
Chapter 8
3D Shape Registration

Umberto Castellani and Adrien Bartoli

Abstract Registration is the problem of bringing together two or more 3D shapes,
either of the sameobject or of twodifferent but similar objects. This chapter first intro-
duces the classical Iterative Closest Point (ICP) algorithm which represents the gold
standard registration method. Current limitations of ICP are addressed, and the most
popular variants of ICP are described to improve the basic implementation in several
ways. Challenging registration scenarios are analyzed, and a taxonomy of recent
and promising alternative registration techniques is introduced. Four case studies are
then described with an increasing level of difficulty. The first case study describes
a simple but effective technique to detect outliers. The second case study uses the
Levenberg–Marquardt (LM) optimization procedure to solve standard pairwise reg-
istration. The third case study focuses on the challenging problem of deformable
object registration. The fourth case study introduces an ICP method for preoperative
data registration in laparoscopy. Finally, open issues and directions for future work
are discussed, and conclusions are drawn.

8.1 Introduction

Registration is a critical issue for various problems in computer vision and computer
graphics. The overall aim is to find the best alignment between two objects or between
several instances of the same object, in order to bring the shape data into the same
reference system. The main high-level problems that use registration techniques are
as follows:

1. Model reconstruction. The goal in model reconstruction is to create a complete
objectmodel frompartial 3D views obtained by a 3D scanner. Indeed, it is rare that
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Fig. 8.1 Example of model reconstruction. Partial 3D views of the object of interest are acquired
(left). After registration, all the 3D views are transformed to the common reference system and
merged (right)

a single 3D view grabs the whole object structure, mainly due to self-occlusions.
Registration allows one to obtain the alignment between the partial overlapping
3D views in order to build a complete object model, also called a mosaic (see
Fig. 8.1). In this context, registration is first applied between pairs of views [11,
126]. The whole model is then reconstructed using multiple-view registration
refinement [72, 126]. Typically, model reconstruction is employed in cultural
heritage [10] to obtain 3D models of archeological findings. It has also been
applied in applications such as reverse engineering and rapid prototyping [150]
and for vision in hostile environments [29, 30].

2. Model fitting. The goal in model fitting is to compute the transformation between
a partial 3D view and a known CAD model of the actual object. Model fitting is
used in robotics for object grasping [41, 109] and model-based object tracking
[123]. Model fitting is typically used with rigid objects but has recently been
extended to deformable objects [31].

3. Object recognition. The goal in object recognition is to find, among a database
of 3D models, which one best matches an input partial 3D view. This problem
is more challenging than model fitting since a decision has to be made regarding
which model, if any, is the sought one. Solving the recognition problem this
way is called recognition-by-fitting [147]. Several works have been done for 3D
face recognition [18, 20, 133] and for 3D object retrieval [56, 143]. Registration
becomes more challenging in a cluttered environment [8, 76, 95].

4. Multimodal registration. The goal in multimodal registration is to align several
views of the same object taken by different types of acquisition systems. After
registration, the information from different modalities can be merged for compar-
ison purposes or for creating a multimodal object model. This problem is typical
in medical imaging where it is CT scans or MRI and PET scans [89, 134]. 3D
medical image registration is discussed further in Chap.11.
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This chapter gives a general formulation of the registration problem. This for-
mulation leads to computational solutions that can be used to solve the four above-
mentioned tasks. It encompasses most of the existing registration algorithms. For
a detailed description of registration techniques and experimental comparisons, we
refer the reader to recent surveys [77, 96, 124, 126, 128, 141, 142]. It is worth men-
tioning that most of the existing computational solutions are based on the seminal
Iterative Closest Point (ICP) [11] algorithm that we will describe shortly.

8.1.1 Chapter Outline

This chapter is organized as follows. We first present the two-view registration prob-
lem and the current algorithmic solutions. We then describe some advanced registra-
tion techniques. We give a comprehensive derivation of algorithms for registration
by proposing four case studies. We give an overview of open challenges with future
directions and conclusion. Further suggestions, additional reading, and exercises are
finally proposed.

8.2 Registration of Two Views

We first give a mathematical formulation of the two-view registration problems and
then derive the basic ICP algorithm and discuss its main variants.

8.2.1 Problem Statement

Given a pair of viewsD andM representing two scans (partial 3D views) of the same
object, registration is the problem of finding the parameters a of the transformation
function T (a, D)which best aligns D to M . Typically, set D andM are either simple
point clouds or triangulated meshes [26]. The moving view D is called data-view,
while the fixed view M is called model-view. The registration problem is solved by
estimating the parameters a∗ of the transformation T that satisfy

a∗ = argmin
a

E(T (a,D),M), (8.1)

where E is called the error function and measures the registration error. Figure8.2
illustrates the two-view registration process. The data-view and themodel-view show
different portions of Bunny. The transformation function T (a,D) is applied, and the
registered views are shown.
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Fig. 8.2 Pairwise registration. The data-view and the model-view (left) are registered. The trans-
formation function T (a,D) allows one to move the data-view to the model-view coordinate frame
(right)

Most of the registrationmethods are based on the paradigm defined directly above
and differ in the following aspects:

• The transformation function. The transformation function T usually implements
a rigid transformation of the 3D space. It uses a translation vector t and a rotation
matrix R whose values are encoded or parametrized in the parameter vector a.
The transformation function may also handle deformations; this requires a more
complex formulation.

• The error function. The error function E measures the registration error or dis-
similarity between D andM after alignment. When the transformation function T
is rigid, E is a measure of congruence between the two views. In general, E takes
the form of an L2 approximation of the Hausdorff distance which further involves
the so-called point-to-point distance [11] or the point-to-plane distance [36].

• The optimization method. This is the method or algorithm used to find the min-
imizer a in problem (8.1). The gold standard is the ICP algorithm [11] which
was specifically designed for the problem at hand. General-purpose optimization
methods such as Levenberg–Marquardt [54] have also been used for this problem.
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8.2.2 The Iterative Closest Points (ICP) Algorithm

In the classical ICP algorithm [11], the overall aim is to estimate a rigid trans-
formation with parameters a∗ = (R, t). Both views are treated as point clouds
D = {d1, . . . ,dNd } and M = {m1, . . . ,mNm }. The error function is chosen as

EICP(a,D,M) =
Nd∑

i=1

‖(Rdi + t) − m j‖2, (8.2)

where we define EICP(a,D,M) = E(T (a,D),M) and where (di ,m j ) are corre-
sponding points [126].1 Fixing di ∈ D the corresponding pointm j ∈ M is computed
such that

j = argmin
k∈{1,...,Nm }

‖(Rdi + t) − mk‖2. (8.3)

More specifically, the value

e2i = ‖(Rdi + t) − m j‖2 (8.4)

is the square of the residual. Figure8.3 illustrates the step of correspondence com-
putation. For each data point (in red), the closest model point (in blue) is computed
using the Euclidean distance. The list of correspondences is thus obtained. Note
that, given point correspondences, computation of R and t to minimize EICP in
Eq.8.2 can be solved in closed form [126]. Several approaches are possible for the
closed-form, least squares estimation of this 3D rigid body transformation. These
include approaches based on Singular Value Decomposition (SVD), unit quaternion,
dual quaternion, and orthonormal matrices. Although the study of Eggert et al. [49]
found little difference in the accuracy and robustness of all these approaches, per-
haps the most well known of these is the SVD approach by Arun et al. [5]. Here, the
cross-covariance matrix is formed for the Nd correspondences, (di ,m j ), as

C = 1

Nd

Nd∑

i=1

(di − d̄)(m j − m̄)T , (8.5)

where the means d̄, m̄ are formed over the Nd correspondences. Performing the SVD
of C gives us

USVT = C, (8.6)

where U and V are two orthogonal matrices and S is a diagonal matrix of singular
values. The rotation matrix R can be calculated from the orthogonal matrices as

1Note that the pair (di ,m j ) is initially a putative correspondence, which becomes a true correspon-
dence when convergence to a global minimum is attained.
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Fig. 8.3 Correspondence estimation in ICP. For each transformed data point d′
i = Rdi + t, the

closest model point m j is estimated (left). The list of corresponding points is then defined (right)

R = VUT . (8.7)

This solution may fail to give a correct rotation matrix and give a reflection instead
when the data is severely corrupted [149]. Thus, it can be modified to always return
a correct rotation matrix [149]:

R = VSUT , (8.8)

where

S =
{
I if det(U)det(V) = 1
Diag(1, 1, · · · , 1,−1) if det(U)det(V) = −1.

Once the rotation matrix has been estimated, the translation vector t can be estimated
as

t = m̄ − Rd̄ . (8.9)

The ICP algorithm is iterative because it iteratively improves the putative corre-
spondences. If true correspondences were known, clearly the process could operate
in one shot (one pass). ICP has two main steps in its inner loop: (i) closest point
computation and (ii) rigid transformation estimation. In more detail, the algorithm
operates as follows:

1. For each data point di ∈ D, compute the closest point m j ∈ M according to
Eq.8.3.

2. With the correspondences (di ,m j ) from step 1, estimate the new transformation
parameters a = (R, t).

3. Apply the new transformation parameters a from step 2 to the point cloud D.
4. If the change in EICP(a,D,M) between two successive iterations is lower than

a threshold then terminate, else go to step 1.

It was proven [11] that this algorithm is guaranteed to converge monotonically to a
local minimum of Eq. (8.2). Note that, as for any local iterative method, a strategy for
initializing a must be used. An overview of the most popular initialization strategies
is given in Sect. 8.2.3.1.
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8.2.3 ICP Extensions

Although ICP has been successfully applied to many registration problems, there are
several critical issues that need to be taken care of. In particular, ICP performs well
when the following assumptions are met:

1. The two views must be close to each other. If not, ICP will probably get stuck in
a local minimum. This issue is typically solved by pre-alignment of the two 3D
views, also called coarse registration.

2. The two views must fully overlap or the data-view D must be a subset of the
model-view M. The problem arises from the fact that ICP always assigns a clos-
est point to every data point. If a data point has no corresponding model point,
this will create a spurious correspondence, an outlier with respect to the sought
transformation, that will bias the solution or prevent the algorithm from finding
the correct transformation parameters.

Two other important issues are the speed of computation and the accuracy of the
ICP algorithm. Typically, methods focused on speed improvement for the closest
point computation step which is the bottleneck of the algorithm. Other interesting
approaches address instead of the speed of convergence by proposing new distance
formulations for problem (8.1). Methods focusing on accuracy exploit additional
information in order to measure the similarity between corresponding points not
only in terms of proximity. In the following, we describe some registration tech-
niques which improve the basic ICP method in several ways. Figure8.4 illustrates
the proposed taxonomy of ICP extensions so as to easily understand the organization
of previous work in this field.

8.2.3.1 Techniques for Pre-alignment

The aimof pre-alignment techniques is to estimate a coarse transformationwhichwill
allow the two views to get closer. This helps the data-view to be transformed within
basin of attraction of the correct local minimum. In practice, instead of searching
dense point-to-point correspondences, pre-alignment techniques estimate the best
matching between features extracted from the views. Roughly speaking, the features
can be global or local. The former is a compact representation that effectively and
concisely describes the entire view. The latter instead is a collection of local and
discriminative descriptors computed on sub-parts of the views.

Global Approaches
Global approaches typically estimate and match the principal coordinate system of
each view. The simplest approach is to compute the main translational alignment
by shifting the centroids of the two point clouds to the origin of the coordinate
system (i.e., zero-mean). In order to estimate also the orientation of the principal
axes, Principal Component Analysis (PCA) to the 3D points can be performed.
The problems with PCA as a pre-alignment method are (i) a 180◦ ambiguity in the
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Fig. 8.4 A taxonomy of some ICP extensions

direction of the principal axes, (ii) principal axes may switch for shapes that have
eigenvalues similar in value, particularly if the object is able to deform slightly,
and (iii) a vulnerability to outliers in the raw shape data (as discussed). Even if
we enforce a right-handed frame using the sign of cross-product of basis vectors,
there still exists an overall 180◦ ambiguity, unless higher order moments are used.
Moments of higher orders are also useful to improve accuracy [21]. Of course, these
approaches perform well when the two views fully overlap. Otherwise, the non-
overlapping parts change the estimation of the principal axes and thus affect the
pre-alignment. Some improvements have been made by extracting and matching
the skeletons of the views [32, 99] but this is feasible for articulated objects only.
Recently, a method for registration between views in arbitrary pose was proposed as
the so-calledGO-ICPmethod [157]. The key idea consists of solving the optimization
problem using a branch and bound algorithm to guarantee the estimation of a global
solution independently of the initialization.

Local Approaches
Local approaches define a descriptor (or signature) for each 3D point which encodes
local shape variation in the point neighborhood [27, 76, 78, 104, 140]. See also [63,
64, 145] for a comprehensive survey on local geometric descriptors. Point corre-
spondences are then obtained as the best matches in regard to the point signatures.
Various methods to compute signatures were proposed. In the seminal work [76],
the spin images were introduced. In a spin image, the neighbors of some selected 3D
point (e.g., a 3D interest point [145]) are binned in a 2D cylindrical-polar coordinate
system. This consists of a distance from the selected point within that point’s tangent
plane and a signed height above/below the tangent plane. Thus, the spin image is
a 2D histogram of 3D shape, where one dimension of information is sacrificed for
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pose invariance. In [80], curvilinear features on the object are estimated from a small
amount of points of interest. Gaussian andmean curvatures are used to this aim. Sim-
ilarly, in [156], bitangent curve pairs were used as landmarks on the surface. In [104],
a geometric scale-space analysis of 3D models was proposed from which a scale-
dependent local shape descriptor was derived. Similarly in [27], registration involves
few feature points by extending the approach for salient point detection to the 3D
domain. A generative model is then estimated as a point descriptor by using hidden
Markov models. In [78], the proposed descriptor encodes not only local information
around the point, but also inter-point relationships. The method is inspired by the
so-called Shape Context [9] which was improved using the Bag-of-Words paradigm
[42]. Note that from the analysis of inter-point relationships, it is also possible to
estimate the overlapping region between two views. It is worth noting that in general
the estimation of the overlap area is not trivial. An interesting approach was proposed
in [131] by combining local geometric features with advanced graph matching tech-
niques. The method consists of representing all putative point matches as a graph,
and then selecting as many consistent matches among them as possible. To this aim,
a global discrete optimization problem is proposed based on the so-called maximum
strict sub-kernel algorithm [130].

