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Preface

This book is primarily a graduate text on 3D imaging, shape analysis, and asso-
ciated applications. In addition to serving masters-level and doctoral-level research
students, much of the text is accessible enough to be useful to final-year under-
graduate project students. Also, we hope that it will serve wider audiences, for
example, as a reference text for professional academics, people working in com-
mercial research and development labs, and industrial practitioners.

We believe that this text is unique in the literature on 3D imaging in several
respects: (1) it provides a wide coverage of topics in 3D imaging; (2) it pays special
attention to the clear presentation of well-established core techniques; (3) it covers a
wide range of the most promising recent techniques that are considered to be
state-of-the-art.

This second edition (2020) upgrades existing topics presented in the first edition
(2012) with the most significant novel findings in the intervening period.
Additionally, it has new material covering consumer-grade RGB-D cameras, 3D
morphable models, deep learning on 3D datasets, as well as new applications in the
3D digitization of cultural heritage and the 3D phenotyping of plants.

3D Imaging, Analysis and Applications

Three-dimensional (3D) imaging techniques have been developed within the field
of computer vision that automatically reconstruct the 3D shape of the imaged
objects and scene. This is referred to as a 3D scan or 3D image and it often comes
with a registered color-texture image that can be pasted over the captured shape and
rendered from many viewpoints (if desired) on a computer display.

The techniques developed include both active systems, where some form of
illumination is projected onto the scene, and passive systems, where the natural
illumination of the scene is used. Perhaps the most intensively researched area of
3D shape acquisition has been focused on stereo vision systems, which, like the
human visual system, uses a pair of views (images) in order to compute 3D
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structure. Here, researchers have met challenging problems such as the establish-
ment of correspondences between overlapping images for the dense reconstruction
of the imaged scene. Many applications require further processing and data analysis
once 3D shape data has been acquired. For example, identification of salient points
within the 3D data, segmentation into semantic parts, registration of multiple partial
3D data scans, computation of 3D symmetry planes, and matching of whole 3D
objects.

It is one of today’s challenges to design a technology that can cover the whole
pipeline of 3D shape capture, processing, and visualization. The different steps of
this pipeline have raised important topics in the research community for decades,
owing to the numerous theoretical and technical problems that they induce.
Capturing the 3D shape, instead of just a 2D projection as a standard camera does,
makes an extremely wide array of new kinds of application possible. For instance,
computer aided geometric design, 3D and free-viewpoint TV, virtual and aug-
mented reality, natural user interaction based on monitoring gestures, 3D object
recognition and 3D recognition for biometrics, 3D medical imaging, 3D remote
sensing, industrial inspection, and robot navigation, to name just a few. These
applications, of course, involve much more technological advances than just 3D
shape capture; storage, analysis, transmission, and visualization of the 3D shape are
also part of the whole pipeline.

While 3D imaging provides opportunities for numerous applications in the real
world, these applications also provide a platform to test the techniques developed.
3D phenotyping of plants is one of the representative applications that spans the
whole spectrum and different stages of 3D imaging: data capture, plant modeling,
segmentation, skeletonization, feature extraction and measurements, and tracking.
As discussed later in the book, despite the rapid progress of research and devel-
opment in the past four decades, the problem is far from being solved, especially in
the sense of real-time and high throughput, and thus will continue to attract
intensive attention from the community.

3D imaging and analysis is closely associated with computer vision, but it also
intersects with a number of other fields, for example, image processing, pattern
recognition, machine learning, computer graphics, information theory, statistics,
computational geometry, and physics. It involves building sensors, modeling them,
and then processing the output images. In particular, 3D image analysis bridges the
gap between low-level and high-level vision in order to deduce high-level (se-
mantic) information from basic 3D data.

Book Objective and Content

The objective of this book is to bring together a set of core topics in 3D imaging,
analysis, and applications, both in terms of well-established fundamental techniques
and the most promising recent techniques. Indeed, we see that many similar
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techniques are being used in a variety of subject areas and applications and we feel
that we can unify a range of related ideas, providing clarity to both academic and
industrial practitioners, who are acquiring and processing 3D datasets. To ensure
the quality of the book, all the contributors we have chosen have attained a
world-class standing by publishing in the top conferences and journals in this area.
Thus, the material presented in this book is informative and authoritative and
represents mainstream work and opinions within the community.

After an introductory chapter, the book covers 3D image capture methods,
particularly those that use two cameras, as in passive stereo vision, or one or more
cameras and light projector, as in active 3D imaging. It also covers how 3D data is
represented, stored, and visualized. Later parts of the book cover 3D shape analysis
and inference, firstly in a general sense, which includes feature extraction, shape
registration, shape matching, 3D morphable models, and deep learning on 3D
datasets. The final part of the book focuses on applications including 3D face
recognition, 3D cultural heritage, and 3D phenotyping of plants.

Ormskirk, UK Yonghuai Liu
York, UK Nick Pears
Cardiff, UK Paul L. Rosin
York, UK Patrik Huber
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Chapter 1
Introduction

Johannes Brünger, Reinhard Koch, Nick Pears, Yonghuai Liu,
and Paul L. Rosin

Abstract 3D Imaging, Analysis, and Applications is the second edition of a compre-
hensive textbook on 3D shape capture, 3D shape analysis, and how such capture and
analysis can be employed in applications. Fourteen chapters cover a broad range of
concepts, algorithms, and applications. After this introduction, the chapters are split
into three parts, as follows: Part I, 3D Image Acquisition, Representation, and Visual-
ization, presents techniques for capture, representation, and visualization of 3D data;
Part II, 3D Shape Analysis and Inference, presents hand-crafted and learned 3D local
shape descriptors, shape registration and matching, statistical shape modeling and
deep learning on 3D datasets. Finally, Part III, 3D Imaging Applications, presents
application areas in 3D face recognition, 3D heritage modeling, and 3D phenotyp-
ing of plants. This introduction provides the reader with historical and background
information, such as that relating to the development of computer vision; in partic-
ular, the development of automated 3D imaging. It briefly discusses general depth
estimation principles for 3D imaging, details a selection of seminal papers, sketches
applications of 3D imaging, and concludes with an outline of the book’s remaining
chapters.
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1.1 Introduction

Three-dimensional (3D) imaging seeks to capture the 3D structure of scenes and
objects within our environment. The computed set of data points in 3D space is often
accompanied by color-texture information in the form of a registered 2D image,
typically obtained from standard digital image capture. Such 3D data, with or without
accompanying color/texture, is referred to by various names, such as a 3D model,1 a
3D scan2, or a 3D image.3

The output of a 3D imaging process can be analyzed and processed to extract
information that supports a wide range of applications, such as object recognition,
shape search on the web, face recognition for security and surveillance, robot naviga-
tion, mapping of the Earth’s surface, forests or urban regions, and clinical procedures
in medicine.

Chapter Outline
The main sections in this chapter cover the following:

• A historical perspective on 3D imaging;
• The development of the broader field of Computer Vision for context;
• Acquisition techniques for 3D imaging;
• Milestones in 3D imaging and shape analysis from recent decades (post 1970).

We conclude by giving a ‘road map’ for the remaining chapters in this book.

1.2 A Historical Perspective on 3D Imaging

To understand the roots of 3D imaging, we first need to consider the history of
the more general concepts of image formation and image capture. After this, the
remainder of this section discusses the binocular depth perception and stereoscopic
displays.

1.2.1 Image Formation and Image Capture

Since ancient times, humans have tried to capture their surrounding 3D environment
and important aspects of social life on wall paintings. Early drawings, mostly animal
paintings, are thought to date back 32,000 years, such as the early works in the

1Typically, this term is used when the 3D data is acquired from multiple-viewpoint 2D images. We
prefer to avoid the use of this term for what we see as raw 3D data, as this is easily confused with
3D statistical shape models.
2Typically, this term is used when a scanner acquires the 3D data, such as a laser stripe scanner.
3Typically, this term is used when the data is ordered in a regular grid, such as the 2D array of depth
values in a range image, or a 3D array of data in volumetric medical imaging.
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Chauvet Cave, France. Drawings in the famous Lascaux Caves near Montignac,
France are also very old and date back to around 17,000 years [16]. These drawings
were not correct in terms of perspective, but did capture the essence of the objects
in an artistic way.

A rigorous mathematical treatment of vision was postulated by Euclid4 in his
bookOptics [13]. Thus, already early on in history, some aspects of perspective were
known. Another very influential mathematical text was the Kitab al-Manazir (Book
of Optics) by Alhazen5 [72].

In parallel with the mathematical concepts of vision and optics, physical optics
developed by the use of lenses and mirrors form the basis of modern optical instru-
ments. Very early lenses were found as polished crystals, like the famousNimrud lens
that was discovered by Austen Henry Layard.6 The lens quality is far from perfect
but allows light focusing at a focal point distance of 110mm. Lenses were used as
burning lenses to focus sunlight and as magnification lenses. An early written record
of such use is found with Seneca the Younger7 who noted

Letters, however small and indistinct, are seen enlarged and more clearly through a globe or
glass filled with water [42].

Thus, he describes the effect of a spherical convex lens. Early on, the use of such
magnification for observing distant objects was recognized and optical instruments
were devised, such as corrective lenses for bad eye-sight in the thirteenth–fifteenth
century CE and the telescope at the beginning of the seventeenth century. It is unclear
who invented the telescope, as several lensmakers observed themagnification effects
independently. The German-born Dutch lens maker Hans Lippershey (1570–1619)
fromMiddelburg, province Zeeland, is often credited as the inventor of the telescope,
since he applied for a patent, which was denied. Other lens makers like his fellow
Middelburg lens maker Zacharias Janssen were also claiming the invention [38].
Combined with the camera obscura, optically a pinhole camera, they form the basic
concept of modern cameras. The camera obscura, Latin for dark room, has been
used for a long time to capture images of scenes. Light reflected from a scene enters
a dark room through a very small hole and is projected as an image onto the back
wall of the room. Already Alhazen had experimented with a camera obscura and it
was used as a drawing aid by artists and as a visual attraction later on. The name
camera is derived from the camera obscura. The pinhole camera generates an inverse
image of the scenewith a scale factor f = i/o, where i is the image distance between
pinhole and image and o is the object distance between object and pinhole. However,

4Euclid of Alexandria, Greek mathematician, also referred to as the Father of Geometry, lived in
Alexandria during the reign of Ptolemy I (323–283 BC).
5Alhazen (Ibn al-Haytham), born 965 CE in Basra, Iraq, died in 1040. Introduced the concept of
physical optics and experimented with lenses, mirrors, camera obscura, refraction, and reflection.
6Sir Austen Henry Layard (1817–1894), British archeologist, found a polished rock crystal during
the excavation of ancient Nimrud, Iraq. The lens has a diameter of 38mm, presumed creation date
750–710 BC and now on display at the British Museum, London.
7Lucius Annaeus Seneca, around 4 BC–65 CE, was a Roman philosopher, statesman, dramatist,
tutor, and adviser of Nero.
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the opening aperture of the pinhole itself has to be very small to avoid blurring. A
light-collecting and focusing lens is then used to enlarge the opening aperture and
brighter, yet still sharp images can be obtained for thin convex lenses.8 Such lenses
follow theGaussian thin lens equation: 1/ f = 1/ i + 1/o, where f is the focal length
of the lens. The drawback, as with all modern cameras, is the limited depth of field,
in which the image of the scene is in focus.

Until the mid-nineteenth century, the only way to capture an image was to man-
ually paint it onto canvas or other suitable backgrounds. With the advent of pho-
tography,9 images of the real world could be taken and stored for future use. This
invention was soon expanded from monochromatic to color images, from mono-
scopic to stereoscopic10 and from still images to film sequences. In our digital age,
electronic sensor devices have taken the role of chemical film and a variety of elec-
tronic display technologies have taken over the role of painted pictures.

It is interesting to note, though, that some of the most recent developments in dig-
ital photography and image displays have their inspiration in technologies developed
over 100 years ago. In 1908, Gabriel Lippmann11 developed the concept of integral
photography, a camera composed of very many tiny lenses side by side, in front of
a photographic film [45]. These lenses collect view-dependent light rays from all
directions onto the film, effectively capturing a three-dimensional field of light rays,
the light field [1]. The newly established research field of computational photography
has taken on his ideas and is actively developing novel multilens-camera systems for
capturing 3D scenes, enhancing the depth of field, or computing novel image transfer
functions. In addition, the reverse process of projecting an integral image into space
has led to the development of lenticular sheet 3D printing and to auto-stereoscopic
(glasses-free) multi-view displays that let the observer see the captured 3D scene
with full depth parallax without wearing special purpose spectacles (glasses). These
3D projection techniques have spawned a huge interest in the display community,
both for high-quality auto-stereoscopic displays with full 3D parallax as used in
the advertisement (3D signage) and for novel 3D-TV display systems that might
eventually conquer the 3D-TV home market. This technique is discussed further in
Sect. 1.2.3. However, the market today is still dominated by traditional stereoscopic
displays, either based on actively switched shutter glasses for gamers or based on
passive polarization techniques for 3D cinema production.

8Small and thin bi-convex lenses look like lentils, hence the name lens, which is Latin for lentil.
9Nicéphore Niépce, 1765–1833, is credited as one of the inventors of photography by solar light
etching (Heliograph) in 1826. He later worked with Louis-Jacques-Mandé Daguerre, 1787–1851,
who acquired a patent for his Daguerreotype, the first practical photography process based on silver
iodide, in 1839. In parallel, William Henry Fox Talbot, 1800–1877, developed the calotype process,
which uses paper coated with silver iodide. The calotype produced a negative image from which a
positive could be printed using silver chloride coated paper [28].
10The Greek word stereos for solid is used to indicate a spatial 3D extension of vision, hence
stereoscopic stands for a 3D form of visual information.
11Gabriel Lippmann, 1845–1921, French scientist, received the 1908 Nobel prize in Physics for his
method to reproduce color pictures by interferometry.
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Fig. 1.1 Left: Human binocular perception of 3D scene. Right: the perceived images of the left and
right eye, showing how the depth-dependent disparity results in a parallax shift between foreground
and background objects. Both observed images are fused into a 3D sensation by the human eye–brain
visual system

1.2.2 Binocular Perception of Depth

It is important to note that many visual cues give the perception of depth, some of
which are monocular cues (e.g., occlusion, shading, and texture gradients) and some
ofwhich are binocular cues (e.g., retinal disparity, parallax, and eye convergence). Of
course, humans, and most predator animals, are equipped with a very sophisticated
binocular vision system and it is the binocular cues that provide us with accurate
short range depth perception. Clearly, it is advantageous for us to have good depth
perception to a distance at least as large as the length of our arms. The principles of
binocular vision were already recognized in 1838 by Sir Charles Wheatstone,12 who
described the process of binocular perception:

... the mind perceives an object of three dimensions by means of the two dissimilar pictures
projected by it on the two retinae... [82]

The important observation was that the binocular perception of two correctly dis-
placed 2D-images of a scene is equivalent to the perception of the 3D scene itself.

Figure1.1 illustrates the human binocular perception of a 3D scene, comprised of
a cone in front of a torus. At the right of this figure are the images perceived by the left
and the right eye. Ifwe take a scene point, for example, the tip of the cone, this projects
to different positions on the left and right retina. The difference between these two
positions (retinal correspondences) is known as disparity and the disparity associated
with nearby surface points (on the cone) is larger than the disparity associated with
more distant points (on the torus). As a result of this difference between foreground

12Sir Charles Wheatstone, 1802–1875, English physicist and inventor.
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and background disparity, the position (or alignment) of the foreground relative to
the background changes as we shift the viewpoint from the left eye to the right eye.
This effect is known as parallax.13

Imagine now that the 3D scene of the cone in front of the torus is observed by
a binocular camera with two lenses that are separated horizontally by the inter-eye
distance of a human observer. If these images are presented to the left and right eyes
of the human observer later on, she or he cannot distinguish the observed real scene
from the binocular images of the scene. The images are fused inside the binocular
perception of the human observer to form the 3D impression. This observation led to
the invention of the stereoscope by Sir David Brewster14 [11], where two displaced
images could convey 3D information to the human observer.

1.2.3 Stereoscopic Displays

Since Brewster’s stereoscope, a wealth of technical devices for presenting stereo-
scopic images to the human observer has been designed. Virtually all of the modern
stereoscopic display technologies are based on the same principle, namely that of pre-
senting two different views to the two eyes on a single display. To do this, techniques
have been employed that

• Separate them by color-coding (the anaglyph technique with red-green glasses or
spectral comb filters),

• Use polarization properties of light (circularly or linearly polarized eye glasses),
• Perform time-coding with left–right time-interleaving and actively synchronized
shutter glasses, or

• Exploit lens systems to project different images directly into the eyes of the
observer.

While the first three techniques all use separating glasses to be worn by the user,
the latter lens projection systems allow glasses-free, auto-stereoscopic perception,
even for more than two different views. Figure1.2 sketches the stereoscopic percep-
tion with either two-view stereoscopic or glasses-free auto-stereoscopic multi-view
displays. In the binocular display, polarization serves to decouple left and right eye
information. The auto-stereoscopic display exploits optical lenticular sheet lenses or

13The terms disparity and parallax are sometimes used interchangeably in the literature and this
misuse of terminology is a source of confusion. One way to think about parallax is that it is induced
by the difference in disparity between foreground and background objects over a pair of views
displaced by a translation. The end result is that the foreground is in alignment with different parts
of the background. The disparity of foreground objects and parallax then only become equivalent
when the distance of background objects can be treated as infinity (e.g., distant stars); in this case,
the background objects are stationary in the image.
14Sir David Brewster, 1781–1868, Scottish physicist and inventor.
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Fig. 1.2 Left: Stereoscopic displays use glasses-based polarization light separators to produce
the two images required for stereoscopic reception. Right: Lens-based auto-stereoscopic displays
project multiple, slightly displaced images by the use of lenses or parallax barrier systems, allowing
glasses-free stereoscopic reception. Such systems allow for slight head motion

light barrier systems to selectively project the displaced images into different angular
sections in front of the display. If the observer moves in front of the display, each
eye receives a differently displaced image, resulting in a look-around capability.

Binocular stereoscopicmovies and selected stereoscopic television programs have
now entered the market quite successfully. These display techniques are commonly
given the branding 3D, but actually, they do not contain or need true 3D information.
In a stereo movie recording, two displaced movie cameras are synchronously used
to capture left and right eye views, and stereoscopic digital movie projectors utilize
polarization filters to separate both views. The spectator needs to wear a similar set of
polarized glasses for binocular perception. The perceived depth impression is fixed
by the inter-camera eye distance of the recording stereo camera and can only be
adjusted during recording. This is a drawback of binocular stereo camera recordings
because it is difficult to scale depth perception later on. Hence, different recordings
must be undertaken for large screen movie theaters and for home TV settings. Even
more severe is the stereoscopic image capture for auto-stereoscopic displays. In this
case, not two but many slightly displaced views need to be recorded simultaneously.
Typical displays require 8–28 simultaneous views and it is not feasible to record all
views directly, because the amount of data would grow enormously. Also, the design
of such multi-ocular cameras is difficult and expensive. Instead, a true 3D movie
format is needed that allows us to synthesize the required views from a generic 3D
image format. Currently, MPEG allows for stereoscopic Multi-View Coding (H.264
MVC 3D) formats, and dedicated 3D data formats like Multi-View Depth (MVD) or
Layered Depth Video (LDV) are under discussion [4]. MVD and LDV record both
depth and color from a few camera positions that capture the desired angular sections
in front of the display. The many views needed to drive the display are then rendered
by depth-compensated interpolation from the recorded data. Thus, a true 3D format
will greatly facilitate data capture for future 3D-TV systems.

There is another obstacle to the binocular perception thatwas not discussed in early
binocular display systems. The observed disparity is produced on the image plane
and both eyes of the human observer are accommodating their focus on the display
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plane. However, the binocular depth cue causes the eyes to physically converge
toward the virtual 3D position of the object, which may be before or behind the
display plane. Both eye accommodation and eye convergence angle are strong depth
cues to our visual system, and depth is inferred from both. In the real world, both
cues coincide since the eyes focus and converge toward the same real object position.
On a binocular display, the eyes always accommodate toward the display, while the
convergence angle varies with depth. This conflict causes visual discomfort and
is a major source of headaches when watching strong depth effects, especially in
front of the screen. Stereographers nowadays take great care to balance these effects
during recording. The only remedy to this disturbing effect is to build volumetric
displays where the image is truly formed in 3D space rather than on the 2D display.
In this case, the convergence and accommodation cues coincide and yield stress-free
stereoscopic viewing. There is an active research community underway developing
volumetric or holographic displays, that rely either on spatial pattern interference,
on volume-sweeping surfaces, or on 3D light fields. Blundell and Schwarz give a
good classification of volumetric displays and sketch current trends [8]. All these 3D
displays need some kind of 3D scene representation, and binocular imaging is not
sufficient. Hence, these displays also are in need of true 3D data formats.

1.3 The Development of Computer Vision

Although the content of this book derives from a number of research fields, the field
of computer vision is the most relevant large-scale research area. It is a diverse field
that integrates ideas andmethods from a variety of pre-existing and co-existing areas,
such as image processing, statistics, pattern recognition, geometry, photogrammetry,
optimization, scientific computing, computer graphics, and many others. In 1960–
1980s, Artificial Intelligence was the driving field that tried to exploit computers
for understanding the world that, in various ways, corresponded to how humans
understand it. This included the interpretation of 3D scenes from images and videos.

The process of scene understanding was thought of as a hierarchy of vision levels,
similar to visual perception, with three main levels [52], as follows:

• Low-level vision: early 2D vision processes, such as filtering and extraction of
local image structures.

• Mid-level vision: processes such as segmentation, generation of 2.5D depth, opti-
cal flow computation, and extraction of regional structures.

• High-level vision: semantic interpretation of segments, object recognition, and
global 3D scene reasoning.

This general approach is still valid, but it was not successful at the first attempt,
because researchers underestimated the difficulties of the first two steps and tried
to directly handle high-level vision reasoning. In his textbook Computer Vision:
Algorithms and Applications [76], Rick Szeliski reports an assignment of Marvin
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Minsky, MIT, to a group of students to develop a computer vision program that
could reason about image content:

According to onewell-known story, in 1966,MarvinMinsky atMIT asked his undergraduate
studentGerald Jay Sussman to “spend the summer linking a camera to a computer and getting
the computer to describe what it saw”.15

Soon, it became clear that Minsky underestimated this challenge. However, the
attempts to resolve the various problems of the three levels proved fruitful to the
field of computer vision, and very many approaches to solve partial problems on all
levels have appeared. Although some vision researchers follow the path of cognitive
vision that builds on the working of the human brain, most techniques today are
driven by engineering demands to extract relevant information from the images.

Computer vision is developed roughly along with the above-mentioned three
levels of vision. Research in low-level vision has deepened the understanding of
local image structures. Digital images can be described without regard to scanning
resolution by the image scale space [83] and image pyramids [77]. Image content can
be described in the image domain or equivalently in the frequency (Fourier) domain,
leading to a theory of filter design to improve the image quality and to reduce noise.
Local structures are defined by their intrinsic dimension16 [5], which leads to interest
operators [30] and to feature descriptors [7].

Regional relations between local features in an image or between images are
powerful descriptions for mid-level vision processes, such as segmentation, depth
estimation, and optical flow estimation.Marr [52] coined the term 2.5Dmodel, mean-
ing that information about scene depth for a certain region in an image exists, but
only viewed from a single viewpoint. Such is the case for range estimation tech-
niques, which include stereo, active triangulation or time-of-flight depth measure-
ment devices, where not a full 3D description is measured but a range image d(u, v)
with one distance value per image pixel. This range value, along with some intrinsic
parameters of the range sensing device, allows us to invert the image projection and
to reconstruct scene surfaces. Full 3D depth can be reconstructed from multi-view
range images if suitably fused from different viewpoints.

The special branch of computer vision that deals with viewing a scene from two
or more viewpoints and extracting a 3D representation of the geometry of the imaged
scene is termed geometric computer vision. Here, the camera can be thought of as a
measurement device. Geometric computer vision developed rapidly in the 1990s and
2000s and was influenced strongly by geodesy and photogrammetry. In fact, those
disciplines are converging. Many of the techniques well known in photogrammetry
have found their way into computer vision algorithms. Most notably is the method of
bundle adjustment for optimally and simultaneously estimating camera parameters
and 3D point estimates from uncertain image features [78].

Combining the geometric properties of scene objectswith image-based reflectance
measurements allows us tomodel the visual-geometric appearance of scenes. There is

15Szeliski, Computer Vision: Algorithms and Applications, page. 10 [76].
16Intrinsic Image Dimension (IID) describes the local change in the image. Constant image: 0D,
linear structures: 1D, point structures: 2D.
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now a strong relationship between computer vision and computer graphics that devel-
oped during the last decade. While computer graphics displays computer-defined
objects with given surface properties by projecting them into a synthetic camera,
vision estimates the surface properties of real objects as seen by a real camera.
Hence, vision can be viewed as the inverse problem of graphics. One of the key chal-
lenges in computer vision is that, due to the projection of the objects into the camera,
the range information is lost and needs to be recovered. This makes the inverse prob-
lem of recovering depth from images especially hard and often ill-posed. Today,
both disciplines are still converging, for example, in the area of image-based render-
ing in computer graphics and by exploiting the computing capabilities of Graphics
Processing Units for computer vision tasks.

High-level vision attempts to interpret the observed scene and to assign semantic
meaning to scene regions.Much progress has beenmade recently in this field, starting
with simple object detection to object recognition, ranging from individual objects
to object categories. Machine learning is vital for these approaches to work reliably
and has been exploited extensively in computer vision over the last decade [67]. The
availability of huge amounts of labeled training data from databases and the Web
and advances in high-dimensional learning techniques are keys to the success of
machine learning techniques. Successful applications range from face detection, face
recognition, and biometrics to visual image retrieval and scene object categorization,
to human action and event analysis. The merging of machine learning with computer
vision algorithms is a very promising ongoing development and will continue to
solve vision problems in the future, converging toward the ultimate goal of visual
scene understanding. From a practical point of view, this will broaden the range of
applications from highly controlled scenes, which is often the necessary context for
the required performance in terms of accuracy and reliability, to natural, uncontrolled,
real-world scenes with all of their inherent variability.

Particularly successful in the processing of image data from real-world scenes in
recent years have been the Deep Convolutional Neural Networks (DCNN). Although
the concept of neural networks, like other methods of machine learning, has existed
since the 1960s, some hurdles had to be overcome before they became such a pow-
erful tool [66]. With the application of convolutions and the adjustment of weights
by means of backpropagation even with many intermediate layers, the first successes
on realistic practical applications could be achieved in the 80s and 90s. The big
breakthrough for deep neural networks took place in the 2010s after large datasets
were available and computers (or GPUs) had become faster. Thanks to new acti-
vation functions and regularization, the networks have now achieved considerable
success in computer vision competitions [43]. With new architectures, this trend has
continued in recent years, so that the winners of big computer vision competitions
are now almost exclusively solutions based on neural networks. Meanwhile, they
are universally applicable as single building blocks (depth estimation, camera pose
estimation, etc.) and thus are also integrated with classical approaches to achieve
high-performance results.

Closely following the classical processing of image data, DCNNs are optimized
for the processing of 2D data in Euclidean space. But by combining the information
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frommultiple 2D input images, networks can reconstruct the 3D structure of objects,
similar to the reconstruction with classical triangulation [74]. With some tricks, they
can also be applied to sphere-like surface meshes [51] or 3D objects represented by a
voxel grid of binary variables [84]. But even on intrinsic non-Euclidean data, such as
graphs or surfaces, they can show their potential byfindingkeypoint-correspondences
in 2D and 3D [14, 87].

Despite the continuing trend to solve problems or parts of problems with the
help of learned methods, one should not ignore what these methods are based on.
For example, most problems require a large amount of data to train on, and in the
case of a supervised learning method, this training data must be annotated manually.
Furthermore, there is always the danger that the existing training data does not cover
all theoretically possible scenarios and that the networks may react unexpectedly
in these cases. So the disadvantages of learned methods are their dependence on
training data and the difficulty of clearly explaining their performance. Hand-crafted
features, on the other hand, have the advantage that they are based on geometric
formulas and always deliver correct, clear, and explainable results if the input data
is correct. In summary, it can be said that manually generated features produce good
results under good conditions (lighting, textures) without the need for training data.
Neural networks, on the other hand, can build on what has been learned, even under
difficult conditions, and usually deliver realistic (albeit often inexplicable) results.
However, at the time of writing (2020), a new push for explainable AI is emerging,
which includes often opaque approaches, such as deep learning.

1.3.1 Further Reading in Computer Vision

Computer vision has matured over the last 50 years into a very broad and diverse
field and this book does not attempt to cover that field comprehensively. However,
there are some very good textbooks available that span both individual areas as
well as the complete range of computer vision. An early book on this topic is the
above-mentioned text by DavidMarr: Vision. A Computational Investigation into the
Human Representation and Processing of Visual Information [52]; this is one of the
forerunners of computer vision concepts and could be used as a historical reference.
A recent and very comprehensive textbook is the work by Rick Szeliski: Computer
Vision: Algorithms and Applications [76]. This work is exceptional as it covers not
only the broad field of computer vision in detail, but also gives awealth of algorithms,
mathematicalmethods, practical examples, an extensive bibliography, and references
tomany vision benchmarks and datasets. The introduction gives an in-depth overview
of the field and of recent trends.17 If the reader is interested in a detailed analysis
of geometric computer vision and projective multi-view geometry, we refer to the
standard book Multiple View Geometry in Computer Vision by Richard Hartley and
Andrew Zisserman [31]. Here, most of the relevant geometrical algorithms as well as

17A PDF version is also available for personal use on the website http://szeliski.org/Book/.

http://szeliski.org/Book/
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the necessary mathematical foundations are discussed in detail. Other textbooks that
cover the computer vision theme at large are Computer Vision: a modern approach
[21], Introductory Techniques for 3-D Computer Vision [79], or An Invitation to 3D
Vision: From Images to Models [49].

1.4 Acquisition Techniques for 3D Imaging

The challenge of 3D imaging is to recover the distance information that is lost during
projection into a camera, with the highest possible accuracy and reliability, for every
pixel of the image. We define a range image18 as an image where each pixel stores
the distance between the imaging sensor (for example, a 3D range camera) and
the observed surface point. Here, we can differentiate between passive and active
methods for 3D imaging, which will be discussed briefly in the following section.
In-depth presentations are given in Chap. 2 for passive methods and Chaps. 3–5 for
active methods.

1.4.1 Passive 3D Imaging

Passive 3D imaging relies on images of the ambient-lit scene alone, without the help
of further information, such as projection of light patterns onto the scene. Hence,
all information must be taken from standard 2D images. More generally, a set of
techniques called Shape from X exists, where X represents some visual cue. These
include

• Shape from focus, which varies the camera focus and estimates depth pointwise
from image sharpness [54].

• Shape from shading, which uses the shades in a grayscale image to infer the shape
of the surfaces, based on the reflectance map. This map links image intensity with
surface orientation [34]. There is a related technique, called photometric stereo,
that uses several images, each with a different illumination direction.

• Shape from texture, which assumes the object is covered by a regular surface
pattern. Surface normal anddistance are then estimated from the perspective effects
in the images.

• Shape from stereo disparity, where the same scene is imaged from two distinct
(displaced) viewpoints and the difference (disparity) between pixel positions (one
from each image) corresponding to the same scene point is exploited.

The most prominent, and the most detailed in this book, is the last mentioned of
these. Here, depth is estimated by the geometric principle of triangulation, when the

18Range images are often combined with standard RGB color images, and referred to as RGB-D
images.

http://dx.doi.org/10.1007/978-3-030-44070-1_2
http://dx.doi.org/10.1007/978-3-030-44070-1_3
http://dx.doi.org/10.1007/978-3-030-44070-1_5
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Fig. 1.3 A rectilinear stereo
rig. Note the increased image
disparity for the near scene
point (blue) compared to the
far scene point (black). The
scene area marked in red
cannot be imaged by the
right camera and is a
‘missing part’ in the
reconstructed scene
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same scene point can be observed in two or more images. Figure1.3 illustrates this
principle in detail. Here, a rectilinear stereo rig is shown where the two cameras are
side by side with the principal axes of their lenses parallel to each other. Note that
the origin (or center) of each camera is the optical center of its lens and the baseline
is defined as the distance between these two camera centers. Although the real image
sensor is behind the lens, it is a common practice to envisage and use a conceptual
image position in front of the lens so that the image is in the same orientation as
the scene (i.e., not inverted top to bottom and left to right) and this is shown by the
dashed horizontal line in Fig. 1.3. The term triangulation comes from the fact that the
scene point, X, can be reconstructed from the triangle19 formed by the baseline and
the two coplanar vector directions defined by the left camera center to image point x
and the right camera center to image point x′. In fact, the depth of the scene is related
to the disparity between the left and right image correspondences. For closer objects,
the disparity is greater, as illustrated by the blue lines in Fig. 1.3. It is clear from this
figure that the scene surface colored red cannot be observed by the right camera, in
which case no 3D shape measurement can be made. This scene portion is sometimes
referred to as a missing part and is the result of self-occlusion or occlusion by a
different foreground object. Image correspondences are found by evaluating image
similarities through image feature matching, either locally or globally over the entire
image. Problemsmight occur if the image content does not hold sufficient information
for unique correspondences, for example in smooth, textureless regions. Hence, a
dense range estimation cannot be guaranteed and, particularly in man-made indoor

19This triangle defines an epipolar plane, which is discussed in Chap.2.

http://dx.doi.org/10.1007/978-3-030-44070-1_2
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Fig. 1.4 A verged stereo
system. Note that this
diagram uses a simplified
diagrammatic structure seen
in much of the literature
where only camera centers
and conceptual image planes
are shown. The intersection
of the epipolar plane with the
(image) planes defines a pair
of epipolar lines. This is
discussed in detail in
Chap.2. Figure with
permission from [39]

scenarios, the resulting range images are often sparse. Algorithms, test scenarios, and
benchmarks for such systems may be found in the Middlebury database [65], and
Chap.2 in this book will discuss these approaches in detail. Note that many stereo
rigs turn the cameras toward each other so that they are verged, which increases the
overlap between the fields of view of the camera and increases the scene volume
over which 3D reconstructions can be made. Such a system is shown in Fig. 1.4.20

1.4.2 Active 3D Imaging

Active 3D imaging avoids some of the difficulties of passive techniques by intro-
ducing controlled additional information, usually controlled lighting or other elec-
tromagnetic radiation, such as infrared. Active stereo systems, for example, have
the same underlying triangulation geometry as the above-mentioned passive stereo
systems, but they exchange one camera by a projector, which projects a spot or a
stripe, or a patterned area that does not repeat itself within some local neighbor-
hood. This latter type of non-scanned system is called a structured light projection.
Advances in optoelectronics for the generation of structured light patterns and other
illumination, accurate mechanical laser scanning control, and high-resolution, high
sensitivity image sensors have all had their impact on advancing the performance of
active 3D imaging.

Note that, in structured light systems, all of the image feature shift that occurs due
to depth variations, which causes a change in disparity, appears in the sensor’s one
camera, because the projected image pattern is fixed. (Contrast this with a passive

20Figures1.4 and 1.5 are a preprint from the forthcoming Encyclopedia of Computer Vision, 2nd
Ed. [39].

http://dx.doi.org/10.1007/978-3-030-44070-1_2
http://dx.doi.org/10.1007/978-3-030-44070-1_2
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binocular stereo system, where the disparity change, in general, is manifested as
featuremovement across two images.) The projection of a patternmeans that smooth,
textureless areas of the scene are no longer problematic, allowing dense, uniform
reconstructions, and the correspondence problem is reduced to finding the known
projected pattern. (In the case of a projected spot, the correspondence problem is
removed altogether.) In general, the computational burden for generating active range
triangulations is relatively light, the resulting range images are mostly dense and
reliable, and they can be acquired quickly.

An example of such systems are coded light projectors that use either a time-
series of codes or color codes [10]. A recent example of a successful projection
system is the Kinect-camera21 that projects a random infrared pattern and is able to
recover dense range images up to several meters distance at 30 frames per second
(fps). One problem with all triangulation-based systems, passive and active, is that
depth accuracy depends on the triangulation angle, which means that a large baseline
is desirable. On the other hand, with a large baseline, the ‘missing parts’ problem
described above is exacerbated, yielding unseen, occluded regions at object bound-
aries. This is unfortunate, since precise object boundary estimation is important for
geometric reconstruction.

An alternative class of active range sensors that avoids the occlusion problem are
coaxial sensors, which exploit the time-of-flight principle. Here, light is emitted from
a light source that is positioned in line with the optical axis of the receiving sensor
(for example, a camera or photo-diode) and is reflected from the object surface back
into the sensor. Figure1.5 gives a schematic view of an active coaxial range sensor
[39]. The traveling time delay between outgoing and reflected wave is then measured
by phase correlation or direct run-time shuttering, as a direct measure of object dis-
tance. Classical examples of such devices are laser-based systems, such as the LIght
Detection And Ranging (LIDAR) scanner for long-distance depth estimation. The
environment is scanned by deflecting a laser with a rotating mirror and distances are
measured pointwise, delivering 3D point clouds. Recently, camera-based receivers
are utilized that avoid the need for coherent laser light but use inexpensive LED light
sources instead. (Such light sources are also easier to make eye-safe.) Again, the
time shift of the reflected light is measured, either by gating very short light pulses
directly or by phase correlation of the time shift between the emitted and reflected
light of amodulated continuous LED light source. Such range cameras [68] are depth
estimation devices that, in principle, may deliver dense and accurate depth maps in
real time and can be used for depth estimation of dynamic time-varying scenes [40,
41]. Active sensing devices will be discussed in more detail in Chaps. 3–5.

21Kinect is trademark of Microsoft.

http://dx.doi.org/10.1007/978-3-030-44070-1_3
http://dx.doi.org/10.1007/978-3-030-44070-1_5
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Fig. 1.5 Active coaxial
time-of-flight range
estimation by phase shift
correlation. Figure with
permission from [39]

1.4.3 Passive Stereo Versus Active Stereo Imaging

What are the relative merits of passive and active stereo imaging systems? In sum-
mary, since the computational burden of passive correspondences is alleviated, it
is generally easier to build active systems that can generate dense range images at
high frames rates (e.g., 30 fps for the Kinect). Lack of surface features or sufficiently
large-scale texture on the scene object can result in passive stereo giving low density
3D reconstructions, at least in the local regions where the surface texture or features
(e.g., corners) are missing. This has a number of effects. Firstly, it makes it difficult
to comprehensively determine the size and shape of the imaged object. Secondly,
it is difficult to get good shape visualizations, when the imaged object is rendered
from many different viewpoints. In contrast, as long as the surface is not too dark
(low reflectivity) or specular, and does not have too many deep concavities (‘missing
parts’), active stereo systems allow comprehensive shape measurements and give
good renderings for multi-viewpoint visualizations. Thus, when the density of fea-
tures is low, or the resolution of image sensing is low compared to the scale of the
imaged texture, an active stereo system is a preferred solution. However, the need to
scan a laser spot or stripe or to project a structured light pattern brings with it extra
complexity and expense, and potential eye-safety issues. The use of spot or stripe
scanning also brings with it additional reliability issues associatedwithmoving parts.

There is another side to this discussion, which takes into account the availability
of increasingly high-resolution CCD/CMOS image sensors. For passive stereo sys-
tems, these now allow previously smooth surfaces to appear textured, at the higher
resolution scale. A good example is the human face where the random pattern of
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facial pores can be extracted and hence used to solve the correspondence problem
in a passive system. Of course, higher resolution sensors bring with them higher
data rates and hence a higher computational burden. Thus, to achieve reasonable
real-time performance, improved resolution is developing in tandem with faster pro-
cessing architectures, such as GPUs, which are starting to have a big impact on dense,
real-time passive stereo [86].

1.4.4 Learned Depth Estimation

Besides the twomentioned techniques for range image acquisition, there is nowadays
also a third approach, based on machine learning techniques. Similar to the task of
semantic segmentation, where each pixel is assigned a class label, the task of depth
estimation is defined as estimating the depth value of each pixel of an monocular
input image. Using a vast amount of monocular images and the corresponding range
images [26], supervised approaches can use these training examples to infer the
underlying structure and pattern of the processed data as a mathematical function.
Solutions have been proposed with Markov Random Fields [64], neural networks
[17, 44] or a combination of both [46].

Since the projection into the camera has irretrievably discarded the depth infor-
mation, theoretically an infinite number of 3D scenes can be considered as the origin
of the processed image. To resolve this ambiguity, the employed techniques need to
evaluate the global context of the entire image in addition to local image information
to determine the depth values. For example, instead of the absolute distance, the
relation between different points in the image can be evaluated [17]. Alternatively,
the error function is based on a spacing-increasing discretization and the optimizer
executes an ordinal regression [22]. Neural networks also can learn the principles
of triangulation. With unsupervised approaches, the disparity estimation of individ-
ual image positions can be learned from existing stereo image pairs. This exploits
the advantages of the existing (even larger) datasets of stereo images without depth
maps. By warping the second stereo image from the disparities into the first image,
visualization errors can be measured and used as a loss function [24, 29].

In summary, this new field of learned depth estimation shows very promising
results and huge potential for monocular depth conversion.

1.5 Milestones in 3D Imaging and Shape Analysis

In the development toward the current state-of-the-art in 3D imaging and analysis
systems, we now outline a small selection of scientific and technological milestones.
As we have pointed out, there are many historical precursors to this modern subject
area, from the ancient Greeks referring to the optical projection of images (Aristotle,
circa 350 BC) to Albrecht Dürer’s first mechanical perspective drawing (1525 CE)
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to Hauck’s establishment of the relationship between projective geometry and pho-
togrammetry (1883 CE). Here, however, we will present a very small selection of
relatively modern milestones22 from half a century of research (1970–2020) that are
generally thought to fall within the fields of computer vision or computer graphics.

1.5.1 Active 3D Imaging: An Early Optical Triangulation
System

The development of active rangefinders based on optical triangulation appears reg-
ularly in the literature from the early 1970s. In 1972, Shirai [69] presented a system
that used a stripe projection system and a TV camera to recognize polyhedral objects.
The stripe projector is rotated in steps so that a vertical plane of light passes over a
polyhedral object of interest. A TV camera captures and stores the deformation of the
projected stripe at a set of projection angles. A set of processing steps enabled shapes
to be recognized based on the interrelation of their scene planes. The assumption of
polyhedral scene objects reduced the complexity of their processing which suited
the limitations of the available computational power at that time.

1.5.2 Passive 3D Imaging: An Early Stereo System

One of the first computer-based passive stereo systems employed in a clearly defined
application was that of Gennery who, in 1977, presented a stereo vision system for
an autonomous vehicle [27]. In this work, interest points are extracted and area-
based correlation is used to find correspondences across the stereo image pair. The
relative pose of the two cameras is computed from these matches, camera distortion
is corrected, and, finally, 3D points are triangulated from the correspondences. The
extracted point cloud is then used in the autonomous vehicle application to distinguish
between the ground and objects above the ground surface.

1.5.3 Passive 3D Imaging: The Essential Matrix

When eight or more image correspondences are given for a stereo pair, captured
by cameras with known intrinsic parameters, it is possible to linearly estimate the
relative position and orientation (pose) of the two viewpoints from which the two
projective images were captured. Once these relative viewpoints are known, then
the 3D structural information of the scene can be easily recovered from the image

22The selection is subjective and open to debate. We are merely attempting to give a glimpse of the
subject’s development and diversity, not a definitive and comprehensive history.
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correspondences. The origin of this approach, where the relative viewpoint pose is
captured in a 3 × 3 Essential Matrix, is due to Longuet-Higgins in his 1981 Nature
paper entitled: A computer algorithm for reconstructing a scene from two projections
[47]. It was previously known that relative camera viewpoints could be determined
iteratively with just five correspondences, but the extra correspondences allowed
Longuet-Higgins to present a much more direct linear solution. Note that only the
direction of the displacement between the two viewpoints can be recovered, which
means that the absolute scale of the 3D scene reconstruction is unknown. (Put simply,
shape but not size is recovered, but the correct scale can be determined with a known
dimension in the scene.)

1.5.4 Model Fitting: The RANSAC Approach to Feature
Correspondence Analysis

Matching corresponding features between images or surfaces is essential for both
3D shape reconstruction methods and 3D shape matching techniques. Selecting, for
example, a set of eight correct correspondences is vital to the estimation of the Essen-
tialMatrix.Unfortunately, this is a very difficult problemandoftenmismatches occur.
Hence, a robust selection of feature correspondences is of utmost importance. The
1981 seminal paper by Fishler and Bolles: Random Sample Consensus: A Paradigm
for Model Fitting with Applications to Image Analysis and Automated Cartography
[50] opened the way to handle correspondence errors with a large percentage of out-
liers. From the available set of n candidate correspondences, which are matched on
the basis of local properties, random subsets of p = 8 correspondences are drawn
and a candidate Essential Matrix is computed for each. The other n − p candidate
correspondences are then tested against the random set solutions and the solution
with the largest ‘consensus’ (i.e., the most support in terms of the number of inliers)
is selected as the best solution. Although computationally expensive, it yields excel-
lent results. From the 1990s, many variants of this basic algorithm, with improved
performance, have been employed in computer vision and 3D shape analysis.

1.5.5 Active 3D Imaging: Advances in Scanning Geometries

The practical development of 3D laser range sensors closely follows the availabil-
ity of new electronic components and electro-optical technologies. A novel active
triangulation method was proposed by Rioux in 1984 [60]. To obtain a large field
of view using small triangulation angles, without sacrificing precision, the concept
of synchronized scanners was proposed. Such a system has the advantage that the
number of ‘missing parts’ (i.e., the ‘shadow effect’) can be reduced. These occur
where parts of the scene are not simultaneously accessible to both the laser and the
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image sensor. Using a special scanning mirror arrangement, both the emitted laser
beam and receiver optics are rotated simultaneously, in a synchronized fashion, so
that the laser spot in the sensor plane can be maintained closer to the image center,
while the projected beam remains inherently in focus over a large depth of field and
high resolution can be maintained despite a short physical baseline.

1.5.6 3D Registration: Rigid Transformation Estimation
from 3D Correspondences

Given a set of surface correspondences between two 3D datasets of the same or
similar objects in different poses, howdowe compute the six degrees of freedom rigid
transformation between them? If we have this rotation and translation information,
we can bring the two scans into alignment; a process called registration. In the
second half of the 1980s, several researchers presented solutions to this problem;
for example, both Faugeras and Hebert [20] and Horn [35] derived formulations
where the rigid body rotation is represented using quaternions. In Horn’s work, an
optimal unit quaternion (4-vector) is estimated as the eigenvector corresponding to
the maximum eigenvalue of a matrix. Once the rotation has been estimated, it is
trivial to compute the estimated translation using this rotation and the centroids of
the two point clouds.

The Singular Value Decomposition (SVD) approach of Arun et al. [3] is also
very widely used. Here, a 3 × 3 cross-covariance matrix H is formed using the
correspondences and anSVDof thismatrix,H = USVT , yields the estimated rotation
matrix as R̂ = VUT . This is further refined by Kanatani [37] as

R̂ = V

⎛
⎝
1
1
det (VUT

)

⎞
⎠UT (1.1)

to avoid the case that R̂ is a reflection, instead of a rotation, matrix.
Rigid body transformation estimation forms the core of 3D registration algorithms,

such as Iterative Closest Points, which is described next.

1.5.7 3D Registration: Iterative Closest Points

As long as three or more correspondences in a general position (non-colinear) are
given between two overlapping 3D point clouds, then the resulting rigid body trans-
formation can be estimated, using one of several methods, as previously mentioned.
In 1992, Besl and McKay proposed the seminal Iterative Closest Point (ICP) algo-
rithm [6]. Algorithms based on the ICP algorithm are currently the de facto standard
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Fig. 1.6 Example of model reconstruction. Partial 3D views of the object of interest are acquired
(left). After registration, all the 3D views are transformed to the common reference system and
merged (right). Figure generated by Alessandro Negrente, reproduced from [23]

for rigid 3D shape registration tasks. The basis of the algorithm is that it iterates
two steps until convergence: tentative correspondences establishment via ‘closest
points’ across the two shapes and rigid transformation parameters update. As long
as the initial rotational and translational displacement between a pair of 3D shapes
is sufficiently small, then convergence to a global minimum is always possible and
high-quality correspondences can be established. Over the last two decades, many
variants of ICP have been proposed to improve the speed and accuracy of the registra-
tion process [56, 62]. An example of the registration required for model construction
from partial 3D views is given in Fig. 1.6.

1.5.8 Passive 3D Imaging: The Fundamental Matrix and
Camera Self-calibration

In 1992Luong, Faugeras, andMaybank extended theEssentialMatrix to uncalibrated
cameras through the Fundamental Matrix.While for the Essential Matrix estimation,
the camera intrinsic parameters had to be known in advance, now arbitrary cameras
could be used and calibrated from the image data alone. The papers by Faugeras:
What can be seen in three dimensions with an uncalibrated stereo rig? [18] and by
Faugeras, Luong, and Maybank: Camera self-calibration: Theory and experiments
[19] started a new research area within computer vision that today allows us to
reconstruct large 3D environments from arbitrary image collections; for example,
those taken by tourists and uploaded to theweb. There are evenweb services available
that enable us to simply upload our pictures of a scene and obtain 3D representations
from them.
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The basic algorithm for estimating the Fundamental Matrix from eight correspon-
dences was rather sensitive to correspondence errors and researchers were skeptical
about its usability in noisy imaging conditions. This problem was tackled in 1995
by Richard Hartley in his famous work entitled In Defense of the 8-Point Algorithm
[32, 33]. Hartley showed that image normalization is vital for practical F-matrix
estimation.

1.5.9 3D Local Shape Descriptors: Spin Images

The ICP algorithmmight converge to a local minimum only if the starting conditions
are non favorable. A common approach to prevent this is to determine a sparse set of
three or more strong local descriptor (feature) matches across the pair of 3D shapes,
which allows coarse 3D registration within the convergence basin of ICP. Probably
the most well-known 3D local shape descriptor is the spin images [36], presented
by Johnson and Hebert in 1997. Here, the local normal of a 3D point is used to
encode neighboring points by measuring their height in the direction of the normal
and their radius in the tangential plane described by the normal. Thus, a spin image
encodes the relative positions of neighboring points in a cylindrical-polar coordinate
system. The neighbor’s angles in the tangential plane are discarded in order to give
pose-invariance to the descriptor and the heights and radius values of the neighbors
are built into a two-dimensional histogram, which forms the spin image descriptor.
A large number of experiments in the literature have shown that the spin images are
powerful for several tasks that include the registration of overlapping shapes, 3D
object recognition, and 3D shape retrieval (shape search).

Figure1.7 shows some examples of spin images computed on 3D captures of
human faces [15]. In this case, the spin images are taken over a limited local range,
as the 3D face surfaces are partial scans taken from a single viewpoint (there is no
scanned surface for the back of the head). In the figure, the spin images for a given
landmark appear quite similar across two different faces. For complete 3D scans, it
is possible for spin images to encode the full extent of the object.

1.5.10 Passive 3D Imaging: Flexible Camera Calibration

Camera calibration is the process whereby intrinsic camera parameters are estab-
lished, such as the focal length of the lens and the size and aspect ratio of the image
sensor pixels. The position and orientation of the camera relative to the scene is also
established and the parameters describing this are referred to as extrinsic parameters.
Many current approaches to camera calibration are based on the easy-to-use, yet accu-
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Fig. 1.7 Example spin
images computed for 14
landmarks on two different
faces from the FRGC
dataset. Here, a bin size of
5mm is used. The size of the
spin image is 18 × 9 pixels.
The middle top part of the
spin image is the 3D surface
point whose local shape we
are encoding; the left part of
the spin image corresponds
to points above this 3D point
in the direction of the
normal; the right part
corresponds to points below,
using this same direction.
Figure adapted from [15],
courtesy of Clement Creusot
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Fig. 1.8 Left: calibration targets used in a camera calibration process. Right: after calibration, it is
possible to determine the positions of the calibration planes using the estimated extrinsic parameters.
Image courtesy of Jean-Yves Bouguet from the Camera Calibration Toolbox for Matlab webpage

rate approach presented by Zhang in 2000,23 where calibration can be achieved from
n-views of a calibration grid of known grid dimensions [88]. This calibration grid is a
planar ‘chessboard’ pattern of alternate black and white squares which can be freely
moved as the calibration images are captured, the motion between the captures is not
required, hence the system is easy to use. Although the minimum number of images
captured is 2, around 20 are commonly used for improved accuracy. The estimation
is in two stages: firstly, a closed-form linear solution for the camera’s parameters is
used, followed by a non-linear refinement based on the maximum-likelihood crite-
rion. In the first stage, lens distortion is assumed to be zero, whereas the second stage
provides a mechanism for radial distortion parameters to be estimated, if required.
Figure1.8 illustrates a typical set of calibration plane positions to calibrate a camera,
with the automatic corner detections on the grid shown as a colored overlay. The
same corner position input data can be used to calibrate a stereo rig, whereby two
sets of intrinsic parameters are established and the extrinsic parameters define the
six degrees of freedom rigid pose of one camera relative to another.

1.5.11 3D Shape Matching: Heat Kernel Signatures

One problem with spin images and other local shape descriptors is that they are
encoded in Euclidean space and are only valid for rigid local shapes. Understanding
shapes in terms of their geodesic distances24 can yield more generic approaches that
are not degraded by the bending of the shape (i.e., they are isometric invariant). In

23Zhang’s seminal work is pre-dated by a large body of pioneering work on calibration, such as
D. C. Brown’s work in the context of photogrammetry, which dates back to the 1950s and many
other works in computer vision, such as the seminal two-stage method of Tsai [80].
24A geodesic distance between two points on a surface is the minimal across surface distance.
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Fig. 1.9 Heat kernel signatures calculated on two isometric shapes. The top row shows that signa-
tures at corresponding points look very similar. The bottom row shows that signatures at different
points on the mesh differ. Figure courtesy of Benjamin Bustos

2009, Sun et al. [75] presented amulti-scale shape signature that is isometric invariant.
It is based on the properties of the heat diffusion process over a meshed surface and
belongs to a class of methods known as diffusion geometry approaches. The concise
signature is obtained by restricting the heat kernel to the temporal domain. This tech-
nique and other approaches involving diffusion geometry enable high-performance
3D shape matching under isometric deformation and are thus finding their way into
3D object recognition and 3D shape retrieval (search) applications. Figure1.9 shows
heat kernel signatures extracted on two instances of an isometrically deformed shape.

1.5.12 Active 3D Imaging: Kinect

The Kinect was primarily developed by Microsoft for gaming applications. Brought
to market amid great publicity in 2010, it was literally a game changer, and a huge
success with tens of millions of units sold. However, the impact of the Kinect reached
beyond the Xbox. Initially with a reverse engineered open source driver, and sub-
sequently with the Microsoft official SDK for Windows, the Kinect has been rede-
ployed by researchers, practitioners and enthusiasts for other applications benefiting
from 3D capture and analysis. The combination of a low cost ($149.99) system with
access to not only the raw sensor streams from the depth sensor, color camera sensor,
and microphone array, but also multi-person skeletal tracking, gesture recognition,
facial recognition, and voice recognition, meant that for the first time, such appli-
cations became much more affordable and easy to develop compared to traditional
3D-cameras. Many examples of applications of the Kinect can be found in healthcare
[55], education [25], cultural heritage [9], agricultural [61], etc.

The Kinect has undergone several technical developments during its lifetime [63].
The initial Kinect for Xbox used structured light for 3D reconstruction; an infrared
speckle dot pattern was projected and captured by an infrared sensor. Color infor-
mation was acquired using a separate RGB camera. The second-generation Kinect
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changed to use time-of-flight, with three infrared projectors and an infrared sen-
sor, and achieved greater accuracy as well as a larger capture volume. More recently
Microsoft has shifted focus, and subsequent iterations of Kinect technology are being
incorporated into the Microsoft HoloLens.

1.5.13 Random-Forest Classifiers for Real-Time 3D Human
Pose Recognition

In 2011, Shotton et al. [70, 71] presented a system that was able to segment the
whole body into a set of parts based on a single range image (i.e., no temporal
information is used) and thereby determine, in real time, the position of human body
joints. This process is illustrated in Fig. 1.10. A design aim was high frame rates and
they achieved 200 frames per second on consumer hardware, thus the system can run
comfortably on an inexpensive 3D camera and the algorithm forms a core component
of the Kinect-Xbox gaming platform. To achieve high frame rates, extremely simple
and computationally cheap 3D features were employed based on depth comparisons,
and randomized decision forest classifiers were trained and implemented to run on
a GPU. The training data uses 100 000 captured poses, each of which generates a
synthetic set of 15 base meshes, spanning a range of different body sizes, shapes,
viewpoints, clothing, and hairstyles. This system is an archetypal modern, successful

Fig. 1.10 From a single depth image, range pixels can be labeled as belonging to certain body parts,
which are colored differently in the figure. From this labeling, 3D joint positions can be inferred.
Figure courtesy of [71]
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3D recognition system that shows what can be achieved when machine learning
techniques, a large corpus of training data, and fast computational architectures are
brought together.

1.5.14 Convolutional–Recursive Deep Learning for 3D
Object Classification

The deep learning revolution in AI has had a massive impact across many areas. Its
benefits were clear to the computer vision community from as early as 2012, with
deep learning’s breakthrough result in the ImageNet large-scale visual recognition
challenge [43] significantly outperforming traditional methods. In the same year,
Socher et al. [73] presented a deep learning approach to the problem of classifying
3D objects in an RGB-D dataset. They employed a combination of Convolutional
Neural Networks (CNNs) and Recursive Neural Networks (RNNs). The CNNs learn
low-level features on the RGB and depth modalities separately and then pass them
to multiple, fixed-tree RNNs, which learn hierarchical feature representations by
applying the same neural network recursively in a tree structure. Such RNNs are
able to learn compositional features and part interactions. Finally, the concatenation
of all the feature vectors is passed to a softmax classifier. The authors were able to
demonstrate that RNNs can extract powerful features, even with random weights.
They used an RGB-D dataset of 41.6K images of 51 object classes with a ten-fold
random train/test split and were able to demonstrate an 88% classification accuracy
which, at the time, was state-of-the-art.

1.5.15 VoxNet: A 3D Convolutional Neural Network for
Real-Time Object Recognition

Given the success of CNNs on 2D images, it is natural to extend the same ideas to 3D
data, and this is relatively straightforward if that data is represented in a Euclidean
domain, such as the flat, grid-like structure of voxels. In 2015, Maturana and Scherer
[53] presented VoxNet, a deep learning approach, and they demonstrated its appli-
cation to the object recognition task for LiDAR point clouds, RGB-D data, and
CAD models. The authors use a volumetric occupancy grid representation of size
32 × 32 × 32 that captures a probability of occupancy for each voxel. The network
is relatively small with around 922K parameters in five layers, two convolutional
layers, a pooling layer, and two fully connected layers. The authors found that their
best system gave state-of-the-art performance on several benchmark datasets includ-
ing ModelNet10, ModelNet40, Sydney Objects, and NYUv2, with various accura-
cies reported between 71% and 92%. A limitation of a straightforward voxelization
approach is that, due to memory limitations, it is unable to scale up from the very
coarse resolution without reducing the depth of the network. Subsequent methods,
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such as Octnet [59], represent space in a more dynamic manner, e.g., using a set of
unbalanced octrees.

1.5.16 PointNet: Deep Learning on Point Sets for 3D
Classification and Segmentation

At the 2017 CVPR conference, the PointNet architecture was presented by Qi
et al. [57]. Significantly, this broke away from the requirement of processing 3D
on Euclidean domains and allowed the direct consumption of unordered 3D point
cloud data. The application of deep learning to such non-Euclidean domains has been
termedGeometric Deep Learning by Bronstein et al. [12]. The idea of PointNet is to
construct a network whose response is invariant to the n! permutations of its n-point
input data. Such permutation invariance is achieved by processing all n input points
identically. The architecture is presented in detail in Chap.11, here we give a brief
overview. Initially, a transformer net is applied at the input to map the 3D data to a
canonical frame (normalization of pose, aspect ratio, and size). This is achieved by
predicting an affine transform using a mini-network with a similar structure to the
overall network. After that, Multi Layer Perceptrons (MLPs) with shared weights
across all points are used to map the points to a higher dimensional feature space.
This is then followed by max pooling (a symmetric operation) to aggregate features.
Finally, fully connected layers generate a set of m output scores for the m object
classes in the training data. A segmentation network concatenates global and local
features from the classification network and outputs per-point scores.

PointNet is evaluated on the ModelNet40 shape classification benchmark, which
contains 12311 CAD models from 40 man-made object categories, split into 9843
for training and 2468 for testing. At the time, the classifier achieved a state-of-the-
art accuracy of 89.2% averaged over all classes. Segmentation was evaluated on the
ShapeNet part dataset. This contains 16881 shapes from16 categories, annotatedwith
50 parts in total and with most object categories labeled with two to five parts. The
mean Intersection overUnion (mIoU)metricwas used to evaluate parts segmentation
and PointNet achieved a value of 83.7%. Further work has extended PointNet to
form PointNet++ [58], which recursively applies PointNet to the input point cloud,
enabling it to combine features from multiple scales from varying densities.

1.5.17 Dynamic Graph CNN for Learning on Point Clouds

In 2019,Wang et al. [81] presented the Dynamic Graph CNN (DGCNN) for learning
on 3D point clouds, an approach inspired by PointNet. Themethod constructs a local-
neighborhood graph and applies convolution-like operations on the graph’s edges and
thus a key contribution is the EdgeConv block, which can be integrated into existing

http://dx.doi.org/10.1007/978-3-030-44070-1_11
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point cloud networks. Specifically, the EdgeConv block is placed after the initial
spatial transform layer and after each subsequent feature embedding layer, in order
to improve the overall network performance. The core idea is to better capture local
geometric features of point clouds, while still maintaining the permutation invariance
of PointNet-style architectures. The term dynamic graph in DGCNNs comes from
the fact that the k-nearest neighbors change from layer to layer, i.e., through the
sequence of high-dimensional embeddings. For the edge convolution itself, edge
features between each pair of local graph vertices are extracted with a non-linear
function with learnable parameters, in this case implemented with a Multi Layer
Perceptron (MLP). These features are then aggregated over all edges of the local
graph in a symmetric manner by taking the maximum. The DGCNN architecture
was evaluated on ModelNet40 and achieved a state-of-the-art accuracy of 93.5%.

1.5.18 PointNetLK: Robust and Efficient Point Cloud
Registration Using PointNet

The work of Aoki et al. [2] is the first to apply PointNet to the 3D point cloud regis-
tration problem. They envisage PointNet as a kind of imaging function in the sense
that the network consumes an unordered, unstructured set of points and generates an
output of fixed structure and size. The idea is that the PointNet architecture encodes a
pair of 3D point clouds via its usual sharedMLP structure to yield a pair of symmetric
function encodings. Viewing these encodings as ‘images’ motivates their alignment
by a classical registration approach, in particular, the Lucas–Kanade (LK) algorithm
[48].25

A core contribution was to show how to circumvent the grid-like convolutions
employed in the standard LK algorithm (used to establish the spatial gradients), as
such convolutions cannot be applied to PointNet representations. The suitably mod-
ified LK form is implemented as a recurrent network and integrated with PointNet
to yield PointNetLK. Crucially, correspondences are not explicitly computed, which
results in computationally efficiency (O(n)) as compared to ICP-style approaches
(O(n2)). A further advantage over ICP is robustness to initial point cloud pose, since
ICP is vulnerable to local minima. The PointNetLK approach is fully differentiable,
making it a general computation block for incorporation into deep learning sys-
tems, imbuing them with an explicit encoding of the alignment process. The authors
demonstrate that PointNetLK evaluates favorably against ICP on ModelNet40 [84,
85].

25Originally conceived for 2D image optical flow estimation, by relating spatial and temporal image
gradients.
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1.6 Book Roadmap

We conclude this chapter with a roadmap of the remaining chapters of this book.
Although there is a natural order to the chapters, they are relatively self-contained,
so that they can also be read as stand-alone chapters. The book is split into three
parts: Part I is comprised of Chaps. 2–6 and it presents the fundamental techniques
for the capture, representation, and visualization of 3D data; Part II is comprised of
Chaps. 7–11 and is concernedwith 3D shape analysis and inference; finally, Part III is
comprised of Chaps. 12–14 and focusses on three specific application areas, namely,
3D face recognition, 3D heritage modeling, and the 3D phenotyping of plants.

1.6.1 Part I: 3D Image Acquisition, Representation, and
Visualization

Chapter 2 describes passive 3D imaging, which recovers 3D information from
camera systems that do not project light or other electromagnetic radiation onto the
imaged scene. An overview of the common techniques used to recover 3D informa-
tion from camera images is presented first. The chapter then focuses on 3D recovery
from multiple views, which can be obtained using two or more cameras at the same
time (stereo), or a single moving camera at different times (structure from motion).
The aim is to give a comprehensive presentation that covers camera modeling, cam-
era calibration, image rectification, correspondence search, and the triangulation to
compute 3D scene structure. Several 3Dpassive imaging systems and their real-world
applications are highlighted later in this chapter.

Chapters 3–5 are all related to active 3D image capture. We have designed these
chapters so that they can be read independently of each other and this inevitably
generates some content overlap. To deal with this, we have added signposting that
directs readers to skip various sections if they have already been covered in an earlier
chapter. In the first of these, Chap.3, active 3D imaging based on artificial illumina-
tion and triangulation is discussed, particularly in the context of industrial inspection.
These systems have the same underlying geometry as the passive vision systems pre-
sented in Chap.2, but the use of artificial illumination allows the acquisition of dense
and accurate range images of texture-free objects that are difficult to acquire using
passive vision systems. The characterization of such triangulation-based systems is
discussed using both an error propagation framework and experimental protocols.

Chapter 4 covers Time-of-Flight (ToF) technologies, which are suitable for
medium-range applications. Such technologies allow the development of a plethora
of systems that can operate from a range of a few meters to many kilometers while
systems based on triangulation typically operate at a range of a few millimeters to
a few meters. The characterization of those systems is discussed and experimental
results using systems related to the construction and engineering industry and the
automobile industry are shown.

http://dx.doi.org/10.1007/978-3-030-44070-1_2
http://dx.doi.org/10.1007/978-3-030-44070-1_6
http://dx.doi.org/10.1007/978-3-030-44070-1_7
http://dx.doi.org/10.1007/978-3-030-44070-1_11
http://dx.doi.org/10.1007/978-3-030-44070-1_12
http://dx.doi.org/10.1007/978-3-030-44070-1_14
http://dx.doi.org/10.1007/978-3-030-44070-1_2
http://dx.doi.org/10.1007/978-3-030-44070-1_3
http://dx.doi.org/10.1007/978-3-030-44070-1_5
http://dx.doi.org/10.1007/978-3-030-44070-1_3
http://dx.doi.org/10.1007/978-3-030-44070-1_2
http://dx.doi.org/10.1007/978-3-030-44070-1_4


1 Introduction 31

Chapter5 discusses a relatively new family of affordable active 3D imaging sys-
tems referred to as range cameras or RGB-D cameras. These systems operate in the
range of 0.4–10m and are targeted directly at cost-sensitive consumers. They are
typically specialized for capturing dynamic human activities and are designed to
minimally interfere with such activities. They use infrared-light sources and produce
a continuous stream of 3D data at video frame rate using either active stereo vision,
structured light, or time-of-flight.

Chapter6 focusses on 3D data representation, storage, and visualization. It begins
by providing a taxonomy of 3D data representations and then presents more detail
on a selection of the most important 3D data representations and their processing,
such as triangular meshes and subdivision surfaces. This chapter also discusses the
local differential properties of surfaces, mesh simplification and compression.

1.6.2 Part II: 3D Shape Analysis and Inference

Chapter7 presents a comprehensive review of local 3D shape descriptors, including
both classical hand-crafted features and those that are learned. Description of local
features lays the foundations for a variety of applications that process 3Ddata, such as
3D object recognition, 3D registration and reconstruction, andmobile robot mapping
and navigation.

Chapter8 details 3D shape registration, which is the process of bringing together
twoormore3Dshapes, either of the sameobject or of twodifferent but similar objects.
This chapter first introduces the classical Iterative Closest Point (ICP) algorithm [6],
which represents the gold standard registration method. Current limitations of ICP
are addressed and themost popular variants of ICP are described to improve the basic
implementation in several ways. Challenging registration scenarios are analyzed and
a taxonomy of promising alternative registration techniques is introduced. Four case
studies are described with an increasing level of difficulty, including an algorithm
capable of dealing with deformable objects.

Chapter9 presents 3D shape matching with a view to applications in shape
retrieval (e.g., web search) and object recognition. In order to present the subject,
four approaches are described in detail with good balance among maturity and nov-
elty, namely, the PANORAMA descriptor, spin images, functional maps, and heat
kernel signatures.

In Chap.10, the idea of a 3DMorphable Model (3DMM) is introduced. A 3DMM
is a compact description of an object class that captures the model’s training set
shape variance, and thus can act as a useful prior in many Computer Vision appli-
cations. 3DMMs are also able to model the associated texture, where that texture is
registered (i.e., aligned) with shape data. In this chapter, the historical context and
recent literature are introduced, and both classical and modern 3DMM construction
pipelines are described. Finally, the power of 3DMMs is illustrated via case studies
and examples.

http://dx.doi.org/10.1007/978-3-030-44070-1_5
http://dx.doi.org/10.1007/978-3-030-44070-1_6
http://dx.doi.org/10.1007/978-3-030-44070-1_7
http://dx.doi.org/10.1007/978-3-030-44070-1_8
http://dx.doi.org/10.1007/978-3-030-44070-1_9
http://dx.doi.org/10.1007/978-3-030-44070-1_10


32 J. Brünger et al.

The final chapter in Part II, Chap.11, shows how to apply deep learning to 3D data.
3D data has many popular representations, such as point clouds (from raw sensor
input) or meshes (widely used in shape modeling) but both these representations are
not defined on a regular grid. Due to their irregular format, current convolutional deep
learning methods cannot be directly used. So, in this chapter, two major branches of
methods to work with 3D data are introduced. One family of methods firstly converts
such irregular data to regular structures, the other (rather new) family of methods
studies how to design deep neural networks that directly consume irregular data and
respect the special properties of the input 3D representations, such as the permutation
invariance of the points in a point cloud, or the intrinsic surface structure in a mesh.
The chapter closes with a showcase of successful applications that use deep learning
on 3D images.

1.6.3 Part III: 3D Imaging Applications

Chapter12 gives an overview of 3D face recognition and discusses both well-
established and more recent state-of-the-art 3D face recognition techniques in terms
of their implementation and expected performance on benchmark datasets. In con-
trast to 2D face recognition methods that have difficulties when handling changes in
illumination and pose, 3D face recognition algorithms have often beenmore success-
ful in dealing with these challenges. 3D face shape data is used as an independent cue
for face recognition and has also been combined with texture to facilitate multimodal
face recognition. Furthermore, 3D face recognition can achieve some invariance to
expression by modeling the non-rigid surface deformations of the face. The chapter
presents both classical approaches and recent approaches that exploit deep learning.

Chapter13 covers the use of 3D technologies for digitizing Cultural Heritage
(CH). After the analysis of the motivations and an overview of the history of the
application of 3D technologies, a review of the current state-of-the-art in the field is
given. A methodological section points out which 3D technologies are used in the
field and how they can be best applied, taking into account digitization approaches
appropriate to the different classes of CH objects as well as the relative strengths
and weaknesses of the various technologies. The chapter continues with a discussion
of how CH can be modeled from raw data and a section about the different 3D
processing pipelines. The last section treats the creation of a 3D content repository
for CH, taking into account both the relevant articulated metadata as well as the ways
3D data are stored and visualized for online access.

In Chap.14, a broad overview of computer vision based 3D plant phenotyping
techniques is given. Due to their non-invasive and non-contact properties, imaging
techniques have become state-of-the-art in automated plant phenotyping analysis.
There are several aspects of phenotyping, including plant growth, plant organ classi-
fication and tracking, and disease detection. This chapter presents a broad overview
of computer vision based 3D plant phenotyping techniques. The chapter covers mul-
tiple case studies with automated robotic systems for 3D plant phenotyping, general
registration techniques for 3D point clouds, and alignment of challenging multiple-
view 3D point clouds of plants.

http://dx.doi.org/10.1007/978-3-030-44070-1_11
http://dx.doi.org/10.1007/978-3-030-44070-1_12
http://dx.doi.org/10.1007/978-3-030-44070-1_13
http://dx.doi.org/10.1007/978-3-030-44070-1_14
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Part I
3D Shape Acquisition, Representation

and Visualisation

In this part, we discuss 3D imaging using both passive techniques (Chap. 2) and
active techniques (Chaps. 3–5). The former uses ambient illumination (i.e. sunlight
or standard room lighting), whilst the latter projects its own illumination (usually
visible or infra-red) onto the scene. Chapter 3 discusses triangulationbased sensing,
whilst Chap. 4 covers sensors based on time of flight. Chapter 5 covers consumer-
grade RGB-D cameras. Finally, Chap. 6 discusses how to represent the captured
data, both for efficient algorithmic 3D data processing and efficient data storage.
This provides a bridge to the following part of the book, which deals with 3D shape
analysis and inference.
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Chapter 2
Passive 3D Imaging

Stephen Se and Nick Pears

Abstract We describe passive 3D imaging systems that recover 3D information
from scenes that are illuminated only with ambient lighting. Although we briefly
overview monocular reconstruction, much of the material is concerned with using
the geometry of stereo 3D imaging to formulate estimation problems. Firstly, we
present an overview of the common techniques used to recover 3D information from
camera images. Secondly, we discuss camera modeling and camera calibration as an
essential introduction to the geometry of the imaging process and the estimation of
geometric parameters. Thirdly, we focus on 3D recovery frommultiple views, which
can be obtained using multiple cameras at the same time (stereo), or a single moving
camera at different times (structure from motion). Epipolar geometry and finding
image correspondences associated with the same 3D scene point are two key aspects
for such systems, since epipolar geometry establishes the relationship between two
camera views, and depth information can be inferred from the correspondences. The
details of both stereo and structure from motion, the two essential forms of multiple-
view 3D reconstruction technique, are presented. We include a brief overview of the
recent trend of applying deep learning to passive 3D imaging. Finally, we present
several real-world applications.

2.1 Introduction

Passive 3D imaging has been studied extensively for several decades, and it is a core
topic in many of the major computer vision conferences and journals. Essentially,
a passive 3D imaging system, also known as a passive 3D vision system, is one in
which we can recover 3D scene information, without that system having to project
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its own source of light or other source of electromagnetic radiation (EMR) onto that
scene. By contrast, an active 3D imaging system has an EMR projection subsystem,
which is commonly in the infrared or visible wavelength region.

Several passive 3D information sources (cues) relate closely to human vision and
other animal vision. For example, in stereo vision, fusing the images recorded by our
two eyes and exploiting the difference between them gives us a sense of depth. The
aim of this chapter is to present the fundamental principles of passive 3D imaging
systems so that readers can understand their strengths and limitations, as well as how
to implement a subset of such systems, namely, those that exploit multiple views of
the scene.

Passive,multiple-view 3D imaging originates from themature field of photogram-
metry and, more recently, from the younger field of computer vision. In contrast to
photogrammetry, computer vision applications rely on fast, automatic techniques,
sometimes at the expense of precision. Our focus is on the computer vision perspec-
tive.

A recurring theme of this chapter is that we consider some aspect of the geometry
of 3D imaging and formulate a linear least squares estimation problem to estimate the
associated geometric parameters. These estimates can then optionally be improved,
depending on the speed and accuracy requirements of the application, using the linear
estimate as an initialization for a non-linear least squares refinement. In contrast to
the linear stage, this non-linear stage usually optimizes a cost function that has a
well-defined geometric meaning.1 Multi-view 3D reconstruction is now a mature
technology. Figure2.1 shows a 3D reconstruction of a building from a 2D image
sequence.

2.1.1 Chapter Outline

Wewill start with an overview of various techniques for passive 3D imaging systems,
including single-view andmultiple-view approaches. However, themain body of this
chapter is focused on 3D recovery frommultiple views, which can be obtained using
multiple cameras simultaneously (stereo) or a single moving camera (structure from
motion). A good starting point to understand this subject matter is knowledge of
the image formation process in a single camera and how to capture this process in
a camera model. This modeling is presented in Sect. 2.3, and the following section
describes camera calibration: the estimation of the parameters in the developed cam-
era model. In order to understand how to search efficiently for left–right feature pairs
that correspond to the same scene point in a stereo image pair (the correspondence
problem), a good understanding of two-view geometry is required, which establishes
the relationship between two camera views. Hence, Sect. 2.5 details this geometry,
known as epipolar geometry, and shows how it can be captured and used in linear
(vector–matrix) form. Following this, we can begin to consider the correspondence

1Parameters obtained from a linear estimate are often a complex function of geometric parameters.
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Fig. 2.1 Top: partial image sequence of the library building at theChineseUniversity ofHongKong.
Bottom: 3D reconstruction of the library building, obtained automatically from the uncalibrated
image sequence (left: Delaunay triangulation; right: with texture). Figure courtesy of [16]

problem and the first step is to simplify the search to be across the same horizontal
scan lines in each image, by warping the stereo image pair in a process known as
rectification. This is described in Sect. 2.6. The following section then focuses on the
correspondence search itself, and then Sect. 2.8 details the process of generating a
3D point cloud from a set of image correspondences. A brief overview is included on
how deep learning techniques, such as convolutional neural networks and recurrent
neural networks, have been applied to passive 3D imaging recently and had had a
big impact. Despite this, we believe that it is important that this chapter covers the
underlying mathematical modeling explicitly for a good understanding of the subject
area.

With increasing computer processing power and decreasing camera prices, many
real-world applications of passive 3D imaging systems have been emerging in recent
years. Thus, later in the chapter (Sect. 2.10), some recent applications involving such
systems are discussed. Several commercially available stereo vision systemswill first
be presented, as well as stereo cameras for people counting in retail analytics. We
then describe 3D modeling systems that generate photo-realistic 3D models from
image sequences, which have a wide range of applications. Later in this section,
passive 3D imaging systems for mobile robot pose estimation and visual SLAM are
described. In the following section, multiple-view passive 3D imaging systems are
compared to their counterpart within active 3D imaging systems.

The final sections in the chapter cover concluding remarks, further reading, soft-
ware resources, questions, and exercises for the reader.
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2.2 An Overview of Passive 3D Imaging Systems

Most cameras today use either a Charge Coupled Device (CCD) image sensor or a
Complementary Metal Oxide Semiconductor (CMOS) sensor, both of which capture
light and convert it into electrical signals. Historically, CCD sensors have provided
higher quality, lower noise images, whereas CMOS sensors have been cheaper, more
compact, and consume less power. Presently, CMOS sensors are more prevalent
perhaps due to their now highly favorable performance-to-cost ratio. The cameras
employing such image sensors can be hand-held or mounted on different platforms
such as Unmanned Ground Vehicles (UGVs), Unmanned Aerial Vehicles (UAVs),
Unmanned Underwater Vehicles (UUVs), and optical satellites.

Passive 3D vision techniques can be categorized as follows: (i) Multiple-view
approaches and (ii) single-view approaches.We outline each of these in the following
two subsections.

2.2.1 Multiple-View Approaches

In multiple-view approaches, the scene is observed from two or more viewpoints,
by either multiple cameras at the same time (stereo) or a single moving camera at
different times (structure from motion). From the gathered images, the system is to
infer information on the 3D structure of the scene.

Stereo refers to multiple images taken simultaneously using two or more cameras,
which are collectively called a stereo camera. For example, binocular stereo uses
two viewpoints, trinocular stereo uses three viewpoints, or alternatively there may
be many cameras distributed around the viewing sphere of an object. Stereo derives
from the Greek word stereos meaning solid, thus implying a 3D form of visual
information. In this chapter, we will use the term stereo vision to imply a binocular
stereo system. At the top of Fig. 2.2, we show an outline of such a system.

If we can determine that imaged points in the left and right cameras correspond
to the same scene point, then we can determine two directions (3D rays) along
which the 3D point must lie. (The camera parameters required to convert the 2D
image positions to 3D rays come from a camera calibration procedure.) Then, we
can intersect the 3D rays to determine the 3D position of the scene point, in a process
known as triangulation. A scene point, X, is shown in Fig. 2.2 as the intersection
of two rays (colored black) and a nearer point is shown by the intersection of two
different rays (colored blue). Note that the difference between left and right image
positions, thedisparity, is greater for the nearer scene point and inversely proportional
to the range. In fact, at some maximum range, the disparity becomes so small and
corruptable by noise, which usefully accurate range measurements can no longer
be made. Compared to some other 3D imaging modalities, stereo is relatively short
range. Also, regions close to the stereo camera rig are outside of the field of view
of either one or both cameras, and so stereo cameras have some defined minimum
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Fig. 2.2 Top: Plan view of the operation of a simple stereo rig. Here the optical axes of the two
cameras are parallel to form a rectilinear rig. However, often the cameras are rotated toward each
other (verged) to increase the overlap in their fields of view. Center: The commercial ZED stereo
camera, supplied by Stereolabs [82]. Bottom: Left and right views of a stereo pair (images courtesy
of [74])
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range of operation. Note also that the scene surface colored red cannot be observed
by the right camera, inwhich case no 3D shapemeasurement can bemade. This scene
portion is sometimes referred to as a missing part and is the result of self-occlusion.
The baseline length of a stereo camera is a trade-off between accuracy and missing
parts.

A modeling point to note is that, although the real image sensor is behind the lens,
it is common practice to envisage and use a conceptual image position in front of
the lens so that the image is the same orientation as the scene (i.e., not inverted top
to bottom and left to right), and this is shown by the dashed horizontal line in the
figure.

Despite the apparent simplicity of Fig. 2.2(top), a large part of this chapter is
required to present the various aspects of stereo 3D imaging in detail, such as cali-
bration, determining left-to-right image correspondences and dense 3D shape recon-
struction. A typical commercial stereo camera, called the ZED and supplied by
Stereolabs [82], is shown in the center of Fig. 2.2, although many computer vision
researchers build their own stereo rigs, using off-the-shelf digital cameras and a slot-
ted steel bar mounted on a tripod. Finally, at the bottom of Fig. 2.2, we show the left
and right views of a typical stereo pair taken from the Middlebury webpage [74].

In contrast to stereo vision, structure from motion (SfM) refers to a single moving
camera scenario, where image sequences are captured over a period of time. While
stereo refers to fixed relative viewpoints with synchronized image capture, SfM
refers to variable viewpoints with sequential image capture. For image sequences
captured at a high frame rate, optical flow can be computed, which estimates the
motion field from the image sequences, based on the spatial and temporal variations
of the image brightness. Using the local brightness constancy alone, the problem is
under-constrained as the number of variables is twice the number of measurements.
Therefore, it is augmented with additional global smoothness constraints, so that the
motion field can be estimated by minimizing an energy function [41, 49]. 3D motion
of the camera and the scene structure can then be recovered from the motion field.

2.2.2 Single-View Approaches

In contrast to these two multiple-view approaches, 3D shape can be inferred from
a single viewpoint using information sources (cues) such as shading, texture, and
focus. The collection of such approaches is sometimes termed Shape from X. Not
surprisingly, the mentioned techniques are called Shape from Shading, Shape from
Texture, and Shape from Focus, respectively.

Shading on a surface can provide information about local surface orientations
and overall surface shape, as illustrated in Fig. 2.3, where the technique in [42] has
been used. Shape from shading [40] uses the shades in a grayscale image to infer
the shape of the surfaces, based on the reflectance map which links image intensity
with surface orientation. After the surface normals have been recovered at each
pixel, they can be integrated into a depth map using regularized surface fitting. The
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Fig. 2.3 Examples of synthetic shape from shading images (left column) and corresponding shape
from shading reconstruction (right column)

computations involved are considerably more complicated than for multiple-view
approaches. Moreover, various assumptions, such as uniform albedo, reflectance,
and known light source directions, need to be made and there are open issues with
convergence to a solution. The survey in [97] reviews various techniques and provides
some comparative results. The approach can be enhanced when lights shining from
different directions can be turned on and off separately. This technique is known as
photometric stereo [91], and it takes two or more images of the scene from the same
viewpoint but under different illuminations in order to estimate the surface normals.

The foreshortening of regular patterns depends on how the surface slants away
from the camera viewing direction and provides another cue on the local surface
orientation. Shape from texture [34] estimates the shape of the observed surface
from the distortion of the texture created by the imaging process, as illustrated in
Fig. 2.4. Therefore, this approach works only for images with texture surfaces and
assumes the presence of a regular pattern. Shape from shading is combined with
shape from texture in [90] where the two techniques can complement each other.
While the texture components provide information in textured region, shading helps
in the uniform region to provide detailed information on the surface shape.
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Fig. 2.4 Examples of synthetic shape from texture images (a, c) and corresponding surface normal
estimates (b, d). Figure courtesy of [34]

Shape from focus [58, 65] estimates depth using two input images captured from
the same viewpoint but at different camera depths of field. The degree of blur is a
strong cue for object depth as it increases as the object moves away from the camera’s
focusing distance. The relative depth of the scene can be constructed from the image
blur where the amount of defocus can be estimated by averaging the squared gradient
values in a region.

Another approach that is specialized for a particular object class is the Analysis
by Synthesis approach. Here, the assumption is that we have a 3Dmodel of the object
class of interest, such as the human face [10] or human head [22]. If we alsomodel all
the physical components that generate an image, such as surface reflectance, scene
lighting, and the projective imaging processes, and if we parameterize these model
components accurately by model fitting, we can synthesize an image that is very
similar to the actual image. The 3D structure obtained from the parametrization of
the 3D model is then the 3D reconstruction of the single-viewpoint image [9].

Single-viewmetrology [21] allows shape recovery from a single perspective view
of a scene given some geometric information determined from the image. By exploit-
ing scene constraints such as orthogonality and parallelism, a vanishing line and a
vanishing point in a single image can be determined. Relativemeasurements of shape
can then be computed, which can be upgraded to absolute metric measurements if
the dimensions of a reference object in the scene are known.

While 3D recovery from a single view is possible, such methods are often not
practical in terms of either robustness or speed or both. Therefore, themost commonly
used approaches are based on multiple views, which is the focus of this chapter.
The first step to understanding such approaches is to understand how to model the
image formation process in the cameras of a stereo rig. Then we need to know how to
estimate the parameters of this model. Thus camera modeling and camera calibration
are discussed in the following two main sections.
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Fig. 2.5 Projection based on a pinhole camera model where a 3D object is projected onto the image
plane. Note that, although the real image plane is behind the camera center, it is common practice
to employ a virtual image plane in front of the camera, so that the image is conveniently at the same
orientation as the scene

2.3 Camera Modeling

A camera is a device in which the 3D scene is projected down onto a 2D image.
The most commonly used projection in computer vision is 3D perspective projec-
tion. Figure2.5 illustrates perspective projection based on the pinhole camera model,
whereC is the position of the pinhole, termed the camera center or the center of pro-
jection. Note that, although the real image plane is behind the camera center, it is
common practice to employ a virtual image plane in front of the camera, so that the
image is conveniently at the same orientation as the scene.

Clearly, from this figure, the path of imaged light is modeled by a ray that passes
from a 3D world pointX through the camera center. The intersection of this ray with
the image plane defines where the image, xc, of the 3D scene point, X, lies. We can
reverse this process and say that, for some point on the image plane, its corresponding
scene point must lie somewhere along the ray connecting the center of projection,C,
and that imaged point, xc. We refer to this as back-projecting an image point to an
infinite ray that extends out into the scene. Since we do not know how far along the
ray the 3D scene point lies, explicit depth information is lost in the imaging process.
This is the main source of geometric ambiguity in a single image and is the reason
why we refer to the recovery of the depth information from stereo and other cues as
3D reconstruction.

Before we embark on our development of a mathematical camera model, we need
to digress briefly and introduce the concept of homogeneous coordinates (also called
projective coordinates), which is the natural coordinate system of analytic projective
geometry and hence has wide utility in geometric computer vision.
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2.3.1 Homogeneous Coordinates

We are all familiar with expressing the position of some point in a plane using a
pair of coordinates as [x, y]T . In general for such systems, n coordinates are used
to describe points in an n-dimensional space, Rn . In analytic projective geometry,
which deals with algebraic theories of points and lines, such points and lines are
typically described by homogeneous coordinates, where n + 1 coordinates are used
to describe points in an n-dimensional space. For example, a general point in a
plane is described as x = [x1, x2, x3]T , and the general equation of a line is given by
lT x = 0 where l = [l1, l2, l3]T are the homogeneous coordinates of the line.2 Since
the right-hand side of this equation for a line is zero, it is a homogeneous equation,
and any non-zero multiple of the point λ[x1, x2, x3]T is the same point; similarly,
any non-zero multiple of the line’s coordinates is the same line. The symmetry in
this equation is indicative of the fact that points and lines can be exchanged in many
theories of projective geometry; such theories are termed dual theories. For example,
the cross-product of two lines, expressed in homogeneous coordinates, yields their
intersecting point, and the cross-product of a pair of points gives the line between
them. This is very useful for manipulating points and lines in the image plane. For
example, if we had four image points, then to determine the point of intersection, x,
of any two lines defined by any two points we simply compute:

x = (xi × x j ) × (xk × xl).

Note that we can easily convert from homogeneous to inhomogeneous coordi-
nates, simply by dividing through by the third element, thus [x1, x2, x3]T maps to
[ x1x3 , x2

x3
]T . A key point about homogeneous coordinates is that they allow the relevant

transformations in the imaging process to be represented as linear mappings, which
of course are expressed as matrix–vector equations. However, although the mapping
between homogeneous world coordinates of a point and homogeneous image coor-
dinates is linear, the mapping from homogeneous to inhomogeneous coordinates is
non-linear, due to the required division.

The use of homogeneous coordinates fitswell with the relationship between image
points and their associated back-projected rays into the scene space. Imagine a math-
ematical (virtual) image plane at a distance of one metric unit in front of the center
of projection, as shown in Fig. 2.5. With the camera center, C, the homogeneous
coordinates [x, y, 1]T define a 3D scene ray as [λx, λy, λ]T , where λ is the unknown
distance (λ > 0) along the ray. Thus there is an intuitive link between the depth
ambiguity associated with the 3D scene point and the equivalence of homogeneous
coordinates up to an arbitrary non-zero scale factor.

Extending the idea of thinking of homogeneous image points as 3D rays, consider
the cross-product of two homogeneous points. This gives a direction that is the normal

2Youmaywish to compare lT x = 0 to twowell-known parameterizations of a line in the (x,y) plane,
namely, ax + by + c = 0 and y = mx + c and, in each case, write down homogeneous coordinates
for the point x and the line l.
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of the plane that contains the two rays. The line between the two image points is
the intersection of this plane with the image plane. The dual of this is that the cross-
product of two lines in the image plane gives a point on the image plane whose
associated 3D ray represents the intersection of their associated planes. The 3D ray
has a direction orthogonal to the normals of both of these planes and is the direction of
the ray that defines the point of intersection of the two lines in the image plane. Note
that any point with its third homogeneous element zero defines a ray parallel to the
image plane and hence meets it at infinity. Such a point is termed a point at infinity,
and there is an infinite set of these points [x1, x2, 0]T that lie on the line at infinity
[0, 0, 1]T ; Finally, note that the 3-tuple [0, 0, 0]T has no meaning and is undefined.
For further reading on homogeneous coordinates and projective geometry, please see
[20, 38].

2.3.2 Perspective Projection Camera Model

We now return to the perspective projection (central projection) camera model, and
wenote that itmaps 3Dworld points in standardmetric units into the pixel coordinates
of an image sensor. It is convenient to think of this mapping as the concatenation of
three successive stages:

1. A six degree-of-freedom (DOF) rigid transformation consisting of a rotation,R (3
DOF), and translation, t (3 DOF), that maps points expressed inworld coordinates
to the same points expressed in camera-centered coordinates.

2. A perspective projection from the 3D world to the 2D image plane.
3. A mapping from metric image coordinates to pixel coordinates.

We now discuss each of these projective mappings in turn.

2.3.2.1 Camera Modeling: The Coordinate Transformation

As shown in Fig. 2.5, the camera frame has its (X,Y) plane parallel to the image
plane and Z is in the direction of the principal axis of the lens and encodes depth
from the camera. Suppose that the camera center has inhomogeneous position C̃ in
the world frame3 and the rotation of the camera frame is Rc relative to the world
frame orientation. This means that we can express any inhomogeneous camera frame
points as:

X̃c = RT
c (X̃ − C̃) = RX̃ + t. (2.1)

HereR = RT
c represents the rigid rotation and t = −RT

c C̃ represents the rigid trans-
lation that maps a scene point expressed in the world coordinate frame into a camera-

3We use a tilde to differentiate n-tuple inhomogeneous coordinates from (n+1)-tuple homogeneous
coordinates.
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centered coordinate frame. Equation2.1 can be expressed as a projective mapping,
namely, one that is linear in homogeneous coordinates, to give

⎡
⎢⎢⎣
Xc

Yc
Zc

1

⎤
⎥⎥⎦ =

[
R t
0T 1

]
⎡
⎢⎢⎣
X
Y
Z
1

⎤
⎥⎥⎦ .

We denote Pr as the 4 × 4 homogeneous matrix representing the rigid coordinate
transformation in the above equation.

2.3.2.2 Camera Modeling: Perspective Projection

Observing the similar triangles in the geometry of perspective imaging, we have

xc
f

= Xc

Zc
,

yc
f

= Yc
Zc

, (2.2)

where (xc, yc) is the position (metric units) of a point in the camera’s image plane
and f is the distance (metric units) of the image plane to the camera center. (This is
usually set to the focal length of the camera lens.) The two equations above can be
written in linear form as

Zc

⎡
⎣
xc
yc
1

⎤
⎦ =

⎡
⎣

f 0 0 0
0 f 0 0
0 0 1 0

⎤
⎦

⎡
⎢⎢⎣
Xc

Yc
Zc

1

⎤
⎥⎥⎦ .

We denote Pp as the 3 × 4 perspective projection matrix, defined by the value of f ,
in the above equation. If we consider an abstract image plane at f = 1, then points
on this plane are termed normalized image coordinates4 and from Eq.2.2, these are
given by

xn = Xc

Zc
, yn = Yc

Zc
.

2.3.2.3 Camera Modeling: Image Sampling

Typically, the image on the image plane is sampled by an image sensor, such as a
CCD or CMOS device, at the locations defined by an array of pixels. The final part of
camera modeling defines how that array is positioned on the [xc, yc]T image plane,

4We need to use a variety of image coordinate normalizations in this chapter. For simplicity, we
will use the same subscript n, but it will be clear about how the normalization is achieved.
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so that pixel coordinates can be generated. In general, pixels in an image sensor are
not square and the number of pixels per unit distance varies between the xc and yc
directions; we will call these scalingsmx andmy . Note that pixel positions have their
origin at the corner of the sensor and so the position of the principal point (where the
principal axis intersects the image plane) is modeledwith pixel coordinates [x0, y0]T .
Finally, many camera models also cater for any skew,5 s, so that the mapping into
pixels is given by ⎡

⎣
x
y
1

⎤
⎦ =

⎡
⎣
mx s x0
0 my y0
0 0 1

⎤
⎦

⎡
⎣
xc
yc
1

⎤
⎦ .

We denotePc as the 3 × 3 projective matrix defined by the five parametersmx ,my, s
and x0, y0 in the above equation.

2.3.2.4 Camera Modeling: Concatenating the Projective Mappings

We can concatenate the three stages described in the three previous subsections to
give

λx = PcPpPrX

or simply
λx = PX, (2.3)

where λ is non-zero and positive. We note the following points concerning the above
equation:

1. For any homogeneous image point scaled to λ[x, y, 1]T , the scale λ is equal to
the imaged point’s depth in the camera-centered frame (λ = Zc).

2. Any non-zero scaling of the projection matrix λPP performs the same projection
since, in Eq.2.3, any non-zero scaling of homogeneous image coordinates is
equivalent.

3. A camera with projection matrix P, or some non-zero scalar multiple of that, is
informally referred to as camera P in the computer vision literature and, because
of point 2 above, it is referred to as being defined up to scale.

The matrix P is a 3 × 4 projective camera matrix with the following structure:

P = K[R|t]. (2.4)

The parameters within K are the camera’s intrinsic parameters. These parameters
are those combined from Sects. 2.3.2.2 and 2.3.2.3 above, so that

5Skew models a lack of orthogonality between the two image sensor sampling directions. For most
imaging situations, it is zero.
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K =
⎡
⎣

αx s x0
0 αy y0
0 0 1

⎤
⎦ ,

where αx = f mx and αy = f my represent the focal length in pixels in the x and y
directions, respectively. Together, the rotation and translation in Eq.2.4 are termed
the camera’s extrinsic parameters. Since there are 5 DOF from intrinsic parameters
and 6 DOF from extrinsic parameters, a camera projection matrix has only 11 DOF,
not the full 12 of a general 3 × 4 matrix. This is also evident from the fact that we are
dealing with homogeneous coordinates and so the overall scale of P does not matter.

By expanding Eq.2.3, we have

λ

homogeneous
image

coordinates︷ ︸︸ ︷⎡
⎣
x
y
1

⎤
⎦ =

intrinsic
camera

parameters︷ ︸︸ ︷⎡
⎣

αx s x0
0 αy y0
0 0 1

⎤
⎦

extrinsic
camera

parameters︷ ︸︸ ︷⎡
⎣
r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz

⎤
⎦

homogeneous
world

coordinates︷ ︸︸ ︷⎡
⎢⎢⎣
X
Y
Z
1

⎤
⎥⎥⎦ , (2.5)

which indicates that both the intrinsic and extrinsic camera parameters are necessary
to fully define a ray (metrically, not just in pixel units) in 3D space and hence make
absolute measurements in multiple-view 3D reconstruction. Finally, we note that any
non-zero scaling of scene homogeneous coordinates [X,Y, Z , 1]T in Eq.2.5 gives the
same image coordinates6 which, for a single image, can be interpreted as ambiguity
between the scene scale and the translation vector t.

2.3.3 Radial Distortion

Typical cameras have a lens distortion which disrupts the assumed linear projective
model. Thus a camera may not be accurately represented by the pinhole camera
model that we have described, particularly if a low-cost lens or a wide field-of-
view (short focal length) lens such as a fish-eye lens is employed. Some examples
of lens distortion effects are shown in Fig. 2.6. Note that the effect is non-linear
and, if significant, it must be corrected so that the camera can again be modeled
as a linear device. The estimation of the required distortion parameters to do this
is often encompassed within a camera calibration procedure, which is described in
Sect. 2.4. With reference to our previous three-stage development of a projective
camera in Sect. 2.3.2, lens distortion occurs at the second stage which is the 3D to
2D projection, and this distortion is sampled by the image sensor.

6The same homogeneous image coordinates up to scale or the same inhomogeneous image coordi-
nates.
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Fig. 2.6 Examples of radial distortion effects in lenses: (a) No distortion, (b) Pincushion distortion,
(c) Barrel distortion, (d) Fish-eye distortion

Detailed distortion models contain a large number of parameters that model both
radial and tangential distortions [13]. However, radial distortion is the dominant
factor and usually it is considered sufficiently accurate to model this distortion only,
using a low-order polynomial such as

[
xnd
ynd

]
=

[
xn
yn

]
+

[
xn
yn

]
(k1r

2 + k2r
4),

where [xn, yn]T is the undistorted image position (i.e., that obeys our linear projection
model) in normalized coordinates, [xnd , ynd ]T is the distorted image position in
normalized coordinates, k1 and k2 are the unknown radial distortion parameters, and
r = √

x2n + y2n . Assuming zero skew, we also have
[
xd
yd

]
=

[
x
y

]
+

[
(x − x0)
(y − y0)

]
(k1r

2 + k2r
4), (2.6)

where the distorted position [xd , yd ]T is now expressed in pixel coordinates and
[x, y]T are the usual pixel coordinates predicted by the linear pinhole model. Note
that r is still defined in normalized image coordinates and so a non-unity aspect
ratio (mx �= my) in the image sensor does not invalidate this equation. Also note that
both Eq.2.6 and Fig. 2.6 indicate that distortion increases away from the center of
the image. In the barrel distortion, shown in Fig. 2.6c, distortion correction requires
that image points are moved slightly toward the center of the image, more so if they
are near the edges of the image. Correction could be applied to the whole image,
as in dense stereo, or just a set of relevant features, such as extracted corner points.
Clearly, the latter process is computationally cheaper.

Now that we have discussed the modeling of a camera’s image formation process
in detail; we now need to understand how to estimate the parameters within this
model. This is the focus of the next section, which details camera calibration.
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2.4 Camera Calibration

Camera calibration [14] is the process of finding the parameters of the camera that
produced a given image of a scene. This includes both extrinsic parameters R, t
and intrinsic parameters, comprising those within the matrix K and radial distortion
parameters, k1, k2. Once the intrinsic and extrinsic camera parameters are known, we
know the camera projection matrix P and, taking into account any radial distortion
present, we can back-project any image pixel to a 3D ray in space. Clearly, as the
intrinsic camera calibration parameters are tied to the focal length, changing the zoom
on the lens would make the calibration invalid. It is also worth noting that calibration
is not always required. For example, we may be more interested in approximate
shape, where we need to know what objects in a scene are co-planar, rather than their
absolute 3D position measurements. However, for stereo systems at least, camera
calibration is commonplace.

Generally, it is not possible for an end user to get the required calibration informa-
tion to the required accuracy from camera manufacturer’s specifications and external
measurement of the position of cameras in some frames. Hence, some sort of cam-
era calibration procedure is required, of which there are several different categories.
The longest established of these is photogrammetric calibration, where calibration is
performed using a scene object of precisely known physical dimensions. Typically,
several images of a special 3D target, such as three orthogonal planes with calibra-
tion grids (chessboard patterns of black and white squares), are captured and precise
known translationsmay be used [89]. Although this gives accurate calibration results,
it lacks flexibility due to the need for precise scene knowledge.

At the other end of the spectrum is self-calibration (auto-calibration) [38, 55],
where no calibration target is used. The correspondences across three images of the
same rigid scene provide enough constraints to recover a set of camera parameters
which allow 3D reconstruction up to a similarity transform. Although this approach
is flexible, there are many parameters to estimate and reliable calibrations cannot
always be obtained.

Between these two extremes are “desktop” camera calibration approaches that use
images of planar calibration grids, captured at several unknown positions and orien-
tations (i.e., a single planar chessboard pattern is manually held at several random
poses, and calibration images are captured and stored). This gives a good compro-
mise between the accuracy of photogrammetric calibration and the ease of use of
self-calibration. A seminal example is given by Zhang [98].

Although there are a number of publicly available camera calibration packages
on the web, such as the Caltech camera calibration toolbox for MATLAB [11] and in
the OpenCV computer vision library [62], a detailed study of at least one approach
is essential to understand calibration in detail. We will use Zhang’s work [98] as a
seminal example, and this approach consists of two main parts:

1. Abasic calibration that is basedon linear least squares andhencehas a closed-form
solution. In the formulation of the linear problem, a set of nine parameters need to
be estimated. These are rather complicated combinations of the camera’s intrinsic
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parameters, and the algebraic least squares minimization to determine them has
no obvious geometric meaning. Once intrinsic parameters have been extracted
from these estimated parameters, extrinsic parameters can be determined using
the homography associated with each calibration grid image.

2. A refined calibration is based on non-linear least squares and hence has an iterative
solution.Here, it is possible to formulate a least squares error between the observed
(inhomogeneous) image positions of the calibration grid corners and the positions
predicted by the current estimate of intrinsic and extrinsic camera parameters. This
has a clear geometric interpretation, but the sumof squares function thatwewish to
minimize is non-linear in terms of the camera parameters. A standard approach to
solving this kind of problem is the Levenberg–Marquardt (LM) algorithm, which
employs gradient descent when it is far from a minimum and Gauss–Newton
minimization when it gets close to a minimum. Since the LM algorithm is a very
general procedure, it is straightforward to employ more complex camera models,
such as those that include parameters for the radial distortion associated with the
camera lens.

The iterative optimization in (2) above needs to bewithin the basin of convergence
of the global minimum and so the linear method in (1) is used to determine an
initial estimation of camera parameters. The raw data used as inputs to the process
consists of the image corner positions, as detected by an automatic corner detector
[37] [81], of all corners in all calibration images and the corresponding 2D world
positions, [X, Y ]T , of the corners on the calibration grid. Typically, correspondences
are established bymanually clicking one ormore detected image corners, andmaking
a quick visual check that the imaged corners are matched correctly using overlaying
graphics or text. A typical set of targets is shown in Fig. 2.7.

In the following four subsections, we outline the theory and practice of camera
calibration. The first subsection details the estimation of the planar projective map-

Fig. 2.7 Left: calibration targets used in a camera calibration process. Right: after calibration, it is
possible to determine the positions of the calibration planes using the estimated extrinsic parameters
(Figure courtesy of theCamera Calibration Toolbox forMATLABwebpage at Caltech by Jean-Yves
Bouguet [11])
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ping between a scene plane (calibration grid) and its image. The next two subsections
closely follow Zhang [98] and detail the basic calibration and then the refined cal-
ibration, as outlined above. These subsections refer to the case of a single camera,
and so a final fourth subsection is used to describe the additional issues associated
with the calibration of a stereo rig.

2.4.1 Estimation of a Scene-to-Image Planar Homography

A homography is a projective transformation (projectivity) that maps points to points
and lines to lines. It is a highly useful imaging model when we view planar scenes,
which is common in many computer vision processes, including the process of cam-
era calibration.

Suppose that we view a planar scene, then we can define the (X,Y ) axes of
the world coordinate system to be within the plane of the scene, and hence Z = 0
everywhere. Equation2.5 indicates that, as far as a planar scene is concerned, the
imaging process can be reduced to

λx = K[r1 r2 t][X,Y, 1]T ,

where r1 and r2 are the first and second columns of the rotation matrix R; hence,

λx = H[X,Y, 1]T , H = K[r1 r2 t]. (2.7)

The 3 × 3 matrix H is termed a planar homography, which is defined up to a scale
factor,7 and hence has eight degrees of freedom instead of nine.

By expanding the above equation, we have

λ

⎡
⎣
x
y
1

⎤
⎦ =

⎡
⎣
h11 h12 h13
h21 h22 h23
h31 h32 h33

⎤
⎦

⎡
⎣
X
Y
1

⎤
⎦ . (2.8)

If we map homogeneous coordinates to inhomogeneous coordinates, by dividing
through by λ, this gives

x = h11X + h12Y + h13
h31X + h32Y + h33

(2.9)

y = h21X + h22Y + h23
h31X + h32Y + h33

. (2.10)

7Due to the scale equivalence of homogeneous coordinates.
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From a set of four correspondences in a general position,8 we can formulate a
set of eight linear equations in the eight unknowns of a homography matrix. This
is because each correspondence provides a pair of constraints of the form given in
Eqs. 2.9 and 2.10.

Rearranging terms in four pairs of those equations allows us to formulate the
homography estimation problem in the form:

Ah = 0, (2.11)

where A is an 8 × 9 data matrix derived from image and world coordinates of cor-
responding points and h is the 9-vector containing the elements of the homography
matrix. Since A has rank 8, it has a one-dimensional null space, which provides
a non-trivial (non-zero vector) solution for Eq. 2.11. This can be determined from
a Singular Value Decomposition (SVD) of the data matrix, which generates three
matrices (U,D,V) such that A = UDVT . Here, D is a diagonal matrix of singular
values andU, V are orthonormal matrices. Typically, SVD algorithms order the sin-
gular values in descending order down the diagonal ofD and so the required solution,
corresponding to a singular value of zero, is extracted as the last column of V. Due to
the homogeneous form of Eq.2.11, the solution is determined up to a non-zero scale
factor, which is acceptable because H is only defined up to scale. Often a unit scale
is chosen (i.e., ||h|| = 1), and this scaling is returned automatically in the columns
of V.

In general, a larger number of correspondences than the minimumwill not exactly
satisfy the same homography because of image noise. In this case, a least squares
solution to h can be determined in an over-determined system of linear equations.
We follow the same procedure as above but this time the data matrix is of size 2n × 9
where n > 4 is the number of correspondences. When we apply SVD, we still select
the last column of V corresponding to the smallest singular value in D. (Note that,
in this case, the smallest singular value will be non-zero.)

Data normalization prior to the application of SVD is essential to give stable esti-
mates [38]. The basic idea is to translate and scale both image and world coordinates
to avoid orders of magnitude difference between the columns of the data matrix.
Image points are translated so that their centroid is at the origin and scaled to give
a root-mean-squared (RMS) distance of

√
2 from that origin, so that the “average”

image point has coordinates of unity magnitude. Scene points should be normalized
in a similar way except that they should be scaled to give an RMS distance of

√
3.

When using homogeneous coordinates, the normalizations can be applied using
matrix operators Ni , Ns , such that new normalized coordinates are given as

xn = Nix, Xn = NsX

8No three points collinear.



58 S. Se and N. Pears

for the image points and scene points, respectively. Suppose that the homography
computed from normalized coordinates is H̃, then the homography relating the orig-
inal coordinates of the correspondences is given as

H = N−1
i H̃Ns .

2.4.2 Basic Calibration

From the known planar scene target and the resulting image, a scene-to-image planar
homography can be estimated as described in the previous subsection. Suppose that
we describe such a homography as a set of 3 × 1 column vectors, i.e.,H = [h1 h2 h3],
then comparing this to Eq.2.7 we have

λHh1 = Kr1, λHh2 = Kr2, (2.12)

where λH is a scale factor, accounting for the particular scale of an estimated homog-
raphy. Noting that the columns of the rotation matrix, r1, r2 are orthonormal,

rT1 r2 = hT
1 K

−TK−1h2 = 0, (2.13)

rT1 r1 = rT2 r2 ⇒ hT
1 K

−TK−1h1 = hT
2 K

−TK−1h2. (2.14)

These equations provide one constraint each on the intrinsic parameters.
We construct a symmetric matrix B such that

B = K−TK−1 =
⎡
⎣
B11 B12 B13

B12 B22 B23

B13 B23 B33

⎤
⎦ .

Let the i th column vector of H be hi = [h1i , h2i , h3i ]T , we have

hT
i Bh j = vTi jb,

where

vi j = [h1i h1 j , h1i h2 j + h2i h1 j , h2i h2 j , h3i h1 j + h1i h3 j , h3i h2 j + h2i h3 j , h3i h3 j ]T

and b is the vector containing six independent entries of the symmetric matrix B:

b = [B11, B12, B22, B13, B23, B33]T .

Therefore, the two constraints in Eqs. 2.13 and 2.14 can be rewritten as
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[
vT12

(v11 − v22)T

]
b = 0.

If n images of the planar calibration grid are observed, n sets of these equations
can be stacked into a matrix–vector equation as

Vb = 0,

where V is a 2n × 6 matrix. Although a minimum of three planar views allows us
to solve for b, it is recommended to take more and form a least squares solution. In
this case, the solution for b is the eigenvector of VTV associated with the smallest
eigenvalue. Once b is estimated, we know the matrix B up to some unknown scale
factor, λB , and all of the intrinsic camera parameters can be computed by expanding
the right-hand side of B = λBK−TK−1 in terms of its individual elements. Although
this is somewhat laborious, it is straightforward algebra of simultaneous equations,
where five intrinsic camera parameters plus one unknown scale factor can be derived
from the six parameters of the symmetric matrixB. Zhang [98] presents the solution:

y0 = (B12B13 − B11B23)

(B11B22 − B2
12)

λB = B33 − [B2
13 + y0(B12B13 − B11B23)]

B11

αx =
√

λB

B11

αy =
√

λB B11

(B11B22 − B2
12)

s = −B12α
2
xαy

λB

x0 = sy0
αy

− B13α
2
x

λB
.

OnceK is known, the extrinsic camera parameters for each image can be computed
using Eq.2.12:

r1 = λHK−1h1
r2 = λHK−1h2
r3 = r1 × r2
t = λHK−1h3,

where here
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λH = 1

||K−1h1|| = 1

||K−1h2|| .

The vectors r1, r2 will not be exactly orthogonal and so the estimated rotation matrix
does not exactly represent a rotation. Zhang [98] suggests performing SVD on the
estimated rotation matrix so that USVT = R. Then the closest pure rotation matrix
in terms of Frobenius norm to that estimated is given as R′ = UVT .

2.4.3 Refined Calibration

After computation of the linear solution described above, it can be iteratively refined
via a non-linear least squares minimization using the Levenberg–Marquardt (LM)
algorithm. As previously mentioned, the camera parameters can be extended at this
stage to include an estimation for the lens distortion parameters, to give us the fol-
lowing minimization:

p̂ = min
p

⎧⎨
⎩

n∑
i=1

m∑
j=1

||xi, j − x̂i, j (K, k1, k2,Ri , ti ,X j )||2
⎫⎬
⎭ ,

where xi, j is the image ofworld pointX j in image i and x̂i, j is the predicted projection
of the same world point according to Eq.2.7 (using estimated intrinsic and extrinsic
camera parameters) followed by radial distortion according to Eq.2.6.

The vector p contains all of the free parameters within the planar projection
(homography) function plus two radial distortion parameters k1 and k2 as described
in Sect. 2.3.3. Initial estimates of these radial distortion parameters can be set to zero.
LM iteratively updates all parameters according to the equation:

pk+1 = pk + δpk
δpk = −(JT J + λJ diag(JT J))−1JT e,

where J is the Jacobian matrix containing the first derivatives of the residual e with
respect to each of the camera parameters.

Thus computation of the Jacobian is central to LMminimization. This can be done
either numerically or with a custom routine, if analytical expressions for the Jacobian
entries are known. In the numerical approach, each parameter is incremented and the
function to be minimized (the least squares error function in this case) is computed
anddivided by the increment,which should be themaximumof 10−6 and 10−4 × |pi |,
where pi is some current parameter value [38]. In the case of providing a custom
Jacobian function, the expressions are long and complicated in the case of camera
calibration, and so the use of a symbolicmathematics package can help reduce human
error in constructing the partial differentials.
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Note that there are LM implementations available on many platforms, for exam-
ple, in MATLAB’s optimization toolbox, or the C/C++ levmar package. A detailed
discussion of iterative estimation methods including LM is given in Appendix 6 of
Hartley and Zisserman’s book [38].

2.4.4 Calibration of a Stereo Rig

As a mathematical convenience, it is common practice to choose the optical center
of one camera to be the origin of a stereo camera’s 3D coordinate system. Then,
the relative rigid location of the other camera, [R, t], within this frame, along with
both sets of intrinsic parameters, is required to generate a pair of projection matrices
and hence a pair of 3D rays from corresponding image points that intersect at their
common scene point.

The previous two subsections showed how we can calculate the intrinsic param-
eters for any single camera. If we have a stereo pair, which is our primary interest,
then we would compute a pair of intrinsic parameter matrices, one for the left camera
and one for the right. In most cases, the two cameras are the same model, and hence
we would expect the two intrinsic parameter matrices to be very similar.

Also, we note that, for each chessboard position, two sets of extrinsic parameters,
[R, t], are generated, one for the left camera’s position relative to the calibration
plane and one for the right. Clearly, each left–right pair of extrinsic parameters should
have approximately9 the same relationship, which is due to the fixed rigid rotation
and translation of one camera relative to another in the stereo rig.

Once two sets of intrinsic parameters and one set of extrinsic parameters encoding
the relative rigid pose of one camera relative to another has been computed, the
results are often refined in a global stereo optimization procedure, again using the
Levenberg–Marquardt approach. To reduce n sets of relative extrinsic parameters
to one set, we could choose the set associated with the closest calibration plane or
compute some form of average.

All parameter estimates, both intrinsic and extrinsic, can be improved if the opti-
mization is now performed over a minimal set of parameters, since the extrinsic
parameters are reduced from 12 (two rotations and two translations) to 6 (one rela-
tive rotation and one relative translation) per calibration grid location. This approach
ensures global rigidity of the stereo rig going from left-to-right camera. An imple-
mentation of global stereo optimization to refine stereo camera parameters is given
in the Caltech camera calibration toolbox for MATLAB [11].

9“Approximately”, because of noise in the imaged corner positions supplied to the calibration
process.
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2.5 Two-View Geometry

3D reconstruction from an image pair must solve two problems: the correspondence
problem and the reconstruction problem.

• Correspondence problem. For a point x in the left image, which is the correspond-
ing point x′ in the right image, where x and x′ are images of the same physical
scene point X?

• Reconstruction problem. Given two corresponding points x and x′, how do we
compute the 3D coordinates of scene point X?

Of these problems, the correspondence problem is significantly more difficult as it
is a search problemwhereas, for a stereo camera of known calibration, reconstruction
to recover the 3D measurements is a simple geometric mechanism. Since we have
sets of three unique points, (x, x′,X), this mechanism is called triangulation (not to
be confused with surface mesh triangulation, described in Chap.6).

This section is designed to give the reader a good general grounding in two-view
geometry and estimation of the key two-view geometric relations that can be useful
even when extrinsic or intrinsic camera calibration information is not available.10

As long as the concept of epipolar geometry is well understood, the remaining main
sections of this chapter can be easily followed.

2.5.1 Epipolar Geometry

Epipolar geometry establishes the relationship between two camera views. When
we have calibrated cameras and we are dealing with metric image coordinates, it is
dependent only on the relative pose between the cameras.Whenwe have uncalibrated
cameras and we are dealing with pixel-based image coordinates, it is additionally
dependent on the cameras’ intrinsic parameters; however, it is independent of the
scene.

Once the epipolar geometry is known, for any image point in one image, we know
that its corresponding point (its match) in the other image must lie on a line, which is
known as the epipolar line associated with the original point. This epipolar constraint
greatly reduces the correspondence problem from a 2D search over the whole image
to a 1D search along the epipolar line only, and hence reduces computational cost
and ambiguities.

The discussion here is limited to two-view geometry only. A similar constraint
called the trifocal tensor is applicable for three views but is outside the scope of this
chapter. For further information on the trifocal tensor and n-view geometries, please
refer to [38].

10Extrinsic parameters are always not known in a structure from motion problem; they are part of
what we are trying to solve for. Intrinsic parameters may or may not be known, depending on the
application.

http://dx.doi.org/10.1007/978-3-030-44070-1_6
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Fig. 2.8 a The epipolar geometry establishes the relationship between the two camera views. b
The epipolar planes rotate around the baseline, and all epipolar lines intersect at the epipole

As shown in Fig. 2.8a, the image points x and x′, world point X, and the camera
centers are co-planar, and this plane is called the epipolar plane, which is shaded in
the figure. If we only know x, how is the corresponding point x′ constrained? The line
l′ is the intersection of the epipolar plane with the second image plane. l′ is called the
epipolar line, which is the image in the second view of the ray back-projected from
x. As the point x′ lies on l′, the correspondences search does not need to cover the
entire image but can be restricted only to the line l′. In fact, if any point on epipolar
line l has a corresponding point in the second image, it must lie on epipolar line l′
and vice versa. Thus l and l′ are called conjugate epipolar lines.

The epipole is the point of intersection of the line joining the camera centers with
the image plane. The epipole e is the projection of the second camera center on the
first image, while the epipole e′ is the projection of the first camera center on the
second image.

In essence, two-view epipolar geometry describes the intersection of the image
planes with the pencil of planes having the baseline as the pencil axis, as illustrated
in Fig. 2.8b. Note that the baseline is the line joining the two camera centers.11 All
epipolar lines intersect at the epipole of the respective image to give a pencil of
epipolar lines in each image. Note that the epipoles are not necessarily within the
boundaries of the image. A special case is when the cameras are oriented in the same
direction, and they are separated by a translation parallel to both image planes. In
this case, the epipoles are at infinity and the epipolar lines are parallel. Furthermore,
if the translation is in the X direction only and the cameras have the same intrinsic
parameters, the conjugate epipolar lines lie on the same image rows. This is an ideal
set up when we search for correspondences between the two images. However, we
may prefer some camera vergence to improve the field-of-view overlap between the
two cameras for certain distance and, in this case, the images need to be warped so
that the epipolar lines become horizontal again. This rectification process is discussed
later in the chapter.

11The length of the baseline is the magnitude of the extrinsic translation vector, t.
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Fig. 2.9 The essential
matrix E = [t]xR encodes
the epipolar geometry. It is
used to relate the
correspondences xc and xc ′
between two images, when
these image locations are
expressed in metric units. If
pixel-based coordinates are
used (for example, if
intrinsic camera parameters
are unknown) epipolar
geometry is encoded by the
fundamental matrix F

The epipolar constraint can be represented algebraically by a 3 × 3 matrix called
the fundamental matrix (F), when we are dealing with raw pixel coordinates, and by
the essential matrix (E) when the intrinsic parameters of the cameras are known and
we are dealing with metrically expressed coordinates (e.g., millimeters) in the image
plane.

2.5.2 Essential and Fundamental Matrices

Both the essential and fundamental matrices derive from a simple co-planarity con-
straint. For simplicity it is best to look at the epipolar relation using the essential
matrix first and then adapt it using the camera intrinsic parameters to obtain a rela-
tion for pixel-based image coordinates, which involves the fundamental matrix.

Referring to Fig. 2.9, we have a world point X that projects to points xc and x′
c in

the image planes. These image plane points are expressed as 3-vectors, so that they
are effectively the 3D positions of the imaged points expressed metrically in their
own camera frame, hence the subscript c. (Note also that they can be regarded as
normalized homogeneous image coordinates, with the scale set to the focal length, f ,
although any non-zero scale would suffice.)We know that the three vectorsCxc,C′x′

c
and t are co-planar, so we can choose one of the two camera frames to express this
co-planarity, using the scalar triple product. If we choose the right frame (primed),
then we must rotate vector Cxc using rotation matrix R, to give

x′T
c (t × Rxc) = 0.

Expressing the cross-product with t by the multiplication with the skew-symmetric
matrix [t]x , we have

x′
c[t]xRxc = 0,
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where

[t]x =
⎡
⎣

0 −tz ty
tz 0 −tx

−ty tx 0

⎤
⎦

and thus we have
E = [t]xR (2.15)

and
x′T
c Exc = 0. (2.16)

Thus the essentialmatrix encapsulates only extrinsic parameters, namely, the rotation
and translation associated with the relative pose of the two cameras. The implication
of this is that, in applications where R and t have not been computed in a calibration
procedure, they may be recoverable from E, which will be discussed further in
Sect. 2.8.2 in the context of structure from motion.

In many practical situations, we also need to deal with uncalibrated cameras
where the intrinsic parameters are unknown (i.e., the mapping between metric image
coordinates and raw pixel values is unknown). The shifting and scaling operations
required for this conversion can be encapsulated in matrices K and K′, as follows:

x = Kxc, x′ = K′x′
c,

where K and K′ are the 3 × 3 matrices containing the intrinsic camera parameters
for the two cameras. Inserting these relations into Eq.2.16 gives

x′TK′−TEK−1x = 0

x′TFx = 0

thus
F = K′−TEK−1 = K′−T [t]xRK−1

and we can see that the fundamental matrix encapsulates both intrinsic and extrinsic
parameters. The interpretation of the epipolar constraint given by the fundamental
matrix is that, if points x and x′ correspond, then x′ must lie on the epipolar line
given by l′ = Fx and therefore the dot product between x′ and Fx is zero.

Some key properties of the fundamental matrix are summarized below:

• If F is the fundamental matrix between camera P and camera P′, then FT is the
fundamental matrix between camera P′ and camera P.

• F is a projective mapping taking a point to a line. If l and l′ are corresponding (i.e.,
conjugate) epipolar lines, then any point x on l maps to the same line l′. Hence,
there is no inverse mapping (zero determinant, rank 2).
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• F has seven degrees of freedom. While a 3 × 3 homogeneous matrix has eight
independent ratios, there is also an additional constraint that the determinant of F
is zero (F is rank 2), which further removes one degree of freedom.

• For any point x in the first image, the corresponding epipolar line in the second
image is l′ = Fx. Similarly, l = FT x′ represents the epipolar line in the first image
corresponding to x′ in the second image.

• The epipoles are determined as the left and right nullspaces of the fundamental
matrix. This is evident, since each epipole is on every epipolar line in their respec-
tive image. This is written as e′T l′ = e′TFx = 0 ∀x, hence e′TF = 0. Similarly
lT e = x′TFe = 0 ∀x′, hence Fe = 0.

• The SVD (Singular Value Decomposition) of F is given as

F = U diag(σ1, σ2, 0) VT ,

where U = [u1,u2, e′], V = [v1, v2, e]. Thus finding the column in V that cor-
responds to the zero singular value gives a simple method of computation of the
epipoles from the fundamental matrix.

• For cameras with some vergence (epipoles not at infinity) to give camera projec-
tion matrices: P = K[I|0] and P′ = K′[R|t], then we have F = K

′−T [t]×RK−1 =
[K′t]×K′RK−1 = K

′−TRKT [KRT t]× [38].

2.5.3 The Fundamental Matrix for Pure Translation

If the two identical cameras (K = K′) are separated by a pure translation (R = I), the
fundamental matrix has a simple form, which can be shown to be [38]

F = [Kt]x = [e′]x =
⎡
⎣

0 −e′
z e′

y

e′
z 0 −e′

x
−e′

y e′
x 0

⎤
⎦ .

In this case, the epipoles are at the same location in both images. If the translation
is parallel to the image plane, the epipoles are at infinity with ez = e′

z = 0 and the
epipolar lines are parallel in both images. When discussing rectilinear stereo rigs and
rectification later, we will be particularly interested in the case when the translation
is parallel to the camera’s x-axis, in which case the epipolar lines are parallel and
horizontal and thus correspond to image scan (raster) lines. In this case e′ = [1, 0, 0]T
and the fundamental matrix is

F =
⎡
⎣
0 0 0
0 0 −1
0 1 0

⎤
⎦
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and hence the relationship between corresponding points x and x′ is given by x′TFx =
0 which reduces to y = y′.

2.5.4 Computation of the Fundamental Matrix

As the fundamentalmatrix is expressed in terms of corresponding image points,F can
be computed from image correspondences alone. No camera calibration information
is needed, and pixel coordinates are used directly. Note that there are degenerate cases
in the estimation of F. These occur in two common and well-known instances: (i)
when the relative pose between the two views can be described by a pure rotation and
(ii) when the scene is planar. For nowwe consider scenarios where such degeneracies
do not occur and we return to them later.

By expanding x′TFx = 0 where x = [x, y, 1]T and x′ = [x ′, y′, 1]T and

F =
⎡
⎣

f11 f12 f13
f21 f22 f23
f31 f32 f33

⎤
⎦

we obtain

x ′x f11 + x ′y f12 + x ′ f13 + y′x f21 + y′y f22 + y′ f23 + x f31 + y f32 + f33 = 0.

As each feature correspondence provides one equation, for n correspondences, we
get the following set of linear equations:

⎡
⎢⎣
x ′
1x1, x ′

1y1, x ′
1, y′

1x1, y′
1y1, y′

1, x1, y1, 1
...

...
...

...
...

...
...

...
...

x ′
nxn, x ′

n yn, x ′
n, y′

nxn, y′
n yn, y′

n, xn, yn, 1

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f11
f12
f13
f21
f22
f23
f31
f32
f33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0 (2.17)

or more compactly,

Af = 0,

where A is termed the data matrix and f is the vector of unknown elements of F.
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The eight-point algorithm12 [47] can be used as a very simple method to solve for
F linearly using eight correspondences. As this is a homogeneous set of equations,
f can only be determined up to a scale factor. With eight correspondences, Eq.2.17
can be solved by linear methods, where the solution is the nullspace of A. (This can
be found from the column in V that corresponds to the zero singular value inD in the
singular value decomposition A = UDVT .) However, a solution with a minimal set
of correspondences is often inaccurate, particularly if the correspondences are not
well spread over the images, or they may not provide enough strong constraints if
some of them are near-collinear or co-planar. It is preferable to use more than eight
correspondences, then the least squares solution for f is given by the singular vector
corresponding to the smallest singular value of A.

Note that this approach is similar to that for determining the homography matrix,
discussed earlier in Sect. 2.4.1. As with that approach, it is essential to normalize
the pixel coordinates of each image before applying SVD [38, 39], using a mean-
centering translation and a scaling so that the RMS distance of the points to the origin
is

√
2.Whenusing homogeneous coordinates, this normalization canbe applied using

matrix operators N, N′, such that new normalized image coordinates are given as
xn = Nx, x′

n = N′x′.
In general, the solution for Fn (the subscript n now denotes that we have based

the estimate on normalized image coordinates) will not have zero determinant (its
rank will be 3 and not 2), which means that the epipolar lines will not intersect at
a single point. In order to enforce this, we can apply SVD a second time, this time
to the initially estimated fundamental matrix so that Fn = UDVT . We then set the
smallest singular value (in the third row and third column of D) to zero to produce
matrix D′ and update the estimate of the fundamental matrix as Fn = UD′VT .

Of course, the estimate of Fn maps points to epipolar lines in the normalized
image space. If we wish to search for correspondences within the original image
space, we need to de-normalize the fundamental matrix estimate as F = N′TFnN.

Typically, there are many correspondences between a pair of images, including
mostly inliers but also some outliers. This is inevitable, since matching is a local
search and ambiguous matches exist, which will be discussed further in Sect. 2.7.
Various robust methods for estimating the fundamental matrix, which address the
highly corrupting effect of outliers, are compared in [86]. In order to compute F
from these correspondences automatically, a common method is to use a robust
statistics technique called Random Sample Consensus (RANSAC) [32], which we
now outline:

1. Extract features in both images, for example, from a corner detector [37].
2. Perform feature matching between images (usually over a local area neighbor-

hood) to obtain a set of potential matches or putative correspondences.
3. Repeat the following steps N times:

• Select eight putative correspondences randomly.
• Compute F using these eight points, as described above.

12There are several other approaches, such as the seven-point algorithm.
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Table 2.1 Number of samples required to get at least one good sample with 99% probability for
various sample sizes s and outlier fraction ε.

Sample size s ε = 10% ε = 20% ε = 30% ε = 40% ε = 50%

4 5 9 17 34 72

5 6 12 26 57 146

6 7 16 37 97 293

7 8 20 54 163 588

8 9 26 78 272 1177

• Find the number of inliers13 that support F.

4. Find the Fwith the highest number of inliers (largest support) among the N trials.
5. Use this F to look for additional matches outside the search range used for the

original set of putative correspondences.
6. Re-compute a least squares estimate of F using all inliers.

Note that re-computingF in the final stepmay change the set of inliers, as the epipolar
lines are adjusted. Thus, a possible refinement is to iterate computation of a linear
least squares estimate of F and its inliers, until a stable set of inliers is achieved or
some maximum number of iterations is reached. The refinement achieved is often
considered to be not worth the additional computational expense if processing time
is considered important or if the estimate of F is to be used as the starting point for
more advanced iterative non-linear refinement techniques, described later.

In the RANSAC approach, N is the number of trials (putative F computations)
needed to get at least one good sample with a high probability (e.g., 99%). How large
should N be? The probability p of getting a good sample is given by

p = 1 − (1 − (1 − ε)s)N ,

where ε is the fraction of outliers (incorrect feature correspondences) and s is the
number of correspondences selected for each trial. The above equation can be re-
arranged as

N = log(1 − p)

log(1 − (1 − ε)s)
. (2.18)

The number of samples required for various sample sizes and outlier fractions based
on Eq.2.18 are shown in Table2.1. It can be seen that the number of samples gets
higher as the outlier fraction increases.

By repeatedly selecting a group of correspondences, the inlier support would be
high for a correct hypothesis in which all the correspondences within the sample

13An inlier is a putative correspondence that lies within some threshold of its expected position
predicted by F. In other words, image points must lie within a threshold from their epipolar lines
generated by F.
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size, s, are correct. This allows the robust removal of outliers and the computation
of F using inliers only. As the fraction of outliers may not be known in advance, an
adaptive RANSACmethod can be usedwhere the number of outliers at each iteration
is used to re-compute the total number of iterations required.

As the fundamental matrix has only seven degrees of freedom, a minimum of
seven correspondences are required to compute F. When there are only seven cor-
respondences, det (F) = 0 constraint also needs to be imposed, resulting in a cubic
equation to solve, and hence may produce up to three solutions and all three must be
tested for support. The advantage of using seven correspondences is that fewer trials
are required to achieve the same probability of getting a good sample, as illustrated
in Table2.1.

Fundamental matrix refinement techniques are often based on the Levenberg–
Marquardt algorithm, such that some non-linear cost function is minimized. For
example, a geometric cost function can be formulated as the sum of the squared
distances between image points and the epipolar lines generated from their associated
corresponding points and the estimate of F. This is averaged over both points in a
correspondence and over all corresponding points (i.e., all those that agree with the
estimate of F). The minimization can be expressed as

F = min
F

(
1

N
ΣN

i=1

(
d(x′

i , Fxi )2 + d(xi , FT x′
i )
2)

)
,

where d(x, l) is the distance of a point x to a line l, expressed in pixels. For more
details of this and other non-linear refinement schemes, the reader is referred to [38].

2.5.5 Two Views Separated by a Pure Rotation

If two views are separated by a pure rotation around the camera center, the baseline
is zero, the epipolar plane is not defined, and a useful fundamental matrix cannot
be computed. In this case, the back-projected rays from each camera cannot form a
triangulation to compute depth. This lack of depth information is intuitive because,
under rotation, all points in the same direction move across the image in the same
way, regardless of their depth. Furthermore, if the translation magnitude is small, the
epipolar geometry is close to this degeneracy and computation of the fundamental
matrix will be highly unstable.

In order to model the geometry of correspondences between two rotated views,
a homography, described by a 3 × 3 matrix H, should be estimated instead. As
described earlier, a homography is a projective transformation (projectivity) that
maps points to points and lines to lines. For two identical cameras (K = K′), the
scene-to-image projections are

x = K[I|0]X, x′ = K[R|0]X



2 Passive 3D Imaging 71

Fig. 2.10 The homography
induced by a plane π , where
a point x in the first image
can be transferred to the
point x′ in the second image

hence
x′ = KRK−1x = Hx. (2.19)

We can think of this homography as amapping of image coordinates onto normalized
coordinates (centered on the principal point at a unitmetric distance from the camera).
These points are rotated and then multiplying by K generates the image coordinates
on the focal plane of the second, rotated camera.

2.5.6 Two Views of a Planar Scene

A homography should also be estimated for planar scenes where correspondences
cannot uniquely define the epipolar geometry and hence the fundamental matrix.
Similar to Eq.2.7, the 2D-to-2D projection of the world plane π in Fig. 2.10 to the
left and right images is given by

λxx = HxX, λx ′x′ = Hx ′X,

where Hx ,Hx ′ are 3 × 3 homography matrices (homographies) and x, x′ are homo-
geneous image coordinates. The planar homographies form a group, and hence we
can form a composite homography as H = Hx ′H−1

x and it is straightforward to show
that

λx′ = Hx.

Figure2.10 illustrates this mapping from x to x′ and we say that a homography is
induced by the plane π . Homography estimation follows the same approach as was
described in Sect. 2.4.1 for a scene-to-image planar homography (replacing X with
x and x with x′ in Eqs. 2.8 to 2.10).
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Note that a minimum of four correspondences (no three points collinear in either
image) are required because, for the homography, each correspondence generates a
pair of constraints. Larger numbers of correspondences allow a least squares solution
to an over-determined system of linear equations. Again suitable normalizations are
required before SVD is applied to determine the homography.

