining 44M blacklisted activities with 92.4% accuracy. 90.9% of the black-
listed IPs correspond to malware, while only (0.01%) correspond to Spammers.

RIPE Stat Abuse API. To augment the FinalBlacklist dataset with IPs
involved in the distribution of Spamming, we rely on data published by RIPE
NCC who is archiving daily snapshots since 2009-06-22 of the UCE-Protect
Network [61] blacklist1 [57], one of the most prominent anti-spamming blacklists.
RIPE NCC provides public access to these data through the RIPE Stat REST
API [53], which allows querying the blacklisting reports for a specific IP prefix
(no bulk querying). If an IP range within the queried prefix is blacklisted, the
API returns the blacklisting period (start and end date), allowing us to collect
historical blacklisting reports.

The UCE-Protect blacklist uses three different levels of blacklisting poli-
cies, according to the severity and persistence of the observed malicious activity.
Level-1 blacklists only single IP addresses detected to deliver e-mails to spam
traps, conduct port scans or attack the UCE-Protect servers. Level-1 records
expire automatically after 7 days if there are no further attacks. Level-2 aims
to stop escalating attacks by blacklisting IP prefixes with multiple IPs that
emanate spam repeatedly for a week, implying lack of appropriate security mea-
sures or intentional misbehaviour. Level-3 blacklists all IPs within an ASN if
more than 100 IPs, but also a minimum of 0.2% of all IPs allocated to this ASN,
are Level-1 blacklisted within 7 days. This aggressive policy assumes that legit-
imate networks are unlikely to have a sustained high volume of blacklisted IPs.
Additionally, a prefix/ASN can get Level-2/3 blacklisted if a network employs
evasion techniques against blacklists, such as rotating the IPs of abusers within
a prefix, or blocking IP addresses of blacklist providers.

Detection of Persistent C&C Hosters. The activity of botnets is typically
coordinated by Command and Control (C&C) servers. C&C servers may only
orchestrate and not participate in attacks themselves, therefore their detection
is primarily based on honeypots. Shutting down of C&C servers is critical in
defending against botnets, an effort that may even involve security agencies such
as the FBI [33], therefore legitimate network operators tend to respond quickly in

1 RIPE Stat also provides access to Spamhaus DROP snapshots which we do not use
because it covers only directly allocated address space.
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Table 1. Analysis of blacklisted IPs. Transferred IP prefixes are disproportionately
represented in all the blacklists by a rate between 4x for Malware IPs, to 43x for
Fraudulent services.

Blacklist type Blacklisted IPs
part of transfers

Trans Prefixes w/
blacklisted IPs

Non-trans Prefixes
w/ blacklisted IPs

All Filtered All Routed Routed

Unwanted Programs 55% 43% 3.6% 5.5% 0.95%

Exploits 30% 30% 4.7% 7.2% 0.92%

Malware 36% 29% 16.6% 25.3% 6.2%

Phising 36% 25% 7.5% 11.6% 2%

Fraudulent Services 23% 27% 3.8% 9.6% 0.22%

Spammers 12% 12% 0.6% 0.9% 0.1%

requests for C&C take-downs in contrast to bulletproof hosters. We use data from
two distributed honeypots operated by BadPackets [11] and BinaryEdge [12] to
detect ASes that host C&C servers for over two weeks, despite notices by the
honeypot operators. We were able to detect 28 ASes that are persistent and
serial C&C hosters between February 2018 and June 2019.

As Reputation Lists Based on BGP Misbehavior. We complement the
set of malicious ASes compiled through the honeypot data with AS reputation
lists which are developed by monitoring the BGP routing system to detect ASes
with consistent patterns of malicious routing, such as traffic misdirection. We use
the list produced by Testart et al. [60], which we further extend with examples
of bulletproof hosters and hijackers reported by [15,27] resulting in a list of 922
malicious ASes.

4 Analysis and Results

Blacklisted Address Space. We first compare the malicious activity emanat-
ing from transferred and non-transferred prefixes as reflected by our IP blacklist
reports. Table 1 summarizes the blacklist records per type of malicious activity,
for transferred and non-transferred IPs and prefixes. Transferred IPs are dis-
proportionately represented in the blacklist for every type of malicious activity
except spamming. In particular, the transferred address space represents only
16% of the total address space, but covers 61% of the blacklisted IPs. The frac-
tion of transferred prefixes with at least one blacklisted IP is 4x to 25x larger
than the fraction of non-transferred prefixes for every blacklist type, with spam
being the category with the smallest fraction of blacklisting reports per prefix.

As shown in Fig. 4, 40% of the routed transferred prefixes appear at least
once in our RBLs, compared to only 6% of the non-transferred routed prefixes.
However, the blacklisting activity does not originate uniformly across the address
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space. When we break down all prefixes to their covered/24 sub-prefixes we find
that the blacklisted IPs are concentrated in 6% of the transferred/24s, and in
only 1% of the non-transferred/24s (Fig. 4b). This happens because some of the
less specific transferred prefixes are owned by large-scale legitimate networks,
such as Tier-1 providers, that proportionally originate a very small fraction of
blacklisting reports. For example, the prefix 50.128.0.0/9 which was transferred
by an acquisition from Comcast includes 32, 768/24 sub-prefixes (more than all
transferred prefixes), but has only 289 blacklisting reports. Still, transferred/24
sub-prefixes are 6x more likely to be blacklisted, than the non-transferred ones.

Blacklisted ASNs. We analyze the blacklisting reports per ASN, to under-
stand how the detected malicious activity is distributed across the participants
of the IP transfer market. Almost 50% of all the ASNs that participate in the
transfer market appear at least once in the blacklist, compared to only 16% of
the ASNs that do not participate in the transfer market and appear in the BGP
table to originate prefixes (Fig. 5a). Moreover, ASes in the transfer market tend
to have a larger fraction of their address space blacklisted, with a median of
0.06% compared to 0.03% for ASes not involved in any transfer, which is an
indication of more consistent malicious behaviour. This trend is even more pro-
nounced for ASes that are both sellers and buyers of IP prefixes, which for some
ASes appear to be a strategy to recycle blacklisted prefixes. To study whether
the higher blacklisting rate of ASNs involved in transfers may be explained by a
bias in the composition of ASNs that exchange IP space, we compare their user
population according to APNIC’s estimates [20], and we also compare their self-
reported business type in PeeringDB [2]. For both datasets the composition of
ASNs is very similar, with ASNs absent from transfers exhibiting slightly higher
median user population.

While the blacklisted prefixes are distributed across half of the ASNs involved
in transfers, there are 26 ASes with more than 10K blacklisted IPs, including
prominent cloud providers (e.g. Amazon, Microsoft, Google, OVH) and Tier-1
providers (e.g. GTT, CenturyLink, Seabone). Attackers often utilize cloud plat-
forms as a cost-effective way to host malicious software in short-lived Virtual

(a) Blacklist records per prefix (b) Blacklist records per /24

Fig. 4. Distribution of the volume of blacklisting reports for transferred and non-
transferred prefixes.
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Machines and avoid detection [59], while large providers operate a global network
that covers a massive user population. These ASes account for only 0.5% of the
blacklisted prefixes, but cover 55% of all the blacklisted IPs, which explains the
long tail of the distributions in Fig. 4a. Since our goal is to investigate whether
the transfer market is targeted by ASes with potentially malicious business mod-
els, we attempt to filter out ASes that are apparently legitimate but may have
a large number of blacklisted IPs. These are notably ASes with very large user
population (such as big eyeball ISPs and Tier-1 networks) and cloud providers
which can be exploited by attackers who lease temporary computing instances
for malicious purposes. To this end, we follow a filtering approach similar to
the one proposed by Testart et al. [60], and we consider as non-suspicious the
1,000 ASes with the largest customer cones according to AS-Rank [31]. However,
cloud providers, CDNs and large-scale eyeballs have relatively small customer
cones. Therefore, we complement the filtered ASes with: (i) the 30 ASes with
the largest amount of traffic (hypergiants) based on the methodology by Böttger
et al. [13], and the 1,000 ASes with the largest user population according to
APNIC. The filtered ASNs are involved in 9% of the transfers. As shown in the

(a) Distribution of blacklisting reports per ASNs (b) Fraction of blacklisted address space per ASN

Fig. 5. Comparison of the blacklisted activity of the ASNs in the transfer market,
compared to the rest of the ASNs that originate BGP-routed prefixes.

column “Filtered” of Table 1, even when filtering out these ASes, the fraction
of blacklisted transferred IPs is between 2x – 3x higher than the total fraction
of transferred IPs, while the fraction of blacklisted prefixes is virtually identi-
cal between the filtered and the non-filtered datasets. This is an indication the
“non-suspicious” ASes have a proportional fraction of blacklisted transferred
and non-transferred prefixes. In contrast, a large number of ASes in the trans-
fer market exhibit higher affinity for malicious activity which is not explained
by their business model network footprint. This observation is more apparent
when studying how blacklisted prefixes are distributed across the IPv4 address
space. Filtered transferred/24 prefixes exhibit a much higher fraction of black-
listed records compared to non-filtered transferred and non-transferred prefixes
(Fig. 4b).
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Fig. 6. Blacklist reports per type of malicious activity for transferred IPs, compared
to the transfer date. The last row shows the blacklisting activity for deployed prefixes
based on the Internet-wide IP and port scans.

Blacklisting Timing. To explore the dynamics between malicious activity
and the IP transfers, we compare the timing of the blacklisting reports to the
transfer date. We use the effective transfer date, as observed by BGP routing
changes (see Sect. 3.1), and the reported transfer time only when the origin
AS does not change at all. As shown in Fig. 6, the number of blacklisted IPs
peaks within a year of the transfer date for all types of malicious activity. Such
blacklisting activity shortly after the transfer date may happen because the
transferred addresses were unused before the transfer.

To illuminate this possibility, in the last row of Fig. 6 we plot the blacklisting
reports only for prefixes with IPs visible in our IP/port scans at least one month
before the transfer date. For deployed prefixes the peak in malicious activity
also peaks after the transfer date, but after one year. This finding indicates that
recipients of IP addresses are more prone to abuse of the IP space, which agrees
with the difference in blacklisting magnitude between buyers and sellers as shown
in Fig. 5b.

Per-Region and Per-Transfer Type Differences. We then investigate
whether the malicious activity differs between regions and transfer types.
Figure 7a compares the fraction of blacklisted transferred address space between
prefixes exchanged as Merge & Acquisitions and as IP sales for each region with
blacklisted IPs, and for inter-region transfers. Prefixes exchanged within the
RIPE region as sales originate have the highest fraction of blacklisted IPs, which
is statistically significant. In contrast, ARIN exhibits higher malicious activity
from prefixes transferred between siblings, although the spread of values makes
it difficult to generalize this observation. For APNIC and inter-RIR transfers
we observe only non-sibling blacklisted transactions, while for AFRINIC and
LACNIC we do not have any blacklisted transferred IPs (after the AS filtering
step).

Participation of Low-Reputation ASes in IPv4 Transfers. The final part
of our analysis is to check the participation rate of low-reputation ASes (hijack-
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(a) IP sales in the RIPE region exhibit a higher
fraction of blacklisting compared to transfers be-
tween siblings, and transfers in other RIRss.

(b) The density of blacklisted IPs for low-
reputation ASes that participate both as buyers
and sellers in the IPv4 market

Fig. 7. Analysis of transferred blacklisted IPs per region, transfer type, and for low-
reputation ASes.

ers, C&C and bulletproof hosters) in IP transfers. Although 85% of the ASes
visible in the BGP routing table are not involved in IP transfers, 47% of the low-
reputation ASes have been either buyers (48%) or sellers (52%). Surprisingly,
32% of these ASes participate both as buyers and sellers. This practice may
signal an attempt to recycle “tainted” address space in order to evade blacklist
filters, since blacklist providers may remove listed IPs and prefixes when there
is a shift in ownership [25,26]. Figure 7b shows that indeed the density of black-
listed IPs for the low-reputation buyer/seller ASes dips at the transfer date and
increases shortly thereafter.

5 Conclusion

In this paper we present a first comprehensive measurement study of malicious
activities within the transferred IPv4 address space and the networks that are
involved in the IPv4 market. We first combine a wide range of control-plane and
data-plane data to process the details of the reported IP transfer reports and
verify the ownership of the exchanged prefixes based on BGP paths and historical
WHOIS data. We find that for more than 65% of the IP transfers, the origin
ASes and the transaction dates are inconsistent with the transfer reports. Our
results reveal at best poor practices of resource management that can facilitate
malicious activities, such as hijacking attacks, and even lead to connectivity
issues due to the increasing deployment of IRR-based filtering mechanisms.

We then analyze the exchanged IPv4 address blocks against an extensive
dataset of malicious activities that span a decade, which includes IP blacklists,
honeypot data, and non-legitimate ASes based on the detection of control-plane
misbehavior. Our findings show that the ASes involved in the transfer market
exhibit consistently higher malicious behavior compared to the rest of the ASes,
even when we account for factors such as business models and network span.
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Our findings are likely to be a lower bound of malicious activity from within
transferred IP addresses since a number of transactions may occur without being
reported to the RIRs [23,44]. As part of our future work we aim to extend our
analysis to non-reported IPv4 transfers and develop predictive techniques for
blacklisting based on the monitoring of the IPv4 transfer market.

We believe that these insights can inform the debates and development of RIR
policies regarding the regulation of IPv4 markets, and help operators and brokers
conduct better-informed due diligence to avoid misuse of the transferred address
space or unintentionally support malicious actors. Moreover, our results can pro-
vide valuable input to blacklist providers, security professionals and researchers
who can improve their cyber-threat monitoring and detection approaches, and
tackle evasion techniques that exploit IPv4 transfers. We will make available the
data of our study at: https://github.com/vgiotsas/ip-transfers-observatory.
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Abstract. This paper concerns the problem of the absence of ingress
filtering at the network edge, one of the main causes of important net-
work security issues. Numerous network operators do not deploy the best
current practice—Source Address Validation (SAV) that aims at miti-
gating these issues. We perform the first Internet-wide active measure-
ment study to enumerate networks not filtering incoming packets by their
source address. The measurement method consists of identifying closed
and open DNS resolvers handling requests coming from the outside of
the network with the source address from the range assigned inside the
network under the test. The proposed method provides the most com-
plete picture of the inbound SAV deployment state at network providers.
We reveal that 32 673 Autonomous Systems (ASes) and 197 641 Border
Gateway Protocol (BGP) prefixes are vulnerable to spoofing of inbound
traffic. Finally, using the data from the Spoofer project and performing
an open resolver scan, we compare the filtering policies in both directions.

Keywords: IP spoofing · Source Address Validation · DNS resolvers

1 Introduction

The Internet relies on IP packets to enable communication between hosts with
the destination and source addresses specified in packet headers. However, there
is no packet-level authentication mechanism to ensure that the source addresses
have not been altered [2]. The modification of a source IP address is referred
to as “IP spoofing”. It results in the anonymity of the sender and prevents a
packet from being traced to its origin. This vulnerability has been leveraged to
launch Distributed Denial-of-Service (DDoS) attacks, in particular, the reflection
attacks [3]. Due to the absence of a method to block packet header modifica-
tion, the efforts have been undertaken to prevent spoofed packets from reaching
potential victims. This goal can be achieved with packet filtering at the network
edge, formalized in RFC 2827 and called Source Address Validation (SAV) [25].
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The role of IP spoofing in cyberattacks drives the need to estimate the level
of SAV deployment by network providers. There exist projects aimed at enumer-
ating networks without packet filtering, for example, the Spoofer [4]. However,
a great majority of the existing work concentrates on outbound SAV, the root
of DDoS attacks [15]. While less obvious, the lack of inbound filtering enables
an attacker to appear as an internal host of a network and may reveal valuable
information about the network infrastructure, not seen from the outside. Inbound
IP spoofing may serve as a vector for cache poisoning attacks [10] even if the
Domain Name System (DNS) server is correctly configured as a closed resolver.

In this work, we report on the preliminary results of the Closed Resolver
Project [5]. We propose a new method to identify networks not filtering inbound
traffic by source IP addresses. We perform an Internet-wide scan of BGP prefixes
maintained by RouteViews [23] for the IPv4 address space to identify closed and
open DNS resolvers in each routable network. We achieve this goal by sending
DNS A requests with spoofed source IP addresses for which the destination
is every host of every routing prefix and the source is the next host from the
same network. If there is no filtering in transit networks and at the network
edge, such a packet is received by a server that resolves the DNS A request
for a host that seems to be on the same network. As our scanner spoofs the
source IP address, the response from the local resolver is directly sent to the
spoofed client IP address, preventing us from analyzing it. However, we control
the authoritative name server for the queried domains and observe from which
networks it receives the requests. This method identifies networks not performing
filtering of incoming packets without the need for a vantage point inside the
network itself.

The above method when applied alone shows the absence of inbound SAV
at the network edge. In parallel, we send subsequent unspoofed DNS A record
requests to identify open resolvers at the scale of the Internet. If open resolvers
reply to the unspoofed requests but not to the spoofed ones, we infer the presence
of SAV for incoming traffic either at the network edge or in transit networks. By
doing this, we detect both the absence and the presence of inbound packet fil-
tering.

We analyze the geographical distribution of networks vulnerable to inbound
spoofing and identify the countries that do not comply with the SAV standard,
which is the first step in mitigating the issue by contacting Computer Security
Incident Response Teams (CSIRTs).

We also retrieve the Spoofer data and deploy a method proposed by
Mauch [20] to infer the absence and the presence of outbound SAV. In this way,
we study the policies of the SAV deployment per provider in both directions.
Previous work demonstrated the difficulty in incentivizing providers to deploy
filtering for outbound traffic due to misaligned economic incentives: implement-
ing SAV for outbound traffic benefits other networks and not the network of
the deployment [19]. This work shows how the deployment of SAV for inbound
traffic protects the provider’s own network.
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2 Background

Source address validation was proposed in 2000 in RFC 2827 as a result of
a growing number of DDoS attacks. The RFC defined the notion of ingress
filtering—discarding any packets with source addresses not following filtering
rules. This operation is the most effective when applied at the network edge [25].
RFC 3704 proposed different ways to implement SAV including static access
control lists (ACLs) and reverse path forwarding [1]. Packet filtering can be
applied in two directions: inbound to a customer (coming from the outside to
the customer network) and outbound from a customer (coming from inside the
customer network to the outside). The lack of SAV in any of these directions
may result in different security threats.

Attackers benefit from the absence of outbound SAV to launch DDoS attacks,
in particular, amplification attacks. Adversaries make use of public services prone
to amplification [22] to which they send requests on behalf of their victims by
spoofing their source IP addresses. The victim is then overloaded with the traf-
fic coming from the services rather than from the attacker. In this scenario,
the origin of the attack is not traceable. One of the most successful attacks
against GitHub resulted in traffic of 1.35 Tbps: attackers redirected Memcached
responses by spoofing their source addresses [12]. In such scenarios, spoofed
source addresses are usually random globally routable IPs. In some cases, to
impersonate an internal host, a spoofed IP address may be from the inside tar-
get network, which reveals the absence of inbound SAV [1].

Pretending to be an internal host reveals information about the inner network
structure, such as the presence of closed DNS resolvers that resolve only on behalf
of clients within the same network. Attackers can further exploit closed resolvers,
for instance, for leveraging misconfigurations of the Sender Policy Framework
(SPF) [24]. In case of not correctly deployed SPF, attackers can trigger closed
DNS resolvers to perform an unlimited number of requests thus introducing a
potential DoS attack vector. The possibility of impersonating another host on
the victim network can also assist in the zone poisoning attack [11]. A master
DNS server, authoritative for a given domain, may be configured to accept DNS
dynamic updates from a DHCP server on the same network [27]. Thus, sending
a spoofed update from the outside with an IP address of that DHCP server will
modify the content of the zone file [11]. The attack may lead to domain hijacking.
Another way to target closed resolvers is to perform DNS cache poisoning [10].
An attacker can send a spoofed DNS A request for a specific domain to a closed
resolver, followed by forged replies before the arrival of the response from the
genuine authoritative server. In this case, the users who query the same domain
will be redirected to where the attacker specified until the forged DNS entry
reaches its Time To Live (TTL).

Despite the knowledge of the above-mentioned attack scenarios and the costs
of the damage they may incur, it has been shown that SAV is not yet widely
deployed. Lichtblau et al. surveyed 84 network operators to learn whether they
deploy SAV and what challenges they face [16]. The reasons for not performing
packet filtering include incidentally filtering out legitimate traffic, equipment lim-
itations, and lack of a direct economic benefit. The last aspect assumes outbound
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Table 1. Methods to infer deployment of Source Address Validation.

Method Direction Presence/Absence Remote Relies on mis-
configurations

Spoofer [3,4] Both Both No No

Forwarders-based [15,20] Outbound Absence Yes Yes

Traceroute loops [18] Outbound Absence Yes Yes

Passive detection [16,21] Outbound Both No No

Our method [5] Inbound Both Yes No

SAV when the deployed network can become an attack source but cannot be
attacked itself. Performing inbound SAV protects networks from, for example,
the threats described above, which is beneficial from the economic perspective.

3 Related Work

Table 1 summarizes several methods proposed to infer SAV deployment. They
differ in terms of the filtering direction (inbound/outbound), whether they infer
the presence or absence of SAV, whether measurements can be done remotely or
on a vantage point inside the tested network, and if the method relies on existing
network misconfigurations.

The Spoofer project deploys a client-server infrastructure mainly based on
volunteers (and “crowdworkers” hired for one study trough five crowdsourc-
ing platforms [17]) that run the client software from inside a network. The
active probing client sends both unspoofed and spoofed packets to the Spoofer
server either periodically or when it detects a new network. The server inspects
received packets (if any) and analyzes whether spoofing is allowed and to what
extent [2]. For every client running the software, its/24 IPv4 address block and
the autonomous system number (ASN) are identified and measurement results
are made publicly available1. This approach identifies both the absence and the
presence of SAV in both directions. The results obtained by the Spoofer project
provide the most confident picture of the deployment of outbound SAV and have
covered tests from 7 353 ASes since 2015. However, those that are not aware of
this issue or do not deploy SAV are less likely to run Spoofer on their networks.

A more practical approach is to perform such measurements remotely. Kührer
et al. [15] scanned for open DNS resolvers, as proposed by Mauch [20], to detect
the absence of outbound SAV. They leveraged the misconfiguration of forwarding
resolvers. The misbehaving resolver forwards a request to a recursive resolver
with either not changing the packet source address to its address or by sending
back the response to the client with the source IP of the recursive resolver. They
fingerprinted those forwarders and found out that they are mostly embedded
devices and routers. Misconfigured forwarders originated from 2 692 autonomous
systems. We refer to this technique as forwarders-based.
1 https://spoofer.caida.org/summary.php.

https://spoofer.caida.org/summary.php
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Fig. 1. Inbound spoofing scan setup.

Lone et al. [18] proposed another method that does not require a vantage
point inside a tested network. When packets are sent to a customer network
with an address that is routable but not allocated, this packet is sent back to
the provider router without changing its source IP address. The packet, having
the source IP address of the machine that sent it, should be dropped by the
router because the source IP does not belong to the customer network. The
method detected 703 autonomous systems not deploying outbound SAV.

While the above-mentioned methods rely on actively generated (whether
spoofed or not) packets, Lichtblau et al. [16] passively observed and analyzed
inter-domain traffic exchanged between more than 700 networks at a large IXP.
They classified observed traffic into bogon, unrouted, invalid, and valid based
on the source IP addresses and AS paths. The most conservative estimation
identified 393 networks where the invalid traffic originated from.

We are the first to propose a method to detect the absence of inbound SAV
that is remote and does not rely on existing misconfigurations. Instead, we use
local DNS resolvers (both open and closed) to infer the absence of packet filtering
and the presence of SAV either at transit networks or at the edge. We are aware
of a similar method by Deccio, but his work is in progress and not yet publicly
available [6].

4 Methodology

4.1 Spoofing Scan

Figure 1 illustrates the idea of the proposed method. We have developed an effi-
cient scanner that sends hand-crafted DNS A record request packets. We run
the scanner on a machine inside a network that does not deploy outbound SAV
so that we can send packets with spoofed IP addresses2. We set up a DNS server
2 After our initial scan, we learned that one of the three upstream providers deploys

SAV, so we temporarily disabled it to perform our measurements.
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authoritative for the drakkardns.com domain to capture the traffic related to
our scans. When a resolver inside a network vulnerable to inbound spoofing per-
forms query resolution, we observe it on our authoritative DNS server. To prevent
caching and to be able to identify the true originator in case of forwarding, we
query the following unique subdomain every time: a random string, the hex-
encoded resolver IP address (the destination of our query), a scan identifier, and
the domain name itself, for example, qGPDBe.02ae52c7.s1.drakkardns.com.

Figure 1 shows the scanning setup for the 1.2.3.0/24 network. In step 1, the
scanner sends one spoofed packet to each host of this network, thus packets to
254 destinations in total. The spoofed source IP address is always the next one
after the destination. When the spoofed DNS packet arrives at the destination
network edge (therefore it has not been filtered anywhere in transit), there are
three possible cases:

• Packet filtering in place. The packet filter inspects the packet source
address and detects that such a packet cannot arrive from the outside because
the address block is allocated inside the network. Thus, the filter drops the
packet.

• No packet filtering in place and nothing prevents the packet from
entering the network. If the packet destination is 1.2.3.5, the address
of the local resolver (step 2), it receives a DNS A record request from what
looks to be another host on the same network and performs query resolution.
If the destination is not the local resolver, it will drop the packet. However,
the scanner will eventually reach all the hosts on the network and the local
resolver if there is one. In some cases, the closed DNS resolver may be con-
figured to refuse queries coming from its local area network (for example, if
the whole separate network is dedicated to the infrastructure).

• Other cases. Regardless of the presence or absence of filtering, packets may
be dropped due to reasons not related to IP spoofing such as network con-
gestion [2].

In this study, we distinguish between two types of local resolvers: forwarders
(or proxies) that forward queries to other recursive resolvers and non-forwarders
(non-proxies) that recursively resolve queries they receive. Therefore, the non-
forwarding local resolver (1.2.3.5) inspects the query that looks as if it was sent
from 1.2.3.6 and performs the resolution by iteratively querying the root (step
3) and the top-level domain name (step 4) servers until it reaches our author-
itative DNS server in step 5. Alternatively, it forwards the query to another
recursive resolver that repeats the same procedure as described above for non-
forwarders. In step 6, the DNS A query response is sent to the spoofed source
(1.2.3.6).

We aim at scanning the whole IPv4 address space, yet taking into account
only globally routable and allocated address ranges. We use the data maintained
by the RouteViews Project to get all the IP blocks currently present in the BGP
routing table and send spoofed DNS A requests to all the hosts of the prefixes.
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4.2 Open Resolver Scan

In parallel, we perform an open resolver scan by sending DNS A requests with
the genuine source IP address of the scanner. To avoid temporal changes, we send
a non-spoofed query just after the spoofed one to the same host. The format of
a non-spoofed query is almost identical to the spoofed one. The only difference
is the scan identifier: qGPDBe.02ae52c7.n1.drakkardns.com. If we receive a
request on our authoritative DNS server, it means that we have reached an open
resolver. Moreover, if this open resolver did not resolve a spoofed query, we infer
the presence of inbound SAV either in transit or at the tested network edge.

We also analyze traffic on the machine on which we run the scanner to deploy
the forwarders-based method, as explained in Sect. 3. We distinguish between
two cases: the source of the DNS response is the same as the original destination
and the source is different [15,20]. The latter implies that either the source IP
address of the original query was not rewritten when the query was forwarded
to another recursive resolver or the source IP address of the recursive resolver
was not changed on the way back. In either case, such a packet should not be
able to leave its network if there is the outbound SAV in place. In Sect. 5.5, we
analyze the results from the forwarders-based method and compare the policies
of SAV deployment in both directions.

4.3 Ethical Considerations

To make sure that our study follows the ethical rules of network scanning, yet
providing complete results, we adopt the recommended best practices [8,9]. We
aggregate the BGP routing table to eliminate overlapping prefixes. In this way,
we are sure to send no more than two DNS A request packets (spoofed and
non-spoofed) to every tested host. Due to packet losses, we potentially miss
some results, but we go with this limitation in order not to disrupt the normal
operation of tested networks. In addition, we randomize our input list for the
scanner so that we do not send consecutive requests to the same network (apart
from two consecutive spoofed and non-spoofed packets). Our scanning activities
are spread over 10 days.

We set up a homepage for this study on drakkardns.com and all queried
subdomains with a description of our scan and provide the contact information
if someone wants to exclude her networks from testing. We received 9 requests
from operators and excluded 29 360 925 IP addresses from our future scans. We
also exclude those addresses from our analysis. We do not publicly reveal the
source address validation policies of individual networks and AS operators. We
also plan a notification campaign through CSIRTs and by directly informing the
operators of affected networks.

5 Results

5.1 Filtering Levels

When evaluating the SAV deployment, we aim at finding the unit of analysis
that will show the most consistent results. Each received request reveals the
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Table 2. Spoofing scan results

Metric Number Proportion (%)

DNS forwarders 6 530 799 94.01

Open resolvers 2 317 607 35.49

Closed resolvers 4 213 192 64.51

DNS non-forwarders 415 983 5.99

Open resolvers 39 924 9.6

Closed resolvers 376 059 90.4

Vulnerable to spoofing/24 IPv4 networks 959 666 8.62

Vulnerable to spoofing longest matching prefixes 197 641 23.61

Vulnerable to spoofing autonomous systems 32 673 49.34

IP address of the original target of the query. We map this IP address to the
corresponding/24 address block, the longest matching BGP prefix, and its ASN.
This granularity allows us to evaluate the SAV practices at different levels:

• Autonomous systems: while based on a few received queries, we cannot by
any means conclude on the filtering policies of the whole AS—they reveal
SAV compliance for a part of it [3,4,18,19].

• Longest matching BGP prefixes: as the provider ASes may sub-allocate their
address space to their customers by prefix delegation [13], the analysis of the
SAV deployment at the longest matching prefix is another commonly used
unit of analysis [3,19].

• /24 IPv4 networks: it is the smallest unit of measuring the SAV deployment
used so far by the existing methods [4,19]. We later show that even at this
level some results are inconsistent.

5.2 Global Scans

In December 2019, we performed the spoofing and open resolver scans. During
the spoofing scan, we observed 14 761 484 A requests on our authoritative DNS
server. It has been shown that DNS resolvers tend to issue repetitive queries
due to proactive caching or premature querying [26]. Thus, we leave only unique
tuples of the source IP address and the domain name, which results in 9 558 190
unique requests (64.75% of all the received requests and 0.34% of all the requests
sent by the scanner).

Table 2 presents the statistics gathered from the spoofing scan. From each
request received on our authoritative name server, we retrieve the queried
domain, extract its hexadecimal part (the destination of our original DNS A
query) and convert it to an IP address. We then compare it to the source IP
of the query and identify 6 530 799 DNS proxies (local resolvers that forwarded
their queries to other recursive resolvers) and 415 983 non-proxies (local resolvers
that performed resolutions themselves). We identify that 35.49% of forwarders
and 9.60% of non-forwarders are open resolvers.
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Fig. 2. Filtering inconsistencies (S: vulnerable to inbound spoofing, NS: non-vulnerable
to inbound spoofing, and I: inconsistent)

The address encoded in the domain name identifies the originator network.
We map every IP address to the corresponding prefix and the autonomous sys-
tem number. They originate from 32 673 autonomous systems and correspond
to 197 641 prefixes (49.34% and 23.61% out of all ASes and longest matching
prefixes present in the BGP routing table, respectively) and 959 666/24 blocks.

For the open resolver scan, we retrieve query responses with the NOERROR
reply code, meaning that we reached an open resolver. Note that for this study,
we do not check the integrity of those responses. In total, we identify 4 022 711
open resolvers, 956 969 of which (23.79%) are forwarders.

5.3 Inferring Absence and Presence of Inbound Filtering

We compare the results of spoofing and open resolver scans to reveal the absence
and the presence of inbound SAV. For every detected open resolver, we check
whether this particular resolver resolved a spoofed query. If it did not, we assume
that this resolver is inside a network performing inbound SAV. We note, however,
that due to inconsistent filtering policies inside networks and possible packet
losses, we may obtain contradictory results for a single AS or a network. We
define ASes and networks as inconsistent if we have at least two measurements
with a different outcome.

Figure 2 shows the number of vulnerable to inbound spoofing (S), non-
vulnerable to inbound spoofing (NS), and inconsistent (I) ASes, prefixes, and/24
networks. As expected, the most inconsistent results are for ASes with 14 382
(38.47%) of them revealing both the absence and presence of inbound SAV. The
smaller the network size, the more consistent results we obtain, as it can be seen
for the longest matching prefixes and/24 networks. While/24 is a common unit
of network filtering policy measurement, it still exhibits a high level of inconsis-
tency with 154 704 (12.30%) networks belonging to both groups. Importantly,
after our initial scan, we ascertained that one of our three upstream providers
performed source address validation of outbound traffic. This means that all
packets with spoofed source IP addresses routed by this provider were dropped,
while those routed by other two upstream providers were forwarded. This has
significantly affected the measurements and resulted in a very high number of
inconsistent results. By disabling this provider before the main scan, the number
of inconsistent/24 networks decreased more than two-fold.
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Fig. 3. Sizes of autonomous systems Fig. 4. Sizes of longest matching prefixes

Figure 3 presents the cumulative distribution of vulnerable to spoofing, non-
vulnerable to spoofing, and inconsistent AS sizes (the number of announced
IPv4 addresses in the BGP routing table). Around 80% of vulnerable to spoofing
ASes have 4 096 addresses and less, meaning that small ASes are less likely to
perform packet filtering at the network edge. Figure 4 shows the longest matching
prefix sizes. We can observe that almost 90% of vulnerable to spoofing prefixes
have 4 096 addresses and less. The sizes of inconsistent ASes and prefixes are
significantly larger compared to vulnerable and non-vulnerable ones.

Larger ASes are more likely to peer with a larger number of other ASes
and sub-allocate the address space to their customers and therefore, have less
consistent filtering policies. To further understand the complexity of the ASes, we
use the CAIDA AS relationship data [7] to compute the number of relationships
of all ASes in our dataset. We find that inconsistent ASes maintain relationships
with 29 other ASes on average, while vulnerable to spoofing and non-vulnerable
to spoofing ASes connect to around 7 ASes on average.

The AS relationship data and the AS size give us some initial insights into
understanding inconsistencies in ASes. Another possible reason for inconsistent
results for a single AS or a network is packet losses. To test this hypothesis, we
sampled 1000/24 networks from the inconsistent group and re-scanned them. 48
networks out of 1000 did not respond to any query. Most importantly, 464 became
consistent (all vulnerable to spoofing). The remaining/24s were still inconsistent.

Furthermore, we repeated the same test once per day, three days in a row,
to estimate the persistence of the results. More than two-thirds of the networks
belonged to the same group (inconsistent, vulnerable to spoofing, non-vulnerable,
or no data) during all three measurements. Interestingly, half of those were
inconsistent. For most of the networks, the exact set of the responding resolver
IP addresses changed every day, due to the IP address churn of resolvers [14].
Regarding the remaining one-thirds, it is unlikely that provider filtering poli-
cies change so rapidly. Therefore, apart from packet losses, we may be dealing
with other issues such as different filtering policies at upstream providers for
multi-homed customer ASes.
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Table 3. Geolocation results

Rank Country Resolvers (#) Country Vulnerable to
spoofing/24
networks (#)

Country Vulnerable to
spoofing/24
networks (%)

1 China 2 304 601 China 271 160 Cocos Islands 100.0

2 Brazil 687 564 USA 157 978 Kosovo 81.82

3 USA 678 837 Russia 55 107 Comoros 57.89

4 Iran 373 548 Italy 32 970 Armenia 52.16

5 India 348 076 Brazil 29 603 Western Sahara 50.00

6 Algeria 252 794 Japan 28 660 Christmas Island 50.00

7 Indonesia 249 968 India 27 705 Maldives 39.13

8 Russia 229 475 Mexico 24 195 Moldova 38.66

9 Italy 108 806 UK 18 576 Morocco 37.85

10 Argentina 103 449 Morocco 18 135 Uzbekistan 36.17

These experiments show that even though the number of inconsistent/24s
decreased almost two-fold, such networks are not uncommon. We plan to contact
several network providers to validate our results and gain some insights into their
motivation for inconsistent filtering at the network level.

5.4 Geographic Distribution

Identifying the countries that do not comply with the SAV standard is the first
step in mitigating the issue by, for example, contacting local CSIRTs. We use
the MaxMind database3 to map every resolver IP address of the spoofed query
retrieved from the domain name to its country. Table 3 summarizes the results.

In total, we identified 237 countries and territories vulnerable to spoofing
of incoming network traffic. We first compute the number of DNS resolvers per
country and map the resolvers to the nearest/24 IP address blocks to evaluate
the number of vulnerable to spoofing/24 networks per country. We see that the
top 10 countries by the number of DNS resolvers are not the same as the top
10 for vulnerable to spoofing/24 networks because a large number of individ-
ual DNS resolvers by itself does not indicate how they are distributed across
different networks.

Such absolute numbers are still not representative as countries with a large
Internet infrastructure may have many DNS resolvers and therefore reveal many
vulnerable to spoofing networks that represent a small proportion of the whole.
For this reason, we compute the fraction of vulnerable to spoofing vs. all/24
IPv4 networks per country. To determine the number of all the/24 networks per
country, we map all the individual IPv4 addresses to their location, then to the
nearest/24 block and keep the country/territory where most addresses of a given
network belong to. Figure 5 (in Appendix) presents the resulting world map. We
can see in Table 3 that the top 10 ranking has changed. Small countries such
as Cocos Islands and Western Sahara, which have one identified resolver each,
3 https://dev.maxmind.com/geoip/geoip2/geolite2/.

https://dev.maxmind.com/geoip/geoip2/geolite2/
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suffer from a high proportion of vulnerable to spoofing networks. The only/24
network of Cocos Islands allows inbound spoofing. On the other hand, Morocco
is a country with a large Internet infrastructure (47 915/24 networks in total)
and with a large relative number of vulnerable to spoofing networks.

5.5 Outbound vs. Inbound SAV Policies

We retrieve the Spoofer data to infer the absence and the presence of outbound
SAV. The Spoofer client sends packets with the IP address of the machine on
which the client is running as well as packets with a spoofed source address. The
results are anonymized per/24 IP address blocks. Spoofer identifies four possible
states: blocked (only an unspoofed packet was received, the spoofed packet was
blocked), rewritten (the spoofed packet was received, but its source IP address
was changed on the way), unknown (neither packet was received), received (the
spoofed packet was received by the server).

In December 2019, we collected and aggregated the results of the latest mea-
surements to infer outbound SAV compliance. During this period, tests were run
from 3 251 distinct/24 networks. In some cases, tests from the same IP address
block show different results due to possible changes in the filtering policies of the
tested networks, so we kept the latest result for every/24 network. We identified
1 910 networks blocking spoofed outbound traffic and 316 that allow spoofing.

We deploy the forwarders-based technique on our scanning server and ana-
lyze the responses in which the originally queried IP address is not the same
as the responding one, as described in Sect. 4.2. Interestingly, 3 147 responses
arrived from the private ranges of IP addresses. Previous work has shown that
this behavior is related to NAT misconfiguration [19]. To detect misbehaving for-
warders inside networks vulnerable to outbound spoofing, we check that the IP
address of the forwarder, the source IP address of the response, and the scanner
IP address belong to different ASes. In this way, we identify 456 816 misbehaving
forwarders originated from 20 889/24 IP networks vulnerable to outbound spoof-
ing. In total, the two methods identify 21 203/24 networks without outbound
filtering and 1 910/24 networks with outbound SAV in place.

The results obtained by running our scans and using the data of the Spoofer
project let us evaluate the filtering policies of networks in both directions
(inbound and outbound). We aggregated all the datasets and found 4 541/24
networks with no filtering in any direction and only 151 networks deploying
both inbound and outbound SAV. To further understand the filtering prefer-
ences of network operators, we analyze how many of them do not filter only
outbound or only inbound traffic. Note however, that the coverage of inbound
filtering scans is much larger than the one of outbound SAV (forwarders-based
method and especially the Spoofer data). To make the datasets comparable, we
find the intersection between the networks covered by inbound filtering scans
(only those showing consistent results) and all the networks tested with the
Spoofer client. In the resulting set of 559/24 networks, there are 298 networks
with no filtering for inbound traffic only and 15 with no outbound SAV only. It
shows that inbound filtering is less deployed than outbound, which is consistent
with previous work [19]. We do the same comparison of our inbound filtering
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scans and the forwarders-based method. Among 16 839 common/24 networks
(all vulnerable to outbound spoofing), 12 393 are also vulnerable to inbound
spoofing.

6 Limitations

While we aimed at designing a universal method to detect the deployment of
inbound SAV at the network edge, our approach has certain limitations that may
impact the accuracy of the obtained results. We rely on one main assumption—
the presence of an (open or closed) DNS resolver or a proxy in a tested network.
In case of the absence of one of them, we cannot conclude on the filtering policies.
If the probed resolver is closed, our method may only confirm that a particular
network does not perform SAV for inbound traffic, at least for some part of its
IP address space. Only the presence of an open DNS resolver may reveal the
SAV presence assuming that the transit networks do not deploy SAV.

From our results, we often cannot unequivocally conclude on the general
policies of operators of, for example, larger autonomous systems. Some parts of
an AS, a BGP prefix, or even a/24 network may be configured to allow spoofed
packets to enter one subnetwork and to filter spoofed packets in another one.

The scanner sending spoofed packets should itself be located in the network
not performing SAV for outgoing traffic. Still, even if a spoofed query leaves our
network, it may be filtered by some transit networks and never reach the tested
destination. Therefore, we plan to test our method from different vantage points.

There are several reasons, apart from deploying SAV, why we have no data
for certain IP address blocks. Packet losses and temporary network failures are
some of the reasons for not receiving queries from all the target hosts [14]. To
overcome this limitation, we plan to repeat our measurements regularly and
study the persistence of this vulnerability over time.

7 Conclusion

The absence of ingress filtering at the network edge may lead to important
security issues such as DDoS and DNS zone or cache poisoning attacks. Even if
network operators are aware of these risks, they choose not to filter traffic, or do
it incorrectly because of deployment and maintenance costs or implementation
issues. There is a need for identifying and enumerating networks that do not
comply with RFC 2827 to understand the scale of the problem and find possible
ways to mitigate it.

In this paper, we have presented a novel method for inferring the SAV deploy-
ment for inbound traffic and discussed the results of the first Internet-wide mea-
surement study. We have obtained significantly more test results than other
methods: we cover over 49% of autonomous systems and 23% of the longest
matching BGP prefixes.

The next step for this work is to start longitudinal measurements to infer the
SAV deployment in both IPv4 and IPv6 address spaces from different vantage
points. Finally, we plan to notify all parties affected by the vulnerability.
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and Oliver Hohlfeld2

1 Communication and Distributed Systems, RWTH Aachen University,
Aachen, Germany

{kosek,bloecher,rueth,zimmermann}@comsys.rwth-aachen.de
2 Chair of Computer Networks, Brandenburg University of Technology,

Cottbus, Germany
oliver.hohlfeld@b-tu.de

Abstract. Standards govern the SHOULD and MUST requirements for
protocol implementers for interoperability. In case of TCP that carries
the bulk of the Internets’ traffic, these requirements are defined in RFCs.
While it is known that not all optional features are implemented and
non-conformance exists, one would assume that TCP implementations
at least conform to the minimum set of MUST requirements. In this
paper, we use Internet-wide scans to show how Internet hosts and paths
conform to these basic requirements. We uncover a non-negligible set
of hosts and paths that do not adhere to even basic requirements. For
example, we observe hosts that do not correctly handle checksums and
cases of middlebox interference for TCP options. We identify hosts that
drop packets when the urgent pointer is set or simply crash. Our publicly
available results highlight that conformance to even fundamental proto-
col requirements should not be taken for granted but instead checked
regularly.

1 Introduction

Reliable, interoperable, and secure Internet communication largely depends on
the adherence to standards defined in RFCs. These RFCs are simple text doc-
uments, and any specifications published within them are inherently informal,
flexible, and up for interpretation, despite the usage of keywords indicating the
requirement levels [20], e.g., SHOULD or MUST. It is therefore expected and
known that violations—and thus non-conformance—do arise unwillingly. Never-
theless, it can be assumed that Internet hosts widely respect at least a minimal
set of mandatory requirements. To which degree this is the case is, however,
unknown.

In this paper, we shed light on this question by performing Internet-wide
active scans to probe if Internet hosts and paths are conformant to a set of
minimum TCP requirements that any TCP speaker MUST implement. This
adherence to the fundamental protocol principles is especially important since
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TCP carries the bulk of the data transmission in the Internet. The basic require-
ments of a TCP host are defined in RFC793 [47]—the core TCP specification.
Since its over 40 years of existence, it has accumulated over 25 accepted errata
described in RFC 793bis-Draft14 [27], which is a draft of a planned future update
of the TCP specification, incorporating all minor changes and errata to RFC 793.
We base our selection of probed requirements on formalized MUST requirements
defined in this drafted update to RFC 793.

The relevance of TCP in the Internet is reflected in the number of studies
assessing its properties and conformance. Well studied are the interoperability of
TCP extensions [21], or within special purpose scenarios [40,41], and especially
non-conformance introduced by middleboxes on the path [24,35]. However, the
conformance to basic mandatory TCP features has not been studied in the wild.
We close this gap by studying to which degree TCP implementations in the wild
conform to MUST requirements. Non-conformance to these requirements limits
interoperability, extensibility, performance, or security properties, leading to the
essential necessity to understand who does not adhere to which level of non-
conformance. Uncovering occurrences of non-conformities hence reveal areas of
improvement for future standards. A recent example is QUIC, where effort is
put into the avoidance of such misconceptions during standardization [46].

With our large scale measurement campaign presented in this paper, we show
that while the majority of end-to-end connections are indeed conforming to the
tested requirements, a non-trivial number of end-hosts as well as end-to-end
paths show non-conformities, breaking current and future TCP extensions, and
even voiding interoperability thus reducing connectivity. We show that

� In a controlled lab study, non-conformance already exists at the OS-level:
only two tested stacks (Linux and lwIP) pass all tests, where, surprisingly,
others (including macOS and Windows) fail in at least one category each.
Observing non-conformance in the wild can therefore be expected.

� In the wild, we indeed found a non-negligible amount of non-conformant hosts.
For example, checksums are not verified in ∼3.5% cases, and middleboxes
inject non-conformant MSS values. Worrisome, using reserved flags or setting
the urgent pointer can render the target host unreachable.

� At a infrastructure level, 4.8% of the Alexa domains with and without www.
prefix show different conformance levels (e.g., because of different infrastruc-
tures: CDN vs. origin server), mostly due to flags that limit reachability. The
reachability of websites can thus depend on the www. prefix.

Structure. In Sect. 2 we present related work followed by our methodology and
its validation in Sect. 3. The design and evaluation of our Internet-wide TCP
conformance scans are discussed in Sect. 4 before we conclude the paper.

2 Related Work

Multiple measurement approaches have focused on the conformance of TCP
implementations on servers, the presence of middleboxes and their interference
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on TCP connections, and non-standard conform behavior. In the following, we
discuss similarities and differences of selected approaches to our work.

TCP Stack Behavior. One line of research aims at characterizing remote
TCP stacks by their behavior (e.g., realized in the TCP Behavior Inference Tool
(TBIT) [45] in 2001). One aspect is to study the deployment of TCP tunings (e.g.,
the initial window configuration [48–50]) or TCP extensions (e.g., Fast Retrans-
mit [45], Fast Open [39,44], Selective Acknowledgment (SACK) [36,43,45], or
Explicit Congestion Notification (ECN) [18,36,37,42,43,45] and ECN++ [38] to
name a few). While these works aim to generally characterize stacks by behav-
ior and to study the availability and deployability of TCP extensions, our work
specifically focuses on the conformance of current TCP stacks to mandatory
behavior every stack must implement. A second aspect concerns the usage of
behavioral characterizations to fingerprint TCP stacks (e.g., via active [30] or
passive [19] measurements) and mechanisms to defeat fingerprinting (e.g., [53]).

Middlebox Interference. The end-to-end behavior of TCP not only depends
on the stack implementations, but also on on-path middleboxes [22], which can
tune TCP performance and security but also (negatively) impact protocol mech-
anisms and extensions (see e.g., [18,42,43]). Given their relevance, a large body
of work studies the impact within the last two decades and opens the question
if TCP is still extensible in today’s Internet. Answering this question resulted in
a methodology for middlebox inference which is extended by multiple works
to provide middlebox detection tools to assess their influence; By observing
the differences between sent and received TCP options at controlled endpoints
(TCPExposure [32]), it is observed that 25% of the studied paths tamper with
TCP options, e.g., with TCP’s SACK mechanism. Similarly, tracebox [24] also
identifies middleboxes based on modifications of TCP options, but as client-
side only approach without requiring server control. Besides also identifying the
issues with TCP’s SACK option, they highlight the interference with TCP’s
MSS option and the incorrect behavior of TCP implementations when prob-
ing for MPTCP support. PATHSpider [35] extends tracebox to test more TCP
options, e.g., ECN or differentiated services code point (DSCP). They evaluate
their tool in an ECN support study, highlighting that some intermediaries tam-
per with the respective options, making a global ECN deployment a challenging
task. Further investigating how middleboxes harm TCP traffic, a tracebox-based
study [28] shows that more than a third of all studied paths cross at least one
middlebox, and that on over 6% of these paths TCP traffic is harmed. Given
the negative influence of transparent middleboxes, proposals enable endpoints
to identify and negotiate with middleboxes using a new TCP option [34] and to
generally cooperate with middleboxes [23]. While we focus on assessing TCP con-
formance to mandatory behavior, we follow tracebox’s approach to differentiate
non-conforming stacks from middlebox interference causing non-conformity.

Takeaway: While a large body of work already investigates TCP behavior and
middlebox inference, a focus on conformance to mandatory functionality required
to implement is missing—a gap that we address in this study.
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3 Methodology

We test TCP conformance by performing active measurements that probe for
mandatory TCP features and check adherence to the RFC. We begin by explain-
ing how we detect middleboxes before we define the test cases and then validate
our methodology in controlled testbed experiments.

3.1 Middlebox Detection

Middleboxes can alter TCP header information and thereby cause non-
conformance, which we would wrongly attribute to the probed host without
performing a middlebox detection. Therefore, we use the tracebox approach [24]
to detect interfering middleboxes by sending and repeating our probes with
increasing IP TTLs. That is, in every test case (see Sect. 3.2), the first segment
is sent multiple times with increasing TTL values from 1 to 30 in parallel while
capturing ICMP time exceeded messages. We limit the TTL to 30 since we did
not observe higher hop counts in our prior work for Internet-wide scans [51].
To distinguish the replied messages and determine the hop count, we encode
the TTL in the IPv4 ID and in the TCP acknowledgment number, window
size, and urgent pointer fields. We chose to encode the TTL in multiple header
fields since middleboxes could alter every single one. These repetitions enable us
to pinpoint and detect (non-)conformance within the end-to-end path if ICMP
messages are issued by the intermediaries quoting the expired segment. Please
note that alteration or removal of some of our encodings does not render the
path or the specific hop non-conformant. A non-conformance is only attested,
if the actual tested behavior was modified as visible through the expired seg-
ment. Further, since only parts of the fields—all 16 or 32 bits in size—may be
altered by middleboxes (e.g., slight changes to the window size), we repeat each
value as often as possible within every field. Our TTL value of at most 30 can
be encoded in 5 bits, and thus be repeated 3 to 6 times in the selected fields.
Additionally, the TCP header option No-Operation (NOOP) allows an opaque
encoding of the TTL. Specifically, we append as many NOOPs as there are hops
in the TTL to the fixed-size header. Other header fields are either utilized for
routing decisions (e.g., port numbers in load balancers) or are not opaque (e.g.,
sequence numbers), rendering them unsuitable. Depending on the specific test
case, some of the fields are not used for the TTL encoding. For example, when
testing for urgent pointer adherence, we do not encode the TTL in the urgent
pointer field.