8.2.3.2 Techniques for Improving Speed

The speed of the algorithm is crucial for many applications. Unfortunately, when the
number of points is very high, the basic ICP algorithm becomes very slow. In order
to address this issue, several strategies were proposed. Many of these strategies are
implemented by theKinect fusion toolkit [101] for real-timemodeling using dynamic
RGBD sensors.

Subsampling
Subsampling can be applied to either the data-view only or to both the data-view and
the model-view. Random and uniform strategies are common approaches [126].Nor-
mal space sampling is a more sophisticated approach based on choosing points such
that the distribution of normals among the selected points is as spread as possible. This
increases the influence of smaller details which are crucial to better disambiguate the
rigid transformation due to translational sliding. Another effective practice is based
on a hierarchical subsampling where the range map is re-organized in a pyramidal
fashion to obtain a coarse to fine representation of the source data. This approach is
employed for online modeling as in [101] where the coarse levels with few points
are used to estimate the rough motion, and vice-versa the detailed levels that involve
more points are employed for refining the alignment.

Closest Point Computation
As mentioned above, closest point computation is the bottleneck of the registration
process due to the quadratic complexity (O(n2)) in finding the correspondence of
each point. Early strategies were based on the organization of the model points in a
k-d tree [136] structure in order to reduce the closest point complexity to O(n log n).
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Closest point caching [136] also accelerates the speed of ICP (the data point corre-
spondence search is only among a subset of model points which were the closest at
the previous iteration). Indeed, in [105] k-d tree and caching are combined in order
to further improve the speed of ICP. Other more effective approaches are based on
the so-called reverse calibration paradigm [13]. The idea is to project the source
data point onto the destination model-view which is encoded as a range image [124].
In particular, the projection from the 3D domain into the range image is performed
by using the calibration parameters of the 3D scanner. In this fashion, the corre-
spondence is computed in one shot. The reverse calibration approach is especially
effective for real-time modeling purposes [30, 101, 125]. For instance, in [125] the
authors proposed the first real-time 3D model reconstruction system where the full
modeling pipeline is carried out during the acquisition using a real-time sensor. In
[30], online registration is performed to build a 3D mosaic of the scene in order
to improve the navigation in underwater environments. This online modeling using
reverse calibration alignment has been consolidated more recently with the large
availability of dynamic RGBD sensors [101]. Note that the one-shot computation
can be carried out also on generic point cloud (not necessarily coming from a range
image) by precomputing the so-called distance transform of the model-view [54].
Figure8.5 illustrates the distance transform. In practice, the distance to closest model
points is pre-computed for all grid points of the discretized volume. The case for dis-
tance transform computed for the model is particularly compelling when one wishes
to align many instances of data scan to the same model scan. A more recent class of
methods is based on the GPU implementation of data representation to improve the
computation of corresponding points [47, 48]. A probabilistic approach is proposed
using Gaussian Mixture Models (GMMs) where a decoupling technique is intro-
duced for parallel estimation of parameters. Also, in [101], a parallel computation
of local contributions of distance estimation is employed on a GPU to improve the
speed of real-time modeling.

Distance Formulation
Another crucial factor affecting the speed of ICP is the point-to-point or point-to-
plane distance used in problem (8.1). Figure8.6 shows a schema of the two kinds
of distances: point-to-point computes the euclidean distance between the data point
and model point (left), and point-to-plane distance computes the projection of the
data point onto the surface of the model-view which is encoded in terms of piecewise
planar patches (for instance, a triangular mesh). In spite of an increased complexity
of the distance for point-to-plane formulation, the number of ICP iterations required
to converge is reduced [110, 115]. Whether this results in a reduced registration time
depends on the tradeoff between the increased per-iteration time and the reduced
number of iterations. Note that usually the point-to-plane distance is employed for
real-time modeling pipelines [101, 124] where pairwise registration is carried out
for subsequent views acquired very close in time with a very small motion among
them.

Recently, a new “distance formulation” has been proposed [112] where the model
surface is implicitly represented as the zero isosurface of a fitted Radial Basis Func-
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Fig. 8.5 Using the distance transform. The model-view is enclosed in a volumetric grid (left). For
each point of the grid, the closest model point is computed. Two planes are highlighted on the XY -
and Y Z -axes, respectively, and the distance transform values of each grid point are visualized for
both planes (right)

tion (RBF), s(x) = 0, for any 3D point x, where the function s represents distance
to surface. For any point on the data scan (or on a pre-computed 3D grid), the dis-
tance and direction (gradient) to the zero isosurface can be computed directly from
the RBF. The advantage of this RBF distance formulation is that it interpolates over
holes that may exist in the model scan. Particularly for lower resolution scans, the
interpolation is more accurate than the piecewise linear point-to-plane method. Both
RBF model fitting and RBF model evaluation are O(n log n).

8.2.3.3 Techniques for Improving Accuracy

The accuracy of the alignment is the most critical aspect of the registration since
even a small misalignment between two views can affect the whole 3D model recon-
struction procedure. The simplest strategy that can be used is outlier rejection. Other
methods improve the accuracy by using additional information such as color and
texture or local geometric properties. Finally, an effective class of methods devoted
to the improvement of accuracy are probabilistic methods.

Outlier Rejection
Closest point computation may yield spurious correspondences due to errors or to
the presence of non-overlapping parts between the views. Typically, outlier rejection
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Fig. 8.6 Distance formulation. Point-to-point distance: the 3D vertex di is associated to the 3D
point m j which is a vertex of the source 3D mesh (left). Point-to-plane distance: the 3D vertex di
is associated to the 3D point m j which lies inside the plane defined by a triangle of the source 3D
mesh (right)

techniques threshold the residuals. The threshold can be fixed manually, or as a
percentage of worst pairs (e.g., 10% [117, 126]). Other techniques perform statistics
on the residual vector and set the threshold as 2.5σ or apply the so-called X84 rule
[29, 66]. An evaluation of the use of the X84 rule for automatic outlier rejection is
presented in Sect. 8.5. More recently, statistical analysis has been introduced into
the general registration problem (Eq.8.1) by proposing a new error function named
Fractional Root Mean Squared Distance [113]. In [17], an implicit approach to
reject the outliers is introduced exploiting a sparse formulation of the closest point
computation with L1-norm distance.

Additional Information
The basic ICP algorithm computes the correspondences by taking into account only
the proximity of points. However, corresponding points should be similarwith respect
to other aspects. Several studies have attempted to exploit additional information
available from the acquisition process or from the analysis of the surface properties. In
practice, the distance formulation ismodified to integrate such additional information
like local surface properties [59], intensity derived from the sensor [59, 154], or
color [118]. In [74], the authors proposed to use color and texture information.
In [135], the so-called ICP using Invariant Feature (ICPIF) was introduced where
several geometric features are employed, namely, curvatures, moments invariants,
and spherical harmonics invariants. In [25], additional information was integrated
into the point descriptors using the spin image with color. More recently, with the
availability of low-cost RGBD sensors [165], several methods have been proposed
that exploit the matching computation on both the 2D and 3D domains (i.e., a 2D
image is used as additional information) [67]. For instance, [162] uses camera pose
optimization with 2D features to improve the accuracy of registration.

Probabilistic Method
In order to improve the robustness of the registration, several probabilistic versions
of the standard ICP have been proposed [61, 119, 120]. In [119, 120], the idea
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of multiple weighted matches justified by a probabilistic version of the matching
problem is introduced. A newmatchingmodel is proposed based on Gaussian weight
(SoftAssign [120]) andmutual information [119], leading to a smaller number of local
minima and thus presenting the most convincing improvements. In [61], the authors
introduced a probabilistic approach based on the Expectation Maximization (EM)
paradigm, namely, EM-ICP. Hidden variables are used to model the point matching.
Specifically, in the case of Gaussian noise, the proposed method corresponds to ICP
with multiple matches weighted by normalized Gaussian weights. In practice, the
variance of the Gaussian is interpreted as a scale parameter. At high scales, EM-
ICP gets many matches while it behaves like standard ICP at lower scales. In [47],
a hierarchical approach was introduced representing the partial views at multiple
scales. In this fashion, the most appropriate level of geometric details is adaptively
found to improve the point matching.

8.3 Advanced Techniques

Although registration is one of the most studied problems in computer vision, several
cases are still open and new issues have emerged in recent years. In this section, we
focus on some scenarioswhere registration becomesmore challenging: registration of
more than two views, registration in cluttered scenes, and registration of deformable
objects. We also describe some emerging techniques based on machine learning
to solve the registration problem. Figure8.7 illustrates the proposed taxonomy for
advanced registration techniques.

Fig. 8.7 A taxonomy of advanced registration techniques



366 U. Castellani and A. Bartoli

8.3.1 Registration of More Than Two Views

Once registration has been performed pairwise, all the views need to be transformed
into a global reference system by applying a multiple-view registration technique.
Note that in this context the assumption that the data-view is a subset of the model-
view is no longer true. There are two main issues: (i) error accumulation and (ii) the
automation of the process.

Reducing Error Accumulation
When the ordering of the sequence of views N1, ..., Np is available, the registration
can be performed pairwise between consecutive views (i.e., between views Ni and
Ni+1). In general, even if all the pairs are apparently well registered, some misalign-
ment typically appears when the full model is reconstructed due to the accumulation
and propagation of the registration error. The general idea of multiple-view registra-
tion techniques is to solve simultaneously for the global registration by exploiting
the interdependencies between all views at the same time. This introduces additional
constraints which reduce the global error. A comparative study of similar multiple-
view registration schemes was performed [43]. In [117], a method is presented that
first aligns the scans pairwise with each other and then uses the pairwise alignments
as constraints in a multiview step. The aim is to evenly distribute the pairwise reg-
istration error, but the method itself is still based on pairwise alignments. In [29], a
method that distributes registration errors evenly across all views was proposed. It
operates in the space of estimated pairwise registration matrices; however, ordering
of the views is required. More recently, [144] proposed a new approach based on the
well-known generalized Procrustes analysis, seamlessly embedding the mathemati-
cal theory in an ICP framework. A variant of the method, where the correspondences
are non-uniformly weighted using a curvature-based similarity measure, was also
presented. In [161], a method that handles loop closures was proposed to perform a
globally consistent reconstruction. Locally fused models are introduced for overlap-
ping parts of the scene and used to initialize a global graph-based optimization that
distributes residual error. The key idea consists in the detection of points of interest
characterized by the areas with the highest density of information. This approach is
particularly effective for large-scale scenarios where the reconstruction is obtained
with a SLAM-like framework [51]. In [53], error accumulation is avoided by extend-
ing the LM-ICP algorithm [54] to work on multiple views. The idea consists of
defining an effective optimization function that considers all the views simultane-
ously in the registration error, whose solution is obtained using standard numerical
methods.

Automating Registration
Especially when the full model is composed of a large number of scans, the view
order might not be available and therefore should bemanually specified.Manymeth-
ods were proposed to improve the automation of multiple-view registration. In [72],
a global optimization process searches a graph constructed from the pairwise view
matches for a connected sub-graph containing only correct matches, using a global
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consistency measure to eliminate incorrect but locally consistent matches. Other
approaches use both global and local pre-alignment techniques to select the over-
lapping views by computing a coarse alignment between all the pairs. In [90], the
pre-alignment is performed by extracting global features from each view, namely,
extended Gaussian images. Conversely, in [78], the pre-alignment is computed by
comparing the signatures of feature points. Then, the best view sequence is estimated
by solving a standard Travelling Salesman Problem (TSP). In [37], a robust strategy
was introduced to detect wrong alignment between view pairs. A global optimiza-
tion method is introduced based on the line processes algorithm. In [65], the authors
introduced a shape-growing method where a seed shape is sequentially updated by
registering it with the input partial views. In [53], a view matching method was
proposed that combines salient point descriptors with a RANSAC-based robust cor-
respondence computation. In this fashion, both the ordering of views and the pairwise
pre-alignment are obtained leading to a fully automatic registration pipeline. Results
regarding this aspect for example 3D scans are presented in Sect. 8.4.

8.3.2 Registration in Cluttered Scenes

Thanks to the recent availability of large-scale scanners, it is possible to acquire
scenes composed of several objects. In this context, registration is necessary to
localize each object present in the scene and estimate its pose. We call this sce-
nario a cluttered case where the overlap between the registering views is very small
since the object of interest to be localized may be made of a small subset of the
entire view. This makes the registration problem more challenging. Figure8.8 shows
two examples of highly cluttered scenes: an entire square2 and a scene composed of
several mechanical objects.

Roughly speaking, two main strategies were proposed to address this problem:
(i) the use of point signatures to improve point-to-point matching and (ii) the design
of more effective matching methods.

Point Signatures
This approach is similar to local approaches for pre-alignment. However, in clut-
ter scenarios, the problem becomes more challenging since, differently from the
standard pre-alignment case, the neighborhood of one point of an object can cover
part of other objects. Therefore, the descriptor may become useless, and the size of
local neighborhood becomes crucial to get the best tradeoff between reliability of
descriptor and robustness to clutter. A large number of methods for keypoint detec-
tion were proposed to reduce the considered points only to very few salient areas
[145]. Then, using a local 3D Reference Frame (RF) is important to encode pose
invariant 3D descriptors. For instance, in [146] the so-called SHOT descriptor was
proposed to form a rotation invariant and robust to noise RF from which a descrip-
tor is obtained combining geometric information with color. In [95], a descriptor

2Piazza Brà, Verona, Italy. Image courtesy of Gexcel: http://www.gexcel.it.

http://www.gexcel.it
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Fig. 8.8 Example of large scan acquisition (left) and scene withmultiple mechanical objects (right)

that uses two reference points to define a local coordinate system is proposed. In
particular, a three-dimensional tensor is built by sampling the space and storing the
amount of surface intersecting each sample. In [8], a method that exploits surface
scale properties is introduced. The geometric scale variability is encoded in the form
of the intrinsic geometric scale of each computed feature by leading to a highly
discriminative hierarchical descriptor.