A RANSAC-based technique can also be used to handle outliers, similar to the
fundamental matrix estimationmethod described in Sect. 2.5.4. By repeatedly select-
ing theminimal set of four correspondences randomly to computeH and counting the
number of inliers, the Hwith the largest number of inliers can be chosen. Additional
matches that are not in the original set of putative correspondences can be obtained
using the bestH. Then,H can be re-computed using all supportingmatches in a linear
least squares minimization using SVD.

Finally, we note that, as in the case of the fundamental matrix, a non-linear opti-
mization can be applied to refine the homography solution, if required by the appli-
cation. The interested reader is referred to [38] for the details of the geometric cost
function to be minimized.

2.6 Rectification

Typically, in a stereo rig, the cameras are horizontally displaced and rotated toward
each other by an equal amount (verged), in order to overlap their fields of view. In
this case, epipolar lines lie at a variety of angles across the two images, complicat-
ing the search for correspondences. In contrast, if these cameras had their principal
axes parallel to each other (no vergence) and the two cameras had identical intrin-
sic parameters, conjugate (corresponding) epipolar lines would lie along the same
horizontal scanline in each image, as observed in Sect. 2.5.3. This configuration is
knownas a standard rectilinear stereo rig.Clearly, it is desirable to retain the improved
stereo viewing volume associated with verged cameras and yet have the simplicity
of correspondence search associated with a rectilinear rig.

To achieve this, we can warp or rectify the raw images associated with the verged
system such that corresponding epipolar lines become collinear and lie on the same
scanline. A second advantage is that the equations for 3D reconstruction are very
simply related to image disparity after image rectification, since they correspond to
those of a simple rectilinear stereo rig. This triangulation computation is described
later in the chapter.

Rectification can be achieved either with camera calibration information, for
example, in a typical stereo application, or without calibration information, for exam-
ple, in a typical structure from motion application. We discuss the calibrated case
in the following subsection and give a brief mention of uncalibrated approaches in
Sect. 2.6.2.
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2.6.1 Rectification with Calibration Information

Here, we assume a calibrated stereo rig, where we know both the intrinsic and the
extrinsic parameters. Knowing this calibration information gives a simple rectifica-
tion approach, where we find an image mapping that generates, from the original
images, a pair of images that would have been obtained from a rectilinear rig. Of
course, the field of view of each image is still bound by the real original cameras, and
so the rectified images tend to be a different shape than the originals (e.g., slightly
trapezoidal in a verged stereo rig).

Depending on the lenses used and the required accuracy of the application, it may
be considered necessary to correct for radial distortion, using estimated parameters
k1 and k2 from the calibration. To do the correction, we employ Eq.2.6 in order
to compute the unknown, undistorted pixel coordinates, [x, y]T , from the known
distorted coordinates, [xd , yd ]T . There are various ways to solve this non-linear
equation, such as approximation of the Taylor series with the first-order derivatives,
a look-up table, or an iterative solution where the distorted pixel coordinates can be
used as the initial estimate.

Assuming some vergence, we wish to map the image points onto a pair of (virtual)
image planes that are parallel to the baseline and in the same plane. Thus we can use
the homography structure in Eq.2.19 that warps images between a pair of rotated
views. Given that we already know the intrinsic camera parameters, we need to
determine the rotation matrices associated with the rectification of the left and right
views. We will assume that the origin of the stereo system is at the optical center of
the left camera and calibration information gives [R, t] to define the rigid position
of the right camera relative to this. To get the rotation matrix that we need to apply
to image points of the left camera, we define the rectifying rotation matrix as

Rrect =
⎡
⎣
rT1
rT2
rT3

⎤
⎦ ,

where ri , i = 1 . . . 3 are a set of mutually orthogonal unit vectors. The first of these
is in the direction of the epipole or, equivalently, the direction of the translation to
the right camera, t. (This ensures that epipolar lines will be horizontal in the rectified
image.) Hence, the unit vector that we require is

r1 = t
||t|| .

The second vector r2 is orthogonal to the first and obtained as the cross-product of
t and the original left optical axis [0, 0, 1]T followed by a normalization to unit
length to give

r2 = 1√
t2x + t2y

[−ty, tx , 0]T .
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The third vector is mutually orthogonal to the first two and so is computed using the
cross-product as r3 = r1 × r2.

Given that the real right camera is rotated relative to the real left camera, we need
to apply a rotation RRrect to the image points of the right camera. Hence, applying
homographies to left and right image points, using the form of Eq.2.19, we have

xrect = KRrectK−1x

x′
rect = K′RRrectK′−1x′,

where K and K′ are the 3 × 3 matrices containing the intrinsic camera parameters
for the left and right cameras, respectively. Note that, even with the same make and
model of camera, we may find that the focal lengths associated with K and K′ are
slightly different. Thus we need to scale one rectified image by the ratio of focal
lengths in order to place them on the same focal plane.

As the rectified coordinates are, in general, not integer, resampling using some
form of interpolation is required. The rectification is often implemented in reverse,
so that the pixel values in the new image plane can be computed as a bilinear inter-
polation of the four closest pixels values in the old image plane. Rectified images
give a very simple triangulation reconstruction procedure, which is described later
in Sect. 2.8.1.2.

2.6.2 Rectification Without Calibration Information

When calibration information is not available, rectification can be achieved using
an estimate of the fundamental matrix, which is computed from correspondences
within the raw image data. A common approach is to compute a pair of rectifying
homographies for the left and right images [38, 54] so that the fundamental matrix
associated with the rectified images is the same form as that for a standard rectilinear
rig and the “new cameras” have the same intrinsic camera parameters. Since such
rectifying homographies map the epipoles to infinity ([1, 0, 0]T ), this approach fails
when the epipole lies within the image. This situation is common in structure from
motion problems, when the camera translates in the direction of its Z-axis. Several
authors have tackled this problem by directly resampling the original images along
their epipolar lines, which are specified by an estimated fundamental matrix. For
example, the image is reparameterized using polar coordinates around the epipoles
to reduce the search ambiguity to half epipolar lines [67, 68]. Figure2.11 shows an
example of an image pair before and after rectification for this scheme, where the
corresponding left and right features lie on the same image rowafterward. Specialized
rectifications exist, for example, [17] that allow image matching over large forward
translations of the camera although, in this scheme, rotations are not catered for.
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Fig. 2.11 An image pair before rectification (a) and after rectification (b). The overlay shows
that the corresponding left and right features lie on the same image row after rectification. Figure
courtesy of [68]

2.7 Finding Correspondences

Finding correspondences is an essential step for 3D reconstruction from multiple
views. The correspondence problem can be viewed as a search problem, which
asks, given a pixel in the left image, which is the corresponding pixel in the right
image? Of course there is something of a circular dependency here. We need to
find correspondences to determine the epipolar geometry, yet we need the epipolar
geometry to find (denser) correspondences in an efficient manner. The RANSAC
sampling approach described earlier showed us how to break into this loop. Once we
have the epipolar geometry constraint, the search space is reduced from a 2D search
to the epipolar line only.

The following assumptions underpin most methods for finding correspondences
in image pairs. These assumptions hold when the distance of the world point from
the cameras is much larger than the baseline.

• Most scene points are visible from both viewpoints.
• Corresponding image regions are similar.

Two questions are involved: what is a suitable image element to match and what
is a good similarity measure to adopt? There are two main classes of correspondence
algorithms: correlation-based and feature-based methods. Correlation-based meth-
ods recover dense correspondences where the element to match is an image window
centered on some pixel and the similarity measure is the correlation between the
windows. Feature-based methods typically establish sparse correspondences where
the element to match is an image feature and the similarity measure is the distance
between descriptors of the image features.

2.7.1 Correlation-Based Methods

If the element to match is only a single image pixel, ambiguous matches exist.
Therefore, windows are used for matching in correlation-based methods, and the
similarity criterion is a measure of the correlation between the twowindows. A larger
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Fig. 2.12 Correlation-based methods look for the matching image window between the left and
right rectified images. An m by m window centering at the pixel is used for correlation. (Raw
image pair courtesy of the Middlebury Stereo Vision Page [74], originally sourced from Tsukuba
University.)

window gives larger image context which can reduce the probability of ambiguities,
but this has its own problems which will be discussed in Sect. 2.8.1.1. The selected
correspondence is given by the window that maximizes a similarity criterion or
minimizes a dissimilarity criterion within a search range. Once a match is found, the
offset between the two windows can be computed, which is called the disparity from
which the depth can be recovered. Some commonly used criteria for correlation-
based methods are described next.

Based on the rectified images in Fig. 2.12, we define the window function, where
m, an odd integer, is the image window size so that

Wm(x, y) = {(u, v)|x − (m − 1)

2
≤ u ≤ x + (m − 1)

2
, y − (m − 1)

2
≤ v ≤ y + (m − 1)

2
}.

(2.20)
The dissimilarity can be measured by the Sum of Squared Differences (SSD) cost,

for instance, which is the intensity difference as a function of disparity d:

SSD(x, y, d) =
∑

(u,v)∈Wm (x,y)

[Il(u, v) − Ir (u − d, v)]2,

where Il and Ir refer to the intensities of the left and right images, respectively.
If two image windows correspond to the sameworld object, the pixel values of the

windows should be similar, and hence the SSD value would be relatively small. As
shown in Fig. 2.12, for each pixel in the left image, correlation-based methods would
compare the SSD measure for pixels within a search range along the corresponding
epipolar line in the right image. The disparity value that gives the lowest SSD value
indicates the best match.

A slight variation of SSD is the Sum of Absolute Differences (SAD) where the
absolute values of the differences are added instead of the squared values:
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SAD(x, y, d) =
∑

(u,v)∈Wm (x,y)

|Il(u, v) − Ir (u − d, v)|.

This cost measure is less computationally expensive as it avoids the multiplication
operation required for SSD. On the other hand, the SSD cost function penalizes the
large intensity difference more due to the squaring operation.

The intensities between the two image windows may vary due to illumination
changes and non-Lambertian reflection. Even if the two images are captured at the
same time by two cameras with identical models, non-Lambertian reflection and
differences in the gain and sensitivity can cause variation in the intensity. In these
cases, SSD or SAD may not give a low value even for the correct matches. For these
reasons, it is a good idea to normalize the pixels in each window. A first level of
normalization would be to ensure that the intensities in each window are zero-mean.
A second level of normalization would be to scale the zero-mean intensities so that
they either have the same range or, preferably, unit variance. This can be achieved by
dividing each pixel intensity by the standard deviation of window pixel intensities,
after the zero-mean operation, i.e., normalized pixel intensities are given as

In = I − Ī

σI
,

where Ī is the mean intensity and σI is the standard deviation of window intensities.
While SSD measures the dissimilarity and hence the smaller the better, Normalized
Cross-Correlation (NCC) measures the similarity and hence, the larger the better.
Again, the pixel values in the image window are normalized first by subtracting the
average intensity of thewindow so that only the relative variationwould be correlated.
The NCC measure is computed as follows:

NCC(x, y, d) =
∑

(u,v)∈Wm (x,y)(Il(u, v) − Il)(Ir (u − d, v) − Ir )√∑
(u,v)∈Wm (x,y)(Il(u, v) − Il)2(Ir (u − d, v) − Ir )2

,

where

Il = 1

m2

∑
(u,v)∈Wm (x,y)

Il(u, v), Ir = 1

m2

∑
(u,v)∈Wm (x,y)

Ir (u, v).

2.7.2 Feature-Based Methods

Rather than matching each pixel, feature-based methods only search for correspon-
dences to a sparse set of features, such as those located by a repeatable, well-localized
interest point detector (e.g., a corner detector). Apart from locating the features, fea-
ture extraction algorithms also compute some sort of feature descriptors for their
representation, which can be used for the similarity criterion. The correct correspon-
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dence is given by the most similar feature pair, the one with the minimum distance
between the feature descriptors.

Stable features are preferred in feature-based methods to facilitate matching
between images. Typical examples of image features are edge points, lines, and
corners. For example, a feature descriptor for a line could contain the length, the
orientation, coordinates of the mid-point, or the average contrast along the edge line.
A problem with linear features is that the matching can be poorly localized along
the length of a line particularly if a linear feature is fragmented (imagine a smaller
fragment from the left image sliding along a larger fragment from the right image).
This is known as the aperture problem, referring to the fact that a localmatch “looks
through” a small aperture.

As a consequence, point-based features that are well localized in two mutually
orthogonal directions have been preferred by researchers and practitioners in the field
of computer vision. For example, the Harris corner detector [37] extracts points that
differ as much as possible from neighboring points. This is achieved by looking for
high curvatures in twomutually orthogonal directions, as the gradient is ill-defined in
the neighborhood of corners. The corner strength or the grayscale values in a window
region around each corner could be used as the descriptor. Another corner detector
SUSAN [81] detects features based on the size, centroid, and second moments of the
local areas. As it does not compute image derivatives, it is robust to noise and does
not require image smoothing.

Wide baseline matching refers to the situation where the two camera views differ
considerably. Here, matching has to operate successfully over more difficult con-
ditions, since there are larger geometric and photometric variations between the
images.

In recent years, many interest point detection algorithms have been proposed that
are scale-invariant and viewpoint invariant to a certain extent which facilitates wide
baseline matching. An interest point refers to an image feature that is stable under
local and global perturbations, and the local image structure is rich in terms of local
image contents. These features are often described by a distinctive feature descriptor
which is used as the similarity criterion. They can be used even when epipolar
geometry is not yet known, as such distinctive descriptors allow correspondences to
be searched over the whole image relatively efficiently.

For example, the Scale-Invariant Feature Transform (SIFT) [48] and the Speeded-
Up Robust Feature (SURF) [5] are two traditional features which were developed
for image feature generation in object recognition applications. The SIFT feature is
described by a local image vector with 128 elements, which is invariant to image
translation, scaling, rotation, and partially invariant to illumination changes and affine
or 3D projections. Fig. 2.13 shows an example of matching SIFT features across
large baseline and viewpoint variation. It can be seen that most matches are correct,
thanks to the invariance and discriminative nature of SIFT features. Extraction of
such traditional features has been shown to be accurate and stable across views,
but they are rather slow to compute compared to more recent binary descriptors.
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Fig. 2.13 Wide baseline matching between two images with SIFT. The size and orientation of
the squares correspond to the scale and orientation of the matching SIFT features. The color lines
highlight some of the matches between the two images

These include BRIEF [15], BRISK [45], ORB [73], and FREAK [2], which are
more suitable for real-time performance on portable hardware of relatively limited
computational power.

2.8 3D Reconstruction

Different types of 3D reconstruction can be obtained based on the amount of a priori
knowledge available, as illustrated in Table2.2. The simplest method to recover 3D
information is stereo where the intrinsic and extrinsic parameters are known, and the
absolute metric 3D reconstruction can be obtained. This means we can determine
the actual dimensions of structures, such as height of door=1.93m.

For structure from motion, if no such prior information is available, only a pro-
jective 3D reconstruction can be obtained. This means that 3D structure is known
only up to an arbitrary projective transformation so we know, for example, howmany
planar faces the object has and what point features are collinear, but we do not know
anything about the scene dimensions and angular measurements within the scene. If
intrinsic parameters are available, the projective 3D reconstruction can be upgraded
to a metric reconstruction, where the 3D reconstruction is known up to a scale factor
(i.e., a scaled version of the original scene). There is more detail to this hierarchy of

Table 2.2 Different Types of 3D Reconstruction

A Priori Knowledge 3D Reconstruction

Intrinsic and extrinsic parameters Absolute 3D reconstruction

Intrinsic parameters only Metric 3D reconstruction (up to a scale factor)

No information Projective 3D reconstruction
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reconstruction than we can present here (for example, affine 3D reconstruction lies
between the metric and projective reconstructions) and we refer the interested reader
to [38].

2.8.1 Stereo

Stereo vision refers to the ability to infer information on the 3D structure and distance
of a scene from two or more images taken from different viewpoints. The disparities
of all the image points form the disparity map, which can be displayed as an image.
If the stereo system is calibrated, the disparity map can be converted to a 3D point
cloud representing the scene.

The discussion here focuses on binocular stereo for two image views only. Please
refer to [80] for a survey of multiple-view stereo methods that reconstruct a complete
3D model instead of just a single disparity map, which generates range image infor-
mation only. In such a 3D imaging scenario, there is at most one depth per image
plane point, rear-facing surfaces, and other self-occlusions are not imaged and the
data is sometimes referred to as 2.5D.

2.8.1.1 Dense Stereo Matching

The aim of dense stereo matching is to compute disparity values for all the image
points from which a dense 3D point cloud can be obtained. Correlation-based meth-
ods provide dense correspondences,while feature-basedmethods only provide sparse
correspondences. Dense stereo matching is challenging as textureless regions do not
provide information to distinguish the correct matches from the incorrect ones. The
quality of correlation-based matching results depends highly on the amount of tex-
ture available in the images and the illumination conditions. Repetitive texture does
not help though as the matching would be ambiguous.

Figure2.14 shows a sample disparity map after dense stereo matching. The dis-
parity map is shown in the middle with disparity values encoded in grayscale level.
The brighter pixels refer to larger disparities which means the object is closer. For
example, the ground pixels are brighter than the building pixels. An example of cor-
respondences is highlighted in red in the figure. The pixel itself and the matching
pixel are marked and linked to the right image. The length of the line corresponds to
the disparity value highlighted in the disparity map.

Comparing image windows between two images could be ambiguous. Various
matching constraints can be applied to help reduce the ambiguity, such as

• Epipolar constraint,
• Ordering constraint,
• Uniqueness constraint, and
• Disparity range constraint.
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Fig. 2.14 A sample disparity map (b) obtained from the left image (a) and the right image (c). The
disparity value for the pixel highlighted in red in the disparity map corresponds to the length of the
line linking the matching features in the right image. Figure courtesy of [68]

The epipolar constraint reduces the search from 2D to the epipolar line only, as
has been described in Sect. 2.5. The ordering constraint means that if pixel b is to
the right of a in the left image, then the correct correspondences a′ and b′ must also
follow the same order (i.e., b′ is to the right of a′ in the right image). This constraint
fails if there is occlusion.

The uniqueness constraint means that each pixel has at most one corresponding
pixel. In general, there is a one-to-one correspondence for each pixel, but there is
none in the case of occlusion or noisy pixels. The left-right consistency check can
be applied to ensure that the same match is obtained via both left-to-right and right-
to-left matching.

The disparity range constraint limits the disparity search range according to the
prior information of the expected scene.Maximumdisparity sets how close the object
can be, while the minimum disparity sets how far the object can be. Zero disparity
refers to objects at infinity.

One important parameter for these correlation-based methods is the window size
m in Eq.2.20. While using a larger window size provides more intensity variation
and hence more context for matching, this may cause problems around the occlusion
area and at object boundaries, particularly for wide baseline matching.

Figure2.15 shows the effect of window size on the resulting disparity map. The
disparity map in the middle is for a window size of 3 × 3. It can be seen that, while it
captures details well, it is very noisy, as the smaller window provides less information
for matching. The disparity map on the right is for a window size of 15 × 15. It can
be seen that while it looks very clean, the boundaries are not well defined. Moreover,
the use of a larger window size typically increases the processing time as more pixels
need to be correlated. The best window size is a trade-off between these two effects
and is dependent on the level of fine detail in the scene.

For local methods, disparity computation at a given point depends on the intensity
value within a local window only. The best matching window is indicated by the low-
est dissimilarity measure or the highest similarity measure which uses information
in the local region only. As pixels in an image are correlated (they may belong to
the same object, for instance), global methods could improve the stereo matching
quality by making use of information outside the local window region.
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Fig. 2.15 The effect of window size on correlation-based methods: (a) input images (b) disparity
map for a small correlationwindow (c) disparitymap for a large correlationwindow. (Raw imagepair
courtesy of the Middlebury Stereo Vision Page [74], originally sourced from Tsukuba University.)

Global methods perform optimization across the image and are often formulated
as an energy minimization problem. Dynamic programming approaches [6, 8, 19]
compute the minimum-cost path through the matrix of all pairwise matching costs
between two corresponding scanlines so that the best set of matches that satisfy
the ordering constraint can be obtained. Dynamic programming utilizes information
along each scanline independently; therefore, it may generate results that are not
consistent across scanlines.

TheGraph Cuts [12, 44] optimization technique makes use of information across
the whole image and produces high-quality disparity maps. There is a trade-off
between stereo matching quality and the processing time. Global methods such as
this, max flow [72], and belief propagation [83, 84] produce better disparity maps
than local methods, but they are computationally intensive.

Apart from the algorithm itself, the processing time also depends on the image
resolution, the window size, and the disparity search range. The higher the image
resolution, the more pixels need to be processed to produce the disparity map. The
similarity measure needs to correlate more pixels for a larger window size. The
disparity search range affects how many such measures need to be computed in
order to find the correct match.

Hierarchical stereo matching methods have been proposed by down-sampling
the original image into a pyramid [7, 70]. Dense stereo matching is first performed
on the lowest resolution image, and disparity ranges can be propagated back to the
finer resolution image afterward. This coarse-to-fine hierarchical approach allows
fast computation to deal with a large disparity range, as a narrower disparity range
can be used for the original image. Moreover, the more precise disparity search range
helps to obtain better matches in the low texture areas.

TheMiddlebury webpage [74] provides standard datasets with ground truth infor-
mation for researchers to benchmark their algorithms so that the performance of
various algorithms can be evaluated and compared. A wide spectrum of dense
stereo matching algorithms has been benchmarked, as illustrated in Fig. 2.16 [75].
Researchers can submit results of new algorithms which are ranked based on various
metrics, such as RMS error between computed disparity map and ground truth map,
percentage of bad matching pixels, and so on. It can be observed from Fig. 2.16 that
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Fig. 2.16 Comparative disparity maps for the top 15 dense stereo matching algorithms in [75] in
decreasing order of performance. The top left disparity map is the ground truth. Performance here
is measured as the percentage of bad matching pixels in regions where there are no occlusions.
This varies from 1.15% in algorithm 19 to 5.23% in algorithm 1. Algorithms marked with a ∗ were
implemented by the authors of [75], who present a wider range of algorithms in their publication.
Figure courtesy of [75]

it is very difficult to understand algorithmic performance by qualitative inspection
of disparity maps and the quantitative measures presented in [75] are required.

2.8.1.2 Triangulation

When the corresponding left and right image points are known, two rays from the
camera centers through the left and right image points can be back-projected. The
two rays and the stereo baseline lie on a plane (the epipolar plane) and form a triangle;
hence, the reconstruction is termed “triangulation”. Here, we describe triangulation
for a rectilinear arrangement of two views or, equivalently, two rectified views.



84 S. Se and N. Pears

Fig. 2.17 The stereo
geometry becomes quite
simple after image
rectification. The world
coordinate frame is
arbitrarily centered on the
right camera. B is the stereo
baseline, and f is the focal
length. Disparity is given by
d = xc − x ′

c

After image rectification, the stereo geometry becomes quite simple as shown
in Fig. 2.17, which shows the top-down view of a stereo system composed of two
pinhole cameras. The necessary parameters, such as baseline and focal length, are
obtained from the original stereo calibration. The following two equations can be
obtained based on the geometry:

x ′
c = f

X

Z

xc = f
X + B

Z
,

where x ′
c and xc are the corresponding horizontal image coordinates (in metric units)

in the right and left images, respectively, f is the focal length, and B is the baseline
distance.

Disparity d is defined as the difference in horizontal image coordinates between
the corresponding left and right image points, given by

d = xc − x ′
c = f B

Z
.

Therefore,

Z = f B

d
(2.21)

X = Zx ′
c

f
, Y = Zy′

c

f
,

where y′
c is the vertical image coordinates in the right image.
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This shows that the 3D world point can be computed once disparity is available:
(x ′

c, y
′
c, d) 
→ (X,Y, Z). Disparity maps can be converted into depth maps using

these equations to generate a 3D point cloud. It can be seen that triangulation is
straightforward compared to the earlier stages of computing the two-view relations
and finding correspondences.

Stereo matches are found by seeking the minimum of some cost functions across
the disparity search range. This computes a set of disparity estimates in some dis-
cretized space, typically integer disparities, which may not be accurate enough for
3D recovery. 3D reconstruction using such quantized disparity maps leads to many
thin layers of the scene. Interpolation can be applied to obtain sub-pixel disparity
accuracy, such as fitting a curve to the SSD values for the neighboring pixels to find
the peak of the curve, which provides more accurate 3D world coordinates.

By taking the derivatives of Eq.2.21, the standard deviation of depth, which rep-
resents uncertainty of depth estimation, is given by

ΔZ = Z2

B f
Δd,

whereΔd is the standard deviation of the disparity. This equation shows that the depth
uncertainty increases quadratically with depth. Therefore, stereo systems typically
are operated within a limited range. If the object is far away, the depth estimation
becomes more uncertain. The depth error can be reduced by increasing the baseline,
focal length, or image resolution. However, each of these has detrimental effects.
For example, increasing the baseline makes matching harder as features appear less
similar and causes viewed objects to self-occlude, increasing the focal length reduces
the depth of field, and increasing image resolution increases processing time and data
bandwidth requirements. Thus, we can see that design of stereo cameras typically
involves a range of performance trade-offs, where trade-offs are selected according
to the application requirements.

Figure2.18 compares the depth uncertainty for three stereo configurations assum-
ing a disparity standard deviation of 0.1 pixel. A stereo camera with higher resolution
(dashed line) provides better accuracy than the onewith lower resolution (dotted line).
A stereo camera with a wider baseline (solid line) provides better accuracy than the
one with a shorter baseline (dashed line).

A quick and simple method to evaluate the accuracy of 3D reconstruction is to
place a highly textured planar target at various depths from the sensor, fit a least
squares plane to the measurements, and measure the residual RMS error. In many
cases, this gives us a good measure of depth repeatability, unless there are signif-
icant systematic errors, for example, from inaccurate calibration of stereo camera
parameters. In this case, more sophisticated processes and ground truth measure-
ment equipment are required. Capturing images of a target of known size and shape
at various depths, such as a textured cube, can indicate how reconstruction performs
when measuring in all three spatial dimensions.
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Fig. 2.18 A plot illustrating the stereo uncertainty with regard to image resolution and baseline
distance. A larger baseline and higher resolution provide better accuracy, but each of these has other
costs

2.8.2 Structure from Motion

Structure frommotion (SfM) is the simultaneous recovery of 3D structure and camera
relative pose (position and orientation) from image correspondences, and it refers
to the situation where images are captured by a moving camera. There are three
sub-problems in structure from motion.

• Correspondence: which elements of an image frame correspond to which elements
of the next frame.

• Ego-motion and reconstruction: determination of camera motion (sometimes
called ego-motion) and structure of the observed world.

• Segmentation: extraction of regions corresponding to one or more moving objects.

The third sub-problem is a relatively recent problem in structure from motion,
where some objects in the scene may have moved between frames. For dynamic
scenes, features belonging to moving objects could be identified and removed as
outliers. Alternatively one could consider an environment to contain an unknown
number (n) of independently moving objects and a static environment as n + 1 SfM
sub-problems, eachhaving their ownFmatrix.However, for the followingdiscussion,
we assume that the scene is static, without any moving objects.

By matching features between frames, we obtain at least eight correspondences
from which the fundamental matrix can be recovered as described in Sect. 2.5.4.
Without camera calibration parameters, only the projective reconstruction can be
obtainedwhere orthogonal lines in the worldmay not be reconstructed as orthogonal.
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While this may be useful by itself, most practical applications require at least metric
reconstructionwhere the reconstructed 3Dmodel is a scaled version of the real scene.

Metric reconstruction requires camera intrinsic parameterswhich canbe estimated
from the images themselves using self-calibration (auto-calibration) techniques [38,
55] developed in recent years. Such methods exploit some prior information of the
scene itself such as parallel lines, vanishing points, and so on. For better accuracy and
more robustness, the camera intrinsic parameters can be obtained with a calibration
procedure using a known calibration grid, as discussed in Sect. 2.4.

Once the camera intrinsic parameters are known, the essential matrix E can be
computed from the fundamental matrix. According to Eq.2.15, the motion can be
recovered from E, where t is determined up to a scale factor only (since we can
multiply Eq.2.16 by an arbitrary non-zero scale factor). The physical insight into
this is that the same image disparity between a pair of views can occur for a point
close to the camera positions and a point n-times the distance away with n-times the
translation. Effectively, we have scaled similar triangles in the triangulation-based
reconstruction process.

SVD can be applied to extract t and R from E as follows [38]. Application of
SVD gives the factorization E = UDVT . By defining

W =
⎡
⎣
0 −1 0
1 0 0
0 0 1

⎤
⎦ , Z =

⎡
⎣

0 1 0
−1 0 0
0 0 0

⎤
⎦ ,

the solution is given by
R = UWVT or UWTVT

t = ±u3,

where u3 is the third column of matrixU. With two possible choices ofR and t, there
are four possible solutions. Testing with a single point to determine if it is in front of
both cameras is sufficient to decide among the four different solutions. For further
details, please refer to [38].

Once t (up to scale) and R have been extracted from E, the sparse scene structure
can be recovered by computing the intersection between the back-projected rays. In
general, due to measurement noise, these will not intersect in 3D space. The simplest
solution is to compute the mid-point of the shortest perpendicular line between the
two rays. However, a refined solution is to choose a reconstructed scene point X,
such that it minimizes the sum of square errors between the actual image positions
and their positions predicted by their respective camera projection matrices. The
scene structure is only determined up to a scale factor but in some applications this
could be constrained, for example, if some measurement is known in the scene,
or the translation can be estimated from the wheel odometry of a mobile robot. In
summary, this method first estimates the intrinsic camera parameters (or uses an
existing calibration) after which the extrinsic camera parameters are recovered. Both
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the intrinsic and extrinsic camera parameters are then used to compute the scene
structure.

Alternatively, bundle adjustment14 offers a more accurate method that simulta-
neously optimizes the 3D structure and the 6-DOF camera pose (extrinsic camera
parameters) for each view in an image sequence [88]. Sometimes the intrinsic camera
parameters are also refined in the procedure. This is a batch process that iteratively
refines the camera parameters and the 3D structure in order to minimize the sum
of the reprojection errors. (A reprojection error is the Euclidean distance between
an image feature and its reprojection into the image plane after computing the 3D
world coordinate and the camera pose associated with that image point.) Since a spe-
cific reprojection error is only dependent on its own scene point and own viewpoint,
the structure of the equations is sparse. Thus, even though bundle adjustments are
thought to be fairly computationally expensive, exploitation of sparse linear algebra
algorithms can significantly mitigate this. Such procedures are referred to as sparse
bundle adjustment.

Using consecutive video frames gives poor 3D accuracy due to the very short
baseline. An image pair formed by a larger time increment would provide better
3D information. However, if the time increment is too large, the camera could have
moved significantly and it would be harder to establish correct correspondences. One
possible solution to this is to track features over several short baseline frames using
a small, local area-based search, before computing 3D from a pair of frames tracked
over a significantly longer baseline.

2.9 Deep Learning for Passive 3D Imaging

Recently, deep learning has proved to provide the best solutions to many problems
in image classification, speech recognition, and natural language processing. Essen-
tially, application of this powerful technology involves formulation of optimization
problems that havewell-behaved differentials, thus enabling gradient descent to func-
tion well. Deep learning has also been applied successfully to passive 3D imaging
in two modalities: improving stereo matching and inferring depth from monocular
imagery.

2.9.1 Deep Learning for Stereo Matching

A Convolutional Neural Network (CNN) was trained to predict how well two image
patchesmatch and itwas used to compute the stereomatching cost [96]. The proposed
network consisted of eight layers and achieved the best performance in the KITTI

14Bundle adjustment methods appeared several decades ago in the photogrammetry literature and
are now used widely in the computer vision community.
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dataset [35]. While [96] focused on comparing patches in narrow baseline stereo, a
general similarity functionwas learned from image data in [95] to handle a broader set
of appearance changes so that it can be used in more challenging set of applications
includingwide baseline stereo. Various neural network architectures such as Siamese
and 2-channel models were explored, showing that they exhibited good performance
andoutperformed the state-of-the-art onwide baseline stereomatching.Adot product
layerwas exploited to compute the inner product between the two representations of a
Siamese architecture, which achieved an order of magnitude faster computation [50].
The network was trained by treating the problem as multi-class classification where
the classes are all possible disparities. As a result, correlations between different
disparities can be captured implicitly, whereas the previous approaches performed
independent binary predictions on image patches.

2.9.2 Deep Learning for Monocular Reconstruction

Depth was estimated from a single image by integrating both global and local
information from various cues [27]. A multi-scale CNN approach was proposed
by employing two deep network stacks: one for a coarse global prediction based
on the entire image and another to refine the prediction locally. A scale-invariant
error was applied to help measure depth relations rather than scale. The proposed
method achieved state-of-the-art results on both NYU Depth and KITTI datasets.
A deep structured learning scheme was proposed to learn the unary and pairwise
potentials of continuous Conditional Random Field (CRF) in a unified deep CNN
framework [46]. Using a faster model based on fully convolutional networks and a
novel superpixel pooling method resulted in 10 times speedup while producing sim-
ilar prediction accuracy. The proposed method outperformed state-of-the-art results
on various indoor and outdoor scenes. While both [27] and [46] require vast quanti-
ties of ground truth depth data for training, an unsupervised approach was proposed
in [36] to perform single image depth estimation without the use of ground truth
depth data for training. Disparity images were generated by training the CNN with
an image reconstruction loss using binocular stereo data. A novel training loss that
enforced left–right consistency was employed to improve performance and robust-
ness. The proposed method produced state-of-the-art results for monocular depth
estimation on KITTI dataset, even outperforming supervised methods that have been
trained with ground truth depth data. Recently, Wu et al. [92] described how to learn
shape priors for monocular 3D completion. Their approach integrates deep genera-
tive models with adversarially learned shape priors, where the learned priors act as
a regularizer, penalizing the model if its output is unrealistic.
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2.10 Passive Multiple-View 3D Imaging Systems

Examples of passive multiple-view 3D imaging systems and their applications
will now be presented, including stereo cameras, people counting, 3D modeling,
and visual SLAM. 3D modeling systems generate photo-realistic 3D models from
sequences of images and have awide range of applications. Formobile robot applica-
tions, passive multiple-view 3D imaging systems are used for localization, building
maps, and obstacle avoidance.

2.10.1 Stereo Cameras

Stereo cameras can be custom-built by mounting two individual cameras on a rigid
platform separated by a fixed baseline. However, it is important that, for non-static
scenes or formobile platforms, the two cameras are synchronized so that they capture
images at the same time. In order to obtain absolute 3D information, as discussed
earlier in Table2.2, the stereo camera needs to be calibrated to recover the intrinsic
and extrinsic parameters. It is also critical that the relative camera pose does not
change over time; otherwise, re-calibration would be required.

Commercial off-the-shelf (COTS) stereo vision systems have been emerging in
recent years. These cameras often have a fixed baseline and are pre-calibrated by the
vendor. Typically, they are nicely packaged and convenient to use. There are a number
of pre-calibratedCOTSstereo camera available such asTara fromE-conSystemswith
6cm baseline [26] and DUO MC from Code Laboratories with 3cm baseline [25].
The FLIR Bumblebee camera [33] is another example with 12cm baseline, which
comes pre-calibrated, and an application programming interface (API) is provided
to configure the camera and grab images, as well as rectify the images and perform
dense stereo matching. FLIR also offers Bumblebee XB3 which is a three-sensor
multi-baseline stereo camera which has both 12cm and 24cm baselines available for
stereo processing. The wide baseline provides more precision at longer range, while
the narrow baseline improves close range matching and minimum-range limitation.

It is desirable to obtain disparity maps in real time in many applications, for
example, obstacle detection for mobile robots. Dense stereo matching can be highly
parallelized; therefore, such algorithms are highly suitable to run on graphics process-
ing units (GPUs) to free up the CPU for other tasks. GPUs have a parallel throughput
architecture that supports executing many concurrent threads, providing immense
speedup for highly parallelized algorithms. A dense stereo matching algorithm has
been implemented on a commodity graphics card [94] to perform several hundred
millions of disparity evaluations per second. This corresponds to 20Hz for 512× 512
image resolution with 32 disparity search range.

StereolabsZEDstereo camera [82] is a stereo camerawith 12cmbaseline for depth
sensing and motion tracking. It relies on the use of NVIDIA GPU for processing and
provides real-time depth data as well as camera pose. Stereolabs also offers a mini
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Fig. 2.19 FLIR Bumblebee XB3 stereo camera with three cameras provides both narrow and wide
baseline configurations (left) and Stereolabs ZED stereo camera (right)

Fig. 2.20 Examples of hazard detection using stereo images: a truck (left) and a person (right).
Hazards are shown in red on the hazard map

versionwith 6cmbaseline for augmented reality application. Two of theCOTS stereo
cameras mentioned are shown in Fig. 2.19.

Stereo cameras are often used for obstacle/hazard detection in mobile robots as
they can capture the 3D scene instantaneously. Figure2.20 shows the stereo images
fromBumblebee XB3 and the resulting hazard maps for a truck and a person, respec-
tively. Correlation-based matching is performed to generate a dense 3D point cloud.
Clusters of point cloud that are above the ground plane are considered as hazards.

2.10.2 People Counting

People counting for retail analytics is a key market for passive stereo cameras. The
stereo cameras are mounted on the ceiling of retail store entrances, pointing down to
count the number of people walking in and out of the store. Based on the disparity or
3D point cloud, people are detected and tracked as they walk across the camera field-
of-view. Enter/exit counts are incremented when the tracks cross a pre-defined count
line. Such information can be used to generate retail analytics such as conversion
rates (proportion of customers who make a purchase), to optimize staff scheduling,
and so on.

Stereo cameras provide better counting accuracy thanmonocular cameras, as they
are more tolerant of lighting changes and can avoid counting shadows. Moreover,
the 3D data can be used to distinguish between people and shopping carts as well as
between adults and children. Currently, there are a number of successful stereo-based
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Fig. 2.21 Examples of stereo-based people counters for retail analytics: FLIR Brickstream camera
(left) and Xovis PC2 camera (right)

people counters offered by various vendors including FLIR, Xovis, Axper, andHella.
Two of these are shown in Fig. 2.21.

2.10.3 3D Modeling

The creation of photo-realistic 3D models of observed scenes has been an active
research topic for many years. Such 3Dmodels are very useful for both visualization
and measurements in various applications such as planetary rovers, defense, mining,
forensics, archaeology, and virtual reality.

Pollefeys et al. [68] and Nister [60] presented systems which create surface mod-
els from a sequence of images taken with a hand-held video camera. The camera
motion is recovered bymatching corner features in the image sequence. Dense stereo
matching is carried out between the frames. The input images are used as surface tex-
ture to produce photo-realistic 3D models. These monocular approaches only output
a scaled version of the original scene but can be scaled with some prior information.
Moreover, it requires a long processing time.

The objective of theDARPAUrbanscape project [56] is to develop a real-time data
collection and processing system for the automatic geo-registered 3D reconstruction
of urban scenes fromvideo data.Multiple video streams aswell asGlobal Positioning
System (GPS) and Inertial Navigation System (INS) measurements are collected to
reconstruct photo-realistic 3D models and place them in geo-registered coordinates.
An example of a large-scale 3D reconstruction is shown in Fig. 2.22.

A stereo camera-based 3D vision system is capable of quickly generating cali-
brated photo-realistic 3D models of unknown environments. Instant Scene Modeler
(iSM) can process stereo image sequences captured by an unconstrained hand-held
stereo camera [77]. Dense stereo matching is performed to obtain 3D point clouds
from each stereo pair. 3D point clouds from each stereo pair are merged together to
obtain a color 3D point cloud. Furthermore, a surface triangular mesh is generated
from the point cloud. This is followed by texture mapping, which involves mapping
image textures to the mesh triangles. As adjacent triangles in the mesh may use dif-
ferent texture images, seamlines may appear unless texture blending is performed.
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Fig. 2.22 An example of 3Dmodeling of urban scene from theUrbanscape project. Figure courtesy
of [56]

Fig. 2.23 The user points the stereo camera freely at the scene of interest (left), and the photo-
realistic 3D model of the scene is generated (right). Figure adapted from [77]

The resulting photo-realistic 3D models can be visualized from different views, and
absolute measurements can be performed on the models. Figure2.23 shows the user
pointing the hand-held COTS stereo camera to freely scan the scene and the resulting
photo-realistic 3D model, which is a textured triangular mesh.

For autonomous vehicles and planetary rovers, the creation of 3D terrain models
of the environment is useful for visualization and path planning [4]. Moreover, the
3D modeling process achieves significant data compression, allowing the transfer of
data as compact surfacemodels instead of raw images. This is beneficial for planetary
rover exploration due to the limited bandwidth available. Figure2.24 shows a photo-
realistic 3D model created from a moving autonomous vehicle that traveled in a
desert in Nevada.

One of the key technologies required for planetary rover navigation is the ability
to sense the nearby 3D terrain. Stereo cameras are suitable for planetary exploration,
thanks to their low power, low mass requirements, and the lack of moving parts.
The NASA Mars Exploration Rovers (MERs), named Opportunity and Spirit, use
passive stereo image processing tomeasure geometric information about the environ-
ment [52]. This is done by matching and triangulating pixels from a pair of rectified
stereo images to generate a 3D point cloud. Figure2.25 shows an example of the
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Fig. 2.24 First image of a sequence captured by an autonomous rover in a desert in Nevada (left).
Terrain model generated with virtual rover model inserted (right). Resulting terrain model and rover
trajectory (bottom). Figure courtesy of [4]

Fig. 2.25 Mars Exploration Rover stereo image processing (left) and the reconstructed color 3D
point cloud (right), with a virtual rover model inserted. Figure courtesy of [52]

stereo images captured and the color 3D point cloud generated which represents the
imaged terrain.

Documenting crime scenes is a tedious process that requires the investigators to
record vast amounts of data by using video, still cameras, andmeasuring devices, and
by taking samples and recording observations. With passive 3D imaging systems,
3D models of the crime scene can be created quickly without much disturbance to
the crime scene. The police can also perform additional measurements using the 3D
model after the crime scene is released. The 3D model can potentially be shown in
court so that the judge and the jury can understand the crime scene better. Figure2.26
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Fig. 2.26 3D model of a mock crime scene obtained with a hand-held stereo camera. Figure
courtesy of [78]

Fig. 2.27 Underground mine 3D model (left) and consecutive 3D models as the mine advances
(right). The red and blue lines on the left are geological features annotated by geologists to help
with the ore body modeling. Figure courtesy of [78]

shows a 3D reconstruction of a mock crime scene generated from a hand-held stereo
sequence within minutes after acquisition [78].

Photo-realistic 3D models are useful for survey and geology in underground min-
ing. The mine map can be updated after each daily drill/blast/ore removal cycle to
minimize any deviation from the plan. In addition, the 3D models can also allow
the mining companies to monitor how much ore is taken at each blast. Figure2.27
shows a photo-realistic 3D model of an underground mine face annotated with geo-
logical features and consecutive 3D models of a mine tunnel created as the mine
advances [78].

Airborne surveillance and reconnaissance are essential for successful military
missions. Unmanned Aerial Vehicles (UAVs) are becoming the platform of choice
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Fig. 2.28 3D reconstruction of a building on the ground using video (left) and using infrared video
(right) captured by an UAV (Unmanned Aerial Vehicle). Figure courtesy of [76]

for such surveillance operations, and video cameras are among the most common
sensors onboard UAVs. Photo-realistic 3Dmodels can be generated fromUAV video
data to provide situational awareness as it is easier to understand the scene by visu-
alizing it in 3D. The 3D model can be viewed from different perspectives and allow
distance measurements and line-of-sight analysis. Figure2.28 shows a 3D recon-
struction of a building on the ground using video and infrared video captured by an
UAV [76]. The photo-realistic 3D models are geo-referenced and can be visualized
in 3D Geographical Information System (GIS) viewers such as Google Earth.

Deep learning has also been applied to 3D reconstruction.A novel recurrent neural
network architecture was proposed for single- and multi-view 3D object reconstruc-
tion by learning a mapping from observations to their underlying 3D shape [18]. The
network took one or more images of an object instance from arbitrary viewpoints
to output a reconstruction of the object in the form of a 3D occupancy grid. Experi-
mental results showed that the proposed framework outperformed the state-of-the-art
method for single-view reconstruction. It worked well in situations where traditional
SfMmethods failed due to the lack of texture or wide baselines. An encoder–decoder
network was proposed for single-view 3D object reconstruction with a novel projec-
tion loss defined by the perspective transformation [93]. The projection loss enabled
unsupervised learning using 2D observation without ground truth 3D training data.
A single network for multi-class 3D object reconstruction was trained, with gener-
alization potential to unseen categories.

2.10.4 Visual SLAM

Mobile robot localization and mapping is the process of simultaneously tracking
the position of a mobile robot relative to its environment and building a map of the
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Fig. 2.29 (a) Autonomous rover on a gravel test site with obstacles (b) Comparison of the estimated
path by SLAM, wheel odometry, and DGPS (Differential GPS). Figure courtesy of [4]

environment. Accurate localization is a prerequisite for building a good map and
having an accurate map is essential for good localization. Therefore, Simultaneous
Localization and Mapping (SLAM) is a critical underlying capability for successful
mobile robot applications. To achieve a SLAM capability, high-resolution passive
vision systems can capture images in milliseconds, and hence they are suitable for
moving platforms such as mobile robots.

Stereo vision systems are commonly used on mobile robots, as they can measure
the full six degrees of freedom (DOF) of the change in robot pose. This is known as
visual odometry. By matching visual landmarks between frames to recover the robot
motion, visual odometry is not affected bywheel slip and hence is more accurate than
the wheel-based odometry. For outdoor robots with GPS receivers, visual odometry
can also augment the GPS to provide better accuracy, and it is also valuable in
environments where GPS signals are not available.

Unlike in 3Dmodelingwhere correlation-based dense stereomatching is typically
performed, feature-based matching is sufficient for visual odometry and SLAM;
indeed, it is preferable for real-time robotics applications, as it is computationally
less expensive. Such features are used for localization, and a feature map is built at
the same time.

The MERs Opportunity and Spirit are equipped with visual odometry capabil-
ity [53]. An update to the rover’s pose is computed by tracking the motion of
autonomously selected terrain features between two pairs of stereo images. It has
demonstrated good performance and successfully detected slip ratios as high as 125%
even while driving on slopes as high as 31 degrees.

As SIFT features [48] are invariant to image translation, scaling, rotation, and
fairly robust to illumination changes and affine or even mild projective deforma-
tion, they are suitable landmarks for robust SLAM. When the mobile robot moves
around in an environment, landmarks are observed over time but from different
angles, distances, or under different illuminations. SIFT features are extracted and
matched between the stereo images to obtain 3D SIFT landmarks which are used
for indoor SLAM [79] and for outdoor SLAM [4]. Figure2.29 shows a field trial of
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an autonomous vehicle at a gravel test site with obstacles and a comparison of rover
localization results. It can be seen that the vision-based SLAM trajectory is much
better than the wheel odometry and matches well with theDifferential GPS (DGPS).

Monocular visual SLAM applications have been emerging in recent years which
only require a single camera. The results are up to a scale factor but can be scaled
with some prior information. A number of different approaches have gained in pop-
ularity, which can be categorized in two axes: direct versus indirect approaches as
well as dense versus sparse methods [29]. Indirect approaches first pre-process the
raw sensor measurements to generate an intermediate representation such as fea-
ture correspondences, which are then interpreted as noisy measurements to estimate
geometry and camera motion. Direct approaches skip the pre-processing step and
use the actual sensor values directly as measurement. In the case of passive vision,
direct approaches optimize a photometric error, while indirect approaches optimize
a geometric error.

Dense methods use and reconstruct all pixels in the 2D image, while sparse meth-
ods use and reconstruct only a selected set of feature points such as corners. In sparse
formulation, there is no notion of neighborhood, as feature positions are conditionally
independent given the camera poses and intrinsics. Dense methods exploit the con-
nectedness of the image region to formulate a geometry prior, favoring smoothness,
which is often necessary to make a dense world model. Such a geometric prior may
introduce bias which could reduce long-term large-scale accuracy and may make
it infeasible to have a consistent joint optimization in real time. The various visual
SLAM approaches can be categorized into the following four categories:

• Sparse + indirect approach is the most widely used formulation where keypoint
correspondences are used to estimate 3D geometry, such as MonoSLAM [23],
PTAM [43], and ORB-SLAM [57].

• Dense + indirect approach estimates 3Dgeometry froma dense, regularized optical
flow field, such as [71].

• Dense + direct approach employs a photometric error as well as a geometric prior
to estimate dense geometry, such as DTAM [59] and LSD-SLAM [28].

• Sparse + direct approach optimizes a photometric error without incorporating a
geometric prior, such as [29].

Given the recent advances in depth prediction from monocular imagery using
CNNs, researchers have investigated how to improve visual SLAM with deep learn-
ing. CNN-predicted dense depth maps were fused together with depth measurements
obtained from direct monocular SLAM [85]. The fusion scheme prioritized CNN
depth prediction in image locations where monocular SLAM approaches tend to
fail. CNN depth prediction also estimated the absolute scale of the reconstruction,
hence overcoming one of the major limitations of monocular SLAM.
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2.11 Passive Versus Active 3D Imaging Systems

Before concluding, we briefly compare passive multiple-view 3D imaging systems
and their active imaging counterpart, as a bridge between this and the following
chapter. Passive systems do not emit any illumination and only perceive the ambient
light reflected from the scene. Typically, this is reflected sunlight when outdoors, or
the light, reflected from standard room lighting when indoors. On the other hand,
active systems include their own source of illumination, which has twomain benefits:

• 3D structure can be determined in smooth, textureless regions. For passive stereo,
it is impossible to extract features and correspondences in such circumstances.

• The correspondence problem either disappears, for example, a single spot of light
may be projected at any one time, or is greatly simplified by controlling the struc-
ture of the projected light.

The geometric principle of determining depth from a light (or other EMR) pro-
jector (e.g., laser) and a camera is identical to the passive binocular stereo situation.
The physical difference is that, instead of using triangulation applied to a pair of
back-projected rays, we apply triangulation to the axis of the projected light and a
single back-projected ray.

Compared with active approaches, passive systems are computationally intensive
as the 3D data is computed from processing the images andmatching image features.
Moreover, the depth data could be noisier as it relies on the natural texture in the
scene and ambient lighting condition. Unlike active scanning systems such as laser
scanners, cameras could capture complete images in milliseconds; hence, they can
be used as mobile sensors or operate in dynamic environments. The cost, size, mass,
and power requirements of cameras are generally lower than those of active sensors.

2.12 Concluding Remarks

Oneof the key challenges for 3Dvision researchers is to develop algorithms to recover
accurate 3D information robustly under a wide range of illumination conditions, a
task that can be done by humans so effortlessly. While 3D passive vision algorithms
have been maturing over the years, this is still an active topic in the research commu-
nity and at major computer vision conferences. Many algorithms perform reasonably
well with test data but there are still challenges to handle scenes with uncontrolled
illumination. Deep learning, in the form of many-layered neural networks, continues
to have a big impact on this area. Passive 3D imaging systems are becoming more
prevalent as cameras are getting cheaper and computers are fast enough to handle
the intensive processing requirements. Thanks to hardware acceleration and GPUs,
embedded real-time applications are becoming more robust, leading to a growing
number of real-world applications.

After working through this chapter, you should be able to
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• Explain the fundamental concepts and challenges of passive 3D imaging systems.
• Explain the principles of epipolar geometry.
• Solve the correspondence problem by correlation-based and feature-based tech-
niques (using off-the-shelf feature extractors).

• Estimate the fundamental matrix from correspondences.
• Perform dense stereo matching and compute a 3D point cloud.
• Explain the principles of structure from motion.
• Explain how deep learning can be applied to 3D imaging.
• Provide example applications of passive 3D imaging systems.

2.13 Further Reading

Two-view geometry is studied extensively in [38], which also covers the equivalent
of epipolar geometry for three or more images. The eight-point algorithm was pro-
posed in [39] to compute the fundamental matrix, while the five-point algorithm was
proposed in [61] for calibrated cameras. Reference [88] provides a good tutorial and
survey on bundle adjustment, which is also covered in textbooks [30, 38] and a recent
survey article [55].

Surveys such as [75] serve as a guide to the extensive literature on stereo imaging.
Structure from motion is extensively covered in review articles such as [55]. A step-
by-step guide to 3D modeling from images is described in detail in [51]. Non-rigid
structure from motion for dynamic scenes is discussed in [87].

Multiple-view 3D vision, particularly in the context of deep learning, continues to
be highly active research topics, and some of the major computer vision conferences
include the International Conference on Computer Vision (ICCV), IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), and the European Conference
on Computer Vision (ECCV). Some of the relevant major journals include Interna-
tional Journal of Computer Vision (IJCV), IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI), and Image and Vision Computing (IVC).

The following websites provide comprehensive online resources for computer
vision including 3D passive vision topics and are being updated regularly.

• CVonline [31] provides an online compendium of computer vision.
• VisionBib.Com [69] contains annotated bibliography on a wide range of computer
vision topics, as well as references to available datasets.

Due to limited space, there are areas of passive 3D imaging that we were unable to
cover. For example, we have assumed that we are using imaging in themedium of air,
yet many applications require underwater imaging, such as Unmanned Underwater
Vehicles (UUVs). A useful function of such UUVs is to perform a reconstruction
of the seabed or some artefact on the seabed, such as a shipwreck. This poses sev-
eral problems that we have not considered, such as the refractive properties of the
air–glass–water interface affecting the camera’s intrinsic parameters. Furthermore,
images are blurred due to light scattering, and visibility is often poor due to suspended



2 Passive 3D Imaging 101

particles. An interesting case study of the XlendiWreck inMalta is provided by Drap
et al. [24], which employs underwater photogrammetry and object modeling.

Also, we did not extensively detail methods that can deal with missing parts
due to insufficient texture for multiple-view matching, or due to self-occlusion. In
applications when the class of object to be reconstructed is known, it is possible
to learn a shape prior, for example, as a 3D Morphable Model (3DMM). Given a
3DMM,missing parts can then be inferred from the reconstructed parts. Suchmodels
are discussed extensively in a later chapter of this book. Furthermore, recent work
has applied deep learning to the combined problem of monocular reconstruction and
shape completion [92].

2.14 Software Resources

As 3D reconstruction is now a mature technology, there are a variety of software
packages that can perform 3D reconstruction from a series of 2D images. Open-
source 3D modeling packages include OpenMVG [63] and OpenMVS [64]. Open
Multiple-View Geometry (OpenMVG) is a library for computer vision scientists tar-
geted the multiple-view geometry community. It provides an easy access to classical
problem solvers in multiple-view geometry, such as structure from motion, which
recovers camera poses and a sparse 3D point cloud from a set of input images.
Open Multi-View Stereo (OpenMVS) focuses on the last part of the reconstruction
pipeline by providing a set of algorithms to recover the full surface of the scene.
The input is a set of camera poses plus the sparse point cloud, and the output is a
photo-realistic 3D model in the form of a textured mesh. There are other free open-
source 3D reconstruction software packages, such as AliceVision’s Meshroom [3].
Furthermore,OpenCV [62] is a free general open-source computer vision library that
is useful in a wide range of passive 3D applications. There are several commercial
3D reconstruction packages available, sometimes called photogrammetry packages
and sometimes with educational licenses. For example, the Agisoft company has the
Metashape package [1], which is a development of their earlier Photoscan product.
Another is Pix4D [66], which is targeted at drone-based aerial mapping.

2.15 Questions

1. What are the differences between passive and active 3D vision systems?
2. Name two approaches to recover 3D from single images and two approaches to

recover 3D from multiple images.
3. What is the epipolar constraint and how can you use it to speed up the search for

correspondences?
4. What are the differences between essential and fundamental matrices?
5. What is the purpose of rectification?
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6. What are the differences between correlation-based and feature-based methods
for finding correspondences?

7. What are the differences between local and global methods for dense stereo
matching?

8. What are the differences between stereo and structure from motion?
9. What are the factors that affect the accuracy of stereo vision systems?
10. What are two use cases of applying deep learning to 3D imaging?

2.16 Exercises

Experimenting with stereo imaging requires that you have two images of a scene
from slightly different viewpoints, with a good overlap between the views, and a
significant number of well-distributed corner features that can be matched. You will
also need a corner detector. There are many stereo image pairs and corner detector
implementations available on the web [62]. Of course, you can collect your own
images either with a pre-packaged stereo camera or with a pair of standard digital
cameras. The following programming exercises should be implemented in a language
of your choice.

1. Fundamental matrix with manual correspondences. Run a corner detector on
the image pair. Use a point-and-click GUI to manually label around 20 well-
distributed correspondences. Compute the fundamental matrix and plot the con-
jugate pair of epipolar lines on the images for each correspondence. Experiment
with different numbers and combinations of correspondences, using a minimum
of eight in the eight-point algorithm. Observe and comment on the sensitivity of
the epipolar lines with respect to the set of correspondences chosen.

2. Fundamental matrix estimation with outlier removal. Add 4 incorrect corner cor-
respondences to your list of 20 correct ones. Observe the effect on the computed
fundamental matrix and the associated (corrupted) epipolar lines. Augment your
implementation of fundamental matrix estimation with the RANSAC algorithm.
Use a graphical overlay on your images to show that RANSAC has correctly
identified the outliers, and verify that the fundamental matrix and its associated
epipolar lines can now be computed without the corrupting effect of the outliers.

3. Automatic feature correspondences. Implement a function to automaticallymatch
corners between two images according to the Sum of Squared Differences (SSD)
measure. Also, implement a function for the Normalized Cross-Correlation
(NCC) measure. Compare the matching results with test images of similar bright-
ness and also of different brightnesses.

4. Fundamental matrix from automatic correspondences. Use your fundamental
matrix computation (with RANSAC)with the automatic feature correspondences.
Determine the positions of the epipoles and, again, plot the epipolar lines.
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The following additional exercises require the use of a stereo rig, which could be a
pre-packaged stereo pair or a homemade rig with a pair of standard digital cameras.
The cameras should have a small amount of vergence to overlap their fields of view.

5. Calibration. Create your own calibration target by printing off a chessboard pat-
tern and pasting it to a flat piece of wood. Use a point-and-click GUI to semi-
automate the corner correspondences between the calibration target and a set
of captured calibration images. Implement a camera calibration procedure for a
stereo pair to determine the intrinsic and extrinsic parameters of the stereo rig.
If you have less time available, you may choose to use some of the calibration
libraries available on the web [11, 62].

6. Rectification. Compute an image warping (homography) to apply to each image
in the stereo image pair, such that conjugate epipolar lines are horizontal (parallel
to the x-axis) and have the same y-coordinate. Plot a set of epipolar lines to check
that this rectification is correct.

7. Dense stereomatching. Implement a function to perform local dense stereomatch-
ing between left and right rectified images, using NCC as the similarity measure,
and hence generate a disparity map for the stereo pair. Capture stereo images for
a selection of scenes with varying amounts of texture within them and at varying
distances from the cameras, and compare their disparity maps.

8. 3D reconstruction. Implement a function to perform a 3D reconstruction from
your disparity maps and camera calibration information. Use a graphics tool to
visualize the reconstructions. Comment on the performance of the reconstructions
for different scenes and for different distances from the stereo rig.
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Chapter 3
Active Triangulation 3D Imaging
Systems for Industrial Inspection

Marc-Antoine Drouin and Jean-Angelo Beraldin

Abstract Active 3D imaging systems use artificial illumination in order to capture
and record digital representations of objects. The use of artificial illumination allows
the acquisition of dense and accurate range images of textureless objects that are
difficult to acquire using passive vision systems. An active 3D imaging system can
be based on different measurement principles that include time-of-flight, triangula-
tion, and interferometry. Here, an in-depth presentation of triangulation-based 3D
imaging is provided, including both scanning laser and structured light projection
systems, with a focus on industrial applications. The characterization of triangulation
is discussed using both an error-propagation framework and experimental protocols.

3.1 Introduction

Three-dimensional (3D) imaging systems, also known as 3D vision systems, capture
and record a digital representation of the geometry and appearance (e.g., color-
texture) information of visible 3D surfaces of people, animals, plants, objects, and
sites. This digital surrogate of the physical world is then processed in order to extract
useful information from the raw data and finally, communicate the results. Active
3D imaging systems use an artificial illumination, usually either a spatially coherent
light source (e.g., laser) or an incoherent one (e.g., halogen lamp), to acquire dense
range maps with a minimum of ambiguity. The term is also used for systems that
project non-visible electromagnetic radiation, such as near infrared onto the scene.
The use of an artificial light source makes it possible for active 3D imaging systems
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to generate a model of a surface geometry, even when the surface appears feature-
less to the naked eye or to a photographic/video camera and, hence, require minimal
operator assistance. Furthermore, the 3D information can be made relatively insensi-
tive to ambient illumination and surface color. They are, by their nature, noncontact
measurement instruments and produce a quantifiable 3D digital representation (e.g.,
point cloud or range image) of a surface in a specified finite volume of interest and
with a particular measurement uncertainty.

3.1.1 Historical Context

The desire to capture and record shape using optical instruments can be traced back
to the invention of rudimentary surveying instruments and the camera obscura [84].
The invention of photography, in which images are recorded on semi-permanent
recording media, is certainly the catalyst of modern methods. In the 1860s, François
Willème invented a process known as photo-sculpture that used many cameras [72,
94]. Profiles of the subject to be reproduced were taken on photographic plates, pro-
jected onto a screen, and transferred to a piece of clay using a pantograph. The process
supplied many profiles, which were used to rough down the piece of clay, leaving
a large amount of manual work. Commercial applications developed rapidly and
studios stayed in operation from 1863 to 1867, when it was realized that the photo-
sculpture process was not more economical than the traditional sculpture technique.
A professional sculptorwas needed and the photo-sculpture process required a signif-
icant investment in cameras, projection and reproduction systems, and skilled labor
to operate them.

It is onlywith the advancesmade during the last half of the twentieth century in the
field of solid-state electronics, photonics, computer vision, and computer graphics
that the process of capturing and recording detailed shapes by optical means regained
substantial interest. Indeed, obvious changes have been instrumental in the growth
of active 3D imaging systems technology, i.e., the availability of affordable and
fast digital computers and reliable light sources (lasers, halogen lamps, LEDs). It
is now possible to build reliable, accurate, high-resolution 3D active vision systems
that can capture large amounts of 3D data. In addition, the ability to process these
dense point clouds in an efficient and cost-effective way has opened up a myriad
of applications in many diverse areas, such as defense, medicine, entertainment,
industry, and commerce.

3.1.2 Basic Measurement Principles

Active 3D imaging systems can be based on different measurement principles. The
threemost usedprinciples in commercially available systems are time-of-flight (ToF),
interferometry, and triangulation. Seitz describes ToF as based on an accurate clock,
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Fig. 3.1 Diagram showing typical accuracy at different operating distances for the most common
active 3D imaging technologies. Figure courtesy of NRC

interferometry as one that uses accurate wavelengths and triangulation as a method
based on geometry [83]. Figure3.1 summarizes the typical accuracy of each type
of active 3D imaging system technology, found on the market, as a function of the
operating distance. It can be observed that each optical technique covers a particular
range of operation. Furthermore, many in-depth classifications of optical distance
measurement principles have been published [11, 13, 59, 73].

The fundamental work on ToF systems can be traced back to the era of RADAR,
which is based on radio waves. With the advent of lasers in the late 1950s, it became
possible to image a surface with angular and range resolutions much higher than
possible with radio waves. Different strategies have been devised to exploit this
basic measurement principle [1, 6, 59].

Interferometry is based on the superposition of two beams of light [59]. Typi-
cally, a laser beam is split into two paths. One path is of known length, while the
other is of unknown length. The difference in path lengths creates a phase difference
between the light beams.The twobeams are then combined together before reaching a
photodetector. The interference pattern seen by the detector resulting from the super-
position of these two light beams depends on the path difference (a distance). Note
that commercially available systems based on other principles such as conoscopic
holography are available for small operating distances (see Fig. 3.1). Technologies
for small operating distances are covered in [59, 61] and ToF methods are described
in the next chapter. The remainder of this chapter will focus on triangulation-based
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methods that use the same principle as the passive triangulation systems presented
in Chap. 2 of this book. Active triangulation systems are frequently encountered in
industrial inspection applications and so we cover that aspect of their deployment.

3.1.3 Active Triangulation-Based Methods

In the previous chapter, passive triangulation systems were presented, namely, stan-
dard stereo configurations and structure-from-motion. In this chapter, we assume
that the reader is familiar with camera calibration and the epipolar geometry of two
camera views, as presented in Chap.2.

Both active and passive triangulation systems are based on the same geometric
principle: intersecting light rays in 3D space. Typically, an active system replaces one
camera of a passive stereo system by a projection device. This projection device can
be a digital video projector, an analogue slide projector or a laser. (Note, however,
that many active systems use two cameras with a projection device. Although this is
at first sight redundant, there are sound reasons behind this design choice, such as a
reduction in ‘missing parts’ due to self-occlusion.)

There are many ways to classify active triangulation sensors, according to their
opto-mechanical components, opto-mechanical construction, and performance. One
of the key dimensionswithin this taxonomy is theway inwhich the active 3D imaging
system illuminates the scene. Here we will consider four distinct categories: spot
scanners, stripe scanners, systems that use structured light patterns, and handheld
scanners.

The simplest of these is the spot scanner (also known as a point-based scanner)
where, typically, a collimated or focused laser beam illuminates a very small circular
or elliptical part of the scene for each image capture. One advantage of this approach
is that the spatial correspondence problem is non-existent, because the illumination
of the object’s surface is spread temporally (i.e., in the time dimension). Moreover, a
spot scanner allows us to control the spatial sampling on the scene surfaces. The laser
power can also be controlled on a per-3D-sample basis.However, this is at the expense
of additional opto-mechanical complexity because the spot must be scanned either
by mounting the sensor on a 2D translation stage, or by orienting the laser around
two axes of rotation using two galvanometer-mounted mirrors (see Fig. 3.2-left). In
addition, the significant time taken to capture a range image precludes the use of this
type of scanner in dynamic scenes.

Typically, in the second type of scanner, a collimated laser beam is passed through
a cylindrical lens in order to generate a ‘sheet-of-light’ that illuminates the scenewith
a thin stripe (see Fig. 3.2-middle). Other implementations are possible, for example,
the cylindrical lens could be replaced by a diffractive optical element (DOE) or
a diffraction grating. This stripe now only needs to be scanned in one dimension
relative to the scene in order to assemble a range image and, again, this may be done
by translation of the sensor (or, alternatively, the object) or the rotation of a single
mirror. These 3D imaging devices are called stripe scanners or profile scanners. Note

http://dx.doi.org/10.1007/978-3-030-44070-1_2
http://dx.doi.org/10.1007/978-3-030-44070-1_2
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Fig. 3.2 Left: a spot-based system where the orientation along one axis of the laser is controlled by
a galvanometer-mounted mirror. The complete scanner head is translated. This design is described
in Sect. 3.9.2. Center: a commercial stripe-based systemwhere the scanner head is translated. Right:
a commercial area-based system. Figure courtesy of the NRC

that although the complexity of scanning has reduced from two-dimensional to one-
dimensional, some ambiguity in the direction of illumination is introduced, which
needs to be resolved using the epipolar constraint.

The third type of scanner that we discuss is the type that projects a structured
light pattern onto the scene [59] (see Fig. 3.2-right). These 3D imaging devices are
also known as area scanners [91]. Typically these systems do not scan the projected
light over the scene object at all, since the object is usually completely illuminated
by the pattern, although the term ‘scanner’ is often still applied in an informal sense.
These systems provide the advantage of the shortest capture times, thus minimizing
distortion due to motion in dynamic scenes. The correspondence problem, however,
is more challenging (although not as difficult as for passive stereo) and the projected
light is structured either spatially, temporally, or both in order to determine which
part of the projected pattern corresponds to which part of the imaged pattern.

The last type of scanner is a handheld device and this is very popular because of
its ease of use. As the name implies, a scanner of this type is held by the operator,
who moves it in front of the object to be digitized. These scanners perform range
image alignment and fusion in real time, thus providing the user with instantaneous
feedback. A handheld scanner is composed of a measurement system, a positioning
system, and a sophisticated software pipeline. Themeasurement system is typically a
stripe-based scanner or a structured light system. The positioning system is typically
a passive triangulation system (labeled as industrial photogrammetry in Fig. 3.1) that
relies on cooperative 2D targets (usually stickers). This type of positioning system
can be part of the handheld device. In this case, the 2D targets are installed on
the object to be digitalized. An alternative is to use an external passive system that
tracks the movement of the scanner. In that case, the 2D targets are installed on the
scanner. Another variant mounts the 3D scanner on a portable arm and, in that case,
the positioning of the scanner is computed using the information provided by the
arm encoders. In Sects. 3.3 and 3.4, we discuss both stripe-based and structured light
subsystems of handheld scanners. More information about positioning systems and
software pipelines can be found in [54, 88, 89].
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When working with coherent light sources (lasers) eye safety is of paramount
importance and one should never operate laser-based 3D imaging sensors without
appropriate eye-safety training. Many 3D imaging systems use a laser in the visible
spectrum where fractions of a milliwatt are sufficient to cause eye damage, since the
laser light density entering the pupil ismagnified, at the retina, through the lens. For an
operator using any laser, an important safety parameter is the maximum permissible
exposure (MPE), which is defined as the level of laser radiation to which a person
may be exposed without hazardous effect or adverse biological changes in the eye
or skin [2]. The MPE varies with wavelength and operating conditions of a system.
We do not have space to discuss eye safety extensively here and refer the reader to
the American National Standard for Safe use of Lasers [2]. Note that high power low
coherence (and non-coherent) light sources can also pose eye-safety issues [21].

3.1.4 Chapter Outline

The core sections in this chapter cover the following materials:

• Spot scanners.
• Stripe scanners.
• Area-based structured light systems.
• System calibration.
• Measurement uncertainty.1

• Experimental characterization.

In Sects. 3.8 and 3.9, further advanced topics are included on modeling sen-
sors, understanding their uncertainty, and designing synchronized scanning systems.2

Toward the end of the chapter, we present the main challenges for future research,
concluding remarks, and suggestions for further reading. Finally a set of questions
and exercises are presented for the reader to develop and consolidate their under-
standing of active 3D imaging systems.

3.2 Spot Scanners

Usually, spot scanners use a laser. We limit the discussion to this type of technology
and in order to study the basic principle of triangulation, we assume an infinitely
thin laser beam diameter and constrain the problem to the plane (X, Z), i.e., Y = 0.
The basic geometrical principle of optical triangulation for a spot scanner is shown
in Fig. 3.3 and is identical to the one of passive stereo discussed in Chap.2.

1Optional advanced material that may be omitted on the first reading.
2May also be omitted on the first reading.

http://dx.doi.org/10.1007/978-3-030-44070-1_2
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Fig. 3.3 Schematic diagram of a single point optical triangulation sensor based on a laser beam
and a linear spot detector. The baseline is H and d is the distance between the lens and the linear
spot detector. The projection angle is α. The collection angle is β, which is computed using the
distance d and the position p on the linear spot detector. The point [X, Z ]T is determined by the
baseline H , the projection angle α, and the collection angle β. Figure courtesy of [7]

In Fig. 3.3, a laser source projects a beam of light on a surface of interest. The
light scattered by that surface is collected from a vantage point spatially distinct from
the projected light beam. This light is focused (imaged) onto a linear spot detector.3

Knowledge of both projection and collection angles (α and β) relative to a baseline
(H ) determines the [X, Z ]T coordinate of a point on a surface. Note that it is assumed
that the only light that traverses the lens goes through the optical center, which is
the well-known pinhole model of the imaging process. Furthermore, we refer to
projection of the laser light onto the scene and we can think of the imaged spot
position on the detector and the lens optical center as a back-projected ray, traveling
in the opposite direction to the light, back into the scene. This intersects with the
projected laser ray to determine the 3D scene point.

The linear spot detector acts as an angle sensor and provides signals that are
interpreted as a position p. Explicitly, given the value of p, the value of β in radians
is computed as

β = arctan
( p

d

)
(3.1)

where d is the distance between the laser spot detector and the collection lens.
Typically this distance will be slightly larger than the focal length of the lens, such
that the imaged spot is well focused at the depth at which most parts of the object
surface are imaged. The relevant thin lens equation is discussed in Sect. 3.8.1.

The position of p on the linear spot detector is computed using a peak detector,
which will be described later. Using simple trigonometry, one can verify that

3A linear spot detector can be conceptually viewed as a camera that has a singe row of pixels. Many
linear spot detectors have been proposed in the past for 3D imaging [7].
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Z = H

tan α + tan β
(3.2)

and
X = Z tan α. (3.3)

Substituting Eq.3.1 into Eq.3.2 gives

Z = Hd

p + d tan α
. (3.4)

In order to acquire a complete profile without using a translation stage, the laser
beam can be scanned around some [X, Z ]T coordinate using a mirror mounted on
a mechanical scanner (typically a galvanometer drive). In this case, the angle α is
varied according to a predefined field of view. For practical reasons, the total scanned
angle for a configuration like the one in Fig. 3.3 is about 30◦. Larger angles may be
scanned by more sophisticated optical arrangements called synchronized scanners,
where the field of view of the camera is scanned using the same mirror that scans the
laser. Sometimes the reverse side of a double-sided mirror is used [19, 77].

3.2.1 Spot Position Detection

It is crucial to obtain the position of the laser spot on the linear spot detector to
sub-pixel accuracy. In order to accomplish this, the image of the laser spot must be
a few pixels wide on the detector, which is easy to achieve in a real system. Many
peak detectors have been proposed to compute the position of the laser spot and two
studies compare different peak detectors [38, 69]. We examine two peak detectors
[16, 38, 69]. The first one localizes the ‘center of mass’ of the imaged spot intensity.
In this method, the pixel iM with the maximum intensity is found in the 1D image
I . Then a window of size 2N + 1 centered on iM is used to compute the centroid
position. Explicitly, the peak position p is defined as

p = iM +
∑N

i=−N I (iM + i)i∑N
i=−N I (iM + i)

. (3.5)

The second peak detector uses convolution with a derivative filter, followed by a
linear interpolation. Explicitly, for each pixel, i , let

g(i) =
N∑

j=−N

I (i − j)F( j + N ) (3.6)
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where F = [1, 1, 1, 1, 0,−1,−1,−1,−1] and N = 4. Finally, the linear interpola-
tion process is implemented as

p = i0 + g(i0)

g(i0) − g(i0 + 1)
(3.7)

where i0 is a pixel such that g(i0) ≥ 0 and g(i0 + 1) < 0. Moreover, F has the
property of filtering out some of the frequency content of the image [16]. This makes
it possible to filter out the ambient illumination and some of the noise and interference
introduced by the linear detector electronics. Note that other filters could be used.
It has been shown that the second peak detector outperforms the first in an actual
implementation of laser triangulation [16].

3.3 Stripe Scanners

As shown previously, spot scanners intersect a detection direction (a line in a plane,
which is a back-projected ray) with a projection direction (another line in the same
plane) to compute a point in a 2D scene space. Stripe scanners and structured light
systems intersect a back-projected 3D ray, generated from a pixel in a camera, and a
projected 3D plane of light, in order to compute a point in the 3D scene. Clearly, the
scanner baseline should not be contained within the projected plane, otherwise we
would not be able to detect the deformation of the stripe. (In this case, the imaged
stripe lies along an epipolar line in the scanner camera.)

A stripe scanner is composed of a camera and a laser ‘sheet-of-light’ or plane,
which is rotated or translated in order to scan the scene. (Of course, the object may be
rotated on a turntable instead, or translated, and this is a common set up for industrial
3D scanning of objects on conveyer belts.) Figure3.4 illustrates three types of stripe
scanners. Note that other configurations exist, but are not described here [13]. In the

Fig. 3.4 Left: a stripe scanner where the scanner head is translated. Center: a stripe scanner where
the scanner head is rotated. Right: a stripe scanner where a mirror rotates the laser beam. Figure
courtesy of NRC



118 M.-A. Drouin and J.-A. Beraldin

remainder of this chapter,wewill discuss systems inwhich only the plane of projected
light is rotated and an image is acquired for each laser plane orientation. The camera
pixels that view the intersection of the laser plane with the scene can be transformed
into observation directions (see Fig. 3.4). Depending on the roll orientation of the
camera with respect to the laser plane, the observation directions in the camera are
obtained by applying a peak detector on each row or column of the camera image.
We assume a configuration where a measurement is performed on each row of the
camera image using a peak detector.

Next, the pinhole camera model presented in the previous chapter is revisited.
Then, a laser-plane-projector model is presented. Finally, triangulation for a stripe
scanner is presented.

3.3.1 Camera Model

The simplest mathematical model that can be used to represent a camera is the
pinhole model. Readers familiar with the camera model presented in the previous
chapter can go directly to the last paragraph of this section. A pinhole camera can
be assembled using a box in which a small hole (i.e., the aperture) is made on one
side and a sheet of photosensitive paper is placed on the opposite side. Figure3.5
is an illustration of a pinhole camera. The pinhole camera has a very small aperture
so it requires long integration times; thus, machine vision applications use cameras
with lenses which collect more light and hence require shorter integration times.
Nevertheless, for many applications, the pinhole model is a valid approximation of
a camera. In this mathematical model, the aperture and the photosensitive surface of
the pinhole are represented, respectively, by the center of projection and the image
plane. The center of projection is the origin of the camera coordinate system and
the optical axis coincides with the Z -axis of the camera. Moreover, the optical axis

Image plane

Q1

Q2
Zc

Xc

d

q1

q2
Optical axis

Projection
center

Fig. 3.5 Cross section of a pinhole camera. The 3D pointsQ1 andQ2 are projected into the image
plane as points q1 and q2, respectively, and d is the distance between the image plane and the
projection center. Figure courtesy of NRC
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is perpendicular to the image plane and the intersection of the optical axis and the
image plane is the principal point (image center). Note that when approximating a
camera with the pinhole model, the geometric distortions of the image introduced by
the optical components of an actual camera are not taken into account. Geometric
distortionswill be discussed in Sect. 3.5. Other limitations of thismodel are described
in Sect. 3.8.

A 3D point [Xc, Yc, Zc]T in the camera reference frame can be transformed into
pixel coordinates [x, y]T byfirst projecting [Xc,Yc, Zc]T onto the normalized camera
frame using [x ′, y′]T = [Xc/Zc,Yc/Zc]T . This normalized frame corresponds to the
3D point being projected onto a conceptual imaging plane at a distance of one unit
from the camera center. The pixel coordinates can be obtained from the normalized
coordinates as [

x
y

]
= d

⎡
⎣

x ′
sx
y′
sy

⎤
⎦ +

[
ox
oy

]
(3.8)

where sx and sy are the dimensions of the sensor in millimeters divided by the
number of pixels along the X and Y -axis, respectively. Moreover, d is the distance
in millimeters between the aperture and the sensor chip and [ox , oy]T is the position
in pixels of the principal point (image center) in the image. The parameters sx , sy , d,
ox , and oy are the intrinsic parameters of the camera.

The extrinsic parameters of the camera must be defined in order to locate the
position and orientation of the camera in the world coordinate system. This requires
three parameters for the rotation and three parameters for the translation. (Note that
in many design situations, we can define the world coordinate system such that
it coincides with the camera coordinate system. However, we still would need to
estimate the pose of the light projection system, which can be viewed as an inverse
camera, within this frame. Also, many active 3D imaging systems use multiple
cameras, which can reduce the area of the ‘missing parts’ caused by self-occlusion.)

The rotation is represented using a 3 × 3 rotation matrix

Rc =
⎡
⎣
1 0 0
0 cos θx − sin θx
0 sin θx cos θx

⎤
⎦

⎡
⎣

cos θy 0 sin θy
0 1 0

− sin θy 0 cos θy

⎤
⎦

⎡
⎣
cos θz − sin θz 0
sin θz cos θz 0
0 0 1

⎤
⎦ (3.9)

where θx , θy and θz are the rotation angles around the X , Y , and Z axis and translation
is represented by a vector Tc = [Tx , Ty, Tz]T . Note that the rotation matrix Rc is
orthogonal (i.e., RT

c = R−1
c ) and det(Rc) = 1.

A 3D pointQw = [Xw,Yw, Zw]T in the world reference frame can be transformed
into a point Qc = [Xc,Yc, Zc]T of the camera reference frame by using

Qc = RcQw + Tc. (3.10)

Then, the point Qc is projected onto the normalized camera frame [x ′, y′]T =
[Xc/Zc,Yc/Zc]T . Finally, the point in the normalized camera frame [x ′, y′]T can
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be transformed into the pixel coordinate [x, y]T using Eq.3.8. Explicitly, the trans-
formation from Qw to pixel [x, y]T is

[
x
y

]
=

[
d
sx

(r11,r12,r13)Qw+Tx
(r31,r32,r33)Qw+Tz

d
sy

(r21,r22,r23)Qw+Ty
(r31,r32,r33)Qw+Tz

]
+

[
ox
oy

]
(3.11)

where the ri j are the elements of matrix Rc. Note that a pixel [x, y]T can be trans-
formed into the normalized camera frame using

[
x ′
y′

]
= 1

d

[
sx (x − ox )
sy (y − oy)

]
. (3.12)

Moreover, one may verify using Eq.3.10 that a point in the camera reference frame
can be transformed to a point in the world reference frame by using

Qw = RT
c [Qc − Tc] (3.13)

Note that the camera model used in this chapter is similar to the one used in the
previous chapter, with one minor difference: f kx and f ky are replaced by d/sx and
d/sy , respectively. This change is partly notational (kx = 1

sx
, ky = 1

sy
) and partly to

do with where the image is in focus relative to the camera center (in general, d and
f are not equal, with d often being slightly larger). This will be discussed further in
Sect. 3.8. Note that intrinsic camera parameters can be determined using the method
described in Chap.2.

3.3.2 Sheet-of-light Projector Model

In the projective-geometry framework of the pinhole camera, a digital projector can
be viewed as an inverse camera and both share the same parameterization. Similarly,
a sheet-of-light projection system can be geometrically modeled as a pinhole camera
with a single infinitely thin column of pixels. Although this parameterization is a
major simplification of the physical system, it allows the presentation of the basic
concepts of a sheet-of-light scanner using the same two-view geometry that was
presented in Chap.2. This column of pixels can be back-projected as a plane in
3D and the projection center of this simplified model acts as the laser source (see
Sect. 3.8.5).

In order to acquire a complete range image, the laser source is rotated around
a rotation axis by an angle α. The rotation center is located at Tα and Rα is the
corresponding rotation matrix.4 For a given α, a point Qα in the laser coordinate
frame can be transformed into a point Qw in the world coordinate frame using

4The rotation matrix representing a rotation of θ around an axis [a, b, c]T of unit magnitude is

http://dx.doi.org/10.1007/978-3-030-44070-1_2
http://dx.doi.org/10.1007/978-3-030-44070-1_2
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Qw = Tα + Rα[Qα − Tα]. (3.14)

In a practical implementation, a cylindrical lens can be used to generate a laser
plane and optical components such as a mirror are used to change the laser plane
orientation.

3.3.3 Triangulation for Stripe Scanners

Triangulation for stripe scanners essentially involves intersecting the back-projected
ray associated with a camera pixel with the sheet-of-light, projected at some angle
α. Consider a stripe scanner, where projector coordinates are subscripted with 1 and
camera coordinates are subscripted with 2. Suppose that an unknown 3D scene point,
Qw, is illuminated by the laser for a given value of α and this point is imaged in the
scanner camera at known pixel coordinates [x2, y2]T . The normalized camera point
[x ′

2, y
′
2]T can be computed from [x2, y2]T and the intrinsic camera parameters (known

from a camera calibration) using Eq.3.12. Considering the sheet-of-light projector
model, described above, the 3D scene point Qw is back-projected to an unknown
normalized coordinate [0, y′

1]T for the given value of α.
Clearly there are three unknowns here, which includes the depth associated with

the back-projected camera ray to the 3D scene point, and a pair of parameters that
describe the planar position in the projected sheet-of-light of the 3D scene point. If
we can form an independent equation for each of the coordinates Xw,Yw, Zw ofQw,
then we can solve for that point’s unknown 3D scene position.

By rearranging Eqs. 3.13 and 3.14, one may obtain

Qw = Rα[0, λ1y
′
1, λ1]T + Tα − RαTα = RT

c [[λ2x
′
2, λ2y

′
2, λ2]T − Tc] (3.15)

where λ1 and λ2 are the range (i.e., the distance along the Z-axis) between the 3D
pointQw and the laser source and the camera, respectively. Moreover,Rα and Tα are
the parameters related to the laser plane orientation and position and Rc and Tc are
the extrinsic parameters of the camera. (Note that these can be simplified to the 3 x
3 identity matrix and the zero 3-vector, if the world coordinate system is chosen to
coincide with the camera coordinate system.)WhenRα andTα are known, the vector
equality on the right of Eq.3.15 is a system of three equations with three unknowns
λ1, λ2, and y′

1. These can easily be determined and then the values substituted in
the vector equality on the left of Eq.3.15 to solve for the unknown Qw. (A question
about the independence of these equations is given in Sect. 3.13).

Rθ =
⎡
⎣

a2(1 − cos θ) + cos θ ab(1 − cos θ) − c sin θ ac(1 − cos θ) + b sin θ

ab(1 − cos θ) + c sin θ b2(1 − cos θ) + cos θ bc(1 − cos θ) − a sin θ

ac(1 − cos θ) − b sin θ bc(1 − cos θ) + a sin θ c2(1 − cos θ) + cos θ

⎤
⎦ .
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For a given α, a 3D point can be computed for each row of the camera. Thus, in
Eq.3.15 the known y2 and α and the measured value of x2 which is obtained using
a peak detector can be used to compute a 3D point. A range image is obtained by
taking an image of the scene for each value of α. In the next section, we examine
scanners that project structured light patterns over an area of the scene.

3.4 Area-Based Structured Light Systems

The stripe scanner presented earlier requires the head of the scanner to be rotated or
translated in order to produce a range image (see Fig. 3.4). Other methods project
many planes of light simultaneously and use a coding strategy to recover which
camera pixel views the light from a given plane. There are many coding strategies
that can be used to establish the correspondence [80] and it is this coding that gives
the name structured light. The two main categories of coding are spatial coding and
temporal coding, although the two can be mixed [32]. In temporal coding, patterns
are projected one after the other and an image is captured for each pattern. Matching
to a particular projected stripe is done based only on the time sequence of imaged
intensity at a particular location in the scanner’s camera. In contrast, spatial coding
techniques project just a single pattern, and the greyscale or color pattern within
a local neighborhood is used to perform the necessary correspondence matching.
Clearly this has a shorter capture time and is generally better suited to dynamic
scene capture. (One example could be the sequence of 3D face shapes that constitute
changes in facial expression.) However, due to self occlusion, the required local
area around a pixel is not always imaged, which can pose more difficulty when the
object surface is complex, for example, with many surface concavities. Moreover,
systems based on spatial coding usually produce a sparse set of correspondences,
while systems based on temporal coding produce a dense set of correspondences.

Usually, structured light systems use a non-coherent projector source (e.g., video
projector) [5, 93]. We limit the discussion to this type of technology and we assume
a digital projection system. Moreover, the projector images are assumed to contain
vertical lines referred to as fringes.5 Thus the imaged fringes cut across the camera’s
epipolar lines, as required.With L intensity levels and F different projection fringes to
distinguish, N = �logL F� patterns are needed to remove the ambiguity. When these
patterns are projected temporally, this strategy is known as a time-multiplexing cod-
ification [80]. Codes that use two (binary) intensity levels are very popular because
the processing of the captured images is relatively simple. TheGray code is probably
the best known time-multiplexing code. These codes are based on intensity measure-
ments. Another coding strategy is based on phase measurement and both approaches
are described in the remainder of this section. For spatial neighborhood methods, the
reader is referred to the next chapter.

5Fringe projection systems are a subset of structured light systems, but we use the two terms
somewhat interchangeably in this chapter.
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3.4.1 Gray Code Methods

Gray codeswere first used for telecommunication applications. FrankGray fromBell
Labs patented a telecommunicationmethod that used this code [47].A structured light
system that used Gray codes was presented in 1984 by Inokuchi et al. [56]. A Gray
code is an ordering of 2N binary numbers in which only one bit changes between
two consecutive elements of the ordering. For N > 3 the ordering is not unique.
Table3.1 contains two ordering for N = 4 that obey the definition of a Gray code.
The table also contains the natural binary code. Figure3.6 contains the pseudocode
used to generate the first ordering of Table3.1.

Let us assume that the number of columns of the projector is 2N , then each column
can be assigned to an N bit binary number in a Gray code sequence of 2N elements.
This is done by transforming the index of the projector column into an element (i.e.,
N -bit binary number) of a Gray code ordering, using the pseudocode of Fig. 3.6.
The projection of darker fringes is associated with the binary value of 0 and the
projection of lighter fringes is associated with the binary value of 1. The projector
needs to project N images, indexed i = 0...N − 1, where each fringe (dark/light)
in the i th image is determined by the binary value of the i th bit (0/1) within that
column’s N -bit Gray code element. This allows us to establish the correspondence
between the projector fringes and the camera pixels. Figure3.7 contains an example
of a Gray code pattern. Usually, the image in the camera of the narrowest projector
fringe is many camera pixels wide and all of these pixels have the same code. It is
possible to compute either the centers of the fringes or the edges between adjacent
fringes in order to define the projector plane with which triangulation is performed.
Generally edge-based schemes give better performance [80].

3.4.1.1 Decoding of Binary Fringe-Based Codes

Two algorithms for transforming the camera images into correspondences between
projector fringes and camera pixels are presented. In the first algorithm, the camera
pixels are at known positions and the projector fringe for these positions is measured.
In the second algorithm, the fringe indices are known in the projector and for each
row of the camera the fringe transitions are measured.

The first algorithm uses a simple thresholding approach where a threshold is
computed individually for each pixel of the camera [80]. The threshold values are
computed using the images of the projection of a white and a black frame. For
every camera pixel, the mean value of the white and black frames is used as the
threshold value. This method does not allow a sub-pixel localization of the boundary
between fringes, which is important in order to increase the precision of the system
(see Sect. 3.6). This method simply classifies the camera pixel as being lit by which
projector pixel and supports other coding strategies such as phase measurement
methods covered in Sect. 3.4.2.
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Fig. 3.6 Pseudocode allowing to convert the natural binary code into a Gray code and vice versa.
Figure courtesy of [36]

Fig. 3.7 From left to right: an image of the object with surface defects; an image of the object when
a Gray code pattern is projected; the camera image of a phase-shift pattern; the recovered phase for
each camera pixel coded in greyscale level. Figure courtesy of NRC

The second algorithmprovides a robustway for achieving sub-pixel accuracy [87].
The method requires the projection of both a Gray code and the associated reverse
Gray code (white fringes are replaced by black ones and vice versa). Figure3.8
illustrates the process of computing the position of a stripe’s transition into the
camera image. An intensity profile is constructed using linear interpolation for both
the images of a Gray code and those of the associated reverse Gray code (Fig. 3.8, left
and center). The intersection of both profiles is the sub-pixel location of the fringe
transition (Fig. 3.8, right).

3.4.1.2 Advantage of the Gray Code

The Gray code offers a significant advantage over the natural binary code when using
the previously described thresholding algorithm with noisy images. The reason for
this is that more decoding errors occur on fringe transitions, namely, pixels where
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Fig. 3.8 Left: intensity profile of a white-to-black transition in the image of a Gray code. The
values between pixels are obtained using linear interpolation. The transition is located between the
4th and 5th pixel. Center: the same intensity profile for the associated reverse Gray code. Right: the
two previous graphs are superimposed and the intersection is marked with a dot. The transition is
localized at pixel position 4.45. Figure courtesy of NRC

the pattern changes from dark to light or light to dark. For the Gray code, there
are significantly fewer fringe transitions over the N patterns when compared to the
natural binary code. In fact the natural binary code has the highest possible frequency
of transitions in the N th projected pattern, which corresponds to the least significant
bit of the code.

Let us assume that the probability of getting an error when thresholding a camera
image at a pixel located at a fringe transition is p, and that the probability of getting
an error when no transition occurs is q, the probability of getting an error using a
Gray code is p × qN−1 for all camera pixels located at a transition independent of
the transition location. In this case, the Gray code results in a uniform distribution of
error at the transition which is not the case with the natural binary code. The natural
binary code has a probability of getting an error at a transition that ranges from pN

to p × qN−1. As an example, the probability of getting an error at the transition
between 7 and 8 and between 0 and 1 in the natural binary code shown in Table3.1
are p4 (all bits change) and p × q3, respectively, (only one bit changes). As we have
already mentioned, in a fringe projection system, it is expected that p is larger than
q. Thus, the mean error rate at fringe transitions when using a Gray code is expected
to be smaller than the one obtained using a natural binary code.

The narrowest fringes of aGray codemaybe difficult to decode and are error-prone
when the images are out-of-focus (see Sect. 3.8). For this reason, some systems use
an ordering of the Gray code named large-gap Gray code which significantly reduces
the measurement uncertainty [52]. The narrowest fringes of this ordering are larger
than the narrowest fringes of the ordering generated by the pseudocode in Fig. 3.6.
Another solution is to use the Gray code for establishing a coarse correspondence
using the widest patterns and another code based on phase measurement replaces
the narrowest patterns. Phase measurement methods (also known as phase shift) are
presented next.

3.4.2 Phase-Shift Methods

While a Gray code is binary in nature (through a suitable thresholding of intensity
images), phase-shift approaches use patterns containing periodic and smooth vari-
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ations in greyscale level. The phase-shift patterns contain vertical fringes and each
projector column, x2, is associated with a phase value φ(x2) using

φ(x2) = 2π

ω
mod (x2, ω) (3.16)

where ω is the spatial period of the pattern and mod is the modulo operator.
The intensity profile for each row is defined by I (x2) = A + B cos(φ(x2) − θ)

where A and B are constants and θ is a phase offset. Many patterns with different
phase offsets, θ , are required to establish the correspondence between the phasemea-
sured at a camera pixel and the phase associated with a projector fringe. Note that,
because themodulo operator is used, this mapping is not unique and an extra unwrap-
ping step is necessary to establish an unambiguous correspondence. Figure3.7 shows
a phase-shift pattern and the recovered phase.

The intensity of each pixel of the camera viewing the projected phase-shift patterns
can be modeled using the following system of equations:

I0(x1, y1) = A(x1, y1) + B(x1, y1) cos(φ(x1, y1) − θ0) (3.17)

I1(x1, y1) = A(x1, y1) + B(x1, y1) cos(φ(x1, y1) − θ1) (3.18)

...

IN−1(x1, y1) = A(x1, y1) + B(x1, y1) cos(φ(x1, y1) − θN−1) (3.19)

where A(x1, y1), B(x1, y1) and φ(x1, y1) are unknowns and θi are the known phase
offsets in the projector. The number of patterns is N . Ii (x1, y1) is the measured
image intensity for camera pixel [x1, y1]T when the pattern with the phase offset θi is
projected. Using the trigonometric identity cos(α − β) = cosα cosβ + sin α sin β,
the previous system of equations is equivalent to

I0(x1, y1) = A(x1, y1) + B1(x1, y1) cos(θ0) + B2(x1, y1) sin(θ0) (3.20)

I1(x1, y1) = A(x1, y1) + B1(x1, y1) cos(θ1) + B2(x1, y1) sin(θ1) (3.21)

...

IN−1(x1, y1) = A(x1, y1) + B1(x1, y1) cos(θN−1) + B2(x1, y1) sin(θN−1)(3.22)

where
B1(x1, y1) = B(x1, y1) cos(φ(x1, y1)) (3.23)

and
B2(x1, y1) = B(x1, y1) sin(φ(x1, y1)). (3.24)

Since the θi are known, cos θi and sin θi are scalar coefficients. The following more
compact matrix notation can be used

MX(x1, y1) = I(x1, y1) (3.25)
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where I(x1, y1) = [I0(x1, y1), I1(x1, y1), ..., IN−1(x1, y1)]T ,

M =

⎡
⎢⎢⎣
1 cos(θ0) sin(θ0)
1 cos(θ1) sin(θ1)

...

1 cos(θN−1) sin(θN−1)

⎤
⎥⎥⎦ (3.26)

and X(x1, y1) = [A(x1, y1), B1(x1, y1), B2(x1, y1)]T . In the presence of noise and
whenusingmore than three patterns, the systemof equationsmaybe over determined.
In this case, the vector X(x1, y1) is obtained using the pseudoinverse and explicitly,

X(x1, y1) = (MTM)−1MT I(x1, y1). (3.27)

Note that MTM is invertible when M has rank 3. Alternative presentations can be
found in [46, 74]. Once X(x1, y1) is computed,

B(x1, y1) =
√
B1(x1, y1)2 + B2(x1, y1)2 (3.28)

and
φ(x1, y1) = arctan(B2(x1, y1), B1(x1, y1)) (3.29)

where arctan(n, d) represents the usual arctan(n/d) where the sign of n and d are
used to determinate the quadrant.

We provide the details for the case θi = 2π i
N for which

MTM =
⎡
⎣
N 0 0
0 N

2 0
0 0 N

2

⎤
⎦ and MT I(x1, y1) =

⎡
⎣

∑N−1
i=0 Ii (x1, y1)∑N−1

i=0 Ii (x1, y1) cos
(
2iπ
N

)
∑N−1

i=0 Ii (x1, y1) sin
(
2iπ
N

)

⎤
⎦ .

Explicitly, A(x1, y1), B1(x1, y1) and B2(x1, y1) are computed using

A(x1, y1) = 1

N

N−1∑
i=0

Ii (x1, y1) (3.30)

B1(x1, y1) = 2

N

N−1∑
i=0

Ii (x1, y1) cos

(
2iπ

N

)
(3.31)

B2(x1, y1) = 2

N

N−1∑
i=0

Ii (x1, y1) sin

(
2iπ

N

)
(3.32)

and B(x1, y1) and φ(x1, y1) are computed using Eqs. 3.28 and 3.29, respectively.
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3.4.2.1 Removing the Phase Ambiguity

Once the phases have been computed, projector position x2 corresponding to the
camera pixel (x1, y1) is given as

x2 = ω

2π
φ(x1, y1) + k(x1, y1) (3.33)

where k(x1, y1) are unknown integers that represents the phase ambiguity. The value
of k(x1, y1) must be recovered in order to compute the location of the 3D points. We
will briefly describe two different approaches that allow the removal of this phase
ambiguity.

Fiducialmarkers canbe embedded into the phase-shift patterns. Thesemarkers can
simply be a white or black point. When there is only one marker, the 3D position of
the surface onwhich the fiducialmaker is projected can be computed by triangulation.
This allows one to know the value of k for the camera pixel around a fiducial marker.
It is then possible to propagate this information to neighboring pixels using a phase
unwrapping algorithm. Phase unwrapping is frequently encountered in other fields
such as synthetic aperture radar and interferometry. This is a complex subject and
an entire book is devoted to it [42]. For these reasons, phase unwrapping will not be
discussed further. When the projection patterns contain many fiducial markers, the
epipolar constraint and the ordering constraint which are described in the previous
chapter can be used to establish unambiguous matches between fiducial markers.
Note that a similar fiducial approach is implemented in [57].

The second approach combines phase shift and Gray codes [82]. Binary codes,
such as the Gray code, are often used to establish a coarse correspondence between
projector and camera pixels using the thresholding algorithm presented previously.
The patternswith the smallest stripes are not projected and are replaced by phase-shift
patterns whose spatial periods are selected to match the smallest stripes projected.
Combining binary and phase-shift code is a solution used in many experimental [79,
80] and commercial scanners. Note that phase shift with multiple spatial periods
could also be used to remove the phase ambiguity.

3.4.3 Triangulation for a Structured Light System

In the projective-geometry framework of the pinhole camera, a digital projector
can be viewed as an inverse camera and both share the same parametrization. Each
implementation of an analogue slide projector can have its own parametrization.
Nevertheless, they remain similar to a pinhole camera. Two commercial implemen-
tations are presented in [57] and [20]. Again, we consider an area-based scanner
composed of a digital projector and a digital camera where phase-shift patterns are
used. It is assumed that the projected fringes are vertical.
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Suppose that the world coordinate system of the camera coincides with the world
coordinate system and the extrinsic parameters of the projector are Rp and Tp. A
point in the camera is at a knownposition [x1, y1]T and one coordinate in the projector
(i.e., x2) is measured using phase shift. Again, x ′

1, y
′
1 and x ′

2 can be computed from
x1, y1 and x2 using Eq.3.12. Moreover, the x ′

1, y
′
1, and x

′
2 provide the three following

constraints on the 3D point [Xw,Yw, Zw]T :
⎡
⎣
x ′
1
y′
1
x ′
2

⎤
⎦ =

⎡
⎢⎣

Xw
Zw
Yw
Zw

(r11,r12,r13)[Xw,Yw,Zw]T +Tx
(r31,r32,r33)[Xw,Yw,Zw]T +Tz

⎤
⎥⎦ (3.34)

where the ri j are the elements of matrix Rp and [Tx , Ty, Tz]T = Tp. Assuming that,
x ′
1 and y′

1 define a known position in the camera, that x ′
2 is measured in the projector

and that the three previous equations are linearly independent, we denote the 3Dpoint
[Xw,Yw, Zw]T corresponding to [x ′

1, y
′
1]T as Q(x ′

1,y
′
1)
(x ′

2). Explicitly, using Eq.3.34
we obtain

Q(x ′
1,y

′
1)
(x ′

2) = (Tx − x ′
2Tz)

−x ′
1r11 − y′

1r12 − r13 + x ′
2x

′
1r31 + x ′

2y
′
1r32 + x ′

2r33

⎡
⎣
x ′
1
y′
1
1

⎤
⎦ . (3.35)

3.5 System Calibration

There are three types of method that can be used to calibrate a triangulation-based
scanner. Somemethods are purely parametric, others are non-parametric, and, finally,
some methods combine parametric and non-parametric elements. Non-parametric
methods are well adapted to small reconstruction volumes and to the modeling of
local distortions that can include mirror surface defects, or other nonlinearities that
may be difficult to identify or model. Parametric methods make it possible to modify
some parameters of the system without requiring a full recalibration. For example,
the baseline of the system could be changed. The recalibration procedure would only
need to recompute the pose between the camera and projection system; clearly, the
intrinsic parameters would remain the same. This is not possible with non-parametric
methods.While different camerasmay use the same parametric model, an area-based
digital projection system has a parameterization that is significantly different from
a sheet-of-light laser projection system. We present a hybrid parametric and non-
parametric method that could be adapted for the calibration of a large class of stripe
and area-based triangulation scanners. Here, we will assume a fringe projection
scanner that uses phase shift. The calibration of other scanners will be discussed
briefly at the end of this section.

A parametric model is used to represent the camera while the projection system
is viewed as a black box and a look-up table is built in order to calibrate the system.
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This method requires a calibration bench consisting of an auxiliary camera and a
planar surface mounted on a translation stage. Firstly, the scanner camera and the
auxiliary camera, which together form a passive stereo rig, are calibrated using the
methods described in Chap.2. Given a pixel from the scanner camera and using the
epipolar geometry presented in the previous chapter, it is possible to identify the
corresponding epipolar line in the auxiliary camera. Moreover, the scanner-camera
pixel and the corresponding point on this line must be lit by the same point of the
projection system. The projection system is used to remove the ambiguity in the
matching between the two cameras and the 3D points can be easily and accurately
computedusing this setup [32]. This two-camera-and-one-projector system is another
type of triangulation scanner and products based on this principle are commercially
available. Here, we use this two-camera setup only during the calibration stage. The
planar surface is moved to different positions in the reconstruction volume. At each
position i , a range image is produced using the method described above and the
coordinate system of the scanner camera is used as the world coordinate system.
Each 3D point is associated with a scanner-camera pixel [x1, y1]T and a measured
position x2 in the projection system. Two tables of the form ti (x1, y1) = x2 and
t ′i (x1, y1) = Z can be filled for each plane position i . Once the tables are filled, the
auxiliary camera is no longer needed and the scanner can be used to acquire range
images of unknown objects. For a given pixel [x1, y1]T in the camera and a measured
position x2 in the projector, one can find the entries t j (x1, y1) and t j+1(x1, y1) such
that t j (x1, y1) < x2 ≤ t j+1(x1, y1). Once these entries are found, the value of Z can
be interpolated using t ′j (x1, y1) and t ′j+1(x1, y1) and the values of X and Y can be
computed using Eq.3.34. Note that the computation of the pixel coordinates [x, y]T
from the normalized coordinates [x ′, y′]T of Eq.3.8 does not take into account the
lens distortion. The following transformation takes into account lens distortion:

[
x
y

]
=

[
d
sx

0
0 d

sy

] [
k ′

[
x ′
y′

]
+

[
2k3x ′y′ + k4(r2 + 2x ′2)
k3(r2 + 2y′2) + 2k4x ′y′

]]
+

[
ox
oy

]
(3.36)

where r2 = x ′
2
2 + y′

2
2, k ′ = 1 + k1r2 + k2r4 + k5r6 and the ki are the radial and tan-

gential distortion coefficients. This model is known as the Brown–Conrady model
[22] and is widely used. Camera calibration packages often use similar distor-
tion models. The computation of pixel coordinates from normalized coordinates is
straightforward. However, the reverse computation, which is what we need, requires
the use of iterative algorithms such as Levenberg–Marquardt and can be time-
consuming. At calibration time, another table can be computed. This table, given a
camera pixel [x1, y1]T , provides the distortion-free normalized coordinates [x ′

1, y
′
1]T

that are used to compute X and Y using Eq.3.35.
A sheet-of-light systemsuch as the one illustrated at Fig. 3.4-right canbe calibrated

similarly by replacing the tables ti (x1, y1) = x2 and t ′i (x1, y1) = Z by ti (α, y2) = x2
and t ′i (α, y2) = Z , where α is the angle controlling the orientation of the laser plane,
y2 is a rowof the camera, and x2 is themeasured laser peak position for the camera row
y2. Systems that use a Gray code with sub-pixel localization of the fringe transitions

http://dx.doi.org/10.1007/978-3-030-44070-1_2
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could be calibrated similarly. Note that tables ti and t ′i can be large and the values
inside these tables vary smoothly. It is, therefore, possible to fit a nonuniform rational
B-spline (NURBS) surface or polynomial surface over these tables in order to reduce
the memory requirement. Moreover, different steps are described in [24] that make it
possible to reduce the sensitivity to noise of a non-parametric calibration procedure.

3.6 Measurement Uncertainty

In this section,6 we examine the uncertainty associated with 3D points measured by
an active triangulation scanner. Some errors are systematic in nature while others are
random. Systematic errors may be implementation dependent and an experimental
protocol is proposed to detect them in Sect. 3.7, while, in this section, random errors
are discussed. This study is performed for area-based scanners that use phase shift.
An experimental approach for modeling random errors for the Gray code method
will be presented in Sect. 3.7. Moreover, because the description requires advanced
knowledge of the image formation process, the discussion of random errors for laser-
based scanners is postponed until Sect. 3.8.

In this section, we examine how the noise in the images of the camera influences
the position of 3D points. First, the error propagation from image intensity to pixel
coordinate is presented for the phase-shift approach described in Sect. 3.4.2. Then,
this error on the pixel coordinate is propagated through the intrinsic and extrinsic
parameters. Finally, the error-propagation chain is used as a design tool.

3.6.1 Uncertainty Related to the Phase-Shift Algorithm

In order to perform the error propagation from the noisy images to the phase value
associated with a pixel [x1, y1]T , we only consider the B1(x1, y1) and B2(x1, y1)
elements of vector X(x1, y1) in Eq.3.27. Thus, Eq.3.27 becomes

[B1(x1, y1), B2(x1, y1)]T = M′I(x1, y1) (3.37)

where M′ is the last two rows of the matrix (MTM)−1MT used in Eq.3.27. First,
assuming that the noise is spatially independent, the joint probability density func-
tion p(B1(x1, y1), B2(x1, y1)) must be computed. Finally, the probability density
function for the phase error p(Δφ) is obtained by changing the coordinate system
from Cartesian to polar coordinates and integrating over the magnitude. Assuming
that the noise contaminating the intensity measurement in the images is a zero-mean
Gaussian noise, p(B1(x1, y1), B2(x1, y1)) is a zero-mean multivariate Gaussian dis-
tribution [30, 31]. Using Eq.3.37, the covariance matrix 
B associated with this

6Contains advanced material and may be omitted on first reading.
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distribution can be computed as


B = M′
IM′T (3.38)

where 
I is the covariance matrix of the zero-mean Gaussian noise contaminating
the intensity measured in the camera images [30, 31].

We give the details for the case θi = 2π i/N when the noise on each intensity
measurement is independent with a zero mean and a uniform variance σ 2. One may
verify that


B = σ 2

[
2/N 0
0 2/N

]
. (3.39)

This is the special case of the work presented in [76] (see also [75]).
Henceforth, the following notation will be used: quantities obtained from mea-

surement will use a hat symbol to differentiate them from the unknown real quanti-
ties. As an example B(x1, y1) is the real unknown value while B̂(x1, y1) is the value
computed from the noisy images. The probability density function is

p(B̂1(x1, y1), B̂2(x1, y1)) = N

4πσ 2
e−γ (x1,y1) (3.40)

where

γ (x1, y1) = N ((B1(x1, y1) − B̂1(x1, y1))2 + (B2(x1, y1) − B̂2(x1, y1))2)

4σ 2
(3.41)

Now changing to a polar coordinate system using B̂1 = r cos(φ + Δφ) and B̂2 =
r sin(φ + Δφ) and B1 = B cosφ and B2 = B sin φ and integrating over r in the
domain [0,∞] we obtain the probability density function

p(Δφ) =
e− B2N sin2 Δφ

4σ2

(
2σe− B2N cos2 Δφ

4σ2 + B
√
Nπ cosΔφ

(
1 + erf( B

√
N cosΔφ

2σ )
))

4πσ
(3.42)

which is independent of φ and where

erf(z) = 2√
π

∫ z

0
e−t2dt. (3.43)

When σ is small and B is large, p(Δφ) can be approximated by the probability
density function of a zero-mean Gaussian distribution of variance 2σ 2

B2N (see [76] for
details). Assuming that the spatial period of the pattern is ω, the positional error on
x2 is a zero-mean Gaussian noise with

σ 2
x2 = ω2σ 2

2π2B2N
. (3.44)
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The uncertainty interval can be reduced by reducing either the spatial period of
the pattern, or the variance σ 2, or by increasing either the number of patterns used or
the intensity ratio (i.e., B) of the projection system. Note that even if B is unknown,
it can be estimated by projecting a white and a black image; however, this is only
valid when the projector and camera are in focus (see Sect. 3.8).

3.6.2 Uncertainty Related to Intrinsic Parameters

Whenperforming triangulation usingEq.3.35, the pixel coordinates of the camera are
known and noise is only present on the measured pixel coordinates of the projector.
Thus, the intrinsic parameters of the camera do not directly influence the uncertainty
on the position of the 3D point. The error propagation from the pixel coordinates
to the normalized view coordinates for the projector can easily be computed. The
transformation in Eq.3.12 is linear and the variance associated with x ′

2 is

σ 2
x ′
2
= σ 2

x2s
2
x2

d2
(3.45)

where sx2 and d are intrinsic parameters of the projector and σ 2
x2 is computed using

Eq.3.44. According to Eq.3.45, as the distance d increases, or sx2 is reduced, the
variance will be reduced. However, in a real system, the resolutionmay not be limited
by the pixel size but by the optical resolution (see Sect. 3.8). and increasing d may be
the only effective way of reducing the uncertainty. As will be explained in Sect. 3.8,
when d is increased while keeping the standoff distance constant the focal length
must be increased; otherwise, the imagewill be blurred. Note that when d is increased
the field of view is also reduced. The intersection of the field of view of the camera
and projector defines the reconstruction volume of a system. Figure3.9 illustrates
the reconstruction volume of two systems that differs only by the focal length of the
projector (i.e., the value of d also varies). Thus, there is a trade-off between the size
of the reconstruction volume and the magnitude of the uncertainty.

3.6.3 Uncertainty Related to Extrinsic Parameters

The transformation of Eq.3.35 from a normalized image coordinates to 3D points is
nonlinear, hence we introduce a first-order approximation using Taylor’s expansion.
The solution close to x̂ ′

2 can be approximated by

Q(x ′
1,y

′
1)
(x̂ ′

2 + Δx ′
2) ≈ Q(x ′

1,y
′
1)
(x̂ ′

2) + d

dx̂ ′
2

Q(x ′
1,y

′
1)
(x̂ ′

2)Δx ′
2 (3.46)

where
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Fig. 3.9 The reconstruction volume of two systems where only the focal length of the projector is
different (50mm at left and 100mm at right). The red lines define the planes in focus in the cameras.
Figure courtesy of NRC
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(3.47)
Since a first-order approximation is used, the covariance matrix associated to a 3D
point can be computed similarly as
B in Eq.3.39 [30, 31]. Explicitly, the covariance
matrix associated with a 3D point is


 =
⎡
⎣

x ′2
1 x ′

1y
′
1 x ′

1
x ′
1y

′
1 y′2

1 y′
1
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1 y′

1 1
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′
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′
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′
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4 σ 2
x ′
2

(3.48)
where σ 2

x ′
2
is computed using Eqs. 3.44 and 3.45.

The covariance matrix can be used to compute a confidence region which is
the multi-variable equivalent to the confidence interval.7 The uncertainty over the
range (i.e., Z -axis) is an important design characteristic. Figure3.10-left illustrates
the confidence interval for different range values for the geometric configuration at
the left of Fig. 3.9. As the range increases, the size of the confidence interval also
increases. This is a characteristic of triangulation systems and this explains why
triangulation systems are often used for short-range measurements [6]. Note that
the results presented in Fig. 3.10 ignore many things such as the effect of optical
components (see Sect. 3.8).

The usable measurement volume is the portion of the reconstruction volume for
which the error on the position of a 3Dpoint is expected to be smaller than amaximum
permissible error. The depth of field of a scanner is the size of the interval of Z values
inside this usablemeasurement volume.Note that because of optical limitations, such

7A confidence interval is an interval within which we are (1 − α)100% confident that a point
measured under the presence of Gaussian noise (of known mean and variance) will be within this
interval (a typical value for α is 0.05).
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Fig. 3.10 Left: the standard deviation obtained from the first-order approximation and the Monte
Carlo simulation points displayed in black and blue, respectively. Right: confidence interval size
computed for many range values using a first-order approximation. The Monte Carlo simulation
points are displayed at the top of the confidence interval. The reconstruction volume covers a range
from 450 to 700mm and is shown in Fig. 3.9-left. The confidence interval for Z = 510mm is given.
Figure courtesy of NRC

as blurring effects, the usable measurement volume can be significantly smaller than
the reconstruction volume (see Sect. 3.8).

Since a first-order approximation is used when computing the uncertainty with
Eq.3.48, it is important to validate the results using Monte Carlo simulations.
Figure3.10 right shows the results of one such simulation. The simulation process
consisted of the following steps:

• 50000 values of x ′
2 were generated using a uniform distribution.

• Zero-mean Gaussian noise was added to each point.
• The points were triangulated using Eq.3.35 at [x ′

1, y
′
1]T = [0, 0]T .

• The variance of the range values obtained previously was compared with the one
computed using the first-order approximation.

3.6.4 Uncertainty as a Design Tool

For design purposes, it is useful to fix the position of a 3D point and examine how
the uncertainty varies when modifying the parameters of the system. In order to do
so, it is possible to modify Eq.3.48 such that x ′

2 is replaced by Zw. As the distance
between the views is increased, the size of the uncertainty interval for the range value
is reduced. Moreover, configurations with vergence produce lower uncertainty than
those without, due to the preferable large angle that a back-projected ray intersects
a projected plane of light. Note that the baseline and the vergence angle are usu-
ally varied together to minimize the variation of the shape and the position of the
reconstruction volume. Figure3.11 illustrates the impact of varying these extrinsic
parameters of the system on the confidence interval for a fixed 3D point. As the
distance between the views is increased, the amount of occlusion that occurs is also
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Fig. 3.11 Left: the size of the confidence interval when varying both the vergence (i.e., the angle
around the Y axis) and the baseline for the the geometric configuration shown in Fig. 3.9 left. Right:
the standard deviation for this geometric configuration. The confidence interval for a baseline value
of 274mm is given. This is the baseline value used by the geometric configuration shown in Fig. 3.9
left. Figure courtesy of NRC

increased. An occlusion occurs when a 3D point is visible in one view but not in the
other one. This can occur when a 3D point is outside the reconstruction volume of a
scanner or when one part of the surface occludes another. Thus, there is a trade-off
between the size of the confidence interval and the amount of occlusion that may
occur. The use of a Monte Carlo method for evaluating uncertainty is discussed
further in [30].

3.7 Experimental Characterization

Manufacturers of 3D scanners and end users are interested in verifying that their
scanner performs within predetermined specifications. In this section, we will show
scans of known objects that can be used to characterize a scanner. Objects com-
posed of simple surfaces such as a plane or a sphere can be manufactured with great
accuracy. These objects can then be scanned by the 3D imaging system and the mea-
surements taken can be compared with nominal values. Alternatively, a coordinate
measuring machine (CMM) can be used to characterize the manufactured object.
This object can then be scanned by the 3D imaging system and the measurements
taken can be compared with those obtained by the CMM. As a rule of thumb, the
measurements acquired by the reference instrument need to be a minimum of four
times and preferably an order of magnitude more accurate than the measurements
acquired by the 3D scanner.

We propose to examine three types of test for characterizing 3D imaging systems.
Note that, the range images generated by a 3D imaging system are composed of 3D
points usually arranged in a grid format. The first type of test looks at the error
between 3D points that are contained in a small area of this grid. This type of
test is not affected by miscalibration and makes it possible to perform a low-level
characterization of a scanner. The second type of test looks at the error introduced
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Fig. 3.12 An object scanned twice under the same conditions. A sphere was fitted to each set of
3D points. The residual error in millimeters is shown using a color coding. The artifacts visible in
the left image are suspected to be the result of a human error. Figure courtesy of NRC

when examining the interactions between many small areas of the grid. This type of
test makes it possible to perform a system-level characterization and is significantly
affected bymiscalibration. The last family of test is based on an industrial application
and evaluates the fitness of a scanner to perform a given task.

In this section, we present the scans of objects obtained using different short-
range technologies. Most of the scanners used are triangulation-based and there is
currently a plethora of triangulation-based scanners available on themarket.Different
scanners that use the same technology may have been designed for applications with
different requirements; thus, a scanner that uses a given implementation may not
be representative of all the scanners that use that technology. Establishing a fair
comparison between systems is a challenging task that falls outside of the scope of
this chapter. The results shown in this section are provided for illustration purposes.

The human operator can represent a significant source of error in themeasurement
chain. The user may select a 3D imaging system whose operating range or operating
conditions (i.e., direct sunlight, vibration, etc.) are inadequate for a given task. Alter-
natively, a user can misuse a system that is well adapted to a given task. Usually,
this is a result of lack of experience, training, and understanding of the performance
limitations of the instrument. As an example, in Fig. 3.12, a sphere was scanned twice
by the same fringe projection system under the same environmental conditions. The
scan shown on the left of the figure contains significant artifacts, while the other
does not. One plausible explanation for these artifacts is that the selected projector
intensity used while imaging the phase-shift patterns induces saturation for some
camera pixels. Another plausible explanation is that the scanned object was inside
the reconstruction volume of the scanner, but outside the usable measurement vol-
ume. Moreover, user fatigue and visual acuity for spotting details to be measured
also influence the measurement chain.



3 Active Triangulation 3D Imaging Systems for Industrial Inspection 139

Fig. 3.13 Left: a point-based laser scanner was used to scan the same plane at three different
positions. The residual error in millimeters is shown using a color coding. Right: a profile-based
laser scanner was used to perform a center-to-center distance measurement between the centers of
two spheres. The experiment was repeated at two different positions. Figure courtesy of NRC

3.7.1 Low-Level Characterization

Figure3.13 shows multiple scans of a planar surface at different positions in the
reconstruction volume. This type of experiment is part of a standard that addresses
the characterization of the flatnessmeasurement error of opticalmeasurement devices
[91]. When the area used to fit a plane is small with respect to the reconstruction
volume, miscalibration has a very limited impact. A point-based laser triangulation
scanner was used to illustrate this type of experiment. As expected from the results
of the previous section, the root mean square (RMS) for each plane fit increases as
the distance from the scanner increases (see Fig. 3.10). The RMS values are 6.0, 7.0,
and 7.5µm. However, it is not the error value which is important but the distribu-
tion of the error which can be seen in Fig. 3.13 using a color coding. This type of
experiment makes it possible to identify systematic errors that are independent of
the calibration. As a result, lens, geometric configuration, and other components of
the system can be changed and the system can be retested quickly. Usually, the error
analysis is performed using the raw output of the scanner and not the 3D points.
This makes it possible to decorrelate the different error sources and thereby simplify
the identification of the error sources. As an example, for a phase-shift triangulation
system, the fitting of a primitive is not performed using the [Xw,Yw, Zw]T points
obtained from the point triangulation procedure described in Sect. 3.4.3, but using
the [x1, y1, x2]T directly. Moreover, in order to take into account the distortion of the
lens, the rotation of the mirrors and other nonlinear distortions, the raw data from
the scanner is fitted to a NURBS surface rather than a plane.

We now examine an experimental protocol for measuring the error of the sub-
pixel fringe localization of a Gray code fringe projection system[76]. It is assumed
that no error in the decoding of Gray code occurs and the only error is in the sub-
pixel localization of the fringe frontiers. Under projective geometry, the image in the
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camera of a projector fringe that is projected on a planar surface should remain a
line. In a noise-free environment, and assuming that the line in the projector image
is vertical with respect to the camera, each row y1 of the camera should provide an
equation of the form [x1, y1, 1][1, a, b]T = 0, where x1 is the measured frontier and
a and b are the unknown parameters defining the line. Our camera contains more
than two rows and the images are noisy, thus it is possible to use linear regression
to estimate a and b. Once the parameters a, b of the line have been estimated, it is
possible to compute the variance of the error on x1. Since the optical components
introduce distortion, a projected line may no longer be a line in the camera and
polynomials can be fitted rather than straight lines.

3.7.2 System-Level Characterization

The results of fitting amodel on a small patch of 3Dpoints is not significantly affected
bymiscalibration.However, othermeasurements such as angles and sphere-to-sphere
measurement are very sensitive to miscalibration. Sphere-to-sphere measurement is
part of a guideline that addresses the characterization of optical measurement devices
[91]. Two spheres are mounted on a bar with a known center-to-center distance. This
object is known as a ball bar. This ball bar is placed at different predetermined
positions in the reconstruction volume and the errors of center-to-center distance are
used to characterize the scanner. Two scans of this object at two different positions
are shown in Fig. 3.13.

MacKinnon et al. have presented a Portable Characterization Target (PCT) kit
which consists of metrics, a reference object, software, and best practices for char-
acterizing and verifying the operating limits of short-range 3D imaging systems [25,
65]. The metrics have been designed to correspond to some of the Geometric Dimen-
sioning and Tolerancing (GD&T) metrics. GD&T is a universal language developed
by mechanical engineers and used to define parts with their admissible errors. The
PCT is shown in Fig. 3.14. The procedure and associated reference objects consists
of 16 tests in 6 categories that are listed in Table3.2. All computations are integrated
within the Polyworks ImInspect®software from InnovMetric.8 An example of form
error on a plane and plane fit residual is shown in Fig. 3.14-right . The system-level
characterization of active 3D imaging systems is further discussed in [9, 17, 23, 39,
62, 63].

3.7.3 Application-Based Characterization

We illustrate the principle behind this family of tests using a surface defect detection
application. The objective of this application is to localize defects that create a vari-

8www.innovmetric.com.

www.innovmetric.com
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Fig. 3.14 Second generation of the Portable Characterization Target (PCT). Left: picture of the
PCT. Right: illustration of the analysis results for one of the planes. The RMS plane fit residual
(Gaussian deviation) is 8µm and the flatness (form error) is 50µm. Figure courtesy of NRC

Table 3.2 List of the tests that can be performed using the PCT. The references valueswere obtained
using a coordinate measuring machine. Figure courtesy of NRC

ation on the surface of a product. In this type of application, the calibration of the
system is not very important; however, the capability of the system to image small
structural details is very important. In this test, an object which is known to contain
defects is scanned and it is possible to verify the presence of these defects in the 3D
data. Figure3.15 illustrates surface defects as detected by four different systems. It is
important to note that surface properties can significantly influence the performance
of a scanner (see Sect. 3.8.6).
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Fig. 3.15 The same surface containing defects scanned by four different scanners. Top left: point-
based laser triangulation system. Top right: profile-based laser triangulation system. Bottom left:
fringe projection system. Bottom right: scanner based on conoscopic holography. Figure courtesy
of NRC

3.8 Selected Advanced Topics

This section9 contains material that requires in-depth knowledge of the image forma-
tion process. Section3.8.1will present the thin lens equation. Sections3.8.2 and 3.8.3
examine the depth of field of a triangulation-based 3D camera. Sections3.8.4 and
3.8.5 give some important results whose derivations would require in-depth knowl-
edge of diffraction and Gaussian beam optics. Section3.8.6 discusses issues related
to the laser beam thickness induced by Gaussian beam optics. Section3.8.7 uses the
results of Sect. 3.8.5 to discuss the lateral resolution of phase shift and spot scanners.
Finally, Sect. 3.8.8 examines the impact of interreflection and the strategies that can
be used to minimize interreflection artifacts. Further information concerning optical
issues can be found in [12, 59, 85].

3.8.1 Thin Lens Equation

Optical systems are complex and difficult to model. A very useful approximation
is the thin lens equation which provides a first-order approximation of a lens with

9May be omitted at the first reading.
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negligible thickness. Given the distance Z between an object and the optical center
of the lens and the focal length f of this lens, one may compute, using the thin lens
equation the distance between the optical center and the image plane needed in order
to obtain a sharp image of the object. Since optical engineering falls outside the scope
of this chapter, we provide the thin lens equation without derivation (see for details
[85]). The thin lens equation is

1

Z
+ 1

d
= 1

f
(3.49)

where f is the lens focal length, Z is the distance between the optical center and the
object plane, and d is the distance between the optical center and the image plane
(i.e., the CCD or CMOS sensor).

Since d ≈ f when the distance between the camera and the object is sufficiently
large, Chap.2 and other textbooks use f (for focal length) rather than using d in their
camera models (see Sect. 3.3.1).

Usually, 3D imaging systems are used for applications that require the scan of
non-planar objects. Thus, Eq.3.49 is not fulfilled for all the points on the surface
of the object. As will be explained next, this induces out-of-focus blurring in some
parts of the image.

3.8.2 Depth of Field

The point located at Z ′ in Fig. 3.16, will be imaged as a circle of diameter c on the
image plane. This circle is named a circle of confusion. Using simple trigonometry
and the thin lens equation, the diameter of this circle can be computed as

c = 
|Z ′ − Z |

Z ′
f

Z − f
(3.50)

where  is the size of the lens aperture. The proof is left as an exercise to the
reader. Given a maximum diameter cmax for the circle of confusion and assuming
that Z ′ > Z > f , the depth of field can be computed, using Eq.3.50, as

D f = 2(Z ′ − Z) (3.51)

where

Z ′ =  f Z

 f + ( f − Z)cmax
. (3.52)

Thus, a large lens diameter will induce a small focusing range, even though more
light is captured by the imaging system.

Figure3.17 right illustrates the impact of out-of-focus blurring on the magnitude
of sinusoidal patterns used by a phase shift scanner. As the ratio between the circle-

http://dx.doi.org/10.1007/978-3-030-44070-1_2
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Fig. 3.16 The image of the point at distance Z from the optical center is in focus on the image
plane, while the point at distance Z ′ from the optical center is imaged as a circle of diameter c on
the image plane. The lens aperture is  and the distance between the image plane and the optical
center is d. Figure courtesy of NRC

Fig. 3.17 Impact of the out-of-focus blurring of the camera on the performance of the scanner for
both the model proposed by [37] in orange and the real data in blue. On the left is the standard
deviation of the residual error of the surface fit of an optical flat in the unwrapped-phase image for
different out-of-focus distances. On the right is the sine wave attenuation factor for different ranges
(both the orange and blue curves are overlapping). Note that the in-focus distance is 450 mm; it
corresponds to the position at which the attenuation factor is one (no attenuation) and to a local
maximum for the range uncertainty. The point spacing of the system is 16µm, the focal length of
the camera is 100 mm and the magnification is 1

2 (see [37] for more details). Figure courtesy of
NRC

of-confusion diameter and spatial period of the pattern increases, the magnitude of
the signal is reduced. In Eq.3.44, it can be seen that reducing the spatial period
reduces the uncertainty. However, once the optical components of the system are
taken into account, one can see that reducing the spatial period, may also reduce
the magnitude of the sinusoidal pattern, possibly increasing the uncertainty rather
than reducing it. Both the projection lenses and the camera lenses induce this range-
dependent attenuation of the sine wave. Moreover, the camera blurring induces a
noise reduction by acting as a spatial filter. Drouin et al. presented a range-dependent
correction coefficient forEq.3.44 that takes these effects into account [37]. For a high-
resolution system, this coefficient varies with the range and exhibits a W-shape (see
Fig. 3.17-left). Note than even when a system is perfectly in-focus, sensor resolution,
diffraction, and aberrations induce a degradation of the image [85]. This can affect
the W-shape by reducing the magnitude of the central peak. All of this demonstrates
the important of factoring in the optically induced blurring and other optical related
degradation when designing a system.



3 Active Triangulation 3D Imaging Systems for Industrial Inspection 145

Fig. 3.18 Scheimpflug geometry for a point-based triangulation sensor. The baseline is H . The
projection and collection angles are α and β, respectively. The angle between the photodetector
and the collecting lens is ρ. The distance between the lens optical center and the position of the
laser spot on the detector along the Z -axis is d, and H ′ is that separation along the X -axis. Figure
courtesy of NRC

3.8.3 Scheimpflug Condition

As explained earlier, a large lens diameter will induce a small focusing range. This
affects all triangulation-based 3D cameras and many of them use the Scheimpflug
condition in order to mitigate the impact of this reduced focusing range [13]. In
order to simplify the discussion, the Scheimpflug condition will be presented for a
point-based scanner. Nevertheless, it could be usedwith profile-based and area-based
scanners. Figure3.18 shows an optical geometry based on the Scheimpflug condition
for the point-based scanner presented in Sect. 3.2. Note that the optical axis is no
longer perpendicular to the photodetector. The angle between the photodetector and
the collecting lens is set to ρ and, as will be shown, this ensures that for a given
illumination direction (i.e., angle α) all the points along the laser beam path will be
in-focus on the position detector. Using simple trigonometry, one can verify that

tan ρ = d

H + H ′ (3.53)

and

H ′ = d

tan(π/2 − β)
. (3.54)

where H ′ is a line segment in Fig. 3.18. We obtain

d = H tan ρ

1 − tan β tan ρ
(3.55)
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by substituting Eq.3.54 in Eq.3.53. Finally, substituting Eqs. 3.55 and 3.2 in Eq.3.49,
we obtain

cot ρ = H − f tan α

f
. (3.56)

Thus, for a given α, the angle ρ can be computed such that any point along the laser
beam path is in-focus on the position detector. This condition allows one to design a
system with a large aperture to increase light collection power. As will be explained
next, for a laser-based scanner, this allows the reduction of noise without affecting
the focusing range.

3.8.4 Speckle and Uncertainty

In Sect. 3.6.1, the error propagation from image intensity to pixel coordinate was
examined for area-based scanners that use phase shift and an expression for the
variance σ 2

x2 was provided. As shown, the variance σ 2
x2 can then be used to compute

the uncertainty on the 3D points computed by a triangulation scanner. Here, we give
the result of a similar analysis performed for point-based systems that use a laser.

For laser-based system, the value of σ 2
x2 depends on the type of laser spot detec-

tor used (e.g., CMOS, CCD, lateral-effect photodiode, split diodes), the laser peak
detector algorithm, the signal-to-noise ratio (SNR) and the imaged laser spot shape
[7]. The laser spot shape is influenced by lens aberrations, vignetting, surface arti-
facts, etc. In the case of discrete response laser spot sensors, assuming both a high
SNR and a centroid-based method for peak detection, the dominant error source will
be speckle noise.

Speckle noise is the result of the interference of many light waves having the same
wavelength but having different phases. Different waves emitted by the projection
system are reflected on the object at slightly different positions and thus reach the
detector with slightly different phases. The light waves are added together at the
detector which measures an intensity that varies. The speckle depends on the surface
microstructure or roughness (of the order of the source wavelength) of the object
which is scanned.Note thatwith a high-quality imaging system, speckle noise ismore
a multiplicative noise source than an additive source [90]. Explicitly, the variance
σ 2
x2 can be approximated as

σ 2
x2 ≈ λ2d2

2π2
(3.57)

where is the lens aperture diameter, λ is the laser wavelength, and d is the distance
between the laser spot detector and the collection lens [13]. The effects of speckle on
the peak detection have also been studied by [4, 34, 61]. Note that when substituting
Eq.3.57 back into Eq.3.45, one can verify that the presence of speckle noise caused
by a laser does not depend on d. When λ is reduced or when  is increased, the
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uncertainty is reduced. While a large lens diameter reduces the uncertainty, it also
limits the focusing range when a Scheimpflug condition is not used.

Note that speckle can be an important error source even for a fringe projection
system that uses a spatially incoherent light source with a relatively long coherence
length such as LED. The coherence length is proportional to the square of the nominal
wavelength of the source and inversely proportional to the wavelength range [61].

The object surfacemicrostructure combinedwith the light source spectral distribu-
tion can greatly influence the performance of a system. As an example, an optical flat
surface was scanned with the same fringe projection system using two different light
sources. The first one is a tungsten-halogen source with a large wavelength range,
while the second one is a red LED having a narrow wavelength range. The exper-
imentation was conducted in a controlled environment. The RMS values obtained
using the two sources are 21 and 32µm, respectively.

3.8.5 Laser Beam Thickness

Until now, the laser beamand collected raywere assumed to be infinitely thin. Though
convenient to explain the basic principles, this is an over-simplification. Taking into
account the properties of Gaussian beams associated with lasers is fundamental to
understanding the limitations of some 3D laser-based vision systems [14, 18, 78].
As a result of diffraction, even in the best laser emitting conditions, a laser beam
does not maintain focus with distance (see Fig. 3.19). Note that in many close-range
3D laser scanners, a focused laser beam is the preferred operating mode. This is
a complex topic whose details fall outside the scope of this chapter. Nevertheless,
because it is fundamental to understanding the resolution limitations of some 3D
imaging systems, we give two important results concerning Gaussian beam propa-
gation. Using the Gaussian beam propagation formula, the beam radius measured

Fig. 3.19 The focus of an actual laser beam is governed by diffraction. We show the case of a
focused laser beam with a Gaussian shape transversal profile. The minimum beam diameter is 2w0
and R0 is the distance from the lens to the point at which the beam diameter is minimal. Amaximum
beam diameter of 2

√
2w0 is used to compute the depth of field, D f , of the laser. Figure courtesy

of NRC
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orthogonally to the beam axis, denoted by w(R) at the e−2 irradiance contour in the
direction of propagation R is

w(R) = w0

√
1 +

(
λ(R − R0)

πw2
0

)2

(3.58)

where the distance R0 is the distance from the lens to the point at which the beam
radius is minimal. The minimum radius is denoted by w0 and λ is the wavelength of
the laser source. More details information concerning Eq.3.58 can be found in [12,
59, 85]. In accordance with the Rayleigh criterion, the depth of field D f for a focused
Gaussian beam is Rmax − Rmin where w(Rmax ) = w(Rmin) = √

2w0 and Rmin <

Rmax and explicitly,

D f = 2πw2
0

λ
. (3.59)

For a point-based scanner, the depth of field D f , the distance R0, and the angular
interval for the scanning angle α can be used to compute the usable measurement
volume of the scanner. Moreover, the usable measurement volume of a sheet-of-light
scanner could be computed similarly.

