
Chapter 14
3D Phenotyping of Plants

Ayan Chaudhury and John L. Barron

Abstract In recent years, there has been significant progress in computer vision
based plant phenotyping technologies. Due to their non-invasive and non-contact
properties, imaging techniques are becoming state of the art in automated plant phe-
notyping analysis. There are several aspects of phenotyping, including plant growth,
organ classification and tracking, disease detection, etc. This chapter presents a broad
overview of computer vision based 3D plant phenotyping techniques. Some case
studies of state-of-the-art techniques are described in detail. In the first case study,
automated robotic systems for 3D plant phenotyping are discussed. The second study
focuses on general registration techniques of point cloud and alignment of multiple
view challenging plant point cloud data. Next, recently successful plant organ seg-
mentation techniques are reviewed. Finally, some open challenges of vision-based
plant phenotyping are discussed, followed by conclusion and some hands on exer-
cises.

14.1 Introduction

Due to the increase in the world population in recent years, the demand of food/crop
is increasing very fast. Automated analysis for crop production systems is of extreme
demand in order to fulfil the task of mass production as well as efficient monitor-
ing of crops. Computer vision based techniques can be very efficient because of the
non-invasive and non-contact nature of image-based analysis. Also, imaging sys-
tems can be more accurate than other approaches. In recent years, there has been
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tremendous progress in image-based analysis of plant phenotyping (measuring bio-
logically significant properties of plants) technologies. 3D imaging based approaches
are becoming state of the art in quantifying biological properties of plants. The advan-
tage of 3D over 2D are numerous. For example, in order to analyze the growth of a
plant, representing that plant as a 3D mesh model is a very effective methodology.
From the 3D mesh, it is possible to compute the 3D volume (the convex hull) and
3D surface area of the plant, in addition to analyzing other desirable properties. As
we will see later in this chapter, 3D laser scanners are widely used to perform 3D
plant phenotyping. Also consider the area of a leaf. If the leaf is curved, its 3D area
will be significantly different from the area computed from its 2D image.

Additionally, apart from the 3D based analysis of plants, data collection is also
an important aspect of an automated phenotyping system and cannot be ignored.
However, building a high throughput real-time system is a challenging task. Sev-
eral challenges include the following factors: communication among the hardware
devices, reliable data transfer and analysis, fault tolerance, etc. Ideally, the system
should be simple enough for a naive user to operate and obtain the phenotyping
result as a ready-made product. An ideal system should also be able to be general
enough to handle several varieties of plants and analyze their phenotypes accurately.
With the advancements of recent robotic technologies and high precision mechanical
devices, fully automated real-time systems are becoming possible. These systems are
shown to be reliable enough to capture and analyze the data throughout the lifetime
of a plant. Automation is also important to study the effect of several environmental
factors (e.g. lighting, temperature, humidity, etc.) on a plant. Designing controlled
chamber can fulfil the needs of restricted environmental factors. For example, if we
need to study the effect of light on a specific plant under certain temperature, then
we need to place the plant in a chamber where the temperature is controlled and
the lighting can be turned on/off at desired time of the day. This is an example of
an embedded system that can be programmatically controlled as needed. This is an
integral part of a 3D plant phenotyping system.

Recently, laser scanning systems have gained popularity to capture 3D data on
the surface of a plant. Laser scanning is an excellent way to perform non-invasive
3D analysis of plant phenotyping. Kinect laser scanners are now available at cheap
cost and are being widely used in various fields including plant phenotyping, 3D
modelling and remote sensing applications.Depending on the need of the application,
the resolution of the scanner can be controlled. For example, dense spacing of points
is needed in order to model a very detailed surface, whereas sparse scans might be
sufficient for applications that do not need much local details to be modelled. The
3D model of the plant can be obtained by aligning multiple overlapping views of the
scans taken from different directions around the plant. Then the merged point cloud
data can be used to analyze different aspects of phenotyping.

Phenotyping refers to measuring (or quantifying) various biologically interesting
properties of plants. There are several aspects of phenotyping. State-of-the-art tech-
niques in computer vision are adopted for different application areas. For example,
consider tracking a particular organ over time. To make the system fully automated,
first we need to set up a robotic system that will be able to place the laser scanner at
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a suitable position, scan the plant and extract the point cloud data. Having the raw
point cloud data, computer vision algorithms need to be designed to perform shape
matching of point clouds in order to identify the organ of interest. As the plant grows,
the robot should dynamically change its position to perform the scanning. There are
many challenges involved in this type of phenotyping. As the plant grows bigger, the
leaves occlude each other and the organ of interest might become partially or fully
occluded by some other organs. In these cases, a single scan might not be sufficient
to recognize the organ and the robot needs to be moved at suitable positions around
the occlusion and take multiple scans of the occluded object. This is just an example
of a challenging 3D phenotyping problem. Other types of phenotyping include the
growth analysis of living plants. In that case, multi-view points cloud data needs
to be aligned into a single point cloud, which can be triangulated to obtain a 3D
mesh model of the plant. This is a challenging task since aligning multiple views
of a complex plant structure is a difficult problem. Also, efficient triangulation is
very important to retain the detailed structure of the plant. From the 3D mesh model,
several properties like volume and surface area can be computed. Segmentation of
plant organs has also gained attention for phenotyping tasks. Estimation of leaf area,
stem diameter, etc. requires proper segmentation of the organs. Different types of
shape primitives are often used to extract the required structure. For example, tubular
shape fitting is a common technique to extract the round-shaped stem of a plant.

3Dplant phenotyping is highly inspired fromcomputer vision algorithms.Through-
out this chapter, we will see some applications of 3D plant phenotyping. Although
there are several components of phenotyping, we will discuss certain key areas,
which are the most popular, as well as challenging. Initially we will discuss about
automated systems for 3D plant phenotyping. Then registration of multi-view point
cloud data are described. Next, some popular techniques of plant organ segmentation
are studied. We also discuss in brief about related phenotyping problems to give an
overview of the recent focus of the phenotyping research community.

Theorganizationof the chapter is as follows. In the next section, related literature is
summarized. Then we discuss the key techniques in 3D plant phenotyping, followed
by the current challenges and concluding remarks. We end the chapter with some
hands-on exercises related to plant phenotyping techniques.

14.2 Related Work

A large body of work has been reported on computer vision based plant pheno-
typing in the last decade. In recent literature, several aspects of plant phenotyping
are discussed. Tremendous progress in automated plant phenotyping and imaging
technologies have created a mini-renaissance [1]. Software products are becoming
available for building high throughout phenotyping systems [2, 3]. Automated data
collection systems [4, 5] are becoming prevalent over tedious manual techniques
[6]. However, most of the automated systems have some limitations on the type, size
or geometrical properties of the plants that can be processed. The ultimate goal of
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computer vision-based automation techniques is to generalize these type of systems
[7–9]. Recently, a fully automated robotic system has been proposed [10]. The sys-
tem works in a fully automated way throughout the lifetime of a plant and analyzes
the growth pattern from the reconstructed 3D point cloud data. The system is gen-
eral and can be customized to perform different types of automated tasks related to
3D plant phenotyping. We discuss the related literature on different aspects of plant
phenotyping in the next subsections.