Matching Methods
Since the number of corresponding points is very few within cluttered scenes, stan-
dard methods for outlier rejection are not useful but more complex matching algo-
rithm can be exploited. In [95], descriptors are stored using a hash table that can
be efficiently looked up at the matching phase by geometric hashing algorithm. In
[8], matching is performed in hierarchical fashion by using the hierarchy induced
from the definition of point descriptor. In [46], a method is proposed that creates
a global model description using an oriented point pair feature and matches it by
using a fast voting scheme. A fast voting scheme, similar to the generalized Hough
transform, is used to optimize the model pose in a locally reduced search space. This
space is parametrized in terms of points on the model and rotation around the surface
normals.

In [155], a new voting scheme called Intrinsic Hough transform was introduced
to exploit the sparsity of the voting space by sampling only at the areas where
the matching probability is non-zero. In [2], a method is proposed to extract all
coplanar 4-point sets from a 3D point set that are approximately congruent, under
rigid transformation, to a given set of coplanar 4-points. This approach is further
expanded in the so-called Super4PCS method [93] where an effective data structure
is exploited to improve the core instance problem, i.e., finding all point pairs that are
within a distance range (r − ε, r + ε). In this fashion, a very fast registration can be
obtained from arbitrary pose, with very few overlap. In [163], a method called fast
global registration was introduced. A well-defined energy formulation is designed
to encode the registration constraints, and a line process technique is exploited to
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efficiently solve for the optimal solution. This method is suitable for large scenes
with clutter. Moreover, it can easily work with multiple views.

8.3.3 Deformable Registration

While rigidity in the aligning transformation is a largely applicable constraint, it is
too restrictive in some cases. Imagine indeed that the object that has to be registered
is not rigid but deformable. For instance, a typical deformable object is the human
body and its parts such as the face or the hands. For the full body, it is very important
to align the articulated parts (i.e., arms, legs, and so on), while for the face the
deformations are caused mainly by the facial expressions. Another class of object is
composed of planar shapes such as a piece of paper or a blanket that deform over
time. Also, in themedical domain, there aremainly non-rigid scenarios caused by the
deformation of the internal parts of the human body. Deformable registration has two
main issues: the computation of stable correspondences and the use of an appropriate
deformation model. Note that the need for registration of articulated or deformable
objects has recently increased due to the availability of real-time range scanners
[33, 34, 85, 97]. Roughly speaking, we can emphasize two classes of deformable
registration methods: (i)methods based on general optimization techniques, and (ii)
probabilistic methods.

Methods Based on General Optimization Techniques
The general formulation of deformable registration is more involved than the rigid
case and it is more difficult to solve in closed form. Advanced optimization tech-
niques are used instead. The advantage of using general optimization techniques
consists of jointly computing the estimation of correspondences and the deformable
parameters [33, 34, 38, 85, 138]. Moreover, other unknowns can be used to model
further information like the overlapping area, the reliability of correspondences, the
smoothness constraint, and so on [85]. Examples of transformation models which
have been introduced for surface deformations are (i) affine transforms applied to
nodes uniformly sampled from the range images [85], (ii) rigid transforms on patches
automatically extracted from the surface [33], (iii) as rigid as possible constraint
[138], (iv) Thin-Plate Splines (TPS) [38, 124], or (v) Linear Blend Skinning (LBS)
model [34]. The error function can be optimized by the Levenberg–Marquardt Algo-
rithm [85], GraphCuts [33], or Expectation–Maximization (EM) [34, 38, 100]. In
[71], deformable registration is solved by alternating between correspondence and
deformation optimization. Assuming approximately isometric deformations, robust
correspondences are generated using a pruning mechanism based on geodesic con-
sistency. Deformable alignment to account for errors in the point clouds obtained
by scanning a rigid object is proposed in [22, 23]. Also, in this case, the authors
use TPS to represent the deformable warp between a pair of views that they estimate
through hierarchical ICP [124].Note that using real-timeRGBDsensors is possible to
implement real-time modeling and reconstruction systems also for non-rigid objects
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[73, 102]. For instance in [102], the so-called Dynamic Fusion method has been
introduced for dense dynamic scene reconstruction. The idea is to estimate a dense
volumetric motion field for each frame in order to provide increasingly denoised
measurements and a complete representation of the observed scene as more mea-
surements are acquired and integrated. This approach has been further extended in
[73] where a sparse RGB feature matching strategy was introduced to improve the
robustness of tracking.

A new class of methods are properly defined for human shapes and are based
on the fitting of a template model (e.g., a morphable model) to the acquired shape
[88]. In this scenario, the challenge consists of estimating both the shape and pose
parameterswithin the sameoptimization procedure. For instance, in [14], the Skinned
Multi-Person Linear (SMPL)model is registered to amonocular RGBD sequence for
full-body reconstruction. This approach was further expanded for full-body dynamic
shape and motion capture [15] where a new mesh registration method was proposed
that uses both 3D geometry and texture information to register all scans in a sequence
to a common reference topology. Another class of important method for non-rigid
shapes is based on spectral shape analysis [84]. In particular, a new approach consists
of moving the computation of matching from the physical to the spectral space
exploiting the so-called functional map framework [106]. From the basic framework,
several variants have been proposed to work on partial shapes [87, 122], to reduce the
number of estimated parameters [103], and to exploit locality on the spectral domain
[94]. It is worth noting that these methods provide the matching between points
or shape parts but they cannot deform the pair of shapes to allow a full alignment
between them. For this aim, a recent method called functional automatic registration
for 3D human bodies (FARM) was proposed in [91] where the spectral approach
based on the functional map is combined with the SMPL template model to obtain
the registration of the full body in very challenging scenarios such as partiality, noise,
and topological variation.

Probabilistic Methods
Using probabilistic methods, the uncertainty on the correct surface transformation
can be addressed by adopting maximum likelihood estimation [4, 45, 70, 75, 100,
151]. Probabilistic approaches are based on modeling each of the point sets by a
kernel density function [148]. The dissimilarity among such densities is computed
by introducing appropriate distance functions. Registration is carried out without
explicitly establishing correspondences. Indeed, the algorithm registers two meshes
by optimizing a joint probabilistic model over all point-to-point correspondences
between them [4]. In [75], the authors propose a correlation-based approach [148] to
point set registration by representing the point sets as Gaussian mixture models. A
closed-form solution for the L2 norm distance between twoGaussianmixturesmakes
fast computation possible. In [151], registration is carried out simultaneously for
several 3D range datasets. The method proposes an information-theoretic approach
based on the Jensen–Shannon divergence measure. In [100], deformable registration
is treated as a maximum likelihood estimation problem by introducing the coherent
point drift paradigm. Smoothness constraints are introduced based on the assumption
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that points close to one another tend to move coherently over the velocity field. The
proposed energy function is minimized with the EM algorithm. Similar approach
has been proposed in [45] to track the full-hand motion. A stereo setup is employed
to estimate the 3D surface. To improve the estimation of the hand pose, 2D motion
(i.e., optical flow) is combined with 3D information. A well-defined hand model is
employed to deal with articulated structures and deformations. Also, in this case, the
standard ICP algorithm has been extended to its probabilistic version according to
the EM-ICP approach. This approach has been further extended in [70] where the
so-called expectation conditional maximization paradigm is introduced. A formal
demonstration is proposed to show that it is convenient to replace the standard M-
step by three conditional maximization steps, or CM steps, while preserving the
convergence properties of EM. Experiments are reported for both the hand and body
tracking. In [28], a statistical method has been proposed to model the local geometry
properties variation as a local stochastic process encoded in a HiddenMarkovModel
(HMM). The idea is to learn local geometric configurations as hidden states and
encoding the surface properties in terms of transitions among such states. In [166],
the so-called Stitched Puppet model was proposed to encode the body parts of the
human shapes in a generative model. The human body is represented by a graphical
model whose nodes are associated to body parts that can independently translate and
rotate in 3D.

8.3.4 Machine Learning Techniques

Recently, advanced machine learning techniques have been exploited to improve
registration algorithms [3, 60, 98, 111, 139]. The general idea is to use data-driven
approaches that learn the relevant registration criteria from examples. The most
promising methods have been proposed for (i) improving the matching phase and
(ii) detecting an object which is a general instance of one or more classes. Most of
the recently proposed methods are based on deep learning architectures [82].

Improving the Matching
In these approaches, the emphasis is on the effectiveness of the correspondence
computation. In [139], a new formulation for deformable registration (3D faces)
is proposed. The distance function from corresponding points is defined as a
weighted sum of contributions coming from different surface attributes (i.e., proxim-
ity, color/texture, normals). Instead ofmanually or heuristically choosing theweights,
amachine learning technique is proposed to estimate them.A support vectormachine
framework is employed in a supervised manner, based on a dataset of pairs of cor-
rect and incorrect correspondences. In [3], the authors propose a novel unsupervised
technique that allows one to obtain a fine surface registration in a single step, without
the need of an initial motion estimation. The main idea of their approach is to cast
the selection of correspondences between points on the surfaces in a game theoretic
framework. In this fashion, a natural selection process allows one to select points
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that satisfy a mutual rigidity constraint to thrive, eliminating all the other correspon-
dences.

With the explosion of the deep learning technology [82], several methods have
been proposed to extend this very effective approach to 3D registration. In [158],
a neural network is trained on 3D shapes working on local volumetric patches.
The need of a large number of training data is satisfied using the available dataset
of already registered scans. This approach was further improved in [44], encoding
simple geometric relationships such as normals and point pair features to better
represent the local context of a given point. Furthermore, to explore the relationship
across different views, a new descriptor was proposed in [160] where training is
carried out by collecting information from multiple views. In [50] rather than using
labeled data, the authors proposed an unsupervised method based on deep auto-
encoders [68]. Deep learning methods are also effective for non-rigid objects like
the human body [16, 86]. In [16], a geometric convolutional neural network was
designed to effectively learn class-specific shape descriptors. In [86], a new neural
network was proposed to directly estimating the shape correspondences within the
functional map framework. Finally, interesting deep learning approaches have been
successfully employed in the medical domain where different sources of information
need to be integrated using a multimodal registration procedure [137].

Object Detection
A new class of methods is emerging from employing machine learning techniques
for detecting specific classes of objects on large scenes [60, 98, 111]. In this context,
the registration is important to be able to devise a detection-by-localization approach
[147] where the pose of the object is also estimated. Several works have been done
for the 2D domain, but its extension to 3D scenes is not trivial. In [111], the authors
proposed to detect cars in cluttered scenes composed of millions of scanned points.
The method is based on integrating spin images with extended Gaussian images in
order to combine effectively local and global descriptors. Furthermore, the method is
able to detect object classes and not only specific instances. In [98], the Associative
Markov Network (AMN) has been extended to integrate the context of local features
by exploiting directional information through a new non-isotropic model. In [60],
different objects are simultaneously detected by hierarchical segmentation of point
clouds. Indeed, clusters of points are classified using standard learning by example
classifiers.

Deep learning methods have shown their benefit also for the object detection task.
The so-called 3DMatch method [158] enables 3D model alignment from cluttered
RGBD scenes using a deep neural network to learn 3Dmatching. In [81], the object is
localized using a regression procedurewhich, from the depth image, provides the 6D-
pose parameters. Note that these deep-learning-based approaches naturally extend to
multiple and different objects, leading to a complete 3D semantic segmentation. For
instance, in [121] a new neural network architecture was proposed for the extraction
of semantic components of a point cloud.
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8.4 Registration at Work

In this section, we show some practical examples of registration algorithms at work
on two views and then on more than two views.

8.4.1 Two-View Registration

Asmentioned in Sect. 8.2, given a pair of partial views of the sameobject, the pairwise
registration task consists in estimating the rigid transformation that brings themoving
data-view to the reference model-view. In this example, we take a pair of scans from
an RGBD sequence of a real scene that is acquired by a real-time sensor (i.e., kinect
[101]). The scene contains a table and some objects of the real life. The data is online
available from the rgbd-scene-v2 dataset3 and represents a very useful benchmark
for the evaluation of real-time modeling techniques like kinect fusion [101].

Figure8.9 shows the pair of evaluated scans. The RGB image (Fig. 8.9, left) shows
a can, a box, a bowl, and amug. The depthmap (Fig. 8.9, center) highlights the relative
positions among the involved objects (i.e., the bowl is the closest to the observer, the
box is the farthest, and the other objects are in between). The colored point cloud
(Fig. 8.9, right) gives the full 3D representation of the scene. As happens usually for
a real scene acquired with real-time RGBD sensors, the scans are very noisy with
the presence of many holes and outliers.

Figure8.10 shows the 2D registration performance. Figure8.10 shows the partial
views before the registration. The second view is acquired after around 1 s from the
first one. This means that the sensor motion is sufficiently large to introduce new
details of the overall scene, and the two views are already heavily misaligned. For
this experiment, we employed the standard ICP algorithm for pairwise registration
after a manual pre-alignment. We use the ICP implementation from meshlab4 and
the enclosed aligning toolkit for the pre-registration. Finally, Fig. 8.10 shows the
registered views. The two views are correctly aligned, and new details of the acquired
scene can be correctly captured especially on the can and the bowl.