3.8.6 Artifacts Induced by the Laser Beam Thickness

In this section, we examine two types of artifact induced by the laser beam thickness.
The first one is related to depth discontinuities and the second one is related to
texture variations of the object being scanned. The presentation focuses on spot-
based scanners, but all types of triangulation-based systems are affected by these
artifacts.

3.8.6.1 Depth-Discontinuity Artifacts

This type of artifact results from the laser beam simultaneously lighting the surfaces
on both sides of a depth discontinuity. The top row of Fig. 3.20 illustrates an actual
profile that has been scanned, with the laser spot located at three different positions.
The bottom part represents the corresponding intensity profiles measured on the
linear detector. At the left, we have the case where the spot is on a single surface.
In the center, the laser spot covers two different surfaces and the intensity profile
on the linear detector is composed of two overlapping peaks. This creates a bias in
the detected position of the peak. On the right side of the figure, the two peaks are
no longer overlapping. The transition from one peak toward two distinct peaks is
progressive which leads to artifacts that are spatially smooth near spatial discontinu-
ities. On the top right side of Fig. 3.25 such artifacts are visible. Note that this type
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Fig. 3.20 Depth-discontinuity artifacts Top: example of the laser footprint (in red) at three positions
on a surface. Bottom: actual intensity profiles on the linear detector corresponding to the laser spots
shown on the top row. The linear detector intensity profile are generated by the scanner presented
in Sect. 3.9.2 that uses the spot position detector presented in Sect. 3.2.1. When a peak is found its
position is mark by a dashed red line. Figure courtesy of NRC

of artifact is dependent on the orientation of the imaging system with respect to the
object being digitized.

3.8.6.2 Reflectance-Discontinuity Artifacts

The amount of light emitted by the projection system which is returned to the linear
detector depends on the variations of reflectance of the object been scanned. When
the laser spot covers a region with a varying reflectance, the values of some pixels
on the linear detector can be significantly attenuated leading to a bias on the position
of the measured peak. When successive 3D measurements have overlapping laser
spots, very characteristic artifacts are created near sharp reflectance discontinuities
(see Fig. 3.21). The artifacts depend on the relative orientation of the reflectance
transition with respect to the scanner (see the right column of Fig. 3.21).

3.8.7 Lateral Resolution

Intuitively, the lateral resolution is the capability of a scanner to discriminate two
adjacent structures on the surface of a sample. A formal definition can be found in
[92]. For some applications such as the one presented in Sect. 3.7.3, it is critical to
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Fig. 3.21 A USAF resolution target used to evaluate the resolution of 2D imaging. An image of
the target (top left). Multiple scans of the highest frequency region of the target are shown. For each
scan, the deviation of the measured 3D points with respect to a plane is displayed using a color map
(the unit is the millimeter). The top right and bottom right results were obtained using two different
orientations of the target with respect to the baseline of the scanner. For the top scan the baseline
is aligned with the horizontal line of the target, while the baseline is aligned with the vertical line
for the bottom scan. The bottom-left image shows the result of an artifact-mitigation strategy that
is presented in Sect. 3.9.3. The scanner presented in Sect. 3.9.3 was used to generate all of these
results. Figure courtesy of NRC

use a 3D scanner with sufficient lateral resolution. The lateral resolution is limited
by two factors which are the structural and the spatial resolution [92].

For a phase-shift system, when working out-of-focus, the lateral resolution of a
system is not limited by the camera resolution (spatial resolution), but by the optical
resolution (structural resolution) of the camera lens. Thus, to increase the lateral
resolution, one may have to reduce the depth of field of the scanner or the lens
aperture size. When a digital projector is used, artifacts induced by inter-pixel gaps
and discretization may limit the lateral resolution of the system (see Sect. 3.9.4).

For a laser spot scanner, the knowledge of the beam radius on the scene allows
one to determine the structural component of the lateral resolution of the system. The
spatial resolution is the smallest possible variation of the scan angle α. Increasing
the angular resolution of α can improve the lateral resolution as long as the spatial
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resolution does not exceed the structural one. Thus, reducing the beam radius may
be the only way to increase the lateral resolution unless an auto-focusing method is
used while measuring (see Sect. 3.9.2). When the beam radius is reduced, the depth
of field is also reduced. Thus, there is a trade-off between lateral resolution and the
depth of field. The evaluation of the lateral resolution of 3D imaging systems is
further discussed in [45, 64].

3.8.8 Interreflection

Shiny objects with concavities are frequently encountered in industrial applications
and they can represent a significant challenge for 3D imaging systems. In Sect. 3.2,
it is assumed that the light emitted by the laser is directly reflected by the scene
back to the detector. In the presence of shiny surfaces with concavities, a part of the
laser beam can reach the surface and can be reflected onto a second surface before
being indirectly reflected back to the sensor. The detector can thus register multiple
peaks. One peak is created by the direct illumination, while other peaks are generated
by indirect illumination (i.e., generated by interreflection). Sections3.9.1 and 3.9.3
present two designs that are robust to indirect illumination. Another approach to
mitigate interreflection is to positioned next to the diaphragm of the collection lens
a dual-aperture mask. Using this modified collection lens, a laser spot will register
as two peaks on the detector. The position of each peak can be independently used
to compute the range. Moreover, the distance between the two peaks also depends
on the range of the 3D point and this information can be used to filter out 3D points
generated by indirect illumination [13].

Since area-based systems illuminate the entire scene simultaneously they are usu-
allymore affected by indirect illumination than point-based and stripe-based systems.
They are three main approaches to reduce the impact of interreflection in area-based
systems. One approach for 3D shape reconstruction in the presence of interreflec-
tions is based on explicit separation of direct and global illuminations. The global
illumination excludes the direct illumination and includes the indirect illumination
and all other illuminations that reach the detector. Nayar et al. [71] demonstrated that
high-frequency patterns can be used to achieve a separation between the two types
of illumination. Chen et al. [26] proposed the modulated phase-shift method where
high-frequency patternsmodulate low frequency patterns to separate the illumination
components. Gu et al. [48] proposed a multiplexed illumination method for separat-
ing direct and global illumination. A codification method that associates a frequency
to every projector column rather than a phase to every column is presented in [33].
In this frequency shift method, many patterns composed of sine wave with different
frequencies are projected. The method allows the separation of direct and indirect
illuminations. Figure3.22 shows a comparison between phase shift (see Sect. 3.4.2)
and frequency shift. Some approaches are designed to increase the resilience to
global illumination. Gupta et al. [51] proposed the microphase shifting method that
used groups of sine pattern frequencies selected in a high-frequency narrow band.
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Phase shift Frequency shift

Total illumination Indirect illumination Direct illumination

Fig. 3.22 3D reconstruction of a glazed ceramic bowl using an area-based system that employs
phase shift and frequency shift. This object presents strong interreflections in its concavity. The
bottom row shows the separation of direct and indirect illuminations obtained using the frequency
shift method. To increase contrast, images have been scaled independently of each other. Figure
courtesy of NRC

Gupta el al. [49] proposed the code ensemble method constituted by four groups of
binary patterns among which we have high-frequency patterns, band-pass patterns,
and standard Gray code. In Embedded Phase Shifting, high frequencies are chosen
so that they can be combined to give low frequencies [68]. Two methods based on
Hamiltonian coding robust to interreflection are presented in [50]. An unstructured
light scanning method which use band-pass white noise patterns to mitigate inter-
reflections is presented in [29, 66]. Other approaches are adaptive and the patterns
they use are modified based on the projected images of patterns already acquired
[27, 28, 95, 96].
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Fig. 3.23 Left: illustration of an auto-synchronized scanner with Scheimpflug geometry (see
Sect. 3.9.1). Right: illustration of a lateral-synchronized scanner with Scheimpflug geometry (see
Sect. 3.9.2). The static mirrors are shown in green, the galvanometers are in orange, and the lenses
are blue. The laser sources are in red and the linear detectors are shown in black. The directions of
movement of components are illustrated using gray arrows. The light beam that is emitted by the
laser toward the scene is illustrated using a dashed red line. The light beam that is reflected from
the scene toward the linear detectors is drawn using a dashed orange line. Figure courtesy of NRC

3.9 Advanced Designs

In this section,10 four advanced designs are presented. The first two designs are point-
based scanners, while the third one is a hybrid point-based and stripe-based scanner.
The last design is for a high-resolution fringe projection.

3.9.1 Auto-Synchronized Design

The geometry of the point-based scanner presented in Sect. 3.2 can bemodified using
mirrors that fold the baseline such that the baseline of a system is larger than the
physical scanner. The orientation of mirrors can be dynamically modified to limit
the field of view of the camera such that the sensor only sees a small area around the
laser spot [77]. This makes this design robust to indirect illumination. This type of
point-based scanner is known as an auto-synchronized scanner and such a system is
shown in the left side of Fig. 3.23. The basic system is composed of a double-side
mirror mounted on a galvanometer and two fixed mirrors. One side of the double-

10May be omitted at the first reading and it is based on the material presented in Sect. 3.8.
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side mirror is used for collection while the other one is used for the projection. By
modifying the orientation of the double-side mirror, it is possible to acquire a profile.
Notice the angle between the collection lenses and the linear detector which allows
the Scheimpflug condition. In order to obtain a complete range image, another mir-
ror can be mounted on a galvanometer. A scanner based on that designed has been
used for space applications [81]. The simultaneous control of both galvanometers
allowed complex scanning patterns that have been exploited to perform simultane-
ously tracking and scanning of moving objects [15]. A modified design replaces
the second galvanometer by a translation stage and uses simultaneously three lasers
having different wavelengths (red,green, and blue). By measuring the position and
magnitude of each peak on the linear detector, it is possible to generate a 3D point
with color attributes. This design has been used inmany cultural heritage applications
[44].

The auto-synchronized design has two main drawbacks: the assembly and align-
ment of the optical components are challenging and the Scheimpflug condition is
fulfilled only for one orientation of the double-side mirror. The next design elimi-
nates the folding of the baseline in order to simplify the assembly and allows the
Scheimpflug condition to be valid for all measurements.

3.9.2 Lateral-Synchronized Design

A schematic of lateral-synchronized scanner is shown on the right side of Fig. 3.23.
This type of scanner is composed of a single mirror for which the orientation is
controlled by a galvanometer. One part of the mirror is used for collection, while the
other part is used for projection. This configuration is discussed in [13]. Using this
configuration, the Scheimpflug condition is valid for every orientation of the mirror.
The spot diameter on the detector depends only on the projection optics and the depth
of the surface of interest. It is thus possible to use an auto-focus optical component
in the projection optics in order to have a small spot diameter over a large depth of
field. A possible implementation uses lenses mounted on a piezo. The position of
the piezo determines the focusing distance and it can be dynamically modified by
predicting the depth of the point to bemeasured based on the points alreadymeasured.
Systems using this configuration can simultaneously achieve a large depth of field
and a high-lateral resolution. Figure3.2 left contains a picture of lateral-synchronized
scanner. This design is well adapted to the challenging application of turbine blades
inspection. Figure3.24 shows result from scanning a kitchen knife.11 The system that
produced this model had a point spacing of 7.5µm, a laser spot diameter of 20µm,
and a dynamic depth-of-field of 1.5 mm. The wavelength of the laser is 405 nm and
the standoff distance is 75 mm.

11The inspection results of turbine blades are usually confidential.
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Fig. 3.24 Top left: picture of a knife. The white stripes on the blades are used to align multiple
scans together using software from InnovMetric. Bottom: a shaded view of a complete model of
the blade. Right: a cross-sectional view of the blade. The scans were obtained using the scanner
presented in Sect. 3.9.2. Figure courtesy of NRC

3.9.3 Modified Lateral-Synchronized Design

The scanner design presented in this section is optimized to reduce the impact of
the orientation dependent artifacts presented in Sect. 3.8.6. It is based on the lateral-
synchronized design. One modification is that the linear detector is replaced by a 2D
detector making the system similar to a stripe-based scanner. The projection subsys-
tem remains point-based and it uses per point control of the focus and power output
of the laser. This design preserves most of the advantage of the point-based scanners
while having the acquisition rate of stripe-based scanners. The second modification
is that the baseline was increased and the standoff distance was reduced thereby
reducing the measurement uncertainty. The third modification is related to the peak
detector software. The software preserves the peak position and other attributes of the
peak that can be used during post-processing. The scanner is installed on top of a rota-
tion table on which the object to digitize is fixed. The position and orientation of the
scanner with respect to each orientation of the rotation stage need to be known. This
mechanical calibration is critical, but the details fall outside the scope of this chapter.
The object is digitized using many orientations and the different scans are merged
together using the low-level attributes (which can include height, width, and number
of peaks) and the prior knowledge of the variation of these attributes near depth
and intensity discontinuities (see Fig. 3.20). Figure3.21 demonstrates the reduction
of intensity artifacts and preservation of the lateral resolution (the point spacing is
7.5µm). Figure3.25 top illustrates the robustness to interreflection and depth discon-
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Fig. 3.25 Scans of two reference objects with known characteristics using the 3D imaging system
presented in Sect. 3.9.3. The first row contains scan results from a reference object produced by
the Physikalisch-Technische Bundesanstalt (Germany’s national metrology institute). The second
row contains scanning results from a reference object produced by Mututoyo. The reference object
contains steps of 10, 5, 2, and 1 micrometer. Only the results for the one micrometer step are
displayed (see the red line on the reference object picture). The left column contains pictures of the
reference objects. The center and right columns, respectively, contain results with and without the
artifact reduction strategy presented in Sect. 3.9.3. Figure courtesy of NRC

tinuities. Since speckle is also an orientation dependent noise, the proposed method
can be used to significantly reduce the impact of the speckle noise. Figure3.25 bot-
tom illustrates the capability of the system to measure a one micrometer height step.
A simpler mitigation strategy which is regularly encountered in commercial systems
is to use two detectors, one on each side of the projection system.

3.9.4 High-Resolution Fringe Projection Design

In Sect. 3.4, fringe projection technologies are presented assuming digital projec-
tion systems. Digital systems have the advantage of being based on mass-produced
devices. They have no moving mechanical component which provides greater stabil-
ity and repeatability. They are programmable and can achieve high projection rates.
However, digital projectors have limited resolution and each pixel is composed of an
active region where the emissivity can be controlled and a passive one where emis-
sivity cannot be controlled. We assume that the emissivity of a pixel is constant over
its active region. The passive region, which surrounds its active region, is referred to
as the inter-pixel gaps (see Fig. 3.26-left).

Drouin et al. presents a simple method to assemble a high-resolution 3D imaging
system using a low-resolution projection device such as multimedia projector [35].
An optical element, such as a cylindrical lens, is installed on top of the projection
optic. This element acts as a one-dimensional uniform blurring kernel tilted by an
angle of 8◦ with respect to the pixel grid. The concept is illustrated in the right side of
Fig. 3.26 using a digital device having two rows of pixels. Each row of the projector
image contains the same discrete approximation of a sine wave. Figure3.26 contains
a sine wave approximated by a digital device. One can see that there is a large
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Fig. 3.26 Left: camera image of a binary pattern projected by a digital micromirror device chip.
The inter-pixel gaps are clearly visible. Top right: a digital projector having two rows. The one-
dimensional blurring kernel induced by the cylindrical lens is illustrated as a red and blue line.
The color is used to illustrate the relative contribution to the final intensity of each row of pixels.
Bottom right: the intensity profile generated by the configuration shown on the top. The ideal signal
is shown in blue, in red is the discrete approximation, and in gold is the approximation obtained
using the proposed method on the two-row digital device. Figure courtesy of NRC

difference between the sine wave and the digital approximation. The periodic drop
of intensity to zero when inter-pixel gaps are encountered is particularly important.
The method proposed in [35] improves significantly the sine wave approximation as
shown on the bottom right of Fig. 3.26. The bottom left of Fig. 3.15 shows a scan that
was acquired using a fringe projection system based on the presented method. The
system uses a region of 1024 by 400 pixels from a digital micromirror device and a
mosaic of two 16-million-pixel cameras.

3.10 Research Challenges

In Sect. 3.6, we presented the error propagation from the image formation to the 3D
points for some area scanners. To the best of our knowledge, no commercial scanner
associates a covariance matrix to each 3D point that can be used for performing a
first-order error propagation. An important research issue is the understanding and
modeling of error propagation from the calibration step to the visualization step of
themodeling pipeline. This is challenging because themodeling pipeline can contain
a significant amount of geometric processing such as the fusion of multiple scans,
the transformation of point clouds into meshes, the decimation of triangles, and the
fitting of geometric primitives. This understanding is now becoming critical as the
use of handheld scanners for industrial applications has significantly increased in the
last few year. These scanners perform many modeling tasks within the device [88,
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Fig. 3.27 Shaded views of 3Dmodels obtained by merging multiple scans of a newmachining tool
tip (left) and a used one (right). A picture of the machining tool is shown at the bottom. The scans
were performed using a fringe projection system based on the design presented in Sect. 3.9.4. The
point spacing is 7.5µm. Note the presence of damage clearly visible on the tip of the tool. Figure
courtesy of NRC

89]. In Givi et al., some of the error sources of a handheld scanner were quantified
[43].

As the individual components of 3D imaging systems continue to improve, it is
expected that the spatial resolution of 3D imaging systems will increase up to the
limits imposed by physics. As an example, in recent years the resolution of cameras
has significantly increased. This had a significant impact on the performance of
fringe projection systems; however, there are physical limitations that make further
improvement of a 3D scanner impossible. As an example, a laser point scanner can
be designed to reduce the speckle noise, but the presence of coherence in the optical
system induces a limit to this noise reduction [53]. Another example of physical
limitations is the diffraction introduced by the finite size of a lens aperture. Thus, one
of the main challenges in the development of 3D imaging systems is to combine the
improvements in commercially available components with innovative new designs
and algorithms in order to bring the performance of the system as close as possible
to the physical limits. Adapting 3D imaging systems for the newest materials used
in advanced manufacturing is an ongoing challenge.

Finally, as the cost of components for 3D imaging systems drops, high perfor-
mance 3D systems are expected to become affordable. This creates opportunities to
revisit manufacturing processes and incorporate vision systems in ways that were
not considered financially viable a few years ago (see Fig. 3.27 for a machining
application).
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3.11 Concluding Remarks

Many of the traditional measurement instruments like theodolites and coordinate
measuring machines are being replaced by noncontact optical scanners based on
triangulation, time-of-flight, or interferometry technology. This sudden change in
process design and quality assurance practices needs to be addressed by research
organizations and companies. When the goal of a business is to make a quality prod-
uct for a profit, then metrology will have a direct impact on that business. The quality
of measurements planned in the design stage, applied duringmanufacturing, and per-
formed during inspection directly affect the quality of a product. Poor measurements
(those without an accuracy statement) may even lead to creating waste with scrapped
products. Conversely, precise measurements (those with an accuracy statement) lead
to superior products. The dimensional deviations between as-designed, as-built, and
as-measured devices can only be understood and controlled if traceable measure-
ments can be made in compliance with clear standards. While 3D imaging systems
aremorewidely available, standards, best practices, and comparative data are limited.
In the near future, we hope to see more comparative data in scientific publications
and industrial standards aimed at active triangulation systems [9].

3.12 Further Reading

One of the earliest papers on triangulation-based spot scanning for the capture and
recording of 3D data was published by Forsen in 1968 [40]. Kanade presents a
collection of chapters from different authors that describe a number of close-range
active 3D imaging systems [60]. Many survey papers that review range sensors
have been published [1, 13]. The calibration of point-based triangulation scanners is
discussed in [8, 10, 24].

Two articles published by Salvi et al. [79, 80] present an in-depth classification
of different types of structured light patterns. Davis et al. [32] present a unifying
framework within which one can categorize 3D triangulation sensors, for example,
on the basis of their coding within the spatial and temporal domains. Moreover, an
analysis of the uncertainty of a white light fringe projection based on Gray codes is
presented in [87]. Many analyses of the impact of random noise on phase-shift meth-
ods have been conducted [46, 55, 76, 86]. In Sect. 3.6, the effect on the measurement
uncertainty of changes on the geometric configuration of a structured light system
was presented. A related topics explored by Mirdehghan et al. is the selection of the
best structured light patterns given a geometric configuration [67].

An active area of research is the design of structured light systems that must scan
very challenging objects, such as translucent objects [70]. More details about the
measurement system and the positioning systems of handheld devices can be found
in[54]. Some components of the sophisticated software pipeline used by handheld
devices are described in [88, 89].
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The two authoritative texts on the matter of uncertainty and vocabulary related to
metrology are the Guide to the Expression of Uncertainty in Measurement (GUM)
and the International Vocabulary of Metrology (VIM) [41, 58]. The document desig-
nated E 2544 from the American Society for Testing andMaterials (ASTM) provides
the definition and description of terms for 3D imaging systems [3]. Moreover, VDI
2634 is a document from a standardization body that addresses the characterization
of optical distance sensors [91]. Error propagation in the context of multiple-view
geometry is discussed in [31] .

3.13 Questions

1. Name and explain four categories of triangulation scanner, based on different
methods of scene illumination.

2. In recent years, the resolution of cameras has significantly increased. What are
the impacts of this on each type of triangulation scanner?

3. What are the impacts on the 3D data of varying the distance between the camera
and the laser source of a laser stripe scanner without recalibrating the system?

4. What are the impacts on the 3D data of varying the distance, d, (the distance
between the camera center and image plane) of a laser stripe scanner without
recalibrating the system?

5. What are the values of Rp, Tp, x ′
1, y

′
1 and x ′

2 for which the three constraints in
Eq.3.34 are not linearly independent?

6. What is the static depth of field of the scanner described in Sect. 3.9.2?
7. What are the elements that can limit the lateral resolution of a stripe scanner?

Classify those elements as belonging to the spatial or structural resolution.

3.14 Exercises

1. Using a programming environment of your choice, develop a 2D simulator of
a phase-shift fringe projection scanner that can reproduce the intensity artifact
described into Sect. 3.8.6.2. Assume that optical-induced blurring is only present
in the camera images and that the camera has an infinite spatial resolution. Repeat
the experiment for a fringe projection system that uses a Gray code.

2. Modify the previously developed prototype in order to apply it to a stripe scanner.
Plot a graph that shows the variation of error due to the width of the stripe.

3. Perform the error propagation computation for a stripe scanner that includes uncer-
tainty on the angles α.

4. Using Fig. 3.16, trigonometry and the thin lens equation, give the derivation of
Eq.3.50.

5. Modify the camera model presented in Sect. 3.3.1 to incorporate a Scheimpflug
condition.
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6. Some projectors have a digital micromirror device (DMD) chip having diamond-
shaped pixels rather than square shaped ones. Generate a version of Fig. 3.26 for
a diamond-shaped DMD.

7. Implement the projection system presented in Sect. 3.9.4 using a multimedia pro-
jector.

8. Using the projection system previously implemented, developed a phase-shift
method that uses multiple spatial periods to remove the phase ambiguity.
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Chapter 4
Active Time-of-Flight 3D Imaging
Systems for Medium-Range Applications

Marc-Antoine Drouin and Ismail Hamieh

Abstract Active 3D imaging systems use artificial illumination in order to cap-
ture and record digital representations of objects. The use of artificial illumination
allows the acquisition of dense and accurate range images of textureless objects. An
active 3D imaging system can be based on different measurement principles that
include time-of-flight, triangulation, and interferometry. The different time-of-flight
technologies allow the development of a plethora of systems that can operate at a
range of a few meters to many kilometers. In this chapter, we focus on time-of-flight
technologies that operate from a few meters to a few hundred meters. The charac-
terization of these systems is discussed and experimental results are presented using
systems related to construction, engineering, and the automobile industry.

4.1 Introduction

Three-dimensional (3D) vision systems capture and record a digital representation of
the geometry and appearance information of visible 3D surfaces of people, animals,
plants, objects, and sites. Active 3D imaging systems use an artificial illumination
(visible or infrared) to acquire dense range maps with a minimum of ambiguity. In
the previous chapter, active 3D imaging systems based on triangulation that operate
at a range of a few centimeters to a few meters were presented. In contrast, Time-
of-Flight (ToF) technologies allow the development of a plethora of systems that
can operate from a range of a few meters to many kilometers. Systems that oper-
ate up to a few meters (approx. 5m) are typically called range cameras or RGB-D
cameras and are typically dedicated to indoor applications. Systems that operate at
greater ranges are termed LiDAR (Light Detection and Ranging). LiDAR started
as a method to directly and accurately capture digital elevation data for Terrestrial
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Laser Scanning (TLS) and Airborne Laser Scanning (ALS) applications. In the last
few years, the appealing features of LiDAR have attracted the automotive indus-
try and LiDAR became one of the most important sensors in autonomous vehicle
applications where it is called Mobile Laser Scanning (MLS). Terrestrial, airborne,
and mobile laser scanning differ in terms of data capture mode, typical project size,
scanning mechanism, and obtainable accuracy and resolution; however, they share
many features. In this chapter, we focus on time-of-flight technologies that operate
from a few meters to a few hundred meters. They are, by their nature, non-contact
measurement instruments and produce a quantifiable 3D digital representation of a
surface in a specified finite volume of interest and with a particular measurement
uncertainty.

4.1.1 Historical Context

The fundamental work on Time-of-Flight systems can be traced back to the era
of RADAR (Radio Detection And Ranging), which is based on radio waves. With
the advent of lasers in the late 1950s, it became possible to image a surface with
angular and range resolutions much higher than possible with radio waves. This
new technology was termed LiDAR and one of its initial uses was for mapping
particles in the atmosphere [38]. During the 1980s, the development of the Global
Positioning System (GPS) opened up the possibility of moving sensor systems such
as airborne LiDAR and Bathymetric LiDAR were actually one of the first uses [98].
The early 1990s saw the improvement of the Inertial Measurement Unit (IMU)
and the ability to begin achieving decimeter accuracies. Some of the earlier non-
bathymetric airborne applications were in the measurement of glaciers and how
they were changing [113]. TLS systems are also beginning to be used as a way
to densely map the three-dimensional nature of features and ground surfaces to
a high level of accuracy [79]. TLS is now an important tool in the construction
and engineering industry. Many modern ToF systems work in the near and short-
wave infrared regions of the electromagnetic spectrum. Some sensors also operate
in the green band to penetrate water and detect features at the bottom of it. In recent
years, the automotive industry has adopted ToF systems and this is now an essential
technology for automated and advanced driver-assistance systems. The entertainment
industry has also adopted ToF systems. The progressive addition of motion-sensitive
interfaces to gaming platforms and the desire to personalize the gaming experience
led to the development of short-range time-of-flight cameras targeted at a wide range
of cost-sensitive consumers.
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4.1.2 Basic Measurement Principles

Active three-dimensional (3D) imaging systems can be based on different measure-
ment principles. The three most used principles of commercially available systems
are triangulation, interferometry, and time-of-flight. Seitz describes triangulation as a
method based on geometry, interferometry as one that uses accurate wavelengths and
time-of-flight as based on an accurate clock [92]. Figure4.1 summarizes the typical
accuracy of each type of active 3D imaging system technology found on the market
as a function of the operating distance. It can be observed from that figure that each
optical technique covers a particular range of operations. Many in-depth classifica-
tions of optical distance measurement principles have been published in important
references in the field of 3D vision, e.g., [17, 19, 52, 78]. Both active and passive
triangulation systems are based on the same geometric principle: intersecting light
rays in 3D space. Typically, an active system replaces one camera of a passive stereo
system by a projection device. This projection device can be a digital video projector,
an analog slide projector, or a laser. Interferometry is based on the superposition of
two beams of light [52]. Typically, a laser beam is split into two paths. One path
is of known length, while the other is of unknown length. The difference in path
lengths creates a phase difference between the light beams. The two beams are then
combined together before reaching a photodetector. The interference pattern seen by
the detector resulting from the superposition of these two light beams depends on

Fig. 4.1 Typical accuracy at different operating distances for the most common active 3D imaging
technologies. Figure courtesy of NRC
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the path difference (i.e., the distance). The remainder of this chapter will focus on
the time-of-flight.

4.1.3 Time-of-Flight Methods

Most Time-of-Flight (ToF) technologies presented in this chapter are classified as
active optical non-contact 3D imaging systems because they emit light into the envi-
ronment and use the reflected optical energy to estimate the distance to a surface in
the environment. The distance is computed from the round-trip time which may be
estimated directly using a high-resolution clock to measure the time between out-
going and incoming pulses (Pulse-based ToF), or indirectly by measuring the phase
shift of an amplitude-modulated optical signal (Phase-based ToF) [105].

There are many ways to classify ToF sensors, according to their components,
application fields, and performance. One of the key dimensions within this taxonomy
is the way in which the active 3D imaging system illuminates the scene. Some
measurement systems are points based and need to scan the laser spot along two
axes in order to acquire a range image, other systems used multiple laser spots and
require the scanning along a single axis to obtain a range image. Finally, some systems
illuminate the entire scene simultaneously.

The first family of systems that we present are point-based scanners. A large
subset within this family are known as Terrestrial Laser Scanning (TLS) systems
or Terrestrial LiDAR and have multiple applications within the construction and
engineering industry (see top left of Fig. 4.2). Many TLS systems contain a biaxial
leveling compensator used to align the coordinate system of the generated range
image with respect to gravity.

A second type of point-based system, frequently encountered in the construction
and engineering industry, is the Laser Tracker (LT) which is the only type of systems
presented in this chapter that is classified as a contact technology because the light
emitted into the environment is reflected by a retroreflector, which is placed in contact
with a surface at the time of measurement (see top right and bottom left of Fig. 4.2).

Systems usingmultiple laser spots are typically referred as multi-channel LiDAR.
These systems are encountered in automotive applications (see bottom right of
Fig. 4.2). Multi-channel LiDAR is considered by many automobile manufacturers
to be a key technology for autonomous driving. In the automotive industry, the tech-
nology is known as Mobile LiDAR Systems (MLS). Multi-channel LiDAR emits
multiple laser beams that are contained within a plane. Each acquisition generates a
profile contained within that plane and by modifying the orientation or position of
this plane it is possible to generate a range image.

Systems that illuminate the entire scene simultaneously are now frequently
encountered in consumer-grade applications. These systems are referred as area-
based systems and the detection of the incoming light is done by a two-dimensional
(2D) array of detectors. The second generation Microsoft Kinect is a popular area-
based system. Typically, because of constraints imposed by eye-safety requirements
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Fig. 4.2 Various ToF systems. (These are used to generate the experimental results shown in
Sect. 4.7.) Top left: a terrestrial LiDAR system. Top right: a laser tracker. Bottom left: a retroreflector
used by the laser tracker. Bottom right: a multi-channel LiDAR mounted on the top of a car. Note
the GPS receiver on the left and the inertial measurement unit on the right of the LiDAR system.
Figure courtesy of NRC

for consumer-grade products, their operational range is smaller than other types of
ToF system.

ToF systems measure the distance to a point by calculating the round-trip time
of light reflected from the surface [24, 105], based on an assumption of the speed
at which the light is able to travel through the medium (typically air). Factors such
as air temperature and pressure [20, 70], relative humidity, CO2 concentration [24],
atmospheric turbulence [109], and the presence of particulate matter [11, 24] or fog
[89] can all affect the speed at which light can travel through the medium. This is
further complicated by gradients in these factors along the beam path [42].

Moreover, the measurement quality is strongly dependent on the surface being
measured due to factors such as reflectance [46], surface orientation [42], optical
penetration [34, 40, 44], and substances, such as water, on the surface [61, 67].

The output of a ToF system is typically a point cloud or range image. A point
cloud is an unorganized set of 3D points, while a range image is an organized array
of 3D points that implicitly encode the neighborhood relation between points. This
neighborhood structure is related to the physical acquisition process. As an example,
for a range image produced by a multi-channel LiDAR, one axis represents the laser
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beam indexwhile the other represents the angular position of the laser beam along the
scanning axis. For historical reasons, unstructured point clouds saved into ASCII file
format are still encountered today. Wherever possible, we advocate the preservation
of the neighborhood structure associated with the physical acquisition process of the
ToF system employed.

As discussed in Chap. 3, when working with coherent light sources (lasers) eye
safety is of paramount importance and one should never operate laser-based 3D
imaging sensors without appropriate eye-safety training. Many 3D imaging systems
use a laser in the visible spectrumwhere fractions of amilliwatt are sufficient to cause
eye damage, since the laser light density entering the pupil is magnified, at the retina,
through the lens. For an operator using any laser, an important safety parameter is
the Maximum Permissible Exposure (MPE) which is defined as the level of laser
radiation to which a person may be exposed without hazardous effect or adverse
biological changes in the eye or skin [4]. The MPE varies with wavelength and
operating conditions of a system. One possible mitigation strategy used by scanner
manufacturers is to use a laser at 1.55µm. At this wavelength, the light is absorbed
by the eye fluids before being focused on the retina. This tends to increase the MPE
to the laser source. We do not have space to discuss eye safety extensively here and
refer the reader to the American National Standard for Safe Use of Lasers [4].

4.1.4 Chapter Outline

The core sections in this chapter cover the following materials:

• Point-based systems.
• Laser trackers—a special type of point-based system using retroreflectors.
• Multi-channel systems.
• Area-based systems (these are used in consumer-grade products).
• Characterization of ToF system performance.
• Experimental results for random and systematic ranging errors.
• Sensor fusion and navigation.
• ToF versus photogrammetry for some specific applications.

Toward the end of the chapter, we will present the main challenges for future
research followed by concluding remarks and suggestions for further reading. A set
of questions and exercises are provided at the end for the reader to develop a good
understanding and knowledge of ToF technologies.

4.2 Point-Based Systems

Point-based systems measure distance one point at a time and need to be scanned
along two axes in order to acquire a range image. TLS systems are a large subset
within this family and this section will mostly focus on this type of system, which

http://dx.doi.org/10.1007/978-3-030-44070-1_3
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is now commonly used as a survey method for monitoring large structures such as
bridges and for as-built building information modeling. TLS can be used for forensic
applications in large environments and they are regularly used to document cultural
heritage sites. In TLS, the scanning is performed by two rotating components. One
controls the elevation, while the other determines the azimuth. Many TLS systems
contain a biaxial leveling compensator used to align the coordinate system of the
generated range imagewith respect to gravity. Point-based systems that do not include
scanning mechanisms are commercially available and are refereed as laser range
finders.1

One configuration that can be encountered in a TLS system uses a galvanometer
with a mirror to control the elevation and azimuth is controlled by rotating the com-
plete scanner head. Using this configuration, the elevation can be scanned at a higher
frequency than the azimuth. A typical configuration could have a 360◦ field of view
in the azimuth and 30–120◦ of field of view in elevation. Note that galvanometer scan
angles are limited to about ±45◦. For larger scan angle, a motor with encoders must
be used. In the idealized case, each time a distance measurement is made, the value
of the optical encoder of the rotating head and the readout value for the galvanome-
ter are recorded. When the system is calibrated, these values can be converted into
angles. Using the distance measurement and the angles it is possible to compute the
position of the 3D points. In the non-idealized case, the rotation axis of the scan-
ner head and that of the galvanometer may not be perpendicular and some small
translation offsets can result from the misalignment of the laser and galvanometer
with respect to the rotation center of the scanner head. Moreover, the rotation axis
may wobble. For high-end systems, all these issues and others have to be taken into
account. Since access to a facility capable of calibrating a TLS system is rare, this
topic is not discussed in this chapter. However, the characterization of systems will
be discussed in Sect. 4.6. For the remainder of this section, two technologies for the
distance measurement known as pulse-based and phase-based are presented. Pulse-
based systems perform a direct measurement of the time required by the light to do a
round trip between the scanner and the scene. Phase-based systems perform an indi-
rect measurement of the time by measuring a phase offset. Some authors reserved
the name time-of-flight for systems performing direct measurement. In this chapter,
a less restricting definition of time-of-flight is used.

4.2.1 Pulse-Based Systems

Pulse-based systems continually pulse a laser, andmeasure how long it takes for each
light pulse to reach a surface within the scene and return to the sensor. Typically, the
pulse has a Gaussian shape with a half-beam width of 4–10ns. Since the speed of
light is known, the range r(Δt) of the scene surface is defined as

1Note that some range finders are based on triangulation.
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Fig. 4.3 Range measurement techniques employed by common ToF systems. Left: pulse-based.
Right: phase-based (more specifically amplitude modulation). Figure courtesy of NRC

r(Δt) = cΔt

2
(4.1)

where c is the speed of light, and Δt is the time between the light being emitted and
it being detected. Typically, the detector performs a sampling of the signal for every
1 or 2ns. Different algorithms that perform the detection of pulses in the incoming
signal are discussed in Sect. 4.2.1.2. Inmany applications, the detection of the peak of
a pulse with a sub-nanosecond accuracy is critical as the pulse travels approximately
30cm in one nanosecond. Figure4.3-left illustrates the principle.

The simplest implementation assumes that a detected pulse corresponds to the
last pulse emitted. In some situations, the ordering of the outgoing pulses may be
different from the order of the returning pulses. This can occur in scenes with large
depth variations. A pulse can reach a distant surface and by the time the pulse returns
to the sensor, a second pulse is emitted to a close surface and back to the sensor. In
order to avoid this situation, the maximum pulsing rate f p of a pulse-based system
is limited by the maximum range Rmax of the system using

f p ≤ c

2Rmax
. (4.2)

As an example, a system having a maximum range of 1.5km is expected to generate
at most 100,000 range measurements per second.

4.2.1.1 Multiple Returning Pulses

A property of pulse-based system is that it may register multiple return signals per
emitted pulse. An emitted laser pulse may encounter multiple reflecting surfaces and
the sensor may register as many returns as there are reflective surfaces (i.e., the laser
beam diameter is not infinitely thin [94]). This situation is frequently encountered in
airborne applications related to forestry and archaeologywhere itmay simultaneously
register the top of the vegetation and the ground [25, 59, 84]. Note that a pulse can
hit a thick branch on its way to the ground and it may not actually reach the ground.
For terrestrial applications, the analysis of multiple return signals can sometimes
allow detection of a building behind vegetation or can detect both the position of a
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Fig. 4.4 Some spurious data
points are induced by
inter-reflection. Figure
courtesy of NRC

building’s window and a surface within the building. Finally, some systems record
the complete return signal, which forms a vector of intensity values where each value
is associated with a time stamp. These systems are known as waveform LiDAR [68].
Waveform LiDAR is capable of measuring the distance of several objects within
the laser footprint and this allows characterization of the vegetation structure [1, 59,
106]. Finally, some detected pulses can be the result of an inter-reflection within the
scene. This situation is illustrated in Fig. 4.4. In this figure, a part of the laser light
emitted by the system is first reflected on the ground and then reflected on the road
sign before reaching the sensor. Typically, multi-channel and area-based systems are
more sensitive to inter-reflection artifacts than point-based systems.

4.2.1.2 Detecting a Returning Pulse

The detection of the peak of the returning signal with a sub-nanosecond accuracy is
critical for many commercially available systems and scanner manufacturers provide
few implementation details. An electronic circuit that can be used to locate the peak
is the constant fraction discriminator circuit. This approximates the mathematical
operation of finding the maximum of the returning pulse by locating the zero of the
first derivative [60]. Implementation details about the peak detector of experimental
systems developed for the landing of spacecraft are discussed in [22, 39]. In [39], the
returning signal is convolved with a Gaussian and the peaks are located by examining
the derivative. The standard deviation of the Gaussian is derived from the physical
characteristics of the system. In [22], a 6◦ polynomial is fitted on the returning signal.
Waveform LiDAR records the complete return signal and makes it available to the
end user. The end user can implement specialized peak detectors adapted to specific
applications. A significant body of knowledge about peak detection for waveform
LiDAR is available [68]. One approach is to model the waveform as a series of
Gaussian pulses. The theoretical basis for this modeling is discussed in [104].
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4.2.2 Phase-Based Systems

Phase-based systems emit an Amplitude-Modulated (AM) laser beam [3]. The sys-
tems presented in this section are also known as continuous-wave ToF system. Fre-
quency Modulation (FM) is rarely used so it is not considered here.2 The range
is deduced from the phase difference between the detected signal and the emitted
signal. Figure4.3b illustrates the principle of the phase-based system. The temporal
intensity profile Is(t) for the illumination source is

Is(t) = As + Bs cos(φ(t) + θs) (4.3)

where As , Bs , and θs are constants and φ(t) = 2π t fcw where fcw is the modulation
frequency. The temporal intensity profile Id(t) for the detected signal is

Id(t) = Ad + Bd cos(φ(t) + θd + δφ) (4.4)

where δφ is the phase offset related to the range. Note that Ad , Bd depend on As , Bs

the scene surface properties and the sensor characteristics. In general, the value of
θs and θd are assumed to be constant but their values are unknown. The conversion
from phase offset to range can be achieved using

r(δφ) = cδφ

4π fcw
(4.5)

where c is the speed of light in the medium. The range over which the system can per-
form unambiguous measurement can be computed from the modulation frequency.
This unambiguous range rmax is defined as

rmax = r(2π) = c

2 fcw
. (4.6)

Increasing the modulation frequency fcw will simultaneously reduce the value of
rmax and the measurement uncertainty.

4.2.2.1 Measuring Phase Offset

Phase-based systems combine the detected signal with the emitted signal in order to
perform the phase offset measurement. At this point, one should realize a similarity
with interferometry. A unified presentation of phase-based ToF and interferometry
can be found in [29]. Combining the detected signal with the emitted signal is math-
ematically equivalent to the cross-correlation between Eqs. 4.3 and 4.4 which results
in another sinusoidal function Ic(t) defined as

2FM systems for small measurement volumes exist.
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Ic(t) = Ac + Bc cos(φ(t) + θc + δφ) (4.7)

where Ac, Bc and δφ are unknown andφ(t) and θc are known. Typically, θc is assumed
to be zero during the processing of the signal as a nonzero value simply creates a bias
in the range measurement that can be compensated by the calibration. By sampling
Eq.4.7 three or more times with different values of ti , it is possible to construct a
system of equations that allows us to solve for Ac, Bc, and δφ. This is done in the
same way as is described in the previous chapter and the details are not repeated
here. After selecting different sampling times ti such that φ(ti ) = 2π i

N , where N is
the number of samples, we can compute the following:

Ac = 1

N

N−1∑

i=0

I (ti ), (4.8)

Bc =

√(∑N−1
i=0 I (ti ) sin

(
2iπ
N

))2 +
(∑N−1

i=0 I (ti ) cos
(
2iπ
N

))2

N
(4.9)

and

δφ = arctan

(
N−1∑

i=0

I (ti ) sin

(
2iπ

N

)
,

N−1∑

i=0

I (ti ) cos

(
2iπ

N

))
(4.10)

where arctan(n, d) represents the usual tan−1(n/d) where the sign of n and d are
used to determinate the quadrant.

4.2.2.2 Removing the Phase Offset Ambiguity

Once the phase difference Δ� is computed, the range is defined as

r(Δ�) = c (Δ� + 2kπ)

4π fcw
(4.11)

where k is an unknown integer that represents the phase ambiguity. The value of
k must be recovered in order to compute the location of the 3D points. A simple
method usesmultiplemodulation frequencies denoted as f icw with i > 0.When using
this scheme, a value of ki must be recovered for each f icw. The lower modulation
frequencies are used to remove the range ambiguity while the higher ones are used
to improve the accuracy of the measurement. In that scheme, the value of f 1cw and
rmax are selected such that k1 is always zero and the value of Δ�i for i≥1 can be
used to determinate the value of ki+1 (assuming that f icw < f i+1

cw ).
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4.3 Laser Trackers

In this section, we are specifically interested in a type of measurement system known
as a laser trackers, also known as portable coordinate measurement machines. Laser
trackers are classified as contact systems because the light emitted into the envi-
ronment is reflected by a retroreflector, often referred to as Spherically Mounted
Reflector or SMR, which is placed in contact with a surface at the time of measure-
ment (see Fig. 4.5). Measurement results obtained by laser tracker systems are also
relatively independent of the type of surface being measured because the point of
reflection is the retroreflector. Every point obtained by a laser tracker system requires
human intervention. For this reason, these systems are used where only a few points
need to bemeasured, but must be measured at high accuracy. The laser tracker instru-
ment is relatively easy to use and it can be employed to evaluate the performance of
a time-of-flight 3D imaging system. The laser tracker is used as a reference instru-
ment for medium-range 3D imaging systems in the American Society for Testing
and Materials (ASTM) standard ASTM E2641-09 (2017). As seen in Fig. 4.1, laser
tracker systems operate in the same range as ToF systems, from the tenth-of-a-meter
to the hundreds-of-meters range. They have a measurement uncertainties one order
of magnitude or more better than ToF. The performance of the laser tracker is covered
by the American Society of Mechanical Engineers (ASME) ASME B89.4.19-2006
standard which uses the interferometer as a reference instrument [77]. Laser tracker
systems use interferometry, ToF or a combination of both to calculate the distance.
Distancemeasurement using interferometry is known as InterferometryMode (IFM),
while distance calculated using ToF is known as Absolute Distance Mode (ADM).

Typically, specifications for laser trackers are given as a Maximum Permissible
Error (MPE) [55]. Specifically,

EL ,MPE = ± (A + L/K ) (4.12)

where A and K are constants that depend on the laser tracker and L is the range of
the SMR. Incidentally, MPE estimates are Type B uncertainties, which are described
in GUM JCGM 104:2008 [53]. There are two types of uncertainty defined in [53].
Type A uncertainties are obtained using statistical methods, while Type B is obtained
by means other than statistical analysis. FARO X Laser Tracker3 specifications are
given in Table4.1.

Measurement accuracy is affected not only by tracker performance but also by the
variation in air temperature and procedures used to perform the measurement which
is not discussed. In the remainder of this section, we described best practices that
should be adopted when using laser trackers.

3See user manual available at https://knowledge.faro.com/Hardware/Laser_Tracker/Tracker.

https://knowledge.faro.com/Hardware/Laser_Tracker/Tracker
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Fig. 4.5 Top left: experimental setup used to compare close-range photogrammetry and LT. Top
right: a range imagewith different targets extracted, shown in red. Center left: a half-spheremounted
onakineticmount.Center right: the same setupwith the half sphere substitutedwith anSMR.Bottom
left: a specialized target containing a recessed black bow tie. An operator is currently probing the
planar surface using LT. Bottom center: the specialized probing tool with the SMR’s nest but without
the SMR. Bottom right: the specialized probing tool with the SMR, as used to probe the center of
the bow tie. Figure courtesy of NRC
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Table 4.1 MPEquantities related to tracker performancewhere L is the range inmeters (Transverse:
perpendicular to the laser beam and Radial: along the laser beam). The R0 (range zero) error is
described in Sect. 4.3.1

Tracker subsystem Symbol MPE

ADM-radial EADM 20µm + L 0.8µm/m

Transverse ET 36µm + L 6µm/m

Range zero (R0) ER0 20µm

4.3.1 Good Practices

Before a laser tracker can be used to obtain measurement results, the quality of data
produced must be verified by a set of basic tests using SMR nests in fixed positions.
These tests are often divided into two categories: ranging tests that assess the radial
measurement performance, and system tests that evaluate volumetric measurement
performance. The ASME B89.4.19 [70, 76] standard is the most applicable to the
average laser tracker user because it provides a clear and well-recognized method for
evaluating whether the performance of the laser tracker is within the manufacturer
providedMaximumPermissibleError (MPE).More recently, other research institutes
including NIST and NPL have published additional in-field test procedures that can
be used to establish the measurement uncertainty associated with any laser tracker
measurement result.

4.3.1.1 Range Measurement Evaluation

A laser tracker performance assessment typically starts by assessing the range (radial)
measurement performance of a laser tracker. These systems can use either one of
the two operating modes to measure the radial distance to a Spherically Mounted
Retroreflector (SMR). The two operating modes are Interferometric distance Mea-
surement (IFM) or Absolute Distance Meter (ADM) [72, 75]. In IFM mode the
SMRmust initially be placed in the home position, then moved without breaking the
beam to the position of interest. The distance is calculated by counting the number
of fringes from the measurement beam relative to an internal reference beam, which
corresponds to the distance traveled [35]. The distance between each fringe is one
wavelength, and the result is a highly accurate measurement result. ADM mode, by
contrast, uses a form of time-of-flight measurement so it is less accurate; however,
it does not require SMRs to start the measurement process in the home position.

The range measurement results of laser trackers that operate in IFMmode are typ-
ically compared with displacement measurement results obtained from a calibrated
reference interferometer with measurement uncertainty traceable to the meter [35].
These results are used to verify that the laser tracker rangemeasurement performance
is within the specifications provided by themanufacturer. This is normally performed
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in-factory of the manufacturer and periodically as required by the manufacturer to
ensure that the laser scanner continues to operate within specification. The perfor-
mance of laser trackers that operate in both IFM and ADM mode can be validated
on site by calculating the deviation between range measurements obtained in IFM
mode (reference) and ADM mode (test).

4.3.1.2 Angular Encoder Evaluation

Once the radial axis measurement performance has been verified, the performance
of the horizontal and vertical angle encoders can be assessed using system tests. The
following encoder errors can be identified [76]: beam offset, transit offset, vertex
index offset, beam tilt, transit tilt, encoder eccentricity, bird-bath error, and encoder
scale errors. A complete calibration requires quantification of each error source
using a more comprehensive test regime. For in-field evaluation, however, most error
sources can be bundled to reduce the number of encoder performance tests required
to complete an in-field calibration.

4.3.1.3 In-Field Evaluation

The first in-field system test to perform is referred to as the two-faced test because
it compares the performance of the system between front-face and back-face mode
[70, 74, 76]. An SMR is placed in a fixed position relative to the laser tracker and
its position is determined in both front-face and in back-face mode. Any deviations
between the measurement result obtained in each mode indicate that compensation
will need to be applied to minimize the deviation. The compensation procedure to
correct for what is referred to as R0 (range zero) error is normally available in most
software packages provided with the laser tracker. For most applications a deviation
less than 50µm is considered negligible. The two-face test must be repeated after
compensation has been applied to verify that the deviation between front-face and
back-face mode measurement results has been minimized; however, it may also need
to be repeated often during the day if the test situation changes, such as a change
in temperature, or if the equipment needs to be turned off and moved to another
location.

The second in-field test compares the distance between two SMR positions where
the distance has been previously established using a more accurate method. A com-
mon reference is a fixed-length bar with SMR nests at each end in which the SMR-
to-SMR distance has been previously established using a distance measurement
device more accurate than the laser tracker encoders, such as a Coordinate Mea-
suring Machine (CMM) [70]. The SMR-to-SMR distance can also be established
using the range axis of the laser tracker in IFM mode because the IFM radial uncer-
tainty is typically much smaller than the encoder uncertainty. The second option
is feasible only for bars in which the SMR nests are mounted on one side, which
permits the SMR nests to be aligned along the radial axis in what is referred to as
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the “bucked-in” position. An example of one such bar available commercially is the
Kinary, recently developed as part of a collaboration between NIST and Brunson
Instruments [58].

Having established a fixed-length reference artifact, the encoder performances are
evaluated by placing the artifacts in different positions and orientations. The ASME
B89.4.19 [70] describes a series of test positions to evaluate whether the performance
of the laser tracker is within the stated Maximum Permissible Error (MPE) of the
laser tracker, as stated by the manufacturer.

4.3.2 Combining Laser Trackers with Other 3D Imaging
Systems

Some applications may require the combined use of a laser tracker and a TLS system.
A Laser Tracker (LT) can be used to measure some features with high accuracy
and a TLS system can be used to obtain lower accuracy dense point clouds of the
surroundings. Aligning the coordinate system of the LT and the TLS system requires
pairs of corresponding 3Dpoints.We present the following threemethods to compute
a correspondence:

• The first method uses three planes which intersect into a 3D point. The LT can be
used to probe 3D points on the surfaces of each plane. It is possible to compute the
equation of each plane and compute the intersection of the three planes [66]. Using
the 3D points scanned by the TLS system, it is possible to compute the equation
of the three planes and compute their intersection. Note that the intersection of the
planes does not necessarily correspond to an actual physical structure in the scene.

• The second method uses a sphere. The LT can be used to probe points on the
surface of a sphere. From these 3D points, it is possible to compute the position of
the center of the sphere. Using the 3D points scanned by the TLS, it is also possible
to compute the center of the sphere. A specific algorithm has been developed to
compute the position of the center of a sphere using the 3D points of the surface
of the sphere generated by the TLS system [86].

• The third method uses a specifically designed target and designed probing tool
[30]. This target can be used simultaneously for photogrammetry (shape from
motion), LT and TLS. The last row of Fig. 4.5 shows the target and probing tool.

The top right image of Fig. 4.5 shows a range image where inferred 3D points are
computed based on the last two presented methods. The combined use of LT and
TLS is further discussed in Sects. 4.6.2 and 4.7.1.3.

The measurements of an LT and photogrammetry can also be combined using
a kinetic mount, half spheres, and SMRs [80]. The middle row of Fig. 4.5 shows a
half-sphere installed on a kinetic mount (left) and a SMR is installed on the same
kinetic mount (right). The center of the circle formed by the planar surface of the
half-sphere is located at the same position as the center of the SMR. The top left part
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of Fig. 4.5 contains a picture of the experimental setup used to compare close-range
photogrammetry and a LT [80]. Note the two yellow scale bars used to compute the
scale of the sparse point cloud obtained by a shape-from-motion algorithm.

4.4 Multi-channel Systems

Typically, a multi-channel LiDAR emits multiple laser beams that are contained
within a plane. Each acquisition generates a profile contained within that plane
and, by modifying the orientation or position of this plane, it is possible to gen-
erate a range image. Multi-channel LiDAR is now considered by many automobile
manufacturers as a key technology required for autonomous driving and for the
remainder of this section we will focus on imaging systems typically encountered
in autonomous driving vehicles. Two variants of this concept are presented in the
following two subsections. The first one uses physical scanning, while the second
one uses a time-multiplexing strategy to perform digital scanning. In both cases, the
distance measurement is performed using a pulse-based method.

4.4.1 Physical Scanning

A simple modification to the point-based approach is the integration into a single
scanning head of multiple point-based systems having their laser beams contained
within a plane. By scanning the head perpendicularly to this plane, it is possible to
generate a range image. This configuration limits the lateral resolution and/or field
of view along one axis, but allows a higher sampling rate than point-based systems.
This type of system is well adapted to navigation applications where the horizontal
orientation requires a larger field of view and higher resolution than the vertical
one. A typical system for navigation could generate a range image of 20000 × 16
3D points by rotating a 16-channel scanner head over 360◦. Section4.7.2 presents
results from a 16-channel scanner. Typically, the 3D information along the vertical
axis is used to verify that the proper clearance is available for the vehicle, while
the horizontal axis is used for obstacles avoidance. For some autonomous driving
applications, the desired vertical field of view is about 30◦. As shown in Fig. 4.6, a
30◦ vertical field of view allows the detection of objects on the road just in front of

Fig. 4.6 Left: a 30◦ field-of-view collision avoidance system on the top of a vehicle. Center: vehicle
just before driving uphill. Right: vehicle just before driving downhill. Figure courtesy of NRC
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Fig. 4.7 An example of forward-looking LiDARwith digital scanning. The system is composed of
arrays of three photodetectors and four lasers. This system generates a range image of four by three,
which is shown on the right. The pixel in yellow represents the 3D point that is being measured, as
illustrated on the left. For illustrative purposes, a single photodetector is active. Figure courtesy of
NRC

the autonomous vehicle and approaching hills, and it allows the monitoring of the
vertical clearance of garage entrances and other structures. For moving vehicles, the
limitation of vertical lateral resolution can be compensated by integrating multiple
range images into a single point cloud.

4.4.2 Digital Scanning

While physical scanning systems can generate 360◦ range images, the design dis-
cussed in this section is adapted for the forward-looking configuration. This simpli-
fied solid-state design is inspired by the commercial documentation by LeddarTech.4

The system is composed of a linear array of M photodetectors and a linear array of
N laser sources. The projection and collection linear arrays are mounted side by side
such that the arrays are perpendicular (see Fig. 4.7). Without loss of generality, it will
be assumed that the projection array is oriented vertically, while the detector array
is oriented horizontally. There is an optical element installed in front of the projec-
tion array that spreads the laser spots into stripes. The optical element is mounted
such that the laser stripes are perpendicular to the linear array of projectors. Each
individual laser will generate a horizontal stripe on the scene at a given elevation.
By successively firing each laser, it is possible to scan (with a discrete number of
samples) a horizontal laser line on the scene. Each laser pulse can be detected by
the M photodetectors and the range of M 3D points can be computed. This is made
possible by the installation, in front of the photodetector array, an optical element that
collects a stripe of laser light reflected from the scene. For a system that generates
horizontal laser stripes, the orientation of the collection optical element is arranged
such that the stripes of incoming light are vertical. A range image of N by M 3D

4https://leddartech.com.

https://leddartech.com
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points can be generated by projecting N laser stripes. Note that the array of N laser
stripes could be replaced by a single laser stripe whose orientation is controlled using
a Microelectromechanical Systems (MEMS).

4.5 Area-Based Systems

Area-based ToF systems typically use a single illumination source and a 2D array of
detectors that share the same collection optics. They are, to some extent, similar to
a regular camera equipped with a flash. This type of system can be based on pulse
or phase technologies. Pulse-based systems are also referred to as flash LiDAR.
The camera model for the area-based system is presented in Sect. 4.5.1. Phase-based
products are nowmass produced and distributed as accessories for popular computing
platforms. Due to the popularity of these platforms, an overview of the sensors is
presented in Sect. 4.5.2. The last type of system presented in Sect. 4.5.3 is range-
gated imaging, which is an active vision system for challenging environments that
scatter light.

4.5.1 Camera Model

The simplestmathematicalmodel that can be used to represent a camera is the pinhole
model. A pinhole camera can be assembled using a box in which a small hole (i.e.,
the aperture) is made on one side and a sheet of photosensitive paper is placed on the
opposite side. Figure4.8 is an illustration of a pinhole camera. The pinhole camera
has a very small aperture so it requires long integration times; thus, machine vision

Fig. 4.8 Cross-section of a pinhole camera. The 3D pointsQ1 andQ2 are projected into the image
plane as points q1 and q2, respectively, and d is the distance between the image plane and the
projection center. Figure courtesy of NRC
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applications use cameras with lenses which collect more light and hence require
shorter integration times. Nevertheless, for many applications, the pinhole model is
a valid approximation of a camera. The readers familiar with the camera modeling
material presented in Chaps. 2 and 3 can omit the following section.

4.5.1.1 Pinhole Camera Model

In thismathematical model, the aperture and the photosensitive surface of the pinhole
are represented by the center of projection and the image plane, respectively. The
center of projection is the origin of the camera coordinate system and the optical axis
coincides with the Z -axis of the camera. Moreover, the optical axis is perpendicular
to the image plane and the intersection of the optical axis and the image plane is
the principal point (image center). Note that when approximating a camera with
the pinhole model, the geometric distortions of the image introduced by the optical
components of an actual camera are not taken into account (see Chap.2 and [94]
for more details). A 3D point [Xc,Yc, Zc]T in the camera reference frame can be
transformed into pixel coordinates [x, y]T using

[
x
y

]
= d

Zc

[ Xc
sx
Yc
sy

]
+

[
ox
oy

]
(4.13)

where sx and sy are the dimensions of the sensor in millimeters divided by the
number of pixels along the X and Y -axis, respectively. Moreover, d is the distance
in millimeters between the aperture and the sensor chip and [ox , oy]T is the position
in pixels of the principal point (image center) in the image. The parameters sx , sy , d,
ox , and oy are the intrinsic parameters of the camera.

The extrinsic parameters of the camera must be defined in order to locate the
position and orientation of the camera in the world coordinate system. This requires
three parameters for the rotation and three parameters for the translation. The rotation
is represented using a 3 × 3 rotation matrix

Rc =
⎡

⎣
1 0 0
0 cos θx − sin θx
0 sin θx cos θx

⎤

⎦

⎡

⎣
cos θy 0 sin θy
0 1 0

− sin θy 0 cos θy

⎤

⎦

⎡

⎣
cos θz − sin θz 0
sin θz cos θz 0
0 0 1

⎤

⎦ (4.14)

where θx , θy , and θz are the rotation angles around the X ,Y , and Z axis and translation
is represented by a vector Tc = [Tx , Ty, Tz]T . Note that the rotation matrix Rc is
orthogonal (i.e., RT

c = R−1
c ) and det(Rc) = 1.

A 3D pointQw = [Xw,Yw, Zw]T in the world reference frame can be transformed
into a point Qc = [Xc,Yc, Zc]T of the camera reference frame by using

Qc = RcQw + Tc. (4.15)

http://dx.doi.org/10.1007/978-3-030-44070-1_2
http://dx.doi.org/10.1007/978-3-030-44070-1_3
http://dx.doi.org/10.1007/978-3-030-44070-1_2
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A point in the camera reference frame can be transformed to a point in the world
reference frame by using

Qw = RT
c [Qc − Tc]. (4.16)

4.5.1.2 Camera Models for Area-Based Systems

For a pulse-based system, a pixel [x, y]T with a time delay of Δt (x, y) can be
transformed into a 3D point using Eqs. 4.13, 4.16, and 4.1

⎡

⎣
Xw

Yw
Zw

⎤

⎦ = RT
c

⎡

⎣cΔt (x, y) + or (x, y)

2

⎡

⎣
sx
d (x − ox )
sy
d (y − oy)

1

⎤

⎦ − Tc

⎤

⎦ . (4.17)

where or (x, y) are an offset recovered at calibration time that compensate for a
systematic error in range. The intensity of the peaks can be used to create an intensity
image associated with the range image.

For a phase-based system, a pixel [x, y]T with a phase offset of Δ�(x, y) can be
transformed into a 3D point using Eqs. 4.13, 4.16, and 4.11

⎡

⎣
Xw

Yw
Zw

⎤

⎦ = RT
c

⎡

⎣c (Δ�(x, y) + 2kπ + or (x, y))

4π fcw

⎡

⎣
sx
d (x − ox )
sy
d (y − oy)

1

⎤

⎦ − Tc

⎤

⎦ . (4.18)

where or (x, y) is an offset recovered at calibration time and k is the unknown integer
that represents the phase ambiguity (see Sect. 4.2.2.2). The sine-wave magnitude,
Bc, allows the creation of the intensity image.

The intensity images associated with the range image can be use to calibrate the
camera [101, 110] (see Chap. 2). This allows recovery of the intrinsic and extrinsic
parameters of the camera. Once the parameters are recovered and using the pairs
of known 3D points and their image coordinates, it is possible to use Eq.4.17 or
Eq.4.18 to compute the value of the offset or . Note that the offset or could also vary
with the distance of the 3D points.

4.5.2 Phase-Based ToF for the Consumer Market

Consumer-grade products that use phase-based technology typically use a modu-
lation frequency in the range of 10–300MHz. Some major industrial players are
designing dedicated imaging sensors for ToF [12, 83]. Table4.2 contains some char-
acteristics of these sensors. These dedicated designs are made viable by the expected
large volume of production associated with consumer-grade products. Rather than
examining the actual physical implementation, wewill present the guiding principles

http://dx.doi.org/10.1007/978-3-030-44070-1_2
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Table 4.2 Table of specifications for two phase-based systems. The table is adapted from [12]. The
operating distance of the Kinect v2 is different depending on the drive used (i.e., the official drive
or the open source drive)

ToF systems

Kinect v3, rumored data Kinect v2

Number of lines 1024 512

Number of columns 1024 424

Frame rate 30 fps 30 fps

Horizontal field of view 120◦ 70◦

Vertical field of view 120◦ 60◦

Minimum operating distance 0.4m 0.8m

Maximum operating distance 4.2m 4.2m

Minimum modulation frequency 10MHz 10MHz

Maximum modulation frequency 320MHz 130MHz

Average modulation frequency 200MHz 80MHz

Wavelength 860µm 860µm

of these specialized designs. While they are multiple reasons to design a specialized
ToF sensor chip, we identify three main reasons as follows:

1. Increasing the dynamic range of the system. For most 3D active imaging systems,
increasing the dynamic range usually results in a reduction of the measurement
uncertainty. Some specialized ToF sensors achieved this by using a per-pixel gain.

2. Reducing the power consumption of the system. This can be achieved by reducing
the power requirement of the sensor chip itself or by increasing the fill factor and
quantum efficiency of the sensor, which allows a reduction of the power output of
the illumination source. This reduction is key to the integration of ToF cameras
into augmented-reality and mixed-reality helmets, which require a 3D map of the
user environment.

3. Immunizing the system from ambient lighting variation. To achieve this, some
chips acquire two images quasi-simultaneously and output the difference of both
images. The difference of two sinewaveswith the same frequency, but with a phase
offset π , is a sine wave with twice the amplitude, centered on zero (i.e., without
ambient illumination).

4.5.3 Range-Gated Imaging

Range-gated imaging is a technology typically used for night vision and challenging
environments that scatter light. Typically, it is composed of an infrared camera cou-
pled with an infrared light source. When the light source is pulsed and the exposure
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delay and integration time of the camera are controlled, it is possible to perform some
rudimentary range measurements. The integration time (typically referred to as the
gate) and exposure delay (referred to as the gate delay) can be specified such that
light emitted by the source and captured by the sensor had to be reflected by an object
located within a given range interval. One interesting aspect of range-gated imaging
is that it can be used during a snowstorm, rain, fog, or underwater to image objects
that would be difficult to image using passive 2D imaging technology. However,
the resulting images become noisier and, in these weather conditions, the power
output of the light source may need to be increased to levels that pose eye-safety
issues. One possible mitigation strategy is to use a laser at 1.55µm. At this wave-
length (known as shortwave infrared or SWIR), the light is absorbed by the eye fluids
before being focused on the retina. This tends to increase the maximum permissi-
ble exposure to the laser source. Due to possible military applications, some SWIR
imagers are regulated by stringent exportation laws. Moreover, they are expensive
as they require Indium Gallium Arsenide semiconductors (InGaAs) rather than the
more usual Complementary Metal Oxide Semiconductors (CMOS). While range-
gated imaging technology is typically used for enhancing 2D vision, it can be used
to construct a range image by acquiring multiple images with different acquisition
parameters [23, 108]. Moreover, codification techniques, similar to the one used for
structured light (see Chap.3), can also be used [57].

4.6 Characterization of ToF System Performance

A prerequisite for the characterization of ToF systems is the definition of uncertainty,
accuracy, precision, repeatability, reproducibility, and lateral resolution. None of
these terms are interchangeable. Two authoritative texts on the matter of uncertainty
and the vocabulary related to metrology are the Guide to the Expression of Uncer-
tainty inMeasurement (GUM) and the International Vocabulary ofMetrology (VIM)
[51, 54]. The document designated E2544 from the ASTM provides the definition
and description of terms for 3D imaging systems [6]. Due to space constraints, we
provide concise intuitive definitions. For formal definitions, we refer the reader to
the abovementioned authoritative texts.

Uncertainty is the expression of the statistical dispersion of the values associated
with a measured quantity. There are two types of uncertainty defined in [53]. Type
A uncertainties are obtained using statistical methods (standard deviation), while
Type B is obtained by other means than statistical analysis (a frequently encountered
example is the maximum permissible error). In metrology, a measured quantity must
be reported with an uncertainty.

For ametrologist, an accuracy is a qualitative description of themeasured quantity
(see the definition of exactitude in the VIM [54]). However, many manufacturers are
referring to quantitative values that they describe as the accuracy of their systems.
Note that often accuracy specifications provided by the manufacturer do not include
information about the test procedures used to obtain these values. For many applica-

http://dx.doi.org/10.1007/978-3-030-44070-1_3
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Fig. 4.9 The throwing of darts represents the measurement process. The position of the darts on
the far left board is precise but not accurate, on the centerboard it is both precise and the accurate,
and on the right board it is both imprecise and inaccurate. Figure courtesy of NRC

tions, the measured quantities need to be georeferenced and one may encounter the
terms relative and absolute accuracy, the latter being critical for autonomous vehi-
cle applications, for example. Relative accuracy relates to the position of something
relative to another landmark. It is how close a measured value is to a standard value
in relative terms. For example, you can give your location by referencing a known
location, such as 100kmWest of the CN Tower located in downtown Toronto. Abso-
lute accuracy relates to a fixed position that never changes, regardless of your current
location. It is identified by specific coordinates, such as latitude and longitude. Man-
ufacturers are usually referring to accuracy specifications of their system as relative
and not absolute. Relative measurement is generally better than absolute for a given
acquisition.

Intuitively, precision is howclosemultiplemeasurements are to each other. Precise
measurements are both repeatable and reproducible. You can call it repeatable if
you can get the same measurement using the same operator and instrument. It is
reproducible if you can get the same measurement using multiple operators and
instruments. Figure4.9 shows the difference between precision and accuracy with a
dartboard example. Precision is the grouping of the shots (how close they are to each
other on average), whereas accuracy is how close the darts are, on average, to the
bullseye.

Intuitively, the lateral resolution is the capability of a scanner to discriminate two
adjacent structures on the surface of a sample. The lateral resolution is limited by two
factors: structural resolution and spatial resolution. The knowledge of beam footprint
(see discussion on laser spot size in Chap.3) on the scene allows one to determine the
structural component of the lateral resolution of the system. The spatial resolution
is the smallest possible variation of the scan angle. Increasing the resolution of the
scan angle can improve the lateral resolution, as long as the spatial resolution does
not exceed structural resolution.

For the remainder of this section, we will first review the use of reference instru-
ments to compare ToF systems. This is used to introduce current standards and
guidelines. Then other related studies on the characterization of 3D imaging sys-
tem are presented. We then present methods to find inconsistencies in instrument
measurement results.

http://dx.doi.org/10.1007/978-3-030-44070-1_3
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4.6.1 Comparison to a Reference System

The performance of a 3D imaging system (instrument under test or IUT) is usually
evaluated by comparing it to the performance of a reference system to determine if the
IUT can be used to accomplish the same task as the reference system. This requires
the reference system to be considered the “gold standard” for system performance.
The objective is to validate whether, for a given task, both instruments can provide
similar measurement results. Many governments have been active in developing
standards to test the performance of TLS systems using an LT system as the reference
instrument [14, 63–65]. For small objects, obtaining 3D reference models can be
relatively simple because they can be manufactured with great accuracy or they
can easily be characterized using a Coordinate Measuring Machine (CMM) [62].
When quantitatively evaluating the performance of a large-volume TLS system, a
significant problem is how to acquire reliable 3D reference models. For example,
manufacturing a reference object the size of a building would be cost-prohibitive.
Moreover, creating a digital reference model of such an object would require the
use of a complex software pipeline to merge many 3D scans. It may be difficult to
properly characterize the impact of the software pipeline on the uncertainty of the
data points comprising the 3D model. For example, consider the study presented
in [99, 100] that compared the task-specific performance of a TLS system and a
photogrammetry system being used to create a digital model of the entrance of a
patrimonial building (10m× 10m). For the large-volume digital referencemodel, the
authors used a combination of measurements results obtained by both a total station
and a TLS system. For a smaller volume digital reference model they combined
measurement results obtained using both an LT system and a TLS system. In another
study, the authors compared the performance of a photogrammetry system with that
of a laser scanning system [18, 41]. Yet another study compared the performance of
a photogrammetry system to a manual survey for the task of generating the as-built
model of a building [31, 56]. A best practice methodology for acquiring reference
models of building-sized object is presented in [33]. The method uses a TLS system
and an LT. A study that uses a LT to evaluate close-range photogrammetry with tilt-
shift lenses is presented in [80]. The comparison of TLS andLTwith photogrammetry
is further discussed in Sect. 4.9.

4.6.2 Standards and Guidelines

There are relatively few guidelines and standards available for optical non-contact 3D
imaging systems,most ofwhich have emerged from theworld ofCMMs.The primary
organizations that develop standards for optical non-contact 3D imaging systems
are the International Organization for Standardization (ISO), American Society for
Testing and Materials (ASTM), and American Society of Mechanical Engineers
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(ASME). There is also a set of guidelines published by the Association of German
Engineers (the VDI).

ISO 10360 encompasses a group of international standards that provides methods
for the acceptance and reverification of 3D imaging systems [49]. Parts 1 through 6
apply specifically to CMMs, but a part 7 was added to include CMMs with imaging
probing systems. Parts 8, 9, and 10 apply to the broader class ofCoordinateMeasuring
System (CMS), which includes both CMMs and LT systems. A part 12 is under
development to include articulated arm systems under the CMS umbrella. All four
of these standards, however, apply only to contact 3D imaging systems. ISO 17123-9
was developed to provide a standard for in-field test procedures for TLS systems [36,
50].

VDI 2634, a set of German guidelines, is devoted to acceptance and reverification
testing of optical non-contact 3D imaging systems, but is limited to optical non-
contact 3D imaging systems that perform area scanning from a single viewpoint
[103]. Part 3 extends the test procedures to multi-view non-contact 3D imaging
systems. VDI 2634was written as an extension to ISO 10360, so it drew heavily from
CMM standards; however, 3D imaging systems utilize measurement principles that
differ substantially from those of CMMs. VDI 2617 part 6.2 makes some attempt
to bridge the gap between contact and non-contact 3D imaging systems, but still
approaches acceptance and reverification from the CMM perspective.

The ASTM E57 committee for 3D imaging systems has developed standards
specifically for TLS systems. ASTM E2611-09 is a guideline to the best practices
for safe use of 3D imaging system technology. This standard was followed by ASTM
E2544-11, which provides a set of terminology to facilitate discussion regarding 3D
imaging systems. Parallel with this effort was the development of ASTM E2807 to
provide a common and vendor-neutral way to encode and exchange LiDAR data,
although this was focused mostly on airborne LiDAR systems rather than TLS sys-
tems. The most recent standard developed by the committee is ASTM E2938-15,
which evaluates the range measurement performance of a TLS system using an LT
as the reference instrument. A proposed standardWK43218 is under development to
evaluate the volumetric measurement performance of a TLS system, building on the
method developed for the E2939-15. More details on the development of standards
can be found in [15].

4.6.3 Other Research

Outside the realm of official standards and guidelines, there have beenmany attempts
to quantify the performance of LiDAR systems. Hebert and Krotkov [2] identi-
fied a variety of issues that can affect LiDAR data quality, including mixed pixels,
range/intensity cross-talk, synchronization problems among the mirrors and range
measuring system, motion distortion, incorrect sensor geometry model, and range
drift. Mixed pixels refer to multiple return signals associated with a single outgo-
ing signal, each resulting from a different surface along the beam path, and occurs
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when the beam footprint is only partially intersected by a surface. They assessed the
accuracy of a LiDAR system from 5 trials of measuring the positions of 6 targets of
different materials (untreated cardboard, black-painted cardboard, wood) at known
distances from 6 to 16m under different lighting conditions (sunny and cloudy, with
and without lights). Range accuracy was evaluated by averaging 100 scans of each
of 6 black-painted cardboard targets at different distances from 6 to 16m. Angular
accuracy was evaluated by measuring the lateral drift of 1000 scans of white circles
with radius 12cm, which were extracted from each image using thresholding.

Tang et al. [96] focused their efforts on quantifying the effect of spatial discontinu-
ities, or edges, on LiDAR data. This is related to the mixed pixel problem discussed
by Hebert and Krotkov, but focused on the spatial measurement error that occurs
as progressively less of the surface intersects the beam footprint. Indeed, Tang et
al. referred specifically to the mixed pixel effect as a significant issue in which both
foreground and background surfaces are simultaneously imaged. Different LiDAR
systems handle multiple return signals in different ways such as reporting only the
first or the last returns, or averaging the returns. In all cases, measurements at discon-
tinuities are extremely noisy, so a challenge is to detect and remove them; however,
zero-tolerance removal can significantly degrade the quality of the resulting depth
map, especially when surfaces narrower than the beam footprint are removed as
noise. In some cases, strips of up to several centimeters wide may be removed at
spatial discontinuities.

Cheok and Stone [27], as part of the NIST’s Construction andMetrologyAutoma-
tionGroup, have conducted significant research into the problemof characterizing the
performance of LiDAR systems. In addition to their participation in the ASTM E57
standard development, they built a facility devoted to the performance assessment
and calibration of LiDAR systems. Some of this work was discussed in Sect. 4.6.2.
They noted that LiDAR performance is not simply a function of range measurement.
Rather, it is complicated by having to function in a multi-system environment that
may include equipment to determine the pose of the LiDAR system and other imag-
ing systems such as triangulation or photogrammetry that may be included in the
final model. For individual LiDAR systems, range measurement accuracy, surface
color, surface reflectivity (shiny to matt), surface finish (rough to smooth), and angle
of incidence with the systems are significant factors in assessing LiDAR system per-
formance. As impediments to assessing LiDAR performance, they identified a lack
of standard procedures for in-site test setup and equipment alignment, how to obtain
reference measurements, lack of standards related to target size or reflectivity, and
no guidelines regarding the required number of data points.

Zhu and Brilakis [111] examined different approaches to collecting spatial data
from civil infrastructure and how they are converted into digital representations. They
noted that while there were many types of optical-spatial data collection systems, no
system was ideally suited for civil infrastructure. In their study they compared sys-
tem accuracy, methods of automating spatial-data acquisition, instrument cost, and
portability. According to Teizer and Kahlmann [97], the ideal system for generating
digital models of civil infrastructure would be highly accurate, capable of updating
information in real time, be affordable, and be portable. Zhu andBrilakis tabulated the
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benefits and limitations of four classes of optical spatial imaging systems: terrestrial
photogrammetry, videogrammetry, terrestrial laser scanning, and video camera rang-
ing. They classified each according to measurement accuracy, measurement spatial
resolution, equipment cost, portability, spatial range, and whether or not data about
the infrastructure could be obtained in real time (fast and automated data collection).

4.6.4 Finding Inconsistencies in Final 3D Models

As noted in the previous section, partial or complete automation of a spatial data
collection system is the ideal; however, measurement errors often require manual
intervention to locate and remove data prior to merging the data into the final model.
Moreover, inaccuracies in the final model due to problems in the registration process
must also be located and addressed.

Salvi et al. [90] completed a review of image registration techniques in which
model accuracy was assessed as part of the process. Image registration is used to
address the physical limitation to accurately modeling a surface by most spatial
imaging systems. These limitations include occluded surfaces and the limited field
of view of typical sensor system. The registration process determines the motion and
orientation change required of one range image to fit a second range image. They
divided registration techniques into coarse and fine methods. Coarse methods can
handle noisy data and are fast. Finemethods are designed to produce themost accurate
final model possible given the quality of the data; however, they are typically slow
because they are minimizing the point-to-point or point-to-surface distance. Salvi
et al. experimentally compared a comprehensive set of registration techniques to
determine the rotation error, translation error, and Root-Mean-Square (RMS) error,
as well as computing time of both synthetic and real datasets.

Bosche [21] focused on automated CAD generation from laser scans to update
as-built dimensions. These dimensions would be used to determine whether as-built
features were in compliance with as-designed building tolerances. Even this system,
though, was only quasi-automated in that the image registration step requiredmanual
intervention. The automated part of the system used the registered laser scans to find
a best-fit match to the as-designed CAD with an 80% recognition rate. They noted
that fit accuracy could not be properly assessed because it depended on the partially
manual registration process in which a human operator was required to provide the
match points for the registration system. The system, though, assumed each CAD
object corresponded to a pre-cast structure that was already in compliance, so only
assessed whether the resulting combination of those structures was in compliance.

Anil et al. [7, 8] tackled the problem of assessing the quality of as-built Building
Information Modeling (BIM) models generated from point-cloud data. Significant
deviations between as-built and as-designed BIM models should be able to provide
information about as-built compliance to as-designed tolerance specifications, but
only if the digital model is a reasonably accurate representation of the physical struc-
ture. In their case study, they determined that the automated compliance testing iden-
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tified six times asmany compliance deviations as physical test measurementmethods
alone. Moreover, the errors were discovered more quickly, resulting in a 40% time
savings compared to physical measurement methods. The authors did, however, note
that automated methods were not as well suited to detecting scale errors. This issue
is balanced by limitations to physical measurements that include limited accuracy of
tape- and contact-based methods, limited number of measurements, and the phys-
ical measurement process is time and labor intensive. They identified the primary
sources ofmeasurement errors in scanned data as data collection errors (mixed pixels,
incidence angle, etc.), calibration errors in scanning systems, data artifacts, registra-
tion errors, and modeling errors (missing sections, incorrect geometry, location, or
orientation). They observed that these errors were, in practice, typically within the
building-design tolerance so were well suited to identifying actual deviations in the
as-built structure.

4.7 Experimental Results

In this section, we present some experimental results that illustrate some of the
applications of terrestrial and mobile LiDAR systems. The discussions about range
uncertainty and systematic error of the measurements produced by TLS is also appli-
cable to MLS.

4.7.1 Terrestrial LiDAR Systems (TLS)

First, the range uncertainty of a pulse-based TLS on different diffuse reflectance
surfaces is presented. Then, the impact of sub-surface scattering on pulse-based and
phase-based TLS is discussed. Finally, a case study of the use of pulse-based TLS
and LT is showcased.

4.7.1.1 Range Uncertainty

The performance of a Leica ScanStation 2 was verified under laboratory conditions
(ISO 1) for distances below 10m and in a monitored corridor for distances up to
40m. Figure4.10 shows two sets of curves for evaluating the noise level on a flat
surface (RMS value of the residuals after plane fitting to the data) as a function
of distance, and the diffuse reflectance of different materials [5]. Using a Munsell
cardboard reference with a diffuse reflectance of 3.5%, we get a maximum range of
20m; therefore, the measurement of dark areas is limited by distance. At a range that
varies between 1 and 90m, on a surface with diffuse reflectance that varies between
18 and 90%, the RMS noise levels vary between 1.25 and 2.25mm.
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Fig. 4.10 Left: graphical representation of the RMS values obtained after fitting a plane to the 3D
point cloud at different distances and as a function of material diffuse reflectance. Right: graphical
representation of the RMS values obtained after fitting a plane to the 3D point clouds for different
material diffuse reflectance as a function of distance. Figure courtesy of NRC

Fig. 4.11 Left: example of light penetration in marble. The paper sheet appears to be 5mm thick.
Note that green is no offset, red is 7mm positive offset, and purple is 7mm negative offset. Right:
a 15mm thick metallic plate (with four holes) in front of a marble plate. Figure courtesy of NRC

4.7.1.2 Systematic Range Error

Figure4.11 left shows the range measurement systematic error resulting from optical
penetration of a marble surface. This image was acquired in-situ, while performing
the 3D data acquisition of the Erechtheion at the Acropolis in Athens [34]. An
approximately 0.1mm thick piece of paper represents an opaque surface held flat
onto the semi-opaque marble surface. The penetration makes the marble surface
appear offset by almost 5mm from the paper. This systematic range error may be
attributed to a combination of laser penetration and unusual backscattering properties
of the laser light on this type of marble. This systematic error was observed in the
field using a pulse-based TLS and a phase-based TLS. While both scanners register
a systematic error, the magnitude varies depending on the technology used and the
type of marble.

Figure4.11 right shows an experiment conducted under laboratory conditions
(ISO 1) that validates this in-situ observation. A 15mm thick well-characterized
metallic plate is installed in front of a polished marble plate. When analyzing scans
from a TLS, the metallic plate appears 8.4mm thicker. Again, this systematic error
was observed using a pulse-based TLS and a phase-based TLS and the magnitude
of the error varies depending on the technology used.
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Fig. 4.12 Facade of a building facing south, Top: color from the onboard laser scanner 2D camera
mapped onto the final 3D point cloud. Bottom: shaded view of the 3D point cloud. The polygonal
mesh was created without using a hole-filling algorithm, using Polyworks IMMerge (no scale
provided on this drawing). Figure courtesy of NRC

4.7.1.3 A Case Study in Combining TLS and LT

This section presents a dataset containing a reference model composed of a 3D point
cloud of the exterior walls and courtyards of a 130m × 55m × 20m building that
was acquired using the methodology proposed in [33]. This building is located at
100 Sussex Drive in Ottawa and was built from 1930 to 1932 to host the National
Research Council Canada. The building is made of large sandstone and granite and
it is designated as a classified federal heritage building under the Treasury Board
heritage buildings policy of the Government of Canada (see Fig. 4.12). The two
courtyards require special attention because they had to be attached to the 3D images
of the exterior walls. Multiple scan positions were required and Fig. 4.14 illustrates
the different range images that were acquired. The range images, once acquired,
were aligned in a reference system linked to the measurement results from the laser
tracker. This was possible by the combined use of TLS, LT, and spherical reference
objects. The spherical objectwas used to combine theTLS andLT coordinate systems
(see Sect. 4.3.2). Some contrast targets were used for quality control purposes (see
Fig. 4.13). Polyworks IMAlign, IMInspect, and IMMerge5 were used together to
perform most of the work.

Due to the combined use of both measurement instruments, it was possible to
quantitatively evaluate the quality of the alignment of the different range images
produces at different scanning positions. The final model has 47 million polygons
and can be characterized by an expanded uncertainty (Type B) U(k=3) of 33.63mm
[33]. Locally, the RMS on the surface is about 2.36mm (1σ ) and the average spatial
resolution is about 20mm (between 10 and 30mm).

5www.innovmetric.com.

www.innovmetric.com
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Fig. 4.13 View of the south facade. The contrast target positions are extractedwith the laser scanner
interface software Cyclone 2.0. The results are embedded in IMInspect and mapped onto the final
3D point cloud (top). Bottom: close-up of the coordinates of some contrast targets on the west side
of the south facade (no scale provided on this drawing). Figure courtesy of NRC

Fig. 4.14 Top view of the 3D point cloud after alignment of the different acquisitions for the
courtyards and exterior of the building, one color per range image (Polyworks IMAlign, no scale
provided on this drawing). Figure courtesy of NRC
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Fig. 4.15 Snapshot of an area using a camera (left) and a view of the same area using VLP-16
LiDAR (right). Note the stop sign, the street sign and the street light pole contained in the red,
purple, and yellow rectangles, respectively. Figure courtesy of NRC

4.7.2 Mobile LiDAR Systems (MLS)

Some LiDARs installed on mobile platforms are used for acquiring high-resolution
mappings of urban environments, while others are used for the vehicular navigational
purposes. In the remainder of this section, 3D scans obtained using a 16-channel
LiDAR system installed on top of an automobile are presented. The results shown
in this section target navigation applications.

4.7.2.1 Static Scan

In Fig. 4.15, a 360◦ range image and an image from a front-facing camera are pre-
sented. These were obtained while the automobile was parked. Generally, standard
2D cameras must deal with lighting variation and shadows. This is a significant
disadvantage. However, LiDAR can provide a 3D representation of the surround-
ing environment largely independently of ambient light. Another example of a 360◦
scan is presented in Fig. 4.16. The accompanying image was generated using the
panoramic feature on a smart phone.

4.7.2.2 Simultaneous Localization and Mapping (SLAM)

A typical robot integrated with a SLAM system will build a model of the surround-
ing environment and estimate its trajectory simultaneously. SLAM systems rely on
several key algorithms, like feature extraction, registration, and loop closure detec-
tion. SLAM is a central challenge in mobile robotics and SLAM solutions enable
autonomous navigation through large, unknown, and unstructured environments. In
recent years, SLAM became an important research topic that has been investigated
heavily [9]. In autonomous vehicle and mobile robotics applications, both cameras
and the LiDAR can be used for localization [95]. As stated above, LiDAR has the
advantage of being largely independent of external lighting andmaking use of the full
3D representation. Figure4.17 shows the result of a map of the environment made
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Fig. 4.16 Top: a panoramic picture taken by a smartphone. Bottom: 3Ddata collected by aVelodyne
VLP-16 LiDAR from the same location. Figure courtesy of NRC

Fig. 4.17 3D Map of the Collip Circle road located in London (Canada) generated using a SLAM
algorithm. The trajectory of the vehicle is shown using a dotted line. This result was obtained using
the system presented in [45]. Figure courtesy of NRC
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using the Velodyne VLP-16 LiDAR previously used. Note that the SLAM method
that produced this result exploited the 360◦ field of view of the VLP-16 LiDAR and
the availability of odometry data.

4.8 Sensor Fusion and Navigation

Sensor fusion is the process of integrating data from different sensors in order to
construct a more accurate representation of the environment than otherwise would
be obtained using any of the independent sensors alone. In recent years, significant
progress has been made in the development of autonomous vehicles and Advanced
Driver-Assistance Systems (ADAS). LiDAR is an important sensor that made possi-
ble such progress. Nevertheless, LiDAR data must be fused with other sensor’s data
in order to improve the situational awareness and the overall reliability and security
of autonomous vehicles.

4.8.1 Sensors for Mobile Applications

For autonomous driving, ADAS and navigation applications, the sensorsmay include
stereo cameras, cameras, radar, sonar, LiDAR,GPS, InertiaNavigationSystem (INS),
and so on. Radar is one of the most reliable sensors. It can operate through various
conditions such as fog, snow, rain, and dust when most optical sensors fail. However,
radar has a limited lateral resolution. Cameras are cheap and have high resolution, but
are affected by ambient illumination. Stereo cameras are cheap, but can be compu-
tationally expensive and do not cope well with low-texture areas. Sonar is useful for
parking assistance, but has a limited range. The main disadvantage of sensor fusion
is that different sensors can have incompatible perceptions of the environment; for
example, some may detect an obstacle, while others may not.

In autonomous systems and ADAS, all sensor data is fed into the Data Acqui-
sition System (DAQ). The gathering of the data by the DAQ can also be used for
testing, developing, improving efficiency, ensuring reliability, and safety. Figure4.18
explains the collaboration of the main sensors in an autonomous or ADAS applica-
tion. The sensor fusion process starts by using information provided by GPS, INS,
and odometery in order to determine the absolute position and orientation of the
vehicle. Then sensor information from cameras and LiDARs is compared to known
maps that are downloaded from the cloud (Web Security Services).
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Fig. 4.18 Data acquisition is a sampling process that measures real-world physical conditions and
converts the resulting samples into a digital representation recorded on the Data Acquisition System
(DAQ). In automotive applications, the data from the different sensors are typically transferred on
a data bus known as a Controller Area Network (CAN) or CAN bus. Figure courtesy of NRC

4.8.2 Cloud-Based, High-Definition Map

The cloud-based information is typically referred to as a High-Definition (HD) map
and it allows adaptation of the driving to potential obstacles, including traffic, in
order to avoid potential accidents. An HD map consists of geo-spatial coordinates
of the static elements that describe roadway features such as lane markings, traffic
signs, landmarks, road-edges, and so on. In order to construct these maps, special
mapping vehicles are augmented with a number of high-accuracy sensors [91]. This
allows the determination of a geo-spatial representation of the roadways that can
be used by autonomous vehicles or ADAS that uses cheaper sensors. However, this
HD-map approach creates significant data storage, computation, data delivery, and
cyber-security issues that fall outside the scope of this chapter.

4.8.3 Absolute Positioning Systems

The Global Positioning System is not as accurate as a Global Navigation Satellite
System/Inertia Navigation System (GNSS/INS), which is heavily used in various
autonomous applications. A GNSS receiver provides accurate position and time to
the navigation system. When the GNSS signal deteriorates, the INS sensor provides
the position and navigation until the GNSS conditions improve. A GNSS/INS is
expensive and, for some applications, GPS is the only economically viable geo-
location solution. To reach a high-accuracy potential, LiDAR systems must be well
calibrated and equippedwith a high-endGNSS/INSnavigation unit.A typical LiDAR
sensor range accuracy is 1–5cm, the GPS accuracy is 2–5cm, INS accuracy for
pitch/roll is 0.005◦, and for heading is 0.008◦ with the laser beam divergence being
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0.25–5mrad. Note that some systematic errors may be due to misalignment of the
laser with respect to the vehicle roll, pitch and yaw axes, or a measurement error of
the relative position of the GPS antenna with respect to the INS reference system.

4.9 ToF Versus Photogrammetry

As seen in the Fig. 4.1, active triangulation systems and ToF systems operate over
different ranges. The limitation of the range for triangulation systems is induced by
the practical limitation on the physical size of the system. There are many passive
triangulationmethods that simultaneously compute 3D structure and camera position
(see Chap.2). These methods are known as stereo or structure-from-motion in the
computer vision community or simply as photogrammetry in the photogrammetry
community. Typically, photogrammetry requires smaller power consumption during
the acquisition. The equipment is generally less expensive and smaller. However,
the processing of the images is significantly more computationally intensive than
ToF. In recent years, the increase in performance of computing platforms combined
with algorithm development has made passive triangulation methods an attractive
alternative to active ToF for some application fields. For the remainder of this section,
we present three application fields where both technologies coexist (see Fig. 4.1).

4.9.1 TLS Versus Architectural Photogrammetry

Architectural Photogrammetry is typically aimed at the 3D reconstruction of pat-
rimonial buildings or parts of buildings. Many studies have compared the perfor-
mance of a photogrammetry system with that of ToF systems [18, 41, 99, 100].
Figure4.19 shows results of a comparison between photogrammetry and a reference
model produced by combining the measurements obtained using both TLS system
and LT. The left image shows a result obtained in 2008, while the right one contains
a result obtained in 2014. The same TLS and LT were used in both experiences, the
reconstruction software, the cameras, and acquisition methodologies were different,
reflecting the advances in the field. Both experiments were conducted in controlled
laboratory conditions (ISO 1) at NRC Canada. The 2014 result was published in a
study [99, 100].

4.9.2 LiDAR Versus Aerial Photogrammetry

Aerial photogrammetry and aerial LiDARare two technologies used to produceDigi-
tal ElevationModels (DEMs). Low-cost Unmanned Aerial Vehicles (UAV) equipped
with high-resolution cameras are now available. These systems allow low-altitude

http://dx.doi.org/10.1007/978-3-030-44070-1_2
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Fig. 4.19 Comparison between photogrammetry and a referencemodel produced by combining the
measurements obtained using both a TLS system and a LT. The left image shown a result obtained
in 2008, while the right one contains a result obtained in 2014. Figure courtesy of NRC

photogrammetric survey. Using structure-from-motion at low altitude reduces the
uncertainty associated with triangulation. For some applications, the use of UAVs
can replace aerial photogrammetry, aerial LiDAR and, in some cases, TLS. UAV
photogrammetry is a relatively recent and it faces technological, regulation, and
methodology challenges [87].

4.9.3 LT Versus Industrial Photogrammetry

Industrial photogrammetric systems are composed of two or more cameras. The
relative position and orientation between the cameras are known and the software
extracts the position in the images of photogrammetricmarkers. Themarker positions
are used to triangulate 3Dpoints. Photogrammetricmarkers are typically dotsmadeof
retroreflectormaterial. They are either installed at known positions or they are printed
on stickers that are put on the scene at unknownpositions. Industrial photogrammetric
systems are also known as optically tracked CMMs [16]. Industrial photogrammetry
and conventional photogrammetry can replace a laser tracker up to a few meters
for some applications [37, 69, 73, 81]. Industrial photogrammetry can compute the
position of multiple markers at the same time and can be significantly cheaper than a
laser tracker. The laser trackers can operate at greater ranges, they have a larger field
of view and the measurements they provide are traceable [77]. A study that uses an
LT to evaluate close-range photogrammetry with tilt-shift lenses is presented in [80].
The experimental setup for this study is shown in Fig. 4.5.
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4.10 Research Challenges

The combination of modern imagery technologies, including 3D imaging, and
machine learning is a very active topic for both academic and applied industrial
researchers. In recent years, researchers have contributed to progress in application
fields as diverse as agriculture, aerospace, archaeology, construction, manufacturing,
aeronautic, automotive, medical technology, and security.

Currently, researchers, engineers, and entrepreneurs are researching newmethods
and technologies to improve packaging and performance, and to reduce production
costs of ToF systems intended for automotive applications. The MEMS LiDAR
is in an early stage of development as a low-cost LiDAR solution for automotive
applications. The Solid-state Hybrid LiDAR (SH LiDAR) was introduced in 2005
as a result of the DARPA Robotic Car Races and simplified the design of 16-and-
more-channel systems. The technology has been tested for autonomous safety over
the years and the cost of multi-channel LiDAR dropped dramatically in 2015. With
planned mass production to meet the growing demand for autonomous navigation
and advanced safety, further dramatic cost reduction is expected. This should further
increase industrial adoption and create new research opportunities in the development
of low-cost autonomous vehicles.

Conventional LiDAR, can only provide indirect velocity data; it rapidly beams
individual pulses of coherent light, producing frames milliseconds apart that can be
used to estimate speed. The development of LiDAR systems that can simultaneously
compute range and velocity is a challenging and active industrial research topic that
could have a profound impact in the automotive industry.

As seen in Sect. 4.9, with the increase in computation power and improvement
of machine learning algorithms, some problems that were mainly addressed using
active 3D imaging systems can now be tackled with passive imaging systems or
hybrid (active and passive). The development of reliable hybrid and passive systems
are challenging research topics that could also lead to significant cost reduction for
autonomous vehicles. The evaluation of the performance and safety of autonomous
vehicles remains a major research challenge.

Finally, the field of robot vision guidance is developing rapidly. The benefits of
sophisticated vision technology include savings, improved quality, reliability, safety,
and productivity. The use of cheap, safe, and reliable mobile robots with vision
systems could lead to major changes in the organization of warehouses and factories.
The impact of such changes needs to be investigated.

4.11 Concluding Remarks

Time-of-flight technology is relatively new compared to more established measure-
ment systems but the advantages that this technology offers cannot be ignored.
Already, ToF systems have entered our living room through gaming consoles and are
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Fig. 4.20 The different sources of uncertainty affecting the measurements made by a 3D imaging
system. Figure courtesy of NRC

now being integrated into high-end cellphones. LiDAR is viewed as an important
technology that paves the way for self-driving cars. TLS and LT are regularly used
in medium and large-scale civil engineering projects. Recognized standards for TLS
and LT are now available and traceable measurements can be made in compliance
with these standards.

Publicly available literature on active 3D imaging systems sometimes heavily
focuses on the measurement instruments (i.e., the hardware means). The instrument
is an important element that contributes to the uncertainty of a measurement. Never-
theless, they are many other uncertainty sources that an operator needs to be familiar
with. Figure4.20 shows other sources that affect the uncertainty associated with a
measurement. The impact of ambient conditions was briefly discussed toward the
end of Sect. 4.1.3. Some of the issues related tomateriel properties of the object being
measured were presented in Sect. 4.7. The software used to process the data also has
an influence on the uncertainty of the measurements. Finally, two important sources
of uncertainty that are often neglected are related to the people and the methodology
that they used to operate the instrument and manipulate the data.
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4.12 Further Reading

Due to space limitations, many topics related to time-of-flight technologies could
not be covered in this chapter. In this section, we provide the reader with references
to resources for exploring some of these topics.

Two aspects that were not discussed are the photonics and semiconductor chal-
lenges that include high-frequency laser pulsing, high-accuracy time measurement,
and numerous other important implementation details. A good starting point for
someone interested in the implementation of time-of-flight technologies is [88].

The exploitation of point clouds acquired fromairborne and space-basedplatforms
is an important topic for the remote sensing community [13]. The specificity of
airborne and space-based LiDAR was not discussed in this chapter and we refer
the reader to [10, 26, 32] for more information about remote sensing application of
LiDAR. The use of space-based LiDAR for space operations is investigated in [28,
82, 102].

The development of autonomous vehicles is currently a popular academic and
industrial research field. The current trend is to use multiple sensors some of which
are 2D in nature while others are 3D. A survey of advanced driver-assistance system
technologies that focuses on sensor fusion can be found in [112]. A survey of sensing
technologies for autonomous vehicles is presented in [48]. The detection of traffic
signs is discussed in [47, 71]. More details about the HD-map for autonomous vehi-
cles can be found in [91] and a survey of vision-based vehicle detection is presented
in [93]. More details about the use of Global Navigation Satellite System and Inertia
Navigation System (GNSS/INS) can be found in [43, 85].
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4.13 Questions

1. Explain the difference between a pulse-based and a phase-based ToF?
2. What is the impact of multiple return signals for phase-based systems?
3. What type of applications would be better adapted to the use of a pulse-based

system rather than a phase-based system?
4. How would you design an outfit for a human that would make a human invisible

to a multi-channel scanner or that would induce a significant systematic range
error?

5. A point-based scanner is acquiring a range image of amoving sphere. For different
possible trajectories of the spherewith respect to the scanner, what type of artifacts
are expected to be part of the point cloud?

6. Select an application that requires the use of a 3D imaging system. For that
application what would be the advantages and disadvantages of using a passive
triangulation system, an active triangulation system, and a ToF system?
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7. You are given the mandate to scan in 3D the facade of a historic building. The
resulting 3D model will be used to warp videos that will be projected on the
building facade during a multimedia show. Explain your acquisition plan for this
mandate and give a list of equipment and software that you would use.

4.14 Exercises

1. Transform a commercially available laser range finder into a TLS by developing
your own scanning mechanisms (see [107] for a possible implementation).

2. For some applications that use a pulse-based system, the closest object in the
scene can be far from the sensor. For these applications, a minimum range Rmin

can be defined. What is the fastest pulsing frequency f p given Rmin and Rmax? In
this case, does a detected pulse correspond to the last pulse emitted?

3. A pedestrian is located at 20m in front of a pulse-based multi-channel LiDAR
that acquires 55 3D points per degree and has a laser with beam divergence of
0.25mrad. How many 3D points in the range image profile will belong to the
pedestrian?

4. Given a point cloud generated by a multi-channel LiDAR, where each 3D point
has a unique time stamp and assuming a single 3D measurement per laser pulse,
develop an algorithm to reconstruct the range image from the point cloud.

5. Modify the previous algorithm for the case where the resolution of the time stamp
is not sufficient for differentiating every 3D point and assume that some pulses
may not have a return signal.

6. Compute the maximum operating distance of the systems listed in Table4.2 using
their minimummodulation frequencies and compare the value with the maximum
operating distance given in the table.

7. Using the maximum and minimum modulation frequencies in Table4.2, develop
a multi-frequency phase disambiguation method for phase-based ToF, similar to
the one presented in Sect. 4.2.2.2, that would be compatible with the average
modulation frequency given in Table4.2.

8. Assuming an area-based system with a light source located at distance D to the
left of the detector and having a range uncertainty of σ , what is the range R of
an object in front of the system for which the difference of the length of the light
path from the source to the object and the object to the sensor is non-negligible?
Compute a correction coefficient to be added to Eq.4.17 that would compensate
for this effect.

9. Replace the linear array of photodetectors of the system described in Sect. 4.4.2
by a bidirectional array of photodetectors such that the resulting system is able
to compute range by using ToF and triangulation. Increase the pulse rate of the
system such that Eq. 4.2 is no longer fulfilled and develop a method that uses the
triangulation to pair the outgoing and incoming pulses.

10. At the time of publication, RoboSense and LeddarTech are advertising solid-
state LiDAR technologies targeted at the automobile market. Using the marketing
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material available from each company, compare both technologies and highlight
the similarities and differences.

11. Make a list of the different error sources for a modeling project similar to the one
presented in Sect. 4.7.1.3 and classify them according to the categories listed in
Fig. 4.20. Provide mitigation strategies for the error sources identified.
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Chapter 5
Consumer-Grade RGB-D Cameras

Marc-Antoine Drouin and Lama Seoud

Abstract Anew family of affordable active 3D imaging systems referred to as range
cameras or RGB-D cameras has emerged in the last decade. These systems operate
in the range of 0.4–10m and are targeted directly at cost-sensitive consumers. They
are typically specialized for capturing dynamic human activities and are designed
to interfere only minimally with such activities. They use infrared-light sources and
produce a continuous stream of 3D data at video frame rate. This chapter provides
an overview of the three measurement principles that are behind most of today’s
commercial RGB-Dcameras, namely, active stereo vision, structured-light, and time-
of-flight. Examples of range images acquired using different RGB-D cameras are
provided to support the comparison. Advanced material regarding range uncertainty
and lateral resolution is also provided to identify the limitations of various RGB-D
cameras currently available on the market.

5.1 Introduction

In recent years, affordable 3D active imaging systems have been introduced into the
market. These vision systems capture and record a digital representation of geome-
try and appearance (e.g., color texture) information of visible 3D surfaces. Usually,
they are not marketed to service providers or manufacturers of goods; they are mar-
keted directly to consumers or embedded in products that are targeting the consumer
market. These active 3D imaging systems are usually referred to as a range camera
or RGB-D camera. RGB-D cameras are typically specialized for capturing human
activities and have many characteristics that are not encountered in industrial 3D
imaging systems. Usually, they are operated by untrained personnel who will use
the device only if it brings instant gratification. This makes the user’s experience
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dominate all other technical requirements and has a profound impact on the design
of these systems (latency, calibration, performance, and data processing). RGB-D
cameras are mainly focused toward dynamic human activities and are designed to
minimally interfere with such activities. They use infrared-light sources and pro-
duce a continuous stream of 3D data at video frame rate. The intended application,
eye safety, the price of components, and production cost are the limiting factors
for the performances of these systems. Some systems are based on triangulation,
while others are based on Time-of-Flight (ToF). Note that two products from the
same company having a similar designation can be based on different measurement
principles.

The power output of the laser used in RGB-D cameras is typically selected such
that the device is class 1 in terms of eye safety. Such devices are safe under all condi-
tions during the normal use (including when using typical magnifying optics). More
details about the classification of lasers can be found in [1]. However, many exercises
in this chapter propose to build systems similar to commercially available RGB-D
cameras that will probably notmeet the safety requirements for class 1 devices.When
working with coherent light sources (lasers), eye safety is of paramount importance
and one should never operate laser-based 3D imaging sensors without appropriate
eye-safety training. For an operator using any laser, an important safety parameter
is the Maximum Permissible Exposure (MPE) which is defined as the level of laser
radiation to which a person may be exposed without hazardous effect or adverse
biological changes in the eye or skin [1]. The MPE varies with wavelength and oper-
ating conditions of a system. We do not have space to discuss eye safety extensively
here and refer the reader to the American National Standard for Safe use of Lasers
[1]. Note that high power low coherence (and non-coherent) light sources can also
pose eye safety issues [9].

5.1.1 Learning Objectives

After reading this chapter, the reader should have acquired knowledge of the oper-
ation of the different types of RGB-D cameras and should be able to assemble 3D
imaging systems that are similar to some consumer-grade RGB-D cameras using
commercially available components. This knowledge should also help in selecting
which type of RGB-D camera best fits an application’s needs. In this chapter, we
present the scans of an object obtained using commercially available or legacy RGB-
D cameras. The resulting images are provided for illustrating the working principles
of the different types of RGB-D cameras. These results should not be used to assert
the performance of the devices. Toward the end of this chapter, different studies that
evaluate the performance of RGB-D cameras are discussed.We discourage the reader
from comparing numerical values taken from different studies, as experimental pro-
tocol may vary between studies.
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5.1.2 Historical Context

The entertainment industry has used active 3D imaging systems for years. The use
was first limited to acquire digital representations of sites, professional actors, and
athletes in order to add realistic synthetic imagery into movies and video games. The
progressive addition of motion sensitive interface to gaming platforms and the desire
to personalize the gaming experience led to the development of consumer-grade
RGB-D cameras, targeted at a large demography of cost-sensitive consumers. Shortly
after the release of a consumer-grade structured-light scanner, known as Microsoft’s
Kinect, a community of hobbyists, electrical and software engineers started reverse-
engineering the device [36]. The scientific community began exploring the capability
of the device in various applications and a significant body of scientific literature has
been produced yearly since then. Figure5.1 illustrates the number of publications
with reference to Microsoft Kinect and RGB-D cameras for the year 2010–2018.
Since the introduction of the first Kinect, other systems from Intel, Asus, Orbbec,
and Occipital were introduced to the market. Moreover, the second and the third
generation of Kinect sensor based on ToF were developed.

The information technology industry has members whose business models are
built around the consumption of multimedia contents by large communities of users.
These software and hardware giants have invested considerable resources in the
development of headsets, or other devices, that allow augmented, virtual, and mixed
reality. Some of these devices need to acquire a 3D representation of their envi-
ronment in order to operate properly. While the development of these devices at an
affordable retail price is challenging, the production of appealing content to a large
community is also problematic. Part of this content is expected to be produced by
the entertainment industry, while another part is produced by the community itself
using consumer-grade RGB-D cameras. At the time of writing, RGB-D cameras that
use ToF are viewed as an important new feature for smartphones, and manufactur-
ers such as LG, Samsung, Huawei, Honor, and Oppo offer products with RGB-D
cameras. While Apple had initially included a structured-light sensor in its flagship

Fig. 5.1 Number of publications that mention Microsoft’s Kinect (left) and RGB-D cameras in
general (right) for the years 2010–2018. The results were generated using Google Scholar. A similar
figure produced using the number of publications calculated from Scopus is presented in [111].
Figure courtesy of NRC
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smartphone, its newest products now include a ToF sensor. These integrated RGB-D
cameras are mostly targeting selfie types of application and face-unlock technology.

5.1.3 Basic Measurement Principles

One classification of optical distance measurement uses the illumination method to
divide the imaging systems into three categories. Some measurement systems are
point-based and scan the illumination source along two axes in order to acquire a
range image.Other systems are profile-based and scan the illumination source along a
single axis. Finally, some systems are area-based and they simultaneously illuminate
the entire scene. Most, if not all, RGB-D cameras can be classified as area-based 3D
imaging systems.

RGB-D cameras use either triangulation or Time-of-Flight (ToF) approaches.
Triangulation approaches consist of finding light rays intersections in the 3D space.
Two categories of triangulation-based sensing approaches exist: passive triangula-
tion and active triangulation. Consumer-grade passive systems generally require two
calibrated cameras and are thus referred to as stereo vision systems.

In stereo vision systems, the first step consists of finding point correspondences
between the two camera views. Then, to retrieve the 3D position of the point that
gave rise to a pair of matching points, the intersection of the two light rays passing
through the point correspondences is computed. However, finding stereo matching
points usually fails in low texture areas of the scene, resulting in dropouts [60]. One
method for removing these dropouts is to artificially add texture to the scene using
a light projector. This method is thus called active stereo vision or projected texture
stereo vision.

In active triangulation systems, the second camera is replaced by a calibrated light
projector. The term active refers to the fact that the scene is altered by projecting
a specific light pattern onto it. Active systems are referred to as structured-light
systems. In structured-light systems, the correspondences between the camera and
the projector are implicitly encoded in the light pattern, either temporally or spatially,
which simplifies the depth computation compared to the stereo vision approach. In
temporal coding, patterns are projected one after the other and an image is captured
for each pattern. In contrast, spatial coding techniques project just a single pattern,
and the pattern within a local neighborhood is used to perform the matching.

Finally, a time-of-flight system computes the distance from the round-trip time
required by light to reach the surface to be digitized and be reflected back to the
system. This time delay may be estimated directly using a high-resolution clock
to measure the time between outgoing and incoming pulses (pulse-based ToF), or
indirectly by measuring the phase shift of an amplitude-modulated optical signal
(phase-based ToF). For the remainder of this chapter, the discussions on ToF systems
will focus on the phase-based system as the Kinect II and Azure devices are phase-
based. The reader is referred to Chap.4 for more details on pulse-based systems.

http://dx.doi.org/10.1007/978-3-030-44070-1_4
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Fig. 5.2 Typical accuracy at different operating distances for the most common active 3D imaging
technologies. Figure courtesy of NRC

Figure5.2 summarizes the typical accuracy of each type of industrial active 3D
imaging system technology found on the market as a function of the operating dis-
tance. Note that the operational range of RGB-D cameras falls within the end of
the object-size range of triangulation system, but with a significant higher range
uncertainty. This allows the design of RGB-D cameras based on triangulation using
significantly cheaper components than industrial inspection systems based on trian-
gulation. Table5.1 presents a classification of the different commercially available
or legacy RGB-D cameras.

5.1.4 Basic Design Considerations

In this section, we present the basic geometric constraints that influence the physical
layout of components within RGB-D cameras. Other criteria such as the mechan-
ical considerations, heat dissipation, and application constraints are not covered in
this section. Figure5.4 shows three popular designs of RGB-D cameras that can be
found on the market. In all cases, RGB-D cameras are composed of a range sub-
system working in the Near-Infrared (NIR) and a color camera used to add texture
information to the 3D data. Typically, RGB-D cameras are designed such that the
distance between the texture or RGB camera and the NIR camera used by the range
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Table 5.1 Classification of some RGB-D cameras available on the market in four categories based
on their measurement principle. Some of these RGB-D cameras are shown in Fig. 5.3. Figure
courtesy of NRC

Measurement principle Examples of commercial RGB-D sensors

Active stereo vision Intel RealSense R200

Intel RealSense D400 series

Orbbec Astra Stereo

Occipital Structure Core

Structured-light (temporal encoding) Intel RealSense F200

Intel RealSense SR300

Intel RealSense SR305

Structured-light (spatial encoding) Microsoft Kinect I

Asus XTion 2

Orbbec Astra

Occipital Structure

3D systems iSense

Time-of-flight Microsoft Kinect II

Microsoft Kinect Azure

Intel RealSense L515

subsystem is as small as possible. This helps in reducing the amount of occlusion.
Occlusion occurs when part of the scene is viewed by one camera but not by the other
one. The problematic case is when the measurement camera views part of the scene
that is not viewed by the color camera. In this situation, part of the recovered geome-
try cannot be textured. Some designs may also include microphone, accelerometers,
gyroscopes, motor that controls the pan/tilt of the unit and other accessories not
directly related to the generation of the textured range image. Figure5.3 shows the
RGB-D cameras discussed in this chapter.

Figure5.4 shows on the left a schematized active stereo vision system. Typically,
the projector is centered between the two NIR cameras used for stereo matching.
The measurement uncertainty is directly related to the size of the baseline which is
the distance between the two NIR cameras. For this reason, engineers have a strong
incentive to position the measuring cameras at the extremity of the device in order
to maximize the baseline.

On the right side of Fig. 5.4, a structured-light based RGB-D camera is schema-
tized. Structured-light systems can use many coding strategies to establish the corre-
spondence between the camera’s pixels and the projector’s pixels. The twomain cate-
gories of coding are spatial coding and temporal coding.Both codification approaches
are encountered in commercially availableRGB-Dcameras. Themeasurement uncer-
tainty is directly related to the size of the baseline which is the distance between the
measurement camera and the light projector. Again, there is a strong incentive to
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Fig. 5.3 Some of the RGB-D cameras discussed in this chapter. Top-left: Intel RealSense D430
which is based on active stereo. Top-right: Intel RealSense SR300 which is based on time-
multiplexed structured-light Bottom-left: Microsoft Kinect I which is based on spatially encoded
structured-light. Bottom-right: Microsoft Kinect Azure based on ToF. Figure courtesy of NRC

Fig. 5.4 Generic designs of RGB-D cameras. Left: an active stereo RGB-D camera composed of
two measurement cameras, an RGB texture camera, and a light projector. Center: a time-of-flight
RGB-D camera composed of an illumination projector, a specialized measurement camera, and an
RGB texture camera. Right: a structured-light RGB-D camera composed of a measurement camera,
a projector, and an RGB texture camera. The same design could be used for temporal and spatial
encoding. Figure courtesy of NRC

position the measuring camera and the projector at the extremity of the device in
order to maximize the baseline.

In the center of Fig. 5.4, a time-of-flight design is shown. ToF-based RGB-D cam-
eras are composed of an illumination projector (or illumination source) and a mea-
surement camera. While triangulation-based measurement cameras are monochro-
matic cameras optimized for NIR vision, ToF-based systems use specialized sensors
(see [5] for some examples). Contrary to triangulation-based RGB-D systems, the
performance of ToF-based systems is not affected by their physical dimensions [39].
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In order to minimize the occlusions and parallax effect between the illumination
projector and the measurement camera, it is useful to minimize the physical distance
between both components. This allows the development of small footprint range sen-
sors that can be integrated into consumer-grade products, such as augmented reality
headsets or smartphones.

5.1.5 Chapter Outline

The core sections in this chapter cover the following material:

• Camera and projector models.
• Active stereo vision RGB-D cameras.
• Structured-light RGB-D cameras.
• Phase-based time-of-flight RGB-D cameras.
• Texture mapping.
• Range uncertainty and lateral resolution.
• System characterization and calibration.

Toward the end of the chapter, we present the main challenges for future research,
concluding remarks, and suggestions for further reading. Finally, a set of questions
and exercises are presented in order to consolidate the understanding of RGB-D
cameras.

5.2 Camera and Projector Models

The simplestmathematicalmodel that can be used to represent a camera is the pinhole
model. A pinhole camera can be assembled using a box in which a small hole (i.e.,
the aperture) is made on one side and a sheet of photosensitive paper is placed on the
opposite side. Figure5.5 is an illustration of a pinhole camera. The pinhole camera
has a very small aperture so it requires long integration times; thus, machine vision
applications use cameras with lenses that collect more light and hence require shorter
integration times. Nevertheless, for many applications, the pinhole model is a valid
approximation of a camera. The readers that are familiar with the pinhole model
material presented in Chap. 2–4 can omit Sect. 5.2.1.

5.2.1 Pinhole Model

In thismathematical model, the aperture and the photosensitive surface of the pinhole
are represented, respectively, by the center of projection and the image plane. The
center of projection is the origin of the camera coordinate system and the optical axis

http://dx.doi.org/10.1007/978-3-030-44070-1_2
http://dx.doi.org/10.1007/978-3-030-44070-1_4
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Fig. 5.5 Cross section of a pinhole camera. The 3D pointsQ1 andQ2 are projected into the image
plane as points q1 and q2, respectively, and d is the distance between the image plane and the
projection center. Figure courtesy of NRC

coincides with the Z -axis of the camera. Moreover, the optical axis is perpendicular
to the image plane and the intersection of the optical axis and the image plane is
the principal point (image center). Note that when approximating a camera with
the pinhole model, the geometric distortions of the image introduced by the optical
components of an actual camera are not taken into account (see Chap. 2 and [101]
for more details). A 3D point [Xc,Yc, Zc]T in the camera reference frame can be
transformed into pixel coordinates [x, y]T using

[
x
y

]
= d

Zc

[ Xc
sx
Yc
sy

]
+

[
ox
oy

]
(5.1)

where sx and sy are the dimensions of the sensor in millimeters divided by the
number of pixels along the X and Y -axis, respectively. Moreover, d is the distance
in millimeters between the aperture and the sensor chip and [ox , oy]T is the position
in pixels of the principal point (image center) in the image. The parameters sx , sy ,
d, ox , and oy are the intrinsic parameters of the camera. Note that when illustrating
cameras in a 3D drawing, it is possible to improve the legibility of the illustration
by positioning the image plane in front of the projection center. This representation
is used for the remainder of this chapter. Note that the projector center is sometimes
referred to as center point.

5.2.2 Extrinsic Parameters

The extrinsic parameters of the camera must be defined in order to locate the position
and orientation of the camera in the world coordinate system. This requires three
parameters for the rotation and three parameters for the translation. The rotation is

http://dx.doi.org/10.1007/978-3-030-44070-1_2
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represented using a 3 × 3 rotation matrix

Rc =
⎡
⎣1 0 0
0 cos θx − sin θx
0 sin θx cos θx

⎤
⎦

⎡
⎣ cos θy 0 sin θy

0 1 0
− sin θy 0 cos θy

⎤
⎦

⎡
⎣cos θz − sin θz 0
sin θz cos θz 0
0 0 1

⎤
⎦ (5.2)

where θx , θy , and θz are the rotation angles around the X ,Y , and Z axis and translation
is represented by a vector Tc = [Tx , Ty, Tz]T . Note that the rotation matrix Rc is
orthogonal (i.e., RT

c = R−1
c ) and det(Rc) = 1.

A 3D pointQw = [Xw,Yw, Zw]T in the world reference frame can be transformed
into a point Qc = [Xc,Yc, Zc]T of the camera reference frame by using

Qc = RcQw + Tc. (5.3)

A point in the camera reference frame can be transposed into the world reference
frame by using

Qw = RT
c [Qc − Tc]. (5.4)

A projector system can be viewed as an inverse camera. Thismodel is also suitable
for a Diffraction Optical Element (DOE) projector [18]. Using a DOE projector is a
compact and cost-efficient method that is used by some RGB-D cameras to project
a static pattern. Some 3D systems used in the context of an endoscope also used this
type of projector. The extrinsic parameters of the projector must also be defined in
order to locate the position and orientation of the projector in the world coordinate
system. The matrix Rp and the vector Tp can be defined similarly as Rc and Tc.

A 3D point Qp = [X p,Yp, Z p]T in the projector reference frame can be trans-
formed into a point Qc = [Xc,Yc, Zc]T in the camera reference frame by using

Qc = RcRT
p

[
Qp − Tp

] + Tc. (5.5)

All components of an RGB-D camera are usually mounted on the same Printed
Circuit Board (PCB), they have the very similar orientations (Rc ≈ Rp) and are
physically aligned on the board. In this case, Eq. 5.5 can be approximated by

Qc ≈ Qp − (b, 0, 0)T . (5.6)

where Tp + Tc = (b, 0, 0)T with b being the baseline between the projector and
camera. Using image rectification (see Chap. 2), the approximation in Eq.5.6 can
be replaced by an equality. RGB-D cameras based on active stereo vision use two
measurement cameras. The transformation from the reference frame of one camera
to the second one is performed similarly. This type of RGB-D camera is presented
in the next section.

http://dx.doi.org/10.1007/978-3-030-44070-1_2
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5.3 Active Stereo Vision RGB-D Cameras

This section covers active stereo vision, which is becoming increasingly prevalent
in the RGB-D market. As its name suggests, the method is based on two-camera
triangulation, aiming at identifying corresponding points between two images to
retrieve the depth of the scene. Theword active refers to the fact that a highly textured
unstructured light pattern is projected onto the scene to facilitate thematching in scene
regions that are devoid of rich texture. This section broadly presents the steps for
classic, passive stereo vision, followed by the specific requirements of active stereo
vision and an example of a commercial RGB-D sensor that is based on this range
sensing technique.

5.3.1 Stereo Vision

Stereo vision based RGB-D cameras usually consist of two cameras mounted on a rig
and separated by a distance referred to as the baseline b. Cameras are calibrated so that
all implicit and explicit parameters are known. Similar to the human vision system,
each camera acquires a slightly different view of the scene. The two resulting images
are then processed such that pixels with similar features are matched between the two
views to create stereo-corresponding pairs of points. Matching points are actually
2D projections of the same unique point in 3D. From a pair of stereo-corresponding
points, the 3D reconstruction consists of computing the intersection between the rays
passing through each of the corresponding camera center points and some pixel in
the image plane (see Fig. 5.6).

Fig. 5.6 Stereo vision
consists of finding
corresponding points pl and
pr in a pair of images
acquired with left and right
cameras, the center points of
which are denoted by Cl and
Cr , respectively. The 3D
point P corresponds to the
intersection of the light rays.
Figure courtesy of NRC
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5.3.1.1 Image Rectification

In stereo vision, the matching process is usually the most challenging step in terms
of computation. One step to simplify the problem is to convert the 2D search to
a 1D search, along a line. This can be done by exploiting the epipolar geometry
of the whole system and by rectifying the images so that both camera optical axes
are parallel and each horizontal line in the first image matches the similar line in the
second rectified image. Please refer to Chap.2 for more details on image rectification
and epipolar geometry (see Fig. 5.6).

One of themain differences between triangulation-based consumer-grade RGB-D
cameras and industrial range systems is the geometric configuration.ConsumerRGB-
D cameras have a limited physical size which constrains the baseline to relatively
small values (usually below 10cm). All components of a RGB-D camera are usually
mounted on the same printed circuit board, thus image pairs can be hardware-rectified
(θx ≈ 0, θy ≈ 0, θz ≈ 0), and Ty ≈ 0, and Tz ≈ 0 and Tx = b is a few centimeters.
Moreover, since these cameras are usually targeted for human-centered applications,
they generally require a standoff distance of a few meters. Whereas in range systems
designed for industrial applications, larger baselines and shorter standoff distances
are used.

5.3.1.2 Block Matching

In rectified images, the search for corresponding points along a line is based on amea-
sure of similarity or dissimilarity of the local intensity information, a task commonly
referred to as block matching. The distance between a point p and its corresponding
point along the epipolar line is called disparity and noted Dp. The disparities of all
the points in the image form a disparity map D, which can be displayed as an image.
Different algorithms exist for block matching, they are generally divided into three
categories: local, global, and semi-global.

Local block matching consists of finding corresponding pixels by matching n × n
blocks in one image to N blocks of n × n along the search line in the other image.
To score the matching, the most commonly used dissimilarity measure is the Sum
of Absolute Distances (SAD) due to its computational simplicity. Explicitly, it is
defined as

SAD(p(x, y), Dp) =
n/2∑

i=−n/2

n/2∑
j=−n/2

|Il(x + i, y + j) − Ir (x + i + Dp, y + j)|
(5.7)

with 0 < Dp < N , N being generally referred to as the search range, Il and Ir are
respectively the left and right images. Other metrics can be used as well such as
the Normalized Cross-Correlation (NCC) or the Sum of Squared Differences (SSD)
among others (see Chap. 2). The main drawback of local block matching is that it
can lead to discontinuities in the estimated disparity map.

http://dx.doi.org/10.1007/978-3-030-44070-1_2
http://dx.doi.org/10.1007/978-3-030-44070-1_2
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Global block matching methods consist of determining the best transformation
of one image to the other by optimizing a global energy function. The latter is
generally composed of a pixel-wise matching cost similar to the local method over
the whole image and a regularization term to deal with local discontinuities. Due to
the regulation terms that are typically used, the optimization problem is often NP-
complete. The most common approximate solutions to this NP-complete problem
are graph cuts and belief propagation. However, the limitations of global methods
are the computational cost and memory consumption associated with it [105].

Semi-Global block Matching (SGM) allows a good tradeoff between accuracy
and run time by combining concepts from both local and global matching [48]. Like
global matching, SGM is formulated as finding the disparity map D that minimizes
the cost function E(D) defined as

E(D) =
∑
p

(SAD(p, Dp)) +
∑
p

∑
q∈Np

P1T [|Dp − Dq | = 1]+
∑
p

∑
q∈Np

P2T [|Dp − Dq | > 1].
(5.8)

The operator T [.] returns 1 when its argument is true, and 0 otherwise. Np refers to
the neighborhood of the pixel p. The first term of the cost function is the dissimilarity
measure computed for all pixels p along one dimension. The second term penalizes
small disparity variations in the neighborhood of a pixel p by a factor of P1. The third
term penalizes large disparity variations by a factor of P2 to preserve discontinuities.
However, this optimization is not performed globally on the whole image as in global
methods, but rather along several one-dimensional paths around a pixel p. The energy
of all the paths is then summed for each pixel and the disparity is determined by
winner takes all.

5.3.1.3 Triangulation

Considering an identical pair of calibrated cameras separated by a baseline b and the
disparity map D, a 3D point QΔ

(x,y)(D(x, y)) can be computed when sx = sy using

QΔ
(x,y)(D(x, y)) =

⎡
⎣XW

YW

ZW

⎤
⎦ = b

D(x, y)

⎡
⎣x − ox
y − oy

d
sx

⎤
⎦ (5.9)

where (XW ,YW , ZW ) are the coordinates of the scene’s points in theworld coordinate
system.
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Fig. 5.7 Left: finding corresponding points in texture-poor areas is difficult, resulting in dropouts
in the computed depth map. Right: active stereo vision enhances the scene by projecting a highly
textured light pattern. This facilitates the matching between the left and right images. Figure
courtesy of NRC

5.3.2 Active Stereo Vision

Finding correspondences between two images works well in highly textured scenes.
However, in areaswith poor texture, such as uniform surfaces (Fig. 5.7-left),matching
methods fail, resulting in missing 3D points. To address this limitation, active stereo
vision or projectedtexture stereo vision consists in artificially enhancing the texture
of the scene by projecting a highly textured light pattern onto it [60, 66, 73] (Fig. 5.7-
right). This simplifies the search for matching points and allows for a much denser
3D reconstruction of the scene.

Active stereo vision should not be confused with one-shot, spatially encoded,
structured-light approaches. In active stereo vision systems, the light pattern can
even be unstructured. Moreover, such systems make use of two calibrated cameras
and a light projector that does not need to be calibrated.

5.3.2.1 Projector

In active stereo vision, the projector is only required to add enough texture to fea-
tureless surfaces to enable block matching to work, regardless of ambient light or
poorly reflective materials. Grunnet-Jepsen et al. provide guidelines on projector
design [40] and these include the following.

1. Projection in the infrared spectrum in order not to interfere with human vision
and enable simultaneous RGB image capture.

2. Projection of a dense semi-random dot pattern. The spatial density of the dots
determines the resolution of the texture and it was found that a pattern density
beyond 10% of image resolution does not result in significantly improved perfor-
mance.

3. High contrast, so that the pattern can be visible even in bright daylight. The
intrinsic contrast provided by a projector is usually reduced due to ambient light
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or poorly reflective materials. Thus maximizing the intrinsic contrast makes the
imaging system more robust to real-world conditions. In practice, maximizing
the contrast consists in concentrating as much of the available projector power
into the pattern and minimizing any background projector power that appears as
uniform light between the projected features and effectively augments the ambient
lighting.

4. Minimum laser speckle, which leads to different views from both cameras and
thus can deteriorate the depth performance.

5. Dynamic projection with a programmable dot density to adapt to imaging reso-
lution.

6. A large depth-of-field, so that the pattern is not blurred across the operating depth
range.

5.3.2.2 Projected Light Pattern

The basic idea behind active stereo vision is to have a projected light pattern P made
of n × n blocks as dissimilar as possible across the search range of size n × N . So
is there an ideal light pattern P to augment the texture of a scene? This question
has been largely addressed in the literature. Some have proposed to incrementally
fill a pattern with randomly generated binary pixels while testing that each n × n
blocks is unique [73]. Others have used the DeBruijn sequences [66] or Hamming
codes [60]. To assess how good a pattern P is for stereo matching, one can measure
the minimum difference S(P) between all its blocks. Using the Sum of Absolute
Differences (SAD) as correlation measure, the score of a pattern is given by

S(P) = min
0<Dp<N

SAD(p, Dp). (5.10)

However, finding the best object onto a scene is not only influenced by the pattern
itself but also by characteristics of the projector and the pair of cameras. Figure5.8
shows how a projected pattern P is blurred by the projector and the camera and then
sampled to adjust to the sensor’s resolution.Konolige [60] compared randompatterns,
De Bruijn patterns, and patterns created with Hamming codes, while taking into
consideration the imperfections of both cameras and projector in terms of resolution
and blur.

In active stereo vision, no prior knowledge of the projected light pattern is nec-
essary, thus the term “unstructured” light. Consequently, strict stability over time of
the light pattern is not a critical requirement. Moreover, using multiple projectors
or a combination of active stereo vision systems simultaneously is possible and can
further improve the performance, since more texture is added to the scene.
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Fig. 5.8 Effect of resolution and blur on the projected light pattern. The light pattern (top-left) is
blurred by the lenses of both projector (top-right) and camera (bottom-left) and resampled by the
camera’s sensor grid. Figure adapted from [60], courtesy of NRC

5.3.2.3 Intel RealSense D400 Series

Intel develops and offers consumer-grade RGB-D sensors based on a variety of
range sensing technologies, each of which has its own technological tradeoffs. The
RealSense D400 series is based on active stereo vision. The D400 series takes full
advantage of the Intel RealSense Vision Processor D4, an Application-Specific Inte-
grated Circuit (ASIC), onto which a customized variant of the semi-global block
matching algorithm is embedded, allowing a depth throughput of up to 36 million
depth points per second (848 × 480, 90 fps), with a search range of N = 128. Since
stereoscopic systems are highly flexible in their design, the D400 series offers a large
variety of depthmodules, all incorporating the same processor. This flexibility allows
for a tradeoff between price, size, range, and performance, depending on the targeted
application. Only the D410, D415, D430, and D435 use active stereo vision, the rest
of the modules being based solely on the passive stereo. Among the active stereo
modules, D415 and D435 are the only ready-to-use RGB-D cameras, whereas the
other modules are customizable. The main differences between D415 and D435 are
as follows.

1. Baseline: 5.5 cm for D415 or 5cm for D435
2. Shutter type: rolling for D415 versus global for D435. Global shutter provides

better performance in case of low-lighting or high-speed motion.
3. Cameras Field of View (FOV): standard 70◦ FOV for D415 or wide angle 90◦

FOV for D435.
4. RGB-D calibration: in the D415 depth module, all the components (projector,

depth cameras, and RGB camera) aremounted on the same computer boardwhich
facilitates calibration and rectification. Whereas the D435 camera is based on the
D430 depth module which comes with a separated RGB camera making the
calibration between the RGB and depth more difficult.
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Fig. 5.9 Intel RealSense D435 infrared dot pattern. The light pattern is projected onto a planar
surface in an environment without ambient lighting and seen by the left infrared camera (top-left).
The corresponding intensity histogram reveals two clear peaks (bottom) easing image binarization
(top-right). This illustrates the good contrast provided by the infrared projector. Figure courtesy of
NRC

Considering these characteristics, theD415 is usually favored for applications requir-
ing high accuracy, whereas the D435 is best for applications that require a wider FOV
such as drone navigation.

The D415 and D435 cameras use different types of projector. The D415 uses
two AMS Heptagon projectors placed side by side, while the D435 uses an AMS
Princeton Optronics projector with a wider emission angle but fewer dots (≈5000
dots). However, in both cases, the wavelength of the class 1 laser is 850nm and the
reported range varies between 11cm up to 10 m. Figure5.9 illustrates the infrared
dot pattern of the Intel RealSense D435 projected onto a planar surface in an environ-
ment with minimal ambient light (top-left). The intensity histogram at the bottom of
Fig. 5.9 reveals two clearly distinguishable peaks (around 0.18 and 1.0, respectively),
demonstrating the good contrast provided by the projector.

To demonstrate the benefit of active stereo vision over passive stereo vision, we
conducted a simple experiment using the Intel RealSense D435 RGB-D sensor. The
same scene is acquired with the IR projector turned off (passive stereo) and then
on (active stereo). The resulting depth maps are illustrated on the bottom row of
Fig. 5.10. It clearly shows that texture augmentation provides a much denser depth
map, with significantly less dropouts on uniform surfaces such as the wall and the
table.
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Fig. 5.10 Results from the Intel RealSense D435 RGB-D Camera. Results are shown with the
infrared projector off (left) and on (right). First row: images of the left infrared camera used for the
range measurement. Note, on the right, the pattern “painted” on the scene by the infrared projector.
Second row: images of the right infrared camera used for the range measurement. Third row: image
of the RGB camera used for the texturing. Fourth row: the computed depth image. The range is
displayed using a color code. Figure courtesy of NRC
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5.4 Structured-Light RGB-D Cameras

An RGB-D camera based on structured-light is conceptually a passive stereo system
where one of the measurement cameras is replaced by a calibrated projector. The
projector can either display a single pattern (spatial codification) or series of patterns
(temporal codification). In temporal codification (also known as time-multiplexing),
patterns are projected one after the other and an image is captured for each pat-
tern. The camera–projector matching is done based only on the time sequence of
image intensity at a particular location in the camera. In contrast, spatial codifica-
tion techniques project just a single pattern, and the grayscale pattern within a local
neighborhood is used to perform the necessary correspondence matching. A detailed
presentation of the different codification methods can be found in [90, 91].