3.2 TCP Conformance Test Cases

Our test cases check for observable TCP conformance of end-to-end connections
by actively probing for a set of minimum requirements that any TCP must imple-
ment. We base our selection on 119 explicitly numbered requirements specified
in RFC 793bis-Draft14 [27], of which 69 are absolute requirements (i.e., MUSTs
[20]). These MUSTs resemble minimum requirements for any TCP connection
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participating in the Internet—not only for hosts, but also for intermediate ele-
ments within the traversed path. The majority of these 69 MUSTs address inter-
nal state-handling details, and can therefore not be observed or verified via active
probing. To enable an Internet-wide assessment of TCP conformance, we thus
focus on MUST requirements whose adherence is observable by communicating
with the remote host. We synthesize eight tests from these requirements, which
we summarize in Table 1, and discuss them in the following paragraphs. Each test
is in some way critical to interoperability, security, performance, or extensibility
of TCP. The complexity involved in verifying conformance to other advanced
requirements often leads to the exclusion of these seemingly fundamental prop-
erties in favor of more specialized research.

Table 1. Requirements based on the MUSTs (number from RFC shown in brackets)
as defined in RFC 793bis, Draft 14 [27]. Further, we show the precise test sequence and
the condition leading to a PASS for the test.

Checksum PASS Condition

ChecksumIncorrect (2,3)
When sending a SYN or an ACK segment with a non-zero
but invalid checksum, a target must respond with a RST
segment or ignore it

ChecksumZero (2,3) As above but with an explicit zeroed checksum

Options PASS Condition

OptionSupport (4)
When sending a SYN segment with EOOL and NOOP
options, a target must respond with a SYN/ACK segment

OptionUnknown (6)
When sending a SYN segment with an unassigned option
(#158), a target must respond with a SYN/ACK segment

MSSSupport (4,14,16)
When sending a SYN segment with an MSS of 515 byte,
a target must not send segments exceeding 515 byte

MSSMissing (15,16)
When sending a SYN segment without an MSS, a target
must not send segments exceeding 536 byte (IPv4) or
1220 byte (IPv6, not tested)

Flags PASS Condition

Reserved (no MUST)

When Sending a SYN segment with a reserved flag set
(#2), a target must respond with a SYN/ACK segment
with zeroed reserved flags
Subsequently, when sending an ACK segment with a
reserved flag set (#2), a target must not retransmit the
SYN/ACK segment

UrgentPointer (30,31)
When sending a sequence of segments flagged as urgent,
a target must acknowledge them with an ACK segment

TCP Checksum. The TCP checksum protects against segment corruption in
transit and is mandatory to both calculate and verify. Even though most Layer 2
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protocols already protect against segment corruption, it has been shown [55]
that software or hardware bugs in intermediate systems may still alter packet
data, and thus, high layer checksums are still vital. Checksums are an essential
requirement to consider due to the performance implications of having to iterate
over the entire segment after receiving it, resulting in an incentive to skip this
step even though today this task is typically offloaded to the NIC. Both the
ChecksumIncorrect and the ChecksumZero test (see Table 1) verify the handling
of checksums in the TCP header. They differ only in the kind of checksum
used; the former employs a randomly chosen incorrect checksum while the latter,
posing as a special case, zeroes the field instead, i.e., this could appear as if the
field is unused.

TCP Options. TCP specifies up to 40 bytes of options for future extensibil-
ity. It is thus crucial that these bytes are actually usable and, if used, handled
correctly. According to the specification, any implementation is required to sup-
port the End of option list (EOOL), NOOP, and Maximum Segment Size (MSS)
option. We test these options due to their significance for interoperability and,
in the general case, extensibility and performance. The different, and sometimes
variable, option length makes header parsing somewhat computationally expen-
sive (especially in hardware), opening the door for non-conformant performance
enhancements comparable to skipping checksum verification. Further, an erro-
neous implementation of either requirement can have security repercussions in
the form of buffer overflows or resource wastage, culminating in a denial of ser-
vice. The OptionSupport test validates the support of EOOL and NOOP, while
the OptionUnknown test checks the handling of an unassigned option. The MSS-
Support test verifies the proper handling of an explicitly stated MSS value, while
the MSSMissing test tests the usage of default values specified by the RFC in
the absence of the MSS option.

TCP Flags. Alongside the stated TCP options, TCP’s extensibility is mainly
guaranteed by (im-)mutable control flags in its header, of which four are cur-
rently still reserved for future use. The most prominent “recent” example is
ECN [29], which uses two previously reserved bits. Though not explicitly stated
as a numbered formal MUST1, a TCP must zero (when sending) and ignore
(when receiving) unknown header flags, which we test with the Reserved test,
as incorrect handling can considerably block or delay the adoption of future
features.

The UrgentPointer test addresses the long-established URG flag. Validat-
ing the support of segments flagged as urgent, the test splits around 500 bytes
of urgent data into a sequence of three segments with comparable sizes. Each
segment is flagged as urgent, and the urgent pointer field caries the offset from
its current sequence number to the sequence number following the urgent data,
i.e., to the sequence number following the payload. Initially intended to speed
up segment processing by indicating data which should be processed imme-

1 RFC793bis-Draft14 states: “Must be zero in generated segments and must be ignored
in received segments, if corresponding future features are unimplemented by the send-
ing or receiving host.” [27].
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Table 2. Results of testbed measurements stating PASS (✓) and FTarget (✗)

MUST Test as Linux Windows macOS uIP lwIP Seastar
defined in Table 1 5.2.10 1809 10.14.6 1.0 2.1.2 19.06
ChecksumIncorrect
ChecksumZero
OptionSupport
OptionUnknown
MSSSupport
MSSMissing
Reserved
UrgentPointer

diately, the widely-used Berkeley Software Distribution (BSD) socket interface
instead opted to interpret the urgent data as out-of-band data, leading to diverg-
ing implementations. As a result, the urgent pointer’s usage is discouraged for
new applications [27]. Nevertheless, TCP implementations are still required to
support it with data of arbitrary length. As the requirement’s inclusion adds
computational complexity, implementers may see an incentive to skip it.

Pass and Failure Condition Notation. For the remainder of this paper,
we use the following notation to report passing or failing of the above-described
tests. Connections that unmistakably conform are denoted as PASS, whereas not
clearly determinable results (applies only to some tests) are conservatively stated
as UNK. UNKs may have several reasons such as, e.g., hosts ceasing to respond
to non-test packets after having responded to a liveness test. Non-conformities
raised by the target host are denoted as FTarget, and non-conformities raised by
middleboxes on the path rather than the probed host are denoted as FPath.

3.3 Validation

To evaluate our test design, we performed controlled measurements using a
testbed setup, thereby eliminating possible on-path middlebox interference.
Thus, only FTarget can occur in this validation, but not FPath. To cover a broad
range of hosts, we verified our test implementations by targeting current versions
of the three dominant Operating Systems (OSs) (Linux, Windows, and macOS)
as well as three alternative TCP stacks (uIP [13], lwIP [7], and Seastar [8]).

We summarize the results in Table 2. As expected, we observe a considerable
degree of conformance. Linux, as well as lwIP, managed to achieve full con-
formance to the tested requirements. Surprisingly, all other stacks failed in at
least one test each. That is, most stacks do not fully adhere to these minimum
requirements. uIP exposed the most critical flaw by crashing when receiving a
segment with urgent data, caused by a segmentation fault while attempting to
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read beyond the segment’s size (see Sect. 3.2). Since the release of the tested Ver-
sion of uIP, the project did not undergo further development, but instead moved
to the Contiki OS project [3], where it is currently maintained in Contiki-NG [2].
Following up on Contiki, it was uncovered that both distributions are still vul-
nerable. Their intended deployment platform, embedded microcontrollers, often
lack the memory access controls present in modern OSs, amplifying the risk that
this flaw poses. Addressing this issue, we submitted a Pull request to Contiki-
NG [1]. The remaining FTarget have much less severe repercussions. Seastar,
which bypasses the Linux L4 network stack using Virtio [15], fails both checksum
tests. While hardware offloading is enabled by default, Seastar features software
checksumming, which should take over if offloading is disabled or unsupported
by the host OS. However, host OS support of offloaded features is not verified,
which can lead to mismatches between believed to be and actually enabled fea-
tures. We reported this issue to the authors [9]. The tests pass if the unsupported
hardware offloads are manually deselected. The FTarget failure for macOS in the
MSSMissing test is a consequence of macOS defaulting to a 1024 bytes MSS
regardless of the IP version, thereby exceeding the IPv4 TCP default MSS, and
falling behind that of IPv6. Windows 10 applies the MSS defaults defined in the
TCP specification as a lower bound to any incoming value, overwriting the 515
bytes advertised in the MSSSupport test. Both MSS non-conformities could be
mitigated by path maximum transmission unit (MTU) discovery, dynamically
adjusting the segment size to the real network path.

Takeaway: Only two tested stacks (Linux and lwIP) pass all tests and show full
conformance. Surprisingly, all other stacks failed in at least one category each.
That is, non-conformance to basic mandatory TCP implementation requirements
already exists in current OS implementations. Even though our testbed validation
is limited in the OS diversity, we can already expect to find a certain level of host
non-conformance when probing TCP implementations in the wild.

4 TCP Conformance in the Wild

In the following, we move on from our controlled testbed evaluation and present
our measurement study in the Internet. Before we present and discuss the
obtained results, we briefly focus on our measurement setup and our selected
target sets.

4.1 Measurement Setup and Target Hosts

Measurement Setup. Our approach involves performing active probes against
target hosts in the Internet to obtain a representative picture of TCP confor-
mance in the wild. All measurements were performed using a single vantage
point within the IPv4 research network of our university between August 13 and
22, 2019. As we currently do not have IPv6-capable scan infrastructure at our
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disposal, we leave this investigation open for future work. Using a probing rate
of 10k pps on a distinct 10 GBit/s uplink, we decided to omit explicit loss detec-
tion and retransmission handling due to the increased complexity, instead stating
results possibly affected by loss as UNK if not clearly determinable otherwise.

Target Hosts. To investigate a diverse set of end-to-end paths as well as end
hosts, a total of 3,731,566 targets have been aggregated from three sources: (i)
the HTTP Archive [33], (ii) Alexa Internet’s top one million most visited sites
list [17,52], and (iii) Censys [25] port 80 and 443 scans.

The HTTP Archive regularly crawls about 5M domains obtained from the
Chrome User Experience Report to study Web performance and publishes the
resulting dataset. We use the dataset of July 2019. For this, we were especially
interested in the Content Delivery Network (CDN) tagged URLs, as no other
source provides URL-to-CDN mappings. Since no IP addresses are provided,
we resolved the 876,835 URLs to IPv4 addresses through four different public
DNS services of Cloudflare, Google, DNS.WATCH, and Cisco’s OpenDNS. Some
domains contain multiple CDN tags in the original dataset. For these cases, we
obtained the CDN mapping from the chain of CNAME resource records in the
DNS responses and excluded targets that could still not be linked to only a single
CDN. Removing duplicates on a per-URL basis, one target per resolved IPv4
address was selected. The resulting 4,116,937 targets were sampled to at most
10,000 entries per CDN, leading to 147,318 hosts in total. Removing duplicate IP
addresses and blacklist filtering, we derived the final set of 27,795 CDN targets.

As recent research has shown [16], prefixing www. to a domain might not only
provide different TLS security configurations and certificates than their non-
www counterparts, but might also (re-)direct the request to servers of different
Content Providers (CPs). To study this implications on TCP conformance, we
used the Alexa 1M list published on August 10th, 2019, and resolved every
domain with and without www-prefix according to the process outlined in the
HTTP Archive. The resulting 3,297,849 targets were further sampled, randomly
selecting one target with and without www-prefix per domain, removing duplicate
IP addresses and blacklist filtering, leading to 466,685 Alexa targets.

Censys provided us research access to their data of Internet-wide port scans,
which represent a heterogeneous set of globally distributed targets. In addition
to the IPv4 address and successfully scanned port, many targets include infor-
mation on host, vendor, OS, and product. Using the dataset compiled on August
8th, 2019, 10,559,985 Censys targets were identified with reachable ports 80 or
443, including, but not limited to, IoT devices, customer-premises equipment,
industrial control systems, remote-control interfaces, and network infrastructure
appliances. By removing duplicate IP addresses and blacklist filtering we arrive
at 3,237,086 Censys target hosts.

Ethical Considerations. We aim to minimize the impact of our active scans as
much as possible. First, we follow standard approaches [26] to display the intent
of our scans in rDNS records of our scan IPs and on a website with an opt-out
mechanism reachable via each scan IP. Moreover, we honor opt-out requests to
our previous measurements and exclude these hosts. We further evaluated the
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potential implications of the uIP/Contiki crash observed in Sect. 3.3. Embedded
microcontrollers, commonly used in IoT devices, are the primary use-case of
uIP/Contiki. We could not identify hosts using this stack in the Censys device
type data to exclude IPs, but assume little to very little use of this software stack
within our datasets. We thus believe the potential implications to be minimal.
We confirm this by observing that 100% of failed targets in the CDN as well as
the Alexa dataset, and 99.35% of failed targets in the Censys dataset, are still
reachable following UrgentPointer test case execution. We thus argue that our
scans have created no harm to the Internet at large.

4.2 Results and Discussion

We next discuss the results of our conformance testing, which we summarize in
Table 3. The table shows the relative results per test case for all reachable target
hosts, excluding the unreachable ones. As the target data was derived from
the respective sources multiple days before executing the tests (see Sect. 4.1),
unreachable targets are expected. Except for minor variations, which can be
explained by dynamic IP address assignment and changes to host configurations
during test execution, ∼12% of targets could not be reached in each test case and
are removed from the results. While the CDN and Alexa datasets were derived
from sources featuring popular websites, we expect a large overlap of target hosts,
which is confirmed by 15,387 targets present in both datasets. Alexa and Censys
share only 246 target hosts, while CDN and Censys do not overlap. All datasets
are publicly available [5]. The decision to classify a condition as PASS, UNK,
FTarget, or FPath, does vary between test cases as a result of their architecture
(see Sect. 3.2) and are discussed in detail next.

TCP Checksum. We start with the results of our checksum tests that validate
correct checksum handling. As Table 3 shows, CDNs have a low failure rate

Table 3. Overview of relative results (in %) per test case per dataset. Here, n denotes
the number of targets in each dataset. For better readability, we do not show the PASS
results and highlight excessive failure rates in bold.

CDN Alexa Censys
MUST Test as n = 27,795 n = 466,685 n = 3,237,086

defined in Table 1 UNK FTarget FPath UNK FTarget FPath UNK FTarget FPath

ChecksumIncorrect 0.234 0.374 - 0.441 3.224 0.002 3.743 3.594 0.003
ChecksumZero 0.253 0.377 - 0.455 3.210 0.001 3.873 3.592 0.003
OptionSupport - 0.040 - - 0.470 0.009 - 1.410 0.313
OptionUnknown - 0.026 0.011 - 0.585 0.053 - 1.477 0.019
MSSSupport - 0.018 - - 0.728 0.002 - 0.412 0.004
MSSMissing 0.026 - 0.018 0.303 0.299 0.136 1.423 0.388 0.416
Reserved - 2.194 0.011 - 6.689 0.293 - 2.791 0.048
Reserved-SYN - 0.138 0.011 - 1.297 0.309 - 1.849 0.049
UrgentPointer 0.150 0.330 0.022 0.804 3.179 0.208 3.815 7.300 0.042
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for both tests, and we do not find any evidence for on-path modifications. In
contrast, hosts from the Alexa and the Censys dataset show over ∼3% FTarget

failures. Drilling down on these hosts, they naturally cluster into two classes when
looking at the AS ownership. On the one hand, we find AS (e.g., Amazon), where
roughly 7% of all hosts fail both tests. Given the low share, these hosts could be
purpose build high-performance VMs, e.g., for TCP-terminating proxies that do
not handle checksums correctly. On the other hand, we find hosts (e.g., hosted in
the QRATOR filtering AS) where nearly all hosts in that AS fail the tests. Since
QRATOR offers a DDoS protection service, it is a likely candidate for operating
a special purpose stack.

Takeaway: We find cases of hosts that do not correctly handle checksums. While
incorrect checksums may be a niche problem in the wild, these findings highlight
that attackers with access to the unencrypted payload, but without access to the
headers, could alter segments and have the modified data accepted.

TCP Options. We next study if future TCP extensibility is honored by the
ability to use TCP options. In our four option tests (see Table 3 for an overview),
we observe overall the lowest failure rates—a generally good sign for extensibility
support. Again, the Censys dataset shows the most failures, and especially the
OptionSupport and the MSSMissing test have the highest FPath (middlebox
failures) across all tests. Both tests show a large overlap in the affected hosts and
have likely the same cause for the high path failure rates. We observe that these
hosts are all located in ISP networks. For the MSSMissing failures, we observe
that an MSS is inserted at these hosts—likely due to the ISPs performing MSS
clamping, e.g., due to PPPoE encapsulation by access routers. These routers
need to rewrite the options header (to include the MSS option), and as the
OptionSupport fails when, e.g., some of the EOOL and NOOP are stripped, the
exact number of EOOL and NOOP are likely not preserved. Still, inserting the
MSS option alters the originally intended behavior of the sender, i.e., having an
MSS of 536 byte for IPv4. In this special case, the clamping did actually increase
the MSS, and thereby strip some of the EOOL and NOOP options.

Looking at the OptionUnknown test, where we send an option with an unal-
located codepoint, we again see low FPath failures, but still, a non-negligible
number of FTarget fails. There is no single AS that stands out in terms of the
share of hosts that fail this test. However, we observe that among the ASes with
the highest failure rates are ISPs and companies operating Cable networks.

Lastly, the MSSSupport test validating the correct handling of MSS values
shows comparably high conformance. As we were unable to clearly pinpoint
the failures to specific ASes, the most likely cause can be traced to the non-
conformant operating systems as shown by our validation (see Sect. 3.3), where
Windows fails this test and likely others that we did not test in isolation.
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Takeaway: Our TCP options tests show the highest level of conformance of all
tests, a good sign for extensibility. Still, we find cases of middlebox inference,
mostly MSS injectors and option padding removers—primarily in ISP networks
hinting at home gateways. Neither is inherently harmful due to path MTU dis-
covery and the voluntary nature of option padding.

TCP Flags. Besides the previously tested options, TCP’s extensibility is mainly
guaranteed by (im-)mutable control flags in its header to toggle certain proto-
col behavior. In the Reserved test, we identify the correct handling of unknown
(future) flags by sending an unallocated flag and expect no change in behav-
ior. Instead, we surprisingly observe high failure rates across all datasets, most
notable CDNs. When inspecting the CDN dataset, we found ∼10% of Akamai’s
hosts to show this behavior. We contacted Akamai, but they validated that their
servers do not touch this bit. Further analysis revealed that the reserved flag on
the SYN was truthfully ignored, but our test failed as the final ACK of the
3-way handshake (second part of the test, see Table 1), which also contains the
reserved flag, was seemingly dropped as we got SYN/ACK retransmissions. How-
ever, this behavior originates from the usage of Linux’s TCP DEFER ACCEPT
socket option, which causes a socket to only wakeup the user space process if
there is data to be processed [10]. The socket will wait for the first data segment
for a specified time, re-transmitting the SYN/ACK when the timer expires in
the hope of stimulating a retransmission of possibly lost data. Since we were
not sending any data, we eventually received a SYN/ACK retransmission, seem-
ingly due to the dropped handshake-completing ACK with the reserved flag set.
Hence, we credited the retransmission to the existence of the reserved flag at
first, later uncovering that the retransmission was unrelated to the reserved flag,
but actually expected behavior using the TCP DEFER ACCEPT socket option.
Following up with Akamai, they were able to validate our assumption by reveal-
ing that parts of their services utilize this socket option. While it is certainly
debatable if deliberately ignoring the received ACK is a violation of the TCP
specification, our test fails to account for this corner case. Thus, connectivity is
not impaired.

In contrast, connectivity is impaired in the cases where our reserved flag SYN
fails to trigger a response at all, leaving the host unreachable (see Reserved-SYN
in Table 3). The difference between both failure rates thus likely denotes hosts
using the defer accept mechanism, as CDNs, in general, seem to comply with
the standard. We also observe a significant drop in failures in the Alexa targets.
While our results are unable to show if only defer accepts are the reason for this
drop, they likely contribute significantly as TCP implementations would need
to differentiate between a reserved flag on a SYN and on an ACK, which we
believe is less likely. Our results motivate a more focused investigation of the
use of socket options and the resulting protocol configurations and behavioral
changes.

Lastly, the URG flag is part of TCP since the beginning to indicate data
segments to be processed immediately. With the UrgentPointer test we check if
segments that are flagged as urgent are correctly received and acknowledged. To
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confirm our assumption of this test having minimal implications on hosts due
to the uIP/Contiki crash (see Sect. 3.3), we checked if the FTarget instances were
still reachable after test execution. Our results show that of these failed targets,
99.35% of Censys, and 100% of CDN and Alexa, did respond to our following
connection requests, which were part of the subsequent test case executed several
hours later. While we argue that these unresponsive hosts can be explained by
dynamic IP address assignment due to the fluctuating nature of targets in the
Censys dataset, we recognize that the implicit check within the subsequent test
case is problematic due to the time period between the tests and the possibility
of devices and services being (automatically) restarted after crashing. We thus
posit, that future research should include explicit connectivity checks directly
following test case execution on a per target basis, and skip subsequent tests if
a target’s connectivity is impaired.

Surprisingly, the UrgentPointer test shows the highest failure rate among all
tests. That is, segments flagged as urgent are not correctly processed. In other
words, flagging data as urgent limits connectivity. We find over ∼7% of hosts
failing in the Censys dataset, where ISPs again dominate the ranking. Only
about 1.2% of these failures actively terminated the connection with a RST,
while the vast majority silently discarded the data without acknowledging it.
Looking at Alexa and CDNs, we again find an Amazon AS at the top. Here,
we randomly sampled the failed hosts to investigate the kind of services offered
by them. At the top of the list, we discovered services that were proxied by a
Vegur [14], respective Cowboy [4], proxy server that seem to be used in tandem
with the Heroku [6] cloud platform. Even though we were unable to find how
Heroku precisely operates, we suspect a high-performance implementation that
might simply not implement the urgent mechanism at all.

Takeaway: While unknown flags are often correctly handled, they can reduce
reachability, especially when set on SYNs. The use of the urgent pointer resulted
in the highest observed failure rate by hosts that do not process data segments
flagged as urgent. Thus, using the reserved flags or setting the urgent pointer
limits connectivity in the Internet.

We therefore posit to remove the mandatory implementation requirement of
the urgent pointer from the RFC to reflect its deprecation status, and thus explic-
itly state that its usage can break connectivity. Future protocol standards should
therefore be accompanied by detailed socket interface specifications, e.g., as has
been done for IPv6 [31,54], to avoid RFC misconceptions. Moreover, we started
a discussion within the IETF, addressing the issue encountered with the missing
formal MUST requirement of unknown flags, which potentially led and/or will
lead to diverging implementations [11]. Additionally, we proposed a new MUST
requirement, removing ambiguities in the context of future recommended, but
not required, TCP extensions which allocate reserved bits [12].

Alexa: Does www. matter? It is known that www.domain.tld and
domain.tld can map to different hosts [16], e.g., the CDN host vs. the ori-
gin server, where it is often implicitly assumed that both addresses exhibit the
same behavior. However, 4.89% (11.4k) of the Alexa domains with and without
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www. prefix show different conformance levels to at least one test. That is, while
the host with the www. prefix can be conformant, the non-prefixed host could
not, and vice versa. Most of these non-conformance issues are caused by TCP
flags, for which we have seen that they can impact the reachability of the host.
That is, 53.3% of these domains failed the reserved flags test, and 58% the urgent
pointer test (domains can be in both sets). Thus, a website can be unreachable
using one version and reachable by the other.

Takeaway: While the majority of Alexa domains are conformant, the ability to
reach a website can differ whether or not the www. prefix is used.

5 Conclusion

This paper presents a broad assessment of TCP conformance to mandatory
MUST requirements. We uncover a non-negligible set of Internet hosts and paths
that do not adhere to even basic requirements. Non-conformance already exists at
the OS-level, which we uncover in controlled testbed evaluations: only two tested
stacks (Linux and lwIP) pass all tests. Surprisingly, others (including macOS and
Windows) fail in at least one category each. A certain level of non-conformance is
therefore expected in the Internet and highlighted by our active scans. First, we
observe hosts that do not correctly handle checksums. Second, while TCP options
show the highest level of conformance, we still find cases of middlebox inference,
mostly MSS injectors and option padding removers—primarily in ISP networks
hinting at home gateways. Moreover, and most worrisome, using reserved flags
or setting the urgent pointer can render the target host unreachable. Last, we
observe that 4.8% of Alexa-listed domains show different conformance levels
when the www. prefix is used, or not, of which more than 50% can be attributed
to TCP flag issues—which can prevent connectivity. Our results highlight that
conformance to even fundamental protocol requirements should not be taken for
granted but instead checked regularly.
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Abstract. Since October 2013, the Internet Corporation of Assigned
Names and Numbers (ICANN) has introduced over 1K new generic top-
level domains (gTLDs) with the intention of enhancing innovation, com-
petition, and consumer choice. While there have been several positive
outcomes from this expansion, there have also been many unintended
consequences. In this paper we focus on one such consequence: the gTLD
expansion has provided new opportunities for malicious actors to leverage
the trust placed by consumers in trusted brands by way of typosquat-
ting. We describe gTLDtm (The gTLD typosquatting monitor) – an open
source framework which conducts longitudinal Internet-scale measure-
ments to identify when popular domains are victims of typosquatting,
which parties are responsible for facilitating typosquatting, and the costs
associated with preventing typosquatting. Our analysis of the generated
data shows that ICANN’s expansion introduces several causes for con-
cern. First, the sheer number of typosquatted domains has increased by
several orders of magnitude since the introduction of the new gTLDs.
Second, these domains are currently being incentivized and monetarily
supported by the online advertiser and tracker ecosystem whose policies
they clearly violate. Third, mass registrars are currently seeking to profit
from the inability of brands to protect themselves from typosquatting
(due to the prohibitively high cost of doing so). Taken as a whole, our
work presents tools and analysis to help protect the public and brands
from typosquatters.

1 Introduction

With the stated goal of improving the choice of domain names for brand hold-
ers, since 2013, ICANN approved the delegation of over 1.2K new generic Top
Level Domains (gTLDs). Since its initial expansion, the new gTLD program
has been experiencing continuous growth with processes for adding new gTLDs
being more codified and streamlined [1]. We provide a brief history of the gTLD
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expansion in the Appendix of this paper (Sect.A.1). While these new gTLDs
have been a boon for organizations seeking to gain relevant domain names for
their brands, they also present exciting opportunities for malicious actors. Pre-
vious work examined the types of content hosted on the domains using the new
gTLDs and found higher incidence rates of malicious content such as malware,
in comparison with domain names using the old gTLDs [1–3]. The problem is
exacerbated by the fact that domain names are a source of trust with sites using
HTTPS and certificates linked to them and cyber criminals have exploited this
trust placed by users in safe domain names by utilizing visually similar domain
names [4] or typos of these safe domain names [5–7] to launch attacks – a prac-
tice generally referred to as typosquatting. Despite many studies analyzing the
incidence rates of typosquatting in the context of the original gTLDs [5–10],
there has been little attention on typosquatting using the new gTLDs. What
remains unknown, specifically, is how ICANN’s gTLD expansion has impacted
established and trusted brands seeking protection from typosquatting. In this
paper, we fill this gap. Our overall objective is to understand how ICANN’s
gTLD expansion impacts brands trusted by Internet users. To achieve this objec-
tive, we develop techniques to reliably identify and monitor typosquatting and
understand the challenges and costs facing organizations seeking to protect their
brands from typosquatters. More specifically, we make the following contribu-
tions.

gTLDtm: The gTLD Typosquatting Monitor. We develop a framework,
called the gTLD typosquatting monitor (gTLDtm), which routinely performs
Internet-scale measurements to identify when popular domains are victims of
typosquatting, which parties are facilitating the typosquatting – on old and new
gTLDs, and what the cost is to prevent typosquatting. gTLDtm is open source
and available at https://sparta.cs.uiowa.edu/projects/auditing.html. Periodic
dumps of gTLDtm gathered data and inferences are also available for down-
load. The data gathered by this framework forms the basis of the analysis con-
ducted in this paper and will serve many communities seeking to understand
the abuse of user trust in established brands online – e.g., studies characterizing
typosquatting for fake news and propaganda dissemination, malware distribu-
tion, and online scams, amongst many others. The framework may also be used
by organizations seeking to identify instances of typosquatting on their brands.
During construction of this framework, we also identify several inconsistencies
in records maintained by ICANN and gTLD registries.

Characterizing Perpetrators and Victims of Typosquatting. We uncover
the mechanics of typosquatting – e.g., types of content and domains that are
targeted by typosquatters, the role of advertisers and mass registrars in the
typosquatting ecosystem, the extent of knowledge of typosquatters by web intel-
ligence sources such as McAfee [11], as well as the intent behind typosquatting
and the cost for a victim to defend against typosquatting. Our characterization
explicitly focuses on identifying the differences in these mechanics for each gener-
ation of gTLDs. This allows us to understand how the typosquatting ecosystem
has changed as a consequence of ICANN’s gTLD expansions.

https://sparta.cs.uiowa.edu/projects/auditing.html
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2 The gTLDtm Framework

In order to understand the ecosystem of typosquatting, we construct a measure-
ment framework called the gTLD typosquatting monitor (gTLDtm). gTLDtm
consists of several components: a URL curator, typo generator, data generator,
typosquatting detector, and a defense cost estimator. The interaction between
these components is illustrated in Fig. 1 and described in this section.
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Fig. 1. The gTLDtm architecture.

2.1 URL Curation and Typosquatting Candidate Generation

The URL curator periodically fetches a list of URLs whose typos will be moni-
tored by our system. The current implementation grabs a list of 231 most popular
URLs in the News, Business, Society, and Shopping categories using the Alexa
top sites API. It also has the capability of accepting custom lists of URLs. Given
a base domain (obtained by our URL curator), we need to generate domain
names likely to be targeted by typosquatters seeking to exploit user trust in the
base domain. We do this by leveraging six typosquatting generation techniques:
omissions, repetitions, transpositions, additions, replacements, and vowel-swaps.
These techniques are applied to the second-level domains (SLDs) only. For
each second-level domain typo generated, we use every possible gTLD to form a
typosquatting candidate. We explain each of the six second-level domain typo gen-
eration techniques using the SLD “icann-example” as an example: (1) Omis-
sion: We generate new SLDs by excluding a single character in the base SLD.
This method yields cann-example, iann-example, . . . , and icann-exampl as
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typo SLDs; (2) Repetition: We generate new SLDs by repeating a single char-
acter in the base SLD. This method yields iicann-example, iccann-example,
. . . , icann-examplee as typo SLDs; (3) Transposition: We generate new SLDs
by swapping two adjacent characters in the base SLD. This method yields
ciann-example, iacnn-example, . . . , icann-exampel as typo SLDs; (4) Addi-
tion: We generate new SLDs by inserting an additional character at the end
of the base SLD. This method yields icann-examplea, . . . , icann-examplez
as typo SLDs; (5) QWERTY- and visually- adjacent replacements [12]:
We generate new SLDs by replacing a single character in the base SLD with
one which is adjacent to it on the QWERTY keyboard. This method yields
ocann-example, ucann-example, . . . , icann-examplw as candidate typosquat-
ting SLDs. In addition, we generate new SLDs by replacing a single character in
the base SLD with one which is visually similar to it (using the sans-serif font).
This method yields lcann-example as a typo SLD; and (6) Vowel-swap [13]:
We generate new SLDs by replacing the vowel in the base SLD with another
vowel. This method yields acann-example as a typo SLD. We are currently
working on incorporating new typo-generation strategies into our measurement
framework.

2.2 Domain Intelligence and Data Gathering

For each base and typo domain, gTLDtm gathers domain intelligence and
domain metadata from a variety of Internet authorities. These are described
below.

Zone Files. ICANN mandates that all open gTLD registries make their up-to-
date zone files available to the public via ICANN’s CZDS, after the user is able to
identify themselves via a physical and IP address [14]. gTLDtm downloads all the
zone files made available by the ICANN CZDS repository [15] each day. Given
a domain name as input, gTLDtm verifies that it is present in the appropriate
zone file. This helps us infer the registration status of a domain.

DNS and WHOIS Records. Given a domain name as input, gTLDtm gathers
A, AAAA, MX, and NS records by querying Google’s public DNS server at 8.8.8.8.
Similarly, it also fetches WHOIS records from the corresponding gTLD registry.
Data extracted include the domain registration date, registrar, organization, and
contact emails. This data helps us infer ownership information of a domain.

Web Content. Given a domain name, we also attempt to make connections via
HTTP and HTTPS to them. We utilize the OpenWPM [16] crawler to visit the
domain and gather data associated with the content hosted on it. This includes
page content, content sources, cookies, and certificates. This data helps us make
inferences about content type and registration intent.

Domain Pricing Data. Domain resellers are third-party organizations that
offer domain name registrations through authorized registrars such as GoDaddy
and Namecheap. gTLDtm is registered as a domain reseller with one of the
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Table 1. Data gathered by gTLDtm for 231 base domains between 03–10/2019.

pre-2000 2000-12 post-2012

gTLDs 7 15 1.2K

w/access to zone file 1 7 715

Typosquatting candidates 22K 47.8K 3.9M

Owned domains 8.8K 7.5K 353.4K

w/WHOIS records 8.6K 6.1K 195.6K

w/DNS records 7.4K 3.8K 300.9K

w/Zone file entry 6.7K 198 10.3K

w/HTTP(S) 625 555 9.6K

w/TLS certificate 152 437 3.8K

Categorized by Mcafee 579 335 1.4K

Unowned domains 13.2K 40.3K 3.5M

w/ pricing data (randomly sampled) 352 514 29.7K

most popular mass registrars – GoDaddy. gTLDtm uses the domain reseller API
exposed by this registrar [17,18] to obtain data regarding the availability of the
input domain name and the associated cost of purchase. This data helps us
estimate the cost of registering an typo domain.

Web Intelligence Data. gTLDtm also seeks to gather intelligence about a
domain name from existing domain categorization services. Given an input
domain name, gTLDtm makes a request for the domain category (if available)
to the McAfee categorization service [11]. This data helps us make inferences
about the content type and registration intent.

All together, the data gathered by gTLDtm can be used to make inferences
about the ownership of a domain, the type of content it serves, the intent behind
its registration, and the cost associated with its purchase. gTLDtm currently
repeats this data gathering once every fortnight. A summary of the data gath-
ered by gTLDtm that was used is shown in Table 1. The data shows that there
are numerous inconsistencies in the data made available by gTLD registries –
e.g., one would expect every domain with a WHOIS record would have a zone
file record, but this is not the case. We note that the registries of the post-2012
gTLDs have been the most inconsistent. To deal with this challenge, we catego-
rize domains which have either a valid WHOIS, DNS, or zone file record to be
“owned” and those with no WHOIS, DNS, or zone file record to be “unowned”.

2.3 Typosquatting Identification and Domain Cost Estimation

At a high-level, we say that a typo domain is being squatted on if the entity
owning the base domain does not also own the typo domain.
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Identifying Domain Owners. In order to uncover the owner of an owned
domain, we rely on the organization details (i.e., name and email) reported by
the WHOIS record. In rare cases (<200) where a WHOIS record does not exist
but a DNS or zone record does (due to inconsistent records), we use the owners
of the DNS infrastructure (i.e., NSes) reported by DNS records or zone files.

Recognizing Typosquatting. We identify when the owner of a base domain is
different from the owner of a typo domain, as different owners imply typosquat-
ting. This process is complicated as simply checking for inequality of strings
is insufficient for identifying differences in ownership due to inconsistencies in
the domain registration process – e.g., we observed the organization names
Name.com, Inc., Name.com, and Name, Inc. in the WHOIS records for domains
are all owned by the same mass registrar (name.com). To circumvent this, we use
a conservative approach for each (base, typo) domain pair: (1) if both domains
list identical organization contact details in their WHOIS records, we conclude
that they have the same owners; (2) for remaining domain pairs, we find the
longest contiguous subsequence of the organization name for each domain (e.g.,
Name.com, Name.com, and Name in our previous example) and check if the
similarity of the extracted sequence is high (>50: determined through a manual
pilot study involving 200 randomly sampled pairs to have a false-positive rate of
.01), we say they have the same owner; (3) any remaining domain pairs are said
to have different owners. We note that a similar approach has been leveraged
in previous work seeking to identify owners of ASes and their siblings [19]. We
do not rely on comparisons of hosting infrastructure due to the possibilities of
inaccurate conclusions brought by the widespread use of popular CDNs by pop-
ular websites and typosquatters. Similarly, we are currently unable to identify
inaccuracies caused by the practice of outsourcing defensive domain registrations
to organizations such as MarkMonitor.

Unowned Domain Cost Estimation. To identify the cost of an unowned
domain, we randomly sampled unowned typo domains that had SLDs which were
up to a Damerau-Levenshtein edit-distance of three away from the base domain.
Random sampling was performed due to constraints on the number of queries
that our reseller API permitted us to make (60 queries/minute). Given the cost
distributions for typo domains at a particular edit distance, we extrapolate the
estimated cost for purchasing all domains at that edit distance.

3 Results

In total, our method identified 188K typosquatted domains (from 4M candidate
domains). Of these, 176K domains were from the post-2012 gTLD era (with
6.8K (pre-2000) and 5.4K (2000–2012) across the other eras respectively). We
attribute this large skew towards post-2012 gTLDs to the fact that there are
over 1.2K post-2012 gTLDs in comparison to just 22 pre-2012 gTLDs. This has
two major consequences: (1) post-2012 gTLDs present more opportunities for
typosquatting due to the larger number of typosquatting candidate domains
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Table 2. Relationships between base domain characteristics and risknorm. ** and ***
indicate F -test p-values of <10−2 and <10−3 for our linear regressions.

Length Rank Category {shop, news, biz, soc}
Linear regression fit on risknorm

R2 score .76*** .70** NA

Pearson correlation coefficient .57 −.79 NA

Logistic regression classifier

Accuracy: 81%

Log-odds ratios −3.4 −5.3 {−4.0, −3.1, −3.3, −2.9}
Decision tree classifier

Accuracy: 97%

Gini feature importance .23 .56 {.02, .03, .02, .04}

and (2) due to the large number of candidates described in (1), it is increas-
ingly expensive for brands to protect themselves by defensive registrations. We
note that although ICANN provides Trademark Clearinghouse (TMCH) [20]
which allows brands to perform defensive registrations on new gTLDs before
they are open to public registration, the TMCH limits access only to paying
members (up to $750 per trademark) and only allows registration of domains
which exactly match the brand trademark (e.g., for the organization registered
as ICANN Example: icannexample.money and icann-example.money may be
pre-emptively registered with TMCH, but registration of any typos such as
icann-examples.money are not allowed). These consequences are further com-
pounded by the non-uniform release of new gTLDs which prevent a single effort
to register all trademarked domains – instead forcing constant monitoring and
action.

3.1 Characteristics of Typosquatting Victims

Our 231 base domains were found to have 188K typosquatted domains. We now
analyze the characteristics of the base domains which make them vulnerable to
being typosquatted on. We refer to the number of typosquatting candidates for
a base domain as riskpotential, the number of typosquatted domains for a base
domain as riskrealized, and their ratio as risknorm. To explore the relationships
between characteristics of the base domains (i.e., length, rank, and category) and
risk outcomes, we rely on two approaches: (1) linear regressions and correlations
to measure the dependence and statistical significance of the variables and (2)
using interpretable machine learning models on base domain characteristics and
domain risk to measure the predictive nature of each characteristic. Our intu-
ition with the latter approach is that if an interpretable classifier (e.g., logistic
regression or decision tree classifier) can achieve a reasonable high classification
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success rate, then interpreting their feature importance will yield domain charac-
teristics that are predictive of the likelihood of a domain being typosquatted on.
For our classification task, models were built to predict the level of normalized
risk associated with the domain (each level was associated with a quartile from
the distribution of all risks). In order to interpret the logistic regression model,
we computed the estimated weights for each feature and their corresponding
log-odds ratio. If the log-odds ratio of a feature f is x, it means that a unit
increase in f changes the odds of our outcome variable y by a factor of ex when
all other features remain the same. Therefore, higher values are indicative of
more predictive features. These log-odds for the length and rank features are
shown in Table 2. In order to interpret the decision tree model, we computed
the Gini importance score for each feature. At a high-level, the Gini importance
counts the number of times a feature is used as a splitting variable in proportion
with the fraction of samples it splits. We expect higher scores to represent more
important features.

Our results are shown in Table 2. Here we see that there are statistically sig-
nificant relationships between base domain lengths and ranks with the associated
risknorm. Our 10-fold cross-validated interpretable classifier models, whose task
was to classify a base domain into its correct risknorm quartile, also found these
characteristics strongly predictive of the quartile range of risknorm. Interestingly,
our analysis showed that the category of the base domain was not predictive of
its risknorm.

Takeaway. A domain’s normalized typosquatting risk (risknorm) is predictable
using off-the-shelf interpretable classifiers. When considering individual features,
the rank of the domain is the most predictive feature, while the domain category
contains little predictive information. This suggests that higher ranked domains
are the most common target for typosquatters.

3.2 Characteristics of Typosquatted Domains

We now analyze characteristics of typosquatted domains which use different era
gTLDs with a specific focus on how they are selected, used, monetized, and
understood by the web.

Table 3. Typosquatted domain intent by gTLD era (as a percentage of all non-error
pages). A suffix of ‘-3rd’ indicates that the inferred intent was associated with a third-
party and ‘-orig’ indicates that the intent was associated with the original base domain.

gTLD era Content-3rd Parked-3rd Parked-orig Redirect-3rd Redirect-orig Sale Unused

pre-2000 26.91 12.43 0.68 0.82 5.61 45.41 8.14

2000–2012 23.12 8.35 0.41 0.61 6.46 55.41 5.65

post-2012 37.23 12.82 0.72 0.77 3.74 38.74 6.20
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How are Typosquatted Domains Selected by Squatters? As shown by our
six typosquatting candidate generation methods, there are millions of targets for
typosquatters to select with each having relatively short edit distances (less than
3) from a base domain. To understand the predictive nature of the edit-distance,
gTLD era, and typo generation method on the is domain squatted on variable,
we use interpretable logistic regression and decision tree classifiers to find the
most predictive features of typosquatted domains. We convert each of our inputs
into binary features (e.g., is pre2000 gTLD, is post 2012 gTLD, etc.) and use
a 10-fold cross-validation evaluation. Our classifiers had accuracies of 62% and
69% in identifying typosquatted domains from all candidates, respectively. Our
analysis of the predictiveness of each feature finds that domains with lower edit
distances from the base and using the ‘omission’ typo generation method are
most likely to be squatted on. Figure 2a shows number of registered typo domains
as a function of edit distance from base domains in each gTLD era. As it is clear,
most of the typo domains (%80) have a short edit distance (less than 2) from
a base domain. Amongst the different eras of gTLDs, pre-2000 gTLDs are most
likely to be squatted on (followed closely by post-2012 gTLDs, while 2000–2012
era gTLDs are not predictive of squatting). We note that our analysis tool may
be leveraged for brands to identify which domains need to be targeted for pre-
emptive defensive registration.

(a) CDF of typosquatting domain registra-
tions as a function of edit distance from
base domain.

(b) CDF of domain registrations as a func-
tion of time since release of the post-2012
gTLD.

Fig. 2. CDF of domain registrations as a function of edit distance and time of gTLD
release.

How are Typosquatted Domains Being Used by Squatters? In order to
understand how typosquatted domains are being used, we relied on a three-step
process: similarity computation, clustering, and tagging. First, we compute the
semantic pairwise-similarity of the textual content in each html page fetched
by our framework’s OpenWPM crawling module. To make this process scalable,
we rely on Jenks natural breaks optimization to find ideal clusters based on the
one-dimensional parameter: file size. The intuition here is that the similarity
between files belonging to different Jenks clusters will be low owing to the large
differences in their file sizes. We then compute the similarity matrix such that the
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similarity of files in different Jenks clusters is set to zero and only intra-Jenks-
cluster similarities are computed. Using this similarity matrix, we use k-means
clustering to identify clusters of similar pages. k was determined by iterating
through all possible values and selecting the candidate value with the highest
silhouette score. Our clusters achieved a silhouette score of 0.48 with k = 54
clusters. Finally, we manually inspected and tagged 25 randomly sampled pages
from each cluster to verify similarity. One of nine tags was then assigned to
each cluster: content-original, content-third-party, parked-original, parked-third-
party, redirect-original, redirect-third-party, sale, unused, and error.

Our results, broken down by gTLD era, are shown in Table 3. Here we notice
that approximately 75% of all typosquatted domains identified by our framework
were either hosting third-party content (i.e., content not provided by the base
domain) or listed for sale. On average, less than 4% of all typosquatted domains
were parked by or redirected to their base domains. Broken down by gTLD
era, we see that the typosquatted domains using post-2012 gTLDs are indeed
more likely to host content from parties unrelated to the base domain. While
we do not currently study the nature of the differences in content in this study,
it is clear that this often results in negative impact for users and brands. For
example, post-2012 gTLD typos of the cbsnews base domain were frequently
used to spread political misinformation during the 2016 US Presidential elections
– simultaneously harming public discourse and brand reputation.

How are Typosquatted Domains Monetized? While our analysis of the
domain intent yields some insights into how typosquatted domains are being
used, we also seek to understand how the advertising and tracking ecosystem
fuels the typosquatting economy. To this end, we analyzed the incidence rates
of different advertising and tracking services using the Easylist and Easyprivacy
filter lists [21]. We notice several interesting trends here. First, 67% of all the
post-2012 gTLD typosquatters hosting third-party content served ads or hosted
trackers in comparison to 53% of the other typosquatted domains. Interestingly,
the ad and tracker networks participating in the typosquatting ecosystem vary
by the gTLD era. Over 1.6K unique networks were observed in the post-2012
gTLD typosquatted domains in comparison to 1.2K and 384 in the pre-2000 and
2000–2012 eras gTLD typosquatted domains. We identified 103 unique domains
serving ads only in the post-2012 gTLD typosquatted domains, including ver-
tamedia, adsnative, and others. We note that the top 20 ad providers for the
base domains were all observed in large fractions of typosquatted domains. This
suggests the absence of enforcing policies that are meant to prevent the moneti-
zation of harmful practices such as typosquatting – e.g., Google’s adsense (which
was the most prevalent advertising service in our typosquatted domains) policy
prohibits using their program to place ads on sites which have ‘misrepresentative
content’ including content which ‘misrepresents, misstates, or conceals informa-
tion about you, your content or the primary purpose of your web destination’ or
‘falsely implies having an affiliation with, or endorsement by, another individual,
organization, product, or service’ [22].
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How Quickly Do Brands Perform Defensive Registrations? Using the
“creation date” entry in each typosquatting candidate domain WHOIS record
and knowledge of the release dates for each gTLD (gTLD’s delegation date based
on ICANN), we seek to understand the amount of time that passes between the
availability of a typosquatting candidate domain (using a post-2012 gTLD) and
its registration by brands and typosquatters. Figure 2b shows the domains reg-
istered by typosquatters and organizations with post-2012 gTLDs as a function
of time since release of the post-2012 gTLDs. We find that in the cases where
brands do make defensive registrations to prevent typosquatting, a majority
occur within the first year of the domains availability (85% of the time when
considering all post-2012 gTLDs and 98% of the time when considering only the
most popular post-2012 gTLDs observed in our dataset of registered typosquat-
ting candidates (i.e., app, media, mobi, xxx, and agency)). Typosquatters are
rarely left behind. In fact 30% and 98% of all typosquatted domains using the
most popular gTLDs are registered within the first month and year of their pub-
lic availability, respectively. When considering all post-2012 gTLDs however, we
observe that there is no landrush – only 45% are registered within the first year
of their availability. Our results show that brands are generally able to outpace
typosquatters in registering typosquatting candidate domains. Despite this, our
previous results show that typosquatting is extremely common. This points to
a barrier in either resources or interest in pre-emptive defensive registrations by
brands.

How Are Typosquatted Domains Viewed by the Web? Web intelligence
services such as OpenDNS [23], VirusTotal [24], and McAfee’s domain categorizer
[11] play a crucial role in protecting users from deceptive online practices. Our
measurements of their coverage of typosquatted domains yielded underwhelming
results. In total, only 6.6%, 4.5%, and 0.4% of all pre-2000, 2000–2012, and
post-2012 gTLD typosquatted domains were found to be categorized. Besides
the overall poor coverage of typosquatted domains, these results also suggest
that web intelligence services have not yet begun covering domains utilizing new
gTLDs to the same extent of those using older gTLDs – leaving users of their
services vulnerable to deception from them.

3.3 Cost of Brand Protection

We now focus on understanding the costs associated with defensive registration
of typosquatting candidates by brands.

What is the Cost of Complete Protection from Typosquatters? To
measure the monetary resources required to register typosquatting candidate
domains, we registered as domain resellers on GoDaddy domain registrar which
have access to 385 of the all 1230 currently open gTLDs. Since the total number
of unregistered typosquatting candidate domains is over $4M and our reseller
API are rate limited to 60 queries/minute, we randomly sampled domains with
edit distances of less than three from the base domain. In total we received 33K
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(a) pre-2000 gTLDs (b) 2000 - 2012 gTLDs (c) post-2012 gTLDs

Fig. 3. Distribution of unowned typosquatting domain prices within 3 edit distances
of base domains, broken down by gTLD era.

responses to our queries – 352, 514, and 29.7K for queries on candidates using
pre-2000, 2000–2012, and post-2012 gTLDs, respectively.

Figure 3 illustrates the cost for each of our queried domains, broken down
by gTLDs and edit-distance from the base SLD. Comparing across all gTLD
eras, we see that the typo domains with post-2012 gTLDs are generally more
expensive than all other eras – regardless of the edit distance from the base
domain. Comparing within eras, our results show that typo domains with exact
matches of the base domains are also significantly more expensive than higher
edit distance domains – i.e., edit-distance 0 domains with post-2012 gTLDs cost
$138 on average while edit-distance 1 and edit-distance 2 domains average $95
and $96, respectively. The median of cost of queried domains, broken down
by gTLDs and edit-distance 0 from the base SLD for 2000–2012 and post-2012
gTLDs is $17.99 and $21.99, respectively. We also note that GoDaddy advertises
these exact match domains as “premium”. This suggests that there is knowledge
of trademark value of the domain and the increased price and lack of restric-
tions on domain purchase suggests that there is a willful effort to profit off of
typosquatting.