8.4.2 Multiple-View Registration

In this section, we evaluate a fully automatic 3D registration pipeline of multiple
views. Given a sequence of unordered partial views of the same object, the reg-
istration task consists in finding the rigid transformation that brings each view to
the global reference system. In this fashion, the views become aligned and a com-

3http://rgbd-dataset.cs.washington.edu/dataset/rgbd-scenes-v2/, scene 13, frames 200 and 230.
4http://www.meshlab.net/.

http://rgbd-dataset.cs.washington.edu/dataset/rgbd-scenes-v2/
http://www.meshlab.net/
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Fig. 8.9 Pair of RGBD scans: RGB image (left), depthmap (center), and colored point cloud (right)

Fig. 8.10 2D Registration: starting views (left) and registered views (right)

plete model can be reconstructed. We adopt a local feature-based approach which is
composed of the following main steps5:

1. Keypoint detection. Keypoint detection aims at detecting few and salient feature
points from the shape. We employ the salient point detection method proposed
in [27]. Inspired by the research on saliency measure on 2D images, the source
mesh is decomposed into multiscale representations, and a saliency measure is
defined by combining the results gathered at each scale. Finally, maximal points
on the salient map are detected as feature points.

5Code and data for this automatic 3D registration pipeline is implemented on the Automatic 3D
Registration toolkit available at http://profs.sci.univr.it/~castella/art.html.

http://profs.sci.univr.it/~{}castella/art.html
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2. Keypoint description. Keypoint description aims at attaching a descriptor to each
keypoint that must be (i) distinctive of the point, (ii) invariant to rigid transfor-
mations, and (iii) resilient to as much nuisances as possible (noise, clutter, partial
views, sampling rate, and so on). We use spin images [76], a well-known sur-
face representation that has been successfully used in shape matching and object
recognition.

3. View matching. Since the ordering of the views is unknown, a view matching
step is required to estimate the set of view pairs to be registered. To this aim, the
overlap between each view pair is computed using a voting scheme among the
keypoint descriptors. The output of this stage is encoded in an adjacency matrix
between the views.

4. Pairwise registration. The pairwise registration is obtained in two phases: (i)
robust pre-alignment for which only feature points are involved, and (ii) ICP
registration refinement where a more accurate alignment is estimated with ICP
on the pre-aligned views using only the overlapping parts.

5. Global registration. A global alignment is produced by combining the pairwise
rigid transformations found in the previous step. The idea (as in [92, 132]) is to
estimate a global alignment of the views with the least accumulation error among
the solutions based on chaining pairwise registrations.

A more detailed description of the steps involved in the proposed pipeline is
available in [53]. Figure8.11 shows a subset of partial views of Bunny (i.e., 6 over
24 views). The overlap between views is reliable for only a few view pairs (e.g.,
views 1 and 5). Conversely, for most of the view pairs, the overlap is not sufficient to
guarantee a correct alignment. According to our pipeline, we detect the keypoints and
their signatures for each view. Figure8.12 (top) and (middle) shows some feature
points on the Bunny ear from two overlapping views. It is worth to note that the
extracted keypoints are coherent on the two observed views. Figure 8.12 (on the
right side) shows the spin images of selected keypoints (red dots). As expected,
corresponding points generate very similar signatures (Fig. 8.12 (top) and (middle)
on the right side). When instead we consider a pair of non-corresponding points,
their signatures appear very different (Fig. 8.12 (bottom) where a point around the
eye is observed).

To compute the view matching, we follow the approach of [24] for 2D image
mosaicing. In this phase, we consider only a constant number of descriptors in each
view (we used 100, where a typical view contains thousands of keypoints). Then,
each keypoint descriptor is matched to its l nearest neighbors in feature space (we
use l = 6). This can be done efficiently by using a k-d tree to find approximate
nearest neighbors. A 2D histogram is then built that records in each bin the number
of matches between the corresponding views: we call it the keypoint co-occurrence
matrix H . Finally, every view is matched to the m(= 8) views that have the greatest
values in H . Figure8.13 (left) shows the keypoint co-occurrence matrix for our 24
views.

Once the set of overlapping views is available, we proceed with a robust pairwise
registration procedure. At the first stage, a point-to point matching is computed
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(View 1) (View 5) (View 9)

(View 13) (View 17) (View 21)

Fig. 8.11 Bunny. The full model is observed from partial views gradually sampled around the
object (front to back views 1, 5, 9, and back to front views 13, 17, 21). Only 6 over 24 available
views are shown (i.e., one every four views)

between keypoints using a nearest neighbor strategy among feature descriptor. Then,
a geometric constraint is introduced usingRANSACon the absolute orientation. This
leads to a robust pre-aligned between the views that are further refined using ICP.
Figure8.14 shows two overlapping views before (left) and after (right) registration.
The overlapping points are colored in green.Note that for partially overlapping views,
the inliers correspond to the area of overlap; hence, we can assign a weight W (i, j)
in the range [0, 1] to the pair (view i , view j), corresponding to the fraction of the
overlapping points over the total number of points. The n × n matrixW is called the
weighted adjacency matrix. For our experiment, the adjacency matrix is shown in
Fig. 8.13 (right).

Finally, a weighted graph is constructed, whose vertices are the views and whose
(weighted) adjacency matrix is W . Given a reference view chosen arbitrarily, which
sets the global reference frame, for each view i , the transformation that aligns it with
the reference view r is computed by chaining transformations along the shortest
weighted path from i to r . This is equivalent to computing the (weighted) Minimum
Spanning Tree (MST) with the root in r . In our experiment, the reference view is
r = 1. Figure8.15 shows the viewgraph (top) and the extracted path (bottom). In this
fashion, the correct order for chaining the transformations is recovered, and all the
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Fig. 8.12 Keypoint and signature. Keypoints are extracted from a small subpart of Bunny (i.e.,
the ear from two different views—top and middle—and the eye—bottom. For red points, the spin
image signature is shown on the right
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Fig. 8.13 The keypoint co-occurrence matrix H (left) and the adjacency matrix W (right)

Fig. 8.14 Pairwise registration. Two partial views are shown before (left) and after (right) regis-
tration. The overlap is colored in green

views can be represented on the global reference system. Figure8.16 shows the views
before (left) and after (right) the multiview registration. All the views are correctly
aligned, and a full model of the observed Bunny can be reconstructed.

8.5 Case Study 1: Pairwise Alignment with Outlier
Rejection

In this section, we describe a simple but effective strategy to make the ICP algorithm
resistant to wrong correspondences. Especially when views are only partially over-
lapped,many points of the data-viewdonot have a correspondence in themodel-view.
We call those points single points. However, the basic ICP enforces single points to
be associated to closest points in the model-view, therefore generating outliers. A
robust outlier rejection procedure is introduced based on the so-called X84 rule [29,
66] . The idea is to perform a robust statistical analysis of the residual errors ei after
closest point computation. The underlying hypothesis was pointed out in [159] and
consists of considering the residuals of two fully overlapping sets as an approxima-
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Fig. 8.15 The viewgraph is obtained from the adjacency matrix W (top). From the graph, the
sequence of chaining transformations is computed using the minimum spanning tree algorithm
(bottom). The root is node 1

Fig. 8.16 Multiview registration. All 24 views before the registration (left) and after registration
to the global reference system (right)
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tion of aGaussian distribution. Non-overlapping points can be detected by estimating
a Gaussian distribution from residual errors and by defining a threshold on the tails
of the estimated Gaussian.

The X84 rule is a tool to estimate robustly and automatically this threshold. Given
the residual errors E = {ei }, i = 1 . . . Nd , the Median Absolute Deviation (MAD)
is defined as

MAD = med(|ei − location|), (8.10)

where med is the median operator and location is the median of residual errors (i.e.,
med(E)). The X84 rule prescribes to reject values that violate the following relation:

|ei − location| < k · MAD. (8.11)

Under the hypothesis of Gaussian distribution, a value of k = 5.2 is adequate in
practice, as the resulting threshold contains more than 99.9% of the distribution.

Now we are ready to define the new procedure for robust outlier rejection:

1. For all data point di ∈ D, compute the error ei according to Eq.8.4 (i.e., by
estimating the closest point and by generating the pair of corresponding points
ci = (di ,m j )).

2. Estimate location by computing the median of residuals med(E).
3. Compute MAD according to Eq.8.10.
4. For each residual error ei (i = 1, . . . , Nd):

a. If ei satisfies Eq.8.11 then keep ci in the list of correspondences,
b. If not, reject the correspondence.

5. A new list of corresponding points ĉi is obtained from which outliers have been
filtered out.

In practice, this procedure replaces step 1 in the ICP algorithm described in
Sect. 8.2.2. The X84 rejection rule has a breakdown point of 50%: any majority
of the data can overrule any minority. The computational cost of X84 is dominated
by the cost of the median, which is O(n), where n is the size of the data point set.
The most costly procedure inside ICP is the establishment of point correspondences,
which costs O(n log n). Therefore, X84 does not increase the asymptotic complexity
of ICP.

In Fig. 8.17, an example of registration between two views with a strong occluded
part is shown. The non-overlapping area is wide: the ears and thewhole face ofBunny
are only visible in the data-view, while the bottom part of the body is observed in the
model-view only. The number of data point is Nd = 10000, the number of model
point Nm = 29150, and the number of points of the overlap is #(D ∩ M) = 4000.
In this experiment, the two views are synthetically sampled from the whole 3D
model. A view mask of 600 × 500 points is used in order to obtain highly dense
views. Moreover, in this fashion we know the ground truth transformation, and no
noise affects the views. Figure8.18 shows the distribution of residual errors after
X84-ICP registration. Note that most of the residuals are concentrated around zero.
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Table 8.1 X-84 performance evaluations. Rotation and translation errors are reported

Method Rot-error
(rad.)

Transl-error
(mm)

# Overlap.
points

# Iterations Time (s)

Besl [11] 0.22345 1.2636 10000 20 370

Picky [164] 0.10918 0.9985 9534 28 76

X84-ICP 0.06351 0.4177 4582 21 383

Ground truth – – 4000 – –

It is confirmed that the behavior of the early part of the distribution is similar to
a Gaussian [159]. The X84 rule is employed, and the threshold is automatically
estimated on the tail of the Gaussian. The second peak of the distribution corresponds
to residuals generated by the non-overlapping points.6 In Fig. 8.18 (right), points of
the data-view are colored differently between inliers and outliers. Note that non-
overlapping parts are correctly registered.

Table8.1 summarizes the performance of X84-ICP in comparison with Besl,
i.e., the standard ICP [11], and Picky [164] which implements a combination of
ICP variations described in Sect. 8.2.3. A hierarchical sampling strategy is introduced
to improve the speed, and a thresholding approach on the residual distribution is
employed. More specifically, a threshold is defined as T H = μ + 2.5σ , where μ =
mean({ei }) andσ = std({ei }). The ground truth transformation is shownaswell.Note
that the basic ICP is strongly affected by outliers and is not able to correctly align
the two views. The Picky ICP improves the accuracy, but it is not able to correctly

Fig. 8.17 Registration with robust outliers rejection. Two views at starting pose (left) and after
registration (right). Note that the overlap area is quite restricted

6In order to visualize the peak, the second part of the histogram has been quantized with wider
intervals.



382 U. Castellani and A. Bartoli

Fig. 8.18 Automatic residuals thresholding. From the distribution of residuals, the threshold is
estimated according to the X84 rule. Points under the threshold are inliers (red), while outliers are
over the threshold (blue). Outliers are points in non-overlapping areas

estimate the overlapping parts and it does not reach convergence. Conversely, by
employing the X84 rule, wrong correspondences are well detected and a correct
registration is obtained. In order to see the improvement in using robust methods,
we evaluate the X84-ICP on a more challenging scenario composed of a pair of
very noisy images with low resolution. The scene represents a tubular structure in an
underwater environment that is acquired using acoustic devices [29, 30]. The starting
views are depicted in Fig. 8.19 (left). In the red view, we clearly see a large amount
of outliers in the left part of the scene. Figure8.19 (center) shows the registration
result using the standard ICP approach. Note that the blue view is wrongly moved
between the two red structures. Conversely, when X84-ICP is used, the red structure
on the left is recognized as outliers and the views are correctly aligned, see Fig. 8.19
(right).

We highlight that although X84-ICP performs well in these experiments, in more
general cases if the number of outliers is greater than 50% of the residual distribution
the X84 rule is likely to fail.

8.6 Case Study 2: ICP with Levenberg–Marquardt

In this section, we describe a registration method called Levenberg–Marquardt ICP
(LM-ICP), which addresses several of the issues of ICP by modeling the registration
as a general optimization problem. LM-ICP [54] was proposed in order to minimize
the alignment error by employing a nonlinear optimization procedure. The advantage



8 3D Shape Registration 383

Fig. 8.19 Registration with very noisy images from underwater scenarios composed of tubular
structures. Starting views (left), registration using standard ICP, and registration using the robust
X84-ICP

of the LM-ICP is the versatility in the definition of the optimization function in order
to take into account several aspects of the registration, such as the outlier rejection
and the speed.

8.6.1 The LM-ICP Method

The general problem formulation is defined as for the ICP algorithm. The error
function E(a) = EICP(a,D,M) is nonlinear least squares and can thus be written
as the sum of Nd squared residual vectors:

E(a) =
Nd∑

i=1

(ei (a))2, ei (a) = ‖Rdi + t − m j‖. (8.12)

Defining the residual vector as

e(a) = (e1(a) e2(a) · · · eNd (a))
T, (8.13)

we rewrite the error function as E(a) = ‖e(a)‖2.
The Levenberg–Marquardt algorithm combines the methods of gradient descent

and Gauss–Newton. The goal at each iteration is to choose an update to the current
estimate ak , say x, so that setting ak+1 = ak + x reduces the registration error.

We first derive the Gauss–Newton update. Expanding E(a + x) to second order
yields

E(a + x) = E(a) + (∇E(a) · x) + 1

2! ((∇
2E(a) · x) · x) + h.o.t. (8.14)
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This is rewritten in terms of e as

E(a) = eTe

∇E(a) = 2(∇e)Te

∇2E(a) = 2(∇2e)e + 2(∇e)T∇e.