14.2.1 Organ Tracking

Detection and tracking of plant organ is a well-studied problem. Jimenez et al. [11]
proposed a fruit harvesting system that can detect fruits of a plant from their colour
and morphological properties. It was one of the first methods where laser scanners
were used in plant phenotyping analysis. These types of systems are of extreme
demand in agricultural applications. Chattopadhyay et al. [12] presented 3D recon-
struction of apple trees for dormant pruning (cutting off certain primary branches to
improve the yield and crop quality of the plant) applications in an automated manner.
These techniques can be very helpful in the pruning process as a part of intelligent
agricultural robotic application. Paulus et al. [13, 14] performed organ segmenta-
tion of wheat, grapevine and barley plants using a surface feature-based histogram
analysis of 3D point cloud data. Klodt et al. [15] performed segmentation to monitor
the growth of grapevines. Similar type of work on plant organ segmentation was
proposed in [16] via unsupervised clustering technique. Paproki et al. [17] measured
plant growth in the vegetative stage. They generated 3D point cloud from 2D images.
Golbach et al. [18] setup a multiple camera system and the 3Dmodel of the plant was
reconstructed using a shape-from-silhouette method. Then the geometric properties
(e.g. area, length) of the leaves and stems are computed by segmenting these organs.
The final results are validated by comparing with the ground truth data obtained by
destructing the plant by hand. Dellen et al. [19] built up a system to analyze leaf
growth of tobacco plants by tracking the leaves over time from time-lapsed video.
In each video frame, leaves are detected by assuming a circular leaf shape model. A
graph-based method is employed to track leaves through the temporal sequence of
video frames.

14.2.2 Plant Health Monitoring

Another type of plant phenotyping that has gained attention is determining the con-
dition of a plant from specific patterns of its leaves. Usually, the texture properties of
the leaves are exploited to perform the analyses, and then the leaves are tracked over
time. A challenging task to perform this type of analysis is to segment the leaves in
different imaging conditions [20]. Active contour model was used in [21] to detect
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lesions in ZeaMayes. This crop is widely used and lesion detection can be very help-
ful in disease detection at the early stages. Xu et al. [22] detected nitrogen-deficient
tomatoes from the texture of the leaves. Tracking the leaves of rosette plants can be
very useful for growth rate measurement. Similar type of work was presented in [23].

14.2.3 3D Reconstruction

3D reconstruction from multiple views is a quintessential part of many 3D pheno-
typing applications. This is a very challenging problem. The complex geometrical
structure of the plants makes the problem extremely difficult to handle. Pound et
al. [24, 25] reconstructed the 3D model of a plant using level set based technique.
Santos et al. [26] performed a structure from motion technique to reconstruct the 3D
point cloud model of the plant surface, and then a spectral clustering technique is
used to segment the leaves. Similar type of approach was used for visual odometry
applications in [27]. Kumar et al. [28] used a mirror-based system to obtain multiple
views of the plant. A visual hull algorithm is used to perform the reconstruction.
The setup alleviates the need for camera calibration due to the use of the mirrors.
Recently, Gibbs et al. [29] proposed to improve the image acquisition that results in
improving the overall 3D reconstruction. Instead of using a fixed camera position
for all types of plants, they proposed to change the camera position dynamically,
depending on the geometry of the plant. This type of approach can be embedded
in the intelligent robotic systems. Simek et al. [30] modelled spatial smoothness of
the branches of plant by Gaussian Process. Their method is designed to estimate the
thin structures of a plant from monocular images. Brophy et al. [31] presented an
approach to align multiple views of a plant into a single point cloud. The approach
exploits recently successful GaussianMixtureModel registration and mutual nearest
neighbour techniques. However, the method needs a good initial guess, which can
be rectified by automatic feature matching of junction points [32].

14.2.4 Rhythmic Pattern Detection

Rhythmic pattern of plant growth is a well-known phenomenon [33]. There have
been attempts to capture the circadian rhythm of plant movements using imaging
techniques [34]. Plant leaves are known to be affected by various lighting conditions.
Dornbusch et al. [35] captured the effect of rhythmic leaf movements by lighting via
laser scanning system. Tracking and growth analysis of seedling was studied in [36].
Corn seedling growth was studied by Barron and Liptay [37–39]. They demonstrated
that the growth is well correlated with room temperature.
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14.2.5 Structural Analysis

Structural analysis of plants is also studied in the literature [40]. Augustin et al. [41]
extracted geometric features of Arabidopsis plant for phenotypic analysis. Li et
al. [42] performed a 4D analysis to track budding and bifurcation events of plants
from point cloud data.

14.3 Key Techniques

In this section, we will focus on some specific aspects of 3D plant phenotyping and
explain the state-of-the-art techniques. Before we explain the key techniques, we
briefly discuss some terminologies that will be used throughout this section. The
flow of the section is as follows. First, we give an overview of some key terms.
Then we discuss different types of automated systems for 3D plant phenotyping.
These systems aim at collecting data without (or minimal) manual intervention.
We focus on 3D model building of plants, and that is why we discuss about aligning
multiple datasets to obtain a 3D point cloudmodel of a plant. Although the problem is
basically the general point cloud registration and alignment problem, we will discuss
certain variations of the standard algorithms related to plant structures. Finally, some
segmentation algorithms are discussed.

14.3.1 Terminologies

14.3.1.1 Point Cloud

A point cloud is simply a set of data points. Point clouds are typically generated by
range scanners, which record the point coordinates at the surface of an object. The
density of points depends on the scanner settings. In the general case, high density
of points encodes fine geometry of the object, and requires high computation time to
process the data. On the contrary, low density of points encodes less local geometry
and mostly keep the global shape of the object, and usually requires less computa-
tional time to process. 3D point clouds are usually stored as raw coordinate values
(x, y, z). However, the fourth attribute can be the colour or intensity information,
depending on the type of scanner used. Among different file formats for storing the
point cloud, the most commonly used extensions are: .xyz, .pcd, .asc, .pts, and .csv
formats.
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14.3.1.2 3D Mesh

A 3D mesh or a polygonal mesh is a data structure that connects the points in the
cloud by means of a set of vertices (which are the points themselves), a set of edges,
and polygonal elements (e.g. triangles for triangular mesh). Polygon meshes are also
referred as surfacemeshes which represent both the surface and the volumetric struc-
ture of the object. The process of making a triangular mesh is also called the triangu-
lation. The efficient rendering of the triangles can produce a realistic representation
of a synthetic object, which is a center of attention in the computer graphics research
community. Among different types of triangulation technique, most commonly used
are the Delaunay and Alpha shape triangulation algorithms. Let us consider a set
of points P = {p1, . . . , pn} ⊂ R

d . Let’s call these as sites. A Voronoi diagram is a
decomposition of Rd into convex polyhedra. Each region or Voronoi cell V(pi ) for
pi is defined to be the set of points x that are closer to pi than to any other site.
Mathematically,

V(pi ) = {x ∈ R
d | ||pi − x || ≤ ||p j − x || ∀ j �= i},

where ||.|| denotes the Euclidean distance. TheDelaunay triangulation of P is defined
as the dual of the Voronoi diagram.

The α-complex of P is defined as the Delaunay triangulation of P having an
empty circumscribing sphere with a squared radius equal to or smaller than α. The
Alpha shape is the domain covered by alpha complex. If α = 0, the α-shape is the
point set P , and for 0 ≤ α ≤ ∞, the boundary ∂Pα of the α-shape is a subset of the
Delaunay triangulation of P .