From our analysis so far, we can estimate the cost that a brand needs to
pay in order to protect itself from typosquatting as a result of the 2012 gTLD
expansion. To get the lower bound, we only consider the cost of purchasing
domains with open gTLDs (643). To only purchase domains with exactly iden-
tical SLDs, a brand would require $63K. Our earlier results suggesting that the
majority of typosquatting occurs at an edit-distance of one away from the base
SLD indicate that $63K is far from sufficient for meaningful protection from
typosquatting. Considering that the average cost of a domain with a post-2012
gTLD and edit-distance of one is $95 and there are hundreds of possible typos
with each individual gTLD, it is safe to say that it is not feasible or reasonable
to expect brands to be able to protect their domains from typosquatters. Our
most conservative estimates show the cost of typosquatting protection against
edit-distance 0–1 and open post-2012 gTLD typosquatting to be in the millions
of dollars (exact values depend on the length of the base domain SLD).
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4 Related Work

ICANNs gTLD Expansion. ICANN’s gTLD expansion has been the subject
of much research over the past several years. Previous research has focused on the
economics of the gTLD expansion from the perspective of registries purchasing
the new gTLDs. Halvorson et al. [1] found that only a half of the new gTLD-
owning registries had recovered their $185K registration costs two years after the
expansion. In other work, Halvorson et al. [3] performed specific measurements
of the xxx gTLD and found that the gTLD was primarily used for defensive
registration with only 4% of the listed domains actually hosting content. In
more recent work, the focus has been on how domains with new gTLDs increase
security vulnerabilities. Korczyński et al. [2] conducted an investigation of the
abuse rates observed in domains using the pre-2012 and post-2012 gTLDs. They
found that the incidence rate of spam-domains in the post-2012 gTLD domains
was a whole order of magnitude higher than in the pre-2012 gTLD domains.
Further, the authors showed an upward trend in the number of spam domains in
using the post-2012 gTLDs. Osterweil et al. [25] quantified Man in the Middle
(MitM) attacks on web browsing caused due to internal namespace WPAD query
leakage. They found that almost all leaked queries are for new gTLD domains
and 10% of these highly-vulnerable domains have been registered.

Typosquatting on the Web. The incidence of typosquatting on the Internet
has been extensively discussed in previous literature. However, the focus has gen-
erally been on the pre-2012 gTLDs or on the general behaviours of typosquatters.
Agten et al. [5] conducted a longitudinal study on the Alexa top 500 websites
and showed that 95% of these websites were actively targeted by typosquat-
ters and that only a handful pursued measures to protect themselves through
pre-emptive registrations of candidate domains. Khan et al. [7] demonstrated
methods to quantify the harm of typosquatting on the Internet by using time
lost for users and visitors lost to brands as their primary metrics. Nikiforakis et
al. [26] found a “Typosquatting Cross-site Scripting” (TXSS) vulnerability that
exploited typosquatted domains. Wang et al. [27] proposed Strider – a system
designed for detecting and discovering large-scale and systematic typosquatters
by monitoring neighboring domains. Banerjee et al. [9,10] analyzed phony sites
and their network layer behavior, e.g., number of http redirections. While the
relationship of domain parking services and malicious domains and parking ser-
vices has been analyzed in other researches such as [28,29], these papers do not
specifically target domain names registered with new released gTLDs.

5 Discussion

Taken in completeness, our study shows that typosquatting incidence rates con-
tinue to remain high and that the sheer number of typosquatted domains has sig-
nificantly increased since ICANN’s 2012 gTLD expansion. In fact, typosquatting
candidate domains using post-2012 gTLD are already being used by third-parties
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for content hosting and being monetized at higher rates than any previous gTLD
era. Further, our findings highlight a simultaneous failure of multiple entities in
the typosquatting ecosystem: (1) advertisers and trackers have failed to enforce
their own policies regarding acceptable publishers, therefore presenting mone-
tary incentives for typosquatters and (2) mass registrars, rather than protecting
trademarked domains, are themselves seeking to monetize both trademarked and
typo domains. These failures have a cost not only to the brands for whom it is
unreasonably expensive to defend against typosquatting, but also to the public
whose trust in them is more easily exploited by malicious entities – e.g., the 2016
US Presidential election showed that fake news was spread via websites spoof-
ing major media outlets [30]. Finally, our work also shows the cost for brands
to protect their own trademarks from typosquatters to be unreasonably high.
Taken together, our study suggests that the gTLD expansion has in fact resulted
in an ecosystem which facilitates extortion of trusted brands and organizations.
We are currently expanding gTLDtm to automatically identify occurrences of
typosquatting for the purpose of mis- and dis-information during the 2020 US
Presidential election and also seeking to build tools to enable brands to identify
which domains should be targeted for pre-emptive registration.

Appendix

A.1 ICANN and gTLD Expansions

In this section, we provide a high-level overview of how gTLDs have been
expanded over the years and the role that ICANN plays in regulating these
expansions. Since 1998, the Internet Corporation for Assigned Names and Num-
bers (ICANN), has been responsible for administering the Internet Domain
Name System (DNS). This role has included the authority for establishing new
top-level domains (TLDs). TLDs have historically been classified into: (1) TLDs
reserved for countries and territories (country-code TLDs or ccTLDs), (2) a TLD
reserved for Internet infrastructure (infrastructure TLD: .arpa), and (3) TLDs
that may be used for other purposes (generic TLDs or gTLDs).

gTLD Expansion Between 1984 and 2012. Between 1984 and 2000, the
number of gTLDs increased from five to seven with .net and .int added to the
“core” set (.com, .edu, .gov, .mil, and .org). Of these seven, three TLDs –
.com, .net, and .org – have always been open to public registration with the
other TLDs being reserved for use by specific organizations such as universi-
ties (.edu) and government entities (.gov). Starting in 1998, ICANN began
considering a more “open” gTLD program which would allow private entities
to act as registries and manage new gTLDs. Following a public call for pro-
posals in August 2000 and a two-month period for public comment, ICANN
announced seven new gTLDs in November 2000 (.aero, .biz, .coop, .info,
.museum, .name, and .pro). The process was repeated again in 2004, resulting
in the introduction of six new gTLDs (.asia, .cat, .jobs, .mobi, .tel, and
.travel). Between 2004 and 2012, only two other gTLDs – .xxx and .post –
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were added. By the end of 2012, the Internet had 22 gTLDs – of which 15 were
open to public registration. As of August 2013, the 15 additions to the 7 core
gTLDs accounted for 3% of all domain registrations while the 7 core gTLDs
accounted for 51% of all domain registrations on the Internet (ccTLD domain
registrations accounted for 35%) [31].

The 2012–2013 gTLD Expansion. In 2008, citing the success of the pre-
vious gTLD expansions in 2000 and 2004, ICANN approved new policies to
facilitate the large-scale creation of new gTLDs with the stated goal of “enhanc-
ing innovation, competition, and consumer choice” [32]. Following the creation
and multiple revisions of a guide for the application process of new gTLDs, in
2011 steps were taken to enable the registration of new gTLDs. These guide-
lines are still applicable today. In order to register a new gTLD, a registry needs
to demonstrate capabilities to handle technical, operational, and business oper-
ations related to the handling of registrar relationships and submit a $185K
application and evaluation fee [33]. Applications for new gTLDs were opened in
2012 following criticism and protest from Internet societies, including Harvard’s
Berkman Center for Internet & Society [34], the Association of National Adver-
tisers [35], and the United States Federal Trade Commission [36] which primarily
cited the lack of transparency in the evaluation process, potential for trademark
infringement and other generally malicious conduct. By 2013, over 1,900 applica-
tions were received of which 1,543 were granted and 1,208 are still active today.
Contested gTLD registration applications were resolved by a bidding process.
As of July 2016, the ICANN netted a profit of $233M from the bidding process
alone [37]. As of August 2018, the 1,208 active new gTLDs accounted for 9% of
all domain registrations on the Internet [31]. We note that statistics regarding
the registration of new gTLD domains have not been updated on the ICANN
website since 2015 and are only available through other third-party services.

Registry Responsibilities and Guidelines. Following the delegation of a
gTLD, a registry is required to perform certain responsibilities related to main-
tenance of the gTLD. A full specification of these requirements is available online
[38]. We summarize the requirements that are relevant to our study below.

– WHOIS services. Registries are required to maintain a fully responsive and
searchable WHOIS service available via port 43 and through a web-based
interface.

– Zone files. Registries are required to provide public access to their current
zone files via the Centralized Zone Data Access (CZDA) provider [14]. In
order for a member of the public to gain access to the zone file, they need to
provide “information sufficient to correctly identify and locate” themselves.
These may include an organization name and address, IP address, etc. There
is no specified time within which a registry is required to provide a response.

– Protected domains. All registries owning and operating an open gTLD are
subject to a sunrise period of 30 days. During this period, domains may only
be registered by organizations registered with ICANNs Trade Mark Clearing
House (TMCH). Following this period, all domains are open for public reg-
istration – regardless of their trademark status and any trademark disputes
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are to be resolved using ICANN services. All costs associated with disputes,
trademark verification, and TMCH registration are to be paid by the trade
mark holder. Further, the TMCH will only accept domains as trademarked
if the following criteria are met (examples are demonstrated with the orga-
nization “ICANN Example”): (1) exact match rule—icannexample.org is
a valid trademark domain, (2) hyphen for spaces/special characters rule—
icann-example.org is a valid trademark domain. All other domain varia-
tions, including plurals are considered invalid (e.g., icann-examples.org).

We note that we were unable to find documents relating to how compliance with
these responsibilities were to be monitored or enforced.
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Abstract. Luxury goods such as sneakers and bags are in high demand.
Many websites offer them at high discounts, which, in many cases, are
simply cheap counterfeit versions of the original product. Online shop-
pers, however, may be unaware they are buying a counterfeit product
and end up being scammed and having to deal with financial losses, as
has been widely reported by various news outlets. This work presents a
multiyear effort of The Netherlands’ .nl country-code top-level domain
(ccTLD) in detecting and removing counterfeit online shops from the
.nl DNS zone. We have developed two detection systems and partnered
with registrars and a large credit card issuer, which ultimately led to
more than 4,400 counterfeit online shops being taken down.

1 Introduction

Counterfeit or fake goods are unauthorized replicas of products that attempt to
pass as legitimate ones. They cover a large array of goods, such as pharmaceu-
ticals [17], electronics [1], aircraft parts [37], and books [31].

Luxury goods, from brands such as Nike and Louis Vuitton, are among the
most popular counterfeit products. Their popularity originates from the con-
sumer’s high demand, leading to high-profit margins [37] for those who sell them.
In the U.S. alone, seizures at the border of counterfeit goods in 2017 had an esti-
mated value of US$1.2 billion [36], had these products been genuine. In the EU,
2016 border seizures were valued at e670 million (US$ 743 million) [33]. In both
cases, most shipments originated from China, which has been also found as a
major source of counterfeit shoes [28].

To be able to sell online, counterfeiters first have to attract potential buyers,
and they have been using various tactics. In a previous study, Wang et al. [38]
have shown how counterfeiters often employ search engine optimization (SEO) in
an attempt to improve rankings in search engines. In addition, social networking
c© Springer Nature Switzerland AG 2020
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websites have been also employed [22]: in 2016, a large number of Instagram
accounts were dedicated to disseminating counterfeit luxurious goods—roughly
20% of the 150k analyzed posts [35], which contained links to stores dedicated
to selling these type of products. Last, market places such as Amazon [31] and
Ebay have been exploited by counterfeiters.

Buyers of these goods are often unaware that they are buying from a coun-
terfeit webshop and in many cases, they end up not receiving any product, or
receiving a lower quality version—being scammed either way. Moreover, they
may become victims of ID theft, given that they have to provide their credit
card details and address information. Financial losses to online shoppers have
also been widely reported by several media outlets in The Netherlands [21–23],
where they have been known to exist since 2016 in the .nl zone (Figs. 11 and
12 in AppendixA and [5]). This is not only observed in .nl: Germany’s .de

was found to have more than 16.000 counterfeit shops, many active for several
years [24].

In this paper, we focus on a subset of the counterfeit industry—the so-called
luxury goods that are sold online, that often leads to shoppers experiencing finan-
cial loss. We leverage our centralized vantage point as the country-code top-level
domain (ccTLD) registry for The Netherlands (.nl), operated by SIDN [30]. Cen-
tralized, in this context, refers to access we have to historical registration data
of all .nl domain names, which also includes registrants’ contact details. Given
that most webshops in The Netherlands are registered under the .nl ccTLD (and
are available in Dutch language), counterfeiters would have incentives to register
their domains under .nl as well, to mimic what most legitimate webshops do. As
such, our centralized vantage point allow us to leverage this strong association
between ccTLD, country, and language.

This paper presents the results of a multiyear effort in detecting such web-
shops, which led to 4455 domain names being removed from the .nl zone.
We present two detection systems—BrandCounter (Sect. 3) and FaDe (Sect. 4),
which have been used in production over the past three years by our Abuse
Handling Analysts to evaluate .nl domain names and notify registrars and/or
registrants. BrandCounter, the first system from 2017, employs a very simple
but effective heuristic. We used its results in a case study with Registrar A,
that ultimately led to the removal of ∼3.7k counterfeit webshops from the .nl

zone (Sect. 3.1). FaDe (Sect. 4), in turn, was developed in early 2019 to cope
with the new tactics employed by counterfeiters (Sect. 4.2), who adapted after
the initial take downs based on BrandCounter’s results. We carried out another
case study with the results from FaDe together with International Credit Cards
(ICS , [11]), a major credit card issuer in The Netherlands with more than 3.5
million clients. This study led to the removal of an additional 747 domain names
(Sect. 4.1). Lastly, we infer the popularity of the counterfeit domains among
users by analyzing the volume of DNS queries to the .nl authoritative servers
(Sect. 5).
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2 Background

Domain Name Registration: Registering a domain name is the process of
creating a unique name that is added to a DNS zone file. Next, we describe this
process under .nl. It usually involves a registrant, registrar (or reseller), and
registry. The registrant (a user) requests an accredited registrar to register an
available domain name at the registry. The registrar only executes this request
once certain requirements are met, such as registrant information and payment
being cleared, as shown in the left part of Fig. 1.

Domain Registration Domain Resolution

Registrant
Registrar
/ Reseller Registry Zone

File

Authori-
tative
Name
Servers

DNS
Resolvers

User

Datasets

RegDB Scans AuthDNS

Active Scans

Fig. 1. TLD operations: registration (left), domain resolution (right), and datasets.

Domains are registered for a period of one year, which will be automatically
renewed at .nl. If the domain is cancelled, it will expire and is put on hold for 40
days and right after that made available for a new registration by any registrant.
The list of valid domain names is then used to generate a DNS Zone File (Fig. 1)
that contains the list of all domains under .nl, and their respective DNS records.
These Zone Files are used as input on the authoritative name servers, which are
used to answer queries on .nl domain names.

Domain Name Resolution: Domain name resolution consists of resolving
a domain name into, ultimately, its IP address or other specific types of
DNS records [18]. To do that, a user’s application contacts the stub DNS
resolver (Fig. 1) on his/her computer, which, in turn, sends a DNS request
to its DNS resolver [10]. The DNS resolver will, on behalf of the user, recur-
sively resolve the requested domain name, and ultimately contact the appro-
priate authoritative name server. Caching on DNS resolvers [19,20] is used to
eliminate frequently issued queries, improving response times.

2.1 Datasets

We leverage three types of datasets available at the .nl registry. Two of them
are passive data, while one is obtained through active measurements:

– RegDB: We have access to the historical database of registration and removal of
.nl second-level domains (such as example.nl), which covers 20+ years. This
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dataset contains complete information about registrant and registrar (and
resellers, if applicable), as well as some of the DNS records of the respective
domains [18].

– Scans: We crawl all domains under .nl on a monthly basis. We scan for four
types of application: DNS records, HTTP pages, SMTP and TLS (and its
certificates on web pages). We employ DMap [40], an application we have
developed to carry out these scans. Besides that, the .nl zone is scanned
daily by OpenIntel [26], a research project that crawls daily multiple TLD
zones for various DNS record types.

– AuthDNS: We have access to historical query data from two out of the four
authoritative name servers for .nl. This data provides a centralized but sam-
pled view (due to caching on the resolvers) of all queries issued to .nl. We
use our open-source Hadoop-based ENTRADA [41] to store and process this
dataset.

3 BrandCounter

While detecting phishing domains in the .nl zone in 2016 [5], we came across
the first suspicious luxury goods webshops, which advertised goods at high dis-
count, as shown in Fig. 11, in AppendixA. Upon inspection, we observed that
they shared one common feature: long page titles (HTML element <title>) that
listed a series of luxury brands—in an attempt to improve rankings on search
engines [38].

That provided us with a simple but effective way to detect such shops in the
entire .nl zone: we crawl the zone for web pages and, for each page, we compare
how many words in the page title match the words from our 1,100+ pre-compiled
list of luxury brands and discount-related words, such as “discount”, “sale”,
in both English and Dutch. We determined empirically a threshold of t ≥ 5
matching words to classify webpages as suspicious. We automated this process
into a single tool (BrandCounter), and ran it roughly once a month, for over
1.5+ years, as shown Fig. 2. In total, BrandCounter detected 18952 suspicious
webshops.
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Results and Analysis: Eighteen thousand allegedly counterfeit webshops
seems like a large number—0.3% of the entire of .nl zone. We analyzed these
domains, and observe the following characteristics:

Domains are Cheap and Disposable: Given that it is relatively cheap to register a
.nl domain (less than e10 in 2020), counterfeiters may choose to register a large
number of domains, and even if some are taken down, the profits made from the
remaining ones are enough to sustain the operation. The relatively short lifetime
also indicates that domains are disposable (Fig. 6).

Registrar Concentration: Out of 18952 domains, 16512 are registered by 10 reg-
istrars, as can be seen in Fig. 3. The top registrar—Reg. A—is alone responsible
for 8017 (42.3%) of all detected shops. One of the reasons for that may be the
fact that Reg. A ranks among the cheapest registrars and provides an API that
allows for bulk registration of domains, which is very handy in case of auto-
mated registrations. Given such concentration, we carried a case study with
Reg. A (Sect. 3.1), in which a large part of these domains were suspended.

Fig. 3. Top 10 registrars with suspi-
cious domains.

Fig. 4. Top 10 ASes (countries) hosting
suspicious domains.

Similar But Yet Different Website Templates: We analyzed the home pages of
some of these webshops and found out that they are different, but seem to be
using a few content-management systems (CMS). The webshops do not support
HTTPS, and have a single image in the page footer that contains icons of most
credit card companies with no link or a broken link. Such designs also suggest
use of automated tools to create such websites. Wang et al. [38] describe many
doorway pages, which are non-shopping sites that are specifically designed to
improve SEO results and redirect users to the real websites. In our work we do
not see such pages since we do not rely on search engine results—we see the
actual automatically generated pages listing the counterfeit goods, always with
large discounts.

Most Domains were Drop-Catch: 15242 shops are hosted on domains that expired
and were re-registered by the counterfeiters (80.4%). The majority of these
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domains are immediately registered when they became available (Fig. 5), a prac-
tice known as “drop-catch” [7]. By registering freshly expired domains to host
counterfeit webshops, counterfeiters can benefit from their previously built rep-
utation [14]. This timely precision in registering domains—and the fact that
they seem indifferent to the name of the domain itself, as many were previously
used by small businesses such as bakeries, beauty parlors—supports the idea of
automation in the registration process.

Fig. 5. Suspicious domains: days in
between domain expiration and re-
registration.

Fig. 6. Suspicious domains lifetime:
most domains are not renewed after
one year—the registration period.

Chinese e-mails and Chinese Diurnal Registration Timing: Registrants are
required to provide their e-mail address to register a domain with .nl. Out
of 18925 suspicious domains, 4696 are registered using 163.com (24.81%), a
well-known Chinese e-mail provider which is particularly not popular in The
Netherlands (Fig. 7). Moreover, the registration diurnal patterns coincide with
east China working hours (Fig. 8).

Fig. 7. Number of shops by the registrant’s e-mail domain.

Hosting Provider Concentration: We see that 66.59% of the counterfeit webshops
are hosted in 10 ASes—as can be seen in Fig. 4—and none of them are located
in China. We also see that most of them, however, use default DNS services pro-
vided by their registrars during registration. We inspected a sample of websites
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Fig. 8. Number of shops by registration hour.

from the .com zone hosted under some of the same IP addresses of AS197328.
Some were counterfeit webshops in other languages, but we also found websites
that seemed legitimate, such as small businesses in Turkey.

3.1 Registrar Notification Case Study

Counterfeiters employed Registrar A to register 8017 suspicious domains (Fig. 2),
from the more than 15k detected, for the entire period covered. Given this con-
centration, we partner with Reg. A in a case study of three months in which
we provided them with a list of domains that were labeled as suspicious by
BrandCounter. In these three months, we sent 4106 domains to Reg. A.

Reg. A, in turn, would verify the identity of the registrants and take appro-
priate measures according to their regulations. While other registrars were also
notified—and many also removed suspicious domain names—we single out Reg.
A in this section, because we only tracked results for this registrar.

Table 1 shows the number of domains we notified to Reg. A—more than
four thousand in the three notifications. Upon receiving the list of domains,
Reg. A determined the accuracy of the registrant data and judged each domain
individually. The column “Suspended” shows the number of suspended domains
by Reg. A—meaning they changed their NS records to sinkhole-like authoritative
name servers (e.g., sinkhole.example.nl), which they typically use for their
suspended domains. To determine when the suspension occurs, we use daily
crawls provided by OpenIntel [26].

Table 1. Registrar A notification and suspension results.

Date Domains Suspended-NS Online

2018-01-18 3560 3174 (89.16%) 386 (10.84%)

2018-03-16 399 387 (97.24%) 12 (3.02%)

2018-05-02 148 147 (99.32%) 1 (0.68%)

Total 4107 3708 (90.31%) 398 (9.69%)
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We can see the effects from this notification in Fig. 2: first, a drop in the
number of domains labeled as “suspicious” originated from Reg A, followed by
an overall drop of detected suspicious domains. We also see the effectiveness
of this intervention in the same figure: as domains started to be suspended by
registrars, and we see a drop in the number of domains classified as suspicious.
After October 2018, we see very little change in the volume of such domains.
Overall, our notification study lead to more than 3708 domains being ultimately
suspended by Registrar A, potentially protecting users from scams.

4 FaDe

BrandCounter was initially effective in detecting counterfeit webshops, but after
a first round of takedowns, we observed a sharp decrease in the number of suspi-
cious domains (Fig. 2). Why was that? Have the counterfeiters given up or have
they learned to avoid detection by BrandCounter? Given that, we set out to
develop a new detector FaDe—Fake Detector—which does not rely on the words
in the web page title. Instead we utilize a Support Vector Machine (SVM) [32]
that employs nine features related to the registration itself and the infrastruc-
ture. We chose SVM because it is a robust method that has been successfully
applied to classify various types of malicious activity [4,12,13].

SVM is a supervised learning method and relies upon labeled data for train-
ing. For that, we collaborated with the Abuse Department of ICS , a major credit
card issuer in The Netherlands. ICS provided us with a list of 231 .nl domains
labeled as fraudulent (Nov 2018–Jan 2019). We also randomly sampled 229 web-
shops from our zone which we manually labelled as a trustworthy webshop. This
resulted in a data set of 460 samples.

Feature Selection: We employ nine features in FaDe that characterize coun-
terfeit webshops (Table 2). The first three were inspired on the work by Hao
et al. [6]—which we also observed with BrandCounter (Sect. 3). Re-registration
indicates if the domain has been previously registered or not, Registration Hour
represents the hour of the day in which the domain was registered, and the third
was the registrar used.

The remaining six features (highlighted in Table 2) are based on other pat-
terns we have seen with the domains detected by BrandCounter (Sect. 3) and
the training set provided by ICS. E-mail provider indicates whether a suspicious
e-mail domain is used by the registrant, given we have seen a high concentration
of unusual mail providers (Fig. 7). The fifth feature—reported domains score—is
the ratio of malicious domains reported via the Netcraft abuse list [15] divided
by all the domains registered by a given registrar in 2018 on the .nl zone. The
sixth feature captures the ratio of lowercase characters in the registrant’s name,
given that we noticed that many counterfeit webshops register with lowercase
only. We observed that 227 of the 231 webshops reported by ICS did not con-
figure mail servers (defined by their MX record [18]), which we also then use
as a feature. The eighth feature is the issuer of the TLS certificate, because we
observed that 3 issuers are responsible for 156 of the 183 webshops that were
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labeled by ICS as fraudulent and have TLS configured (websites have also been
found employing TLS [27]). Finally, we consider the autonomous system of the
A record and of the domain, i.e., the AS of the hosting provider, given the high
concentration of certain ASes (Fig. 4). All features are normalized to the same
scale ([0, 1]) to ensure they all have the same influence on the distance metric.

Table 2. Features used by FaDe.

Dataset Feature Importance

RegDB

1. Re-registration 2

2. Registration Hour 4

3. Registrar 6

4. Suspicious e-mail provider of registrant 1

5. Reported domains score 5

6. Registrant name lowercase 9

Scans

7. Existence of a MX record 3

8. Issuer of TLS certificate (if any) 7

9. Autonomous System of A Record 8

Model Training: To train our model, we start by randomly splitting our dataset
with 460 samples into two categories: training set (367 samples, 80%) and test
set (93 samples, 20%). We then use grid search [2] to find the optimal SVM
parameters (i.e., kernel, C and γ). We employ cross-validation [8] so that we
can use the full training set for both training and validation. The best scores
over all folds—mean precision of 0.98 and mean recall of 0.97—were obtained
using the RBF kernel with C = 10 and γ = 0.1. Next, we train our final model
using these parameters and the full training set. This model was then applied
to the test set yielding a precision of 1.00 and recall of 1.00. Although the test
set is small, it at least indicates that our model performed well.

Feature Importance: To estimate feature importance, we use the coefficients
of the best SVM classifier with a linear kernel. We omit the exact coefficients
because we do not want to help counterfeiters with exact values and show the
relative importance in Table 2.

Results and Analysis: After training our model, we apply it to a subset of the
.nl zone: only domains that are automatically classified as eCommerce by our
crawler DMap [40]. We focus on this subset to prevent many false positives that
could discourage abuse analysts. For this purpose, the crawler extracts technolo-
gies used on webpages using Wappalyzer [39] and some regular expressions that
look at specific HTTP headers, HTML content and cookies. A domain is clas-
sified as eCommerce if it has at least one eCommerce related technology (e.g.,
Zen Cart or WooCommerce).
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Ultimately, we evaluated 30k domains of our zone that were classified as
eCommerce and were registered at most 365 days ago, using data crawled in
January 2019. Table 3 shows the results. In total, FaDe classifier detected 1407
suspicious domains.

Table 3. FaDe results and validation.

Category Domains

Suspicious 1407

Unreachable 181 (13%)

Reachable 1226 (87%)

True positive 894 (73%)

False positive 332 (27%)

Table 4. Notification and take down results.

Registrar Notified Webshop-down NX-domain NS-change

A 505 248 57 244

B 576 433 9 438

C 21 11 12 0

D 55 31 0 31

F 64 11 39 0

Others 63 13 16 0

Total 894 747 (84%) 133 (15%) 713 (80%)

To validate the results, we shared the lists of suspicious domains with ICS ,
where analysts manually verified every single domain in the period between
2019-01-29 and 2019-02-04—including evaluating the payment provider used by
the website. Out of the 1407 domains, 181 domains (Table 4) were not reachable
anymore by the time of the validation—in 14 cases analysts report a DNS error,
167 domains are annotated with a generic ‘no response’ label which could indi-
cate failure at the DNS or server level. This left us with 1226 domains that were
both suspicious and reachable. Out of these, 894 were confirmed as true positives
(72.92% precision). ICS analysts reported notes on a few false positives: 38 were
redirects to legitimate webshops and 8 were adult websites.

4.1 Registrar Notification and Takedown

Being able to detect these counterfeit webshops is just the first step. To protect
.nl users, we need to act upon these domains, and preferably take them down.
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We then split the true positives per registrar, as can be seen in Table 4, and noti-
fied the respective registrars of these domains, via two channels: ICS carried out
their notifications and the registration department at SIDN also notified regis-
trars. After receiving notifications, registrars can individually decide, according
to their policies and processes, to suspend the domain—a process that we were
not involved in.

To determine which domains were taken down, we could use the same app-
roach shown in Sect. 3.1. However, different registrars may employ different take
down methods: web page content changes, domain suspension, DNS records
changes, among others. Given that we notify multiple registrars, we analyze
changes in the content of web pages, domain cancellations, and nameserver
changes in the period starting from the notification date until 01-05-2019. We
use RegDB data and Scans data (Sect. 2.1) for this purpose.

Table 4 shows the results. Out of the 894 domains that we notified to reg-
istrars, 747 (83.56%) were effectively taken down, as measured by a change of
webpage content. We can also see in the same table the method employed by the
registrar: 133 (14.88%) domains are cancelled resulting in an NX domain and
713 (79.75%) changed their NS records [18], which point to the authoritative
name server of a domain. We manually checked the name server changes. 677
domains changed to a sinkhole name server and 36 to a regular name server.
This indicates that registrars employ different strategies to take down counter-
feit webshops. For example, Reg. B suspended most domains by changing name
servers whereas all Reg. F domains were cancelled. 147 (16.44%) of the notified
domains were not taken down. In the majority of those cases the registrar did
not respond and the registrant details were legitimate, giving us no ground to
remove the domain from our zone.

4.2 BrandCounter vs FaDe Compared: Evolving Tactics

Given that BrandCounter was effective with such a simple heuristic, we can
deduct that counterfeiters were likely facing very little defensive pressure—they
did not seem to make any efforts to hide the suspicious characteristics of their
websites, or at least not in early 2017. We could expect counterfeiters to adapt
to our detection methods, especially because thousands of domains were taken
down.

To determine why BrandCounter’s performance reduces over time (Fig. 2),
we apply BrandCounter to the true positives generated by FaDe. Out of the
894 domains, 707 had a score of 0 matching words—and no domain had a score
above 3. Given we use a threshold of t > 5, counterfeiters evaded BrandCounter
detection. In other words, they adapted to BrandCounter. Upon inspection, we
see that they have essentially removed references to popular brands and inserted
generic product titles, colors, type of garment, and targeted age group/gender,
ultimately evading BrandCounter—which is surprising, given that up to that
point we have not disclosed how we detected these websites.

Registrar and Email Provider Diversification: We have shown in Sect. 3.1 how
Registrar A took down more than 3700 domain names upon our notifications.
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We could expect counterfeiters to respond to that. We see that in Fig. 3, in
which registrar B becomes the number 1 registrar employed by counterfeiters.
More prominently, we see a diversification of e-mail providers used by regis-
trants (Fig. 7)—moving from the dominant 163.com for BrandCounter detected
domains, to a more diverse distribution for domains detected by FaDe.

Hosting Diversification: We still observe that counterfeit webshops are hosted
on a small number of ASes. However, the ASes themselves did change over the
years as can be seen in Fig. 4. AS 41204 and AS 204353 were frequently observed
during the second study based on FaDe, while no shops were later hosted on AS
197328. Interestingly, the hosting infrastructure still does not map to Chinese
IP addresses.

5 How Popular Are the Counterfeit Webshops?

Our notification campaigns led to 4.5k domains being removed or suspended. In
this section, we explore the popularity of these counterfeit webshops.

We can indirectly infer a counterfeit webshop popularity by analyzing incom-
ing queries for the .nl authoritative server—leveraging our AuthDNS dataset
described in Sect. 2.1. For each domain name d, we extract the number of queries
and unique IP addresses of resolvers we observed one week before the notification
dates. (we chose one week given the known weekly diurnal patterns of Internet
traffic [25]). While the number of queries and resolvers do not correspond to the
number of unique shoppers (due to caching at DNS resolvers), it provides an
indication of how diverse the population of the resolver is.

Figure 9 shows the average number of daily queries for the domains taken
down before the notification, while Fig. 10 shows the average daily number of
resolvers. The baseline consists of a random set of 500k domain names that
serve a website (defined by a 200 OK HTTP status code). We see a significant
discrepancy in counterfeit webshops popularity: 50% of them have, on average,
100 daily queries prior to the notification, from ∼70 unique resolvers. However,
there are some domains that are very popular: 55 domains had an average

Fig. 9. Average number of daily DNS
queries for counterfeit shops one week
prior notification and a random subset
of 500k domains that serve a website.

Fig. 10. Average number of daily
unique resolvers for counterfeit shops
one week prior notification and a ran-
dom subset of 500k domains that serve
a website.
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1000 daily queries from 653 resolvers. We manually analyzed the queries of the
top 10 counterfeit webshops and found that most queries originated from public
resolvers and local ISPs, which is similar to normal query behavior. This suggests
variability in domains’ popularity, which may coincide with their advertisement
strategies.

6 Privacy and Legal Considerations

Together with our legal department, we have developed a publicly available data
privacy framework [3] that conforms to both EU and Dutch [3,9] legislation. This
framework has been implemented, including a privacy board that oversees SIDN
Labs’ research. For the purpose of this research, only domain names and their
associated labels—either legitimate or suspicious—were shared between SIDN
Labs research and respectively ICS and the registrars. This collaboration was
formalised using a data sharing agreement.

Note that domains with counterfeit webshops were mostly taken down by
registrars. SIDN only takes down domains based on content if it is clearly crim-
inal or unlawful. However, .nl regulations [29] determines that registrant data
must be legitimate. Failure to conform to the regulation may result in domain
name removal from the zone—the legal instrument that has been used in some
take down procedures.

7 Related Work

Counterfeit Market: Counterfeit industry has been previously studied by crimi-
nology researchers [37]. However, they focus on sales in the streets and not online.
The online world of counterfeit stores have been extensively studied and mapped
by [38]. The authors’ starting point was Google search results. Our work, how-
ever, is based on 5.8M domains issued by .nl, and with a focus on non-English
results. Besides, we cover years of continuous efforts to mitigate such webshops
and we carry out notification campaigns with domain registrars and a credit
card issuer, which lead to 4.5k domains being taken down (and more belonging
to other registrars, which our colleagues of the registration department notified
but we did not cover in this study). We also show how counterfeiters adapted to
our first classifier, once their domains started being taken down.

Payment Systems: McCoy et al. [16] cover payment systems in abuse-advertised
goods, and in 2018 they focused on bullet-proof payment systems [34]. We do
not cover payment systems in this paper, but we collaborated with ICS , which
is a major credit card provider that deals with payment systems themselves.

8 Conclusions

Counterfeit luxury goods are a very profitable business, and employ high levels
of automation in both registration and hosting. Our results suggest most regis-
trations are supposedly done from China, but most hosting is not. We show that
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counterfeiters operate not only in English and in .com, as in previous works, but
also in Dutch and on .nl, which illustrates how professional this industry is.

We have developed and used two systems to detect counterfeit webshops in
production at .nl, detecting more than 20k suspicious webshops over a period of
more than two years. By notifying registrars and teaming up with ICS , we car-
ried out notification campaigns that resulted in 4455 domains being suspended,
ultimately protecting users of the .nl zone from possible scams. Both detectors
are relatively simple but at the same time effective, suggesting that counterfeit-
ers were suffering little defensive pressure. As such, we can expect they will try
to evade our detection systems again—as they have done with BrandCounter—
which requires us to continuously adapt to evolving tactics.
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A Appendix: Screenshots of Counterfeit Webshops

Figure 11 shows the screenshot of a counterfeit webshop captured in 2016 on
the .nl zone, also shown in [5]. Figure 12 shows the screenshot of a counterfeit
webshop captured in 2019.

Fig. 11. Example of counterfeit webshop detected in 2016.

https://www.concordia-h2020.eu/
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Fig. 12. Example of counterfeit webshop detected in 2019.
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Abstract. The Domain Name System (DNS) is a hierarchical, decen-
tralized, and distributed database. A key mechanism that enables the
DNS to be hierarchical and distributed is delegation [7] of responsibil-
ity from parent to child zones—typically managed by different entities.
RFC1034 [12] states that authoritative nameserver (NS) records at both
parent and child should be “consistent and remain so”, but we find incon-
sistencies for over 13M second-level domains. We classify the type of
inconsistencies we observe, and the behavior of resolvers in the face of
such inconsistencies, using RIPE Atlas to probe our experimental domain
configured for different scenarios. Our results underline the risk such
inconsistencies pose to the availability of misconfigured domains.

1 Introduction

The Domain Name System (DNS) [12] is one of the most critical components of
the Internet, used by virtually every user and application. DNS is a distributed,
hierarchical database that maps hosts, services and applications to IP addresses
and various other types of records. A key mechanism that enables the DNS to
be hierarchical and distributed is delegation [7]. In order for delegation to work,
the DNS hierarchy is organized in parent and child zones—typically managed by
different entities—that need to share common information (NS records) about
which are the authoritative name servers for a given domain. While RFC1034 [12]
states that the NS records at both parent and child should be “consistent and
remain so”, there is evidence that this is not always the case [10]. However, a full
and systematic analysis of the extent of this problem is still missing.

In this paper, we analyze this issue by (i) providing a broad characteri-
zation of inconsistencies in DNS delegations, and (ii) investigating and shed-
ding light on their practical consequences. Specifically, we first evaluate if there
are inconsistencies between parent and child sets of NS records (NSSet) for all
active second-level domain names of three large DNS zones: .com, .net, and .org
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(Sect. 3)—together comprising of more than 166M domain names (50% of the
DNS namespace), as well as all top-level domains (TLDs) from the Root DNS
zone [22]. We show that while 80% of these domain names exhibit consistency,
8% (i.e., 13 million domains) do not. These inconsistencies affect even large and
popular organizations, including Twitter, Intel and AT&T. Overall we find that
at least 50k .com, .net, and .org domains of the Alexa Top 1M list are affected.

We then classify these inconsistencies into four categories (Sect. 3): the cases
(i) in which the parent and child NSSets are disjoint sets, (ii) the parent NSSet
is a subset of the child NSSet, (iii) the parent NSSet is a superset of the child
NSSet and (iv) the parent and child NSSet have a non-empty intersection but do
not match (ii) or (iii). These inconsistencies are not without harm. Even in the
case in which disjoint sets of NS records resolve to the same IP addresses, case (i)
introduces fragility in the DNS infrastructure, since operators need to maintain
different information at different levels of the DNS hierarchy, which are typically
under separate administrative control. Case (ii) may lead to unresponsive name
servers, while case (iii) points to a quite understandable error of modifying the
child zone while forgetting the parent, but it offers a false sense of resilience and
it results in improper load balancing among the name servers. Finally, case (iv),
which we see happening in more than 10% of the cases in which parent and child
have a non-empty intersection, suffers all the aforementioned risks.

To understand the practical consequences of such inconsistencies, we emu-
late all four categories (Sect. 4) by setting up a test domain name and issuing
DNS queries from more than 15k vantage points. Our experiment highlights the
consequences of delegation inconsistency on query load distribution in the wild.
We then investigate how popular DNS resolvers from different vendors deal with
such inconsistencies (Sect. 5), and find that some resolvers do not comply with
RFC specifications.

Finally, we conclude the paper discussing our findings and offering recommen-
dations for domain name operators to manage the inconsistencies we identified.

2 Background and Related Work

DNS uses a hierarchical name space [12], in which the root node is the dot (.).
Zones under the root—the top-level domains such as .org—are referred to as
delegations [7]. These delegations have second-level delegations of their own such
as example.org. To create delegations for a child zone (such as example.org), DNS
NS records [12] are added to the parent zone (.org in Fig. 1). In this example,
the NS records are [a,b].iana-servers.net, which, in practice, means that these
records are the authoritative name servers for example.org, i.e.,servers that have
definitive information about the example.org zone.

RFC1034 states that the NSSet should be consistent between parent and
child authoritative servers. This, however, is far from trivial. Parent and child
zones and servers are almost always maintained by different organizations across
administrative boundaries. The most common case is where the parent is a TLD.
Delegation changes in the parent go through the so-called Registry-Registrar-
Registrant (RRR) channel for almost all TLDs. In this model, the Registry
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Delegation

Parent

Child

example.org NS a.iana-servers.net
example.org NS b.iana-servers.net b0.org.afilias-nst.org.

example.org NS a.iana-servers.net
example.org NS b.iana-servers.net

example.org A 93.184.216.34

example.org NS a.iana-servers.net
example.org NS b.iana-servers.net

example.org A 93.184.216.34

b.iana-
servers.net

a.iana-
servers.net

Fig. 1. Domain name delegation: parent and child authoritative servers.

operates the TLD, the Registrar sells domain names under the TLD and the
Registrant is the domain holder. If the domain holder wants to change the dele-
gation, they can make the change in their child zone, but need to file a request
with the Registry through the Registrar. This process currently always happens
via an out-of-band channel (not through the DNS) and in some cases may even
require forms on paper. Add to this that domain holders may not always be
aware of this complexity and the requirement to keep parent and child in sync,
and it is clear to see that keeping the DNS consistent is prone to human errors.

The problem of Parent-Child consistency is addressed in RFC7477 [6], which
introduces a method to automatically keep records in the parent in sync through
a periodical polling of the child using SOA records and a new type of record
(CSYNC). Unfortunately, RFC7477 lacks deployment.

Pappas et al. [17] analyzed divergence between parent and child delegations
on sample domains (∼6M) from multiple zones and found inconsistencies in
21% of the DNS zones evaluated, in three different years. Kristoff [10] analysed
delegations in .edu and finds that 25% of .edu delegations suffer some form of
inconsistency. In his work, he considers 3 types of inconsistency: superset, subset
and disjoint-set. Our work significantly expands on both studies by considering
both the largest generic TLDs .com, .net and .org and the root zone of the DNS
(∼166 million domains, Sect. 3) and evaluating implications for resolvers in the
wild (Sect. 4).

Liu et al. show that dangling delegation records referring to expired resources
(e.g., cloud IP addresses or names) left in the parent or child pose a significant
risk [11]. An attacker can obtain control of these records through the same cloud
services by randomly registering new services, and in this way take control of the
domain. Finally, Moura et al. [14] have looked into the consistency of time-to-live
values [12] of parent and child NS records.

3 Parent and Child NSSet: Are They Consistent?

DNS NS records must be configured at both parent and child zones [5,12].
We compare NS records at parents and children in the wild considering all

second-level domains (SLDs) under .com, .net, and .org, on 2019-10-16. We
also evaluate the records in the Root DNS zone on 2019-10-30. We make use of
OpenINTEL, a large-scale DNS measurement platform [23]. OpenINTEL collects
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Table 1. Parent (P ) and Child (C) NSSet consistency results. “IP” refers to A records
of the NSSet of P and C.

SLD SLD SLD TLD Ratio Ratio Ratio
Total domains 142,302,090 9,998,488 13,181,091 1528

Unresponsive 19,860,226 949,137 1,663,403 0 14.0% 9.5% 12.6%
P = C 111,077,299 8,291,257 10,443,314 1476 78.0% 82.9% 79.2%
P �= C 11,364,565 758,094 1,074,374 52 8.0% 7.6% 8.2%

P ∩ C = ∅ 6,594,680 418,269 548,718 16 58.0% 55.2% 51.0%
IP (P ) = IP (C) 3,046,075 216,130 245,936 16 48.2% 53.9% 46.7%
IP (P ) �= IP (C) 3,265,171 184,885 280,988 0 51.8% 46.1% 53.3%
IP (P ) ∩ IP (C) = ∅ 1,415,838 83,720 137,913 0 43.3% 45.3% 49.1%
IP (P ) ∩ IP (C) �= ∅ 1,849,333 101,165 143,075 0 56.7% 54.7% 51.9%

P ∩ C �= ∅ 4,769,885 339,825 525,656 36 42.0% 44.8% 49.0%
P ⊂ C 3,506,090 236,257 369,442 18 73.5% 69.5% 70.2%
P ⊃ C 681,082 64,161 98,345 10 14.3% 18.9% 18.7%
Rest 582,713 39,407 57,869 8 12.2% 11.6% 11.1%

daily active measurements of over 60% of the global DNS namespace every day.
For each SLD, we extract the sets of NS records from the parent and child
authoritative servers, respectively indicated as P and C.

Table 1 shows the results of our comparative analysis. The first row shows the
total number of SLDs for each TLD zone on the date considered. For the three
zones, ∼80% of SLDs have a consistent set of NS records at both the parent and
the child zones. However, ∼8% of SLDs (∼13M) do not. For comparison, consider
that 13M is almost as many domain names as some of the largest country-code
TLDs (Germany’s .de, one of the largest, has 16M SLDs [3]). The remaining
12% of domains are unresponsive to our queries. This could happen for different
reasons, i.e. misconfigurations, failure, etc., not addressed in this work. We even
see that 52 TLDs in the Root zone have inconsistent NSSets. Out of these,
26 are country-code TLDs (ccTLDs). We are currently notifying these ccTLD
operators, in order to resolve these non-conforming setups, since they can have
an adverse effect, among others, on load balancing.

Inconsistent NSSets Classification: We classify inconsistent domain names
into four categories: the cases in which (i) the parent and child NSSets are
disjoint, (ii) the parent NSSet is a subset of the child NSSet, (iii) the parent
NSSet is a superset of the child NSSet and (iv) the parent and child NSSet have
a non-empty intersection but do not match (ii) or (iii).

For case (i), we observe that 51–58% of domains have completely disjoint
NSSets (P ∩C = ∅). Depending on if resolvers are parent or child-centric, in this
case resolvers will trust different NS records.

Given the surprising results for disjoint sets, we investigate the IP addresses
of the NS records (IP(P, C, lines 4–7 in Table 1).1 We discover that in half of the

1 This covers 96% of names with disjoint NSSets, the remaining 4% are indeterminate
due to unresolvable names in the NSSets.
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cases, domains have disjoint NSSets that point to the same addresses, i.e.,there
is an inconsistency of names but addresses match. In the other half, there is
inconsistency also in addresses. Of these, ∼45% have completely disjoint sets of
IP addresses, for the remaining 55% there is some sort of overlap.

Disjoint sets may increase the risk of human error even in the case of name
servers resolving to the same IP address, since operators would need to main-
tain redundant information in the parent and child, thus introducing fragility in
the DNS data. Disjoint sets also may lead to lame delegations [7], i.e.,pointing
resolvers to servers that may no longer be authoritative for the domain name.

Finally disjoint sets can be related to another malpractice: CNAME con-
figured on the Apex [1]. However, further analysis shows that only a negligible
percentage of cases are related to this.

Considering partially matching SLDs (P ∩ C �= ∅), we observe that 69–73%
belong to case (ii), where the parent NSSet is a subset of the child NSSet. This
may be intentional, e.g. an operator may want to first update the child and
observe traffic shifts, and then later update the parent. Alternatively, operators
may forget to update the delegation at the parent after updating the child.

Case (iii) where the parent NSSet forms a superset of the child NSSet (P ⊃ C)
occurs in 14–18% of cases. This situation may introduce latency in the resolution
process due to unresponsive name servers. Finally, the Rest category is case (iv),
where the NSSets form neither a superset nor a subset, yet they have a non-empty
intersection. Between 11–12% of SLDs fall in this category, and are susceptible
to the range of operational issue highlighted for the previous categories.

Note that the OpenINTEL platform performs the measurements choosing one
of the child authoritative nameservers. To verify how often sibling name servers
have different configurations (child-child delegation inconsistency), we execute a
measurement on a random sample of ∼1% of .org domains (10k domains). The
measurement suggests that ∼2% of total parent-child delegation inconsistency
cases also have child-child delegation inconsistencies, meaning that our results
give a lower bound for the problem of parent-child mismatch. In fact, the Open-
INTEL resolver could randomly choose a server configured correctly, while the
others are not.

4 Implications of NSSet Differences in the Wild

We observed that roughly 8% of studied domains have parent/child inconsis-
tencies. In this section, we investigate the consequences of such inconsistencies,
by emulating the four categories of NSSet mismatches. We configure parent and
child authoritative servers in eight different configurations (Table 2), and explore
the consequences in terms of query load distribution. Our goal is to study these
consequences in a controlled environment, where the authoritative name servers
are in the same network. In the real-world, the authoritative name servers are
often distributed geographically and the query load can depend on external fac-
tors, e.g. nearest server, popularity of a domain in a certain region, etc.

We emulate an operator that (i) has full control over its child authoritative
name servers and (ii) uses the same zone file on all authoritative name servers
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(zones are synchronized). We place all child authoritative servers in the same
network, thus, having similar latencies. We expect this to result in querying
resolvers distributing queries evenly among child authoritatives [15].

As vantage points, we use RIPE Atlas [20,21], measuring each unique resolver
as seen from their probes physically distributed around the world (3.3k ASes).
Many Atlas probes have multiple recursive resolvers, so we treat each combi-
nation of probe and unique recursive resolver as a vantage point (VP), since
potentially each represents a different perspective. We therefore see about 15k
VPs from about 9k Atlas probes, with the exact number varying by experiment
due to small changes in probe and resolver availability.

Table 2. Experiments to compare differents in Parent/Child NSSet

Disjoint Subset Superset Rest

Experiment Min-Off Min-On Min-Off Min-On Min-Off Min-On Min-Off Min-On
Measurement ID 23020789 23019715 23113087 23113622 23114128 23115432 23117852 23116481

Frequency 600s
Duration 2h
Query A $probeid-$timestamp.marigliano.xyz with 30 seconds TTL
NSSet Parent [ns1, ns3] [ns1, ns3] [ns1, ns2, ns3, ns4] [ns1, ns2, ns3, ns4]
NSSet Child [ns2, ns4] [ns1, ns2, ns3, ns4] [ns2, ns4] [ns2, ns4, ns5, ns6]
TTL NS Parent 3600 s
TTL NS Child 3600 s
Date 20191003 20191003 20191025 20191025 20191025 20191026 20191027 20191027
Probes 9028 9031 8888 8883 8892 8879 8875 8875
VPs 15956 15950 15639 15657 15647 15611 15557 15586
Queries 190434 190333 184364 185706 186960 185015 182992 186472
Answers 178428 178416 169224 175200 175080 174804 174288 174504

From ns1, ns3 109661 175124 132179 169482 52233 83607 53944 84709
From ns2, ns4 65527 322 31753 1557 118835 86804 83100 85739
From ns5, ns6 N/A N/A N/A N/A N/A N/A 31740 1545
fail 3240 2970 5292 4161 4012 4393 5504 2511

4.1 Disjoint Parent and Child NSSet

We have configured our test domain (marigliano.xyz) for the disjoint NSSet
experiment as shown in Fig. 2. For this experiment, we set the NSSet at the

Parent Auth

Child Auth

ns1.marigliano.xyz

ns3.marigliano.xyz

ns2.marigliano.xyz

ns4.marigliano.xyz

Fig. 2. Disjoint NSSset experiment for marigliano.xyz
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parent to [ns1, ns3].marigliano.xyz, while on the child authoritative servers,
we set the NSSet to [ns2, ns4].marigliano.xyz (Table 2).

Zone files: we then configure the zone files of [ns1–ns4] to answer NS queries
with [ns2, ns4], if explicitly asked, i.e.,the same records pointed to by the child
authoritative servers. By doing that, we are able to single out resolvers that are
parent-centric, since they will only contact [ns1, ns3].

As vantage points, we use ∼9k Atlas probes, and configure them to send
A queries through each of their resolvers for $probeid-$timestamp.marigliano.
xyz, which encodes the unique Atlas probe ID and query timestamp, thus avoid-
ing queries of multiple probes interfering with each other. We also set the TTL
value of the record to 30 s, and probe every 600 s, so resolver caches are expected
to be empty for each round of measurements [13].

Our goal is to determine, indirectly, which NS records were used to answer
the queries. To do that, we configure [ns1, ns3] to answer our A queries with the
IP 42.42.42.42, and [ns2, ns4] with the IP 43.43.43.43. We use this approach
instead of inspecting the query log on the server-side to speed up parsing and
to avoid duplicated detection.

Figure 3a shows the results of the experiment. In round 0 of the measure-
ments, we have a warm-up phase of RIPE Atlas probes, where not all the probes
participate. Furthermore, we expect resolvers to have a cold cache and to use
the NSSet provided by the parent. As the figure shows, this is mostly the case
although 253 unique resolver IPs (different probes can share the same resolver)
do contact the child name servers. This can be either due to them sending explicit
NS queries (and thus learning about [ns2, ns4]) or because some probes share
upstream caches. In subsequent rounds, we expect more traffic to go to the child
name servers [ns2, ns4]. This is because resolvers learn about the child delega-
tion from the “authority section” included in the response to the A query to ns1
or ns3. According to RFC2181 resolvers may prefer this information over the
delegation provided by the parent. Indeed, in rounds [1–11] we see traffic also
going to the child name servers. However, not all traffic goes to servers in the
child NSSet, because not all resolvers trust data from the “authority section”
due to mitigations against the so-called Kaminsky attack [8]. A key takeaway of
this experiment is that domain owners may mistakenly assume traffic to go to
the name servers in the child NSSet if they change it, whereas for this change to
be effective, they must also update the parent NSSet.