We now define the Nd × p Jacobian matrix J = ∇e, with block (i, j) as Ji, j = ∂Ei
∂a j

(p is the number of elements in a). Introducing the Gauss–Newton approximation
(i.e., neglecting (∇2e)e), we get

E(a + x) ≈ eTe + xTJTe + xTJTJx. (8.15)

Differentiating with respect to x and nullifying yields

∇xE(a + x) = JTe + JTJx = 0, (8.16)

and gives the Gauss–Newton update:

xGN = −(JTJ)−1JTe. (8.17)

Gauss–Newton is usually fast for mildly nonlinear problems (it has superlinear con-
vergence speed), but there is no guarantee of convergence in the general case (an
update may increase the error).

We now derive the gradient descent update. Since we deal with a least squares
problem, the gradient descent update is simply given by

xGD = −λ−1JTe, (8.18)

where λ is the inverse step length. Gradient descent has the nice property that, unless
a local minimum has been reached, one can always decrease the error by making the
step length small enough. On the other hand, gradient descent is known to be slow
and rather inefficient.

The Levenberg–Marquardt algorithm combines both Gauss–Newton and gradient
descent updates in a relatively simple way:

xLM = −(JTJ + λI)−1JTe. (8.19)

A large value of λ yields a small, safe, gradient descent step while a small value of
λ favor large and more accurate steps of Gauss–Newton that make convergence to a
local minimum faster. The art of a Levenberg–Marquardt algorithm implementation
is in tuning λ after each iteration to ensure rapid progress even where Gauss–Newton
fails. The now-standard implementation is to multiply λ by 10 if the error increases
and to divide it by 10 if the error decreases (with an upper bound at 108 and a lower
bound at 10−4, for instance). In order to make the method robust to outliers, one
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may attenuate the influence of points with a large error by replacing the square error
function by anM-estimator ε and an Iterative Reweighted Least Squares (IRLS)-like
reweighting procedure. For instance, the following robust functions can be used:

Lorenzian: ε(r) = log

(
1 + r2

σ

)
or Huber: ε(r) =

{
r2 r < σ

2σ |r | − σ 2 otherwise.

8.6.2 Computing the Derivatives

An important issue in how Levenberg–Marquardt is applied to ICP is the one of
computing the derivatives of the error function. The simplest approach is based on
using finite differencing, assuming that the error function is smooth. However, this
leads to a cost of p extra function evaluations per inner loop. In [54], a more effec-
tive solution was proposed based on the distance transform which also drastically
improves the computational efficiency. The distance transform is defined as

Dε(x) = min
j

ε2(‖m j − x‖), (8.20)

where x ∈ X and X is a discrete grid representing the volume which encloses the
model-viewM. Indeed, each data point di can be easily associated to grid points by
obtaining the residual error ei = X (di ) in one shot.7 In other words, LM-ICPmerges
the two main steps of ICP, namely, closest point computation and transformation
estimation, in a single step. Note further that when the mapping ‖x‖ → ε2(‖x‖) is
monotonic, we obtain that Dε(x) = ε2(‖D(x)‖), so existing algorithms to compute
D may be used to compute Dε , without requiring knowledge of the form of ε.

By combining Eq. (8.12) with Eq. (8.20), the new formulation of the registration
problem becomes

E(a) =
Nd∑

i=1

Dε(T (a,di )). (8.21)

This formulation makes it much easier to compute the derivatives of E . In fact, since
the distance transform is computed in a discrete form, it is possible to compute finite
differences derivatives. More specifically, ∇xDε = [ ∂Dε

∂x
, ∂Dε

∂y
, ∂Dε

∂z
] is computed by

defining ∂Dε (x,y,z)
∂x

= Dε (x+1,y,z)−Dε (x−1,y,z)
2 , ∂Dε (x,y,z)

∂y
= Dε (x,y+1,z)−Dε (x,y−1,z)

2 , and
∂Dε (x,y,z)

∂z
= Dε (x,y,z+1)−Dε (x,y,z−1)

2 . In practice, ∇xDε remains constant through the
minimization, and we get

7Note that the volume is discretized into integer values; therefore, the data point di should be
rounded to recover X (di ).
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∇aE(a) =
Nd∑

i=1

∇xDε(T (a,di ))∇T
a T (a,di ). (8.22)

Note that the computation of ∇T
a T (a,di ) depends on the rigid transformation

parametrization being used. In [54], the author proposed model rotations by uni-
tary quaternions for which the derivatives can be easily computed analytically.
Finally, in order to compute the derivatives using matrix operators, the Jacobian
matrix is defined as Ji, j = (∇xDε(T (a,di )) · ∇T

a j
T (a,di )), where ∇a j T (a,di ) =

[ ∂Tx (a,di )
∂a j

,
∂Ty(a,di )

∂a j
,

∂Tz(a,di )
∂a j

].

8.6.3 The Case of Quaternions

Let the quaternion be defined by q = [s, v]where s and v are the scalar and vectorial
components, respectively [153]. Let d be the point on which the rotation must be
applied. To this aim such a point must be represented in quaternion space, leading
to r = [0,d]. Therefore, the rotated point is obtained by

r′ = qrq−1.

By multiplying in quaternion space,8 we obtain

r′ = [0, s2d + (d · v) · v + 2s(v × d) + v × (v × d)].

We represent this rotated point as

r′ = [0, Tx , Ty, Tz],
where

Tx = s2dx + (dx vx + dyvy + dzvz)vx + 2s(vydz − vzdy) + vy(vx dy − vydx ) − vz(vzdx − vx dz) =
= s2dx + v2x dx + vx vydy + vx vzdz + 2svydz − 2svzdy + vx vydy − v2ydx − v2z dx + vx vzdz =
= (s2 + v2x − v2y − v2z )dx + 2(vx vy − svz)dy + 2(vx vz + svy)dz

Ty = s2dy + (dx vx + dyvy + dzvz)vy + 2s(vzdx − vx dz) + vz(vydz − vzdy) − vx (vx dy − vydx ) =
= s2dy + vx vydx + v2ydy + vyvzdz + 2svzdx − 2svx dz + vyvzdz − v2z dy − v2x dy + vx vydx =
= 2(vx vy + svz)dx + (s2 − v2x + v2y − v2z )dy + 2(vyvz − svx )dz

8A multiplication between two quaternions q and q′ is defined as [ss′ − v · v′, v × v′ + sv′ + s′v].
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Tz = s2dz + (dx vx + dyvy + dzvz)vz + 2s(vx dy − vydx ) + vx (vzdx − vx dz) − vy(vydz − vzdy) =
= s2dz + vx vzdx + vyvzdy + v2z dz + 2svx dy − 2svydx + vx vzdx − v2x dz − v2ydz + vyvzdy =
= 2(vx vz − svy)dx + 2(vyvz + svx )dy + (s2 − v2x − v2y + v2z )dz .

Now we introduce the translation component [tx , ty, tz] and normalize the quater-
nion by obtaining

Tx = (s2 + v2x − v2y − v2z )dx

s2 + v2x + v2y + v2z
+ 2(vxvy − svz)dy

s2 + v2x + v2y + v2z
+ 2(vxvz + svy)dz

s2 + v2x + v2y + v2z
+ tx

Ty = 2(vxvy + svz)dx
s2 + v2x + v2y + v2z

+ (s2 − v2x + v2y − v2z )dy

s2 + v2x + v2y + v2z
+ 2(vyvz − svx )dz

s2 + v2x + v2y + v2z
+ ty

Tz = 2(vxvz − svy)dx
s2 + v2x + v2y + v2z

+ 2(vyvz + svx )dy
s2 + v2x + v2y + v2z

+ (s2 − v2x − v2y + v2z )dz

s2 + v2x + v2y + v2z
+ tz .

According to this model for rotation and translation, the vector of unknowns is
a = [s, vx , vy, vz, tx , ty, tz] (i.e., a ∈ R

7). Therefore, the Jacobian part ∇T
a T (a,d) is

a 3 × 7 matrix:

∇T
a T (a,d) =

⎛

⎜⎝

∂Tx
∂s

∂Tx
∂vx

∂Tx
∂vy

∂Tx
∂vz

∂Tx
∂tx

∂Tx
∂ty

∂Tx
∂tz

∂Ty
∂s

∂Ty
∂vx

∂Ty
∂vy

∂Ty
∂vz

∂Ty
∂tx

∂Ty
∂ty

∂Ty
∂tz

∂Tz
∂s

∂Tz
∂vx

∂Tz
∂vy

∂Tz
∂vz

∂Tz
∂tx

∂Tz
∂ty

∂Tz
∂tz

⎞

⎟⎠ , (8.23)

where Tx , Ty , and Tz have been defined above. For instance, we can compute the
derivative component ∂Tx

∂vx
as

∂Tx
∂vx

= 2vxdx
s2 + v2x + v2y + v2z

− 2vx (s2 + v2x − v2y − v2z )dx

(s2 + v2x + v2y + v2z )
2

+

+ 2vxdy
s2 + v2x + v2y + v2z

− 4vx (vxvy − svz)dy
(s2 + v2x + v2y + v2z )

2
+

+ 2vzdz
s2 + v2x + v2y + v2z

− 4vx (vxvz + svy)dz
(s2 + v2x + v2y + v2z )

2
.

Similarly, all the other components of the Jacobian can easily be computed.

8.6.4 Summary of the LM-ICP Algorithm

The algorithm for LM-ICP can be summarized as

1. Set λ ← λ0 = 10,
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2. compute distance transform Dε(x),
3. set ak ← a0,
4. compute ek = e(ak),
5. compute J,
6. repeat

a. compute update ak+1 = ak − (JT J + λI)−1JT ek 9

b. compute ΔE = E(ak+1) − E(ak)
c. If ΔE > 0 then λ = 10λ, go to a, else λ = 1

10λ, go to 4.

7. If ‖ek‖ > ν go to 3, else terminate.

Note that ν is a constant which defines the convergence of the algorithm. As already
highlighted, the algorithm above is the standard LM algorithm. The crucial compo-
nents are (i) the choice of unknowns a, (ii) the computation of error vector e, and (iii)
the computation of the Jacobian matrix J. In particular, the distance transform Dε(x)
enables an improvement in the computational efficiency of the error computation
and makes the computation of the Jacobian feasible. The starting value a0 can be
estimated by employing some of the techniques described in Sect. 8.2.3.1.

8.6.5 Results and Discussion

Figure8.20 shows an example of LM-ICP alignment between two views. In this
experiment, the emphasis is on the speed of the algorithm, since the accuracy is
guaranteed by the fact that the two views are well overlapped. The LM-ICP takes
less than 1s for an LM iteration. A total of 20 iterations has been run to reach
convergence. Both the data-view and the model-view have about 40,000 points.
Using the basic IC P algorithm, the same number of iterations are required but each
iteration takes more than 30 s. This confirms that a drastic improvement in speed is
observed with LM-ICP, in comparison with basic ICP. Note that a crucial parameter
is the grid size. It trades off computational efficiency with memory space. Moreover,
it requires that the data scan is always inside the volume by requiring large memory
space for storage when only a small overlap is observed between the views. Further
experiments can be found in [54].More details on experimental setup can be found on
the LM-ICP website.10 In practice, LM-ICP also enlarges the basin of convergence
and estimates a more accurate solution (the minimum is reached with 50% fewer
iterations on average, see [54] for more details).

Finally, it is worth noting that LM-ICP can be easily extended to apply many
other variants of the ICP. Multiview registration could also be solved in the LM-ICP
framework.

9While we have chosen the identity as the damping matrix, some authors rather choose the diagonal
part of the Gauss–Newton Hessian approximation.
10http://research.microsoft.com/en-us/um/people/awf/lmicp.

http://research.microsoft.com/en-us/um/people/awf/lmicp
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Fig. 8.20 LM-ICP. The starting pose (left) and merged views after registration (right)

8.7 Case Study 3: Deformable ICP with
Levenberg–Marquardt

In this section, we describe an advanced registration technique: Deformable-
Levenberg Marquardt Iterative Closest Point (DLM-ICP) [31] . DLM-ICP extends
the LM-ICP approach, introduced in Sect. 8.6, to deformable objects. We focus on
continuous smooth surfaces such as the page of a book being turned in front of a
range sensor. To this aim, a templatemodel is warped toward the input scans in order
to capture surface deformations. In this case, several instances of almost the entire
time-varying object are observed rather than different points of view of an object, and
the aim of registration is to align the views over time using a registration-by-fitting
approach.

The template model introduces a prior on the acquired shape by providing a joint
registration and reconstruction of the object with hole-filling and noise removal.
The proposed method exploits only geometric information without the extraction of
feature points. According to [54], described in Sect. 8.6, registration is modeled as
an optimization problem defined by an error function whose global minimum is the
sought after solution, estimated by the Levenberg–Marquardt algorithm. The error
function introduces the constraint that data points must be close to model points (i.e.,
the template). As for [54], it explicitly embeds a min operator, thus avoiding the
traditional two steps in ICP-like algorithms, through the use of a distance transform.
Furthermore, thanks to the flexibility of LM, many other terms are introduced to
model different expectedbehaviors of the deformation, namely, surface, and temporal
smoothness as well as inextensibility of the surface. Finally, a boundary constraint is
introduced to prevent the computed surface from sliding arbitrarily.

We highlight that, with this method, the unknowns are the template model, repre-
sented by a planar mesh that is deformed to fit each point cloud. More specifically,
we directly estimate the position of the model points without imposing any prior
about the kind of transformation function that has been applied. In particular, each
unknown (i.e., each vertex of the template) influences a very small portion of the
error function. Indeed, another interesting property of DLM-ICP is that the Jacobian
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matrix, involved in the normal equations to be solved at each iteration, is highly sparse
for all the terms. This makes the estimation of dense deformation fields tractable and
fast.