The affordable price of RGB-D cameras significantly limits the cost of the projec-
tion subsystem. In the remainder of this chapter, temporal encoding will be presented
assuming a 1-D scanning device and a modulated laser source. For spatial encod-
ing, the same type of projector as the one used for active stereo is assumed (see
Sect. 5.3.2.1). Note that producing projection subsystems that are stable in time and
robust to variations in temperature, while remaining affordable, is challenging. In
some cases, it can be more affordable to add an extra camera with an unstable pro-
jector (active stereo) rather than increasing the stability of the projection subsystem.
Microsoft’s Kinect I, which was based on spatial codification, was a revolutionary
3D sensor that had a profound impact on the democratization of 3D imaging systems.
A picture of the Kinect I is shown in Fig. 5.3. Figure5.11 contains a range image pro-
duced by a Kinect I. Figure5.12 illustrates the infrared dot pattern in the Microsoft
Kinect I projected onto a planar surface in an environment with minimal ambient
light (top-left). The intensity histogram at the bottom of Fig. 5.12 does not show
two clearly distinguishable peaks as contained in the histogram shown in Fig. 5.9.
When examining the commercial offering of RGB-D cameras in the past 5years, we
can clearly notice a trend where companies are moving away from spatial encoding,
toward active stereo vision systems. For these reasons, the remainder of this section
focuses on structured-light sensors based solely on temporal encoding.

5.4.1 Temporal Encoding

Temporal encoding methods project many planes of light simultaneously and use a
coding strategy to recover which camera pixel views the light from a given plane. The
camera and projector are side by side, as shown in Fig. 5.4. The projector images are
assumed to contain vertical lines referred to as fringes. The Gray code is probably the
best-known time-multiplexing code and was presented in Chap. 3 in the context of
digital projection. Figure5.16-bottom contains the images of twoGray code patterns.
In the digital context, and assuming that the number of columns of the projector is 2N ,
then each column can be assigned to an N -bit binary number in a Gray code sequence

http://dx.doi.org/10.1007/978-3-030-44070-1_3
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Fig. 5.11 Results from the Microsoft Kinect I RGB-D Camera. Top-left: image from the RGB
camera used for texture mapping. Top-right: an image of the infrared camera used for the range
measurement. Note the pattern of the infrared projector. Bottom-left: the range image from the
infrared camera used for the range measurement. The range is displayed using a Gray level coding.
Bottom-right: a shaded view of a polygonal model created using the range image display on the
left. Figure courtesy of NRC

of 2N elements. This is done by transforming the index of the projector column into
an element (i.e., N -bit binary number) of a Gray code ordering, using the pseudo-
code of Fig. 5.13. Table5.2 contains results of the pseudo-code. The projection of
darker fringes is associated with the binary value of 0 and the projection of lighter
fringes is associated with the binary value of 1. In the remainder of this chapter, we
focus on cheaper projection systems that have an analog nature.

5.4.1.1 Generating the Gray Code

Figure5.14 shows the Gray code patterns generated by scanning a pulsing laser.
These patterns are used by the Intel RealSense F200, SR300, and R305, and the
corresponding Gray code ordering is shown in Table5.2. By examining Fig. 5.14,
one should realize that each pattern (bit i) of the Gray code can be generated using a
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Fig. 5.12 Microsoft Kinect I infrared dot pattern. The light pattern is projected onto a planar
surface in an environment without ambient lighting and seen by the infrared camera (top-left).
The corresponding intensity histogram reveals two overlapping peaks (bottom) that make image
binarization using a single threshold very difficult. The threshold value used for the binarization
(top-center) is shown using a red line on the histogram. The binarization is still possible using an
adaptive thresholding method (top-right). Figure courtesy of NRC

Fig. 5.13 Pseudo-code
allowing the conversion of a
natural binary code into a
Gray code and vice versa.
Figure courtesy of [29]

square wave. A Gray code pattern Gi for bit i at time t can be generated by pulsing
a laser using

Gi (t) =
sign

(
sin

(
2π t2i−1

f p
+ 3π/2 + θ

))
+ 1

2
Vp (5.11)

where sign(x) is a function that gives, respectively, −1, 0, or 1 when x is negative,
zero, or positive. Moreover, f p is the frequency of the acquisition camera, and Vp

is the voltage input of the modulating signal of the laser. When the laser is scanned
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Fig. 5.14 Illustration of the six patterns of a 6-bit Gray code. Note that the X-axis is time in seconds
(rather than the projector pixel). The transition timing is adjusted for a 600 fps measurement camera.
Figure courtesy of NRC

from right to left and for the pattern representing the bit zero (i.e., i = 0), θ = π ;
otherwise, θ is always zero. The first row of Fig. 5.15 illustrates themodulation signal
for projecting a set of five Gray code patterns.

The modulated laser spot is combined with an optical element to generate a stripe
and this stripe needs to be mechanically scanned in order to generate a Gray code
pattern. A cost-efficient implementation could use a one-dimensional Micro Electro-
Mechanical System (MEMS) to scan the laser stripe on the scene. It is possible to
use a galvanometer that moves a mirror rather than a MEMS and the remaining
description assumes a galvanometer-based implementation. The orientation of the
mirror can be changed by varying the input voltage of the galvanometer. A typical
voltage range that can be encountered is −10V to 10V. We assume that a voltage
of −10V corresponds to the left most orientation and a voltage of 10V corresponds
to the right most orientation. To generate an image, the driving voltage waveform is
triangular with a frequency of f p/2. At each cycle, two images are generated, one
from left to right (−10V to 10V) and one from right to left (10V to−10V). In order
to avoid damaging the galvanometer, the input triangular wave is filtered so that the
resulting signal is differentiable. This is shown in the second row of Fig. 5.15. Both
the control signals of the galvanometer and laser allow one to define the actual field
of view of the projector. The effective field of view also takes into account the camera
integration timing. The third row of Fig. 5.15 illustrates the camera timing. Note that
the camera is not sensitive to projector light at the extremity of the field of view of the
scanner. This corresponds to regions near the maximum and minimum of the filtered
triangular wave (see the second row of Fig. 5.15). The last row of Fig. 5.15 contains
effective patterns generated by the projection system after taking into account the
modulation of the laser, the mirror orientation, and the camera integration timing.
Generally, the actual orientation of the mirror may differ from the expected one. It
is possible to read an output signal that gives the actual orientation of the mirror.
The difference between both signals can be used to distort the triangular waveform
so that the actual orientation fits the expected one. This allows one to dynamically
modify the projected patterns, in order to compensate for some of the non-linearity
present in the projection patterns.
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Fig. 5.15 Description of the timing of the different components of an analog projection system
described in Sect. 5.4.1.1. The graph on the first row contains the signal controlling the pulsing
of the laser. The graph on the second row contains the signal that controls the position of the
galvanometer. The third row displays the integration timing of the camera. The last row contains
the images generated by the signals in the previous rows. Figure courtesy of NRC

5.4.1.2 Decoding the Gray Code

For each Gray code pattern and for each row of the camera, the position of the
fringe transitions is measured. Thus, the number of 3D points generated during one
acquisition is equal to the number of fringe transitions multiplied by the number of
camera rows. In Chap.3, a method was presented that requires the projection of both
a Gray code and the associated reverse Gray code [107]. This algorithm provides a
robust way for achieving subpixel accuracy [107]; however, it requires the projection
of twice the number of patterns. For industrial applications, this could be acceptable
but in the context of consumer-grade RGB-D cameras, where the scene is expected to
be dynamic, this is not acceptable. The algorithm used in the Intel RealSense F200,
R300, and R305 is presented in [119]. More details about such RGB-D cameras are
given in the next section.

5.4.1.3 Intel RealSense F200, SR300, and SR305

The Intel RealSense F200, SR300, and SR305 are RGB-D cameras that use the Gray
code. A picture of the RealSense SR300 is shown in Fig. 5.3. The SR300 provides
a VGA-resolution range image at a frequency of 60 fps. The sensor also provides
an infrared VGA video stream and an HD-RGB video stream. Both video streams
operate at 30 fps and all video streams are synchronized. Themeasuring camera has a
VGA resolution and uses a global shutter and acquires image at 600 fps. The SR300

http://dx.doi.org/10.1007/978-3-030-44070-1_3
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Fig. 5.16 Results from the Intel RealSense SR300 RGB-D Camera. Top-left: image from the RGB
camera used for texture mapping. Top-center: the range image from the infrared camera used for
the range measurement. The range is displayed using a color coding. Top-right: a shaded view of
a polygonal model created using the range image display in the center. Bottom: two images of a
scene taken by an industrial camera with a filter that blocks all light with wavelength smaller than
705nm while the SR300 is acquiring images of the scene. On the right, a high-frequency pattern of
the Gray code and on the left, a lower frequency pattern. Figure courtesy of NRC

uses a 9-bit Gray code. A dark frame and a fully illuminating frame are also used in
order to simplify the decoding of the Gray code.

The projection system uses a class-1 laser with a wavelength of 860nm. The
laser point source is combined with an optical element to generate a stripe. A Micro
Electro-Mechanical System (MEMS) is used to scan the laser stripe on the scene.
Figure5.16-bottom contains the images of two Gray code patterns. The properties of
the MEMS change over time and vary with temperature and such changes need to be
compensated for in order to obtain a repeatable measurement system. In this RGB-D
camera, the position of the mirror is measured at different orientations. These mea-
surements are used in real time to modify the electric load. More information about
the projection subsystem can be found in [10, 104, 119]. An in-depth presentation of
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the implementation of the SR300 can be found in [119]. Figure5.16-top illustrates
a color-coded range image and a shaded view of the reconstructed surface mesh,
obtained using the Intel RealSense SR300.

5.5 Phase-Based Time-of-Flight RGB-D Cameras

The reader familiar with the phase-based Time-of-Flight (ToF) material, presented
in Chap.4, may omit this section. A phase-based ToF system computes the distance
between the sensor and a surface to be digitized using the round-trip time required by
light to reach the surface and be reflected back to the sensor, which may be estimated
indirectly. The range is deduced from the phase difference between the detected
signal and the emitted signal. Figure5.17 illustrates the principle of the phase-based
system. Note that such systems are also known as continuous-wave ToF. The Kinect
II and Kinect Azure are phase-based ToF RGB-D cameras [5, 81]. The temporal
intensity profile Is(t) for the illumination source is

Is(t) = As + Bs cos(φ(t) + θs) (5.12)

where As , Bs , and θs are constant and φ(t) = 2π t fcw where fcw is the modulation
frequencyof the continuouswave.The temporal intensity profile Id (t) for the detected
signal is

Id(t) = Ad + Bd cos(φ(t) + θd + δφ) (5.13)

where δφ is the phase offset related to the range. Note that Ad , Bd depend on As , Bs ,
the scene surface properties, and the sensor’s characteristics. In general, the value
of θs and θd are assumed to be constant but their values are unknown. We refer the
reader to the previous chapter for details related to the phase offset measurement.

Fig. 5.17 Continuous-wave measurement techniques employed by Time-of-Flight RGB-D cam-
eras. Figure courtesy of NRC

http://dx.doi.org/10.1007/978-3-030-44070-1_4
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The conversion from phase offset to range is achieved using

r(δφ) = cδφ

4π fcw
(5.14)

where c is the speed of light in the medium. The range over which the system can per-
form unambiguous measurement can be computed from the modulation frequency.
This unambiguous range rmax is defined as

rmax = r(2π) = c

2 fcw
. (5.15)

Increasing the modulation frequency fcw will simultaneously reduce the value of
rmax and the measurement uncertainty. A simple method to achieve a large value for
rmax and a small uncertainty uses multiple acquisitions with different modulation
frequencies. The lower modulation frequencies are used to obtain a large range
interval, while the higher ones are used to improve the accuracy of the measurement.

For a phase-based system, a pixel [x, y]T with a phase offset of δΦ(x, y) can be
transformed into a 3D point using

QToF
(x,y)(δΦ(x, y)) =

⎡
⎣Xw

Yw
Zw

⎤
⎦ = c (δΦ(x, y) + 2kπ + or (x, y))

4π fcw

⎡
⎣

sx
d (x − ox )
sy
d (y − oy)

1

⎤
⎦

(5.16)
where or (x, y) is an offset recovered at calibration time and k is the unknown integer
that is resolved using multiple modulation frequencies.

5.5.1 Microsoft’s Kinect II and Kinect Azure

Table5.3 presents some characteristics of Kinect II and Azure. Among the improve-
ments of both systems is a significant reduction of power requirements of the sensor
chip. The maximum modulation frequency and the modulation contrast are signif-
icantly larger for the Kinect Azure. Typically, an increase of these values induces
a reduction of the range uncertainty as discussed in Sect. 5.7.2. In order to pro-
vide robustness to ambient lighting variation, some chips acquire two images quasi-
simultaneously and output the difference of both images. The difference of two sine
waves with the same frequency, but with a phase offset π , is a sine wave with twice
the amplitude centered on zero (i.e., without ambient illumination). This type of fea-
ture is implemented within the Kinect Azure using a design that allows a very high
fill factor [5]. Figure5.18 illustrates a range image obtained using the Kinect Azure.
More details about Kinect II and the Kinect Azure, which is shown in Fig. 5.3, can
be found in [5, 81].
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Table 5.3 Table of specifications for two phase-based ToF systems. The table is adapted from [5].
The operating distance of the Kinect II is different depending on the software driver used (i.e., the
official software driver or the open source one)

Gaming Platforms

Kinect Azure Kinect II

Technology TSMC 65nm BSI 1P8M TSMC 0.13 µm 1P5M

Pixel pitch 3.5 µm × 3.5 µm 10 µm × 10 µm

Number of lines 1024 512

Number of columns 1024 424

Frame rate 30 fps 30 fps

Horizontal field of view 120◦ 70◦

Vertical field of view 120◦ 60◦

Min operating distance 0.4m 0.8m

Max operating distance 4.2 m 4.2m

Min modulation frequency 10 Mhz 10 Mhz

Max modulation frequency 320 Mhz 130 Mhz

Av modulation frequency 200 Mhz 80 Mhz

Fill Factor ≈100% 60%

Quantum effic. (λ = 860nm) 44% 21%

Readout noise 3e− (210 µV) (320 µV)

Modulation contrast 87% at 200 MHz, 78% at 320
MHz

68% at 50 MHz

Chip power 650 mW 2100 mW

Wavelength 860 µm 860 µm

5.6 Texture Mapping

Texturemapping refers to the task of mapping texture and color information acquired
by the RGB camera to the computed depth information. It can be seen as a method to
wrap a color image onto a 3D geometry. It is an important step for acquiring realistic
3D models of an object or a scene.

A naive way to add color to a 3D point cloud might be to overlap the color and
depth images so that a pixel (x, y) in the color image maps to the pixel (x, y) in the
depth image. However, in commercial RGB-D systems, the color camera and the
depth sensor are generally separated by a few centimeters (distance referred to as the
baseline), so their fields of view are slightly different. Thus, a simple overlap will
result in color transitions not lining up with actual object contours. A registration,
based on the geometric configuration of the whole RGB-D system, is thus built in
commercial RGB-D sensors to realign depth and color images.

This registration can be performed in two directions: one can transform the color
image from the viewpoint of the RGB camera into the viewpoint of the depth sensor,
or the other way around. In the first direction, for each pixel in the depth image, the
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Fig. 5.18 Range acquisition using Microsoft’s Kinect Azure RGB-D camera. Top-left: an image
from the RGB camera used for texture mapping. Top-right: an image of the infrared camera used for
the range measurement. Bottom-left: the range image displayed as a point cloud. Figure courtesy
of NRC

depth value is used to compute the corresponding subpixel coordinates in the color
image. A bilinear interpolation is then performed in the color image to compute the
color value at subpixel precision. A hole in the depth image will result in a hole in
the transformed color image.

To alleviate this limitation, the registration can be performed in the opposite
direction, thus transforming the depth image from the viewpoint of the depth sensor
into the viewpoint of the RGB camera. It warps a triangular mesh from the geometry
of the depth sensor into the geometry of the RGB camera. A triangular mesh is used
to avoid generating holes in the transformed depth image. A Z-buffer ensures that
occlusions are handled correctly.
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While commercial RGB-D sensors can model the 3D geometry of an object or
a scene with interesting geometric detail, the fidelity of the recovered texture with
respect to the 3D models is still less satisfactory [32]. Texture mapping lags behind
3D reconstruction. Misalignment between color and geometry can be attributable
to numerous factors. First, texture information is usually of low-quality due to an
RGB camera’s limited resolution and vulnerability to motion and illumination con-
ditions [28]. Some commercial systems such as Intel RealSense D400 series include
a designated image signal processor for RGB image adjustments, scaling, and pro-
cessing to improve image quality prior to texture mapping. Second, it is difficult to
ensure precise synchronization between depth and RGB streams and perfect intrinsic
and extrinsic camera calibration. Third, depth data are noisy and result in geometric
inaccuracies in the reconstructed 3D model.

For these reasons, computer vision researchers usually avoid the use of the built-
in color and depth registration provided in commercial range sensors and develop
advancedmethods for texturemapping. Thesemethods usually rely onmultiple views
of the scene. The premise is that various images of the scene obtained by changing the
viewpoint of the camera are ideally photometrically consistent, and thus, combining
them produces a high-quality texture map. The methods can be categorized [32] into
blending-based approaches which use different weighted average strategies to blend
multiple color images into a texture map [12], projection-based approaches which
associate to each vertex of the 3D mesh derived from the point cloud, an optimal
color image [33], and warping-based approaches that warp different images locally
to fit the 3D mesh [3].

5.7 Range Uncertainty and Lateral Resolution

This section contains advanced material and may be omitted on first reading. In this
section, we first examine the uncertainty associated with 3D points measured by
structured-light, active stereo, and time-of-flight RGB-D cameras. Some errors are
systematic in nature, while others are random. In the remainder of this section, ran-
dom errors are discussed. Since both structured-light and active stereo systems are
based on triangulation, they share similar equations that describe their measurement
uncertainties. Time-of-flight systems are based on time measurement and the equa-
tions that describe their measurement uncertainties are significantly different from
those of triangulation-based systems. In Sect. 5.7.1, we present the range uncertainty
for triangulation-based RGB-D cameras, followed in Sect. 5.7.2 by a presentation of
the uncertainty associated with ToF-based RGB-D cameras. In Sects. 5.7.3 and 5.7.4,
we discuss the lateral resolution and point spacing of RGB-D cameras. Finally, the
tradeoffs between range uncertainty and lateral resolution are presented in Sect. 5.7.5.
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5.7.1 Triangulation

The transformation of Eq.5.9 frompixel coordinates to 3D points is non-linear, hence
we introduce a first-order approximation using Taylor’s expansion. When sx = sy ,
the solution in the neighborhood of D̂(x, y) can be approximated by

QΔ
(x,y)(D̂(x, y) + ΔD(x, y)) ≈ QΔ

(x,y)(D̂(x, y)) + d

d D̂(x, y)
QΔ

(x,y)(D̂(x, y))ΔD(x, y)

(5.17)
where

d

d D̂(x, y)
QΔ

(x,y)(D̂(x, y)) = b

D̂(x, y)2

⎡
⎣ox − x
oy − y
−d/sx

⎤
⎦ . (5.18)

Since a first-order approximation is used, the covariance matrix associated with a 3D
point can be computed explicitly [20, 21] as

	Δ =
⎡
⎣ s2x (ox − x)2 s2x (ox − x)(oy − y) dsx (x − ox )
s2x (ox − x)(oy − y) s2x (oy − y)2 dsx (y − oy)

dsx (x − ox ) dsx (y − oy) d2

⎤
⎦(σZΔσD

d

)2
(5.19)

where

σZΔ = bd

D̂(x, y)2sx
= sx Z2

W

bd
(5.20)

and σD depends on the type of triangulation system. We refer the reader to Chap.3
for more details. Note that σZΔ increases with the square of the range ZW . This is
compatible with the results from the empirical studies by [11, 39] performed on
Microsoft’s Kinect I, which uses structured-light. The desire to reduce the physical
size of electronic devices leads to a reduction of the baseline of triangulation-based
RGB-D cameras. As seen in Eq.5.20, this reduction induces an increase in range
uncertainty.

5.7.2 Time-of-Flight

The transformation of Eq.5.16 from a normalized image coordinates to 3D points is
linear, hence the covariance matrix associated to a 3D point can be computed when
sx = sy as

	ToF =
⎡
⎣ s2x (ox − x)2 s2x (ox − x)(oy − y) dsx (x − ox )
s2x (ox − x)(oy − y) s2x (oy − y)2 dsx (y − oy)

dsx (x − ox ) dsx (y − oy) d2

⎤
⎦ (σZToFσδΦ

d

)2

(5.21)
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where
σZToF = c

4π fcw
. (5.22)

Note that the value of σZToF is independent of the value of ZW . This behavior was
observed in the empirical studies of the performance of Microsoft’s Kinect II by [11,
39]. Using a derivative similar to the one used in Chap.3,

σδΦ =
√

2

N

σ

B fcw

(5.23)

where σ is the sensor’s intrinsic uncertainty, N is the number of samples, and B fcw is
the amplitude of the sine wave for the continuous-wave modulation frequency fcw.
A formal presentation of the impact of readout error, fill factor, quantum efficiency,
and other parameters on σ can be found in [77]. The case where N = 4 is presented
in [83] for two different implementations of continuous-wave ToF. The amplitude of
the sine wave is defined as

B fcw = m fcw B
max (5.24)

where m fcw is the modulation contrast at fcw which varies from 0 to 1 and Bmax is
the maximum amplitude of the sine wave [77]. Typically, the value ofm fcw decreases
as the value of fcw increases. Some values of the modulation contrast for two ToF
sensors are given in Table5.3.

5.7.3 Lateral Resolution

Intuitively, the lateral resolution is the capability of a 3D imaging system to dis-
criminate two adjacent structures on the surface of a sample. A formal definition
can be found in [109]. The lateral resolution is limited by two factors: the structural
and the spatial resolution [109]. As an example, the lateral resolution of a digital
camera, when working out-of-focus, is not limited by the camera pixel count (spatial
resolution), but by the optical resolution (structural resolution) of the camera lens.
Even when imaging in-focus, the digital camera’s lateral resolution can be limited
by the structural resolution rather than the spatial resolution. A method to evaluate
the lateral resolution of a digital camera can be found in [51]. The extension of the
lateral resolution evaluation from 2D camera to 3D camera has been investigated
[37, 44, 59]. This extension is challenging since the range uncertainty also affects
the capability of a 3D imaging system to discriminate two adjacent structures on the
surface of a sample. A method to test the fidelity of depth-variation in range images
was patented by one of the large RGB-D camera manufacturers [45].

A fundamental limitation of the structural resolution of RGB-D cameras, with
respect to industrial 3D imaging systems, is the use of wavelengths within the near-
infrared region of the spectrum. This choice is induced by the desire to not interfere

http://dx.doi.org/10.1007/978-3-030-44070-1_3
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with the human activities in the scene. In order to achieved high-structural resolution,
industrial 3D imaging system typically uses blue or violet lasers (see Chap.3). The
spatial resolution of RGB-D cameras is significantly influenced by the measurement
strategies used and is not necessarily related to the number of 3D points output
by the RGB-D camera. The remainder of this subsection discusses the concept of
point spacing which is then used to introduce the spatial resolution of each family
of RGB-D cameras.

5.7.4 Point Spacing

The point spacing is often used by some 3D imaging manufacturers to describe the
lateral resolution of 3D imaging systems. This value can be computed for structured-
light, active stereo, and ToF RGB-D cameras. Point spacing varies with the range and
it depends on the magnification of the optical system and on the size of a pixel. Point
spacing is illustrated in Fig. 5.19. The concept of point spacing can be generalized
to feature spacing when the distance between the center of two neighbor pixels
is replaced by the distance between two features present on the detector image.
Explicitly, the horizontal feature spacing Sx is defined as

Sx (Z , fs) = Z

d
fssx (5.25)

Fig. 5.19 Left: illustration of the point spacing. Right: illustration of the feature spacing. The
distance between the optical center and the object plane is denoted Z , d is the distance between
the optical center and the detector. The horizontal distance between the center of two neighboring
pixels is sx and fs is the distance between two neighboring features given in pixel units. Figure
courtesy of NRC

http://dx.doi.org/10.1007/978-3-030-44070-1_3
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and the vertical feature spacing Sy is defined as

Sy(Z , fs) = Z

d
fssy (5.26)

where Z/d is the magnification for the optical system at the distance Z from the
optical center and d is the distance between the optical center and the detector. The
horizontal and vertical pixel sizes are sx and sy , respectively, and fs is the distance
in pixels between two features. The point spacing is computed from Eqs.5.25 and
5.26 by setting fs = 1.

Typically, anRGB-Dcamerawill output a range image that has the same resolution
as the measurement camera. However, the spatial resolution of an RGB-D camera is
dictated by themeasurement strategies. Some RGB-D cameras measure significantly
fewer 3D points than the number of outputs of the RGB-D camera. As is shown
in the remainder of this subsection, for some systems, feature spacing is a better
approximation of the spatial resolution than point spacing.

5.7.4.1 Time-Multiplexed Codification

For structured-light systems based on time-multiplexed encoding, the spatial reso-
lution is limited by the number of rows of the camera and by the number of code
transitions in the Gray code used by the projection system. The number of Gray
code transitions is usually smaller than the number of columns of the measurement
camera. The number of 3D points measured by this type of RGB-D camera is equal
to the number of code transitions multiplied by the number of rows of the measure-
ment camera. These measured 3D points can be arranged in a regular grid which is
called the native range image. It is also possible to build an intensity image associated
with the native range image since each 3D point of the native range image can be
projected into the measurement camera image. Figure5.20 shows the reduction of
lateral resolution between an image of the measurement camera and the intensity
image associated with the native range image. Typically, the native range image is
resampled to fit the resolution of the measurement camera.

For the Intel RealSense SR300 presented in Sect. 5.4.1.3, themeasurement camera
has a resolution of 640× 480 pixels and the projector uses nine Gray code patterns.
A 9-bit Gray code contains 511 code transitions and for each row of the camera,
511 3D points can be computed. The total number of 3D points per native range
image is thus 511× 480 (245,280), which is slightly lower than the number of pixels
of the measurement camera. The horizontal and vertical spatial resolutions can be
approximated by Sx (Z , 640/511) and Sy(Z , 1), respectively.
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Fig. 5.20 Left: crop of an image of the measurement camera showing a line-pair resolution chart.
Right: crop of the intensity channel of the native range image produced by a time-multiplexed
codification. Notice the reduction of lateral resolution along the horizontal axis. The measurement
camera has a resolution of 1498 × 800 and theGray code has 1023 code transitions. Figure courtesy
of NRC

5.7.4.2 Spatial Codification

Typically, for RGB-D cameras based on spatial encoding, the projected image con-
tains approximately 30,000 feature points [119]. The position of each of these pro-
jector features can be computed in the measurement camera image and these corre-
spondences can be used to compute 30,000 3D points. An RGB-D camera that uses
a 640 × 480 measurement camera can typically output 307,200 3D points per range
image which is about nine times the number of feature points. In this case, the hori-
zontal and vertical spatial resolutions can be approximated by Sx (Z , 3) and Sy(Z , 3),
respectively. Therefore, the spatial resolution of an RGB-D camera based on spatial
codification is expected to be significantly lower than that of a time-multiplexed
codification when the measurement camera of both RGB-D cameras have the same
resolution.

5.7.4.3 Active Stereo

Some RGB-D camera manufacturers describe active stereo as a spatial codification
structured-light system with an extra measurement camera. When the ambient light-
ing is moderated, it is expected that the depth of a pixel that views a projector feature
will be accurate. One of the assumptions of active stereo is that the depth of a pixel
that is not viewed by a projector feature will be estimated more accurately by a
stereo matching algorithm than by interpolation. The horizontal and vertical spatial
resolutions are expected to be in the range of Sx (Z , 1) to Sx (Z , 3) and Sy(Z , 1) to
Sy(Z , 3), respectively, when the number of pixels of a measurement camera is nine
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times the number of projector features. When the projector features are not visi-
ble because of the ambient light, the active RGB-D camera is expected to perform
as a passive stereo matching system. A comparative evaluation of a passive stereo
algorithm can be found in [95]. The lateral resolution of a special family of stereo
matching algorithms is presented in [59].

5.7.4.4 Time-of-Flight

For a phase-based system such as those presented in Sect. 5.5, the spatial resolution
is given by the resolution of the measurement camera. The horizontal and vertical
spatial resolutions can be approximated by Sx (Z , 1) and Sy(Z , 1), respectively.Given
the pixel size, field of view, and pixel count of two ToFs, it is possible to compute
the relative improvement of spatial resolution between two different ToF sensors
(see the questions section at the end of this chapter). Table5.3 contains such values
for the Kinect II and Kinect Azure RGB-D cameras. Note that an improvement
in spatial resolution will induce an improvement in lateral resolution only if the
structural resolution is not the limiting factor. Even when one range measurement is
obtained per pixel, an RGB-D camera’s embedded post-processing steps can result
in a significant amount of spatial filtering on the range data. This filtering affects the
lateral resolution.

5.7.5 Lateral Resolution Versus Range Uncertainty

The depth value of each range image pixel is required in order to warp the texture
image onto the range image. When the range information used for the warping is
accurate, it is possible to have RGB-D cameras that have a lower lateral resolution
in the depth channel (D) than in the color channels (RGB). Applying aggressive
spatial filtering to the depth channel induces a reduction of the range uncertainty
and a reduction of lateral resolution of the depth channel. However, this filtering
may allow an increase in lateral resolution of the color channels. A modeling of
the deviations of the texture image (RGB channels) and range image (D channel)
of RGB-D camera is presented in [102]. The interpolation and filtering processes of
the Intel RealSense SR300 are described in detail in [119]. Since the color channels
of an RGB-D camera have potentially a higher resolution than the depth channel, it
is possible to use a depth map up-sampling algorithm. The latter computes a high-
resolution depth map that is plausible given the low-resolution depth map and the
high-resolution RGB channels. More details can be found in [49, 50, 79, 117]. The
evaluation of the lateral resolution of 3D imaging systems is a complex subject that
is further discussed in [37, 41, 43, 44, 59, 67, 68].
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5.8 System Characterization and Calibration

In this section, different studies that evaluate the performance of RGB-D cameras are
discussed. We discourage the reader from comparing numerical values taken from
different studies, as the experimental protocol may vary. We will first review metro-
logical characterization approaches and then we present application-based charac-
terization approaches. This is followed by a discussion on the different methods to
improve the calibration of RGB-D cameras. We conclude the section with some final
remarks related to system performance and RGB-D characterization.

5.8.1 Metrological Approaches

A comparative study between D415, SR300, Kinect II, and PrimeSense Carmine
1.09 is presented in [13]. The errors are measured using a calibrated sphere at a
very close range. Between 5 and 10 m, errors are measured using the VDI/VDE
2634 Part 2 guideline [110]. Moreover, systematic depth errors are extracted using
a planar surface at different distances. An in-depth comparative study that evaluates
the RealSense D400, the Kinect II, and the Orbec Astral can be found in [35].
An empirical evaluation of ten RGB-D cameras is presented in [47]. The cameras
tested are the Asus Xtion Pro Live, the Occipital Structure IO, the Orbbec Pro,
the Kinect II, the RealSense D435, the RealSense ZR300, the RealSense R200,
the RealSense F200, the RealSense SR300, and the Ensenso N35. Investigations
of hand-held scanning systems, including RGB-D cameras, are presented in [42,
57, 58]. A metrological evaluation of Microsoft Kinect and Asus Xtion sensors is
presented in [38]. An evaluation of the performance of the Intel RealSense SR300
is presented in [14]. An analysis of Intel RealSense D435 is presented in [4]. The
proposed methodology uses a planar target with various orientations and distances
to the RGB-D camera. Finally, a significant body of literature is available on the
evaluation of the Kinect I and II [19, 26, 27, 30, 39, 69, 75, 94, 100].

5.8.2 Application-Based Approaches

Since the introduction of RGB-D cameras, a significant body of literature related to
the quantitative evaluation of RGB-D cameras applied to many scientific fields has
been produced. In this section, we provide a brief overview of some quantitative and
qualitative evaluations related to two scientific disciplines.



252 M.-A. Drouin and L. Seoud

5.8.2.1 Agriculture

In the context of agricultural applications, a comparative study of Microsoft’s Kinect
II, the Orbec Astra, the Intel RealSense SR300, and the Intel RealSense D435 is
performed for close-range outdoor agricultural phenotyping [112]. Their experiments
show that an active stereo camera outperforms other RGB-D cameras for outdoor
agricultural applications. Many studies have examined the use of RGB-D cameras
for characterizing crops such as sugar beets, maize, cotton, grapevine, and sweet
onions [52, 53, 70, 80, 80, 113]. A review of the different sensors, including RGB-
D cameras, used for plant phenotyping is presented in [85]. Another comparative
study by Kuan et al. [61] examines the performance of Intel RealSense R200, Kinect
II, and Xtion Pro Live in outdoor environments. In this study, the Intel RealSense
R200, which is an active stereo sensor that predates the RealSense D435, had a
larger operational range than the Kinect II. However, in terms of quality, the Kinect
II outperformed the R200.

5.8.2.2 Biomedical Applications

Motion is a valuable descriptor of the functional and health status of a human subject.
Consumer-grade RGB-D sensors are being exploited in various healthcare setups to
analyze human shape and motion patterns. This tendency emanates from the need to
base clinical decision making and outcome assessment on objective and quantitative
measurements in a user-friendly and cost-effective manner [84].

RGB-D cameras are deployed in smart homes to monitor daily-life activities in
elderly and/or disabled patients [76]. In rehabilitation, interactive remote physical
therapy systems rely intensively on Microsoft’s Kinect I and II to track body joints
and compute kinematic measurements [15, 64, 72, 93]. Although sufficient accuracy
has been reported for clinical use [8], reduced performance has been noted in cases
of occlusions, either by an object or by other body parts [118] and in non-standing
postures, such as sitting or lying down [116]. These applications generally require
monitoring of the full body and address global motion patterns of large amplitude
and low frequency.

At a smaller scale, RGB-D sensors are exploited for continuous and contactless
monitoring of cardiac and respiratory vital signs in palliative and intensive care
units [87, 92, 99] and for sleep monitoring in familiar environments [65]. However,
difficulties related to large occlusions due to blankets and difficulties in distinguishing
between front and back sleeping postures have been reported [84]. Limitations to the
use of the Kinect have also been reported in the assessment of tremors in patients
with Parkinson’s disease [34] suggesting limited performance in the case of fine and
local motion patterns.
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5.8.3 Improving the Calibration of RGB-D Cameras

RGB-D cameras have to be calibrated by the manufacturer before being shipped to
consumers. The calibration procedures used in factories for RGB-D cameras can
be significantly different from the ones used for industrial scanners. The low cost
and large volume of production for RGB-D cameras may require fast and automatic
procedures. The in-factory calibration procedures for the Intel RealSense SR300 are
described in [119]. The notable aspect of the method is that it does not require the
extraction of fiducial markers.

Applications that focus on recreational human activities, such as motion tracking
for video game interactions, only require a coarse calibration. For these applications,
the factory calibration may be adequate. More demanding applications may require a
recalibrationofRGB-Dcameras.Manymethods havebeenproposed for recalibrating
or improving the calibration of RGB-D cameras [6, 11, 17, 22, 23, 23, 54–56, 78,
103, 108, 111, 111, 120, 125]. While most methods use a parametric model, a
non-parametric method is presented in [25]. Methods designed for the calibration of
RGB-D cameras that are based on ToF are described in [63, 82, 115]. A review and
quantitative comparison of methods for the Kinect sensor are presented in [114].

Some methods are specialized to recover the external parameters of an RGB-
D cameras. Typically, recovering the pose of the RGB-D camera with respect to
a world reference frame is of interest when combining multiple RGB-D cameras.
Many methods have been proposed to calibrate multiple RGB-D cameras [2, 16, 31,
62, 74]. Some RGB-D cameras have trigger signals that can be used to synchronize
multiple RGB-D cameras. These signals are used to avoid a simultaneous projection
by one RGB-D camera and range measurement by another.

The calibration of a sensor requires a certain amount of training that operators
of RGB-D cameras sometimes lack. In this situation, it may be useful to use fully
automatic calibration methods that calibrate the system while in normal operating
mode. These methods are known as auto-calibration or may sometimes be referred
to as unsupervised calibration. Many methods have been proposed for the auto-
calibration of RGB-D cameras [7, 24, 46, 71, 122]. Finally, some methods allowing
the calibration of RGB-D cameras in the context of Simultaneous Localization and
Mapping (SLAM) are presented in [86, 106, 123].

5.8.4 Final Remarks Related to System Performance and
Characterization

A significant amount of post-processing is performed by RGB-D cameras. This
processing may be optimized for specific applications and some of it can be disabled
or enabled by interfacing with software developer kits. The user may not be fully
aware that he/she had triggered a change in the behavior of the device. Different
RGB-D cameras that use the same measurement principle may have been designed
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Fig. 5.21 Left: a rendering of the range image of a mannequin scanned by the system using
temporal coding. Center: a color-coded difference between the range image acquired using temporal
coding and active stereo. The matching algorithm is the semi-global matching method presented
in Sect. 5.3.1.2. Right: a similar color-coded difference using an offline high-end, commercially
available stereo matcher. Figure courtesy of NRC

for applications with different requirements. Thus, an RGB-D camera that uses a
given implementation may not be a representative of all the RGB-D cameras that use
that measurement principle.

Figure5.21 shows the results obtained using a temporal coding structured-light
system functioning in the near-infrared. The system is also equipped with a second
camera that allows the conversion of the system into an active stereo system. The
baseline of the active stereo system is twice the one of the temporal encoding con-
figuration. This allows the quantitative evaluation of the tradeoffs between active
stereo and temporal encoding using the same hardware. This setup also allows a
quantitative evaluation of different stereo matching algorithms.

5.9 Research Challenges

Some research challenges are related to the development of new and improved hard-
ware, while others are related to the development of mass-adopted applications.
While the use of RGB-D cameras as input device for video games was initially
envisioned as a mass market application, the number of video games that use the
3D imaging capabilities of RGB-D cameras is relatively small. In recent years, the
increase in performance of computing platforms, combined with the rapid progres-
sion in the field of machine learning, has allowed significant advancement of passive
vision technologies, such as structure-from-motion, that rely on regular cameras,
rather than active sensors. The main challenge is the development of applications
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that can simultaneously reach a large user base and exploit the capabilities RGB-D
cameras to perform tasks that are not possible with a regular camera. Without this
large user base, it may be difficult to establish a viable business case supporting the
development of new active 3D imaging systems for the consumer market.

Some research challenges related to all types of RGB-D camera hardware are the
reduction of cost, size, and power consumption of the devices. The power output of
the laser used in RGB-D cameras is typically fixed so that the devices are safe under
all conditions during the normal use, includingwhen using typicalmagnifying optics.
Such regulatory and social-acceptance constraints leave little opportunity to increase
the range of RGB-D cameras based on structured-light or ToF. Increasing the sensi-
tivity of the near-infrared sensor integrated into the RGB-D cameras and reducing the
ambient light generated by the projection system, thereby increasing the contrast,
would allow designers to simultaneously increase the range and reduce the mea-
surement uncertainty. Note that while only the modulated portion of the illuminated
signal is used for the measurement, both the ambient and modulated illuminations
have to be taken into account when computing the maximum permissible exposure.

Currently, there is a trend for manufacturers of RGB-D cameras to discontinue
designs based on spatial encoding and these are being replaced by active stereo
and ToF designs. Significant research and development activities are expected to
occur on the topic of active stereo in the next few years. This technology allows
RGB-D cameras to operate in outdoor environments and is, at the moment, cheaper
than ToF to manufacture [119]. The expected growth of the ToF market related
to the automobile sector, combined with the recent integration of ToF into high-end
smartphones, creates new opportunities. Indeed, large industrial players are investing
significant resources in the development of low-cost ToF chips that could also be used
within RGB-D cameras.

5.10 Concluding Remarks

As factory workers, technicians, and engineers are exposed to 3D imaging technolo-
gies in their personal life, it can be expected that 3D systems, coupledwith augmented
reality systems, will enter the production floor of tomorrow’s factories. Currently,
several newmanufacturing processes require the use of 3D imaging systems. RGB-D
cameras can be used to build the first proof-of-concept of a manufacturing process
even when it does not have the required accuracy. Note that for some industrial and
commercial applications, the accuracy provided by consumer-grade RGB-D cameras
may already be sufficient. The increase in price between an RGB-D camera and a
low-end industrial 3D imaging systems is significant. This difference is in part related
to the quality of the devices and in part related to the reduced volume of production.
Manufacturers of industrial 3D imaging systems that use components contained in
RGB-D cameras should see a significant reduction of production cost. It would not
be surprising to see affordable low-end industrial 3D imaging systems produced in
large volumes in the near future.
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Fig. 5.22 From left to right: actual range image acquired with a temporal encoding structured-light
system, where the depth is coded using Gray levels; results of a deep learning approach to human
body parts segmentation trained with and without domain-specific data augmentation (DA) strategy
that closely simulates the actual acquisition including the system parameters and typical artifacts
present in the range images [96, 97]; a reference segmentation provided to qualitatively assess the
results of the segmentation. Figure courtesy of NRC

The impact of RGB-D cameras on academic research activities is clear. Such
cameras democratize the access to 3Ddata to hobbyists, students, and researchers and
this leads to the creation of a significant body of literature presenting technologies that
use range images as input. As a final remark, wewould like to stress the importance of
understanding the artifacts induced by the physical measurement process of RGB-D
cameras, when using their output as input to other systems. As an example, Fig. 5.22
shows the results of a deep learning approach to human body parts segmentation from
range images acquired using a structured-light system. A first convolutional neural
network (UNet) was blindly trained using ideally generated synthetic range images
[96]. The generalization performance on actual range images from the system was
unsatisfactory (Fig. 5.22, second from the right). A second CNN (UNet) was trained
using the same training images but introducing a domain-specific data augmentation
(DA) strategy that emulates the actual range acquisition system with its sensor-
specific artifacts, such as light occlusions, noise, and missing data. In this case, the
generalization performance is much improved on actual data (Fig. 5.22, second from
left) showing the importance of understanding and modeling the artifacts specific to
a particular range sensor [96, 97].
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5.11 Further Reading

Due to space constraints, many topics related to RGB-D cameras could not be
included in this chapter. Readers not familiar with the related material contained
in Chaps. 2–4 are invited to read these chapters. No description of the low-level
hardware components of RGB-D cameras was included in this chapter. A good start-
ing point for someone interested in the implementation details of RGB-D camera
technologies can be found in [88, 121]. The exploitation of the range images pro-
duced by RGB-D cameras is described in [89, 98]. Themetrological characterization
of RGB-D cameras is presented in [35]. Finally, the fusion of multiple range images
into a single 3D model is discussed in [124].

5.12 Questions

1. Name and explain the different types of RGB-D cameras.
2. Which type of RGB-D camera would you use in an outdoor environment?
3. For each type of RGB-D camera, what is the impact of having multiple sensors

acquiring the same scene simultaneously?
4. Using the data from Table5.3, what is the improvement in the spatial resolution

between the Kinect II and Kinect Azure?
5. Some third parties sell kits that add lenses to the front of the projector, infrared

camera, and RGB camera of the Kinect I. These kits are designed to reduce the
operational range of the sensor. What is the impact of such kits on the recovery
of scene geometry?

6. An engineer was asked to increase the modulation frequency of a ToF system by
20%. What is the impact on the range uncertainty, assuming that the modulation
contrast is not changed?

7. An industrial designer informed you that the size of a triangulation-based RGB-
D camera must be reduced by 50% while preserving the same range uncertainty.
What modification could be made to achieve this?

8. How could a temperature variation within the RGB-D camera influence the recov-
ery of scene geometry?

5.13 Exercises

1. Examine the Software Development Kit (SDK) of two different RGB-D cameras
and identify all the parameters that could influence the quality of the resulting
range images.

2. Using a commercially available DOE laser projector generating a random dot
pattern and two monochromatic cameras, build an active stereo scanner using the

http://dx.doi.org/10.1007/978-3-030-44070-1_2
http://dx.doi.org/10.1007/978-3-030-44070-1_4
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general design proposed in Fig. 5.4. Use the semi-global method presented in [48]
to perform the stereo matching. Please refer to the discussion on laser safety at
the end of Sect. 5.1.3.

3. Implement a Gray code structured-light system using the galvanometer-based
projection system described in Sect. 5.4.1.1. Again, please refer to the discussion
on laser safety at the end of Sect. 5.1.3.

4. Modify the system developed in the previous exercise to support the large-gap
Gray Code (see Chap.3).

5. Modify the system developed in the previous exercise to support phase shift
patterns (see Chap.3).

6. Add an RGB camera for performing texture mapping to the system developed in
exercises 2 and 3.
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Chapter 6
3D Data Representation, Storage
and Processing

William A. P. Smith

Abstract In this chapter,we reviewmethods for representing, storing andprocessing
3D data. We focus in particular on representations for raw 3D data, surface-based
and solid-based models. We describe and compare various data structures available
for representing triangular meshes and formats for mesh storage. We also provide
details on three different subdivision schemes and explain how differential surface
properties can be computed from different surface representations. In the context of
data compression, we describe in detail the Quadric Error Metric algorithm for mesh
simplification. Finally, we suggest areas for future work in this area and provide
some concluding remarks.

6.1 Introduction

There is a wide range of 3D acquisition technologies and applications for 3D data.
Perhaps not surprisingly, there are an equally wide number of systems for 3D data
representation, compression, storage, search,manipulation and visualisation. 3Ddata
representations serve as an intermediary between data acquisition and application,
with constraints imposed from both sides.

In many cases, the method of acquisition dictates a specific native representa-
tion format. For example, classical stereo vision recovers disparity and hence depth
values at each pixel and is therefore typically represented as a range image. On the
other hand, the target application also imposes constraints on the method of repre-
sentation. For example, certain operations are more efficient when a particular 3D
representation is used. For this reason, it may be necessary to convert between repre-
sentations, perhaps involving some level of approximation. In the case of graphics,
representationsmay be different depending onwhether the goal is physically accurate
simulation of light transport [68] or real-time rendering for interactive applications
[1].
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Examples of common 3D datasets range from the very small (molecules, micro-
scopic tissue structures, 3Dmicrostructures in materials science), to the human scale
(3D human heart, 3D face, 3D body scans) to the large (3D modelling of buildings
and landscapes) and beyond (3D modelling of astrophysical data). It is the scale,
resolution and compression of this data that determines the volume of data stored. In
turn, the challenges for storing, manipulating and visualising this data grow as the
volume increases.

6.1.1 Overview

In this chapter, we provide an overview of how 3D data can be represented, stored and
processed. We begin by providing a taxonomy of 3D data representations. We then
delve in more detail into a selection of the most important 3D data representations.
First, we focus on triangular meshes, describing the data structures available for
efficiently processing suchdata.We take as an example the halfedgedata structure and
provide some implementation details. Second, we describe schemes for subdivision
surfaces. Having considered methods for representing 3D data, we then discuss
how local differential surface properties can be computed for the most common
representation. Finally, we describe how 3D data can be compressed and simplified.

6.2 Representation of 3D Data

The representation of 3D data is the foundation of a number of important applications
such as computer-aided geometric design, visualisation and graphics. In this section,
we summarise various 3D representations which we classify as raw data (i.e. that
is delivered by a 3D sensing device), surfaces (i.e. 2D manifolds embedded in 3D
space) and solids (i.e. 3D objects with volume).

6.2.1 Raw Data

The raw output of a 3D sensor can take a number of forms, such as points, a depthmap
and polygons. Often, data represented in these raw forms requires further processing
prior to analysis. Moreover, these representations may permit non-manifold or noisy
surfaces to be represented which may hinder subsequent analysis.
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6.2.1.1 Point Cloud

In its simplest form, 3D data exists as a set of unstructured three-dimensional coor-
dinates called a point cloud, i.e. P = {v1, . . . , vn}, where vi ∈ R

3. Typically, a point
cloud of n points is stored as an n × 3 array of floating-point numbers or a linked
list of n vertex records. Note that the ordering of the points is arbitrary so that any
permutation of the point indices yields the same point cloud.

Point clouds arise most commonly in vision as the output of structure-from-
motion (see [33] for general introduction or e.g. [78] for current state-of-the-art)
or related techniques such as SLAM (simultaneous localisation and mapping) [82].
They also arise from laser range scanning devices, where the 3D positions of vertices
lying along the intersection between a laser stripe and the surface are computed.
Vertices may be augmented by additional information such as texture or, in the case
of oriented points, a surface normal [41]. A visualisation of a point cloud is shown
in Fig. 6.1a. A point cloud is unstructured. This means that there is no information
about vertex connectivity, and hence no explicit notion of the underlying surface from
which the points are sampled. This (usually unknown) sampling process results in
a loss of information. It is not known how the captured points should be connected
to approximate the surface and, depending on the sparsity of the sampling, parts
of the surface may be missed or the genus changed by any possible triangulation.
This makes further processing difficult. Local surface properties, such as the surface
normal direction, can be estimated by assuming local planarity and fitting a plane
to a given point and its k-nearest neighbours [36]. In other words, the k-nearest
neighbours to a point are used as an approximation of the tangent plane at that point.
This classical approach has subsequently been extended in many ways, see [6] for an
up to date survey.Without requiring conversion to a surface-based representation, the
direct rendering of vertex data (known as point-based rendering) has developed as
a subfield within graphics which offers certain advantages over traditional polygon-
based rendering [75].

Point clouds are ubiquitous and useful but lack structure. This is problematicwhen
using them as input to machine learning systems such as deep neural networks.
In particular, because they lack a regular grid structure, they cannot be used as
input to a convolutional neural network without conversion to a different form with
grid structure. Unfortunately, this conversion may introduce unwanted artefacts or
involve making spurious assumptions. For this reason, there has been a lot of recent
work on methods for supplying unstructured point cloud data to neural networks. Of
particular note, PointNet [72] proposes an architecture for point cloud processing in
which points are supplied and encoded in arbitrary order, respecting the permutation
invariance of the representation. To extract global features from arbitrarily sized point
clouds, pooling along point index dimension is performed.
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Fig. 6.1 Visualisation of different 3D representations: (a) point cloud, (b) wireframe, (c) wireframe
with hidden surfaces removed, (d) depth map (brighter equals closer to the viewer), (e) vertex
normals drawn in blue, (f) principal curvature directions drawn in red and blue, (g) smooth shaded,
(h) flat shaded, (i) surface colour heat mapped to represent function value (in this case mean
curvature)

6.2.1.2 Structured Point Cloud

A more constrained representation may be used when point cloud vertices adhere
to an underlying structure, namely, a grid with arbitrary sampling. In this case, ver-
tices are stored in an ordered m × n × 3 array and, for each point i = 1, . . . ,m,
j = 1, . . . , n, there is a corresponding 3D vertex [x(i, j) y(i, j) z(i, j)]T ∈ R

3.
Moreover, the ordering of the points is such that adjacent vertices share adjacent
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Fig. 6.2 Two of the possible
regular triangulations of a
3 × 3 grid. Note that the
single non-boundary vertex
has degree 6

indices. There is an implicit mesh connectivity between neighbouring points, and
non-boundary points are always degree 6. Conversion to a triangular mesh is straight-
forward, by constructing an edge between all pairs of adjacent vertices (and adding
one of the two possible diagonals for each 2 × 2 neighbourhood). Two such triangu-
lations are illustrated in Fig. 6.2.

Often, there is an additional binary 2D array of size m × n which indicates the
presence or absence of 3D data (for example, parts of the surface being imaged may
have poor reflectance). Instead of binary, a scalar “confidence” value can be stored
providing an indication ofmeasurement uncertainty at each point. Finally, a grayscale
or colour texture image of the same dimensions may also be associated with the 3D
data. In this case, the format provides an implicit correspondence between 2D pixels
and 3D vertices, assuming that the 3D camera captures and stores such information.
An example of a commonly used structured point cloud dataset is the 3D face images
in the Face Recognition Grand Challenge Version 2 data release [69].

6.2.1.3 Depth Maps and Range Images

A special case of a structured point cloud arises when the sampling of points in
the x-y plane is viewer-centred, i.e. the 2D grid coordinates (i, j) are the result
of a projection from 3D to 2D. Although often used interchangeably, we define a
range image as a structured point cloud which arises from a perspective projection
and a depth map as an orthogonal projection and regular sampling of 3D vertices
over a 2D image plane. Both representations have the advantage that they can be
represented by a 2D function z(i, j) augmented by the projection parameters. Hence,
these representations require less storage than those which allow variable spacing of
points in the (x, y) plane and can effectively be stored (and compressed) as an image.
In the case of a depth map, the only additional information required to reconstruct 3D
vertex position is the fixed spacings, Δx and Δy (often Δx = Δy = 1, implying that
the z values are in units of pixels). In the case of a range image, parameters related
to the camera projection (e.g. focal length and centre of projection) must also be
stored. Depthmaps and range images can be visualised as greyscale images, whereby
image intensity represents the distance to the surface (see Fig. 6.1d). Alternatively,
they can be converted into a triangular mesh and rendered. Since the vertices are
evenly distributed over the image plane, a regular triangulation can be used. Range
images are the natural representations of binocular stereo [77] where, for each pixel,
a disparity value is calculated which is related to depth. In addition, range images are
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often computed as an intermediate representation as part of the rendering pipeline.
Here, they are used for z-buffering and to efficiently simulate many visual effects
such as depth of field and atmospheric attenuation. Range images are the format
supplied by depth cameras such as Microsoft Kinect [98] or Intel RealSense [42].
For this reason, they are in wide use in the now popular field of RGBD computer
vision. The conversion from pixel coordinates (i, j) and depth value z(i, j) in a range
image to 3D point P(i, j) ∈ R

3 in camera-centred coordinates is achieved via

P(i, j) =
⎡
⎢⎣

i−cx
f z(i, j)

j−cy
f z(i, j)
z(i, j)

⎤
⎥⎦ , (6.1)

where f is the focal length and (cx , cy) the principal point of the camera.
Depth maps and range images are stored in regular grids, just like conventional

RGB images. This means that they can be supplied as input to convolutional neural
networks or produced as the output from fully convolutional networks [52]. This has
led to an explosion of interest in 3D deep learning using depth map-based represen-
tations. For example, a state-of-the-art method [50] estimates a range image from
a single RGB image using supervised learning. The supervision labels are depth
maps. These are estimated by a structure-from-motion and multiview stereo pipeline
applied to unstructured image collections.

6.2.1.4 Normal Map

Photometric shape reconstruction methods often recover an intermediate represen-
tation comprising per-pixel estimates of the orientation of the underlying surface.
In graphics, this is known as a bump map. This is either in the form of surface
gradients, i.e. p(x, y) = ∂x z(x, y) and q(x, y) = ∂yz(x, y), or surface normals,
i.e. n(x, y) = [−p(x, y) − q(x, y) 1]T . A normal map can be rendered by using a
reflectance function to locally shade each pixel. Alternatively, a depth map can be
estimated from surface normals via a process known as surface integration (see [73]
for a recent survey and [31] for a state-of-the-art approach with publicly available
source code). This is a difficult problem when the surface normal estimates are noisy
or subject to bias. When augmented with (potentially lower resolution) depth esti-
mates, the two sources of information can be combined to make a robust estimate of
the surface using an efficient algorithm due to Nehab et al. [61]. This approach is par-
ticularly suitable where the depth map is subject to high-frequency noise (e.g. from
errors in stereo correspondence) and the surface normals subject to low-frequency
bias (e.g. when using photometric stereo with inaccurate light source directions).
Normal maps are sometimes computed in rendering during the rasterisation process
and referred to as normal buffers. This is useful in deferred shading [76] where the
rendered image is computed in screen space in one pass after the rasterisation pro-
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cess. This is in contrast to conventional rasterisation where the image is rendered at
the same time as rasterisation.

Often, normal maps are used to store high-frequency shape information to accom-
pany geometry stored as a mesh. Here, the normal map no longer corresponds to a
projection of the surface to 2D but uses an embedding of the 3D surface into a 2D
texture space. The resolution of the normal map may be much higher than the num-
ber of vertices in the mesh, and the surface normals can be used during rendering to
simulate having higher resolution geometry.

6.2.1.5 Polygon Soup

A polygon soup is in some senses analogous to point cloud data but comprises poly-
gons rather than vertices. More precisely, it is a set of unstructured polygons [60],
each of which connects vertices together but which is not themselves connected in a
coherent structure such as a mesh. Suchmodels may arise in an interactive modelling
systemwhere a user creates and places polygons into a scene without specifying how
the polygons connect to each other. This sort of datamay contain errors such as incon-
sistently oriented polygons; intersecting, overlapping or missing polygons; cracks
(shared edges not represented as such); or T-junctions. This causes problems for
many applications including rendering, collision detection, finite-element analysis
and solid modelling operations. To create a closed surface, a surface fitting algorithm
must be applied to the unstructured polygons. For example, Shen et al. [80] show
how to fit an implicit surface to polygon soup data.

6.2.2 Surface Representations

The vast majority of geometric algorithms in computer vision and graphics operate
on representations of 3D data based on surfaces. Of these representations, by far
the most common is the triangular mesh. For this reason, we focus in more detail
on this representation in Sect. 6.3. For many applications in Computer-Aided Design
(CAD), it is necessary to be able to guarantee a certain class of surface smoothness.
For example, this may relate to aerodynamic or aesthetic requirements. Smoothness
can be categorised according to differentiability class. A surface belongs to class C0

if it is continuous (i.e. the surface or function value changes smoothly). The class
C

1 consists of all surfaces that are differentiable and whose derivative is continuous
(i.e. the surface normal changes smoothly),whileC2 surfaces have continuous second
derivatives (i.e. the surface curvature changes smoothly). A representation which can
provide such guarantees, as well as providing a convenient interface for interactive
editing is subdivision surfaces. We focus in more detail on this representation in
Sect. 6.4. Here, we give a brief overview of alternative surface representations and
provide a comparison of the desirable features exhibited by each representation.
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6.2.2.1 Triangular Mesh

The most common surface representation comprises 3D vertices, connected together
to form triangular faceswhich in turn represent or approximate a 2Dmanifold embed-
ded in 3D space. A number of categorisations are possible here. An important distinc-
tion is whether the mesh is closed (i.e. the surface completely encloses a volume) or
open (i.e. the mesh contains “boundary” edges which are used by only one triangle).
Meshes can represent surfaces with different genera. The genus of a surface is an
integer representing the maximum number of cuttings along non-intersecting closed
simple curves without rendering the resultant manifold disconnected. For example,
a sphere has genus zero, whilst a torus has genus 1. An important property of a
triangle is that it has a single surface normal. When a mesh is used to approximate a
curved surface, the differential properties of the surface, such as normals and curva-
ture, can only be approximately computed from the mesh faces. Mesh storage and
representation is discussed in more detail in Sect. 6.3.

Often, meshes are augmented with texture coordinates, also known as UV coor-
dinates [34]. These are most often 2D coordinates which describe a mapping from
the surface to a 2D planar parameterisation. 1D, 3D (volumetric) and 4D (volumetric
plus time) texture coordinates are also occasionally used. 2D texture coordinates
range over the unit square, (u, v) ∈ [0, 1] × [0, 1] and associate with each triangle
a corresponding triangle in texture space. For a triangle mesh containing N vertices
andM triangles, the number of vertex coordinates lies between N and 3M (in the for-
mer case, vertices that are shared between triangles in the mesh are shared between
the same triangles in the texture space; in the latter case no vertices are shared).
RGB intensity (known as texture maps), surface normals (known as bump maps)
or 3D displacements (known as displacement maps) are stored as images which are
indexed by the texture coordinates.When rendering a polygonal mesh, texture within
the interior of polygons can be looked up by interpolating the texture coordinates of
the vertices of the polygon. Transforming an arbitrary mesh to a 2D parameterisation
with minimal distortion is a difficult problem [79].

6.2.2.2 Quadrilateral Mesh

The polygons in a mesh need not be triangular. Meshes may contain polygons of
arbitrary shape and number of vertices, though non-planar polygons will require
additional processing for rendering (e.g. to interpolate surface normal direction over
the polygon). One commonly used polygon mesh is based on quadrilateral polygons
(sometimes known as a quadmesh). Quadmeshes can be easily converted to a trian-
gular mesh by diagonally subdividing each quadrilateral. Quadrilateral meshes are
preferred to triangular meshes in a number of circumstances. One example is when
finite-element analysis is used to simulate surface deformation such as in automo-
bile crash simulation or sheet-metal forming. In these cases, the solution accuracy is
improved by using a quadmesh.



6 3D Data Representation, Storage and Processing 273

6.2.2.3 Subdivision Surface

Subdivision surfaces are used to represent a smooth surface using a low-resolution
base mesh and a subdivision rule (or refinement scheme). When applied recursively,
the subdivided surface tends towards the smooth surface. The limit subdivision
surface is the surface produced when the refinement scheme is iteratively applied
infinitely many times. The limit surface can be computed directly for most subdi-
vision surfaces without the need to evaluate the iterative refinement. This allows a
subdivision surface to be rendered without explicitly subdividing the original base
mesh. We describe a number of subdivision schemes in Sect. 6.4.

6.2.2.4 3D Morphable Model

A space-efficient representation which can be used to approximate members of a
class of surfaces (such as human faces [8] or automobiles [49]) is the morphable
model. This is a compact statistical representation learnt from training samples. A
mesh of N vertices may be written as a long vector: s = [x1 y1 z1 · · · xN yN zN ]T .
From a sample of such meshes which are in dense correspondence (i.e. the i th vertex
in each mesh corresponds to a point with the same meaning, such as the tip of the
nose) a mean vector, s̄, and a set of orthonormal basis vectors, e1, . . . , ek ∈ R

3N , are
derived using Principal Components Analysis (PCA). These vectors correspond to
the most common modes of variation within the training data, and they are sorted by
the variance captured by each mode, σ1 > · · · > σk . Hence, only the most important
modes need to be retained to explain a large portion of the variance in the training
data, i.e. klN . Any member of the class of objects can be approximated as a linear
combination of the mean vector and the principal modes of variation:

s = Pb + s̄, (6.2)

where P = [e1| . . . |ek] ∈ R
3N×k is the matrix formed by stacking the basis vectors

and b ∈ R
k is a vector of weights associated with each mode. The advantage of

such a representation is that the high-dimensional mesh can be approximated by
the low-dimensional parameter vector. Moreover, the parameter space is useful for
recognition and classification, and the modes themselves often correspond to mean-
ingful global descriptors. For example, in Fig. 6.3 we show a morphable model of
human faces. The first mode appears to capture the difference between adult and
child faces. A morphable model is limited to representing objects from within the
same class as the training data. The ability of the model to generalise to unseen sam-
ples is characterised by the generalisation error which is a function of the diversity
of the training samples. There is also an implicit assumption that the original high-
dimensional data approximates a Gaussian distribution (hyperellipsoid) which can
be accurately approximated by a small number of axes. Note that the mean shape and
principal components are dependent on how the original shapes are rigidly aligned.
Usually, this is done using generalised Procrustes analysis [29] but a recent nonlin-
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Fig. 6.3 A 3D morphable model of human faces [65]. The top left panel shows the mean face
surface. The remainder shows the mean face deformed by ±5 standard deviations along the first
three principal modes of variation

ear approach is able to build principal component shape models that are invariant
to rigid body motion of the training shapes [35]. The parametric representation of a
morphable model makes an ideal interface for the fixed size output of a deep neural
network [4]. 3D morphable models are introduced and described in more detail in
Chap.10.

6.2.2.5 Implicit Surface

An implicit surface [9] (also known as a level set or an isosurface) is the set of all
points [x y z]T which satisfy the function f (x, y, z) = 0. Typically, function values
greater than zero indicate a point which is outside the object, while negative values
indicate a point which is inside; this is known as a signed distance function (SDF).
For example, the surface of a sphere of radius 5 can be represented by the set of
points satisfying x2 + y2 + z2 − 25 = 0. The surface normal to an implicit surface
can be obtained simply by taking partial derivatives:

n(x, y, z) = [
∂x f (x, y, z) ∂y f (x, y, z) ∂z f (x, y, z)

]T
. (6.3)

Inside/outside tests can also be performed efficiently by simply evaluating the sign
of the surface function at a given point. One of the most attractive properties of the
implicit surface representation is that intersections can be computed analytically. By

http://dx.doi.org/10.1007/978-3-030-44070-1_10
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Fig. 6.4 The three possible cases for a line–sphere intersection

substituting a parametric ray equation into the implicit surface function and solving
for the parameter, all intersections can be found exactly. For example, consider the
ray described by ⎡

⎣
x
y
z

⎤
⎦ =

⎡
⎣
x0
y0
z0

⎤
⎦ + t

⎡
⎣
a
b
c

⎤
⎦ . (6.4)

Substituting into the parametric surface for the radius 5 sphere given above yields

t =
−2(a + b + c) ±

√
(2a + 2b + 2c)2 − 4(a2 + b2 + c2)(x20 + y20 + z20 − 25)

2(a2 + b2 + c2)
.

(6.5)
There are three possible cases for this intersection (see Fig. 6.4). Two real rootsmeans
that the ray intersects the sphere in two places. One real root means the ray touches
the sphere tangentially. No real roots means the ray misses the surface. Higher order
surfaces involve the solution of higher order intersection equations which may not
be possible analytically.

In general, obtaining a function which exactly describes a general surface is dif-
ficult. However, for applications involving visualisation of physical effects such as
fluid dynamics (where functional descriptions of the dynamics are readily available)
an implicit surface is a natural representation. There are a number of commonly
used ways to define an implicit surface. The example above is algebraic. The most
common such form is a quadric which can be used to describe regular shapes such
as spheres, ellipsoids and tori.

An alternative is to derive an algebraic representation from an intermediate rep-
resentation [10] which is specified by a designer or fitted to data. The most common
approach is to define a control structure from primitives such as points, line segments
and planar patches. A field function is defined which is determined by the distance, r ,
from a point to a control structure. For example, f (r) = 1

r2 . The value of this function
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is known as the field strength. The total field strength is the sum of the field strengths
due to each control structure. Distances to line segments and planes are usually taken
as the distance to the closest point on the structure. A single point yields a sphere
whose radius is determined by the chosen contour value. Where there are more than
one control point, the fields interact and the resulting isosurface bulges between
points. Approaches along these lines are known variously as metaballs, blobbies
and soft objects. Rendering isosurfaces for display is not straightforward. The most
common approach is to converting to a polygonal model [11]. Alternatives include
raytracing the surface [32] (which involves computing ray–surface intersections as
described above) or using point sampling and point-based rendering. A particularly
popular implicit surface representation for interpolation of missing parts of surfaces
is the Radial Basis Function [14].

Very recently, implicit surfaces, specifically SDFs, have been rediscovered in the
context of 3D shape modelling using deep neural networks. Initially, this was done
by discretising SDFs over voxels [19, 87, 97]. However, the use of discrete voxels
leads to very large memory requirements and networks with very large numbers of
parameters, while the discretisation leads to low-quality shape representations. Very
recently, continuous SDFs have been represented using the decision boundary of a
deep network itself. Essentially, a shape represented by an SDF is encoded by a deep
network that maps a point in R

3 to a probability that the point is inside the object.
Since deep neural networks are very effective at learning highly nonlinear decision
boundaries, this provides an ideal representation for complex shape variations. This
idea was proposed almost simultaneously as DeepSDF [64], Occupancy Networks
[56], Deep Level Sets [58] and Learnt Implicit Fields [16].

6.2.2.6 Parametric Surface

A parametric surface [23] x(u, v) = [x(u, v), y(u, v), z(u, v)]T is one which is
defined by a parametric equation, x : R2 �→ R

3, with two parameters, u and v. For
example, the radius 5 sphere example given above can be described in terms of
spherical coordinate parameters:

x(u, v) =
⎡
⎣
5 sin u cos v
5 sin u sin v
5 cos u

⎤
⎦ . (6.6)

A surface in such a form is easy to evaluate and, if the parametric equations are
differentiable, it is straightforward to calculate differential properties of the surface.
The problem is that it is very difficult to describe anything other than fairly simple
shapes using an algebraic parametric description. For this reason, complex shapes are
composed of piecewise parametric surfaces. These parametric patches are blended
together to obtain the overall surface, and each patch is defined in terms of a set of
control points over the unit square. To evaluate a parametric patch at a point, the
tensor product of parametric curves defined by the control points is computed. This
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is achieved by combining control points with polynomial blending functions. Most
commonly, these are order 3 (bicubic) functions for which (3 + 1) × (3 + 1) = 16
coefficients are needed to define the function. These are usually defined in terms of
a 4 × 4 grid of control points. The function can be written compactly in matrix form
as

x(u, v) =
⎡
⎣
x(u, v)
y(u, v)
z(u, v)

⎤
⎦ =

⎡
⎣
uMGxMT vT

uMGyMT vT

uMGzMT vT

⎤
⎦ , (6.7)

where u = [u3 u2 u 1] and v = [v3 v2 v 1] and

Gx =

⎡
⎢⎢⎣
Px
1,1 Px

1,2 Px
1,3 Px

1,4
Px
2,1 Px

2,2 Px
2,3 Px

2,4
Px
3,1 Px

3,2 Px
3,3 Px

3,4
Px
4,1 Px

4,2 Px
4,3 Px

4,4

⎤
⎥⎥⎦ , (6.8)

contains the x coordinates of the control points (i.e. Px
i, j is the x coordinate of the

control point at position i, j in the control point grid), similarly for y and z. The
matrixM describes a blending function for a parametric cubic curve. Two common
examples include B-spline:

MB-Spline =

⎡
⎢⎢⎢⎣

−1
6

1
2

−1
2

1
6

1
2 −1 1

2 0
−1
2 0 1

2 0
1
6

2
3

1
6 0

⎤
⎥⎥⎥⎦ , (6.9)

and Bézier:

MBezier =

⎡
⎢⎢⎣

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎤
⎥⎥⎦ . (6.10)

Bézier patches have some useful properties. The patch will lie completely within
the convex hull of its control points, and the Bézier surface will pass through the
control points at the corner of the patch. It does not generally pass through the
other control points. They are visually intuitive and popular in interactive editing
applications for this reason. An example of a Bézier patch is shown in Fig. 6.5. To
achieve C

0 continuity between adjacent patches, the boundary control points (and
hence boundary curve) must be aligned. C1 continuity is achieved by aligning the
boundary curve and derivatives. This requires that four sets of three control points
must be collinear.

An extremely useful generalisation of B-splines and Bézier surfaces is Non-
uniform Rational B-Splines (NURBS) [70, 74]. The distribution of control points
in a NURBS surface may be non-uniform. They are invariant to affine and perspec-
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Fig. 6.5 A Bézier surface
patch. Control points are
shown in red, the control grid
in blue and the resulting
surface in black

Fig. 6.6 An example
NURBS surface patch

tive transformations which means that such transformations can be applied to the
control points to obtain the same surface as applying the transformation to the sur-
face computed from the original control points. A NURBS surface is defined by
its order, a weighted set of control points and a knot vector. A point on a NURBS
surface is given by a weighted sum of a number of control points (usually only a
small subset) determined by a polynomial blending function. The parameter space
is divided up into intervals, and a control point only influences certain intervals.
This results in the desirable property of local support which means one part of the
surface can be adjusted without influencing others. The knot vector is a sequence of
parameter values which determine how and where a control point affects the NURBS
surface. The order of a NURBS surface determines the number of nearby control
points which influence a point on the surface. The NURBS surface is a unifying
representation which offers a single mathematical form for both standard analytical
shapes (e.g. conics) and free-form surfaces (Fig. 6.6).
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Table 6.1 Comparison of surface representations

Polygonal
mesh

Subdivision
surface

Morphable
model

Implicit
surface

Parametric
surface

Accuracy ✘ ✔ ✘ ✔ ✔

Space-
efficiency

✘ ✔ ✔ ✔ ✔

Display
efficiency

✔ ✔ ✔ ✘ ✔

Intersection
efficiency

✘ ✘ ✘ ✔ ✘

Intuitive
specification

✘ ✘ ✔ ✘ ✔

Ease of editing ✘ ✔ ✔ ✘ ✘

Arbitrary
topology

✔ ✔ ✘ ✘ ✘

Guaranteed
continuity

✘ ✔ ✘ ✔ ✔

6.2.2.7 Comparison of Surface Representations

The best choice of surface representation is application dependent. Table6.1 sum-
marises some of the broad strengths and weaknesses of the surface representations
discussed above. Generally speaking, polygonal meshes are the most widely used
representation and the standard rendering pipeline, such as OpenGL, is optimised
for their use. Subdivision surfaces are popular in animation and interactive editing
applications. Parametric surfaces are widely used in CAD as are implicit surfaces
which also find use in mathematical or scientific applications.

6.2.3 Solid-Based Representations

Solid-based representations are used where either the method of acquisition is volu-
metric in nature or where the application dictates a requirement for solid-based com-
putations and manipulations. For example, consider the simple problem of wishing
to compute the volume of a 3D object. If the object was stored, for example, as a
closed surface represented using a mesh, there is no simple way in which this can be
calculated. Using some of the solid-based representations described in this section,
this is trivial. Common areas of application for solid-based representations include

1. Medical imaging [84]: Imaging modalities such as MRI and CT are volumetric
in nature. Analysing and visualising such data necessitates volumetric represen-
tations.



280 W. A. P. Smith

2. Engineering: Components must be designed not only so that they fit together but
so that their structural properties (determined by their 3D shape) meet specifica-
tions.

3. Scientific visualisation [62]: Volumetric data arises in fields ranging from
oceanography to particle physics. In order for humans to interact with and draw
inferences from such data, it must be possible to visualise it in a meaningful way.

4. Finite-element analysis [99]: A numerical technique for finding approximate
solution of partial differential equations and integrals.

5. Stereolithography [3]: A process in which an ultraviolet laser is used to trace out
cross sections through a 3D object, building up layers of resin until a complete
object has been fabricated, commonly known as “3D printing”.

6. Interference fit [48]: Designing object shapes so that two parts can be held
together by friction alone.

Solids can either be represented volumetrically or by the surface which encloses
them. In this section, we summarise the most common solid-based representations.

6.2.3.1 Voxels

Voxels are the 3D analogue of pixels (the name is a contraction of “volumetric pixel”).
They are sometimes also referred to as a spatial occupancy enumeration. Each voxel
corresponds to a small cubic volume within space. At each voxel, a boolean is stored
which indicates the presence or absence of the volume at that point. Alternatively,
it may be more appropriate to store a scalar which represents, for example, density
at that point in the volume. The precision of the representation is determined by
the size of the voxel. A voxel representation is very efficient for making volumetric
calculations such as clearance checking. Data storage requirements are high, since
the number of voxels grows cubically with the resolution along each dimension.
Voxels are the natural representation for volumetric imaging modalities. This is
where the sensing device measures surface properties at discrete spatial locations
over a 3D volume. Common examples include Magnetic Resonance Imaging (MRI)
and Computed Tomography (CT). In vision, volumetric representations are also
appropriate for methods such as space carving [46] where image cues are used to
determine whether a voxel lies within the volume of an object.

There are two common ways to visualise voxel data: direct volume rendering
or conversion to polygonal surface for traditional mesh rendering. In direct volume
rendering, voxels are projected to a 2D view plane and drawn from back to front
using an appropriate colour and opacity for every voxel. Such visualisations allow
multiple layered surfaces to be visualised simultaneously (often exploited in medical
imaging where skin, soft tissue and bone can all be visualised in the same image).
Conversion to a polygonal mesh requires extraction of an isosurface of equal surface
value throughout the volume. The most commonly used approach for this purpose is
the marching cubes algorithm of Lorensen and Cline [54]. The algorithm proceeds
by examining cubes formed by eight neighbouring voxels. Each of the eight scalar
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Fig. 6.7 The eight voxels
produced by an octree voxel
subdivision

values is treated as a bit in an 8-bit integer. If a scalar value is higher than the iso-value
(i.e. inside the surface), it is set to one; otherwise, it is set to zero. Hence, there are
28 = 256 possible configurations. The 8-bit integer is used to access a lookup table
which stores a polygon associated with each voxel configuration. The individual
polygons are then fused to form a surface.

Like depth maps and range images, voxel representations have the advantage that
they are stored in a regular grid structure (with three spatial dimensions rather than
two in this case). This means that they can be used as input to or output from a
convolutional neural network and, as for depth maps, there has been an explosion of
interest in working with such data using deep learning. In fact, often surface-based
representations are converted to volumetric representations solely for the purpose of
enabling the use of deep learning. This has led to significant performance improve-
ments [18] on tasks such as semantic voxel labelling, 3D object classification and
CAD model retrieval.

A space-efficient representation for voxel data is the octree. This uses adaptive
resolution depending on the complexity of the surface throughout the volume. The
key idea is that voxels which are fully occupied or fully empty are not subdivided,
while partially occupied voxels are. This continues until either all voxels are occupied
or empty, or the smallest allowable voxel size is reached. Subdividing a voxel into
smaller cubes results in eight smaller voxels (see Fig. 6.7). This representation can be
stored in a tree structure inwhich nodes have eight children. Leaves are fully occupied
or empty voxels; the root represents the complete volume inwhich the object lies. The
finest resolution is determined by the depth of the tree. The example shown in Fig. 6.8
demonstrates how in regions of high curvature, subdivision can continue to obtain
an arbitrarily high accuracy approximation to the underlying smooth volume. Deep
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Fig. 6.8 A volume represented using equally sized voxels (left) and the octree adaptive represen-
tation (right)

learning architectures for volumetric data have been adapted to work with octrees
[90]. A two-dimensional analogue of the octree representation in which pixels are
recursively subdivided into four smaller pixels can be stored in a quadtree.

6.2.3.2 K-D Trees

K-d trees (short for K-dimensional tree) generalise the notion of space partitioning
to arbitrary, axis-aligned planes. Whereas the octree uses a regular subdivision of
space, a K-d tree is a data structure whose interior nodes represent a partition of
space along a plane which is orthogonal to one of the axes. A K-d tree is stored in a
binary tree where interior nodes represent a partition over an axis-aligned plane, and
leaf nodes represent a volume in space. As well as a volumetric representation for
shape, K-d trees are widely used for organising points to speed up multidimensional
search [5], such as nearest neighbour.

For example, Fig. 6.9 shows a K-d tree constructed over a three-dimensional vol-
ume (initially comprising the white boxed region). The first subdivision is shown by
the red plane. Each of the two subdivided regions is then split by the green planes,
and finally the blue planes yield eight leaf volumes. The canonical method is of
construction cycles through the axes of the space, subdividing along each in turn
before returning to the first again. So in the example in Fig. 6.9, the next partitions
would be parallel to the red plane. The position of the partitioning is chosen by the
median point within the volume along the axis of partitioning. This strategy leads
to balanced trees in which each leaf node is at the same depth (log n for a tree that
partitions n points).

Practically, to build a K-d tree over a set of n points in k dimensions first, the
points are pre-sorted along each dimension. Using an efficient sorting algorithm, this
has complexity O(kn log n). By maintaining the order of these pre-sorted lists, the
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Fig. 6.9 A 3D example of a
K-d tree

median at each partition can be computed in constant time, and constructing the tree
has complexity O(n). Nearest neighbour search on a K-d tree is performed by binary
searching the tree using the input point position. The leaf node point becomes the
initial estimate of the nearest neighbour. This is updated as the algorithm unwinds
back up the tree, checking whether the point at each node is closer to the target and
also whether the other branch of the tree needs checking based on a simple rule. If
the K-d tree is balanced, this operation has complexity O(log n).

K-d trees provide a way of reducing the complexity of nearest neighbour searches
or distance-based segmentation. For example, in the problem of range searching, the
aim is to find all vertices which lie within a certain Euclidean distance of a target
vertex (i.e. within a sphere centred on the target vertex with a radius given by the
distance threshold). This is an important problem for computing local features and
properties on surfaces. The brute force approach requires computation of the distance
between the target vertex and all others. With a K-d tree, the volume in which the
vertex lies can be found and only the distance to points within that volume need be
considered. The overhead of constructing the tree becomes worthwhile when many
such operations need to be performed. Note that for general range searching over a
surface, the use of a distance threshold will fail for complex, highly curved surfaces
(where Euclidean and geodesic distances vary greatly). In this case, it is necessary
to consider vertex connectivity to ensure only connected regions of the surface are
returned. This is discussed further in the next section.
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Fig. 6.10 A 2D example of a Binary Space Partitioning tree

6.2.3.3 Binary Space Partitioning

Binary Space Partitioning (BSP) further generalises the notion of space partitioning
to arbitrary subdivisions, i.e. unlike the k-d tree, the cutting planes can be any orien-
tation; thus, a k-d tree is an axis-aligned BSP tree. A volume (or in 2D, an area) is
represented by a series of binary tests determining which side of a plane (or in 2D, a
line) a point lies on. This representation leads to a binary tree structure with the leaf
nodes indicating whether a point lies inside or outside the volume and branching at
nodes representing the outcome of the binary test. This is a simple and elegant repre-
sentation on which boolean operations and point classifications are easy to compute,
though it potentially results in a high memory overhead. The representation was first
proposed by Fuchs et al. [25] and is a popular representation in graphics calculating
visible triangles from arbitrary viewpoints.

Each node stores the parameters of a plane and its outward-facing normal. Given
a query point, at each node, an in/out test for the point is made and depending on
the result of the test, the search recurses either left or right. When the search hits a
leaf node, the final in/out classification can be returned. Algorithms for constructing
BSP trees must make a choice of partitioning plane at each node and decide when to
terminate the tree. These choices depend upon the intended application for the tree.

In Fig. 6.10 we provide an example of a BSP tree. In this case the tree operates in
2D, and hence the binary tests determine which side of each line a point lies and the
resulting object is a 2D area. In this example, branching right signifies being outside
the object, and left is inside. In/out classifications are stored at leaf nodes.

6.2.3.4 Constructive Solid Geometry

Constructive Solid Geometry (CSG) [47] is a representation of solid objects based
on compositions of simple primitive solids. They are combined using boolean set
operations. The primitives and operations can be stored efficiently in a binary tree
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Fig. 6.11 An example of a
CSG object represented by a
binary tree of operations and
primitives

in which the leaves contain primitives, nodes contain operators and the represented
object lies at the root. Figure6.11 shows an example of a complex solid constructed
froma small number of primitives and operations. TheCSG representation is intuitive
and relates well to CAD interfaces. However, representing arbitrary solids in this way
can prove inefficient. In the context of 3D imaging,CSGcanbe useful for applications
with “humans in the loop”. For example, in content-based retrieval, a human must
be able to construct a coarse 3D model with which to search. Another example is
fitting a part-based model to 3D data (such as body parts to human motion data). In
this case, the parts can be constructed by a human using CSG. Finally, for indexing
3D data, a very low-dimensional description of an object can be obtained by fitting
a CSG model to the 3D data and comparing similarity by comparing CSG trees.

6.2.3.5 Boundary Representations

Boundary representations (known as b-reps) [86] describe solids by defining the
boundary between solid and non-solid. They are widely used in computer-aided
design. B-reps are composed of two parts. The first is the topology. This describes
how the surface elements are connected and is specified in terms of faces, edges and
vertices. See Fig. 6.12 for example. The second part is the geometry which specifies
the shape of a face, edge or vertex in terms of surfaces, curves and points. A face
is associated with a bounded portion of a surface and an edge with a bounded piece
of a curve. The topology of a b-rep is stored in a data structure, most commonly the
winged-edge which stores a face, edge and vertex table. Each edge stores pointers
to its two vertices, the two faces adjacent to the edge and the four edges adjacent to
both the edge and the adjacent faces. Each vertex and face stores a pointer to one
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Vertex table Edge table Face table

A xA yA zA
B xB yB zB
C xC yC zC
D xD yD zD

p A B
q B D
r C D
s A D
t A C
u B C

J p u t
K q r u
L p q s
M r s t

Fig. 6.12 An example of the topology of a solid described by a b-rep

of its adjacent edges. Adjacency relationship can therefore be computed in constant
time. Compared to CSG representations, b-reps are more flexible and have a richer
operation set.

6.2.3.6 Volumetric Mesh Representations

While triangle and quad meshes can be used to represent surfaces, it is also possible
to represent volumes using mesh representations. The analogues of triangle and quad
meshes for volumes are tetrahedral and hexahedral meshes (also called tet and hex
meshes). A tetrahedron is a 3D shape formed of three triangles. A hexahedron is any
3D polyhedron with six faces, of which a cube is the canonical example. Figure6.13
shows a hollow cylinder and cuboid represented as both hex and tet meshes.

6.2.4 Summary of Solid-Based Representations

The method of acquisition of 3D data determines in which of the raw representations
the data is delivered. Although some operations are possible on such data (for exam-
ple, point-based rendering of point clouds), most applications necessitate conversion
to a higher level representation. This may require a degree of approximation (for
example, integrating a depth map from surface normal data).

The choice between surface-based and solid-based representations is dictated
by the nature of the data and the intended application. On the other hand, certain
representations are amenable to creation and editing by hand, for example, by an
animator or CAD designer. The requirements here may include ease and intuition of
editing operations and guarantees about the nature of the resulting surface, such as
smoothness. Other factors which may influence the choice of representation include
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Fig. 6.13 A hollow cylinder and cuboid represented by tetrahedral (left) and hexahedral (right)
meshes

storage and processing efficiency, representational power (e.g. some representations
can only describe surfaces which are manifolds or continuous) and the efficiency
with which the representation can be rendered for visualisation.

6.3 Polygon Meshes

Polygonal meshes are of such importance and are used so ubiquitously throughout
computer graphics and vision that we provide a more in-depth discussion of the file
formats and data structures available for their storage and representation. We focus
particularly on triangularmeshes, though the representations extend naturally to quad
or arbitrary polygon meshes.

Formally, a triangular mesh of N vertices is defined as a pair: MN = (K N ,S).
The topology, or connectivity, of the mesh is given by the simplicial complex K N . A
simplicial complex is a set of simplices, which in turn are generalisations of the notion
of a triangle to arbitrary dimensions. A k-simplex is a polytope in k dimensions. So,
a 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex is a triangle and a
3-simplex is a tetrahedron. A triangle mesh can be represented using a 2-complex,
meaning a simplicial complex whose highest dimension simplex is a 2-simplex.
Concretely, the connectivity of a triangle mesh uses a 2-complex whose elements can
be vertices {i}, edges {i, j} or triangles {i, j, k}, with the indices i, j, k ∈ [1 . . . N ].
The actual shape of the mesh is given by the vector S ∈ R

3N , where the i th vertex
is given by vi = [S3i−2 S3i−1 S3i ]T . There is some redundancy in this representation
(for example, edges can be inferred from triangles) and so not all representations
store all of this information.
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6.3.1 Mesh Storage

There are a wide range of open and proprietary file formats for the storage of mesh
data. These can be categorised into binary and ASCII text formats. The former are
more space-efficient, while the latter are human readable and editable. In general,
these file formats all comprise a list of 3D vertices followed by a list of polygons
which index into the vertex list. The files may also store vertex or face attributes such
as surface normals and texture coordinates.

The most commonly used text-based formats are OBJ (originally developed by
Wavefront Technologies) and VRML (Virtual Reality Modelling Language) which
was designed particularly with the World Wide Web in mind. The most popular
binary format is 3DS which has grown to become a de facto industry standard for
transferring models between 3D programmes. As well as 3D data, this format can
also include scene properties such as lighting. Finally, the PLY format (developed at
the Stanford Graphics Lab) supports both ASCII and binary storage.

As the most frequently used format for model archiving, we briefly describe the
OBJ format. This is composed of up to four parts, two of which are required. The
following snippet provides an example OBJ file:

# Vertex (x,y,z) coordinates

v 0.123 0.456 0.789

v ...

...

# Texture coordinates (u,v) coordinates

vt 0.500 0.600

vt ...

...

# Normals in (nx,ny,nz) form

vn 0.707 0.000 0.707

vn ...

...

# Face Definitions

f 1 2 3

f 3/1 4/2 5/3

f 6/4/1 3/5/3 7/6/5

f ...

...

Comments can appear anywherewithin the file and are indicated by the line begin-
ning with a hash symbol. The file must begin with a list of 3D vertex positions. Each
is entered on a separate line, starting with “v”. There are then two optional parts:
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2D texture coordinates (line begins with “vt”) and 3D vertex normals (line begins
with “vn”). Texture coordinates are 2D coordinates in the range [0, 1], which index
into a texture map (which is typically square). Texture coordinates are scaled by
the dimensions of the texture map and colour values interpolated from the pixels
surrounding the scaled texture coordinate position. The length of the texture coor-
dinate and surface normal lists should be between N (one per vertex) and 3M (one
per vertex per triangle with none shared between triangles). The final required part
comprises face definitions. Each face definition can take four possible forms:

Vertex: A valid vertex index starts from 1 and indexes into the previously defined
vertex list. Faces may have more than three vertices.

f v1 v2 v3 v4 ...

Vertex/texture coordinate: A vertex index may be followed by a texture coordi-
nate index, separated by a slash.

f v1/vt1 v2/vt2 v3/vt3 ...

Vertex/texture coordinate/normal: A vertex index may be followed by both a
texture coordinate and surface normal index, each separated by a slash.

f v1/vt1/vn1 v2/vt2/vn2 v3/vt3/vn3 ...

Vertex/normal: A vertex index may be followed by only a surface normal index,
separated by a double slash.

f v1//vn1 v2//vn2 v3//vn3 ...

An OBJ file may be augmented by a companion MTL (Material Template Library)
file which describes surface shading and material properties for the purposes of
rendering.

6.3.2 Mesh Data Structures

To apply any processing to a mesh, such as rendering, manipulation or editing, we
must be able to retrieve elements of the mesh and discover adjacency relationships.
Themost common such queries include finding the faces/edges which are incident on
a given vertex, finding the faceswhich border an edge, finding the edgeswhich border
a face, finding the faces which are adjacent to a face and so on. Mesh data structures
can be classified according to how efficiently these queries can be answered. This is
often traded off against a storage overhead and representational power.

There are a large number of data structures available for the purpose of represent-
ing meshes. Some of the most common are summarised below.
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Face list: A list of faces, each of which stores vertex positions. This representation
is storage optimal if no two triangles share a vertex. However, where vertices are
shared, there is a redundancy in storing the same vertex position multiple times.
Connectivity between faces is not stored and must be inferred. Adjacency queries
or transformations are inefficient and awkward.
Vertex-face list: A commonly used representation which is space-efficient. It
comprises a list of shared vertices and a list of faces, each of which stores pointers
into the shared vertex list for each of its vertices. Since this is the representation
used in most 3D file formats, such as OBJ, it is straightforward to load archival
data into this structure.
Vertex–vertex list: A list of vertices, each containing a list to the vertices to
which it is adjacent. Face and edge information is implicit, and hence rendering is
inefficient since it is necessary to traverse the structure to build lists of polygons.
They are, however, extremely simple and are efficient when modelling complex
changes in geometry [81].
Edge list: An edge list can be built from a vertex/face list in O(M) time for a mesh
of M faces. An edge list is useful for a number of geometric computer graphics
algorithms such as computing stencil shadows.
Winged-edge: The best known boundary representation (b-rep). Each edge stores
pointers to the two vertices at their ends, the two faces bordering them, and pointers
to four of the edges connected to the end points. This structure allows edge-vertex
and edge-face queries to be answered in constant time, though other adjacency
queries can require more processing.
Halfedge: Also known as the FE-structure [96] or as a doubly connected edge list
(DCEL) [20], although note that the originally proposed DCEL [59] described a
different data structure. The halfedge is a b-rep structure which makes explicit the
notion that an edge is shared by two faces by splitting an edge into two entities. It
is restricted to representing manifold surfaces. Further implementation details are
given below.
Adjacency Matrix: A symmetric matrix of size N × N which contains 1 if there
is an edge between the corresponding vertices. It is highly space inefficient for
meshes but allows some operations to be performed by applying linear algebra to
the adjacency matrix. This forms the basis of algebraic graph theory [7].

We provide a summary of the time and space complexity of a representative
sample of mesh data structures in Table6.2. Note that different structures which
support operations with the same asymptotic complexity may not be equally efficient
in practice. For example, finding all vertices of a face using a winged-edge structure
requires traversal from the face list to the edge list to the vertex list, whereas the
vertex-face list structure can traverse directly from faces to vertices. Also, note that
where we specify constant time, we refer to constant time per piece of information.
So, for example, using a halfedge all of the edges incident on a vertex can be computed
in a time which is linear in the number of edges incident on the vertex.

The halfedge structure allows all adjacency queries to be computed in constant
time, whilst requiring only a modest overhead in storage requirements. For this
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Table 6.2 Space and time complexity of mesh data structures for a mesh of M faces and N vertices

Vertex-face list Vertex–vertex
list

Winged-edge Halfedge

No. of pointers to
store a cube

24 24 192 144

All vertices of a
face

O(1) O(1) O(1) O(1)

All vertices
adjacent to a
vertex

O(M) O(1) O(1) O(1)

Both faces
adjacent to an
edge

O(M) O(N ) O(1) O(1)

reason, it is a good choice as a general-purpose data structure for mesh processing.
On the other hand, a vertex-face list efficiently supports many of the most common
operations and is much simpler to implement. For this reason, it is the most widely
used representation. Finally, because an adjacency matrix is amenable to analysis
using linear algebra, it is used widely in theoretical derivations. For this reason, we
discuss these three representations in more detail in the following sections.

6.3.2.1 Vertex-Face List

A vertex-face list stores a triangle mesh of N vertices and M faces as a vertex
table of size 3 × N and a face table of size 3 × M . Since vertex coordinates are
usually real numbers, the vertex table requires floating-point storage, whereas integer
vertex indices in the face table require only integer storage. Note that the vertex
indices in the face table are essentially pointers and could be implemented as such in
some programming languages. The vertex-face list is ideal for operations involving
enumerating all triangles, for example, rendering the mesh. This simply involves
iterating over the face table. Similarly, applying a transformation to all vertices of a
mesh simply requires iterating over the vertex table and applying the transformation
to each vertex. The problem with this representation is that it does not store vertex–
vertex adjacency (i.e. edges) explicitly. So, testing whether two vertices are adjacent
or finding all vertices adjacent to a given vertex requires iterating over all triangles
in the mesh (Fig. 6.14).

6.3.2.2 Halfedge Structure

The halfedge data structure comprises vertices, faces and “halfedges”. Each edge
in the mesh is represented by two halfedges. Conceptually, a halfedge is obtained
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Fig. 6.14 A 2D mesh with four vertices (left) can be represented by the vertex table and one of the
face tables or adjacency matrixes. Vertex indices are labelled blue, triangle indices red

Fig. 6.15 Halfedge structure

by dividing an edge down its length. Figure6.15 shows a small section of a mesh
represented using the halfedge structure. Halfedges store pointers to

1. the next halfedge in the facet (and so they form a circularly linked list around the
face);

2. its companion “opposite” halfedge;
3. the vertex at the end of the halfedge;
4. the face that the halfedge borders.

Note that halfedges can be linked in clockwise or counterclockwise direction about
a face, but this must be consistent over the mesh.

Concretely, in C a minimal halfedge structure would be implemented as follows:

struct halfedge
{

halfedge∗ next ;
halfedge∗ opposite ;
vertex∗ incidentvertex ;
face∗ incidentfacet ;

};
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In the halfedge data structure, a vertex stores 3D position (as well as any other per-
vertex information) and a pointer to one of the halfedges which uses the vertex as a
starting point:

struct vertex
{

float x;
float y;
float z;
/ / Additional per−vertex data here
halfedge∗ outgoingedge;

}

Finally, a facet stores any per-facet information (for example, face normals) and a
pointer to one of the halfedges bordering the face:

struct face
{

/ / Additional per−facet data here
halfedge∗ borderedge ;

}

With the halfedge structure to hand, traversals are achieved by simply following the
appropriate pointers. In the simplest case, the vertices adjacent to an edge can be
found as follows:

vertex∗ vert1 = edge−>incidentvertex ;
vertex∗ vert2 = edge−>opposite−>incidentvertex ;

Similarly for adjacent faces. Traversing the perimeter of a face is simply a case of
following a circularly linked list:

halfedge∗ edge = face−>borderedge ;

do {
/ / Process edge
edge = edge−>next ;

} while (edge != face−>borderedge)
Another useful operation is iterating over all the edges adjacent to a vertex (this is
important for range searching and also for vertex deletion resulting from an edge
collapse where pointers to this vertex must be changed to point to the vertex at the
other end of the deleted edge). This is implemented as follows:

halfedge∗ edge = vert−>outgoingedge;

do {
/ / Process edge
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edge = edge−>opposite−>next ;
} while (edge != vert−>outgoingedge)

Many other traversal operations can be implemented in a similar manner. In the
context of range searching, edge lengths need to be considered (i.e. the Euclidean
distance between adjacent vertices). Dijkstra’s shortest path algorithm can be applied
in this context for range searching using approximate geodesic distances or for exact
geodesic distances the fast marching method can be used [43] or, even more effi-
ciently, a recent heat flowmethod can be used [17]. Exercise 7 asks you to implement
Dijkstra’s shortest path algorithm on a halfedge structure.

6.3.2.3 Adjacency Matrix

The connectivity of a mesh comprising N vertices can be stored using an N × N
adjacency matrix A. Combined with a vertex table storing the vertex positions, this
provides a complete representation for the mesh (see Fig. 6.14). If Ai j = 1, it means
that there is a mesh edge between vertex i and j . Since mesh edges are always
undirected, Ai j = A j i for any i and j and so A is symmetric. Usually, an adjacency
matrix for a mesh is sparse and so can be stored with better than O(M2) space
complexity.

To test whether two vertices are adjacent, one simply needs to check a single
entry in the matrix, taking O(1) time. To find all vertices adjacent to vertex i , one
simply needs to iterate over the i th row ofA in O(N ) time. The analysis of adjacency
matrices is an entire research area in itself. To give a flavour of the sort of analysis
possible, the matrix powers of A are related to walks and distances. The nth power,

An = AA . . .A︸ ︷︷ ︸
n times

, (6.11)

gives the number of walks of length n between any two vertices. Specifically, element
(i, j) ofAn is the number of walks of length n between vertex i and j . Moreover, the
smallest n ∈ N0 that makes element (i, j) of An positive is the distance (number of
edges) between i and j . The number of triangles in a mesh is given by trace(A3)/6.
However, there is no natural representation for triangles within an adjacency matrix
so evaluating all triangles (for example for rendering) is not straightforward and
inefficient.

6.4 Subdivision Surfaces

Subdivision surfaces are based on iterative refinement of a base mesh according
to a refinement scheme. Each iteration of the subdivision results in a mesh which
is smoother than the previous. Refinement schemes are divided into two classes:
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approximating and interpolating. Interpolating schemes retain the positions of the
original base mesh as part of the subdivided surfaces. Approximating schemes on the
other hand is free to adjust the positions of these vertices. Approximating schemes
generally leads to smoother surfaces but allow less precise control for designers who
wish to specify the exact position of control vertices.

Subdivision surfaces exhibit a number of desirable features. The base mesh pro-
vides an easily editable representation.Often a coarse basemesh is built by combining
basic shapes to obtain a desired topology. Alternatively, an object may be scanned or
created using NURBS surfaces. A designer may adjust vertex positions at any level
of subdivision, using a visualisation of the limit surface to guide vertex placement.
This allows gross or finescale refinements to be made to the surface which are then
reflected at lower levels of subdivision. Another important feature, for both aesthetic
and engineering reasons, is the guarantees that subdivision surfaces can provide
about surface continuity. Finally, they can be efficiently displayed, even allowing
interactive editing.

In the context of 3D imaging, subdivision surfaces provide an ideal representation
for storing and interacting with 3D data due to their space efficiency and ease of
editing. However, a prerequisite step is to fit a subdivision surface to 3D data. This
is a difficult problem on which much research has focussed. Popular approaches
include that of Litke et al. [51] which is based on quasi-interpolation and that of
Takeuchi et al. [89] which uses surface simplification to construct a control mesh.
Subdivision surfaces can also be used to up-sample low-resolution sensed data by
using measured vertices as control points and a subdivision scheme to interpolate a
smooth surface.

One of the key developments in subdivision surfaces was to show that the limit
surface could be efficiently evaluated directly without having to apply the iterative
subdivision process. Stam [85] showed that a subdivision surface and all its deriva-
tives can be evaluated in terms of a set of eigenbasis functions which depend only
on the subdivision scheme.

We describe the two most popular approximating schemes due to Doo and Sabin
[21] and Catmull and Clark [15] which can operate on quadrilateral meshes. We
also describe the approximating scheme proposed by Loop [53] which operates on
triangular meshes. Popular interpolating schemes include butterfly scheme, refined
by Zorin et al. [100] and the method of Kobbelt [44].

6.4.1 Doo–Sabin Scheme

Commencing with a mesh of N vertices, MN = (K N ,S), an iteration of the Doo–
Sabin subdivision scheme proceeds as follows:

1. Every vertex vi , where {i} ∈ K N , yields a new vertex, vi, f , for every face f =
{i, j, k, . . . } ∈ K N which has vi as a vertex. This is known as the image of vi in
f .
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Fig. 6.16 Creation of (a) F-face, (b) E-face and (c) V-face in the Doo–Sabin subdivision scheme

2. The position of vi, f can be computed using a number of different rules. A simple
scheme sets vi, f to the midpoint of the centroid of f and the vertex position vi ,
i.e.

vi, f = c f + vi
2

, (6.12)

where

c f = 1

‖ f ‖
∑
j∈ f

v j . (6.13)

3. Image vertices are connected to form three kinds of new face, the first of
which is an F-face. An F-face is a smaller version of an original face, f =
{i, j, k, . . . } ∈ K N , formed by connecting the image vertices of the vertices of
f , i.e. vi, f , v j, f , vk, f , . . . . If f is an n-sided face then so is the resulting F-face.
This process is shown in Fig. 6.16a.

4. The second type of new face is an E-face. For every edge {i, j} ∈ K N shared by
two vertices f1 and f2, a new rectangular face is formed from the four image
vertices created from the endpoints of the edge, i.e. vi, f1 , vi, f2 , v j, f1 and v j, f2 .
This process is shown in Fig. 6.16b.

5. The final type of new face is a V-face. For every vertex {i} ∈ K N , a new face is
created by connecting the image vertices of vi in all faces towhich vi is adjacent. If
vi has degree n then the newV-face is n-sided. This process is shown in Fig. 6.16c.

To summarise, the subdivided mesh will comprise a quadrilateral for each edge in
the original mesh, an n-sided polygon for each n-sided polygon in the original mesh
and an n-sided polygon for each degree-n vertex in the original mesh. After one
round of subdivision, all vertices have degree four. Hence, subsequent divisions will
create quadrilateral V-faces. Non-quadrilateral faces after one subdivision become
extraordinary points in the limit surface. The limit surface is C1 continuous, except
at extraordinary points. An example of applying the Doo–Sabin scheme to a quadri-
lateral mesh is shown in Fig. 6.17.
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Fig. 6.17 Two iterations of the Doo–Sabin subdivision scheme applied to a T-shaped quadrilateral
base mesh. Extraordinary points are shown in blue

6.4.2 Catmull–Clark Scheme

Commencingwith amesh of N vertices,MN = (K N ,S), an iteration of theCatmull–
Clark subdivision scheme proceeds as follows:

1. For each face f = {i, j, . . . } ∈ K N , add a new vertex to the mesh (known as a
face point) with a position given by the centroid of the vertices of the face:

v f = 1

‖ f ‖
∑
i∈ f

vi . (6.14)

2. For each edge e = {i, j} ∈ K N with adjacent faces f1 and f2, add a new vertex
to the mesh (known as an edge point) with a position given by the average of the
edge end points and adjacent face points:

ve = 1

4

(
vi + v j + v f1 + v f2

)
. (6.15)

The original edge is replaced by two new edges connected to the edge point.
3. Add edges from every edge point ve to their adjacent face points, v f1 and v f2 .
4. For each original point vi , where {i} ∈ K N , compute a new position:

vnewi = v̂ f + 2v̂e + (F − 3)vi
F

, (6.16)

where v̂ f is the average of the F-face points adjacent to the original point and v̂e
is the average of the edge points adjacent to the original point.

The subdivided mesh is composed of quadrilaterals. In general, these will not be
planar surfaces. The number of vertices with a degree other than four remains con-
stant over iterations of the subdivision process. These are known as extraordinary
points. The limit surface can be shown to be C

2 continuous everywhere except at
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Fig. 6.18 Two iterations of the Catmull–Clark subdivision scheme applied to a cube base mesh

extraordinary vertices, where it is C1 continuous. An example of two iterations of
the Catmull–Clark scheme is shown in Fig. 6.18.

6.4.3 Loop Scheme

Unlike the previous two subdivision schemes, Loop’s method operates only on trian-
gular meshes. Commencing with a triangular mesh of N vertices, MN = (K N ,S),
an iteration of Loop’s scheme proceeds as follows:

1. For every edge e = {i, j} ∈ K N a new vertex ve is created as a linear combination
of the four vertices comprising the two faces, f1 = {i, j, k1} and f2 = {i, j, k2},
which are adjacent to the edge as shown in Fig. 6.19a. They are combined using
the following weights:

ve = 1

8
vk1 + 1

8
vk2 + 3

8
vi + 3

8
v j . (6.17)

2. The position of each original point is adjusted according to its existing position
and those of its adjacent vertices, as shown in Fig. 6.19b. For each original point
vi , where {i} ∈ K N , the new position is given by

vnewi = α

⎛
⎝ ∑

j∈Adj(i)

1

di
v j

⎞
⎠ + (1 − nα)vi , (6.18)

where Adj(i) = {
j | {i, j} ∈ K N

}
is the set of vertices adjacent to vi . The con-

stant α is determined by the degree di = ‖Adj(i)‖, and there are many variations
available. The simplest choice is

α =
{ 3

16 if di = 3,
3
8n if di > 3.

(6.19)
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Fig. 6.19 Loop subdivision scheme: (a) creation of an edge vertex; (b) calculating new position
for original points; (c) triangulation of new edge points

Fig. 6.20 Two iterations of the Loop subdivision scheme applied to an icosahedron base mesh

3. The subdivided surface is given by connecting the new edge vertices and the
updated original vertices as shown in Fig. 6.19c.

After one subdivision, all vertices have degree six except those which were in the
original mesh and had a degree other than six. These are the extraordinary vertices.
The limit surface is C2 continuous except at the extraordinary vertices (Fig. 6.20).

6.5 Local Differential Properties

Many useful 3D data processing operations require the computation of local differ-
ential properties of a surface. These range from the construction of local features
such as spin images [39] to the computation of geodesic paths over a manifold [43].
However, most surface representations are discrete and contain only an approximate
sampling of the underlying surface. The nature of the representation determines the
manner in which these properties are computed.

First-order properties of the surface (normal vector and tangent plane) are most
commonly used for shading (since surface reflectance is a function of orientation).
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Interpolation shading uses interpolated surface normals to allow a polygonal approx-
imation of a smooth surface to appear smooth when rendered (see Fig. 6.1g). Second-
order properties (principal curvatures and directions) are often used for local charac-
terisation of the surface topology, for example, the shape index [45]. Occasionally,
even third-order properties (directional derivatives of the principal curvatures) can
be useful.

For surfaces described in functional form (such as implicit surfaces), differential
properties can be computed analytically using differential calculus. On the other
hand, discrete representations require the assumption that the underlying surface is
smooth and differential properties can only be approximated. Such operators should
converge asymptotically to the true result as the sampling density increases.

6.5.1 Surface Normals

For uniformly sampled representations such as voxels and depth maps, differential
properties can easily be approximated using finite differences which consider adja-
cent pixels or voxels, corresponding to the local neighbourhood about a point. For
example, in the simplest case the surface gradients in the x- and y-directions of
a surface represented as a discrete depth map, z(x, y), can be approximated using
single-forward differences:

∂x z(x, y) ≈ z(x + 1, y) − z(x, y)

δx
, ∂yz(x, y) ≈ z(x, y + 1) − z(x, y)

δy
, (6.20)

where δx and δy are the spacings on the pixel array. The surface normal vector is then
given by

n(x, y) = [−∂x z(x, y) − ∂yz(x, y) 1]T
‖[−∂x z(x, y) − ∂yz(x, y) 1]T ‖ . (6.21)

Note that computing gradients using only forward, backward or central differences
results in high sensitivity to noise. A more stable estimate can be obtained by first
smoothing the depth map prior to computing finite differences. If smoothing is done
via convolution then, by associativity of the convolution operation, the smoothing and
finite difference kernels can be pre-convolved giving a single kernel that provides a
smoothed finite difference approximation. For example, using a 3 × 3 kernel, central
finite differences and smoothing with a Gaussian filter with standard deviation 0.6,
the following approximation is obtained [83]:

∂x z(x, y) ≈ z ∗ 1

12

⎡
⎣

−1 0 1
−4 0 4
−1 0 1

⎤
⎦ , (6.22)

similarly for the y gradient.
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Fig. 6.21 Computation of
vertex normal by averaging
adjacent face normals

In the case of an arbitrary triangular mesh, such a simple approach is not possible.
If the surface is truly piecewise planar, then it is enough to associate a face normal
with each triangular facet. For a face composed of vertices v1, v2 and v3, the face
normal is given by

n f = (v2 − v1) × (v3 − v1)
‖(v2 − v1) × (v3 − v1)‖ . (6.23)

For the normal to be directed to the outside of the object, the vertices must be ordered
in an anticlockwise sense when viewed from the outside.

More commonly, the underlying surface is assumed smooth and the surface normal
is approximated at each vertex. There are a number of alternative approaches to
computing vertex normals [38] which are based on weighted averages of the adjacent
facet normals (see Fig. 6.21).

Consider a vertex whose incident edges in anticlockwise order are given by the
sequence 〈e1, . . . , en〉. The first edge is repeated at the end of the sequence so e1 = en .
The most well-known method which is very efficient to compute uses triangle areas
as weights. The area weighted normal to a facet defined by edges ei and ei+1 is given
simply by ei × ei+1. Hence, the area weighted vertex normal is

nArea
v =

n−1∑
i=1

ei × ei+1. (6.24)

Note that this result requires normalisation back to unit length. The efficiency of this
approach lies in the fact that the cross-product computation factors in the area weight
for free. In particular, no trigonometric calculations are required. The downside to this
approach is that a triangle with large area but small angle between the edges incident
on the vertex contributes disproportionately to the result. This can lead to highly
inaccurate normals under certain circumstances, and the result depends heavily on
the mesh triangulation (see [55] for an example).
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An alternative, originally proposed by Thürmer andWüthrich [93], uses the angle
between pairs of edges incident on a vertex as the weight:

nAngle
v =

n−1∑
i=1

arccos

(
ei · ei+1

‖ei‖ · ‖ei+1‖
)

ei × ei+1

‖ei × ei+1‖ . (6.25)

Again, the result requires normalisation. This approach is relatively simple and accu-
rate but requires trigonometric calculations so is unsuitable for applications involv-
ing real-time computation of vertex normals (for example, interactive rendering of a
deforming surface).

Amethod proposed byMax [55] offers a compromise. It does not require trigono-
metric calculations but is more stable in the special cases where area weighting per-
forms badly. The weight is comprised of the sine of the angle between edge vectors
and the edge length reciprocal:

nMax
v =

n−1∑
i=1

sin αi

‖ei‖‖ei+1‖
ei × ei+1

‖ei × ei+1‖ , (6.26)

where

sin αi = ‖ei × ei+1‖
‖ei‖‖ei+1‖ , (6.27)

which simplifies to

nMax
v =

n−1∑
i=1

ei × ei+1

‖ei‖2‖ei+1‖2 . (6.28)

Again, the result requires normalisation. The derivation follows from an assumption
of a locally spherical surface. For meshes representing surfaces which are exactly
locally spherical, the result is exact.

6.5.2 Differential Coordinates and the Mesh Laplacian

When a surface is represented using amesh, a transformation can bemade to differen-
tial coordinates (δ-coordinates) which provides an alternate route to the computation
of differential surface properties as well as a useful representation for other oper-
ations (including mesh compression). This is most easily accomplished when the
mesh is stored in an adjacency matrix. A vertex vi , {i} ∈ K N which is a member of
the mesh MN = (K N ,S) may be represented in terms of δ-coordinates. This rep-
resentation describes the difference between the absolute position of the vertex and
the centre of mass of its adjacent vertices:
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δi = [δxi δ
y
i δzi ]T = vi − 1

‖Adj(i)‖
∑

j∈Adj(i)
v j . (6.29)

di = ‖Adj(i)‖ is the degree of the vertex i . This transformation can be represented
in matrix form. Given the mesh adjacency matrix A, where

Ai j =
{
1 if {i, j} ∈ K N

0 otherwise,
(6.30)

and the diagonal degree matrix, D, where Dii = di , the graph Laplacian matrix
(sometimes called the topological Laplacian) is defined by L = D − A, i.e.

Li j =
⎧⎨
⎩
di if i = j
−1 if {i, j} ∈ K N

0 otherwise,
(6.31)

The Laplacian relates absolute and differential coordinates as follows. If the long
vector x ∈ R

N contains the x coordinates of the vertices, then Lx = Dδx , where
δx ∈ R

N is a long vector of the x components of the differential coordinates of the
vertices, and similarly for the y- and z-coordinates. Note that spectral analysis of
the Laplacian can be used to perform signal processing operations on an irregularly
triangulated mesh [91].

From differential geometry, it is known that an infinitesimal curvilinear integral
about a point on a smooth surface is related to the mean curvature H(vi ) at vi and
the surface normal ni :

lim|γ |→0

1

|γ |
∫
v∈γ

(vi − v)dl(v) = −H(vi )ni , (6.32)

where γ is a closed simple surface curve l(v) around vi . By rewriting the differential
coordinate vector, it can be seen that a discrete approximation to this integral can be
made

1

‖Adj(i)‖
∑

j∈Adj(i)
(vi − v j ) ≈ −H(vi )ni . (6.33)

Hence, the direction of the differential coordinate vector approximates the surface
normal, and the magnitude is proportional to the mean curvature [91]. This provides
an alternative means to surface normal calculation for a mesh which is motivated by
differential geometry. A final alternative proposed by Meyer et al. [57] is based on
cotangent weights:

δcoti = 1

|Ωi |
∑

j∈Adj(i)

1

2
(cot αi j + cot βi j )(vi − v j ), (6.34)



304 W. A. P. Smith

Fig. 6.22 The angles used in
the cotangent weights
scheme for surface normal
computation

where |Ωi | is the size of the Voronoi cell of i , and αi j and βi j denote the two angles
opposite to the edge {i, j} (see Fig. 6.22).

6.6 Compression and Levels of Detail

Broadly speaking, the storage requirements for 3D data can be reduced in two ways:
storing a 3D representation in less space (compression) or deriving a lower reso-
lution representation which approximates the original data. We have already seen
some representations which lead to space-efficient storage of 3D data. For example,
subdivision surfaces require only the storage of a low-resolution base mesh and sub-
division rule while the octree representation uses adaptive resolution depending on
the complexity of the volume. Compression of 3D data in general [2, 66] is a more
challenging problem than is solved by the relatively mature technologies available
for compression of audio, image and video data. Techniques for 3D data compression
can be categorised into three classes of approach:

Mesh-based methods: Involve traversal of a polygonal mesh and encoding of the
mesh structure in a manner which can be compressed. An example of such an
approach is topological surgery [92]. This method proceeds by quantizing vertex
positions within the desired accuracy. A vertex spanning tree is then used to predict
the position of each vertex from 2, 3 or 4 of its ancestors in the tree. Finally, the
correction vectors required to recover the original positions are entropy encoded.
Another popular approach is based on a spectral analysis of the mesh Laplacian
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[40]. An eigendecomposition of the Laplacian matrix (see Sect. 6.5.2) yields an
orthonormal set of basis vectors onto which the geometry signals (vectors of x-, y-
and z-components) can be projected. By discarding high-frequency components
of the decomposition (i.e. those eigenvectors with small eigenvalues), the mesh
can be compressed such that only high-frequency detail is lost.
Progressive and hierarchical methods: We have already seen subdivision sur-
faces which fall into this category. Another important approach is the compressed
progressive mesh [37]. In the original progressive mesh, a mesh is encoded as a
form of reverse simplification. The opposite of an edge collapse operation is a
vertex split, in which a vertex is divided into two and additional edges and faces
are added to the mesh. A progressive mesh represents a high-resolution mesh as
a series of vertex split operations starting from a base mesh. Although this allows
progressive transmission of increasingly detailed mesh data, there is a storage
overhead which means space requirements increase. Pajarola and Rossignac [63]
showed how this representation can be compressed.
Image-based methods: A 3D surface may be represented in image space. This
can either be native to the representation (in the case of a range image or bump
map) or via a process known as surface parameterisation or surface flattening
[79]. Once represented as an image, any existing image compression algorithm
may be applied to the data. However, it is important to note that the objectives
of lossy image compression may not yield correspondingly high-quality results
in the surface domain since the redundancies in the two data sources may not
be the same. One example of an image-based approach is geometry images [30].
Geometry is captured as a 2D array of quantized points. To transform a mesh
to this representation, an arbitrary mesh is cut along a network of edge paths,
and the resulting single chart is parameterised onto a square. Face connectivity is
implicit in the representation, and bump maps or texture can be stored in the same
parameterisation. Compressing the resulting data using an image wavelet encoder
allows dramatic reductions in storage requirements without severely affecting the
resulting geometry.

As suggested above, an alternative to using compression to store a high-resolution
mesh in less space is to derive a lower resolution mesh which approximates the
original. This is known as mesh simplification and is described in the following
section.

6.6.1 Mesh Simplification

Mesh simplification or decimation is the process of iteratively removing vertices,
edges and faces from a mesh to reduce its complexity and storage requirements. As
well as reducing storage requirements by removing redundant structures, simplified
meshes can also be processed or rendered more efficiently. Most mesh simplification
algorithms proceed using iterative edge collapse.
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Fig. 6.23 An edge collapse
operation

6.6.1.1 Edge Collapse

A pair contraction (v1, v2) → v̄, transforms a pair of vertices v1 and v2 to a new
position v̄, connects all their incident edges to v1 and deletes the vertex v2. Any edges
or faces which became degenerate after the contraction are removed. An example is
shown in Fig. 6.23.

Starting with the original high-resolution mesh MN = (K N ,S), a sequence of
pair contractions is applied until the simplification goals are satisfied (for example,
the target number of vertices is reached). Each contraction corresponds to a local
incremental modification of the complex K N and shape vectors S. The algorithm
generates a sequence of meshesMN ,MN−1,MN−2, . . . with decreasing resolution.

In general, only edge pairs are considered valid for contraction, i.e. where
{i, j} ∈ K N . When an edge is contracted: (vi , v j ) → v̄i j , the simplicial complex,
K N , describing the mesh topology is modified. Degenerate faces (those that no
longer have three distinct vertices), and duplicate edges are removed as well as the
collapsed edge and redundant vertex j :

K N−1 = K N \ {{ j}, {i, j}, { j, k}, {i, j, k} : {i, j, k} ∈ K N
}
. (6.35)

The shape vector of each individual mesh is also modified as the result of an edge
collapse. The vertex v j is deleted, and vi is moved to v̄i j .

6.6.1.2 Quadric Error Metric

Edge collapse algorithms operate by selecting the next edge for collapse as the one
whose deletion will result in the least increase in error. The choice of error measure
determines the nature of the simplification. For example, it may seek to preserve
volume or surface orientation. The most successful and widely used error measure is
based on theQuadricErrorMetric (QEM), as proposed byGarland andHeckbert [26]
in their QSlim algorithm.

Each vertex is a solution of a set of triangles (planes), which meet at that vertex.
Hence, we can define the error of the vertex with respect to this set as the sum
of squared distances to each triangle. Given a triangular plane p defined by the
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equation ax + by + cz + d = 0, where n = [a, b, c] is the plane normal and d is a
scalar constant. A fundamental quadric is defined as

Q = (nnT , dn, d2) = (A,b, c), (6.36)

where A is a 3× 3 matrix, b is a 3-vector and c is a scalar. The quadric Q assigns a
value Q(v) to every point in space v by the second-order equation

Q(v) = vTAv + 2bT v + c. (6.37)

Note that the level surface Q(v) = ε, which is a set of all points whose error
with respect to Q is ε, is a quadratic surface. Also the value of this quadratic
Q(v) is precisely the squared distance of v to a given plane. The addition of
quadrics can be naturally defined component-wise:Q1(v) + Q2(v) = (Q1 + Q2)(v)
where (Q1 + Q2) = (A1 + A2,b1 + b2, c1 + c2). Thus, given a set of fundamental
quadrics, determined by a set of planes, the quadric error at each vertex vi is com-
pletely determined by

EQi (vi ) =
∑
p

Q p(vi ) = Qi (vi ), (6.38)

where Qi = ∑
p Q p is the sum of the fundamental quadrics of all the planes incident

on a vertex vi . Using this additive rule, for an edge collapse (vi , v j ) → v̄i j , we
can associate a quadric Qi+ j which approximates the error at v̄i j , where Qi+ j =
Qi + Q j . This simple additive rule is one of the reasons for the efficiency of this
approach.

When considering the contraction of an edge (vi , v j ), we need to determine the
target position v̄i j . We select the optimum position (v̄) as the one that minimises
Eq.6.37. Since Eq.6.37 is a quadratic, finding its minimum is a linear problem.
Taking partial derivatives of Eq.6.37

∇Q(v̄) = 2Av̄ + 2b. (6.39)

Solving for ∇Q(v̄) = 0, we find the optimum position to be

v̄ = −A−1b. (6.40)

Finally, after removal of t vertices the next edge to be collapsed is chosen as the
one with minimal quadric error:

{i∗, j∗} = arg min
{i, j}∈K N−t

Qi+ j (v̄i j ). (6.41)

Note that the algorithm is implemented efficiently by placing edges onto a priority
queue. Priority is determined by the QEM for each edge. After each edge collapse,
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the QEM scores of edges sharing vertices with either end of the collapsed edge
are updated (using the simple additive rule given above). Since an edge collapse is
constant time complexity, the whole simplification is O(n log n), where the log n
term corresponds to removing an edge from the queue. There are some additional
technical considerations such as the preservation of an object boundary which are
described in detail in the thesis of Garland [27].

6.6.2 QEM Simplification Summary

The QEM simplification algorithm is summarised as follows:

1. Compute quadrics for all triangles in the mesh (Eq.6.36).
2. Compute errors associated with all edges {i, j}: Qi+ j (v̄i j ) and place edge errors

on a priority queue.
3. Delete edge with minimal error from priority queue, contract edge in mesh struc-

ture (removing redundant vertices and faces) and update QEM scores for adjacent
edges.

4. If simplification goals not met, return to step 3.

6.6.3 Surface Simplification Results

In Fig. 6.24, we show results of applying the QEM simplification algorithm to amesh
containing 172,974 vertices. The original mesh is shown on the left. The middle
image shows the surface after edges have been collapsed until the number of vertices
has been reduced by 80% (to 34,595 vertices). Notice that there is almost no visual
degradation of the rendering despite the large decrease in resolution. On the right,
the original mesh has been simplified until the number of vertices has been reduced
by 90% (17,296 vertices remain).

6.7 Current and Future Challenges

Although the representation, storage and processing of 3D data have been considered
for many decades, there are still somemajor challenges to be faced. On the one hand,
the size of 3D datasets is continuing to grow as sensing technology improves (e.g. the
resolution of medical imaging devices) and we begin to process large sequences of
dynamic data (acquired through 4D capture) or databases of meshes. Large databases
arise in applications such as 3D face recognition where fine surface detail is required
to distinguish faces, yet many millions of subjects may be enrolled in the database.
Not only must the database be stored efficiently but it must be possible to perform
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Fig. 6.24 Simplification results using the Quadric Error Metric. From left to right: original mesh
(172,974 vertices), simplified by 80% (34,595 vertices) and simplified by 90% (17,296 vertices)

queries in real time to be of use in real-world applications. The progressive mesh
representations described above allow progressive transmission of 3D data, but this
must be extended to dynamic data. Moreover, the transformation of a mesh into a
progressive mesh is expensive and may not be viable for huge datasets. The grow-
ing trend to outsource storage and processing of data to “the cloud” necessitates
3D representations which can be stored, interacted with and edited in a distributed
manner.

However, on the other hand, there is a growing wish to be able to access such
data in a resource-limited environment, for example, over bandwidth-limited network
connections or onmobile devices with limited computational power. The advances in
rendering technology exhibited in computer-generated movie sequences will begin
to find its way into consumer products such as games consoles and mobile devices.
These platforms are highly resource-limited in terms of both processing power and
storage. Hence, the efficiency of the data structures used to store and process 3D data
will be of critical importance in determining performance.

Statistical representations of 3D surfaces (such as the 3D morphable model [8],
see Chap.10) have proven extremely useful in vision applications where their com-
pactness and robustness allow them to constrain vision problems in an efficient
way. However, their application is limited because of model dominance, whereby
low-frequency, global modes of variation dominate appearance. Extensions to such
statistical representationswhich can capture high-frequency local detailwhilst retain-
ing the compact storage requirements are a significant future challenge. A related
challenge is how such models can be learnt from a sparse sample of a very high-
dimensional space, i.e. how can the generalisation capabilities of such a model be
improved?

Finally, as machine learning (specifically deep learning) begins to move into
the 3D domain, fundamental questions about the representation and processing of
geometric data reappear. Convolutional neural networks have been extended to be
applicable to meshes and graph structures [13]. Rapid advances have been made in
the processing of 3D volumetric data using CNNs, including learning representa-
tions that can be used to generate new shapes [22]. However, we are only really at

http://dx.doi.org/10.1007/978-3-030-44070-1_10
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the beginning of this exciting line of development. There is a disconnect between
artist- or renderer-friendly representations used in computer graphics and the grid
structured data favoured by machine learning. Bridging this gap so that representa-
tions of a comparable quality to hand-crafted 3D models can be learnt or extracted
from noisy real-world measurements in 2D and 3D is a truly grand challenge. This
is a multifaceted challenge but one important component will be advanced in the
representation and processing of 3D data.

6.8 Concluding Remarks

Representations of 3D data provide the interface between acquisition and sensing of
3D data and ultimately processing the data in a way which enables the development
of useful applications. Anyone involved in 3D imaging and processingmust be aware
of the native representations used by sensing devices and the various advantages and
limitations of higher level surface and volume-based representations. In many cases,
data in a raw representation must be preprocessed before conversion to the desired
higher level format, for example, through surface fitting, smoothing or resampling.
Subsequently, in choosing the most suitable representation for a particular applica-
tion, it must be established what operations need to be performed on the data and
what requirements exist in terms of computational and storage efficiency. Whether
involved with the low-level design of 3D sensors or interpreting and processing
high-level 3D data, understanding these issues is important. Finally, as sensors and
applications continue to develop the need for new representations and methods for
compression and visualisation mean, this remains an active research area.

6.9 Further Reading

An introductory level text coveringmathematics related to geometry processing is by
Vince [94]. 3D representations in general are covered in some detail in the computer
graphics textbooks of Watt [95] and Foley et al. [24]. Focussing in more detail on
specific representations is a number of textbooks. With relation to meshes, geometry
processing algorithms including error removal,mesh creation, smoothing, conversion
and morphing are covered in detail in the textbook of Botsch et al. [12]. NURBS are
described in detail in the textbook of Piegl and Tiller [70], subdivision surfaces are
covered by Peters and Reif [67], implicit curves and surfaces are examined byGomes
et al. [28] and the textbook of Suetens [88] deals with volumetric representations
in the context of medical imaging. A popular textbook describing techniques for
visualisation is by Post et al. [71].
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6.10 Questions and Exercises

6.10.1 Questions

1. Compare and contrast K-d point cloud structuring and octree structuring. When
might one method be preferable over the other?

2. For each of the following methods and devices for 3D acquisition, explain what
is the most suitable raw data representation. Justify your answer. You may need
to research how each method operates.

• time-of-flight camera,
• multiview stereo,
• shape-from-shading,
• structured light and
• MRI scanner (consider structural, functional and diffusion tensor modalities).

3. For a 3D imaging application of your choice, list the operations which would
need to be applied to the data and use this to guide selection of an appropriate
3D representation. Explain any difficulties which may arise in converting to this
representation from the raw data acquired in your chosen application.

4. What considerations are relevant when selecting a data structure for 3D meshes?
5. Describe an application in which lossy compression of 3D data is acceptable and

an application in which only lossless compression is acceptable.
6. Explain three situations in which 3D data needs to be visualised. Each situation

should employ a different visualisation of the data.

6.10.2 Exercises

1. Derive an algorithm for extracting a list of edges from a triangular mesh stored
in a vertex-face list. The complexity should be linear in the number of triangles.

2. Using a data structure of your choice, show how to compute a vertex normal for
a triangular mesh. You should choose one of the methods described in Sect. 6.5.1
to compute the normals.

3. In Sect. 6.3.2.2, code is given for traversing the edges incident on a vertex in a
halfedge structure. Provide similar code for traversing the faces incident on a
vertex.

4. Describe how to implement the edge collapse operation in a halfedge structure.
The collapsed edge and one of the vertices must be removed from the structure,
edges incident on the deleted vertex must be altered so that they are incident on
the retained vertex and finally any degenerate faces must be removed.

5. A sphere can be represented as a subdivision surface using the following rule. The
base mesh is a polyhedron, in this case use an icosahedron. The subdivision rule
divides each triangle into four smaller triangles by adding vertices halfway along
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each edge. The new vertices are translated such that their distance from the sphere
centre is equal to the radius of the sphere. Derive a rule for computing the number
of edges, faces and vertices in the representation as a function of the number of
iterative subdivisions. Now, using a triangle mesh data structure of your choice,
derive a similar rule for computing the number of pointers required to store the
representation at each level of iteration.

6. Using a mesh representation of your choice, show how to evaluate the quadric
error metric at a vertex.

7. A mesh can be considered as a weighted graph where edge weights correspond to
Euclidean distance between the end nodes. Describe how to implement Dijkstra’s
shortest path algorithm in order to achieve fast range of searching over a mesh
graph stored in a halfedge structure. Given a distance threshold over which to
range search, what is the stopping criteria for this algorithm?
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Part II
3D Shape Analysis and Inference

In the following chapter, we discuss local shape descriptors, both classical descriptors
that are hand-crafted and those that are learned. Such descriptors allow us to find
corresponding surface points on pairs of 3D images in a reasonable computational
time. Chapter 8 then discusses 3D shape registration, which is the process of bringing
one 3D shape into alignment with another similar 3D shape. The initial discussion
centers on the well-known Iterative Closest Points algorithm of Besl and McKay
and its variants. Advanced non-rigid registration approaches are covered. In Chap.9,
we discuss the 3D shape matching processes that allow us to build applications in
both 3D shape retrieval (e.g. in shape search engines) and 3D object recognition.
Although that chapter is largely application-based, we kept it within this book part,
as it contains some basic concepts in 3D shape matching. Chapter 10 discussed 3D
Morphable Models, both how they are trained and how they are fitted to data. The
human face, ears and head are used as exemplars. Finally, in Chap.11, we discuss
deep learning on 3D datasets.
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Chapter 7
3D Local Descriptors—from
Handcrafted to Learned

Riccardo Spezialetti, Samuele Salti, Luigi Di Stefano, and Federico Tombari

Abstract Surface matching is a fundamental task in 3D computer vision, typically
tackled by describing and matching local features computed from the 3D surface. As
a result, description of local features lays the foundations for a variety of applications
processing3Ddata, such as 3Dobject recognition, 3D registration and reconstruction,
and SLAM. A variety of algorithms for 3D feature description exists in the scientific
literature. The majority of them are based on different, handcrafted ways to encode
and exploit the geometric properties of a given surface. Recently, the success of deep
neural networks for processing images has fueled also a data-driven approach to learn
descriptive features from 3D data. This chapter provides a comprehensive review of
the main proposals in the field.

7.1 Introduction

Nowadays, surface matching is solved by establishing point-to-point correspon-
dences obtained bymatching local 3D descriptors [13, 43, 72]. Local 3D descriptors
are also referred to as local features and theparadigm, illustrated inFig. 7.1, is referred
to as feature-based matching. Examples of 3D computer vision tasks that leverage
local 3D descriptors are as follows:

• 3D Object Detection: Identification within a scene of an object from a library of
models and estimation of its 6D pose.
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Fig. 7.1 Feature-basedmatching paradigm.Green lines correspond to good correspondences,while
red lines correspond to mismatches

• 3D Object Reconstruction: Recreate the shape and appearance of objects by
registering a set of partial views.

• 3D Object Retrieval: Retrieving three-dimensional models in large databases
given a similar object as a query or given a textual description of the object.

• SLAM (Simultaneous Localization and Mapping): Building the map of an
unknown environment while simultaneously localizing the sensor therein.

Descriptors or features are a compact but rich representation of the underlying 3D
data designed to be either invariant or robust to a large set of nuisances, like rotation,
point density variations, sensor noise, viewpoint changes, occlusions, and clutter.

Depending on the area involved, we can classify descriptors as either global or
local. Global methods encode the entire 3D model in the descriptor [1, 39, 49] and
are usually applied after a segmentation step to limit the influence of clutter. Local
descriptors, instead, encode a small part of the surface, small with respect to the
overall scene or object being matched (i.e., a neighborhood around a keypoint). The
main advantage of using local descriptors versus global ones is higher robustness to
partial occlusions of the surface and to the presence of clutter. For this reason, the
latter are currently the dominant approach. In this chapter, we will focus uniquely
on local descriptors, illustrating the main proposals in the literature and the way they
have evolved from mostly handcrafted proposals to those based on deep learning.

According to [19], two key aspects for a 3D local descriptor are descriptiveness
and robustness: descriptiveness refers to the capacity to capture predominant traits
of the surface; and robustness is the ability to be not sensitive (i.e., to obtain a similar
descriptor) in the presence of disturbances that can affect the data. Choosing the
descriptor offering the right descriptiveness/robustness trade-off for a specific 3D
computer vision application is a crucial step and still an open issue: usually, a few
prominent alternatives are tested and the best performing one is used.

A typical feature matching pipeline consists of the following:
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• Feature detection: The goal is to identify points of a surface particularly promi-
nent with respect to a given saliency function computed on a local neighborhood
of each point. These points are called keypoints.

• Feature description: As discussed, a descriptor is a compact representation of
geometric properties of a point. Descriptors usually are designed to encode essen-
tial characteristics of points and to be invariant to nuisances like variations of point
density and viewpoint. To speed up the overall feature matching process, typically
just the keypoints of an object are described.

• Featurematching: The last phase of the pipeline yields correspondences between
two or more surfaces by finding the most similar descriptors among the sets of
descriptors computed at the keypoints of the surfaces. Several metrics can be
used to compare descriptors, the most popular being the Euclidean distance in the
descriptors space.

7.2 Background

Beforewe go into this chapter, let us provide some background definitions for a better
understanding of the related works. We will start talking about the data structures
most commonly used to represent 3D data (point clouds and meshes are described
in more detail in Chap.6), and then we will introduce the basic concepts related to
the computation of local features, and finally conclude with some definitions about
the most widespread noise sources that can be observed in 3D data.

• Point cloud:Apoint cloud is a set of points,whichdescribes the shapeof 3Dobject,
characterized by their position in a coordinate system expressed with euclidean
coordinates. In addition to the single coordinates, it is also possible to store infor-
mation about the color of the points, as an RGB triplet, and their intensity (alpha
channel). Cloud points are unorganized data structures, i.e., simple data collec-
tions,whose closeness in the data structure does not imply closeness in the observed
space. The main limitation of this data structure is the high cost of searching for
neighbors for a point in the 3D coordinate space.