The situation is even worse in our second experiment. Here, we configure [ns1–
ns4] to answer with minimal responses, which prevents these servers from includ-
ing “extra” records in the authority and additional sections of DNS answers. This
means we do not expect resolvers to learn about the existence of [ns2, ns4] at
all, since they are no longer present in the “authority section” of responses to
the A queries. Only if resolvers perform explicit NS queries will they learn about
[ns2, ns4]. As Fig. 3b shows, as expected, almost all resolvers exclusively send
their queries to the name servers in the NSSet of the parent. Only about 40
vantage points receive data from the name servers in the child NSSet, indicating
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Fig. 3. Disjoint NSSet experiments

their resolvers likely performed explicit NS queries. Authoritative name servers
are increasingly configured to return minimal responses to dampen the effect
of DNS amplification attacks, especially for DNSSEC-signed domains [19]. A
key takeaway from this experiment is with this configuration becoming more
and more prevalent, it becomes even more important to keep parent and child
NSSets correctly synchronized.

Real-World Case: On 2019-10-30, we notified India’s .in, given they had
ns[1–6].neustar.in as NS records at the parent, and [ns1-ns6].registry.in at
the child. However, altogether, both NSSets pointed to the same A/AAAA records
and, as such, resolvers ended up reaching the same machines. After our notifica-
tion, .in fixed this inconsistency on 2019-11-02 (we analyzed DNS OARC’s root
zone file repository [4]). Besides .in, 15 other internationalized ccTLDs run by
India had the same issue with their NSset, and were also fixed.

4.2 Parent NSSet Is a Subset of Child

Recall from Table 1 that the majority (69–73%) of cases in which parent and
child NSSets differ fall into the category where the child NSSets contains one or
more additional NS records not present in the parent NSSet. A common reason
to add additional NS records is to spread load over more name servers, and we
assume this to be one of the reasons for this common misconfiguration.

We set up experiments to determine the consequences on query distribution
if you have this setup. In other words: how many queries will eventually be
answered by the extra NS record? We configure our test domain with [ns1, ns3]
at the parent and [ns1, ns2, ns3, ns4] at the child. Like in the previous section,
we configure [ns1, ns3] to give a different response to the A queries sent by the
Atlas probes than [ns2, ns4], so we learn how many queries were answered by
the name servers that are only in the child NSSet.

Figure 4a shows the results. Similary to the results shown in Sect. 4.1, most
resolvers will use the NS records provided by the parent. Given that the child
NSSet includes the NSSet at the parent, we see that the extra name servers
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Fig. 4. Subset NS sets experiments

receive only ∼24% of the queries. If in addition we configure the name servers to
return minimal responses, we see that, just as in Sect. 4.1 virtually no resolvers
contact the extra name servers in the child NSSet (Fig. 4b). A key takeaway
from these two experiments is that the, perhaps, expected even load distribu-
tion domain owners are hoping to see will not occur if only the child NSSet is
updated. This again underlines the importance of keeping parent and child in
sync.

Real-World Case: att.com: A real-world example that demonstrates that this
type of misconfiguration also occurs for prominent domains is the case of att.com.
We discovered that AT&T’s main domain att.com had a parent NSSet contain-
ing [ns1...ns3].attdns.com, whereas the child had [ns1...ns4].attdns.com. We
notified AT&T of this misconfiguration and on 2019-10-24 the issue was resolved
when the fourth name server (ns4.attdns.com) was also added to the parent.

4.3 Parent NSSet Is a Superset of Child

Roughly 14–18% of domain names that have different NSSet at parent and child
have, one or more extra NS records at the parent (P ⊃ C in Table 1). This could
be due to operators forgetting to remove name servers that are no longer in use
at the parent, but also the reverse case of the previous section in which a new
name server is added at the parent but not added at the child.

To investigate the consequences of this for resolvers, we carry out experiments
using Atlas VPs, setting four NS records at the parent ([ns1, ns2, ns3, ns4], as in
Table 2) and only two at the child ([ns2, ns4]). Our goal is to identify the ratio
of queries answered by the extra NS records at the parent.

Figure 5a shows the results for the experiment. As can be seen, the servers
listed both in the parent and in the child ([ns2, ns4]) answer, on average, 68% of
the queries. In case minimal responses are configured (Fig. 5b), we see the queries
being distributed evenly among the NS records in the parent. Consequently,
having authoritative servers include an authority section in their answer to the
A queries seems to cause some resolvers to prefer the child NSSet over the one
in the parent. For example, Atlas VP (21448, 129.13.64.5) distributes queries
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only among ns2 and ns4, in the case of normal responses, instead it distributes
queries among all name servers in case of minimal responses.

These measurements then confirm that including “authority data” in the
authoritative server responses will cause some resolvers to prefer only the child
authoritative servers.

4.4 Mixed NSSets (Rest)

We have shown in Table 1 that in 11% of cases, the NSSet of the parent and child
do not have a subset/superset relationship. Instead, some elements are present
in both, but both parent and child have at least one NS that is not available in
the other. To simulate this scenario, as shown in Table 2, we set four NS records
at the parent: [ns1,ns2,ns3,ns4]. Then, at the child, we set [ns2, ns4, ns5, ns6 ],
where the highlighted names show the ones not shared.

Figure 6a shows the experiment results. We see that [ns2, ns4], which are
listed at both parent and child receive most queries. Then, records set only at
the parent ([ns1, ns3]) are second to receive more queries. Finally, records set
only at the child ([ns5, ns6]) receive the least amount of queries. In case of
minimal responses (Fig. 6b), the name servers only present at the child ([ns5,
ns6]) receive virtually no traffic.
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Table 3. O.S. and resolver versions evaluated (N/available, N/covered)

Bind Unbound Knot PowerDNS Windows-DNS

Ubuntu-18-04 9.11.3-1 1.6.7 2.1.1 4.1.1 N/A
Ubuntu-16.04 9.10.3-P4 1.5.8 1.0.0 4.0.0 N/A
CentOS 7 9.9.4 1.6.6 2.4.1 4.1.9 N/A
CentOS 6 9.8.2rc1 1.4.20 N/C 3.7.4 N/A
Source 9.14.0 1.9.0 N/C 4.1.9 N/A
Windows N/C N/C N/C N/C 2008r2, 2012, 2016, 2019

4.5 Discussion

Having inconsistent NSSets in parent and child authoritative servers impacts
how queries are distributed among name servers, which plays an important role
in DNS engineering. Overall, for all evaluated cases, queries will be unevenly
distributed among authoritative servers – and the servers listed at the parent
zone will receive more queries than then ones specified in the child.

5 Resolver Software Evaluation

The experiments carried out in Sect. 3 evaluates DNS resolver behavior in the
wild. Since we use RIPE Atlas, we do not know what resolver software is used, if
probes use DNS forwarders, or what kind of cache policies they use. We, however,
see the aggregated behavior among a large set of configurations.

In this section, we focus on evaluating specific DNS resolver software instead,
in a controlled environment, in order to understand how they behave towards
DNS zones that are inconsistent with regards to their parent/child NSSet. Our
goal is to identify which vendors conform to the standards. In particular, we
pay attention as to whether resolvers follow RFC2181 [5], which specifies how
resolvers should rank data in case of inconsistency: child authoritative data
should be preferred.

We evaluate four popular DNS resolver implementations: BIND [9],
Unbound [16], Knot [2], and PowerDNS [18]. We do this under popular Linux
server distribution releases, using default packages and configurations. In addi-
tion, we evaluate resolvers shipped with various Windows server releases. Table 3
shows which vendors and versions we evaluate.

Experiments: We configure the authoritative name servers for our test
domain (marigliano.xyz) as a disjoint NSSet, as in Sect. 4.1. We config-
ure the parent zone with [ns1 ,ns3].marigliano.xyz, and the child with [ns2,
ns4].marigliano.xyz

Each experiment includes the four tests described in Table 4(i–iv), in which
we vary query types and query sequence. In (i), we ask the resolver for an A
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Table 4. Expected resolver behavior

(i) A Query (ii) NS Query (iii) A Query Then NS Query (iv) NS Query Then A Query
Query First Second First Second
Answer C(A) C(NS) C(A) C(NS) C(NS) C(A)
Cache C(A); C(NS) C(NS) C(A); C(NS) C(A); C(NS) C(NS) C(NS); C(A)

Minimal response enabled
Answer C(A) C(NS) C(A) C(NS) C(NS) C(A)
Cache C(A); P(NS) C(NS) C(A); P(NS) C(A); C(NS) C(NS) C(NS); C(A)

Information provided by: C⇒ Child, P⇒ Parent

record of a subdomain in our test zone. In test (ii), we ask for the NS record of
the zone. In (iii) we send first an A query followed by an NS query, to understand if
resolvers use non-authoritative cached NS information to answer to the following
query violating (§5.4.1 of RFC2181 [5]). In (iv) we invert this order to understand
if authoritative record are overwritten by non-authoritative ones in the cache.

We dump the cache of the resolver after each query, and show which records
are in cache and received by our client (we clear the cache after each query).
Table 4 shows the expected NS usage by the resolvers, if they conform to the
RFCs.

5.1 Results

We evaluate five resolver vendors and multiple versions. In total, we found that
out of 22 resolvers/vendors evaluated, 13 conform to the RFCs. Next, we report
the non-confirming resolver vendors/versions.

For experiment (i), in which we query for A records, we found that BIND
packaged for Ubuntu did not conform to the standards: it caches only information
from the parent and does not override it with information from the authoritative
section provided by the child (which comes as additional section). This, in turn,
could explain part of results of parent centricity observed in Sect. 4.

For experiment (i) and (iii), if we compile the latest BIND from source it
also does not behave as expected: it sends the parent an explicit NS query before
performing the A query. This is not a bad behavior, i.e.,it does not violate RFCs,
instead it tries to retrieve more authoritative information. However, either if the
name server information retrieved and used in the following query is the one
provided by the child, BIND caches the data from the parent. This behavior of
BIND could be one explanation of the small number of child-centric resolvers
shown in Sect. 4 with Minimal Responses.

We are in the process of notifying BIND developers about this issue.
For experiment (iii), PowerDNS packaged for CentOS 6 and Ubuntu Xenial,

and Windows (all) use the cached non-authoritative information to answer the
NS query in the test, not conforming to RFC2181.
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PowerDNS Notification. We reached out to the developers of PowerDNS,
who have confirmed the behavior. They do not maintain older versions any-
more and the fix will not be backported due to the low severity of the problem.
Our suggestion to the package maintainers of the distributions is to update the
software to a newer version of the software.

6 Conclusions and Recommendations

Given a domain name, its NSSet in the parent and child DNS zones should be
consistent [12]. This is the first study that shows, across the .com, .net and org
zones (50% of the DNS namespace), that roughly 8% (13M) domains do not
conform to that. We also show that DNS resolvers in the wild differ in behavior
in returning information from the parent or child.

Inconsistency in parent and child NSSets have consequences for the operation
of the DNS, such as improper load balancing among the name servers, increased
resolution latency and unresponsive name servers. We strongly advise opera-
tors to verify their zones and follow RFC1034. To automate this process, we
advise zone operators to consider supporting CSYNC DNS records (RFC7477)
or other automated consistency checks, so the synchronization can be done in
an automated fashion.

Finally, we also recommend that resolver vendors conform to the authorita-
tive information ranking in RFC2181 (taking into account the recommendations
to mitigate the Kaminsky attack as specified in RFC5452), and when possible,
to explicitly ask for the child’s NS records, similarly to what is done in DNSSEC,
where signed records are only available at the child (Sect. 5).
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A Longitudinal View on Inconsistency

A.1 NS Inconsistency over Time

The results presented in Table 1 show NS inconsistency for a single day. However,
it is also interesting to understand how this misconfiguration evolves over time.

https://atlas.ripe.net
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Fig. 7. NS inconsistency (P �= C) from 2017-04-01 until 2019-10-01

We analyzed NS inconsistency for the case P �= C over the two and a half year-
period preceding the date of the analysis presented in Table 1. Figure 7 shows
the results of this analysis. The figure clearly demonstrates that the fraction
of domains affected by this misconfiguration remains similar over time. This
result suggests that NS inconsistency is a long-term misconfiguration in the
DNS ecosystem.
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Abstract. Today’s enterprises are adopting multi-cloud strategies at
an unprecedented pace. Here, a multi-cloud strategy specifies end-to-
end connectivity between the multiple cloud providers (CPs) that an
enterprise relies on to run its business. This adoption is fueled by the
rapid build-out of global-scale private backbones by the large CPs, a
rich private peering fabric that interconnects them, and the emergence of
new third-party private connectivity providers (e.g., DataPipe, HopOne,
etc.). However, little is known about the performance aspects, routing
issues, and topological features associated with currently available multi-
cloud connectivity options. To shed light on the tradeoffs between these
available connectivity options, we take a cloud-to-cloud perspective and
present in this paper the results of a cloud-centric measurement study
of a coast-to-coast multi-cloud deployment that a typical modern enter-
prise located in the US may adopt. We deploy VMs in two regions (i.e.,
VA and CA) of each one of three large cloud providers (i.e., AWS,
Azure, and GCP) and connect them using three different options: (i)
transit provider-based best-effort public Internet (BEP), (ii) third-party
provider-based private (TPP) connectivity, and (iii) CP-based private
(CPP) connectivity. By performing active measurements in this real-
world multi-cloud deployment, we provide new insights into variability
in the performance of TPP, the stability in performance and topology of
CPP, and the absence of transit providers for CPP.

1 Introduction

Modern enterprises are adopting multi-cloud strategies at a rapid pace. Defined
here as end-to-end connectivity between multiple cloud providers (CPs)1, multi-
cloud strategies are critical for supporting distributed applications such as geo-
distributed analytics [33,35,57,68,69] and distributed genome sequencing studies

1 This is different from hybrid cloud computing, where a direct connection exists
between a public cloud and private on-premises enterprise server(s).
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at universities [12,25]. Other benefits that result from pursuing such strategies
are competitive pricing, vendor lockout, global reach, and requirements for data
sovereignty. According to a recent industry report, more than 85% of enterprises
have already adopted multi-cloud strategies [39].

Fueled by the deployment of multi-cloud strategies, we are witnessing two
new trends in Internet connectivity. First (see Fig. 1(bottom)), there is the emer-
gence of new Internet players in the form of third-party private connectivity
providers (e.g., DataPipe, HopOne, among others [5,29,51]). These entities offer
direct, secure, private, layer 3 connectivity between CPs (henceforth referred to
as third-party private or TPP), at a cost of a few hundreds of dollars per month2.
TPP routes bypass the public Internet at Cloud Exchanges [19,21,71] where they
operate virtualized routers allowing their customers to form virtualized peering
sessions with the participating CPs and offer additional benefits to users (e.g.,
enterprise networks can connect to CPs without owning an Autonomous Sys-
tem Number, or ASN, or physical infrastructure). Second (see Fig. 1(top)), the
large CPs are aggressively expanding the footprint of their serving infrastruc-
tures, including the number of direct connect locations where enterprises can
reach the cloud via direct, private connectivity (henceforth referred to as cloud-
provider private or CPP) using either new CP-specific interconnection services
(e.g., [4,28,50]) or third-party private connectivity providers at colocation facil-
ities. Of course, as shown in Fig. 1 (middle), a multi-cloud user can forgo the
TPP and CPP options altogether and rely instead on the traditional, best effort
connectivity over the public Internet—henceforth referred to as (transit provider-
based) best-effort public (Internet) (BEP). In terms of routing, CPP and BEP
connectivity is offered through default route configurations while TPP routes
are enforced via BGP configurations that customers of the TPP network install
on their virtual routers.

CP 1

CP2

Third-party private (TPP) backbone

Cloud-provider private (CPP) backbone

Best-effort public (BEP) Internet

Cloud router (CR)Private peering

Transit 
provider 1

Transit 
provider 2

Transit 
provider N

Enterprise
Network

Cloud exchange Virtual Machine Router

Fig. 1. Overview of three different multi-cloud strategies. Sample end-to-end measure-
ment paths highlighted using thicker solid, dashed, and dotted lines for CPP, TPP,
and BEP options.

2 See Sect. 3.4 for more details.
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With multi-cloud connectivity being the main focus of this paper, we note that
existing measurement techniques are a poor match in this context. For one, they
fall short of providing the data needed to infer the type of connectivity (i.e.,
TPP, CPP, and BEP) between (two or more) participating CPs. Second, they are
largely incapable of providing the visibility needed to study the topological prop-
erties, performance differences, or routing strategies associated with different
connectivity options. Third, while mapping the connectivity from cloud/content
providers to users has been considered in prior work (e.g., [9,15–17,20,60] and
references therein), multi-cloud connectivity from a cloud-to-cloud (C2C) per-
spective has remained largely unexplored to date.

This paper aims to empirically examine the different types of multi-cloud
connectivity options that are available in today’s Internet and investigate their
performance characteristics using non-proprietary cloud-centric, active measure-
ments. In the process, we are also interested in attributing the observed charac-
teristics to aspects related to connectivity, routing strategy, or the presence of
any performance bottlenecks. To study multi-cloud connectivity from a C2C per-
spective, we deploy and interconnect VMs hosted within and across two different
geographic regions or availability zones (i.e., CA and VA) of three large cloud
providers (i.e., Amazon Web Services (AWS), Google Cloud Platform (GCP)
and Microsoft Azure) using the TPP, CPP, and BEP option, respectively.

Using this experimental setup as a starting point, we first compare the stabil-
ity and/or variability in performance across the three connectivity options using
metrics such as delay, throughput, and loss rate over time. We find that CPP
routes exhibit lower latency and are more stable when compared to BEP and
TPP routes. CPP routes also have higher throughput and exhibit less variation
compared to the other two options. Given that using the TPP option is expen-
sive, this finding is puzzling. In our attempt to explain this observation, we find
that inconsistencies in performance characteristics are caused by several factors
including border routers, queuing delays, and higher loss-rates of TPP routes.
Moreover, we attribute the CPP routes’ overall superior performance to the fact
that each of the CPs has a private optical backbone, there exists rich inter-CP
connectivity, and that the CPs’ traffic always bypasses (i.e., is invisible to) BEP
transits. In summary, this paper makes the following contributions:

• To the best of our knowledge, this is one of the first efforts to perform a
comparative characterization of multi-cloud connectivity in today’s Internet.
To facilitate independent validation of our results, we will release all relevant
datasets [1] (properly anonymized; e.g., with all TPP-related information
removed).

• We identify issues, differences, and tradeoffs associated with three popular
multi-cloud connectivity options and elucidate/discuss the underlying rea-
sons. Our results highlight the critical need for open measurement platforms
and more transparency by the multi-cloud connectivity providers.



196 B. Yeganeh et al.

2 Background and Related Work

Measuring and understanding the connectivity ecosystem of the Internet has
been the subject of a large number of studies over the years [52, and references
therein]. Efforts include mapping the (logical) connectivity of the public Internet
at the router level (e.g., [10,11,13,44,64]), the POP-level (e.g., [62,63,65]), and
the Autonomous System or AS-level (e.g., [45,73]). Other efforts have focused
on issues such as the rise of Internet Exchange Points (IXPs) and their effects on
inaccuracies of network-layer mapping (e.g., [2,11]), the “flattening” of the Inter-
net’s peering structure (e.g., [22,27,40]), and the Internet’s physical infrastruc-
ture (building repositories of point of presence (POP), colocation, and datacen-
ter locations (e.g., [37,61]), the long-haul and metro connectivity between them
(e.g., [23,24,38]), and interconnections with other networks (e.g., [3,43,46]).

More recently, enterprise networks have been able to establish direct connec-
tivity to cloud providers—even without owning an AS number—at Open Cloud
Exchanges [19,21] (shown in the red box in Fig. 1) via a new type of interconnec-
tion service offering called virtual private interconnections [71]. With the advent
of such interconnection services, today’s large cloud (and content) providers
(e.g., Google, Facebook, Microsoft) have experienced enormous growth in both
their ingress (i.e., Internet-facing) and mid-gress (i.e., inter-datacenter) traffic.
To meet these demands, they are not only aggressively expanding their pres-
ence at new colocation facilities but are also simultaneously building out their
own private optical backbones [26,36] (see CPP in Fig. 1). In addition, con-
nectivity to the CPs at colocation facilities are also available via third-party
providers [5,29,51] (TPP in Fig. 1) for additional costs (e.g., thousands of dol-
lars for a single, dedicated, private link to CP).

While measuring the peering locations, serving infrastructures and routing
strategies of the large content providers has been an active area of research [9,15–
17,20,60,70] and comparing the performance of CPs and their BEP properties
has been the focus of prior efforts [14,18,30,41,74], to the best of our knowledge,
ours is one of the first studies to (a) examine and characterize the TPP, CPP,
and BEP connectivity options from a C2C perspective, and (b) elucidate their
performance tradeoffs and routing issues.

3 Measurement Methodology

In this section, we describe our measurement methodology to examine the various
multi-cloud connectivity options, the cloud providers under consideration, and
the performance metrics of interest.

3.1 Measurement Setting

As shown in Fig. 1, we explore three different types of multi-cloud connectivity
options: TPP connectivity between CP VMs that bypasses the public Internet,
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CPP connectivity enabled by private peering between the CPs, and BEP con-
nectivity via transit providers. To establish TPPs, we deploy cloud routers via
a third-party connectivity provider’s network. At a high level, this step involves
(i) establishing a virtual circuit between the CP and a connectivity partner,
(ii) establishing a BGP peering session between the CP’s border routers and
the partner’s cloud router, (iii) connecting the virtual private cloud gateway to
the CP’s border routers, and (iv) configuring each cloud instance to route any
traffic destined to the overlay network towards the configured virtual gateway.
To establish CPP connectivity, participating CPs automatically select private
peering locations to stitch the multi-cloud VMs together. Finally, we have two
measurement settings for BEP. The first setting is between a non-native coloca-
tion facility in Phoenix AZ and our VMs through the BEP Internet; the second
form of measurement is through the BEP Internet towards Looking Glasses
(LGs) residing in the colocation facility hosting our cloud routers.

We conduct our measurements in a series of rounds. Each round consists of
path, latency, and throughput measurements between all pairs of VMs (in both
directions to account for route asymmetry). Furthermore, the measurements
are performed over the public BEPs as well as the two private options (i.e.,
CPP and TPP). Each connectivity path is enforced by the target address for
our measurements (i.e., public IP address for BEP and CPP paths and private
IPs VM instances in the TPP case). We avoid cross-measurement interference
by tracking the current state of ongoing measurements and limit measurement
activities to one active measurement per cloud VM.

3.2 Measurement Scenario and Cloud Providers

For this study, we empirically measure and examine one coast-to-coast, multi-
cloud deployment in the US. Our study focuses on connectivity between three
major CPs (AWS, Azure, and GCP) as they collectively have a significant mar-
ket share and are used by many clients concurrently [72]. Using these CPs, we
create a realistic multi-cloud scenario by deploying two cloud routers using one
of the top third-party connectivity providers’ networks; one of the cloud routers
is in the Santa Clara, CA region, and one is in the Ashburn, VA region. These
cloud routers are interconnected with native cloud VMs from the three CPs.
The cloud VMs are all connected to cloud routers with 50 Mb/s links. We select
the colocation facility hosting the cloud routers based on two criteria: (i) CPs
offer native cloud connectivity within that colo, and (ii) geo-proximity to the
target CPs datacenters. Cloud routers are interconnected with each other using
a 150 Mb/s link capacity that supports the maximum number of concurrent mea-
surements that we perform (i.e., 3 concurrent measurements in total to avoid
more than 1 ongoing measurement per VM). Each cloud VM has at least 2 vCPU
cores, 4 GB of memory, and runs Ubuntu server 18.04 LTS. Our VMs were pur-
posefully over-provisioned to reduce any measurement noise within virtualized
environments. Throughout our measurement experiments, the VMs CPU uti-
lization always remained below 2%. We also cap the VM interfaces at 50 Mb/s
to have a consistent measurement setting for both public (BEP) and private
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(TPP and CPP) routes. We perform measurements between all CP VMs within
regions (intra-region) and across regions (inter-region). Additionally, we also per-
form measurements between our cloud VMs and two LGs that are located within
the same facility as our cloud routers in California and Virginia, respectively,
and use these measurements as baselines for BEP3 comparisons.

3.3 Data Collection and Performance Metrics

We conducted our measurements for about a month-long period in the Spring
of 2019. The measurements were conducted in 10-min rounds. In each round,
we performed latency, path, and throughput measurements between all pairs of
relevant nodes. For each round, we measure and report the latency using 10 ping
probes paced in 1 s intervals. We refrain from using a more accurate one-way
latency measurement tool such as OWAMP as the authors of OWAMP cau-
tion its use within virtualized environments [34]. Similarly, paths are measured
by performing 10 attempts of paris-traceroute using scamper [42] towards each
destination. We used ICMP probes for path discovery as they maximized the
number of responsive hops along the forward path. Lastly, throughput is mea-
sured using the iperf3 tool, which was configured to transmit data over a 10-s
interval using TCP. We discard the first 5 s of our throughput measurement to
account for TCP’s slow-start phase and consider the median of throughput for
the remaining 5 s. These efforts resulted in about 48k samples of latency, path,
and throughput measurements between each unique src/dst pair and connectiv-
ity option.

To infer inter-AS interconnections, the resulting traceroute hops from our
measurements were translated to their corresponding AS paths using BGP pre-
fix announcements from Routeviews and RIPE RIS [59,67]. Missing hops were
attributed to their surrounding ASN if the prior and next hop ASNs were iden-
tical. The existence of IXP hops along the forward path was detected by match-
ing hop addresses against IXP prefixes published by PeeringDB [56] and Packet
Clearing House (PCH) [55]. We mapped each ASN to its corresponding ORG
number using CAIDA’s AS-to-ORG mapping dataset [32]. Lastly, the inter-AS
interconnection segments are identified using the latest version of bdrmapIT [3].

3.4 Limitations and Ethical/Legal Considerations

Our study is US-centric and limited by the geographic span of our multi-cloud
deployment as well as the number of third-party connectivity providers that we
examine. The high cost for connecting multiple clouds using TPP connections
prevents us from having a global-scale deployment and performing experiments
that involve different TPP providers. For example, for each 1 Gbps link to a CP
network, third-party providers charge anywhere from about 300 to 700 USD per

3 In Sect. 5 we highlight that our inter-cloud measurements do not exit the source and
destination CP’s network.
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Fig. 2. Distribution of RTT between AWS, GCP, and Azure for intra (left) and inter
(right) region paths. (Color figure online)

month [48,53,58]4. While limited in scale, the deployment that we consider in
this study is nevertheless representative of a typical multi-cloud strategy adopted
by modern enterprises with a US-wide footprint [49].

Our study does not raise any ethical issues. Overall, since the goal of this
study is to measure and improve multi-cloud connectivity without attributing
particular features to any of the utilized third-party providers and CPs, we are
not in violation of any of their terms of service. In particular, we obfuscate,
and wherever possible, we omit all information that can be used to identify
the colocation and third-party connectivity providers. This information includes
names, supported measurement APIs, costs, time and date of measurements,
topology information, and any other potential identifiers.

4 Characteristics of C2C Routes

In this section, we characterize the performance of C2C routes (i.e., latency
and throughput) and attribute the observed characteristics to connectivity and
routing.
4 Note that these price points do not take into consideration the additional charges

that are incurred by CPs for establishing connectivity to their network.
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4.1 Latency Characteristics

CPP Routes Exhibit Lower Latency Than TPP Routes and Are Sta-
ble. Figure 2 depicts the distribution of RTT values (using letter-value plots [31];
see Appendix A.1) between different CPs across different connectivity options.
The rows (from top to bottom) correspond to AWS, GCP, and Azure as the
source CP, respectively. Intra-region (inter-region) measurements are shown in
the left (right) columns, and CPP (TPP) paths are depicted in blue (orange).

The first two characters of the x-axis labels encode the source CP region and
the remaining characters encode the destination CP and region. From these fig-
ures, we see that CPP routes typically exhibit lower medians of RTT compared
to TPP routes, suggesting that CPP routes traverse the CP’s optical private
backbone. We also observe a median RTT of ∼2 ms between AWS and Azure
VMs in California which is in accordance with the relative proximity of their dat-
acenters for this region. The GCP VM in California has a median RTT of 13 ms
to other CPs in California, which can be attributed to the geographical distance
between GCP’s California datacenter in LA and the Silicon Valley datacenters
for AWS and Azure. Similarly, we notice that the VMs in Virginia all exhibit
low median RTTs between them. We attribute this behavior to the geographical
proximity of the datacenters for these CPs. At the same time, the inter-region
latencies within a CP are about 60 ms with the exception of Azure which has a
higher median of latency of about 67 ms. Finally, the measured latencies (and
hence the routes) are asymmetric in both directions albeit the median of RTT
values shows latency symmetry (<0.1 ms). Also, the median of the measured
latency between our cloud routers is in line with the published values by third-
party connectivity providers, but the high variance of latency indicates that the
TPP paths are in general a less reliable connectivity option compared to CPP
routes. Lastly, BEP routes for cloud to LG measurements always have an equal
or higher median of latency compared to CPP paths with much higher variability
(order of magnitude larger standard deviation; results are omitted for brevity).

Why Do CPP Routes Have Better Latency than TPP Routes? In
our path measurements, we observe that intra-cloud paths always have a single
organization, indicating that regardless of the target region, the CP routes traffic
internally towards the destination VM. More interestingly, the majority of inter-
cloud paths only observe two organizations corresponding to the source and des-
tination CPs. Only a small fraction (<4%) of paths involves three organizations,
and upon closer examination of the corresponding paths, we find that they tra-
verse IXPs and involve traceroutes that originate from Azure and are destined to
Amazon’s network in another region. We reiterate that single organization inter-
CP paths correspond to traceroutes which are originated from GCP’s network
and do not reveal any internal hops of its network. For the cloud-to-LG paths,
we observe a different number of organizations depending on the source CP as
well as the physical location of the target LG. The observations range from only
encountering the target LG’s organization to seeing intermediary IXP hops as
points of peering. Lastly, we measure the stability of routes at the AS-level and
observe that all paths remain consistently stable over time with the exception of
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Fig. 3. Distribution of RTT between source CP and the peering hop. (Color figure
online)

routes sourced at Azure California and destined to Amazon Virginia. The latter
usually pass through private peerings between the CPs, and only less than 1%
of our path measurements go through an intermediary IXP. In short, we did not
encounter any transit providers in our measured CPP routes.

By leveraging the AS/organization paths described in Sect. 3, we next iden-
tify the peering points between the CPs. Identifying the peering point between
two networks from traceroute measurements is a challenging problem and the
subject of many recent studies [3,43,46]. For our study, as mentioned in Sect. 3
above, we utilized bdrmapIT [3] to infer the interconnection segment on the col-
lection of traceroutes that we have gathered. Additionally, we manually inspected
the inferred peering segments and, where applicable, validated their correctness
using (i) IXP address to tenant ASN mapping and (ii) DNS names such as
amazon.sjc-96cbe-1a.ntwk.msn.net which is suggestive of peering between
AWS and Azure. We find that bdrmapIT is unable to identify peering points
between GCP and the other CPs since GCP only exposes external IP addresses
for paths destined outside of its network, i.e., bdrmapIT is unaware of the source
CPs network as it does not observe any addresses from that network on the ini-
tial set of hops. For these paths, we choose the first hop of the traceroute as the
peering point only if it has an ASN equal to the target IP addresses ASN. Using
this information, we measure the RTT between the source CP and the border
interface to infer the geo-proximity of the peering point from the source CP.
Using this heuristic allows us to analyze each CP’s inclination to use hot-potato
routing.

Figure 3 shows the distribution of RTT for the peering points between each
CP. From left to right, the plots represent AWS, GCP, and Azure as the
source CP. Each distribution is split based on intra (inter) region values into
the left/blue (right/orange) halves, respectively. We observe that AWS’ peer-
ing points with other CPs are very close to their networks and therefore, AWS
is employing hot-potato routing. For GCP, we find that hot-potato routing is
never employed and traffic is always handed off near the destination region.
The bi-modal distribution of RTT values for each destination CP is centered at
around 2 ms, 12 ms, 58 ms, and 65 ms corresponding to the intra-region latency
for VA and CA, and inter-region latency to other CPs, respectively. Finally,
Azure exhibits mixed routing behavior. Specifically, Azure’s routing behavior
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Fig. 4. Distribution of throughput between AWS, GCL, and Azure for intra (left) and
inter (right) region paths.

depends on the target network – Azure employs hot-potato routing for GCP
and cold-potato routing for AWS. More specifically, intra-region traffic destined
to AWS is delivered through a local peering point while its Virginia-California
traffic destined to AWS is handed off in Los Angeles, and for inter-region paths
from California to AWS Virginia, the traffic is usually (99%) handed off in Dallas
TX and for the remainder is being exchanged through Digital Realty Atlanta’s
IXP. From these observations, the routing behavior for each path can be mod-
eled with a simple threshold-based method. More concretely, for each path i
with an end-to-end latency of lei and a border latency of lbi, we can infer if
source CP employs hot-potato routing if lbi < 1

10 lei. Otherwise, the source CP
employs cold-potato routing (i.e., lbi > 9

10 lei). The fractions (i.e., 1
10 and 9

10 )
are not prescriptive and are derived based on the latency distributions depicted
in Fig. 3.

4.2 Throughput Characteristics

CPP Routes Exhibit Higher and More Stable Throughput than TPP
Routes. Figure 4 depicts the distribution of throughput values between differ-
ent CPs using different connectivity options. While intra-region measurements
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Fig. 5. Distribution of loss-rate between AWS, GCL, and Azure for intra (left) and
inter (right) region paths.

tend to have a similar median and variance of throughput, we observe that
for inter-region measurements, TPPs exhibit a lower median throughput with
higher variance. Degradation of throughput seems to be directly correlated with
higher RTT values as shown in Fig. 2. Using our latency measurements, we also
approximate loss-rate to be 10−3 and 10−4 for TPP and CPP routes, respec-
tively. Using the formula of Mathis et al. [47] to approximate TCP throughput5,
we can obtain an upper bound for throughput for our measured loss-rate and
latency values.

Using Mathis et al. model, the upper bound of throughput for an MSS of
1460 bytes, a 70 ms latency and loss-rate of 10−3 (corresponding to the average
measured values for TPP routes between two coasts) is about 53 Mb/s. While
this value is higher than our interface/link bandwidth cap of 50 Mb/s, bursts
of packet loss or transient increases in latency could easily lead to sub-optimal
TCP throughput for TPP routes.

Why Do CPP Routes Have Better Throughput than TPP Routes? Our
initial methodology for measuring loss-rate relied on our low-rate ping probes

5 We do not have access to parameters such as TCP timeout delay and number of
acknowledged packets by each ACK to use more elaborate TCP models (e.g., [54]).
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(outlined in Sect. 3.3). While this form of probing can produce a reliable estimate
of average loss-rate over a long period of time [66], it doesn’t capture the dynam-
ics of packet loss at finer resolutions. We thus modified our probing methodology
to incorporate an additional iperf3 measurement using UDP probes between all
CP instances. Each measurement is performed for 5 s and packets are sent at a
50 Mb/s rate.6 We measure the number of transmitted and lost packets during
each second and also count the number of packets that were delivered out of
order at the receiver. We perform these loss-rate measurements for a full week.
Based on this new set of measurements, we estimate the overall loss-rate to be
5∗10−3 and 10−2 for CPP and TPP paths, respectively. Moreover, we experience
0 packet loss in 76% (37%) of our sampling periods for CPP (TPP) routes, indi-
cating that losses for CPP routes tend to be more bursty than for TPP routes.
The bursty nature of packet losses for CPP routes could be detrimental to real-
time applications which can only tolerate certain levels of loss and should be
factored in by the client. The receivers did not observe any out-of-order packets
during our measurement period. Figure 5 shows the distribution of loss rate for
various paths.

The rows (from top to bottom) correspond to AWS, GCP, and Azure as the
source CP, respectively. Intra-region (inter-region) measurements are shown in
the left (right) columns, and CPP (TPP) paths are depicted in blue (orange).
We observe consistently higher loss-rates for TPP routes compared to their CPP
counterparts and lower loss-rates for intra-CP routes in Virginia compared to
California. Moreover, paths destined to VMs in the California region show higher
loss-rates regardless of where the traffic has been sourced from, with asymmet-
rically lower loss-rate on the reverse path indicating the presence of congested
ingress points for CPs within the California region. We also notice extremely
low loss-rates for intra-CP (except Azure) CPP routes between the US east and
west coasts and for inter-CP CPP routes between the two coasts for certain CP
pairs (e.g., AWS CA to GCP VA or Azure CA to AWS VA).

4.3 Main Findings

Our measurement experiments reveal two interesting findings. First, CPP routes
are better than TPP routes in terms of latency as well as throughput. Within
a multi-cloud setting, TPPs can serve multiple purposes, including providing
connectivity towards CPs from colo facilities that CPs aren’t present, lowering
inter-cloud traffic costs [7,8], and providing private inter-cloud connectivity over
private address spaces. Second, the better performance of CPP routes as com-
pared to their TPP counterparts can be attributed to (a) the CPs’ rich (private)
connectivity in different regions with other CPs (traffic is by-passing the BEP
Internet altogether) and (b) more stable and better provisioned CP (private)
backbones.

6 In an ideal setting, we should not experience any packet losses as we are limiting
our probing rate at the source.
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5 Discussion

CPs Are Heterogeneous in Handling Path Measurements. Measuring
the number of observed AS/organizations (excluding hops utilizing private IP
addresses) for inter-cloud, intra-cloud, and cloud-to-LG routes, we observed that
of the three CPs, only AWS used multiple ASNs (i.e., ASes 8987, 14618, and
16509) and that there are striking difference between how CPs respond to tracer-
oute probes. In particular, GCP does not expose any of its routers unless the
target address is within another GCP region; Azure does not expose its internal
routers except for their border routers that are involved in peering with other
networks; and AWS relies heavily on private/shared IP addresses for its internal
network.

CPs Are Tightly Interconnected with Each Other in the US. To check
the absence of transit ASes along our measured C2C paths more thoroughly,
we conducted a more extensive measurement study by launching VM instances
within all US regions for our three target CP networks and performing UDP and
ICMP paris-traceroutes between all VM instances using scamper. After annotat-
ing the traceroutes as described in Sect. 3.3, in terms of AS/organization-level
routes, we only observe organizations corresponding to the three target CPs as
well as IXP ASNs for Coresite Any2 and Equinix. All organization-level routes
passing through an IXP correspond to paths that are sourced from Azure and
are destined to AWS. These measurements further confirm our initial observa-
tion regarding the rich connectivity of our three large CPs and their tendency
to avoid exchanging traffic through the public Internet.

Taking an Enterprise-to-Cloud (E2C) Perspective. Instead of the C2C
perspective shown in Fig. 1, we also considered an enterprise-to-cloud (E2C)
perspective and report preliminary results for this scenario in AppendixA.2.

6 Summary

In this paper, we perform a first-of-its-kind measurement study to understand the
tradeoffs between three popular multi-cloud connectivity options (CPP vs. TPP
vs. BEP). Based on our cloud-centric measurements, we find that CPP routes
are better than TPP routes in terms of latency as well as throughput. The better
performance of CPPs can be attributed to (a) CPs’ rich connectivity in different
regions with other CPs (by-passing the BEP Internet altogether) and (b) CPs’
stable and well-designed private backbones. In addition, we find that TPP routes
exhibit better latency and throughput characteristics when compared with BEP
routes. The key reasons include shorter paths and lower loss rates compared to
the BEP transits. Although limited in scale, our work highlights the need for
more transparency and access to open measurement platforms by all the entities
involved in interconnecting enterprises with multiple clouds.
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A Appendices

A.1 Representation of Results

Distributions in this paper are presented using letter-value plots [31]. Letter-
value plots, similar to boxplots, are helpful for summarizing the distribution of
data points but offer finer details beyond the quartiles. The median is shown
using a dark horizontal line and the 1/2i quantile is encoded using the box
width, with the widest boxes surrounding the median representing the quartiles,
the 2nd widest boxes corresponding to the octiles, etc. Distributions with low
variance centered around a single value appear as a narrow horizontal bar while
distributions with diverse values appear as vertical bars.

Throughout this paper we try to present full distributions of latency when it is
illustrative. Furthermore, we compare latency characteristics of different paths
using the median and variance measures and specifically refrain from relying
on minimum latency as it does not capture the stability and dynamics of this
measure across each path.

A.2 Preliminary results on E2C perspective

We emulate an enterprise leveraging multi-clouds by connecting a cloud router
in the Phoenix, AZ region to a physical server hosted within a colocation facility
in Phoenix, AZ.

TPP Routes Offer Better Latency than BEP Routes. Figure 6a shows
the distribution of latency for our measured E2C paths. We observe that TPP
routes consistently outperform their BEP counterparts by having a lower baseline
of latency and also exhibiting less variation. We observe a median latency of
11 ms, 20 ms, and 21 ms for TPP routes towards GCP, AWS, and Azure VM
instances in California, respectively. We also observe symmetric distributions
on the reverse path but omit the results for brevity. In the case of our E2C
paths, we always observe direct peerings between the upstream provider (e.g.,
Cox Communications (AS22773)) and the CP network. Relying on bdrmapIT to
infer the peering points from the traceroutes associated with our E2C paths, we
measure the latency on the peering hop. Figure 6b shows the distribution of the
latency for the peering hop for E2C paths originated from the CPs’ instances
in CA towards our enterprise server in AZ. While the routing policies of GCP
and Azure for E2C paths are similar to our observations for C2C paths, Amazon
seems to hand-off traffic near the destination which is unlike their hot-potato
tendencies for C2C paths. We hypothesize that this change in AWS’ policy is to
minimize the operational costs via their Transit Gateway service which provide
finer control to customers and peering networks over the egress/ingress point of
traffic to their network [6]. In addition, observing an equal or lower minimum
latency for TPP routes as compared to BEP routes suggests that TPP routes
are shorter than BEP paths7. We also find (not shown here) that the average
7 In the absence of information regarding the physical fiber paths, we rely on latency

as a proxy measure of path length.
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(a) (b) (c)

Fig. 6. (a) Distribution of latency for E2C paths between our server in AZ and CP
instances in California through TPP and BEP routes. Outliers on the Y-axis have been
deliberately cut-off to increase the readability of distributions. (b) Distribution of RTT
on the inferred peering hop for E2C paths sourced from CP instances in California. (c)
Distribution of throughput for E2C paths between our server in AZ and CP instances
in California through TPP and BEP routes.

loss rate on TPP routes is 6 ∗ 10−4 which is an order of magnitude lower than
the loss rate experienced on BEP routes (1.6 ∗ 10−3).

TPP Offers Consistent Throughput for E2C Paths. Figure 6c depicts
the distribution of throughput for E2C paths between our server in AZ and
CP instances in CA via TPP and BEP routes, respectively. While we observe
very consistent throughput values near the purchased link capacity for TPP
paths, BEP paths exhibit higher variability which is expected given the best
effort nature of public Internet paths. Similar to the latency characteristics, we
attribute the better throughput of TPP routes to the lower loss rates and shorter
fiber paths from the enterprise server to the CPs’ instances in CA. Moreover,
compared to the CPs’ connect locations, the third-party providers are often
present in additional, distinct colocation facilities closer to the edge and partially
answers the question we posed earlier in Sect. 4.3.

References

1. A first comparative characterization of multi-cloud connectivity in today’s internet
(2020). https://gitlab.com/onrg/multicloudcmp

2. Ager, B., Chatzis, N., Feldmann, A., Sarrar, N., Uhlig, S., Willinger, W.: Anatomy
of a large European IXP. In: SIGCOMM. ACM (2012)

3. Alexander, M., Luckie, M., Dhamdhere, A., Huffaker, B., Claffy, K., Jonathan,
S.M.: Pushing the boundaries with bdrmapIT: mapping router ownership at inter-
net scale. In: Internet Measurement Conference (IMC). ACM (2018)

4. Amazon: AWS direct connect. https://aws.amazon.com/directconnect/
5. Amazon: AWS direct connect partners. https://aws.amazon.com/directconnect/

partners/
6. Amazon: AWS transit gateway. https://aws.amazon.com/transit-gateway/
7. Amazon: AWS direct connect pricing (2019). https://aws.amazon.com/

directconnect/pricing/
8. Amazon: EC2 instance pricing - Amazon web services (2019). https://aws.amazon.

com/ec2/pricing/on-demand/

https://gitlab.com/onrg/multicloudcmp
https://aws.amazon.com/directconnect/
https://aws.amazon.com/directconnect/partners/
https://aws.amazon.com/directconnect/partners/
https://aws.amazon.com/transit-gateway/
https://aws.amazon.com/directconnect/pricing/
https://aws.amazon.com/directconnect/pricing/
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/


208 B. Yeganeh et al.

9. Anwar, R., Niaz, H., Choffnes, D., Cunha, Í., Gill, P., Katz-Bassett, E.: Investigat-
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20. Cunha, Í., et al.: Sibyl: a practical internet route oracle. In: NSDI. USENIX (2016)
21. Demchenko, Y., et al.: Open Cloud Exchange (OCX): architecture and functional

components. In: International Conference on Cloud Computing Technology and
Science. IEEE (2013)

22. Dhamdhere, A., Dovrolis, C.: The Internet is flat: modeling the transition from a
transit hierarchy to a peering mesh. In: CoNEXT. ACM (2010)

23. Durairajan, R., Barford, P., Sommers, J., Willinger, W.: InterTubes: a study of
the US long-haul fiber-optic infrastructure. In: SIGCOMM. ACM (2015)

24. Durairajan, R., Ghosh, S., Tang, X., Barford, P., Eriksson, B.: Internet Atlas: a
geographic database of the Internet. In: HotPlanet. ACM (2013)

25. Elshazly, H., Souilmi, Y., Tonellato, P.J., Wall, D.P., Abouelhoda, M.: MC-
GenomeKey: a multicloud system for the detection and annotation of genomic
variants. BMC Bioinf. 18, 49 (2017)

26. Facebook: Building express backbone: Facebook’s new long-haul network
(2017). https://code.fb.com/data-center-engineering/building-express-backbone-
facebook-s-new-long-haul-network/

27. Gill, P., Arlitt, M., Li, Z., Mahanti, A.: The Flattening Internet topology: natural
evolution, unsightly barnacles or contrived collapse? In: Claypool, M., Uhlig, S.
(eds.) PAM 2008. LNCS, vol. 4979, pp. 1–10. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-79232-1 1

28. Google: GCP direct peering. https://cloud.google.com/interconnect/docs/how-to/
direct-peering

29. Google: Google supported service providers. https://cloud.google.com/
interconnect/docs/concepts/service-providers

http://www.caida.org/tools/measurement/skitter/
http://www.caida.org/tools/measurement/skitter/
https://cloudharmony.com/
https://cloudharmony.com/
https://www.coresite.com/solutions/cloud-services/open-cloud-exchange
https://www.coresite.com/solutions/cloud-services/open-cloud-exchange
https://code.fb.com/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://code.fb.com/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://doi.org/10.1007/978-3-540-79232-1_1
https://doi.org/10.1007/978-3-540-79232-1_1
https://cloud.google.com/interconnect/docs/how-to/direct-peering
https://cloud.google.com/interconnect/docs/how-to/direct-peering
https://cloud.google.com/interconnect/docs/concepts/service-providers
https://cloud.google.com/interconnect/docs/concepts/service-providers


A First Comparative Characterization of Multi-cloud Connectivity 209

30. Haq, O., Raja, M., Dogar, F.R.: Measuring and improving the reliability of wide-
area cloud paths. In: WWW. ACM (2017)

31. Hofmann, H., Kafadar, K., Wickham, H.: Letter-value plots: boxplots for large
data. Technical report. had.co.nz (2011)

32. Huffaker, B., Keys, K., Fomenkov, M., Claffy, K.: AS-to-organization dataset
(2018). http://www.caida.org/research/topology/as2org/

33. Hung, C.C., Ananthanarayanan, G., Golubchik, L., Yu, M., Zhang, M.: Wide-area
analytics with multiple resources. In: EuroSys Conference. ACM (2018)

34. Internet2: One-Way Ping (OWAMP) (2019). http://software.internet2.edu/
owamp/

35. Iyer, A.P., Panda, A., Chowdhury, M., Akella, A., Shenker, S., Stoica, I.: Monarch:
gaining command on geo-distributed graph analytics. In: Hot Topics in Cloud
Computing (HotCloud). USENIX (2018)

36. Khalidi, Y.: How Microsoft builds its fast and reliable global net-
work (2017). https://azure.microsoft.com/en-us/blog/how-microsoft-builds-its-
fast-and-reliable-global-network/
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Abstract. We use traceroute and BGP data from globally distributed
Internet measurement infrastructures to study the impact of a notewor-
thy submarine cable launch connecting Africa to South America. We
leverage archived data from RIPE Atlas and CAIDA Ark platforms, as
well as custom measurements from strategic vantage points, to quantify
the differences in end-to-end latency and path lengths before and after
deployment of this new South-Atlantic cable. We find that ASes oper-
ating in South America significantly benefit from this new cable, with
reduced latency to all measured African countries. More surprising is that
end-to-end latency to/from some regions of the world, including intra-
African paths towards Angola, increased after switching to the cable. We
track these unintended consequences to suboptimally circuitous IP paths
that traveled from Africa to Europe, possibly North America, and South
America before traveling back to Africa over the cable. Although some
suboptimalities are expected given the lack of peering among neighboring
ASes in the developing world, we found two other causes: (i) problematic
intra-domain routing within a single Angolese network, and (ii) subop-
timal routing/traffic engineering by its BGP neighbors. After notifying
the operating AS of our results, we found that most of these suboptimal-
ities were subsequently resolved. We designed our method to generalize
to the study of other cable deployments or outages and share our code
to promote reproducibility and extension of our work.

1 Introduction

The underlying physical infrastructure of the Internet includes a mesh of sub-
marine cables, generally shared by network operators who purchase capacity
from the cable owners [8,48]. Little academic research has tried to isolate per-
formance changes induced by the deployment of new submarine cables, although
a few studies have investigated the end-to-end performance impacts of disrup-
tions to existing cable operations [21,23]. Recently Bischof et al. [8,9] made a
case for a new research agenda focused on characterizing the fundamental role
these cables play in inter-continental connections. We agree with this aspiration
and undertook a study that represents a step toward it.
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In 2018, Angola Cables, Inc. (AC) deployed the first trans-Atlantic under-
sea cables (SACS) crossing the South Hemisphere [56], linking Fortaleza, Brazil
to Sangano, Angola [24,26,56,57]. We developed a methodology to analyze the
impact of a specific cable launch on observed end-to-end round-trip latencies and
paths across different regions of the world, and applied it to the case of the new
SACS cable. The initial challenge in such a task is to identify the cable of interest
using IP-layer traceroute measurements. Transit providers often do not publicly
disclose cable details, e.g., IP addresses, and existing measurement techniques
cannot easily distinguish multiple co-terminating (or nearly co-terminating) par-
allel cable systems [9]. The unique landing points of SACS created an opportu-
nity to identify it in large-scale traceroute datasets: besides the fact that SACS
is the first South-Atlantic cable system linking Africa to the Americas, only two
cable systems (WACS and SACS) anchor at Sangano post-SACS, versus 18 to
Fortaleza, the second landing point of the new cable.