14.3.1.3 Registration of Point Cloud

In the general sense, registration of two point clouds refers to aligning one point
cloud to the other. One of the point cloud is called themodel point set, which remains
“fixed” in space. The other point cloud, referred as the data, is the “moving” point
set. We seek to find the transformation parameters (typically the rotation, translation
and scaling) of the data point cloud, that best aligns it to the model point cloud. By
best, we mean the alignment that has the minimal error with respect to the ground
truth. There are usually two cases in this regard: rigid and non-rigid. Rigid point
cloud registration problems are usually easier to handle, since estimation of the
transformation parameters is relatively less complicated. On the other hand, non-
rigid point cloud registration problems are hard in nature, and typically a single set
of transformation parameters are not sufficient to align the data to the model point
cloud. Among various types of challenges associated with non-rigid point cloud
registration, the following are the most prevalent ones: occlusion, deformation and
minimal overlap between the two point clouds.
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Fig. 14.1 A typical green house system [2]. Plants are placed on conveyor belts and images are
taken automatically as the belt moves around (licensed under the Creative Commons Attribution
4.0 International License)

14.3.1.4 Viewing Software

There are a variety of software available to visualize the point clouds andmeshes. The
following software are widely used in the computer vision and graphics community:
Meshlab,1 CloudCompare,2 Point Cloud Library3 (also offers lots of functionalities
for point cloud processing), etc.

14.3.2 Automated Systems for 3D Phenotyping

The goal of a high throughput plant phenotyping system is to monitor a mass crop
production system and analyze several phenotypic parameters related to growth,
yield and stress tolerance in different environmental conditions. An automated green
house system looks like the one in Fig. 14.1. The plants are placed on conveyor belts
and the image acquisition devices capture images in different time frames.

In many applications, the phenotyping demands high precision results. In order
to obtain high precision quality, robots can be used to perform the task in more
efficient manner. Subramanian et al. [5] developed a high throughput robotic system
in order to quantify seedling development. A 3-axis gantry robot system is used to
move the robot in the vertical X-Z plane. The movement of each axis is controlled
by linear servo motors. Two cameras are attached to the robot, one of them is of high
resolution and the other one is of low resolution. Perpendicular to the optical axis of
the cameras, a series of petri dish containing plant seedlings are attached to a sample
fixture.

1http://www.meshlab.net/.
2https://www.danielgm.net/cc/.
3http://pointclouds.org/.

http://www.meshlab.net/
https://www.danielgm.net/cc/
http://pointclouds.org/
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The robot periodically moves along the gantries and captures images of each petri
dish. A probabilistic localization is performed to locate the seedling. Focusing is also
performed automatically. As the seedlings grow over time, the system dynamically
analyzes the images with high accuracy. This type of automated system is very useful
in studying growth of mini-seedlings (a young plant grown from seed).

However, the system described above is not designed to monitor a whole plant
throughout its lifetime. Also, the robot system does not have enough degrees of free-
dom (DOF) to move anywhere around a plant to perform real-time 3D data capture.
Recently, a machine vision system has been proposed in order to perform real-time
3D system [10]. The system is fully automated, including the growth chamber, robot
operation, data collection and analysis. A naive user can obtain phenotyping results
with a few mouse clicks.

The system comprises of an adjustable pedestal and a 2-axis overhead gantry
which carries a 7-DOF robotic arm. A near-infrared laser scanner is attached at the
end of the arm, which can measure dense depth map of the surface of an object. The
arm provides high level of flexibility for controlling the position and orientation of
the scanner attached at the end. The plant is placed on a pedestal, which can bemoved
vertically to adjust the room for different plant sizes. The whole setup is housed in a
programmable chamber, which is fully controllable in terms of lighting, temperature,
humidity, etc. Different components of the system are integrated together as a single
system. The setup is shown in Fig. 14.2.

During an experiment, the chamber is programmed according to the requirements.
The plant is placed on the pedestal, and other parameters such as number of scans,
resolution, timings, etc., are provided by the user. Initially the robot remains at the
home position.When the scan starts, the robotmoves to the scan position and takes an
initial scan. This initial scan is performed to compute the bounding box comprising
the whole plant. The bounding box calculation is needed to dynamically change the
robot position as the plant grows over time. When the bounding box is determined,
actual scanning is performed. The laser scanner records point cloud data in xyz
format on the surface of the plant. If the scanner field of view is not able to enclose
the whole plant due to size constraint, multiple overlapping partial scans are taken.
After the first scan, the robot moves to the next scanning position and performs a
similar scanning routine. When the scan sets are complete, the robot goes back to the
home position until the next set of scan is scheduled. Captured data are transferred to
the server automatically and processing gets started immediately (aligning multiple
views are discussed in the next subsection).

The system is designed for general use of phenotyping applications, and can
be customized according to the need. The robot arm can be exploited for tracking
specific organs by exploiting the high degree of flexibility of the arm. To handle
the case of occlusion of the organs, the robot arm can be programmed to move to
specific coordinates in order to obtain full view of the occluded organ. In recent
years, automated data collection through robotic system is performed in outdoor
environment for agricultural applications [43, 44].
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Fig. 14.2 Complete autonomous robotic system for 3D plant phenotyping applications. Top:
Schematic diagram of the gantry robot system. Bottom: High-level view of the system

14.3.3 Multiple-View Alignment

Although registration of 3D point cloud data has been studied extensively in the
literature, registration of plant structures is a challenging task. The self recursive
and thin structure makes the problem of pairwise registration extremely complicated
and non-rigid. Although different types of approaches exist for solving the pairwise
registration and multiple view alignment problem, recently probabilistic methods
have been successful inmany applications.Wefirst discuss the background of general
registration problem and then end by discussing the adaptation of the technique for
registration of plant structures.
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Recently, Gaussian Mixture Models (GMM) have been very successful in the
registration of non-rigid point sets. Let us consider two overlapping views (point
clouds) of a plant. One point cloud is called the model point set, and the other is
called the data point set. The target is to transform the data point set to the model
point set in order to obtain the merged point cloud. Mathematically, let’s say the
model point set is denoted as M = (x1, x2, ..., xM )T , and the observed data point
set is denoted as S = (y1, y2, ..., yN )T . The model point set undergoes a non-rigid
transformation T , and our goal is to estimate T so that the two point sets become
aligned. Then the GMM probability density function can be written as,

p(yn) =
M+1∑

i=1

P(zn = i)p(yn|zn = i), (14.1)

where zn are latent variables that assign an observed data point yn to aGMMcentroid.
Usually all the GMM components are modelled as having equal covariances σ 2, and
the outlier distribution is considered as uniform, i.e. 1/a, where a is usually set as the
number of points in the model point set. The unknown parameter ω ∈ [0, 1] is the
percentage of the outliers. Themembership probabilitiesπmn are assumed to be equal
for all GMM components. Denoting the set of unknown parameters θ = {T , σ 2, ω},
the mixture model can be written as

p(yn|θ) = ω
1

a
+ (1 − ω)

M∑

i=1

πmn

(2πσ 2)D/2
exp[−||yn − T (xm)||2

2σ 2
]. (14.2)

The goal is to find the transformation T . Sometimes a prior is used to estimate
the transformation parameters. A common form of prior [45] is

P(T ) ∝ exp[−λ

2
φ(T )],

where φ(T ) is the smoothness factor, and λ is a positive real number. The parameters
θ are estimated using the Bayes’ rule. The optimal parameters can be obtained as