• Polygon mesh: A polygon mesh is a collection of vertices, edges, and faces that
defines the shape of 3Dobject. The faces usually consist of triangles, quadrilaterals,
or other simple convex polygons. Unlike cloud points, meshes are organized data
structures.

• Feature point: A feature point, denoted by p, is a point belonging to a 3D shape
M, for which the descriptor is being computed. Typically, feature points coincide
with keypoints.

• Support: A support of a feature point p is the set of neighboring points lying
within a spherical ball of radius r > 0 centered at p, denoted by Br (p) = {s ∈
M : ‖p − s‖2 < r}. Alternatively, the support can be made up of a fixed number
of neighbors. Usually to the search for nearby points, a space-partitioning data

http://dx.doi.org/10.1007/978-3-030-44070-1_6
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structure for organizing points in a k-dimensional space like k-trees [3] is utilized.
The support of the feature point is used to compute the associated descriptor.

• Local reference frame:ALocalReferenceFrame (LRF) is a local systemofCarte-
sian coordinates at each point, with respect to which the local geometric structure
around that point is encoded. An LRF L(p) at point p ∈ M is an orthogonal set
of unit vectors:

L(p) = {x̂(p), ŷ(p), ẑ(p)} (7.1)

Invariance with respect to the object’s pose is a fundamental trait of every 3D
descriptor: state-of-the-art proposals achieve invariance using either a Reference
Axis or a Local Reference Frame (LRF), which co-variate with the object pose.
Before descriptor computation, the support of the feature point is translated and
oriented according to the Local Reference Frame or Reference Axis, effectively
removing the pose change and making subsequent computations on geometric
entities of the support pose-invariant. As is clear from this description and proven
experimentally in [42], the repeatability of the reference system is key for the
performance of the descriptor.

• Clutter and cluttered scene: The concept of clutter is related to object detection.
In this context, we want to recognize a certain number of well-known objects
within a scene. A clutter object is a distracting object that is not part of the set
of known objects but can be present in the scene. Similarly, a scene containing a
clutter object is defined as a cluttered scene.

• Missing part: Once scanned, objects may present missing parts due to the sensor’s
limited field of view or the shadow generated by the presence of other objects in
the scene.

7.3 Related Works

This section reviews the main proposals for local 3D descriptors. In Fig. 7.2, we
show a temporal evolution of the main proposals for 3D descriptors. A large body
of work has been dedicated to define new and more effective solutions to the surface
matching problem based on local 3D descriptors in the last 20years: Point Signature
[10], Spin Images [28], 3D Shape Context [16], Local Surface Patch[9], Point Fea-
ture Histograms[48], Scale-Dependent Local Shape Descriptor [38], Heat Kernel
Signature [58], Fast Point Feature Histograms [47], Intrinsic Shape Signature [73],
MeshHog [71], 3D Surf [32], SHOT [51], Unique Shape Context [60], Rops [20],
Trisi [21], Toldi [68], 3D Match [72], CGF [29], PPFNet [14], and PPF-FoldNet
[13].

Local 3D descriptors can be further categorized into two main categories: those
encoding handcrafted traits of the support and those obtained as output of a (deep)
learning algorithm. In the latter case, typically a deep neural network is trained
purposely to infer the 3D descriptor given a portion or the entire surface as input.
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Fig. 7.2 Temporal evolution of 3D feature descriptors

Fig. 7.3 Bins of 3D shape
context. The grid is divided
into several bins along the
radial, azimuth, and
elevation dimensions

7.3.1 Handcrafted Local 3D Descriptors

A local 3D descriptor creates a compact representation of a 3D surface by collecting
geometric or topological measurements into histograms. According to [19], hand-
crafted local 3D descriptors can be grouped in spatial distribution histogram and
geometric attribute histogram. Spatial distribution histogram counts the number of
points falling in each histogram bin taking into account the spatial distribution of the
points on the surface.Conversely, geometric attribute histogramgenerates histograms
exploiting geometric properties of the surface like normals or curvatures.

In the following, we give an overview of methods belonging to both categories.

7.3.1.1 3D Shape Context

3D shape context (3DSC) directly extends the 2D shape context descriptor [2] to
three dimensions. It was introduced by Frome et al. [16] in 2004.

The descriptor captures the local shape of a point cloud at a feature point p using
the distribution of points in a spherical grid support. The normal n at p serves as a
reference axis to align the north pole of the grid. Within the support region, a set of
bins is constructed by equally dividing the azimuth and elevation dimensions, while
the radial dimension is logarithmically spaced, as shown in Fig. 7.3. Due to this
binning scheme, the descriptor is more robust to distortions in shape with distance
from the feature point.

Each point pi in the support is mapped to its corresponding bin using spherical
coordinates, and the bin corresponding to them accumulates a weighted sum of
local point density. The local point density for pi is estimated as the number of
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Fig. 7.4 USC unambiguous
support. The spatial
subdivision of 3DSC is
aligned according to a Local
Reference Frame to obtain a
unique descriptor for each
feature point

the points in a sphere of radius δ around pi . Relying only on a reference axis and
not on a full 3D reference frame, the descriptor is invariant up to a rotation along
the north pole. Therefore, multiple descriptors for a single feature point have to be
described and matched across different views of a surface, which significantly slows
down the performance of the overall pipeline. The size of the final descriptor is
da × de × dr , where da , de, and dr are, respectively, the numbers of bins along the
azimuth, elevation, and radial axes, and the number of descriptors to be computed
for a feature point is equal to da .

7.3.1.2 Unique Shape Context

Unique ShapeContext (USC) improves 3DSCby leveraging a definition of repeatable
and unambiguous Local Reference Frame as pointed out in Fig. 7.4. It was presented
by Tombari et al. at the ACM workshop on 3D object retrieval in 2010.

One of the main drawbacks of 3DSC is the computation of multiple descriptors at
a given feature point. Indeed, to take into account the degree of freedom on azimuth
direction, a vector on the tangent plane at the normal n at the feature point p is
randomly chosen and the grid support is then rotated about its north pole in to da
positions. Each rotation defines a unique Local Reference Frame used to orientate
the sphere grid and to compute the associated descriptor. As a consequence, da
descriptors are estimated and stored for each feature point.

Differently from3DSC, inUSC the authors first estimate a Local Reference Frame
using the same approach presented in Sect. 7.4.1.1 and proposed in [60], and then
construct the descriptor likewise 3DSC.

Thanks to the adopted unique and repeatable Local Reference Frame, USC
improves efficiency in terms of both performance and memory footprint with respect
to 3DSC. The size of the final descriptor is the same as 3DSC.
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7.3.1.3 Rotational Projection Statistics

Rotational Projection Statistics (RoPS) is a local 3D descriptor designed to operate
onmeshes. It was published byGuo et al. [20] in 2013. The first contribution of RoPS
is the definition of a novel Local Reference Frame which relies on the eigenvalue
decomposition of the covariance matrix. Differently from pre-existing approaches,
the covariance matrix for a given feature point p is estimated by aggregating covari-
ance matrices computed for every single triangle within the support. Every single
matrix is weighted differently to mitigate the effect of mesh resolution variations
and enhance the robustness of clutter and occlusion. The obtained x̂ and ẑ axes are
disambiguated in order to achieve a unique and repeatable canonical orientation. The
third axis, ŷ, is derived as ẑ × x̂.

As for the histogram computation, the whole process is illustrated in Fig. 7.4
in [20]. Given the x̂-axis, the points within the support are rotated around it by a
given angle, and projected onto three planes xy, yz, and xz. For each projection, a
distributionmatrixD is built bypartitioning theplane into L × L bins and countingup
the number of points falling into each bin. The number of bins represents the matrix
dimension and is a parameter of the method. The distribution matrix D contains
information about the local surface from a particular viewpoint. Hence, five statistics,
including the central moments [12, 25] and Shannon entropy [54] are extracted
from each distribution matrix. Different rotations along the same axis are taking
into account to capture information from various viewpoints. The abovementioned
process is repeated again for the ŷ- and ẑ-axes. The final descriptor is obtained by
concatenating the statistics of all rotations. The size is 3 × 3 × 5 × drot , where drot
is the number of rotations around each axis.

7.3.1.4 Point Feature Histogram

Point Feature Histogram (PFH) is designed to capture the surface variations based
on the relationships between points in the local neighborhood and directions of the
estimated normals. Hence, the performance is closely related to the quality of the
surface normal estimations at each point. It was introduced by Rusu et al. [48] in
2008.

As shown in Fig. 7.5, for every pair of points pi and p j , in the neighborhood of p,
a Darboux frame is built by choosing one point as source ps , and the other as target
pt :

u = ns, v = u × pt − ps
‖pt − ps‖ ,w = u × v (7.2)

Next, using the frame defined above, three angular features, expressing the rela-
tionship between normals nt and ns , and between normals and the difference vector
between pt and ps are computed for each pair of points:
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(b)(a)

Fig. 7.5 PFH overview. (a) The u, v, and w vectors of a Darboux frame computed for a pair of
points. Given two points pi and p j together with their normal ni and n j , one is chosen as source
point, ps , and the other as target point pt . (b) PFH computation for a feature point p shown in red. All
the points enclosed in the support region are interconnected in a dense mesh. The histogram is built
taking into account the angular features between all pairs of points, leading toO(k2) computational
complexity for a point with k neighbor points. Images from [41]

α = 〈v,nt 〉, φ = 〈u,pt − ps〉/d, θ = arctan(〈w,nt 〉, 〈u,nt 〉), d = ||pt − ps | |
(7.3)

Also, the length of the difference vector d can be used as feature, although it is
usually not considered as the distance between neighboring points increases with
the distance from the viewpoint with standard 3D sensors. The PFH descriptor is
obtained by binning each feature range with b bins and counting the occurrences for
each bin. The final dimension is b4, or b3 if distance d is ignored.

7.3.1.5 Fast Point Feature Histogram

The computation of features for each pair of points makes PFH computationally
expensive and not suitable for real-time application. Therefore, Rusu et al. introduced
Fast Point Feature Histogram (FPFH) [47] in 2009. FPFH is a simplified variant of
PFH and operates in two steps. First, a Simplified Point Feature Histogram (SPFH)
is constructed using three angular features α, φ, and θ , for each point within support
of and its own neighbors. The computed features are then binned into three separate
histograms and concatenated to form the SPFH descriptor for each point. Secondly,
the FPFHdescriptor forp is obtained by summing up the SPFHdescriptors belonging
to each point within the support. The sum is weighted by the distance between the
query point and a neighbor in the support region as shown in Fig. 7.6. The FPFH
descriptor can reduce the computational complexity from O(nk2) to O(nk), where
k is the number of neighboring points.
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Fig. 7.6 FPFH overview. For a given feature point pq , the algorithm first estimates its SPFH values
by creating pairs between itself and its neighbors (illustrated using red lines). Then the SPFH values
of pq are weighted using the SPFH values of its pk neighbors, thus creating the FPFH for pq . The
extra FPFH connections, resulting due to the additional weighting scheme, are shown with black
lines. The connections marked with thicker lines will contribute to the FPFH twice. Image from
[40]

7.3.2 Learned Local 3D Descriptors

The success of deep neural networks for processing images has motivated a data-
driven approach to learning features from point clouds. Adaptation of deep learning
to point cloud data is, however, far from straightforward. Indeed, the most effective
deepneural networks deployed toprocess images, i.e., convolutional neural networks,
are fed with input data arranged into a regular grid structure, but point clouds are
inherently unstructured: a point cloud is a set of point coordinateswithout anyobvious
orderings between points.

3D deep learning approaches can be classified as follows:

• View-based methods: A 3D object is represented as a collection of 2D views.
Standard 2D CNNs operate on every single view, and the learned features are
merged together by a view pooling technique [57]. Moreover, these methods are
suitable for application where the input data is a range image [64].

• Voxel-based methods: Early works were based on 3D voxels, regular 3D grids
of occupancy, or density of points obtained from point clouds [11, 36, 56, 65,
72]. Although this representation is straightforward to obtain from point clouds,
memory occupancy issues force the algorithm to operate with very small resolu-
tions, which in turn introduces artifacts and makes it difficult to learn fine details
of geometric structures. To address this limitation, some proposals rely on space
partitions methods like k-d trees or octrees [31, 59]. References [44] combine
view-based and voxel approaches to address 3D shape classification.
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• Point-based methods: These methods operate directly on unordered point sets.
The first pioneering work in this direction was PointNet [43], where a symmetric
function is applied to 3D coordinates to achieve invariance to permutation. How-
ever, PointNet is not able to capture local information around points. Hence, the
same authors introduced an improved multi-scale architecture, named PointNet++
[45], to exploit geometric features in a local point set.

• Geometric Deep Learning: These methods attempt to generalize deep learning
model to non-Euclidean domains such as graphs and manifold [8]. The first for-
mulation of neural networks on graphs was proposed in [52]. More recently, it
has been extended to operate on non-rigid shape analysis [5, 6]. Finally, [63] pro-
poses a graph convolution network (GCN) directly on point sets by means of edge
convolution.

Chapter 11 will provide a more thorough overview of deep learning methods on
3D data.

When dealing with feature learning, two loss functions are usually taken into
account to preserve in the feature space the proximity of neighboring patches in the
Euclidean space: the contrastive loss [22] and the triplet loss [24], which consider
pairs and triplets of patches, respectively. Usually, triplet loss is more favorable
than contrastive loss because it takes an anchor example and tries to bring positive
examples closer while also pushing away negative example. However, triplet loss
performance heavily depends on the selection of the anchor, negative, and positive
examples. Within this context, we can think of the anchor and the positive as the
same 3D point captured from two different point of views, while the negative is
from a viewpoint far from both. For more details as well as a graphic example of the
difference between contrastive and triplet loss, we refer the reader to Fig. 7.4 in [14].

7.3.2.1 3DMatch

One of the first methods that learns a 3D local feature descriptor by means of deep
learning algorithms is 3DMatch [72], introduced by Zeng et al. in 2017.

Early work [36, 44] in this field-constructed voxel grid in the form of a binary-
occupancy grid to represent sparse unstructured 3D data. 3DMatch extends this idea
to more informative encoding based on the Truncated Signed Distance Function
(TSDF) [37, 62].

In 3DMatch, a standard Siamese 3D ConvNet is trained with a contrastive loss
function [22] that minimizes the l2 distance between descriptors generated from
matching points, and maximizes l2 distance between non-corresponding points. The
architecture of the network is inspired byAlexNet [33]. An overview of themethod is
depicted in Fig. 7.2 in [72]. The train set consists of RGB-D images of indoor scenes
collected from existing popular datasets [23, 34, 55, 62, 66]. During the train stage,
a local region is extracted around a randomly sampled interest point and voxelized
with a grid of size 0.01m3. Every voxel in the 30 × 30 × 30 grid thus obtained stores
a TDF value that indicates the distance between the center of that voxel to the nearest

http://dx.doi.org/10.1007/978-3-030-44070-1_11
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3D surface. Since TSDF can be computed frommeshes, point clouds, or depth maps,
any one of these 3D data structures can be used as input to the network. The size of
the final descriptor is 512.

7.3.2.2 PPFNet: Point Pair Feature NETwork

Point Pair Feature NETwork aims to learn a local descriptor by working directly on
point coordinates augmented with handcrafted features. It was originally proposed
by Deng et al. [14] in 2018.

PPFNet combines the permutation-invariant characteristics of PointNet [43]
together with the high descriptive capacity of Point Pair Features (PPFs) [15]. The
network is fed by geometries containing information about the local neighborhood of
a 3D point such as raw point coordinates, normals, and PPFs. As depicted in Fig. 7.2
in [14], PPFNet architecture consists of three parts: a first cluster of mini-PointNets,
a concatenation block, and a final group of MLPs.

The cluster of mini-PointNets processes N local patches uniformly sampled from
a point cloud and extracts local features. Weights and gradients are shared within
the cluster. With the aid of a max-pooling layer acting on local features, a global
context information is created and then concatenated to every local feature.Max pool
operation encapsulates the distinct local information capturing the global context of
the whole point cloud. Finally, a group of MLPs merges the global and local features
and creates the learned local descriptor.

PPFNet extends contrastive loss to N-patches by introducing a novel N-tuple loss,
and it operates on a set of partial scans belonging to the same environment where the
ground truth transformationT between scans is known. The distance between learned
features of corresponding patches is minimized acting on two distance matrices: a
correspondence matrix M ∈ R

N×N , built on the points of the aligned scans, M =
(mi j ) with

mi j = 1(‖xi − Ty j‖2 < τ) (7.4)

and 1 is the indicator function; and a feature–space distance matrix D ∈ R
N×N ,

D = (di j ) with

di j = ‖ f (xi ) − f (y j )‖2. (7.5)

By defining the operator
∑∗

(·) as the sum of all the elements in a matrix, the N-tuple
loss can be formulated as

L =
∑∗ (

M ◦ D

‖M‖22
+ α

max(θ − (1 − M) ◦ D, 0)

N 2 − ‖M‖22

)

(7.6)

where ◦ is the Hadamard product (element-wise multiplication), α is a hyper-
parameter balancing the weight between matching and non-matching pairs, and θ is
the lower bound on the expected distance between non-correspondent pairs.
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PPFNet is trained using real data scenes from 3DMatch benchmark [72]. The
dataset is described in Sect. 7.5. To explain how training data are sampled for PPFNet,
however, it is important to anticipate that each of the 62 different real-world scenes
in the dataset contains a variable number of fragments, i.e.,partial views, whose
registration reconstructs the full scene.

Rather than randomly detecting keypoints in each fragment, mini-batches in
PPFNet are created by randomly extracting the fragments and each point in a frag-
ment acts as a keypoint. To reduce the amount of training data, each fragment is
down-sampled to 2048 sample points. A radius search of 30cm around each key-
point is performed to extract a local patch. Then, to increase robustness against point
density variations each patch is down-sampled to 1024 points. If a patch contains less
than 1024 points, points are randomly repeated. Due to memory limitations, each
batch contains two fragment pairs with 8192 local patches. Number of combinations
for the network at per batch is 2 × 20482.

7.4 Methods

Within this section, we provide a detailed presentation of some of the most popular
methods for 3D local features description. The algorithms presented have been cho-
sen on the basis of their heterogeneity, in order to provide a complete overview to
the reader. We present two handcrafted methods, SHOT [51] and Spin Images [28],
and two methods based on deep learning techniques, CGF [29] and PPF-FoldNet
[13].

7.4.1 SHOT: Unique Signatures of Histograms for Local
Surface Description

The SHOT descriptor [51] can be used both for surface description, as originally
presented in [60], and for combined shape and texture description [61], if RGB
information are available.

The approach is based on the observation that local 3D descriptors can be cate-
gorized into signatures and histograms (Fig. 7.7):

• Signatures: These descriptors use one or more geometric attributes computed
separately at each point within the support to describe the surface. The computed
measurements are encoded according to the local coordinates defined by an invari-
ant local reference frame. Signatures are highly descriptive but small errors in the
definition of the local reference frame or small perturbations in the encoded trait
can substantially modify the final descriptor;

• Histograms: These descriptors use histograms to capture different characteristics
of the surface. A specific domain of quantization (e.g., point coordinates, curva-
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Fig. 7.7 Signatures and histograms. For the sake of clarity, the figure reports an example in a 2D
domain

tures, normal angles) is discretized, and topological entities (e.g., vertices, mesh
triangle areas) are accumulated into each spatial bin. If the descriptor domain is
based on coordinates, the definition of a local reference frame is again required
to obtain a pose-invariant descriptor. Histogram-like descriptor loses descriptive
power due to the quantization error but offers greater robustness to noise.

Based on this taxonomy, SHOT was proposed to combine the advantages of
signature-based methods with those of histogram-based methods, hence, the name
Signature of Histograms of OrienTations (SHOT). This design choice makes SHOT
representation operate at a good trade-off point between descriptiveness and robust-
ness to noise.

7.4.1.1 Local Reference Frame

According to [67], the local reference frameproposed in SHOTbelongs to covariance
analysis methods. The computation of x̂-, ŷ-, and ẑ-axes rely on the Singular Value
Decomposition (SVD) or Eigenvalue Decomposition (EVD) of a covariance matrix
of the points, pi , lying within a spherical support of radius R centered at the feature
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point p. We define k as the total number of points in the support. The covariance
matrix can be obtained using the following equation:

C(p) = 1

k

k∑

i=0

(pi − p̂)(pi − p̂)T (7.7)

where p̂ is the centroid of the points lying within the support:

p̂ = 1

k

k∑

i=0

pi (7.8)

One of the main disadvantages of this approach is the lack of uniqueness of the
signs of the axes of the estimated local reference system. Indeed, as clearly discussed
in [7], although the eigenvectors of Eq.7.7 define the principal directions of the data,
their sign is not defined unambiguously.

The SHOT descriptor proposes a local reference frame estimation that employs a
slightly modified covariance matrix. The contributions of the points within support
are weighted by their distance from p:

Cw(p) = 1
∑

i :di≤R

(R−di )

∑

i :di≤R

(R − di )(pi − p)(pi − p)T (7.9)

with di = ‖pi − p‖2. By using a weighted covariance matrix, the repeatability in
cluttered scenes in object recognition scenario is improved. Furthermore, to reduce
computational complexity the centroid p̂ in (7.7) is replaced by the feature point
p. Then, similar to [7], sign ambiguity is addressed by reorienting the sign of each
eigenvector of Cw(p) so that its sign is coherent with the majority of the vectors
it is representing. This procedure is applied to both x̂ and ẑ. So, if we refer to the
eigenvector corresponding to the largest eigenvalue as the x+ axis and we denote as
x− the opposite vector, the sign ambiguity is removed according to

S+
x =̇ {

i : di ≤ R ∧ (pi − p) · x+ ≥ 0
}

(7.10)

S−
x =̇ {

i : di ≤ R ∧ (pi − p) · x− > 0
}

(7.11)

x =
{
x+, |S+

x | ≥ |S−
x |

x−, otherwise
(7.12)

This results in the x̂ axis pointing in the direction of greater sample density. The same
procedure is used to disambiguate the ẑ-axis, while the third unit vector is computed
via the cross-product ŷ = ẑ × x̂.
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Fig. 7.8 The hybrid structure of shot. On the left side, the spherical support that acts as a signature,
while on the right side the local histograms accumulate bin counters according to cosθi

7.4.1.2 Histogram Computation

SHOT descriptor encodes the histograms of the surface normals at different spatial
locations. This choice stems from the related field of 2D descriptors. According to
the authors, there are two major reasons behind SIFT effectiveness [35], the most
successful proposal among 2D descriptors. Firstly, SIFT computes a set of local
histograms on specific subsets of pixels defined by a regular grid superimposed
on the patch. Secondly, the elements of these local histograms are based on first-
order derivatives describing the signal of interest, i.e., intensity gradients. Following
these considerations, SHOT computes a set of local histograms over the 3D volumes
defined by a 3D spherical grid superimposed on the support. As for the signature
structure, the spherical grid is partitioned uniformly along the radial, azimuth, and
elevation axes. The grid is aligned with the axes given by the estimated local refer-
ence frame. Each local histogram counts the number of points falling into each bin
according to the cosine of the angle, θi , between the normal at each point ni and the
local ẑk-axis. The hybrid structure of SHOT is sketched in Fig. 7.8.

The choice of cosine is mainly motivated by two aspects. The first is computa-
tional efficiency, as it can be computed as cosθi = ẑk · ni . The second one is related
to the descriptiveness of the algorithm. With an equally spaced binning on cosθi ,
small differences in orthogonal directions to the normal, i.e., presumably the most
informative ones, cause points to be accumulated in different bins leading to different
histograms. Moreover, in the presence of quasi-planar regions (i.e., not very descrip-
tive ones), this choice limits histogram differences due to noise by concentrating
counts in a smaller number of bins.

Since the SHOT descriptor is generated by appending all the local histograms,
the cardinality of the descriptor is related to the number of partitions. The authors
indicate that 32 is a proper number of volumes, resulting from 8 azimuth divisions, 2
elevation divisions, and 2 radial divisions, while the number of bins for the internal
histograms is 11, leading to total descriptor length of 352.

The use of histograms could render the description very sensitive to boundary
effects. Furthermore, due to the spatial subdivision of the support, boundary effects
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Fig. 7.9 SHOT quadrilinear interpolation. a Interpolation on normal cosines. b Interpolation on
azimuth. c Interpolation on elevation. d Interpolation on distance

may also occur due to perturbations of the local reference frame. A commonly
adopted solution is to perform linear interpolation between the point being accu-
mulated into a specific local histogram bin and its neighbors, i.e., the neighboring
bin in the local histogram and the bins having the same index in the local histograms
corresponding to the neighboring subdivisions of the grid. In SHOT, this results in
a quadrilinear interpolation, where each bin is incremented by a weight of 1 − d for
each dimension. As for the local histogram, d is the distance of the current entry from
the central value of the bin. As for elevation and azimuth, d is the angular distance
of the entry from the central value of the volume. Along the radial dimension, d is
the Euclidean distance of the entry from the central value of the volume. Along each
dimension, d is normalized by the distance between two neighbor bins or volumes.
Figure7.9 illustrates a graphic description of the quadrilinear interpolation process.
Finally, the whole descriptor is normalized to have Euclidean norm equal to 1, to
increase robustness to point density variations.
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7.4.2 Spin Images

The Spin Images is a surface representation technique that was initially introduced
in [28]. The name gives an intuitive description about how the algorithm works. The
term image means that a point is described using a 2D array, while spin mimics the
process of constructing the image that can be thought as a 2D plane spinning around
the normal at the keypoint and collecting counts of points of the support in the entries
of the array. The spin image generation process is visualized in Fig. 7.8 in [27].

7.4.2.1 Oriented Basis

Differently from descriptors based on a local reference frame, spin images achieve
rotation invariance using a reference axis. The surface normal at each point can
be used to compute a 2D-oriented basis as shown in Fig. 7.2 in [27]. We define an
oriented point O on the surface of an object using the 3D position of the point p
and the surface normal n at the point. An oriented point allows us to define a partial
system of cylindrical coordinates centered at the point. Only two coordinates are
used: α is the radial coordinate defined as the perpendicular distance to the line
through the surface normal, and β represents the elevation coordinate defined as the
signed perpendicular distance to the tangent plane defined by n at p. The polar angle
coordinate is omitted because it cannot be defined robustly and unambiguously using
just surface position and normal.

7.4.2.2 Histogram Computation

Using an oriented point basis,we can define a function called spin-map So : R3 → R2

that projects a 3D point x to the 2D cylindrical coordinates of a particular basis (p,n)

corresponding to the oriented point O:

So(x) → (α, β) = (
√

‖(x − p)‖2 − (n · (x − p))2, n · (x − p)) (7.13)

In order to create a spin image for an oriented point p, the space α-β is then dis-
cretized into a 2D array. Then, for each point xi in the support region, the coordinates
α and β are computed as in (7.13) and the bin indexed by (α,β) is incremented. Given
a fixed bin size (b), the size of the resultant spin image (imax , jmax ) can be calculated
as

imax = 2βmax

b
+ 1 jmax = αmax

b
+ 1 (7.14)

where αmax and βmax are the maximum α and |β| values for all the oriented points
within support region. The elevation coordinate β can be both positive and negative;
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this is the reason why the size of the spin image in the β direction is twice βmax .
Finally, the mapping between cylindrical coordinates α, β and the spin image is
computed as

i = �2βmax − β

b
 j = �α

b
 (7.15)

The discretization of the α-β domain makes the result of the spin image very
sensitive to noise. Therefore, the contribution of the point is bi-linearly interpolated
to the four surrounding bins in the 2D array. The creation of a 2D array representation
of a spin image can be seen in Fig. 7.4 from [27].

The bilinear weights used to increment the bins in the spin image can be obtained
as

a = α − ib b = β − jb (7.16)

Spin images that are created using three different oriented points can be seen in
Fig. 7.3 in [27]. Dark pixels correspond to bins with a high number of points.

7.4.2.3 Parameters

The generation of a spin image is regulated by three parameters: bin size, image
width, and support angle.

The bin size is the width of each of the bins in the spin image. It is an important
parameter because it defines the size in memory of the descriptor. As illustrated in
Fig. 7.3 in [28], the size in memory of a spin image relates also to the descriptiveness
of the spin image: having small-sized bins creates descriptive histograms. A common
practice is to set the bin size approximately equal to the mesh or cloud resolution,
i.e.,the median distance between vertices/points in the mesh/cloud.

The image width defines the number of rows and columns in a square spin image.
The product between bin size and image width constitutes a new parameter called
support distance (Ds). As shown in Fig. 7.4 in [28], this parameter acts on the amount
of local versus global information embedded in the descriptor.

The support angle (As) allows to filter the points that contribute to the calculation
of the spin image andmake the spin image less sensitive to the effect of self-occlusion
and clutter. We can define As as the maximum angle between the normal at the point
for which we are computing the spin image and the normal of points that are allowed
to contribute to the spin image. Suppose p is the oriented point for which we are
computing the spin image and pi is one of its oriented points within the support, the
contribution of pi will be accumulated in the histogram of p if

acos(np · npi ) < As (7.17)
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The most appropriate value for this parameter represents the right trade-off
between shape descriptiveness and matching robustness. Decreasing support angle
decreases the descriptiveness, while increasing it increases the sensitivity to occlu-
sion and clutter. Typically, the support angle is kept small in object recognition and
kept large in surface registration.

7.4.3 CGF: Compact Geometric Features

Compact Geometric Features (CGF) learns a mapping f : RN → R
n from high-

dimensional handcrafted representations to a very low-dimensional feature space. It
was introduced by Khoury et al. [29] in 2017.

The authors try to overcome the point cloud representation problems by using a
handcrafted approach to represent the raw local geometry around points. The neural
networks perform a dimensionality reduction in order to compute compact embed-
ding. Thanks to its low dimensionality, CGF enables faster nearest neighbor queries
during the matching stage.

The network is trained using the triplet embedding loss [24]. In this regard, CGF
is coupled with an effective negative sampling strategy which produces a highly
discriminative embedding, described in Sect. 7.4.3.3.

7.4.3.1 Point Cloud Parametrization

Before CGF, the standard way to adapt point clouds to deep learning algorithms was
to discretize the input into a uniform voxel grid. However, such representation is not
efficient due to the high number of empty cells [26].

CGF captures the local geometry around each point into a handcrafted feature
called spherical histogram. Inspired by 3DSC [16], a spherical histogram encodes
the distribution of points in a local neighborhood with a nonuniform binned radial
grid. A simplified view is shown in Fig. 7.2 from [29].

Given a feature point p a sphere S of radius r is centered at p. To obtain rotational
invariance, the local neighborhood is aligned to axes of a local reference frame
computed as in Sect. 7.4.1.1. Considering the ẑ-axis of the estimated LRF and the
normal n at point p, if the dot product 〈n, ẑ〉 < 0, the signs of all three vectors in the
local reference frame are flipped.

The volume bounded by S is divided into bins along the radial, elevation, and
azimuth directions. The azimuth direction is split into A = 12 bins, each of extent
2π/A. The elevation direction is subdivided into E = 11 bins, each of extent π/E .
The radial direction, which has total span r , is logarithmically subdivided into 17
bins using the following thresholds:

ri = exp

(

ln rmin + i

R
ln

(
r

rmin

))

. (7.18)
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Subdividing the radial direction in this fashion makes the histogram more robust
to changes in shape near the center p. The resulting spherical histogram has a size
of 2,244 bins.

The value inside each bin reflects the point density of the local neighborhood
around p. Let N ⊂ P be the set of neighboring points that lie inside the sphere
S. Each point q ∈ N is converted from euclidean to spherical coordinates, and the
corresponding bin that contains q is incremented. The final histogram is normalized
by dividing each bin by |N |.

7.4.3.2 Network Architecture

CGF deep network maps supports from the high-dimensional space of spherical
histograms to a very low-dimensional Euclidean space. The architecture is a fully
connected network with five hidden layers. Each hidden layer contains 512 nodes
and is followed by a ReLU non-linearity. Weights are initialized from a normal
distribution with mean 0 and standard deviation 0.1. The mini-batch size is 512, and
Adam [30] is used as optimizer. The dimension of the learned embedding which is
then used as descriptor is 32.

As far as the loss function is concerned, a standard triplet loss [24] tries to keep
similar features together while pushing dissimilar features apart. Starting from a
mini-batch of triplets of input histograms T = {(xai , xp

i , xni )}i . Vector xai is referred
to as the anchor of triplet i , vector xp

i is a positive example, and vector xni is a negative
example. Given such a set of triplets, triplet loss is written as

L(θ) = 1

|T |
|T |∑

i=1

[‖ f (xai ; θ) − f (xp
i ; θ)‖2 − ‖ f (xai ; θ) − f (xni ; θ)‖2 + 1

]
+

(7.19)

where θ are the learned parameters and [·]+ denotes max(·, 0).

7.4.3.3 Training Data

Triplet loss is often used to learn discriminative features. During training, a triplet
of input histograms, T = {(xai , xp

i , xni )}i is fed into the model as a single sample.
The idea behind this is that distance between the learned embedding of anchor and
positive should be smaller than that between anchor and negative embedding. In order
to achieve this, it is essential to samples’ negatives accurately. A common choice is
to draw as negative, random points that are pretty far from the anchor.

Khoury et al. use a smarter strategy. Given a set of point clouds {Pi }i that describe
overlapping scans of a 3D object or scene, let {Ti }i be a set of rigid transformations
that align the point clouds {Pi }i in a common coordinate frame. Consider the set
O of overlapping pairs of point clouds from {Pi }i . Each point p ∈ Pi in each pair
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(Pi ,P j ) ∈ O generates 40 triplets. These 40 triplets use as anchor point p ∈ Pi ,
while positives are grabbed from the local neighborhood of p in T jP j . With that in
mind, we can denote asN j

p,τ in P j the set of neighbors points that are at distance at
most τ from p. In addition, considerN j

p,2τ , the set of points in P j that are at distance

at most 2τ from p. While the points in N j
p,τ are good correspondences for p in P j ,

the set N j
p,2τ \ N j

p,τ contains difficult negative examples for p. This is visualized in
Fig. 7.3 in [29]. They have similar local geometries of p but are far enough from
it. Hence, 15 triplets are constructed by sampling negatives from Np,2τ and 25 are
constructed by randomly sampling negatives from other scans.

7.4.4 PPF-FoldNet

PPF-FoldNet [13] is an extension of another descriptor, and it has been presented by
Deng et al. [14] in 2018. The main limitations of learned 3D descriptors are the big
amount of labeled data required, sensitivity to rotations, and the use of handcrafted
input preparation. PPF-FoldNet improved upon these limitations by proposing an
unsupervised rotation-invariant local descriptor. FoldingNet [69] introduced the idea
of deforming a 2D grid to decode a 3D surface as a point set, given a latent codeword
encoding the 3D surface, and offered an interesting paradigm for unsupervised learn-
ing with point clouds. Similarly, PPF-FoldNet uses folding operation to reconstruct
the point pair feature [4, 15] of a support.

7.4.4.1 Point Cloud Parametrization

The local patch of a feature point p is represented by a collection of pair features,
computed between p and the neighboring points:

F	 = { f(p,p1) · · · f(p,pi ) · · · f(p,pN ) } ∈ R
4×N−1 (7.20)

As far as Point Pair Features (PPFs) are concerned, for two points x1 and x2 the
features are defined as

ψ12 = (‖d‖2,∠(n1,d),∠(n2,d),∠(n1,n2)) (7.21)

where d denotes the difference vector between points, n1 and n2 are the surface
normals at x1 and x2, ‖·‖ is the Euclidean distance, and ∠ is the angle operator
computed in a numerically robust manner as in [4]:

∠(v1, v2) = atan2
(‖v1 × v2‖ , v1 · v2

)
(7.22)

∠(v1, v2) is guaranteed to lie in the range [0, π).
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The main motivation behind the use of PPFs is their invariance to rotations. Rota-
tion invariance is an essential trait for every local descriptor, and the PPFs are invari-
ants under Euclidean isometry as distances and angles are preserved between every
pair of points. A visualization of some local patches and their correspondent PPF
signatures is shown in Fig. 7.2 in [13].

7.4.4.2 Network Architecture

PPF-FoldNet leverages on an encoder–decoder architecture, shown in Fig. 7.1 in
[13], to reconstruct a set of PPFs computed on a local patch around a given feature
pointp. The encoder is composed of a three-layer, point-wiseMulti-Layer Perceptron
(MLP) followed by amax-pooling layer that aggregates individual point features into
a global one similar to [43, 69]. After the concatenation with skip links, a two-layer
MLP compresses these features to the encoded codeword.

The decoder takes inspiration from FoldingNet [69], and try to deform a low-
dimensional grid structure using the information encoded in the codeword learned
by the encoder. Differently from [69], the decoder uses a deeper architecture, and
each folding operation relies on a five-layerMLP. This choice is mainly due to higher
dimensional of the reconstructed set, 4D versus 3D. The loss involved is theChamfer
distance between PPFs:

d(F, F̂) = max

{
1

|F|
∑

f∈F
min
f̂∈F̂

‖f − f̂‖2, 1

|F̂|
∑

f∈F̂
min
f∈F

‖f − f̂‖2
}

(7.23)

where F is computed as in (7.20) and the ˆ operator refers to the reconstructed set.
The learned latent-dimensional vector is called codeword and used as local descriptor
of the underlying geometry around which the patch is extracted. The weights of the
network are initialized using Xavier initialization [17]. The loss is minimized by
ADAM optimizer [30]. Batch size is 32, while the size of the final descriptor is 512.

7.4.4.3 Training Data

Thanks to the unsupervised approach, the network is trained by randomly sampling
points from the fragments of the 3DMatch dataset. For each keypoint, the PPFs are
computed using its neighboring points in a 30cm vicinity. Since the number of points
in a local patch is not fixed, each local patch is down-sampled to an arbitrary number
of points, thereby facilitating the train by organizing the data into regular batches,
and increasing the robustness to noises and different point densities.
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7.5 Dataset and Evaluation

Within this section,wewill validate some of the proposed algorithms in Sects. 7.3 and
7.4 using the popular 3DMatch Benchmark Dataset [72]. This dataset is a collection
of different real-world scenes retrieved from a pool of previously published ones
such as Analysis-by-Synthesis [62], 7-Scenes [55], SUN3D [66], RGB-D Scenes v.2
[34], and Halber and Funkhouser [23]. The dataset includes indoor scenes like living
rooms, offices, bedrooms, tabletops, and restrooms. Each scene is equipped by one
or more RGB-D video sequences captured by real sensors, likeMicrosoft Kinect and
Intel RealSense, together with camera intrinsic parameters. In order to be robust to
noise point clouds for the fragments belonging to a single scene are generated by
fusing 50 consecutive depth frames. The overall number of scenes in the dataset is
62, split into 54 for train and validation and 8 for benchmarking.

As for the selected descriptors, we have chosen FPFH [47], Spin Image [28],
SHOT [51], USC [60], 3DMatch [72], CGF [29], PPFNet [14], and PPF-FoldNet
[13]. The main reason behind the choice of handcrafted descriptors is to compare
features based on point density, such as Spin Images and USC, and algorithms that
operate on geometric properties such as FPFH and SHOT. On the other hand, for the
learned ones we rely on the most recent proposals.

To test the rotation invariance of 3D feature descriptors, in [13] a rotated version
of the 3D Match Benchmark Dataset is proposed. The fragments in the test split are
rotated around randomly sampled axis with a randomly chosen angle. We refer to it
as Rotated 3D Match Benchmark.

A good way to check the performance of a given descriptor is to use it within
a registration pipeline. Given a set of K fragments available for each scene in the
dataset, the aim is to find the rigid transformation matrix, G, that aligns every pair
of overlapping fragments. Each scene in the dataset comes with a list of overlap-
ping fragments and the rigid transformations Ti j ∈ SE(3) between them. In order to
check the performance of a given 3D local feature descriptor, the following steps are
performed. For all the fragment pairs (Vi , Vj )with overlap at least 30%, a list of cor-
respondences between all the keypoints detected in Vi and all the keypoints detected
in Vj is formed by finding all the pairs that lie mutually close in the feature space by
applying nearest neighbor search [13]. The set containing all the correspondences
is called Ci, j . Then, given a pair of matched keypoints (ki , k j ), ki ∈ Vi , k j ∈ Vj ,
the set of correct correspondences, Cgndi, j , can be identified based on the available
ground truth transformations by checking whether the matched keypoints lay within
a certain distance τ1 in the canonical reference frame:

Cgndi, j = {(ki , k j ) : ‖ki − Ti j k j‖ ≤ τ1} (7.24)

We can define the inlier ratio forCi, j as the percentage of true matches inCi, j , rin =
|Cgndi, j |/|Ci, j |. Instead of using the estimated correspondences within a RANSAC
pipeline and check the resulting rigid transformation, a fragment pair is considered
correctly aligned if rin > τ2.
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Given a set of fragment pairs S = {(P,Q)} that are used in the evaluation, the
quality of a given feature descriptor is measured by the recall R of fragment pairs
matched in S:

R = 1

|S|
|S|∑

i=1

1

(

rin
(
Si = (Pi ,Qi )

)
> τ2

)

(7.25)

On both 3D Match Benchmark and Rotated 3D Match Benchmark, τ1 and τ2 are
set to 10 cm and 5%, respectively. For each fragment, descriptors are computed in
5000 randomly sampled feature points, provided by [72]. The radius support used
to compute a descriptor is 18 cm and for normal estimation it is 9 cm. For the
handcrafted descriptors, we used the public implementation in PCL [50], while for
the learned descriptors since the implementations are not public, the results were
taken from [13].

7.6 Results

The experimental results on the standard 3D Match Benchmark are shown in Table
7.1. From the results, it is clear how the descriptors based on geometric attribute his-
tograms tend to outperform those based on spatial distribution histograms. Indeed,
SHOT, PPF-FoldNet build up their representations leveraging properties of the sur-
face like normals. Except for SHOT and USC, PPFNet and PPF-FoldNet managed
to match a higher number of fragment pairs compared to the other methods. This is a
clear demonstration of how learning the descriptor using a stable and rich representa-
tion rather than using handcrafted techniques allows achieving higher performances.

Results on the rotated benchmark are illustrated in Table7.2. They show how
a robust local reference frame is an essential aspect of any descriptor. Comparing
the results from Tables7.1 and 7.2, FPFH, Spin Images, SHOT, USC, and CGF
demonstrate robustness to rotations. Their performance remains stable despite the
introduction of random rotations in the data. The significant drop in performance
achieved by 3DMatch and PPFNet also demonstrates how these descriptors hardly
learn to pose invariance directly from data. The best performance is obtained by
PPF-FoldNet and SHOT: this proves how the use of rotation-invariant features, such
as Point Pair Features, or a stable local reference frame, can lead to a robust and
descriptive representation.

7.7 Open Challenges

Within this chapter, we have outlined how over the past few years there has been
an intensive research activity in learning features for 3D data. Nevertheless, many
challenges are still open.Although the use of deep learning algorithmshas boosted the
performance of local 3D descriptors, learning a rotation-invariant descriptor directly
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from 3D data such as point clouds remains an open problem. Indeed, most state-of-
the-art methods achieve rotation invariance by relying on handcrafted features that
are by design invariant to rotation. Moreover, many deep learning approaches still
use handcrafted methods to operate on 3D data.

Additional open problems that 3D local descriptors will need to face in forthcom-
ingyears are the robustness to geometric transformation andnoise. This is particularly
relevant with learned-based approaches which suffer from the well-known domain
shift problem when tested under unseen working conditions and data domains. Scal-
ability toward large datasets (e.g., large scenes, many objects) and in general com-
putational efficiency is also an important issue, especially considering the higher
and higher relevance that mobile applications (such as, e.g., robotics, autonomous
driving, augmented reality) are assuming in the context of 3D data processing.

7.8 Further Reading

We have presented an overview of methods proposed over the last two decades to
describe the local properties of a 3D surface and successfully matched it under rigid
transformations and in the presence of noise, clutter, and occlusions.

Interestingly, the successful research avenue aiming at adapting neural network
architectures such as CNNs and auto-encoders to process 3D data—and in particular
point clouds—has blurred the line between the standard distinction between global
and local 3D descriptors, since such architectures could be employed indifferently
under both fashions and for most 3D processing tasks. To name a few methods, we
refer the reader to the recent point cloud-based auto-encoders proposed in Atlas-
Net [18] and FoldingNet [69], or recent multi-resolution 3D descriptors for point
clouds such as PointNet++ [45] and fully convolutional point networks [46]. All
these methods have been, or could be, used for both global and local description
tasks.

Although this chapter focuses on local features for 3D data, it is interesting to
analyze how also in the field of images there has been a parallel line of research.
One of the most remarkable works is represented by Lift [70]. For a more detailed
discussion of learned 2D features, we refer the reader to the survey of Schonberger
et al. [53].

7.9 Questions and Exercises

1. Based on the contents of Sect. 7.3, highlight the main differences between 3DSC
and USC descriptors.

2. Explain the main differences between handcrafted and learned descriptors by
highlighting the main advantages and disadvantages of the two approaches.
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3. Explain the main problems related to the use of deep learning algorithms on
point clouds and how the current state-of-the-art solutions try to overcome them.

4. In this chapter, local descriptors were mentioned. Why are they often preferred
to global descriptors? In which applications are local descriptors most suitable?

5. In the 3DMatch descriptor, in order to create an organized structure for a point
cloud, the local support of a feature point is voxelized. Explain the main disad-
vantage of this approach.

6. Considering a descriptor of your choice, handcrafted or learned, briefly explain
how it works and what the advantages are compared to other state-of-the-art
solutions.

7. What are the two main loss functions used to learn a local feature descriptor for
point clouds?

8. What are the main sources of noise that make the calculation of a local reference
frame not repeatable?

9. Considering a descriptor of your choice and using the dataset explained in
Sect. 7.5, implement a featurematching pipeline as described in the Introduction.

10. Implement the estimation for the SHOT local reference frame described in
Sect. 7.4.1.1.

7.10 Hands-On 3D Descriptors

As a supplement to this chapter, we provide some code snippets that show how
to calculate some of the 3D descriptors presented in this chapter. The following
examples use the open-source implementations available in the Point Cloud Library
(PCL) [50]. In particular, the descriptors currently available are SHOT, FPFH, Spin
Images, and USC.

In the following snippets 7.1 and 7.2, we provide the code to compute two of the
descriptors seen in this chapter, SHOT and USC, respectively. As an exercise, we
leave to the reader the extension of the presented snippets to the other aforementioned
descriptors available in PCL.

1 #include <pcl/io/pcd_io.h>
2 #include <pcl/features/normal_3d.h>
3 #include <pcl/features/shot.h>
4

5 using namespace pcl;
6 using namespace std;
7

8 typedef PointXYZ PointT;
9 typedef Normal NormalT;

10 typedef SHOT352 ShotT;
11

12 int main(int argc , char** argv)
13 {
14 /* Create point cloud for coordinates*/
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15 PointCloud <PointT >::Ptr cloud(new PointCloud <
PointT >);

16 /* Create point cloud for normals */
17 PointCloud <NormalT >::Ptr normals(new PointCloud <

NormalT >);
18 /* Create point cloud for descriptors */
19 PointCloud <ShotT >::Ptr descriptors(new PointCloud <

ShotT >());
20

21 /*Read a point cloud from the disk , exit in case
of failure */

22 if (io:: loadPCDFile <PointT >(argv[1], *cloud) != 0)
23 return -1;
24

25 /* Estimate the normals */
26 const int number_of_neighbours_for_normals = 17;
27

28 NormalEstimation <PointT , NormalT >
estimator_normals;

29

30 estimator_normals.setInputCloud(cloud);
31 estimator_normals.setKSearch(

number_of_neighbours_for_normals);
32

33 estimator_normals.compute (* normals);
34

35 /* Estimate shot descriptor */
36 SHOTEstimation <PointT , NormalT , ShotT > shot;
37 shot.setInputCloud(cloud);
38 shot.setInputNormals(normals);
39

40 const double radius_shot = 0.18;
41 shot.setRadiusSearch(radius_shot);
42

43 /*Set the radius to compute the Local Reference
Frame*/

44 shot.setLRFRadius(radius_shot);
45

46 shot.compute (* descriptors);
47

48 /* Print descriptors*/
49 for(ShotT shot : (* descriptors))
50 {
51 for (int i = 0; i < shot.descriptorSize (); i

++)
52 cout << shot.descriptor[i] << endl;
53 }
54 }

Listing 7.1 Compute SHOT descriptor

1 #include <pcl/io/pcd_io.h>
2 #include <pcl/features/usc.h>
3
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4 using namespace pcl;
5 using namespace std;
6

7 typedef PointXYZ PointT;
8 typedef Normal NormalT;
9 typedef UniqueShapeContext1960 UscT;

10 typedef ReferenceFrame FrameT;
11

12 int main(int argc , char** argv)
13 {
14 /* Create point cloud for coordinates*/
15 PointCloud <PointT >::Ptr cloud(new PointCloud <

PointT >);
16 /* Create point cloud for descriptors */
17 PointCloud <UscT >::Ptr descriptors(new PointCloud <

UscT >());
18

19 /*Read a point cloud from the disk , exit in case
of failure */

20 if (io:: loadPCDFile <PointT >(argv[1], *cloud) != 0)
21 return -1;
22

23 /* Estimate USC descriptor */
24 UniqueShapeContext <PointT , UscT , FrameT > usc;
25 usc.setInputCloud(cloud);
26

27 const double radius_usc = 0.18;
28 usc.setRadiusSearch(radius_usc);
29

30 /*Set the radius to compute the Local Reference
Frame*/

31 usc.setLocalRadius(radius_usc);
32

33 /*The minimal radius value for the search sphere*/
34 const double radius_minimal = radius_usc / 10.0;
35 usc.setMinimalRadius(radius_minimal);
36

37 /* Radius used to compute the local point density
for the neighbors */

38 const double radius_density = radius_usc / 5.0;
39 usc.setPointDensityRadius(radius_density);
40

41 usc.compute (* descriptors);
42

43 /* Print descriptors*/
44 for(UscT usc : (* descriptors))
45 {
46 for (int i = 0; i < usc.descriptorSize (); i++)
47 cout << usc.descriptor[i] << endl;
48 }
49 }

Listing 7.2 Compute USC descriptor
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Chapter 8
3D Shape Registration

Umberto Castellani and Adrien Bartoli

Abstract Registration is the problem of bringing together two or more 3D shapes,
either of the sameobject or of twodifferent but similar objects. This chapter first intro-
duces the classical Iterative Closest Point (ICP) algorithm which represents the gold
standard registration method. Current limitations of ICP are addressed, and the most
popular variants of ICP are described to improve the basic implementation in several
ways. Challenging registration scenarios are analyzed, and a taxonomy of recent
and promising alternative registration techniques is introduced. Four case studies are
then described with an increasing level of difficulty. The first case study describes
a simple but effective technique to detect outliers. The second case study uses the
Levenberg–Marquardt (LM) optimization procedure to solve standard pairwise reg-
istration. The third case study focuses on the challenging problem of deformable
object registration. The fourth case study introduces an ICP method for preoperative
data registration in laparoscopy. Finally, open issues and directions for future work
are discussed, and conclusions are drawn.

8.1 Introduction

Registration is a critical issue for various problems in computer vision and computer
graphics. The overall aim is to find the best alignment between two objects or between
several instances of the same object, in order to bring the shape data into the same
reference system. The main high-level problems that use registration techniques are
as follows:

1. Model reconstruction. The goal in model reconstruction is to create a complete
objectmodel frompartial 3D views obtained by a 3D scanner. Indeed, it is rare that

U. Castellani (B)
University of Verona, Verona, Italy
e-mail: Umberto.Castellani@univr.it

A. Bartoli
Université d’Auvergne, Clermont-Ferrand, France
e-mail: Adrien.Bartoli@gmail.com

© Springer Nature Switzerland AG 2020
Y. Liu et al. (eds.), 3D Imaging, Analysis and Applications,
https://doi.org/10.1007/978-3-030-44070-1_8

353

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44070-1_8&domain=pdf
mailto:Umberto.Castellani@univr.it
mailto:Adrien.Bartoli@gmail.com
https://doi.org/10.1007/978-3-030-44070-1_8


354 U. Castellani and A. Bartoli

Fig. 8.1 Example of model reconstruction. Partial 3D views of the object of interest are acquired
(left). After registration, all the 3D views are transformed to the common reference system and
merged (right)

a single 3D view grabs the whole object structure, mainly due to self-occlusions.
Registration allows one to obtain the alignment between the partial overlapping
3D views in order to build a complete object model, also called a mosaic (see
Fig. 8.1). In this context, registration is first applied between pairs of views [11,
126]. The whole model is then reconstructed using multiple-view registration
refinement [72, 126]. Typically, model reconstruction is employed in cultural
heritage [10] to obtain 3D models of archeological findings. It has also been
applied in applications such as reverse engineering and rapid prototyping [150]
and for vision in hostile environments [29, 30].

2. Model fitting. The goal in model fitting is to compute the transformation between
a partial 3D view and a known CAD model of the actual object. Model fitting is
used in robotics for object grasping [41, 109] and model-based object tracking
[123]. Model fitting is typically used with rigid objects but has recently been
extended to deformable objects [31].

3. Object recognition. The goal in object recognition is to find, among a database
of 3D models, which one best matches an input partial 3D view. This problem
is more challenging than model fitting since a decision has to be made regarding
which model, if any, is the sought one. Solving the recognition problem this
way is called recognition-by-fitting [147]. Several works have been done for 3D
face recognition [18, 20, 133] and for 3D object retrieval [56, 143]. Registration
becomes more challenging in a cluttered environment [8, 76, 95].

4. Multimodal registration. The goal in multimodal registration is to align several
views of the same object taken by different types of acquisition systems. After
registration, the information from different modalities can be merged for compar-
ison purposes or for creating a multimodal object model. This problem is typical
in medical imaging where it is CT scans or MRI and PET scans [89, 134]. 3D
medical image registration is discussed further in Chap.11.
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This chapter gives a general formulation of the registration problem. This for-
mulation leads to computational solutions that can be used to solve the four above-
mentioned tasks. It encompasses most of the existing registration algorithms. For
a detailed description of registration techniques and experimental comparisons, we
refer the reader to recent surveys [77, 96, 124, 126, 128, 141, 142]. It is worth men-
tioning that most of the existing computational solutions are based on the seminal
Iterative Closest Point (ICP) [11] algorithm that we will describe shortly.

8.1.1 Chapter Outline

This chapter is organized as follows. We first present the two-view registration prob-
lem and the current algorithmic solutions. We then describe some advanced registra-
tion techniques. We give a comprehensive derivation of algorithms for registration
by proposing four case studies. We give an overview of open challenges with future
directions and conclusion. Further suggestions, additional reading, and exercises are
finally proposed.

8.2 Registration of Two Views

We first give a mathematical formulation of the two-view registration problems and
then derive the basic ICP algorithm and discuss its main variants.

8.2.1 Problem Statement

Given a pair of viewsD andM representing two scans (partial 3D views) of the same
object, registration is the problem of finding the parameters a of the transformation
function T (a, D)which best aligns D to M . Typically, set D andM are either simple
point clouds or triangulated meshes [26]. The moving view D is called data-view,
while the fixed view M is called model-view. The registration problem is solved by
estimating the parameters a∗ of the transformation T that satisfy

a∗ = argmin
a

E(T (a,D),M), (8.1)

where E is called the error function and measures the registration error. Figure8.2
illustrates the two-view registration process. The data-view and themodel-view show
different portions of Bunny. The transformation function T (a,D) is applied, and the
registered views are shown.
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Fig. 8.2 Pairwise registration. The data-view and the model-view (left) are registered. The trans-
formation function T (a,D) allows one to move the data-view to the model-view coordinate frame
(right)

Most of the registrationmethods are based on the paradigm defined directly above
and differ in the following aspects:

• The transformation function. The transformation function T usually implements
a rigid transformation of the 3D space. It uses a translation vector t and a rotation
matrix R whose values are encoded or parametrized in the parameter vector a.
The transformation function may also handle deformations; this requires a more
complex formulation.

• The error function. The error function E measures the registration error or dis-
similarity between D andM after alignment. When the transformation function T
is rigid, E is a measure of congruence between the two views. In general, E takes
the form of an L2 approximation of the Hausdorff distance which further involves
the so-called point-to-point distance [11] or the point-to-plane distance [36].

• The optimization method. This is the method or algorithm used to find the min-
imizer a in problem (8.1). The gold standard is the ICP algorithm [11] which
was specifically designed for the problem at hand. General-purpose optimization
methods such as Levenberg–Marquardt [54] have also been used for this problem.
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8.2.2 The Iterative Closest Points (ICP) Algorithm

In the classical ICP algorithm [11], the overall aim is to estimate a rigid trans-
formation with parameters a∗ = (R, t). Both views are treated as point clouds
D = {d1, . . . ,dNd } and M = {m1, . . . ,mNm }. The error function is chosen as

EICP(a,D,M) =
Nd∑

i=1

‖(Rdi + t) − m j‖2, (8.2)

where we define EICP(a,D,M) = E(T (a,D),M) and where (di ,m j ) are corre-
sponding points [126].1 Fixing di ∈ D the corresponding pointm j ∈ M is computed
such that

j = argmin
k∈{1,...,Nm }

‖(Rdi + t) − mk‖2. (8.3)

More specifically, the value

e2i = ‖(Rdi + t) − m j‖2 (8.4)

is the square of the residual. Figure8.3 illustrates the step of correspondence com-
putation. For each data point (in red), the closest model point (in blue) is computed
using the Euclidean distance. The list of correspondences is thus obtained. Note
that, given point correspondences, computation of R and t to minimize EICP in
Eq.8.2 can be solved in closed form [126]. Several approaches are possible for the
closed-form, least squares estimation of this 3D rigid body transformation. These
include approaches based on Singular Value Decomposition (SVD), unit quaternion,
dual quaternion, and orthonormal matrices. Although the study of Eggert et al. [49]
found little difference in the accuracy and robustness of all these approaches, per-
haps the most well known of these is the SVD approach by Arun et al. [5]. Here, the
cross-covariance matrix is formed for the Nd correspondences, (di ,m j ), as

C = 1

Nd

Nd∑

i=1

(di − d̄)(m j − m̄)T , (8.5)

where the means d̄, m̄ are formed over the Nd correspondences. Performing the SVD
of C gives us

USVT = C, (8.6)

where U and V are two orthogonal matrices and S is a diagonal matrix of singular
values. The rotation matrix R can be calculated from the orthogonal matrices as

1Note that the pair (di ,m j ) is initially a putative correspondence, which becomes a true correspon-
dence when convergence to a global minimum is attained.
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Fig. 8.3 Correspondence estimation in ICP. For each transformed data point d′
i = Rdi + t, the

closest model point m j is estimated (left). The list of corresponding points is then defined (right)

R = VUT . (8.7)

This solution may fail to give a correct rotation matrix and give a reflection instead
when the data is severely corrupted [149]. Thus, it can be modified to always return
a correct rotation matrix [149]:

R = VSUT , (8.8)

where

S =
{
I if det(U)det(V) = 1
Diag(1, 1, · · · , 1,−1) if det(U)det(V) = −1.

Once the rotation matrix has been estimated, the translation vector t can be estimated
as

t = m̄ − Rd̄ . (8.9)

The ICP algorithm is iterative because it iteratively improves the putative corre-
spondences. If true correspondences were known, clearly the process could operate
in one shot (one pass). ICP has two main steps in its inner loop: (i) closest point
computation and (ii) rigid transformation estimation. In more detail, the algorithm
operates as follows:

1. For each data point di ∈ D, compute the closest point m j ∈ M according to
Eq.8.3.

2. With the correspondences (di ,m j ) from step 1, estimate the new transformation
parameters a = (R, t).

3. Apply the new transformation parameters a from step 2 to the point cloud D.
4. If the change in EICP(a,D,M) between two successive iterations is lower than

a threshold then terminate, else go to step 1.

It was proven [11] that this algorithm is guaranteed to converge monotonically to a
local minimum of Eq. (8.2). Note that, as for any local iterative method, a strategy for
initializing a must be used. An overview of the most popular initialization strategies
is given in Sect. 8.2.3.1.
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8.2.3 ICP Extensions

Although ICP has been successfully applied to many registration problems, there are
several critical issues that need to be taken care of. In particular, ICP performs well
when the following assumptions are met:

1. The two views must be close to each other. If not, ICP will probably get stuck in
a local minimum. This issue is typically solved by pre-alignment of the two 3D
views, also called coarse registration.

2. The two views must fully overlap or the data-view D must be a subset of the
model-view M. The problem arises from the fact that ICP always assigns a clos-
est point to every data point. If a data point has no corresponding model point,
this will create a spurious correspondence, an outlier with respect to the sought
transformation, that will bias the solution or prevent the algorithm from finding
the correct transformation parameters.

Two other important issues are the speed of computation and the accuracy of the
ICP algorithm. Typically, methods focused on speed improvement for the closest
point computation step which is the bottleneck of the algorithm. Other interesting
approaches address instead of the speed of convergence by proposing new distance
formulations for problem (8.1). Methods focusing on accuracy exploit additional
information in order to measure the similarity between corresponding points not
only in terms of proximity. In the following, we describe some registration tech-
niques which improve the basic ICP method in several ways. Figure8.4 illustrates
the proposed taxonomy of ICP extensions so as to easily understand the organization
of previous work in this field.

8.2.3.1 Techniques for Pre-alignment

The aimof pre-alignment techniques is to estimate a coarse transformationwhichwill
allow the two views to get closer. This helps the data-view to be transformed within
basin of attraction of the correct local minimum. In practice, instead of searching
dense point-to-point correspondences, pre-alignment techniques estimate the best
matching between features extracted from the views. Roughly speaking, the features
can be global or local. The former is a compact representation that effectively and
concisely describes the entire view. The latter instead is a collection of local and
discriminative descriptors computed on sub-parts of the views.

Global Approaches
Global approaches typically estimate and match the principal coordinate system of
each view. The simplest approach is to compute the main translational alignment
by shifting the centroids of the two point clouds to the origin of the coordinate
system (i.e., zero-mean). In order to estimate also the orientation of the principal
axes, Principal Component Analysis (PCA) to the 3D points can be performed.
The problems with PCA as a pre-alignment method are (i) a 180◦ ambiguity in the
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Fig. 8.4 A taxonomy of some ICP extensions

direction of the principal axes, (ii) principal axes may switch for shapes that have
eigenvalues similar in value, particularly if the object is able to deform slightly,
and (iii) a vulnerability to outliers in the raw shape data (as discussed). Even if
we enforce a right-handed frame using the sign of cross-product of basis vectors,
there still exists an overall 180◦ ambiguity, unless higher order moments are used.
Moments of higher orders are also useful to improve accuracy [21]. Of course, these
approaches perform well when the two views fully overlap. Otherwise, the non-
overlapping parts change the estimation of the principal axes and thus affect the
pre-alignment. Some improvements have been made by extracting and matching
the skeletons of the views [32, 99] but this is feasible for articulated objects only.
Recently, a method for registration between views in arbitrary pose was proposed as
the so-calledGO-ICPmethod [157]. The key idea consists of solving the optimization
problem using a branch and bound algorithm to guarantee the estimation of a global
solution independently of the initialization.

Local Approaches
Local approaches define a descriptor (or signature) for each 3D point which encodes
local shape variation in the point neighborhood [27, 76, 78, 104, 140]. See also [63,
64, 145] for a comprehensive survey on local geometric descriptors. Point corre-
spondences are then obtained as the best matches in regard to the point signatures.
Various methods to compute signatures were proposed. In the seminal work [76],
the spin images were introduced. In a spin image, the neighbors of some selected 3D
point (e.g., a 3D interest point [145]) are binned in a 2D cylindrical-polar coordinate
system. This consists of a distance from the selected point within that point’s tangent
plane and a signed height above/below the tangent plane. Thus, the spin image is
a 2D histogram of 3D shape, where one dimension of information is sacrificed for
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pose invariance. In [80], curvilinear features on the object are estimated from a small
amount of points of interest. Gaussian andmean curvatures are used to this aim. Sim-
ilarly, in [156], bitangent curve pairs were used as landmarks on the surface. In [104],
a geometric scale-space analysis of 3D models was proposed from which a scale-
dependent local shape descriptor was derived. Similarly in [27], registration involves
few feature points by extending the approach for salient point detection to the 3D
domain. A generative model is then estimated as a point descriptor by using hidden
Markov models. In [78], the proposed descriptor encodes not only local information
around the point, but also inter-point relationships. The method is inspired by the
so-called Shape Context [9] which was improved using the Bag-of-Words paradigm
[42]. Note that from the analysis of inter-point relationships, it is also possible to
estimate the overlapping region between two views. It is worth noting that in general
the estimation of the overlap area is not trivial. An interesting approach was proposed
in [131] by combining local geometric features with advanced graph matching tech-
niques. The method consists of representing all putative point matches as a graph,
and then selecting as many consistent matches among them as possible. To this aim,
a global discrete optimization problem is proposed based on the so-called maximum
strict sub-kernel algorithm [130].

8.2.3.2 Techniques for Improving Speed

The speed of the algorithm is crucial for many applications. Unfortunately, when the
number of points is very high, the basic ICP algorithm becomes very slow. In order
to address this issue, several strategies were proposed. Many of these strategies are
implemented by theKinect fusion toolkit [101] for real-timemodeling using dynamic
RGBD sensors.

Subsampling
Subsampling can be applied to either the data-view only or to both the data-view and
the model-view. Random and uniform strategies are common approaches [126].Nor-
mal space sampling is a more sophisticated approach based on choosing points such
that the distribution of normals among the selected points is as spread as possible. This
increases the influence of smaller details which are crucial to better disambiguate the
rigid transformation due to translational sliding. Another effective practice is based
on a hierarchical subsampling where the range map is re-organized in a pyramidal
fashion to obtain a coarse to fine representation of the source data. This approach is
employed for online modeling as in [101] where the coarse levels with few points
are used to estimate the rough motion, and vice-versa the detailed levels that involve
more points are employed for refining the alignment.

Closest Point Computation
As mentioned above, closest point computation is the bottleneck of the registration
process due to the quadratic complexity (O(n2)) in finding the correspondence of
each point. Early strategies were based on the organization of the model points in a
k-d tree [136] structure in order to reduce the closest point complexity to O(n log n).
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Closest point caching [136] also accelerates the speed of ICP (the data point corre-
spondence search is only among a subset of model points which were the closest at
the previous iteration). Indeed, in [105] k-d tree and caching are combined in order
to further improve the speed of ICP. Other more effective approaches are based on
the so-called reverse calibration paradigm [13]. The idea is to project the source
data point onto the destination model-view which is encoded as a range image [124].
In particular, the projection from the 3D domain into the range image is performed
by using the calibration parameters of the 3D scanner. In this fashion, the corre-
spondence is computed in one shot. The reverse calibration approach is especially
effective for real-time modeling purposes [30, 101, 125]. For instance, in [125] the
authors proposed the first real-time 3D model reconstruction system where the full
modeling pipeline is carried out during the acquisition using a real-time sensor. In
[30], online registration is performed to build a 3D mosaic of the scene in order
to improve the navigation in underwater environments. This online modeling using
reverse calibration alignment has been consolidated more recently with the large
availability of dynamic RGBD sensors [101]. Note that the one-shot computation
can be carried out also on generic point cloud (not necessarily coming from a range
image) by precomputing the so-called distance transform of the model-view [54].
Figure8.5 illustrates the distance transform. In practice, the distance to closest model
points is pre-computed for all grid points of the discretized volume. The case for dis-
tance transform computed for the model is particularly compelling when one wishes
to align many instances of data scan to the same model scan. A more recent class of
methods is based on the GPU implementation of data representation to improve the
computation of corresponding points [47, 48]. A probabilistic approach is proposed
using Gaussian Mixture Models (GMMs) where a decoupling technique is intro-
duced for parallel estimation of parameters. Also, in [101], a parallel computation
of local contributions of distance estimation is employed on a GPU to improve the
speed of real-time modeling.

Distance Formulation
Another crucial factor affecting the speed of ICP is the point-to-point or point-to-
plane distance used in problem (8.1). Figure8.6 shows a schema of the two kinds
of distances: point-to-point computes the euclidean distance between the data point
and model point (left), and point-to-plane distance computes the projection of the
data point onto the surface of the model-view which is encoded in terms of piecewise
planar patches (for instance, a triangular mesh). In spite of an increased complexity
of the distance for point-to-plane formulation, the number of ICP iterations required
to converge is reduced [110, 115]. Whether this results in a reduced registration time
depends on the tradeoff between the increased per-iteration time and the reduced
number of iterations. Note that usually the point-to-plane distance is employed for
real-time modeling pipelines [101, 124] where pairwise registration is carried out
for subsequent views acquired very close in time with a very small motion among
them.

Recently, a new “distance formulation” has been proposed [112] where the model
surface is implicitly represented as the zero isosurface of a fitted Radial Basis Func-
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Fig. 8.5 Using the distance transform. The model-view is enclosed in a volumetric grid (left). For
each point of the grid, the closest model point is computed. Two planes are highlighted on the XY -
and Y Z -axes, respectively, and the distance transform values of each grid point are visualized for
both planes (right)

tion (RBF), s(x) = 0, for any 3D point x, where the function s represents distance
to surface. For any point on the data scan (or on a pre-computed 3D grid), the dis-
tance and direction (gradient) to the zero isosurface can be computed directly from
the RBF. The advantage of this RBF distance formulation is that it interpolates over
holes that may exist in the model scan. Particularly for lower resolution scans, the
interpolation is more accurate than the piecewise linear point-to-plane method. Both
RBF model fitting and RBF model evaluation are O(n log n).

8.2.3.3 Techniques for Improving Accuracy

The accuracy of the alignment is the most critical aspect of the registration since
even a small misalignment between two views can affect the whole 3D model recon-
struction procedure. The simplest strategy that can be used is outlier rejection. Other
methods improve the accuracy by using additional information such as color and
texture or local geometric properties. Finally, an effective class of methods devoted
to the improvement of accuracy are probabilistic methods.

Outlier Rejection
Closest point computation may yield spurious correspondences due to errors or to
the presence of non-overlapping parts between the views. Typically, outlier rejection
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Fig. 8.6 Distance formulation. Point-to-point distance: the 3D vertex di is associated to the 3D
point m j which is a vertex of the source 3D mesh (left). Point-to-plane distance: the 3D vertex di
is associated to the 3D point m j which lies inside the plane defined by a triangle of the source 3D
mesh (right)

techniques threshold the residuals. The threshold can be fixed manually, or as a
percentage of worst pairs (e.g., 10% [117, 126]). Other techniques perform statistics
on the residual vector and set the threshold as 2.5σ or apply the so-called X84 rule
[29, 66]. An evaluation of the use of the X84 rule for automatic outlier rejection is
presented in Sect. 8.5. More recently, statistical analysis has been introduced into
the general registration problem (Eq.8.1) by proposing a new error function named
Fractional Root Mean Squared Distance [113]. In [17], an implicit approach to
reject the outliers is introduced exploiting a sparse formulation of the closest point
computation with L1-norm distance.

Additional Information
The basic ICP algorithm computes the correspondences by taking into account only
the proximity of points. However, corresponding points should be similarwith respect
to other aspects. Several studies have attempted to exploit additional information
available from the acquisition process or from the analysis of the surface properties. In
practice, the distance formulation ismodified to integrate such additional information
like local surface properties [59], intensity derived from the sensor [59, 154], or
color [118]. In [74], the authors proposed to use color and texture information.
In [135], the so-called ICP using Invariant Feature (ICPIF) was introduced where
several geometric features are employed, namely, curvatures, moments invariants,
and spherical harmonics invariants. In [25], additional information was integrated
into the point descriptors using the spin image with color. More recently, with the
availability of low-cost RGBD sensors [165], several methods have been proposed
that exploit the matching computation on both the 2D and 3D domains (i.e., a 2D
image is used as additional information) [67]. For instance, [162] uses camera pose
optimization with 2D features to improve the accuracy of registration.

Probabilistic Method
In order to improve the robustness of the registration, several probabilistic versions
of the standard ICP have been proposed [61, 119, 120]. In [119, 120], the idea
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of multiple weighted matches justified by a probabilistic version of the matching
problem is introduced. A newmatchingmodel is proposed based on Gaussian weight
(SoftAssign [120]) andmutual information [119], leading to a smaller number of local
minima and thus presenting the most convincing improvements. In [61], the authors
introduced a probabilistic approach based on the Expectation Maximization (EM)
paradigm, namely, EM-ICP. Hidden variables are used to model the point matching.
Specifically, in the case of Gaussian noise, the proposed method corresponds to ICP
with multiple matches weighted by normalized Gaussian weights. In practice, the
variance of the Gaussian is interpreted as a scale parameter. At high scales, EM-
ICP gets many matches while it behaves like standard ICP at lower scales. In [47],
a hierarchical approach was introduced representing the partial views at multiple
scales. In this fashion, the most appropriate level of geometric details is adaptively
found to improve the point matching.

8.3 Advanced Techniques

Although registration is one of the most studied problems in computer vision, several
cases are still open and new issues have emerged in recent years. In this section, we
focus on some scenarioswhere registration becomesmore challenging: registration of
more than two views, registration in cluttered scenes, and registration of deformable
objects. We also describe some emerging techniques based on machine learning
to solve the registration problem. Figure8.7 illustrates the proposed taxonomy for
advanced registration techniques.

Fig. 8.7 A taxonomy of advanced registration techniques
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8.3.1 Registration of More Than Two Views

Once registration has been performed pairwise, all the views need to be transformed
into a global reference system by applying a multiple-view registration technique.
Note that in this context the assumption that the data-view is a subset of the model-
view is no longer true. There are two main issues: (i) error accumulation and (ii) the
automation of the process.

Reducing Error Accumulation
When the ordering of the sequence of views N1, ..., Np is available, the registration
can be performed pairwise between consecutive views (i.e., between views Ni and
Ni+1). In general, even if all the pairs are apparently well registered, some misalign-
ment typically appears when the full model is reconstructed due to the accumulation
and propagation of the registration error. The general idea of multiple-view registra-
tion techniques is to solve simultaneously for the global registration by exploiting
the interdependencies between all views at the same time. This introduces additional
constraints which reduce the global error. A comparative study of similar multiple-
view registration schemes was performed [43]. In [117], a method is presented that
first aligns the scans pairwise with each other and then uses the pairwise alignments
as constraints in a multiview step. The aim is to evenly distribute the pairwise reg-
istration error, but the method itself is still based on pairwise alignments. In [29], a
method that distributes registration errors evenly across all views was proposed. It
operates in the space of estimated pairwise registration matrices; however, ordering
of the views is required. More recently, [144] proposed a new approach based on the
well-known generalized Procrustes analysis, seamlessly embedding the mathemati-
cal theory in an ICP framework. A variant of the method, where the correspondences
are non-uniformly weighted using a curvature-based similarity measure, was also
presented. In [161], a method that handles loop closures was proposed to perform a
globally consistent reconstruction. Locally fused models are introduced for overlap-
ping parts of the scene and used to initialize a global graph-based optimization that
distributes residual error. The key idea consists in the detection of points of interest
characterized by the areas with the highest density of information. This approach is
particularly effective for large-scale scenarios where the reconstruction is obtained
with a SLAM-like framework [51]. In [53], error accumulation is avoided by extend-
ing the LM-ICP algorithm [54] to work on multiple views. The idea consists of
defining an effective optimization function that considers all the views simultane-
ously in the registration error, whose solution is obtained using standard numerical
methods.

Automating Registration
Especially when the full model is composed of a large number of scans, the view
order might not be available and therefore should bemanually specified.Manymeth-
ods were proposed to improve the automation of multiple-view registration. In [72],
a global optimization process searches a graph constructed from the pairwise view
matches for a connected sub-graph containing only correct matches, using a global
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consistency measure to eliminate incorrect but locally consistent matches. Other
approaches use both global and local pre-alignment techniques to select the over-
lapping views by computing a coarse alignment between all the pairs. In [90], the
pre-alignment is performed by extracting global features from each view, namely,
extended Gaussian images. Conversely, in [78], the pre-alignment is computed by
comparing the signatures of feature points. Then, the best view sequence is estimated
by solving a standard Travelling Salesman Problem (TSP). In [37], a robust strategy
was introduced to detect wrong alignment between view pairs. A global optimiza-
tion method is introduced based on the line processes algorithm. In [65], the authors
introduced a shape-growing method where a seed shape is sequentially updated by
registering it with the input partial views. In [53], a view matching method was
proposed that combines salient point descriptors with a RANSAC-based robust cor-
respondence computation. In this fashion, both the ordering of views and the pairwise
pre-alignment are obtained leading to a fully automatic registration pipeline. Results
regarding this aspect for example 3D scans are presented in Sect. 8.4.

8.3.2 Registration in Cluttered Scenes

Thanks to the recent availability of large-scale scanners, it is possible to acquire
scenes composed of several objects. In this context, registration is necessary to
localize each object present in the scene and estimate its pose. We call this sce-
nario a cluttered case where the overlap between the registering views is very small
since the object of interest to be localized may be made of a small subset of the
entire view. This makes the registration problem more challenging. Figure8.8 shows
two examples of highly cluttered scenes: an entire square2 and a scene composed of
several mechanical objects.

Roughly speaking, two main strategies were proposed to address this problem:
(i) the use of point signatures to improve point-to-point matching and (ii) the design
of more effective matching methods.

Point Signatures
This approach is similar to local approaches for pre-alignment. However, in clut-
ter scenarios, the problem becomes more challenging since, differently from the
standard pre-alignment case, the neighborhood of one point of an object can cover
part of other objects. Therefore, the descriptor may become useless, and the size of
local neighborhood becomes crucial to get the best tradeoff between reliability of
descriptor and robustness to clutter. A large number of methods for keypoint detec-
tion were proposed to reduce the considered points only to very few salient areas
[145]. Then, using a local 3D Reference Frame (RF) is important to encode pose
invariant 3D descriptors. For instance, in [146] the so-called SHOT descriptor was
proposed to form a rotation invariant and robust to noise RF from which a descrip-
tor is obtained combining geometric information with color. In [95], a descriptor

2Piazza Brà, Verona, Italy. Image courtesy of Gexcel: http://www.gexcel.it.

http://www.gexcel.it
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Fig. 8.8 Example of large scan acquisition (left) and scene withmultiple mechanical objects (right)

that uses two reference points to define a local coordinate system is proposed. In
particular, a three-dimensional tensor is built by sampling the space and storing the
amount of surface intersecting each sample. In [8], a method that exploits surface
scale properties is introduced. The geometric scale variability is encoded in the form
of the intrinsic geometric scale of each computed feature by leading to a highly
discriminative hierarchical descriptor.

Matching Methods
Since the number of corresponding points is very few within cluttered scenes, stan-
dard methods for outlier rejection are not useful but more complex matching algo-
rithm can be exploited. In [95], descriptors are stored using a hash table that can
be efficiently looked up at the matching phase by geometric hashing algorithm. In
[8], matching is performed in hierarchical fashion by using the hierarchy induced
from the definition of point descriptor. In [46], a method is proposed that creates
a global model description using an oriented point pair feature and matches it by
using a fast voting scheme. A fast voting scheme, similar to the generalized Hough
transform, is used to optimize the model pose in a locally reduced search space. This
space is parametrized in terms of points on the model and rotation around the surface
normals.

In [155], a new voting scheme called Intrinsic Hough transform was introduced
to exploit the sparsity of the voting space by sampling only at the areas where
the matching probability is non-zero. In [2], a method is proposed to extract all
coplanar 4-point sets from a 3D point set that are approximately congruent, under
rigid transformation, to a given set of coplanar 4-points. This approach is further
expanded in the so-called Super4PCS method [93] where an effective data structure
is exploited to improve the core instance problem, i.e., finding all point pairs that are
within a distance range (r − ε, r + ε). In this fashion, a very fast registration can be
obtained from arbitrary pose, with very few overlap. In [163], a method called fast
global registration was introduced. A well-defined energy formulation is designed
to encode the registration constraints, and a line process technique is exploited to
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efficiently solve for the optimal solution. This method is suitable for large scenes
with clutter. Moreover, it can easily work with multiple views.

8.3.3 Deformable Registration

While rigidity in the aligning transformation is a largely applicable constraint, it is
too restrictive in some cases. Imagine indeed that the object that has to be registered
is not rigid but deformable. For instance, a typical deformable object is the human
body and its parts such as the face or the hands. For the full body, it is very important
to align the articulated parts (i.e., arms, legs, and so on), while for the face the
deformations are caused mainly by the facial expressions. Another class of object is
composed of planar shapes such as a piece of paper or a blanket that deform over
time. Also, in themedical domain, there aremainly non-rigid scenarios caused by the
deformation of the internal parts of the human body. Deformable registration has two
main issues: the computation of stable correspondences and the use of an appropriate
deformation model. Note that the need for registration of articulated or deformable
objects has recently increased due to the availability of real-time range scanners
[33, 34, 85, 97]. Roughly speaking, we can emphasize two classes of deformable
registration methods: (i)methods based on general optimization techniques, and (ii)
probabilistic methods.

Methods Based on General Optimization Techniques
The general formulation of deformable registration is more involved than the rigid
case and it is more difficult to solve in closed form. Advanced optimization tech-
niques are used instead. The advantage of using general optimization techniques
consists of jointly computing the estimation of correspondences and the deformable
parameters [33, 34, 38, 85, 138]. Moreover, other unknowns can be used to model
further information like the overlapping area, the reliability of correspondences, the
smoothness constraint, and so on [85]. Examples of transformation models which
have been introduced for surface deformations are (i) affine transforms applied to
nodes uniformly sampled from the range images [85], (ii) rigid transforms on patches
automatically extracted from the surface [33], (iii) as rigid as possible constraint
[138], (iv) Thin-Plate Splines (TPS) [38, 124], or (v) Linear Blend Skinning (LBS)
model [34]. The error function can be optimized by the Levenberg–Marquardt Algo-
rithm [85], GraphCuts [33], or Expectation–Maximization (EM) [34, 38, 100]. In
[71], deformable registration is solved by alternating between correspondence and
deformation optimization. Assuming approximately isometric deformations, robust
correspondences are generated using a pruning mechanism based on geodesic con-
sistency. Deformable alignment to account for errors in the point clouds obtained
by scanning a rigid object is proposed in [22, 23]. Also, in this case, the authors
use TPS to represent the deformable warp between a pair of views that they estimate
through hierarchical ICP [124].Note that using real-timeRGBDsensors is possible to
implement real-time modeling and reconstruction systems also for non-rigid objects
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[73, 102]. For instance in [102], the so-called Dynamic Fusion method has been
introduced for dense dynamic scene reconstruction. The idea is to estimate a dense
volumetric motion field for each frame in order to provide increasingly denoised
measurements and a complete representation of the observed scene as more mea-
surements are acquired and integrated. This approach has been further extended in
[73] where a sparse RGB feature matching strategy was introduced to improve the
robustness of tracking.

A new class of methods are properly defined for human shapes and are based
on the fitting of a template model (e.g., a morphable model) to the acquired shape
[88]. In this scenario, the challenge consists of estimating both the shape and pose
parameterswithin the sameoptimization procedure. For instance, in [14], the Skinned
Multi-Person Linear (SMPL)model is registered to amonocular RGBD sequence for
full-body reconstruction. This approach was further expanded for full-body dynamic
shape and motion capture [15] where a new mesh registration method was proposed
that uses both 3D geometry and texture information to register all scans in a sequence
to a common reference topology. Another class of important method for non-rigid
shapes is based on spectral shape analysis [84]. In particular, a new approach consists
of moving the computation of matching from the physical to the spectral space
exploiting the so-called functional map framework [106]. From the basic framework,
several variants have been proposed to work on partial shapes [87, 122], to reduce the
number of estimated parameters [103], and to exploit locality on the spectral domain
[94]. It is worth noting that these methods provide the matching between points
or shape parts but they cannot deform the pair of shapes to allow a full alignment
between them. For this aim, a recent method called functional automatic registration
for 3D human bodies (FARM) was proposed in [91] where the spectral approach
based on the functional map is combined with the SMPL template model to obtain
the registration of the full body in very challenging scenarios such as partiality, noise,
and topological variation.

Probabilistic Methods
Using probabilistic methods, the uncertainty on the correct surface transformation
can be addressed by adopting maximum likelihood estimation [4, 45, 70, 75, 100,
151]. Probabilistic approaches are based on modeling each of the point sets by a
kernel density function [148]. The dissimilarity among such densities is computed
by introducing appropriate distance functions. Registration is carried out without
explicitly establishing correspondences. Indeed, the algorithm registers two meshes
by optimizing a joint probabilistic model over all point-to-point correspondences
between them [4]. In [75], the authors propose a correlation-based approach [148] to
point set registration by representing the point sets as Gaussian mixture models. A
closed-form solution for the L2 norm distance between twoGaussianmixturesmakes
fast computation possible. In [151], registration is carried out simultaneously for
several 3D range datasets. The method proposes an information-theoretic approach
based on the Jensen–Shannon divergence measure. In [100], deformable registration
is treated as a maximum likelihood estimation problem by introducing the coherent
point drift paradigm. Smoothness constraints are introduced based on the assumption
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that points close to one another tend to move coherently over the velocity field. The
proposed energy function is minimized with the EM algorithm. Similar approach
has been proposed in [45] to track the full-hand motion. A stereo setup is employed
to estimate the 3D surface. To improve the estimation of the hand pose, 2D motion
(i.e., optical flow) is combined with 3D information. A well-defined hand model is
employed to deal with articulated structures and deformations. Also, in this case, the
standard ICP algorithm has been extended to its probabilistic version according to
the EM-ICP approach. This approach has been further extended in [70] where the
so-called expectation conditional maximization paradigm is introduced. A formal
demonstration is proposed to show that it is convenient to replace the standard M-
step by three conditional maximization steps, or CM steps, while preserving the
convergence properties of EM. Experiments are reported for both the hand and body
tracking. In [28], a statistical method has been proposed to model the local geometry
properties variation as a local stochastic process encoded in a HiddenMarkovModel
(HMM). The idea is to learn local geometric configurations as hidden states and
encoding the surface properties in terms of transitions among such states. In [166],
the so-called Stitched Puppet model was proposed to encode the body parts of the
human shapes in a generative model. The human body is represented by a graphical
model whose nodes are associated to body parts that can independently translate and
rotate in 3D.

8.3.4 Machine Learning Techniques

Recently, advanced machine learning techniques have been exploited to improve
registration algorithms [3, 60, 98, 111, 139]. The general idea is to use data-driven
approaches that learn the relevant registration criteria from examples. The most
promising methods have been proposed for (i) improving the matching phase and
(ii) detecting an object which is a general instance of one or more classes. Most of
the recently proposed methods are based on deep learning architectures [82].

Improving the Matching
In these approaches, the emphasis is on the effectiveness of the correspondence
computation. In [139], a new formulation for deformable registration (3D faces)
is proposed. The distance function from corresponding points is defined as a
weighted sum of contributions coming from different surface attributes (i.e., proxim-
ity, color/texture, normals). Instead ofmanually or heuristically choosing theweights,
amachine learning technique is proposed to estimate them.A support vectormachine
framework is employed in a supervised manner, based on a dataset of pairs of cor-
rect and incorrect correspondences. In [3], the authors propose a novel unsupervised
technique that allows one to obtain a fine surface registration in a single step, without
the need of an initial motion estimation. The main idea of their approach is to cast
the selection of correspondences between points on the surfaces in a game theoretic
framework. In this fashion, a natural selection process allows one to select points
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that satisfy a mutual rigidity constraint to thrive, eliminating all the other correspon-
dences.

With the explosion of the deep learning technology [82], several methods have
been proposed to extend this very effective approach to 3D registration. In [158],
a neural network is trained on 3D shapes working on local volumetric patches.
The need of a large number of training data is satisfied using the available dataset
of already registered scans. This approach was further improved in [44], encoding
simple geometric relationships such as normals and point pair features to better
represent the local context of a given point. Furthermore, to explore the relationship
across different views, a new descriptor was proposed in [160] where training is
carried out by collecting information from multiple views. In [50] rather than using
labeled data, the authors proposed an unsupervised method based on deep auto-
encoders [68]. Deep learning methods are also effective for non-rigid objects like
the human body [16, 86]. In [16], a geometric convolutional neural network was
designed to effectively learn class-specific shape descriptors. In [86], a new neural
network was proposed to directly estimating the shape correspondences within the
functional map framework. Finally, interesting deep learning approaches have been
successfully employed in the medical domain where different sources of information
need to be integrated using a multimodal registration procedure [137].

Object Detection
A new class of methods is emerging from employing machine learning techniques
for detecting specific classes of objects on large scenes [60, 98, 111]. In this context,
the registration is important to be able to devise a detection-by-localization approach
[147] where the pose of the object is also estimated. Several works have been done
for the 2D domain, but its extension to 3D scenes is not trivial. In [111], the authors
proposed to detect cars in cluttered scenes composed of millions of scanned points.
The method is based on integrating spin images with extended Gaussian images in
order to combine effectively local and global descriptors. Furthermore, the method is
able to detect object classes and not only specific instances. In [98], the Associative
Markov Network (AMN) has been extended to integrate the context of local features
by exploiting directional information through a new non-isotropic model. In [60],
different objects are simultaneously detected by hierarchical segmentation of point
clouds. Indeed, clusters of points are classified using standard learning by example
classifiers.

Deep learning methods have shown their benefit also for the object detection task.
The so-called 3DMatch method [158] enables 3D model alignment from cluttered
RGBD scenes using a deep neural network to learn 3Dmatching. In [81], the object is
localized using a regression procedurewhich, from the depth image, provides the 6D-
pose parameters. Note that these deep-learning-based approaches naturally extend to
multiple and different objects, leading to a complete 3D semantic segmentation. For
instance, in [121] a new neural network architecture was proposed for the extraction
of semantic components of a point cloud.



8 3D Shape Registration 373

8.4 Registration at Work

In this section, we show some practical examples of registration algorithms at work
on two views and then on more than two views.

8.4.1 Two-View Registration

Asmentioned in Sect. 8.2, given a pair of partial views of the sameobject, the pairwise
registration task consists in estimating the rigid transformation that brings themoving
data-view to the reference model-view. In this example, we take a pair of scans from
an RGBD sequence of a real scene that is acquired by a real-time sensor (i.e., kinect
[101]). The scene contains a table and some objects of the real life. The data is online
available from the rgbd-scene-v2 dataset3 and represents a very useful benchmark
for the evaluation of real-time modeling techniques like kinect fusion [101].

Figure8.9 shows the pair of evaluated scans. The RGB image (Fig. 8.9, left) shows
a can, a box, a bowl, and amug. The depthmap (Fig. 8.9, center) highlights the relative
positions among the involved objects (i.e., the bowl is the closest to the observer, the
box is the farthest, and the other objects are in between). The colored point cloud
(Fig. 8.9, right) gives the full 3D representation of the scene. As happens usually for
a real scene acquired with real-time RGBD sensors, the scans are very noisy with
the presence of many holes and outliers.

Figure8.10 shows the 2D registration performance. Figure8.10 shows the partial
views before the registration. The second view is acquired after around 1 s from the
first one. This means that the sensor motion is sufficiently large to introduce new
details of the overall scene, and the two views are already heavily misaligned. For
this experiment, we employed the standard ICP algorithm for pairwise registration
after a manual pre-alignment. We use the ICP implementation from meshlab4 and
the enclosed aligning toolkit for the pre-registration. Finally, Fig. 8.10 shows the
registered views. The two views are correctly aligned, and new details of the acquired
scene can be correctly captured especially on the can and the bowl.

8.4.2 Multiple-View Registration

In this section, we evaluate a fully automatic 3D registration pipeline of multiple
views. Given a sequence of unordered partial views of the same object, the reg-
istration task consists in finding the rigid transformation that brings each view to
the global reference system. In this fashion, the views become aligned and a com-

3http://rgbd-dataset.cs.washington.edu/dataset/rgbd-scenes-v2/, scene 13, frames 200 and 230.
4http://www.meshlab.net/.

http://rgbd-dataset.cs.washington.edu/dataset/rgbd-scenes-v2/
http://www.meshlab.net/
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Fig. 8.9 Pair of RGBD scans: RGB image (left), depthmap (center), and colored point cloud (right)

Fig. 8.10 2D Registration: starting views (left) and registered views (right)

plete model can be reconstructed. We adopt a local feature-based approach which is
composed of the following main steps5:

1. Keypoint detection. Keypoint detection aims at detecting few and salient feature
points from the shape. We employ the salient point detection method proposed
in [27]. Inspired by the research on saliency measure on 2D images, the source
mesh is decomposed into multiscale representations, and a saliency measure is
defined by combining the results gathered at each scale. Finally, maximal points
on the salient map are detected as feature points.

5Code and data for this automatic 3D registration pipeline is implemented on the Automatic 3D
Registration toolkit available at http://profs.sci.univr.it/~castella/art.html.

http://profs.sci.univr.it/~{}castella/art.html
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2. Keypoint description. Keypoint description aims at attaching a descriptor to each
keypoint that must be (i) distinctive of the point, (ii) invariant to rigid transfor-
mations, and (iii) resilient to as much nuisances as possible (noise, clutter, partial
views, sampling rate, and so on). We use spin images [76], a well-known sur-
face representation that has been successfully used in shape matching and object
recognition.

3. View matching. Since the ordering of the views is unknown, a view matching
step is required to estimate the set of view pairs to be registered. To this aim, the
overlap between each view pair is computed using a voting scheme among the
keypoint descriptors. The output of this stage is encoded in an adjacency matrix
between the views.

4. Pairwise registration. The pairwise registration is obtained in two phases: (i)
robust pre-alignment for which only feature points are involved, and (ii) ICP
registration refinement where a more accurate alignment is estimated with ICP
on the pre-aligned views using only the overlapping parts.

5. Global registration. A global alignment is produced by combining the pairwise
rigid transformations found in the previous step. The idea (as in [92, 132]) is to
estimate a global alignment of the views with the least accumulation error among
the solutions based on chaining pairwise registrations.

A more detailed description of the steps involved in the proposed pipeline is
available in [53]. Figure8.11 shows a subset of partial views of Bunny (i.e., 6 over
24 views). The overlap between views is reliable for only a few view pairs (e.g.,
views 1 and 5). Conversely, for most of the view pairs, the overlap is not sufficient to
guarantee a correct alignment. According to our pipeline, we detect the keypoints and
their signatures for each view. Figure8.12 (top) and (middle) shows some feature
points on the Bunny ear from two overlapping views. It is worth to note that the
extracted keypoints are coherent on the two observed views. Figure 8.12 (on the
right side) shows the spin images of selected keypoints (red dots). As expected,
corresponding points generate very similar signatures (Fig. 8.12 (top) and (middle)
on the right side). When instead we consider a pair of non-corresponding points,
their signatures appear very different (Fig. 8.12 (bottom) where a point around the
eye is observed).

To compute the view matching, we follow the approach of [24] for 2D image
mosaicing. In this phase, we consider only a constant number of descriptors in each
view (we used 100, where a typical view contains thousands of keypoints). Then,
each keypoint descriptor is matched to its l nearest neighbors in feature space (we
use l = 6). This can be done efficiently by using a k-d tree to find approximate
nearest neighbors. A 2D histogram is then built that records in each bin the number
of matches between the corresponding views: we call it the keypoint co-occurrence
matrix H . Finally, every view is matched to the m(= 8) views that have the greatest
values in H . Figure8.13 (left) shows the keypoint co-occurrence matrix for our 24
views.

Once the set of overlapping views is available, we proceed with a robust pairwise
registration procedure. At the first stage, a point-to point matching is computed
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(View 1) (View 5) (View 9)

(View 13) (View 17) (View 21)

Fig. 8.11 Bunny. The full model is observed from partial views gradually sampled around the
object (front to back views 1, 5, 9, and back to front views 13, 17, 21). Only 6 over 24 available
views are shown (i.e., one every four views)

between keypoints using a nearest neighbor strategy among feature descriptor. Then,
a geometric constraint is introduced usingRANSACon the absolute orientation. This
leads to a robust pre-aligned between the views that are further refined using ICP.
Figure8.14 shows two overlapping views before (left) and after (right) registration.
The overlapping points are colored in green.Note that for partially overlapping views,
the inliers correspond to the area of overlap; hence, we can assign a weight W (i, j)
in the range [0, 1] to the pair (view i , view j), corresponding to the fraction of the
overlapping points over the total number of points. The n × n matrixW is called the
weighted adjacency matrix. For our experiment, the adjacency matrix is shown in
Fig. 8.13 (right).

Finally, a weighted graph is constructed, whose vertices are the views and whose
(weighted) adjacency matrix is W . Given a reference view chosen arbitrarily, which
sets the global reference frame, for each view i , the transformation that aligns it with
the reference view r is computed by chaining transformations along the shortest
weighted path from i to r . This is equivalent to computing the (weighted) Minimum
Spanning Tree (MST) with the root in r . In our experiment, the reference view is
r = 1. Figure8.15 shows the viewgraph (top) and the extracted path (bottom). In this
fashion, the correct order for chaining the transformations is recovered, and all the
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Fig. 8.12 Keypoint and signature. Keypoints are extracted from a small subpart of Bunny (i.e.,
the ear from two different views—top and middle—and the eye—bottom. For red points, the spin
image signature is shown on the right
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Fig. 8.13 The keypoint co-occurrence matrix H (left) and the adjacency matrix W (right)

Fig. 8.14 Pairwise registration. Two partial views are shown before (left) and after (right) regis-
tration. The overlap is colored in green

views can be represented on the global reference system. Figure8.16 shows the views
before (left) and after (right) the multiview registration. All the views are correctly
aligned, and a full model of the observed Bunny can be reconstructed.

8.5 Case Study 1: Pairwise Alignment with Outlier
Rejection

In this section, we describe a simple but effective strategy to make the ICP algorithm
resistant to wrong correspondences. Especially when views are only partially over-
lapped,many points of the data-viewdonot have a correspondence in themodel-view.
We call those points single points. However, the basic ICP enforces single points to
be associated to closest points in the model-view, therefore generating outliers. A
robust outlier rejection procedure is introduced based on the so-called X84 rule [29,
66] . The idea is to perform a robust statistical analysis of the residual errors ei after
closest point computation. The underlying hypothesis was pointed out in [159] and
consists of considering the residuals of two fully overlapping sets as an approxima-
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Fig. 8.15 The viewgraph is obtained from the adjacency matrix W (top). From the graph, the
sequence of chaining transformations is computed using the minimum spanning tree algorithm
(bottom). The root is node 1

Fig. 8.16 Multiview registration. All 24 views before the registration (left) and after registration
to the global reference system (right)
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tion of aGaussian distribution. Non-overlapping points can be detected by estimating
a Gaussian distribution from residual errors and by defining a threshold on the tails
of the estimated Gaussian.

The X84 rule is a tool to estimate robustly and automatically this threshold. Given
the residual errors E = {ei }, i = 1 . . . Nd , the Median Absolute Deviation (MAD)
is defined as

MAD = med(|ei − location|), (8.10)

where med is the median operator and location is the median of residual errors (i.e.,
med(E)). The X84 rule prescribes to reject values that violate the following relation:

|ei − location| < k · MAD. (8.11)

Under the hypothesis of Gaussian distribution, a value of k = 5.2 is adequate in
practice, as the resulting threshold contains more than 99.9% of the distribution.

Now we are ready to define the new procedure for robust outlier rejection:

1. For all data point di ∈ D, compute the error ei according to Eq.8.4 (i.e., by
estimating the closest point and by generating the pair of corresponding points
ci = (di ,m j )).

2. Estimate location by computing the median of residuals med(E).
3. Compute MAD according to Eq.8.10.
4. For each residual error ei (i = 1, . . . , Nd):

a. If ei satisfies Eq.8.11 then keep ci in the list of correspondences,
b. If not, reject the correspondence.

5. A new list of corresponding points ĉi is obtained from which outliers have been
filtered out.

In practice, this procedure replaces step 1 in the ICP algorithm described in
Sect. 8.2.2. The X84 rejection rule has a breakdown point of 50%: any majority
of the data can overrule any minority. The computational cost of X84 is dominated
by the cost of the median, which is O(n), where n is the size of the data point set.
The most costly procedure inside ICP is the establishment of point correspondences,
which costs O(n log n). Therefore, X84 does not increase the asymptotic complexity
of ICP.

In Fig. 8.17, an example of registration between two views with a strong occluded
part is shown. The non-overlapping area is wide: the ears and thewhole face ofBunny
are only visible in the data-view, while the bottom part of the body is observed in the
model-view only. The number of data point is Nd = 10000, the number of model
point Nm = 29150, and the number of points of the overlap is #(D ∩ M) = 4000.
In this experiment, the two views are synthetically sampled from the whole 3D
model. A view mask of 600 × 500 points is used in order to obtain highly dense
views. Moreover, in this fashion we know the ground truth transformation, and no
noise affects the views. Figure8.18 shows the distribution of residual errors after
X84-ICP registration. Note that most of the residuals are concentrated around zero.
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Table 8.1 X-84 performance evaluations. Rotation and translation errors are reported

Method Rot-error
(rad.)

Transl-error
(mm)

# Overlap.
points

# Iterations Time (s)

Besl [11] 0.22345 1.2636 10000 20 370

Picky [164] 0.10918 0.9985 9534 28 76

X84-ICP 0.06351 0.4177 4582 21 383

Ground truth – – 4000 – –

It is confirmed that the behavior of the early part of the distribution is similar to
a Gaussian [159]. The X84 rule is employed, and the threshold is automatically
estimated on the tail of the Gaussian. The second peak of the distribution corresponds
to residuals generated by the non-overlapping points.6 In Fig. 8.18 (right), points of
the data-view are colored differently between inliers and outliers. Note that non-
overlapping parts are correctly registered.

Table8.1 summarizes the performance of X84-ICP in comparison with Besl,
i.e., the standard ICP [11], and Picky [164] which implements a combination of
ICP variations described in Sect. 8.2.3. A hierarchical sampling strategy is introduced
to improve the speed, and a thresholding approach on the residual distribution is
employed. More specifically, a threshold is defined as T H = μ + 2.5σ , where μ =
mean({ei }) andσ = std({ei }). The ground truth transformation is shownaswell.Note
that the basic ICP is strongly affected by outliers and is not able to correctly align
the two views. The Picky ICP improves the accuracy, but it is not able to correctly

Fig. 8.17 Registration with robust outliers rejection. Two views at starting pose (left) and after
registration (right). Note that the overlap area is quite restricted

6In order to visualize the peak, the second part of the histogram has been quantized with wider
intervals.
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Fig. 8.18 Automatic residuals thresholding. From the distribution of residuals, the threshold is
estimated according to the X84 rule. Points under the threshold are inliers (red), while outliers are
over the threshold (blue). Outliers are points in non-overlapping areas

estimate the overlapping parts and it does not reach convergence. Conversely, by
employing the X84 rule, wrong correspondences are well detected and a correct
registration is obtained. In order to see the improvement in using robust methods,
we evaluate the X84-ICP on a more challenging scenario composed of a pair of
very noisy images with low resolution. The scene represents a tubular structure in an
underwater environment that is acquired using acoustic devices [29, 30]. The starting
views are depicted in Fig. 8.19 (left). In the red view, we clearly see a large amount
of outliers in the left part of the scene. Figure8.19 (center) shows the registration
result using the standard ICP approach. Note that the blue view is wrongly moved
between the two red structures. Conversely, when X84-ICP is used, the red structure
on the left is recognized as outliers and the views are correctly aligned, see Fig. 8.19
(right).

We highlight that although X84-ICP performs well in these experiments, in more
general cases if the number of outliers is greater than 50% of the residual distribution
the X84 rule is likely to fail.

8.6 Case Study 2: ICP with Levenberg–Marquardt

In this section, we describe a registration method called Levenberg–Marquardt ICP
(LM-ICP), which addresses several of the issues of ICP by modeling the registration
as a general optimization problem. LM-ICP [54] was proposed in order to minimize
the alignment error by employing a nonlinear optimization procedure. The advantage
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Fig. 8.19 Registration with very noisy images from underwater scenarios composed of tubular
structures. Starting views (left), registration using standard ICP, and registration using the robust
X84-ICP

of the LM-ICP is the versatility in the definition of the optimization function in order
to take into account several aspects of the registration, such as the outlier rejection
and the speed.

8.6.1 The LM-ICP Method

The general problem formulation is defined as for the ICP algorithm. The error
function E(a) = EICP(a,D,M) is nonlinear least squares and can thus be written
as the sum of Nd squared residual vectors:

E(a) =
Nd∑

i=1

(ei (a))2, ei (a) = ‖Rdi + t − m j‖. (8.12)

Defining the residual vector as

e(a) = (e1(a) e2(a) · · · eNd (a))
T, (8.13)

we rewrite the error function as E(a) = ‖e(a)‖2.
The Levenberg–Marquardt algorithm combines the methods of gradient descent

and Gauss–Newton. The goal at each iteration is to choose an update to the current
estimate ak , say x, so that setting ak+1 = ak + x reduces the registration error.

We first derive the Gauss–Newton update. Expanding E(a + x) to second order
yields

E(a + x) = E(a) + (∇E(a) · x) + 1

2! ((∇
2E(a) · x) · x) + h.o.t. (8.14)
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This is rewritten in terms of e as

E(a) = eTe

∇E(a) = 2(∇e)Te

∇2E(a) = 2(∇2e)e + 2(∇e)T∇e.

We now define the Nd × p Jacobian matrix J = ∇e, with block (i, j) as Ji, j = ∂Ei
∂a j

(p is the number of elements in a). Introducing the Gauss–Newton approximation
(i.e., neglecting (∇2e)e), we get

E(a + x) ≈ eTe + xTJTe + xTJTJx. (8.15)

Differentiating with respect to x and nullifying yields

∇xE(a + x) = JTe + JTJx = 0, (8.16)

and gives the Gauss–Newton update:

xGN = −(JTJ)−1JTe. (8.17)

Gauss–Newton is usually fast for mildly nonlinear problems (it has superlinear con-
vergence speed), but there is no guarantee of convergence in the general case (an
update may increase the error).

We now derive the gradient descent update. Since we deal with a least squares
problem, the gradient descent update is simply given by

xGD = −λ−1JTe, (8.18)

where λ is the inverse step length. Gradient descent has the nice property that, unless
a local minimum has been reached, one can always decrease the error by making the
step length small enough. On the other hand, gradient descent is known to be slow
and rather inefficient.

The Levenberg–Marquardt algorithm combines both Gauss–Newton and gradient
descent updates in a relatively simple way:

xLM = −(JTJ + λI)−1JTe. (8.19)

A large value of λ yields a small, safe, gradient descent step while a small value of
λ favor large and more accurate steps of Gauss–Newton that make convergence to a
local minimum faster. The art of a Levenberg–Marquardt algorithm implementation
is in tuning λ after each iteration to ensure rapid progress even where Gauss–Newton
fails. The now-standard implementation is to multiply λ by 10 if the error increases
and to divide it by 10 if the error decreases (with an upper bound at 108 and a lower
bound at 10−4, for instance). In order to make the method robust to outliers, one
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may attenuate the influence of points with a large error by replacing the square error
function by anM-estimator ε and an Iterative Reweighted Least Squares (IRLS)-like
reweighting procedure. For instance, the following robust functions can be used:

Lorenzian: ε(r) = log

(
1 + r2

σ

)
or Huber: ε(r) =

{
r2 r < σ

2σ |r | − σ 2 otherwise.

8.6.2 Computing the Derivatives

An important issue in how Levenberg–Marquardt is applied to ICP is the one of
computing the derivatives of the error function. The simplest approach is based on
using finite differencing, assuming that the error function is smooth. However, this
leads to a cost of p extra function evaluations per inner loop. In [54], a more effec-
tive solution was proposed based on the distance transform which also drastically
improves the computational efficiency. The distance transform is defined as

Dε(x) = min
j

ε2(‖m j − x‖), (8.20)

where x ∈ X and X is a discrete grid representing the volume which encloses the
model-viewM. Indeed, each data point di can be easily associated to grid points by
obtaining the residual error ei = X (di ) in one shot.7 In other words, LM-ICPmerges
the two main steps of ICP, namely, closest point computation and transformation
estimation, in a single step. Note further that when the mapping ‖x‖ → ε2(‖x‖) is
monotonic, we obtain that Dε(x) = ε2(‖D(x)‖), so existing algorithms to compute
D may be used to compute Dε , without requiring knowledge of the form of ε.

By combining Eq. (8.12) with Eq. (8.20), the new formulation of the registration
problem becomes

E(a) =
Nd∑

i=1

Dε(T (a,di )). (8.21)

This formulation makes it much easier to compute the derivatives of E . In fact, since
the distance transform is computed in a discrete form, it is possible to compute finite
differences derivatives. More specifically, ∇xDε = [ ∂Dε

∂x
, ∂Dε

∂y
, ∂Dε

∂z
] is computed by

defining ∂Dε (x,y,z)
∂x

= Dε (x+1,y,z)−Dε (x−1,y,z)
2 , ∂Dε (x,y,z)

∂y
= Dε (x,y+1,z)−Dε (x,y−1,z)

2 , and
∂Dε (x,y,z)

∂z
= Dε (x,y,z+1)−Dε (x,y,z−1)

2 . In practice, ∇xDε remains constant through the
minimization, and we get

7Note that the volume is discretized into integer values; therefore, the data point di should be
rounded to recover X (di ).
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∇aE(a) =
Nd∑

i=1

∇xDε(T (a,di ))∇T
a T (a,di ). (8.22)

Note that the computation of ∇T
a T (a,di ) depends on the rigid transformation

parametrization being used. In [54], the author proposed model rotations by uni-
tary quaternions for which the derivatives can be easily computed analytically.
Finally, in order to compute the derivatives using matrix operators, the Jacobian
matrix is defined as Ji, j = (∇xDε(T (a,di )) · ∇T

a j
T (a,di )), where ∇a j T (a,di ) =

[ ∂Tx (a,di )
∂a j

,
∂Ty(a,di )

∂a j
,

∂Tz(a,di )
∂a j

].

8.6.3 The Case of Quaternions

Let the quaternion be defined by q = [s, v]where s and v are the scalar and vectorial
components, respectively [153]. Let d be the point on which the rotation must be
applied. To this aim such a point must be represented in quaternion space, leading
to r = [0,d]. Therefore, the rotated point is obtained by

r′ = qrq−1.

By multiplying in quaternion space,8 we obtain

r′ = [0, s2d + (d · v) · v + 2s(v × d) + v × (v × d)].

We represent this rotated point as

r′ = [0, Tx , Ty, Tz],
where

Tx = s2dx + (dx vx + dyvy + dzvz)vx + 2s(vydz − vzdy) + vy(vx dy − vydx ) − vz(vzdx − vx dz) =
= s2dx + v2x dx + vx vydy + vx vzdz + 2svydz − 2svzdy + vx vydy − v2ydx − v2z dx + vx vzdz =
= (s2 + v2x − v2y − v2z )dx + 2(vx vy − svz)dy + 2(vx vz + svy)dz

Ty = s2dy + (dx vx + dyvy + dzvz)vy + 2s(vzdx − vx dz) + vz(vydz − vzdy) − vx (vx dy − vydx ) =
= s2dy + vx vydx + v2ydy + vyvzdz + 2svzdx − 2svx dz + vyvzdz − v2z dy − v2x dy + vx vydx =
= 2(vx vy + svz)dx + (s2 − v2x + v2y − v2z )dy + 2(vyvz − svx )dz

8A multiplication between two quaternions q and q′ is defined as [ss′ − v · v′, v × v′ + sv′ + s′v].
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Tz = s2dz + (dx vx + dyvy + dzvz)vz + 2s(vx dy − vydx ) + vx (vzdx − vx dz) − vy(vydz − vzdy) =
= s2dz + vx vzdx + vyvzdy + v2z dz + 2svx dy − 2svydx + vx vzdx − v2x dz − v2ydz + vyvzdy =
= 2(vx vz − svy)dx + 2(vyvz + svx )dy + (s2 − v2x − v2y + v2z )dz .

Now we introduce the translation component [tx , ty, tz] and normalize the quater-
nion by obtaining

Tx = (s2 + v2x − v2y − v2z )dx

s2 + v2x + v2y + v2z
+ 2(vxvy − svz)dy

s2 + v2x + v2y + v2z
+ 2(vxvz + svy)dz

s2 + v2x + v2y + v2z
+ tx

Ty = 2(vxvy + svz)dx
s2 + v2x + v2y + v2z

+ (s2 − v2x + v2y − v2z )dy

s2 + v2x + v2y + v2z
+ 2(vyvz − svx )dz

s2 + v2x + v2y + v2z
+ ty

Tz = 2(vxvz − svy)dx
s2 + v2x + v2y + v2z

+ 2(vyvz + svx )dy
s2 + v2x + v2y + v2z

+ (s2 − v2x − v2y + v2z )dz

s2 + v2x + v2y + v2z
+ tz .

According to this model for rotation and translation, the vector of unknowns is
a = [s, vx , vy, vz, tx , ty, tz] (i.e., a ∈ R

7). Therefore, the Jacobian part ∇T
a T (a,d) is

a 3 × 7 matrix:

∇T
a T (a,d) =

⎛

⎜⎝

∂Tx
∂s

∂Tx
∂vx

∂Tx
∂vy

∂Tx
∂vz

∂Tx
∂tx

∂Tx
∂ty

∂Tx
∂tz

∂Ty
∂s

∂Ty
∂vx

∂Ty
∂vy

∂Ty
∂vz

∂Ty
∂tx

∂Ty
∂ty

∂Ty
∂tz

∂Tz
∂s

∂Tz
∂vx

∂Tz
∂vy

∂Tz
∂vz

∂Tz
∂tx

∂Tz
∂ty

∂Tz
∂tz

⎞

⎟⎠ , (8.23)

where Tx , Ty , and Tz have been defined above. For instance, we can compute the
derivative component ∂Tx

∂vx
as

∂Tx
∂vx

= 2vxdx
s2 + v2x + v2y + v2z

− 2vx (s2 + v2x − v2y − v2z )dx

(s2 + v2x + v2y + v2z )
2

+

+ 2vxdy
s2 + v2x + v2y + v2z

− 4vx (vxvy − svz)dy
(s2 + v2x + v2y + v2z )

2
+

+ 2vzdz
s2 + v2x + v2y + v2z

− 4vx (vxvz + svy)dz
(s2 + v2x + v2y + v2z )

2
.

Similarly, all the other components of the Jacobian can easily be computed.

8.6.4 Summary of the LM-ICP Algorithm

The algorithm for LM-ICP can be summarized as

1. Set λ ← λ0 = 10,
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2. compute distance transform Dε(x),
3. set ak ← a0,
4. compute ek = e(ak),
5. compute J,
6. repeat

a. compute update ak+1 = ak − (JT J + λI)−1JT ek 9

b. compute ΔE = E(ak+1) − E(ak)
c. If ΔE > 0 then λ = 10λ, go to a, else λ = 1

10λ, go to 4.

7. If ‖ek‖ > ν go to 3, else terminate.

Note that ν is a constant which defines the convergence of the algorithm. As already
highlighted, the algorithm above is the standard LM algorithm. The crucial compo-
nents are (i) the choice of unknowns a, (ii) the computation of error vector e, and (iii)
the computation of the Jacobian matrix J. In particular, the distance transform Dε(x)
enables an improvement in the computational efficiency of the error computation
and makes the computation of the Jacobian feasible. The starting value a0 can be
estimated by employing some of the techniques described in Sect. 8.2.3.1.

8.6.5 Results and Discussion

Figure8.20 shows an example of LM-ICP alignment between two views. In this
experiment, the emphasis is on the speed of the algorithm, since the accuracy is
guaranteed by the fact that the two views are well overlapped. The LM-ICP takes
less than 1s for an LM iteration. A total of 20 iterations has been run to reach
convergence. Both the data-view and the model-view have about 40,000 points.
Using the basic IC P algorithm, the same number of iterations are required but each
iteration takes more than 30 s. This confirms that a drastic improvement in speed is
observed with LM-ICP, in comparison with basic ICP. Note that a crucial parameter
is the grid size. It trades off computational efficiency with memory space. Moreover,
it requires that the data scan is always inside the volume by requiring large memory
space for storage when only a small overlap is observed between the views. Further
experiments can be found in [54].More details on experimental setup can be found on
the LM-ICP website.10 In practice, LM-ICP also enlarges the basin of convergence
and estimates a more accurate solution (the minimum is reached with 50% fewer
iterations on average, see [54] for more details).

Finally, it is worth noting that LM-ICP can be easily extended to apply many
other variants of the ICP. Multiview registration could also be solved in the LM-ICP
framework.

9While we have chosen the identity as the damping matrix, some authors rather choose the diagonal
part of the Gauss–Newton Hessian approximation.
10http://research.microsoft.com/en-us/um/people/awf/lmicp.

http://research.microsoft.com/en-us/um/people/awf/lmicp
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Fig. 8.20 LM-ICP. The starting pose (left) and merged views after registration (right)

8.7 Case Study 3: Deformable ICP with
Levenberg–Marquardt

In this section, we describe an advanced registration technique: Deformable-
Levenberg Marquardt Iterative Closest Point (DLM-ICP) [31] . DLM-ICP extends
the LM-ICP approach, introduced in Sect. 8.6, to deformable objects. We focus on
continuous smooth surfaces such as the page of a book being turned in front of a
range sensor. To this aim, a templatemodel is warped toward the input scans in order
to capture surface deformations. In this case, several instances of almost the entire
time-varying object are observed rather than different points of view of an object, and
the aim of registration is to align the views over time using a registration-by-fitting
approach.

The template model introduces a prior on the acquired shape by providing a joint
registration and reconstruction of the object with hole-filling and noise removal.
The proposed method exploits only geometric information without the extraction of
feature points. According to [54], described in Sect. 8.6, registration is modeled as
an optimization problem defined by an error function whose global minimum is the
sought after solution, estimated by the Levenberg–Marquardt algorithm. The error
function introduces the constraint that data points must be close to model points (i.e.,
the template). As for [54], it explicitly embeds a min operator, thus avoiding the
traditional two steps in ICP-like algorithms, through the use of a distance transform.
Furthermore, thanks to the flexibility of LM, many other terms are introduced to
model different expectedbehaviors of the deformation, namely, surface, and temporal
smoothness as well as inextensibility of the surface. Finally, a boundary constraint is
introduced to prevent the computed surface from sliding arbitrarily.

We highlight that, with this method, the unknowns are the template model, repre-
sented by a planar mesh that is deformed to fit each point cloud. More specifically,
we directly estimate the position of the model points without imposing any prior
about the kind of transformation function that has been applied. In particular, each
unknown (i.e., each vertex of the template) influences a very small portion of the
error function. Indeed, another interesting property of DLM-ICP is that the Jacobian
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matrix, involved in the normal equations to be solved at each iteration, is highly sparse
for all the terms. This makes the estimation of dense deformation fields tractable and
fast.

8.7.1 Surface Representation

The sequence of 3D point clouds Di , with Nd = li points each, is represented by

Di =
⎛

⎜⎝
dx
i,1 dy

i,1 dz
i,1

...
...

...

dx
i,li

d y
i,li

dz
i,li

⎞

⎟⎠ .

The unknown model, a = M, has a grid structure and is thus represented by three
R × C matrices, giving the grid’s deformation. Each matrix is reshaped in a single
vector of size Nm = RC , giving Mi as

Mi =
⎛

⎜⎝
mx

i,1 my
i,1 mz

i,1
...

...
...

mx
i,Nm

my
i,Nm

mz
i,Nm

⎞

⎟⎠ .

In practice, the number of data points is much larger than the number of model points
(i.e., ligNm). Upon convergence, the algorithm determines, for each model point, if
there is a corresponding point in the current point cloud. Points may be missing
because of occlusions or corrupted sensor output. This approach has the advantage
that it naturally gives the reconstructed surface by interpolating the mesh points.
Point cloud registration is obtained by composing the deformation fields. Note that,
in contrast to Sect. 8.6, the registration is from model points to data points.

8.7.2 Cost Function

The cost function combines two data and three penalty terms:

E(M) = Eg(M) + λbEb(M) + λs Es(M) + λt Et (M) + λx Ex (M), (8.24)

where λb, λs , λx , and λt are weights. Note that we drop the frame index i for purposes
of clarity, and denote Mi as M and Mi−1 as M̃.

The data terms are used to attract the estimated surface to the actual point cloud.
The first term Eg is for global attraction, while the second one Eb deals with the
boundary. In particular, the boundary term aims at preserving the method against
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possible sliding of the model along the observed surface. Moreover, these terms
must account for possible erroneous points by using robust statistics. The penalty
terms are Es , Et , and Ex . The first two account for spatial smoothness and temporal
smoothness Es , respectively. The third one penalizes the surface stress and is related
to the non-extensibility of the surface, and therefore to material properties of the
surface.

This cost function isminimized in an ICP-likemanner, as described in the previous
section. All five terms are explained below in detail.

Data Term: Global Surface Attraction
This term globally attracts the model to the data points in a closest point manner
[126]. Denoting BM as the set of boundary points in the model, M, where

M = {(mx
i m

y
i m

z
i )

T }, i = 1 . . . Nm (8.25)

and BD as the set of boundary points in the data, D, where

D = {(dx
i d y

i dz
i )

T }, i = 1 . . . li (8.26)

we get the following data term, integrating the model to data points matching step:

∑

m∈M\BM

min
d∈D\BD

‖ d − m ‖2, (8.27)

whered andm are 3-vectors representing a data point and amodel point, respectively.
As we mentioned before, the unknowns are not the rigid transformation parame-
ters (i.e., the classical rotation–translation) but correspond to the whole deformable
motion field inM.

An outlier rejection strategy is introduced by defining a robust function ε. Here,
the X84 rule is employed [29]. Therefore, Eq. 8.27 is modified so as to get the
following robustified data term:

Eg(M) =
∑

m∈M\BM

ε

(
min

d∈D\BD

‖ d − m ‖2
)

. (8.28)

Data Term: Boundary Attraction
This term attracts boundary model points to boundary data points. It is defined in a
similar manner to the global attraction term (Eq.8.28) except that the sum and min
operators are over the boundary points:

Eb(M) =
∑

m∈BM

ε

(
min
d∈BD

‖ d − m ‖2
)

. (8.29)
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Note that the boundaries can be computed by combining edge detection techniques
with morphological operators.11 More precisely, from the range image, we detect the
portion of the image which is covered by the object we want to track (i.e., a piece of
paper), and we impose the condition that boundaries of the model and the observed
surface must coincide.

Penalty Term: Spatial Smoothness
This term discourages surface discontinuities by penalizing its second derivatives,
as an approximation to its curvature. According to the definition of the geometry
image [62], the model M is a displacement field parameterized12 by (u, v) with
u = [1 . . . R] and v = [1 . . .C], i.e.,M(u, v) = (Mx (u, v) My(u, v) Mz(u, v))T. The
spatial smoothness term can thus be taken as the surface bending energy:

Es(M) =
∫ ∫ ∥∥∥∥

∂M2

∂2u

∥∥∥∥
2

+ 2

∥∥∥∥
∂M2

∂u∂v

∥∥∥∥
2

+
∥∥∥∥
∂M2

∂2v

∥∥∥∥
2

du dv.

Using a finite difference approximation for the first and second derivatives [116],
the bending energy can be expressed in discrete form as a quadratic function of M.
More specifically, the derivative ∂Mx

∂u at a point (u, v) is discretely approximated as
∂Mx (u,v)

∂u = Mx (u + 1, v) − Mx(u − 1, v). This can be conveniently represented by
a constant Nm × Nm matrixCu such that∇uM

x = Cu · vect(Mx ), where vect(Mx ) is
the vectorization operator which rearranges matrixMx to a vector. A similar matrix
Cv can be computed with respect to v. Indeed, the second derivatives are computed
using Hessian operator matrices, namely,Cuu ,Cuv,Cvv. The surface bending energy
can be expressed in discrete form by defining

Ex
s = vect(Mx )T(CT

uuCuu + 2CT
uvCuv + CT

vvCvv)vect(Mx ),

and by computing

Es(M) = Ex
s (M

x ) + Ey
s (M

y) + Ez
s (M

z),

which can be further expressed in matrix form as follows:

Es(M) = vect(M)TKvect(M), (8.30)

where K is a 3Nm × 3Nm , highly sparse matrix.

Penalty Term: Temporal Smoothness
This term defines a dependency between the current and the previous point clouds,
M and M̃:

11The object boundaries can be estimated according to the kind of sensor being used. For instance,
boundaries on range scans can be estimated on the range image. In stereo sensors, they can be
estimated on one of the two optical views.
12Recall that the model points lie on a grid.
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Et (M) =‖ M − M̃ ‖2 . (8.31)

This makes the surface deformation smooth over time and can be used within a
sequential processing approach. Obviously, it is not used in the first frame of the
sequence.

Penalty Term: Non-extensibility
This term discourages surface stretching. It encourages mesh vertices to preserve
their distance with their local neighborhood [129]:

EX (M) =
∑

m∈M

∑

k∈N(m)

(‖ m − k ‖2 −L2
m,k

)2
, (8.32)

where Lm,k are constants, which are computed at the first frame after robust initial-
ization, and N(m) is the 8-neighborhood of the mesh vertex m.

8.7.3 Minimization Procedure

TheDLM-ICP cost function (8.24) is a sumof squared residuals, nonlinearly depend-
ing on the unknowns inM. Therefore, as in Sect. 8.6, the Levenberg–Marquardt algo-
rithm can be used. In order to provide partial derivatives of the residuals through a
Jacobian matrix, all five terms in the cost function are separately differentiated and
stacked as

JT = (
JT
d JT

b JT
s JT

t JT
x

)
, (8.33)

where J Nm×3Nm
d , J NB×3Nm

b , J 3Nm×3Nm
s , J Nm×3Nm

t , and J ξ×3Nm
x are related to the global

attraction, boundary attraction, spatial smoothness, temporal smoothness, and non-
extensibility terms, respectively, and ξ = tsi ze(N(M)). In particular, the Jacobians
of global and boundary attraction terms are estimated by finite differences through
distance transform, as described in Sect. 8.6.

Note that, in this case, since the Hessian matrix13 H = JTJ + λImust be inverted
at each LM iteration, the problem is not tractable if the number of model points is too
high (if the deformation field is too dense). One advantage of the proposed approach
is that the Jacobian matrix J is very sparse. Thus, it uses the sparsity to speed up each
iteration using the technique in [114]. In particular, a sparse Cholesky factorization
package can be used, as in the Matlab “mldivide” function.

13Weuse “Hessianmatrix” for the dampedGauss–Newton approximation to the trueHessianmatrix.
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Fig. 8.21 Data acquisition: intensity image of the blanket (left), image boundary (center), and the
3D point cloud (right)

8.7.4 Summary of the Algorithm

The DLM-ICP algorithm can be summarized as follows:

1. Choose the model size R × C (for instance, 10 × 10)
2. Initialize the template model M0

3. For each data frame Di

a. Extract data boundary BD

b. Set Mi = Mi−1 to initialize the LM algorithm
c. Apply LM-ICP to estimate Mi by minimizing the error function
d. Go to 3.

Step 3.c is described in Sect. 8.6.4. Here, the unknown is a = Mi , the error function
E(Mi ) is defined by Eq. (8.24), and the Jacobian J is defined by Eq. (8.33).

8.7.5 Experiments

In the following experiment, the sensor is a real-time passive-stereo system.14 The
sensor acquires images at 25 FPS (frames-per-second) and provides both intensity
(i.e., 2D) and 3D information. The deformation of a portion of a blanket is modeled.
Figure8.21 showsapicture of theblanket. Intensity information is used to segment the
boundary;more precisely, only the portion delimited by the dark square is considered.
Figure8.21 also shows the image boundary extracted by combining a binary image
segmentation method with 2Dmorphological operators and depicts the 3D data (i.e.,
the selected point cloud and 3D boundary).

The sequence is made of 100 point clouds. Amodel of size R = 15 andC = 20 is
used. Model initializationM0 is carried out by lying the model grid on a plane which
is fitted to the extracted point cloud.Model initialization is employed in the first frame
only. Then, each iteration uses the output of the previous one as an initial condition.

14Data courtesy of eVS (http://www.evsys.net).

http://www.evsys.net
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Fig. 8.22 Blanket sequence: 4 selected frames. For each frame, the 2D intensity and the 3D data
are visualized. The grid models are shown in 3D space, as well as their projection in the 2D image

Note that a higher value ofλb is necessary (i.e.,λb = 1.5) for a correct convergence of
the algorithm to the optimal solution. The other terms are set almost equally to 1. The
distance transform parameters are important: the size of the voxels trades off speed
and accuracy. In this experiment, the volume is divided into 36 × 36 × 18 voxels.
Figure8.22 shows a selection of the output sequence. For each frame, we visualize
(i) the intensity image with the extracted 2D boundary and the 2D projection of
the estimated model and (ii) the point cloud, after the region-of-interest selection,
evidencing both the 3D boundary and the grid. The blanket is handled from the
bottom-left and upper-right corners, respectively. On the early frames, the blanket
is gradually bent toward the square center; then, it is strongly stretched, moving the
corners far from each other. Finally, in the late frames, random deformations are
generated, especially around the corners. Results are satisfying since the fitting is
correct for the whole sequence, in spite of the presence of strong occlusions and
deformations. The mesh grids are well superimposed on data points maintaining a
smooth shape. Nevertheless, the projection of the grids to the 2D images confirm the
accuracy of the registration. More details on performance evaluation are available in
[31].
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8.8 Case Study 4: Computer-Aided Laparoscopy by
Preoperative Data Registration

We describe a use case of 3D registration in laparoscopy. The technique involves
3D–3D deformable registration solved by customizing DLM-ICP.

8.8.1 Context

In laparoscopy, the surgeon uses keyholes in the patient’s abdominalwall. The laparo-
scope is the observation device and consists of a camera connected to a thin rod
containing an optic fiber. The surgeon typically uses between 2–4 keyholes of about
1cm in diameter. Laparoscopy has many advantages over open surgery. However,
some elements of the anatomy may be difficult to locate. This is because the organs
and tissues are generally opaque. Structures such as the internal tumors and ves-
sels are therefore invisible. Registration techniques can be used to circumvent this
limitation of visualization by enabling intraoperative augmented reality. The most
promising approach is to use preoperative data such as a Magnetic Resonance (MR)
or Computed Tomography (CT) scan. These modalities are generally not available
during surgery. They show the tumors and vessels well and can be used to create a
3D model of the target organ’s outer surface and internal structures before surgery.
The challenge is then to register this preoperative 3D model to the intraoperative
2D images given by the laparoscope. This is tremendously difficult because of the
organ’s deformation (due, for instance, to insufflation of the abdominal cavity) and
because the vast majority of laparoscopes aremonocular. Registration in laparoscopy
is still an open problem but promising preliminary approaches have been proposed.
We discuss the image-based approach, which uses the image contents to solve regis-
tration without requiring the use of fiducials. An example taken from [39] is shown in
Fig. 8.23. This example represents the result of using a computer-aided laparoscopy
system in a real surgery.

8.8.2 Problem Statement

Augmented reality laparoscopy follows three steps: preoperative 3D model recon-
struction, intraoperative registration, and visualization. A complete pipeline is shown
in Fig. 8.24. We here focus on the registration step but the visualization step is also
highly challenging and researched, see, for instance, [6, 7, 12, 55, 107, 152]. The
preoperative 3D model reconstruction consists in segmenting the preoperative 3D
volume and interpolating the voxels to create a surface represented by a mesh. This
may be extremely challenging to solve automatically but semi-automatic methods



8 3D Shape Registration 397

Augmented reality laparoscopyLaparoscopy Registra on

Preopera ve
MR volume

Intraopera ve
laparoscopy stream

Augmented reality
from registra on

Fig. 8.23 Laparoscopy and the problem of registration in augmented reality laparoscopy. (left) The
principle of laparoscopy, here with an example of a myomectomy procedure where the uterus con-
tains two inner and thus invisible tumors. (middle) The principle of augmented reality laparoscopy,
where the tumors are shown using virtual transparency. (right) The registration problem to be solved

Preopera ve
MR volume

Intraopera ve
laparoscopy stream

Augmented reality
from registra on

Registra
on algorithm

Preopera ve 3D 
model reconstruc on

Keyframe extrac on SfM

Manual landmark
and silhoue e marking

Preopera ve 3D model registered
onto the intraopera ve images

Fig. 8.24 Principle of an ICP-based solution to the problem of registration in augmented reality
laparoscopy. The original problem is transformed into a special type of 3D surface-to-surface
registration problem, which is solved using a particular instance of deformable ICP [39]

already exist which are very effective and available in software packages such as
MITK (the Medical Imaging Interaction Toolkit 15).

It is fundamental to understand that augmented reality laparoscopy involves two
types of registration problem. The first and most complex type occurs at the start of
surgery, when the preoperative 3Dmodel has not been related at all to the 2D images
yet. It implies that the preoperative 3D model is purely geometric, in other words
untextured, as the preoperative data do not contain color, at least not color as we
see it in laparoscopy. The second type of registration problem occurs in a later stage
of surgery, after the preoperative 3D model has been texture mapped, thanks to the

15www.mitk.org.

www.mitk.org


398 U. Castellani and A. Bartoli

first round of registration. This is a considerably easier problem as the availability
of a texture map makes it possible to find keypoint correspondences between the
preoperative 3Dmodel and the 2D images, as, for instance, in [40]. We here focus on
the first type of registration problem, which requires an ICP-like approach to draw
correspondences and solve for deformation simultaneously.

The registration problem takes as inputs the preoperative 3D model and a set of
intraoperative 2D images, extracted from the laparoscopy video stream and produces
as output a 3D deformation field which, when applied to the preoperative 3D model,
brings it to the state in which the organ was observed during surgery. We make
the strong assumption that the organ does not deform across the 2D images. This
is a valid assumption at the early steps of surgery, before the organ is cut through.
This assumption means that the intraoperative state of the organ’s outer part can be
recovered by existing techniques such as Structure from Motion (SfM). The case of
non-rigidly-related 2D images can be handled in two ways. First, the images can be
dealt with individually, as was attempted for liver laparoscopic augmented reality [1,
79]. Second, advanced techniques extending SfM to deformable structures could be
used, namely, Non-Rigid Structure from Motion (NRSfM) [19, 108, 127], but their
applicability to laparoscopy data has not yet been demonstrated.

8.8.3 Registration

The registration has two main steps. The first step is to compute an intraopera-
tive 3D reconstruction of the organ’s outer surface from the 2D images. This is
solved automatically by using SfM [39] or Simultaneous Localization and Mapping
(SLAM) [57]. This produces a point cloud representing the organ’s outer surface and
the laparoscope’s intrinsic and extrinsic parameters for each 2D image. The second
step is to compute the registration for the organ’s outer surface, which boils down
to a 3D surface-to-surface registration. This can be solved by an existing technique
such as DLM-ICP, the deformable ICP presented in the previous section. There is,
however, a key difference between DLM-ICP and the case at hand: an organ has
a spherical rather than a disk topology and therefore does not have boundaries, as
opposed to a piece of paper or cloth. This means that the boundary term Eb from the
cost (8.24) of DLM-ICP cannot be used. This second step is thus the most difficult:
without the boundary term and as many organs tend to have smooth parts and the
intraoperative 3D reconstruction tends to be partial, the 3D registration may eas-
ily drift to a false solution as the two surfaces can slide onto one another without
changing the registration cost much. An equivalent of the boundary for spherical
objects is the silhouette, which may be introduced as a new term in the cost, given
that the organ’s silhouette has been manually marked in some of the 2D images. The
silhouette is, however, much weaker than the boundary term as it helps registration
but does not prevent surface sliding. In practice, this effect is mitigated by using a
few manually defined anatomical landmarks, depending on the organ at hand. For
the uterus, for instance, these may be chosen as the junction points between the Fal-
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lopian tubes and the uterus’ body. The general cost function is thus similar to, but
not exactly like, the cost (8.24) of DLM-ICP. It combines three data terms and two
penalty terms:

E(M) = λdg Edg(M) + λds Eds(M) + λdl Edl(M) + λps Eps(M) + λpx Epx (M),

where λdg, λds, λdl , λps, λpx ∈ [0, 1] are weights.
Recall that the data terms attract the transformed preoperative 3D model to the

intraoperative point cloud. The first data term Edg is the global attraction term Eg

of DLM-ICP. The second data term Eds measures the distance on the organ’s pre-
dicted silhouette. The third data term Edl encapsulates the anatomical landmarks.
The penalty terms convey prior knowledge on the organ’s admissible deformations.
The two penalty terms Eps and Epx are, respectively, the spatial smoothness and
surface stress terms Es and Ex of DLM-ICP.