Our high-level approach was to analyze traceroutes paths that crossed SACS
from mid-Sep 2018 to late Jan 2019, to the paths those same endpoints tra-
versed before the cable activation. This comparison revealed significantly reduced
latency from ASes operating in South America toward Africa. However, we were
surprised to find 21.3% of observed paths, with sources in Europe and Asia, as
well as intra-African paths, experienced worse performance – in terms of higher
RTTs across the corresponding endpoints – after SACS. Even more surprising,
the median RTT of intra-African paths towards Angola doubled. We analyzed
the root causes of these unintended consequences – suboptimal circuitous paths
that unnecessarily crossed continents e.g., from Africa/Europe toward Angola.

This work makes three contributions. First, we introduce a methodology to
investigate submarine cable-related events, and second, we applied it to the case
of the first operational South-Atlantic submarine cable to Africa. Finally, we
suggest ways operators can avoid/mitigate suboptimal routing post-cable acti-
vation during future deployments. We emphasize that as third-party observers,
we do not have access to traffic data: the observed suboptimalities may occur
on paths traversed by little to no traffic. In other words, this analysis does not
necessarily reflect the performance of most traffic actually using that link. That
said, these circuitous paths lasted the whole period considered in our analysis
(i.e., 3.5 months post-SACS) until we notified the provider.

We believe this work is the first attempt to evaluate the macroscopic impact
of a new submarine cable on end-to-end paths and performance, and our results
reveal how lack of diagnostic tools and exercises can amplify the existing rout-
ing inefficiencies involving the developing world, that derive from investment
decisions, peering strategies [7,10,29,32,34], or traffic engineering [55].

2 Methodology

Our method requires first identifying the link of interest and its terminating IP
addresses. We use these IP addresses to extract relevant paths from historical
traceroute archives and then use this subset of paths to study the effects of
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the event on AS topology and performance (Sect. 2.1). We assume there is, and
the method requires identifying, a cable of interest [1,2], and its IP addresses,
which we call link IPs. The method also requires some meta-data about the
event of interest, including date, duration, and the AS(es) operating the cable.
We believe our method generalizes to the study of other cable deployments,
and cable failures/outages. If the cable supports the use of layer-2 tunnels or
wavelengths by different operators, identifying these link IPs is more complex
and requires further study.

Step 1: Collect Candidate IP Paths That Could Have Crossed the
Cable. We conduct traceroute measurements from vantage points (VPs) near
the two cable endpoints toward each other; these are candidate IP paths that
possibly traversed or rerouted through the link/cable after the event. Researchers
can use public sea cable databases/maps [1,2,41,58] to inform the scheduling and
execution of targeted traceroutes on existing measurement platforms [11,18,51].

Step 2: Identify Router IP Interfaces on Both Sides of the Cable.
This task requires disambiguating the IP addresses terminating the cable of
interest from those terminating other cable systems. We combine two approaches:
an RTT-threshold based on speed-of-light constraints and IP geolocation. We
analyze only the traceroute hops inferred (using bdrmapIT [42]) to be owned by
the AS of interest. For these hops, we look for an RTT difference gap between
consecutive hops in traceroute, using a threshold of t = 2×l

(2/3)×c , where l is the
physical length of the cable, and 2

3c is the speed of light traveling in fiber optics.
At this point, we can narrow down the set of consecutive hops to the ones that

match the landing sites of the cable of interest. We use IP geolocation databases
(e.g., NetAcuity [25], MaxMind [43]) to map IP addresses to countries. Given the
low accuracy of such geolocation databases for router infrastructure [33,35,49],
we also apply hostname-based geolocation. We validate the inferred location of
IP addresses adjacent to these IPs by measuring the RTTs from VPs located in
the inferred country. We consider the geolocation correct if the minimum RTT
is less than 10 ms. We then resolve the router aliases of the selected IPs using
CAIDA’s MIDAR [16], Vela aliasq [19], and ITDK [20]. We obtain two lists of
IP addresses of the router interfaces at the two ends of the cable denoted by RA
and RB. We call these two lists link IPs.

Step 3: Search for Comparable Historical Traceroutes. We use P to
denote all source IP/destination prefix pairs, <s, d>, where s is the VP’s source
IP address and d is the longest-match prefix for the destination in the BGP
routing table. We use longest-match because existing measurement platforms
(Ark and Atlas) randomly probe within prefixes [17,52], and thus probing an
exact destination IP address twice within a short period of time is unlikely. Fur-
thermore, in many cases, only some IPs within a prefix respond to measurement
probes [45]. We first look for a set of traceroutes, T<s,d>,∀<s, d> ∈ P, that
contain either RA → RB or RB → RA after the occurrence of the event. With
this list of prefix pairs, we search for pre-event traceroutes from the same <s, d>
pairs, T ′

<s,d>, for comparison.
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Step 4: Annotate Collected Paths. For every hop in the traceroute sets
T<s,d> and T ′

<s,d>, we resolve the hostname and AS number, perform country-
level IP geolocation, and compute the difference in RTT from that of the previous
hop. To accurately map IP addresses appearing in traceroutes to AS numbers,
we run bdrmapIT [42] on the traceroutes collected on each day from both Ark
and Atlas, using as inputs daily RIB from Routeviews and RIPE RIS [44,53],
CAIDA’s AS relationship file [13,40] from the first five days of the month, a
daily dump of IXP prefixes from peeringDB [39,46], and WHOIS delegation files
collected in the middle of the period of the study. To resolve IP addresses to
hostnames, we use zdns [28] and qr [37]. Next, we collect a combined list of
Internet eXchange Points (IXPs) prefixes from CAIDA’s IXP Dataset [14], com-
pare them to the prefix corresponding to every hop in the traceroute sets T<s,d>

and T ′
<s,d>, and single out traces for which an IXP prefix matches the prefix of

the IP hop. By doing so, we identify the IXPs through which the cable operator
received/routed the packets pre and post-event.

We then group the traceroutes of each set by <s, d> pair and, based on their
corresponding timestamps of execution, we cluster them per week. For every
IP hop of each traceroute, we include its inferred annotations. These annotated
traceroutes enable us to compare the AS paths and latency before and after the
event using metrics described in Sect. 2.1.

2.1 Metrics for Quantifying the Impact of the Event

We compare the performance and AS paths between T<s,d> and T ′
<s,d> using

three metrics.

1:RTTs to theCommonIPHopsClosest to theTracerouteDestinations.

Fig. 1. Pre&post-event path comparison.
Orange circles indicate common IP hops
in T<s,d> and T ′

<s,d>. s is the source IP
address, and hc is the common IP hop clos-
est to the destination IP. The red circles
rA ∈ RA and rB ∈ RB are the router
interfaces of the two ends of the submarine
cable (Step 2). (Color figure online)

This metric compares RTT values to
reveal the change in latency across
the network paths before and after
cable deployment. Figure 1 illustrates
the identification of traceroutes in sets
T<s,d> and T ′

<s,d> between the same
<s, d> pair that share at least one
IP address. Among all traceroutes run
toward a destination prefix, we locate
the common IP hop, hc, closest to the
destination IP and extract the RTTs
from s to hc in T<s,d> and T ′

<s,d>,
denoted as dc and d′

c, respectively. We
only consider the subset P̂ of <s, d>,
such that P̂ ⊆ P and hc �= Ø (i.e., that contains non-empty hc) in our analysis.
For each <s, d> pair, we then compute the medians of all dc and d′

c per week
and choose their respective minimum values over the periods pre and post-event
to mitigate noise.
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2: AS-Centrality of Transit ASes in Paths. We use bdrmapIT [42] to infer
AS paths from the IP paths and compute from T<s,d> and T ′

<s,d> the AS-
centrality of each observed transit AS. This metric is defined as the percentage
of <s, d> pairs for which the AS path with the minimum observed RTT dc
(or d′

c for pre-event) contains the considered AS, and where that AS is neither
the source nor the destination [29]. A higher AS-centrality of an AS post-event
indicates increased transit importance, i.e., more ASes use that AS for transit.
3: Length of AS Paths Crossing Cable Operator’s Network Pre and
Post-event. We analyze the length of AS paths between source AS/destination
prefix pairs observed to cross the cable operator’s network in RouteViews and
RIPE RIS [44,53] data pre and post-event. Similar to previous work [13,40], we
consider paths collected on the first five days of the month before and after the
event.

3 Data Collection: Case Study of SACS Cable
Deployment

We collected candidate IP paths that crossed SACS (Sect. 3.1) on Mar 25–26,
2019. We identified the link IPs from those candidate IP paths and ITDK [20]
(Sect. 3.2). We used those link IPs to search in Ark and RIPE Atlas historical
data for matching traceroutes post-SACS (Jan–mid-Sep 2018) and the tracer-
outes with the same <s, d> pairs pre-SACS (mid-Sep 2018–Jan 2019) (Sect. 3.3).
Next, we annotated these traceroutes with supplementary information for its
analysis (Sect. 3.4).

3.1 Collecting Candidate IP Paths Crossing SACS

At the beginning of this study (Mar 2019) there were eight active Ark VPs in
South America, but none in Angola. AC hosted a looking-glass (LG) server [5]
connected to the Sangano landing point [26,27,36]: An LG server allows BGP
and traceroute queries by third-parties. Using both CAIDA’s Vela interface [18]
to execute measurements on the Ark infrastructure, and the AC LG server [5],
we collected traceroutes from VPs located in South America toward the AC LG
server (and in the reverse direction) to obtain IP paths that possibly crossed
SACS, i.e., candidate IP paths.

3.2 Identifying Link IPs

Based on the length of the cable, we estimate the round-trip time to cross SACS
to be about tSACS = 6,165km× 2

(2/3)× c = 62 ms. By inspecting the candidate IP paths,
we found a pair of AC IP addresses (170.238.232.146 and 170.238.232.145) in
the same /30, which had RTT differences with preceding and subsequent IPs
that matched our latency heuristics. We could not resolve their hostnames, but
the hostnames of their adjacent hops contained geolocation hints ao.sgn and
br.ftz. Because of the small differential RTTs between the two IPs and their
adjacent hops, we inferred that 170.238.232.146 and 170.238.232.145 were in
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Sangano, Angola and Fortaleza, Brazil, respectively. We leveraged VPs in Angola
and Brazil to conduct latency measurements toward these two IPs to confirm
our inference. Using the two IP addresses, we obtained a set of aliases of SACS
routers in Angola (RA) and Brazil (RB) from ITDK [20] of Jan 2019. We found
that RA and RB contained respectively 29 and 18 MIDAR-observed IP addresses
aliases of the same router.

3.3 Fetching Matching Traceroutes Paths

We analyzed CAIDA’s Ark [11] and RIPE Atlas data [51]. We considered the
on-going IPv4 Routed /24 Topology measurements [17] from 178 Ark VPs that
execute ICMP Paris-traceroute [6] toward a random destination in every routed
/24 prefix. Using CAIDA’s Henya [15] interface to search Ark traceroute data,
we split historical Ark traceroutes into two sets. ARK-AFTER includes tracer-
outes going through SACS from mid-Sep 2018 to late Jan 2019 (after SACS)
and which had an IP of RA followed by an IP of RB or vice-versa; and ARK-
BEFORE includes traceroutes from early Jan 2018 to mid-Sep 2018 between
the same <s, d> pairs as those measured in ARK-AFTER. Of the 8,035 <s, d>
pairs common to both ARK-BEFORE and ARK-AFTER, we enumerate 6,778
(84.3%) <s, d> pairs that contained a common IP hop.

RIPE Atlas (Atlas) had more VPs (10,196 vs 178) than CAIDA’s Ark project,
but far fewer usable <s, d> pairs (823 vs. 6,778). Although both platforms probe
the full set of routed prefixes, Atlas divides its prefix list across 10,196 VPs [52],
while Ark divides /24 prefixes across its 178 VPs. Thus, an Ark probe has a
larger probability of probing the same prefix. The set of common pairs did not
change despite our attempts to augment our dataset with targeted traceroutes
between and toward Atlas VPs in Angola and Brazil post-SACS.

3.4 Adding Supplementary Datasets

We annotated each IP address with its operating AS, router hostname, and geo-
graphic information. Using bdrmapIT [42], we mapped 95% of our IPs into ASes.
We used zdns [28] and qr [37] to resolve 35% of those IPs to hostnames. We geolo-
cated IP addresses using the methodology described in Sect. 2. We mapped IP
hops to their corresponding AS’s country if either: (i) the AS had no customers
and NetAcuity [25] geolocated more than 50% of its IP addresses (i.e., those it
originates into BGP) to the country, or (ii) 50% of its AS customers geolocated
to the same country (by the same process as in (i)). We marked all IP addresses
whose hostnames contained geographic hints and updated the city and country
they refer to. For cases where we found suboptimal routing (Sect. 4.2), we man-
ually cross-checked the geographic hints and the RTT difference to validate the
inferred locations. We then identified IXPs at which AC peered pre and post-
event, using IXP prefixes in CAIDA’s IXPs dataset [14] as described in Sect. 2.

The cable deployment, although entirely within AC’s network, could have
triggered a substantial change in the number of BGP paths traversing this AS,
since other ASes would have incentive to leverage it, especially those who route
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traffic between the connected countries/continents. To explore this hypothesis,
we analyzed BGP-observed AS paths traversing AC pre and post-SACS. For
computation and evaluation of the AS path length, we gathered AS paths (with-
out loops or private ASes) collected from Routeviews [44] and RIS [53] during
the first five days of Aug and Oct 2018 and included AC (AS37468). To check the
post-SACS path stability, we collected new IP paths using Ark and LG servers
in AC transit providers and customers between mid-May and end-June 2019.

4 Results and Validation

4.1 Effects on Performance

We quantified the observed RTT changes for packets sent from ASes hosting Ark
and Atlas VPs that crossed the cable. We discovered cases of both performance
improvements and degradations on paths used pre vs. post-SACS (Figs. 2 and 3).
Our results confirm Prior’s claim [50] that the new cable “reduced latency to
the Americas substantially, including a reduction from 338 ms to 163 ms between
Cape Town and Miami”. VPs in South America also experienced lower latencies
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Fig. 2. Boxplots of minimum RTTs from Ark and Atlas VPs to the common IP hops
closest to the destination IPs. Sets BEFORE or AFTER are defined in Sect. 2. We
present ΔRTTAFTER−BEFORE per sub-figure. RTT changes are similar across plat-
forms. Paths from South America experienced a median RTT decrease of 38%, those
from Oceania-Australia, a smaller decrease of 8%, while those from Africa and North-
America, roughly 3%. Conversely, paths from Europe and Asia that crossed SACS after
its deployment experienced an average RTT increase of 40% and 9%, respectively.
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to Africa, with a median RTT decrease of 38% toward all measured African
countries. Our findings confirm the drop of latencies from Europe/Africa toward
Brazil and those from Brazil to Angola as claimed in [27,36], except for VPs in
North America and Asia, which experienced higher latencies to Brazil (Fig. 3).
However, our data does not confirm the claim that latencies to Angola generally
experienced an improvement [27,36,57] – on the contrary, paths from VPs in
Africa, Asia, and Europe had median latency increases!

Figure 2 shows a boxplot of minimum RTT values observed between
Ark/Atlas source IP/destination prefix (<s, d>) pairs. After fetching match-
ing traceroutes (Sect. 3.3), half of the 6,778 Ark <s, d> pairs were sourced from
North America, while most (65.2%) of the 823 Atlas ones were sourced from
Africa. For both measurements platforms, at least 16% of the <s, d> pairs were
sourced from Europe. Figure 3 presents a heatmap of RTT differences pre vs.
post-SACS, for continent/destination country pairs. For statistical significance,
we considered only such pairs for which we had at least 20 IP paths. Each box
contains the number of observed <s, d> pairs (Sect. 2.1). The x -axis shows the
VP locations, while the y-axis the destination prefix countries. The countries on
the y-axis are all direct customers of AC. None of Angola’s direct geographic
neighbors (Zambia, Zimbabwe, Botswana, Namibia, or Democratic Republic of
Congo) are represented on the y-axis. Neither are those neighbors in the 1,034
ASes of AC’s AS customer cone [12,54].

Fig. 3. ΔRTTAFTER−BEFORE of the medians of
minimum RTTs per week pre&post SACS for
observed <s, d> pairs. We sort the x -axis by the
average change per region and the y-axis by ΔRTT
for all VPs. Each cell contains the number of
observed <s, d> pairs, and is colored according to
the corresponding ΔRTT ; a grey cell means data
non-available. The highest performance improve-
ments are observed from South America to Angola
or South Africa, while the worst degradations are
from Africa to Angola or North-America to Brazil.

Figure 2 highlights that
the Ark and Atlas plat-
forms show similar trends
in RTT performance pre to
post-SACS per region, as one
would expect. In fact, 64% of
countries and 89% of <s, d>
pairs represented in Fig. 3 are
already present in the same
matrix inferred only from
Ark data. Overall, RTT val-
ues on IP paths observed by
Atlas VPs as crossing SACS
are statistically stable (from
249 ms to 246 ms) with a
decrease of the interquartile
range (IQR) of 10% (from
102 ms to 92 ms). The trend
for Ark VPs is similar: median
RTT drops from 245 ms to
243 ms, and the IQR drops
18%.

One would expect the
greatest performance improve-
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ments for VPs in Africa and South America, i.e., close to the cable. Figure 2B1
and 2B2 show that this is the case for communications from South America cross-
ing SACS. For example, before SACS launch, traffic from Brazil to Angola via
AC visited São Paulo, London/Lisbon, and Sangano via the WACS cable [59],
traversing double the great-circle distance between Brazil and Angola, before
reaching Luanda (AO) with an RTT of at least 279 ms. The use of SACS dropped
this RTT to a low of 108 ms. These statistics are consistent with those AC pre-
sented in [36].

In contrast, Fig. 2D1 and 2D2 reveal only a slight RTT decrease (10 ms i.e.,
3%) for VPs in Africa, comparable to that of VPs in North America (Fig. 2E1
and 2E2). While Fig. 3 shows that the most significant RTT drops are on paths
from South America to Angola (226 ms a 67% drop), South Africa (199 ms, a 55%
drop), and Nigeria (138 ms, a 46% drop), it shows that these are all at least twice
the percent drop observed on paths from Africa to Brazil (73 ms, a 21% drop). In
fact, IP paths from, for instance, Dar-es-Salam (TZ) traversed Mombassa (KE),
London (UK), Paris (FR), Amsterdam (NL), Miami (US) to reach Brazil before
SACS deployment, and switched to Mombassa (KE), Marseille (FR), Madrid
(ES), Lisbon (PT), Sangano (AO), and Brazil after SACS. We inspect these
circuitous paths and their causes in Sect. 4.2.

Our dataset confirms that, for <s, d> pairs from South Africa toward Brazil
that benefited from SACS, observed minimum RTTs decreased from 298 ms to
116 ms (highlighted in [60]). Minimum RTTs decreased 44% for <s, d> pairs
from Zambia, 35% for those from Nigeria and 3.5% from Ghana toward pre-
fixes in Brazil. The dataset also reveals performance degradations e.g., for RTTs
from most VPs in Europe and Asia (Fig. 2G and F). From the inspection of
performance per continents/countries destination, we learned that the biggest
RTT increase occurred for <s, d> pairs sourced from Africa to Angola (241 ms
i.e., 161%), which surprisingly crossed SACS after its launch (Fig. 3). This is
followed by cases of paths from North America to Brazil (189 ms increase i.e.,
123%), Europe to Angola (102 ms – 69%), and Africa to China (24%).

4.2 Effects on Country Paths and Transit ASes Serving Forward
Paths

We investigated the change in forward paths from South America, Africa, and
Europe to Angola. Before using SACS, packets from South America to Angola
first traveled to Europe, and then went through the existing WACS cable [59] to
Angola (inferred via hostnames that indicate WACS landing points). AC served
46% of <s, d> pairs observed by both Ark and Atlas VPs. After SACS, paths
for all observed <s, d> pairs transited through AC, leveraging SACS for lower
latency (Fig. 4A). Figure 4B shows paths from Europe to Angola, where the
forward paths crossed SACS instead of the existing WACS. In this case, the use
of SACS increased latency due to higher propagation delay and an increase in
the number of transited routers (Fig. 2G1 and G2).
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+

(A) Partial AS paths from South America to
Angola. Before using SACS, paths between 46%
of < s, d > pairs crossed Europe and then An-
gola via AC. SACS provided to all measured
< s, d > pairs a more direct path between these
two continents and improved performance.

(B) Partial AS paths from Europe to Angola.
AC was the major transit provider for traf-
fic from Europe to Angola throughout the en-
tire period of study. However, the use of SACS
within AC significantly lengthened the physical
path, and thus the latency of the forward path.

Fig. 4. Impact of SACS deployment on the set of transit cases on observed paths
going from South America to Angola (RTT improvement) and from Europe to Angola
(RTT degradation). The white ovals inside AC are part of traceroutes post-SACS we
manually geolocated using hints in hostnames.

Figure 5 illustrates how, after SACS, a high proportion of observed paths
for certain continent/destination country pairs followed circuitous paths within
AC’s network, crossing the sea multiple times.

We computed the AS-centrality (Sect. 2.1) of ASes within the forward paths
and inferred the top three transit ASes that serve most <s, d> pairs (Table 1).
After SACS, the same top two ASes remained, although the AS-centrality of
AC shifted to 90%. However, observed packets routed within AC took a sub-
optimal route: for 27.2% of <s, d> pairs, packets routed within AC via Cape
Town/Johannesburg (ZA) traveled a great-circle distance of 13,502 km more
than before SACS, while for another 55% of <s, d> pairs, packets entering AC
through London traveled 7,081 km more than before SACS. Suboptimal paths
from Africa (through Europe, possibly North America, and Brazil) to Angola
inducing the RTT increase of Fig. 3 (241 ms) post-SACS were either due to sub-
optimality within AC itself or to neighbors that were routing packets towards AC
even though going through SACS was not the shortest route anymore. Figure 5A
depicts how 55% of paths originating in different African countries entered AC
either through South Africa, via Europe down to Brazil, and crossed SACS before
landing in Angola.

The next largest median RTT increase was for paths from North America
to Brazil, which rose 187 ms (123%) for observed <s, d> pairs of this category.
Figure 5 shows two trajectories used by 25% of these paths: from North America,
packets crossed Europe or Asia, enter AC PoPs at IXPs in South Africa, then
all went to Angola before crossing SACS to Brazil: this proves the existence of
a direct link from South Africa to Angola (via WACS), making the suboptimal
African paths previously mentioned even more curious. All three most-central
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Fig. 5. Examples of suboptimal trajectories followed post-SACS by most paths from
Africa to Angola (at least 55%), North America to Brazil (25%), and Europe to Angola
(99.3%) within AC’s network (AS37468) or within other ASes in the paths vs. straight-
forward trajectory within AC or other ASes of most paths from South America to
Angola (�100%), explaining the values of ΔRTTA−B in Fig. 2. We use the same colors
to code stages (1, 2, 3, 4, 5, and 6) regardless of the subfigure.

Table 1. Top three transit ASes serving <s, d> pairs from continents to destination
countries. The categories for which we noticed suboptimal routing and RTT increase
post-SACS are in italic. Although all our pre-selected paths post-SACS cross SACS,
AC may still have an AS-centrality lower than 100%, since the AS-centrality does not
account for cases where the AS is either the source or the destination of the AS path.

Category Before After

(#< s, d >) CC AS-cen- Transit AS AS-cen- CCtrality trality

From Africa AO 66.7% Angola Cables (AS37468) 90.1% AO

to Angola ZA 32.3% Internet Solutions (AS3741) 22.4% ZA

(201) BG 20.9% Sofia Connect (AS47872) WIOCC-AS (AS37662) 16.4% MU
IPPLANET (AS12491) 16.4% IL

From North US 44.4% ATT-Internet4 (AS7018) Angola Cables (AS37468) 100% AO
America to BR 30.1% NipBr (AS27693) Chinanet-B. (AS4134) 60.2% CN
Brazil (122) US 23% Nitel (AS53828) Abilene (AS11537) 58.3% US
From Euro- AO 62.9% Angola Cables (AS37468) 78.1% AO
pe to Angola BG 18.6% Sofia-Connect (AS47872) Telianet (AS1299) 17.6% EU
(705) EU 14.2% Telianet (AS1299) TWTC (AS4323) 9.9% US
From Asia AO 50.3% Angola Cables (AS37468) 90.1% AO
to Brazil US 28.4% TATA (AS6453) TWTC (AS4323) 31.9% US
(141) JP 24.1% KDDI (AS2516) 26.2% JP
From South AO 45.7% Angola Cables (AS37468) 96.2% AO
America to BR 36.8% Terremark do Brasil (AS28625) Cilnet (AS28580) 18.4% BR
Angola (212) US 36.3% Cogent (AS174 ) CO.PA.CO. (AS27768) 11.8% PY



222 R. Fanou et al.

ASes for the same pairs changed after SACS launch, with a higher AS-centrality
and 100% of <s, d> pairs were served by AC post-SACS (Table 1).

Paths from Europe to Angola showed a median increase of 102 ms (69%).
Figure 5 shows the trajectory of such paths sourcing from Europe and entering
AC in Europe before going to Brazil and crossing SACS, on their way to their
destinations in Angola. We learned from our dataset that after SACS, 99% of
paths went through Fortaleza within AC’s network vs. none before. Since using
the WACS cable was an option for AC post-SACS, there was suboptimal routing
within AC for this category. Packets routed this way traveled roughly 6,435 km
more than when they went from London (UK) to Luanda (AO) through WACS.
Conversely, the largest median RTT decrease (38%) corresponds to paths from
South America to Angola: 99% of observed paths directly traversed SACS when
routed within AC, enabling packets to travel a great-circle distance of 6,641 km
less than before. This case shows that optimal routing within AC’s network can
indeed substantially improve end-to-end performance for AS paths it serves.

We saw only a third of such improvement from Africa to Brazil (a drop of
73 ms i.e., 21%). Further investigation revealed cases of suboptimal interdomain
routing for paths going notably from Mauritius, Ghana, Tanzania, South Africa,
or Zambia to Brazil via cities on other continents, which result from the persis-
tent lack of peering among neighboring ASes [29,30,32,34].

We then used Fig. 3 and Table 1 to check whether SACS introduced new
backup IP paths between the regions AC connected. No observed <s, d> pairs
hinted the existence of paths from South America to Europe/Asia via SACS and
Africa. Instead, paths from North America toward destinations in Africa via SACS
benefit from an RTT decrease of at least 20 ms; SACS could thus play the role of a
valid backup path for North American ASes to reach African countries or could be
used for load balancing purposes. We also checked whether AC received/routed
packets post-SACS through new IXPs. Before the SACS launch, AC was present
at public peering points spanning five continents [3,4,47]. We observed AC peer-
ing at five additional IXPs (in UK, US, BR, and RU) post-SACS for the same set
of <s, d> pairs, i.e., and expanded interconnection footprint.

4.3 Impact on AS Paths Lengths
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Fig. 6. Distribution of the length of AS
paths between same source AS/destination
prefix pairs served via AC (AS37468)
pre&post SACS, showing the increase of
paths of lengths 2–7.

From Routeviews and RIPE RIS
BGP snapshots of Aug 1st–5th and
Oct 1st–5th, 2018 (the months before
and after SACS launch), we extracted
all AS paths through AC post-
SACS (Set AFTER), and all AS
paths between the same source
AS/destination prefix routed pre-
SACS (Set BEFORE). We found
2,115,761 unique AS paths that
crossed AC in both snapshots. Since
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the number of observed AS paths differed in each set and the measurements
windows are not strictly identical, we computed the average AS path length
per source AS/destination prefix pairs: the percentage of outliers i.e., paths of
lengths 10–13 (max) was ≈1%. We noticed the AS path length distribution
shifted, with AS paths of length 2–7 generally increasing, reflecting the fact
that more neighboring ASes preferred AS paths via AC after the SACS launch
(Fig. 6). Interestingly, AC apparently announced many paths to prefixes owned
by multiple ASes 2–3 months before the SACS launch [22], perhaps preparing
for the launch.

4.4 Validation with the ISP

In Jul 2019, we successfully contacted AC and were able to validate the inferred
set of SACS link IPs and their respective locations. AC distinguished cases where
the anomalous routes occurred outside their network, and tromboning occurred
due to lack of local peering, or where neighbor ASes were circuitously rout-
ing traffic toward AC after SACS. During our exchange with them, we took
subsequent measurements that showed some AC neighbors had modified their
routing configurations in ways that improved performance. Although AC did
not validate cases of suboptimal routing within their network, most observed IP
paths (from North America/Asia to Brazil or Europe/Asia to Angola) switched
to more optimal paths after our conversation. AC also explained that internal
link failures could account for the performance degradations. For example, if the
MONET cable [3,59] (which AC’s router in Miami crosses to reach Fortaleza)
becomes unavailable, the router may re-route traffic through London. They also
noted that no customers had complained, so if there were any suboptimal rout-
ing, it was unlikely to be affecting any routes that carried any traffic. That said,
we found that a few (≈4%) <s, d> pairs used remarkably suboptimal paths as
late as Jul 12, 2019, e.g., from Africa to prefixes in Angola served via Europe
and Brazil or those from North America to Angola routed by AC via SACS and
Lisbon. Finally, AC informed us that most traffic crossing SACS through AC
goes from either South America to Angola or South Africa to Brazil, cases where
our results show a pronounced decrease post-SACS (Sect. 4.1).

4.5 Potential Root Causes of Suboptimal Routing

We confirmed the occurrence of the routing suboptimalities described in this
paper using two measurements platforms that revealed similar trends per region.
We tried to obtain insights from the ISP operating the cable (AC) into poten-
tial causes, without success. We conjecture that these suboptimalities derived
from multiple causes (potentially concurrent): (i) misconfigurations of either
the Internal or External Gateway Protocol (IGP/EGP), due to typos, errors,
etc, [10] (ii) slow IGP or EGP convergence [38], (iii) some ASes routing pack-
ets through AC although it is not the optimal path to the destination, (iv) the
persistent lack of peering among local ASes in Africa (despite ongoing efforts
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for more local interconnections) [30,32] and frequent use of default routes via
international transit providers in developing regions.

5 Conclusion

It is generally assumed that deployment of undersea cables between continents
improves performance, at least for paths that cross a cable once it is deployed.
We present a reproducible scientific method by third-parties to investigate the
performance impact of a cable deployment, and we apply it to the case of the first
South-Atlantic cable, connecting Brazil to Angola. We used traceroute and BGP
data from global measurement platforms, and geolocation data and inferences
to find that this new cable had at least initially reduced RTTs asymmetrically:
the median RTT decrease from Africa to Brazil was roughly a third of that
from South America to Angola (226 ms). More surprising is that latency statis-
tics to/from other regions of the world, including paths within Africa, increased
post-activation due to circuitous IP paths that suboptimally crossed continents
and the cable. We uncovered other potential sources of suboptimality: slow BGP
route updates/lack of traffic engineering after a major event occurring in a neigh-
boring AS, and problematic intra-domain routing within a single network. Our
results suggest ways operators can avoid suboptimal routing post-activation of
cables in the future: (i) informing BGP neighbors of the launch to allow time
for appropriate changes in advance; (ii) ensuring optimal iBGP configurations
post-activation, not only for pairs of ASes/countries expected to route most
traffic through the cable, but also for served intra-regional and cross-regional
traffic; and (iii) collaborate with measurements platforms or research institu-
tions to verify path optimality. Our methodology is general enough to apply to
other cable deployments, as well as cable failures, and contributes to a toolbox
to support further scientific study of the global submarine cable network [8,9].
We share our code [31] to promote reproducibility and extension of our work.
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Abstract. Alias resolution techniques (e.g., Midar) associate, mostly
through active measurement, a set of IP addresses as belonging to a
common router. These techniques rely on distinct router features that
can serve as a signature. Their applicability is affected by router support
of the features and the robustness of the signature. This paper presents
a new alias resolution tool called Limited Ltd. that exploits ICMP rate
limiting, a feature that is increasingly supported by modern routers that
has not previously been used for alias resolution. It sends ICMP probes
toward target interfaces in order to trigger rate limiting, extracting fea-
tures from the probe reply loss traces. It uses a machine learning clas-
sifier to designate pairs of interfaces as aliases. We describe the details
of the algorithm used by Limited Ltd. and illustrate its feasibility and
accuracy. Limited Ltd. not only is the first tool that can perform alias
resolution on IPv6 routers that do not generate monotonically increas-
ing fragmentation IDs (e.g., Juniper routers) but it also complements
the state-of-the-art techniques for IPv4 alias resolution. All of our code
and the collected dataset are publicly available.

1 Introduction

Route traces obtained using traceroute and similar tools provide the basis
for generating maps that reveal the inner structure of the Internet’s many
autonomously administered networks, but not necessarily at the right level of
granularity for certain important tasks. Designing network protocols [42] and
understanding fundamental properties of the Internet’s topology [18] are best
done with router-level maps. Rather than revealing routers, traceroute only
provides the IP addresses of individual router interfaces. The process of group-
ing IP addresses into sets that each belong to a common router is called alias
resolution, and this paper advances the state of the art in alias resolution.

A common approach to alias resolution is to send probe packets to IP
addresses, eliciting reply packets that display a feature that is distinctive enough
c© Springer Nature Switzerland AG 2020
A. Sperotto et al. (Eds.): PAM 2020, LNCS 12048, pp. 231–248, 2020.
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to constitute a signature, allowing replies coming from a common router to be
matched. This paper describes a new type of signature based upon a functional-
ity, ICMP rate limiting, in which an Internet-connected node (router or end-host)
limits the ICMP traffic that it sends or receives within a certain window of time.
This new signature enjoys much broader applicability than existing ones for IPv6
alias resolution, thanks to ICMP rate limiting being a required function for IPv6
nodes. The signature also complements IPv4 existing signatures.

Our contributions are: (1) The Limited Ltd. algorithm, a new signature-based
alias resolution technique that improves alias resolution coverage by 68.4% on
Internet2 for IPv6 and by 40.9% on Switch for IPv4 (2) a free, open source,
and permissively licensed tool that implements the algorithm.

We evaluate Limited Ltd. by comparing its performance to two state-of-the-
art alias resolution tools: Speedtrap [29] for IPv6, and Midar [26] for IPv4,
using ground truth provided by the Internet2 and Switch networks.

The remainder of this paper is organized as follows: Sect. 2 provides technical
background and related work for both alias resolution and ICMP rate limiting.
Section 3 describes the Limited Ltd. technique in detail. Section 4 presents the
evaluation. Section 5 discusses ethical considerations and Sect. 6 summarizes our
conclusions and points to future work.

2 Background and Related Work

Limited Ltd. is the latest in a long line of alias resolution methods stretching back
over twenty-plus years. An inventory of all previously known techniques (Table 1)
shows that there are only four techniques known to work for IPv6. Of these,
there is a publicly-available tool for only one: Speedtrap [29]. But Speedtrap
has a known limitation of only working on routers that generate monotonically
increasing IPv6 fragmentation IDs, whereas there is an entire class of routers,
such as those from Juniper, that do not generate IDs this way. Relying upon
monotonically increasing IP IDs for IPv4, as does state-of-the-art Midar [26],
presents a different issue: fewer and fewer routers treat IPv4 IP IDs this way due
to a potential vulnerability [2,15]. Limited Ltd. is a publicly available tool that
does not rely upon monotonically increasing IDs, thereby enabling IPv6 alias
resolution on Juniper routers for the first time and IPv4 alias resolution on a
growing class of routers for which Midar will no longer work.

Regarding ICMP, the Internet Control Message Protocol: its IPv4 and IPv6
variants [13,34] allow routers or end-hosts to send error and informational mes-
sages. The RFC for ICMPv6 [13] cites the “bandwidth and forwarding costs”
of originating ICMP messages to motivate the need to limit the rate at which a
node originates ICMP messages. It also recommends the use of a token bucket
mechanism for rate limiting. It explicitly calls for compatibility with traceroute
by stating that “Rate-limiting mechanisms that cannot cope with bursty traffic
(e.g., traceroute) are not recommended”. Furthermore, it states that, in the case
of “ICMP messages [being] used to attempt denial-of-service attacks by sending
back to back erroneous IP packets”, an implementation that correctly deploys
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Table 1. Alias resolution methods

Year Basis

(s) = signature

(t) = topology

(o) = other

Algorithms and tools Condition of

applicability

IPv4 IPv6

(τ ) = tool

(δ ) = dataset

1998 [32] Source IP address (s) Pansiot and

Grad [32]

Respond with a

common IP address in

ICMP Destination

Unreachable messages

Yes

Mercator [16] Yes

(τ ) (δ )

2002 [40] IP ID (s) Ally [40] Send replies with a

shared IP ID counter

that increases

monotonically with

each reply

Yes

(τ )

RadarGun [7] Yes

(τ )

Midar [26] Yes

(τ ) (δ )

2002 [40] Reverse DNS (o) Rocketfuel [40]

Aroma [28]

IP address resolves to

a name

Yes Yes

2006 [17] traceroute (t) Apar [17] Respond with ICMP

Time Exceeded

messages

Yes

kapar [25] Yes

(τ ) (δ )

2010 [38] IP Prespecified

Timestamp

option (s)

Sherry et al. [38]

Pythia [30]

Fill in timestamps as

specified by the option

yes

2010 [36] IPv6 source

routing (s)

Qian et al. [35,36] Source routing must be

enabled

Yes

2013 [29] IPv6 fragmentation

identifier (s)

Speedtrap [29] IDs elicited from

responses increase

monotonically

Yes

(τ ) (δ )

2013 [39] IP Record Route

option (t)

DisCarte [39] Fill in IP addresses as

specified by the option

Yes

2015 [31] IPv6 unused

address (s)

Padman-abhan et

al. [31]

126 prefixes on a point

to point link

Yes

2019 ICMP rate

limiting (s)

Limited Ltd. ICMP rate limiting

shared by interfaces of

the router

Yes

(τ ) (δ )

Yes

(τ ) (δ )

the recommended token bucket mechanism “would be protected by the ICMP
error rate limiting mechanism”. The RFC makes ICMP rate limiting mandatory
for all IPv6 nodes. ICMP rate limiting is a supported feature on all modern
routers but its implementation may vary by vendor [9,11,12,14,20,22–24] based
on ICMP message type and IP version. ICMP rate limiting can be performed on
incoming traffic or generated replies. Limited Ltd. makes no distinction between
the two. It works whenever multiple interfaces of a router are subject to a com-
mon ICMP rate limiting mechanism, i.e., when there is a shared token bucket
across multiple interfaces. Vendor documentation [11,20,23,24], indicates that
ping packets are more likely to trigger shared ICMP rate limiting behavior. We
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validated this observation in a prior survey and in a lab environment. In par-
ticular on Juniper (model J4350, JunOS 8.0R2.8), we observed a shared ICMP
rate limiting mechanism for Echo Reply, Destination Unreachable and Time
Exceeded packets across all of its interfaces by default. But on Cisco (model
3825, IOS 12.3), we observed that the rates for Time Exceeded and Destination
Unreachable packets are limited on individual interfaces by default, and only the
rate for Echo Reply packets is shared across different interfaces [10]. Therefore,
we adopted the ping Echo Request and Echo Reply mechanism in our tool to
maximize the chances of encountering shared ICMP rate limits across router
interfaces.

A few prior studies have examined ICMP rate limiting behavior in the Inter-
net. Ravaioli et al. [37] identified two types of behavior when triggering ICMP
rate limiting of Time Exceeded messages by an interface: on/off and non on/off.
Alvarez et al. [4] demonstrated that ICMP Time Exceeded rate limiting is more
widespread in IPv6 than in IPv4. Guo and Heidemann [19] later proposed an
algorithm, Fader, to detect ICMP Echo Request/Reply rate limiting at very
low probing rates, up to 1 packet per second. They found rate limiting at those
rates for very few /24 prefixes. Our work is the first one that exploits the shared
nature of ICMP rate limiting across different interfaces of a router as a signature
to relate these interfaces for alias resolution.

3 Algorithm

The main intuition behind our approach is that two interfaces of a router that
implements shared ICMP rate limiting, should exhibit a similar loss pattern if
they are both probed by ICMP packets at a cumulative rate that triggers rate
limiting. The key challenges are to efficiently trigger rate limiting and reliably
associate aliases based on the similarity of their loss patterns despite the noise
due to independent losses of probes and replies.

Pseudo code 1 describes how Limited Ltd. divides a set of input IP addresses
into subsets that should each be an alias set. It proceeds iteratively, taking the
following steps in each iteration: First, a random IP address from the input set
is selected as a seed, with all remaining members of the input set being candi-
date aliases for the seed. The seed is probed at incrementally higher rates until
the rate rs that induces ICMP rate limiting is identified (find rate()). Then,
the seed is probed at that rate of rs while all of the candidates interfaces are
simultaneously probed at low rates. All probing takes place from a single van-
tage point. Loss traces for reply packets from the seed and each of the candidate
interfaces are gathered. It is very challenging to infer that two interfaces are
aliases by directly correlating their loss traces. Instead, the algorithm extracts a
set of features from each loss trace and collectively uses these as the signatures
of the corresponding interfaces(signatures()). Using a classification technique
(classify()), the algorithm examines whether the signatures of candidate and
seed are sufficiently similar to classify them as aliases, in which case the candidate
is added to an alias set (As). Each identified alias set is refined through further
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testing in order to reduce the chance of false positives (refine()). Finally, the
alias set is removed from the input set, and iterations continue until the input
set is empty. The remainder of this section further details these steps.

3.1 Triggering ICMP Rate Limiting

The goal of find rate(s) is to efficiently determine rs, the probing rate that
triggers ICMP rate limiting at the router to which seed s belongs. It proceeds
by probing the seed with ICMP Echo Request probes across multiple rounds,
increasing the probing rate with each round until the loss rate of observed ICMP
Echo Replies enters a target range. The target loss range should be sufficiently
large to minimize the effect of random independent losses and also relatively
small to minimize the load on the router. To satisfy these two opposing con-
ditions, we empirically set the range at 5 to 10%. The probing rate remains
constant during each round. The rate is low (64 pps) for the first round, and
exponentially increases in consecutive rounds until the loss rate falls within (or
exceeds) the target range.1 If the observed loss rate is within the target range,
the probing is concluded and the last rate is reported as rs. But if the loss rate
is higher than the target range, up to eight additional rounds are launched in a
binary search between the last two rates. If the loss rate still does not fall within
the target range, the probing rate that generates the loss rate closest to the range

1 We have explicitly verified that the actual probing rate is not limited by the network
card or other factors.
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Fig. 1. CDF of the probing rate rs (left) and the number of probing rounds (right) to
trigger ICMP rate limiting for 2,277 IPv4 and 1,099 IPv6 addresses.

is chosen. If the target loss range is not reached as the probing reaches a max-
imum rate (32,768 pps), the probing process ends without any conclusion. The
duration of each round of probing should be sufficiently long to reliably capture
the loss rate while it should also be limited to control the overhead of probing.
We experimentally set the duration of each round of probing to 5 s, followed by a
period, of equal length, of no probing. The right plot of Fig. 1 presents the CDF
of the number of probing rounds to trigger the target loss rate for thousands of
IPv4 and IPv6 interfaces (using our dataset from Sect. 3.3). We observe that for
90% of IPv4 or IPv6 interfaces, the ICMP rate limiting is triggered in less than
8 rounds of probing. The left plot of Fig. 1 shows the CDF of the probing rate
that triggered the target loss rate (i.e., the inferred rate for triggering the ICMP
rate limiting) across the same IPv4 and IPv6 interfaces. This figure indicates
that for 70% (80%) of IPv6 (IPv4) interfaces, ICMP rate limiting is triggered
at less than 2k pps. This result confirms that our selected min and max probing
rate covers a proper probing range for more than 99% of interfaces. We note
that the binary search process failed to reach the target loss rate for fewer than
1% of the interfaces. All the parameters of our probing strategy are empirically
determined. Section 5 elaborates on the ethical considerations associated with
the probing scheme.

3.2 Generating Interface Signatures

A signature based on the loss traces of individual interfaces is obtained by prob-
ing the seed interface at its target rate (rs) while simultaneously probing each
candidate interface at the low rate of Rc pps. Probing a large number of candi-
date interfaces in each round may lead to a better efficiency, but the aggregate
probing rate should remain low so that it does not independently trigger ICMP
rate limiting even if all those candidates are in fact aliases. To address these
two constraints, we set the number of candidate interfaces that are considered
in each round to 50 and Rc to 10 pps. In an unlikely scenario that all of these
50 candidate interfaces are aliases, this strategy leads to a 500 pps probing rate
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Table 2. Selected features for a Signature.

Seed

s

Candidate

c

Control

κs

Control

κc

Loss rate x x x x

Change point x x

gap → gap transition

probability

x x

burst → burst

transition

probability

x x

Pearson correlation

coefficient

x

01 10 11 11 00 01

1 1 0

2 4 1

High probing rate
loss trace

High probing rate 
derived loss trace

Low probing rate loss 
trace

Fig. 2. Mapping between loss traces with
different length.

for the corresponding router that does not trigger ICMP rate limiting in 90% of
routers, as we showed in the left plot of Fig. 1.2

Control Interface. In order to distinguish the observed losses in the loss traces
for the target interfaces (i.e., seed s and individual candidate c) that are not
related to ICMP rate limiting, we also consider another interface along the
route to each target interface and concurrently probe them at a low rate (10
pps). These interfaces are called the controls, κs and κc. The control κi for tar-
get interface i is identified by conducting a Paris Traceroute [6] towards i and
selecting the last responsive IP address prior to i.3 The loss rate for κi also forms
part of i’s signature. In practice, the controls are identified at the beginning of
the Limited Ltd. procedure by conducting route traces to all IP addresses in
the input set S. This corresponds to controls() and K is the resulting set of
controls.

Inferring Alias Pairs. The above probing strategy produces a separate loss
trace for each interface. We have found that when losses occur simultaneously
at pairs of alias interfaces, they can do so in multiple ways, as the five examples
in Fig. 4 illustrate. The black and white strokes in each trace correspond respec-
tively to received and lost ICMP Echo Replies, and their varied patterns defy
attempts to find simple correlations. We therefore use a machine learning clas-
sifier to identify pairs of aliases. It is based on the following features extracted
from loss traces that, intuitively, we believe capture the temporal pattern of the
losses in each trace. (See also Table 2.)

1. Loss rate: This is simply the number of losses in the trace divided by the total
number of probes in the trace.

2 The largest reported alias set by Midar and Speedtrap has 43 interfaces. Therefore,
the likelihood of observing 50 candidate interfaces that are all aliases is low.

3 Limited Ltd. maintains the flow ID necessary to reach κs in subsequent probing of
s and κs.
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Fig. 3. CDF of the TTL distance from
the Limited Ltd. vantage point of the
IP addresses belonging to an alias set
in our training data.

Fig. 4. Raw times series of loss traces
of pairs of aliases.

2. Change point detection: This is the point in a time series (such as our loss
traces) when the probability distribution of a time series changes [5]. We
adopt a method based on the variation of the mean and the variance [27].

3. Transition probabilities: These are obtained by using each loss trace to train
a Gilbert-Elliot two-state Markov model, in which losses occur in the burst
state and no losses occur in the gap state. The P(gap → gap) and P(burst →
burst) transition probabilities are sufficient to fully describe the model since
other two probabilities can be easily calculated from these. For example,
P(gap → burst) = 1 − P(gap → gap).

4. Correlation coefficient: The Pearson correlation coefficient between the two
loss traces is used as a measure of similarity between them. Calculating this
coefficient requires both time series to have the same number of values but
our loss traces do not meet this condition since we use a higher probing rate
for the seed. To address this issue, we condition the seed’s loss trace to align
it with the loss trace of other interfaces as shown in Fig. 2. In this example,
the length of the loss trace of the seed is four times longer than the ones from
the other interfaces. We consider groups of four consecutive bits in the seed
loss trace and convert it to the sum of the 1’s. The resulting loss trace has a
lower rate and can be directly correlated with other loss traces.

3.3 Classifying the Signatures

We use the random forest classifier from the scikit-learn Python machine
learning library [33]. If it identifies two interfaces as aliases based on their signa-
tures, classify() returns true; otherwise, false. There are several challenges
to building such a classifier: (1) it must learn from training data that represents
the diversity of possible loss traces generated by pairs of aliases; (2) it should
be able to distinguish between losses triggered by ICMP rate limiting and unre-
lated losses; (3) it should have a high precision, so that Limited Ltd. minimizes
false positives; and (4) if the training data come from other alias resolution tech-
niques, such as Midar and Speedtrap, it must be able to generalize to pairs that
they cannot find. We tackled these challenges as follows.
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Training and Testing Data. We have access to ground truth router-level
topology for two networks, Internet2 and Switch, but these do not suffice to
capture the richness of router behaviors in the Internet as a whole. We therefore
randomly selected routable IPv4 and IPv6 prefixes from the RIPE registry [3],
and conducted multipath Paris Traceroute [41] from PlanetLab Europe [1] nodes
towards the first address in each prefix. This procedure yielded 25,172 IPv4
addresses in 1,671 autonomous systems (ASes) and 18,346 IPv6 addresses in
1,759 ASes from 6,246 and 4,185 route traces, respectively. We use Midar and
Speedtrap to identify IPv4 and IPv6 alias sets, respectively, since both tools are
known to have low false positive rates. Pairs of interfaces from these sets are
used as labeled as true. For the false labels, we take the conservative approach
of selecting pairs of IP addresses that are more than 6 hops from each other in a
given route trace. The 6 hop value is empirically set, as 99.9% of the alias pairs
identified by Midar and Speedtrap are fewer than 6 hops apart. This labeling
process identified 70,992 unique IPv4 and 7,000 unique IPv6 addresses. 15,747
of IPv4 and 1,616 IPv6 addresses are labeled as aliases forming 2,277 IPv4
and 1,099 IPv6 alias sets, respectively. Figure 3 shows the CDF of hop count
distance between our vantage point and selected IP addresses and indicates that
these targets are 7–17 hops away from the vantage point. For each alias set, one
address is chosen at random to play the role of the seed s, and the candidate
set is composed of all of the other aliases in the set that are rounded up with
some randomly selected non-aliases to make a Cs of size between 2 (minimum
one alias and one non-alias) and 50 (our cap for the number of addresses to be
simultaneously probed at a low rate). The high rate rs at which to probe the
seed is found through find rate(s), and the signatures are generated through
signatures(s, rs, Cs,K).

Note that while our classifier is trained on alias sets identified by alias reso-
lution techniques with known limitations, it is nonetheless able to identify new
alias sets. We argue that this is because the training set is sufficiently rich due
to its size and random selection of interfaces, providing considerable diversity
and heterogeneity of loss traces across aliases. Our evaluation in Sect. 4 confirms
this observation and confirms the ability of our technique to generalize patterns
in the training dataset, i.e., the fourth aforementioned challenge.

Choice of Classifier. We compared the performance of four classifiers that
scikit-learn library offers, namely random forest, multilayer perceptron, k-
nearest neighbors (KNN), and support vector machines (SVM). To this end, we
evenly divided our dataset into a training and a test set, and compared these
classifiers based on their precision, recall, and F1 score for both IPv4 and IPv6
datasets. Since true labels are only provided from aliases identified by Midar
and Speedtrap, the recall values correspond to the portion of pairs of aliases in
our training set that are detectable by both Midar and Limited Ltd. (IPv4) or
by both Speedtrap and Limited Ltd. (IPv6). Table 3 presents the averaged result
of this comparison after performing 10 randomized splits of the training and test
sets. All classifiers exhibit relatively good performance. We have decided to use
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Table 3. Classifier performance on our test
set averaged over ten training/testings.