θ∗ = argmax
θ

P(θ |S) = argmax
θ

P(S|θ)P(T ),

which is equivalent to minimizing the negative log-likelihood:

L(θ |S) = −
N∑

n=1

lnP(yn|θ) − lnP(T ). (14.3)

Jian and Vemuri [46] followed this approach and represented the point set by
Gaussianmixtures. They proposed an approach tominimize the discrepancy between
two Gaussian mixtures by minimizing the L2 distance between two mixtures.
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The Coherent Point Drift (CPD) registrationmethodwas proposed byMyronenko
et al. [47, 48]. Their method is based on GMM, where the centroids are moved
together. Given two point clouds,M = (x1, x2, ..., xM )T and S = (y1, y2, ..., yN )T ,
in general for a point x , the GMM probability density function will be p(x) =∑M+1

i=1 P(i)p(x |i), where:

p(x |i) = 1

(2πσ 2)D/2
exp[−||x − yi ||2

2σ 2
]. (14.4)

They minimize the following negative log-likelihood function to obtain the optimal
alignment:

E(θ , σ 2) = −
N∑

j=1

log
M+1∑

i=1

P(i)p(x j |i). (14.5)

There are many ways to estimate the parameters, such as gradient descent, Expec-
tation Maximization (EM) algorithm and variational inference. EM is a standard and
widely used technique to optimize the cost function. Basically the E-step (or the
Expectation) computes the posterior probability, and the M-step (or the Maximiza-
tion) computes the new parameter values from the likelihood function. The aim is to
find the parameters θ and σ 2.

Let us denote the initial and updated probability distributions as Pold and Pnew,
respectively. The E-step basically computes the “old” parameter values, and then
computes the posterior probability distributions Pold(i |x j ). In the M-step, the new
parameter values are computed by minimizing the log-likelihood function:

E = −
N∑

j=1

M+1∑

i=1

Pold(i |x j )log(P
new(i)pnew(x j |i)), (14.6)

which can be rewritten as

E(θ , σ 2) = 1

2σ 2

N∑

j=1

M+1∑

i=1

Pold(i |x j )||x j − T (yi , θ)||2 + NpD

2
logσ 2, (14.7)

where

Np =
N∑

j=0

M∑

i=0

Pold(i |x j ) ≤ N . (14.8)

Now the current parameter values θold is used to find the posterior probabilities:

Pold(i |x j ) = exp(− 1
2σ old2

||x j − T (yi , θ
old)||2)

∑M
k=1 exp(− 1

2σ old2
||x j − T (yk, θ

old)||2) + (2πσ 2)D/2 ω
1−ω

M
N

.

(14.9)
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Although pairwise registration works reasonably well, aligning multiple views is
problematic. The reason is that, the errors from pairwise registrations accumulate
during multiple alignment and as a result, the merging does not yield good results.
To handle this problem, Brophy et al. [31] proposed a solution based on the Mutual
Nearest Neighbour (MNN) [49] algorithm. The algorithm is based onCPDwhich can
align many views with minimal error. More specifically, it is a drift-free algorithm
for merging non-rigid scans, where drift is the build-up of alignment error caused by
sequential pairwise registration. Although CPD alone is effective in registering pairs
with a fair amount of overlap, when registering multiple scans, especially scans that
have not been pre-aligned; this method achieves a much better fit both visually and
quantitatively than CPD by itself, utilizing sequential pairwise registration.

First, the scans are aligned sequentially, and then a global method is used to refine
the result. The globalmethod involves registering each scan Xi to an “average” shape,
which we construct using the centroids of themutual nearest neighbors (MNN) [49]
of each point. For Xi , we use scans X j where j �= i to obtain the average shape Ycent
from the centroids, and Xi is then registered to this average shape. This is repeated
for every scan until the result converges.

For a point x , the density function is written as

p(x |i) = 1

(2πσ 2)D/2
exp[−||x − ŷi ||2

2σ 2
], (14.10)

where ŷi ∈ Ycent are the points in the target scan Ycent , which is constructed from all
scans other than itself.

For a pair of scans X and Y , a point xi ∈ X and y j ∈ Y is called MNN if xi = xin
and y jn = y j , where

xin = min(|xp − y j |),∀xp ∈ X, (14.11)

and

y jn = min(|yq − xi |),∀yq ∈ Y. (14.12)

For each point x j in scan Xi , the set of points {xk |xk ∈ Xl ∧ MNN (xk, x j )} are
found, where l �= i , i.e. all scans other than Xi . For each of these sets of points xk ,
the centroid is computed as

xcent =
n−1∑

k=1

xk
n − 1

. (14.13)

Xcent , the set of centroids calculated for each x j , is registered to scan Xi .
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Fig. 14.3 12 scans of the Arabidopsis plant, prior to registration, but with rotation and translation
pre-applied. Different colours indicate different scans [31]

14.3.3.1 Approximate Alignment

In general, to reconstruct a 3D model of a plant, a set of scans are captured around
the plant at specific increments. After acquiring them, the idea is to solve for the
rigid transformation T0 = (R0, t0) (where R is a rotation matrix and t is a translation
vector) between the first scan (X0) and the second scan (X1) using the rigid version
of CPD. After we solve for T0 only once, for each scan Xi , the transformation is
applied i times

The new set of transformed scans X̂ should now be roughly aligned in the coor-
dinate system of the last scan. This method is used to obtain a rigid registration. The
initial registration is important when the pair of scans to be registered has minimal
overlap. The result of approximately aligned scans on some real plant data is shown
in Fig. 14.3.
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14.3.3.2 Global Non-rigid Registration via MNN

Once the initial registration is complete, CPD is used in conjunction with MNN to
recover the non-rigid deformation field that the plant undergoes between the capture
of each scan. At this point, the scans should be approximately aligned to one another.
The centroid/average scan is constructed and the scan is registered to it.

14.3.3.3 Global Registration

Algorithm 14.1 is used to merge all scans, where MNN(·) computes the mutual
nearest neighbour for each point in scans Xi and X j and the centroids function
likewise takes the centroids computed for each point in each scan and combines
them into one average scan using Eq.14.13. For each point in scan Xi , the single
nearest neighbour from all other scans is found and we use this set of distances to
compute the L2-norm.

Algorithm 14.1 MNN Registration
1: X = [X1, . . . , Xn], where each Xi is a range scan that has been approximately adjusted. A

predefined tolerance tolmax .
2: tol = ∑n

i=1 error_L
2(Xi )/n

3: while tol < tolmax do
4: for i = 1 to n do
5: for j = 1 to n do
6: if j �= i then
7: Xicent = MNN( X j , Xi )
8: end if
9: end for
10: Xcent = centroids( X1cent , . . . , XNcent )
11: Xi =register_cpd( Xcent , Xi )
12: end for
13: end while

Figure14.4 shows all 12 scans, merged into a single point cloud after subsampling
each scan. Each colour in the point cloud represents a different scan.

A problem with GMM based registration is that the views need to have been
approximately aligned before the registration. For large rotation angle differences, the
algorithm fails drastically. In the literature, there has been significant work on feature
matching of two point cloud datasets. For example, Fast Feature Point Histogram
(FPFH) [50] is a popular technique for feature matching in point cloud. However,
these type of descriptors exploit surface normal information to uniquely characterize
an interest point. For thin structured plant data, accurately computing surface normal
is an extremely difficult and error-prone task. Traditional descriptors fail to produce
reasonable results for plant feature correspondence.