Once the organ’s outer surface registration has been computed, a final step is to
interpolate the surface deformation field to the desired 3D deformation field. This
is desired because the registration found from the organ’s outer surface is meant to
bring the organ’s inner structures, which do not belong to the organ’s surface, from
the preoperative 3D model to the intraoperative 2D images. This interpolation may
be solved by means of a simple 3D spline interpolant estimated using the surface
mesh’s vertices as control points.

8.8.4 Validation

The accuracy of registration is obviously tremendously important in computer-aided
laparoscopy, especially in the predicted position of tumors. It is, however, highly
challenging to obtain data with ground truth, as by definition this information is not
available during surgery. Quantitative validation is thus usually obtained from phan-
tom or ex-vivo models. The above-described system was validated using synthetic
tumors introduced in ex-vivo pig kidneys [35]. In this study, 33 tumors were resected
by a control group, using standard laparoscopy, and 29were resected by anARgroup,
using the computer-aided laparoscopy system. The resected tumors were analyzed
a posteriori to see if the margins were negative (the tumor is entirely removed) or
positive (the tumors were only partly removed). In the control group, 42.4% of the
tumors were either completely missed or had positive margins. In the AR group, only
13.8% of the tumors had positive margins and none was completely missed. This
shows that the registration system is sufficiently accurate to significantly improve
the surgeon’s performance at tumors localization and resection.
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8.9 Challenges and Future Directions

Although the recent methods have brought important advances in 3D registration,
especially in the challenging scenarios reported in Sects. 8.3–8.8, there are still many
open issues to be addressed that make this research field still exciting and promising.
New challenges arise from the rapid technological advances of new 3D acquisition
systems. Even if recent deep learning methods have successfully exploited the pos-
sibility to recover 3D information using only 2D image, there are still convincing
reasons to rely on RGBD sensors. Depth data naturally provides global positioning,
and not just local 3D pose information or 2D bounding box information in the image
space. Further, RGBD information helps one to solve the real-time reconstruction
of entire scenes. At the device level, the new generation of depth sensors is now
easily available on mobile phones and is more affordable for generic consumers.16

Moreover, very often depth sensors are integrated on more complex systems for new
emerging applications such as automotive, robotic surgery, or forensic tasks. This
leads to an explosion of the available data (i.e., big data) that poses new problems for
their manipulation. For instance, the integration between depth information acquired
from such different acquisition sources yields new issues in dealing with very hetero-
geneous data characterized by different resolutions, levels of noise, scales, and so on.
Moreover, depth sensors can be accompanied by other devices for the acquisition
of other kind of information such as infrared data, GPS, Digital Elevation Model
(DTM), or MRI scans (for the medical domain). Therefore, new advanced methods
need to be studied for the fusion between information of different nature exploiting
multimodal registration techniques.

New problems are emerging for the registration of very large-scale scenarios.
Indeed, nowadays it is possible to reconstruct not only a scene composed of several
buildings but an entire city. For this task, it is important to improve the methods for
the matching at the view level by effectively combining features from both the 2D
and 3D domains. In particular, it is important to well organize the previously stored
information by introducing new indexingmethods to combine shape retrieval strategy
with registration techniques. Moreover, especially when the large-scale reconstruc-
tion is required for entertainment (i.e., video games or movies), a drastic reduction
of the memory demand can be obtained by integrating the registration methods for
the generation of procedural models (i.e., inverse procedural model).

In the context of deformable registration, the new issues regard the possibility to
relax the prior information on the subject to be registered. Rather than working with
a well-delimited class such as the human body or the human face, it is interesting to
focus on subject with a more generic shape. For instance, an emerging and promising
trend consists of modeling animals such as quadruped or birds. This is challenging
due to the natural uncooperative behavior of the animals during the acquisition.

Finally, the advances on 3D registration are very important for several emerg-
ing applications. For instance, in the context of real-time interactive tasks, there
is heavy expectation from new devices for modern Augmented Reality (AR), such

16See https://www.apple.com/iphone/ https://azure.microsoft.com/en-us/campaigns/kinect/.

https://www.apple.com/iphone/
https://azure.microsoft.com/en-us/campaigns/kinect/
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as Hololens17 or magic leap18 to mention just a few, that already integrate several
sensors to improve the device pose estimation. Also, Virtual Reality (VR) frame-
works require very accurate and reliable 3D tracking systems for human parts like
the head and the hands to reduce the typical disadvantages of immersive devices
such as sickness, or to improve the gestural interaction. Another promising applica-
tion regards self-driving cars where many of the open issues mentioned above like
3D data integration, 3D mapping, and object localization are crucial. In particular,
it is very important to address methods for the matching between offline data with
real-time information. Registration problems are very critical also in robotics appli-
cations for effective human–robot interaction where tracking and localization should
be integrated with recognition systems. Also, in this case, real-time performance is
very important.

8.10 Conclusion

Registration of 3D data is a well-studied problem but still new issues need to be
solved. The ICP algorithm is the current standard method since it works well in
general and it is easy to implement.Although the basic version is quite limited, several
extensions and strong variants have been introduced that allow it to cope with many
scenarios. For instance, the techniques described in Sects. 8.2.3 and 8.4 are sufficient
to obtain an automatic full model reconstruction of a single object observed from a
fewdozen of viewpoints.However, inmore challenging situations like in the presence
of cluttered or deformable objects, the problem becomes more difficult. The point
matching strategy needs to be improved as well as the transformation function needs
to be properly designed. Therefore, more advanced techniques need to be employed
like those described in Sect. 8.3. In order to give some examples of registration
algorithms, four case studies were reported. Case study 1 shows in practice how
a robust outliers rejection strategy can improve the accuracy of registration and
estimate the overlapping area. Case study 2 exploits general Levenberg–Marquardt
optimization to improve the basic ICP algorithm. In particular, the advantage of
using the distance transform is clearly demonstrated. Case study 3 addresses a more
challenging problem, namely, deformable registration from real-time acquisition.
Also, in this case, the Levenberg–Marquardt approach enables the modeling of the
expected behavior of surface deformations. In particular, effective data and penalty
terms can be encoded easily in the general error function. Finally, case study 4 shows
the benefits of deformable ICP for 3D registration in laparoscopy.

17https://www.microsoft.com/en-us/hololens.
18https://www.magicleap.com/.

https://www.microsoft.com/en-us/hololens
https://www.magicleap.com/
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New challenging scenarios can be addressed as described in Sect. 8.9 by exploit-
ing recent machine learning and computer vision techniques already successfully
employed for the 2D domain as well as new advances inspired from recent computer
animation techniques.

8.11 Further Reading

In order to get a more comprehensive overview of 3D registration methods, the
reader can refer to milestone surveys [77, 96, 126, 128]. In [126], Ruzinkiewicz
et al. have analyzed some variants of ICP techniques, focusing on methods and
suggestions to improve the computation speed. An extensive review of registration
methods based on the definition of surface shape descriptors can be found in [96].
In [128], Salvi et al. proposed an extensive experimental comparison among different
3D pairwise registration methods. They evaluated the accuracy of the results for both
coarse and fine registrations. More recently, Kaick et al. [77] proposed a survey on
shape correspondence estimation by extensively reporting and discussing interesting
methods for deforming scenarios. In [165], themost recent and promising registration
methods for 3D reconstruction are exhaustively reported. In particular, this survey
shows how algorithms are properly designed to best exploit the benefits of using
RGBD data. In [69], different methods for 6D object pose estimation from dynamic
range sensors are extensively evaluated on several publicly available benchmarks.
The performance of several approaches such as point-pair-based features or learning-
based methods are discussed and interesting open problems are raised. In [83], the
authors reported several methods for data-driven modeling and synthesis of new
scenes. To this aim advanced machine learning techniques are evaluated for the
integration of real examples encoded by point clouds or meshes to the process of
automatic generation of new plausible objects.

The reader interested in getting in-depth details on the theoretical evaluation of
registration convergence should refer to work of Pottmann et al. [58, 115]. Conver-
gence is discussed also by Ezra et al. [52] who provided lower and upper bounds on
the number of ICP iterations.

Finally, to practice the registration, the reader can evaluate the following public
available tools:

• Meshlab19

• Point Cloud Library (PLC)20

• Functional Automatic Registration for 3D Human Bodies (FARM).21

19http://www.meshlab.net/.
20http://pointclouds.org/.
21http://profs.scienze.univr.it/~marin/farm/.

http://www.meshlab.net/
http://pointclouds.org/
http://profs.scienze.univr.it/~marin/farm/
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8.12 Questions

Q.1 Give four examples of problem where 3D shape registration is an essential
component. In each case explainwhy registration is required for their automated
solution.

Q.2 Briefly outline the steps of the classical IterativeClosest Points (ICP) algorithm.
Q.3 What is usually the most computationally intensive step in a typical ICP appli-

cation and what steps can be taken to reduce this?
Q.4 What is the common failuremode of ICP andwhat steps can be taken to attempt

to avoid this?
Q.5 What steps can be taken to improve the final accuracy of an ICP-based regis-

tration?
Q.6 Explain why registration in clutter is challenging and describe one solution that

has been proposed.
Q.7 Explain why registration of deformable objects is challenging and describe one

solution that has been proposed.
Q.8 Explain the effect of outliers in registration and describe one strategy that has

been proposed for their detection.
Q.9 What advantages does LM-ICP have over classical ICP?

Q.10 Describe how DLM-ICP can be employed for computer-aided laparoscopy.

8.13 Exercises

1. Given two partial views very close to each other and an implementation of ICP,22

try to register the views by gradually moving away from the data-view from the
model-view until ICP diverges. Apply the perturbation to both the translational
and rotational components. Repeat the exercise, decreasing the overlap area by
removing points in the model-view.

2. Implement a pairwise pre-alignment technique based on PCA. Try to check the
effectiveness of the pre-alignment by varying the shape of the two views.

3. Implement an outlier rejection technique to robustify ICP registration. Compare
the robustness (i) fixed threshold, (ii) threshold estimated as 2.5σ of the residuals’
distribution from their mean, and (iii) threshold estimatedwith theX84 technique.

4. Compute the Jacobianmatrix of LM-ICP by encoding rotationwith quaternions.23

5. Modify LM-ICP in order to work with multiple views, given a sequence of 10
views which surround an object such that N10 is highly overlapping N1. The
global reference system is fixed on the first view. Estimate the global registration
by including pairwise registration between subsequent views and by view N10 to
view N1. Suggestion: the number of unknowns is 9p, where p is the dimension
of the transformation vector (i.e., p = 7 for quaternions). The number of rows of

22A Matlab implementation can be found here http://www.csse.uwa.edu.au/ajmal/code.html.
23A Matlab implementation is available here: http://www.robots.ox.ac.uk/~awf/lmicp.

http://www.csse.uwa.edu.au/ajmal/code.html
http://www.robots.ox.ac.uk/~awf/lmicp
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the Jacobian matrix is given by all residual vectors of each pairwise registration.
Here, the key aspect is that view N10 should be simultaneously aligned pairwise
with both view N9 and view N1.
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Chapter 9
3D Shape Matching for Retrieval and
Recognition

Benjamin Bustos and Ivan Sipiran

Abstract Nowadays, multimedia information such as images and videos are present
inmany aspects of our lives. Three-dimensional information is also becoming impor-
tant in different applications, for instance, entertainment, medicine, security, art, just
to name a few. It is therefore necessary to study how to properly process 3D infor-
mation taking advantage of the properties that it provides. This chapter gives an
overview of 3D shape matching and its applications in shape retrieval and recogni-
tion. In order to present the subject, we opted for describing in detail four approaches
with good balance among maturity and novelty, namely, the PANORAMA descrip-
tor, spin images, functional maps, and Heat Kernel Signatures for retrieval. We also
aim at stressing the importance of this field in areas such as computer vision and
computer graphics, as well as the importance of addressing the main challenges on
this research field.

9.1 Introduction

The ability to store and manipulate large amounts of information have enabled the
emergence of a number of applications. Generally, the information is given as text
because it is easy to produce and understand by a computer. However, there are
situations where information cannot be suitably represented by text, such as a tourists
photo album.

Thus, the use and availability of multimedia information have increased consid-
erably, on one hand to support new applications and on the other hand due to the
proliferation and accessibility of inexpensive capture devices such as digital cam-
eras.Anumber of applications have benefited from this availability of images, videos,
and three-dimensional models, such as security, entertainment, and engineering pro-
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cesses. Unlike text, multimedia information is difficult to be compared directly, and
therefore we require techniques to manipulate it effectively.

Our goal in this chapter is to address the problem of comparing two 3D objects
based on their shapes. Shape matching refers to the process of finding a correspon-
dence between two shapes based on some similarity criterion. The criterion which
has received most attention by the research community is the visual similarity, that is
to say, two shapes should be matched if they share visually common features. In this
chapter, we are interested in two processes involving 3D shapes matching, namely,
recognition and retrieval.

Although these processes are related, they are slightly different. On the one hand,
shape recognition consists of identifying a given 3D object within a set of possible
alternatives. The outcome of this process is generally the class to which the object
belongs or the recognized object as stored by the recognition system. The latter is
useful when the queried object represents a partial or occluded portion such as a
range scan. On the other hand, shape retrieval consists of defining a measure in order
to quantify the similarity between shapes. A typical outcome of this process is an
ordered list of objects according to their associated measure.

In recent years, we have witnessed increasing interest in computer graphics and
computer vision communities for 3D shape retrieval and recognition. As a result, a
number of techniques and approaches have been proposed for shape representation,
object and feature description, feature selection, and matching algorithms. It is also
important to note the number of applications that have emerged, such as

• Geometric 3D comparison for shoe industry [79].
• 3D hippocampi retrieval [59].
• Classification of pollen in 3D volume data sets [93].
• 3D retrieval for museums [46].
• Human ear recognition in 3D [27].
• 3D object classification for craniofacial research [1].
• 3D protein retrieval and classification [86, 87, 125].
• CAD/CAM [126].
• Archeology [53].
• 3D video sequences [52].

Therefore, it should be noted the importance of evaluating and comparing new
approaches that may appear. Due to the large amount of research carried out and
the large dissemination of 3D information obtained through increasingly better cap-
ture devices, several benchmarks have been presented such as the Princeton Shape
Benchmark [99], the Konstanz 3D database [19], the TOSCA dataset [13], and the
Shape Retrieval Contest (SHREC) datasets. More recently, with the adoption of deep
learning techniques in 3D research community, large-scale datasets have been built
such as ShapeNet [23] and ModelNet [122].
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9.1.1 Retrieval and Recognition Evaluation

An important factor is also the methodology of evaluation for shape retrieval and
recognition techniques. In this sense, the evaluation relies on the solid background
of mature fields such as pattern recognition and information retrieval. In the case of
shape retrieval, the common evaluation methods are Precision-Recall curves, cumu-
lated gain-based measurements, nearest neighbor, first-tier, and second-tier [3]. For
shape recognition, the ROC curves and error rates have commonly been used [34].
In order to maintain this chapter self-contained, we briefly describe the evaluation
measures commonly used in the literature.

In retrieval, the evaluation measures mostly consider the ranked lists retrieved
when queried objects are presented. The main measures are presented as follows:

• Precision: the extent to which the retrieved objects are relevant to a query. For-
mally, it is the ratio of correctly retrieved objects with respect to the total number
of retrieved objects.

• Recall: the extent to which the relevant objects are correctly retrieved. Formally,
it is the ratio of correctly retrieved objects with respect to the total number of
relevant objects for the query.

• R-Precision: precision when the number of retrieved objects equals the number
of relevant objects.

• Cumulated gain-based measurements: the idea is to use the ranked position of
relevant objects. First, we need to convert the retrieved list into a binary listG with
1s in position where relevant objects appear. Second, the discounted cumulated
gain vector DCG is defined as follows:

DCG[i] =
{
G[1] if i = 1

DCG[i − 1] + G[i]/ log2 i otherwise
(9.1)

where the log function penalizes the ranking of a relevant object.
• Nearest neighbor, first-tier, and second-tier: these evaluation measures check
the ratio of relevant objects in the top K objects of the ranked list. Specifically,
K = 1 for nearest neighbor, K = |R| − 1 for first-tier and K = 2 × (|R| − 1) for
second-tier, where |R| is the number of relevant objects to a query.

In recognition, the common measures are related to error rates after recognition.
Some interesting terms are defined as follows:

• True positive (TP): ratio of similar shapes identified as similar.
• False positive (FP): ratio of dissimilar shapes identified as similar.
• False negative (FN): ratio of similar shapes identified as dissimilar.

Using the aforementioned terms, the measures commonly used in recognition are
as follows:
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• Equal error rate (EER): the value of false positive at which it equals the false
negative rate. Similarly, a typical measure is the value of false positive at some
percentage of false negatives.

• ROC curves: is a graphical plot representing the trade-off between the true posi-
tives and the false positives.

9.1.2 Chapter Outline

The organization of this chapter is as follows. Section9.2 provides a brief overview
of the proposed approaches and main ideas to date. Section9.3 presents in detail
some techniques for shape retrieval and recognition. The organization of this section
is as follows:

• Section 9.3.1 describes a view-based technique in 3D shape retrieval known as
PANORAMA descriptor.

• Section 9.3.2 presents spin images, an effective descriptor for 3D shape recogni-
tion.

• Section 9.3.3 presents the functional maps method to discover correspondences
between objects with isometric transformations.

• Finally, Sect. 9.3.4 addresses two approaches for large-scale retrieval: Bag-of-
Features with Heat Kernel Signatures and the Signature Quadratic Form Distance.

Section9.4 is devoted to pose the main challenges in these fields and conve-
nient directions for further research. Section9.5 presents our concluding remarks.
Section9.6 suggests further readings and finally, in Sect. 9.7.2 we propose problems
and exercises related to the presented material.

9.2 Literature Review

To support similarity search between twomultimedia objects, wemust define amodel
that allows us to find a relation between them. It cannot be done directly because
we are interested in analyzing similar objects, rather than analyzing identical copies.
A lot of work has been done to assess the relation between 3D objects when the
required model is global. By global, we mean that given a 3D object, an algorithm
encodes the information of the complete object and compares the result as analogy
of visual similarity. The most widely used model consists in obtaining an abstract
representation of an object such as feature vectors or graphs, and the similarity
is calculated based upon these representations. For example, distance metrics are
commonly used to calculate similarity among feature vectors. Another similarity
model which has gained much interest involves local features specially in non-rigid
andpartial shape retrieval and recognition.Theproblemof defining a similaritymodel
is very challenging. For example, a visual model allows us to represent a shape by its
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aspect. However, this model cannot be used to discriminate two shapes semantically
similar but with different aspects. In this section, we cover a non-exhaustive set
of methods and frameworks to deal with the shape matching problem. We divide
our description into shape retrieval techniques, recognition techniques, and shape
correspondence techniques.

9.2.1 Shape Retrieval

Bustos et al. [19] described amethodology that consists in representing 3D objects as
real vectors of a certain dimension obtained through a transformation function. Then,
these vectors can be organized in a multidimensional index, where the similarity
corresponds to the proximity in the space where vectors are defined. The Minkowski
distance family is usually used to measure the proximity of feature vectors. The
authors presented experimental results comparing several transformation functions
where theDepth-BufferDescriptor proposed byVranic [117] showed the best results.
Iyer et al. [54] and Tangelder et al. [113] also discussed techniques for 3D object
retrieval, identifying future trends and important issues to be addressed. Also, the
Princeton Shape Benchmark [99] provides a reference collection and experimental
tests for several descriptors. Other surveys and reports were written by Funkhouser
et al. [41], Del Bimbo et al. [9], and Bustos et al. [18, 20]. In 3D shape recognition,
Campbell and Flynn [21] presented a comprehensive study about representation and
recognition of free-form shapes.

According to the information extracted from shapes, existing approaches use his-
tograms, image-based representation, and local features. Histogram-based methods
summarize certain shape properties such as distribution between points on the sur-
face [80], angles information [85], distribution of face normals [58], and so forth.
These properties are used to build histogramswhich represent shapes andmatching is
donewith common histogrammeasures. Differently, transform-basedmethods apply
some transform to the shapes to convert them in a numerical representation of the
underlying object. Some examples of transforms applied are Fourier Transform [35],
Radon Transform [33], and Wavelet Transform [63].

As well, image-based methods intend to represent a 3D object as a set of pro-
jected images, so the matching becomes an image matching problem. For instance,
Vranic [117] proposed to take the frequency spectrum of depth images, Chen [25]
considered silhouettes taken from directions according to the vertices of a dodec-
ahedron, and Chaouch and Verroust-Blondet [24] converted a set of depth images
in character strings with the matching being performed with variations of the well-
known edit distance. More recently, helped by the fast adoption of deep learning
techniques in computer vision and shape analysis, the attention has been put in the
use of data-driven approaches to take advantage of image-based representations. The
common approach is to render synthetic views from a 3D object and perform several
tasks such as feature learning or metric learning. For example, Tabia and Laga [112]
proposed to project image features computed with a neural network in a common
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target space, where images or sketches can also be represented. In the same spirit,
He et al. [50] described a method to learn centroids of shape collections and apply a
triplet-center loss function to determine the class of a given object, which is subse-
quently used for retrieval. The input is a set of rendered views from the input object.
On the other hand, Chen and Fang [29] built a metric network that evaluates the
cross-modality features between 3D shapes and sketches. Similarly, Liu et al. [75]
used a cross-domain distance learning on 3D objects represented as a set of rendered
views to teach a neural network to generalize between objects in different datasets.
Also, Feng et al. [38] proposed a group-fusion technique that combines different
projections from an object to learnt to discriminate 3D objects.

In classic shape retrieval, the image-basedmethods are sensitive to the object pose.
This problem is partially addressed by data-driven approaches because we can get a
good representation using different projections of the object, while a neural network
learns to extract the important information for certain task. However, it is clear
that partial and non-rigid matching could not be addressed with these methods. One
natural choice to deal with these problems is the use of local features. Gal and Cohen-
Or [42] proposed to represent a 3D object as a set of salient geometric features, which
determine the complete object. Their scheme entirely relies on curvature information
over the shape’s surface and the matching is done by indexing the salient features
using geometric hashing [120] with a vote scheme to determine similar objects.

One of the most widely used approaches for managing local descriptor is Bag-
of-Features. This approach begins by clustering all the local descriptor from an
entire collection and calculating the centroids for each cluster. Then, each shape
is represented as a histogram with a number of bins equal to the number of clus-
ters. Each descriptor adds one into the bin corresponding to the closest centroid.
Toldo et al. [114] proposed to segment a given mesh and build a descriptor for each
segment. Subsequently, a Bag-of-Features approach combines all the descriptors in
the mesh. Similarly, Bronstein et al. [15] proposed a soft version of the Bag-of-
Features approach applied on dense descriptors based on the heat kernel signature
originally introduced by Sun et al. [110] which is related to the Laplace–Beltrami
operator. The authors also presented a spatially sensitive bag-of-features technique
which gave good results in shape retrieval. In the same direction, Litman et al. [74]
applied the sparse coding approach to learn a dictionary of basis descriptors and
sparse vectors over 3D local descriptors to retrieve similar non-rigid objects.

Obviously, the use of local features highlights a new problem: the amount of
information used in the matching.With these approaches, a shape is represented with
a set of descriptors and the problem of matching becomes non-trivial. In addition, the
matching step is more expensive than computing a distance between points, as used
in global matching. To this respect, future research directions could be motivated for
this kind of matching.
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9.2.2 Shape Recognition

As noted, most presented techniques make extensive use of local features because
these can mitigate the effect of occlusion in cluttered scenes. Nevertheless, image-
based proposals have also been considered. Lee and Drew [65] extracted contours
from 2D projections around a 3D object, and subsequently scale-space curvature
image was obtained for each projection. These images were used to identify the
class of an object and determine the object in the selected class. As well, Cyr and
Kimia [32] extracted 2D views which were grouped in view sets called aspects.
These aspects were represented by a prototype view for accelerating the recognition
process given views from new objects.

Although it is possible to apply any approach from shape retrieval proposals for
object recognition, one that has received most attention is the matching by local
features. In their seminal work, Chua and Jarvis [30] presented the point signature,
a 1D descriptor for points over a surface. The descriptor is based on distance pro-
files among the surface and a circular curve generated as intersection of the tangent
plane and a arbitrary-sized sphere centered in the analyzed point. In the matching,
correspondences were found and a voting scheme allowed to determine the objects
in a scene. Following the idea of representing the surrounding geometry in a point,
Johnson and Hebert [56] proposed their well-known and well-studied spin images.
Given an object, the authors constructed 2D descriptors for points over the surface.
As the name suggests, a spin image was obtained by spinning a plane around the ana-
lyzed point’s normal and accumulating the points lying in the plane. The matching
was performed by finding correspondences using the spin images between an object
and a scene and subsequently a geometric verification with a modified version of
the iterative closest point algorithm [7] was performed. A variation of this technique
was the spherical spin images presented by Ruiz-Correa et al. [94].

Simple information has also been considered. For instance, Hetzel et al. [51] used
pixels depth, normals and curvature information in order to combine them inmultidi-
mensional histograms. Thus, the matching step was performed using χ2-divergence
and a posteriori Bayesian classifier. Alternatively, Sun et al. [111] proposed their
point fingerprint which consisted of geodesic contours projected on a point’s tangent
plane. Frome et al. [40] introduced the 3D shape contexts and the harmonic shape
contexts. The idea behind the shape context approach is accumulating the surround-
ing points using concentric spheres around the analyzed point. The authors proposed
to use locality sensitive hashing formatching. Likewise, Li andGuskov [68] used spin
images and normal-based signatures to describe selected points over range scans. A
combination of pyramid matching and support vector machines (SVM) was applied
for object recognition giving good results on CAD models and faces.

Chen andBhanu [28] proposed an approach to recognize highly similar 3Dobjects
in range images. As the authors claimed, several techniques have been proposed to
recognize objects in dissimilar classes; however, the task of recognizing objects
with high similarity is challenging. Given an object, the authors extracted local
surface patches on interest points found using curvature information. Due to the
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high dimensionality of the descriptors, these were embedded in a low dimensional
space using FastMap [37]. Then, the low dimensional descriptors were organized in a
kd-tree where efficient nearest neighbor algorithms can be applied. Using the kd-tree,
it is possible to find correspondences between two objects. A SVM classifier ranks
the correspondences according to geometric constraints returning themost promising
correspondences which were verified with the iterative closest point algorithm. The
object with the least mean square error is selected.

9.2.3 Shape Correspondences

The problem of discovering the correspondences between objects with non-rigid
transformations has receivedmost attention in the scientific community. The problem
is challenging because this kind of transformation cannot be easily parameterized
with a single transformation, but with a set of local transformations whose search can
be combinatorial. Probably, this difficulty has attracted the attention of researchers
in different fields, and the result is a large number of methods that try to solve
the problem effectively and efficiently. A survey with pioneering methods in shape
correspondences was compiled in [57].

Bronstein et al. [16] formulated the problemas an embedding transformation of the
geodesic space to the euclidean space. They used a generalization of the multidimen-
sional scaling method to find the minimum-distortion embedding. Likewise, Lipman
and Funkhouser [72] proposed a Mobius voting approach to count transformation
votes on triplets of points defined in a conformal flattening embedding. Similarly,
Kim et al. [60] defined a blended intrinsic method where the correspondences were
extracted from the confidence and consistency of conformal maps.

In general, the matching problem is formulated as an optimization where the vari-
able is an indicator function ofmatching.Rodola et al. [90] proposed a game-theoretic
strategy to solve a quadratic optimization problem of dense correspondences. Inter-
estingly, Rodola et al. [92] introduced the use of sparsity-inducing regularizers to
control the density and stability of the found correspondences. On the other hand,
Sipiran et al. [104] used hierarchical key-components [105] to split the optimization
of a matching problem which is efficiently solved over tree representations.

A common shared characteristic of aforementioned methods is that correspon-
dences are represented as pairs of points between analyzed shapes. Note that this
representation is combinatorial and prevents the use of more complex operations on
the correspondence map itself. To overcome this problem. Ovsjanikov et al. [81]
proposed a new framework to represent and compute shape correspondences. Their
method is based on the observation that a map that transfers functions from one shape
to another is equivalent to the correspondence map itself. As result, the correspon-
dences can be succinctly represented as a matrix of coefficients (functional map) that
has interesting algebraic properties and can be computed efficiently. Nevertheless, a
general assumption of a functional map is that analyzed shapes are near-isometric;
therefore, this method cannot be applied to non-isometric similar shapes. To deal
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with this drawback, Kovnatsky et al. [61] and Eynard et al. [36] formulated the prob-
lem as a joint diagonalization of the corresponding Laplacians, whose solution was
called the coupled quasi-harmonic bases. On the other hand, another drawback of
the original formulation of functional maps is the uncertain behavior under partial
data and corrupted shapes. In this direction, Litany et al. [73] and Rodola et al. [89]
have made important contributions to compute an effective functional map between
shapes with missing geometry.

9.3 3D Shape Matching Techniques

The objective of this section is to present both mature and updated material con-
cerning 3D shape matching. We provide detailed descriptions of four approaches:
the PANORAMA descriptor, spin images, functional maps for shape matching, and
large-scale shape retrieval.

The aforementioned methods address different aspects of shape matching. First,
PANORAMA descriptor is a technique suitable for global matching. Second, spin
images method is a pioneer in 3D object recognition. Third, functional maps are
a solid framework to establish correspondences between 3D models. And finally,
Heat Kernel Signatures is an effective surface descriptor to deal with matching under
isometric transformations and retrieval.

An important issue to be considered before describing the approaches is shape
representation. Although there are many ways to represent a 3D object, boundary
representation has mostly been used where objects are represented by a limit surface
that distinguishes inside from outside of the object. Moreover, the surface can be
approximated in a piece-wise manner, reducing the amount of information needed to
represent it at the expense of losing details. The most common way is depicting the
surface by a set of points (vertices) and polygons (faces), and in fact, it is preferable
to take triangular faces for efficiency and effectiveness in computations involving
them. Surprisingly, this representation allows to conceive almost any object with the
desired level of detail.

All the techniques presented in this section use triangular meshes for representing
shapes.

9.3.1 PANORAMA

PANORAMA [83] is a 3D shape descriptor that extracts features from a set of so-
called “panoramic views” from the 3D model. The acronym PANORAMA stands
for PANoramic Object Representation for Accurate Model Attributing.



422 B. Bustos and I. Sipiran

9.3.1.1 Process for Computing the PANORAMA Descriptor

For computing the PANORAMA descriptor, there is a three-stage process that con-
sists of

i. Pose normalization of the 3D model.
ii. Extraction of the so-called Panoramic Views.
iii. Generation of the set of features.

Pose Normalization

For obtaining scale, rotation, and translation invariance, the first step for computing
PANORAMAis to normalize the pose of the 3Dmodel. This is accomplished by com-
bining two techniques [117]: Continuous Principal ComponentAnalysis (CPCA) and
Normals Principal Component Analysis (NPCA). The main idea behind both meth-
ods is to perform a Principal Component Analysis over the 3D model for obtaining
its Principal Components. The main difference between the two techniques is the
data they used for computing the Principal Components. In the case of CPCA, it uses
the surface of the 3D model, considering it as a continuous function. In the case of
NPCA, it uses the distribution orientation of the normals of the 3D model. Finally,
the 3D model is rotated to align its coordinate axes with the computed Principal
Components, thus obtaining a normalized pose.

PANORAMA uses different combinations of these two techniques for its pose
normalization process. First, for obtaining translation invariance it uses the CPCA
method. Second, for obtaining rotation invariance it uses both CPCA and NCPA,
obtaining two different sets of Principal Components. The feature extraction process
uses both sets to generate descriptors, which are at the end aggregated for computing
a final single descriptor. Finally, for obtaining scale invariance it normalizes the
features to the unit L1 norm.

Panoramic Views

The PANORAMA descriptor is based on the so-called Panoramic Views, which are
projections of the 3D model to the lateral surface of a cylinder. Let R and H be,
respectively, the radius and height of the cylinder. The cylinder is oriented according
to one of the axis of the 3D model (after pose normalization), and it is centered at the
3D model’s origin. The method defines that H = 2R and that R = 3 · dmean , where
dmean is “the mean distance of the model’s surface from its centroid” [83]. The value
of dmean can be computed during the pose normalization. According to the authors
of PANORAMA, the empirical value for R (3 · dmean) allows most of 3D models to
lie completely within the cylinder, and it works better than computing a bounding
cylinder for each 3D model.

Next, the method parametrizes the lateral surface of the cylinder. Let B be the
rate of sampling (the authors recommend setting B = 64). Let s(φ, y) be a set of
points on the surface of the cylinder, with φ ∈ [0, 2π ] and y ∈ [0, H ]. Coordinate
φ is sampled 2B times, and coordinate y is sampled B times, thus obtaining 2B2

points that discretize the cylinder surface.
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Finally, the method computes a value for each point in s(φ, y). From the axis that
crosses the center of the cylinder, at a height coplanar to y, themethod casts rays from
the center to the surface of the cylinder. These rays capture two features from the 3D
model’s surface: (i) the maximum distance from the origin to the furthest point of
intersection with the model’s surface (a value in [0, R]) and (ii) the absolute value of
the cosine of the angle between the ray and the normal vector of the corresponding
triangle in the model’s surface to the power of n (according to the authors, the best
empirical values for n are in the range of [4, 6]).

Therefore, each point of the discretized cylinder allows themethod to obtain a pair
of values (s1(φ, y), s2(φ, y)), the first corresponding to information of the distance
from the surface of the 3D model to the cylinder, and the second corresponding to
information of the angle between the cast ray and its corresponding normal on the
3D model. The same process is repeated by aligning a cylinder with all coordinate
axes, thus obtaining three sets of points (s1(φ, y), s2(φ, y)) (one for each cylinder).

Feature Computation

During the Panoramic Views step, the method computed six sets of descriptors (three
cylinders and two different values per cylinder), which corresponds to a projection of
the 3D model to the surface of a cylinder. For each of these projections, the method
computes the 2DDiscrete Fourier Transform (DFT). Because of symmetry properties
of the Fourier Transform, the total number of non-redundant Fourier coefficients is
(B + 1) · ( B

2 + 1
)
per projection. The method stores the absolute values of the real

and imaginary parts of these coefficients and normalizes the coefficients to the unit
L1 norm. The number of computer features can be reduced by considering only
those coefficients located outside an ellipse centered at the Fourier image. The size
of the ellipse is chosen so that only about 65% of the high-energy coefficients per
projection are taken into account for the descriptor computation. Finally, the resulting
coefficients for each projection are aggregated to form a single DFT descriptor.

Similarly, for each cylindrical projection, the method computes the 2D Discrete
Wavelet Transform (DWT) for all levels using both the Haar and Coiflet basis func-
tions. The total number of levels is log2(B). So, the method computes two sets of
features, Haar and Coiflet. These coefficients are normalized to the unit L1 norm.
Next, the method computes for each sub-band in every level of the DWT a set of
statistics that includes the mean, the standard deviation, and the skewness of the
coefficients, obtaining a total of 18 · log(B) + 1 features per cylindrical projection
(3 · log(B) + 1 sub-bands times three different statistic values times two different
basis functions). The features from all cylindrical projections are aggregated to form
a single DWT-based descriptor.

Final Descriptor and Similarity Measure

Each Panoramic View produced different descriptors for the 3D model, but the
authors of PANORAMA argue that not all projections are equally discriminative.
Indeed, they propose weighting each projection by a factor wt , which varies depend-
ing on the axis used to orient the cylinder. Let the t-cylindrical projection be the one
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oriented using the t th principal component. The authors determined experimentally
the next fixed values for the weights: wx = 0.51, wy = 0.31, and wz = 0.18.

For computing the distance between two 3D models x and y described using
PANORAMA, one computes for each projection the distance between the corre-
sponding set of descriptors using the function:

dist (x, y) = L1(xDFT , yDFT ) + DCanberra(xDWT , yDWT ), (9.2)

where L1 denotes the Manhattan distance and DCanberra denotes the Canberra dis-
tance. Finally, the distancebetween the 3Dmodels is theminimumvalueofdist (x, y)
among all three-cylinder projections.

9.3.1.2 Complexity Analysis

Let S be a 3D object with n vertices. The complexities for each stage of the method
are as follows:

• Pose normalization: O(n) (according to Vranic [117]).
• Computation of Panoramic Views: O(B2), with B be the rate of sampling of the
cylinder.

• Features Computation: O
(
B2 log B

)
(dominated by the computation of 2D DFT

and 2D DWT).

Thus, the total complexity of this method is max
(
O(n), O

(
B2 log B

))
.

9.3.2 Spin Images for Object Recognition

In this section, we describe a 3D object recognition technique with support to
occlusion and cluttered scenes. Originally, this work was proposed by Johnson and
Hebert [55, 56] for recognizing objects in complex scenes obtained through a struc-
tured light range camera in order to be used in robotic systems. This has been recog-
nized as pioneering work in the use of 3D shape matching for computer vision tasks
and its relative success has allowed the increasing interest in these kinds of tech-
niques to support high-level vision tasks. Although there exist more recent methods
to perform matching with local descriptors, we believe Spin Images deserve our
attention as pioneering work that gives good results in object recognition. Broadly
speaking, this technique works as follows:

• Given a set of models, we calculate a spin image for each vertex and store them
in a huge collection of spin images.

• Given a scene, possibly cluttered andwith occlusions, random vertices are selected
for which spin images are computed. Thus, we compare these spin images with
those previously stored and select possible correspondences.
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• Finally, we need to use geometric consistency and a variation of the iterative closest
point algorithm to perform correspondences validation and matching.

In order to calculate the spin images for a 3D shape, this technique requires a
uniformmesh. By uniform, wemean that distances between adjacent vertices remain
close to the median of all distances. In fact, mesh resolution is defined as the median
of all edge lengths from the shape. Johnson [55] proposed an efficient algorithm to
control the mesh resolution which is based on mesh simplification schemes [43]. In
addition, vertices have to be oriented, so each vertex must have an associated normal
pointing out toward outside of the shape. We assume that a shape is uniform and
each vertex is properly oriented.

To build a spin image of a vertex, we need to build a local basis defined on this
vertex, so accumulating the surrounding vertices around the analyzed vertex using
the local basis allows us to create a pose invariant local description. In addition, we
can control how local this description is; hence, the spin images can be used with
large support for alignment and registration tasks andwith small support for cluttered
recognition.

We denote an oriented point p as a pair O = (p,n) which maintains coordinate
information along with the associated normal vector n. The local basis is formed by
the following elements:

• The point p.
• The normal n and the line L through p parallel to n.
• The tangent plane P through p oriented perpendicularly to n.

We can represent any point q in this basis, as shown in Fig. 9.1, through two
cylindrical coordinates: α, the perpendicular distance from q to the line L; and β,
the signed perpendicular distance from q to the plane P . We define the spin map SO
as a function that projects 3D points q to the local 2D coordinates defined with the
previous elements

SO : R3 → R
2

SO(q) → (α, β) = (
√

‖q − p‖2 − (n · (q − p))2,n · (q − p)) (9.3)

The process of spin image formation uses the function previously defined accumu-
lating points in the (α, β) image coordinate. This can be seen as spinning a matrix
around a point’s normal and storing the occurrences of surrounding points in the
respective coordinates in the matrix. Finally, the spin image looks like an occurrence
histogram in the cylindrical coordinate system defined by the local basis.

In order to create a spin image, three useful parameters have to be defined as
follows:

• Bin size (bin), spatial extent for the bins in the image.
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Fig. 9.1 Local basis for
point p

• Image width (W ), number of bins in both image directions. Usually, spin images
are square.

• Support angle (As), the maximum angle between normals for contributing points.

Let A = (pA,nA) be an oriented point for which we want to build its spin image.
For each oriented point B = (pB,nB) on the shape, we use the local basis and the
spin map function to obtain the coordinate (α, β). Then, the bin corresponding to
that coordinate is given by

i =
⌊

W∗bin
2 − β

bin

⌋

j =
⌊ α

bin

⌋
(9.4)

Instead of directly accumulating the occurrence in the respective bin, the authors
suggested to use bilinear interpolation and thus accumulate the occurrence in neigh-
boring positions. Therefore, the bilinear weights are calculated as follows:

a = α

bin
− j

b =
W∗bin

2 − β

bin
− i (9.5)

With this weights, the image is updated as follows:

I (i, j) = I (i, j) + (1 − a)(1 − b)

I (i, j + 1) = I (i, j + 1) + (1 − a)b

I (i + 1, j) = I (i + 1, j) + a(1 − b)

I (i + 1, j + 1) = I (i + 1, j + 1) + ab (9.6)
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In addition, there is a constraint that the contributing points must hold with respect
to the angle between normals. Only points which hold this condition are used in the
spin image generation process.

acos(nA,nB) < As (9.7)

where As is the support angle. When As is small, a better support to occlusion is
provided, as points on the mesh with considerably different directions can be due to
occlusion.

In practice, the bin size must be configured to the mesh resolution in order to
preserve a good relation between sampling and descriptiveness. Also, in the original
experiments carried out by Johnson [55], the image width was 15 and the support
angle depends on howmuchwewant to support occlusion; however, a common value
in experiments can be 60◦. Figure9.2 shows spin images generated with different
values for each parameter.

Once a spin image is calculated for each vertex within a model, these will be
stored for matching process. Nevertheless, we need to compare spin images in order
to determine possible correspondences. Given two spin images P and Q with N bins
each, the cross-correlation can be used to measure their similarity

R(P, Q) = N
∑

piqi − ∑
pi
∑

qi√
(N

∑
p2i − (

∑
pi )2)(N

∑
q2
i − (

∑
qi )2)

(9.8)

It is easy to note that R is in the range [−1, 1] with high values when the spin
images are similar and low values when they are not similar. However, there is a
problem when we compare two spin images with this measure. Due to occlusions
and cluttered scenes, a spin image often contains more information than others, so for
limiting this effect, it is necessary to take only those pixels where data exists. Since
the cross-correlation depends on the number of pixels to compute it, the amount of
overlap will have effect on the comparison. Obviously, the confidence in the compar-
ison is better when more pixels are used. In addition, the confidence can be measured
by its variance, so combining the cross-correlation R and its variance we get a new
similarity measure C previously changing the distribution of correlation coefficients
bymeans of the hyperbolic arctangent functionwhich has better statistical properties.
As well, the variance is defined in terms of the new distribution.

C(P, Q) = (atanh(R(P, Q)))2 − λ

(
1

N − 3

)
(9.9)

where N is the number of overlapping pixels (whose values are different from zero),
λ is a constant, and R is calculated using the N overlapping pixels. Note that some
pixels in the spin images could not contain votes and thus have a value of zero, so
it is important to consider only pixels with votes. This measure has a high value
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Fig. 9.2 Spin image generation process. a Input mesh, b mesh with normals, c Spin images.
At top, the parameters were W = 25, As = π , and bin = {1, 2, 3, 4} times the mesh resolution.
At middle, the parameters were W = {25, 50, 100, 200}, As = π , and bin = 1 times the mesh
resolution. At bottom, the parameters were W = 25, bin = 4 times the mesh resolution, and As =
{π, π/2, π/3, π/4}. The resolution of the spin images is dependant of W

when the spin images are highly correlated and a large number of pixels overlap. In
experiments, λ was configured to 3.

9.3.2.1 Matching

Given a scene, a random set of points is selected for matching. For each point, a set of
correspondences is established using spin images from the scene and those calculated
frommodels. Given a point from the scene, we calculate its spin image as previously
described, thus this is compared with all the spin images in the huge collection
using Eq.9.9. From the comparison with the stored spin images, a histogram is built
quantizing the similarity measure. This histogram maintains the information about
occurrences of similarity measures when comparison is being performed and it can
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be seen as a distribution of similarities between the input spin image and the stored
ones. As we are interested in high similarity values, these can be found as outliers in
the histogram.

In practice, outliers are found by automatically evaluating the histogram. A stan-
dard way to localize outliers is to determine the fourth spread of the histogram
defined as the difference between the median of the largest N/2 measurements and
the median of the smallest N/2 measurements. Let fs be the fourth spread, extreme
outliers are 3 fs units above the median of the largest N/2 measurements. Note that
with this method, the number of outliers can be greater than or equal to zero, so many
correspondences per point can be found.

Once we have the set of correspondences for each point on the scene, we need to
organize them in order to recognize the correct model object in the scene. As a large
amount of correspondences have been detected, it is necessary to filter them out.
Firstly, correspondences with similarity measure less than the half of the maximum
similarity are discarded. Secondly, by using geometric consistency, it is possible
to eliminate bad correspondences. Given two correspondences C1 = (s1,m1) and
C2 = (s2,m2), the geometric consistency is defined as follows:

dgc(C1,C2) = 2
‖Sm2(m1) − Ss2(s1)‖
‖Sm2(m1) + Ss2(s1)‖

Dgc(C1,C2) = max(dgc(C1,C2), dgc(C2,C1)) (9.10)

where SO(p) denotes the spin map function of point p using the local basis of point
O , as defined in Eq.9.3.

This geometric consistency measures the consistency in position and normals.
Dgc is small when C1 and C2 are geometrically consistent. By using geometric
consistency, correspondences which are not geometrically consistent with at least
a quarter of the complete list of correspondences are eliminated. The final set of
correspondences has a high probability of being correct, but it is still necessary to
group and verify them.

Now, we group correspondences in order to calculate a good transformation and
hence do the matching. A grouping measure is used which prioritizes correspon-
dences that are far apart. The grouping measure is defined as

wgc(C1,C2) = dgc(C1,C2)

1 − exp(−(‖Sm2(m1)‖ + ‖Ss2(s1)‖)/2)
Wgc(C1,C2) = max(wgc(C1,C2),wgc(C2,C1)) (9.11)

The same measure can also be defined between a correspondence C and a group
of correspondences {C1,C2, . . . ,Cn} as follows:

Wgc(C, {C1,C2, . . . ,Cn}) = maxi (Wgc(C,Ci )) (9.12)
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Therefore, given a set of possible correspondences L = {C1,C2, . . . ,Cn}, the
following algorithm has to be used for generating groups:

• For each correspondence Ci ∈ L , initialize a group Gi = {Ci }
– Find a correspondence C j ∈ L − Gi , such that Wgc(C j ,Gi ) is minimum. If
Wgc(C j ,Gi ) < Tgc then update Gi = Gi ∪ {C j }. Tgc is set between zero and
one. If Tgc is small, only geometrically consistent correspondences remain. A
commonly used value is 0.25.

– Continue until no more correspondences can be added.

As a result, we have n groups, which are used as starting point for final matching.
For each group of correspondences {(mi , si )}, a rigid transformation T is calculated
by minimizing the following error using least-squares method:

ET = min
T

∑
‖si − T (mi )‖2 (9.13)

where T (mi ) = R(mi ) + t , R and t are the rotation matrix and the translation vector,
representing the rotation and position of the viewpoint si in the coordinate system
of mi .

As a last step, each transformation needs to be verified in order to be validated as
a matching. The model points in the correspondences are transformed using T . For
each point in the scene and the correspondences set, we extend correspondences for
neighboring points in both points of a correspondence under a distance constraint.
A threshold distance equal to twice the mesh resolution is used. If the final set of
correspondences is greater than a quarter or a third of the number of vertices of the
model, the transformation is considered valid and the matching is accepted. Finally,
with the final correspondences set, the transformation is refined by using an iterative
closest point algorithm.

9.3.2.2 Evaluation

Unfortunately, in the original work by Johnson [55], the models used in experi-
ments were obtained using a scanner and they are not available to date. Johnson
and Hebert [56] presented results trying to measure the robustness of their method
against clutter and occlusion. They built 100 scenes involving four shapes, using a
range scanner. The experiments were based on querying an object in a scene and
determining if the object was present or not. In addition, the levels of occlusion and
clutter were also determined.

The four shapes were used in each scene, so the number of runs was 400. Interest-
ingly, therewere no errors at levels of occlusion under 70%and the rate of recognition
was above 90% at 80% of occlusion. In addition, the recognition rate was greater
than 80% at levels of clutter under 60%.

Spin images have also been evaluated in theRobust FeatureDetection andDescrip-
tion Benchmark [14] (SHREC 2010 track). In this track, the goal was to evaluate
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Table 9.1 Robustness results for Spin Images. Each value indicates the normalized Euclidean
distance between descriptors as defined in Eq.9.14 (Taken from Bronstein et al. [14]. 2010 Euro-
graphics)

Transform. Strength

1 ≤2 ≤3 ≤4 ≤5

Isometry 0.12 0.10 0.10 0.10 0.10

Topology 0.11 0.11 0.11 0.11 0.11

Holes 0.12 0.12 0.12 0.12 0.12

Micro holes 0.15 0.15 0.16 0.16 0.16

Scale 0.18 0.15 0.15 0.15 0.15

Local scale 0.12 0.13 0.14 0.15 0.17

Sampling 0.13 0.13 0.13 0.13 0.15

Noise 0.13 0.15 0.17 0.19 0.20

Shot noise 0.11 0.13 0.16 0.17 0.18

Average 0.13 0.13 0.14 0.14 0.15

the robustness of the descriptors against mesh transformations such as isometry,
topology, holes, micro holes, scale, local scale, sampling, noise, and shot noise. The
dataset consisted of three shapes taken from the TOSCA dataset [13]. Subsequently,
several transformations, in different levels, were applied to each shape. The resulting
dataset contained 138 shapes. In addition, a set of correspondences was available in
order to measure the distance between descriptors in corresponding points.

The evaluation was performed using the normalized euclidean distance between
the descriptors of corresponding points of two shapes X and Y ,

Q(X,Y ) = 1

|F(X)|
|F(X)|∑
k=1

‖ f (yk) − g(x j )‖2
‖ f (yk)‖2 + ‖g(x j )‖2 , (9.14)

where (x j , yk) are corresponding points, f (·) and g(·) are the descriptors in a point,
and F(X) is the set of vertices to be considered. Here, we present the results obtained
using F(X) = X .

The best results were obtained for isometry and topology transformationwith 0.10
and 0.11 average distance, respectively. This is because spin images were extracted
locally, and these transformations do not modify the local structure of the mesh. On
the other hand, the noise and shot noise transformations got higher distances (up to
0.20 and 0.18, respectively). It is clear that higher levels of noisemodify considerably
the distribution of points on the surface, so spin images are not constructed robustly.
See Tables9.1 and 9.2 for the complete results. Table9.2 shows the performance for
dense heat kernel signatures calculated on 3Dmeshes. Clearly, regarding robustness,
spin images show some drawbacks. However, an important aspect of this approach is
its support to occlusion. In that sense, its application in recognition has been proved.
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Table 9.2 Robustness results for Dense Heat Kernel Signatures. Each value indicates the normal-
ized Euclidean distance between descriptors as defined in Eq.9.14 (Taken fromBronstein et al. [14].
2009 Eurographics)

Transform. Strength

1 ≤2 ≤3 ≤4 ≤5

Isometry 0.01 0.01 0.01 0.01 0.01

Topology 0.02 0.02 0.02 0.02 0.02

Holes 0.02 0.02 0.02 0.03 0.03

Micro holes 0.01 0.01 0.01 0.01 0.02

Scale 0.25 0.15 0.13 0.14 0.16

Local scale 0.02 0.03 0.05 0.07 0.10

Sampling 0.02 0.02 0.02 0.02 0.02

Noise 0.03 0.06 0.09 0.12 0.15

Shot noise 0.01 0.01 0.02 0.02 0.02

Average 0.04 0.04 0.04 0.05 0.06

More recently, Guo et al. [47] presented a thorough evaluation of 3D local descrip-
tion methods with respect to five criteria: descriptiveness, compactness, robustness,
scalability, and efficiency. The methods evaluated were Spin Images [55], 3D shape
context [40], Unique shape context [115], Rotational projection statistic [48], Tri-
spin image [49], Local surface patch [26], Thrift [39], Point feature histogram [97],
Fast point feature histogram [96], and Signature of histogram of orientations [116].
The experiments showed the effectiveness of the evaluated methods under several
scenarios such as retrieval and recognition. The evaluation also showed that every
descriptor has its own strengths and weaknesses depending on the kind of data and
the application.

9.3.2.3 Complexity Analysis

Let S be a 3D object with n vertices. In addition, let W be the number of rows and
columns of a resulting spin image (we assume square spin images for the analysis).
The complexity of each stage is given as follows:

• Computation of spin images for each vertex: O(n2). Given a vertex, each vertex
on the mesh is mapped onto its spin image.

• Find the initial set of correspondences: O(nPW 2), where P is the number of spin
images in the collection. For each vertex on the query object, the cross-correlation
is calculated with respect to each spin image in the collection.

• Filter the correspondences: O(n2).
• Group the correspondences: O(n2). For each correspondence, a group is computed
by applying the Wgc measure.

• Find the transformation using least-square method: O(n).
• Validation: O(n).
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The total complexity is dominated by the process of finding the initial set of cor-
respondences. This is because Pgn, so the complexity of this method is O(nPW 2).

9.3.3 Functional Maps

Let M and N be 3D shapes and let T : M → N be a map that computes the corre-
spondence in N for each point in M . The matching problem is the computation of the
map T with shapesM and N as inputs. If the input shapes are discrete representations
of 3D surfaces (triangular meshes, for example), the map T is commonly represented
as a set of corresponding points {(m, n)} ∈ M × N such that T (m) = n. In practice,
a more realistic criterion to search a good map is to minimize the distortion d of the
map; therefore, the matching problem can be stated as

T ∗ = arg minT
∑
m

d(T (m), n) (9.15)

where (m, n) is a corresponding point.
Note that the map T can be used to transfer information from shape M to shape

N . For example, let us define a function f : M → IR, on the surface of M , then we
could use T to transfer the function from M to N . Let g : N → IR be the function
that results from transferring f , we thus have

g = f ◦ T−1 (9.16)

If (m, n) ∈ T , then it holds that g(n) = f (T−1(n)) = f (m). We denote as TF :
F(M, IR) → F(N , IR) the functionalmap that transfers real-valued functions defined
on M to real-valued functions defined on N , where TF ( f ) = f ◦ T−1. A nice prop-
erty of TF is the linearity over the corresponding function spaces. That is, given a
bijective map T : M → N , the following holds:

TF (α1 f1 + α2 f2) = (α1 f1 + α2 f2) ◦ T−1 = α1 f1 ◦ T−1 + α2 f2 ◦ T−1

= α1TF ( f1) + α2TF ( f2)
(9.17)

In addition, ifM is equippedwith a basis {φM
i } such that any function f : M → IR

can be represented as a linear combination of basis functions f = ∑
i aiφ

M
i (see

Fig. 9.3), then

TF ( f ) = TF

(∑
i

aiφ
M
i

)
=
∑
i

ai TF (φM
i ). (9.18)
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Fig. 9.3 Mean curvature (function defined on the surface of an object) represented as a linear
combination of basis functions. The plot shows the eigenfunctions of the Laplace–Beltrami operator
and the corresponding coefficients obtained in the decomposition. Shapewas taken from theTOSCA
dataset [13]

Furthermore, if N is also equipped with a basis {φN
j }, then

TF (φM
i ) =

∑
j

c jiφ
N
j (9.19)

It follows that

TF ( f ) =
∑
i

ai
∑
j

c jiφ
N
j =

∑
j

(∑
i

ai c ji

)
φN
j (9.20)

Note that if f and g are represented as a vector of coefficients a = {a0, a1, . . . ,
ai , . . .} and b = {b0, b1, . . . , b j , . . .}, respectively, coefficients b can be computed as
b j = ∑

i ai c ji , and therefore the functional map TF can be represented as a matrix
C such that TF (a) = Ca. In practice, the summations are truncated to the number k
of basis elements used to represent the functions, and therefore C ∈ IRk×k .

9.3.3.1 Choice of Basis

The effective computation of a functional map depends on the basis we choose
to find the matrix C . In general, the set of basis functions must be compact and
stable. The basismust be compact becausewe are interested in representing functions
approximatelywell with a few elements in the basis. On the other hand, the basismust
be stable because the space of functions spanned from all the linear combinations of
basis functions must be robust to small deformations in the surface.

In particular in shapematching,wewould like to dealwith isometric deformations,
so a good choice is to take the first k eigenvalues and eigenvectors of the Laplace–
Beltrami operator of the shape.

9.3.3.2 Inference of Functional Maps

The ideas around the functional map formulation translate the original shape match-
ing problem to the effective computation of the matrixC from functions defined over
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the surfaces to match. Given two functions f : M → IR and g : N → IR represented
as vector of coefficients a and b, respectively, the correspondence between f and g
can be written as

Ca = b (9.21)

Moreover, we can generalize to any number of functions which can be stacked
in a matrix notation, and we obtain the general equation CA = B. To effectively
compute C , we can solve the above equation in a least-square sense

E1(C) = ‖CA − B‖22 (9.22)

A natural additional constraint is to allow the functional map to commute with
linear operators over the space of functions, such as the Laplace–Beltrami operator.
LetΛM andΛN be the functional representation of the Laplace–Beltrami operator of
M and N , respectively, it is expected that ΛNC = CΛM . In the least-square sense,
we have

E2(C) = ‖ΛNC − CΛM‖22 (9.23)

Finally, the functional map is the solution to the following optimization problem:

C∗ = arg minC E1(C) + E2(C) = ‖CA − B‖22 + ρ‖ΛNC − CΛM‖22 (9.24)

where the solution can be found using a least-square minimization.

9.3.3.3 Conversion to Correspondences

The functional map C encodes the map between two shapes M and N . However,
we need to compute the correspondences from the functional map. Let us suppose
we want to get the correspondence of a point x ∈ M . The first step is to build an
indicator function (or a highly peaked Gaussian around x). The second step is to use
the functional mapC to compute the destination function g(·) on N and finally select
the point y ∈ N such that g(y) is maximum (Fig. 9.4). Nevertheless, if we apply this
method for each point in M , the computation of the complete set of correspondences
will take a quadratic complexity.

A more efficient method can be devised if we carefully observe the heat kernel
defined on a point x ∈ M in a given time t

kMt (x, ·) =
∞∑
i

e−tλi φM
i (x)φM

i (·) (9.25)

where λi and φi are the i th eigenvalue and eigenvector of the Laplace–Beltrami
operator of M . The delta function δx in a point x ∈ M , which is a good indicator
function to compute the correspondence, can be defined using the heat kernel as
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Fig. 9.4 Left:Gaussian function definedon the geodesic distances to a source point.Right:Gaussian
function transferred to the target shape. Note that we used the functional map between the shapes
to transfer the function. Shapes were taken from the TOSCA dataset [13]

δx = limt→0+ kMt (x, ·). Therefore, the delta function can be represented as the linear
combination

δx = φM
0 (x)φM

0 + φM
1 (x)φM

1 + φM
2 (x)φM

2 + · · · (9.26)

It means that the functional representation of δx is the vector x with coefficients
(φM

0 (x), φM
1 (x), φM

2 (x), . . .), and moreover we can compute the destination delta
function on N by computingCxT , which in turnmust have a functional representation
in the shape N . Observe that we can compute all the destination delta functions for
points in M by computing CΦM , where matrix ΦM contains the eigenfunctions of
M in each row. Accordingly, if the matrix ΦN contains the eigenfunctions of N in
each row, the correspondence for point in M is the nearest neighbor of CΦM in ΦN .
Using a data structure to perform proximity queries, the correspondence search can
be linear logarithmic in complexity.

The previous analysis also elucidates a way to refine the functional map C . Once
we compute the functional map with Eq.9.24, we would expect that the functional
map C is a good transformation of ΦM to ΦN . We can use this observation to refine
the functional map to fit such transformation. It is convenient to see that C works as
a rotation matrix of ΦM , and therefore we can use a ICP-like algorithm to iteratively
refine the matrix C . The algorithm start with C0 = C and it iteratively finds the
nearest neighbors between CiΦ

M and ΦN and subsequently it computes Ci+1 as the
rotation matrix that minimizes the distances between corresponding coefficients in
the functional representations. Figure9.5 shows an example of matching between
two shapes using the algorithm described in this section.
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Fig. 9.5 Left: Source shape with a color function on the surface. Center: Target shape with the
color function transferred by using the functional map computed using the describedmethod. Right:
Correspondences extracted from the functionalmap using the ICP-like algorithm. Shapeswere taken
from the TOSCA dataset [13]

9.3.3.4 Implementation

Given two triangular meshes M and N with m and n vertices, respectively, we
compute a vertex-wise descriptor. Although any vertex descriptor would be useful,
we follow the choice of the original method to use the Wave Kernel Signature. The
result of the description is amatrixWM

m×d and amatrixWN
n×d with rows representing a

point descriptor of dimension d. In practice, we can use more than one descriptor for
the inference of the functional map by concatenating the descriptors for each vertex.
For the optimization, we need the functional representation of the descriptor, that
is, the coefficients of the linear combination of basis functions to produce the input
descriptor. Note that the functional decomposition f = ∑k

i=0 aiφi can be expressed
in matrix notation as follows:

(φ0 φ1 φ2 . . . φk−1)

⎛
⎜⎜⎜⎜⎜⎝

a0
a1
a2
...

ak−1

⎞
⎟⎟⎟⎟⎟⎠ = f (9.27)

where φi and f are functions defined over a triangular mesh; therefore, they are
column vectors with the number of vertices as dimension. This matrix notation can
be easily generalized to vector-valued functions

ΦA = F (9.28)

where Φ is the matrix of basis functions (as columns), A is the matrix of coefficients
and F is thematrix of descriptors. Note that we have now a linear system andwewant
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to find A. We can take advantage of the linear independence of the basis functions
to solve the linear system above as follows:

A = Φ+F (9.29)

where Φ+ is the pseudo-inverse of matrix Φ. In this way, we can compute matrices
A and B in Eq.9.24

For the second termof the optimization,we need to compute theLaplace–Beltrami
operator for the given shapes. Let ΔM and ΔN be the matrix representation of the
operators. The functional representation of operators is diagonal matrices composed
of the eigenvalues of the Laplace–Beltrami operator. If we only consider k basis
functions, the problem to optimize is

‖Ck×k Ak×d − Bk×d‖22 + ρ‖ΛN
k×kCk×k − Ck×kΛ

M
k×k‖22 (9.30)

where A and B are the d-dimensional descriptors in functional representation (as
computed in Eq.9.29), ΛN and ΛM are diagonal matrices with the eigenvalues of
the Laplace–Beltrami operators. As we are interested in solving the above problem
as a least-square problem, we need to slightly modify the first term. Note that the
following formulation is equivalent:

‖(AT )d×k(C
T )k×k − (BT )d×k‖22 + ρ‖(CT )k×kΛ

N
k×k − ΛM

k×k(C
T )k×k‖22 (9.31)

To numerically solve the optimization problem with least-squares, we need to
represent it as a linear system Ax = B, where the constraints go in the matrices
A and B and the solution we search is x . Therefore, the first step is to represent
the matrix CT as a column vector by concatenating its columns. Let us denote this
column vector as c. The matrices of constraint have two parts because of the terms
involved in the optimization. First, we build the matrix A which is organized as
follows: ⎛

⎜⎜⎜⎝
AT 0 0 . . .

0 AT 0 . . .

0 0 AT . . .
...

...
...

...

⎞
⎟⎟⎟⎠ (9.32)

Thematrix AT is replicated asmany times as columns in thematrixCT . The bold zero
denotes a zero matrix with the same size of AT . Taking into account the dimensions
we used in Eq.9.31, matrix A has d × k rows and k2 columns. Accordingly, we
rearrange the matrix BT in a column vector in the same way we did with matrix CT .
Let us denote as b the column vector representation of BT , and therefore the first
term of the optimization problem can be stated as

Ac = b (9.33)
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The second step is to rearrange the operator commutativity constraint accord-
ingly. Recall that the functional representation of the Laplace–Beltrami operator is
a diagonal matrix with the eigenvalues of the operator as elements. Without loss
of generality, we use the notation of eigenvalues {λM

i } and {λN
j } to introduce the

commutativity constraints in the linear system. After rearranging the matrix CT as
a column vector, the resulting linear constraints can be represented by a diagonal
matrix L of dimension k2 × k2, where the i th element can be calculated as

li = λM
(i mod k)

− λN
(i/k) (9.34)

where the index i/k takes the integer division of the values. Therefore, the commu-
tativity constraint can be written as

Lc = 0 (9.35)

where c is the column vectorization of CT and 0 is a column vector of zeros with the
right dimension to accommodate the system.

Finally, the linear system of equation to solve is defined as

( A
‖A‖∞

ρ L
‖L‖∞

)
c =

(
B

‖B‖∞

0

)
(9.36)

The normalization by the L∞ norm is to deal with the scale of the matrices and it
also facilitates the setup of parameter ρ. The solution to this system is the vectorized
version of CT , and therefore we must take care of the right rearrangement of the
solution matrix C .

9.3.3.5 Experiments

We use the cotangent scheme for the computation of the Laplace–Beltrami operator
on the input shapes [77]. For the sake of completeness, we briefly explain how to
compute the Laplace Beltrami operator of a shape.

Given a 3Dmesh, we can calculate the discrete Laplace–Beltrami operator in each
vertex with the cotangent scheme proposed by Meyer et al. [77]:

K (pi ) = 1

2Ai

∑
p j∈N1(pi )

(cot αi j + cot βi j )(pi − p j ) (9.37)

where Ai is the Voronoi region area around pi , αi j and βi j are the angles opposite to
the arc pi p j and N1(pi ) is the set of pi ’s adjacent vertices. See Fig. 9.6 for details.

The computation of Ai , the Voronoi region around a vertex pi , must be performed
as follows. We accumulate a region for each adjacent face T to pi , if T is non-obtuse
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Fig. 9.6 Neighborhood
configuration around pi . The
dashed lines enclose the
Voronoi region used in
computing the
Laplace–Beltrami operator

we add the Voronoi region for that face by using Eq.9.38. If T is obtuse, we add
area(T )/2 if the angle of T in pi is obtuse, or area(T )/4 otherwise.

AT = 1

8

∑
j∈N1(i)

(cot αi j + cot βi j )‖pi − p j‖2 (9.38)

Tonumerically compute theLaplace–Beltrami operator, amatrix can be calculated
in the following way:

Li j =

⎧⎪⎨
⎪⎩

− cot αi j+cot βi j

2Ai
if pi is adjacent to p j∑

k
cot αik+cot βk j

2Ai
if pi = p j

0 otherwise,

(9.39)

where pk are the vertices adjacent to pi .
We are interested in the eigenvalues and eigenvectors of this matrix. Thus, the

problem to be solved is
Lφ = λφ (9.40)

However, it is clear to note that L might not be symmetric. This is to say, Li j 
=
L ji when Ai 
= A j , which is very likely. Nevertheless, it can be represented as a
generalized eigenvalue problem where L = S−1M . Then, we have

Mφ = λSφ (9.41)
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with

Mi j =

⎧⎪⎨
⎪⎩

− cot αi j+cot βi j

2 if pi is adjacent to p j∑
k
cot αik+cot βk j

2 if pi = p j

0 otherwise

(9.42)

and

Si j =
{
Ai if i = j

0 otherwise
(9.43)

The solution to this problem ensures that the eigenvalues and eigenvectors are
real. In addition, two eigenvectors φi and φ j corresponding to different eigenvalues
λi and λ j are orthogonal with respect to the S dot-product:

φi · φ j = φT
i Sφ j = 0, i 
= j (9.44)

The shape spectrum is the set of eigenvalues {λ0, λ1, λ2, ..., λn−1}. If the shape is
closed, λ0 = 0.

For our experiments,we compute the k = 100first eigenvalues and eigenvectors of
the Laplace–Beltrami. The eigenvectors are used as basis functions of input shapes.
For the computation of the functional maps, we use the Wave Kernel Signature
as point descriptor [2]. We also use a complementary descriptor for segments to
introduce invariance to symmetric flips. We first segment each input shape using
the consensus method proposed in [91] and describe each segment with the sum
of the WKS descriptors of points in the segment. Subsequently, candidate pairs
of matched segment are used to build functional constraints using the Heat Kernel
Map. Figure9.7 shows the result of computing the functional map and the subsequent
correspondences in several objects with non-rigid transformations from the TOSCA
dataset [13]. Figure9.8 shows the application of functional maps in the transfer of
regions between isometric shapes.

9.3.3.6 Complexity Analysis

LetM and N be two shapeswithm and n vertices, respectively. Let k be the number of
eigenfunctions used to compute the functionalmap. In addition, letd be thedimension
of the local descriptors used for the optimization constraints. We split the complexity
analysis into two parts: the computation of the functional map and the discovery of
correspondences from the functional map. For the inference of the functional map,
note that the final linear system of equations in Eq.9.36 has d × k + k2 equations
and k2 unknowns. To simplify our analysis, we assume d = O(k) and therefore
the system has O(k2) equations and k2 unknowns. Typical solvers are in the order
of O(n3), where n is the number of unknowns. Therefore, the computation of the
functional map is in the order of O(k5).
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Fig. 9.7 Correspondences found after computing the functional map between pair of shapes. The
color function has also been transferred from source shape to target shape. Shapes were taken from
the TOSCA dataset [13]

Fig. 9.8 Segmentation transfer between shapes with isometric transformation. Left: we select a
region of the mesh using an editing software and export the segment indicator function. Right: the
indicator function is transferred to the target shape using the functional maps computed between
input shapes. Shapes were taken from the TOSCA dataset [13]
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Fig. 9.9 Process to obtain a descriptor for a shape using the heat kernel signatures and bag-of-
features. a Input shape, b local descriptors (heat kernel signatures) are extracted, c clustering of
descriptor space (black stars are centroids of resulting clusters), and d Vector quantization, using
local descriptors and clusters, results in shape descriptors

For the search of correspondences, for each point in CΦM , we need to find the
closest point in ΦN . Using a spatial index to speed up the computation of nearest
neighbor searches, this task takes O(n log n + m log n).

9.3.4 Shape Retrieval with Heat Kernel Signatures

We observed in the previous approach the importance and applicability of the
Laplace–Beltrami operator and its spectrum in shape description tasks. In this section,
we describe the application of heat kernel signatures which are based on the inti-
mate relation among the heat diffusion process and the Laplace–Beltrami operator.
In addition, the presented technique utilizes a widely used approach for describing
information entities based on their components and frequencies known as Bag-of-
features [82]. Figure9.9 summarizes the approach.

The heat diffusion process over a compact manifold S, possibly with boundary,
is governed by the heat equation
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Fig. 9.10 Heat kernel signatures calculated on two isometric shapes. At top, signatures in corre-
sponding points look very similar. At bottom, signatures in different points on the mesh differ

ΔSu(x, t) = −∂u(x, t)

∂t
(9.45)

where ΔS is the Laplace–Beltrami operator of S and u(., t) is the heat distribution
over S in time t .

The fundamental solution of Eq.9.45 is Kt (x, y) called the heat kernel. This
represents a solution with a point heat source in x and can be considered as the
amount of heat transferred from x to y at time t supposing that the heat source is x .
For compact manifolds, the heat kernel can be expressed using the eigenvalues and
eigenvectors of the Laplace–Beltrami operator as follows:

Kt (x, y) =
∞∑
i=0

exp(−λi t)vi(x)vi(y) (9.46)

where λi is the i th eigenvalue and vi(·) is the i th eigenvector’s entry corresponding
to a given point.

Sun et al. [110] formally proved that the heat kernel is isometric invariant, infor-
mative (enough, redundant information exists), multi-scale, and stable against pertur-
bations on the surface. In addition, restricting the heat kernel to the temporal domain
and fixing the spatial variables, we can obtain a representation for each point on the
manifold:

Kt (x, x) =
∞∑
i=0

exp(−λi t)vi(x)2 (9.47)

Figure9.10 shows heat kernel signatures for two isometric shapes. Given a shape
S, we need to calculate the heat kernel signature for point on S. In practice, the heat
kernel signature of a point x ∈ S is a n-dimensional descriptor vector with each bin
corresponding to some value of t :

p(x) = (p1(x), . . . , pn(x)) (9.48)
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pi (x) = c(x)Kαi−1t0(x, x) (9.49)

where c(x) must be selected in order to have ‖p(x)‖2 = 1. Note that we need to
restrict the number of eigenvalues and eigenvector to be considered in Eq.9.47. As
a result, we obtain a descriptor for each vertex on the mesh.

Once we compute the descriptors for each shape in the database, these must be
grouped in a huge collection of local descriptors, which will be called the descriptor
space. Next, it is necessary to quantize the n-dimensional descriptors space. The
idea is to find a point set in the descriptor space in order to better cluster the whole
descriptor set. Unsupervised techniques from machine learning field can be used
such as k-means and its variants [34]. In order to make this section self-contained,
we briefly describe k-means clustering on the descriptor space.

Let D be the huge set of n-dimensional descriptors and k be the number of clusters
we want to find. The algorithm can be summarized as follows:

1. Initial centroids selection: Select k points in the n-dimensional space. This
step can be performed in different ways, for instance, selecting random points
in the n-dimensional space, selecting random descriptors from D, or using
information about the distribution of descriptors in D, just to name a few. Let
M = (m1, . . . ,mk) be the set of selected centroids.

2. Cluster assignment: Assign each descriptor in D to the closest cluster Ci

Ci = {d ∈ D : ‖d − mi‖ ≤ ‖d − m j‖,∀ j = 1 . . . k} (9.50)

3. Centroids update: Compute the new centroids for each cluster

mi = 1

|Ci |
∑
d∈Ci

d (9.51)

4. Stop criterion: If centroids remain unchanged after update step, stop, and return
M . Go to step 2, otherwise.

Using the set of centroids M and the heat kernel signatures previously calculated
for a shape P , we need to compute a single descriptor for P , so it is necessary to
combine the local descriptor in a shape descriptor. To tackle this issue, we calculate
the feature distribution in a vertex x ∈ P as θ(x) = (θ1(x), . . . , θk(x))T where

θi (x) = c(x) exp

(−‖p(x) − mi‖2
2σ 2

)
(9.52)

where c(x) is a constant selected such that ‖θ(x)‖2 = 1, p(x) is the heat kernel
signature of x , mi is the centroid of cluster Ci , and σ is constant. Each bin in θ(x)
can be considered as the probability that x belongs to the cluster corresponding to
such bin. This is a soft version of quantization because the classic bag-of-features
approach considers placing a one in the bin corresponding to the closest cluster and
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zeros in the rest. Although the classic way can be performed here, the soft version
has proved to be effective in experiments.

To obtain a shape descriptor, the feature distributions are simply added to obtain
a shape descriptor of size k, the vocabulary size:

f (S) =
∑
x∈S

θ(x) (9.53)

and the matching between two shapes S and T is performed by using the L1 distance

d(S, T ) = ‖ f (S) − f (T )‖1 (9.54)

Nevertheless, during the quantization process, the spatial information is lost.
Obviously, this information could be useful in the matching process. Sipiran et
al. [107] proposed representing the 3D shape by feature signatures, which can take
into account the spatial information of the local descriptors. The problem is now
finding an appropriate distance function for comparing two 3D shapes from their
respective feature signatures.

9.3.4.1 Feature Signatures and the Signature Quadratic Form Distance

The Signature Quadratic Form Distance (SQFD) was proposed by Beecks et al. [4].
Originally, this distance measure was designed as a flexible measure for comparing
multimedia objects. One interesting characteristic of this distance function is that an
object can be represented by several feature vectors. Also, comparing two objects
involves comparing two sets of feature vectors, and this is possible even if the sets
have different cardinality.

Let P be a 3D shape.We represent this shape with a set of features F = { fi }, fi ∈
FS, where FS is a feature space of arbitrary dimensionality. Let C1, . . . ,Cn be the
result of a clustering of F in n clusters, where Ci is the centroid of each obtained
cluster. Finally, let wi be a weight associated to each centroid Ci , which corresponds
to the fraction of points on the cluster. We define the feature signature SP of P as

SP = {(
CP
i ,wP

i

)
, 1 ≤ i ≤ n

}
(9.55)

The size of SP depends on the clustering process, and this can be variable depend-
ing on each particular 3D object. Therefore, it is important to note that the feature
signature of a shape a may have a different size than the feature signature of a shape
b.

Let SP = {(
CP
i ,wP

i

)
, 1 ≤ i ≤ n

}
and SQ =

{(
CQ
i ,wQ

i

)
, 1 ≤ i ≤ m

}
be the

signatures of P and Q, respectively, and let sim : FS × FS → R be a positive semi-
definite similarity function. For example, sim could be defined as sim

(
Ci ,C j

) =
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e−αd2(Ci ,C j), where d is the Euclidean distance and α is a positive real value. The
SQFD is defined as

SQFD
(
SP , SQ

) =
√(

wP | − wQ
) · Asim · (wP | − wQ

)T
(9.56)

In Eq.9.3.4.1, the notation
(
wP | − wQ

)
corresponds to the concatenation of the

weights from P and the negative value from the weights from Q in an (n + m)-
dimensional vector. Also, the matrix Asim ∈ R

(n+m)×(n+m) is the similarity matrix
between the centroids of SP and SQ , such that

ai, j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sim
(
CP
i ,CP

j

)
if i ≤ n and j ≤ n;

sim
(
CQ
i−n,C

P
j

)
if i > n and j ≤ n;

sim
(
CP
i ,CQ

j−n

)
if i ≤ n and j > n;

sim
(
CQ
i−n,C

Q
j−n

)
if i > n and j > n.

(9.57)

9.3.4.2 3D Shape Matching Using Feature Signatures

The general algorithm for 3D shape matching based on features signatures can be
described in the next steps:

• Compute Heat Kernel Signatures for surface points on the 3D shape.
• Apply a clustering process over the computed Heat Kernel Signatures. Then, com-
pute the feature signature for each 3D shape. Sipiran et al. [107] recommend using
the clustering algorithm proposed by Leow and Li [66], which is based on k-means
but uses adaptive binning for determining the number k of clusters. This allows us
to obtain feature signatures of different lengths depending on the distribution of
the local descriptors on the 3D shape.

• Use the SQFD as distance function for implementing the shape matching by using
similarity searches.

There are several ways to compute the feature signatures. For example, Sipiran
et al. [107] proposed the next three different methods:

i. SQFD-ALL. In this method, one computes the Heat Kernel Signature for each
vertex of the 3D shape. Next, one produces the clustering using all the computed
features. Finally, using the result from the clustering process one computes the
feature signature. From the three methods, SQFD-ALL is the most computation-
ally expensive one.

ii. SQFD-IP. In this method, one computes the Heat Kernel Signature over selected
vertices from the 3D shape. Thus, the first step is to compute interest points from
the 3D shape, for example, using the Harris 3D interest point detector [103]. The
idea behind thismethod is that not all points from the 3Dshape are discriminative,
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thus the shape description may benefit from ignoring non-relevant points. An
additional advantage of this method is that the clustering process is done over
a smaller set of points, thus reducing the time spent on computing the feature
signatures.

iii. SQFD-Cluster. This method takes into account that the interest points detected
by Harris 3D tend to form clusters. Thus, one can filter isolated interest points
thatmay have been detected not because of salient geometry, but because of noise
in the data. The clusters are computed on the geodesic space of the triangle mesh.
Once the method detects these clusters, it computes the Heat Kernel Signatures
for each interest point belonging to the cluster. Finally, the feature signature
corresponds to the centroids of each geodesic cluster, and its associated weight
is proportional to the number of interest points located on the cluster.

Experimentally, Sipiran et al. [107] showed that the SQFD-Cluster method is able
to obtain the best effectiveness among the three proposed methods.

Finally, it is worth noting that the SQFD is a metric distance function. Thus, one
could implement index structures for efficiently performing the matching process.
This can greatly accelerate the matching process while maintaining its effectiveness.

9.3.4.3 Complexity Analysis

Let S be a 3D object with n vertices. The complexities for each stage of the method
are:

• Compute the Laplacian Matrix: O(n2).
• Compute the eigenvalues and eigenvectors: O(n3).
• Compute the HKS: O(nm), where m is the dimension of each HKS.
• Clustering step and computation of the feature signature: O(I K N ), where I is the
number of iterations of the clustering process, K is the number of clusters, and N
is the number of local descriptors.

The total complexity of this method is O(n3).

9.4 Main Challenges for Future Research

If we observe the literature on shape retrieval and recognition as briefly reviewed in
Sect. 9.2, we can observe that this is a relatively young field, and therefore presents
a number of areas which require further work and progress. This section is devoted
to present the trends in future researches and the challenges which concern to the
community.

• Query specification. The research is commonly focused on testing the effective-
ness and efficiency of the presented proposals; however, an important factor is
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left out, users. As a result, little work has been done in query specification. It is
generally assumed that we have a query object in the representation allowed by
applications. Nevertheless, we often are interested in retrieving objects similar to
the query, so a natural question arises: If we have an object (the query) visually
similar to our needs, why do we proceed to search? A more interesting approach
is to provide the query as images, video, sketches, or text. However, this proposal
involves to advice methods which support such kind of information and try to find
a correspondence between the query and the shapes. For example, in content-based
image retrieval, the research has turned into using sketches as a more natural way
of querying an image. This trend has raised new challenges and research interests,
which are also expected in shape retrieval and recognition community.

• Efficiency and large-scale retrieval.Although a relative level of effectiveness has
recently been achieved both in shape retrieval and recognition, important issues
related to the efficiency require attention, but even if approaches such as local
features and the Laplace–Beltrami operator have begun to be extensively used.
In addition, most techniques present results over publicly available datasets of
no more than 2000 objects and even results about efficiency are not provided.
Moreover, Laplace–Beltrami based approaches rely on extensive computations of
eigenvalues and eigenvectors of huge matrices, so it is often necessary to simplify
the meshes before processing at the expense of losing the level of detail. In this
sense, efficient variants and alternatives are expected to be studied.

• Object representation. As can be noted from previous sections of this chapter,
many approaches rely on boundary representation for 3D shapes. Perhaps this
follows from the fact that this representation is preferred to others because its sim-
plicity and suitability for rendering tasks. In addition, triangle meshes are widely
available for processing and the vast majority of 3D objects on the Internet are
found in this way. Nevertheless, some potential applications use different rep-
resentations such as parametric surfaces in CAD and volumetric information in
medicine. Each representation has intrinsic advantageswhich should be considered
in order to exploit the information as it is.

• Partial matching. A lot of work has been done for 3D objects when the required
matching model is global, visual similarity. By global, we mean that given a 3D
object, and algorithm retrieves those objects in the database that look visually
similar and the whole shape structure is used for comparison. However, many
presented methods do not allow partial matching due to the restricted global model
that they assume. So given a part of a shape as query, an interesting issue is trying
to retrieve those objects in the database that contain visually similar parts to the
query. Difficulties can arise due to the need to represent a model in a compact
way, for instance, with local information which extent is unknown a priori. In
addition, the matching becomes an expensive task because of the exponential
amount of possible memberships of the query. Moreover, an even harder problem
is to quantify the similarity and partiality due to the similarity strongly depends
on the partiality level allowed while searching.

• Domain applications. With the increasing interest of the computer vision com-
munity for 3D shape retrieval and recognition, a current trend is to research the
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support that these can give to high-level vision tasks. What is more, computer
vision aims at recognizing and understanding the real composition of a viewed
scene through a camera, where a scene is part of a three-dimensional world. In
the future, we could consider the combination of shape retrieval and recognition
with 3D reconstructions of scenes from images as an attempt to break the semantic
gap between a three-dimensional scene and the image which represents it. In the
same way, the field of medicine could take advantage in building 3D image anal-
ysis automated systems such as magnetic resonance images (MRI) and computed
tomographies. It is easy to obtain three-dimensional representations from this kind
of information and further processing can be beneficial. Another interesting appli-
cation is modeling support. Surely, the killer applications of computer graphics are
videogames, 3D films, and special effects which need a large amount of work in
modeling. These applications could benefit from shape retrieval and recognition
tasks to reduce the time spent modeling.

• Automatic 3D objects annotation. In order to increase the effectiveness, we could
requiremore information about semantic to complement the geometric information
extracted from the shape. Information about composition is a good choice, so
it is necessary to maintain textual information which represents rich semantic
information to be used in retrieval tasks. Nevertheless, attaching tags to shapes by
humans is an expensive task taking into account the amount of objects in a database.
Thus, by using shape retrieval and recognition, we can assign textual tags based
on visual similarity or functionality. Besides this approach can be used to add
semantic information, it can be used to improve the visual search effectiveness.

• 3D Retrieval from Range Scans. Another interesting problem is the 3D shape
retrieval from range scans [108], where the query object is a range image (a point-
cloud obtained from one view of an object using a 3D scanner or simulated) and
the problem is to find matches within a collection of 3D objects. This problem is
challenging because the range image only contains partial information from the
original object, and the amount of this partial information depends on the “point
of view” from where the range image was taken.

• Cross-modal 3D Shape Matching. A current open problem in this research area
is cross-modal 3D shape matching, where additionally to geometry the user can
use other modalities for performing the matching process. For example, Biasotti et
al. [100] propose combining geometry and texture information for class identifica-
tion in archeological artifacts. One SHREC track (standard benchmarks for eval-
uating and comparing 3D shape matching and retrieval algorithms) was devoted
to the retrieval problem in textured 3D models [22].

9.5 Concluding Remarks

This chapter introduces the shape matching process from the point of view of repre-
sentative approaches in the field, potential applications, and the main challenges that
need to be addressed. A noteworthy issue is the form of the information embodied
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in the 3D shapes to be matched. There are many available datasets, so this aspect
should not be a limitation to start. The wide variety of data allows us to choose
between different characteristics such as level of detail, shapes classes, and so forth.
In addition to the standard datasets, many shape recognition applications consider
customized acquired data in order to test their proposals in domain-oriented infor-
mation; however, it is important to use datasets accepted for the community to have
consistent results and valuable comparison.

Just as the amount of available information has considerably grown in recent times,
there is also an increasing interest of researchers for proposing new approaches for
shape matching and studying the potential applications in several knowledge fields.
We have witnessed the achieved benefits of fields such as medicine, engineering, art,
entertainment, and security, by the development of shape retrieval and recognition
techniques. What is more, it is evident the interest in computer vision applications
based on shape matching. It is not so difficult to realize the great potential that has
the three-dimensional information which can be used as complement for images and
video processing in order to improve the effectiveness in high-level vision tasks. We
believe that the 3D information will be used commonly in the future and processes
such as retrieval and recognition will be the base for cutting-edge applications.

Likewise, it is beneficial to have a huge catalog of techniques becausewe can select
a convenient technique depending on the application context. In addition, we often
can combine them to improve the performance in general. In this chapter, we selected
four techniques which were explained in detail in Sect. 9.3. The PANORAMA
descriptor is an effective view-based representation for 3D shapes that have proven
to be convenient for global shape retrieval. One of the main characteristics of this
descriptor is its concise representation which can be exploited to build fast and effec-
tive 3D shape retrieval systems.

The other three presented techniques assume a non-global similarity model by
exploiting local descriptors which can be used to do the matching. Both the func-
tional map and shape google approaches make extensive use of a mathematical tool
which has proven to be powerful for shape analysis, namely, the Laplace–Beltrami
operator. This operator has desirable properties which makes it a valuable tool for
shape matching, in addition to the good effectiveness achieved in shape retrieval.
Nevertheless, a weak point of this tool is its high computational cost which making
it an interesting challenge to be tackled in the future.

The spin image approach has proven to be effective in 3D shape recognition. Its
versatility for describing shapes in different aspects has made it a standard technique
for recognition tasks and new approaches often compare their results against results
using spin images. Nevertheless, its dependency on uniform meshes and normals
computation is restrictive and not suitable because shapes usually do not meet these
requirements. A small difference in calculating normals can produce different spin
images damaging the effectiveness.

As can be noted, there is a lot of work to be done, proposing new approaches in
order to improve the effectiveness and primarily the efficiency, and studying new
paradigms some of which we mention in Sect. 9.4. We are convinced that the future
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of this research field is promising and the growth in scientific and technological
productivity will remain thanks to the enormous efforts that research communities
in different fields are doing.

9.6 Further Reading

As expected, the increasing interest of research communities in shape retrieval and
recognition areas has allowed a rapid advance, both in theory (new approaches)
and applications. Obviously, due to space limitations, all the materials could not be
addressed in this chapter, so this section is devoted to present additional material for
interested readers.

A good starting point to introduce to the subject of shape retrieval and recognition
are the surveys [19, 21, 54, 113]. Early evaluations of algorithms were also pre-
sented in the reports [9, 18, 20, 41]. For recent experimentation with state-of-the-art
techniques, we recommend to review the reports of SHREC contest. For instance,
some SHREC tracks are robust feature detection and description benchmark [12, 14],
non-rigid 3D shape retrieval [69, 70], 3D hand gesture recognition [109], large-scale
retrieval [98], point-cloud retrieval [71], retrieval for cultural heritage [8], and pro-
tein shape retrieval [64]. These reports represent a good reference for review recent
approaches and their evaluation.

For readers interested in the Laplace–Beltrami operator and its applications in
shape retrieval and recognition, we recommend the papers by Belkin et al. [5, 6],
Bobenko [10], Chuang et al. [31], Ghaderpanah et al. [44], Levy [67], Rustamov [95],
Wu et al. [121], and Xu [123, 124]. These papers have highly mathematical content,
so it is recommended for more advanced level of research.

On the other hand, in addition to applications listed in Sect. 9.1, in the papers by
Perakis et al. [88], Zhou et al. [127], and Giorgi et al. [45], we can find applications
to face recognition, and in the work by Wessel et al. [119], the authors presented a
benchmark for retrieval of architectural data. There are also proposals of application
of shape matching in cultural heritage problems [84, 101, 102, 106].

Furthermore, more recent contributions on 3D shape matching and retrieval are
using neural networks to learn the correspondence function between geometric infor-
mation. Even more, we are witnessing the arise of an active research topic around
all these new methods, which has been called geometric deep learning [17]. Pio-
neering works in this direction were applied to find point correspondences between
two 3D shapes [76, 118]. The main challenge in the application of neural networks
in 3D shape matching is the robust definition of convolutional operations on the
3D domain. Some proposals include anisotropic convolutional neural networks [11],
mixture models [78] and deep functional maps [73].
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9.7 Questions and Exercises

This section presents some questions and exercises related to the material presented
in previous sections. We strongly recommend you to undertake these exercises to
reinforce the knowledge you have learnt from this chapter.

9.7.1 Questions

Question 9.1 Explain the difference between shape retrieval and shape recognition
and give an example application of each.

Question 9.2 Why is thematching of shapes that can deform (such as bending defor-
mation) more difficult in general than matching of rigid shapes?

Question 9.3 Why is the matching using partial views of an object (for example,
when using single viewpoint 3D scans) more difficult in general than when the
complete object surface is available in the query shape?

Question 9.4 What properties of shape descriptor are desirable when addressing
partial matching problems and non-rigid matching problems?

Question 9.5 Describe the “bag-of-features” approach to shape retrieval.

Question 9.6 Find interesting properties of the similarity matrix Asim defined for
the SQFD.

9.7.2 Exercises

9.1 Demonstrate that Laplacian commutativity constraint, in the functional map
computation, is equivalent to the matrix whose diagonal elements are defined in
Eq.9.34.

9.2 In the functional map method, the number of coefficients of matrix C (and
therefore the number of unknowns in the problem) is related to the number of eigen-
functions used in the input shapes. Note that fewer eigenfunctions will make a more
succinct representation for the functional map. However, it could be interesting to
see what is the effect of the number of eigenfunctions in the effectiveness of the
matching. Experiment and compare the correspondences between two shapes when
k = 10, 20, 50, 100, 500, 1000. Note also that more eigenfunctions require more
computation. What is a good trade-off in your experiments?

9.3 Consider a neighborhood where four points are coplanar and three of them
form an equilateral triangle. The fourth point lies in the barycenter of the triangle.
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Let a be the length of a triangle’s side. Compare the triangle area with the following
quantities:

• Voronoi region of p by using only Eq.9.38.
• Voronoi region of p taking into account the obtuse triangles as described in
Sect. 9.3.3.

Argue why it is necessary to be aware of obtuse triangles while calculating the
Voronoi region area.

9.4 Prove that the Laplace–Beltrami operator is not invariant to scale changes. Addi-
tionally, suppose a uniform mesh which has edges with the same length denoted by
a. Conjecture what happens with the operator when a tends to zero.

9.5 Explain why the quantity Kt (x, y) is a good choice for the spatial factor in shape
google technique?

9.6 The direction of the normal in the spin images defines a horizontal line in the
middle of the spin image. A little variation in this normal modifies the image, rotating
the pixels around the central point in the first column of the image. Propose a method
to tackle with little variation of the normals.

9.7 The spin image in a point p depends on the direction of its normal. Let suppose
an object A with normals computed in each vertex and an object B, equal to A, with
opposite normals. Propose a variation to spin image computation in order to generate
the same descriptor for corresponding points in A and B.

9.8 Implement the spin images construction modifying the accumulation method.
Instead of using bilinear interpolation, use a Gaussian weight centered in the corre-
sponding pixel. Is this method more robust against noise and normal variations?

9.9 Implement the SQFD distance, using the sim function defined in Sect. 9.3.4.1.
Which properties of matrix Asim can be used for an efficient implementation of this
distance function?
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Chapter 10
3D Morphable Models: The Face,
Ear and Head

Hang Dai, Nick Pears, Patrik Huber, and William A. P. Smith

Abstract With prior knowledge and experience, people can easily observe rich
shape and texture variation for a certain type of object, such as human faces, cats or
chairs, in both 2D and 3D images. This ability helps us recognise the same person,
distinguish different kinds of creatures and sketch unseen samples of the same object
class. The process of capturing prior knowledge relating to the normal variations in
an object class is mathematically interpreted as statistical modelling. The outcome of
such a modelling process is a morphable model, a compact description of an object
class that captures the model’s training set shape variance, and thus can act as a use-
ful prior in many Computer Vision applications. Here, we are particularly concerned
with 3D shape, and so we refer to the concept of a 3D Morphable Model (3DMM).
However, in many applications, it is very important to capture and model the associ-
ated texture, where that texture is registered (i.e. aligned)with shape data. Typically, a
3DMM is a vector-space representation of objects that captures the variation of shape
and texture. Any convex combination of vectors of a set of object class examples
generates a real and valid example in this vector space.Morphablemodels havemany
applications in creative media, medical image analysis and biometrics, by providing
a useful encoding and prior statistical distribution of both shape and texture. In this
chapter, we introduce 3DMMs, provide historical context and recent literature and
describe both classical and modern 3DMM construction pipelines that exploit deep
learning. We also review the publicly available models that such pipelines generate.
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Finally, we illustrate the power of 3DMMs via case studies and examples. Through-
out the chapter, our exemplar models will be 3DMMs of the human face and head,
as these are widely employed in Computer Vision and Graphics literature.

10.1 Introduction

Statistical 3D shape modelling aims to encode 3D shapes in some object class, e.g.
human faces, cars and chairs. Typically this employs a fixed and relatively small
number of variables called model parameters. When the model parameters for one
shape example interact through the mathematical structure of the 3D shape model
that shape is reconstructed to some approximation. The model parameters are also
sometimes called latent variables, as they are not directly observable in the raw data,
but must be inferred in some form of model fitting process. As we smoothly vary the
model parameters, within reasonable ranges, we expect to be able to view smoothly
varying and plausible 3D shape reconstructions, hence the name 3D Morphable
Model (3DMM). This means that the structure of the model allows surface points or
patches of the shape to change simultaneously, with a single shape parameter change,
and so the model’s capture of surface point/patch correspondences across the whole
3DMM training dataset is implied. Figure10.1 illustrates instances generated from
the Universal Head Model (UHM) [119].

A fixed number ofmodel parameters, required to encode themany different shapes
in the training dataset, implies that there is a form of normalisation of representation
(cf. the variable number of raw 3D surface points). Also, the relatively small number
of parameters implies that there is data compression (i.e. dimension reduction) that
exploits the correlations and/or more complex relationships between different parts
of the modelled object class. In other words, due to the regularity of shapes in an
object class, their encodings occupy a manifold or shape space of relatively low
dimension. As long as the model parameters stay within this space, it will generate
a plausible face shape. Of course, some shapes are more common than others and

Fig. 10.1 3D heads synthesised by the Universal Head Model (UHM). Figure courtesy of [119]



10 3D Morphable Models: The Face, Ear and Head 465

therefore the model parameters are thought to occupy some distribution, which may
be modelled in various ways, such as using a Gaussian or mixture of Gaussians.

There are many possible encodings that can represent the same raw datasets. Two
that are commonly employed include the linear encoding of Principal Component
Analysis (PCA) and the non-linear encodings of autoencoder neural nets. Modelling
attempts to distill the essence of a shape into a compact description. Here, Occam’s
razor comes to mind, which invokes the law of parsimony; we wish to encode with
a small number of parameters, yet when data is reconstructed with such models, we
desire high representational accuracy. These two attributes can be in conflict with
each other and often an application-based compromise is required.

A 3DMM provides a useful prior distribution over the model parameters, and
knowing the range of shape variation expected for an object class, which is expressed
through this prior, often makes analysis problems in Computer Vision much more
tractable. Indeed this is the essence of analysis-by-synthesis approaches, where, if
we model all the components that generate an image, such as 3D shape, surface
reflectance, scene lighting and the projective imaging processes, and if we estimate
these model components accurately by model fitting, then we can synthesise an
image that is very similar to the actual image and thereby understand it. Furthermore,
3DMMs allow us to understand imaged 3D shapes in the context of the distribution of
possible shapes for that object class, for example, determining if a particular example
shape is an outlier for that class. 3DMMs also facilitate reconstruction of missing
data from 2D and 3D images, since the model parameters that accurately reconstruct
observable raw data are also able to estimate both the unobservable data and the
variation around that estimate.

Throughout the chapter, our exemplar models will be 3DMMs of the human face,
ear and head. These are of particular interest in both Computer Vision and Computer
Graphics literature and are widely employed in practical applications. Full body
models have also been widely studied, with the Skinned Multi-Person Linear Model
(SMPL) being a recent example [105], which employs the FAUST full body dataset
[19]. However, we do not attempt to cover the full body literature in this chapter.

We note that shape deformation fields that capture facial expressions are an impor-
tant component of facial modelling. The prevalent approach is that of simple linear
blendshapes [101], with a set of 3D facial expressions being made available by Cao
et al. [36] in theFaceWarehouse project. However, in this chapter, we primarily focus
on a tutorial approach to constructing and fitting statistical models that capture the
variability of human faces and heads due to the different identities in the training
dataset.

10.1.1 Model Training Data

In Computer Vision and Graphics, there are various ways of representing raw 3D
object data (see Chap.6 for an overview of 3D data representations). Here, we will
be primarily concerned with constructing 3DMMs from 3D point clouds, i.e. the set

http://dx.doi.org/10.1007/978-3-030-44070-1_6
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Fig. 10.2 3D head capture, using the 3dMD system. Left: A subject being captured. Right: The
resulting captured 3D image, shown as a textured mesh, and with the underlying 3D data

of 3D points that sample an imaged object’s surface. We are also interested in the
associated 3D mesh, where neighbouring points are connected into a triangulation
that approximates the surface of the object in a piecewise linear fashion. Such a
mesh is useful for capturing surface neighbourhood information between points,
and for rendering a colour-texture surface onto the 3D object. Our notion of a raw
3D image is where we have a set of unlabelled 3D points connected into a mesh
triangulation, along with a bitmap image and a set of texture coordinates that indicate
the correspondence (or registration) between the 3D mesh and the 2D image. Such a
3D image will have been created either by a passive or active 3D vision system (see
Chaps. 2–5 for an overview of possible ways of capturing 3D data). Recently, efforts
have been made to build or augment 3DMMs from standard 2D image datasets. This
has mainly been due to the recent progress in model-based 3D shape inference from
2D images that has been made using deep convolutional networks [134] and, later
in the chapter, we discuss this work.

Returning to 3D data capture, Fig. 10.2 shows a subject being captured using a
3dMD head capture system.1 It consists of five active 3D camera units, where each
of the units uses a combination of structured IR projection, IR cameras and standard
cameras for the colour-texture capture. 3D surface points are triangulated, as in
passive stereo, but only at the illuminated spots in the projected pattern. The 3dMD
system software is able to stitch together the five separate 3D images into a single
3D image, additionally handling the texture-to-shape registration. Although this is
presented in their propriety TSB format, it can easily be converted into open formats
such as OBJ, that contains 3D point cloud coordinates, their mesh connectivity, and
texture coordinates that index into an associated five-view composite bitmap. The
right portion of Fig. 10.2 shows the resulting captured 3D image of the subject, firstly
as a mesh with the texture rendered over it, and secondly the underlying 3D data.
As 3D images, both of these can be rotated on the screen and examined with a 3D
viewer, such as the freely availableMeshLab application.2 Typically, the human head
images captured with this system have between 100K and 200K vertices.

1http://www.3dmd.com.
2https://www.meshlab.net.

http://dx.doi.org/10.1007/978-3-030-44070-1_2
http://dx.doi.org/10.1007/978-3-030-44070-1_5
http://www.3dmd.com
https://www.meshlab.net
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Commercial 3D capture systems are now much faster and higher resolution than
when such devices first came on the market. However, it must be remembered that
all of the raw 3D image data provided by such devices both have a varying number of
points per 3D image and each of those points is unlabelled. Thus, the i th point in the
3Dpoint cloud has no semanticmeaning across the dataset, and ifwe arbitrarily select
some index number, the i th 3D point, this could be on the tip of the nose of one person
and the middle of the cheek for another. So 3D image data in its raw form has limited
utility; it could be used with a point-and-click user interface to measure Euclidean
or geodesic distances between landmarks, as in a ‘software callipers’ application.
However, this is very laborious if we want to know large population measurement
statistics, and if we want to understand how different parts of the modelled object
structure vary together (co-vary). The first key to solving this problem is to consider
reparameterisation of the 3D mesh, such that the parameterisation is normalised
across the dataset associated with the object class of interest, the second is alignment
and the third is model construction by finding a parametrisation that encodes the
main shape variations across the dataset. Each of these stages is first presented in
outline and then in detail, later in the chapter.

10.1.2 The Analysis-by-synthesis Application

To illustrate the power of 3DMMs, and thus provide application context early in
this chapter, we briefly overview the classical work of Blanz and Vetter [17] from
the late 1990s, and that model’s use in a typical analysis-by-synthesis setting. The
term analysis-by-synthesis refers to the fact that, if the modelling of some system
is theoretically well-founded, then it should be able to generate any reasonable data
output instance of that system. The output is then ‘understood’, in some sense, by
the parameterisation of the system output in terms of the model.

Blanz andVetter built a 3DMMfrom3D face scans [17] and employed it in 2D face
recognition [18], in an analysis-by-synthesis framework. Two hundred scans were
used to build themodel (young adults, 100males and 100 females). Dense correspon-
dences were computed using optical flow with an energy term dependent on both
shape and texture. Suchmorphablemodels incorporate a priormulti-dimensional dis-
tribution over the model’s parameters, and this defines the expected variation of the
object class shape. As such, a 3DMM defines a highly useful ‘prior’ (prior distribu-
tion of model parameters) and the model parameters can be varied over a reasonable
range (e.g. equating to ±3σ over any parameter), thus covering the variation in the
training dataset. This makes them suitable for incorporation into a typical analysis-
by-synthesis approach, depicted in Fig. 10.3. (In addition to shape and texture, an
expression component can be incorporated into the morphable model. Often this is
just linear, i.e. a weighted sum of expression modes that is added to the shape part
of the morphable model.)

The idea is to model all of the physical ingredients that generate a (standard 2D)
image, namely, 3D shape and surface reflectance (via a 3DMM), lighting, and object
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Fig. 10.3 Analysis-by-synthesis. The forward process of a system is modelled to produce an image
of a person’s face, here with a statistical 3D shape and texturemodel, illumination and pose (camera)
model. A non-linear optimisation is then run that tries to minimise the difference between the
synthesised image and the image that the system aims to model. Hence, the system is able to
analyse an input image, by synthesising images, where the model parameters are known

pose (position and orientation), and gradually adjust all such parameters of themodel
until the difference between a synthesised 2D image and an actual 2D input image
is minimised. Typically this is a challenging non-linear optimisation problem that is
computationally expensive and has many local minima, and so a good initialisation
is very important. The parameters associated with the 3DMM can then be used in
a face recognition application, whereas the parameters associated with the specific
image capture, lighting and pose, can be discarded as irrelevant. In a sense, the useful
information relating to identity has been disentangled from the factors that can often
confound face recognition, namely, lighting and pose variations.

More recently, Garrido et al. [70] have advanced this approach by considering
3D shape on coarse, medium and fine scales. In this work, it is recognised that
modelling constructs such as Principal Component Analysis (PCA) capture shape
variations that exist in a relatively low-dimensional linear subspace and these are
low spatial frequency shape variations. To counter this, they employ medium-scale
corrective shapes, via the use of manifold harmonics. However, these are still too
low-frequency to capture details such as wrinkles, which are dealt with in a third level
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of their hierarchy: fine-scale modelling. Fine-scale shape variations are encoded in
the gradient domain and are based on deformation gradients.

Many alternative approaches to analysis-by-synthesis with 3DMMs exist, and we
provide a more detailed overview of historical and recent works in Sect. 10.16.1.

10.1.3 Chapter Structure

The rest of this chapter has the following structure:

• Section10.2 presents a historical perspective that highlights some key shape mod-
elling developments that pre-date modern 3DMMs. For the purposes of that dis-
cussion, we define this to be the 1999 3DMM face modelling work of Blanz and
Vetter [17].

• In Sect. 10.3, we outline the key ingredients and processes in a classical 3DMM
construction pipeline. Each of these ingredients is then presented in detail in the
subsequent sections, i.e. Sects. 10.4–10.8.

• In Sect. 10.9, we present the various 3DMM construction pipelines presented in
the literature, and we focus on their commonalities and differences.

• Sections10.10–10.12 present 3DMMs of the human face, the human head (includ-
ing the full cranium) and a 3DMM of the human ear.

• Section10.13 discusses how to leverage the fact that human faces and heads have
strong bilateral reflective symmetry, which could be used as amorphing constraint.

• Section10.14 discusses evaluation criteria for morphable models.
• Section10.15 details some recent approaches that employ deep learning for 3DMM
construction.

• Section10.16 presents a selection of 3DMM applications.
• Sections10.17–10.21 present research challenges, conclusions, further reading,
questions and exercises, respectively.

10.2 Historical Perspective

Early work in shape analysis was performed on 2D images. In 1942, Thompson et
al. [135] sketched transformation grids to show how one shape had to be deformed
to match another in terms of their corresponding landmarks. Kendall [93] derived
statistical developments concerning the shape space for Procrustes-registered data in
1984. Bookstein’s work on Thin Plate Splines (TPS) [24] was central to the devel-
opment of the related field of statistical shape analysis [59], which provides the
theoretical underpinnings of statistical shape modelling. Later Bookstein employed
a combination of Procrustes analysis and TPS in order to analyse shapes in terms of
their landmark positions [25]. Meanwhile, relevant work was produced in Computer
Vision. For example, rigid transformation estimation between a pair of 3D shapeswas
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solved by several Computer Vision researchers, with approaches based on Singular
Value Decomposition (SVD) that lead to least-squares solutions being particularly
popular [8].

In terms of 2D image modelling, Sirovich and Kirby described a low-dimensional
procedure for the characterisation of 115 aligned 2D facial images using Principal
Component Analysis and called the resulting eigenvectors Eigenpictures [95, 129].
Later in 1991, Turk and Pentland employed this modelling technique in a face recog-
nition application and termed the eigenvectors Eigenfaces [141].

Also, in the 1990s, two groups of researchers, Besl andMcKay [15] and Chen and
Medioni [39], independently proposed the Iterative Closest Points (ICP) algorithm
for rigid 2D and 3D shape alignment and registration. ICP cycles through three main
steps: (i) finding surface correspondences as closest points; (ii) computing the rigid
transformation estimation between them and (iii) applying the transformation to one
of the surfaces tomake it closer to the other. Later several research groups investigated
non-rigid registration approaches where, for example, local affine deformations are
permitted [5, 7].

In other work in the 1990s, Cootes et al. developed shape models applied to
2D images, termed Point Distribution Models (PDMs) [44]. The work is done with
reference to 2D shapes, where corresponding points are manually marked on the
boundaries of a set of training examples. The points are aligned to minimise the
variance in distance between corresponding points. This is done by encapsulating a
Procrustes-based alignment in an iterative procedure, where the mean is normalised
to a default scale and pose at each iteration. After such alignment, a standard principal
component analysis (PCA) captures how the shapes deviate from the mean shape.
Cootes et al. presented Active Shape Models (ASM) in [45], where pose, scale and
shape parameters are determined in order to fit the model to an image. This work was
inspired by the earlier work on active contour models [91]. The same research team
also went on to include texture in their models, giving birth to Active Appearance
Models (AAMs) [42]. They further developed a set of shape modelling approaches
where the best correspondences are those that define the most compact shape model
given some quality of fit between the model and the data [55, 100]. In terms of 3D
models, in 1996, Cootes et al. [43] proposed to build statistical 3D models from a
set of uncalibrated 2D images. In that work, 2D landmark points from two views
(images) of the same object are used to recover 3D shape, and then build a statistical
3D model of the variation of those points from multiple object instances.

10.3 Outline of a Classical 3DMM Construction Process

An outline of a classical 3DMM modelling pipeline is shown in Fig. 10.4. The fol-
lowing subsections give a brief overview of the processes in this pipeline.
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Fig. 10.4 Classical 3DMM modelling pipeline, from 3D face data to the final statistical model

10.3.1 Normalised Mesh Parameterisation

In order to learn a meaningful statistical model of shape, all items in the model’s
training dataset must be reparameterised into a standard form. Thus we normalise
the 3D meshes, such that each has the same number of points, N , and points with
the same index, i , have the same label. This means that points on different object
instances with the same index have the samemeaning, at least to some approximation
demanded by the application. (We recognise that such labels are easy to define
for well-localised common structures on the object and very difficult for others. In
the case of the human face, the eye and mouth corners are well-defined and well-
localised anatomical structures, but points in the middle of the cheek and forehead
are not.) A typical approach is to take a template mesh which, ideally, is close to
the average size and shape of the object members in the dataset. We then apply
transformations to this template, which is often termed the source mesh, such that it
is in some sense optimally aligned to the datamesh, also termed the targetmesh. Such
transformations consist of rigid motion translations and rotations, scalings and other
affine transformations such as stretching and shearing, and non-linear deformation.
The latter is the most challenging due to the large space of possible non-linear,
non-rigid deformations. The process of non-rigidly deforming a template mesh to
match a data mesh is termed non-rigid registration or morphing and is discussed
in detail later in the chapter. The point to note at present is that once the template
has been morphed to each data item in the dataset in turn, then we can use the
deformed templates in place of the data, and the whole dataset then has the same
number of points, with the same semantic meaning and joined into a consistent
triangulation. In other words, the template parameterisation has been transferred to
all the dataset samples and this provides a good foundation for statistical modelling.
One might say that an approximate groupwise correspondence has been achieved.
The word approximate is used as the optimisations are conducted in a pairwise
fashion between template and each data item, rather than jointly over the whole
group, which is more challenging and addressed in various literature [55]. Note that
template-based correspondence methods need very high quality shape registration
for good performance [152, 153]. Figure10.5 shows an example of the template
morphing approach, where the FaceWarehouse template has been morphed to a 3D
image in the Headspace dataset [51].
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Dense correspondence

Template morphing

Vertex i Vertex i

Fig. 10.5 Template morphing for dense correspondence: the dense correspondence is illustrated
by the parallel connecting lines

10.3.2 Mesh Alignment

Typically the items in an object dataset will not be in a consistent pose and they will
be in different positions and orientations relative to some coordinate system. Since
the shape template (usually) moves towards the scan to align with it, the deformed
templates will also be in inconsistent poses. Therefore, an alignment stage is often
employed after the morphing stage, in a classical 3DMM construction pipeline,
and this is an essential precursor to standard statistical modelling, which is based
upon Principal Component Analysis (PCA). The process usually employed is termed
Generalised Procrustes Alignment (GPA), which seeks to minimise the least-squares
error between each shape and the mean shape. However, since computation of the
mean shape itself depends on the alignment, the process is iterative, where a new
mean shape is computed after each improved alignment until the mean shape con-
verges. Before we build a statistical model, we can optionally scale-normalise the
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fitted templates by rescaling each of them. Scale can be computed as the mean (or
RMS) distance to the centroid for each deformed template and an average scale can
be computed, to which we can normalise. Scale normalisation gives a better shape
alignment after GPA, and we can often observe this as tighter clusters of correspond-
ing vertices. However, we will lose the correlation between shape and scale, unless
scale is reintroduced in the modelling stage as an additional variable.

10.3.3 Statistical Modelling

The standard method to perform statistical modelling is to assume that the dataset
objects lie on a linear manifold in shape space and employ PCA. (Here, we assume
a basic understanding of PCA). The validity of this assumption is dataset depen-
dent. In performing PCA, we encode the shape relative to the mean of the dataset,
we capture the largest correlations between the variations of different parts of the
object across the dataset, and we employ significantly fewer shape parameters rela-
tive to the the number of parameters associated with the raw data. In this sense, the
modelling process performs a high degree of data compression. For example, the
FaceWarehouse template of the human head has N = 11, 510 3D vertices, which
requires 3N = 34, 530 parameters to express each morphed template across the
dataset. After PCA, we can accurately express any shape with around 100 shape
parameters. A refinement of PCA is to use Weighted PCA (WPCA) to ensure that
the extraction of shape deformation is independent of varying resolution over the
mesh. This can be achieved by constructing a sparse symmetric weighting matrix
as a function of the average mesh face areas around and between vertices [51]. The
choice between PCA and WPCA is application dependent.

In order to perform PCA (or WPCA) and encode shape variation, we consider
each morphed template as a point in a high dimensional space of size 3N , which is
termed the shape space. Thus a N × 3matrix representing N 3D points is reshaped to
a 3N vector. If there are M shape examples, we have a M × 3N matrix representing
the full dataset. Often, we find that M < 3N , unless we have a particularly large
dataset relative to 3D mesh size. In this case, we can extract at most M − 1 shape
parameters. A particular shape instance x can be expressed in terms of the PCA
model parameters (xm,V) as follows:

x = xm + Vb, (10.1)

where xm is the mean shape, V are the eigenvectors representing shape variations
(correlated surface point displacements) and b are the shape parameters that encode
and represent the shape instance. Note that a 3DMM usually also has a texture
model with the same structure as the shape model, but constructed from per-vertex
RGB colour values rather than X, Y, Z vertex position values. Such a texture model
is usually independent from the shape model, i.e. correlations between shape and
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Fig. 10.6 Toy example for a PCA face model. It shows the mean face and the first two modes of
variation, indicated with coloured arrows, and the resulting deformation applied to the mean. The
right side shows the structure of the corresponding PCA basis matrix, where each column represents
an eigenvector

texture are not captured. A notable exception to this is the Copula Eigenfaces work
of Egger et al. [60].

Figure10.6 illustrates a toy example of a PCA decomposition encoding face vari-
ation relative to the mean face, where we show eight surface points varying over the
first two modes of shape variation. These shape variations are captured by the eigen-
vectors, or principal components, which are 3N column vectors that are unit vectors.
Such eigenvectors are composed of the individual 3D point movement directions of
the eight points on the shape surface, as illustrated. The size of these movements is
exaggerated in the figure for the purposes of illustration. Note that by varying a single
shape parameter, bi , within the parameter vector, b, the whole face shape changes
to a different and yet valid face shape, as long as we don’t move too far away from
the mean, as we slide along an eigenvector. The principal components are named as
such since they capture the shape changes that have the most variance in the training
set. Contrast the variation of a shape parameter with changing a single parameter of
the raw representation which would just move a point on the surface and create a
noisy spike. Any face should be able to be well described as the mean, plus a linear
combination of the eigenvectors of the model, as described by Eq.10.1 (of course a
reasonable number of eigenvectors is likely to be far greater than the two illustrated).
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Fig. 10.7 The Liverpool-York Head Model (LYHM). 1st block: shape compared to the Basel Face
Model (BFM) [115] and Large-Scale Face Model (LSFM) [27]; 2nd-4th blocks: the central head is
the mean and the first four principal modes of variation are shown

Figure10.7 shows a real example of a 3DMM, in this case the Liverpool-York
HeadModel (LYHM) [51], and the figure illustrates that the full cranium ismodelled,
where earlier models have only modelled the facial area. Both shape and texture are
modelled and the means and first four modes of variations are illustrated.

10.4 3D Face and Head Datasets

The form of a 3D face/head dataset is application dependent. Most face databases
are face recognition oriented. Only the Bosphorus dataset contains facial occlusions.
FRGC v.2 [118] used to be the largest 3D face database. In 2016, MeIn3D replaced
FRGC v.2 as the largest. The BU-3DFE [151] database has various emotional expres-
sions. Every subject displays four intensity levels in each of six emotions. Table10.1
lists the 3D face databases used in research. Not all of them are publicly available.

The Face Recognition Grand Challenge (FRGC) has been organised for several
reasons. There were threemain directions to be pursued: Face recognition on (1) high
resolution still images, (2) multiple still images both on the enrollment and challenge
side and on (3) 3D face shape. Such databases were a challenge for teams in industry
and academia. Since this dataset contains various expressions, it is very challenging
to localise facial landmarks in FRGC and other datasets, such as the University of
York 3D face dataset. Additionally, the mesh quality and resolution are relatively
low compared to those captured by the latest techniques.

The MeIn3D [27] database includes over 10,000 3D facial scans. It was collected
in the Science Museum in London by the ibug group from Imperial College London.
Booth et al. [27] used this dataset to construct a large-scale 3D morphable model
of face. They aimed at 3D face reconstruction and surgical planning. However, this
dataset is face-only and proprietary (not public). The 3D mesh in this dataset com-
poses of about 60,000 vertices joined into 120,000 triangulated faces associated with
a high-resolution texture image. Metadata, including gender, age and ethnicity, is
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Table 10.1 List of 3D face/head databases

Database Subjects Total Expression Pose Occlusions

FRGC v.2
[118]

466 4007 Anger,
happiness,
sadness,
surprise,
disgust, puffy

N/A N/A

BU-3DFE
[151]

100 2500 Anger,
happiness,
sadness,
surprise,
disgust, fear

N/A N/A

ND2006 [65] 888 13450 Happiness,
sadness,
surprise,
disgust, other

N/A N/A

Univ. of York
[85]

350 5250 Happiness,
anger, eyes
closed,
eye-brows
raised

N/A N/A

CASIA [155] 123 1845 Smile, laugh,
anger,
surprise,
closed eyes

N/A N/A

GavabDB
[110]

61 549 Smile, frontal
accentuated
laugh, frontal
random
gesture

Left, right, up,
down

N/A

3DRMA [16] 120 720 N/A Slight
left/right and
up/down

N/A

Bosphorus
[124]

105 4652 34 expressions
(action units
and six
emotions)

13 yaw, pitch
and cross
rotations

4 occlusions

MeIn3D [27] 9663 12000 N/A N/A N/A

FaceBase
[126]

3500 3500 N/A N/A N/A

Headspace
[51]

1519 1519 N/A N/A N/A
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Fig. 10.8 Example 01242 from the Headspace dataset [51]. Subjects wear tight fitting latex caps
to reduce the effect of hairstyle on captured cranial shape

provided to build specific demographic models and to analyse the shape variation
for certain demographic groups.

The FaceBase [126] dataset collects 3D facemeshes alongwithDNA information.
This dataset includes 35 age groups from 3 to 40 years old. It aims at collecting
50 males and 50 females in each age group. They released their measurements of
craniofacial shape. This dataset has the potential to explore the relation between
craniofacial shape and gene information.

Wenote that theMeIn3D andFaceBasedataset for craniofacial researchers contain
a large amount of 3D face scans, but the full cranium is not included. The only other
full head (including full cranium) dataset that we are aware of is that of the Size
China project; however, currently there is no 3DMM developed from Size China
data and it is expensive for researchers to get access to the data. To date (2020), the
Headspace dataset [51] is the only full head dataset both publicly available and free
for researchers (Fig. 10.8).

10.5 Facial Landmarking

As mentioned earlier, template morphing methods are often employed to establish
dense correspondences. Such methods need an automatic initialisation to bring them
within the convergence basin of the global minimum of alignment and morphing.
Automatic initialisation is to align the input 3D data to the template, which demands
3D facial landmarks to act as sparse correspondences. Figure10.9 shows a more
detailed process flow, where, in the Initialisation stage, the pose of the input data is
normalised using facial landmarks to be approximately that of the template.

Landmark detection on 3D face scans can broadly be done in two main ways: (1)
detection directly on the 3D mesh [46], (2) detection on the associated registered 2D
image and projecting these 2D landmarks onto the 3Dmesh [51]. The majority of the
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Fig. 10.9 Detailed 3DMMmodelling pipeline. In the first step, 3D scans need to be roughly aligned,
and the template mesh placed reasonably close to the scan. This can be done by manually anno-
tating scans, or, more conveniently, by automatically detecting facial landmarks. Given this initial
alignment, one can proceed with correspondence establishment and finally statistical modelling

research in facial landmark detection is done on 2D images, partly because it is much
easier to obtain larger training datasets of 2D images, but also because the areas of
applications are larger. Facial landmarking algorithms can loosely be grouped into
three major classes: holistic methods, Constrained Local Model (CLM)methods and
regression-based methods [146]. These classes of methods may use pixel values or
extracted features on the face or in local facial patches around the landmarks. As
automatic facial landmark detection is usually quite an important building block
both for building and using morphable models, in the following, we briefly discuss
the broad approaches.

Holistic Methods: Cootes et al. [42] introduced the Active Appearance Model
(AAM) which aims at fitting the facial images with a small number of coefficients
using a statistical model. An AAM consists of a 2D global facial shape model and
a holistic facial appearance model, which can be learned by PCA. The appearance
model can be learned from a set of holistic pixel values or extracted features, such as
SIFT [92] and HOG [54]. In order to locate the landmarks, the learned appearance
and shape models are fit to the test images for searching the best match. As a classic
approach of facial landmark detection and pose estimation, many improvements over
the original AAM have been proposed [83, 139].

ConstrainedLocalModels:TheCLM[11, 12, 47] strategies locate facial landmarks
based wholly on the global facial shape models as well as the independent local
appearance of each landmark. The AAM approach learns the appearance model for
thewhole face, while CLMmodels a set of local pixel values or extracted features [9].
The local features make it easier to deal with illumination variations and occlusion.

The popular Zhu and Ramanan [159] face detector and landmarker follows the
CLM approach. They use a tree-structured part model of the face, which both detects
faces and locates facial landmarks. One of the major advantages of their approach
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is that it can handle extreme head poses, even at relatively low image resolutions.
A mixture-of-trees model encodes topological changes due to viewpoint and uses
extracted features (HOG features) rather raw pixel values. The authors employ 13
viewpoints (spanning 180 degrees in azimuth) and 5 expressions that are limited to
frontal viewpoints, yielding a total of 18 mixtures that use a shared pool of parts.

Regression Methods: The regression-based strategies use machine learning meth-
ods to learn the mapping from 2D images to the landmarks [34, 58, 67, 158]. The
main difference from the previous two classes of methods is that regression methods
normally do not construct any explicit global face shape constraints. The regression-
based techniques can be categorised into direct regression methods [145] and cas-
caded regression methods [58]. The former strategies predict the landmark positions
in one iteration with no initialisation, while the latter methods perform cascaded pre-
diction and they normally require landmark ground-truth for learning.More recently,
there have been deep learning-based methods that try to estimate 3D landmark posi-
tions from 2D images [34, 58].

10.6 Correspondence Establishment

Correspondence establishment is a very challenging problem, encompassing non-
linear shape representation and non-rigid shape deformation. The main approach to
dense correspondence is shape registration. As shown in Table10.2, many methods
exist to register a mesh using different transformations. Three main types are com-
mon: rigid transformation, rigid deformation followed with non-rigid deformation
and non-rigid deformation.

Rigid transformation follows the assumption that the objects can be registered by
a Euclidean transformation consisting of rotation and translation [14, 69, 81]. This
transformation, which has 6 Degrees of Freedom (DoF), is applied for all the points.
When global scaling is also permitted, this is termed a similarity transformation.

Rigid transformation with non-rigid deformation allows surfaces to undergo a
combination of global rigid transformations and local non-rigid deformation. Allen
et al. [4] used a skeleton template for articulation. Pekelny et al. [116] employed prior
information from bones to estimate the transformations. Chang and Zwicker [37]
used a finite set of rigid transformations to estimate the global transformations. Local

Table 10.2 Registration methods

Transformation Examples

Rigid transformation All rigid cases

Rigid transformation with non-rigid deformation [4, 37, 116]

Non-rigid deformation [7, 29, 30, 89, 102, 111, 112]
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deformations can be estimated by blending the transformations of the adjacent parts
[37].

Non-rigid deformation methods include more generic and local deformations.
There are two ways to perform deformation: displacement fields [73, 111] and local
transformations [7, 102]. In the following five subsections, we describe the leading
non-rigid registration methods in the literature.

10.6.1 Non-rigid ICP

Amberg et al. [7] proposed the optimal-stepNon-Rigid IterativeClosest Point (NICP)
framework, which extended Iterative Closest Point (ICP) to non-rigid deformations.
Like ICP, there is an iteration loop that finds closest points between source and tar-
get shapes, which helps retain the convergence property of ICP. However, rather
than the source moving rigidly, small changes in movement are permitted between
neighbouring vertices with mesh connectivity. Following Allen et al. [5] they define
per-vertex locally affine deformations. Since these are underconstrained, regulari-
sation is necessary and this is achieved by minimising the weighted difference of
affine transformations between neighbouring mesh vertices. The weighting is rel-
ative to other terms in the cost function (primarily the sum of squared differences
between each vertex and their corresponding points on the target surface) and can
be thought of as a mesh stiffness, which is gradually reduced through the iteration
sequence. Regularisedmovement and deformation are termed an optimal step, which
is achieved via a single linear solve within each iteration, for some level of mesh
stiffness.

10.6.2 Global Correspondence Optimisation

In contrast to rigid ICP, Li et al. [102] showed that using proximity heuristics to deter-
mine correspondences is less reliable when large deformations are present. Instead
of estimating approximated corresponding points alone, the algorithm simultane-
ously solves for correspondences, confidence weights and deformation field within a
single non-linear least-squares optimisation, using the Levenberg–Marquardt algo-
rithm. The global correspondence optimisation solves simultaneously for both the
deformation parameters as well as the correspondence positions.

10.6.3 Coherent Point Drift

Myronenko and Song [111] consider the alignment of two point sets as a probability
density estimation and they call their method Coherent Point Drift (CPD). There
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is no closed-form solution for this optimisation, so they employ an Expectation-
Maximisation (EM) algorithm to optimise aGaussianMixtureModel (GMM) fitting.
Algorithms are provided to solve for three different shape deformation models: rigid
(CPD-rigid), affine (CPD-affine) and generally non-rigid (CPD-non-rigid). The ‘non-
rigid’motion model in [111] employs an M × M Gaussian kernelG for motion field
smoothing, and the M-step requires solving for an M × 3 matrix W that generates
the template deformation (GMMmotion field) asGW. Such motion regularisation is
related tomotion coherence and inspired the algorithm’s name. The approach of CPD
is to transform the point registration problem into a probability density estimation
problem. The template point set is represented as aGaussianMixtureModel (GMM),
where the means of the mixture components are situated at M template points, ym , in
the template point set, Y. The Gaussian distribution around these points is equal for
all points, and isotropic with variance σ 2. The CPD algorithm adjusts the position
of the mixture components and the variance parameter to maximise the posterior
probability of the GMMmodel generating the N data points xn in the data point set,
X.

In the expectation step (E-step) of the EM algorithm, the probabilities of cor-
respondence between template and data, P are computed, initially using assumed
parameters for the GMM, i.e. the initial template position and shape, and a suitable
estimate of isotropic variance σ 2. A given entry Pm,n = P(m|xn) in P is a posterior
probability computed using Bayes theorem as

P(m|xn) = exp
− 1

2
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)
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2
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)
+ (2πσ 2)

3
2 ωM

(1−ω)N

, (10.2)

where ω is the weighting of a uniform distribution added to the GMM to account for
data noise. The symbol θ indicates that the template points are deformed according
to the current estimate of the template deformation parameters.

The maximisation step (M-step) then optimises the GMM parameters, based on
these expected correspondence probabilities, and this two-step process iterates until
convergence.

Assuming an implementation for 3D point clouds, the ‘rigid’ motion model is a
7-parameter similarity transform including a 6-DoF 3D rigid transform and a global
scale parameter, whereas the affine motion model is the standard unconstrained 12-
parameter formulation. For the affine case they optimise for

B = fB(X,Y,P), t = ft (X,Y,P) , σ 2 = fσ (X,Y,P), (10.3)

where B is an affine transformation matrix (excluding translation), t is a translation
vector and σ 2 is a scalar representing variance. For the functional forms of fB, ft , fσ ,
see [111].

The CPD method has been extended by various groups [76, 86, 140, 143]. Com-
pared to Thin Plate Spline Robust Point Matching, TPS-RPM, [150], CPD offers
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superior accuracy and stability with respect to non-rigid deformations in the pres-
ence of outliers. A modified version of CPD imposed a Local Linear Embedding
topological constraint to cope with highly articulated non-rigid deformations [71].
However, this extension is more sensitive to noise than CPD. Zhou et al. formulated
a non-rigid registration method using Student’s Mixture Model (SMM) to do prob-
ability density estimation [157]. The results are more robust and accurate on noisy
data than CPD. Dai et al. [51] presented a hierarchical parts-based CPD morph-
ing framework, called CPD-LB, that employed mesh morphing constraints based on
the Laplace–Beltrami (LB) operator. The approach is able to mitigate under-fitting,
over-fitting and tangential surface sliding.

Recent techniques have emphasised isometric deformation of shapes, such that
certain intrinsic surface properties (geodesic distances, face areas and angles) are
preserved. Jain et al. [89] sought a low-dimensional embeddingmethod to preserve all
pairwise geodesic distances. Bronstein et al. [29] used generalisedmulti-dimensional
scaling to embed one mesh in another for partial mesh matching. Based on previous
work, Bronstein et al. [30] used a different distance measurement known as diffusion
distance and Gromov–Hausdorff distance to deal with topological noise. The result
in Ovsjanikov et al. [112] demonstrated that a single correspondence was able to be
established for all points by means of the heat kernel.

10.6.4 Laplace–Beltrami Mesh Manipulation

The Laplace–Beltrami (LB) operator is widely used in 3D mesh manipulation. The
LB term regularises the mesh manipulation in two ways: (1) the manipulated points
on the mesh template are forced to move towards their corresponding position on
the raw 3D scan; (2) all other points in mesh template are moved as rigidly as
possible regarding the manipulated points’ movement, according to an optimised
cost function.

Following Sorkine et al. [130], the idea for quantifying the rigid deformation
energy is to sum up the deviations from rigidity. Thus, the energy function can be
formed as

E(S′) =
n∑

i=1

wi

∑
j∈N (i)

wi j‖(p′
i − p′

j ) − Ri (pi − p j )‖, (10.4)

where S′ is the deformed mesh associated with a mesh S and R is a rotation. The
mesh consists of n vertices and m faces. Also N (i) is the set of vertices connected
to vertex i . The parameters wi , wi j are fixed vertex and edge weights, respectively.
Note that E(S′) relies on the geometries of S, S′, which have vertex positions p, p′,
respectively. Specifically, since the reference mesh (our input shape) is fixed, the
only variables in E(S′) are the deformed vertex positions p′

i . The gradient of E(S′)
is computed with respect to the positions p′. The partial derivatives p′

i can be written
as
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dE(S′)
dp′

i
=

∑
j∈N (i)

4wi j

(
(p′

i − p′
j ) − 1

2
(Ri + R j )(pi − p j )

)
. (10.5)

Setting the partial derivatives to zero, each p′
i represents the following linear system

of equations:

∑
j∈N (i)

wi j (p′
i − p′

j ) =
∑
j∈N (i)

wi j

2
(Ri + R j )(pi − p j ). (10.6)

The linear combination on the left-hand side is the discrete Laplace–Beltrami oper-
ator applied to p′; hence, the system of equations can be written as

Lp′ = b, (10.7)

where b is an n-vector whose i-th row contains the right-hand side expression from
(10.6). We also need to incorporate the modelling constraints into this system. In the
simplest form, those can be expressed by some fixed positions

p′
j = ck, k ∈ F , (10.8)

where F is the set of indices of the constrained vertices.

10.6.5 Parameterisation Methods

Parameterisation is another approach to shape correspondence. Parameterisation of
shape allows points insertion, points sliding and points deletion to establish corre-
spondence. Some methods [35] use geodesic distances between each landmark to
insert corresponding points. Others tend to find the best parameterisation among all
the subjects [55].

Contour Subdivision: Correspondences can be found by localisation of salient fea-
ture points (‘landmarks’) and then by dividing the length of the contour equally in
terms of geodesic distances between each landmark. Landmarks are detected and
labelled by virtue of their learned local properties and their relative configuration.
Relative local properties can be enforced by amodel fitting approach based on sample
consensus, such as RANSAC [35].

Minimum Description Length: Davies et al. [55] posed the correspondence estab-
lishment as one of finding the best parameterisation for each shape in the training
set. The algorithm selects the set of parameterisations by minimising the description
length of the training set. This objective function captures both the model complex-
ity itself and the data values required to express each of the training scans with the
model.
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10.6.6 Correspondence Establishment Summary

There exist lots of correspondence establishment methods including template mor-
phing, isometric deformation and shape parameterisation. The most recent progress
in 3DMM construction pipelines reveals that template morphing method is a better
choice in this case than other methods [132]. The goal of template morphing is to
align and morph a source point set (or mesh) to a target point set. By using some
form of template shape as the source, non-rigid shape morphing is able to reparam-
eterise a collection of raw 3D scans of some object class into a consistent form. This
is feasible when the optimisation of a cost function forces the template to morph
towards the shape of target mesh. The cost function can be defined as a distance error
or a functional energy between the morphed template and the target mesh. In most
recent progress, there is a trend of correspondence matching by deep learning [28,
128, 144]. Once trained, correspondence matching can be a real-time process. Lots
of features in the face can be used for the optimisation of the cost function. However,
this is not the case in the cranium, which makes it a more complicated problem than
face-only template morphing.

With correct correspondences, a 3DMM is able to sensibly describe the shape
variation within the object class [131]. The ground-truth of dense correspondence is
required for the evaluation of correspondence accuracy. Because that ground-truth
of dense correspondence is often unknown, manual landmarks can be used as the
ground-truth in evaluation [131, 132]. Based on this evaluation metric, Ericsson et
al. [64] used the mean absolute distance, which is calculated between the manual
landmarks and points corresponding to the same landmarks in a mesh template, for
benchmarking.