IPv4 IPv6

Precision Recall F1 score Precision Recall F1 score

Random

forest

0.990 0.499 0.652 0.992 0.647 0.782

Multilayer

perceptron

0.993 0.431 0.591 0.978 0.641 0.769

KNN 0.952 0.638 0.764 0.970 0.622 0.756

SVM 0.986 0.478 0.642 0.988 0.599 0.743

Table 4. The five most important
features of our random forest clas-
sifiers.

Gini index

Feature IPv4 IPv6

loss rate for the candidate c 0.169 0.192

burst → burst transition

probability for the

candidate c

0.113 0.125

burst → burst transition

probability for the seed s

0.101 0.121

Pearson correlation

coefficient

0.091 0.109

loss rate for κc, the control

of the candidate c

0.077 0.104

the random forest classifier, which is composed of 500 trees, as it has the highest
precision for both IPv4 and IPv6, and the best F1 score for the IPv6 dataset.

Finally, Table 4 shows the five most important features of our random forest
classifiers based on the Gini index [8] that describes the weight of individual
features in the classifier’s decision. This table reveals a few important points.
First, no single feature dominates the classifier’s decision, particularly for IPv6.
This confirms the complexity of the patterns for relating loss traces of aliases,
as they cannot be accurately learned by a small number of features or simple
threshold-based rules. Second, this table also illustrates that most of our engi-
neered features are indeed very important in distinguishing loss traces of aliases.
Third, the use of κc as one of the main features suggests that the classifier
distinguishes losses related to rate limiting from other losses.

3.4 Refining the Alias Set

Independent network loss could accidentally result in classifying unrelated inter-
faces as aliases, i.e., generating false positives. To reduce the chance of this,
Limited Ltd. incorporates a refinement step, refine(As), that involves repeat-
ing signature() and classify() on the previously-identified alias set As. If a
candidate c fails to be (re)classified as an alias of the seed s, it is removed from
the alias set. This step is repeated until the alias set remains unchanged over
two iterations. Section 4 evaluates the resulting reduction of false positives.

4 Evaluation

We evaluate Limited Ltd. with regards to its ability (i) to identify alias pairs
that state-of-the-art techniques, namely Midar and Speedtrap, are unable to
identify, and (ii) to maintain a low rate of false positives.
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Table 5. Evaluation on ground truth networks.

IPv4 IPv6

Midar ltd ltd Midar ∪ ltd ltd Speedtrap ltd ltd Speedtrap ∪ ltd ltd

Internet2 Precision 1.000 1.000 1.000 N/A 1.000 1.000

Recall 0.673 0.800 0.868 N/A 0.684 0.684

Switch Precision 1.000 1.000 1.000 1.000 1.000 1.000

Recall 0.090 0.499 0.599 0.384 0.385 0.772

Dataset. We evaluate Limited Ltd. on ground truth data from the Internet2
and Switch networks. For Internet2, router configuration files were obtained on
10 April, with measurements conducted on 11 and 12 April 2019. There were
44 files, each corresponding to a single router. All are Juniper routers. The files
concern 985 IPv4 and 803 IPv6 addresses/interfaces, from which we removed
436 IPv4 addresses and 435 IPv6 addresses that did not respond to any probes
sent by either Midar, Speedtrap, or Limited Ltd. The resulting dataset consists
of 6,577 IPv4 and 2,556 IPv6 alias pairs. For Switch, a single file was obtained
on 3 May, with measurements conducted 3–5 May 2019. The file identified 173
Cisco routers running either IOS or IOS-XR. From the 1,073 IPv4 and 706
IPv6 addresses listed in the file, we removed 121 IPv4 and 29 IPv6 unresponsive
addresses. The resulting dataset consists of 4,912 IPv4 and 2,641 IPv6 alias pairs.

Reducing False Positives. We computed the distribution of number of rounds
for refine() to finalize the alias set for each seed in our dataset: For 79% (98%)
of all seeds, refine() takes 2 (3) more rounds. Note that the minimum of two
rounds is required by design (Sect. 3.4). This basically implies that refine()
only changed the alias set for 20% of the seeds in a single round.

Results. Table 5 presents the precision and recall of Midar, Speedtrap, Limited
Ltd., and the union of both tools on IPv4 and IPv6 ground truth data from the
Internet2 and Switch networks. Note that it is possible for recall from the union
of both tools to be greater than the sum of recall values for individual tools, as
we observe in the Switch results. This arises from the transitive closure of alias
sets identified from the two tools that leads to the detection of additional alias
pairs. The main findings of Table 5 can be summarized as follows:

1. Limited Ltd. exhibits a high precision in identifying both IPv4 and IPv6 alias
pairs from both networks with zero false positives.

2. Limited Ltd. can effectively discover IPv6 aliases that state-of-the-art Speed-
trap is unable to find. In the Internet2 network that uses Juniper routers,
Limited Ltd. was able to identify 68.4% of the IPv6 alias pairs while Speed-
trap was unable to identify any. In the Switch network that deploys Cisco
routers, Limited Ltd. and Speedtrap show comparable performance by identi-
fying 38.5% and 38.4% of the IPv6 alias pairs, respectively. The results were
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complementary, with the two tools together identifying 77.2% of the IPv6
alias pairs, a small boost beyond simple addition of the two results coming
from the transitive closure of the alias sets found by each tool.

3. Limited Ltd. can discover IPv4 aliases that state-of-the-art Midar is unable
to find. In the Internet2 network, Limited Ltd. identifies 80.0% while Midar
detects 67.3% of aliases. In the Switch networks, Limited Ltd. identified
49.9% while Midar detects only 9.0% of all aliases.

A couple of detailed observations follow. We conducted follow up analysis on
the behavior of Speedtrap and Midar to ensure proper assessment of these tools.
First, we examined Speedtrap’s logs to diagnose Speedtrap’s inability to detect
any IPv6 aliases for Internet2. We noticed that every fragmentation identifier
time series that Speedtrap seeks to use as a signature, was either labeled as
random or unresponsive. This was not surprising, as prior work on Speedtrap [29]
also reported that this technique does not apply to the Juniper routers that
primarily comprise Internet2. Second, we explored Midar’s logs to investigate
the cause of its low recall for Switch. We learned that only one third of the
IPv4 addresses in this network have monotonically increasing IP IDs.

Limitations and Future Work. Because ICMP rate limiting could be trig-
gered at thousands of packets per second, Limited Ltd. requires the sending
of many more packets than other state-of-the-art alias resolution techniques.
The maximum observed probing rate during the experiments for this paper
was 34,000 pps from a single vantage point during a 5 s round. On Internet2
(Switch), Midar and Speedtrap sent 164.5k (106k) and 4k (12.7k) probe pack-
ets while Limited Ltd. sent about 4,8M (12.7M) packets. In future work, we plan
to explore ways to reduce the overhead of probing and make Limited Ltd. more
scalable.

5 Ethical Considerations

Limited Ltd. works by triggering limits in routers that are there for protective
reasons. This raises ethical concerns, which we discuss below. To evaluate the
impact of Limited Ltd., we have taken two steps: experiments in a lab environ-
ment (Sect. 5.1 and AppendixA), and feedback from operators (Sect. 5.2).

5.1 Lab Experiments

We have run experiments in a lab environment on conservatively chosen hard-
ware (over 10 years old) to show that Limited Ltd. has a controlled impact. Our
findings are that: (1) routers being probed with Echo Requests by the tool remain
reachable to others via ping with a high probability; and (2) Router CPUs show
a manageable overhead at the highest probing rate, leading us to believe that our
measurements are unlikely to impact the control and data planes. (3) Both Lim-
ited Ltd. and existing measurement techniques impact troubleshooting efforts
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(e.g., ping, traceroute). Limited Ltd. does not stand out in terms of impact
compared with other accepted techniques. AppendixA details the experiments
which support these conclusions.

5.2 Real-World Operator Feedback

In addition to lab experiments, we conducted joint experiments with SURFnet
and Switch to evaluate the potential impact of Limited Ltd. The experiment
consisted in running Limited Ltd. on their routers while they were monitoring
the CPU usage. Each run lasted about 1 min. For SURFnet, we ran Limited
Ltd. on two Juniper routers: an MX240 and an MX204. The operator observed a
4% and 2% CPU overhead. The operator also told us that the CPU overhead was
observed on the MPC (line modules) CPU and not the central routing engine
CPU. For Switch, we ran Limited Ltd. on three Cisco routers: an NCS 55A1, an
ASR 9001, and an ASR-920-24SZ-M. On the two first routers, the operator told
us that there was no observable change in CPU utilization. On the third router,
which has a lower CPU capacity than the two others, the operator observed a
CPU overhead up to 29%. These results confirm our belief that Limited Ltd. is
unlikely to impact the control and data planes.

6 Conclusion

This paper presents Limited Ltd., a new, high-precision alias resolution technique
for both IPv4 and IPv6 networks that leverages the ICMP rate limiting feature
of individual routers. We have shown that ICMP rate limiting can generate loss
traces that can be used to reliably identify aliases from other interfaces. Limited
Ltd. enables IPv6 alias resolution on networks composed of Juniper routers that
the state-of-the-art Speedtrap technique is not able to identify. As a part of our
future work, we plan to enhance the efficiency of Limited Ltd. and explore the
use of ICMP rate limiting for fingerprinting individual routers. Both the source
code for Limited Ltd. and our dataset are publicly available4.
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Fig. 5. Maximum loss rates

A Ethical Considerations

A.1 Precautions Taken

We take two precautions, that we understand to be community best practice: We
sent all probing traffic from IP addresses that were clearly associated via WhoIs
with their host locations, either at our institution or others hosting PlanetLab
Europe nodes. We have also set up a web server on the probing machines with a
contact email, so that any network operators could opt out from our experiment.
We received no notice whatsoever from network operators expressing concern
about our measurements. Though this is a positive sign, it could be that there
are impacts that were not noticed, or that the concerns did not reach us. We
therefore pushed our examination further, as detailed in the following sections.

A.2 Impact on Other Measurements

Limited Ltd.’s find rate() aims to find an ICMP Echo Request probing rate
that produces an Echo Reply trace with a loss rate in the [0.05, 0.10] range.
While it is searching for this rate, it can induce a loss rate above 0.10. If it does
so, it proceeds to a binary search to find a lower probing rate for which traces
falls within the desired range. Figure 5 shows that loss rates can go as high as
0.60.

The impact on reachability for the IP addresses of that node is that there is a
worst case 0.60 probability that a single ping packet to such an address will not
receive a response if it arrives at the node during the five seconds of highest rate
probing time. Most pings occur in series of packets, so the worst case probabilities
are 0.36 for two ping packets being lost, 0.22 for three, 0.13 for four, 0.08 for five,
and 0.05 for six. These are worst case probabilities for the five seconds at highest
loss rate. Average reachability failure probabilities are 0.22 for one ping packet,
0.05 for two, 0.01 for three, and so on, while a node is being probed at its highest
rate. To judge whether such a level of interference with other measurements is
exceptional, we compare it to the impact of the state-of-the-art Midar tool.
Midar has a phase during which it elicits three series of 30 responses each,
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Fig. 6. Example erroneous traceroute result

using different methods for each series: TCP SYN packets, to elicit TCP RST or
TCP SYN-ACK responses; UDP packets to a high port number, to elicit ICMP
Destination Unreachable responses; and ICMP Echo Request packets, to elicit
ICMP Echo Reply responses [26]. The probing rate is very low compared to
Limited Ltd.: a mere 100 packets per second across multiple addresses. This is
not a concern for the TCP and ICMP probing. However, the UDP probing taps
into an ICMP rate limiting mechanism that tends to be much less robust than
the typical ICMP Echo Reply mechanism on some routers. ICMP Destination
Unreachable messages are often rate limited at 2 packets per second, which is
1/500th the typical rate at which ICMP Echo Reply messages are rate limited.
(For example, the default rate at which Cisco routers limit ICMP Destination
Unreachable messages is 1 every 500 ms.)

We found that, when an IP address is a traceroute destination, Midar can
completely block ICMP Destination Unreachable messages coming from that
destination. Figure 6 illustrates the impact. The figure shows two traceroute
results, the top one from before or after Midar being run, and the bottom
one during Midar probing. During the Midar run, we see that traceroute
receives no responses while it is probing hop 15, where the destination is in
fact to be found. The normal functioning of traceroute is to continue probing
at higher and higher hop counts. Only a few seconds later, when traceroute is
sending probes to hop 20, does it start to receive ICMP Destination Unreachable
messages from the destination. The result is an erroneous traceroute, indicating
that the destination is five hops further away than it actually is. We observed
this erroneous traceroute effect on 2,196 IP addresses out of a dataset of 10,000
IPv4 addresses collected from across the Internet. For both Limited Ltd. and
Midar, transient interference with other measurements can be observed for the
few seconds during which an IP address is being probed. Our conclusion is not
that the diminution in ping reachability induced by Limited Ltd. is necessarily
anodyne. Care should be taken to circumscribe this effect. But we observe that
it does not stand out in terms of its impact on other measurements.

CPU Usage. We now examine the CPU overhead generated by Limited Ltd.,
and its potential impact on the forwarding plane and other features involving
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the CPU. We have run an experiment in a local network with our own Cisco
(model 3825, IOS 12.3) and Juniper (model J4350, JunOS 8.0R2.8) routers. The
experiment consists in measuring three metrics while find rate() routine of
Limited Ltd., which has the highest probing rate, is running. We measured: (1)
The CPU usage of the router, (2) the throughput of a TCP connection between
the two end hosts, and (3) the rate of BGP updates. ICMP rate limiting is
configured on both our Juniper and Cisco routers with an access list [10,21],
limiting the ICMP input bandwidth destined to the router to 1,000 packets per
second, which is the default configuration on Juniper routers.

TCP throughput was unaffected, at an average of 537 Mbps and BGP updates
remained constant at 10 per second. CPU usage was at 5% for Cisco and 15% for
Juniper when Limited Ltd. was not probing. During the probing, the maximum
overhead was triggered for both at a maximum probing rate of 2,048 packets
per second, with a peak at 10% for Cisco and 40% for Juniper during 5 s. Our
conclusion is that there is an impact of high probing rates on CPU, but we do
not witness a disruptive impact on either the data plane (TCP throughput) or
the control plane (BGP update rate).
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Abstract. Uncovering the Internet’s router graph is vital to accurate
measurement and analysis. In this paper, we present a new technique for
resolving router IP aliases that complements existing techniques. Our
approach, Alias Pruning by Path Length Estimation (apple), avoids
relying on router manufacturer and operating system specific implemen-
tations of IP. Instead, it filters potential router aliases seen in traceroute
by comparing the reply path length from each address to a distributed
set of vantage points.

We evaluated our approach on Internet-wide collections of IPv4 and
IPv6 traceroutes. We compared apple’s router alias inferences against
router configurations from two R&E networks, finding no false positives.
Moreover, apple’s coverage of the potential alias pairs in the ground
truth networks rivals the current state-of-the-art in IPv4, and far exceeds
existing techniques in IPv6. We also show that apple complements exist-
ing alias resolution techniques, increasing the total number of inferred
alias pairs by 109.6% in IPv4, and by 1071.5% in IPv6.

1 Introduction

Uncovering the Internet’s router graph is vital to accurately analyzing and mea-
suring the Internet. The current tool for uncovering the Internet’s topology,
traceroute [12], only exposes the IP addresses of router interfaces. Collapsing
that to a router-level topology requires first resolving the IP address aliases for
each router, a process known as alias resolution.

The current state-of-the-art alias resolution techniques rely on exploiting
implementations of the IP on routers, such as how a router responds to Des-
tination Unreachable packets [8,14] and populates the IP-ID field [7,15,16,25].
However, implementations can differ between router manufacturers and oper-
ating systems, limiting their ability to resolve aliases. Moreover, current RFC
recommendations advise against setting the IP-ID field in IPv4 [26], and IPv6
only includes the IP-ID field for fragmented packets.

We present an alternative approach to alias resolution that avoids relying
on IP implementations specific to router manufacturers and operating systems,
and that resolves aliases in IPv4 and IPv6. Our approach, called Alias Prun-
ing by Path Length Estimation (apple), relies only on the fact that routers in
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the Internet generally use destination-based forwarding. After inferring poten-
tial router aliases in traceroute graphs, we corroborate them with pings from
geographically and topologically distributed vantage points (VPs). Our hypoth-
esis, which we validate against ground truth from two networks (Sect. 5), is that
path lengths between a router and a VP remain mostly the same regardless of
the source address, allowing us to distinguish between valid and invalid router
aliases using reply path lengths.

In this paper, we make the following contributions,

– we present apple, a novel technique for inferring router aliases using reply
path length;

– we compare apple’s alias resolution inferences against a combined 71 router
configurations from two large R&E networks, with no false positives; and

– we show that apple complements existing alias resolution techniques, increas-
ing the total number of inferred router alias pairs of addresses by 109.6% in
IPv4 and by 1071.5% in IPv6.

2 Previous Work

The earliest reliable alias resolution techniques, Mercator [8] and iffinder,
try to induce ICMP Destination Unreachable responses. Some routers report
the transmitting interface address when originating Destination Unreachable
packets, indicating that the probed and transmitting interface addresses alias the
same router. UAv6 [22] extends this idea, sending probes to unused addresses
in /30 and /126 subnets. These techniques exploit implementations of ICMP
packet generation, but many routers either report the probed address or do not
respond to the probes, limiting their effectiveness.

Other approaches draw inferences from the IPv4 IP-ID field, used to aid
reassembly of fragmented packets, that some routers populate using a shared
counter for all of their interfaces. The Rocketfuel [25] component Ally compares
pairs of addresses to see if the IP-IDs increase at similar rates. RadarGun [7]
removes the need to compare each pair of addresses separately, sampling and
comparing the IP-IDs for all addresses at once. midar [15] also collects and ana-
lyzes IP-IDs, but ensures that the IP-IDs of inferred aliases form a monotonically
increasing sequence. To address the absence of the IP-ID in normal IPv6 packets,
Speedtrap [16] attempts to induce fragmented ICMP Echo Replies with IP-IDs,
but some routers do not fragment packets in IPv6. In general, the future of IP-
ID-based alias resolution is uncertain, as current IETF recommendations advise
against setting the IP-ID in IPv4 packets outside of packet fragmentation [26].

Like apple, some techniques derive router aliases from the interface graph
generated by traceroute. Spring et al. [24] assumed that most routers report
the inbound interface address in response to traceroute probes, inferring aliases
when addresses share a common successor. As we describe in Sect. 3, this tech-
nique tends to incorrectly infer aliases in the presence of off-path addresses,
L3VPN outbound responses, hidden MPLS tunnels, and multipoint-to-point
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Fig. 1. Routers typically report the address of the interface that received the traceroute
probe (inbound address).
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(a) Traceroutes
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(b) Router graph.

Fig. 2. The traceroutes in (a) suggest the possible router graph in (b).

links. apar [10] and kapar [13] try to discover router aliases by aligning tracer-
outes from multiple vantage points. When multiple ends of the same link appear
in different traceroutes, they infer that addresses seen adjacent to the link are
aliases of the link routers. Current graph analysis techniques suffer from false
router alias inferences.

Furthermore, our technique is not the first to use the TTL in the reply packet
(reply TTL) to guide alias resolution. Vanaubel et al. [29] used the reply TTL
to fingerprint router manufacturers, and Grailet et al. [9] used those fingerprints
to restrict the possible alias pairs inferred via other techniques. Unlike apple,
they used the reply TTL to restrict the search space, not to identify alias pairs.

Most recently, Hoiho [18] automatically learned regular expressions for
extracting router name information from DNS hostnames, with the potential
to provide valuable router alias constraints. As future work, we hope to use
Hoiho to improve apple’s router alias inferences.

Our technique avoids many of the pitfalls inherent to prior techniques for
three reasons. First, many routers that respond to the traditional pings that we
send do not respond to probes specifying unused ports or invalid host addresses,
or always report the probe destination address. Second, we do not rely on features
of the IP header specific to IPv4 or IPv6, ensuring it generalizes to both IP
versions. Third, we make no assumptions about IP link prefixes and do not accept
potential aliases indicated by traceroute graphs without additional evidence.

3 Common Successor Alias Resolution

Before describing our technique, we briefly discuss traceroute interpretation and
the problems with relying solely on common successors for alias resolution. Con-
ventional traceroute interpretation assumes that when a router responds to a
TTL-expiring probe, it reports the address of the interface that received the
probe, known as the inbound address (Fig. 1). Since an interface often con-
nects its router to exactly one other router, if two addresses both precede a
third address in different traceroutes, then the two addresses might belong to
the same physical router. This occurs in Fig. 2a, where the addresses a and b
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Fig. 6. Invisible MPLS tunnels make R1

and R3 appear interconnected with R2.

have the common successor c. Assuming that c is the inbound interface on its
router, and that c connects to exactly one other router, we could infer that a
and b belong to the same router (Fig. 2b). Unfortunately, many potential prob-
lems, most prominently multipoint-to-point links, off-path addresses, Layer 3
Virtual Private Networks (L3VPN), and invisible Multiprotocol Label Switch-
ing (MPLS) tunnels, confound common successor alias resolution.

Multipoint-to-Point Links. Common successor alias resolution assumes that
router interconnections occur over point-to-point links, but IP links can con-
nect more than two routers. Multipoint-to-point links typically connect routers
using layer 2 switches, allowing more than two routers to interconnect using
the same IP subnet. In Fig. 3 the switch connects R1, R2, and R3, so a and b
belong to different routers but precede the inbound address c. Internet exchange
points (IXPs) often use multipoint-to-point links to connect their participant’s
routers [3,5].

Off-Path Addresses. Even when routers connect over a point-to-point link, off-
path addresses can violate the inbound address assumption. While some routers
always respond with the inbound address [4], others adhere to RFC 1812 [6] and
report the address of the interface used to respond to the traceroute probe. When
such a router uses different interfaces to receive and reply to a traceroute probe,
the router reports the off-path address instead of the inbound address [11].

In Fig. 4, R2 received the traceroute probe through interface d but sends the
reply through c, and puts c in the source address field in the reply packet. As a
result, c appears immediately after b in the traceroute. If in another traceroute
R2 receives and replies to a probe through c, a might also appear prior to c.

Layer 3 Virtual Private Networks. Like off-path addresses, L3VPNs violate the
inbound address assumption. When L3VPN exit routers respond to traceroute
probes, they report the address of the outbound interface that would have
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Fig. 7. Paths from a VP to different addresses on a router might differ (a), but the
router to VP paths are often the same regardless of source address (b).

continued forwarding the packet toward the destination [17,20], rather than
the inbound interface address or a traditional off-path address. Consequently,
addresses on any prior router could precede the outbound address in a tracer-
oute. In Fig. 5, R2 reports the outbound address c, so a and b appear prior
to c.

MPLS Tunnels. The fourth prominent reason is that MPLS tunnels might vio-
late the assumption that adjacent hops in traceroute indicate directly connected
routers. Invisible MPLS tunnels can cause addresses from unconnected routers
to appear adjacent in a traceroute path [27,28]. When a probe packet enters an
MPLS tunnel, the entry router encapsulates the probe inside an MPLS packet.
Network operators can either configure the router to propagate the TTL from
the encapsulated packet, or use a default value. The tunnel routers only decre-
ment the TTL in the MPLS packet header, and not the probe’s TTL, so if the
entry router does not propagate the TTL, the exit router’s response appears
immediately after the entry router’s response. This occurs in Fig. 6, where R1

and R3 do not propagate the probe packet TTL to the MPLS header, so R2’s
response appears immediately subsequent to the responses from R1 and R3.

4 Methodology

Clearly, the fact that two addresses share a common successor does not always
mean that the two addresses belong to the same router. However, common suc-
cessors can help constrain the process of alias resolution by providing an initial
set of possible router aliases. Our goal is to find pairs of addresses that belong to
the same router (alias pairs) among addresses that share a common successor.

We infer that a pair of addresses belong to the same router by comparing the
reply paths from each address to several vantage points (VPs). While the path
from a VP to different addresses on the same router might differ significantly
(Fig. 7a), especially when the addresses have different longest matching prefixes,
all responses from the router to a given VP use the same destination address, and
we hypothesize that they often share the same path (Fig. 7b). This follows from
the fact that routers primarily forward packets according to their destination
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Fig. 8. Based on the traceroutes (a), we create the interface graph (b). We exclude
(z, s2) due to the unresponsive hop between them. Using the incoming edges for s1 and
s2 we create the potential router alias sets (c).

addresses, so the path from a router to the same destination should mostly
remain the same regardless of source address. Thus, we discard potential alias
pairs when we infer that a sufficient number of the reply paths differ. We discuss
how we make this decision in Sect. 4.2.

When a router originates an IP packet to a VP, that packet does not record
the actual path that it traversed, but the packet does include a TTL value
that routers decrement as they forward it to the VP. Routers typically initialize
that TTL to either 32, 64, 128, or 255 [27,29], and the same router will always
initialize the TTLs with the same value. Thus, when a VP receives a reply packet
from a router, the TTL value in the packet header (reply TTL) indicates the path
length from the router to the VP.

Our approach, apple, relies on the path length indications given by reply
TTLs to evaluate the similarity of reply paths between addresses in potential
alias pairs. apple performs this alias resolution in two steps. First, apple uses
traceroutes to group the addresses according to common successors (Sect. 4.1).
Second, apple evaluates potential alias pairs in each group, filtering unlikely
pairs based on their reply TTLs (Sect. 4.2).

4.1 Group Addresses by Common Successor

In order to create the potential alias pairs for evaluation, we group addresses
according to common successors. To do so, we represent the traceroutes in our
collection with a directed interface-graph. First, we truncate each traceroute at
the first occurrence of a repeated address separated by at least one other address.
These address cycles [30] indicate forwarding loops, violating our assumption
that a traceroute continually moves away from the initiating VP. We also strip
the last traceroute hop if it responded with an ICMP Echo Reply, since routers
always report the probed address in Echo Replies, violating the inbound interface
address assumption [17,19,21]. Then we create an edge from each address to the
next hop, provided no unresponsive hops separate the addresses in traceroute.

In Fig. 8, we use the traceroutes in Fig. 8a to create the graph in Fig. 8b. We
construct an edge from each address to its successors, except from z to s2, since
an unresponsive hop separates them. Then, we create the sets of possible router
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Fig. 9. Reply TTLs to 8 VPs from each address in the possible alias pair (b, e).

aliases in Fig. 8c using the incoming edges for each node. We do not perform the
transitive closure on these sets for the reasons in Sect. 3, so both sets contain b.

4.2 Probing and Filtering Alias Pairs

After creating the common successor groups, we evaluate each potential alias
pair. First, we ping each address with a possible alias pair from every VP,
recording the reply TTLs. This requires O(numAddresses × numV Ps) probes,
allowing it to scale to large traceroute collections. We also run the probes from
each VP concurrently, reducing the run time to the time required for one VP.

We do not require that reply TTLs from each address in a potential alias
pair match at every VP. Instead, we require a minimum number of matches
(minimum match threshold) designed to limit the impact of random reply TTL
collisions, which we set using a generalized solution to the birthday problem [23].
With v total VPs, r unique reply TTLs per VP, and a potential alias pairs,
p(a, r, v) ≈ 1 − e(a/r

v) computes the probability that any pair of unrelated
addresses will have the same combination of values (Appendix A). The ping
probes and common successor pairs dictate r and a respectively, so we set the
minimum match threshold to the smallest v where p(a, r, v) < 1/a. We reject
any pair with fewer than v matches.

We also reject alias pairs based on the number of comparisons required to
reach the minimum match threshold. For each alias pair, we first sort the pairs
of responses according to the minimum RTT to either address. This reflects
our assumption that replies to nearby VPs generally encounter fewer network
technologies that might confound reply TTL comparison. Next, we compare reply
TTLs in sorted order until reaching the minimum match threshold, and prune
the alias pair if the ratio of matches to comparisons falls below a predetermined
acceptance threshold. In Fig. 9, we need eight comparisons to reach the required
seven matches, so we discard the pair if 7/8 = 0.875 falls below the acceptance
threshold. Defining the acceptance threshold in terms of the minimum match
threshold, and not as a fixed constant, allows it to scale with the required number
of matches.

Finally, we create transitive alias pairs based on the transitive closure of
the pairs inferred through reply TTLs. We do so by constructing an undirected
graph with the common successor alias pairs as edges. Then, we infer alias pairs
for every combination of addresses in each graph component, ensuring that our
alias pairs cover all inferred aliases of the same router.
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Fig. 11. The off-path address f succeeds both a and b. Both R1 and R2 sends replies
to the VPs through R3, so pings to a and b indicate the same reply TTLs.

4.3 Limitations

Addresses on the same router might not always have identical reply TTLs to
a VP if network or router configurations cause the replies to traverse a differ-
ent number of routers, such as load-balanced paths and L3VPN virtual routing
and forwarding (VRF) tables (Fig. 10). When load-balanced paths use different
numbers of hops, as in Fig. 10a, the reply packets traverse a different number of
routers, resulting in different reply TTLs. Similarly, some routers have multiple
virtual forwarding tables, known as VRFs, in addition to the default forwarding
table. In Fig. 10b, the router includes e in a VRF that uses a different path to
reach the VP, so the reply TTLs differ.

Conversely, we might falsely infer alias pairs when a parallel or load-balanced
path exists between the VPs and a common successor for a potential alias pair.
This occurs in Fig. 11, where R4 responded with the off-path address f , creating
a common successor for a and b. In this case, R1 and R2 are on load-balanced
paths between R3 and R4. Since all responses to the VP first go to R3, most
VPs will receive responses from a and b with the same reply TTL, causing us to
incorrectly identify (a, b) as an alias pair.

The transitive nature of alias resolution can cause cascading false inferences,
so preventing false alias pairs is paramount. Currently, topologically and geo-
graphically distributing the set of VPs provides our only defense against load-
balanced and parallel paths. As future work, we hope to investigate how to
determine the set of VPs to include and exclude for each pair to maximize the
ability of our acceptance threshold to prune incorrect alias pairs. We also plan to
experiment with including other alias resolution techniques, such as Hoiho [18],
to add additional constraints based router identifiers in DNS hostnames.
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Table 1. Statistics from our IPv4 and IPv6 ping probing (a), the ping probing VPs (b),
and the alias pairs in the ground truth for Internet2 and R&E visible in our traceroute
collections and ping probing (c). In (a) Pairs indicates the potential common successor
alias pairs among the responding addresses.

ITDK Pings Sent Probed Responses Resp. % Pairs
IPv4 04-2019 04-2019 366,469 292,141 79.7% 5,022,839
IPv6 01-2019 05-2019 76,098 16,320 78.6% 563,489

(a) Ping probing statistics.

Total ASNs Countries Cities
IPv4 99 71 37 83
IPv6 78 61 29 63

(b) VP statistics.

Total Probed Responses
IPv4 IPv6 IPv4 IPv6 IPv4 IPv6

Internet2 2176 1095 719 616 646 536
R&E 1651 137 352 137 352 137

(c) Ground truth alias pairs.

5 Evaluation

We evaluated apple on separate IPv4 and IPv6 traceroute collections (Table 1).
For IPv4 we used the traceroutes included in CAIDA’s Internet Topology Data
Kit (ITDK) for April 2019 [1]. While we ran our ping probes in the same month,
human error caused us to only ping 83.4% of the addresses seen prior to a
Time Exceeded or Destination Unreachable reply. The ITDK also includes a
combination of midar and iffinder alias resolution, allowing us to compare
apple against existing techniques. For our IPv6 evaluation we use traceroutes
from the January 2019 ITDK [2], the most recent ITDK to include IPv6 alias
resolution. We pinged 366,052 and 75,979 IPv4 and IPv6 addresses respectively
from 99 VPs in 83 different cities for IPv4 and from 78 VPs in 63 cities for IPv6.

We compared apple’s alias pair inferences against router configurations from
Internet2 and another large R&E network in the United States (Table 1c). Our
evaluation focuses on the alias pairs that apple inferred and those visible in the
traceroute collections. First, we set the minimum match threshold, and explore
the trade-offs between the positive predictive value (PPV) and the true positive
rate (TPR) related to the acceptance threshold. Then, we evaluated apple’s
TPR by comparing it against the ground truth router configurations (Sect. 5.2),
and compared the alias pairs generated by apple to those found by state-of-the-
art alias resolution techniques (Sect. 5.3). Finally, we explore how the number of
VPs affects apple’s accuracy (Sect. 5.4).

5.1 Evaluating Input Parameters

Before evaluating our results, we set the minimum match and acceptance thresh-
olds from Sect. 4.2. To set the minimum match threshold, we first need to deter-
mine the possible reply TTLs seen at a given VP. For each VP, we grouped



258 A. Marder

IPv4 IPv6
IP Version

0%

5%

10%

15%

20%

%
of

A
ll

V
P

R
ep

ly
T

T
L
s Max % of Single Reply TTL Per VP

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of VPs

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

of
O

ve
rl

ap

IP
v4

p
(1
4)

≤
2.
5e

−
08

IP
v6

p
(1
7)

≤
3.
7e

−
07

Probability of Reply TTL Overlap

IPv4
IPv6

)b()a(

Fig. 12. Using the maximum percentage of all reply TTLs at a VP accounted for by a
single value (a), we approximate the probability of reply TTL collision (b).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Acceptance Threshold Value

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

P
os

it
iv

e
P

re
di

ct
iv

e
V

al
ue

(P
P

V
)

.7
8
–
N
o
F
al
se

P
os

it
iv
es

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Acceptance Threshold Value

T
ru

e
P
os

it
iv

e
R

at
e

(T
P

R
)

Impact of the Acceptance Threshold on PPV and TPR
Internet2 IPv4Internet2 IPv4 R&E IPv4Internet2 IPv4 R&E IPv4 Internet2 IPv6Internet2 IPv4 R&E IPv4 Internet2 IPv6 R&E IPv6

Fig. 13. The acceptance threshold impact on precision and the true positive rate. Lines
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responses by their reply TTL, selected the largest group, and computed the frac-
tion of all responses to the VP included in the group, e.g., for a VP with replies
[55, 59, 55, 53], 55 has the most responses, accounting for 50% of the responses
seen by that VP.

Figure 12a shows the distribution of these fractions across the VPs in our
experiments. No reply TTL accounted for more than 10%/20% of the responses
to an individual VP in IPv4/IPv6, so we set the number of possible replies per
VP to r = 1

0.1 = 10 in IPv4 and r = 1
0.2 = 5 in IPv6. Using the number

of possible alias pairs (a) from Table 1a, we computed the lower bound on the
probability of an anomalous match for 1–20 VPs (Fig. 12b). The smallest number
of VPs that reduces the probability to less than 1

a is 14/17 for IPv4/IPv6, so we
set the minimum match threshold to those values in the remaining experiments.

Next, we investigated the trade-off between excluding false alias pairs and
discarding valid pairs using the acceptance threshold. When the ratio of matching
reply TTLs to comparisons falls below the acceptance threshold, we discard the
pair. In this analysis, we exclude transitive pairs, and only evaluate the common
successor pairs with at least the minimum number of required matches.
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As seen in Fig. 13, increasing the acceptance threshold removes false alias
pairs but decreases coverage. Generally, we value increased PPV when inferring
alias pairs, rather than increased TPR, since the transitive nature of alias reso-
lution tends to cascade false inferences. We use an acceptance threshold of 0.78
in the remaining evaluation, preventing all false alias pairs in our ground truth.

5.2 Evaluating APPLE’s Accuracy

Using the parameters from Sect. 5.1, we validate apple’s alias pair inferences
against our two ground truth networks. These parameter settings eliminated all
of the incorrect alias pairs, so we only present the true positive rate (TPR),
which indicates the fraction of alias pairs in the ground truth that we detected.
In this evaluation, we also include the transitive alias pairs in the results.

Figure 14 shows the TPR for IPv4 and IPv6. The Responded TPR refers to
the alias pairs where both addresses responded to the ping probing, indicating
the practical ceiling for our performance. apple generally performs better for
R&E than Internet2, possibly due to the extensive use of L3VPNs in Internet2.
For IPv4, the TPR for R&E exceeds 80%, and for Internet2 apple found 43.8%
of the alias pairs. apple achieves worse coverage for IPv6, with TPRs of 73.0%
and 37.9% for R&E and Internet2 respectively. We remain unsure what caused
the difference in coverage between IPv4 and IPv6, but ruled out insufficient
responses to VPs in common.

Figure 14 also provides the coverage for all of the possible alias pairs in
the traceroute collections (All TPR). Since the number of inferred alias pairs
remained the same, while the number of missing pairs increased, the coverage is
worse when considering all visible alias pairs. Overall, apple found 13.0%–17.3%
of the IPv4 alias pairs and 18.5%–73.0% of the IPv6 alias pairs.

5.3 Comparing APPLE’s Coverage to Current Techniques

Next, we show that apple complements current alias resolution techniques by
finding additional alias pairs. Specifically, we compare apple to the alias res-
olution datasets included in the ITDKs, which analyze all intermediate hop
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Fig. 15. Comparing apple to iffinder+midar in IPv4 (a) and Speedtrap (b) in
IPv6, for all addresses seen in the traceroute collections. Each graph shows the TPR
for Internet2 and R&E, and the total number of alias pairs.

addresses in the traceroute collection. In IPv4, the ITDK uses a combination of
iffinder [14] and midar [15], and in IPv6 it uses SpeedTrap [16]. Both midar
and Speedtrap rely on global IP-ID counters, and prioritize minimizing false
alias pairs.

As seen in Fig. 15, apple adds alias pairs for both networks in IPv4 and
IPv6, exceeding the ITDK’s alias resolution coverage for all but R&E in IPv4,
despite only comparing common successor alias pairs. In total, combining apple
and the ITDK increased the number of inferred alias pairs for the entire tracer-
oute collection, and not just those seen in the ground truth, by 109.6% in IPv4
and by 1071.5% in IPv6, over the ITDK alias resolution alone. The increased
coverage is especially important for IPv6 (Fig. 15b), which does not include the
IP-ID in the normal IP packet header. Speedtrap only works when it can induce
fragmentation and expose a global IP-ID counter on a router. This does not work
for Juniper routers [16], used for all routers in the Internet2 ground truth and
three of the R&E routers. It also did not resolve any aliases for the nine Cisco
routers in R&E with multiple addresses in the traceroutes. All of Speedtrap’s
alias pair inferences in our ground truth include addresses on Brocade routers.

5.4 Reducing the Number of VPs

Our final experiment shows the impact of fewer VPs on apple’s accuracy. We re-
ran our experiments for IPv4 with the same parameters, but artificially limited
the number of VPs. We experimented with random groups of VPs from 15 to 95
in increments of five, using the same IPv4 parameters as before.

Figure 16 shows the precision and recall of the ten random groups created
for each increment, excluding the transitive pairs. apple filters out all incorrect
R&E alias pairs, but keeps incorrect Internet2 pairs for 50 of the 160 groups.
Increasing the acceptance threshold to 0.85 removes all false alias pairs for 32 of
those groups with little effect on the TPRs, suggesting that we set the acceptance
threshold too low. Interestingly, for the false alias pairs in this experiment, the
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Fig. 16. We re-ran our experiments for IPv4 but limited the available VPs.

VPs with shorter RTTs to the addresses in the false alias pairs generally see
mismatched reply TTLs more frequently than those further away. As future
work, we plan to investigate weighting VPs according to their relative RTT to
the addresses in a potential alias pair.

6 Caveats

Although we found no incorrect alias pairs when validating against our ground
truth using the full set of VPs, we have anecdotal evidence that apple
draws incorrect inferences in some cases. The addresses (89.149.137.33,
141.136.108.26) provide an example of a likely incorrect alias pair outside
of our ground truth. Their DNS hostnames xe-11-0-5.cr2-sjc1.ip4.gtt.net
and xe-4-1-1.cr1pao1.ip4.gtt.net indicate that one address is on a router
in Palo Alto, while the other is on a router in San Jose. As future work, we hope
to improve the precision of our approach by gathering more ground truth and
incorporating other constraints, like parsing DNS hostnames [18], in addition to
the reply TTL.

7 Conclusion

We presented apple, a technique for resolving router aliases seen in traceroute
using reply TTLs. We intend for apple to complement, rather than replace,
existing alias resolution techniques; combining apple with existing alias resolu-
tion techniques yielded 109.6% and 1071.5% more alias pairs in IPv4 and IPv6
respectively. Despite perfect precision compared to ground truth, we expect some
false positives in apple’s inferred alias pairs. We plan to continue experiment-
ing and improving apple to increase its reliability. We also plan to release our
source code, allowing other researchers to use and improve on our technique.

Acknowledgments. We thank kc claffy, Matthew Luckie, and Young Hyun for their
invaluable feedback. This work was supported by NSF grants OAC-1724853 and OIA-
1937165.
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A Generalizing the Birthday Problem to Alias
Resolution

The birthday problem computes the probability that any combination of n people
share the same birthday. A common approximate general solution [23] takes the
form,

p(n, d) ≈ 1 − exp
(
n(n − 1)

2d

)
,

where d is the number of days in the year. Of note, the n(n−2)
2 term corresponds

to the number of possible two-person combinations. Using a to represent the
number of combinations, the equation takes the form,

p(a, d) ≈ 1 − exp
(a

d

)
.

Applying this equation to our problem, we first replace the number of combi-
nations with the number of potential alias pairs. Second, we must determine the
potential reply space for each address. When an address replies to a VP, the VP
sees a reply TTL from the space of possible reply TTLs, r. If we assume that a
reply TTL to one VP is independent of all the others, then the potential reply
space for an address is rv. Practically, we consider rv an upper bound on the
possible combinations, since we expect that the network topology and control
plane create dependent probabilities. Plugging rv in for d we get the approximate
probability that a pair of addresses will have the same combination of replies to
all v VPs,

p(a, r, v) ≈ 1 − exp
( a

rv

)
.

To limit collisions, while maximizing the number of true alias pairs, we use the
smallest value of v such that p(a, r, v) < 1/a.
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Abstract. Adult content constitutes a major source of Internet traffic.
As with many other platforms, these sites are incentivized to engage
users and maintain them on the site. This engagement (e.g., through
recommendations) shapes the journeys taken through such sites. Using
data from a large content delivery network, we explore session journeys
within an adult website. We take two perspectives. We first inspect the
corpus available on these platforms. Following this, we investigate the
session access patterns. We make a number of observations that could
be exploited for optimizing delivery, e.g., that users often skip within
video streams.

1 Introduction

The Internet has evolved from a largely web-oriented infrastructure to a mas-
sively distributed content delivery system [10]. Video content has become partic-
ularly popular, and we have therefore seen a range of studies investigating the
usage and access patterns of major portals, e.g., user-generated content (UGC)
[5,16], video on demand (VoD) [23], Internet TV (IPTV) [6] and catch-up TV
[1,13]. A particularly prevalent form of online video is that of adult content,
i.e., pornographic material [3]. In the last five years there has been a surge of
research activity in this space, attempting to characterize the content corpus of
sites [18,20], the workload of sites [3,24] and the use of adult social networks [19].
Despite this, we still lack the breadth and depth of understanding common to
many other aspects of online video delivery.

Due to the paucity of data, there is a particular lack of understanding related
to the unique workload that such websites place on the infrastructure of a Con-
tent Delivery Network (CDN). Particularly, there has been limited work explor-
ing the per-session content request patterns on these portals. Thus, in this paper,
we present a large-scale analysis of access patterns for a major adult website, with
a focus on understanding how individual viewer decisions (or “journeys”) impact
the workload observed.

To achieve this, we bring together two key datasets. We have gathered data
from a large CDN, covering 1 h of access logs for resources hosted served by the
c© Springer Nature Switzerland AG 2020
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site. This covers 20.08M access records, 62K users and 3.28 TB of exchanged data.
Although this offers fine-grained insight into content request patterns, alone is it
insufficient. This is because modern adult websites also consist of a large body
of surrounding “meta” interactions, including categories and ranking of content.
Hence, we also gather metadata about each access by scraping the web content
itself, e.g., content category and upload date.

In this paper, we look into three aspects of operation. First, we inspect the
corpus and workload served by the platform (Sect. 4). Despite its prominence as
a video portal, the access logs are dominated by image content, primarily serv-
ing thumbnail content. That said, we find that the majority of bytes served is
actually for video content, primarily due to it voluminous nature. Video content
tends to be relatively short, with subtle variations observed across the cate-
gories. Popularity across these resources is highly skewed though: the top 10%
of videos contribute 73.7% of all accesses. This leads us to explore the specifics
of per-session access patterns on the site (Sect. 5). We see that, for instance, the
majority of sessions limit accesses to one or two categories. This leads us to
inspect where accesses come from. The majority of views arrive from the main
video page, but we also observe a number of views from the homepage and search
function. Finally, we discuss potential implications from our work (Sect. 6). We
find that this genre of material is highly cacheable, and briefly test the efficacy of
city-wide edge cache deployment. We conclude by proposing simple innovations
that could streamline delivery (Sect. 7).

2 Background and Related Work

Pornography is amongst the most searched for content on the web [14,22].
Although this topic remains a taboo in some research fields, there has been
an expanding body of research into the video platforms that drive its delivery.
We have seen recent work inspecting the content corpus of popular adult web-
sites [18,20] and their workloads [3,12,24,25] as well as various studies that have
attempted to estimate the load that they create on the wider Internet. For exam-
ple, [14] estimates that Porn 2.0 sites such as xHamster and YouPorn can gain
up to 16 million views per month.

There have also been a number of related studies that have explored the topic
of online pornography more generally, e.g., privacy [21]; automated recognition
and classification [9,11]; interest recommendations [17]; and security issues [22].
This paper presents one of the first large-scale studies of an online adult mul-
timedia delivery service. That said, there are a multitude of studies into more
traditional video streaming systems that already provide some insight. These
include catch-up TV [1,13], user generated content [5,16,26], Video-on-Demand
[23] and IPTV [6,7]. These insights have been used to drive a range of model-
ing and systems research activities, e.g., building content popularity models [8],
optimized caching techniques [1] and improved delivery schemes [4]. The paucity
of data related to adult video access, however, makes it difficult to appreciate the
applicability of these technologies to this particular field. We write this paper to
shed insight into the session-level specifics of adult content access patterns.
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3 Methodology and Data

The work in this paper relies on two key datasets. First, we utilize a dataset pro-
vided by a CDN, which captures access logs to an anonymous major adult video
content provider. Second, we compliment this with web metadata surrounding
each video in the access logs.

3.1 CDN Data

We first describe the basic features of the CDN data, collected in 2019, as well
as the necessary post-processing required to extract sessions.
Data Description. We have been given access logs for web resources hosted by
a major adult video website. The data has been collected from the vantage point
of a single US-based data center operated by a major Content Delivery Network
(CDN). The dataset covers 1 h, and includes 20.08M access entries. Each log
entry maps to a single resource request, consisting of:

– Timestamp: The time when the item was requested.
– Client ID: This is a prefix preserving anonymized IP Address (so that we can

approximate client location).
– Resource: The web resource requested.
– User Agent: This is the user-agent identifier included within the HTTP

request header. This allows us to differentiate mobile from desktop users.
– HTTP Referrer: This is the Referrer from the HTTP request header; it pro-

vides the URL that the client was redirected from.
– City ID: Using Maxmind, the anonymized IP addresses are mapped to their

geolocation. Only requests for which the coordinates have an estimated accu-
racy of less than 20KM are tagged. This covers 75.91% of all requests. Each
city is then associated with an anonymized numerical City ID.

Identifying Sessions. For the CDN traces, we take a simple but effective way
of mapping the requests to sessions. For each log entry, we generate a session
identifier by computing the following hash: SHA256(IP Address, Device, Browser).
We then group requests into individual sessions using their identifiers. Overall,
the data covers 62K unique user sessions. To remove incomplete sessions, we
extract all sessions that contain requests within the first or last 5 min of the trace,
and then filter them from the rest of the logs. This removes 15% of requests. Note
that we also performed our analysis on the unfiltered data and only found slight
differences.

3.2 Web Scrape Data

The CDN logs offer fine-grained insight into individual access patterns, but no
metadata related to the content being accessed. Hence, we scrape metadata from
the website front end for each video contained within the CDN dataset. The web
scrape data, for each video, includes the category, the global view counter, the
number of likes/dislikes and any associated hashtags. In total we gathered this
metadata for 4.9 million videos, covering 91.1% of all videos in the CDN traces.
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3.3 Ethical Considerations and Limitations

Limitations. We emphasize that the duration of our trace data limits our
ability to make generalizable statements, particularly pertaining to longitudinal
trends. Critically, this creates a clear bias towards shorter sessions that do not
exceed an hour (we filter out longer sessions that do not entirely fall within the
measurement period). Another limitation is that the data only covers a single
portal from the vantage point of a single data center. Hence, we cannot quantify
to what extent this applies to alternative deployments. We therefore temper our
later analysis with these observations; despite this, we argue that the data offers
a powerful first insight into traffic patterns within this domain.
Ethical Consideration. We took a number of steps to address ethical con-
cerns. Before receiving the logs, they were first fully anonymized by the CDN,
and there was no way to map logs back to specific users. Hence, all user identi-
fiers were removed prior to access, including cookies and source IP addresses. We
further anonymized sensitive data (such as content category tags) from the web
data, instead generating a set of neutral tags. Although this restricted “semantic”
analysis of the content, it reduced exposure to sensitive insight. Pre-processing
was done by one author, who did not perform the subsequent analysis. Further-
more, all data was stored remotely in a secure silo with restricted access to just
two authors. We obtained IRB approval.

4 Characterization of Corpus and Workload

We start by performing a basic characterization of the corpus served, as well as
the overall site workloads observed at the CDN.
Resource Type. Typical sites consist of a wide range of media. To inspect
this, we first look at the mix of content types encountered within the CDN logs.
Figure 1a presents the fraction of requests to each resource type; this shows the
distributions for both the number of requests and the number of bytes sent by
the servers. The vast majority of requests are received for image content (mainly
jpg), whereas the majority of bytes are attributed to the delivery of video content
(mp4). In total, 63.4% of bytes transferred are attributable to video content,
yet they constitute only 19.9% of requests. Closer inspection confirms that the
dominance of images is driven by thumbnails, which makes the video portal
image-heavy. We conjecture that these may be used heavily when browsing, due
to the primarily visual nature of the content.
Video Duration. The above suggests that the majority of accesses are actu-
ally driven by non-video material. Despite this, due to its voluminous nature,
the quantity of bytes transferred is dominated by video content. Hence, we next
inspect the duration of video content available. We take this from the web scrape
information, which includes the video duration. Figure 1b presents the duration
of videos on the website, as reported by the video metadata. The majority of
videos (80%) fall below 16 min, with a mean duration of 920 s. For completeness,
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Fig. 1. (a) Percentage of requests to various file formats and the percentage of total
bytes out; (b) CDF of consumed video duration based on category using all and top-5
categories. Note “All” refers to all content within any category.

we also plot the duration for videos within the top 5 most popular categories.
Note for ethical reasons, we anonymize all categories. The shortest videos fall
into the C3 category, with a mean of 657 s. This particular category of mate-
rial focuses primarily all more homemade content. In contrast, the C1 category
(which contains more professional material) has a longer mean duration (1086 s).
That said, these categories show strong similarities in their distribution, showing
a bias towards shorter content items.
View Counts. We next seek to explore the popularity distribution of the
resources within our logs. Figure 2a presents the CDF of the number of requests
we observe per-object, taken from the CDN logs. We observe a clear skew, where
the majority of accesses are accumulated by a small number of videos: The top
10% of videos contribute 73.7% of all accesses.