Bucksch et al. [51] presented a method to register two plant point clouds. Their
method performs skeletonization of the input point cloud and then estimates the
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Fig. 14.4 12 scans captured in 30◦ increments about the plant and then merged into a single point
cloud using MNN. Shown from two viewpoints, are the front facing scans on the left and the above
facing scans on the right. Different colours indicate different scans [31]

transformation parameters by minimizing point-to-line distances. The idea is to map
a point p0 from one point cloud to the line joining two nearest neighbour points p1
and p2 in the skeletonized second point cloud. That is, the mapping condition is the
following:

||p′
0p2 × p1p2|| = 0.

where p′
0 = Rp0 + t is the transformed point, R is the rotation matrix and t is the

translation vector. However, the algorithm needs the point clouds to be roughly
aligned in order to obtain good registration results.

A remedy to the above problem can be obtained by exploiting the junction points
as features, as proposed by Chaudhury et al. [32]. The advantage of using junctions
as feature points is that, even if there is deformation and non-rigidity in the point
cloud data, a junction point will not be affected by these factors. Initially, the neigh-
bourhood of each 3D point is transformed into 2D by performing the appropriate
3D coordinate transformations. The method is two step. First, a statistical dip test of
multi-modality is performed to detect non-linearity of the local structure. Then each
branch is approximated by sequential RANSAC line fitting and an Euclidean cluster-
ing technique. The straight line parameters of each branch are extracted using Total
Least Squares (TLS) estimation. Finally, the straight line equations are solved to
determine if they intersect in the local neighbourhood. Such junction points are good
candidates for subsequent correspondence algorithms. Using these detected junc-
tion points, the correspondence algorithm is formulated as an optimized sub-graph
matching problem.

14.3.3.4 Coordinate Transformation

Using a kd-tree algorithm, the nearest neighbour points of a point within a certain
radius can be obtained. Given such points in a local neighbourhood about some 3D
point, the data is transformed so that the surface normal of the plane fitting the data is
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Fig. 14.5 Planar vector
orientations

a line-of-sight vector (0, 0, 1). More specifically, the center of mass (xcm, ycm, zcm)

of the neighbourhood 3D points is computed first. To reformulate as a 2D problem,
the following steps are performed: translate the origin to the center of mass by
−(xcm, ycm, zcm), rotate about the x-axis onto the x − z plane by some Euler angle
α, rotate about the y-axis onto the longitudinal axis (0, 0, 1) by some Euler angle β

and finally transform the origin back to the previous location by (xcm, ycm, zcm). The
detailed calculations are shown below.

A plane of the form ax + by + cz + d = 0 is fitted to the neighbourhood data and
the parameters are obtained. Consider 3 points on a planar surface: P1(x1, y1, z1),
P2(x2, y2, z2) and P3(x3, y3, z3). Compute the vectors V1 and V2 (see Fig. 14.5) as

V1 =
⎡

⎣
x2 − x1
y2 − y1
z2 − z1

⎤

⎦ ,V2 =
⎡

⎣
x3 − x1
y3 − y1
z3 − z1

⎤

⎦

Then V1 × V2 is the normal to the surface ax + by + cz + 1 = 0. That is, V1 ×
V2 and (a, b, c)T are in the same direction.

We aim to nullify the effect of z-coordinates, which require the following steps.
First we translate the origin to the center of mass (CM) (−xm,−ym,−zm) so that
the origin coincides with the CM. We use 4D homogeneous coordinates to perform
all the matrix multiplications. In 3D heterogeneous coordinates, translation is spec-
ified as vector addition but in the equivalent 4D homogeneous coordinates it is now
specified by matrix multiplication, as are all the other operations, allowing matrix
concatenation of all matrices to be performed by one matrix. The 4D homogeneous
transformation matrix has the following form:
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Fig. 14.6 Rotation about V
is the same as rotation about
unix vector û

T (Tx , Ty, Tz) =

⎛

⎜⎜⎝

1 0 0 Tx
1 0 0 Ty

1 0 0 Tz
0 0 0 1

⎞

⎟⎟⎠ (14.14)

Thus, T (−xm,−ym,−zm) does the translation to the center of mass (the new
origin). Next we project the rotation axis onto the z-axis. This requires two steps:
rotate by some unknown α angle about x-axis so that the vector û is in the xz-plane,
and then rotate by some unknown β angle about the y-axis to bring vector û onto
the z-axis. We show how to calculate α and β in the next 2 subsections. Finally
we re-translate back the origin to the previous location by the inverse translation
T (xm, ym, zm).

Let us consider rotation about the z-axis. In that case, V is the rotation axis with
endpoints (x1, y1, z1) and (x2, y2, z2). We rotate about V (see Fig. 14.6), given by

V =
⎡

⎣
x2 − x1
y2 − y1
z2 − z1

⎤

⎦ =
⎡

⎣
x
y
z

⎤

⎦

In this case, û = V
||V||2 = (a, b, c) is the unit vector inV’s direction. The direction

cosines of V (the Euler angles) are given by

a = x

||V||2 , b = y

||V||2 and c = z

||V||2 .
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We use the following convention: û is the normal vector, andu is the unnormalized
vector (of the projection of û onto y − z plane).

14.3.3.5 Rotate û into the XZ-Plane

Let α be the rotation angle between the projection of u in the yz-plane and the
positive z-axis and u′ be the projection of û in the yz-plane (Fig. 14.7). That is,
û = (a, b, c)T =⇒ u′ = (0, b, c)T .

Then the angle α can be obtained simply from the equation,

u′ · k̂ = ||u′||2||k̂||2 cosα.

Let k̂ = (0, 0, 1) is the unit vector in the z-direction, i.e. ||k̂||2 = 1. Then

||u′||2 = √
u′ · u′ = √

(0, b, c) · (0, b, c) =
√
b2 + c2

=⇒ u′ · k̂ = (0, b, c) · (0, 0, 1) = c.

Thus,

c =
√
b2 + c2 · 1 · cosα =⇒ cosα = c√

b2 + c2
.

The vector product can also be used to compute sin α. Note that u′ × k̂ is a vector in
x’s direction, i.e., î . Then

u′ × k̂ = î ||u′||2 ||k̂||2 sin α = î
√
b2 + c2 sin α.

and

Fig. 14.7 Rotate û about the xz-plane. Left: first, project û onto the y − z plane as û′. Right:
second, û′ is rotated by α about the x axis onto the k̂ axis
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u′ × k̂ =
∣∣∣∣∣∣

î ĵ k̂
0 b c
0 1 1

∣∣∣∣∣∣
= bî .

Then bî = î
√
b2 + c2 sin α, or sin α = b√

b2+c2
.

Given sin α and cosα, we can specify the 4D homogeneous rotation matrix for
rotation about the x-axis as

RX (α) =

⎛

⎜⎜⎝

1 0 0 0
0 c√

b2+c2
−b√
b2+c2

0

0 b√
b2+c2

c√
b2+c2

0
0 0 0 1

⎞

⎟⎟⎠ (14.15)

This matrix rotates û onto the xz-plane.

14.3.3.6 Align ûxz Along Z-Axis

As shown in Fig. 14.8, we need to compute sin β and cosβ in this case.
Using the dot product we can write

ûxz · k̂ =
=1︷ ︸︸ ︷

||ûxz||2
=1︷︸︸︷

||k̂||2 cosβ

= (a, 0,
√
b2 + c2) · (0, 0, 1)T =

√
b2 + c2

=⇒ cosβ =
√
b2 + c2.