8.7.1 Surface Representation

The sequence of 3D point clouds Di , with Nd = li points each, is represented by

Di =
⎛

⎜⎝
dx
i,1 dy

i,1 dz
i,1

...
...

...

dx
i,li

d y
i,li

dz
i,li

⎞

⎟⎠ .

The unknown model, a = M, has a grid structure and is thus represented by three
R × C matrices, giving the grid’s deformation. Each matrix is reshaped in a single
vector of size Nm = RC , giving Mi as

Mi =
⎛

⎜⎝
mx

i,1 my
i,1 mz

i,1
...

...
...

mx
i,Nm

my
i,Nm

mz
i,Nm

⎞

⎟⎠ .

In practice, the number of data points is much larger than the number of model points
(i.e., ligNm). Upon convergence, the algorithm determines, for each model point, if
there is a corresponding point in the current point cloud. Points may be missing
because of occlusions or corrupted sensor output. This approach has the advantage
that it naturally gives the reconstructed surface by interpolating the mesh points.
Point cloud registration is obtained by composing the deformation fields. Note that,
in contrast to Sect. 8.6, the registration is from model points to data points.

8.7.2 Cost Function

The cost function combines two data and three penalty terms:

E(M) = Eg(M) + λbEb(M) + λs Es(M) + λt Et (M) + λx Ex (M), (8.24)

where λb, λs , λx , and λt are weights. Note that we drop the frame index i for purposes
of clarity, and denote Mi as M and Mi−1 as M̃.

The data terms are used to attract the estimated surface to the actual point cloud.
The first term Eg is for global attraction, while the second one Eb deals with the
boundary. In particular, the boundary term aims at preserving the method against
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possible sliding of the model along the observed surface. Moreover, these terms
must account for possible erroneous points by using robust statistics. The penalty
terms are Es , Et , and Ex . The first two account for spatial smoothness and temporal
smoothness Es , respectively. The third one penalizes the surface stress and is related
to the non-extensibility of the surface, and therefore to material properties of the
surface.

This cost function isminimized in an ICP-likemanner, as described in the previous
section. All five terms are explained below in detail.

Data Term: Global Surface Attraction
This term globally attracts the model to the data points in a closest point manner
[126]. Denoting BM as the set of boundary points in the model, M, where

M = {(mx
i m

y
i m

z
i )

T }, i = 1 . . . Nm (8.25)

and BD as the set of boundary points in the data, D, where

D = {(dx
i d y

i dz
i )

T }, i = 1 . . . li (8.26)

we get the following data term, integrating the model to data points matching step:

∑

m∈M\BM

min
d∈D\BD

‖ d − m ‖2, (8.27)

whered andm are 3-vectors representing a data point and amodel point, respectively.
As we mentioned before, the unknowns are not the rigid transformation parame-
ters (i.e., the classical rotation–translation) but correspond to the whole deformable
motion field inM.

An outlier rejection strategy is introduced by defining a robust function ε. Here,
the X84 rule is employed [29]. Therefore, Eq. 8.27 is modified so as to get the
following robustified data term:

Eg(M) =
∑

m∈M\BM

ε

(
min

d∈D\BD

‖ d − m ‖2
)

. (8.28)

Data Term: Boundary Attraction
This term attracts boundary model points to boundary data points. It is defined in a
similar manner to the global attraction term (Eq.8.28) except that the sum and min
operators are over the boundary points:

Eb(M) =
∑

m∈BM

ε

(
min
d∈BD

‖ d − m ‖2
)

. (8.29)



392 U. Castellani and A. Bartoli

Note that the boundaries can be computed by combining edge detection techniques
with morphological operators.11 More precisely, from the range image, we detect the
portion of the image which is covered by the object we want to track (i.e., a piece of
paper), and we impose the condition that boundaries of the model and the observed
surface must coincide.

Penalty Term: Spatial Smoothness
This term discourages surface discontinuities by penalizing its second derivatives,
as an approximation to its curvature. According to the definition of the geometry
image [62], the model M is a displacement field parameterized12 by (u, v) with
u = [1 . . . R] and v = [1 . . .C], i.e.,M(u, v) = (Mx (u, v) My(u, v) Mz(u, v))T. The
spatial smoothness term can thus be taken as the surface bending energy:

Es(M) =
∫ ∫ ∥∥∥∥

∂M2

∂2u

∥∥∥∥
2

+ 2

∥∥∥∥
∂M2

∂u∂v

∥∥∥∥
2

+
∥∥∥∥
∂M2

∂2v

∥∥∥∥
2

du dv.

Using a finite difference approximation for the first and second derivatives [116],
the bending energy can be expressed in discrete form as a quadratic function of M.
More specifically, the derivative ∂Mx

∂u at a point (u, v) is discretely approximated as
∂Mx (u,v)

∂u = Mx (u + 1, v) − Mx(u − 1, v). This can be conveniently represented by
a constant Nm × Nm matrixCu such that∇uM

x = Cu · vect(Mx ), where vect(Mx ) is
the vectorization operator which rearranges matrixMx to a vector. A similar matrix
Cv can be computed with respect to v. Indeed, the second derivatives are computed
using Hessian operator matrices, namely,Cuu ,Cuv,Cvv. The surface bending energy
can be expressed in discrete form by defining

Ex
s = vect(Mx )T(CT

uuCuu + 2CT
uvCuv + CT

vvCvv)vect(Mx ),

and by computing

Es(M) = Ex
s (M

x ) + Ey
s (M

y) + Ez
s (M

z),

which can be further expressed in matrix form as follows:

Es(M) = vect(M)TKvect(M), (8.30)

where K is a 3Nm × 3Nm , highly sparse matrix.

Penalty Term: Temporal Smoothness
This term defines a dependency between the current and the previous point clouds,
M and M̃:

11The object boundaries can be estimated according to the kind of sensor being used. For instance,
boundaries on range scans can be estimated on the range image. In stereo sensors, they can be
estimated on one of the two optical views.
12Recall that the model points lie on a grid.
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Et (M) =‖ M − M̃ ‖2 . (8.31)

This makes the surface deformation smooth over time and can be used within a
sequential processing approach. Obviously, it is not used in the first frame of the
sequence.

Penalty Term: Non-extensibility
This term discourages surface stretching. It encourages mesh vertices to preserve
their distance with their local neighborhood [129]:

EX (M) =
∑

m∈M

∑

k∈N(m)

(‖ m − k ‖2 −L2
m,k

)2
, (8.32)

where Lm,k are constants, which are computed at the first frame after robust initial-
ization, and N(m) is the 8-neighborhood of the mesh vertex m.

8.7.3 Minimization Procedure

TheDLM-ICP cost function (8.24) is a sumof squared residuals, nonlinearly depend-
ing on the unknowns inM. Therefore, as in Sect. 8.6, the Levenberg–Marquardt algo-
rithm can be used. In order to provide partial derivatives of the residuals through a
Jacobian matrix, all five terms in the cost function are separately differentiated and
stacked as

JT = (
JT
d JT

b JT
s JT

t JT
x

)
, (8.33)

where J Nm×3Nm
d , J NB×3Nm

b , J 3Nm×3Nm
s , J Nm×3Nm

t , and J ξ×3Nm
x are related to the global

attraction, boundary attraction, spatial smoothness, temporal smoothness, and non-
extensibility terms, respectively, and ξ = tsi ze(N(M)). In particular, the Jacobians
of global and boundary attraction terms are estimated by finite differences through
distance transform, as described in Sect. 8.6.

Note that, in this case, since the Hessian matrix13 H = JTJ + λImust be inverted
at each LM iteration, the problem is not tractable if the number of model points is too
high (if the deformation field is too dense). One advantage of the proposed approach
is that the Jacobian matrix J is very sparse. Thus, it uses the sparsity to speed up each
iteration using the technique in [114]. In particular, a sparse Cholesky factorization
package can be used, as in the Matlab “mldivide” function.

13Weuse “Hessianmatrix” for the dampedGauss–Newton approximation to the trueHessianmatrix.
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Fig. 8.21 Data acquisition: intensity image of the blanket (left), image boundary (center), and the
3D point cloud (right)

8.7.4 Summary of the Algorithm

The DLM-ICP algorithm can be summarized as follows:

1. Choose the model size R × C (for instance, 10 × 10)
2. Initialize the template model M0

3. For each data frame Di

a. Extract data boundary BD

b. Set Mi = Mi−1 to initialize the LM algorithm
c. Apply LM-ICP to estimate Mi by minimizing the error function
d. Go to 3.

Step 3.c is described in Sect. 8.6.4. Here, the unknown is a = Mi , the error function
E(Mi ) is defined by Eq. (8.24), and the Jacobian J is defined by Eq. (8.33).

8.7.5 Experiments

In the following experiment, the sensor is a real-time passive-stereo system.14 The
sensor acquires images at 25 FPS (frames-per-second) and provides both intensity
(i.e., 2D) and 3D information. The deformation of a portion of a blanket is modeled.
Figure8.21 showsapicture of theblanket. Intensity information is used to segment the
boundary;more precisely, only the portion delimited by the dark square is considered.
Figure8.21 also shows the image boundary extracted by combining a binary image
segmentation method with 2Dmorphological operators and depicts the 3D data (i.e.,
the selected point cloud and 3D boundary).

The sequence is made of 100 point clouds. Amodel of size R = 15 andC = 20 is
used. Model initializationM0 is carried out by lying the model grid on a plane which
is fitted to the extracted point cloud.Model initialization is employed in the first frame
only. Then, each iteration uses the output of the previous one as an initial condition.

14Data courtesy of eVS (http://www.evsys.net).

http://www.evsys.net
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Fig. 8.22 Blanket sequence: 4 selected frames. For each frame, the 2D intensity and the 3D data
are visualized. The grid models are shown in 3D space, as well as their projection in the 2D image

Note that a higher value ofλb is necessary (i.e.,λb = 1.5) for a correct convergence of
the algorithm to the optimal solution. The other terms are set almost equally to 1. The
distance transform parameters are important: the size of the voxels trades off speed
and accuracy. In this experiment, the volume is divided into 36 × 36 × 18 voxels.
Figure8.22 shows a selection of the output sequence. For each frame, we visualize
(i) the intensity image with the extracted 2D boundary and the 2D projection of
the estimated model and (ii) the point cloud, after the region-of-interest selection,
evidencing both the 3D boundary and the grid. The blanket is handled from the
bottom-left and upper-right corners, respectively. On the early frames, the blanket
is gradually bent toward the square center; then, it is strongly stretched, moving the
corners far from each other. Finally, in the late frames, random deformations are
generated, especially around the corners. Results are satisfying since the fitting is
correct for the whole sequence, in spite of the presence of strong occlusions and
deformations. The mesh grids are well superimposed on data points maintaining a
smooth shape. Nevertheless, the projection of the grids to the 2D images confirm the
accuracy of the registration. More details on performance evaluation are available in
[31].
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8.8 Case Study 4: Computer-Aided Laparoscopy by
Preoperative Data Registration

We describe a use case of 3D registration in laparoscopy. The technique involves
3D–3D deformable registration solved by customizing DLM-ICP.

8.8.1 Context

In laparoscopy, the surgeon uses keyholes in the patient’s abdominalwall. The laparo-
scope is the observation device and consists of a camera connected to a thin rod
containing an optic fiber. The surgeon typically uses between 2–4 keyholes of about
1cm in diameter. Laparoscopy has many advantages over open surgery. However,
some elements of the anatomy may be difficult to locate. This is because the organs
and tissues are generally opaque. Structures such as the internal tumors and ves-
sels are therefore invisible. Registration techniques can be used to circumvent this
limitation of visualization by enabling intraoperative augmented reality. The most
promising approach is to use preoperative data such as a Magnetic Resonance (MR)
or Computed Tomography (CT) scan. These modalities are generally not available
during surgery. They show the tumors and vessels well and can be used to create a
3D model of the target organ’s outer surface and internal structures before surgery.
The challenge is then to register this preoperative 3D model to the intraoperative
2D images given by the laparoscope. This is tremendously difficult because of the
organ’s deformation (due, for instance, to insufflation of the abdominal cavity) and
because the vast majority of laparoscopes aremonocular. Registration in laparoscopy
is still an open problem but promising preliminary approaches have been proposed.
We discuss the image-based approach, which uses the image contents to solve regis-
tration without requiring the use of fiducials. An example taken from [39] is shown in
Fig. 8.23. This example represents the result of using a computer-aided laparoscopy
system in a real surgery.

8.8.2 Problem Statement

Augmented reality laparoscopy follows three steps: preoperative 3D model recon-
struction, intraoperative registration, and visualization. A complete pipeline is shown
in Fig. 8.24. We here focus on the registration step but the visualization step is also
highly challenging and researched, see, for instance, [6, 7, 12, 55, 107, 152]. The
preoperative 3D model reconstruction consists in segmenting the preoperative 3D
volume and interpolating the voxels to create a surface represented by a mesh. This
may be extremely challenging to solve automatically but semi-automatic methods



8 3D Shape Registration 397

Augmented reality laparoscopyLaparoscopy Registra on

Preopera ve
MR volume

Intraopera ve
laparoscopy stream

Augmented reality
from registra on

Fig. 8.23 Laparoscopy and the problem of registration in augmented reality laparoscopy. (left) The
principle of laparoscopy, here with an example of a myomectomy procedure where the uterus con-
tains two inner and thus invisible tumors. (middle) The principle of augmented reality laparoscopy,
where the tumors are shown using virtual transparency. (right) The registration problem to be solved

Preopera ve
MR volume

Intraopera ve
laparoscopy stream

Augmented reality
from registra on

Registra
on algorithm

Preopera ve 3D 
model reconstruc on

Keyframe extrac on SfM

Manual landmark
and silhoue e marking

Preopera ve 3D model registered
onto the intraopera ve images

Fig. 8.24 Principle of an ICP-based solution to the problem of registration in augmented reality
laparoscopy. The original problem is transformed into a special type of 3D surface-to-surface
registration problem, which is solved using a particular instance of deformable ICP [39]

already exist which are very effective and available in software packages such as
MITK (the Medical Imaging Interaction Toolkit 15).