This, however, can be deceptive as videos are quite diverse (e.g., in terms of
duration), and many of the objects downloaded are non-video. Hence, Fig. 2b
complements these results by presenting the CDF of the number of chunks
requested per video. Each chunk represents a subset of the overall video con-
tent. This provides insight into the number of sub-requests triggered by each
video being consumed: By definition, longer videos will generate more chunk
requests. Again, we separate chunks into their respective anonymized categories.
We see that the vast majority of video fetches result in under 10 chunks being
served. Initially, one might assume that this is simply because the videos are
short. However, we find that the low fetch rates are also driven by user skipping
and cancellations, leading to only subsets of a video’s chunks be downloaded. We
revisit this observation in Sect. 5.
Category Affinity. The above has shown that there are subtle differences
between categories of content, e.g., in terms of duration. A complicating factor
is that many videos are tagged by multiple categories. On average, each video has
7 category tags. Hence, we next briefly test the coexistence between categories
to identify commonly paired tags. To quantify this, we compute the fraction of
the pair-wise coexistence of the top 6 categories and present the results as a
heatmap in Fig. 3a. To compute this, we calculate the fraction of videos from
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Fig. 2. (a) Number of requests per object; (b) Distribution of video chunk per video
request

Fig. 3. (a) Heatmap showing the fraction of the pair-wise coexistence for the five most
popular categories; (b) Heatmap normalised by the total number of videos (across all
categories).

each category that also are tagged with another category. For completeness,
Fig. 3b also normalizes the fraction based on the total number of videos. We
confirm that there are varying levels of category co-location. In some cases, co-
location is quite high, e.g., 29.4% of videos tagged as C2 are also tagged a C3. In
contrast, other categories are far less co-located, e.g., less than 5% of C1 videos
are co-located with C3. There are certain intuitive reasons for this, driven by
the semantic nature of the categories. We posit that this may offer insight into
how things like predictive caching could be introduced to such platforms.

5 Characterisation of Per-Session Journey

We have so far revealed a workload dominated by image and video content, as
well as patterns which suggest that users rarely consume entire videos. Thus, we
next proceed to focus on the behavior of individual sessions.

5.1 Intra-video Access Journeys

We first dive into the intra-video access patterns of sessions. Our focus is on
understanding how users move between chunks within a single video.
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Access Duration. We first explore the duration of time each user session
dedicates to an individual video. Note that this is different to Fig. 1b, which
is based on the video duration, rather than the access duration. To compute
this, for each video access, we extract the difference between the first and last
timestamp seen for chunks of the same video. For instance, if the first chunk of a
video were requested at t1, and the final chunk were requested as t2, we estimate
the duration as t2−t1. This offers an approximation of access duration, although
we highlight that the downloading of a chunk does not necessarily mean it is
viewed.

Figure 4a presents the results as a CDF. This shows markedly different trends
to that of Fig. 1b (which depicts the duration of the content). As expected, we
find that access durations are far shorter than the underlying content duration
that is being consumed. There are also subtle differences between the categories;
for example, the average access duration for content within the C1 category is
1086 s vs. 657 s for C3 content. Around 80% of C1 videos are consumed for under
1000 s, whereas this is closer to 90% for C3 videos. To complement this, Fig. 4b
presents a CDF of the number of bytes sent per [video, session] pair. Each data
point represents the number of bytes downloaded for each request (note one
session may generate multiple requests, even for the same resource). This shows
a rather different trends, with the around 90% of fetches resulting in under 107

bytes being sent.
Overall, both plots reveal that the majority of videos only have only a subset

of their content chunks fetched. It is worth noting that, even though videos
rarely download all their chunks, we do find that requests for individual chunks
are usually completed. 82% of individual chunk requests involve downloading in
excess of 90% of bytes, whilst only 4% download under 10% of bytes.
Cancellations and Skip Rates. The fact that many videos are not down-
loaded in their entirety is driven by a combination of two factors: (i) viewers
canceling video streams; and (ii) viewers skipping across video streams.

To get an idea of how many videos are watched sequentially, and then can-
celed towards the end, we compute the fraction of streams that request the first
90% of chunks, but lack the last 10%. We find that under 1% experience this, sug-
gesting that early cancellations and skips are most prevalent. Figure 4c presents
the skip rate of blocks. A skipped block is counted when the byte range is not
directly adjacent to the previous block high range. For example, a contiguous
block is: “100–200” and “201–300”, whereas a skipped block is “100–200” and
then “501–600”. We observe that some videos have extremely high skip ratios
(i.e., above 0.8). This confirms that viewers skip extensively within videos, and
rarely download all chunks contiguously. This has a dramatic impact on our ear-
lier results. To quantify this, we subset all videos to leave those containing at
least one skip (and remove any anomalous blocks as mentioned previously). This
leaves all videos served that have at least one skip—this covers a 75.4% of the
total requests, confirming that the majority of videos do include skips. This is
likely to differ from long-play Video-on-Demand platforms (e.g., Netflix) where
users more likely view streams contiguously.
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Fig. 4. (a) CDF of the approximate consumption for each individual video across ses-
sions for all and top-5 categories; (b) CDF of the bytes out per User/Video combination
for all and top-5 categories (c) Skipped blocks for each category.

5.2 Inter-video Access Journeys

The next aspect we inspect is how sessions move between videos.

Video Load Points. We first inspect which pages tend to drive the majority of
video views. We conjecture that different viewers might have different patterns
in this regard. To extract this information, we identify the HTTP Referrer in
each request; from this, we take the previous page the resources was loaded from.
We then map this to the page and type of object that has triggered the resource
request. Figure 5a presents the overall distribution of videos watched from a page
that users are visiting within the portal. Note that we anonymize category pages
again. The majority of resources are watched from the Video Homepage (each
video has its own page). This captures over 55% of unique videos accumulating
65.5% of bytes delivered on the site. That said, we also observe a notable quantity
of material embedded within the Site Homepage and from the Search Page. For
instance, around 45.5% of video visits come from Site Homepage. Interestingly
37% of the videos are referred from the Search Page but amassing just 5% of the
traffic. The remaining referrals are from various sub-pages within the site, most
notably several popular category pages.

Looking at this distribution in isolation, however, is insufficient to gain van-
tage into a sessions journey. This is because, as previously observed, videos are
not always viewed in their entirety. To explore this further, Fig. 5b presents the
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Fig. 5. (a) Where the videos are watched the most: 95.67% of videos are watched from
either the main page of the video, the homepage of the site and the search page (b)
Where the videos are loaded the most: Y-axis gives the ratio of bytes out and total
file size (somewhat indicating what proportion of video has been watched) across users
from various pages

fraction of bytes loaded across the various referrers previously discussed. For clar-
ity, we list only the top pages observed. The median is relatively stable across
most pages, however, there are key differences. For example, 45.69% of views
from the homepage of the site result in under 25% of video bytes actually being
loaded. This might indicate that content accessed from the front page is rarely
done with great thought. Rather, users might informally click on videos on the
chance that they might be of interest. Similarly, just 5% of video bytes are con-
sumed when redirected from the search page, suggesting that users may load a
large number of videos in the hope of finding a specific one (before canceling).
We will seek to verify these conjectures in our future work.
Inter Video Navigation. Whereas the above inspects the number of videos
loaded from a given page, it is also interesting to explore the transition of views
between videos. To compute this, we sort each user session into its temporal
order of access. This only covers video accesses. We then compute transition
points as the move between one resource request to the next. Figure 6 presents
a Sankey diagram to reveal the transition of accesses between videos. We find
that the majority of sessions move between resources on the same page type. For
example, 92.6% of accesses to the homepage of a video are followed by another
video access from the homepage. This observation generalizes across most pages.
For the top 5 accessed pages, we find at least 88.83% of videos are accessed
from the same source as the previous video. We conjecture that this may be a
powerful observation for performing predictive pre-fetching of content.

6 Discussion and Implications

There are a number of implications of our work. Here we briefly focus on potential
work in relation to optimizing CDN delivery.
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Fig. 6. Sankey diagram presenting the fraction of page transitions from locations (left)
to destinations (right). This is computed by computing the time ordered list of resources
and checking the previous resource request to determine the step-by-step journey.

Geo-Aware Caching. CDNs are primarily interested in improving their qual-
ity of provision, as well as overheads. This is typically measured via metrics such
as cache hit rate vs. deployment costs. Our results confirm that, even though
images constitute the bulk of requests, the majority of bytes delivered are video
content. Furthermore, due to the presence of highly popular objects, we posit
that there may be potential for edge caching of content. Although CDNs already
deploy cache servers around the world, we next test the possibility of deploying
a larger number of geo-aware caches.

As we do not have topological information about clients, we cluster users into
a cache domain based on their city tags derived from Maxmind. Note that this
creates a wider dispersal of cache servers compared to most CDNs [2]. We then
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Fig. 7. (a) CDF of number of users who have watched the same video in their city (blue)
or a video from the same category in their city (orange); (b) Percentage of traffic saved
at back-haul by implementing city-wide cache (Y-1) and the percentage of users who
would have benefit by the scheme (Y-2). (Color figure online)

sub-divide users into their cities, and filter any cities that have 10 or fewer ses-
sions, leaving 385 cities. For simplicity, we assign all users in each city into a single
caching domain, assuming that each region has its own dedicated geo-cache.

We first compute how many sessions in each city consume the same video.
Figure 7(a) presents the results on a per-video basis. Unsurprisingly, we find that
accessing the same video from a city is commonplace. In the most extreme case,
one video is accessed by 98.9% of all sessions within a particular city. This leads
us to hypothesize that such properties could be exploited for caching. Hence,
Fig. 7(b) shows the percentage of traffic that could be saved (Y-1 axis) if a city-
wide cache were to be deployed. Note, for simplicity, we assume the cache covers
all users in the city and has unlimited storage for the one hour period of the
dataset. For these high population locations, savings exceeding 90% are feasible.
The Y-2 axis also presents the percentage of videos that have at least 3 user
sessions within a city accessing them (i.e., thereby resulting in a saving). We see
that these are extremely high, with nearly all cities exceeding 50%.
Predictive Loading. The above confirms that caching is an effective tool in this
domain. We also posit that a number of more innovative approaches could be taken
for streamlining delivery. For instance, predicting popular chunks in the video
and subsequently pushing them could improve Quality of Experience by reduc-
ing human-perceived delays. This would be particularly useful, as often videos are
not viewed contiguously, making current buffering strategies ineffective. Predict-
ing the next skip could therefore avoid wasted buffering. Furthermore, the heavy
load created by thumbnails, suggest they could perhaps be pre-loaded in bulk for
certain videos We have also confirmed that sessions have clear behavioral traits
when moving between video pages. Again, we conjecture that these patterns could
be predicted and exploited. For instance, the top video within a recommendation
pane could be pre-loaded, much as we see done with Accelerated Mobile Pages [15].
In fact, due to the propensity for viewers to select such content, it might even be
possible to dynamically select which videos to recommend based on what content
is live in the most nearby cache. We posit that this may be able to satisfy user
demand, whilst also reducing network costs for the CDN.
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7 Conclusion

This paper has explored the characteristics of a large adult video portal, with
a focus on understanding in-session journeys. We first inspected the corpus and
workload served by our vantage point. We found that, contrary to expectation,
the bulk of objects served are actually image content, although video does make
up the bulk of bytes delivered. In terms of videos, the majority of requests were
for a small subset of the content, and we confirmed past observations related to
the skewed distribution of adult content. This led us to focus on session-level
behaviors, where we revealed distinct access patterns and briefly evaluated the
potential of caching and pre-fetching to optimize delivery.

The work constitutes just the first step in our research agenda. We have
so far studied the journey patterns within sessions, however, we wish to better
understand why these patterns emerge. This generalizes beyond adult video to
any type of website. Thus, we wish to do further comparative research with other
portals. With these patterns, we also wish to develop optimized delivery systems
that can learn behavior sufficiently well to predict and pre-load content per-user.
Finally, we are keen to deep dive into the innovations discussed, and perform
further experiments to understand how they can streamline delivery.
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EP/P025374/1. We would also like to thank the reviewers and our shepherd Oliver
Hohlfeld.
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21. Vallina, P., Feal, Á., Gamba, J., Vallina-Rodriguez, N., Anta, A.F.: Tales from the
porn: a comprehensive privacy analysis of the web porn ecosystem. In: Proceedings
of the Internet Measurement Conference, pp. 245–258 (2019)

22. Wondracek, G., Holz, T., Platzer, C., Kirda, E., Kruegel, C.: Is the internet for
porn? An insight into the online adult industry. In: Proceedings of Workshop on
Economics of Information Security (2010)

23. Yu, H., Zheng, D., Zhao, B.Y., Zheng, W.: Understanding user behavior in large-
scale video-on-demand systems. In: ACM SIGOPS Operating Systems Review, vol.
40, pp. 333–344. ACM (2006)

24. Yu, R., Christophersen, C., Song, Y.D., Mahanti, A.: Comparative analysis of adult
video streaming services: characteristics and workload. In: 2019 Network Traffic
Measurement and Analysis Conference (TMA), pp. 49–56. IEEE (2019)

25. Zhang, S., Zhang, H., Yang, J., Song, G., Wu, J.: Measurement and analysis of
adult websites in IPv6 networks. In: 2019 20th Asia-Pacific Network Operations
and Management Symposium (APNOMS), pp. 1–6. IEEE (2019)

26. Zink, M., Suh, K., Gu, Y., Kurose, J.: Characteristics of Youtube network traffic at
a campus network-measurements, models, and implications. Comput. Netw. 53(4),
501–514 (2009)

https://doi.org/10.1007/978-3-030-15986-3_20
https://doi.org/10.1007/978-3-030-15986-3_20


Untangling Header Bidding Lore

Some Myths, Some Truths, and Some Hope

Waqar Aqeel1(B), Debopam Bhattacherjee4(B),
Balakrishnan Chandrasekaran3(B), P. Brighten Godfrey5,

Gregory Laughlin6, Bruce Maggs1,2, and Ankit Singla4

1 Duke University, Durham, US
{waqeel,bmm}@cs.duke.edu

2 Emerald Innovations, Cambridge, USA
3 Max-Planck-Institut für Informatik, Saarbrücken, Germany

balac@mpi-inf.mpg.de
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Abstract. Header bidding (HB) is a relatively new online advertising
technology that allows a content publisher to conduct a client-side (i.e.,
from within the end-user’s browser), real-time auction for selling ad slots
on a web page. We developed a new browser extension for Chrome and
Firefox to observe this in-browser auction process from the user’s per-
spective. We use real end-user measurements from 393,400 HB auctions
to (a) quantify the ad revenue from HB auctions, (b) estimate latency
overheads when integrating with ad exchanges and discuss their implica-
tions for ad revenue, and (c) break down the time spent in soliciting bids
from ad exchanges into various factors and highlight areas for improve-
ment. For the users in our study, we find that HB increases ad revenue
for web sites by 28% compared to that in real-time bidding as reported
in a prior work. We also find that the latency overheads in HB can be
easily reduced or eliminated and outline a few solutions, and pitch the
HB platform as an opportunity for privacy-preserving advertising.

1 Introduction

Online advertising is a multi-billion dollar industry, with estimated global rev-
enues of more than 300 billion dollars (USD) in 2019 [19]. Revenues from adver-
tising platforms exhibited a consistent positive growth rate over the last nine
quarters [32], and are projected to reach 0.5 trillion USD within the next four
years [19]. Programmatic advertising, which includes both real-time bidding
(RTB) and header bidding (HB), dominates the online advertising space today:
It accounts for 62% of the total advertising spend [32]. In this paper, we offer
insights into the design and performance of HB auctions using real end-user
measurements, which have not been available before.
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Header bidding, introduced around 20131 [9,50,57], is a nascent program-
matic advertising technology that improves transparency and fairness in real-
time bidding (RTB). In RTB, ad slots on a web page are offered to advertisers
(or, more generally, buyers) following a waterfall model: one by one in a pre-
determined order, where the first one to bid a high enough price wins the slot.
The ordering is, moreover, not determined by the publisher (or web site owner),
but by an ad server, a third party that facilitates the auctioning of slots to buy-
ers. HB, in contrast, enables the publisher to solicit bids simultaneously from
multiple ad exchanges, where each exchange is a marketplace for advertisers to
bid on ad slots. Under HB, the publisher typically places some JavaScript code
within the web page’s HEAD tag that, when loaded in an end-users’ browser,
launches an in-browser auction for the ad slots on that page. This in-browser,
publisher-controlled, real-time ad auction permits publishers, as we show later,
to significantly increase their ad revenues. Perhaps as a consequence, HB has
already gained significant adoption: 22% of the Alexa top 3k web sites use HB [1],
and a more recent study reports 22–23% adoption among the top 5k sites [35].
If we remove sites that are ad-free (e.g., government and non-profit web sites)
or which use an in-house ad platform (e.g., Google and Facebook), HB adoption
among the top 1k sites is at 80.2% and growing fast [1].

Users might also benefit from HB: It could be leveraged to build a privacy-
preserving and transparent advertising ecosystem, where the end users have
control over their data. They could decide, on a per-web-site basis, for instance,
what information (e.g., concerning their interests or preferences) to barter for
helpful ads from advertisers. If properly designed, these auctions can also provide
the necessary oversight into end-user tracking, and transparency that users often
expect when seeing ads [55,56]. Any debate on such a novel advertising ecosystem
is possible, however, only if the underlying HB platform is proven to work well.

Real-time auctions such as those in RTB and HB are latency-sensitive. Google
AdX (one of the largest ad exchanges) requires, for instance, that all advertisers
respond within 120 ms of the bid request being sent [22]. Setting aside a recom-
mended room of 20 ms for unexpected delays, and 40 ms for bid computations
and data fetches, leaves only 60ms for the round trip between an advertiser and
Google AdX [36]. Given the state of latency in the Internet [10], it is not surpris-
ing that Google AdX recommends that advertisers peer directly or co-locate with
AdX to minimize latency. Ensuring low latency for bid requests and responses
is even more challenging in HB, since users’ browsers cannot be co-located with
exchanges. Publishers thus set very long deadlines (from 500 ms to 3000 ms) to
ensure that all ad exchanges in an HB auction have a chance to bid. These long
deadlines are consistent with the widespread belief that the in-browser auction
held in HB imposes significant latency overhead [17,35]. The central theme of
this paper is that these concerns may be overblown. In particular, we identify the
sources of overhead and outline several avenues for lowering it. We summarize
our contributions as follows.

1 The lack of any formal specification or standardization process makes it difficult to
nail down the exact time header bidding was introduced.
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� We developed a web browser extension, for both the Google Chrome and
Mozilla Firefox browsers, to dissect in-browser HB auctions. We released the
source code of the extension as open source software [6].
� Prior work on header bidding [35] relied on regularly crawling websites from
a single vantage point. Crawling is valid for some of the analyses they do, such
as how many ads are on a web page, and which exchanges are involved, but
it cannot provide any useful insights into networking timing for real users.
Revenue measurements will also be inaccurate as advertisers bid only token
amounts for synthetic user profiles. We gathered measurements of in-browser
HB auctions from about 400 real users, who volunteered to install and use the
extension for a period of 8 months. We also made the data set constituting
these measurements publicly available [6]. We call this data set Rum.
� Using the Rum data set, we demonstrate that ad revenue (estimated using
the median of bids from ad exchanges) from HB is significantly higher (28%)
than that reported for RTB in other studies. We also estimate the publish-
ers’ latency overheads when integrating with ad exchanges and discuss their
implications for publishers’ ad revenue.
� We break down the time spent in soliciting bids from ad exchanges into its
contributing factors and highlight areas for improvement. We do not find any
fundamental problem with client-side HB (i.e., in-browser auctions) imple-
mentations. It is not necessary to move these in-browser auctions to ad servers
or, more generally, away from end users to lower auction duration.

2 A Brief History of Programmatic Advertising

The introduction of real-time bidding fundamentally changed the way ads were
bought and sold: RTB, by leveraging programmatic advertising, facilitated the
sale and purchase of ads on a per impression or view basis [23]. Under RTB,
publishers (e.g., www.nytimes.com) announce their ad slots in real-time (i.e.,
when serving content to end users) to ad servers (e.g., DoubleClick for Publish-
ers). The ad servers then reach out to typically several demand sources (e.g.,
privately negotiated advertisers, Google AdSense, or an ad exchange), where
advertisers either bid for a chance to place ads in the available slots, or have
previously negotiated contracts to show a certain volume of ads for a price.2

A bid, typically expressed in cost per mille (CPM), represents the amount that
an advertiser is willing to pay for one thousand impressions or views of the
ad [61]. Advertisers estimate the worth of each ad slot using user-specific data
from one or more data brokers, which track end users to compile a database of
user profiles (e.g., comprising details such as a user’s gender, age, and location).3

The Need for Header Bidding. In RTB, ad servers contact demand sources in
a rank order (referred to as the waterfall model) determined a priori by the
publisher and/or ad server. For a given ad slot, the process terminates as soon

2 Ad exchanges and advertisers are also collectively referred to as buyers.
3 For more details on data brokers, we refer the reader to [4,47].

www.nytimes.com
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Fig. 1. Interactions between different elements
in client-side header bidding

Table 1. A summary of the
Rum data set

Attribute(s) Value

Users ≈400

Duration 8 months

Cities; countries 356; 51

Web sites 5362

Ad exchanges 255

Page visits 103,821

Auctions 393,400

Bids 462,075

as the slot is filled by a source, even if those appearing later in the ordering might
have offered a higher price. This static ordering, hence, treats the sources, and in
turn advertisers, unfairly. Publishers suffer from lower ad revenues—due to lost
opportunities—and a lack of transparency—they do not know of the demands
across different sources, especially ad exchanges, to inform a better ordering.

Leveling the Playing Field. Header bidding was introduced sometime around
2013 or 2014 [9,39,50,57], to address RTB’s shortcomings. HB allows the pub-
lisher to contact different advertisers and ad exchanges concurrently. Then, these
bids are sent to the ad server so they can be compared to other demand sources.
With this model, ad exchanges have a fair chance to bid for the slots, and pub-
lishers can monitor the demand across different exchanges. Over time, three
different kinds of header bidding implementations have emerged: client-side,
server-side, and hybrid (see [35]), although client-side is the original and still
dominant implementation. For the rest of this paper, we focus our attention on
client-side HB.

Client-Side HB. The publisher adds JavaScript in the web page’s header, i.e.,
content enclosed by the HEAD HTML-tag that when processed by an end-user’s
browser, kick-starts an in-browser auction (illustrated in Fig. 1). The auction
concurrently solicits bids from different exchanges for the ad slots on that page.
The bids received until the end of the auction are then sent to the ad server to
compare with those retrieved via the waterfall-model auctions in the ad server.
Finally, the ad server chooses the highest bid, i.e., with the highest CPM, and
returns the winning bid to the browser. The browser then contacts (not shown
in the illustration) the winning bidder to retrieve the ad and display it.

3 Real User Measurements

Our objective is to passively observe the in-browser auctions of the client-side
header bidding process. To this end, we developed a browser extension, released
it to public, and, from real end users who used the extension for 8 months,
obtained measurements pertaining to HB auctions.

The browser extension utilizes the Prebid library [40], for it is the most
widely used HB JavaScript library, with 63.7% of the publishers using it as of
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August 2019 [1]. The extension, MyAdPrice, is available on both the Google
Chrome web store and Firefox Add-ons web site. It uses the JavaScript APIs
for WebExtensions [31] to access the document-object-model (DOM) tree [30].
Via the DOM, it learns of (a) the ad slots on the Web page, (b) the name and
IP addresses of the ad exchanges that were contacted to fill up those slots, (c)
the bids received from different exchanges, and (d) which bids, if any, won the
auctions and for which ad slots. The extension also uses the Web Performance
Timing API (WPT) [59] to capture the time spent in each step of the request
such as DNS resolution, performing TCP/TLS handshakes, soliciting bids from
exchanges (i.e., transferring the data carrying the requests to the exchange’s
servers) for various ad slots, and receiving bids (i.e., retrieving the response data
from the exchange’s servers) from the exchanges. Outgoing ad server requests
are also checked for query parameters.

In addition to releasing the source code for the extension as open source soft-
ware, we announced it on university mailing lists and public forums to increase
adoption. We recruited approximately 400 volunteers from diverse locations, with
nearly 50% of the users from the US. The rest were mostly from European coun-
tries including Bulgaria, the United Kingdom, France, Norway, Germany, and the
Netherlands, and a small, but significant fraction, also from Canada and India.
Table 1 presents the high-level characteristics of the Rum data set, comprising
real user measurements over a period of 8 months. The end users visited about
5k web sites, for a total of about 100k web page fetches. The users’ browsing
activity resulted in about 400k auctions involving about 500k bids from 255 ad
exchanges. In total, we observed 916,447 requests issued by the users’ browsers
to ad exchanges and servers; 247,869 (27%) of these were to ad servers, while
the remaining 668,578 were to ad exchanges. Our browser extension recorded
the timestamp of each request using the browser’s Navigation Timing API [58].
Using these timestamped requests, we estimated the duration of auctions and
investigated the factors that affect an auction’s duration.

3.1 Privacy and Ethics

Our extension, by default, sends no data from the user’s browser. The extension
uses the browser’s local storage to store data pertaining to ad slots in different
pages and the bids received for each. The extension uses this data to compute
the “ad-worthiness” of the user—the money that advertisers intend to make off
of the user, and allows the user to view this locally-stored information. Users
may opt in to share data including domain names of web pages they visit, i.e.,
only those that use header bidding, ad slots on the pages, exchanges contacted
for ads, bids received, timing information on various phases of the in-browser
auction, and, lastly, their geographical location at city level. The data shared
does not have any information to uniquely identify a user. This opt-in data from
real end users constitutes the Rum data set. When we consulted our institutional
review board, they declared that we do not require an approval since we do not
gather any personally identifiable information.
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Fig. 2. (a) In the median, auctions involve only two ad exchanges and web sites (pub-
lishers) connect with only three ad exchanges. (b) Bid prices show significant variation,
with approximately 30% of bids having at least $1 CPM. (c) The median CPM or ad
revenue increases with number of ad exchanges contacted.

The strict privacy standards we set for ourselves also mean that our dataset
has limitations. Since we don’t upload any data by default, not all installations
result in data collection. Also, since we don’t identify users, we cannot tell how
many unique users uploaded data to our servers. We also cannot track users
across different websites, and cannot profile based on age, income etc.

We refrained from conducting any experiment that would harm end users or
publishers or even the advertisers. The extension is merely a passive observer of
the in-browser auctions. We did not crawl web sites, since that would generate
synthetic ad impressions for which advertisers might have to pay the publish-
ers. Crawling activities may also lead to exchanges flagging the publisher for
suspicious activity. We did not craft synthetic user profiles for similar reasons.

4 Ad Exchanges, CPM, and Ad Revenue

The large number of ad exchanges observed in the Rum data set (in Table 1)
suggests that publishers leverage HB to integrate with many buyers in order to
maximize their ad revenue. To investigate further, we computed the number of
ad exchanges contacted, derived from the count of distinct ad exchanges from
which bids were received by the browser, per auction as well as per web site.
The CDF of the number of ad exchanges contacted (Fig. 2a), across all auctions
and web sites, reveals that most web sites (60%) use at most four ad exchanges,
and 10% use at least twice as many. Per this figure more than a third (35%) of
all auctions involve only one exchange and a fifth use at least four exchanges.
Publishers seem conservative in connecting with many ad exchanges, even if
HB libraries make it easy to establish such direct integrations. Prebid, the most
widely used JavaScript HB library, for instance, offers more than 250 integration
modules or “adapters” [43]; to integrate with an ad exchange, publishers simply
have to enable or include the corresponding adapter.

The CDF of CPMs across all auctions, in Fig. 2b, shows a significant variation
in bid values. While 20% of bids have at most $0.10 CPM, nearly 30% of the
bids have at least $1 CPM. We also observed 2 bids with CPM between $500−
$1000 and 3 with more than $1000 CPM. We find that ad revenue in HB (for
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our volunteers) is not lower than that of RTB reported in other studies. For
example, the median winning CPM that we observe ($1.15) is 28% higher than
the RTB median of $0.90 reported in [37]. Furthermore, we grouped together ad
slots based on the number of ad exchanges from which they solicited bids and
computed the median value of bids in each group (Fig. 2c). The median value
of bids increases significantly with the number of ad exchanges. It is indeed in
the publishers’ best interests to connect with many ad exchanges—at least more
than the current number of ad exchanges (Fig. 2a) they are using.

Publishers could be contacting fewer exchanges for performance reasons. We
investigate the implications of integrating with more ad exchanges for auction
duration in the next section.

5 Auction Duration and Implications

The Prebid Javascript library does not provide explicit timestamps for auction
start, and end. As an approximation, we use the first bid request from the browser
to an ad exchange to signal an auction’s start. A call to the ad server marks the
end of an auction (step 8 in Fig. 1). Hence we approximate the auction duration
as the time between the first bid request, and the ad server call. The CDF of
these estimates, in blue in Fig. 3a, shows that auctions last for 600 ms in the
median and some 10% of auctions last longer than 2 s. Despite the publishers
integrating with a small number of ad exchanges, auction durations are fairly
high.4

The CDF of the elapsed time between when the user arrives at a given web
page and the end of the auction (“since visit” line in Fig. 3a) reveals that the
browsers spend a large amount of time prior to launching HB auctions. Perhaps
web browsers spend this time prioritizing content over ads. Web pages may also
refresh ads based on user activity, e.g., scrolling down or reactivating an inactive
tab, triggering some auctions much later than when the user arrived at the web
page. These are separate auctions that are triggered in response to these events.

To ascertain the implications of auction duration for end users, we focus on
the page-load time (PLT), and measure the time it takes for the browser to
fire the onLoad event after the user navigates to the web page. We subtract the
onLoad time of a web page from the bid-arrival times associated with the ad slots
or auctions on that page, and plot the CDF of the resulting values in Fig. 3b.
Only a small fraction of bids (18%) arrive before the page load is complete; 82%
of the bids arrive after the onLoad event is fired. Although the shortcomings of
the PLT metric in reflecting end-users’ experiences is well-known, it is still the
most widely used metric [26], and according to this metric auction duration does
not significantly impact end-user experiences.

Longer ad auctions could, however, affect publishers and advertisers. The
negative effect of latency on e-commerce sales is well-known [3], and [8] concludes
that increased response latency decreases click-through rates for search results.
4 Appendix C presents additional results on factors that may influence the number of

exchanges contacted by a publisher.
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Fig. 3. (a) Auctions last for 600 ms in the median, and some 10% of auctions last
more than 2 s. (b) Auctions, however, do not seem to affect the page load times: Most
bids arrive much later than when the onLoad event fires. (c) Auction duration increases
with the number of ad exchanges contacted.

Delay in showing ads likely has the same effect, since a longer duration implies a
longer time to display the ad and engage the user. Furthermore, the display of an
ad might alter the visual elements or rendering of the web page. Auction duration
also increases with the number of ad exchanges contacted by the browser, as
the linear fit in Fig. 3c shows. While publishers can limit the auction duration,
a smaller timeout could lead to lost revenues, since a higher bid may arrive
after the timeout is triggered. Clearly, publishers have to manage the trade-off
between maximizing revenue and minimizing auction duration.

A simple approach to managing the trade-off is to cherry-pick ad exchanges
that deliver high-value bids. We thus rank-order ad exchanges by median CPM of
bids sent across all web sites and users. Figure 4a shows, however, no correlation
between ad-exchange CPM and the median latency of its bid responses.

Rather than limit the number of exchanges, which is clearly not efficient,
publishers could perhaps specify an early timeout. Figure 4b shows the CDF
of bid-response arrivals with respect to auction start (i.e., the timestamp of
the first bid request). 87% of the bids arrive within 1 s of the start of the
auction. Also, the CDF of CPMs of bids as a function of the time they were
received since auction start, in Fig. 4c, indicates that 90% of the total CPM is
received within the same time span. This observation is in stark contrast with the
estimates of auction duration in Fig. 3a (“since first bid” line). More concretely,
per Fig. 3a, 30% of the auctions take longer than 1 s, suggesting that publishers
are conservative in setting auction timeouts or deadlines: A lot of time is, hence,
unnecessarily wasted on waiting for bids that will likely have no significant effect
on the auction.

6 Sources of Latency in HB Auctions

In this section we delve into the factors that fundamentally determine the dura-
tion of the in-browser HB auctions. To this end, we dissect the latency of a bid
request into its contributing factors and identify, wherever possible, avenues for
mitigating the latency overheads.
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Fig. 4. (a) “High-CPM” ad exchanges are not any faster in responding with bids than
“low-CPM” ad exchanges. (b) 87% of the bids and (c) 90% of the ad revenue, estimated
through CPMs, arrive within 1 s of the start of the auction.

We define bid duration as the time between the start of the bid request
being sent out and the end of the bid response being received. We can measure
bid duration from two data sources—from within the Prebid JavaScript library
(in-browser) and through the WPT API [59] (on-the-wire). in-browser mea-
sures the difference between the timestamps that Prebid records when it has
prepared the bid request to be sent through the browser, and when it has fin-
ished parsing the bid response. on-the-wire is just the duration between the
bid request and response as provided by the WPT API.

The CDF of bid durations calculated separately from these two sources, in
Fig. 5a, shows, surprisingly, a difference of 174 ms in the median, which is fairly
large. This difference is suggestive of poor implementation practices or bugs in
HB libraries, specifically in the logic implemented in the adapters developed for
integrating the publisher with an ad exchange or advertiser [41]; it could also
be that publishers are using adapters incorrectly. Consider the scenario in which
a publisher’s web site contacts exchanges A and B. Suppose that bid duration
for exchanges A and B are 250 ms and 300 ms, respectively. In the ideal case,
the adapters for A and B should be making concurrent, asynchronous requests.
Suppose that B has a bug in its adapter: it makes a synchronous request. If the
publisher integrated HB so that B is contacted before A, given that B makes a
synchronous call, the call to A will get delayed until the request to B completes.
The auction now lasts for 550 ms instead of only 300 ms (in case of a correct
implementation). Such pitfalls are detailed in [18] and [42].

The WPT API allows us to break down the bid duration into the various
steps involved. We specifically gather the following measures: (a) the amount of
time the bid request was waiting in the browser’s queue (“Stall”), due to several
factors such as preemption by requests with higher priority, exhaustion of the
allowed number of simultaneous TCP connections (particularly with HTTP/1.0
and HTTP/1.1), and allocation of disk space for caching; (b) time spent in resolv-
ing the domain name (“DNS”); (c) time spent in TCP handshake; (d) time spent
in TLS handshake; (d) time spent in waiting for the first byte of the response
since start of request (“TTFB”); and (d) time spent in receiving the rest of the
response (“Response”). We also marked an underlying TLS/TCP connection of
a request as persistent if the time spent in TCP and TLS handshakes is zero.
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Fig. 5. (a) The gap between the “in-browser” and “on-the-wire” bid request durations
suggests room for improving HB implementations. (b) Breakdown of time spent by
requests over non-persistent connections into key contributing factors.

In breaking down the request latency to its contributing factors, we separate
requests over persistent connections from those over non-persistent connections.

6.1 Persistent vs. Non-persistent Connections

Only 60% of the ad requests in the Rum data set were made with persistent
connections. They were 34.7% shorter, with a median duration of 230 ms, than
those using non-persistent connections. If we break down the latency of such
requests into contributing factors, TTFB accounts for 93% and 79% of the total
duration, in the median and 80th percentile, respectively. “Response” contributes
2.3% while “Stall” contributes the rest. “Stall” time continues to increase con-
sistently for requests beyond the 80th percentile.

Figure 5b shows the latency breakdown for the remaining 40% of the ad
requests made using non-persistent connections; we omitted steps with negli-
gible contributions. The requests take 352 ms in the median and spend, on
average, 38% of their time in TCP and TLS handshakes. The handshake times
can be reduced to nearly zero if exchanges adopt newer protocols that sup-
port low-RTT session resumption such as TCP Fast Open (TFO) [46], TLS
1.3 [49], and QUIC [27]. We tested 228 ad exchanges and found only minimal
support for such features: Only 11.4% of the ad exchanges tested support TLS
1.3 and 6.6% support QUIC. We found, however, that 75.9% of the observed
IP addresses belonging to ad exchanges support TFO. However, this observa-
tion is misleading because even though clients support TFO, they rarely have it
enabled (see AppendixA).

Response contributes, on average, 2.4% to the total duration, with a 5 KB
median size response from the ad exchanges. TTFB also includes the time spent
in conducting the auctions in the exchange and indicates room for improving the
exchange-side auctions. Overall, per Fig. 5b, bid durations increase primarily
because of increases in time spent across TCP, TLS and TTFB. That TCP,
TLS, and TTFB times increase in lockstep suggests RTTs between users and ad
exchanges as a key contributor to latency.
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6.2 Ad Infrastructure Deployments

Using a commercial geolocation service, we calculated the geodesic [62] between
the end users and the ad exchange servers.5 Figure 6a plots the CDF of these
distances for four of the eight most popular exchanges; we omitted the rest, which
had similar results, for clarity. Index Exchange’s servers (IND), deployed at 88
different locations are the closest to end users: in the median, the servers are
about 180 km away from the users. The remaining exchanges each have servers
in only 20 locations and are quite far away from end users—median distances
for Rubicon Project (RUB), AOL, and Criteo (CRT) are approximately 520 km,
910 km, and 2410 km, respectively. Criteo seems to be directing almost all North
American users to a single US West Coast location. (Appendix B presents other
inferences derived from the locations of the users and ad exchanges.)

Index Exchange’s geographically widespread deployments help in ensuring
a low handshake time, as shown in Fig. 6b. The handshake times to servers of
Criteo and AOL, despite the exchanges’ comparatively poor deployment, are
surprisingly low. We found that Criteo supports TLS 1.3, while Index Exchange
does not. This can result in a drastic improvement in handshake latency as TLS
1.3 saves one complete round-trip in the handshake. Another reason that Index
Exchange is not seeing even lower latency is that perhaps most of the latency is
in the last mile. Since 60% of the bid requests use persistent connections, TTFB,
and not handshake time, accounts for most of the request duration. Figure 6c
shows that Criteo does an exceptionally good job, especially compared to Index
Exchange, in keeping the TTFB low: The server-side auctions at Criteo are
perhaps better optimized than those at Index Exchange.

Fig. 6. (a) Ad exchanges typically are quite far from end users. (b) TCP/TLS hand-
shakes account for a significant fraction of an ad request’s duration. (c) Ad exchanges
can quite effectively lower auction durations by optimizing the exchange-side auctions,
and lowering the TTFB values.

7 Related Work

Header bidding, being a nascent technology, has received little attention in the
literature. In [28], Jauvion et al. discuss how to optimize a buyer’s bidding strat-
egy in HB, while [45] presents a schotastic optimization model for optimizing
5 We geolocate the end-user’s IP address when the extension reports the opt-in data.
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ad-exchange revenues. Cook et al. use machine learning models to identify rela-
tionships between data brokers and advertisers [16]. In [35], Pachilakis et al.
present a measurement study of the HB platform. They focus on market aspects
such as the most popular ad exchanges, number of ad slots found on web pages,
and their sizes. They crawl web sites with blank user profiles from a single van-
tage point, so their revenue and network timing data does not reflect real users
and network conditions. They also cannot identify the causes of HB latency.
In contrast, our study uses real user measurements to study latency and its
ad-revenue implications.

Orthogonal to header bidding, there is a rich body of work on online advertis-
ing, end-user tracking, and privacy that show how users attach monetary value
to their personally identifiable information (e.g., [11,53]) and how to uncover
advertising and tracking services by analyzing network traffic data (e.g., [48]).
Venkatadri et al. propose a novel mechanism that enforces transparency on online
advertising platforms [56]. Guha et al. and Toubiana et al. have presented designs
for privacy preserving advertising that puts the client at the center [24,55]. These
techniques, however, require sweeping changes for real-world deployments, and
we argue that they can be ported over to the HB platform that is already enjoy-
ing widespread adoption.

8 Concluding Remarks

Within a span of roughly six years since its introduction, header bidding has
gained a strong adoption: Among the top 1k web sites that use third-party ad
platforms, 80% use HB. It decreases publishers’ dependence on large advertising-
market players, e.g., Google, and also improves publisher revenue [52]. Although
there are widespread concerns that HB’s in-browser auctions introduce signifi-
cant latency overheads and affect end-users’ browsing experiences [17] ([35] men-
tions high delays seen from one vantage point, and paints a gloomy picture with-
out any analysis on what is causing the delay), our real-end-user measurements
lessen these concerns. We showed that more than half of these overheads can
be eliminated by adopting more modern protocols and also, perhaps, by fixing
bugs in the JavaScript-based HB implementations. Since HB is widely adopted
by publishers, shows promise in signficantly increasing the publishers’ ad rev-
enues (e.g., see Sect. 4), and has implementation overheads that are addressable
with minimal engineering efforts, we propose that client-side HB be seen as an
opportunity for privacy-preserving advertising.

The pervasive and commonplace tracking of users to improve targeted ads is
unsustainable in the long term. Recent privacy violations and scandals [15,21,51]
have raised users’ awareness and lowered their tolerances: A recent study found
22% of surveyed users to be using Adblock Plus, the most popular ad-blocking
browser extension [44], and, fueled by users’ demands, Firefox ships bundled
with a collection of privacy extensions (e.g., tracker and third-party cookie
blocker) [33]. Such aggressive measures to block ads and trackers, nevertheless,
is fundamentally at odds with the publishers’ business model. Major news web
sites have resorted to putting up paywalls [54], and asking for donations [60].
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There is, unfortunately, an inherent flaw in today’s approach to blocking
ads and trackers: ads and trackers are treated equally. While users are sensitive
about privacy, most do not mind seeing non-intrusive ads; users would be willing
to share more if they had control over what is shared and with whom, and what
kind of ads they would like to see [12]. Users also think that ad targeting based on
tracking is often inaccurate: they see ads related to common stereotypes about
their identity, or related to searches they made over a month ago [12].

The client-side HB platform gives us an opportunity to address these con-
cerns: Since the browser has control over the in-browser auction, it can essentially
control the entire ad-fetch process. Browsers must continue to block tracking
mechanisms such as host fingerprinting [63] and third-party cookies [20], but
could allow HB-based ad requests. They could even append such requests with
user-profile data, obviating the exchanges’ need for data brokers. The user-profile
data could be based on a limited form of profiling or could consist of manu-
ally entered preferences as in Privad [24]. Regardless of the approach, the user
has complete control and visibility into this data. Privacy-preserving designs for
online advertising (e.g., [24,55]) are not novel, but they require sweeping changes
for deployment in practice. Given HB’s widespread adoption, porting over these
techniques to work on top of the HB platform might mitigate the deployment
issues.

When implemented correctly, these solutions will limit users’ exposure to
essentially IP-address-based tracking, which can be alleviated by tunneling the
ad requests through a forward proxy operated by neutral or non-profit enti-
tites such as Mozilla or Brave; since these ad requests are encrypted, we do not
need to trust the proxy operator. Such public proxies have been operated by
Google [2] and Opera [34], albeit for other purposes. We could also incentivize
such proxies by devising a revenue-sharing mechanism between the end user,
publisher, and the proxy operator using an in-browser cryptocurrency wallet
(e.g., MetaMask [29]).

A detailed investigation of such mechanisms will constitute future work. For
now, we have shown that HB is already popular and generating higher revenues
for publishers, and the perceived latency limitations are addressable, and not
fundamental to the protocol. We hope that our insights will encourage both
academia and the industry to take a deeper look into header bidding.

A Client-Side TFO Adoption

In this appendix, we complement the observations on server-side TFO adoption
(in Sect. 6.1) with some comments on adoption on the client side. Measuring
TFO adoption on the client side is challenging. The Linux kernel disables TFO
globally if it sees 3 consecutive TCP timeouts, before or after the handshake,
for any destination [13]. The rationale is to avoid the extra cost of TFO failure
or client blacklisting in case of middlebox interference [25]. macOS implements
a similar backoff strategy and disables TFO [5], although it is a bit less con-
servative. Windows implements an even more conservative backoff strategy [7].
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Even if the operating system has TFO enabled, the browser usually does not.
The Chromium project, on which Google Chrome and some other browsers are
based, has removed TFO from all platforms [14], while Firefox supports TFO,
but keeps it disabled by default.

B NA and EU Users: GDPR, Ad-Worthiness
and Latencies

In this appendix, we examine the role that user location plays in HB. We
coarsely divided our users into regions of North America (NA), Europe (EU),
Asia (AS), and Oceania (OC), we observe that web sites contact more ad
exchanges in North America: 13% of web sites, when visited by users in North
America, contact 8 or more ad exchanges, but in case of EU users 99% web sites
contact at most 7 (Fig. 7a). Perhaps this effect can be attributed to the strict
privacy requirements of GDPR. The difference between European and North
American users is even more pronounced when it comes to bid amounts (or
CPMs). Web sites generate 4 times more CPM through a visit from a North
American user than they do from a European user as shown in Fig. 7b. It is
hard to conclusively determine the reason for this large difference as there are a
multitude of factors that determine the “ad-worthiness” of a user.

The CDF of on-the-wire bid durations for users in different regions (Fig. 7c)
shows that, in the 80th percentile, European (EU) users observe 12% higher bid
durations than North American (NA) users. The auction durations for NA users
are, however, 27% longer than that of their EU counterparts in the 80th percentile
(Fig. 8a). These observations can perhaps be attributed to NA users contacting
more exchanges, and that, as we have seen earlier in Fig. 3c, increases auction
duration. Bid durations for Oceania (OC) users are alarmingly high: 23% of
bids take longer than 1 s (Fig. 7c), which precipitates in long auctions for OC
users (Fig. 8a). Only 7% auctions of OC users take, however, longer than 2.5 s
compared to 10% of auctions in case of NA users. For a large fraction of OC users,
even though bids arrive late, the JavaScript perhaps times out and terminates
the auction, potentially introducing some loss of ad revenue for publishers.

Fig. 7. Impact of a user’s location on (a) the number of exchanges contacted, (b) the
mean CPM obtained per web page, and (c) bid-request durations.
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Fig. 8. (a) Impact of user’s location on auction duration, and the impact of a web-site’s
ranking on (b) mean CPM and (c) number of exchanges contacted.

C Popularity Correlations

We investigate, in this appendix, how the popularity ranking of a web site affects
its HB implementation and the CPM it receives on its ad slots. For popularity
rankings, we used the Tranco list [38], a stable top list hardened against manip-
ulation. We used the relative ranks of second-level domains observed in our
measurements and filtered out web sites that have fewer than 10 data points.

Figure 8b shows the mean CPM per web-page visit, of a given web site, as a
function of that site’s relative Tranco rank. The linear fit, with a slope of 0.008,
reveals a weak correlation, suggesting that web-site popularity is not a strong
indicator of “high-value” audience for advertisers. For instance, imgur.com (rank
51), an image-sharing web site outranks wsj.com (rank 152), a major business-
focused publication.

Increasing the number of ad exchanges contacted increases the auction dura-
tion, which may have implications for end-users’ browsing experiences (refer
Sect. 5). Figure 8c shows, however, no correlation between the rank of a web site
(based on Tranco) and the number of ad exchanges it contacts: Popular web sites
do not contact fewer exchanges than unpopular ones to improve user experience.

We also repeated these analyses with the Majestic Million top list6 instead
of Tranco. Majestic Million ranks web sites by the number of subnets linking to
them, which is more of a quality measure than raw traffic. Regardless, we did
not observe any significant change in the results and inferences presented above.
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{melissa.licciardello,mgruener,ankit.singla}inf.ethz.ch

Abstract. While video streaming algorithms are a hot research area,
with interesting new approaches proposed every few months, little is
known about the behavior of the streaming algorithms deployed across
large online streaming platforms that account for a substantial fraction of
Internet traffic. We thus study adaptive bitrate streaming algorithms in
use at 10 such video platforms with diverse target audiences. We collect
traces of each video player’s response to controlled variations in network
bandwidth, and examine the algorithmic behavior: how risk averse is
an algorithm in terms of target buffer; how long does it takes to reach
a stable state after startup; how reactive is it in attempting to match
bandwidth versus operating stably; how efficiently does it use the avail-
able network bandwidth; etc. We find that deployed algorithms exhibit
a wide spectrum of behaviors across these axes, indicating the lack of
a consensus one-size-fits-all solution. We also find evidence that most
deployed algorithms are tuned towards stable behavior rather than fast
adaptation to bandwidth variations, some are tuned towards a visual
perception metric rather than a bitrate-based metric, and many leave a
surprisingly large amount of the available bandwidth unused.

1 Introduction

Video streaming now forms more than 60% of Internet downstream traffic [25].
Thus, methods of delivering video streams that provide the best user experience
despite variability in network conditions are an area of great industry relevance
and academic interest. At a coarse level, the problem is to provide a client
with the highest possible video resolution, while minimizing pauses in the video
stream. There are other factors to consider, of course, such as not switching
video resolution often. These considerations are typically rolled into one quality-
of-experience score. Streaming services then use adaptive bitrate algorithms,
which attempt to maximize QoE by dynamically deciding what resolution to
fetch video segments at, as network conditions fluctuate.

While high-quality academic work proposing novel ABR is plentiful, the lit-
erature is much more limited (Sect. 2) in its analysis of widely deployed ABRs,
their target QoE metrics, and how they compare to recent research proposals.
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The goal of this work is precisely to address this gap. Understanding how video
platforms serving content to large user populations operate their ABR is crucial
to framing future research on this important topic. For instance, we would like to
know if there is a consensus across video platforms on how ABR should behave,
or whether different target populations, content niches, and metrics of interest,
lead to substantially different ABR behavior. We would also like to understand
whether ABR research is optimizing for the same metrics as deployed platforms,
which are presumably tuned based on operator experience with real users and
their measured engagement.

Towards addressing these questions, we present a study of ABR behavior
across 10 video streaming platforms (Table 1) chosen for coverage across their
diverse target populations: some of the largest ones in terms of overall market
share, some regional ones, and some specialized to particular applications like
game streaming (not live, archived). Our methodology is simple: we throttle
download bandwidth at the client in a time-variant fashion based on throughput
traces used in ABR research, and monitor the behavior of streams from different
streaming platforms by analyzing jointly their browser-generated HTTP Archive
(HAR) files and properties exposed by the video players themselves. For robust
measurements, we collect data for several videos on each platform, with our
analysis herein being based on 6 days of continuous online streaming in total.
Our main findings are as follows:

1. Deployed ABRs exhibit a wide spectrum of behaviors in terms of how much
buffer they seek to maintain in their stable state, how closely they try to
match changing bandwidth vs. operating more smoothly, how they approach
stable behavior after stream initialization, and how well they use available
network bandwidth. There is thus not a consensus one-size-fits-all approach
in wide deployment.

2. Several deployed ABRs perform better on a QoE metric based on visual
perception rather than just video bitrate. This lends support to the goals
of recent work [22], indicating that at least some of the industry is already
optimizing towards such metrics rather than the bitrate-focused formulations
in most prior ABR research.

3. Most deployed ABRs eschew fast changes in response to bandwidth vari-
ations, exhibiting stable behavior. In contrast, research ABRs follow band-
width changes more closely. It is unclear whether this is due to (a) a mismatch
in target metrics used in research and industrial ABR; or (b) industrial ABR
being sub-optimal.

4. Several deployed ABRs leave substantial available bandwidth unused. For
instance YouTube uses less than 60% of the network’s available bandwidth
on average across our test traces. Similar to the above, it is unclear whether
this is due to ABR sub-optimality, or a conscious effort to decrease bandwidth
costs.
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(a) Experimental setup (b) Proxy impact

Fig. 1. (a) Player behaviour is influenced through bandwidth throttling, and is recorded
from multiple sources. (b) The proxy has little impact on player behavior as measured in
terms of average linear QoE (QoElinear); the whiskers are the 95% confidence interval.

2 Related Work

There is a flurry of academic ABR proposals [6,8,13,14,17,18,22,23,26,27,29,
32], but only limited study of the large number of deployed video streaming
platforms catering to varied video types and audiences.

YouTube itself is relatively well studied, with several analyses of various
aspects of its behavior [7,19,31], including video encoding, startup behavior,
bandwidth variations at fixed quality, a test similar to our reactivity analysis,
variation of segment lengths, and redownloads to replace already fetched seg-
ments. There is also an end-end analysis of Yahoo’s video streaming platform
using data from the provider [10].