Fig. 14.8 Aligning û along the z-axis. Left: û is rotated by α about the x axis onto the x − z plane
as ûxz . Right: ûxz is rotated by β about the y-axis onto the k̂ axis as ûz
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Also, using the vector product, k̂ × ûxz is a vector in the direction of the y-axis, thus
resulting

ûxz × k̂ = ĵ

=1︷ ︸︸ ︷
||ûxz||2

=1︷︸︸︷
||k̂||2 sin β

and ∣∣∣∣∣∣

î ĵ k̂
a 0

√
b2 + c2

0 0 1

∣∣∣∣∣∣
= −a ĵ .

Thus, −a ĵ = ĵ sin β, or sin β = −a. Then the 4D homogeneous rotation matrix
about the y-axis can be specified as

RY (β) =

⎛

⎜⎜⎝

√
b2 + c2 0 −a 0
0 1 0 0
a 0

√
b2 + c2 0

0 0 0 1

⎞

⎟⎟⎠ (14.16)

which aligns ûxz with the z-axis. Thus we apply the transformations:

Ry(β)Rx (α)T (−xm,−ym,−zm) (14.17)

to all 3D points. If we wish to undo this transformation we could use

T (xm, ym, zm)RT
x (α)RT

y (β), (14.18)

where RT
x (α) ≡ R−1

y (α) and RT
y (β) ≡ R−1

y (β) because rotation matrices are unitary
and orthogonal.

Next, a plane of the form ax + by + cz + d = 0 is fit to the neighbourhood data
using Cramer’s rule. The parameters n = (a, b, c) are the plane’s surface normal.
Since these transformations result in vertical surface normals we need only be con-
cerned with the structure in the x − y plane, i.e. the problem is now 2D.

14.3.3.7 Dip Test for Multi-modality

The detection of multi-modality in numeric data is a well-known problem in statis-
tics. A probability density function having more than one mode is denoted as a
multi-modal distribution. Hartigan et al. [52] proposed a dip test for unimodality
by maximizing the difference between the empirical distribution function and the
unimodal distribution function. In the case of a unimodal distribution, the value for
the dip should asymptotically approach 0, while for the multi-modal case it should
yield a positive floating point number. Zhao et al. [53] exploited this idea to detect
bifurcations in the coronary artery. A similar idea is applicable in this case too. Points
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Fig. 14.9 Distribution of data: column 1 are the neighbourhood point clouds under consideration,
column 2 are the histograms of the x coordinate distribution and column 3 are the histograms of
the y coordinate distribution for a single stem (first row), a leaf (second row) and a stem with 2
branches (last row). The later is potentially a junction point

having non-linear local neighbourhood are potential candidates for a junction point.
The idea is to perform the dip test for a local neighbourhood of a point. If it is a stem
or a leaf, the data should be uniform and the distribution should only be unimodal.
For a junction point likely due to a bifurcation, it should exhibit multi-modality. The
dip value can thus be used as a measure of multi-modality (Fig. 14.9).

The dip test is performed along the x and y directions (note that aswe have reduced
the dimensionality from 3D to 2D the z-coordinates can be ignored) and obtain the
maximum dip value. The neighbourhood is determined to be multi-modal if the dip
value is over some threshold. However, the threshold value of the dip value is highly
dependent on the data and should be tuned carefully (done visually for now).

The dip measurement is used for initial filtering of non-junction neighbourhood
data. Note that non-linearity and high dip values in local neighbourhood do not guar-
antee that those points are junction points. For some leaf and stem data, sometimes
the data shows high dip values. Instead of relying blindly on dip test results, further
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processing is needed in order to confirm the presence of junction in the neighbour-
hood.

14.3.3.8 RANSAC Fitting and TLS Approximation

Consider the case of a maximum three branches at an intersection point (which is
typically the case in real life): the branches may intersect at a single point (the red
dot in Fig. 14.10c) or at two different points (the red dots in Fig. 14.10d).

Assuming the fact that the main stem will be thicker than the branches, the thick
stem can be extracted simply by using RANSAC straight line fitting using a high dis-
tance threshold for inliers. Other branches can be estimated by sequential RANSAC
fitting. However, there may be other points due to additional branches, a leaf or a

Fig. 14.10 Examples of detected junction points (red dots) on the real Arabidopsis plant data [32]
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noise event (or some combination of the three). After removing the RANSAC fit-
ted main stem, Euclidean clustering is performed on the rest of the data to choose
the biggest connected component(s) to extract the sub-branches. Two sets of points,
Xi = {

pi ∈ P
}
andX j = {

pj ∈ P
}
form two different clusters, if the following con-

dition holds
min||pi − pj||2 ≥ τ,

where τ is the distance threshold. The branches may be straight or curved, but by
usingRANSACwe can estimate the principal direction of the branch [54]. A criterion
is imposed to estimate a broken branch shape (due to occlusion): two branches are
merged if they are spatially close to each other and have the roughly same direction.

After estimating the points for each branch, we need to know the straight line
parameters in order to estimate their intersection (if any).We use TLS to approximate
the straight line represented by a set of points in a branch and extract the parameters.
Consider a set of points (x1, y1), . . . , (xn, yn) and the normal line equation ax +
by + c = 0. [Note that a is cos(θ) and b is sin(θ) where θ is the angle of the normal
line with respect to the positive x axis and c is minus the magnitude of the line from
(x, y) to (0,0).] To fit all the points to the line, we have to find parameters a, b and c
to minimize the sum of perpendicular distances, i.e. we minimize

E =
n∑

i=1

(axi + byi + c)2 (14.19)

(as cos2 θ + sin2 θ = 1). Equating the first order derivative to zero we get

∂E

∂c
=

∑
−2(axi + byi + c) = 0

=⇒ c = −a

n

∑
xi + −b

n

∑
yi = −ax̄ + −bȳ.

(14.20)

Replacing c in Eq. (14.19) with its value in Eq. (14.20) we obtain

E =
∑ [

a(xi − x̄) + b(yi − ȳ)
]2

. (14.21)

To minimize the above equation we rewrite it in the following form:

E =

∥∥∥∥∥∥∥

⎡

⎢⎣
x1 − x̄ y1 − ȳ

...
...

xn − x̄ yn − ȳ

⎤

⎥⎦
[
a
b

]
∥∥∥∥∥∥∥

2

. (14.22)

The expression in the right-hand side of the above equation can be written as
(UN )T (UN ), where U is an n × 2 matrix having rows (xi − x̄, yi − ȳ) and N is
(a, b)T . Setting dE

dN = 0, we obtain 2(UTU )N = 0, the solution of which (subject to
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||N ||2 = 1), is the eigenvector of UTU associated with the smallest eigenvalue. We
extract the parameters a, b, x̄ and ȳ from the equation a(xi − x̄) + b(yi − ȳ) = 0.

After approximating the straight lines, we solve the equations given below to
determine if these lines intersect or not. Recall that two branches are approximated
by two straight lines, and the presence of junction is confirmed if the lines intersect.
For two straight line equations of the form ax + by + c = 0 and dx + ey + f = 0,
the intersection point can be obtained as

x = −b f − ce

ae − db
and y = cd − f a

ae − db
. (14.23)

If the straight lines are parallel, the discriminant (ae − db) will be equal to zero.
If the lines are non-parallel, we check if the intersection point is contained in the
local neighbourhood or not. Note that the obtained intersection point is 2D, so we
apply the reverse transformation to find the actual 3D point. Finally non-maximal
suppression is performed based on the highest dip value to reduce the number of
points.