It is fundamental to understand that augmented reality laparoscopy involves two
types of registration problem. The first and most complex type occurs at the start of
surgery, when the preoperative 3Dmodel has not been related at all to the 2D images
yet. It implies that the preoperative 3D model is purely geometric, in other words
untextured, as the preoperative data do not contain color, at least not color as we
see it in laparoscopy. The second type of registration problem occurs in a later stage
of surgery, after the preoperative 3D model has been texture mapped, thanks to the

15www.mitk.org.

www.mitk.org
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first round of registration. This is a considerably easier problem as the availability
of a texture map makes it possible to find keypoint correspondences between the
preoperative 3Dmodel and the 2D images, as, for instance, in [40]. We here focus on
the first type of registration problem, which requires an ICP-like approach to draw
correspondences and solve for deformation simultaneously.

The registration problem takes as inputs the preoperative 3D model and a set of
intraoperative 2D images, extracted from the laparoscopy video stream and produces
as output a 3D deformation field which, when applied to the preoperative 3D model,
brings it to the state in which the organ was observed during surgery. We make
the strong assumption that the organ does not deform across the 2D images. This
is a valid assumption at the early steps of surgery, before the organ is cut through.
This assumption means that the intraoperative state of the organ’s outer part can be
recovered by existing techniques such as Structure from Motion (SfM). The case of
non-rigidly-related 2D images can be handled in two ways. First, the images can be
dealt with individually, as was attempted for liver laparoscopic augmented reality [1,
79]. Second, advanced techniques extending SfM to deformable structures could be
used, namely, Non-Rigid Structure from Motion (NRSfM) [19, 108, 127], but their
applicability to laparoscopy data has not yet been demonstrated.

8.8.3 Registration

The registration has two main steps. The first step is to compute an intraopera-
tive 3D reconstruction of the organ’s outer surface from the 2D images. This is
solved automatically by using SfM [39] or Simultaneous Localization and Mapping
(SLAM) [57]. This produces a point cloud representing the organ’s outer surface and
the laparoscope’s intrinsic and extrinsic parameters for each 2D image. The second
step is to compute the registration for the organ’s outer surface, which boils down
to a 3D surface-to-surface registration. This can be solved by an existing technique
such as DLM-ICP, the deformable ICP presented in the previous section. There is,
however, a key difference between DLM-ICP and the case at hand: an organ has
a spherical rather than a disk topology and therefore does not have boundaries, as
opposed to a piece of paper or cloth. This means that the boundary term Eb from the
cost (8.24) of DLM-ICP cannot be used. This second step is thus the most difficult:
without the boundary term and as many organs tend to have smooth parts and the
intraoperative 3D reconstruction tends to be partial, the 3D registration may eas-
ily drift to a false solution as the two surfaces can slide onto one another without
changing the registration cost much. An equivalent of the boundary for spherical
objects is the silhouette, which may be introduced as a new term in the cost, given
that the organ’s silhouette has been manually marked in some of the 2D images. The
silhouette is, however, much weaker than the boundary term as it helps registration
but does not prevent surface sliding. In practice, this effect is mitigated by using a
few manually defined anatomical landmarks, depending on the organ at hand. For
the uterus, for instance, these may be chosen as the junction points between the Fal-
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lopian tubes and the uterus’ body. The general cost function is thus similar to, but
not exactly like, the cost (8.24) of DLM-ICP. It combines three data terms and two
penalty terms:

E(M) = λdg Edg(M) + λds Eds(M) + λdl Edl(M) + λps Eps(M) + λpx Epx (M),

where λdg, λds, λdl , λps, λpx ∈ [0, 1] are weights.
Recall that the data terms attract the transformed preoperative 3D model to the

intraoperative point cloud. The first data term Edg is the global attraction term Eg

of DLM-ICP. The second data term Eds measures the distance on the organ’s pre-
dicted silhouette. The third data term Edl encapsulates the anatomical landmarks.
The penalty terms convey prior knowledge on the organ’s admissible deformations.
The two penalty terms Eps and Epx are, respectively, the spatial smoothness and
surface stress terms Es and Ex of DLM-ICP.

Once the organ’s outer surface registration has been computed, a final step is to
interpolate the surface deformation field to the desired 3D deformation field. This
is desired because the registration found from the organ’s outer surface is meant to
bring the organ’s inner structures, which do not belong to the organ’s surface, from
the preoperative 3D model to the intraoperative 2D images. This interpolation may
be solved by means of a simple 3D spline interpolant estimated using the surface
mesh’s vertices as control points.

8.8.4 Validation

The accuracy of registration is obviously tremendously important in computer-aided
laparoscopy, especially in the predicted position of tumors. It is, however, highly
challenging to obtain data with ground truth, as by definition this information is not
available during surgery. Quantitative validation is thus usually obtained from phan-
tom or ex-vivo models. The above-described system was validated using synthetic
tumors introduced in ex-vivo pig kidneys [35]. In this study, 33 tumors were resected
by a control group, using standard laparoscopy, and 29were resected by anARgroup,
using the computer-aided laparoscopy system. The resected tumors were analyzed
a posteriori to see if the margins were negative (the tumor is entirely removed) or
positive (the tumors were only partly removed). In the control group, 42.4% of the
tumors were either completely missed or had positive margins. In the AR group, only
13.8% of the tumors had positive margins and none was completely missed. This
shows that the registration system is sufficiently accurate to significantly improve
the surgeon’s performance at tumors localization and resection.
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8.9 Challenges and Future Directions

Although the recent methods have brought important advances in 3D registration,
especially in the challenging scenarios reported in Sects. 8.3–8.8, there are still many
open issues to be addressed that make this research field still exciting and promising.
New challenges arise from the rapid technological advances of new 3D acquisition
systems. Even if recent deep learning methods have successfully exploited the pos-
sibility to recover 3D information using only 2D image, there are still convincing
reasons to rely on RGBD sensors. Depth data naturally provides global positioning,
and not just local 3D pose information or 2D bounding box information in the image
space. Further, RGBD information helps one to solve the real-time reconstruction
of entire scenes. At the device level, the new generation of depth sensors is now
easily available on mobile phones and is more affordable for generic consumers.16

Moreover, very often depth sensors are integrated on more complex systems for new
emerging applications such as automotive, robotic surgery, or forensic tasks. This
leads to an explosion of the available data (i.e., big data) that poses new problems for
their manipulation. For instance, the integration between depth information acquired
from such different acquisition sources yields new issues in dealing with very hetero-
geneous data characterized by different resolutions, levels of noise, scales, and so on.
Moreover, depth sensors can be accompanied by other devices for the acquisition
of other kind of information such as infrared data, GPS, Digital Elevation Model
(DTM), or MRI scans (for the medical domain). Therefore, new advanced methods
need to be studied for the fusion between information of different nature exploiting
multimodal registration techniques.

New problems are emerging for the registration of very large-scale scenarios.
Indeed, nowadays it is possible to reconstruct not only a scene composed of several
buildings but an entire city. For this task, it is important to improve the methods for
the matching at the view level by effectively combining features from both the 2D
and 3D domains. In particular, it is important to well organize the previously stored
information by introducing new indexingmethods to combine shape retrieval strategy
with registration techniques. Moreover, especially when the large-scale reconstruc-
tion is required for entertainment (i.e., video games or movies), a drastic reduction
of the memory demand can be obtained by integrating the registration methods for
the generation of procedural models (i.e., inverse procedural model).

In the context of deformable registration, the new issues regard the possibility to
relax the prior information on the subject to be registered. Rather than working with
a well-delimited class such as the human body or the human face, it is interesting to
focus on subject with a more generic shape. For instance, an emerging and promising
trend consists of modeling animals such as quadruped or birds. This is challenging
due to the natural uncooperative behavior of the animals during the acquisition.

Finally, the advances on 3D registration are very important for several emerg-
ing applications. For instance, in the context of real-time interactive tasks, there
is heavy expectation from new devices for modern Augmented Reality (AR), such

16See https://www.apple.com/iphone/ https://azure.microsoft.com/en-us/campaigns/kinect/.

https://www.apple.com/iphone/
https://azure.microsoft.com/en-us/campaigns/kinect/
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as Hololens17 or magic leap18 to mention just a few, that already integrate several
sensors to improve the device pose estimation. Also, Virtual Reality (VR) frame-
works require very accurate and reliable 3D tracking systems for human parts like
the head and the hands to reduce the typical disadvantages of immersive devices
such as sickness, or to improve the gestural interaction. Another promising applica-
tion regards self-driving cars where many of the open issues mentioned above like
3D data integration, 3D mapping, and object localization are crucial. In particular,
it is very important to address methods for the matching between offline data with
real-time information. Registration problems are very critical also in robotics appli-
cations for effective human–robot interaction where tracking and localization should
be integrated with recognition systems. Also, in this case, real-time performance is
very important.

8.10 Conclusion

Registration of 3D data is a well-studied problem but still new issues need to be
solved. The ICP algorithm is the current standard method since it works well in
general and it is easy to implement.Although the basic version is quite limited, several
extensions and strong variants have been introduced that allow it to cope with many
scenarios. For instance, the techniques described in Sects. 8.2.3 and 8.4 are sufficient
to obtain an automatic full model reconstruction of a single object observed from a
fewdozen of viewpoints.However, inmore challenging situations like in the presence
of cluttered or deformable objects, the problem becomes more difficult. The point
matching strategy needs to be improved as well as the transformation function needs
to be properly designed. Therefore, more advanced techniques need to be employed
like those described in Sect. 8.3. In order to give some examples of registration
algorithms, four case studies were reported. Case study 1 shows in practice how
a robust outliers rejection strategy can improve the accuracy of registration and
estimate the overlapping area. Case study 2 exploits general Levenberg–Marquardt
optimization to improve the basic ICP algorithm. In particular, the advantage of
using the distance transform is clearly demonstrated. Case study 3 addresses a more
challenging problem, namely, deformable registration from real-time acquisition.
Also, in this case, the Levenberg–Marquardt approach enables the modeling of the
expected behavior of surface deformations. In particular, effective data and penalty
terms can be encoded easily in the general error function. Finally, case study 4 shows
the benefits of deformable ICP for 3D registration in laparoscopy.

17https://www.microsoft.com/en-us/hololens.
18https://www.magicleap.com/.

https://www.microsoft.com/en-us/hololens
https://www.magicleap.com/
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New challenging scenarios can be addressed as described in Sect. 8.9 by exploit-
ing recent machine learning and computer vision techniques already successfully
employed for the 2D domain as well as new advances inspired from recent computer
animation techniques.

8.11 Further Reading

In order to get a more comprehensive overview of 3D registration methods, the
reader can refer to milestone surveys [77, 96, 126, 128]. In [126], Ruzinkiewicz
et al. have analyzed some variants of ICP techniques, focusing on methods and
suggestions to improve the computation speed. An extensive review of registration
methods based on the definition of surface shape descriptors can be found in [96].
In [128], Salvi et al. proposed an extensive experimental comparison among different
3D pairwise registration methods. They evaluated the accuracy of the results for both
coarse and fine registrations. More recently, Kaick et al. [77] proposed a survey on
shape correspondence estimation by extensively reporting and discussing interesting
methods for deforming scenarios. In [165], themost recent and promising registration
methods for 3D reconstruction are exhaustively reported. In particular, this survey
shows how algorithms are properly designed to best exploit the benefits of using
RGBD data. In [69], different methods for 6D object pose estimation from dynamic
range sensors are extensively evaluated on several publicly available benchmarks.
The performance of several approaches such as point-pair-based features or learning-
based methods are discussed and interesting open problems are raised. In [83], the
authors reported several methods for data-driven modeling and synthesis of new
scenes. To this aim advanced machine learning techniques are evaluated for the
integration of real examples encoded by point clouds or meshes to the process of
automatic generation of new plausible objects.

The reader interested in getting in-depth details on the theoretical evaluation of
registration convergence should refer to work of Pottmann et al. [58, 115]. Conver-
gence is discussed also by Ezra et al. [52] who provided lower and upper bounds on
the number of ICP iterations.

Finally, to practice the registration, the reader can evaluate the following public
available tools:

• Meshlab19

• Point Cloud Library (PLC)20

• Functional Automatic Registration for 3D Human Bodies (FARM).21

19http://www.meshlab.net/.
20http://pointclouds.org/.
21http://profs.scienze.univr.it/~marin/farm/.

http://www.meshlab.net/
http://pointclouds.org/
http://profs.scienze.univr.it/~marin/farm/
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8.12 Questions

Q.1 Give four examples of problem where 3D shape registration is an essential
component. In each case explainwhy registration is required for their automated
solution.

Q.2 Briefly outline the steps of the classical IterativeClosest Points (ICP) algorithm.
Q.3 What is usually the most computationally intensive step in a typical ICP appli-

cation and what steps can be taken to reduce this?
Q.4 What is the common failuremode of ICP andwhat steps can be taken to attempt

to avoid this?
Q.5 What steps can be taken to improve the final accuracy of an ICP-based regis-

tration?
Q.6 Explain why registration in clutter is challenging and describe one solution that

has been proposed.
Q.7 Explain why registration of deformable objects is challenging and describe one

solution that has been proposed.
Q.8 Explain the effect of outliers in registration and describe one strategy that has

been proposed for their detection.
Q.9 What advantages does LM-ICP have over classical ICP?

Q.10 Describe how DLM-ICP can be employed for computer-aided laparoscopy.

8.13 Exercises

1. Given two partial views very close to each other and an implementation of ICP,22

try to register the views by gradually moving away from the data-view from the
model-view until ICP diverges. Apply the perturbation to both the translational
and rotational components. Repeat the exercise, decreasing the overlap area by
removing points in the model-view.

2. Implement a pairwise pre-alignment technique based on PCA. Try to check the
effectiveness of the pre-alignment by varying the shape of the two views.