10.7 Procrustes Alignment

In some techniques in the literature, establishing correspondences and attaining align-
ment are tightly coupled, whereas in others they are more separate. In the previous
section, we considered tightly coupled methods and in following section, we con-
sider the standalone alignment procedure GPA [77, 79, 133], which operates on the
assumption that correspondences are known. It is of course possible to realign, if
there is good rationale to do so, using GPA after correspondences have been found
using any method.

We now briefly recap the well-known Procrustes alignment procedure. The col-
lection of scans in dense correspondence are subjected to Generalised Procrustes
Analysis (GPA) to remove similarity transformation effects (rotation, translation,
scale), leaving only shape information. Let X and Y be a pair of (m × n) matri-
ces representing two objects with n corresponding points in m dimensional space.
Full Procrustes alignment seeks an optimal similarity transformation with (R, t, s)
denoted as rotation, translation and scaling, respectively, such that
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(R, t, s) = arg minR,t,s ||s(RX + tuT) − Y||22, (10.9)

where u is an n-dimensional column vector of unit values. If one is interested in form
models (models that retain the original scaling of all of the inputs used in the training),
the scaling is constant (s = 1), otherwise, it is determined by ensuring X and Y have
the same mean (or RMS) distance to the centroid. The translation component can
be eliminated by centering all shapes on their centroids. The solution to the rotation
can readily be found using Singular Value Decomposition (SVD).

Generalising the above to many sets of corresponding points, Generalised Pro-
crustes Analysis (GPA) is a widely used alignment method in statistical modelling
for aligning training datasets. It aims to align to the mean shape of the dataset, but the
mean shape depends on alignment and so the GPA process is iterative, as follows:

1. Set the initial estimate of the mean shape to one example from the dataset (e.g.
the first or the nearest to mean size);

2. Align all the remaining shapes to the estimated mean shape (updated in every
loop);

3. If the estimated mean has changed significantly, go to Step 2.

The convergence of GPA alignment is detected by the stabilisation of themean shape.

10.8 Statistical Modelling

Statistical modelling is the final step of 3DMM construction. It represents shape
using a reduced set of parameters and models their multivariate distribution. The
number of parameters is small relative to 3N where N is the number of 3D points
in the mesh. PCA is one form of this that decorrelates the parameters that control
shape variation. The standard method (PCA) and recent progress are discussed in
the following sections.

10.8.1 Principal Component Analysis

Principal Component Analysis (PCA) generates a 3DMM as a linear basis of shapes.
This allows for the generation of novel shape instances. Each deformed shape tem-
plate is represented by p 3D points (xi , yi , zi ) and is reshaped to a 3p row vector.
Each of these vectors is then stacked in a k × 3p data matrix, for a dataset with k
items, and each column is made zero mean. Singular Value Decomposition is applied
from which eigenvectors are given directly and eigenvalues can be computed from
the singular values. This yields a linear model as
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X∗ = X̄ + PU = X̄ +
k−1∑
i=1

PiUi , (10.10)

where X̄ is themean shape vector andP is amatrixwhose columnsU = [U1, . . . ,Uk]
are the eigenvectors of the covariancematrix. The vectorP holds the shape parameters
{Pi }, that weight the shape variation modes which, when added to the mean shape,
model a shape instance X∗.

The standard assumption in PCA model construction is a multimodal Gaussian
distribution with the associated ellipses of constant probability having their axes
along the eigenvectors (principal components). However, Koppen et al. [99] observe
that various ethnic groups have quite different means in shape space and therefore
proposes a Gaussian mixture 3DMM to better model the global shape variation.

10.8.2 Gaussian Process Morphable Model

Lüthi et al. [106] employed Gaussian processes (GPs) to statistically model shape
variations. The modelling by a GP is represented by the leading components of
its Karhunen–Loève expansion. A Gaussian Process Morphable Model (GPMM)
can use manually defined arbitrary kernel functions to describe the deformation’s
covariancematrix. This enables aGPMMto aid the construction of a 3DMM,without
the need for training data. The posterior models of GPMMs are regression models
of the shape deformation field. Given partial observations, such posterior models are
able to determine what is the potential complete shape. A posterior model is able
to estimate other points’ movements when some set of landmarks and their target
positions are given.

Instead of modelling absolute vertex positions using PCA, GPMMs represent the
shape variation as a vector field u from a template X ∈ R

p×3 towards a target shape
X′ represented as

X′ = X + u(X) (10.11)

for some deformation vector fieldu ∈ R
p×3.Wemodel the deformation as aGaussian

process u ∼ GP(μ,k) where μ ∈ R
p×3 is a mean deformation and k ∈ R

3×3 a
covariance function or kernel. The core idea behind this approach is that a parametric,
low-dimensional model can be obtained by representing the Gaussian process using
the r leading basis functions ψi ∈ R

p×3 of its Karhunen–Loève expansion:

u = μ +
r∑

i=1

αi

√
λiψi , αi ∈ N (0, 1). (10.12)

One possible choice for the kernel function is to build it from training data. In that
case, the resulting model is the same as if using PCA. However, this kernel function
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can be combined with various other kernel functions, some of which can bemanually
defined. SinceGPMMs havemuchmore freedom in defining the covariance function,
much more shape variation is modelled when compared to standard PCA models.
However, the shapes generated by such models may be quite far away from the space
of the training shapes, which can also be a potential problem.

10.8.3 Statistical Modelling Using Autoencoders

Recently Ranjan et al. [121] introduced a ConvolutionalMesh Autoencoder (CoMA)
consisting of mesh downsampling and mesh upsampling layers with fast localised
convolutional filters defined on the mesh surface. Bagautdinov et al. [10] proposed a
method to model multi-scale face geometry that learns the facial geometry using UV
parameterisation formesh representation,which startedwith theobservation that both
global and local linear models can be viewed as specific instances of autoencoders.
This approach featured a variational autoencoder with multiple layers of hidden
variables that capture various level of geometrical details. Although PCA is a very
well-known andwidely used procedure that workswell for linear shape spaces, either
Gaussian processes or autoencoders can replace PCA in statistical modelling.

10.9 Existing 3DMM Construction Pipelines

A3DMMconstruction pipeline is an automatic procedure that includes initialisation,
dense correspondence establishment, alignment and statistical modelling methods.
The input is a 3D face dataset, and the output is a 3D morphable model. The pipeline
should be able to be demonstrated on a publicly available dataset. We compare the
three recent works of 3DMM construction pipelines: the LSFM pipeline (2017)
[27], the Basel Open Framework (2017) [73], and (later introduced in the chapter)
the LYHM pipeline [51].

10.9.1 LSFM Pipeline

The LSFM pipeline uses a 2D facial landmarker to detect 2D facial landmarks and
then project them onto 3D mesh. These 3D landmarks are then used to globally
align all meshes to a face template mesh, using NICP. With such a large cohort of
data, there will be some convergence from either landmarking error or NICP. They
employed an error pruning process to avoid undesirable deformation results because
of the failures of algorithm convergence. Then the registered data is processed by
GPA for alignment and PCA for the shape variation modelling.
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Table 10.3 Pipelines comparison

Initialisation Dense
correspondence

Alignment Modelling

LSFM Automatic facial
landmarks

NICP with error
pruning

GPA PCA

OF Manual
landmarks needed

GPMM
registration

GPA GP

LYHM Automatic facial
landmarks

CPD (CPD-LB
variant)

GPA PCA

10.9.2 Basel Open Framework

The Basel Open Framework (OF) [73] requires manual landmarks for the initial-
isation of registration. They employed GPMM registration to establish dense cor-
respondence, where the model is obtained by modelling the possible deformation
of a reference mesh, using a Gaussian process. This initial GPMM models not the
actual shape variation but the possible deformation defined by a combination of
handcrafted Gaussian kernels. The registration process is both multi-scale as well as
the face being divided into five regions, each associated with their own smoothness
parameters. The deformation of ears is the most regularised and the nose and eye
regions are the least regularised. There usually exists much noise in the ear region of
3D mesh, and more regularisation makes the ear deformation more robust to noise
or missing data in a scan. In order to capture the detail of local region, less reg-
ularisation enables more flexible deformation. Subsequently, the registered data is
subjected to GPA to remove similarity effects. The shape variation is modelled by
Gaussian process using the leading components of its Karhunen–Loève expansion.

A comparison of the three 3DMMconstruction pipelines can be seen inTable10.3.

10.10 3D Face Models

Existing 3D statistical face models mainly consist of either morphable models, mul-
tilinear models or part-based models, as shown in Table10.4. As discussed earlier, in
the late 1990s, Blanz andVetter built a 3DMMfrom3D face scans [17] and employed
it in 2D face recognition [18]. Despite significant passage of time since that publica-
tion, there are very few publicly available morphable models of the human face and
even fewer that include the full cranium (such models are presented in the following
section).

The Basel Face Model (BFM) 2009 is the most well-known and widely-used
morphable facemodel, andwas developed byPaysan et al. [115]. Like in their seminal
paper, again 200 scans were used, but the method of determining corresponding
points was improved. Instead of optical flow, a set of hand-labelled feature points is
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Table 10.4 An overview of 3D face modelling techniques

Basis functions Method

Global Morphable model (PCA) [6, 17, 88]

Global Multilinear model [22, 27, 142, 148]

Part-based Part-based model [13, 57, 82]

Localised detail Hierarchical pyramids [74]

Local Local wavelet model [32]

marked on each of the 200 training scans. The corresponding points on a template
mesh are known, which is thenmorphed onto the training scan using the optimal-step
Non-Rigid ICP algorithm of Amberg et al. [7].

The BFM 2009 [115] was released as both a global model and a part-based
model that is learned for four regions (eyes, nose, mouth and the rest of face). In
the part-based version, the regions are fitted to the data independently and merged
in a post-processing step. The part-based model was shown to lead to a higher data
accuracy than the global model. This method and its follow-up work [13, 82] are
implemented by:

• Manual face segmentation into several local regions;
• Morphable model construction for each segmented part;
• A post-processing step to stitch the segmented parts.

De Smet et al. [57] proposed a method to find the optimal segmentation automati-
cally by clustering the vertices, which is based on features derived from their dis-
placements. In order to address the potential discontinuities at the boundaries of the
segments, they smoothly weight the segments to obtain regionalised basis functions
for the training data.

A statistical model called the multilinear model is a higher order generalisation
of PCA [22, 142, 148, 149] and is employed to statistically model varying facial
expressions. By using a multilinear model, Vlasic et al. [142] modelled facial shape
using a combination of identity and expression variation. Yang et al. [149] modelled
the expression of a face in a different input image of the same subject and built a
PCA shape space for each expression. Follow-up works [22, 148] used multilinear
models for a better description of expressions in videos. When a sequence of 3D
meshes is given, Bolkart et al. [22] fitted a multilinear model to parametrise a 4D
sequence. In 2015, they demonstrated a direct construction ofmultilinearmodel from
a set of Bosphorus and BU-3DFE raw meshes using a global optimisation of 3DMM
parameters along with a groupwise registration over the 3D scans [23]. Models and
code are provided online [21].

Another alternative to modelling faces with expression is to blend different shape
models with expressions, which was introduced by Salazar et al. [123] to establish
correspondence among faces with expression.

A hierarchical pyramidsmethodwas introduced byGolovinskiy et al. [74] to build
a localised model. In order to model the geometric details in a high-resolution face
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mesh, this statistical model is able to describe the varying geometric facial detail.
Brunton et al. [31, 32] described 3D facial shape variation at multiple scales using
wavelet basis. The wavelet basis provided a way to combine small signals in local
facial regions which are difficult for PCA to capture. The group makes several of
their models, built using the BU-3DFE face database [151], available online [20].

In 2016, Huber et al. [88] published a multi-resolution 3DMM of the face, built
from 169 subjects, called the Surrey Face Model, publicly available for research use,
and with landmark annotation and metadata for texture remapping. They published
and since further developed eos [87], an open-source 3D morphable face model
library for Python and C++, available on GitHub. It supports various 3D morphable
face models and includes pose estimation, and fast landmarks and edge-based fitting
functionality.

In 2017, Booth et al. [26, 27] built a Large-Scale Facial Model (LSFM), using the
NICP template morphing approach, as was used in the BFM, but with error pruning,
followed by Generalised Procrustes Analysis (GPA) for alignment, and PCA for the
model construction. This 3DMM employs the largest 3D face dataset to date and is
constructed from 9663 distinct facial identities.

Lüthi et al. [106] model the shape variations with a Gaussian process, which they
represent using the leading components of its Karhunen–Loève expansion. These
Gaussian Process Morphable Models (GPMMs) unify a variety of non-rigid defor-
mationmodels,withB-splines andPCAmodels as examples. In their follow-onwork,
they present a novel pipeline for morphable face model construction based on Gaus-
sian processes [73]. GPMMs separate problem-specific requirements from the regis-
tration algorithm by incorporating domain-specific adaptions as a prior model. The
resulting model, the Basel FaceModel 2017, has been made available to researchers.

Tran et al. [137] proposed a framework to construct a non-linear 3DMM model
from a large set of unconstrained face images, without collecting 3D face scans.
Specifically, given a face image as input, a network encoder estimates the projection,
shape and texture parameters. Two decoders serve as the non-linear 3DMM to map
from the shape and texture parameters to the 3D shape and texture, respectively.

To conclude, we note that, over the last 20 years, research in 3DMM construction
has mainly been focused on two main techniques: (1) dense correspondence estab-
lishment and (2) statistical modelling methods. Most of the methods need landmarks
or other annotations in either the initialisation or the correction of correspondence
establishment and are often not fully automatic processes. For statistical modelling,
the most popular models overwhelmingly use PCA or GPs, which cannot model
high-frequency details very well. Only very recently, researchers have started to
more actively propose alternative ways to learn and represent face shape and texture
(see Sect. 10.15), which preserve more fine-scale detail. Additionally, most mod-
els consist of only the face area, sometimes including the ear and neck regions of
the head. In practice, when using models that contain ears, the ear region is often
excluded in the fitting process as fitting ears has proven a difficult task. The next
section (Sect. 10.11) introduces the most recent full head 3DMMs, while Sect. 10.12
provides an overview of 3D ear models.
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10.11 3D Head Models

In 2017, Dai et al. [51, 52] published the Liverpool-York Head Model (LYHM), a
public 3DMM of the full human head in both shape and texture. One of the authors’
aims was to model human face and cranium variation in order to support clinical
planning and surgical intervention evaluation tools for craniofacial surgeons. The
authors used a 3dMDhead scanning system to capture 3D images of the human face
and cranium, and 1212 scans have been used to build the global LYHM. They also
built several demographic-specific models from subsets of the data related to age and
gender.

Li et al. [103], also in 2017, proposed the FLAME model, which uses a linear
shape space trained from 3800 scans of human heads. FLAME combines this linear
shape space with an articulated jaw, neck and eyeballs, pose-dependent corrective
blendshapes and additional global expression blendshapes. The pose and expression
dependent articulations are learned from 4D face sequences. In total, the model is
trained from over 33,000 scans. FLAME is low-dimensional, but the authors show it
to be more expressive than existing PCA-based models. The authors make the model
available for research purposes.

In 2019, Gerig et al. released an updated version of the BFM, the Basel Face
Model 2019, as part of the Open Framework [73] resources. It covers the full head,
with the back of the head being based on little data and heuristics, and is available
in three different resolution levels.

In the same year, Ploumpis et al. [119] presented a technique to merge statistical
models of the face and the full head and applied this to the LSFM face model and
the LYHM head model, respectively, in order to combine the best properties of both
models, namely, full coverage of the cranium with data-derived statistical variation,
plus fine detail in the facial area. This work developed into what is now known as
the Universal Head Model (UHM), shown in Fig. 10.1. This model has independent
statistical representation of the ears, eyes with position, gaze direction and pupil
dilation parameters, as well as a basic inner-mouth surface that includes tongue
and teeth, although these inner-mouth parts do not capture independent statistical
variation derived from 3D image data.

10.12 3D Ear Models

The shape of the ear has long been recognised as a means of biometric identification
[1, 117]. There are many existing ear recognition systems, with a recent survey by
Emersic et al. [63] and ear biometrics continues to be an active research area [62].
Morphable models provide powerful statistical priors on shape and so can be used
in biometric ear analysis.

Zolfaghari et al. [161] describe a construction of a morphable model for external
ear shapes based on a deformation framework using diffeomorphic metric mapping.
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Fig. 10.10 55 landmarks on ears and their semantic annotations, as proposed by Zhou et al. [156]

To our knowledge, the morphable model is not publicly available. However, they
released high-quality 3D meshes of the ear for 10 subjects [161]. This is insufficient
to construct a high-quality 3D morphable model that is a good representation of
the mean ear shape and the variance and covariances of size and shape, of a large
population.

Recently, Zhou et al. [156] made a 2D ear image dataset available with 55 ground-
truth landmarks over 600 images, partitioned into 500 training images and 100 test
images. Figure10.10 shows the 55 landmarks and their semantic annotations. It is
possible to leverage this large annotated 2D ear dataset [156] to generate a large
3D ear dataset with a data augmentation process. Such a process was followed by
Dai et al. [48] to create the first publicly available 3DMM of the human ear, the
York Ear Model, illustrated in Fig. 10.11. The augmented 3D ear dataset was also
released with this model, thus allowing researchers to construct 3DMMs using their
own 3DMMconstruction pipelines, the performance of themodels constructed could
then be compared with the original model of Dai et al. [48].

10.13 3D Facial Symmetry and Asymmetry

Recent work in 3DMMs of the human head has employed symmetric morphing and
explicit modelling of symmetric and asymmetric shape variation. Most biological
objects, including human heads and bodies, possess approximate symmetries. Often
this is principally extrinsic, bilateral symmetry (i.e. reflective symmetry about a ver-
tical plane bisecting the object). Deviations from exact symmetry are an interesting
and potentially important geometric property in terms of modelling and understand-
ing 3D shape variation. The degree of asymmetry may convey information about
an object. For example, there is evidence that facial asymmetry is used by humans
to measure genetic health [90] and asymmetry in man-made objects may indicate
imperfections in the manufacturing process. For such reasons, statistical shape mod-
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Fig. 10.11 The publicly available 3DMM of the human ear from Dai et al. [48], showing the mean
ear on the left and the first five principal components of shape variation

els may separate symmetric from asymmetric shape variability in order to reveal
interesting and potentially subtle aspects of shape variation over population datasets.

There is a large body ofwork on detecting symmetries in images [114], 2D shapes,
3Dmeshes and point clouds. These symmetries could be exact or approximate [109],
extrinsic [120] or intrinsic [113], partial [114, 127], hierarchical or full [113]. Once
detected, this enables symmetry-aware mesh processing [75] to take place in which
symmetries help regularise and denoise a range of processing tasks.

The geometric morphometrics community [94, 96, 98, 107] has built models of
deviations from symmetry, though this has largely been in 2D. Savriama et al. [125]
present a decomposition of asymmetric shape into a symmetric shape and asymmetry
variation. There aremanyworks onhow tomeasure facial asymmetry variation. There
is much literature from both the Computer Vision perspective [38, 104, 108, 160]
and the Biology perspective [41, 84, 96].

The ICP-based approach to computing the symmetry plane of bilateral objects
in point sets [56, 147, 154] employed a rigid-body transformation-based approach
to estimate the symmetry plane. The major advantage of this approach is to benefit
from the ICP algorithm relying on a known closed-form solutions for the absolute
orientation problem [8, 66].

Recent work by Dai et al. [50] has presented a method to constrain CPD-based
template morphing such that all deformations are symmetric. This has been shown
to be a useful form of shape deformation regularisation, giving high-quality corre-
spondences. Further work by the same group has decomposed the modelled shape
variations of a 3DMM into large symmetric variations and small asymmetric vari-
ations [53]. This can be employed to reveal interesting and subtle aspects of shape
variation over population datasets. Figure10.12 shows the first five principal compo-
nents of symmetric head shape variation for 1212 subjects in the Headspace dataset.
Note that ±5 standard deviations are employed to emphasise the shape variation.
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Fig. 10.12 Visualisation of five principal components (mean ±5 SDs) of symmetry variation

10.14 3DMM Evaluation Criteria

For quantitative evaluation of 3DMMconstruction pipelines, three performancemet-
rics are commonly used: compactness, generalisation and specificity (see e.g. [131]).
The following subsections give a brief introduction to each of them.

10.14.1 Compactness

The compactness of the statistical shape model describes the number of parameters
required to express some fraction of the variance in the training set used to construct
that model. Amore compact model uses fewer parameters to express a given fraction
of variance or expresses a bigger fraction of variance for a given number of shape
parameters. So compactness measures the efficiency of a model to capture the shape
variability. Compactness can be defined as

C(m) =
∑m

i=1 αi∑N
i=1 αi

, (10.13)

where αi is the i-th eigenvalue, m is the number of shape parameters and N is the
total number of shape parameters in the model.
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10.14.2 Generalisation

Generalisation measures the capability of the model to represent unseen examples
of the class of objects. It can be measured using the leave-one-out strategy, where
one example is omitted from the training set and used for reconstruction testing.
The accuracy of describing the unseen example is calculated by the mean vertex to
vertex Euclidean distance error. With an increasing number of model parameters,
the generalisation error is expected to decrease. For the same number of model
coefficients, the lower mean Euclidean distance error, the better the model.

10.14.3 Specificity

Specificity measures the ability to generate shape instances of the class that are
similar to those in the training set. In order to assess specificity, a set of shape
instances should be randomly sampled from the shape space. Then the Euclidean
distance error to the closest training shape is calculated for each shape instance and
the average is taken for all the shape instances. The mean Euclidean distance error is
expected to increase with increasing number of parameters, as the increasing number
of PCA coefficients gives more flexibility to shape reconstruction. It also increases
the likelihood of the reconstructed shape instances being away from the real data. For
specificity measurement, the lower Euclidean distance error, the closer the model is
to the training data, so the specificity is better.

10.14.4 A Comparison of 3DMM Construction Pipelines

Recently Dai et al. [49] employed a variety of 3DMM construction pipelines to build
a 3DMM of the human head using the 1212 subjects from the Headspace dataset.
These include their own method [49], which employs an adaptive template and
CPD-based morphing, the NICP-based morphing method of the Large-Scale Face
Model [26] and the Open Framework pipeline [73]. Compactness results are shown
in Fig. 10.13 for the three pipelines, and generalisation and specificity results are
shown in Fig. 10.14. Each of these is a function of the number of model parameters
employed.

As can be seen from Fig. 10.13a, when less than 33 components are used, the
LSFM pipeline model is more compact than the Adaptive Template (AT) method
and the Open Framework (OF). Between the 33 and 79 components, the model con-
structed by OF is more compact than the other two. When more than 79 components
used, the AT method has better compactness than LSFM [27] and OF [73]. With the
first 56 and the first 146 components used, the 3DMM constructed by the ATmethod
retains 95 and 98% of the shape variation in the training set.
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(56,0.950)
(146,0.980)

(79,0.966)

(33,0.926)

Fig. 10.13 Compactness in terms of number of model components. Higher is better. ‘Proposed’ is
the Adaptive Template method of Dai et al. [49]

(48,1.364)

Fig. 10.14 Generalisation (left) versus number of model components, lower is better; Specificity
(right), lower is better. ‘Proposed’ is the Adaptive Template method of Dai et al. [49]

The generalisation of the model demonstrates the ability in generating unseen
examples. With fewer than 48 model parameters, LSFM is better than the ATmethod
in terms of generalisation error. With more than 48 components, the AT method has
the lowest generalisation error, which in this case implies that AT method has the
best performance in describing unseen examples.

In [49], Dai et al. discuss how to select the number of model parameters employed
in a 3DMM and this can be informed by plots of compactness, generalisation and
specificity as a function of number of model parameters. Generally, these are soft
curves, where the number selected is an application-dependent trade-off of perfor-
mance metrics. Figure10.15 clearly indicates that there are diminishing gains to be
made, as the number of components increases, as the performance metric curves flat-
ten, and a reasonable order-of-magnitude selection for the number of components
may be 100.
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3.397
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3.561 3.587 3.603 3.613 3.621 3.627 3.633

Fig. 10.15 Critical analysis of the model built from the Adaptive Template method, in terms of the
number of model components

10.15 3DMM Construction Using Deep Learning

In applications that process, analyse and model 2D images, Convolutional Neural
Networks (CNNs) have been immensely successful over the last decade. This is
attributed to many desirable properties such as multi-scale, non-linear, hierarchical
representation learning and translation invariance due to pooling. However, progress
on their application to 3D meshes has been relatively limited. This is due to the non-
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Euclidean nature of geometry and the different sample patterns andmesh connectivity
(triangulation) describing the raw dataset (cf. 2D images with their simple grid-based
structure). Any deep learning approach that employs 3D meshes directly (rather
than grid-based depth maps) needs to address this problem. Note also that deep
learning is employed to overcome the limitations of classical linear models, such
as PCA, which cannot capture the non-linear deformations associated with facial
expressions, particularly when these are extreme. Encoding using deep networks can
provide better modelling solutions to such non-linear spaces.

In Sect. 10.8.3, we introduced CoMA (Ranjan et al. [121]), a Convolutional Mesh
Autoencoder to model faces, where the input face is a 3D mesh. Here, they perform
spectral decomposition of face meshes and apply convolutions in frequency space.
A key problem in applying an autoencoder modelling structure to meshes is how
to downsample and upsample meshes which, by comparison, is straightforward in
grid-based data structures, such as 2D images. The authors use surface simplification
using quadric error metrics for the downsampling, they transform the mesh using
spectral convolution operations and upsample it by adding vertices back in at their
barycentric positions. The performance of the model is compared to PCA in terms
of reconstruction error for facial expressions, with a claimed 50% improvement of
performance, whilst using 75% fewer model parameters.

In contrast to CoMA, which is learned from 3D data, Tran and Liu [137] devel-
oped a non-linear facial 3DMM that is learned from a set of 2D ‘in-the-wild’ facial
images,without the need for 3D scans. The architecture employs an encoder to extract
shape, texture and camera parameters, two decoders generate shape and texture, and
a differentiable renderer fuses all of the models to generate a synthetic image. The
renderer is differentiable and so an end-to-end training scheme can simultaneously
learn the set of parameters for the encoder and two decoders by minimising a loss
function based on the difference between real input and synthetic output images. In
their follow-up works [136, 138], they improved the fidelity of the learned model by
using, among other things, proxy loss functions, to reduce the influence of regulari-
sation that is needed to make the task learnable. In comparison with a PCA model,
they note that a standard linear shape (or texture) model can be viewed as a shallow
network with only one fully connected layer and no activation function. Here the
layer bias is the mean of the linear shape (or texture) model.

Recently, Generative Adversarial Networks (GANs, Goodfellow et al. [78]) have
been explored in the context of face modelling. GANs employ a dual network struc-
ture, a generator network and a discriminator network, in a zero-sum game. They
are very popular in modelling data distributions and hence are being used in 3DMM
related applications. The MeshGAN system [40] is a Generative Adversarial Net-
work that operates directly on 3D meshes to generate 3D faces and build non-linear
3DMMs of faces. Here Deep Generative Graph Convolutional Networks (DGCNs)
are trained using spectral mesh convolutions that individually model identity and
expression. Identity is trained on around 12000 subjects, using the same MeIn3D
(3dMD acquisition) dataset as the LSFM, while expression is trained using around
14000 expression from the 4DFAB dataset. The authors demonstrate that the GAN-
based architecture is able to generate higher frequency and hence more subtle details
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than autoencoders and can model the distribution of faces better. In [72], Gecer et
al. propose GANFIT, which utilises a GAN to learn a 3DMM texture model from
in-the-wild images and can reconstruct high-quality texture and geometry from a
single image.

10.16 Applications of 3DMMs

Here we demonstrate the utility and power of 3DMMs by describing some of their
applications.

10.16.1 Fitting a 3D Model to 2D Images

One of the most popular methods of fitting a 3Dmodel to a 2D image is the analysis-
by-synthesis approach, which we described in Sect. 10.1.2. 3DMMs are in particular
useful for the task of reconstructing 3D from a single, monocular 2D input image, as
that problem is ill-constrained. Prior information, in the form of a statistical model
that contains knowledge about faces and their variability, makes that problem more
feasible to solve.

The overall approach is to find themodel parameters that, alongwith pose, imaging
and lighting parameters, generate a synthetic image as similar as possible to the input,
and this in an iterative optimisation. To be successful, good initialisations are required
as the algorithm may get stuck in a local minimum. In practice it is much easier to
achieve a successful result if landmarks are extracted from the 2D image andmatched
to corresponding landmarks on the 3D model, thus enabling a good estimate of the
camera projection matrix.

Knothe [97], in their Ph.D. thesis, describe a complete model building and fitting
pipeline in much detail, making it an ideal work for readers wanting to become
more familiar with classical non-linear fitting methods, to reconstruct 3D face model
parameters from 2D images. Additionally, they present a global-to-local approach
to overcome some of the limitations of PCA being a holistic method. Their fitting
method extends the seminal work of Romdhani et al. [122] who proposed a Multi-
Features Fitting algorithm, advocating to use various image features such as edges,
insteadof only pixel intensities, to obtain a smoother overall cost function and to avoid
local minima. Aldrian and Smith [3] equally published a seminal work, proposing
to decompose the geometric and photometric part of the model fitting to state the
problem as a multilinear system which can be solved accurately and efficiently.

Garrido et al. [70], whose work is briefly highlighted in Sect. 10.1.2, highlight
shortcomings of PCA-based modelling, and propose a 3-stage fitting consisting of a
coarse, medium and fine-scale process, with themodelling process being constrained
to the PCA face space only in the first stage.
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More recently, researchers have started to use deep learning and CNNs to replace
traditional non-linear optimisation algorithms in 3DMM fitting. Among the most
well-known, Terawi et al. [134] developed the MoFA system, a model-based deep
convolutional face autoencoder for unsupervised monocular reconstruction. This
approach blends together the powerful analysis capabilities of deep CNNs, with the
same kind of model-based image synthesis approach that was used in Blanz and
Vetter’s facial analysis-by-synthesis [17]. The authors term this ‘an expert-designed
generative model that serves as a decoder’. Here both face intrinsics are modelled,
which includes 3D shape, reflectance and expression, and imaging extrinsics, which
includes 6DoF pose and illumination. Thewhole pipeline is end-to-end differentiable
with the extrinsic/intrinsic model parameters being explicit and with clear semantic
meaning. Thus the CNN-based autoencoder is trained to extract model parameters
that can be clearly interpreted, by design, in terms of their role in image synthesis.

The MoFA approach is very similar, at least in the image synthesis stage, to the
generative part of early analysis-by-synthesis approaches [17]. The problem with
both these approaches is that their optimisations are highly non-convex and can
easily get stuck in local minima. This is mitigated by the use of landmark-based
alignment. However, extracting the model parameters via a deep CNN encoding
gives much faster inference, once the network is trained, because the parameters
are directly inferred from the network rather than being iteratively optimised. Note
that the MoFA 3D shape models are essentially the same linear models employed in
PCA-based schemes.

10.16.2 Shape Reconstruction with Missing Data

The task of reconstruction of an unseen example with missing parts can validate the
correspondence quality, model fitting and generalisation ability of a 3DMM [2]. In
the first row of Fig. 10.16, Dai et al. [51] fix the shape of the cranium and reconstruct
the full head from that shape, while permitting the shape of the face to vary. Here, they
found that most variation occurs over the chin region. The second row of Fig. 10.16
is the reconstruction from the face only, and they note that the principal variation in
reconstructed cranium is from high/short to low/long. This offers a way to augment
existing face models with a cranium. Reconstruction from one side of the sagittal
symmetry plane demonstrates asymmetrical variation of the head.

10.16.3 Age Regression

Model regression can validate the model’s generalisation ability on some property
(e.g. age, gender). Dai et al. [51] use a linear regression between the shape and texture
parameters against age. After this learning process, shape parameters can be revisited
when given the age value. Then the shape for the specific age can be reconstructed by
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Fig. 10.16 The flexibility of reconstruction from incomplete data, using the method of Dai et
al. [51]: (a) example; (b) crop (incomplete data); (c)–(g) are the flexibility modes, and (e) is the
mean reconstruction

5                  10                 15                   20                    30                  40                   50                  60                  70                  80

Fig. 10.17 Age regression from 5 years to 80 years, learned on the LYHM-male submodel

adding the shape variation to the mean shape. Figure10.17 demonstrates a sequence
of 3D images generated from age regression of the LYHM-male submodel (a model
learned only on male scans of the Headspace dataset), ranging from 5 to 80 years.
Note that the cranium develops before the face in children, and the shape of the
cranium is not changing in adults.

10.17 Research Challenges

There are many open research challenges in the training and fitting of 3DMMs. First,
there are many more 2D image datasets than 3D image datasets, and 2D datasets are
usually significantly larger. This is due to 2D images being more easily captured,
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allowing much cheaper and more convenient cameras. If we can better exploit 2D
images for 3DMM construction, as is starting to happen with the GAN networks
already mentioned, then 3DMMs can exploit the large 2D datasets and online in-the-
wild images, currently unexploited for this purpose.

One issue with network-based approaches, however, is that the modelled parame-
ters are not always easily interpretable. Interpretable parameters generally allow for
models to be deployed in a broader range of applications and so bridging the gap
between uninterpretable network encodings and interpretable parametric models is
an important goal.

Traditional 3DMM training approaches, such as PCA, capture low-frequency
detail. Although this is now being addressed, more work needs to be done in cap-
turing more subtle high-frequency details and, for the human head, this may include
wrinkles, pores and hair. Can these be modelled in forms that are compact and infor-
mative for a range of applications?

Training 3DMMs from partial data is another important challenge, in order to
exploit both 2D and 3D data that is occluded or self-occluded. This may lead to
new parts-based methods. Here various component-based models may be integrated
into a single model structure, using frameworks that can determine the correlations
between the different parts.

Ultimately, we hope for very general, but interpretable models that can answer a
broad range of queries in many different contexts, thus allowing the models to be
deployed in a very broad range of applications.

10.18 Concluding Remarks

The last 20 years of research in 3DMM construction has mainly focused on two
main techniques: (1) dense correspondence establishment and (2) statistical mod-
elling methods. For dense correspondence establishment, one established method
is template morphing, which aims to find the best combination of global and local
transformation. This is formulated as the optimisation of a cost function that forces
the template to morph towards the shape of the target mesh. The cost function can
be defined as distance error or functional energy between morphed template and
target mesh. The most recent progress has been in correspondence matching by deep
learning.

In terms of statistical modelling methods, the standard method is PCA, which
finds the directions in the vector space that have maximum variance, whilst being
mutually orthogonal.Multilinearmodels usemultiple PCAmodels to separate factors
like identity and expressions. A Gaussian process can model shape variation by
just defining different Gaussian kernels. With all these methods, high-frequency
signals are lost in the statistical modelling. Recently, there is a trend in statistical
modelling to use autoencoders. The input meshes either need re-meshing before the
learning process when processing 3D meshes directly, or need to be transferred into
a functional space, e.g. UV map representation. At the end of the decoder, there is
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a back-transformation required from the functional space to 3D spatial coordinates.
The most recent work in 3DMMs has employed GANs both to reconstruct shape and
texture from single 2D images and to improve statistical modelling of the underlying
distributions.

After working through this chapter, you should be able to

• Explain what a 3DMM is, and why it is useful.
• Appreciate the various pipelines, and processes within pipelines, that are required
to construct 3DMMs from large datasets that contain 3D images of some object
class.

• Understand howdeep learning is being used to build non-linearmorphablemodels.
• Understand how to evaluate 3DMMs in terms of a set of performance metrics.
• Employ 3DMMs as a useful prior on shape in Computer Vision and Machine
Learning applications.

10.19 Further Reading

A very recent survey work is that of Egger et al. [61], who take stock of the last 20
years of 3Dmorphable model history, since their inception. They provide a thorough
review of the state-of-the-art literature and current challenges. To our knowledge,
there is currently only little other work that surveys the 3DMM literature. Ferrari et
al. [68] presented an introductory tutorial on Statistical 3D Face Reconstruction with
3DMorphableModels at the 2018 3DVisionConference, with a particular focus on a
dictionary-learning based approach for model building and fitting. Brunton et al. [33]
present a review of statistical shape spaces for 3D data. In addition to the global
PCA approach presented in this chapter, they cover wavelet PCA, where wavelet
transforms project sampled data onto basis functions that are localised in space and
frequency before PCA is applied. The Graphics and Vision Research Group of the
University of Basel provide an online course on Statistical ShapeModelling [80] that
is based on thework of Lüthi et al. [106], whomodel shape variationswith aGaussian
process, which results in a more general framework than PCA for modelling shape
deformations. In terms ofmodelling texture (appearance), this chapter has considered
3D shape and texture as independent models. The Copula Eigenfaces work of Egger
et al. [60] enables a combined analysis of facial appearance and shape data.

In terms of applications of 3D morphable face models to 2D images, Zollhöfer et
al. [162] provide a recent and comprehensive overview and comparison of state-of-
the-art methods for monocular 3D face reconstruction, where 3D morphable models
are often an essential part.
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10.20 Questions

1. Explain the difference between a raw 3D image and a version of that same 3D
image generated by a 3DMM. Discuss both the underlying representations and
visual appearance of the two entities.

2. Why are landmarks points often needed in 3DMM construction pipelines that use
template morphing?

3. Explain how correspondence within a whole set of items is achieved by morphing
a template N times to the N items (e.g. 3D face scans) in a dataset. Discuss the
validity of the notion of groupwise correspondence using this mechanism.

4. If Euclidean rigid alignment is built into the morphing process, when morphing a
template to a dataset, why is a Generalised Procrustes Analysis step applied after
morphing, which is also an alignment process?

5. Explain how PCA is used to provide a mechanism to construct a 3DMM. What
are PCA’s limitations in this respect? Suggest an alternative approach to model
construction that does not have this limitation.

6. Why is weighted PCA sometimes used in place of PCA for 3DMM construction?
7. Researchers are now increasingly using deep learning to build 3DMMs. Discuss

the benefits you think that deep learning techniques bring to the 3DMM construc-
tion pipelines.

10.21 Exercises

1. To get started with 3DMMs without access to a 3D dataset, we suggest building
a synthetic dataset of triangles in the plane, with random positions, shapes, sizes
and rotations. Given the dataset is synthetic, the point correspondences are known.
Use GPA and PCA to build a statistical model. Then use the model to generate
an animation of the principal modes of shape variation.

2. Download the Basel Face Model (BFM) 2009 [115] and generate animations of
the principal modes of both shape and texture variation.

3. Download a publicly available 3D face dataset. Use the mean BFM shape as a
template and morph this to an example in the dataset. This requires selecting a
shape morphing algorithm such as non-rigid ICP [7] or CPD [111], both of which
take some time to tune for some given dataset. After completing the morph, fit
the BFM model and observe the result compared to the raw data. Try this several
times using varying numbers of principal components in the model and comment
on your observations.

4. Implement a full pipeline that morphs the BFM 3D face template onto each
example in your 3D face dataset and build a 3DMM using GPA and PCA applied
to the warped templates. Again, animate the principal modes of shape variation.
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Chapter 11
Deep Learning on 3D Data

Charles Ruizhongtai Qi

Abstract Emerging 3D related applications such as autonomous vehicles, AI-
assisted design, and augmented reality have highlighted the demands for more robust
and powerful 3D analyzing algorithms. Inspired by the success of deep learning on
understanding images, audio, and texts, and backed by growing amounts of avail-
able 3D data and annotated 3D datasets, a new field that studies deep learning on
3D data has arisen recently. However, unlike images or audio that have a dominant
representation as arrays, 3D has many popular representations. Among them, the two
most common representations are point clouds (from raw sensor input) and meshes
(widely used in shape modeling) that are both not defined on a regular grid. Due to
their irregular format, current convolutional deep neural networks cannot be directly
used. To analyze those 3D data, two major branches of methods exist. One family of
methods first converts such irregular data to regular structures such as 3D volumetric
grids (through quantization) or multi-view images (through rendering or projection)
and then applies existing convolutional architectures on them. On the other hand,
a new family of methods study how to design deep neural networks that directly
consume irregular data such as point clouds (sets) and meshes (graphs). Those archi-
tectures are designed to respect the special properties of the input 3D representations
such as the permutation invariance of the points in a set, or the intrinsic surface struc-
ture in a mesh. In this chapter we present representative deep learning models from
both of those families, to analyze 3D data in representations of regular structures
(multi-view images and volumetric grids) and irregular structures (point clouds and
meshes). While we mainly focus on introducing the backbone networks that are gen-
eral for deep 3D representation learning, we also show their successful applications
ranging from semantic object classification, object part segmentation, scene parsing,
to finding shape correspondences. At the end of the chapter we providemore pointers
for further reading and discuss future directions.
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11.1 Introduction

Deep learning is part of a broader family ofmachine learningmethods,whilemachine
learning itself belongs to the even broader field of artificial intelligence. Compared
to designing handcrafted features, deep learning allows computational models with
multiple processing layers to learn representations of data with multiple levels of
abstraction [54]. Artificial neural networks are the most popular realizations of deep
learning models. In recent years, the growing computing power provided by GPUs
(graphics processing units) and the availability of large-scale training datasets have
fueled the fast development of deep learning models and algorithms. This has led
to breakthroughs in many areas of computer science, from speech recognition [2,
66, 101] to image understanding [37, 52, 79, 88], to machine translation [108].
Methods based on deep learning have even achieved super-human performance on
manyproblems thatwere previously considered very hard formachines.One example
is a computer Go program called AlphaGo [87] that beat multiple top human players,
where deep learning plays a key role in its system. Nowadays, deep learning models
have already been widely used in daily products, such as Siri and Face ID on iPhones,
Google Image Search and Google Translate, and the Autopilot system in Tesla cars
for semi-autonomous driving.

While deep learning has great success in processing data such as image, videos,
audio, and texts, only until very recently researchers started to explore how to learn
deep representations from 3D data such as point clouds and meshes, leading to a
rising field named 3D deep learning. The task space of 3D deep learning is vast
but can be roughly divided into three categories: 3D analysis, 3D synthesis, and
3D assisted image understanding [91]. In 3D geometry analysis, some typical tasks
include semantic classificationof objects [65, 76, 92, 110] (given a3Dobject, classify
it into one of a few predefined categories such as chairs and tables), semantic parsing
of objects or scenes [3, 19, 77] (segmenting an object or a scene into different
semantic regions such as chair leg, chair back for a chair object, or floor, wall,
table for a scan of an indoor room), and finding correspondences among different
shapes [9] (such as human bodies). In 3D synthesis, a deep learning model generates
3D data either from conditioned input or an embedding vector. For example, one
interesting problem is shape completion from partial scans, where given a partial
scan we want to use a deep learning model to complete the scan based on its learned
object shape priors [20]. Another example is automated shape modeling, where a
model generates a mesh or parametric model of an object from unstructured input
such as images and point clouds [100]. The third large category of tasks, 3D assisted
image understanding, does not directly consume 3D data but uses 3D as a faithful
surrogate to assist image understanding tasks [56, 86] that is hard to achieve without
3D data. For example, for the problem of intrinsic decomposition, we can generate
synthetic data from existing 3D models to train our network.

Among those tasks this chapter focuses on 3D analysis tasks. Furthermore, wewill
focus on the “backbone” network architectures instead of discussing specific prob-
lems. These backbone architectures are the keys to deep 3D representation learning
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Fig. 11.1 3D representations. Among them, point clouds and meshes are in an irregular structure
while depth maps (or projected views) and volumetric grids are in a regular structure that can be
directly consumed by convolutional neural networks. Figure is from [74]

and are, therefore, the foundation for any applications built on top of 3D data. We
will see that even just discussing about backbone architectures, we have a large space
to explore and many challenges to solve.

One of the major challenges to develop deep learning models for 3D data is its
representation issue. Unlike images that have a dominant representation as 2D pixel
arrays, 3D has many popular representations, as shown in Fig. 11.1. In choosing or
designing a deep learning model we need to first determine which 3D representation
to use. The diversity of representations exists for a reason though: just as compu-
tational algorithms depend on data structures (lists, trees, graphs, etc.), different
applications of 3D data have their own preferences for 3D representations. Among
them, a point cloud is a set of points in space sampled from object surfaces, usually
collected by 3D sensors such as LiDARs (Light Detection and Ranging) or depth
cameras. A polygon mesh is a collection of triangles or quads and is heavily used in
computer graphics because it is friendly to 3D modeling and rendering algorithms.
Volumetric representation quantifies the space into small voxels (3D cubes) and is
common in simulation and reconstruction (such as in medical imaging), because it
is easier to aggregate signals in regular grids than other formats. Last but not least,
we also represent 3D as multiple projected views, often used for visualization, as
humans are more used to perceiving 2D than 3D. There are also more parametric
representations such as those defined with cylinders, cubes, and NURBS, which are
convenient to deform and simple to encode.

Among the above mentioned 3D representations the two most common ones are
point clouds (from sensor data) and meshes (from geometric modeling). However,
neither of them are defined on regular grids. Due to their irregularity, deep con-
volutional neural networks cannot be directly applied here. To analyze them, two
branches of methods exist. One is to first convert such irregular data to a regular
grid structure, such as volumetric grids (through voxelization) or images (through
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rendering or projection) and then apply convolutional networks. The other approach
is more end-to-end learning, where point clouds or meshes are directly inputted to
the networks without any conversion. This however, requires new types of deep neu-
ral networks that respect the characteristics of the input 3D representations, such as
the permutation invariance of points in a point set, or the intrinsic surface structure
of a mesh. In this chapter, we present a few relatively mature and representative
deep architectures for both regular and irregular 3D data. Particularly, in Sect. 11.3
we show deep learning models on regularly structured 3D representations (multi-
view images and volumetric grids), with Multi-view CNN [92] and VoxNet [65] as
two example architectures. In Sect. 11.4, we present deep learning models on point
clouds with PointNet [76]. In Sect. 11.5, we briefly introduce deep learning methods
on processing meshes by explaining motivations behind two representative works
SyncSpecCNN [115] and ACNN [9]. Lastly we conclude the chapter, discuss future
research directions in Sect. 11.6 and point readers to more resources for further read-
ing in Sect. 11.7. In the end of the chapter, there are questions and exercises that
provide an opportunity to check the reader’s understanding of this chapter.

After reading this chapter, the readers should understand the challenges of deep
learning on 3D data, be able to describe and implement a deep learning model for
multi-view images, be able to describe and implement volumetric CNNs, be able
to describe and implement deep learning models for processing point clouds, know
about the two common types of deep networks on meshes, and be aware of future
research directions in 3D deep learning.

11.2 Background

Recent advances in deep learning are supported by high-performance comput-
ing hardware (GPU) and new software frameworks (Caffe [46], TensorFlow [1],
PyTorch [71], etc.), but more importantly they are fueled by large-scale datasets
(e.g., ImageNet [23]). Similarly, 3D deep learning rises because 3D data and 3D
datasets become available.

The growth in 3D data is due to two forces. The first driving force is the progress
in 3D sensing technology. As the costs of sensors decrease quickly, we now have
access to very affordable depth cameras such asKinect, Tango, Structure Sensor, Intel
RealSense or even depth cameras in phones (e.g., iPhone X). Extremely accurate
3D sensors such as LiDARs are also more widespread thanks to the needs of the
autonomous vehicle industry. A large number of 3D sensors directly result in much
quicker growth of raw 3D data. The second force is the availability and popularity of
free 3D modeling tools such as Blender and SketchUp, as well as 3D model sharing
platforms such as the Trimble 3D Warehouse, leading to a fast growing number of
3D models that are publicly accessible.

However, while 3D data quickly grows from both sensing and modeling, they
are not yet ready to be used by deep learning algorithms, because most models still
require annotated data for training. Fortunately, we also observe a few recent efforts
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in organizing, cleaning, and annotating 3D data (e.g., ShapeNet [14]). The works in
this chapter are only possible with these public 3D datasets.

In Sect. 11.2.1, we introduce the datasets we used in this chapter and discuss their
characteristics. Then in Sect. 11.2.2, we survey previous work and also discuss recent
advances in the field.

11.2.1 Datasets

Weused various datasets for a variety of 3D analysis problems to test the performance
of the presented deep architectures and algorithms. The datasets involved are diverse,
ranging from single objects to multi-objects in scenes, from synthetic shapes to real
scans.

• ModelNet40 [110]: A 3D dataset of CADmodels from 40 categories (mostly man-
made objects such as chairs, bathtubs, cars, etc.). All models are aligned in upright
poses. In default, 10 of the 40 categories have aligned poses in azimuth angles.
There is also a recent update in the dataset, providing fully aligned models for
all categories. We use the official split with 9,843 shapes for training and 2,468
for testing to evaluate deep models in 3D shape classification, with random shape
rotations in the azimuth direction (along the up-down axis).

• ShapeNetPart [114]: This is a dataset built on top of the ShapeNet [14] dataset (a
large-scale, richly annotated 3D shape repository), containing 16,881 shapes from
16 of the ShapeNet classes, annotated with 50 parts in total. We use the official
train/test split following [14]. We test deep models for object part segmentation
on this dataset, which is a much finer grained task than whole shape classification
in ModelNet40.

• S3DIS [3]: The Stanford 3D Indoor Spaces (S3DIS) dataset contains 3D scans
from Matterport scanners in 6 building areas including 271 rooms. Each point
in the scan is annotated as one of the 13 semantic categories (chair, table, floor,
wall, etc., plus clutter). The dataset also provides annotations for depth and normal
maps, as well as instance segmentations. We use this dataset for the evaluation of
semantic segmentation (semantic scene parsing).

Besides the datasets mentioned above (those used in experiments in this chapter),
there are many more other efforts in building 3D datasets. Examples include the
SHREC15 [58] dataset with nonrigid objects, ScanNet [19] and Matterport3D [13]
of large-scale indoor scans, as well as datasets with LiDAR scans such as KITTI [29]
and Semantic3D [36]. There are also ongoing efforts to build large 3D/RGB-D video
datasets and simulation platforms [85] for 3D understanding and interactions. We
foresee that datasets will keep playing an important role in future 3D deep learning
research.
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11.2.2 Related Work

As3D is prevalent in computer vision, graphics, and robotics, there have been tremen-
dous works on topics of point clouds, 3D data learning, and 3D scene understanding.
In this section, we briefly review previous works related to the topic, and introduce
some concurrent andmore recent efforts since the draft of this chapter.Wefirst review
prior attempts in designing and learning features for point clouds, then discuss 3D
deep learning on point clouds and meshes.

11.2.2.1 3D Descriptors

Most existing features for point clouds and meshes are handcrafted toward specific
tasks. These features or 3D descriptors often encode certain statistical properties of
local points or surfaces and are designed to be invariant to certain transformations,
which are typically classified as intrinsic (WKS [4], HKS [10, 94], etc.) or extrinsic
(PFH [81], FPFH [82], D2 [69], inner-distance [60], Spin Image [47], LFD [15], etc.).
They can also be categorized as local features and global features, or be classified
based on the input format they take (e.g., 3D points, points with features, or depth
maps). For a specific task, it is not trivial to find the optimal feature combination
(feature selection), even with a deep neural network [28].

In this chapterwepresent deep learning approaches for 3D representation learning,
which can be easily adapted to different tasks, such as classification, segmentation,
shape retrieval, and finding correspondences.

11.2.2.2 Deep Learning on Point Clouds

Vinyals et al. [103] is one of the first researchers that studied deep learning on point
sets. They designed a read-process-write network with attention mechanism to con-
sume unordered input sets and showed that their network has the ability to sort
numbers. However, since their work focuses on generic sets and natural language
processing (NLP) applications, there lacks the role of geometry in the sets. Con-
current to the PointNet [76] we will introduce in this chapter, there are also works
from Ravanbakhshet et al. [78] and Zaheer et al. [116], in which they designed
deep networks that achieve invariance to set element ordering. However, their works
emphasize a wide range of applications for point set learning, rather than focusing on
3D understanding. Compared with these prior work, the architecture we present in
Sect. 11.4 exploits the geometry properties in 3D point sets (geometric transforma-
tions and distance spaces for sampling and local context).We also provide theoretical
analysis and intuitive visualization of what has been learned by the deep network.

Real 3D point clouds from sensors or geometric estimation (e.g., structure from
motion) are usually noisy and have nonuniform sampling densities. This affects effec-
tive point feature extraction and causes difficulty for learning. One of the key issues
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is to select a proper scale for point feature design. Previously several approaches
have been developed regarding this [6, 22, 33, 67, 72, 107] either in the geometry
processing community or photogrammetry and remote sensing community. In none
of the above deep learning works, the problem of nonuniform sampling density has
been explicitly considered. In a recent work [77], a new architecture called Point-
Net++ was proposed which learns to extract point features and balance multiple
feature scales in an end-to-end fashion. The PointNet++ has a hierarchical structure
that applies shared subnetworks (based on the PointNet [76] architecture) at local
regions of point clouds (similar to shared convolution kernels in a CNN) such that it
is translation invariant. The hierarchical architecture shows stronger generalizability
to large-scale 3D scene parsing than [76]. The nonuniform density problem has also
been addressed more thoroughly in [39].

Recently there have been many more efforts in designing novel deep neural net-
works for point clouds [16, 32, 39, 44, 51, 55, 57, 80, 93, 97, 98, 104–106, 111,
113, 117]. For example, dynamic graph CNNs [105] extends PointNet++ by allow-
ing neighborhood search in latent feature spaces. VoxelNet [117] combines PointNet
with 3D CNNs. It computes local voxel features using a PointNet-like network,
and then applies 3D CNNs on voxels for object proposals and classification. O-
CNN [106], OctNet [80] and Kd-network [51] have introduced indexing trees to
3D deep learning, to avoid computations at empty spaces. ShapeContextNet [111]
extends the traditional Shape Context [5] descriptor to a trainable setting with deep
neural networks. SPLATNet [93] achieves efficient 3D convolution by sparse bilat-
eral convolutions on a lattice structure. Tangent convolution network [97] exploits the
fact that point clouds from 3D sensors are living on a 2D manifold in 3D space, and
achieved point cloud learning by 2D convolutions on local tangent planes. KPConv
networks [98] designed a point-based convolution kernel for point cloud learning.
SparseConvNet [32] and MinkowskiCNN [16] have shown that one can train very
deep networks with well-implemented sparse 3D convolutions, for point cloud pro-
cessing. With diverse applications and representations of 3D data, we envision more
research on deep networks for point clouds in the near future.

11.2.2.3 Deep Learning on Graphs

Recently there has been a strong interest to study how to generalize CNNs to graphs,
and these new types of CNNs are called “graph CNNs” Graph CNNs take a graph
with vertex functions as input. Conventional image CNNs can be viewed as graph
CNNs on 2D regular grids of pixels, with RGB color as vertex values. There have
been some previous works studying graph CNN on more general graphs instead of
2D regular grids [12, 21, 24, 38], and [8, 9, 64] have a special focus on near-isometric
3D shape graphs like human bodies. To generalize image CNNs, these works usually
try to tackle the following three challenges: defining translation structures on graphs
to allow parameter sharing, designing compactly supported filters on graphs, and
aggregating multi-scale information. Their constructions of deep neural networks
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usually fall into two types: spatial construction and spectral construction. In Sect. 11.5
we will see two concrete examples from both of those types.

11.3 Deep Learning on Regularly Structured 3D Data

To deal with irregular 3D data such as point clouds or meshes, one popular approach
is to first convert irregular data to a regularly structured form. The two most popular
conversions are rendering/projection (to single-view or multi-view images) and vox-
elization (to volumetric grids). With regular structures, we can adopt the successful
convolutional neural networks to learn deep representations of 3D data.

In multi-view images, a polygon mesh is rendered into 2D images from multiple
viewpoints before any representation learning. This conversion leads to two benefits.
First, rendering circumvents artifacts in the original geometric representations that
are usually unfriendly to traditional geometric algorithms. Some examples of the
artifacts include close but disconnected shape parts (which breaks the topology),
empty interior structure, and non-manifold geometry. Second, as rendering produces
images, so we can leverage both maturely designed convolutional neural network
(CNN) architectures, as well as their pretrained weights from large-scale natural
image datasets. Besides these two benefits, from a more intuitive perspective, the
process of analyzing multi-view images to understand 3D is similar to the process
humans perceive a 3Dobject—we understand the full shape of an object by observing
it from multiple angles.

Another popular way to convert irregular 3D data to a regular form is to “vox-
elize” a 3D point cloud or a mesh to a volumetric grid. In its simplest form, the
voxelization process produces an occupancy grid where each voxel (a 3D cube in
space) is associated with a binary value, where one indicates the presence of a point
or the voxel being crossed by a face in the mesh, while zero indicates an empty
space without any point or mesh face crossing it. After this quantization step, the
original irregular data is converted to a 3D array, which can be consumed by a 3D
convolutional neural network (3DCNN). A 3DCNN (also referred to as a volumetric
CNN) is very similar to an image CNN, except it uses 3D convolutions instead of
2D ones. Compared with multi-view images, 3D volumetric inputs preserve original
3D geometry (in a quantized version) and are able to capture interior structures of
objects. In certain applications of 3D data such as analysis of CT scans, 3D CNNs
are the de facto approach since the input is naturally in volumetric forms.

In the following part of this section, we first introduce a deep neural network that
consumes multi-view images called Multi-view CNN (MVCNN) in Sect. 11.3.1.
Then in Sect. 11.3.2, we go into details of volumetric CNNs/3D CNNs and describe
a simple but effective volumetric CNN called VoxNet. Lastly in Sect. 11.3.3, we
compare MVCNN and volumetric CNNs on the 3D object classification task, where
we also discuss the gap between their performance. In the same section, we further
provide more experiments to understand the gap, as well as introduce two new and
more powerful volumetric CNNs trying to fill the gap.
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Fig. 11.2 Multi-view CNN for 3D shape recognition. At test time a 3D shape is rendered from 12
different views and is passed through C N N1 to extract view based features. These are then pooled
across views and passed through C N N2 to obtain a compact shape descriptor. Figure is from [92]

11.3.1 Multi-view CNN

The work from Su et al. [92] proposed a simple but effective way to learn 3D shape
descriptors for classification and retrieval with a multi-view representation of the 3D
data. Because of the input data format and the use of CNNs to consume multi-view
images, the proposed network is called Multi-view CNN (MVCNN). The system
pipeline and the network architecture is shown in Fig. 11.2. In the MVCNN shape
recognition pipeline, we first generate multiple views of a 3D shape by a rendering
engine. ThenMVCNN learns an aggregated representation combining features from
multiple views, as a compact descriptor for the 3D shape. The learning process is
supervised by a 3D shape classification task. The detailed process is explained in the
following two subsections.

Note that compared with the proposed approach in MVCNN, there are several
more naive approaches. For example, a simple way to use multiple views of a 3D
shape for its classification is to generate 2D image descriptors from each view inde-
pendently and then classify the shape based on these independent image descriptors,
for example, with a voting scheme. Alternatively, if the input 3D shapes are aligned,
we can render the 3D shape from a fixed set of viewpoints, extract 2D descriptors
from each of the views and then concatenate the 2D descriptors in the same order as
that of the views.We can use the concatenated vector as the shape descriptor and train
a model to classify the shape based on it. However, aligning 3D shapes to a canonical
orientation is hard by itself (or requires extra annotations). On the other hand, this
approach cannot adapt to the varying number of views in case of partial 3D input.
Compared to these two approaches, MVCNN is able to learn to aggregate views
and is able to take the varying number of views. Details of the MVCNN pipeline is
described below.
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11.3.1.1 Multi-view Image Generation

To generate a multi-view representation of a 3D shape, we have to consider what
renderer to use and the choice of rendering parameters including camera position
and scene lighting.

As to the renderer, the originalMVCNNpaper chooses to use the Phong reflection
model [73] and renders mesh polygons with a perspective projection. The pixel
color is determined by interpolating the reflected intensity of the polygon vertices.
Although simple, these rendered views with Phong reflection are very informative
to summarize the geometry of the shape. For textured meshes, we can also use a
more sophisticated renderer such as a ray traced renderer to respect more details in
color and material properties. One can even generate beyond the common gray or
RGB images, such as depth images, normal maps, etc., to capture more geometric
properties of the shapes. For simplicity, in the following discussion and experiments
we assume the shapes are rendered into gray images.

In the rendering scene the 3D shape is scaled into the same size and fits into
a viewing volume at the center of the scene. In rendering engines with required
scene lighting, we can uniformly place several point light sources around the 3D
shape [75]. As long as renderings of all 3D shapes share the same lighting setup, the
learned global 3D descriptors will be comparable. In another case, if we also want
to test the deep network on views from natural images or under unknown lighting
conditions, using a fixed lighting setupwill cause issues as themodel would overfit to
the rendering process thus will not generalize to new images with different lighting.
One way to resolve the issue is to randomly change the scene lighting parameters
such as the number, energy, and color spectrum of the light sources, a process known
as domain randomization [99].

Another key factor of generatingmulti-view representation is to choose the camera
poses (viewpoints) for rendering. There are two common camera setups depending on
our prior knowledge of the input 3D shape. In the first camera setup, we assume that
the input shapes are upright oriented along a consistent axis (e.g., the z-axis). Most
man-made CADmodels in shape repositories such as the 3DWarehouse and datasets
like ModelNet40 and ShapeNet satisfy this assumption. Based on this assumption,
we render K views by placing K virtual cameras evenly spread around the 3D shape.
Empirically, MVCNN takes K = 12 views such that every view is 30◦ from each
other, and they are elevated 30◦ from the ground plane pointing to the center of the
object (see Fig. 11.2). The center of the object is the weighted average of the mesh
face vertices where the weight is the face area. For more complicated shapes (like
mechanical components), we can also place another set of cameras elevated −30◦
to capture its bottom geometry. In the second camera setup, we do not assume an
upright orientation of the object, i.e., we have no prior knowledge of the shape’s
orientation. In this case we have to place more cameras than those in the first case
in order not to miss representative views of the object. As in [92], we can place 20
virtual cameras at the 20 vertices of an icosahedron enclosing the shape, with all of
them pointing to the center of the shape. Then we generate 4 rendered views from
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each camera using 0, 90, 180, 270◦ rotations along the optical axis (in-tilt rotations),
yielding a total of 80 views.

As noted in [92], using different shading coefficients or illumination models did
not have much effect on the learned 3D descriptors due to the invariance of the
learned filters to illumination changes, as also observed in image-based CNNs. Also
the currently proposed camera setups are already able to achieve successful results—
adding more or different viewpoints is trivial but leads to marginal performance
improvement. Finally, by using the simple Phong reflection model, rendering each
mesh from all the viewpoints takes nomore than tenmilliseconds onmodern graphics
hardware [92].

11.3.1.2 Multi-view CNN Architecture

Given multi-view images of an object, a simple baseline method to classify the shape
is to extract features from each individual image and then aggregate their features
(similar to light-field descriptor) for a further linear classifier. Or one can predict
classification scores (with a linear classifier, a SVM) separately for each image and
then “bagging” the results by taking the average of scores from all images. While
these two baselines work well, the information from multi-view images is not fully
exploited. Multi-view CNN further exploits the input by learning to aggregate views.
The architecture (as illustrated in Fig. 11.2) mainly has three parts: the image feature
extraction (with C N N1), view pooling, and 3D descriptor learning (with C N N2).

As in Fig. 11.2, first, each image in the multi-view representation is processed by
the first part of the network (C N N1) separately. The same C N N1 is shared across all
views. Then image descriptors extracted by C N N1 are aggregated through a view-
pooling layer, which is simply an element-wise maximum operation. An alternative
view-pooling is an element-wise mean operation, but its empirical results are not
as effective. Then the pooled image descriptor is fed to another C N N2 for further
processing to form afinal 3D shape descriptor. The 3D shape descriptor can readily be
used for many different tasks, such as for shape classification (with a linear softmax
classifier), or shape retrieval. As the entire architecture is a directed acyclic graph, the
entire model can be trained end-to-end using stochastic gradient descent with back-
propagation. The supervision signal is from an annotated dataset (ModelNet [110])
with shape category labels.

In implementation, it is possible to select different architectures for the subnet-
works C N N1 and C N N2. However, in order to leverage the mature architecture
design, it is recommended to split existing image CNN architectures to form C N N1

and C N N2, in which case we can also take advantage of the model’s pretrained
weights from much larger image datasets such as ImageNet [23]. For example, in
the original work of MVCNN [92], the authors adopted VGG [88] architecture using
its conv1 to conv5 layers to construct C N N1 and the rest of the layers to construct
C N N2, with the fc7 output (after ReLUnonlinearity) as the final 3D shape descriptor.
The VGG network is pretrained on ImageNet images from 1k categories and then
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Fig. 11.3 VoxNet
architectures. Conv( f , d, s)
indicates f filters of size d
and at strides s, Pool(m)
indicates pooling with area
m, and Full(n) indicates fully
connected layer with n
outputs. Inputs, example
feature maps, and predicted
outputs are shown. The point
cloud on the left is from
LiDAR and the one on the
right is from a RGB-D scan.
Cross sections are used for
visualization purposes.
Figure is from [65]

fine-tuned on all 2D views of the 3D shapes in the training set, with a classification
task.

In Sect. 11.3.3, we will present a quantitative evaluation of the MVCNN architec-
ture on a shape classification benchmark and compare it with the volumetric CNNs
introduced in the next section.

11.3.2 Volumetric CNN

In this section, we present a simple, effective, and representative volumetric CNN/3D
CNN architecture for object classification. The architecture called VoxNet [65] takes
a volumetric occupancy grid, extracts hierarchical features from the 3D grid input,
and finally gets a global descriptor of the 3D input for shape classification. In the
following text, we first discuss how to prepare volumetric data from point clouds or
polygon meshes, and then show the specific architecture design of VoxNet.
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11.3.2.1 Voxelization

Voxelization is a discretization process that converts geometric data in a continuous
domain (such as point clouds and meshes) into a discrete grid (a volumetric array).
Depending on the input source, there are multiple ways to voxelize the irregular 3D
data into volumetric data.

Given a point cloud, the simplest way of voxelization is to compute a binary
occupancy grid based on whether there is any point in a voxel, which is called a hit
grid in [65]. If we also know the pose of the sensor (such as a LiDAR or a depth
camera) that acquires the point cloud, wemay also encode the voxel as free (observed
as empty), occupied, and unknown (occluded) through 3D ray tracing. There is also a
more advanced way to compute an occupancy grid in a probabilistic way or compute
a density grid with continuous values in each voxel (more details can be found in
[65]).

We can also voxelize a polygon mesh (typically with triangles) into a volumetric
occupancy grid. The first step is to subdivide the faces in the mesh until the longest
edge of a face is small enough (e.g., half the length of a voxel size), and then set the
voxels beneath the face vertices to one to create a “filled” voxelization (assuming
space inside the object is occupied), or set voxels with vertices in them as occupied to
create a “hollow” voxelization (assuming space inside the object is empty). Although
the binary grid is simple and effective in many cases, we can encode more geomet-
ric information with a continuous value grid to enrich each voxel’s information.
The most popular encoding is a distance field and its variants, such as a truncated
signed distance field (TSDF). In TSDF volumetric representation, each voxel stores
a truncated distance from the voxel center to its nearest mesh surface, with a positive
number if the voxel is outside or a negative number if the voxel is inside the surface.
If there is no orientation in the faces, we can also build an unsigned distance field
(DF) [20].

Without special notice, in the following sections, we assume we have a binary
occupancy grid as input to all the volumetric CNNs.

11.3.2.2 VoxNet Architecture

The basic building blocks for a volumetric CNN include the input layer (preprocess-
ing layer), 3D convolutional layers, pooling layers (average pooling or max pooling),
fully connected layers, and up-convolution layers (omitted as up-convolutions are
just strided convolutions). More detailed definitions are as follows:

The input layer takes afixed size grid of I × J × K voxels.Due to the computation
and space complexity the resolution of the input grid is usually not high. For example,
in [65], I = J = K = 32. The occupancy value is shifted by 0.5 and scaled by 2 so
that they are in the range of (−1, 1) (for binary occupancy grid the values are either
−1 or 1). While for simplicity we only consider scalar valued inputs, we can easily
add more feature channels for each voxel such as the LiDAR intensity values or the
RGB color from an optical camera.
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Fig. 11.4 Left: volumetric
CNN (single orientation
input). Right:
multi-orientation volumetric
CNN (MO-VCNN), which
takes in various orientations
of the 3D input, extracts
features from shared C N N1
and then pass pooled feature
through another network
C N N2 to make a prediction
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A 3D convolutional layer takes four-dimensional input volumes (height H , width
W , length L , channel C), among them the first three dimensions are spatial and the
last dimension contains the feature vectors for the voxels. In a batch mode (usually in
GPU processing), the input becomes five-dimensional, with a batch size dimension
B as the first dimension (B × H × W × L × C). A 3D convolution kernel (or filter)
is in the size of h × w × l × C , where h, w, l define the kernel size. Usually we
use a square kernel with the same sizes on each side (d × d × d × C). If we define
F kernel functions for a given convolution layer, the total number of parameters
(without counting the bias term) is F × d × d × d × C . The 3D convolution kernel
will convolve with local volumetric regions by shifting its position in 3D space,
with stride and padding choices similar to those defined for 2D convolutions. In the
VoxNet architecture, we use square kernels noted as Conv( f, d, s) where f is the
number of kernels, d is its spatial dimension, and s is the stride size in shifting. The
output of the convolution is passed through a leaky rectified nonlinearity layer (leaky
ReLU) [62].

A 3D max-pooling layer Pool(m) downsamples the input volume by a factor of
m along the three spatial dimensions. It replaces each m × m × m nonoverlapping
block of voxels with their maximum. There are also more parameter choices such as
uneven spatial dimensions and strides, similar to 2D pooling layers.

A fully connected layer takes vector inputs andmaps the vector to an output vector
with a weight matrix multiplication, followed by a nonlinearity layer such as ReLU.
In VoxNet, we use Full(n) to denote a fully connected layer with n outputs. In the last
layer, the number of output matches the number of object categories and a softmax
nonlinearity is used to provide a probabilistic score.

Based on the definitions of layers above, the VoxNet architecture is simply a
composition of those layers with Conv(32, 5, 2) → Conv(32, 3, 1) → Pool(2) →
Full(128) → Full(K ) (Fig. 11.3) with K as the number of classes. The network is
simple, and therefore, fast and portable, with just 921,736 parameters most of which
are from the first fully connected layer (around 96% of the total parameters).
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11.3.2.3 Tips to Improve Volumetric CNN Performance

There are several strategies to improve the performance of volumetric CNNs through
data augmentation in training (to reduce overfitting), voting from multiple inputs, as
well as learning to aggregate multi-orientation inputs and learning to align inputs.

Data Augmentation

Similar to learning on large image datasets, we can augment the training data with
random rotation, shifting, and scaling, which helps reduce model overfitting in train-
ing. For example, we can create n copies of each input instance by rotating them
with 360/n◦ along the upright axis. We can also shift the input in the three spatial
dimensions with a random small distance or scale the input by a random factor in
the range of [1 − δ, 1 + δ] where δ is a small number, for example, 0.1.

Voting and Learning to Vote

At testing time, we can pool the activations of the output layer over all n rotated
versions of the input by taking the average of their classification scores. We can
even take a similar approach to Multi-view CNN, to learn to aggregate features from
observations from different orientations of the object, which can be called multi-
orientation pooling (Fig. 11.4).

Learning to Align

An alternative approach of learning to vote is learning to align objects in different
orientations to a “canonical” orientation before it is processed by the volumetric
CNN. This can be achieved through a 3D spatial transformer network [75], which
is a subnetwork (a volumetric CNN by itself but with fewer parameters) that takes
volumetric grid input and output a transformation matrix (e.g., a rotation matrix)
that is applied on the input. Then a following volumetric CNN consumes the rotated
version of the input. The transformer network is jointly optimized with the following
network and is shown to be able to learn to canonicalize object poses. With available
annotations on object poses,we can even explicitly supervise the transformer network
to regress to the ground truth pose, a relative pose to a predefined canonical pose
(e.g., a chair with its back facing the front).
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11.3.3 3D Volumetric CNN Versus Multi-view CNN

In the above two sections, we present two types of deep architecture on 3D shapes,
volumetric andmulti-view. In this sectionwemake a shoulder to shoulder comparison
of their performance, explain their performance gap, and briefly present two new
volumetric deep networks with very different design intuitions to fill the gap.

The volumetric representation encodes a 3D shape as a 3D tensor of binary or
real values. The multi-view representation encodes a 3D shape as a collection of
renderings from multiple viewpoints. Stored as tensors, both representations can
easily be used to train convolutional neural networks, i.e., volumetric CNNs and
multi-view CNNs.

Intuitively, a volumetric representation should encode as much information,
if not more, than its multi-view counterpart. However, experiments indicate that
multi-view CNNs produce superior performance in object classification. Figure11.5
reports the classification accuracy1 on the ModelNet40 test set by two representative

1Average instance accuracy: the ratio between total number of correctly classified shapes and total
number of tested shapes.
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Fig. 11.7 Auxiliary training by subvolume supervision (Sect. 11.3.4.2). Themain innovation is that
we add auxiliary tasks to predict class labels that focus on part of an object, intended to drive the
CNN to more heavily exploit local discriminative features. An mlpconv layer is a composition of
three conv layers interleaved by ReLU layers. The five numbers under mlpconv are the number of
channels, kernel size and stride of the first conv layer, and the number of channels of the second and
third conv layers, respectively. The kernel size and stride of the second and third conv layers are 1.
For example, mlpconv(48, 6, 2; 48; 48) is a composition of conv(48, 6, 2), ReLU, conv(48, 1, 1),
ReLU, conv(48, 1, 1), and ReLU layers. Note that we add dropout layers with rate=0.5 after fully
connected layers

volumetric/multi-view architectures.2 A volumetric CNN based on voxel occupancy
(green) is 7.3% worse than a multi-view CNN (yellow).

It is interesting to ask why there is this performance gap. The gap seems to be
caused by two factors: input resolution and network architecture differences. The
multi-view CNN down-samples each rendered view to 227 × 227 pixels (Multi-
view Standard Rendering in Fig. 11.6); to maintain a similar computational cost, the
volumetric CNN uses a 30 × 30 × 30 occupancy grid (Volumetric Occupancy Grid
in Fig. 11.6).3 As shown in Fig. 11.6, the input to the multi-view CNN captures more
detail.

However, the difference in input resolution is not the primary reason for this
performance gap, as evidenced by further experiments. If we compare the two net-
works by providing them with data containing a similar level of detail. To this end,
we feed the multi-view CNN with renderings of the 30 × 30 × 30 occupancy grid
using sphere rendering,4 i.e., for each occupied voxel, a ball is placed at its center,
with radius equal to the edge length of a voxel. (Multi-View Sphere Rendering in
Fig. 11.6.) We train the multi-view CNN from scratch using these sphere renderings.
The accuracy of this multi-view CNN is reported in blue.

2We train models by replicating the architecture of [110] for volumetric CNNs and [92] for multi-
view CNNs. All networks were trained in an end-to-end fashion. All methods were trained/tested
on the same split for a fair comparison.
3Note that 30 × 30 × 30 ≈ 227 × 227(×0.5).
4It is computationally prohibitive to match the volumetric CNN resolution to multi-view CNN,
which would be 227 × 227 × 227.
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Fig. 11.8 CNN with anisotropic probing kernels. We use an elongated kernel to convolve the 3D
cube and aggregate information to a 2D plane. Then we use a 2D NIN (NIN-CIFAR10 [59]) to
classify the 2D projection of the original 3D shape. Figure is from [75]

Additionally, low-frequency information in 3D seems to be quite discrimina-
tive for object classification—it is possible to achieve 89.5% accuracy (blue) at a
resolution of only 30 × 30 × 30. This discovery motivates the architectures of a
multi-resolution version of MVCNN.

11.3.4 Two New Volumetric Convolutional Neural Networks

11.3.4.1 Overview

We introduce two network variations that significantly improve the VoxNet architec-
tures introduced in Sect. 11.3.2 on 3D volumetric data. These architecture designs are
originally from [75]. The first network is designed tomitigate overfitting by introduc-
ing auxiliary training tasks, which are themselves challenging. These auxiliary tasks
encourage the network to predict object class labels from partial subvolumes. There-
fore, no additional annotation efforts are needed. The second network is designed
to mimic multi-view CNNs, as they are strong in 3D shape classification. Instead of
using rendering routines from computer graphics, the network projects a 3D shape
to 2D by convolving its 3D volume with an anisotropic probing kernel. This kernel
is capable of encoding long-range interactions between points. An image CNN is
then appended to classify the 2D projection. Note that the training of the projection
module and the image classification module is end-to-end. This emulation of multi-
view CNNs achieves similar performance to them, using only standard layers in the
CNN.

In order to mitigate overfitting from too many parameters, we adopt the mlpconv
layer from [59] as the basic building block in both network variations (after each
d × d × d convolution layer, there are a few extra 1 × 1 × 1 convolution layers
following it, to further process the features maps).
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11.3.4.2 Network 1: Auxiliary Training by Subvolume Supervision

Since current 3D datasets such as ModelNet40 are still limited in scale, we often
observe significant overfitting when we train volumetric CNNs. When a volumetric
CNN overfits to the training data, it has no incentive to continue learning. Reference
[75] thus introduced auxiliary tasks that are closely correlated with the main task but
are difficult to overfit, so that learning continues even if the main task is overfitted.

These auxiliary training tasks also predict the same object labels, but the predic-
tions aremade solely on a local subvolume of the input.Without complete knowledge
of the object, the auxiliary tasks are more challenging, and can thus better exploit
the discriminative power of local regions. This design is different from the clas-
sic multi-task learning setting of heterogeneous auxiliary tasks, which inevitably
requires collecting additional annotations (e.g., conducting both object classification
and detection [30]).

This design is implemented through an architecture shown in Fig. 11.7. The first
three layers are mlpconv (multi-layer perceptron convolution) layers, a 3D extension
of the 2D mlpconv proposed by [59]. The input and output of the mlpconv layers are
both 4D tensors. Compared with the standard combination of linear convolutional
layers and max-pooling layers, mlpconv has a three-layer structure and is thus a
universal function approximator if enough neurons are provided in its intermediate
layers. Therefore, mlpconv is a powerful filter for feature extraction of local patches,
enhancing approximation of more abstract representations. In addition, mlpconv
has been validated to be more discriminative with fewer parameters than ordinary
convolution with pooling [59].

At the fourth layer, the network branches into two. The lower branch takes the
whole object as input for traditional classification. The upper branch is a novel
branch for auxiliary tasks. It slices the 512 × 2 × 2 × 2 4D tensor (2 grids along x ,
y, z axes, and 512 channels) into 2 × 2 × 2 = 8 vectors of dimension 512. We set
up a classification task for each vector. A fully connected layer and a softmax layer
are then appended independently to each vector to construct classification losses.
A simple calculation shows that the receptive field of each task is 22 × 22 × 22,
covering roughly 2/3 of the entire volume.

11.3.4.3 Network 2: Anisotropic Probing

The success of multi-view CNNs is intriguing. Multi-view CNNs first project 3D
objects to 2D and thenmake use ofwell-developed 2D imageCNNs for classification.
Inspired by its success, [75] designed a neural network that is also composed of the
two stages. However, while multi-view CNNs use external rendering pipelines from
computer graphics, the proposed network achieves the 3D-to-2D projection using
differentiable layers,5 in a manner similar to ‘X-ray scanning’.

5A rising field related to this differentiable way of projection is called differentiable rendering [61]
or neural rendering [49].
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Key to this network is the use of an elongated anisotropic kernel which helps
capture the global structure of the 3D volume. As illustrated in Fig. 11.8, the neural
network has two modules: an anisotropic probing module and a network in network
(NIN) module. The anisotropic probing module contains three convolutional layers
of elongated kernels, each followed by a nonlinear ReLU layer. Note that both the
input and output of each layer are 3D tensors.

In contrast to traditional isotropic kernels, an anisotropic probing module has
the advantage of aggregating long-range interactions in the early feature learning
stage with fewer parameters. As a comparison, with traditional neural networks
constructed from isotropic kernels, introducing long-range interactions at an early
stage can only be achieved through large kernels, which inevitably introduce many
more parameters. After anisotropic probing, we use an adapted NIN network [59] to
address the classification problem.

The anisotropic probing network is capable of capturing internal structures of
objects through its X-ray like projection mechanism. This is an ability not offered by
standard rendering. Combined with multi-orientation pooling (introduced below),
it is possible for this probing mechanism to capture any 3D structure, due to its
relationship with the Radon transform.

In addition, this architecture is scalable to higher resolutions, since all its layers
can be viewed as 2D. While 3D convolution involves computation at locations of
cubic resolution, we maintain quadratic computational cost.

11.3.5 Experimental Results

We show evaluation of volumetric CNNs and multi-view CNNs on the ModelNet40
dataset [110]. For convenience in the following discussions, we define 3D resolution
to be the discretization resolution of a 3D shape. That is, a 30 × 30 × 30 volume has
3D resolution 30. The sphere rendering from this volume also has a 3D resolution
30, though it may have a higher 2D image resolution.

By default, we report classification accuracy on all models in the test set (average
instance accuracy). For comparisons with other previous workwe also report average
class accuracy.

11.3.5.1 Classification Results

We compare the newly introduced methods with several strong baselines (previous
state of the art) for shape classification on the ModelNet40 dataset. In the following,
we discuss the results within volumetric CNN methods and within multi-view CNN
methods.
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Fig. 11.9 Classification accuracy on ModelNet40 (resolution: 30). The newly introduced volu-
metric CNNs [75] have matched the performance of multi-view CNN at 3D resolution 30 (re-
implementation of Su-MVCNN [92], rightmost group). Figure is from [75]

Volumetric CNNs

Figure11.9 summarizes the performance of volumetric CNNs. MO-SubvolumeSup
is the subvolume supervision network in Sect. 11.3.4.2 and MO-AniProbing is the
anisotropic probing network in Sect. 11.3.4.3. Input data is augmented with random
azimuth and elevation rotations. For clarity, we useMO- to denote that both networks
are trained with an additional multi-orientation pooling step (20 orientations). For
reference tomulti-viewCNNperformance at the same 3D resolution, we also include
MVCNN-Sphere-30, the result of the multi-view CNN with sphere rendering at 3D
resolution 30.

As can be seen, both of these two new volumetric CNNs significantly outperform
previous volumetric CNNs. Moreover, they both match the performance of multi-
view CNN under the same 3D resolution. That is, the gap between volumetric CNNs
and multi-view CNNs is closed under 3D resolution 30 on the ModelNet40 dataset,
an issue that motivates us.

Multi-view CNNs

Figure11.10 summarizes the performance of multi-view CNNs. MVCNN-MultiRes
is the result of training an SVMover the concatenation of fc7 features fromMVCNN-
Sphere-30, 60, and MVCNN. HoGPyramid-LFD is the result by training an SVM
over a concatenation of HoG features at three 2D resolutions (227 × 227, 114 × 114,
and 57 × 57). Here LFD (lightfield descriptor) simply refers to extracting features
from renderings. MVCNN-MultiRes achieves state-of-the-art accuracy.
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Fig. 11.10 Classification accuracy on ModelNet40 (multi-view representation). The 3D multi-
resolution version is the strongest. It is worth noting that the simple baseline HoGPyramid-LFD
performs quite well. Figure is from [75]

Fig. 11.11 Top: sphere rendering at 3D resolution 10, 30, 60, and standard rendering. Bottom:
performance of image-based CNN and volumetric CNN with increasing 3D resolution. The two
rightmost points are trained/tested from standard rendering. Figure is from [75]

11.3.5.2 Effect of 3D Resolution over Performance

Section11.3.5.1 shows that the new volumetric CNN and multi-view CNN perform
comparably at 3D resolution 30. Here we study the effect of 3D resolution for both
types of networks.

Figure11.11 shows the performance of volumetric CNN and multi-view CNN
at different 3D resolutions (defined at the beginning of Sect. 11.3.5). Due to com-
putational cost, we only test volumetric CNNs at 3D resolutions 10 and 30. The
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Table 11.1 Comparison of volumetric CNN architectures. Numbers reported are classification
accuracy on ModelNet40. Results from E2E-[110] (end-to-end learning version). All experiments
are using the same set of azimuth and elevation augmented data

Network Single-orientation Multi-orientation

E2E-[110] 83.0 87.8

VoxNet [65] 83.8 85.9

3D-NIN 86.1 88.5

SubvolumeSup 87.2 89.2

AniProbing 84.4 89.9

observations are: first, the performance of volumetric CNNs and multi-view CNNs
is on par at tested 3D resolutions; second, the performance of multi-view CNNs
increases as the 3D resolution goes up. To further improve the performance of vol-
umetric CNNs, this experiment suggests that it is worth exploring how to scale up
volumetric CNNs to take input with higher 3D resolutions.

Comparison of Volumetric CNN Architectures

The architectures in comparison include VoxNet [65], E2E-[110] (the end-to-end
learning variation of [110] implemented in Caffe [46]), 3D-NIN (a 3D variation
of Network in Network [59] designed for 3D as in Fig. 11.7 without the “Pre-
diction by partial object” branch), SubvolumeSup (Sect. 11.3.4.2) and AniProbing
(Sect. 11.3.4.3).

From Table11.1, first, the two volumetric CNNs we propose, SubvolumeSup and
AniProbing networks, both show superior performance, indicating the effectiveness
of the new architecture design; second, multi-orientation pooling increases perfor-
mance for all network variations. This is especially significant for the anisotropic
probing network, since each orientation usually only carries partial information of
the object.

Comparison of Multi-view Methods

We compare different methods that are based on multi-view representations in
Table11.2. Methods in the second group are trained on the full ModelNet40 train
set. Methods in the first group, SPH, LFD, FV, and Su-MVCNN, are trained on a
subset of ModelNet40 containing 3,183 training samples. They are provided for ref-
erence. Also, note that the MVCNNs in the second group are re-implementations of
MVCNN [92] in Caffe with AlexNet instead of VGG. We observe that MVCNNs
are superior to methods by SVMs on handcrafted features.
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Table 11.2 Comparison of multi-view based methods. Numbers reported are classification accu-
racy (class average and instance average) on ModelNet40. Note here the MVCNN is a replicated
version of [92] trained on a larger training set

Method #Views Accuracy (class) Accuracy (instance)

SPH (reported by
[110])

– 68.2 –

LFD (reported by
[110])

– 75.5 –

FV (reported by [92]) 12 84.8 –

Su-MVCNN [92] 80 90.1 –

PyramidHoG-LFD 20 87.2 90.5

MVCNN 20 89.7 92.0

MVCNN-MultiRes 20 91.4 93.8

11.3.6 Further Discussion

In the text abovewe have introduced two types of deep neural networks to analyze 3D
data: multi-view CNNs and volumetric CNNs (3D CNNs) and specifically described
one multi-view CNN architecture: MVCNN from [92] and three volumetric CNNs:
VoxNet from [65] and two stronger performing models from [75].

While we focused mainly on the semantic classification task, these two types
of deep networks can be extended to many other applications such as shape part
segmentation [48] and semantic scene segmentation [18] by aggregating multi-view
image segmentation results, and 3D object detection [89] or 3D scan completion [20,
90] with volumetric CNNs.

These two types of networks have their own pros and cons as well. Multi-view
CNNs are often good at capture fine-grained geometric structures (such as keys in a
keyboard or thin bars on a chair back) thanks to the high-resolution image input and
are very discriminative due to the well engineered and pretrained CNNs available—
that’swhyMVCNNs are the leadingmethods in shape retrieval challenges such as the
SHREC’16 [84]. However, multi-view CNNs have more strict requirements on the
input format than volumetric CNNs. When the 3D input is not in the form of meshes
or high density point clouds, or when the input is partial scans, it is not obvious
how to render or project the input into multi-view images. For 3D input at the scene
level, how to balance the quality, quantity, and efficiency of view-rendering is also a
challenge. On the other hand, volumetric CNNs aremore flexible with the input types
(meshes, point clouds; partial or complete; single objects or scenes), as essentially
it is just a quantization step. However, the main challenge with volumetric CNNs is
on computation cost with high-resolution input as we discussed in the experiment
subsection above. The network architecture is also coupled with the input resolution,
i.e., adjusting the input resolution changes the physical receptive field sizes of the
network layers. Recently there are a couple of new projects [16, 32] that proposed
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to use sparse 3D convolutions to achieve high efficiency while keeping high spatial
resolution, which got promising results especially on the large-scale semantic scene
parsing task [19].

A shared concern with both types of these networks (multi-view and volumetric
CNNs) is that they all require a preprocessing step of the raw 3D point clouds or
meshes before representation learning. These preprocessing steps on one hand could
cause loss of 3D information and on the other hand lead to more hyper-parameter
choices (e.g., viewpoints, rendering parameters or voxelization resolution) that are
not obvious to determine in many scenarios. In the next two sections (Sects. 11.4
and 11.5) we introduce two new types of deep neural networks that directly consumes
point cloud or mesh data without converting them to regular structures.

11.4 Deep Learning on Point Clouds

In this section, we explore deep learning architectures capable of reasoning about
point clouds, a popular and important type of 3D geometric data. Typical convolu-
tional deep networks require regular input data formats, like those of image grids or
3D voxels, in order to perform weight sharing and other kernel optimizations. Since
point clouds are not in a regular format, most researchers typically transform such
data to regular 3D voxel grids or collections of images (e.g., views) before feeding
them to a deep net architecture as we discussed in Sect. 11.3. This data representa-
tion transformation, however, renders the resulting data unnecessarily voluminous—
while also introducing quantization artifacts that can obscure natural invariances of
the data.

For this reason, in this chapter, we focus on directly processing point clouds with-
out converting them to other formats—and mainly introduce one representative deep
network named PointNet [76]. The PointNet architecture directly takes point clouds
as input and outputs either class labels for the entire input or per-point segment/part
labels for each point of the input (Fig. 11.12).

Although point clouds are simple in representation, we still face two challenges
in the deep architecture design. First, the model needs to respect the fact that a
point cloud is just a set of points, and therefore, invariant to permutations of its
members. Second, invariances to rigid transformations also need to be considered. To
address the challenges, PointNet is constructed as a symmetric function composed of
neural networks, which guarantees its invariance to input point orders. Furthermore,
the input format is easy to apply rigid or affine transformations to, as each point
transforms independently. Thus we can add a data-dependent spatial transformer
network that attempts to canonicalize the data before the PointNet processes them,
so as to further improve the results.

We provide both theoretical analysis and an experimental evaluation of the
approach. We show that PointNet can approximate any set function that is continu-
ous. More interestingly, it turns out that the network learns to summarize an input
point cloud by a sparse set of key points, which roughly corresponds to the skele-
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Fig. 11.12 Applications of PointNet. We propose a novel deep net architecture that consumes raw
point clouds (sets of points) without voxelization or rendering. It is a unified architecture that learns
both global and local point features, providing a simple, efficient, and effective approach for a
number of 3D recognition tasks. Figure is from [76]

ton of objects according to visualization. The theoretical analysis and visualizations
provide an understanding of why PointNet is highly robust to small perturbation of
input points as well as to corruption through point insertion (outliers) or deletion
(missing data).

We show the experimental results of PointNet on a number of benchmark datasets
ranging from shape classification, part segmentation to scene segmentation, and com-
pare it with deep learning methods with multi-view and volumetric representations.
Under a unified architecture, the PointNet is much faster in speed, but it also exhibits
strong performance on par or even better than the prior art.

In the rest of the section, Sect. 11.4.1 describes the problem formulation for deep
learning on point clouds. Section11.4.2 introduces the properties of point sets for
which we refer to in the PointNet architecture design. Section11.4.3 presents the
detailed architecture of PointNet while Sect. 11.4.4 provides some theoretical analy-
sis of the network. Lastly in Sect. 11.4.5we show the experimental results of PointNet
on shape recognition and semantic parsing benchmarks, and provide visualizations,
as well as analysis experiments.

11.4.1 Problem Statement

We introduce a deep learning framework that directly consumes unordered point sets
as inputs. A point cloud is represented as a set of 3D points {Pi | i = 1, . . . , n}, where
each point Pi is a vector of its (x, y, z) coordinate plus extra feature channels such
as color, normal, etc. For simplicity and clarity, unless otherwise noted, we only use
the (x, y, z) coordinate as point’s channels.

For the object classification task, the input point cloud is either directly sampled
from a shape or pre-segmented from a scene point cloud. The deep network outputs
k scores for all the k candidate classes. For semantic segmentation, the input can be
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a single object for part region segmentation, or a subvolume from a 3D scene for
object region segmentation. The model will output n × m scores for each of the n
points and each of the m semantic subcategories.

11.4.2 Properties of Point Sets in R
N

In theory a fully connected neural network with one hidden layer is able to approx-
imate any continuous function, however, injecting more structure in the network
architecture can greatly reduce the number of necessary parameters and improve
approximation accuracy. A well-known example is the design of convolutional neu-
ral networks for images. To find out a proper architecture structure, we need to first
understand the properties of the data.

The input is a subset of points from an Euclidean space. It has three main prop-
erties:

• Unordered. Unlike pixel arrays in images or voxel arrays in volumetric grids, a
point cloud is a set of points without a specific order. In other words, a network
that consumes n 3D points needs to be invariant to n! permutations of the input.

• Interaction among points. The points are from a space with a distance metric.
This means that points are not isolated, and neighboring points form a meaningful
subset. Therefore, the model needs to be able to capture local structures from
nearby points, and the combinatorial interactions among local structures.

• Invariance under transformations.As a geometric object, the learned representation
of the point set should be invariant to certain transformations. For example, rotating
and translatingpoints all together shouldnotmodify the global point cloud category
nor the segmentation of the points.

11.4.3 PointNet Architecture

The full PointNet architecture is illustrated in Fig. 11.13, where the classification
network and the segmentation network share a great portion of the common structure.
Please read the caption of Fig. 11.13 for the pipeline.

The network has three key modules: the max-pooling layer as a symmetric func-
tion to aggregate information from all the points, a local and global information
combination structure, and two joint alignment networks that align both input points
and point features.Wewill discuss the reason behind these design choices in separate
paragraphs below.
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Fig. 11.13 PointNet architecture. The classification network takes n points as input, applies input
and feature transformations, and then aggregates point features by max pooling. The output is
classification scores for k classes. The segmentation network is an extension of the classification
net. It concatenates global and local features and outputs per-point scores. “mlp” stands for multi-
layer perceptron, numbers in bracket are layer sizes. Batchnorm is used for all layers with ReLU.
Dropout layers are used for the last mlp in the classification net. Figure is from [76]

Symmetry Function for Unordered Input

In order tomake amodel invariant to input permutation, three strategies exist: (1) sort
input into a canonical order; (2) treat the input as a sequence to train a RNN (recurrent
neural network), but augment the training data by all kinds of permutations; (3) use
a simple symmetric function to aggregate the information from each point. Here, a
symmetric function takes n vectors as input and outputs a new vector that is invariant
to the input order. For example, + and ∗ operators are symmetric binary functions.

While sorting sounds like a simple solution, in high-dimensional space there, in
fact, does not exist an ordering that is stable with respect to point perturbations in the
general sense. This can be easily shown by contradiction. If such an ordering strategy
exists, it defines a bijection map between a high-dimensional space and a 1D real
line. It is not hard to see, to require an ordering to be stable with respect to point
perturbations is equivalent to requiring that this map preserves spatial proximity as
the dimension reduces, a task that cannot be achieved in the general case. Therefore,
sorting does not fully resolve the ordering issue, and it is hard for a network to learn
a consistent mapping from input to output as the ordering issue persists. As shown in
experiments (Fig. 11.16), we find that a fully connected network applied on a sorted
point set performs poorly, though slightly better than the one directly processing an
unsorted input.

The idea to use an RNN considers the point set as a sequential signal and hopes
that by training the RNN with randomly permuted sequences, the RNN will become
invariant to input order. However, in “OrderMatters” [103] the authors have shown
that order does matter and cannot be totally omitted. While an RNN has relatively
good robustness to input ordering for sequences with small lengths (dozens), it’s
hard to scale up to thousands of input elements, which is the common size for point
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sets. Empirically, we have also shown that a model based on RNNs does not perform
as well as the proposed method (Fig. 11.16).

A more general idea is to approximate a general function defined on a point set
by applying a symmetric function on transformed elements in the set

f ({x1, . . . , xn}) ≈ g(h(x1), . . . , h(xn)), (11.1)

where f : 2RN → R, h : RN → R
K , g : RK × · · · × R

K → R as a symmetric func-
tion. With this function composition, since g is symmetric and as h is shared across
input elements {xi }, the whole function f is guaranteed to be symmetric.

Empirically, the basic module is very simple: we approximate h by a multi-layer
perceptron (MLP) network and g as a composition of (element-wise) max pooling
(MAX : RK × · · · × R

K → R
K ) and another multi-layer perceptron network γ :

R
K → R, therefore, g = γ ◦ MAX.
The output dimension (K ) of the function h is a key parameter as it specifies the

latent space size for point aggregation. Empirically we take K = 1024.We also learn
a number of f ’s, for example k of them as scores for k categories in the point cloud
classification task. See Fig. 11.13 for detailed parameters of h and see visualizations
(Fig. 11.20) in Sect. 11.4.5.3 for an intuitive explanation of what has been learned in
the function h.

While thekeymodule seems simple, it has interestingproperties (seeSect. 11.4.5.3)
and can achieve strong performance (see Sect. 11.4.5.1) in several different applica-
tions. Due to the simplicity of the module, we are also able to provide theoretical
analysis as in Sect. 11.4.4.

Local and Global Information Aggregation

The output from the above max-pooling operator gives us a global signature of the
input set.We can easily train a SVMor amulti-layer perceptron classifier (with γ and
a linear layer) on this global feature for classification. However, point segmentation
requires a combination of local and global knowledge (as a global descriptor cannot
tell classes of individual points while a local descriptor has limited context). We can
achieve this in a simple yet highly effective manner.

The solution can be seen in Fig. 11.13 (Segmentation Network). After computing
the global point cloud feature after max pooling (1024-dim), we feed it back to
per-point embeddings (64-dim) by concatenating the global feature with each of the
points embeddings. Then we extract new per-point features based on the combined
point descriptors—this time the per-point feature is aware of both the local and global
information.

With this modification the network is able to predict per-point quantities that
rely on both local geometry and global semantics. For example we can accurately
predict per-point normals (see appendix in [76]), validating that the network is able to
summarize information from the point’s local neighborhood. In Sect. 11.4.5, we also
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show that the model can achieve superior performance on shape part segmentation
and scene segmentation compared with prior work.

Joint Alignment Network

The semantic labeling of a point cloud has to be invariant if the point cloud undergoes
certain geometric transformations, such as rigid transformation.We, therefore, expect
that the learned representation of a point set is invariant to these transformations.

A natural solution is to align all input set to a canonical space before feature
extraction. Jaderberg et al. [45] introduced the idea of the spatial transformer to align
2D images through sampling and interpolation, achieved by a specifically tailored
layer implemented on GPU.

The input form of point clouds allows us to achieve this goal in a much simpler
way compared with [45]. We do not need to invent any new layers and no alias
is introduced as in the image case. We predict an affine transformation matrix by
a mini-network (T-net in Fig. 11.13) and directly apply this transformation to the
coordinates of input points. The mini-network itself resembles the form of (11.1),
composed of point embedding functions, max pooling, and fully connected layers.
It takes a point cloud input and outputs a 3 × 3 transformation matrix (or a 64 × 64
matrix in the feature transformation case described below). More details about the
T-net are described in the appendix in [76].

By training the T-net along with the rest of the network, the T-net learns to geo-
metrically transform point clouds such that they are more aligned (typically to a
few canonical poses within each category) so that the classification task afterward
becomes easier.

This idea can be further extended to the alignment of feature space as well. We
can insert another alignment network on point features and predict a feature trans-
formation matrix to align features from different input point clouds. However, the
transformation matrix in the feature space has a much higher dimension than the
spatial transform matrix, which greatly increases the difficulty of optimization. We,
therefore, add a regularization term to the softmax training loss. We constrain the
feature transformation matrix to be close to an orthogonal matrix

Lreg = ‖I − AAT ‖2F , (11.2)

where A is the feature alignment matrix predicted by a mini-network. An orthogonal
transformation will not lose information in the input, thus it is desired. We find that
by adding the regularization term, the optimization becomes more stable and the
model achieves better performance.
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11.4.4 Theoretical Analysis

Universal Approximation

We first show the universal approximation ability of PointNet to continuous set
functions. By the continuity of set functions, intuitively, a small perturbation to the
input point set should not greatly change the function values, such as classification
or segmentation scores.

Formally, let X = {S : S ⊆ [0, 1] and |S| = n}, f : X → R is a continuous set
function on X w.r.t to Hausdorff distance dH (·, ·), i.e., ∀ε > 0, ∃δ > 0, for any
S, S′ ∈ X , if dH (S, S′) < δ, then | f (S) − f (S′)| < ε. The theorem says that f can
be arbitrarily approximated by the network given enough neurons at the max-pooling
layer, i.e., K in (11.1) is sufficiently large.

Theorem 11.1 Suppose f : X → R is a continuous set function w.r.t Hausdorff
distance dH (·, ·). ∀ε > 0, ∃ a continuous function h and a symmetric function
g(x1, . . . , xn) = γ ◦ MAX, such that for any S ∈ X ,

∣
∣
∣
∣

f (S) − γ

(

MAX
xi ∈S

{h(xi )}
)∣

∣
∣
∣
< ε

where x1, . . . , xn is the full list of elements in S ordered arbitrarily, γ is a continuous
function, and MAX is a vector max operator that takes n vectors as input and returns
a new vector of the element-wise maximum.

The proof of this theorem can be found in the appendix of [76]. The key idea is that
in the worst case the network can learn to convert a point cloud into a volumetric
representation, by partitioning the space into equal-sized voxels. In practice, however,
the network learns a much smarter strategy to probe the space, as we shall see in
point function visualizations.

Bottleneck Dimension and Stability

Theoretically and experimentally we find that the expressiveness of the network is
strongly affected by the dimension of the max-pooling layer, i.e., K in (11.1). Here
we provide an analysis, which also reveals properties related to the stability of the
model.

We define u = MAX
xi ∈S

{h(xi )} to be the subnetwork of f which maps a point set

in [0, 1]m to a K -dimensional vector. The following theorem tells us that small
corruptions or extra noise points in the input set are not likely to change the output
of the network

Theorem 11.2 Suppose u : X → R
K such that u = MAX

xi ∈S
{h(xi )} and f = γ ◦ u.

Then,
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(a) ∀S, ∃ CS,NS ⊆ X , f (T ) = f (S) if CS ⊆ T ⊆ NS;
(b) |CS| ≤ K

We explain the implications of the theorem. (a) says that f (S) is unchanged up to
the input corruption if all points in CS are preserved; it is also unchanged with extra
noise points up to NS . (b) says that CS only contains a bounded number of points,
determined by K in (11.1). In otherwords, f (S) is in fact totally determined by afinite
subset CS ⊆ S of less or equal to K elements. We, therefore, call CS the critical point
set of S and K the bottleneck dimension of f . Section11.4.5.3 describes more details
on how to computeNS and CS empirically and also provides some visualizations of
a few sample critical sets.

Combined with the continuity of h, this explains the robustness of the model with
respect to point perturbation, corruption, and extra noise points. The robustness is
gained in analogy to the sparsity principle inmachine learningmodels. Intuitively, the
network learns to summarize a shape by a sparse set of key points. In the following
section we see that the key points form the skeleton of an object.

11.4.5 Experimental Results

Experiments are divided into four parts. First, we show that PointNet can be applied
to multiple 3D recognition tasks (Sect. 11.4.5.1). Second, we provide experiments to
validate the network design (Sect. 11.4.5.2). At last, we visualize what the network
learns (Sect. 11.4.5.3) and analyze time and space complexity (Sect. 11.4.5.4).

11.4.5.1 Applications

In this section we show how PointNet can be trained to perform 3D object classifi-
cation, object part segmentation and semantic scene segmentation. Even though the
network takes input with an unstructured, unordered data representation (point sets),
PointNet is able to achieve comparable or even better performance compared with
strong prior methods on benchmarks for several tasks.

3D Object Classification

The network learns a global point cloud feature that can be used for object classifi-
cation. We evaluate the model on the ModelNet40 [110] shape classification bench-
mark. There are 12,311 CADmodels from 40 man-made object categories, split into
9,843 for training and 2,468 for testing. While previous methods focus on volumet-
ric and multi-view image representations, PointNet was the first deep architecture to
directly work on raw point cloud data.
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Table 11.3 Classification results on ModelNet40

Input #Views Accuracy avg.
class

Accuracy overall

SPH [50] Mesh – 68.2 –

3DShapeNets
[110]

Volume 1 77.3 84.7

VoxNet [65] Volume 12 83.0 85.9

Subvolume [75] Volume 20 86.0 89.2

LFD [110] Image 10 75.5 –

MVCNN [92] Image 80 90.1 –

Baseline Point – 72.6 77.4

PointNet Point 1 86.2 89.2

Weuniformly sample 1024 points onmesh faces according to face areas6 and scale
the point cloud of each shape into a unit sphere. During training, we augment the
point cloud on-the-fly by randomly rotating the object along the up-axis and jitter
the position of each point by a Gaussian noise with zero mean and 0.02 standard
deviation.

In Table11.3, we compare the PointNet model with previous works, as well as a
baseline usingMLP on traditional features extracted from point cloud (point density,
D2, shape contour, etc.). The PointNet model achieved the best performance among
methods based on 3D input (volumetric and point cloud). With only fully connected
layers and max pooling, the network gains a strong lead in inference speed and can
be easily parallelized in GPU implementation. There is still a small gap between the
PointNet method and multi-view based method (MVCNN [92]), which we think is
due to the loss of fine geometry details that can be captured by rendered images.

3D Object Part Segmentation

Part segmentation is a challenging fine-grained 3D recognition task. Given a 3D scan
or a meshmodel, the task is to assign a part category label (e.g., chair leg, cup handle)
to each point or face.

We evaluate on the ShapeNet part data set from [114], which contains 16,881
shapes from 16 categories, annotated with 50 parts in total. Most object categories
are labeled with two to five parts. Ground truth annotations are labeled on sampled
points on the shapes.

The part segmentation is formulated as a per-point classification problem. The
evaluation metric is mIoU on points. For each shape S of category C, to calculate
the shape’s mIoU: For each part type in category C, compute IoU between ground

6To sample one point, we first randomly select a face. A face fi is selected with probability pi =
area( fi )/

∑N
j=1 area( f j ). Then we randomly sample a point from the face.
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Table 11.4 Segmentation results on ShapeNet part dataset. Metric is mIoU (%) on points. We
compare PointNet with two traditional methods [109, 114] and a 3D fully convolutional network
baseline. PointNet method achieved the best mIoU compared with the baselines

Mean Aero Bag Cap Car Chair Ear Guitar Knife

#Shapes 2690 76 55 898 3758 69 787 392

Wu
[109]

– 63.2 – – – 73.5 – – –

Yi
[114]

81.4 81.0 78.4 77.7 75.7 87.6 61.9 92.0 85.4

3D
CNN

79.4 75.1 72.8 73.3 70.0 87.2 63.5 88.4 79.6

PointNet 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9

Lamp Laptop Motor Mug Pistol Rocket Skate Table

#Shapes 1547 451 202 184 283 66 152 5271

Wu
[109]

74.4 – – – – – - 74.8

Yi
[114]

82.5 95.7 70.6 91.9 85.9 53.1 69.8 75.3

3D
CNN

74.4 93.9 58.7 91.8 76.4 51.2 65.3 77.1

PointNet 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

truth and predicted part labeling (among points). If the union of ground truth and
prediction points is empty, then count part IoU as 1. Thenwe average IoUs for all part
types in category C to get mIoU for that shape. To calculate mIoU for the category,
we take an average of mIoUs for all shapes in that category.

We compare the segmentation version PointNet (a modified version [76] of
Fig. 11.13, Segmentation Network) with two traditional methods [109, 114] that
both take advantage of pointwise geometry features and correspondences between
shapes, as well as a 3D CNN baseline [76].

In Table11.4, we report per-category and mean IoU(%) scores. We observe a
2.3% mean IoU improvement and the network beats the baseline methods in most
categories.

We also perform experiments on simulated Kinect scans to test the robustness
of these methods. For every CAD model in the ShapeNet part data set, we use
Blensor Kinect Simulator [35] to generate incomplete point clouds from six random
viewpoints.We train PointNet on the complete shapes and partial scanswith the same
network architecture and training setting. Results show that the network lost only
5.3% mean IoU. In Fig. 11.14, we present qualitative results on both complete and
partial data. One can see that though partial data is fairly challenging, the predictions
from PointNet are still reasonable.
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Fig. 11.14 Qualitative results for part segmentation. We visualize the CAD part segmentation
results across all 16 object categories. We show both results for partial simulated Kinect scans (left
block) and complete ShapeNet CAD models (right block). Figure is from [76]
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Fig. 11.15 Qualitative results for semantic segmentation. Top row is an input point cloud with
color. Bottom row is output semantic segmentation result (on points) displayed in the same camera
viewpoint as input
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Semantic Segmentation in Scenes

The segmentation PointNet on part segmentation can be easily extended to semantic
scene segmentation, where point labels become semantic object classes instead of
object part labels.

We show the experimental results on the Stanford 3D Indoor Spaces (S3DIS)
dataset [3], which contains 3D scans from Matterport scanners in 6 areas (building
floors) including 271 rooms annotated with 13 semantic categories.

To prepare training data, we first split points by room, and then split each room
into blocks with 1m by 1m areas. We train the segmentation version of PointNet to
predict a per-point class in each block. More details of the experimental setup can
be found in [76].

Figure11.15 shows the segmentation results from PointNet. We see the network
is able to output smooth predictions and is robust to missing points and occlusions.

11.4.5.2 Architecture Design Analysis

In this section we validate the design choices of PointNet by control experiments.
We also show the effects of the network’s hyperparameters.

Comparison with Alternative Order-Invariant Methods

Asmentioned in Sect. 11.4.3, there are at least three options for consuming unordered
set inputs. We use the ModelNet40 shape classification problem as a test bed for
comparisons of those options, the following two control experiment will also use
this task.

The baselines (illustrated in Fig. 11.16) we compared with include multi-layer
perceptron on unsorted (with permutation augmentation) and sorted (with lex-sort
based on XY Z coordinates) points as n × 3 arrays, an RNN model that considers
input points as a sequence, and PointNet models (vanilla versions without input and
feature transformations) based on symmetry functions. The symmetry operation that
we experimented with include max pooling, average pooling and an attention-based
weighted sum. The attention method is similar to that in [103], where a scalar score
is predicted from each point feature, then the score is normalized across points by
computing a softmax. The weighted sum is then computed on the normalized scores
and the point features. As shown in Fig. 11.16, max-pooling operation achieved the
best performance by a large margin, which validates the PointNet’s design choice.
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Fig. 11.17 PointNet robustness test. The metric is overall classification accuracy on ModelNet40
test set. Left: delete points. Furthest means the original 1024 points are sampled with furthest
sampling. Middle: insertion. Outliers uniformly scattered in the unit sphere. Right: perturbation.
Add Gaussian noise to each point independently. Figure is from [76]

Robustness Test

We show that PointNet, while simple and effective, is robust to various kinds of input
corruptions. We use the same architecture as in Fig. 11.16’s max-pooling network.
Input points are normalized into a unit sphere. Results are in Fig. 11.17.

As to missing points, when there are 50% points missing, the accuracy only drops
by 2.4 and 3.8% with respect to furthest and random input sampling. The network
is also robust to outlier points, if it has seen those during training. We evaluate two
models: one trained on points with (x, y, z) coordinates; the other on (x, y, z) plus
point density. The network hasmore than 80% accuracy even when 20% of the points
are outliers. Figure11.17 (right) shows the network is robust to point perturbations.

We further compare PointNet and VoxNet [65] on robustness to missing data
in the input point clouds. Both networks are trained with the same train-test split,
using 1024 points per shape as input. For VoxNet we voxelize the point cloud to
32 × 32 × 32 occupancy grids and augment the training data by random rotation
around the up-axis and jittering.
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Fig. 11.18 PointNet versus
VoxNet [65] on incomplete
input data. Metric is overall
classification accuracy on
ModelNet40 test set. Note
that VoxNet is using 12
viewpoints averaging while
PointNet is using only one
view of the point cloud.
Evidently PointNet presents
much stronger robustness to
missing points. Figure is
from [76]
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At test time, input points are randomly dropped out by a certain ratio. As VoxNet
is sensitive to rotations, its prediction uses average scores from 12 viewpoints of a
point cloud. As shown in Fig. 11.18, we see that the PointNet is much more robust to
missing points. VoxNet’s accuracy dramatically drops when half of the input points
are missing, from 86.3 to 46.0% with a 40.3% difference, which is more than 10x
worse than PointNet (only 3.8% drop in accuracy). This can be explained by the
theoretical analysis and explanation of PointNet—it learns to use a collection of
critical points to summarize the shape, thus it is very robust to missing data.

11.4.5.3 Visualizing PointNet

Critical Point and Upper-Bound Shape Visualization

In Fig. 11.19, we visualize some results of the critical point sets CS and the upper-
bound shapes NS (as discussed in Theorem 11.2) for some sample shapes S. The
point sets between the two shapes will give exactly the same global shape feature
f (S).
We can see clearly from Fig. 11.19 that the critical point sets CS , contributed to

the max pooled feature, summarizes the skeleton of the shape. The upper-bound
shapes NS illustrates the largest possible point cloud that gives the same global
shape feature f (S) as the input point cloud S. CS and NS reflect the robustness of
PointNet, meaning that losing some non-critical points does not change the global
shape signature f (S) at all.

The CS is computed by comparing point embedding values, i.e., h(xi ) with the
max-pooled embedding for each embedding dimension and each point: if a point’s
embedding is smaller than the max-pooled embedding in all dimensions, then this
point does not contribute to the pooled descriptor and thus is not a critical point;
otherwise it is a critical point. TheNS is constructed (approximately) by forwarding
a uniformly and densely sampled set of points in [−1, 1]3 through the network and
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Fig. 11.19 Critical points and upper-bound shape.While critical points jointly determine the global
shape feature for a given shape, any point cloud that falls between the critical points set and the
upper-bound shape gives exactly the same feature. We color-code all figures to show the depth
information. Figure is from [76]

select points p whose point function values (h1(p), h2(p), . . . , hK (p)) are no larger
than the global shape descriptor.

Point Function Visualization

The classification PointNet computes a K -dimensional (K = 1024 in this visualiza-
tion) point embedding for each point and aggregates all the per-point embeddings
via a max-pooling layer into a single K -dim vector, which forms a global shape
descriptor.

To gain more insights on what the point functions h1, . . . , hK have learned, we
visualize the points xi ’s that give high point function value h(xi ) in Fig. 11.20. This
visualization clearly shows that different point functions learn to detect points in
different regions with various shapes scattered in the whole space.

In another perspective, the point function hi can be viewed as a space encoding
function for input space RN . To understand this view, we can take voxelization as
an example. Voxelization is a predefined, static way to encode space. For example,
in a 10 × 10 × 10 binary occupancy grid of the R3 space, there are 1000 encoding
functions corresponding to the 1000 voxels, which are all one-hot functions mapping
from R

3 to {0, 1} with 0 noting an empty voxel and 1 noting an occupied one—the
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Fig. 11.20 Point function visualization. For each per-point function h, we calculate the values
h(p) for all the points p in a cube of diameter two located at the origin, which spatially covers the
unit sphere to which our input shapes are normalized when training our PointNet. In this figure, we
visualize all the points p that give h(p) > 0.5 with function values color-coded by the brightness
of the voxel. We randomly pick 15 point functions and visualize the activation regions for them

i th function is activated only if there is a point in the i th voxel. In comparison, in
PointNet, we are able to learn a set of smooth space encoding functions adaptive to
data and task, which could encode the space in a more efficient and effective way
than the simple voxelization.

11.4.5.4 Time and Space Complexity Analysis

Table11.5 summarizes space (number of parameters in the network) and time
(floating-point operations/sample) complexity of the classification PointNet.We also
compare PointNet to a representative set of volumetric and multi-view based archi-
tectures in previous works.

While MVCNN [92] and Subvolume (3D CNN) [75] achieve high performance,
PointNet is orders more efficient in computational cost (measured in FLOPS: 141x
and 8x more efficient, respectively). Besides, PointNet is much more space efficient
than MVCNN in terms of the number of parameters in the network (17x less param-
eters). Moreover, PointNet is much more scalable—its space and time complexity
is O(N )-linear in the number of input points. However, since convolution domi-
nates computing time, multi-view method’s time complexity grows quadratically on
image resolution and volumetric convolution-based method grows cubically with the
volume size.
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Table 11.5 Time and space complexity of deep architectures for 3D data classification. PointNet
(vanilla) is the classification PointNet without input and feature transformations. FLOPS stands for
floating-point operations per second. The “M” stands for million. Subvolume and MVCNN used
pooling on input data from multiple rotations or views, without which they have much inferior
performance

Number of parameters FLOPS

PointNet (vanilla) [76] 0.8M 148M

PointNet [76] 3.5M 440M

Subvolume [75] 16.6M 3633M

MVCNN [92] 60.0M 62057M

Empirically, PointNet is able to process more than one million points per second
for point cloud classification (around 1K objects/second) or semantic segmentation
(around 2 rooms/second) with a 1080XGPU on TensorFlow, showing great potential
for portable devices and real-time applications.

11.5 Deep Learning on Meshes

A polygon mesh is a collection of vertices, edges and faces that define the shape of
a 3D object in computer graphics or solid modeling. Each vertex may be associated
with extra data than its coordinates such as its local geometry property (such as
normal and curvature) or other physical properties (such as surface tension and
temperature). In the context of data structures, a polygon mesh is a graph thus
the deep neural networks processing it are often called graph CNNs or geometric
deep learning models, which are generalizations of convolutional neural networks
defined on a Euclidean or grid-like structure to a non-Euclidean domain [11]. The
architectures studied under geometric deep learning are not restricted to analyzing
3D objects or scenes, they can be used in much broader data types such as social
networks (with users as vertices), sensor networks (with distributed interconnected
sensors as vertices), or even gene expression data and brain structure data that are
often modeled as graphs [11].

The methods of graph CNNs mainly fall into one of the following two categories.
The first category of methods is based on the Convolution Theorem, to define con-
volution in the spectral domain [12, 21, 38, 115]. The main motivation behind this
formulation is because there is no obvious definition of translation in the spatial
domain. This branch of methods is tightly related to the field of spectral analysis
on graphs. An alternative family of methods considers the convolution operation as
a template matching process in the spatial domain [8, 9, 64, 68], and focuses on
defining spatial operators on a local graph. However, as noted in [11], there is often
not a clear cut between spectral and spatial methods. Aside from these two fami-
lies of methods, there are also methods that convolve the graphs in an embedding
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Fig. 11.21 Illustration of the
difference between extrinsic
and intrinsic deep learning
methods on geometric data.
Left: extrinsic methods.
Right: intrinsic methods.
Figure is from [9]

space mapped (such as a parameterization space in 2D) from the original mesh and
resort to traditional CNNs for feature learning [63]. However, in those cases the
parameterization is often not unique and introduces distortion to the data.

In the following text, we briefly introduce the design ideas and application results
behind two representative works of deep learning onmeshes, one based on the spatial
domain (ACNN [9]) and the other on the spectral domain (SyncSpecCNN [115]).

11.5.1 Spatial Domain Graph CNN

While graphCNNsare also calledCNNs, theyhave significant differenceswith image
CNNs and volumetric CNNs defined on Euclidean space/regular grid structures.
Figure11.21 gives a clear illustration of their difference. On the left of the figure,
we see that volumetric CNNs define the convolution kernels, as well as translations
in the 3D Euclidean space. Such an operation is not invariant to deformations. For
example as seen in the figure the filter activated from a straight cylinder would not
respond if the tube is bent. In comparison, on the right we see an intrinsic convolution
operation, where the receptive field is defined on the surface itself, thus invariant to
deformations. For deformable objects such as human bodies, the ability to respect
deformation invariance is critical to achieve good performance in tasks like finding
correspondences.

In the work of the ACNN (anisotropic convolutional neural network) [9], a set
of oriented anisotropic diffusion kernels are constructed which operate on the local
intrinsic polar representation of the data. With several cascades of the filters using
both linear and nonlinear layers, a deep neural network is trained to learn intrinsic
dense correspondences between deformable human bodies. Figure11.22 shows the
remarkable results achieved by the method.

11.5.2 Spectral Domain Graph CNN

In spectral methods of graph CNNs, a 3D shape S is modeled as a graph G = (V, E)

with vertices V as points in R
3 and |V| = n, and edges E as the set of edges in the

graph. The adjacency matrix associated with G is denoted as W ∈ R
n×n . One way
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Fig. 11.22 Examples of correspondence on the FAUST humans dataset [7] obtained by ACNN.
Shown is the texture transferred from the leftmost reference shape to different subjects in different
poses by means of predicted correspondence. The correspondence is nearly perfect (only very few
minor artifacts are noticeable). Figure is from [9]

to compute the Laplacian of the graph is L = I − D−1/2W D−1/2 where I is the
identify matrix, and D is the degree matrix where Di,i = ∑

j Wi, j . The eigenvalue
decomposition gives a set of eigenvectors ul, l = 0, . . . , n − 1 as a set of orthogonal
bases of the graph along with their corresponding eigenvalues λl, l = 0, . . . , n − 1.
As in Fourier analysis, this spectral decomposition also introduces the concept of
frequency. For each basis ul , the eigenvalue λl in the decomposition defines its
frequency, depicting its smoothness. The convolution theorem of Fourier analysis
can be extended to the Laplacian spectrum: the convolution between a kernel and
a function on the shape graph is equivalent to the pointwise multiplication of their
spectral representations [12].

In the work of SyncSpecCNN [115], the graph CNN is defined based on the
spectral convolution theorem. It also combines processing in the spectral and spatial
domains, where weight sharing among convolution kernels at different scales is by
performing the convolutions in the spectral domain (as pointwise multiplications by
the kernel duals), while the nonlinearity step (such operations are not easily dualized)
happens in the spatial domain. The general process is illustrated in Fig. 11.23a.

One challenge of this spectral basedmethod is on how to effectively share weights
across shapes. Since different shapes give rise to different nearest neighbor graphs
on their point clouds, the eigenbases we get for the graph Laplacians are not directly
comparable. To address the issue in SyncSpecCNN, the authors proposed to synchro-
nize all these Laplacians by applying a functional map [70] (a linear map between
function spaces) in the spectral domain to align them to a common canonical space.
The aligning functional maps succeed in encoding all the dual information on a
common set of basis functions where global learning takes place. An initial version
of the aligning maps is computed directly from the geometry and then is further
refined during training, in the style of a data-dependent spatial transformer network.
The newly proposed spectral convolution scheme is illustrated in Fig. 11.23b. With
the ability to sync eigenbases across geometrically very different shapes, the Sync-
SpecCNN is able to generalize to fine-grained tasks on man-made objects, which
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(a) Spectral convolution.

(b) Synced spectral convolution.

Fig. 11.23 Comparisons of spectral convolution and synced spectral convolution. Figure adapted
from [40]

Fig. 11.24 Normal prediction task. The colors shown on the 3D shape are RGB-coded normals,
namely putting XYZ components of normal directions into RGB channels. The SyncSpecCNN
predicts reasonable normal directions even on very thin structures. Figure is from [115]

was previously hard for spectral graph CNN methods. Figure11.24 demonstrates its
successful normal predictions.
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11.6 Conclusion and Outlook

This chapter has presented a rich family of methods on deep 3D representation learn-
ing. Starting from deep learning models on regularly structured 3D data, we showed
how we can represent 3D shapes as multi-view images and how we can leverage
existing CNNs to build a deep network to learn to aggregate information from those
views to produce a powerful 3D descriptor. We presented a simple yet effective
architecture for processing volumetric input. We discussed the reasons behind the
performance gap between volumetric CNNs and multi-view CNNs, while also intro-
ducing two new volumetric architectures to fill the gap. Then in the next two sections,
we presented deep learning models on irregular data: point clouds and meshes. A
permutation invariant network PointNet is described in detail with both theoretical
analysis and rich experimental and visualization results. Finally, we introduced two
main families of deep networks for processing meshes.

Due to the high reproducibility of deep learning-based methods, now there is a
trend in the general deep learning community to open source model architectures
and experiment scripts. In fact, most methods presented in this paper have open
sourced code and datasets from the original authors.7 We believe such code releases
encourage more reproducible research and to accelerates the development cycles of
future work. We encourage readers interested in the details of the methods to inspect
such code and run their experiments.

Future Work

3D deep learning is still a young field, there are many more interesting future direc-
tions for research. One such direction is to develop architectures that further respect
rotation invariance or even achieve rotation equivariance (a rotated point cloud leads
to “rotated” features). We have seen naive ways to address the issue through pooling
(MVCNN and multi-orientation pooling in volumetric CNNs) or data augmentation,
or input spatial transformer networks. However, they are not designed to guarantee
any invariance or equivariance in rotations. Some very recent works try to address
the problem with spherical CNNs [17, 25], but they are restricted to single objects
and are not applicable to 3D scenes. In future work, it is worth exploring more
generic architectures equivariant to rotations, for example as 3D variants of Capsule
Networks [83].

Another timely research direction is joint learning of geometry and color data.
In this chapter we focused on the geometry data alone, but real applications usually
get access to both point clouds and 2D images. These two data sources are often
complementary as point clouds describe accurate 3Dgeometry (but low in resolution)

7MVCNN: https://github.com/suhangpro/mvcnn.
VoxNet: https://github.com/dimatura/voxnet.
PointNet: http://github.com/charlesq34/pointnet.
SyncSpecCNN: https://github.com/ericyi/SyncSpecCNN.

https://github.com/suhangpro/mvcnn
https://github.com/dimatura/voxnet
http://github.com/charlesq34/pointnet
https://github.com/ericyi/SyncSpecCNN
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and images capture high-resolution color textures (but lack 3D). We have already
touched on some combined use cases of the two modalities. For example in PointNet
semantic segmentation, the best results are achieved when we append RGB color as
extra feature channels for each point. However, this is still an early attempt in this
direction. More recently there are more efforts in joining 2D and 3D features for
semantic segmentation [93, 97], as well as in 3D object detection [53, 112]. It is still
interesting to study different design choices: whether we should aggregate both 2D
and 3D features on 2D, on 3D or in another latent space, in which we need more
research.

Last but not least, besides analyzing 3D data such as volumetric grids and
point clouds, it is very fascinating to study how we can generate or synthesize
high quality 3D geometry, for 3D reconstruction, shape completion or AI-assisted
design/modeling. In image generation, a generative model only needs to decide pixel
values since all pixel locations are already fixed. In comparison, to generate a point
cloud, a model has to decide positions for points, which could be a much more chal-
lenging problem. Fan et al. [27] is one of the early works in this direction, where
they reconstruct 3D geometry (with point clouds) from a single image. Another work
called Octree generation network [96] manages to generate high-resolution 3D with
Octree structures. Despite those early works, how to generate 3D point clouds with
richer features such as position confidence and color, and how to deal with ambiguity
in the generated space are still very open problems.

Broad Applications of Deep Learning on 3D Data

3D data is prevalent and how to process it is a fundamental problem. So its applica-
tions are also very diverse and are beyond the ones we mentioned in this chapter.

For example, AI-assisted design is a rising field where designers work with
machine learning algorithms to accelerate the work cycle and improve overall design
quality. In a project called ComplementMe [95], an algorithm can provide interactive
design assistance to a 3D shape designer. The system provides suggestions to the
designer in real time, on possible shape parts to use, as well as where to place them
so that they are compatible with existing parts. In this system, PointNet is used to
learn a latent representation for shape parts. Deep architectures on point clouds can
also complement other deep networks in learning more robust 3D shape descriptors,
for building large-scale 3D shape search engines. In AtlasNet [34], 3D deep learning
models help model 3D meshes from simple raw point clouds or images as input.

Another promising field to apply 3D deep learning is robotics. In many robotics
tasks such as grasping and manipulation, it is critical to get robust semantic under-
standing and accurate localization of 3D geometry. Point clouds are the prevalent
sensor data in those tasks.A light-weight 3Ddeep learning architecturewouldprovide
a newmachinery to directly process point clouds and understand their semantics and
geometry. 3D deep learning models can also be used for learning intuitive physics,
where we infer physical rules or properties by observing objects move. Direct learn-
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ing in point clouds can potentially simplify the problem compared to learning in
images.

The presented networks and future 3D deep learning models also have a potential
impact on more general science. One interesting problem is to infer functions from
structures in molecules, which can be formulated as a learning problem on point
clouds. For example, given 3D arrangement of atoms in enzymes, machines can be
trained to classify enzymes, which can potentially accelerate scientific discoveries
and save labor costs. Another direction is to process and understand medical images,
especially when the signals are sparse and represented as point clouds, in which
successful algorithms could save lives.

We believe this chapter just marks the beginning of the exciting and fast growing
field of 3D deep learning. We expect to see more exciting research in the future.

11.7 Further Reading

Lots of related resources on 3D deep learning are still in the forms of articles, courses,
and conference tutorials. For a more broad overview of the topics mentioned in this
chapter, we refer the reader to the 3D deep learning tutorial from CVPR 2017 [40],
which covers more applications and example architectures. We also refer readers to
two relevant University courses with notes available online: Machine Learning for
3D Data from Stanford University [42] and a similar course with more focus on deep
learning methods from University of California San Diego [43]. While focusing on
multi-view, volumetric, and point cloud representations, we put less content on deep
learning models for meshes because it falls in another large research topic—deep
learning on graphs. For readers withmore interests in graph/geometric deep learning,
we refer them to a very thorough review paper from Bronstein et al. [11]. Details of
the ShapeNet dataset and the motivation and vision behind this effort can be found
in [14]. For a detailed literature explaining how deep learning works, we recommend
the reader to the Deep Learning textbook [31] and the Stanford course [41] while
the latter has a particular focus on the convolutional neural networks.

11.8 Questions

1. Give three examples of applications of deep learning on 3D data.
2. Explain the challenges of applying convolutional neural networks on point clouds

and meshes. What are some common ways to convert them such that we can use
CNNs?

3. What are the pro and cons of multi-view CNNs?
4. What are the pro and cons of volumetric CNNs?
5. What are the possible reasons that a volumetric CNN lags behind in 3D object

classification performance compared with a multi-view CNN?
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6. What qualities do we look for in a deep learning model consuming raw point
clouds?

7. What are the advantages of a PointNet model? Are there any limitations?
8. What are the two common ways to achieve deep learning on meshes?
9. What is the difference between extrinsic convolutions on regular grids and intrin-

sic convolutions on surfaces?
10. List three future research directions for deep learning on 3D data.

11.9 Exercises

1. Draw a t-SNE [102] visualization from 3D descriptors extracted by a trained
MVCNN on a collection of 3D shapes (e.g., from ModelNet40 [110]). Do you
observe that shapes from the same category are embedded close to each other?
Can you also find some confusing cases from the visualization?

2. Given a trained MVCNN, test how the number of input images affects results.
Assuming we know the alignment of objects, does a certain viewpoint (e.g., the
front view of the aligned objects) matter more than the back view?

3. Given aCADmodel, voxelize it to binary occupancy grids in different resolutions
(using the hollow model), e.g., to 10 × 10 × 10, 30 × 30 × 30 and 60 × 60 ×
60. Observe how occupancy rate (the ratio between the number of the occupied
voxels and that of all the voxels) decreases as we increase resolution.

4. Implement a sphere rendering engine that renders 2D views from point clouds.
See if you can tell the category of an object from its low resolution sphere render-
ing. How many points do you need approximately to tell the correct categories?

5. Experiment with a VoxNet that takes truncated signed distance field (TSDF) or
truncated distance field (TDF) grids as input. Do the TSDF or TDF features lead
to a stronger classification performance comparedwith binary occupancy feature
(e.g., on the ModelNet40 benchmark)?

6. Download a trained PointNet model and the ModelNet40 dataset, and then visu-
alize the top-10 critical points from the PointNet on several shapes. Do they have
patterns or consistency among shapes from the same category?

7. Implement a point cloud autoencoder using a PointNet architecture for the
encoder and a fully connected layer for the decoder. Refer to [26] on how to
define an optimization loss to compare two point clouds.

8. In 3D deep learning, there is often a need to code in GPU to achieve fast parallel
layers for geometric processing. Sharpen your GPU coding skills by trying to
implement the farthest point sampling in CUDA.

9. In [117], the authors proposed a 3D deep learning model with mixed representa-
tions. It first learns voxel features from local point clouds in each voxel and then
uses 3D CNNs for voxel feature learning. Implement the VoxelNet structure for
ModelNet40 object classification, and try to experiment with the hyperparame-
ters such as grid resolution, network depth, and widths. Compare results with a
VoxNet that is based on 3D CNN only.
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10. Download the KITTI object detection dataset and extract the point clouds within
all the ground truth 3D object bounding boxes. Train a PointNet to classify the
LiDAR point clouds into different semantic categories (pedestrian, cars, and
cyclists).

11. Implement a spatial method for a graph convolution network and test it on object
part segmentation on ShapeNet objects. Refer to [11] to find a spatial graph CNN
model you like. Compare results with those of the method in [115].
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Part III
3D Imaging Applications

In this third and final part of this book, we discuss three application areas of 3D
imaging and analysis: 3D face recognition, 3D digitization of cultural heritage, and
3D phenotyping of plants.



Chapter 12
3D Face Recognition

Nick Pears and Ajmal Mian

Abstract Face recognition using 3D cameras captures and processes explicit 3D
shape information and is more resistant to spoofing security attacks than 2D face
recognition. However, typical compact-baseline, triangulation-based 3D capture sys-
tems are generally only suitable for close-range applications. The 3D shape may
be used alone, or in combination with simultaneously captured, standard 2D color
images in multimodal 2D/3D face recognition. Like its 2D counterpart, modern 3D
face recognition often uses a feature extraction phase followed by a classification
phase. Traditionally, such features have been handcrafted, but recent approaches use
the representational learning power of deep neural networks. Other approaches use
shape alignment methods, or analysis-by-synthesis, which exploits the prior shape
distribution information captured by 3D morphable models. Additionally, 3D face
models have been used for pose correction and calculation of the facial albedo map,
which is independent of illumination. Finally, 3D face recognition has also achieved
significant success toward expression invariance bymodeling nonrigid surface defor-
mations, removing facial expressions or by using parts-based face recognition. This
chapter is not intended to be a comprehensive survey. Rather, it gives a tutorial intro-
duction to 3D face recognition and a representative sample of both well-established
and more recent state-of-the-art 3D face recognition techniques in terms of their
implementation and expected performance on benchmark datasets.
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Fig. 12.1 A 3D image
sample from the UoY 3D
face dataset, with three
different renderings [49]

12.1 Introduction

Automaticmeasurement of the intrinsic characteristics of the human face is a socially-
acceptable, computer-based biometric recognition method that can be implemented
in a nonintrusive way [54]. This chapter will introduce the main concepts behind 3D
face recognition algorithms, gives an overview of the literature, and elaborates upon
some carefully-selected and representative techniques. Note that we do not intend
to give a highly comprehensive literature review, due to the size of the field and the
tutorial nature of this text.

A typical example of a 3D face image from the UoY dataset [49] is shown in
Fig. 12.1. Note that 3D cameras often capture a standard 2D image that is registered
to the captured 3D shape, and this can be texture-mapped onto the 3D mesh sur-
face, as shown. Thus, one can consider that a 3D camera augments 2D images with
explicit 3D shape information, rather than replacing them, i.e., such cameras often
provide multimodal sensor data, which may be combined in the recognition process.
However, this chapter mainly focuses on systems that make recognition decisions
based on the 3D shape channel.
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12.1.1 Chapter Outline

We provide a map for the contents of this chapter, as follows:

• Section12.2 defines face recognition in terms of the identification and verification
tasks and presents standard evaluation metrics and techniques.