14.3.3.9 Correspondence Matching

The detected junction points from the last phase are potential candidates for corre-
spondences and can be used as features points for matching. For raw 3D point cloud
data, local surface normals, neighbourhood information, etc., are typically used for
encoding the local structure and points are matched based on the descriptor similar-
ities. This idea typically fails for plant data because the thin structures do not allow
for good local surface normal calculations and because of deformations, the local
structure can change abruptly in adjacent images. An approach to solve the problem
is to exploit sub-graph matching theory as discussed below.

First, the data is triangulated using Delaunay triangulation in 3D (note that we
converted the problem temporarily to 2D just for detection of junction points). Using
the vertex information from triangulation, we can construct a graph connecting all
the points. To handle the cases of missing or occluded data, the points to the near-
est triangle vertex can be connected so that all the points are included in a single
graph. Then, for each junction point, Dijkstra’s shortest path algorithm can compute
geodesic distance to all other junction points. The same procedure is followed for
the second point cloud as well. Then the pairwise distances will be used to be the
criteria for graph matching.

Consider two graphs G1 = (V1, E1) and G2 = (V2, E2). Each junction point is
considered to be a node of the graph. Each node stores the geodesic distances to all
other nodes. In the end, this yields a set of edges. Compatibility of two nodes in G1

andG2 are defined as a closest distancematch. For example, let us suppose twographs
G1 and G2 have n1 and n2 nodes. Each node V1i in G1 stores all distances to all other
nodes. We denote this is as the set of attributes of node V1i :Dv1i

= {dv1i v1 j },∀ j ∈ n1.
Similarly inG2, the set of attributes of nodeV2i is defined asDv2i

= {dv2i v2k },∀k ∈ n2.
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The compatibility of two nodes, V1i and V2i , are formulated as the sum of the squares
of the difference of nearest distances, multiplied by the number of matches. Suppose
G1 and G2 contain 5 and 7 nodes, respectively. Let the attributes of a node V1i
contain the following distances: {d1, d2, d3, d4} (ignoring self distance). Similarly,
V2i contains the distances {d ′

1, d
′
2, d

′
3, d

′
4, d

′
5, d

′
6}. We use a threshold ε (= 0.2) for

the match of two distances. Suppose there are 3 distance matches given by d1 ∼ d ′
4,

d3 ∼ d ′
2, d4 ∼ d ′

1. Then the affinity of the two vertices is computed as

Av1i v2i
= 3 ∗ [(d1 − d ′

4)
2 + (d3 − d ′

2)
2 + (d4 − d ′

1)
2] (14.24)

The logic for using this kind of distance matching is that any outlier is likely to be
eliminated by a lower number of matches. On the other hand, compatible points will
only have the maximum number of distance matches.

Using the compatibility of two vertices, we can obtain the initial node corre-
spondence by using the Hungarian algorithm [55]. The outliers are likely to get
rejected by unmatched distance attributes. However, there still may be non-optimal
matches of the vertices. Cour et al. [56] proposed a graph matching technique, which
is shown to be robust and unambiguous. Given two graphs, G1 = (V1, E1, A1) and
G2 = (V2, E2, A2), where each edge e = ViVj ∈ E has an attribute Ai j . The objec-
tive is to find N pairs of correspondences (Vi , Vj ) where Vi ∈ V1 and Vj ∈ V2. The
affinity Ai j (Eq. 14.24) defines the quality of the match between nodes Vi and V ′

i .
Denoting the similarity function of pairwise affinity as f (·, ·), the matching score
can be computed as:

λ(N) =
∑

i i ′, j j ′∈N
f (Ai j ,A′

i ′ j ′) (14.25)

RepresentingN as a binary vector x so that x(i i ′) = 1 if i i ′ ∈ N , the above equation
can be written as

maxx λ(x) = xTWx, (14.26)

where Wii ′, j j ′ = f (Ai j ,A′
i ′ j ′). The optimal solution of the above equation is given

by
x∗ = argmaxx (x

TWx). (14.27)

The permutation matrix provides the correspondence among the vertices (or the
junction points in this case). Finally the outliers (or wrong matches) can be pruned
out using RANSAC.

14.3.4 Organ Segmentation

Classification of different plant organs from point cloud data is an important plant
phenotyping. Segmenting leaves, stems, fruits and other plant parts can help in track-
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ing specific organ over time. There are different approaches of organ segmentation
in the literature. Paulus et al. [13] presented a surface feature-based histogram tech-
nique to segment stems and leaves of grapevines, and wheat ears. The method is
based on Fast Point Feature Histogram (FPFH) [50]. The idea is to build histogram
for each point in the cloud and classify the histograms using Support VectorMachine
(SVM). For every point p in the cloud, the surface normal is computed by considering
a local neighbourhood within radius rH around the point. For each point pn in the
neighbourhood, three types of features are computed. Let us say np and npn are the
estimated normals at p and pn , respectively. A coordinate frame uvw is defined as
follows:

u = np, v = (pn − p) × u,w = u × v.

Then for each p and pn , the following features are computed,

f0 = v · npn,

f1 = (u · (pn − p))/||pn − p||,
f2 = arctan(w · npn, u · npn).

Then for every point, a histogram is built, where the index of the histogram bin
is calculated by using the following formula:

∑2
i=0(

fi ·b
fi(max)− fi(min)

) · bi , where b is the
division factor for the histogram size.

Next, the histogram for each point is represented as the normalized weighted sum
of the histograms of the neighbouring points. For k neighbours around a point p
having their histograms as hn(pk), the weighted histogram of a point is expressed as

hw(p) = 1

k

∑

k

wb(k) · hn(pk) + (1 − wb(k)) · hn(p), (14.28)

wb = 1 − (0.5 + d
rH

· 0.5), d is the distance from the source to the target point. These
histograms encode primitive shapes like plane, sphere, cone and cylinder, which will
be able to classify plant organs like flat leaf surface, cylinder-shaped stems, etc. The
histograms are classified using SVM.

Wahabzada et al. [16] developed an unsupervised clustering method as an exten-
sion of the histogram-based method discussed above. The idea is to compare the
histograms by some efficient metric, and then perform clustering like k-means using
Euclidean distance measure. However, Euclidean distance metric performs poorly
in presence of noise. As other alternatives, two different types of distance measures
are used for histogram comparison. The first one is the standard Kullback–Leibler
(KL) divergence, which usesHellinger distance for computing the distance between
two histograms. This is basically a probabilistic analog of the Euclidean distance.
For two histograms x and y, the Hellinger distance is given by

dH (x, y) =
∑

i

(
√
xi − √

yi )
2. (14.29)



726 A. Chaudhury and J. L. Barron

The other metric is to use the Aitchison distance given by

dA(x, y) =
√∑

i

(ln
xi

g(x)
− ln

yi
g(y)

)2, (14.30)

where g(·) is the geometric mean. The k-means objective function is iteratively
optimized by the standard EM algorithm.