3. Implement an outlier rejection technique to robustify ICP registration. Compare
the robustness (i) fixed threshold, (ii) threshold estimated as 2.5σ of the residuals’
distribution from their mean, and (iii) threshold estimatedwith theX84 technique.

4. Compute the Jacobianmatrix of LM-ICP by encoding rotationwith quaternions.23

5. Modify LM-ICP in order to work with multiple views, given a sequence of 10
views which surround an object such that N10 is highly overlapping N1. The
global reference system is fixed on the first view. Estimate the global registration
by including pairwise registration between subsequent views and by view N10 to
view N1. Suggestion: the number of unknowns is 9p, where p is the dimension
of the transformation vector (i.e., p = 7 for quaternions). The number of rows of

22A Matlab implementation can be found here http://www.csse.uwa.edu.au/ajmal/code.html.
23A Matlab implementation is available here: http://www.robots.ox.ac.uk/~awf/lmicp.

http://www.csse.uwa.edu.au/ajmal/code.html
http://www.robots.ox.ac.uk/~awf/lmicp
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the Jacobian matrix is given by all residual vectors of each pairwise registration.
Here, the key aspect is that view N10 should be simultaneously aligned pairwise
with both view N9 and view N1.

References

1. Adagolodjo, Y., Trivisonne, R., Haouchine, N., Cotin, S., Courtecuisse, H.: Silhouette-based
pose estimation for deformable organs application to surgical augmented reality. In: Interna-
tional Conference on Intelligent Robots and Systems (2017)

2. Aiger, D., Mitra, N.J., Cohen-Or, D.: 4-points congruent sets for robust surface registration.
ACM Trans. Graph. 27(3) (2008)

3. Albarelli, A., Torsello, A., Rodola, E.: A game-theoretic approach to fine surface registra-
tion without initial motion estimation. In: International Conference on Computer Vision and
Pattern Recognition (2010)

4. Anguelov, D., Srinivasan, P., Pang, H.C., Koller D., Thrun, S., Davis, J.: The correlated cor-
respondence algorithm for unsupervised registration of nonrigid surfaces. In: Neural Infor-
mation Processing Systems Conference (2004)

5. Arun, K.S., Huang, T., Blostein, S.: Least-squares fitting of two 3-d point sets. IEEE Trans.
Pattern Anal. Mach. Intell. 9, 698–700 (1987)

6. Avery, B., Sandor, C., Thomas, B.H.: Improving spatial perception for augmented reality
x-ray vision. In: IEEE Conference on Virtual Reality (2009)

7. Bajura, M., Fuchs, H., Ohbuchi, R.: Merging virtual objects with the real world: Seeing
ultrasound imagery within the patient. In: International Conference on Computer Graphics
and Interactive Techniques (1992)

8. Bariya, P., Nishino, K.: Scale-hierarchical 3d object recognition in cluttered scenes. In: Inter-
national Conference on Computer Vision and Pattern Recognition (2010)

9. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape con-
texts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)

10. Bernardini, F., Rushmeier, H.: The 3D model acquisition pipeline. Comput. Graph. Forum
21(2), 149–172 (2002)

11. Besl, P., McKay, H.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal.
Mach. Intell. 14(2), 239–256 (1992)

12. Bichlmeier, C., Sielhorst, T., Heining, S., Navab, N.: Improving depth perception in medical
AR: a virtual vision panel to the inside of the patient. In: Bildverarbeitung für die Medizin
(2007)

13. Blais, G., Levine, M.: Registering multiview range data to create 3d computer objects. IEEE
Trans. Pattern Anal. Mach. Intell. 17(8) (1995)

14. Bogo, F., Black, M.J., Loper, M., Romero, J.: Detailed full-body reconstructions of moving
people from monocular RGB-D sequences. In: International Conference on Computer Vision
(2015)

15. Bogo, F., Romero, J., Pons-Moll, G., Black,M.J.: Dynamic FAUST: registering human bodies
in motion. In: International Conference on Computer Vision and Pattern Recognition (2017)

16. Boscaini, D., Masci, J., Melzi, S., Bronstein, M., Castellani, U., Vandergheynst, P.: Learn-
ing class-specific descriptors for deformable shapes using localized spectral convolutional
networks. Comput. Graph. Forum 34(5) (2015)

17. Bouaziz, S., Tagliasacchi, A., Pauly, M.: Sparse iterative closest points. Comput. Graph.
Forum 32(5) (2013)

18. Bowyer, K.W., Chang, K., Flynn, P.: A survey of approaches and challenges in 3d and multi-
modal 3d + 2d face recognition. Comput. Vis. Image Underst. 101(1) (2006)



8 3D Shape Registration 405

19. Bregler, C., Hertzmann, A., Biermann, H.: Recovering non-rigid 3D shape from image
streams. In: International Conference on Computer Vision and Pattern Recognition (2000)

20. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Three-dimensional face recognition. Int. J.
Comput. Vis. 64(1), 5–30 (2005)

21. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical Geometry of Non-rigid Shapes.
Springer, Berlin (2008)

22. Brown, B., Rusinkiewicz, S.: Non-rigid range-scan alignment using thin-plate splines. In:
Symposium on 3D Data Processing, Visualization, and Transmission (2004)

23. Brown, B., Rusinkiewicz, S.: Global non-rigid alignment of 3-D scans. ACM Trans. Graph.
(Proc. SIGGRAPH) 26(3) (2007)

24. Brown, M., Lowe, D.: Recognising panoramas. In: ICCV (2003)
25. Brusco, N., Andreetto,M., Giorgi, A., Cortelazzo, G.: 3d registration by textured spin-images.

In: 3DIM ’05: Proceedings of the Fifth International Conference on 3-D Digital Imaging and
Modeling, pp. 262–269 (2005)

26. Campbell, R., Flynn, P.: A survey of free-form object representation and recognition tech-
niques. Comput. Vis. Image Underst. 81(2), 166–210 (2001)

27. Castellani, U., Cristani, M., Fantoni, S., Murino, V.: Sparse points matching by combining
3D mesh saliency with statistical descriptors. In: Computer Graphics Forum, vol. 27, pp.
643–652. Blackwell Publishing (2008)

28. Castellani, U., Cristani, M., Murino, V.: Statistical 3d shape analysis by local generative
descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 33(12) (2011)

29. Castellani, U., Fusiello, A., Murino, V.: Registration of multiple acoustic range views for
underwater scene reconstruction. Comput. Vis. Image Underst. 87(3), 78–89 (2002)

30. Castellani, U., Fusiello, A.,Murino, V., Papaleo, L., Puppo, E., Pittore,M.: A complete system
for on-line modelling of acoustic images. Image Commun. J. 20(9–10), 832–852 (2005)

31. Castellani, U., Gay-Bellile, V., Bartoli, A.: Robust deformation capture from temporal range
data for surface rendering. Comput. Animat. Virtual Worlds 19(5), 591–603 (2008)

32. Chang, M., Leymarie, F., Kimia, B.: 3d shape registration using regularized medial scaffolds.
In: International Symposium on 3D Data Processing, Visualization and Transmission (2004)

33. Chang,W., Zwicker,M.:Automatic registration for articulated shapes. Comput.Graph. Forum
(Proc. SGP 2008) 27(5), 1459–1468 (2008)

34. Chang, W., Zwicker, M.: Range scan registration using reduced deformable models. Comput.
Graph. Forum 28(2), 447–456 (2009)

35. Chauvet, P., Collins, T., Debize, C., Novais-Gameiro, L., Pereira, B., Bartoli, A., Canis, M.,
Bourdel, N.: Augmented reality in a tumor resection model. Surg. Endosc. 32(3), 1192–1201
(2018)

36. Chen, Y., Medioni, G.: Object modelling by registration of multiple range images. Image Vis.
Comput. 10(3), 145–155 (1992)

37. Choi, S., Zhou, Q.Y., Koltun, V.: Robust reconstruction of indoor scenes. In: International
Conference on Computer Vision and Pattern Recognition (2015)

38. Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. Comput.
Vis. Image Underst. 89(2–3), 114–141 (2003)

39. Collins, T., Pizarro, D., Bartoli, A., Bourdel, N., Canis, M.: Computer-aided laparoscopic
myomectomy by augmenting the uterus with pre-operative MRI data. In: International Sym-
posium on Mixed and Augmented Reality (2014)

40. Collins, T., Pizarro, D., Bartoli, A., Canis, M., Bourdel, N.: Realtime wide-baseline registra-
tion of the uterus in monocular laparoscopic videos. In: International Workshop on Medical
Imaging and Augmented Reality at MICCAI (2013)

41. Corey, G., Matei, C., Jaime, P., Hao, D., K., A.P.: Data-driven grasping with partial sensor
data. In: IROS’09: Proceedings of the 2009 IEEE/RSJ international conference on Intelligent
robots and systems, pp. 1278–1283 (2009)

42. Cruska, G., Dance, C.R., Fan, L.,Willamowski, J., Bray, C.: Visual categorizationwith bags of
keypoints. In: ECCVWorkshop on Statistical Learning in Computer Vision, pp. 1–22 (2004)



406 U. Castellani and A. Bartoli

43. Cunnington, S., Stoddart, A.: N-view point set registration: a comparison. In: BritishMachine
Vision Conference (1999)

44. Deng, H., Birdal, T., Ilic, S.: PPFNet: Global context aware local features for robust 3d point
matching. In: International Conference on Computer Vision and Pattern Recognition (2018)

45. Dewaele, G., Devernay, F., Horaud, R.: Hand motion from 3d point trajectories and a smooth
surface model. In: European Conference on Computer Vision (2004)

46. Drost, B., Ulrich,M., Navab,N., Ilic, S.:Model globally,match locally: Efficient and robust 3d
object recognition. In: International Conference on Computer Vision and Pattern Recognition
(2010)

47. Eckart, B., Kim, K., Kautz, J.: HGMR: Hierarchical gaussian mixtures for adaptive 3d regis-
tration. In: European Conference on Computer Vision (2018)

48. Eckart, B., Kim, K., Troccoli, A., Kelly, A., Kautz, J.: MLMD: maximum likelihood mixture
decoupling for fast and accurate point cloud registration. In: Proceedings of the International
Conference on 3D Vision (2015)

49. Eggert, D., Lorusso, A., Fisher, R.: Estimating 3-d rigid body transformations: a comparison
of four major algorithms. Mach. Vis. Appl. 9, 272–290 (1997)

50. Elbaz, G., Avraham, T., Fischer, A.: 3d point cloud registration for localization using a deep
neural network auto-encoder. In: International Conference on Computer Vision and Pattern
Recognition (2017)

51. Endres, F., Hess, J., Sturm, J., Cremers, D., Burgard,W.: 3Dmapping with an RGB-D camera.
IEEE Trans. Robot. 30(1), (2014)

52. Ezra, E., Sharir, M., Efrat, A.: On the performance of the ICP algorithm. Comput. Geom.
41(1–2), 77–93 (2008)

53. Fantoni, S., Castellani, U., Fusiello, A.: Accurate and automatic alignment of range surfaces.
In: Proceedings of the 2nd Joint 3DIM/3DPVT Conference: 3D Imaging, Modeling, Process-
ing, Visualization and Transmission (3DIMPVT) (2012)

54. Fitzgibbon, A.: Robust registration of 2D and 3D point sets. Image Vis. Comput. 21(13–14),
1145–1153 (2003)

55. Fuchs, H., Livingston, M., Raskar, R., Colucci, D., Keller, K., State, A., Crawford, J.,
Rademacher, P., Drake, S., Meyer, A.: Augmented reality visualization for laparoscopic
surgery. In: Medical Image Computing and Computer-Assisted Intervention (1998)

56. Funkhouser, T., Kazhdan, M., Min, P., Shilane, P.: Shape-based retrieval and analysis of 3d
models. Commun. ACM 48(6), 58–64 (2005)

57. Garcia-Grasa, O., Bernal, E., Casado, S., Gil, I., Montiel, J.M.M.: Visual SLAM for hand-held
monocular endoscope. IEEE Trans. Med. Imaging 33(1), 135–146 (2014)

58. Gelfand, N., Mitra, N.J., Guibas, L.J., Pottmann, H.: Robust global registration. In: Desbrun,
M., Pottmann, H. (eds.), Eurographics Association, pp. 197–206 (2005). ISBN 3-905673-24-
X

59. Godin, G., Laurendeau, D., Bergevin, R.: A method for the registration of attributed range
images. In: 3-D Digital Imaging and Modeling (3DIM), pp. 179–186 (2001)

60. Golovinskiy, A., Kim,V., Funkhouser, T.: Shape-based recognition of 3d point clouds in urban
environments. In: International Conference on Computer Vision (2009)

61. Granger, S., Pennec, X.: Multi-scale EM-ICP: a fast and robust approach for surface registra-
tion. In: European Conference on Computer Vision (2002)

62. Gu,X.,Gortler, S.J., Hoppe,H.:Geometry images.ACMTrans.Graph. 21(3), 355–361 (2002)
63. Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J.: 3d object recognition in cluttered scenes

with local surface features: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 36(11) (2014)
64. Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J., Kwok, N.M.: A comprehensive perfor-

mance evaluation of 3d local feature descriptors. Int. J. Comput. Vis. 116(1) (2016)
65. Guo, Y., Sohel, F., Bennamoun, M., Wan, J., Lu, M.: An accurate and robust range image

registration algorithm for 3d object modeling. IEEE Trans. Multimed. 16(5) (2014)
66. Hampel, F., Rousseeuw, P., Ronchetti, E., Stahel, W.: Robust Statistics: The Approach Based

on Influence Functions. Wiley (1986)



8 3D Shape Registration 407

67. Handa, A.,Whelan, T.,McDonald, J., Davison, A.: A benchmark for RGB-D visual odometry,
3D reconstruction and SLAM. In: IEEE International Conference on Robotics and Automa-
tion, ICRA (2014)

68. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks.
Science 313(5786) (2006)
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