Several comparisons and analysis of academic ABR algorithms [28,30,33]
have also been published, including within each of the several new proposals
mentioned above. In particular, [28] compares three reference ABR implemen-
tations, showing that the configuration of various parameters has a substantial
impact on their performance.

Facebook recently published [16] their test of Pensieve [17] in their video
platform, reporting small improvements (average video quality improvement of
1.6% and average reduction of 0.4% in rebuffers) compared to their deployed
approach.

However, a broader comparative study that examines a large number of
diverse, popular streaming platforms has thus far been missing. Note also that
unlike ABR comparisons in academic work and head-to-head comparisons of
methods in Facebook’s study, QoE comparisons across platforms are not neces-
sarily meaningful, given the differences in their content encoding, content type,
and audiences. Thus, in contrast to prior work, we define a set of metrics that
broadly characterize ABR behavior and compare the observed behavior of a
large, diverse set of streaming providers on these metrics. Where relevant, we
also contrast the behavior of these deployed ABRs with research proposals.
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To the best of our knowledge this is the only work to compare a large set of
deployed ABRs and discuss how their behavior differs from academic work in
this direction.

3 Methodology

To understand a target platform’s ABR, we must collect traces of its behavior,
including the video player’s state (in terms of selected video quality and buffer
occupancy) across controlled network conditions and different videos.

3.1 Experimental Setup

Figure 1a shows our architecture for collecting traces about player behaviour.
Our Python3 implementation (available at [11]) uses the Selenium browser
automation framework [4] to interact with online services. For academic ABR
algorithms, trace collection is simpler, and uses offline simulation, as suggested
in [17].

While playing a video, we throttle the throughput at the client (1) using
tc (Traffic control, a Linux tool).1 The state of the client browser (e.g., current
buffer occupancy) is captured by the Monitor (5) every a seconds. All requests
sent from the client (1) to the server (3) are logged by a local proxy (2). Beyond
the final browser state, the proxy allows us to log video player activity such
as chunks that are requested but not played. We also obtain metadata about
the video from the server (e.g., at what bitrate each video quality is encoded).
Metadata is obtained through offline analysis by downloading the video at all
different qualities. All information gathered from the three sources — the proxy,
the browser and the server — is aggregated (4).

Certain players replace chunks previously downloaded at low quality with
high quality ones (“redownloading”) in case there is later more bandwidth and
no immediate rebuffer risk. Using the proxy’s view of requests and responses and
the video metadata, we can map every chunk downloaded to a play-range within
the video, and use this mapping to identify which chunks/how many bytes were
redownloaded.

How Do We Add a Platform to Our Measurements? Most video plat-
forms (all except YouTube, for which we use [5]) use chunk-based streaming. To
evaluate such platforms, we use developer tools in Chrome to understand how
the player obtains the download links for the chunks. Typically, a .m3u8 [21] file
downloaded by the player contains the locations for all chunks at all qualities.
This allows us to write code that fetches all chunks for the test videos at all
qualities, such that we can use these videos in our offline simulation analysis of

1 At the bandwidth levels seen in our traces, bottlenecks are at our client—our univer-
sity’s connectivity to large services is otherwise high-bandwidth, consistently result-
ing in the highest-quality playback available on each service.
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the academic Robust MPC approach.2 Having all chunks available also enables
calculation of their visual perceived quality (VMAF [15]). We also need to map
each chunk to its bitrate level and time in the video stream, by understanding
how video content is named in the platform (e.g., through “itags” in YouTube).

For online experiments through the browser, we need to instrument the plat-
form’s video player. We do this by automating the selection of the HTML5 video
player element, and having our browser automation framework use this to start
the video player and put it in full screen mode. We can then access the current
buffer occupancy and current playback time using standard HTML5 attributes.
We use a proxy to log the remaining statistics (e.g., resolution played/fetched)
because relying on the player alone would have required painstaking code injec-
tion specialized to each provider.

YouTube does not follow such chunked behavior (as past work has noted [19]).
It can request arbitrary byte ranges of video from the server. We use an already
available tool [5] to download the videos, and then learn the mapping from the
byte ranges to play time from the downloaded videos.

3.2 The Proxy’s Impact on Measurements

Some of our measurements (e.g., redownloads) use an on-path proxy, so we verify
that this does not have a meaningful impact by comparing metrics that can be
evaluated without the proxy. For this, we use traces with constant bandwidth
b ∈ [0.5, 0.8, 1.2, 2.5] Mbps, repeating each experiment 5 times for the same video.
For our comparison, we calculate QoE using the linear function from MPC [18]
with and without the proxy. For every video-network trace combination, we
calculate the mean QoE and show the mean across these, together with its 95%
confidence interval with whiskers in Fig. 1b.

As the results show, for most platforms the proxy has a minimal impact:
across providers, the average difference in QoE with and without the proxy is 7%.
For YouTube and ZDF, the differences are larger, but still within the confidence
bounds: for these providers, there are large variations across experiments even
without the proxy, indicating differing behaviour in very similar conditions in
general.

3.3 Metrics of Interest

Different video platforms serve very different types of content, and target dif-
ferent geographies with varied client connectivity characteristics. It is thus not
particularly informative to compare metrics like bitrate-based QoE across plat-
forms. For instance, given the different bitrate encodings for different types of
content, bitrate-QoE is not comparable across platforms. We thus focus on com-
parisons in terms of the following behavioral and algorithm design aspects.

2 To avoid the unintended use of our scripts for downloading copyright-protected con-
tent, we refrain from publishing code for this part of our pipeline.



Understanding Video Streaming Algorithms in the Wild 303

Initialization Behavior: We quantify how much wait time a video platform
typically incurs for streams to start playback, and how much buffer (in seconds
of playback) it builds before starting. We use traces with a fixed bandwidth of
3 Mbps until player’s HTML5 interactions are available, thus always downloading
items like the player itself at a fixed bandwidth. This is done to avoid failure at
startup: some platforms cause errors if network conditions are harsh from the
beginning. After this, we throttle using only the high-bandwidth traces from the
Oboe [6] data set, which have a mean throughput of 2.7 Mbps. We start timing
from when the first chunk starts downloading (per the HAR files; the player
HTML5 interactions may become available earlier or later).

Table 1. We test a diverse set of large video platforms.

Provider Description Alexa rank # Resolutions

Arte French-German, cultural 270, France 4.0± 0.0

Fandom Gaming, pop-culture 91, Global 5.0± 0.0

SRF Swiss Public Service 45, Switzerland 5.7± 0.48

TubiTV Movies and series of all genres 1330, USA 3.0± 0.0

Twitch Live and VoD streaming service, gaming 39, Global 5.9± 0.32

Vimeo Artistic content [20] 188, Global 4.2± 0.92

YouTube Broad coverage 2, Global 6.5± 1.08

ZDF German Public Service 47, Germany 5.3± 0.48

Pornhub Pornographic video sharing website 46, Global 4.0± 0.0

XVideos Pornographic video sharing website 67, Global 4.4± 0.52

Convergence: During startup, an ABR may have little information about the
client’s network conditions. How do different ABRs approach stable behavior
starting from this lack of information? Stablility in this sense refers to fewer
bitrate switches. Thus, to assess convergence characteristics, we quantify the
bitrate changes (in Mbps per second) across playback, i.e., a single switch from
3 Mbps to 4 Mbps bitrate over a total playback of 5-s amounts to 0.2 Mbps/sec
on this metric. We chose not to compare the raw number of switches/sec —
one switch at YouTube is very different from one switch at TubiTV, due to the
differing discreteness of their bitrate ladders.

Risk-Tolerance: ABRs can hedge against rebuffer events by building a larger
buffer, thus insulating them from bandwidth drops. Thus, how much buffer (in
seconds of video) an ABR builds during its stable operation is indicative of its
risk tolerance.

Reactivity: ABRs must react to changes in network bandwidth. However, react-
ing too quickly to bandwidth changes can result in frequent switching of video
quality, and cause unstable behavior when network capacity is highly variable.
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To quantify reactivity of an ABR, we use synthetic traces with just one band-
width change after convergence, and measure the evolution of bitrate difference
in the video playback after the change over time (with the number of following
chunk downloads used as a proxy for time).

Bandwidth Usage: ABR must necessarily make conservative decisions on video
quality: future network bandwidth is uncertain, so fetching chunks at precisely
the estimated network bandwidth would (a) not allow building up a playback
buffer even if the estimate were accurate; and (b) cause rebuffers when band-
width is overestimated. Thus, ABR can only use some fraction of the available
bandwidth. We quantify this behavior in terms of the fraction of bytes played
to optimally downloadable, with “optimally downloadable” reflecting the mini-
mum of (a posteriori known) network capacity and the bytes needed for highest
quality streaming.

For better bandwidth use and to improve QoE, some ABRs are known to
redownload and replace already downloaded chunks in the buffer with higher
quality chunks. We quantify this as the fraction of bytes played to bytes down-
loaded. Fractions <1 reflect some chunks not being played due to their replace-
ment with higher quality chunks.

QoE Goal: Academic ABR work has largely used a QoE metric that linearly
combines a reward for high bitrate with penalties for rebuffers and quality
switches [17,18]. More recent work has suggested formulations of QoE that
reward perceptual video quality rather than just bitrate [22]. One such met-
ric of perceptual quality, VMAF [15], combines several traditional indicators of
video quality. While it is difficult, if not impossible, to determine what precise
metric each platform’s ABR optimizes for, we can evaluate coarsely whether
this optimization is geared towards bitrate or VMAF-like metrics by examining
what video chunks an ABR tries to fetch at high quality: do chunks with higher
VMAF get fetched at a higher quality level? To assess this, we sort chunks by
VMAF (computed using [15]) and quantify for the top n% of chunks, their (aver-
age) playback quality level compared to the (average) quality level of all chunks,
Qtop−n% − Qall. A large difference implies a preference for high-VMAF chunks.

3.4 Measurement Coverage

We evaluate multiple videos on each of 10 platforms across a large set of network
traces.

Target Platforms: Table 1 lists the platforms we analyze (with their Alexa
popularity rank, as of January 2020). While by no means exhaustive, these were
chosen to cover a range of content types and a few different geographies. Note
that Netflix, Amazon Prime Video, and Hulu were excluded because their terms
of service prohibit automated experiments or/and reverse-engineering [1–3]. For
Twitch, which offers both live streams and video-on-demand of archived live
streams, we only study the latter, as live streaming is a substantially different
problem, and a poor fit with the rest of our chosen platforms.
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(a) Initialization behavior (b) Convergence

Fig. 2. (a) Initialization: most providers start playback after one chunk is downloaded.
(b) Convergence is measured in terms of changes in bitrate switching, i.e., the (abso-
lute) sum of bitrate differentials across all switches from the start, divided by the
thus-far playback duration. As expected, switching is more frequent during startup,
but the degree of switching varies across providers both in startup and later.

Different platforms encode content at varied resolutions and number of res-
olutions, ranging from just 3 quality levels for TubiTV to 6.5 on YouTube (on
average across our test videos; YouTube has different numbers of resolutions on
different videos.)

When comparing the behavior of deployed ABRs with academic ones, we test
the latter in the offline environment made available by the Pensieve authors [17].
For each tested video on each platform, we pre-download all its chunks at all
available qualities. We then simulate playback using the same network traces up
until the same point offline for academic ABRs as we do for the deployed ones.
We primarily rely on Robust MPC [18] (referred to throughout as MPC) as a
stand-in for a recent, high-quality academic ABR approach. While even newer
proposals are available, they either use data-dependent learning techniques [6,
17] that are unnecessary for our purpose of gaining intuition, or do not have
available, easy-to-use code.

Videos: The type of content can have substantial bearing on streaming perfor-
mance, e.g., videos with highly variable encoding can be challenging for ABR.
We thus used a set of 10 videos on each platform. Where a popularity mea-
sure was available, we used the most popular videos; otherwise, we handpicked
a sample of different types of videos. Videos from each platform are encoded in
broadly similar bitrate ranges, with most differences lying at higher qualities,
e.g., some content being available in 4K.

It would, of course, be attractive to upload the same video content to several
platforms (at least ones that host user-generated content) to remove the impact
of videos in the cross-platform comparisons. However, different platforms use
their own encoding pipelines, making it unclear whether this approach has much
advantage over ours, using just popular videos across platforms.
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Network Traces: Our experiments use synthetic and real-world traces from 3
datasets in past work [6,9,24]. Unfortunately, a full cross-product of platform-
video-trace would be prohibitively expensive—the FCC traces [9] alone would
require 4 years of streaming time. To sidestep this, we rank traces by their
throughput variability and pick traces with the highest and lowest variability
together with some randomly sampled ones.

Our final network trace collection consists of the 5 least stable, 5 most stable,
and 5 random traces from the Belgium trace collection [12], and 10 in each of
those categories from the Norway [24], the Oboe [6] and the FCC datasets3. We
also use 15 constant bandwidth traces covering the range from 0.3 to 15 Mbps
uniformly. Lastly we add 10 step traces: after 60 s of streaming we suddenly
increase/drop the bandwidth from/to 1 Mbps to/from 5 values covering the
space from 1.5 to 10 Mbps uniformly.

In total, we use 130 traces with throughput (average over time for each trace)
ranging from 0.09 to 41.43 Mbps, with an average of 6.13 Mbps across traces.
Note that we make no claim of our set of traces being representative; rather our
goal is to test a variety of traces to obtain insight into various ABR behaviors.
If a trace does not cover the whole experiment we loop over it.

For quantifying reactivity, we only use the synthetic traces mentioned above,
with a single upward step change in bandwidth. For quantifying startup delay,
we use traces with a bandwidth of around 3 Mbps as noted in Sect. 3.3.

Ethics: We are careful to not generate excessive traffic or large bursts to any
platform, measuring at any time, only one stream per service, typically at a low
throttled rate.

4 Measurement Results

Overall, we see diverse behavior on each tested metric across platforms. We
attempt to include results across all platforms where possible, but for certain
plots, for sake of clarity, we choose a subset of platforms that exhibits a range
of interesting behaviors.

Initialization Behavior, Fig. 2a: We find that most platforms’ ABR sim-
ply waits for one chunk download to finish before beginning playback. This is
reflected in the buffer occupancy at playback. Some players like ZDF and SRF
use a larger chunk size (10 s), which is why they pre-load more seconds of buffer.

As one might expect, building a larger buffer before playback starts generally
incurs a higher start time. Twitch stands out in this regard, as it downloads
nearly 20 s of buffer before start. Some players, whilst downloading the same
number of buffer seconds as others, do so at much higher resolution – e.g.,
SRF downloads its first 10 s with 6× as many pixels as Arte. This is reflected
in the disparity between their start times, despite both populating the buffer
with 10 s of playback. More broadly, all such “discrepancies” are difficult to
explain because startup is hard to untangle from other network activity, e.g.,
3 Specifically, the stable collection from September 2017 [9].
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some players already start downloading video chunks while the player itself is
still downloading, thus complicating our notion of timing. (We start timing from
the point the first chunk starts downloading. For most platforms, this provides
a leveling standard that excludes variation from other downloads on their Web
interface. It also helps reduce latency impacts that are mainly infrastructure
driven, as well as effects of our browser automation framework.)

Convergence, Fig. 2b: As expected, during startup and early playback, every
player attempts to find a stable streaming state. This results in many bitrate
switches followed by much smoother behavior with more limited switching. Nev-
ertheless, there are large differences across players, e.g., Pornhub switches more
than twice as much as Fandom and SRF in the beginning. In stable state, Fan-
dom switches substantially more than SRF. We also evaluated the academic
(Robust) MPC algorithm [18] on the same network traces and over the SRF
videos. The MPC algorithm would use more than twice as much switching both
in startup and later, compared to SRF’s deployed ABR. Consequently, SRF
scores lower than MPC on the default linear QoE model used in MPC. However,
this does not necessarily imply that SRF’s design is sub-optimal; it could also
be optimizing for a different metric that values stability more.

For clarity, we only picked a few platforms as exemplars of behavior towards
convergence instead of including all 10 tested platforms. The behavior is broadly
similar with more switching early on, but the precise stabilization differs across
platforms.

Risk-Tolerance, Fig. 3: We observe widely different buffering behavior across
the players we tested. Of course, every player uses early playback to down-
load lower quality chunks and accumulate buffer, but some, like YouTube, settle
towards as much as 80 s of buffer, while others like Fandom operate with a much
smaller buffer of around 20 s. Testing MPC’s algorithm on the same traces across
the YouTube videos reveals that it falls towards the lower end, stabilizing at 20 s
of buffer.

Fig. 3. Risk-tolerance: YouTube operates
with nearly 4× the buffer for Fandom. The
shaded regions show the 95% confidence
interval around the mean.

Note that for approaches that allow
redownloads (including YouTube), lar-
ger buffers are a reasonable choice: any
chunks that were downloaded at low
quality can later be replaced. This is
likely to be a more robust strategy in
the face of high bandwidth variabil-
ity. However, for approaches that do
not use redownloads, a larger buffer
implies that all its content must be
played out at whatever quality it was
downloaded at, thus limiting the pos-
sibilities to benefit from opportunistic
behavior if bandwidth later improves.
Thus operating with a smaller buffer of higher-quality chunks may be preferable
to filling it with lower-quality chunks. In the absence of redownloads, there is
thus a tradeoff: a larger buffer provides greater insurance against bandwidth
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drops, but reduces playback quality. At the same time, redownloads are them-
selves a compromise: if better bitrate decisions could be made to begin with,
redownloads amount to inefficient bandwidth use.

Reactivity, Fig. 4: We find that most deployed ABRs are cautious in reacting
to bandwidth changes. This is best illustrated through comparisons between
deployed and academic ABRs. Figure 4 (right) shows such a comparison between
TubiTV and MPC evaluated on the same traces and videos. After the bandwidth
increases (at x-axis = 0 in the plot), TubiTV waits for tens of chunk downloads
before it substantially ramps up bitrate. In contrast, MPC starts switching to
higher bitrates within a few chunk downloads. (The large variations around the
average arise from the varied sizes of the step-increases in the used network
traces and variations in the tested videos.)

While we have not yet evaluated a large number of mobile ABR implementa-
tions (see Sect. 5), we were able to experiment with Vimeo’s mobile and desktop
versions, shown in Fig. 4 (left). They exhibit similar ramp-up behavior in terms
of how many downloads it takes before Vimeo reacts, but show very different
degrees of bitrate change. The desktop version increases bitrate in several steps
after the bandwidth increase, while the mobile one settles at a modest increase.
This is along expected lines, as the mobile player, targeting the smaller screen,
often does not use the higher-quality content at all.

A comparison between TubiTV and Vimeo (desktop) across the two plots
is also interesting: Vimeo ramps up faster than TubiTV. (MPC ramps us even
faster on the Vimeo videos.) One potential reason is the difference in encoding—
TubiTV serves each video in only 3 resolutions, compared to Vimeo’s 4–5. This
implies that over the same network traces, TubiTV must necessarily see a larger
change in bandwidth to be able to jump from one bitrate to the next, given its
larger differential in bitrate levels.

Bandwidth Usage, Fig. 5a: Different platforms use bandwidth very differ-
ently. Arte discards a surprisingly large 23% of its downloaded bytes in its efforts
to replace already downloaded low-quality chunks with high-quality ones. Some
platforms, including YouTube, SRF, and Vimeo, show milder redownload behav-
ior, while several others, including XVideos, Fanrom, Pornhub, and ZDF, do not
use redownloads at all.

ZDF and TubiTV are able to use 80% of the network’s available bytes
for fetching (actually played) video chunks, while all others use the network
much less effectively. While the uncertainty in future bandwidth and the desire
to maintain stable streaming without many quality switches necessitates some
bandwidth inefficiencies, we were surprised by how large these inefficiencies are.
In particular, XVideos, YouTube, Twitch, and Fandom all use less than 60%
of the network’s available capacity on average across our trace-video pairs4.

4 Note that these inefficiencies cannot be blamed on transport/TCP alone, as on the
same traces, other players are able to use 80% of the available capacity. We also
carefully account for non-video data to ensure we are not simply ignoring non-chunk
data in these calculations. For instance, audio data is separately delivered for Vimeo
and YouTube, but is accounted for appropriately in our bandwidth use analysis.
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Fig. 4. We measure reactivity in terms of bitrate evolution after a bandwidth increase,
i.e., difference in average playback bitrate after and before the bandwidth change over
time (in terms of chunk downloads). The plots show the reactivity differences between:
(left) mobile and desktop versions of Vimeo; and (right) TubiTV and MPC.

This low usage is particularly surprising for YouTube, which uses several
strategies—variable chunk lengths (as opposed to fixed-size chunks in other
providers), larger number of available video resolutions, and redownloads—that
allow finer-grained decision making, and thus should support more effective
bandwidth use. Given these advanced features in their ABR design, it is more
likely that their optimization goals differ from academic ABR work than their
algorithm simply being poorly designed. While we cannot concretely ascertain
their optimization objectives, one could speculate that given the large global
demands YouTube faces while operating (largely) as a free, ad-based service,
a profit maximizing strategy may comprise providing good-enough QoE with a
limited expense on downstream bandwidth.

QoE goal, Fig. 5b: We find that some providers fetch high-VMAF chunks at
higher quality than the average chunk. In particular, Twitch fetches the chunks
in the top 20th percentile by VMAF at a mean quality level 0.79 higher than an
average chunk. If instead of Twitch’s ABR, we used a VMAF-unaware, simple,
rate-based ABR5 that uses an estimate of throughput to decide on video quality,
this difference in quality level between high-VMAF and the average chunk would
reduce to 0.46.

5 This ABR estimates throughput, T , as the mean of the last 5 throughput measure-
ments. For its next download, it then picks the highest quality level with a bitrate
≤ T . It thus downloads the largest chunk for which the estimated download time
does not exceed the playback time.
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(a) Bandwidth usage (b) QoE goal

Fig. 5. (a) Bandwidth usage: many players use surprisingly little of the available net-
work bandwidth (Played/Download-able) despite the potential to improve quality with
more bandwidth, e.g., XVideos uses only 50% of it; and some players, like Arte, spend
a large fraction of their used bandwidth on redownloads. (b) QoE goal: we measure how
much a player prefers high-VMAF chunks by quantifying the average quality-level dif-
ference between all chunks and only the top-x% of chunks by VMAF (i.e., Q[0...%Top]).
Some players, like Twitch, show a large preference for high-VMAF chunks.

Note that given the correlation between higher quality and higher VMAF,
high-VMAF chunks are more likely to be fetched at high quality; what is inter-
esting is the degree to which different players prefer them. Vimeo, for instance,
shows a much smaller difference of 0.27 between the quality level of chunks in
the top 20th percentile and an average chunk. If MPC’s ABR were used to fetch
chunks from Vimeo, this difference increases to 0.534, because MPC is willing
to make more quality switches than Vimeo.

Our results thus indicate diversity in optimization objectives in terms of
bandwidth use and QoE targets across deployed video platforms. It is at least
plausible that academic ABRs produce different behavior over the same traces
not because they are much more efficient, but rather the optimization consider-
ations are different. While algorithms like MPC are flexible enough to be used
for a variety of optimization objectives, it is unclear how performance would
compare across a suitably modified MPC (or other state-of-the-art ABR) when
evaluated on operator objectives.

5 Limitations and Future Work

Our first broad examination of a diverse set of widely deployed ABRs reveals
several interesting insights about their behavior, but also raises several questions
we have not yet addressed:

1. Does ABR behavior for the same platform vary by geography and client net-
work? Such customization is plausible—there are likely large differences in
network characteristics that a provider could use in heuristics, especially for
startup behavior, where little else may be known about the client’s network
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bandwidth and its stability. However, addressing this question would require
running bandwidth-expensive experiments from a large set of globally dis-
tributed vantage points.

2. How big are the differences between mobile and desktop versions of ABR
across platforms? Unfortunately, while the browser provides several universal
abstractions through which to perform monitoring on the desktop, most plat-
forms use their own mobile apps, greatly increasing the per-platform effort
for analysis.

3. If we assume that the largest providers like YouTube and Twitch are optimiz-
ing ABR well, based on their experience with large populations of users, can
we infer what their optimization objective is? While there are hints in our
work that these providers are not necessarily optimizing for the same objec-
tive as academic ABR, we are not yet able to make more concrete assertions
of this type.

4. Does latency have a substantial impact on ABR? ABR is largely a bandwidth-
dependent application, but startup behavior could potentially be tied to
latency as well. We have thus far not evaluated latency-dependence.

6 Conclusion

We conduct a broad comparison of adaptive bitrate video streaming algorithms
deployed in the wild across 10 large video platforms offering varied content tar-
geted at different audiences. We find large differences in player behavior, with a
wide spectrum of choices instantiated across virtually all metrics we examined.
For instance, our results show that: (a) some deployed ABRs are conscious of per-
ceptual quality metrics compared to others focused on bitrate; (b) no deployed
ABRs follow available bandwidth as closely as research ABRs; and (c) several
ABRs leave a large fraction of available network capacity unused. Whether this
diversity of design choices and behaviors stems from careful tailoring towards dif-
ferent use cases and optimization objectives, or is merely a natural consequence
of sub-optimal, independent design is at present unclear. But if large, otherwise
extremely well-engineered platforms like YouTube differ so substantially from
state-of-the-art research ABRs, then it is at least plausible that ABR research
is more narrowly focused than desirable.
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Abstract. Many mobile apps are integrated with mobile advertising
and tracking services running in the background to collect information
for tracking users. Considering China currently tops mobile traffic growth
globally, this paper aims to take a first look at China’s mobile tracking
patterns from a large 4G network. We observe the dominance of the top
popular domestic trackers and the pervasive tracking on mobile apps.
We also discover a very well-connected tracking community, where the
non-popular trackers form many local communities with each community
tracking a particular category of mobile apps. We further conclude that
some trackers have a monopoly on specific groups of mobile users and
10% of users upload Personally Identifiable Information (PII) to trackers
(with 90% of PII tracking flows local to China). Our results consistently
show a distinctive mobile tracking market in China. We hope the results
can inform users and stakeholders on the interplay between mobile track-
ing and potential security and privacy issues.

1 Introduction

Many mobile apps are bundled with mobile Advertising and Tracking Services
(ATSes). These are used for various purposes, including monetization, app
maintenance, and audience understanding [15,27,34]. This, however, can result
in such apps exposing a wide variety of information to (third-party) services,
often without a clear understanding of how it may be used. Due to the sensi-
tive nature of data accumulated on mobile devices, their prevalence has therefore
been a cause for concern [4,6,17,22,29,30]. This is particularly the case as track-
ing behavior often cannot be controlled by users, particularly after granting apps
permissions [11,40].

Due to the importance of this topic, there has been a large body of recent
research in this area, including studies that have used static app analysis [1,
2,11], dynamic device monitoring [12,25,26,28], and the inspection of network
traffic [13,32]. They have revealed a number of insights, including the prominence
of a small number of ATS platforms, the presence of privacy invasive leaks (e.g.
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phone numbers), and various attempts at cross-device tracking. Despite this
range of insights, these studies have one common bias: they near exclusively focus
on western countries, primarily in North America and Europe. Although these
countries are both important and relevant, we posit that this bias introduces a
deficiency into the mobile ATS research landscape. Specifically, we have little
evidence related to how the above trends may generalize to the Chinese market.
As one of the fastest growing countries in terms of mobile traffic [7], we argue
that this deficiency must be addressed.

This paper performs the first characterization of mobile ATS traffic patterns
in China. Using a dataset containing 28 billion anonymized access logs from
mobile users, we explore the distinctive properties of the tracking market in
China. Our analysis reveals a highly active ecosystem dominated by a set of
(poorly understood) major players. Due to the presence of the Great Firewall
of China (which blocks certain western services), a number of trackers are quite
distinct from those observed in past works.

Our main findings are summarized as follows:

– We reveal a distinctive mobile tracking market in China that is dominated
by several popular domestic trackers. A handful of trackers (35%) are present
in 2 or more mobile apps, implying the prevalence of cross-tracking of users.
Notably, the prominence of tracking in some types of apps (e.g. InputMethod)
raises particular concerns for user privacy.

– Popular trackers regularly co-occur with non-popular ones. Non-popular
trackers, however, tend to cluster into local communities; each community
tends to track a particular relevant type of app.

– China’s tracking services reach a majority of users, with some trackers show-
ing a tendency to exclusively track specific groups of users. As many as 10%
of users send PII data to trackers, implying the possibility of privacy leakage.
Nevertheless, 90% of PII data is confined to China.

2 Dataset and Methodology

2.1 Data Description

Our dataset contains user access logs in a major 4G cellular ISP. The access logs
are generated by combining the traces of Deep Packet Inspection (DPI) deployed
at Serving Gateway (SGW) and the information provided by the Mobility Man-
agement Entity (MME). Each log corresponds to an HTTP request, and contains
the following major fields: the anonymized unique ID of the user that initiates
the request, destination IP Address, request URL, HTTP-Referrer, User-Agent,
the data volume, and the timestamp of the request initiation. In addition, to
identify the mobile apps which generate each HTTP request, the DPI appli-
ances uses a rule-based approach introduced in SAMPLES [39]. To train the
rule-set in SAMPLES, a crawl-download-execution pipeline is run across the
major Chinese app markets The rule-set is then deployed on the DPI appliances
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for app identification, and is updated routinely to include new apps. In total, we
identify 1,812 unique mobile apps.

Note that we naturally cannot extract URLs from HTTPS, accounting for
around 20% of the mobile traffic observed. However, we note that many apps
that use HTTPS also use HTTP. For instance, WeChat, the most popular mobile
app among Chinese diaspora, relies on HTTPS for third-party APIs, but also
issues requests to imgcache.gtimg.cn for cached images via HTTP. This means
that, even though our vantage is constrained, we can still observe activities.
Indeed, the Kendall correlation between the top-100 most popular apps in our
dataset and that obtained from [8] is 0.85, suggesting that our app traffic is
reflective of general usage. In total, the dataset contains 2,811,233,521 access
logs of 3,516,828 users in a major city of China.

2.2 Identifying ATS Domains

Inspired by [18,27], we utilize four ATS-specific lists provided by: AdBlock-
Plus [10] (the easylist and easyprivacy lists) and hpHosts [23] (the ATS list).
We further incorporate the EasyList China list given that we target China’s
Internet. These contain a set of string matching rules, and are commonly used
by ad blockers. We apply the rules to both the URL and HTTP-Referrer of each
flow, such that we can also identify cases where a URL that is not classified as
an ATS was requested by an ATS [16].

In total, we attribute 260M HTTP requests (9.2%) to ATS domains, in which
16.4% are unattributable flows labeled as others as mentioned above. These cover
24,985 unique fully-qualified domain names (FQDNs) and 8,773 unique second-
level domains (SLDs). Note that our focus is not only on third-party tracking
services like [3,15,33] where the first-party domains are considered to be trusted
by users (even though they can still track users). Instead, we also inspect first-
party trackers that collect personal data (contained within EasyPrivacy [24]).

2.3 Associating ATS Domains to Apps

Next, we identify the trackers that are used by individual mobile apps. Casual
analysis [20,38] immediately reveals a highly skewed popularity distribution of
mobile apps. The most popular app (WeChat) is accessed by 92% of users in a
single day, whereas the majority of services (outside the top 500) are accessed
by less than 0.1% of users per day. Hence, to simplify analysis, we focus on the
top-500 mobile apps, which account for 86.7% of HTTP flows in our dataset.1

The easiest way to associate trackers with apps is to use the HTTP-Referrer
and User-Agent in the ATS requests [13]. However, for the majority of ATS
HTTP requests from unattributed apps, the HTTP-Referrers are empty and the
User-Agents do not meet the specification required to identify apps. As such,
we turn to an alternative heuristic approach inspired by [31]. The intuition is

1 Among the top 500 apps, 29 mobile browsers are excluded in further analysis to
avoid potential inflation or bias caused by web trackers bundled in web pages.
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that if an ATS is associated with a mobile app, its requests should happen at a
time close to the app’s access. Hence, we can associate an ATS request to the
closest app’s request that precedes it. A problem here is that some apps may
send background traffic, which may appear between the app’s requests and the
requests of the associated trackers. To mitigate this effect, we divide a user’s
requests into sessions [31], where a session corresponds to a set of user activities
before an obvious pause. The session interval is set to 1 min, which is learned
empirically as in [14].

Using the above approach, we obtain 193,527,553 sessions in total, and filter
out the sessions that contain requests from more than one app. For the remain-
ing sessions (4,238,015) containing only one identified app request, we can safely
associate an ATS domain with the app. For each app, s, this results in a vector
Rs, in which an element <di, ni> is an ATS domain and the number of users
seeing their association. We further mitigate another possible effect that is rel-
evant to the periodic requests issued by some trackers (e.g. statistic tracking
services): One potential flaw in the above approach is that certain trackers may
very rarely issue requests. Thus, these requests may appear in the sessions that
contain only a single app’s request (i.e. even when the ATS is not associated
with the app). Given that this happens only occasionally, for an app s, we filter
out those ATS domains T from Rs if ni < q (i ∈ T ), where q takes the mean
of all nj∈Rs

. Finally, based on the inferred ATS domains of each app above, we
process all access logs for each user to associate the ATS request with its host
app (assuming the app’s request precedes the ATS request less than 1 second).
Importantly the filtered sessions include all of the top 500 apps, and are only
used for ATS-to-app association. For other analysis (cf. Sect. 3.3), we use all
access logs.

2.4 Limitations

It is important to highlight potential limitations in our data. The four ATS
lists that we utilize for identifying ATS domains may not fully cover the current
ATSes in mobile networks in China. But we have identified a number of promi-
nent and recognized mobile tracker domains, which are in line with the Chinese
mobile ecosystem. Additionally, the heuristic method for the ATS-to-app associ-
ation may not fully capture the up-to-date ATSes of individual mobile apps. We
utilize both the app Lumen [27] and the Lightbeam tool [21] to manually test
existing ATS domains (SLDs) for the top 10 most popular apps. Our inspection
revealed an association accuracy of F1-score 0.75 (precision: 0.7, recall: 0.82).
Taking the popular video app Youku, for example, among 9 trackers inferred by
our approach, 6 dominant ones can also be detected by Lumen or Lightbeam.
One domain is not detected by our method but only monitored by Lumen; how-
ever, this domain has never been accessed in our dataset and is perhaps an
additional tracker after our dataset was collected. Finally, although it has been
shown in [39] that the rule-based approach for app identification can achieve a
high accuracy, we are not aware of the exact accuracy because the DPI provider
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Fig. 1. The presence of ATSes among mobile apps

keeps its implementation details confidential. Thus, we cannot evaluate its accu-
racy, nor can we tell how false positives/negatives bias our results. Nevertheless,
we find that 12% of the HTTP requests cannot be attributed to particular apps
in our dataset and are labeled as others.

2.5 Ethical Considerations

The ISP routinely collects user access logs for the purpose of improving their
service quality and security. When users subscribe to the ISP network, they are
notified that the ISP may collect and analyze their personal and access informa-
tion for the above purpose (including but not limited to tracking behavior), and
may share the information with the research community for research purposes
after anonymization. The dataset is kept in the ISP’s data center with access
being granted only to the authors’ affiliation. Several precautions for protecting
users’ privacy have been taken by the ISP before access is granted. For instance,
the unique user IDs are substituted with random numbers to delink the activi-
ties with specific users; all sensitive user data (e.g. IMEI) has been encrypted by
hashing. We have obtained the approval from the ISP for accessing the request
URL, HTTP-Referrer and User-Agent fields.

3 Results and Analysis

3.1 How Prevalent Are ATSes?

Presence of ATSes. Based on user request sessions produced in Sect. 2.3,
we model the domains (FQDNs) accessed within an app as a bipartite graph
G = (U, V,E), where U denotes mobile apps, V represents the ATS domains
and normal visited domains, and E is the set of edges connecting vertices in U
to vertices in V . This 2-mode graph reveals connections between ATS domains
and mobile apps. We first analyze the number of ATSes present in each app
in graph G and present its CDF distribution in Fig. 1(a). Unsurprisingly, we
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Table 1. Presence of the top 20 ATS domains (SLDs) on mobile apps.

ATS (SLDs) #FQDNs %App ATS (SLDs) #FQDNs %App

qq.com 31 75 kuwo.cn 1 6

umeng.com 4 67 flurry.com 1 6

71.am 1 57 baidustatic.com 4 6

baidu.com 45 34 mmstat.com 3 6

uc.cn 3 28 hiido.com 2 4

360.cn 5 25 scorecardresearch.com 2 4

google-analytics.com 1 14 funshion.net 1 4

ksmobile.com 1 13 doubleclick.net 1 4

cnzz.com 33 9 ifeng.com 5 4

xiaomi.com 2 7 letv.com 3 3

confirm that ATSes are widely used by mobile apps. The median number of
trackers observed per app is 6 for FQDNs, and 4 when classified by SLDs.

We also inspect the number of apps neighbored with each ATS domain in
graph G in order to understand how well mobile trackers are connected with
different apps. Figure 1(b) shows that ATS domains tend to appear on much
more apps than normal ones: over 30% of trackers appear in at least two apps.
To further get a handle on the “popularity” of ATSes among app developers,
Table 1 presents the top 20 ATS domains (SLDs), as measured by the number of
apps they are used by. The number of FQDNs associated with each SLD is also
shown in Table 1. We see a skewed distribution, whereby the top 3 ATS domains
are accessed by over half of all apps, while the bottom 12 ATS domains are used
by under 10% of apps.

The ATS domains of qq.com are the most popular and accessed by over
70% of all mobile apps observed, showing its pervasive tracking. 31 FQDNs
of qq.com are identified as mobile trackers and the top 5 are pingma.qq.com,
zxcv.3g.qq.com, omgmta.qq.com, sngmta.qq.com and mi.gdt.qq.com, accounting
for 70% of flows of SLDs. They provide services for link share, advertising aggre-
gation and mobile analytics. Notably, unlike Europe which relies heavily on US
trackers, China’s tracking ecosystem is dominated by key domestic trackers:
the top 6 most popular SLDs are all domestic (Chinese) ATS domains. For-
eign trackers (e.g. google-analytics.com, flurry.com, scorecardresearch.com) make
up the minority of ATS traffic: they are used by under 20% of apps. Many factors,
including Internet censorship, language and unique local regulations, contribute
to this unique ecosystem that differs greatly from the western countries.

App’s ATS Usage. An obvious question is which apps are responsible for utiliz-
ing this wide range of ATSes within their code. To this end, we group the mobile
apps into 23 categories collected from several Android app markets using [35].
The categorization is mostly based on the functionality of apps. Table 2 lists the
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Table 2. App Categories, sorted by the user penetration percentage.

Category App User(%) ATS(%) Category App User(%) ATS(%)

Commu. 15 98 23 Input. 5 37 5

Browsers 29 85 – Security 12 36 8

Navigation 16 75 7 Photo. 4 31 2

Tools 45 64 12 Lifestyle 38 19 15

Shopping 27 63 13 Books 21 18 11

News 27 60 28 Business 8 15 8

AppMarket 25 59 11 Education 24 11 9

Video 42 57 23 Person. 5 6 2

Finance 46 57 12 Health 10 4 9

Social 16 53 14 Travel 13 4 6

Music 21 41 10 Other 14 5 7

Game 37 41 9

Fig. 2. The distribution of tracker domains (FQDNs) by different app categories.

number of apps, user popularity (measured by the share of users) as well as the
percentage of ATS domains in each category.2

There is a strong propensity towards certain app categories, with communi-
cation apps (e.g. messaging services) being used by 98% of users. The percentage
of trackers indeed is dependent on the number of apps of each category and also
the apps’ functionality. For instance, the communication category, which con-
tains moderate number of apps, has over 23% trackers. This is probably because
apps like WeChat are not only communication tools, but platforms for many
third-party services (e.g. online payments). Trackers serving different purposes
will thus likely be embedded in these apps. A closer look at the trackers of video
apps shows the dominance of statistic services that collect QoE related metrics.

2 As mentioned in Sect. 2.3, we do not show the number of trackers of the browser
apps.
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Fig. 3. The normalized degree central-
ity of ATS domains in projection graph
G′.

Fig. 4. The co-occurrence prob. distr.
of the top 20 ATSes (SLDs).The co-
occurrence prob. distr. of the top 20
ATSes (SLDs).

To mitigate the effect of the number of apps in each category, we count the
number of unique trackers of each app and present the box-plot distribution of
ATSes (FQDNs) across app categories in Fig. 2. We rank each box in descending
order by the median, which ranges from 4 to 13. It is notable that the number of
trackers per app varies based on category (i.e. its functionality). InputMethods
apps, which include five third-party keyboards, have the most trackers per app.
This is particularly worrying, as they have incentives to log and collect user
input to improve their services [5]. Communication apps hold the highest mean
value of 16 ATSes per app; this is largely driven by certain extremely popular
apps (e.g. WeChat and QQ). The category with the greatest diversity is News:
although the median number is 9, the top 5% of news apps use over 26 ATSes.
We note that this differs greatly from past western-oriented studies, where games
and education apps are tracked by the highest number of third-party ATSes, and
news and entertainment apps are exposed to a wide range of ATSes [27].

Takeaway. China’s tracking market differs greatly from the western one. It
is dominated by several popular domestic trackers. Over 30% of mobile track-
ers tend to be present in at least 2 apps, implying the prevalence of cross-app
tracking of users. Tracking behavior varies across app categories mainly due to
their functionality. The prominence of some types of apps (e.g. InputMethods)
in tracking raises particular concerns for user privacy.

3.2 What Is the Community Structure of ATSes?

Co-location of ATSes. The mobile trackers usually appear on as many apps
as possible to enable cross-tracking of users, which leads to implicit connections
between trackers through mobile apps. Inspired by [19], we further focus on
the co-location of ATS domains within mobile apps by inspecting the trackers’
community structure. To this end, we create a 1-mode ATS-projection graph G′

from the largest connected component in G. In G′, the vertices only contain the
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Fig. 5. Tracker Specialization Index distr. of non-popular tracker communities.

ATS domains in V and the edges are created if any two vertices share a common
neighbor (app) in G. We find that trackers are very well-connected: nearly 99%
of trackers appear in the largest connected component.

The ATS-projection graph G′ captures the co-location of multiple tracking
services used within individual apps. We first use the degree centrality (normal-
ized by N − 1, where N is the number of vertices in G′) to measure how likely
a tracker tends to co-locate with others (see Fig. 3). We can clearly identify
two types of trackers: the popular ones with the normalized degree centrality
over 0.2, the rest are non-popular ones that sparsely connect with others in the
graph. Indeed, the popular ones are present more pervasively among apps than
the non-popular ones. We further utilize the global clustering coefficient to mea-
sure the degree to which nodes in the graph G′ tend to cluster together [36].
The coefficient is as high as 0.52. We also calculate the clustering coefficients
for individual nodes—the results reveal low coefficients for the popular trackers,
but high coefficients for the non-popular ones. These results imply that G′ a
well connected graph, where the non-popular trackers form local communities,3

while the popular trackers densely co-occur with the non-popular ones.
To verify the above conjecture on the structure of G′, we remove the popular

trackers from G′ and obtain a graph G′′ consisting of non-popular trackers.
Approximately 62% of non-popular trackers appear in the largest connected
component of G′′ and the others consist of 46 isolated components in G′′. We
leverage the Clauset-Newman-Moore greedy method [9] for inferring community
structure. We discover a total of 56 local communities, where 10 communities
constitute the largest connected component. The global clustering coefficient of
G′′ is as high as 0.78. These results confirm the structure of G′. As we will show
later, the trackers of each community tend to track one particular app category.

We next examine the popular trackers to see whether they are co-located in
the same apps with each other. To this end, we compute the Jaccard Similarity
Coefficient to quantify how likely two popular trackers, a and b, are to co-occur
within the same target app. We calculate |U(a)

⋂
U(b)|

|U(a)
⋃

U(b)| , where U(a) and U(b) are
the sets of apps tracked by a and b. Figure 4 presents the coefficients between each
of the top 20 popular ATS SLDs. The lower left portion of the heatmap exhibits

3 Communities are groups of vertices that are well-connected internally while sparsely
connected with others.
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Fig. 6. UTP and TMI distr. of the top
30 tracker domains (SLDs).

Fig. 7. The distribution of the ratio
of tracker/app traffic volume for each
user.

high levels of co-location, primarily among tracking domains operated by qq.com,
umeng.com, and 71.am, indicating that these popular trackers tend to co-occur
with each other. Since their holding companies are Tencent, Alibaba, and Baidu,
respectively, these three (Chinese) tech giants generally offer complementary,
albeit competitive, services. In contrast, there are a number of trackers which
show negligible correlation. Most prominently, international rival services, such
as baidu.com and google-analytics.com, tend not to co-occur.

Specialization of ATSes. The above analysis leads us to explore the special-
ization of non-popular trackers, i.e. whether a local community of ATSes intends
to occur in some specific app categories. To this end, we compute the tracker
specialization index (TSI) to measure the extent to which an ATS local commu-
nity is dedicated to a certain app category. The TSI is calculated as |U(a)

⋂
U(b)|

|U(a)| ,
where U(a) and U(b) are the sets of trackers in the ATS local community a and
app category b.

We plot the distribution of the tracker specialization index for 56 non-popular
tracker communities in Fig. 5. We observe that ATS local communities tend
to be specialized in only one or two app categories with TSI ≥ 0.5, i.e. they
provide specialized tracking services relevant to particular apps. For instance, the
Education apps are mostly tracked by some ATS local communities run by the
companies providing educational related services. Specifically, the parenting app
Yaolan is mostly tracked by the following ATS local communities: <yaolan.com,
yaolanimage.cn> run by Yaolan itself and <pcbaby.com.cn, pconline.com.cn> run
by the app PCbaby that also provides parenting or educational services.

Takeaway. Mobile trackers are interconnected because popular trackers are
regularly co-occur (in the same apps) with non-popular ones. The non-popular
trackers, however, form many local communities, and the trackers in each local
community tend to track a special category of mobile apps. The very top ATSes
are often co-located in the same app, implying pervasive tracking.
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Table 3. Common UIDs host on mobile devices.

UID Description UID Description

IMSI SIM ID MAC Unique hardware ID

IMEI Device ID ADID/IDFA Advertising ID

ICCID SIM number

Fig. 8. Tracking domains (SLDs) that collect PII.

3.3 How Are Users Impacted by ATSes?

ATS Monopolies. The heavy-tailed distribution of ATS popularity leads us
to conjecture that some may have a monopoly on certain user’s data, i.e. a
user may exclusively be tracked by a single ATS. To test this, we compute two
metrics. First, user tracking potential (UTP) measures the number of users that
can be potentially tracked by a mobile tracker. Given the set of all mobile users
R, the tracker i’s UTP is UTPi = |Si|

|R| , where Si ⊂ R is the set of users that
the tracker i can reach. Second, tracking monopoly index (TMI) measures the
extent to which a tracker reaches users that others do not have. Let mj denote
the number of mobile trackers that can reach the user j ∈ Si. The TMI of the
tracker i is TMIi = 1

|Si|
∑

j∈Si

1
|mj | . A high TMI indicates that some users are

exclusively reached by the tracker and maybe due to trackers’ high prevalence
or specific coverage on mobile users.

Figure 6 shows the distribution of user tracking potential and tracking
monopoly index of the top 30 ATS domains (SLDs). We rank the tracker domains
in descending order by the UTP values. The result reveals a high penetration
of the tech giants in China. For example, qq.com (owned by Tencent) holds a
high UTP (over 0.8) and TMI (about 0.3) metrics, which reveals its high popu-
larity and tracking monopoly. In addition, although under 20% of mobile users
are tracked by 71.am (owned by Baidu), uc.cn (owned by Alibaba) and 360.cn
(owned by 360 security), these trackers have relatively high TMIs. This indicates
that there is a significant pooling of tracker data within this small elite, simi-
lar to that achieved by companies such as Google and Facebook in the western
context.
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ATS vs. App Traffic Volumes. Regardless of privacy implications, the data
sent to trackers creates increased resource usage (on devices and within the net-
work). We are next curious to see what volume of each user’s traffic is generated
by ATSes. Thus, we compute the ratio of tracking traffic to app traffic for indi-
vidual users, and plot the distribution in Fig. 7. The median ratio is around
1%. Nevertheless, 5% of users send over 10% of their traffic to trackers. That
said, the tracking traffic ratio per user is actually lower than that observed in
an equivalent European 3G ISP [32], possibly due to the pervasive availability
of online videos (used by 57% of users) in the 4G network. Interestingly, the
device OS also has an impact on this ratio: iOS users (median 0.9%) tend to
send less data to trackers than Android users (median 1.5%). This observation
is in accord with the 3G network [32].

PII Leakage in ATS and Regional Destination. We next proceed to
explore if any personally identifiable information (PII) is uploaded to ATS
domains. We process each URL from all user access logs in our dataset to test for
the presence of any PII. We use regular expressions to detect the common UIDs
on mobile devices, e.g. *\?imei=* or *&imei=*. Table 3 summarizes the things
we check for, as inspired by [27,29]. In our analysis all the UIDs collected are
anonymized to protect user privacy. To check whether the identified UIDs indeed
contain PII, we leverage a small dataset of about 10K access logs collected at our
lab’s wireless access point for one day.4 Each log in this dataset contains similar
information to the ones used in this paper. We applied the UID detection to this
dataset and found that 80% of identified IMEIs, 95% of IMSIs, 83% of MACs
and 92% of ADIDs/IDFAs indeed contain PII. This lends evidence to the claim
that inferred UID exposure detected from the DPI dataset is often correct.

Our analysis reveals a worrying volume of PII leakage: as many as 10%
of users send their PII to trackers via their mobile apps. Figure 8 shows the
distribution of how several popular tracker SLDs receive PII from apps. For each
ATS domain, say sohu.com, the percentage on the left represents the number
of flows that contain UIDs. For each type of PII, the percentage on the right
represents the number of flows that belong to each of the SLDs. IMEI, IMSI,
and MAC are equally likely to be collected by these trackers. The ATSes that
upload the largest volume of PII are letv.com (ad online video service) and
sohu.com (a mixture of services including ads and video): a remarkable 60% of
PII relevant flows belong to them. Each ATS shows clear preferences towards
certain PII (shown in Fig. 8). For instance, letv.com mainly collects IMSI and
MAC information, while sohu.com shows balanced interests across four types of
PII. In contrast, ICCID is only accessed by 360.cn (security service).

A particular concern is whether PII is sent across borders to other countries
or regions [18]. We find that more than 90% of PII tracking flows are inside
mainland China by mapping IP geo-locations in China [37]. This may be largely
driven by the predominance of Chinese ATSes and the blocking of several key
US trackers (e.g. Google, Facebook), as well as the extensive support for HTTPs
in the majority of western countries (which is excluded from our analysis).
4 Every member in the lab was notified about this experiment and consented.
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Takeaway. Several tech giants in China track the majority of users. Some
specialized trackers, while having relatively small user coverage, track specific
groups of users that others do not track. For 5% of users, 10% of their traffic is
attributable to ATS flows. 10% users are exposed to PII leakage. Nevertheless,
90% of the PII data is local to China.

4 Conclusion and Discussion

This paper provides insights into the distinctive mobile tracking behavior in
China. We make several interesting observations with respect to ATS popularity
and community structure, user monopoly patterns, and PII collection. This study
not only validates many previous findings, but also facilitates fresh analysis of
tracking behavior in China. We believe that our first look at China’s mobile
tracking patterns has significant implications for many stakeholders in the mobile
tracking community (e.g. app vendor, tracker provider, adblocker). For instance,
adblockers can leverage the community structure for new tracker detection and
the prevalence of cross-app tracking raises serious privacy concerns. Many of the
findings are indeed worth further exploration, such as the tracker detection, the
PII collection, and the business relationships between mobile trackers.
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