In a different approach, Li et al. [42] formulated the organ segmentation task as
an energy minimization problem. The goal of their work was to detect events (such
as budding and bifurcation) from time lapse range scans. A key stage to detect these
events is to segment the plant point cloud into leaves and stems. The problem is
formulated as a two stage binary labelling problem. In the first stage of labelling,
leaves and stems are classified, and in the second stage, individual leaves are classified
separately. An organ hypothesis H t is formulated as, H t := Lt

l ∪ Sts for frame Ft ,
where L and S are leaf and stem categories, Lt

l is the l-th leaf, Sts is the s-th stem.
For any point, pt in the point cloud Pt in the current frame Ft , the aim is to find a
labelling that maps pt intoH t . The first stage finds a binary labeling fB that mapsPt

to {Lt , St }, and the second stage consists of two labellings fL and fS that decompose
Lt and St into individual leaves Lt

l and Sts .
The energy function to find the labelling fB is formulated as

E( fB) =
∑

pt∈Pt

Dpt ( fB(pt )) +
∑

(pt ,qt )∈NPt

V ( fB(pt ), fB(qt )) (14.31)

where NPt is the neighbourhood around a point. The data term Dpt penalizes the
cost of classifying pt as leaf or stem, and the smoothness term V ( fB(pt ), fB(qt ))

ensures spatial coherence.
The data term is formulated based on the curvature values, considering the fact that

leaves are generally flatter than stems. For the smoothness term, penalty of labelling
is designed as high for neighbouring points to different organs, but less near organ
borders. The term is defined as

V ( fB(pt ), fB(qt )) =
{
max( 1

C(pt ) ,
1

C(qt )
), if f (pt ) �= f (qt )

0, if f (pt ) = f (qt )
(14.32)

where C(pt ) is the curvature of pt , obtained from the eigenvalues from principal
component analysis of neighbourhood points.

Similar approach is followed for labelling in the second stage, with some mod-
ifications. To segment the individual leaves (which might be touching each other,
thus forming a single connected component), adjacent frames are looked at simulta-
neously to confirm the hypothesis. Similar hypothesis is built for the data term, and
short stems are trimmed out based on a threshold. The energy is minimized by the
well-known α-expansion algorithm [57, 58].
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A more recent work on segmentation can be found in the work of Jin et al. [59].
They performed segmentation of stem and leaf ofMaize plants on 3DLight detection
and ranging (LiDAR) data.

14.4 Main Challenges

There are several challenging problems associated with vision-based plant pheno-
typing. First of all, no efficient registration algorithm exists that can handle every
dataset. In the presence of occlusion and non-rigidity, most of the existing algorithms
fail to generate good results. Incorporation of prior knowledge about the plant struc-
ture in the registration process might be worth studying. Environmental factors such
as wind make a plant to jitter constantly. This can make the pairwise registration
problem extremely challenging. Occlusion is still an unsolved problem. Handling
these cases are open research problems. Also, the optimal number of scans needed
to capture the geometric details of a plant has not been studied.

In general, Delaunay or alpha shape triangulations are widely used to polygonize
3D point cloud data. However, in order to retain the thin structure, perfect tuning of
the parameters is very crucial in these cases. However, if the application demands
very tiny details to be visible in the polygonized mesh, more efficient triangulation
algorithms will be more demanding.

Regarding 3D point cloud segmentation methods, although it has been studied
widely in the literature, the problem is still challenging for different scenarios with
complex background. Also, segmentation in the case of highly occluded point cloud
structure is a challenging problem. In fact, the problem is more complicated in terms
of generalizing the algorithm for the sheer variety of phenotypes presented by plants.

14.5 Conclusion

This chapter has summarized the basic concepts of some recently successful 3D
plant phenotyping techniques. Emphasis has been put on an automated system for
3D phenotyping, pairwise registration and alignment of plant point cloud data and
organ segmentation techniques. Vision-based plant phenotyping is becoming more
demanding these days, dedicated conferences and workshops are getting organized
frequently.4,5 Challenging datasets are getting released also. Although we have not
covered the recent deep learning techniques in plant phenotyping, interested readers
are encouraged to read some recent work like [60] for 3D segmentation.

4https://www.plant-phenotyping.org/CVPPP2019.
5http://liris.univ-lyon2.fr/IAMPS2019/.

https://www.plant-phenotyping.org/CVPPP2019
http://liris.univ-lyon2.fr/IAMPS2019/
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14.6 Further Reading

An interesting mathematical aspect of plant structures can be found in the book by
Prusinkiewicz and Lindenmayer [61]. For an overview of recent plant phenotyping
technologies, the readers are invited to read [1] and a more recent review [62]. Other
reviews of imaging techniques can be found in [9, 63]. A detailed description of
the setup, procedure and experiments of annotated datasets is available in [64]. The
details of plant organ segmentation in energy minimization framework can be found
in [42].

14.7 Exercises

1. Vascusynth6 is a software for generating synthetic vascular (tree-like) structures.
Generate some custom data using the software. Then perform CPD registration
and report the average Root Mean Square (RMS) error from ground truth data.
Source code of CPD is available both in Matlab7 and Python.8

2. Add some Gaussian noise in the data above and perform CPD registration again.
Increase the level of noise and report the threshold beyond which the registration
algorithm fails (you can consider error up to say 5% as acceptable).

3. Add some deformation (e.g. applying random rotation to some random parts) to
the data and repeat the registration task.

4. Extend the pairwise registration into a multi-view alignment problem. Align
multiple views to obtain a single point cloud by exploiting the idea of pairwise
registration in a sequential manner.

5. Obtain the ground truth junction points in the point cloud data in Vascusynth.
Assume that the matching of junction points are available. Now apply large
amount of rotation to one of the views and perform pairwise registration. The
results might not be good at this stage. In order to improve the registration result,
we will test if initial rough alignment of the junction points help or not. Using
the ground truth matching of the junction points, retrieve the transformation
parameters (rotation, translation and scaling), and apply reverse transformation
to the data. Now perform the registration. Report the effect of pre-alignment on
the registration error.

6. Select some random points in the 3D point cloud above. Extract small neigh-
bourhoods (say 50 × 50) around these points. These neighbourhoods will also
be 3D. Then apply the coordinate transformation as described in Sect. 14.3.3.4
to convert the data into 2D. Now compare the original 3D data of these neigh-
bourhood structures and the transformed point cloud. If you are getting all the
z-coordinate values of the transformed point cloud as almost the same, then the

6http://vascusynth.cs.sfu.ca/Welcome.html.
7https://sites.google.com/site/myronenko/research/cpd.
8https://github.com/siavashk/pycpd.

http://vascusynth.cs.sfu.ca/Welcome.html
https://sites.google.com/site/myronenko/research/cpd
https://github.com/siavashk/pycpd
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result is correct. Also, plot both 3D and 2D data and see if the transformation
has preserved the original structure or not.

7. Perform Principal Component Analysis (PCA) of the above 3D neighbourhood
structures. Look at the eigenvalues and eigenvectors. Can you tell anything about
the local structure from these quantities?

8. Obtain the challenging vegetation dataset from ASL database.9 Apply state-of-
the-art point cloud feature matching algorithms and report their limitations on
this type of data.

9. Perform CPD registration of the same dataset as above.
10. Triangulate the point cloud data using some standard algorithms like Delaunay

triangulation10 or alpha shape algorithm.11 Adjust the parameters to get the best
result. Do you think that these algorithms are efficient enough to triangulate the
dataset?

11. Obtain the dataset of Li et al. [42].12 Implement the segmentation method as
described in detail in the paper.
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