• Section12.3 presents the state-of-the-art in 2D face recognition to provide some
context for 3D face recognition.

• Section12.4 compares and contrasts 3D face recognitionwith 2D face recognition.
• Section12.5 gives an overview of how facial surfaces are represented and visual-
ized.

• Section12.6 overviews the datasets that researchers have used to conduct compar-
ative performance evaluations.

• Section12.7 compares and contrasts two classes of approach to 3D face recogni-
tion, holistic, and local feature-based methods.

• Section12.8 presents a typical processing pipeline for a 3D face recognition system
and includes face detection, spike removal, holefilling, smoothing, pose correction,
resampling, feature extraction, and classification.

• Section12.9 outlines the IterativeClosest Points (ICP) algorithm for 3D face recog-
nition in a tutorial format.

• Section12.10 presents Principal Components Analysis (PCA) for 3D face
recognition in a tutorial format.

• Section12.11 outlines Linear Discriminant Analysis (LDA) for 3D face recogni-
tion in a tutorial format.

• Section12.12 discusses how to extract fundamental local surface features such
normals and curvature from 3D surfaces.

• Section12.13 discusses a selection of five recent classical (i.e., non deep learning)
approaches to 3D face recognition.

• Section12.14 presents two recent deep learning approaches to 3D face recognition.

Sections12.15–12.19 give research challenges, conclusions, further reading, ques-
tions and exercises, respectively.

12.2 Verification and Identification

All face recognition systems must perform matching operations. They do this by
extracting some form of normalized descriptive representation of the live, captured
face, known as the probe or query, and they compare that to the same normalized
descriptive representations pre-extracted from one or more samples from the subject
set stored on the system, known as the gallery. This face recognition task can be
categorized as either face verification (also known as face authentication), where
the system accepts or rejects a claimed identity, or face identification, where the
system attempts to associate an identity label to an image. Before we can understand
the state-of-the-art in face recognition, we need to explain the standard evaluation
methodologies.
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12.2.1 Evaluation of Face Verification

In a verification application, the face recognition systemmust supply a binary accept
or reject decision, as a response to the subject’s claimed identity, associated with one
of a stored set of gallery scans. It does this by generating a match score between the
probe and the gallery data of the subject’s claimed identity. Often this is implemented
as a distance metric between feature vectors. In the simplest cases, the Euclidean
distance, cosine distance or Mahalanobis distance is used. The latter is only possible
in the case of multiple images of the same person in the gallery, which forms a
more effective template for that person. A low score on the distance metric indicates
a close match and application of a suitable threshold generates the accept/reject
decision. Verification systems are mainly used by authorized individuals, who want
to gain their rightful access to a building or computer system. Consequently, they
will usually be cooperative by adopting a neutral expression and frontal pose at
a favorable distance from the camera. For cooperative scenarios, datasets such as
FRGC v2 [82], discussed later, provide suitable training and validation datasets to
perform verification tests.

In order to evaluate a verification system, a large number of verification tests need
to be performed, where the subject’s identity associated with the probe is known,
so that it can be established whether the accept/reject decision was correct. Usually,
this identity is extracted from the filename of a stored face capture within a dataset
by means of a unique subject identifier.

A key point is that the accept/reject decision is threshold dependent and it is
desirable to explore the system performance over a wide range of such thresholds.
Given that a set of images is available, all with known identities, and there are at least
two for each subject, we now describe a way of implementing this. Every image in
the set is compared with every other, excluding itself, and a match score is formed.
Two lists are then formed, one containing matches of the same subject identity and
the other containing matches of different subjects. We then vary the threshold from
zero, so that all decisions are reject, to the maximum score value, so that all decisions
are accept. For each threshold value, we examine the two lists and count the number
of reject decisions from the same identity (SI) list to form a false rejection rate (FRR)
as a percentage of the SI list size and we count the number of accept decisions in
the different identity (DI) list to form a false acceptance rate (FAR) as a percentage
of the DI list size. Ideally, there is some threshold at which both FAR and FRR
are zero, and this describes a perfect system performance. However, in sufficiently
challenging datasets, both false accepts and false rejects exist. False accepts can be
reduced by decreasing the threshold but this increases false rejects and vice-versa.

A receiver operating characteristic or ROC curve, as defined in biometric verifi-
cation tests, is a plot of FRR against FAR for all thresholds, thus giving a visualization
of the trade-off between these two performance metrics. Depending on the dataset
size and the number of scans per person, the SI and DI list sizes can be very different,
with DI usually much larger than SI. This has the implication that values on the FRR
axis are noisier than on the FAR axis. In order to measure system performance using
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a FRR versus FAR ROC curve, we can use the concept of an equal error rate (EER),
where FRR = FAR, and a lower value indicates a better performance for a given
face verification system. However, given that a false accept is often a worse decision
with a higher penalty than a false reject, alternative ways of expressing system per-
formance are often used. For example, a ROC curve can also be plotted as verification
rate against FAR, where verification rate is the percentage of subjects verified, in
terms of the set of subjects making true claims of their identity. In other words, this
is the true positive rate or true accept rate (TAR), where T AR = 1 − FRR. Using
this curve, one can select a suitable low FAR and read off the verification rate from
the ROC curve. Typically FAR values of 0.001 (0.1%) or 0.01 (1%) are used.

12.2.2 Evaluation of Face Identification

In face identification, the probe image is processed and matched to the full set of
stored gallery captures, with known identifier labels, and a set of matching scores
is generated. The match with the highest match score or, equivalently, the lowest
distance metric, provides the identity of the probe. The percentage of correct iden-
tifications with respect to the total number of comparisons gives the identification
rate. Note that identification requires a more time-consuming one-to-many match
process, in contrast to verification’s one-to-one match.

More generally, we can record the rank, r , of the match, which denotes that
the match was the r th best across the full gallery. The percentage of correct top-
match identifications already mentioned is thus more specifically termed the rank-1
identification rate, and this is the most widely-used single performance figure for
identification.

In some applications, such as semiautomatic face recognition, other rank − r per-
formance ratesmaybe important. For example, suppose that it is of utmost importance
to apprehend a dangerous criminal, whose processed image is stored in the gallery.
Even if that person’s gallery image is the 10th best match to some probe, then the
police would be interested in the result. In this case, a human operator could receive
an alarm to perform a manual inspection of the probe image and the top 10 gallery
matches. Thus the system’s rank-10 identification rate is important, which is defined
as the rate at which subjects appear in the first 10 closest matches across the full
gallery, given that the probe is known to be in the gallery (i.e., a closed-set evaluation
is used). If in this scenario, the rank-10 identification rate was deemed to be too low,
r could be increased, at the expense of an increased amount of manual checking.

More generally, it is possible to use a wide range of rank scores to capture a more
comprehensive understanding of identification performance. Here, we record the
rank of the correct match in a large number of tests, and we determine the percentage
of identifications that are less than or equal to some value of r . Plotting the percentage
of identifications against r allows us to compare systems at a range of possible rank
operating points. Such a graph is known as a Cumulative Match Curve (CMC) and
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r starts at 1 and is incremented until 100% recognition is attained for some large r
associated with the weakest match.

The discussion so far has implicitly assumed a closed-set evaluation protocol,
i.e., one where the identity of the probe exists in the gallery set. However, there are
many real-world situations when this is not the case. Many applications have only a
small number of subjects that need to be identified, whereas the probes are from a
much wider population. For example, in a retail system, convicted shoplifters may be
stored on a so-called watch list, but these are small minority of the subjects exposed
to the recognition system. In this latter open-set case, the system most often will not
be able to find a sufficiently close match to anyone in the gallery and a null response
should be returned. Thus, if there were 100 subjects on the watch list gallery, the
system has to provide one of 101 possible responses. The open-set face recognition
problem has been addressed in recent literature by Scheirer et al. [89] and Günther
et al. [43].

12.3 Context: A Brief Overview of 2D Face Recognition

Computer-based face recognition from 2D images has been studied extensively for
more than half a century. Bledsoe’s approach [11], dating from 1964, was semiau-
tomatic and used a human operator to manually mark up facial features. Since that
time, an extensive literature has demonstrated a verywide variety of approaches in 2D
face recognition, with the latest andmost successful approaches being based on Con-
volutional Neural Network (CNN) architectures. This has been a highly successful
application area in the deep learning revolution, partly due to the wide availability
of large volumes of online 2D facial images for training. For example, Google’s
FaceNet [90] was trained on 200M images of 8M identities while VGG-Face [77]
used 2.6M images of 2,622 subjects for training. Indeed, deep CNNs have been
so successful that automatic 2D face recognition systems can now match or even
exceed human-level performance on a relatively recent leading benchmark dataset,
Labeled Faces in the Wild (LFW) [52], which consists of 13,233 images of 5,749
people. In 2014, Facebook’s DeepFace system [97] reported a verification accuracy
of 97.35% at 1% FAR, closely approaching human-level performance, which was
recorded at 97.5%. Interesting comparisons between different sets of humans (e.g.,
super recognizers, who are in the top 1–2% performers, and students) and different
machine algorithms have been presented by Phillips et al. [83] and show similar per-
formance between the best algorithms and the best humans (super recognizers), with
other groups of humans performing at a lower level. Thus, deep learning solutions
are impressive, but saturating relatively small datasets does not imply that automatic
2D face recognition is a solved problem, particularly considering the possibility of
face identification on a planetary scale, potentially consisting of a gallery of several
billion subjects. The MegaFace benchmark [57] proposed more challenging evalua-
tions, where up to one million distractor images can be injected into the gallery of an
existing benchmark dataset. This dataset consists of one million images of more than
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690K subjects. Their results show that by progressively adding up to one million
distractors into some dataset gallery, the rank-1 identification performance of sev-
eral leading approaches degrades. In the case of the FaceScrub celebrity benchmark
[73], which comprises 108K unconstrained face images of 530 subjects (about 200
images per person), systems with rank-1 recognition rates that are above 95% drop
to somewhere in the region of 60 to 75% after the injection of the full 1 million
distractors into the gallery.

12.4 3D Recognition Versus 2D Recognition

Compared to 2D, 3D face recognition research started much more recently and is
thought to originate in the early 1990s, with the work of Gordon [41], which used
depth and curvature features. More recently, with the increased availability of afford-
able 3D cameras, many 3D face recognition algorithms have been proposed and a
number of competitions have been arranged for benchmarking their performance.
Some commercial products have also appeared in the market and one can now pur-
chase a range of Commercial Off-The-Shelf (COTS) 3D face recognition systems. In
2017, Apple released the iPhone X, the first smartphone to incorporate a 3D camera
with 3D face authentication to unlock the device.

A 2D image is a function of the scene geometry, the scene reflectance, the illu-
mination conditions, and the imaging geometry. The same scene appears completely
different from different viewpoints or under different illuminations. For images of
human faces, it is known that the variations due to pose and illumination changes
are greater than the variations between images of different subjects under the same
pose and illumination conditions [2]. As a result, 2D image-based face recognition
algorithms have traditionally struggled to cope with such imaging variations. The
recent revolution in deep learning, often thought to date from AlexNet [61] in 2012,
has significantly mitigated these problems, although highly variable illumination,
extreme poses, and extreme expressions still remain challenging.

On the other hand, a captured face surface1 much more explicitly represents the
geometry of the viewed scene, and the raw data that is being classified is often much
less dependent on the facial pose and ambient illumination, particularly when using
active 3D cameras that source their own scene illumination. Therefore, traditionally
(i.e., at least pre-deep learning), 3D face capture and recognition algorithms have
beenmore successful in dealingwith the challenges of varying pose and illumination.
Perhaps deep learning has weakened the argument for using 3D approaches over
2D. However, as stated earlier, 3D cameras often augment standard 2D image data,
rather than replacing it, and there are some continuing advantages of 3D: (i) the face-
background segmentation problem is significantly easier in 3D; in fact, it becomes
trivial; (ii) 3D authentication systems are more resistant to spoofing security attacks.
It is clearly more difficult and laborious for a spoofer to use a 3D printer to print a

1This may be referred to as a 3D scan or a 3D image, depending on the mode of shape capture.
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true-to-scale 3D shape that is correctly colored than it is to supply a photograph.2

(iii) Facial texture is not always stable for subjects, as it can change with variations
in makeup and facial hair.

Despite the perceived advantages of 3D, we have to be careful not to over-
emphasize some of them. First, we should observe that 3D imaging is not fully
independent of the pose, because when imaging with a single 3D camera with its
limited field of view, the part of the facial surface that is captured is clearly depen-
dent on the pose. In other words, self-occlusion is a problem, and research issues
concerning the fact that the surface view is partial come into play. Additionally,
3D cameras do have some sensitivity to strong and/or variable ambient lighting. In
passive stereo, it is harder to do the image-to-image matching, required to find corre-
spondences. Even in the active imaging case, it ismore difficult to detect the projected
light pattern, sometimes leading to missing parts in the 3D data. Camera designers
often attempt to counter this by the use of optical filters, modulated projected light,
and use of certain wavelengths, such as 940nm, where those wavelengths from the
sun are blocked by the Earth’s atmosphere. Finally note that, as pose varies, the
orientation of the imaged surface affects both the size and shape of the footprint of
the projected light, and how much light is reflected back to the camera. This can
reduce the signal-to-noise ratio of the visual sensing process, resulting in an increase
in the amount of noise on the measured surface geometry. Thus, 3D imaging for
face recognition can still provide benefits over 2D imaging, but usually at the cost
of additional imaging and/or illumination hardware. 3D facial shape may be used
both as an independent cue for face recognition, in multimodal 2D/3D recognition
schemes [17, 70], or to assist (pose correct, segment) 2D image-based face recogni-
tion. Multimodal schemes are supported by COTS 3D cameras as most also capture
color-texture in the form of a standard 2D image, along with the 3D shape, and the
data from these two modalities (2D and 3D) is registered.

3D face recognition developments have also achieved significant success towards
robust operation in the presence of facial expression variations. This is achieved
either by building expression-invariant face surface representations [13], modeling
nonrigid surface deformations [67], or avoiding expression deformations by only
considering the more rigid upper parts of the face [70] or regions around the nose
[16].

Whereas large volume 2D images can be obtained by crawling the web, large
volume 3D data is significantly harder to obtain. Hence deep learning has had less
impact on 3D face recognition, at least at the time of writing in early 2019. We do,
however, present two recentworks of deep learning [38, 58] applied to 3D recognition
later in the chapter.

As well as being used directly in 3D face recognition systems, data from 3D
cameras can also be used to assist 2D face recognition, by constructing generative
3D face models offline. The most common of these are known as 3D Morphable
Models (3DMMs) [10], which can generate 3D face instances from a statistical

2Note that liveness detection, such as the detection of blinking, can be used to augment security
[76] in both 2D and 3D modalities.
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model. Such statistical models are often derived from Principal Component Analysis
(PCA) applied to the aligned set of 3D training samples, to yield linearmodel,whereas
nonlinear models may be extracted from deep autoencoder networks. Themodels are
then used in an analysis-by-synthesis approach to recognize 2D images. Essentially,
one builds parameterised models of illumination, facial surface reflectance, camera
pose, and projection, as well as 3D shape. Then a model parameter optimisation
attempts to synthesize an image that is highly similar to the actual 2D facial image.
The resulting 3D face parameters are then used in the face recognition scheme,
effectively as a global shape feature vector. Thus, using 3D shape models, trained
offline with 3D data, an online 2D recognition system can be employed, obviating
the need for a 3D scanner in the live system.

Of course, we would classify the analysis-by-synthesis approach as a 2D face
recognition scheme as the probe input to the recognition system is 2D. It is important
to note that 2D and 3D concepts are oftenmixedwithin the same system, however, the
emphasis of this chapter is on recognition from 3D shape data only, where geometric
features are extracted from the 3D face and matched against a dataset to determine
the identity of an unknown subject or to verify his/her claimed identity. Even within
these 3D facial shape recognition systems, there are many different approaches in
the literature that can be categorized in different ways, and we discuss this later in
the chapter.

12.5 3D Face Image Representation and Visualization

The fundamental measurement provided by most 3D cameras is a set of N 3D point
coordinates, pi = [xi , yi , zi ]T , i = {1 . . . N }, described in some defined 3D camera
frame. Since we are concerned with shape, encoded by relative depths of points
and not absolute depths, knowledge of the exact definition of this frame is usually
unimportant. If the set of points are unordered, it is termed a point cloud and there
is no neighborhood or surface connectivity information explicit or implicit in the
representation.

In contrast, a range imagemay be generated, which is a 2D arrangement of depth
(Z coordinate) values of the scene corresponding to the pixels of the image plane of
the 3D sensor. A range image only retains the Z coordinates of the sensed points and
the corresponding (X,Y ) coordinates can be obtained from the (calibrated) camera
model parameters. It is possible to convert a point cloud representation to a centrally
projected range image or orthogonally projected depth map (see Fig. 12.2), which is
similar to a range image but resampled with orthogonal projection.

Since range only is retained in a range image, the inverse is also possible only if the
camera model (i.e., projection model) is given, so that the correct (X,Y ) coordinates
can be computed for each range image pixel.

The software of many stereo-based 3D cameras augment 3D point data with sur-
face connectivity information and thus provide the user with a polygonal mesh. For
example, the OBJ format provides both mesh connectivity and texture coordinates



578 N. Pears and A. Mian

Fig. 12.2 Facial depth maps: the top row shows the captured pose when the subject has been asked
to move their head 45◦ relative to the frontal. The rendering is the same as a range image, i.e.,
brighter pixels are closer to the 3D camera. The bottom row shows resampled depth maps after a
pose normalization process has been applied to the captured point cloud. Figure adapted from [81]

polygons = 47395 polygons = 11848 polygons = 2961 polygons = 738

Fig. 12.3 A 3D face mesh (rendered as flat shaded view inMeshLab [69]) is decimated three times
using the quadric error algorithm [37]

which map each 3D point to a simultaneously captured and registered 2D image, so
that the per-vertex color of each 3D point is known. This makes the object scan more
suitable for the purposes of rendering and processing. Such mesh representations
are common in computer graphics and are generated by constructing polygons from
neighboring points such that each polygon is planar and simple (i.e. has nonintersect-
ing edges). Both of these constraints are always satisfied with triangles, therefore,
most meshes are made of triangles only. Delaunay triangulation is a commonmethod
used to generate triangular meshes from point clouds.

Range sensors sample a surface according to their relative orientation and the per-
spective view of the sensor. Therefore, surfaces that are closer and orthogonal to the
sensor are sampled more densely compared to surfaces that are far or oblique to the
sensor. For efficient memory utilization and rendering, points/vertices from the over-
sampled parts of the scene are removedusingmeshdecimation [46].Meshdecimation
works on the principle of collapsing edges that would minimally alter the surface
geometry hence the decimated mesh contains only a fraction of points/polygons and
yet retains the original 3D shape. Figure12.3 shows a sample 3D face decimated
three times using the quadric error algorithm [37].
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Polygonal models are linear approximations of surfaces with flat polygons. A
more accuratemathematical representation is given by nonuniform rational B-splines
(NURBS). In addition to having greater accuracy, a NURBS representation is also
more compact compared to the polygonal representation. NURBS represent surfaces
continuously in two parametric directions with the help of control points and knots.
Details of NURBS and B-splines can be found in [84].

A large number of visualization tools are available for rendering andmanipulating
3D data. Most are built using the Open Graphics Library (OpenGL) and can render
point clouds, meshes, filled polygons with constant shading or texture mappings.
Likewise, file formats are numerous, however, they all follow the same convention,
i.e. a header followed by the X,Y, Z coordinates of the point cloud and the list
of polygons. The header usually contains information about the sensor, rendering
parameters, the number of points and polygons, and so on. The polygon list contains
index numbers of points that form a polygon. Examples of free visualization and
manipulation tools areMeshLab [69] andBlender [99]. Proprietary software includes
Maya,Rhino andPoser. Largeonline datasets of 3D faces are outlined in the following
section.

12.6 3D Face Datasets

A range of 3D face datasets have been employed by the research community for 3D
face recognition evaluations. Examples include:

• The Face Recognition Grand Challenge v2 3D dataset (FRGC v2) [82].
• The Bosphorus 3D face dataset (Bosphorus) [12].
• The Texas 3D face recognition dataset (Texas3DFRD) [100].
• The Notre Dame 3D face dataset (ND-2006) [30].
• The Binghamton University 3D facial expression dataset (BU-3DFE) [107].
• The Binghamton University 4D (3D + time) dynamic facial expression dataset
(BU-4DFE, 3D video) [106].

• The Chinese Academy of Sciences Institute of Automation 3D dataset (CASIA)
[53].

• The GavabDB 3D dataset.
• The 3D-TEC twins dataset [102].
• The University of Milano Bicocca 3D Face Database (UMB-DB) [20].
• The University of York (UoY) 3D face dataset [49].

Datasets are characterized by the number of 3D face images captured, the number
of subjects imaged, the quality and resolution of the images, and the variations in
facial pose, expression, and occlusion. Table12.1 outlines this characterisation for
the datasetsmentioned above. Note that some of the datasets have particular qualities.
For example, the BU-4DFE contains 3D video frames of facial expression enactment
rather than still images, and the 214 3D-TEC subjects are 107 pairs of twins.
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Table 12.1 A selection of 3D face datasets used for face recognition evaluation

Dataset Subj. Samp. Size Exp. Pose Occ.

FRGC v2 466 1–22 4950 Yes No No

Bosphorus 105 29–54 4666 Yes Yes Yes

Texas3DFR 118 1–89 1149 Yes No No

ND-2006 888 1–63 13450 Yes Yes No

BU-3DFE 100 25 2500 Yes No No

BU-4DFE 101 600 60600 Yes No No

CASAI 123 15 1845 Yes No No

GavabDB 61 9 549 Yes Yes No

3D-TEC 214 2 428 Yes No No

UMB-DB 143 ≥6 1473 Yes No Yes

UoY 350 15 5250 Yes Yes No

Datasets comprising several thousand images gathered from several hundred sub-
jects, allow researchers to observe relatively small differences in performance in a
statistically significant way. Different datasets are more or less suitable for eval-
uating different types of face recognition scenario. For example, a frontal view,
neutral expression dataset is suitable for verification-of-cooperative-subject evalu-
ations, but a dataset with pose variations, expression variations and occlusion by
head accessories (such as hat and spectacles) is necessary for evaluating a typical
identification-at-a-distance scenario for non-cooperating subjects who may even be
unaware that they are being imaged. This type of dataset is more challenging to col-
lect as all common combinations of variations need to be covered, leading to a much
larger number of captures per subject. Due to space limitations, we only describe the
most influential of these, the FRGC v2 3D face dataset and the Bosphorus dataset.
The reader is referred to the literature references for the details of other datasets.

12.6.1 FRGC V2 3D Face Dataset

For well over a decade, the Face Recognition Grand Challenge version 2 (FRGC
v2) 3D face dataset [82] has been the most widely used dataset in benchmark face
identification and verification evaluations, although for some evaluation protocols, it
is now close to saturation (i.e., close to 100% performance). Many researchers used
this dataset because it allowed them to compare the performance of their algorithm
with many others. Indeed, it became almost expected within the research community
that face recognition evaluations would include the use of this dataset, at least for
the cooperating subject verification scenario.
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Fig. 12.4 Top row: 2D images reprinted from the FRGC v2 dataset [82]. Second row: a rendering
of the corresponding 3D data, after conversion from ABS to OBJ format

The FRGC v2 dataset contains a 3D dataset of 4950 3D face images, where
each capture contains two channels of information: a structured 3D point cloud3 and
registered color-texture image (i.e., a standard 2D image). An example of both of
these channels of information, each of which has a 640× 480 resolution, is shown in
Fig. 12.4. Thus, in addition to 3D face recognition, 2D/3D multimodal recognition
is supported. Results comparing 2D, 3D, and multimodal PCA-based recognition on
this dataset are given in [17]. There is a direct correspondence between the 3D points
in the 640 × 480 range data (abs format) and pixels in the 640 × 480 color-texture
image (ppm format). The range data file is an ASCII text file, containing some header
information, a 640 × 480 array of binary flags indicating where a valid range reading
has been made, and the (X,Y, Z) tuples over a 640 × 480 array. Where a range flag
reads invalid, each value in the tuple is set to −999999.0.

The range sensor employed collects the texture data just after the range data. This
opens up the possibility of the subject moving their face slightly between these two
captures and can lead to poor registration between the range and texture channels.
Often the texture channel is used to mark up fiducial points on the face, such as eye
corners, nose tip, and mouth corners, and these are then mapped onto the range data
using the known, implicit registration to give 3D landmarks. In this case, and in other
cases where channel registration is important, these 3D scans must be removed.

A key point in the proper evaluation of any supervised training system is that
the differences between the training and testing 3D face scans must be compara-
ble to what is expected when test data is gathered in a live operational recognition

33D points are structured in a rectangular array and since (x, y) values are included, strictly it is not
a range image, which contains z-values only.
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scenario. In dataset development, capturing consecutive scans of the same person
leads to train/test data that is too similar for proper evaluation, hence the different
collection periods of the FRGC v2 dataset, which is divided into three sections,
Spring-2003, Fall-2003 and Spring-2004, named after their periods of collection
(University semesters). The Spring-2003 consists of 943 3D face images, with sub-
jects in a cooperating, near-frontal pose and a neutral facial expression. The majority
of the images in this subset are at a depth such that the neck and shoulder areas are
also imaged. In contrast, a small number of the images contain close-up shots, where
only the facial area is imaged. Thus, the resolution of imaged facial features is higher
in these scans. Also, within this training subset, ambient lighting is controlled.

In the Fall-2003 and Spring-2004 datasets, ambient lighting is uncontrolled, and
facial expressions are varied. Expressions include any of anger, happiness, sadness,
surprise, disgust, and puffy cheeks, although many subjects are not scanned with
the full set of these expressions. Additionally, there is less depth variation than in
the Spring-2003 subset and all of the images are close-ups with little shoulder area
captured. Again pose can be regarded as frontal and cooperative, but there are some
mild pose variations. In these data subsets there are 4007 two-channel scans of 466
subjects (1–22 scans per subject).

To compare ROC curves the same training data and testing data partitions must be
employed. The FRGC protocol defines a range of different experiments of increasing
difficulty for the generation of ROC performance curves, where there is an increasing
time gap between the collection of the gallery image and the probe. These evaluations
are referred to as ROC I, ROC II, and ROC III. In the first within-semester evaluations
are conducted, in the second they are within-year, and in the third they are between
semesters. In this way, a significant passage of time is put between gallery data
collection and the verification event, aswould often be the case in real-world systems.

High performance 3D face recognition systems have reported rank-1 identifica-
tion rates that typically range from around 96 to 98.5% [56, 70, 85] on the FRGC
v2 3D face dataset. Verification rates that typically range from around 96.5% to
98.5% at 0.1% FAR have been reported for the full FRGC v2 dataset [56, 70, 72,
85]. This is a significant performance improvement on PCA-based baseline results
[78]. It is reasonable to assume that in many verification scenarios the subject will
be cooperating with a neutral expression. Verification rates for probes with neutral
expressions range from around 98.5 to 99.9% [56, 70, 72] at 0.1% FAR. It appears
that the ability of the dataset to challenge 3D recognition algorithms over neutral
expressions is close to be saturated.

The development of the FRGC face dataset has made a huge contribution to the
advancement of 3D face recognition algorithms.However, an interesting point to note
is that pose invariance has been an often quoted advantage of 3D face recognition
over 2D face recognition, and yet many recognition evaluations have been made on
the FRGC dataset, which only contains the very mild pose variations associated with
cooperative subjects. In noncooperative subject face recognition applications, other
datasets are needed that contain scans from a wide range of different head poses
including, for example, full profile views, thus challenging the recognition system
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in terms of its ability to represent and match partial surfaces. One example of such
a dataset is the Bosphorus dataset, which we now briefly outline.

12.6.2 The Bosphorus Dataset

The Bosphorus dataset contains 4666 3D face images of 105 subjects, with 29–54
3D captures per subject [12, 88]. Thus, compared to FRGC v2, there are fewer
subjects, but there are more images per subject so that a wider variety of natural,
unconstrained viewing conditions, associated with noncooperative image capture,
can be explored. There are three types of variation: expression, pose, and occlusion.
The standard set of six expressions is included, which includes happiness, surprise,
fear, anger, sadness, and disgust, but these are augmented with a set of more primitive
expressions based on facial action units (FACS) to give 34 expressions in total. There
are 14 different poses (with neutral expression) comprising eight yaw angles, four
pitch angles, and two combined rotations of approximately 45◦ yaw and ±20◦ pitch.
Finally there are up to four scans with occlusions, including hand over eye, hand
over mouth, spectacles and hair over face.

The data is captured with an Inspeck Mega Capturor II 3D camera. Subjects sit at
around 1.5m from the camera and (X,Y, Z) resolution is 0.3mm, 0.3mm, 0.4mm
for each of these dimensions, respectively. The associated color-texture images are
1600 × 1200 pixels. Example captures from the Bosphorus dataset, which are stored
as structured depth maps, are shown in Fig. 12.5. Registration with an associated
2D image is stored as two arrays of texture coordinates. More details of capture
conditions can be found in [88].

Li et al. [64] present a registration-free 3D face recognition method that is evalu-
ated on the Bosphorus dataset. Rank-1 recognition rates of 96.56%, 98.82%, 91.14%,
and 99.21% are achieved on the entire database, and the expression, pose, and occlu-
sion subsets, respectively. The system is also evaluated on FRGC v2 using the first-
vs-all protocol and a 96.3% rank-1 identification rate is achieved.

Fig. 12.5 Example 3D scans from the Bosphorus dataset with occlusions, expression variations,
and pose variations [12, 88]. Figure adapted from [24]
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12.7 Holistic Versus Local Feature-Based Methods for 3D
Recognition

Two main categorisations of 3D face recognition systems are (i) classical versus
deep learning approaches. In the former, local/global representations are handcrafted,
whereas in the latter they are learnt; (ii) the use ofholistic (global) face representations
versus local feature-based face representations, which we now consider.

Holistic methods encode the full visible facial surface after its pose has been nor-
malized to a canonical frontal pose, and the surface and its properties are resampled
to produce a standard size feature vector. The feature vector could contain raw depth
values and/or any combination of surface property, such as gradients and curvature.
This approach has been employed, for example, using depth maps and the associated
surface feature maps in nearest neighbor schemes within both Principal Component
Analysis (PCA) and Linear Discriminant Analysis (LDA) derived subspaces [49].
Note that the counterpart of thesemethods for 2D images are often calledappearance-
based methods, since their low-dimensional representation is faithful to the original
image. Often, such holistic methods are quite sensitive to pose, facial expressions,
and occlusions. For example, a small change in the pose can alter the depth maps
and normal maps of a 3D face. This error will propagate to the feature vector extrac-
tion stage, where a feature vector represents a 3D face scan, and subsequently affect
matching. For global representation and features to be consistent between multiple
3D face scans of the same identity, the scans must be accurately normalized with
respect to pose. Due to the difficulty of accurate localization of fiducial points, pose
normalization is never perfect. Even the ICP-based pose normalization to a reference
3D face cannot perfectly normalize the pose with high repeatability because dissim-
ilar surfaces may have several local minima rather than a single, distinctively low
global minimum. Another source of error in pose normalization is a consequence
of the nonrigid nature of the face. Facial expressions can change the curvatures of a
face and displace fiducial points leading to errors in pose normalization.

In contrast, local feature-based methods refers to those techniques that only
encode the facial surface around extracted points of interest, also known as keypoints.
For example, these could be the local extrema of curvature on the facial surface or
keypoints for whichwe have learnt their local properties. Keypoints should be repeat-
edly detectable at locations on a 3D face where descriptive features can be extracted.
Structural matching (e.g., graph matching) approaches can then be employed where
the relative spatial relations of features are key to the face matching process [71].
Alternatively, a bag of features approach could be employed, where spatial relations
are completely discarded and the content of more complex information rich features
is the key to the face matching process.

An example of a local feature-based 3D face recognition is that of Chua et al. [18]
who extracted point signatures [19] of the rigid parts of the face for expression
robust 3D face recognition.A point signature is a one-dimensional invariant signature
describing the local surface around a point. The signature is extracted by centering
a sphere with a fixed radius at that point. The intersection of the sphere with the
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object’s surface gives a 3D curve whose orientation can be normalized using its
normal and a reference direction. The 3D curve is projected perpendicularly to a
plane, fitted to the curve, forming a 2D curve. This projection gives a signed distance
profile called the point signature. The starting point of the signature is defined by
a vector from the point to where the 3D curve gives the largest positive profile
distance. Chua et al. [18] do not provide a detailed experimental analysis of the point
signatures for 3D face recognition. Local features have also been combined with
global features to achieve better performance. Xu et al. [104] combined local shape
variations with global geometric features to perform 3D face recognition. Al-Osaimi
et al. [3] combined local and global geometric cues for 3D face recognition. The
local features represented local similarities between faces while the global features
provided geometric consistency of the spatial organization of the local features.

In conclusion, an advantage of holistic methods is that they try to use all of the
visible facial surfaces for discrimination. However, when 3D scans are noisy or low
resolution or contaminated by occlusion, accurate and reliable pose normalization
is difficult and local feature-based approaches may perform better. Our observation
is that more recent approaches tend to use local feature-based approaches. Note that
Soltanpour et al. [93] present a more comprehensive literature review on local feature
methods for 3D face recognition, while Guo et al. [44] present a comprehensive
performance evaluation of 3D local feature descriptors in a more general object
recognition sense, with respect to their descriptiveness, compactness, and robustness.

12.8 Processing Stages in Classical 3D Face Recognition

We now present a typical set of processing stages in a classical 3D face recogni-
tion system. When developing a classical 3D face recognition system, one has to
understand what information is provided from the camera or from the dataset, what
format it is presented in, and what imperfections are likely to exist. The raw data
obtained from even the best 3D cameras is imperfect as it may contain spikes, holes,
and noise. Preprocessing stages are usually tailored to the form and quality of this
raw data. Often, the face scans must be normalized with respect to pose (e.g., holistic
approaches) and spatial sampling before extracting features for 3D face recognition.
Although the 3D face processing pipeline shown in Fig. 12.6 is typical, many varia-
tions on this exist; in particular, there are some possible reorderings and not all of the
preprocessing and pose normalization stages are always necessary. With this under-
standing, we discuss all of the stages of the pipeline in the following subsections.

12.8.1 Face Detection and Segmentation

Images acquired with a 3D sensor usually contain a larger area than just the face
area and it is often desirable to segment and crop this extraneous data as early as



586 N. Pears and A. Mian

Fig. 12.6 Block diagram showing typical processing steps in a 3D face recognition system. There
are several possible reorderings of this pipeline, depending on the input data quality and the per-
formance priorities of the application

possible in the processing pipeline in order to speed up processing in the downstream
sections of the pipeline. This face detection and cropping process, which yields 3D
face segmentation, can be done on the basis of the camera’s 3D range data, 2D texture
image or a combination of both.

In the case of 2D images, face detection is a mature field (particularly for frontal
poses) and popular approaches include skin detection, face templates, eigenfaces,
neural networks, support vector machines, and hidden Markov models. A seminal
approach for real-time face detection by Viola and Jones [103] is based on Haar
wavelets and adaptive boosting (Adaboost) and is part of the Open Computer Vision
(OpenCV) library.

However, some face recognition systems prefer not to rely on the existence of
a 2D texture channel in the 3D camera data and crop the face on the basis of 3D
information only. Also, use of 3D information is sometimes preferred for a more
accurate localization of the face. If some pose assumptions are made, it is possible
to apply some very basic techniques. For example, one could take the uppermost
vertex (largest y value), assume that this is near to the top of the head and crop a
sufficient distance downwards from this point to include the largest faces likely to
be encountered. Note that this can fail if the uppermost vertex is on a hat, other
head accessory, or some types of hairstyle. Alternatively, for cooperative subjects in
frontal poses, one can make the assumption that the nose tip is the closest point to
the camera and crop a spherical region around this point to segment the facial area.
However, the chin, forehead or hair is occasionally closer. Thus, particularly in the
presence of depth spikes, this kind of approach can fail and it may be better to move
the cropping process further down the processing pipeline so that it is after a spike
filtering stage.

If the system’s computational power is such that it is acceptable to move crop-
ping even further down the pipeline, more sophisticated cropping approaches can
be applied, which could be based on facial feature localization and some of the
techniques described earlier for 2D face detection. The nose is perhaps the most
prominent feature that has been used alone [70], or in combination with the inner
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eye corners, for face region segmentation [21]. The latter approach uses the princi-
pal curvatures to detect the nose and eyes. The candidate triplet is then used by a
PCA-based classifier for face detection.

12.8.2 Removal of Spikes

Spikes are caused mainly by specular regions. In the case of faces, the eyes, nose
tip, and teeth are three main regions where spikes are likely to occur. The eye lens
sometimes forms a real image in front of the face causing a positive spike. Similarly,
the specular reflection from the eye forms an image of the laser behind the eye causing
a negative spike. Shiny teeth seem to be bulging out in 3D scans and a small spike
can sometimes form on top of the nose tip. Glossy facial makeup or oily skin can also
cause spikes at other regions of the face. In medical applications such as craniofacial
anthropometry, the face is powdered to make its surface Lambertian and the teeth
are painted before scanning.

Spike detection works on the principle that surfaces, and faces, in particular, are
generally smooth. One simple approach to filtering spikes is to examine a small
neighborhood for each point in the mesh or range image and replace its depth (Z-
coordinate value) by themedian of this small neighborhood. This is a standardmedian
filter which, although effective, can attenuate fine surface detail. Another approach
is to threshold the absolute difference between the point’s depth and the median of
the depths of its neighbors. If the threshold is exceeded, the point’s depth is replaced
with the neighborhood median, or deleted to be filled later by a more sophisticated
scheme. These approaches work well in high resolution data, but in sufficiently low
resolution data, problems may occur when the facial surface is steep relative to the
viewing angle, such as the sides of the nose in frontal views. In this case, we can
detect spikes relative to the local surface orientation, but this requires that surface
normals are computed, which are corrupted by the spikes. It is possible to adopt an
iterative procedure where surface normals are computed and the spikes are removed
in cycles, yielding a clean, uncorrupted set of surface normals even for relatively low
resolution data [81].

12.8.3 Filling of Holes and Missing Data

In addition to the holes resulting from spike removal, the 3D data contains many
other missing points due to occlusions, such as the nose occluding the cheek when,
for example, the head pose is sufficiently rotated (in yaw angle) relative to the 3D
camera. Obviously, such areas of the scene that are not visible to either the camera or
the projected light cannot be acquired. Similarly, dark regions which do not reflect
sufficient projected light are not sensed by the 3D camera. Both can cause large
regions of missing data, which are often referred to as missing parts.
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In the case of cooperative subject applications (e.g., a typical verification applica-
tion) frontal face images are acquired and occlusion is not a major issue. However,
dark regions such as the eyebrows and facial hair are usually not acquired. Moreover,
for laser-based projection, power cannot be increased to acquire dark regions of the
face due to eye-safety reasons.

Thus, the only option is to fill the missing regions using an interpolation technique
such as nearest neighbor, linear or polynomial. For small holes, linear interpolation
gives reasonable results however, bicubic interpolation has shown to give better
results [70]. Alternatively, one can use implicit surface representations for interpo-
lation, such as those provided by radial basis functions [81].

For larger size holes, symmetry or PCA-based approaches can be used, although
these require a localized symmetry plane and a full 6-DOF rigid alignment, respec-
tively, and hence would have to be moved further downstream in the processing
pipeline. Alternatively, a model-based approach can be used to morph a model until
it gives the best fit to the data points [109]. This approach learns the 3D face space
offline and requires a significantly large training data in order to generalize to unseen
faces. However, it may be very useful if the face being scanned was previously seen
and obviously this is a common scenario in 3D face recognition.

For better generalization to unseen faces, an anthropometrically correct [32] anno-
tated face model (AFM) [56] is used. The AFM is based on an average 3D face
constructed using statistical data and the anthropometric landmarks are associated
with its vertices. The AFM is then fitted to the raw data from the scanner using a
deformable model framework. Blanz et al. [9] also used a morphable model to fit
the 3D scan, filling up missing regions in addition to other preprocessing steps, in a
unified framework.

12.8.4 Removal of Noise

For face scans acquired by laser scanners, noise can be attributed to optical com-
ponents such as the lens and the mirror, or mechanical components which drive the
mirror, or the CCD itself. Scanning and imaging conditions such as ambient light,
laser intensity, surface orientation, texture, and distance from the scanner can also
affect the noise levels in the scanner. Sun et al. [96] give a detailed analysis of noise in
the Minolta Vivid scanner and noise in active sensors is discussed in another chapter
of this book.

We have already mentioned the median filter as a mechanism for spike (impul-
sive noise) removal. More difficult is the removal of surface noise, which is less
differentiated from the underlying object geometry, without removing fine surface
detail or generally distorting the underlying shape, for example, from volumetric
shrinkage. Clearly, there is a trade-off to be made and an optimal level of filtering is
sought in order to give the best recognition performance. Removal of surface noise
is particularly important as a preprocessing step in some methods of extraction of
the differential properties of the surface, such as normals and curvatures.



12 3D Face Recognition 589

Fig. 12.7 From left to right. A 3D capture of a face with spikes in the point cloud. Shaded view
with holes and noise. Final preprocessed 3D data after cropping, removal of spikes, hole filling, and
noise removal. Figure courtesy of [70]

If the 3D data is in range image or depth map form, there are many methods
available from the standard 2D image filtering domain, such as convolution with
Gaussian filters. Many of these methods have been adapted so that they can be
applied to 3D meshes. One example of this is Bilateral Mesh Denoising [35], which
is based on shifting mesh vertices along their normal directions. Figure12.7 shows
a face scan with spikes, holes, and noise before and after preprocessing.

12.8.5 Fiducial Point Localization and Pose Correction

The pose of different subjects or the same subject can vary between 3D image cap-
tures, even when they are cooperative. Therefore, pose correction is a necessary
preprocessing step for holistic approaches that require normalized resampling of
the facial surface in order to generate a feature vector. (Such feature vectors are
often subsequently mapped into a subspace—e.g., in PCA and LDA-based methods
described later.) This may also be necessary for other algorithms that rely on features
that are not inherently pose invariant. A common approach to pose correction uses
fiducial points on the 3D face. Three points are necessary to normalize the pose to a
canonical form. Automatic detection of such points is necessary for automatic online
verification and identification processes.

The shape index, derived fromprinciple curvatures, has been used to automatically
detect the inside eye corners and the nose tip for facial pose correction [66]. Although
a minimum of three fiducial points are sufficient to correct the pose, it has proved
a challenging research problem to detect these points, where all three are identified
correctly and localized with high repeatability. This problem is more difficult in the
presence of varying facial expressions, which can change the local shape around
a point. Worse still, as pose changes, one of the three fiducial points selected may
become occluded. For example, the nose bridge occludes an inner eye corner as
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the head is turned from a frontal view toward a profile view. To counter this, some
approaches have attempted to extract a large number of fiducial points so that three
or more are always visible [25].

In addition to a shape scan, most 3D cameras capture a registered color-texture
map of the face (i.e. a standard 2D image, where the color associated with each 3D
point is known). Fiducial point detection can be performed on the basis of the 3D
shape channel directly, or using the 2D images and then projecting the results onto
the 3D shape using the known 2D-to-3D registration. This latter approach may be
implemented by any of the many 2D facial image landmarkers that have recently
become available [26].

Gupta et al. [45] detected 10 anthropometric fiducial points to calculate craniofa-
cial proportions [32]. Three points were detected using the 3D face alone and the rest
were detected based on 2D and 3D data. Mian et al. [70] performed pose correction
based on a single point, i.e. the nose tip which is automatically detected. The 3D face
was cropped using a sphere with a fixed radius centered at the nose tip and its pose
was then corrected by iteratively applying PCA and resampling the face on a uni-
form grid. This process also filled the holes (due to self occlusions) that were exposed
during pose correction. Pears et al. [81] performed pose correction by detecting the
nose tip using pose invariant features based on the spherical sampling of a radial
basis function (RBF) representation of the facial surface. Another sphere centered
on the nose tip intersected the facial surface and the tangential curvature of this space
curve was used in a correlation scheme to normalize facial pose. The interpolating
properties of RBF representations gave all steps in this approach a good immunity
to missing parts, although some steps in the method are computationally expensive.
Creusot et al. [23, 25] presented a machine-learning approach to keypoint detection
and landmarking on 3D meshes. This learnt which 3D surface features could best
discriminate a set of 14 landmarks from their surrounding areas. The same authors
demonstrate the use of graph matching techniques to label a set of fiducial surface
points even under partial facial occlusion [22].

Another common pose correction approach is to register all 3D faces to a common
reference face using the Iterative Closest Points (ICP) algorithm [7]. The reference
is usually an average face model, in a canonical pose, calculated from training data.
Sometimes only the rigid parts of the face are used in this face model, such as upper
face area containing nose, eyes, and forehead. ICP can find the optimal registration
only if the two surfaces are already approximately registered. Therefore, the query
face is first coarsely aligned with the reference face, either by zero-meaning both
scans or using fiducial points, before applying ICP to refine the registration [66].
In refining pose, ICP establishes correspondences between the closest points of the
two surfaces and calculates the rigid transformation (rotation and translation) that
minimizes the mean-squared distance between the corresponding points. These two
steps are repeated until the change in mean-squared error falls below a threshold or
the maximum number of iterations is reached. In the case of registering a probe face
to an average face, the surfaces are dissimilar. Hence, there may be more than one
comparable local minima and ICP may converge to a different minimum each time
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a query face is registered to the reference face. The success of ICP depends upon the
initial coarse registration and the similarity between the two surfaces.

As a final note on pose correction, Blanz et al. [9] used a morphable model in a
unified framework to simultaneously optimize pose, shape, texture, and illumination.
The algorithm relies on manual identification of seven fiducial points and uses the
Phong lighting model [4] to optimize shape, texture, and illumination (in addition to
pose) which can be used for face recognition. This algorithm would be an expensive
choice if only pose correction is the aim and it requires landmarks to work well.

12.8.6 Spatial Resampling

Unlike 2D images, 3D scans have an absolute scale, which means that the distance
between any two fiducial points (landmarks), such as the inner corners of the eye, can
be measured in absolute units (e.g., millimeters). Thus 3D imaging of the same face
from near or far will only alter the spatial sampling rate and the measured distance
between landmarks should vary very little, at least in scans of reasonable quality and
resolution.

However,many face recognition algorithms require the face surface, or parts of the
face surface, to be sampled in a uniform fashion, which requires some form of spatial
sampling normalization or spatial resampling via an interpolation process. Basic
interpolation processes usually involve some weighted average of neighbors, while
more sophisticated schemes employ various forms of implicit or explicit surface
fitting.

Assuming that we have normalized the pose of the face (or facial part), we can
place a standard 2D resampling grid in the x, y plane (for example, it could be cen-
tered on the nose tip) and resample the facial surface depth orthogonally to generate
a resampled depth map. In many face recognition schemes, a standard size feature
vector needs to be created and the standard resampling grid of size p × q = m cre-
ates this. For example, in [70], all 3D faces were sampled on a uniform x, y grid of
161 × 161 where the planar distance between adjacent pixels was 1mm. Although
the sampling rate was uniform in this case, subjects had a different number of points
sampled on their faces, because of their different facial sizes. The resampling scheme
employed cubic interpolation. In another approach, Pears et al. [81] used RBFs as
implicit surface representations in order to resample 3D face scans.

An alternative way of resampling is to identify three noncollinear fiducial points
on each scan and resample it such that the number of sample points between the
fiducial points is constant. However, in doing this, we are discarding information
contained within the absolute scale of the face, which often is useful for subject
discrimination.
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12.8.7 Feature Extraction on Facial Surfaces

Depth maps may not be the ideal representations for 3D face recognition because
they are quite sensitive to pose. Although the pose of 3D faces can be normalized
with better accuracy compared to 2D images, the normalization is never perfect. For
this reason, it is usually preferable to extract features that are less sensitive to pose
before applying holistic approaches. The choice of features extracted is crucial to the
system performance and is often a trade-off between invariance properties and the
richness of information required for discrimination. Example features include the
raw depth values themselves, normals, curvatures, spin images [55], 3D adaptations
of the Scale Invariant Feature Transform (SIFT) descriptor [65], and many others.
A comprehensive performance evaluation of 3D local feature descriptors is given by
Guo et al. [44].

12.8.8 Classifiers for 3D Face Matching

In the large array of published 3D face recognition work, all of the well-known
classification schemes have been applied by various researchers. These include k-
nearest neighbors (k-NN) in various subspaces, such as those derived from PCA and
LDA, neural nets, Support Vector Machines (SVM), Adaboost, and many others.
The choice (type, complexity) of classifier employed is related to the separation
of subjects (classes) within their feature space. Good face recognition performance
depends on choosing a classifier that fits the separation of the training data well
without overfitting and hence generalizes well to unseen 3D face scans. Pattern
classification is a huge subject in its own right and we can only detail a selection
of the possible techniques in this chapter. We refer the reader to the many excellent
texts on the subject, for example, [8, 28].

12.9 ICP-based 3D Face Recognition

In this section and the following sections on PCA and LDA, we present well-
established holistic approaches to 3D face recognition, with a more tutorial style
of presentation. These do not give state-of-the-art face recognition performance but
are a good place to start when first implementing 3D face recognition systems, and
can define a baseline performance level for some dataset. The aim is to give the reader
a solid grounding before going on to more modern and more advanced techniques
that have better performance. We will highlight the strengths and limitations of each
technique and present clear implementation details.

One of the earliest algorithms employed for matching surfaces is the iterative
closest points (ICP) algorithm [7], which aims to iteratively minimize the mean
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square error between two point sets. In brief, ICP has three basic operations is its
iteration loop, as follows:

1. Find pairs of closest points between two point clouds (i.e., probe and gallery face
scans).

2. Use these putative correspondences to determine a rigid 6-DOF Euclidean trans-
formation that moves one point cloud closer to the other.

3. Apply the rigid transformation to the appropriate point cloud.

The procedure is repeated until the change in mean square error associated with the
correspondences falls below some threshold, or the maximum number of iterations
is reached. In the context of 3D face recognition, the remaining mean square error
then can be used as a matching metric.

Due to its simplicity, ICP has been popular for rigid surface registration and 3D
object recognition and many variants and extensions of ICP have been proposed in
the literature [86].

Here, we will give a presentation in the context of 3D face recognition. Surface
registration and matching are similar procedures except that, in the latter case, we
are only interested in the final registration error between the two surfaces. A fuller
and more formal outline of ICP is presented in the following subsection.

12.9.1 ICP Outline

Let p j = [x j y j z j ]T where j = 1 . . . M be a zero-mean set of 3D points of a probe
face scan and let gi = [xi yi zi ]T where i = 1 . . . N be a zero-mean set of 3D points
of a gallery face scan. Since both point clouds are zero mean, they have an implicit
coarse translational alignment. An initial coarse orientation alignment may also be
required to avoid convergence to a local minimum but, for now, we will assume that
it is not required and we will discuss this issue later.

We can stack the points in M × 3 and N × 3 data matrices to give:

P =
⎡
⎢⎣
pT
1
...

pT
M

⎤
⎥⎦ , G =

⎡
⎢⎣
gT1
...

gTN

⎤
⎥⎦ . (12.1)

Let F be a function that, for each point in P , finds the nearest point in G:

(c,d) = F(P,G), (12.2)

where c and d are vectors of size M each, such that c and d contain, respectively,
the index number and distance of the j th point of P to its nearest point in G. This is
called the closest points step where the pairs of closest points within the two-point
clouds are assigned as tentative correspondences. (We use the word putative because
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they are not accurate correspondences until ICP has converged to the correct global
minimum.) This is the most critical and computationally the most expensive step
of the algorithm. It is critical because highly inaccurate tentative correspondences
could, in the worst case, cause ICP convergence to a local minimum. Even if this
is not the case, they will affect the accuracy of the final registration and hence the
matching metric between the two-point clouds. Typically, the following filters are
applied to minimize these effects:

1. Tentative correspondenceswhose distance is greater than a threshold are removed.
The threshold is usually chosen as a multiple of the point cloud resolution which
is initially set relatively high, depending on the quality of the initial registration. It
is then gradually reduced through the iterations until it is equal to the resolution.

2. Tentative correspondences whose surface normals have a mutual angle above a
threshold are removed. The threshold is chosen based on the accuracy of the
normals and the quality of the initial registration. Also, it is possible to reduce
this threshold through the iterations.

3. Tentative correspondences at the boundary points are avoided. This step is useful
when the two-point clouds only partially overlap, as occurs with partial views of
the probe face.

4. Sometimes additional information such as texture is also used to remove poor
quality tentative correspondences.

To speed up the search for the nearest points within the gallery scan, the points
in each gallery scan are arranged in a k-d tree and these structures are precomputed
off-line. A further speed up can be achieved by storing the index of the nearest
neighbor from the centers of a set of voxels in a voxelized space around the gallery
scan [105]. Again this can be precomputed offline. (Note that the ICP technique
based on Levenberg–Marquardt minimization [34], also uses a precomputed distance
transform.)

Let pk = [xk yk zk]T and gk = [xk yk zk]T (where k = 1, . . .m) be the remaining
m corresponding pairs of points of the probe and gallery face, respectively. The
next step is to find the rotation matrix R and translation vector t that minimizes the
mean square error (MSE) between these tentative correspondences. The error to be
minimized is given by

e = 1

m

m∑
k=1

‖Rpk + t − gk‖2. (12.3)

The unknowns (R and t) in Eq.12.3 can be calculated using a number of
approaches includingquaternionmethods andSingularValueDecomposition (SVD).
We will give details of the widely-used SVD approach [5]. The means of pk and gk
are given by
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p̄ = 1

m

m∑
k=1

pk (12.4)

ḡ = 1

m

m∑
k=1

gk (12.5)

and the cross-covariance matrix C is given by the mean of outer products

C = 1

m

m∑
k=1

(pk − p̄)(gk − ḡ)T . (12.6)

Equivalently, this can be expressed as

C = 1

m
PT
mGm, (12.7)

where Pm,Gm are the zero-centered data matrices in Eq.12.1 trimmed to m × 3
matrices of m tentative correspondences. Performing the SVD of C gives us

USVT = C, (12.8)

where U and V are two orthogonal matrices and S is a diagonal matrix of singular
values. The rotation matrix R can be calculated from the orthogonal matrices as [5]

R = VUT . (12.9)

Note that if this is indeed a rotation matrix, then det(R) = +1. However, in prin-
ciple, it is possible to obtain det(R) = −1, which corresponds to a reflection. This
degeneracy is not what we want but, according to Arun et al. [5] and in our own
experience, it usually does not occur. Once the rotation matrix has been computed,
the translation vector t can be calculated as

t = ḡ − Rp̄. (12.10)

Then the original point cloud of the probe face is transformed as

P′T = RPT + tJ1,n, (12.11)

where J1,n is a 1 × n matrix of ones.
Subsequently, tentative correspondences are established again between the trans-

formed probe face and the gallery face (Eq.12.2). This process is iterated until e
approaches a minimum value, detected by its change over one iteration falling below
some threshold. If the initial coarse alignment is within the convergence zone of
the global minimum MSE, the final value of e is a good measure of the similarity
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between two face scans, where smaller values of e mean that the faces are more
similar. In identification scenarios, the probe face is matched with every gallery face
and the identity of the one with the minimum value of e is declared as the probe’s
identity. If two gallery identities have very similar low e values, sometimes the num-
ber of correspondences, m, in the final iteration can also be used to make a better
judgment. Alternatively, a probe can be verified against a claimed gallery identity if
the computed value of e falls below some appropriate threshold.

12.9.2 A Critical Discussion of ICP

The main advantage of the ICP algorithm is that it iteratively corrects registration
errors as it matches two faces, provided that the initial alignment of the surfaces is
within the zone of convergence of the global minimum. If the initial coarse registra-
tion is not good enough ICP can converge to a localminimumand hence the algorithm
fails. Iterative realignment comes at a heavy computational cost, particularly in the
establishment of the closest points. For this step, a basic search has complexity
O(MN ), where M and N are the number of points in the probe and gallery scans,
respectively. This is reduced to O(M log N ) when using k-d tree structures for the
closest points search in the gallery scans. It is important to remember that the average
time per gallery scan match is also scaled by the average number of iterations per
match which is often different for different ICP variants.

Another disadvantage of ICP is that it does not extract features from the face, thus
ruling out the possibilities of training classifiers on multiple instances of a face, and
ruling out indexing of features from gallery faces for faster matching or feature-level
fusion. Thus, the probe must be matched to the complete gallery, thereby making
the recognition time linear to the gallery size. This means that, in relation to scan
resolution and gallery size, NG , a single ICP-based probe to gallerymatch has overall
complexity O(NGM log N ).

As a consequence of this, many variants of ICP try to reduce the face scan match
time. Coarse to fine resolution schemes can be used and we can precompute as
many aspects of the algorithm as possible on the whole gallery in an off-line batch
process. Examples include extracting fiducial points for coarse registration, cropping
to spherical volumes relative to the nose tip, building k-d trees, and placing the galley
scans in voxel structures for fast lookup of the closest points.

The ICP algorithm can accurately match rigid surfaces. However, faces are not
rigid and the facial surface can significantly deformdue to expressions.Consequently,
the performance of standard ICP degrades under facial expressions. For example, one
study cropped the 3D face region manually and then applied standard ICP for neutral
and non-neutral subsets of the FRGCdataset for a rank-1 recognition test. The neutral
dataset gave an average result of 91% while the non-neutral subset was only 61.5%
[16].

However, the second advantage of ICP is that it can operate in partial surface
matching schemes. Thus, the problem of facial expressions can be significantly mit-
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igated by applying ICP to the relatively rigid regions of the face [16, 70], which
can be identified in the gallery scans in an offline batch process. The ability to do
partial matching also allows ICP to handle pose variations bymatching 2.5D scans to
complete face models [66]. In the case of large pose variations, coarse prealignment
using fiducial points (landmarks) may be necessary.

12.9.3 A Typical ICP-based 3D Face Recognition
Implementation

We now outline typical steps involved in a standard ICP-based 3D face recognition
application. This is intended as a guide on how to implement and start using this
approach, but please note that there are many variants of this algorithm available in
the literature and MATLAB has a built in function called pcregistericp that
can be employed.

We assume that the probe and gallery faces are near-frontal in the pose. Some
minor pose variations are allowable, such as is found in the FRGC v2 dataset and as
might be seen in a typical cooperative verification application. Padia and Pears [74]
show that, when registering a 3D face scan to an average face model, ICP converges
to the correct global minimum for an initial misalignment between the scans of at
least 30◦ in any of three orthogonal rotational axes. We preprocess each gallery scan,
according to the steps below.

1. Determine the closest vertex to the camera. In most reasonable quality scans,
this will be close to the nose tip. (Occasionally, the chin, lips or forehead can be
closest to the camera and, in a first implementation, a quick visual check may be
required so that the nose tip can be selected manually for these failure cases.)

2. Crop to a spherical region of radius 100mm around this point. For smaller faces,
this may include some neck and hair area.

3. Filter spikes and interpolate over any holes.
4. Compute the mean of the point cloud and perform a zero-mean operation (i.e.,

subtract the mean from each vertex).
5. Use an off-the-shelf algorithm to organize each gallery scan into a k-d tree. Many

are publicly available on the web.

For each probe scan to be matched to the gallery, we follow the steps below.

1. Perform the processing steps 1–4 described for the gallery scans above. Given that
both probe and gallery face scans are now zero-mean, this constitutes an initial
coarse translational alignment.

2. Use a standard off-the-shelf algorithm to perform a closest-point search in the k-d
tree of the gallery scan, for each point in the probe scan.

3. Delete tentative correspondences according to the filters given in the earlier 4-
point list. (Use the distance and surface normal filters, at least.)
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4. From the tentative correspondences, form the cross-covariance matrix using
Eq.12.7. (Note that the means used for this matrix are associated with the list
of filtered tentative correspondences, not the full scans.)

5. PerformSVDon the cross-covariancematrix andhence extract the rotationmatrix,
R, according to Eq.12.9.

6. Compute the translation, t using Eq.12.10.
7. Update the alignment of the probe scan with the gallery scan using Eq.12.11.
8. Compute e and, unless on the first iteration, determine the change in e from the

previous iteration. If this is below a threshold, or if the maximum number of
iterations has been reached, finish. Otherwise go to step 2.

The smallest final value of e is used to determine the best match in the gallery for
a rank-1 identification, although if e is not sufficiently low, it could be determined
that the probe subject is not present in the gallery. Alternatively, the e value could be
determined from a single gallery face scan match and thresholded in a verification
test against a claimed gallery identity.

Once this basic implementation described above is operational, there are several
immediate improvements that can be made. For those readers that want to improve
the implementation, we suggest the following.

• The final number of correspondences may vary and this number may be included,
along with e, in a cost function in order to make the verification or identification
decision. (i.e., A slightly higher e value could be preferable if it is accompanied
by a significantly higher number of correspondences.)

• Particularly for large datasets where a fast per-scan match is required, it is prefer-
able to construct a voxel space around the gallery scans where, for the center of
each voxel, the index of the nearest gallery surface point is stored. This means that
for some probe point, we determine the voxel that it lies in and we just look up the
corresponding gallery surface point [105].

When dealing with large pose variations of the probe, such as may be encountered
in a noncooperating subject identification scenario, more sophisticated techniques
than the above are required. The cropping of the probe based on the nose tip being
the nearest point to the camera will often fail and, in profile views, the nose tip will
often not be detected by many current methods. Worse still, the probe will often be
outside of the global minimum convergence zone of the near-frontal gallery scan
poses. To deal with these scenarios, techniques are needed to extract three fiducial
points (landmarks) on the probe scans when they are in an arbitrary pose. Then, if a
sufficiently wide range of these fiducial points is precomputed on the gallery scans,
an initial coarse pose registration is possible. However, reliable landmarking of 3D
face scans in arbitrary poses is not trivial. Creusot et al. [25] extract keypoints on 3D
face scans and then label them from a set of fourteen possible labels.
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12.9.4 ICP Variants and Other Surface Matching Approaches

Lu et al. [66] used shape index features along with some anchor points to perform an
initial coarse registration of the faces which was later refinedwith ICP. Theymatched
partial 2.5D scans to 3D face models in order to deal with large pose variations.

Chang et al. [16] proposed an adaptive rigid multiregion selection (ARMS)
approach for ICP-based 3D face recognition. They automatically locate the inner
eye corners, nose tip, and bridge of the nose based on mean and Gaussian curvatures.
These landmarks are used to define an elliptical region around the nose of the gallery
face. For a probe face, these landmarks are used to define multiple overlapping sur-
face regions, which are individually matched to the gallery face using ICP and the
results are combined. The results of Chang et al. show that using smaller regions
around the nose can result in better recognition performance. A cross comparison
of their ARMS approach with standard approaches on the FRGC v2 dataset gave a
rank-1 performance of 97.1% on neutral faces and 86.1% on non-neutral faces, as
compared to a PCA performance of 77.7% (neutral) and 61.3% (non-neutral), and a
standard ICP performance of 91% (neutral) and 61.5% (non-neutral).

Mian et al. [70] used a variant of ICP for separately matching the eyes-forehead
region and the nose. Their results show that the eyes-forehead region is more robust
to facial expressions compared to the nose. Accurate automatic segmentation of
the two regions was performed by first detecting the nose tip, aligning the face
using PCA, and then detecting the points of inflection around the nose. In the ICP
variant, correspondences were established along the z-dimension. Point clouds were
projected to the xy-plane before establishing correspondences and reprojected to
the xyz-space for alignment. Mian et al. [70] argued that correspondences should
be forced between points that are far along the viewing direction as it gives useful
information about the dissimilarity between faces.

Faltemier et al. [31] aligned the face using the nose tip and selected 28 subre-
gions on the face that remain relatively consistent in the presence of expressions and
matched each region independently using ICP. They usedBordaCount and consensus
voting to combine the scores. Matching expression insensitive regions of the face is a
potentially useful approach to overcome the sensitivity of ICP to expressions. How-
ever, determining such regions is a problem worth exploring because these regions
are likely to vary between individuals, as well as expressions. Another challenge in
matching subregions is that it requires accurate segmentation of the subregions.

Finally, we note that, rather thanminimizing amean-squared errormetric between
the probe and gallery surfaces, other metrics are possible, although a significantly
different approach to minimization must be adopted and the approach is no longer
termed ICP. One such metric is termed the Surface Interpenetration Measure (SIM)
[91] which measures the degree to which two aligned surfaces cross over each other.
The SIM metric has recently been used with a Simulated Annealing approach to 3D
face recognition [85]. A verification rate of 96.5% was achieved on the FRGC v2
dataset at 0.1% FAR and a rank-one accuracy of 98.4%was achieved in identification
tests.
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In the following two sectionswe discuss PCAandLDA-based 3D face recognition
systems that operate on depthmaps and surface featuremaps (e.g., arrays of curvature
values) rather than on point clouds.

12.10 PCA-based 3D Face Recognition

Once 3D face scans have been filtered, pose normalized, and resampled so that, for
example, standard size depth maps are generated, the simplest way to implement
a face recognition system is to compare the depth maps directly. In this sense we
see a p × q depth map as an m × 1 feature vector in an m = pq dimensional space
and we can implement a 1-nearest neighbor scheme, for example, based on either a
Euclidean (L2 norm) metric or cosine distance metric. However, this is not generally
recommended. Typical depth map sizes mean that m can be a large dimensional
space with a large amount of redundancy, since we are only imaging faces and
not other objects. Dimension reduction using Principal Component Analysis (PCA)
can express the variation in the data in a smaller space, thus improving the speed
of feature vector comparisons, and removing dimensions that express noise, thus
improving recognition performance. Note that PCA is also known in various texts as
theHotelling transform or the Karhunen–Lóeve transform. The transform involves a
zero-mean operation and rotation of the data such that the variables associated with
each dimension become uncorrelated. It is then possible to form a reduced dimension
subspace by discarding those dimensions that express little variance in the (rotated)
data. This is equivalent to a projection into a subspace of the zero-mean dataset that
decorrelates the data. It is based on the second-order statistical properties of the data
and maps the general covariance matrix in the original basis to a diagonal matrix in
the new rotated basis.

PCA-based 3D face recognition has become a baseline at least in near-frontal
poses, such as is provided in the FRGC v2 dataset [82]. Themethod is the 3D analogy
to where 2D facial images are decomposed into a linear combination of eigenvec-
tors [92] and employed within a face recognition scenario [101]. Another important
difference is that in 2D eigenfaces, the three most significant eigenvalues are usu-
ally affected by illumination variations and discarding them improves recognition
performance [6]. Since depth maps do not contain any illumination component, all
significant eigenvalues are used for 3D face recognition.

One of the earliest works on PCA-based 3D face recognition is of Achermann et
al. [1]. Hesher et al. [50] explored the use of different numbers of eigenvectors and
image sizes for PCA-based 3D face recognition. Heseltine et al. [48] generated a set
of twelve feature maps based on the gradients and curvatures over the facial surface,
and applied PCA-based face recognition to these maps. Pan et al. [75] constructed a
circular depth map using the nose tip as center and axis of symmetry as the starting
point. They applied a PCA-based approach to the depth map for face recognition.
Chang et al. [15] performed PCA-based 3D face recognition on a larger dataset and
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later expanded their work to perform a comparative evaluation of PCA-based 3D face
recognition with 2D eigenfaces and found similar recognition performance [17].

In order to implement and test PCA-based 3D face recognition, we need to par-
tition our pose normalized 3D scans into a training set and a test set. The following
subsections provide procedures for training and testing a PCA-based 3D face recog-
nition system.

12.10.1 PCA System Training

1. For the set of n training images, xi , i = 1 . . . n, where each training face is repre-
sented as anm-dimensional point (column vector) in depth map or surface feature
space,

x = [x1, . . . , xm]T , (12.12)

stack the n training face vectors together (as rows) to construct the n × m training
data matrix

X =
⎡
⎢⎣
xT1
...

xTn

⎤
⎥⎦ . (12.13)

2. Perform a mean-centering operation by subtracting the mean of the training face
vectors, x̄ = 1

n

∑n
i=1 xi , from each row ofmatrixX to form the zero-mean training

data matrix
X0 = X − Jn,1x̄T , (12.14)

where Jn,1 is an n × 1 matrix of ones.
3. Generate the m × m covariance matrix C of the training data as

C = 1

n − 1
XT
0 X0. (12.15)

Note that dividing by n − 1 (rather than n) generates an unbiased covariance
estimate from the training data (rather than a maximum likelihood estimate).
As we tend to use large training sets (of the order of several hundred images), in
practice there is no significant difference between these two covariance estimates.

4. Perform a standard eigendecomposition on the covariance matrix C. Since the
covariance matrix C is symmetric, its eigenvectors are orthogonal to each other,
and can be chosen to have a unit length such that

VDVT = C, (12.16)

where both V and D are m × m matrices. The columns of matrix V are the eigen-
vectors, vi , associated with the covariance matrix C and D is a diagonal matrix
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whose elements contain the corresponding eigenvalues, λi . Since the covariance
C is a symmetric positive semidefinite matrix, these eigenvalues are real and non-
negative. A key point is that these eigenvalues describe the variance along each of
the eigenvectors. (Note that eigendecomposition can be achieved with a standard
function call such as the MATLAB eig function.) Eigenvalues in D and their
corresponding eigenvectors in V are in corresponding columns and we require
them to be in descending order of eigenvalue. If this order is not automatically
performed within the eigendecomposition function, column reordering should be
implemented.

5. Select the number of subspace dimensions for projecting the 3D faces. This is
the dimensionality reduction step and is usually done by analyzing the ratio of
cumulative variance associated with the first k dimensions of the rotated image
space to the total variance associated with the full set of m dimensions in that
space. This proportion of variance ratio ak is given by

ak =
∑k

i=1 λi∑m
i=1 λi

(12.17)

and takes a value between 0 and 1, which is often expressed as a percentage 0–
100%. A common approach is to choose a minimum value of k such that ak is
greater than a certain percentage (90% or 95% are commonly used). Figure12.8
shows a plot of ak versus k for 455 3D faces taken from the FRGC v2 dataset
[82]. From Fig. 12.8 one can conclude that the shape of human faces lies in a
significantly lower dimensional subspace than the dimensionality of the original
depth maps. Note that the somewhat arbitrary thresholding approach described
here is likely to be suboptimal and recognition performance can be tuned later by
searching for an optimal value of k in a set of face recognition experiments.

6. Project the training data set (the gallery) into the k-dimensional subspace

X̃ = X0Vk . (12.18)

Here Vk is a m × k matrix containing the first k eigenvectors (columns, vi ) of V
and X̃ is a n × k matrix of n training faces (stored as rows) in the k-dimensional
subspace (k dimensions stored as columns).

12.10.2 PCA Training Using Singular Value Decomposition

Several variants of PCA-based 3D face recognition exist in the literature and one of
the most important variants is to use Singular Value Decomposition (SVD) directly
on the n × m zero-mean training data matrix, X0, thus replacing Steps 3 and 4 in the
previous subsection. The advantage of using SVD is that it can often provide superior
numerical stability compared to eigendecomposition algorithms, additionally the
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Fig. 12.8 Proportion of
variance (%) of the first k
eigenvalues to the total
variance for 455 3D faces.
The first 26 most significant
eigenvalues retain 95% of the
total variance and the first
100 eigenvalues retain 99%
of the total variance [82]

storage required for a data matrix is often much less than a covariance matrix (the
number of training scans is much less than the dimension of the feature vector). The
SVD is given as

USVT = X0, (12.19)

whereU andV are orthogonal matrices of dimension n × n andm × m, respectively,
andS is a n × m matrix of singular values along its diagonal. Note that, in contrast to
the eigendecomposition approach, no covariance matrix is formed, yet the required
matrix of eigenvectors,V, spanning the most expressive subspace of the training data
is obtained. Furthermore, we can determine the eigenvalues from the corresponding
singular values. By substituting for X0 in Eq.12.15, using its SVD in Eq.12.19, and
then comparing to the eigendecomposition of covariance in Eq.12.16 we see that

D = 1

n − 1
S2. (12.20)

The proof of this is given as one of the questions at the end of this chapter. Typically
SVD library functions order the singular values from highest to lowest along the
leading diagonal allowing a suitable number of eigenvectors to be selected for the
subspace, as in Step 5 of the previous subsection.

12.10.3 PCA Testing

Once the above PCA training phase is completed, it is straightforward to implement a
simple nearest neighbor face identification scheme,within the reduced k-dimensional
space. We can also threshold a suitable distance metric to implement a face verifica-
tion scheme.
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Fig. 12.9 A two-class
classification problem in
which we wish to reduce the
data dimension to one. The
standard PCA result is given
as the black axis passing
through the pooled data
mean, and the LDA result is
given by the green axis

Each test or probe face, xp, must undergo the same transformations as the training
faces, namely subtraction of the training data mean and projection into the subspace

x̃Tp = (xp − x̄)TVk . (12.21)

Euclidean distance and cosine distance are common metrics used to find the
nearest neighbor in the gallery. Given some probe face, x̃p, and some gallery face,
x̃g , both of which have been projected into the PCA-derived subspace, the Euclidean
distance between them is given as

de(x̃p, x̃g) = ||x̃p − x̃g|| =
√

(x̃p − x̃g)T (x̃p − x̃g) (12.22)

and the cosine distance is given as

dc(x̃p, x̃g) = 1 − x̃Tp x̃g
||x̃p||.||x̃g|| . (12.23)

In both cases, a small value of the metric (preferably close to zero) indicates a good
match. In testing of a PCA-based 3D face recognition system Heseltine et al. [48]
found that, usually the Euclidean distance outperformed the cosine distance, but
the difference between the two metrics depended on the surface feature type (depth,
curvature or gradient) and in aminority of cases, the cosine distance gave amarginally
better performance.

The distance metrics described above don’t take any account of how the training
data is spread along the different axes of thePCA-derived subspace. TheMahalanobis
distance normalizes the spread along each axis, by dividing by its associated variance
to give



12 3D Face Recognition 605

dm(x̃p, x̃g) =
√

(x̃p − x̃g)TD−1(x̃p − x̃g). (12.24)

This expresses the distance in units of standard deviation. Note that the inverse of
D is fast to compute due to its diagonal structure. Equivalently, we can whiten the
training and test data, by premultiplying all feature vectors by D− 1

2 , which maps
the covariance of the training data to the identity matrix, and then Eq.12.22 for the
Euclidean distance metric can be used in this new space. Similarly, we can use the
cosine distance metric in the whitened feature space. Heseltine et al. [48] found
that using the information in D generally improved performance in their PCA-based
3D face recognition system. For many surface features, the cosine distance in the
whitened space improved on the standard cosine distance so much that it became
the best performing distance metric. This metric is also reported to be the preferred
metric in the PCA-based work of Chang et al. [17].

Finally, 3D face recognition systems often display the match between the probe
and the gallery. This can be done in terms of the original images, or alternatively the
two m × 1 3D face vectors can be reconstructed from their k-dimensional subspace
vectors as

x = Vk x̃ + x̄. (12.25)

We summarize a PCA face recognition testing phase as follows:

1. Project the test (probe) face into the PCA-derived subspace using Eq.12.21
2. For every face in the training data set (gallery), compute a distancemetric between

the probe and gallery. Select the distance metric with the smallest value as the
rank-1 identification match.

3. Optionally display the probe and gallery as reconstructions from the PCA space
using Eq.12.25.

For a verification system, we replace Step 2 with a check against the claimed identity
gallery capture only, and if the distance metric is below some threshold, then the
identity is verified. Performance metrics are then evaluated with reference to the true
identities of probe and gallery, which are generally contained with the 3D face scan
filenames. Obviously, for large-scale performance evaluations, Step 3 is omitted.

12.10.4 PCA Performance

PCA has been tested on 3D face datasets by many researchers. It is often used as
a baseline to measure the performance of other systems (i.e., reported new systems
are expected to be better than this.) As mentioned earlier, Chang et al. [16] report
the PCA performance of rank-1 recognition on the FRGC dataset as 77.7% and
61.3% for neutral and non-neutral expressions, respectively. Problems with the PCA
include (i) a vulnerability to expressions due to the holistic nature of the approach
and (ii) the difficulty to get good pose normalization, which is a requirement of the
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preprocessing stages of the method. The most time-consuming part of online face
processing is usually the pose normalization stage, particularly if automatic feature
localization and cropping is used as a precursor to this. Once we have sampled the
face scan into a standard size feature vector, its projection into 3D face space is a fast
operation (linear in the dimension of the feature vector) and, in a nearest neighbor
matching scheme, matching time is linear in the size of the gallery.

12.11 LDA-Based 3D Face Recognition

One reason that PCA-based approaches have been popular is that they can operate
with only one training example per subject. This is because it does not take account
of the per-subject (within-class) distribution of the training data. However, because
of this reason, the projection axes computed by PCA may make class discrimina-
tion difficult. Indeed, in the worst case for some surface feature type, it could be
that the very dimensions that are discarded by PCA are those that provide good
discrimination between classes. With the advent of more sophisticated datasets with
several (preferably many) 3D scans per subject, more sophisticated subspaces can
be used, which attempt to find the linear combination of features that best separates
each subject (class). This is the aim of Linear Discriminant Analysis (LDA), while
simultaneously performing dimension reduction. Thus, while PCA finds the most
expressive linear combinations of surface feature map dimensions (in the simplest
case, depth map pixels), LDA finds the most discriminative linear combinations.

Although 3D face recognition is an inherently multi-class classification problem
in a high dimensional space, it is easier to initially look at LDA for a two-class
problem in a two-dimensional space and compare it to PCA. Subsequently, we will
look at the issues involved with high dimensional feature vectors and we will also
generalize to multi-class problems.

12.11.1 Two-Class LDA

Suppose that we have the two-class, 2D problem shown in Fig. 12.9. Intuitively we
want to project the data onto a direction for which there is the largest separation of
the class means, relative to the within-class scatter in that same projection direction.

A scatter matrix is simply a scaled version of a covariance matrix, and for each
set of training scans, Cc, belonging to class c ∈ {1, 2}, they are formed as

Sc = XT
0cX0c, (12.26)

where X0c is a zero-mean data matrix, as described in Sect. 12.10.1 (although it is
now class-specific), and nc is the number of training scans in the setCc. We note that
these scatter matrices are often expressed as a sum of outer products
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Sc =
nc∑
i=1

(xi − x̄c)(xi − x̄c)T , xi ∈ Cc, (12.27)

where x̄c is the mean of the feature vectors in class Cc. Given that we have two
classes, the within-class scatter matrix can be formed as

SW = S1 + S2. (12.28)

The between-class scatter is formed as the outer product of the difference between
the two-class means

SB = (x̄1 − x̄2)(x̄1 − x̄2)T . (12.29)

Fisher proposed to maximize the ratio of between class scatter to within class scatter
relative to the projection direction [28], i.e., solve

J (w) = max
w

wTSBw
wTSWw

(12.30)

with respect to the 2 × 1 column vector w. This is known as Fisher’s criterion. A
solution to this optimization can be found by differentiating Eq. 12.30 with respect
to w and equating to zero. This gives

S−1
W SBw − Jw = 0. (12.31)

We recognize this as a generalized eigenvalue-eigenvector problem, where the eigen-
vector of S−1

W SB associated with its largest eigenvalue (J ) is our desired optimal
direction, w∗. (In fact, the other eigenvalue will be zero because the between class
scatter matrix, being a simple outer product, can only have rank 1). Figure12.9 shows
the very different results of applying PCA to give the most expressive axis for the
pooled data (both classes), and applying LDA which gives a near orthogonal axis,
relative to that of PCA, for the best class separation in terms of Fisher’s criterion.
Once data is projected into the new space, one can use various classifiers and distance
metrics, as described earlier.

12.11.2 LDA with More Than Two Classes

In order to extend the approach to a multiclass problem (K > 2 classes), we could
train K (K−1)

2 pairwise binary classifiers and classify a test 3D face according to the
class that gets most votes. This has the advantage of finding the projection that
best separates each pair of distributions, but often results in a very large number
of classifiers in 3D face recognition problems, due to the large number of classes
(one per subject) often experienced. Alternatively, one can train K one-versus-all
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classifiers where the binary classifiers are of the form subject X and not subject X.
Although this results in fewer classifiers, the computed projections are usually less
discriminative.

Rather than applying multiple binary classifiers to a multi-class problem, we can
generalize the binary LDA case to multiple classes. This requires the assumption
that the number of classes is less than or equal to the dimension of the feature space
(i.e., K ≤ m where m is the dimension of our depth map space or surface feature
map space). For high dimensional feature vectors, such as encountered in 3D face
recognition, we also require a very large body of training data to prevent the scatter
matrices from being singular. In general, the required number of 3D face scans is not
available, but we address this point in the following subsection.

The multi-class LDA procedure is as follows: Firstly, we form the means of each
class (i.e., each subject in the 3D face dataset). Using these means, we can compute
the scatter matrix for each class using Eq.12.26 or 12.27. For the within-class scatter
matrix, we simply sum the scatter matrices for each individual class

SW =
K∑
i=1

Si . (12.32)

This is an m × m matrix, where m is the dimension of the feature vector. We form
the mean of all training faces, which is the weighted mean of the class means

x̄ = 1

n

K∑
i=1

ni x̄i , (12.33)

where ni is the number of training face scans in each class and n is the total number
of training scans. The between-class scatter matrix is then formed as

SB =
K∑
i=1

ni (x̄i − x̄)(x̄i − x̄)T . (12.34)

This scatter matrix is alsom × m. Rather than finding a single m-dimensional vector
to project onto, we now seek a reduced dimension subspace in which to project our
data, so that a feature vector in the new subspace is given as

x̃ = WT x. (12.35)

We formulate Fisher’s criterion as

J (W) = max
W

|WTSBW|
|WTSWW| , (12.36)
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where the vertical lines indicate that the determinant is to be computed. Given that
the determinant is equivalent to the product of the eigenvalues, it is a measure of
the square of the scattering volume. The projection matrix, W, maps the original
m-dimensional space to, at most, K − 1 dimensions and so its maximum size is
m × (K − 1). This limit exists because SB is the sum of K outer products and
matrices formed from outer products are rank 1 or less. Additionally, only K − 1 of
these are independent due to their dependence on the overall mean x̄ of the pooled
training data. As with the two-class case, the optimal projection is found from the
generalized eigenvalue-eigenvector problem

S−1
W SBW − JW = 0, (12.37)

and the optimal projection W∗ is the one whose columns are the eigenvectors cor-
responding to the largest eigenvalues. At most, there will be K − 1 nonzero eigen-
values. In practice we select the subset of eigenvectors with eigenvalues above some
small threshold, as those close to zero provide little useful discrimination. Note that
we can only form the solution in this way if SW is non-singular and we discuss this
issue in the following subsection.

12.11.3 LDA in High Dimensional 3D Face Spaces

When applying LDA to 3D face recognition, we have to address the problems asso-
ciated with working in high dimensional spaces. In [49], for example, range maps of
60 pixels wide and 90 high are employed to give feature vectors of lengthm = 5400.
Thus the scatter matrices, both SW and SB are extremely large (dimension m × m)
and worse still, due to the typically small number (10–100) of training images per
class, they are singular (non invertible). This is referred to as LDA’s small sample
size problem. The more traditional approach to dealing with this is to initially apply
PCA as a dimensional reduction stage, before LDA can proceed, as was done in
Belhumeur et al.’s [6] seminal work in 2D face recognition and later in 3D face
recognition work [40, 47, 49].

If the total number of pooled training vectors is n, then the rank of SW is at most
k = n − K . Thus, PCA can be applied to the data and the k eigenvectors with the
largest eigenvalues are selected to give the m × k projection matrix Vk . This is then
reduced to K − 1 dimensions using the LDA-derived k × (K − 1) projectionmatrix,
as described in the previous subsection.

Assuming that 3D faces can be represented as an m-dimensional vector, we can
summarize this approach with the following training steps:

1. Determine the projectionmatrix of a PCA-derived subspace, of dimension n − K ,
as described in Sect. 12.10.

2. Project all of the 3D faces that constitute the training data into this subspace.
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3. Form the within-class and between-class scatter matrices of the training data in
this reduced dimension PCA-derived subspace, as described in Sect. 12.11.2.

4. Determine the smaller (maximum dimension K − 1) LDA-derived subspace of
this PCA subspace by solving the generalized eigenvalue-eigenvector problem in
the form of Eq.12.37.

5. Project the training data from the PCA subspace into the LDA subspace.

Then, when we wish to classify a 3D face scan (a probe), it must be projected
into the new space. Therefore, we combine the two projections by multiplying them
together, and each probe feature vector is mapped directly into the smaller subspace
(of maximum dimension K − 1) as

x̃p = WTVT
k (xp − x̄). (12.38)

Although this approach can often give better results than PCA alone when there
is enough training data within each class, a criticism of this two-stage approach is
that the initial PCA stage could still discard dimensions that have useful discrim-
inative information. Therefore, more recent approaches to applying LDA to high
dimensional approaches have tried to avoid this and these techniques go under var-
ious names such as direct LDA. It is worth noting, however, that for some of these
approaches there have been different viewpoints in the literature (e.g., in [108] and
[36]) and we encourage the reader to investigate direct approaches after becoming
comfortable with this more established two-stage approach.

12.11.4 LDA Performance

The work of Heseltine et al. [47] shows that LDA can give significantly better perfor-
mance than PCAwhenmultiple scans of the same subject are available in the training
data, although this work predates the wide use of benchmark FRGC 3D face data.
As with PCA, the most computationally expensive process is usually pose normal-
ization. Again, projection into a subspace is a fast operation (linear in the dimension
of the feature vector) and, in a nearest neighbor matching scheme, matching time is
linear in the size of the gallery.

12.12 Normals and Curvature in 3D Face Recognition

When PCA, LDA, and other techniques are applied to 3D face recognition problems,
surface features are often extracted. The simplest of these are related to the differential
properties of the surface, namely the surface normals and the surface curvature. In
normalmaps, eachpixel value is representedby the surface normal.Gokbert et al. [40]
used the normal vectors in Cartesian form (nx , ny, nz) and concatenated them to
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Fig. 12.10 Top row: a range image (Z values) and its normal maps of elevation φ and azimuth θ

angles. The three (Z , φ, θ) values rendered as an RGB image. Bottom row: normal maps of x, y,
and z normal components. The three (X, Y, Z ) values rendered as an RGB image

perform PCA-based 3D face recognition. Note that this form has redundancy and a
more compact way is to use the spherical coordinates, (θ, φ), which are the elevation
and azimuth angles, respectively. Normals can be computed using the cross product
on the mesh data and Max [68] provides an efficient way of doing this over the full
mesh. Alternatively, we can fit a planar surface using orthogonal least-squares to the
spherical neighborhood of a 3D point or range pixel. This is implemented via SVD
and the eigenvector with the smallest eigenvalue is the surface normal. Figure12.10
shows sample images of normal maps of a 3D face.

Surface normals can capture minor variations in the facial surface, however, being
first order derivatives, they aremore sensitive to noise compared to depthmaps.Often,
to overcome this problem, the 3D face is smoothed before computing the normals,
or the normals are computed over a larger neighborhood. In either case, the ability
of surface normals to capture subtle features is somewhat attenuated.

The surface normals of a shape can be represented by points on a unit sphere. This
sphere is often called the Gaussian sphere. By associating weights to the normals
based on the surface area with the same normal, an extendedGaussian image (EGI) is
formed [51]. The EGI cannot differentiate between similar objects at different scales
which is not a major problem in 3D face recognition. Another limitation, which can
impact face recognition, is that the EGI of only convex objects is unique and many
non-convex objects can have the same EGI. To work around this limitation, Lee and
Milios [62] represent only the convex regions of the face by EGI and use a graph
matching algorithm for face recognition.

Curvature-based measures, which are related to second-order derivatives of the
raw depthmeasurements, have also been used to extract features from3D face images
and these measures are pose invariant. Several representations are prominent in this
context, most of which are based on the principal curvatures of a point on a three-
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1 2k k

Fig. 12.11 Maximum (left) and minimum (right) principal curvature images of a 3D face

dimensional surface. To understand principal curvatures, imagine the normal on a
surface and an infinite set of planes (a pencil of planes) each of which contains this
normal. Each of these planes intersects the surface in a plane curve and the principal
curvatures are defined as the maximum curvature, κ1, and minimum curvature, κ2,
of this infinite set of plane curves. The directions that correspond to maximum and
minimum curvatures are always perpendicular and are called the principal directions
of the surface. Principal curvatures are in fact the eigenvalues of the Weingarten
matrix, which is a 2 × 2matrix containing the parameters of a quadratic local surface
patch, fitted in a local plane that is aligned to the surface tangent plane. Figure12.11
shows images of the maximum and minimum curvatures of a 3D face. Tanaka et
al. [98] constructed a variant of the EGI by mapping the principal curvatures and
their directions onto two unit spheres representing ridges and valleys, respectively.
Similarity between faces was calculated by Fisher’s spherical correlation [33] of their
EGIs.

Gaussian curvature, K , is defined as the product of these principal curvatures,
while mean curvature, H , is defined as the average, i.e.,

K = κ1κ2, H = κ1 + κ2

2
. (12.39)

Both of these are invariant to rigid transformations (and hence pose), but only Gaus-
sian curvature is invariant to the surface bending that may occur during changes
of facial expression. Lee and Shim [63] approximated 3 × 3 windows of the range
image by quadratic patches and calculated the minimum, maximum, and Gaussian
curvatures. Using thresholds, edge maps were extracted from these curvatures and
a depth weighted Hausdorff distance was used to calculate the similarity between
faces. Using depth values as weights, in fact, combines the range image with the
curvatures giving it more discriminating power. The advantages of combining depth
with curvature for face recognition have been known since the early 90’s [41].
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The shape index was proposed by Koenderink and van Doorn [60] as a surface
shape descriptor. It is based on both principal curvatures and derived as

s = 2

π
arctan

(
κ2 + κ1

κ2 − κ1

)
(−1 ≤ s ≤ +1). (12.40)

It can be thought of a polar description of shape in the κ1 − κ2 plane, where different
values distinguish between caps, cups, ridges, valleys, and saddle points. Since a
ratio of curvatures is used in Eq.12.40, the size of the curvature is factored out and
hence the descriptor is scale invariant. Koenderink and van Doorn combine the prin-
cipal curvatures in a different measure to measure the magnitude of the curvature,

which they called curvedness, c, where c =
√

κ2
1+κ2

2
2 . Since principal curvatures are

pose invariant, the shape index is also pose invariant. Lu et al. [66] used the shape
index to find a rough estimate of registration which was then refined with a vari-
ant of the ICP algorithm [7]. In their earlier work, they also used the shape index
map of the registered faces for recognition along with the texture and the Cartesian
coordinates of the 3D face. This is an example where curvatures are combined with
the point cloud, instead of the range image, for face recognition. Thus, we can con-
clude that curvatures offer viewpoint invariant and localized features that are useful
for face alignment and matching. Moreover, face recognition performance generally
improves when curvature-based features are combined with the range image or point
cloud.

Samir et al. [87] represented a 3D face with continuous facial curves which were
extracted using a depth function.Wecan think of these curves as the intersection of the
3D facewith planes orthogonal to the camera and at different depths. Face recognition
was performed bymatching their corresponding facial curves using geodesic distance
criteria [59].Although, the facial curves of a face changewith changes in the curvature
of different identities, they are not completely invariant to pose [87]. Figure12.12
shows a sample 3D face with facial curves.

12.12.1 Computing Curvature on a 3D Face Scan

Here we present a standard technique for computing curvatures on a 3D face scan.
We assume that we start with a preprocessed mesh, which has spikes filtered and
holes filled. Then, for each surface point, we implement the following procedure:

1. Find the neighbors within a local neighborhood, the neighbor set includes the
point itself. The size of this neighborhood is a trade-off that depends on the scan
resolution and the noise level. We can use connectivity information in the mesh
or the structure in a range image to compute neighborhoods quickly. Otherwise,
some form of data structuring of a point cloud is required to do a fast cuboidal
region search, usually refined to a spherical region. Typically k-d trees and octrees
are employed and standard implementations of these can be found online.
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Fig. 12.12 Facial curves
mapped on the range image
of a face [87]. These are the
intersection of the 3D face
with planes orthogonal to the
camera, at different depths

2. Subtract the mean of the point cloud from all points in the set and then use
eigendecomposition, via SVD, to fit a plane to this zero-mean point set. The
eigenvector with the smallest eigenvalue is the estimated surface normal. The
other two eigenvectors lie in the estimated tangent plane and can be used as a
local basis.

3. Project all neighbors into this local basis. (This is the same procedure as was
outlined for a full face scan in Sect. 12.10.1).

4. Recenter the data on the surface point.
5. Using least-squares fitting, fit a local quadratic surface patch, z = A

2 x
2 + Bxy +

C
2 y

2, where [x, y, z]T are the neighboring points expressed in the recentered local
basis and [A, B,C]T are the surface parameters to be found by least-squares.

6. Form the Weingarten matrix as

W =
(
A B
B C

)
. (12.41)

7. Determine the principal curvatures, κ1, κ2 as the eigenvalues of the Weingarten
matrix.

8. Form the Gaussian curvature, mean curvature, and shape index, as required, using
Eqs. 12.39 and 12.40

Of course, there are many variants of this approach. For example, in Step 2, it is faster
to compute normals using cross products withinMax’s method [68] rather than using
SVD, in which case we would use an arbitrary local basis to do the quadratic surface
fit.
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This section concludes the generic tutorial part of the chapter, we now go on to
outline a selection of more specific advanced approaches.

12.13 A Selection of Classical Techniques in 3D Face
Recognition

In this section, we present a selection of five classical (i.e., not deep learning) tech-
niques in the field of 3D face recognition published in the 2010s decade. These are
presented in chronological order and include: (i) Fusion of multiple region classi-
fiers [94]; (ii) Iterative closest normal points [72]; (iii) Use of radial curve features
[27]; (iv) A registration-free approach using keypoints [64] and (v) An approach that
employs a Genetic Algorithm to select nasal patches [29]. We describe more recent
deep learning approaches that use neural networks later, in Sect. 12.14.

12.13.1 Fusion of Multiple Region Classifiers

Spreeuwers [94] presented a method that uses registration to an intrinsic coordinate
system and fusion of multiple region classifiers. The intrinsic coordinate system
requires an origin and three angles to be defined. The former is defined by the tip of
the nose and the latter uses two angles defined by the bilateral (sagittal) symmetry
plane, and a third is either defined by the slope of the bridge of the nose or the line
between the nasion and subnasale (both are used and the results are fused). These
features are chosen for intrinsic registration, as they are relatively stable under facial
expression. Standard depth images are generated from both registration methods.

A set of 30 overlapping regions are defined, as shown in Fig. 12.13, where the
white area is the included part of the depthmap. Ideally, independence of all regions is
desired, but this would create smaller lower accuracy classification regions, and so a
certain amount of overlap is accepted in the manual region specification. Regions are
designed on the basis of their anticipated stability. For example, hair and spectacles
often cause problems, as does the lower part of the face due to expression variation.

A PCA-LDA likelihood ratio classifier is employed for matching of individual
regions to gallery subjects, and the scores from each individual region are fused into
a single score, using simple majority voting, in order to make a match decision.
Excellent rank-1 identification performance of 99% was reported for the first versus
all test over the FRGC v2 dataset. A verification rate of 94.6% at 0.1% FAR was
reported for the all versus all verification test. Later, the author introduced a set of
optimisations to the method [95] to upgrade this performance figure significantly to
99.3%, with the identification rate increasing to 99.4%.
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Fig. 12.13 Regions used in
the fusion of multiple region
classifiers. Figure courtesy
of [94]

12.13.2 Iterative Closest Normal Points

Given an algorithm that can find high quality 3D correspondences between facial 3D
images, Mohammadzade and Hatzinakos [72] show that Linear Discriminant Anal-
ysis (LDA) can provide excellent recognition results with good robustness to facial
expressions. In effect, LDA can find subject-specific expression-invariant regions of
the face.

There are several standard preprocessing steps in the approach, such as nose detec-
tion, denoising, and pose alignment. However, the key contribution in this approach
is to find good correspondences across the training dataset of faces. This takes inspi-
ration from the ICP algorithm [7] and is called the Iterative Closest Normal Points
(ICNP) algorithm. One 3D image is randomly selected to be the template (source)
mesh, to be deformed to all other (target) meshes in the dataset. The aim of doing
this is to have correspondences across the whole dataset to allow PCA and LDA to
be applied. Correspondences are determined, as follows:

1. For every point in the source, find the closest point in the target.
2. The closest target point for some source point defines a search window on the

target mesh, over which to search for the closest normal ([72] employs a 10mm
by 10mm search window on a depth map).

3. The vectors that map source points to target points thus form a noisy 3D motion
field, which can be filtered to give a smooth motion field. This is done by applying
a 2D Wiener filter over the depth map, with the filter using a support region of
20mm by 20mm. Note that motion vectors at the boundary of the face cannot be
filtered with such a window, and so boundary motion is interpolated using nearest
neighbors.
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4. The displacement vectors of the motion field can then be added to their corre-
sponding reference points in the template to find approximate correspondences,
and clearly these may not lie on the target surface, so another nearest point search
is required to establish correspondences.

5. Correspondences are used to update the alignment and SVD can be used, as with
standard ICP.

The steps above are repeated until the magnitude of the rotation in the final rigid
alignment step falls below some threshold.

The FRGC ROC III verification experiment was included in the evaluations,
employing LDA (preceded by PCA for dimension reduction) for multiple captures
of each subject in the gallery, thus minimizing the ratio of within-class variance to
between class variance along the optimal projection direction. This was done for
both point coordinates and surface normals and it was found that the use of normals
significantly outperformed the use of point coordinates. At a FARof 0.1% themethod
achieves a 99.9% verification rate for neutral expressions, when four or more scans
are employed per gallery subject. For probes with expressions, the method achieves
a 98.5% verification rate, but requires six or more scans per gallery subject to achieve
this (with four gallery scans a 96.2% verification rate was achievable).

12.13.3 3D Face Recognition Using Radial Curves

Drira et al. [27] propose a 3D face recognition solution that is robust to expres-
sions and occlusions using a local representation consisting of radial curves ema-
nating from the detected nose tip. Curves are chosen as local features due to the
efficiency of deformable curve matching—the curves being deformed being depen-
dent on expression. The fact that the curves are radial permits a selection of them
to represent regional shapes. (Other types of curves have been employed, such as
isoradius contours, that orbit the nose tip at a set of predefined radii [80, 81].)

Radial curves are extracted by intersecting a pencil of planes, with the pencil
axis parallel to the Z (depth) axis and intersecting the nose tip. A quality filter
heuristic is used to filter occluded curves, which should have one continuous piece
and should have a length greater than some threshold (70mm). An elastic shape
analysis framework is presented for analyzing the filtered radial curves. When both
corresponding radial curves from a pair of 3D images pass the quality filter, they are
matched using an elastic distance computation and an average distance is computed
over all matching pairs. Evaluation of the FRGCv2 dataset gives a rank-1 recognition
performance of 97%.Additionally, in the ROC III verification test for FRGC v2, 97%
is achieved.
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Fig. 12.14 Overview of a registration-free approach using matching of 3D keypoint descriptors.
Figure courtesy of [64]

12.13.4 A Registration-free Approach Using Matching of 3D
Keypoint Descriptors

Li et al. [64] present a registration-free approach based on keypoints and an overview
of the approach is shown in Fig. 12.14. Three stages are employed: keypoint detec-
tion, keypoint description, and keypoint matching. Keypoint detection uses the stan-
dard approach of the two principal curvatures, although saliency of keypoints is
incorporated using a scale-space approach, extracted using a set of Gaussian fil-
ters over the face mesh. Three keypoint descriptors are employed and evaluated,
namely: (i) Histogram of Gradient (HOG), (ii) Histogram of Shape index (HOS),
and (iii) Histogram of Gradient of Shape index (HOGS). Additionally, all three are
combined into a single descriptor, which is named as a Histogram ofMultiple surface
differential Quantities (HOMQ). This descriptor is constructed in a similar spirit to
SIFT-like descriptors, with a canonical direction for the descriptor being computed
and eight local region descriptor histograms being concatenated onto the central local
region. This is performed in a consistent rotational (spin) direction starting from that
canonical direction, as illustrated in the quasi-daisy spatial configuration shown in
Fig. 12.14 (center). To enable matching, a descriptor dictionary is constructed that
concatenates all of the keypoint descriptors for all of the subjects in the gallery. The
idea is then to express the descriptors of some probe as a reconstruction using a
sparse selection of the dictionary descriptors. Images from the same person share a
large set of keypoints with similar geometric characteristics and so, for any descrip-
tor of the probe face, there is a high probability of selecting the descriptors of the
matching gallery face. This approach is more robust to occlusions than the much
simpler approach of just counting the number of matching descriptors.

The primary evaluation is performed on the Bosphorus dataset. This has an advan-
tage over the FRGC dataset in the sense that it can test the system’s robustness to
occlusions. Rank-1 recognition rates of 96.56%, 98.82%, 91.14%, and 99.21% are
achieved on the entire database, and the expression, pose, and occlusion subsets,
respectively. The system is also evaluated on FRGC v2 using a first versus all proto-
col and a 96.3% rank-1 identification rate is achieved.
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12.13.5 GA-based Nasal Patch Selection for
Expression-Robustness

The nasal region is a relatively rigid part of the face and so has been targeted
for expression-robust algorithms, with a recent approach by Emambakhsh and
Evans [29]. The method generates an accurate 7-point landmarking of the nasal
region. This is employed in an interpolation scheme to upscale the number of land-
marks by around a factor of 10. (In Morphometrics, these interpolated surface points
are termed semi-landmarks.) The augmented set of landmarks define sampling points
within the nasal region which form the centers of small (7mm radius) spherical crop-
ping regions. These nasal patches are then candidate depth map parts over which to
generate descriptive features. Features vectors are constructed as histograms of the
normal vectors of the Gabor-filtered depth map, see [29] for full details. In training,
there is a feature selection process, based on a Genetic Algorithm, that aims to select
a set of nasal patches and Gabor filter scales that are robust against facial expres-
sions. The Mahalanobis cosine distance is used to check the robustness of the match
between neutral and non-neutral expressions.

Emambakhsh and Evans [29] present a complex set of processes in their paper.
Its practical, multi-stage approach is highly heuristic and, in that sense, it is in sharp
contrast to generic deep learning approaches that are trained end-to-end. Neverthe-
less, it gives good results on the FRGC v2.0 dataset. In the identification scenario,
they achieved a Rank-1 Recognition Rate (R1RR) of 97.9%, with 98.45% and 98.5%
for neutral and non-neutral probes, respectively. In verification, they achieved a 2.4%
Equal Error Rate (EER) and a True Positive Rate (TPR) of 93.5% at a 0.1%FAR in
the ROC III experiment.

12.14 Deep Learning Approaches to 3D Face Recognition

In recent years, deep learning has proved to provide state-of-the-art solutions tomany
problems in image classification, speech recognition, and natural language process-
ing. Many researchers date the modern deep learning revolution back to 2012 when
the AlexNet paper [61] on image classification was published. Essentially, applica-
tion of this powerful technology involves the formulation of optimisation problems
that have well-behaved differentials, thus enabling gradient descent to function well.
In contrast to classical approaches that use human-designed (handcrafted) features,
deep learning approaches learn the best hierarchical set of features that optimizes
classification performance, and so is a form of representation learning. In many
domains, given sufficient (possibly augmented) training data, deep learning outper-
forms classical systems with handcrafted features. This is because handcrafted fea-
tures are almost always suboptimal for the classification task. Convolutional Neural
Networks (CNNs) have proved to be particularly successful in 2D image classifica-
tion tasks, and they are well-suited to the grid-like structure of the array of pixels
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in such images. It is possible to represent 3D data in grid-like structures; in particu-
lar voxel representations or view-specific depth map representations, although there
are disadvantages with both of these approaches. For example, many voxels can be
empty, leading to inefficiency.

The size of 3D face datasets tends to be much smaller than 2D face datasets and
there are many more 2D face images than 3D that can be harvested from the web.
This has allowed deep Convolutional Neural Networks (CNNs) to be readily trained
for 2D face recognition, but often there is insufficient data for 3D network training. In
the following, we overview two deep learning approaches to 3D face recognition, the
first uses transfer learning from the 2D to the 3D domain and the second employs 3D
face data augmentation via model-based 3D face synthesis and 3D face interpolation.

12.14.1 Deep 3D Face Identification by Transfer Learning

As mentioned, large volume 2D face image data is much more readily available
to train deep networks for 2D face recognition. Recently, Kim et al. [58] adapted
the publicly available VGG 2D face recognition solution [77] to 3D using transfer
learning.Aprocess of 3Ddata augmentation adds both pose variations and expression
variations to existing data. This requires fitting a 3D Morphable Model (3DMM) to
the data, and the Basel Face Model [79] is employed. Small random pose variations
are straightforward to add after the model has been fitted to the data. Expressions can
then be added using the FaceWarehouse [14] 3D facial expression database. Finally,
the model with expression is orthogonally projected back into a depth map. Missing
or occluded parts are simulated by placing eight 18 by 18 pixel patches at random
positions on each depth map, thus preventing overfitting to specific regions of the
face.

In the transfer learning process, the last fully connected layer (FC8) of the VGG
network is replaced with a new fully connected layer and a softmax layer with
the size of the number of subjects in the training data. The new layer is randomly
initialized and the learning rate of the new layer is an order of magnitude higher
than the transferred layers (0.01 vs. 0.001). The FRGC and CASIA datasets are
used for training and the system is tested on Bosphorus, BU3DFE, and 3D-TEC
datasets. State-of-the-art rank-1 identification accuracies are obtained for Bosphorus
and 3D-TEC (case I) with scores of 99.2% and 94.8%, respectively.

Our commentary on this work is that its strength is in the 3D data augmenta-
tion. However, one could argue that the optimal CNN features in 3D facial images
may be quite different from 2D, as 3D depth maps appear much smoother than 2D
facial images, i.e., the spatial frequencies are situated in lower frequency bands. Fur-
thermore, recent discussion in the deep learning community suggests that unlearnt
random weights in CNNs can provide quite good performance as feature extractors,
as long as the classifying back end of the network is well trained. Therefore, using
networks trained on 2D images to perform 3D face recognition is likely to be sub-
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Fig. 12.15 The Fr3dNET deep 3D face recognition network. Figure courtesy of [38]

optimal as 3D data has its own peculiarities defined by the underlying shape and
geometry.

12.14.2 Large-scale 3D Face Recognition, Trained from
Scratch

Gilani and Mian [38] propose the first deep CNN model designed specifically for
3D face recognition. The publicly available Fr3dNET network, shown in Fig. 12.15
is trained from scratch on over 3 Million 3D facial images, with over 100K distinct
identities.

Due to the lack of availability of large-scale 3D images, data augmentation is
a key enabling process to train a deep 3D face recognition network. Real 3D face
images of 1785 individuals are used in the first stage. Pairs of individuals are selected
that have a large shape difference, in terms of the bending energy required to deform
one to the other. Just over 90.1K pairings are used from the possible 499.5K. New
images are then generated that are in the span of the selected pair, which requires that
the shapes are in correspondence and the approach of Gilani et al. [39] is employed.
The advantage of this approach over sampling from a 3DMorphable Model, such as
the Basel Face Model [79], is that more high frequency detail is retained.

In the second stage, commercial software4 is employed that generates densely
corresponded faces of 300 identities with varying facial shapes, each in four different
expressions with three intensity levels. In this stage, faces are paired that are similar
(i.e., small bending energy mapping), motivated by the fact that similar faces must be
generated to enable a 3D face recognition system to be trained to a high real-world
accuracy. Using linear spans of the pairings, 9950 new identities are generated.

Finally, pose variations are simulated in each 3D scan by deploying 15 synthetic
cameras on a hemisphere in front of the 3D face, with self-occluded points being
removed by applying a hidden point removal algorithm. The final result is over 3
million 3D images of over 100K identities, as follows: 1785 identities, with a single

4Singular Inversions, Facegen Modeller, www.facegen.com.

www.facegen.com
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expression and 15 poses, 90.1K identities from dense correspondence modeling,
with 2 expressions and 15 poses, and 8120 identities with 12 expressions and 15
poses from the synthetic face generation process.

Depth maps are created with the image centered on the detected nose tip, and
surface normals are also computed as elevation and azimuth angles to give a 3-
channel gridded input to a CNN. The CNN architecture is based on the VGG network
[77], but it is noted that 3D facial images are generally of significantly lower spatial
frequency than 2D facial images, and therefore, it is proposed that a larger kernel
size (7 × 7) is used for CNN filters. The feature vectors of length 1024 from the FC7
layer are employed for face recognition using the cosine distance between probe and
gallery faces.

The authors also propose a protocol for merging public 3D face datasets and they
call this dataset LS3DFace for 3D recognition system testing. The dataset has 1853
identities with 31860 images, and samples data from 10 existing 3D face datasets,
which are the first 10 in Table12.1. The authors achieve an end-to-end rank-1 recog-
nition rate of 98.74% on 27K of these probes, significantly outperforming other face
recognition techniques trained and tested using the same datasets.

12.15 Research Challenges

After more than two decades of extensive research in the area of 3D face recognition,
new representations, new techniques, and new deep learning architectures that can
be applied to this problem are continually being released in the literature. A number
of challenges still remain to be surmounted.

Facial expressions remain a challenge as existing techniques often lose important
information in the process of removing facial expressions or extracting expression-
invariant features. Although small to medium pose variations can be handled by
current 3D face recognition systems, large pose variations often cannot, due to sig-
nificant self-occlusion. In systems that employ pose normalization, this will affect
the accuracy of pose correction and, for any recognition system, it will result in large
areas of missing data. For head yaw rotations, this may be mitigated by the fact that
the symmetrical face contains redundant information for discrimination. Additional
problems with capturing 3D data from a single viewpoint include noise at the edges
of the scan and the inability to reliably define local regions (e.g., for local surface fea-
ture extraction), because these become eroded if they are positioned near the edges
of the scan. Dark and specular regions of the face, such as the eyes, offer further
challenges to the acquisition and subsequent preprocessing steps.

In addition to sensor technology improving, we expect to see improved 3D face
datasets, with larger numbers of subjects and larger number of captures per subject,
covering a very wide range of pose variation, expression variation, and occlusions
caused by hair, hands, and common accessories (e.g., spectacles, hats, scarves, and
phone). We expect to see publicly available datasets that start to combine pose vari-
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ation, expression variation, and occlusion thus providing an even greater challenge
to 3D face recognition algorithms.

Passive techniques are advancing rapidly, for example, some approaches may
no longer explicitly reconstruct the facial surface but directly extract features from
multiview stereo images. Of course, with a much increased input data size associ-
ated with high resolution images, an increase in computational power is required. 3D
video cameras are also appearing in the market opening up yet another dimension for
video-based 3D face recognition, known as 4D face recognition. Here dynamic facial
expression changemay be a useful biometric cue. Outdoor recognition is particularly
challenging due to the highly variable interference of sunlight. Additionally, recog-
nition at larger distances is particularly challenging and may require time-of-flight
imaging mechanisms rather than those that rely on triangulation over a relatively
small baseline.

12.16 Concluding Remarks

In this chapter, we presented the basic concepts behind 3D face recognition algo-
rithms. In particular, we looked at the individual stages in a typical 3D face scan
processing pipeline that takes raw face scans and is able to make verification or
identification decisions. We presented a wide range of literature relating to all of
these stages. We explained several well-established 3D face recognition techniques
(ICP, PCA, and LDA) with a more tutorial approach and clear implementation steps
in order to familiarize the reader with the most well-established techniques in 3D
face recognition, presented in a tutorial style. We also presented a selection of five
classical advanced methods published in the last decade that have shown promis-
ing recognition performance on benchmark datasets, and two recent approaches that
employ deep learning.

12.17 Further Reading

The interested reader is encouraged to refer to the original publications of the meth-
ods described in this chapter, and their references, for more details concerning the
algorithms discussed here.

There are several existing 3D face recognition surveyswhich give a good overview
of the field, for example, a recent by Zhou and Xiao [110]. A survey of local feature
methods for 3D face recognition is given by Soltanpour et al. [93] and a compre-
hensive performance evaluation of 3D local feature descriptors is given by Guo et
al. [44].No doubt further surveys on 3Dand 3D/2D face recognitionwill be published
periodically in the future.

In addition, the website www.face-rec.org [42] provides a range of information
on all common face recognition modalities. Several of the chapters in this book are

www.face-rec.org
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highly useful to the 3D face recognition researcher, particularly those that include
detailed discussions on 3D image acquisition, surface representations, 3D features,
shape registration, and shapematching. For good general texts on pattern recognition
and machine learning, we recommend the texts of Duda et al. [28] and Bishop [8].

12.18 Questions

1. What advantages can 3D face recognition systems have over standard 2D face
recognition systems?

2. How can a 3D sensor be used such that the 3D shape information that it generates
aids 2D face recognition? Discuss this with respect to the probe images being 3D
and the gallery 2D and vice-versa.

3. What are the main advantages and disadvantages of feature-based 3D face recog-
nition approaches when compared to holistic approaches?

4. Outline the main processing stages of a classical (nonneural) 3D face recognition
system and give a brief description of the primary function of each stage. Indicate
the circumstances under which some of the stages may be omitted.

5. Briefly outline the main steps of the ICP algorithm and describe its advantages
and limitations in the context of 3D face recognition.

6. Describe the steps of the Iterative Closest Normal Point (ICNP) algorithm [72]
and contrast it with the ICP approach.

7. Provide a short proof of the relationship between eigenvalues and singular values
given in Eq.12.20.

8. Compare and contrast PCA and LDA in the context of 3D face recognition.
9. Why has deep learning been applied to 2D face recognitionmuch earlier andmore

extensively than 3D face recognition?

12.19 Exercises

In order to do these exercises, you will need access to the FRGC v2 3D face dataset.

1. Build (or download) some utilities to load and display the 3D face scans stored
in the ABS format files of the FRGC dataset.

2. Implement the cropping, spike removal, and hole filling preprocessing steps as
described in Sect. 12.8. Apply them to a small selection of scans in the FRGC v2
data and check that they operate as expected.

3. Implement an ICP-based face verification system, as described in Sect. 12.9 and
use the preprocessed scans as input.

4. Implement a PCA-based 3D face recognition system, as described in Sect. 12.10,
using raw depth data only and compare your results with the ICP-based system.
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5. Use a facial mask to only include the upper half of the 3D face scan in training
and testing data. Rerun your experimentations for ICP and PCA and compare
them with your previous results, particularly with a view to those scans that have
non-neutral facial expressions.

6. Implement the Iterative Closest Normal Point (ICNP) algorithm [72] and test its
verification performance on the FRGC dataset under the ROC III protocol [82].
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Chapter 13
3D Digitization of Cultural Heritage

Gabriele Guidi and Bernard D. Frischer

Abstract The chapter first analyzes the reasons for digitizing Cultural Heritage
(CH), tracing the history of applying 3D technologies for the purpose of digitizing
CH, and reviewing the current state of the art in the field. A detailed survey is
offered for the digitization of different types of both tangible and intangible CH.
The latter includes a section about the 3D digitization of damaged or no-longer
existing CH monuments for the purpose of creating 3D hypotheses of restoration
and reconstruction in virtual archaeology. Amethodological section points out which
3D technologies are used in the field and how they can be best applied, taking into
account digitization approaches appropriate to the different classes of CH object as
well as the relative strengths and weaknesses of the various technologies. This is
followed by a discussion of how CH can be modeled from raw data, and a section
about the different 3D processing pipelines that can be implemented through active
or passive 3D sensing techniques. Finally, a detailed section treats the creation of
a 3D content repository for CH, taking into account both the relevant articulated
metadata as well as the ways 3D data are stored and visualized for online access.

13.1 Introduction

Digitizing cultural heritage in order to generate 3Dmodels of objects such as statues,
buildings, cities, and even larger territories has become increasingly common during
the past twenty years. Although coming from the technical domains of Optoelec-
tronics, Computer Vision, Computer Graphics, Geomatics, and Virtual Reality, the
technologies for 3Dmodeling in the real world have been adopted by several areas of
the Humanities and Social Sciences including, e.g., Archaeology, Art History, Archi-
tectural History, Egyptology, and Paleontology. More recently, 3D digitization has
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also become a topic of interest in the field of Archival Science, owing to its useful-
ness in documenting heritage artifacts. An early paper in this field [133] presciently
foresaw that digitizing cultural heritage would have multiple purposes.

For this reason, in this introduction, we will give an updated summary of possible
answers to the motivations behind the 3D digitization of cultural heritage, discussed
in Sects. 13.1.1–13.1.8.

The rest of the chapter is divided into 7 sections (numbered 2 to 8). In Sect. 13.2,
an overview of previous work about 3D digitization of cultural heritage is presented,
subdividing the vast domain of cultural heritage by typology: tangible ( 13.2.1), intan-
gible ( 13.2.2), and no-longer extant ( 13.2.3). Section13.3 illustrates technologies
and methods for 3D digitization of cultural heritage, with specific emphasis on 3D
data capture (13.3.1), 3D modeling (13.3.2) as well as storage and visualization
from accessible repositories ( 13.3.3). Section13.4 is about how one of the meth-
ods described in Sect. 13.2 can be used in practice, showing an applicative example.
Section13.5 points out the open challenges in the field. Section13.6makes some con-
cluding remarks, Sect. 13.7 provides a list of further readings, and Sect. 13.8 poses
questions for a possible test on this topic. We begin with the fundamental question:
why should we digitize cultural heritage?

13.1.1 Visualization and Interaction

Creating a 3D model of an existing heritage artifact, building, or site means “vir-
tualizing” the monument in order to permit a user to visualize it and interact with
it in different ways. From a simple 3D viewer showing a model on the screen of a
computer to a virtual visit through a stereoscopic head-mounted display, the purpose
is always to show the geometrical and visual qualities of the object through its digital
simulacrum, supporting different levels of immersivity into the digital 3Dworld. The
virtual model has a variety of potential uses—uses to which the original can rarely,
if ever be put. For example, once we have a virtual model of a statue in a museum,
we can recontextualize the work of art into a virtual model of the place where it
was originally located (e.g., a sculpture now in a museum can be virtually, but for
practical reasons hardly ever physically, restored to the chapel of a church for which
it was originally created). A collection of virtual models of works of art that are
logically connected but physically dispersed (e.g., the oeuvre of a sculptor scattered
in many museums) can be brought together in a virtually created space resembling a
museumgallery or exhibition hall that never actually existed.Moreover, visualization
and interaction are the first functions required to make possible a number of other
applications of a 3D model such as those described in the following subsections.
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13.1.2 Remote Visit

When a cultural heritage asset is located in sites not easily reached for some reason,
a digital model can be the best way to make possible the experience of a visit. Such
reasons may range from (i) dangers to visitors (e.g., during wartime); (ii) temporary
closure owing to restoration work; (iii) impact on a fragile object or environment
of a massive public presence; (iv) inaccessibility of the location (e.g., on the top of
a roof, at the bottom of the sea, or in the interior chamber of an Egyptian pyramid
closed to the public); and (v) budgetary limitations making it impractical for a given
person to visit a site. Even when these factors are not operative and the tourist is able
to arrive at a cultural heritage site, preceding the visit with the use of a virtual model
can quickly provide the background needed to improve comprehension of the site so
that the experience of actually visiting it is enriched and perhaps speeded up, thereby
increasing the museum’s capacity to accommodate more visitors. In any case, the
virtual model does not replace the original but complements it.

13.1.3 Study and Research

Documenting the surviving evidence of tangible heritage has traditionally been the
starting point of any scholar in fields of the Humanities and Social Science such as
Archaeology, Art History, or Architectural History. Since the nineteenth century, the
typical tool for quick and effective documentation has been photography, a tool that
is still effective for showing bi-dimensional objects such as paintings or aerial views
of archaeological sites. But when a cultural object has more geometrical complexity
such as, for example, a statue in the round, a photograph of it is generally inadequate
to the task of full documentation. In addition, the metric representation of an object
in a photograph can be done by including a scale in the image, but this form of
scaling yields a rough approximation as compared to the submillimeter accuracy
that can be obtained by a digital model generated with a 3D digitization technology.
Depending on the field, this lack of accuracy may lead to a lack of information and
to a resultant misinterpretation. Examining an artifact, building, or site through its
3D digital model makes it possible to navigate, section, see through, measure, and
compare the heritage artifact in a way that would not be possible even with the actual
physical object. This allows scholars from any part of the world to study in depth
heritage assets located even very far fromwhere they live, using all the tools available
on their computers for an objective and quantitative analysis.
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13.1.4 Digital Restoration and Reconstruction

Once a heritage artifact has its digital counterpart, different modifications or integra-
tions of the 3Dmodel can be implemented without touching the original object. Such
restoration may be based on the reconstruction of missing elements according to for-
mal rules or other clues deducible from the historical documentation [62]. Examples
include the regeneration of the original colors of a sculpture inferred from pigment
analysis on the surface of the original artifact [64, 152], or the virtual reconstruction
of buildings [87] and cities [60], starting from a 3D scan of some of their surviving
physical elements.

13.1.5 Heritage Monitoring for Conservation

The proper preservation of cultural heritage monuments requires continuous mon-
itoring of its state of preservation. The evolution of the shape of a specific artifact,
structure, or site, as documented through periodic 3D scanning, may reveal a process
of degradation underway on a time scale not evident to the naked eye. This functional
use of the model makes it possible, for example, to check the corrosion of stone ele-
ments in the open air caused by air pollution, the deformations of wood arising from
different environmental changes such as humidity and temperature [80], the impact
of restoration on an artwork [1], or the natural erosion of a cultural landscape [56].

13.1.6 Physical Replicas

Rapid prototyping through 3D printing and digital milling—widely used in industrial
design—makes possible the use of the 3D model of a work of art to generate its
physical replica [45]. Although this may be prone to give rise to ethical concerns
[102], a prudent use of this process can be useful for several applications that do
not require the extraordinary fidelity of the physical copy to the original piece. As
examples might be cited, the creation of copies that temporarily replace museum
pieces on loan elsewhere or providing copies near the original object in the gallery so
that visitors can touch and handle them, thereby enhancing their museum experience.
Such enhancement is particularly valuable for the blind.

13.1.7 3D Archives of Cultural Heritage

Handling the models that are created for any of the applications thus far mentioned
raises the issue of themanagement of large repositories of 3Dmodels of heritage arti-
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facts, structures or sites, sometimes made accessible over the Internet. This involves
a two-fold problem. On one hand, there is the technical infrastructure needed to
store a large amount of data associated with the production of a model (e.g., raw
laser scans or photogrammetric images). On the other hand, there is the production
of metadata suitable for describing in an exhaustive way the content of the model
and the technical process for transforming the original into its digital counterpart.
The latter inherits all the insights and solutions developed in the library automation
field as early as the 1980s for the digitization of other objects such as books, images,
and multimedia contents.

13.1.8 Information Systems

The 3D model of a cultural heritage object has another realm of application: as a
resource for a dedicated information system able to associate a specific piece of
information with a specific geometrical position on the surface of the 3D model
through a process commonly known as 3D annotation. This approach, similar to
what is usually done on a geographical scale using Geographical Information Sys-
tems (GISs), can be applied at the different scales of an object [153], a building
[119] or an entire archaeological site [42]. The number and kinds of pieces of infor-
mation associable with a 3D model may vary from (i) conservation records useful
for managing and planning possible restoration interventions [153]; (ii) stratigraphic
information gathered during an archaeological excavation [71]; (iii) historical infor-
mation about the artifact/building useful for touristic purposes; (iv) technical reports
about possible scientific analyses made in a specific location of an artifact, like C14
or thermoluminescence dating, pigment analysis with X-Ray Fluorescence (XRF),
DNA sequencing for biological materials, biochemical analyses, etc. The means of
conveying knowledge through the 3D model can be done not only by linking a sin-
gle large mesh with local annotations, possibly structured through a database, but
also by properly segmenting the 3D model of the heritage object according to its
different, hierarchically structured semantic components. This form of hierarchic
3D illustration originated in the field of Mechanical Engineering for representing
complex systems such as an automobile, whose CAD model incorporates a huge
information system from the single bolts of the engine to the assembly of the entire
vehicle [142]. The same approachwas then ported to the field ofArchitectural Design
with the introduction of the “Building Information Model” (BIM), where a building
is represented in 3D connecting single components typically collected from a library
of components (e.g., wires, pipes, windows, stairs, doors, etc.) [91]. In both cases,
the purpose is very practical: having a comprehensive list of components needed
to build the vehicle or the house, making possible a precise estimate of production
costs, management of the supplies, and, possibly, implementation of measures to
reduce costs by sharing the same components between different cars or buildings.
This way of structuring 3Dmodels of components as information units has also been
then extended to cultural heritage. The result is now known as Heritage Building
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Information Model (HBIM), when specifically referred to heritage buildings [124]
ormore generally as semantically structured 3Dmodels [38]. In this case, the purpose
is not, obviously, to estimate the cost of reproducing a heritage asset, but to manage
the conservation work in case of monuments requiring continuous maintenance to
prevent their irreversible deterioration [3].

13.2 Previous Work on 3D Digitization of Heritage

The earliest work on 3D digitization of heritage objects was done in 1997 by the Insti-
tute for Information Technology at the National Research Council Canada, which
developed and patented the first laser scanners based on triangulation [139]. They
were applied to a number of different heritage objects [156]. But it was probably
the Stanford Digital Michelangelo Project [108], begun in 1998, that first brought
the new approach into prominence among professionals in the relevant fields of the
Humanities and Engineering. The group headed by Marc Levoy scanned 20 sculp-
tures by Michelangelo in Italy, including the worldwide famous 5m-tall statue of
David. Thanks to significant coverage in the press, the Digital Michelangelo Project
also made clear to the general public how much more informative the interactive 3D
model could be as compared to the form of documentation hitherto used, namely, a
still photograph. In the same years, thanks to research in the field of laser radar—
where the radar techniques for measuring distances with electromagnetic waves are
ported to the optical field—the first large-scale 3D laser scanners were marketed by
Cyrax, a California company later purchased by Leica Geosystems. Initially con-
ceived as a tool for surveying complex manufacturing plants, the first Cyrax 2400
was capable of measuring 800 points per second with 6mm uncertainty at a maxi-
mum distance of 50m [95]. It was soon experimentally deployed for the purpose of
creating 3D surveys of cultural heritage sites [4].

From those early days, enormous progress has been made in terms of increased
acquisition speed (currently done at more than one million points per second), reso-
lution, addition of color superimposed over the geometric data, and reduction ofmea-
surement uncertainty. However, from the first applications it was clear that to exploit
such extraordinary potential, substantial resources were needed in terms of time for
the acquisition of the 3D data and, particularly, for the subsequent post-processing
that leads to the final digital 3D model. Considering that such digital objects rep-
resent just the starting point for other possible applications in the Humanities and
Social Sciences, such as, for example, creating virtual museums or producing phys-
ical reproductions of works of art, the research community concentrated its efforts
in the intervening twenty years on making shorter, simpler and mostly automatic all
the steps in the pipeline used to create 3D models of objects in the real world.

As a result, 3D digitization of cultural heritage has been pursued with differ-
ent methodological approaches to (i) physical heritage assets like statues, paintings,
buildings, etc., as they appear in their current form (Sect. 13.2.1); (ii) immaterial,
or “intangible,” heritage such as ritual gestures, dances, and other forms of perfor-
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mances that are defined by their temporal evolution in 3D space (Sect. 13.2.2); (iii)
the reconstructed form of tangible heritage, sometimes starting from the digitization
of the surviving remains (Sect. 13.2.3).

13.2.1 3D Digitization of Tangible Cultural Heritage

“Tangible cultural heritage” refers to physical artifacts produced, maintained, and
transmitted intergenerationally in a society. It includes artistic creations, built heritage
such as buildings and monuments, and other physical or tangible products of human
creativity that are invested with cultural significance in a society. In this section,
a review of 3D digitization works of tangible heritage, subdivided by category, is
reported.

Sculpture and Other Museum Artifacts
This is a category of heritage objects that started being digitized by 3D scanning in
the late 1990s. The earliest experiments were made with a triangulation laser scanner
on a small stone sculpture by Giovanni Pisano representing “Madonna with Child”
preserved in the Scrovegni Chapel in Padua (Italy) [17]; with a white light pattern
projection device on the Michelangelo’s “Pietà” in Florence [21]; and with a custom
triangulation laser scanner mounted on a vertical rail supported by a 7.6m tall gantry
for the digitization of Michelangelo’s “David” [108].

In addition to a number of logistical issues related to the use of advanced technolo-
gies in heritage venues, such early experiments made evident how the intrinsic error
of 3D capturing devices [11], the response of the scanned material, and the propaga-
tion of such errors on the raw data during the following processing stage can produce
a significant discrepancy between the real artifact and its final 3D representation [81].
This issue was addressed by integrating different 3D capturing technologies such as
active range sensing and photogrammetry [18], leading to a high-accuracy digitiza-
tion procedure used for the 3D modeling of the wooden statue of the “Magdalen” by
Donatello in Florence (Italy) [79].

The difficulty in 3D scanning of non-cooperative optical materials was first raised
by the Visual Information Technology group at NRC Canada, which noticed how
the sponge-like structure of marble may lead to a reflection not only from the exte-
rior surface, but also from internal layers of the material that might distort the light
reflected back. As a result, the active laser device is deceived and renders an incorrect
metric response [73]. Such error proved to be extremely large for phase-shift laser
scanners, reaching 6mm of systematic distance overestimation owing to the pene-
tration of light into the material [20]. It was then verified with a systematic test on
different types of marble that the error for laser triangulation devices is far smaller
(40 micrometers), even if clearly detectable [85]. Bronze is another material widely
used for sculpture that yielded a very poor optical response. For laser triangulation
devices, the strong absorption of light owing to this dark material, especially evident
in old and non-restored bronze statues, together with the potentially high specularity,
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Fig. 13.1 Digital 3D model of the bronze “Davide” by Donatello (1440). It was the first 3D model
of a heritage asset ever made with the laser radar technology, demonstrating how this approach
eliminates the artifacts typically generated by a dark shiny surface

led in general to an increase in 3D data uncertainty with areas of absent data where
there were reflections.

Such artifacts were found to be absent in the case of frequency-modulated laser
radars, such as the one used for the digitization of the bronze “David” by Donatello
in Florence (Italy) [88], as shown in Fig. 13.1.

In addition to the first test for establishing the proper active technologies and 3D
processing methodologies for different types of statues, several applications of 3D
digitization have been made in recent decades for specific conservation purposes.
Some significant examples include virtual restorations based on 3D digitization of
sculptural fragments. This was the case with the “Minerva d’Arezzo” preserved
in Florence and disassembled into parts [58] after a possible incorrect reassembly
during a previous restoration, or the reconstructive hypothesis of the sculpture of
Epicurus made by Frischer et al. [65]. An instructive example of virtual restoration
aimed at guiding the actual restoration is offered by the work done on the marble
sculpture “Adam” by Tullio Lombardo, which on the evening of October 6, 2002
unexpectedly fell to the ground and smashed into hundreds of large and small pieces
at the Metropolitan Museum in New York. Here the “3D puzzle” of the statue to be
reconstructed was first solved using the 3D model in order to establish the sequence
of steps needed to achieve a complete physical reconstruction [138].
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A similar activity, involving not just a manual alignment of fragments, as in the
cases justmentioned, but also an automatic identification of bestmatcheswas pursued
to find joins of fragments of the “Forma Urbis Romae,” a large map of Severan Rome
(ca. AD 200) inscribed onmarble blocks and subsequently removed from the wall on
which it was displayed, despoiled, and broken into fragments to be melted down into
lime in medieval times [103]. An analogous approach [161] was used to findmatches
in the fragments ofwall paintings damagedby the eruption of the volcanoonSantorini
(Greece) in ca. 1500 BC [29]. A new instance of this method was recently tested on
two sets of terracotta fragments, representing figurines of the Hu civilization [166].
The 3D scanning of sculptures as high-resolution documentation before restoring the
physical artifact was then extended to statues of large and colossal size starting from
the Great Buddha project. Here the digitization was completed on somemonumental
bronze sculptures of Buddha located in the municipalities of Asukain, Kamakura,
and Nara, Japan, whose heights are 2.57 m, 13.35 m, and 14.98 m, respectively [93].

The idea of scanning sculpture was also extended to no-longer-existing objects,
like the two colossal standing Buddha statues in Bamyan (Afghanistan), 35 m and
53m high, originally carved into the living rock and blown up by the Taliban in 2001.
Here a team based at the ETH Zurich reconstructed in 3D the two sculptures with
image-basedmodeling by using historical images taken before their destruction [75].

A recent series of activities related to the digitization of material heritage, made
possible by the latest advances in 3D capturing technologies, includes the systematic
digitization of all the content belonging to a museum or cultural heritage site. The
first museum which established a working relationship with a research group for
the purpose of studying the opportunities presented by 3D digitization of artifacts
was the Petrie Museum of Egyptian Archaeology at the University College London
[113]. Here, starting in 2009, several experiments to test different active and passive
methods for digitizing museum artifacts were performed [141]. The first museum
to be systematically digitized was the Archaeological Museum of Milan within the
framework of the 3DICONS European project (2012–2015). The aim was to add
3D models of Cultural Heritage objects to EUROPEANA, the portal dedicated to
the European culture [131]. All the collections connected to European history were
considered, including pieces from the Greek, Roman, Etruscan, late Egyptian, and
Medieval periods. As a result, 427 objects and structures belonging to the museum
were modeled in 3D. Of this total, 9% were models of buildings and large structures,
14% of small untextured museum artifacts, and 77% of small and medium texturized
museum artifacts, like those shown in Fig. 13.2.

The decision was taken to 3D digitize buildings and large structures with phase-
shift terrestrial laser scanning owing to its ability to give a metric 3D output indepen-
dent of targets and other references that must be attached to the surface of the artifact.
Small un-texturized museum artifacts were acquired with triangulation-based laser
scanning owing to its ability to work well in the absence of any surface texturing.
Small and medium texturized museum artifacts were then digitized with automatic
photogrammetry (SFM/Image Matching).
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Fig. 13.2 Examples of 3D models of different museum artifacts, produced in the framework of the
3DICONS project, digitized at the Archaeological Museum in Milan (Italy): a Etruscan pear wood
head (seventh Century BC); bGreek amphora of decorated clay (sixth Century BC); c Roman stone
sculpture representing the head of Zeus (first Century AD); d Roman marble basin sculpted with
mythological creatures (second Century AD)
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Fig. 13.3 Search page of the IU-Uffizi project, dedicated to the 3D digitization of the around 1000
Roman sculptures conserved at the “UffiziGalleries” and all the connected sites (Pitti palace, Loggia
dei Lanzi, Boboli garden) in Florence, Italy

This approach was chosen because of its efficiency in terms of processing time
from the acquisition phase to the final 3D model. This turned out to be from 5 to 10
times faster than 3D digitization utilizing active sensors [78]. In the same period, the
Smithsonian Institution started its 3D digitization program aiming at a systematic
digitization of its collections in partnership with Autodesk Inc., which developed a
customized online viewer [128]. However, until the present time, only one hundred
models of his vast collection of over 150 million objects have been created, repre-
senting more the attempt to establish a workflow rather than to undertake a serious
program of comprehensive digitization.

A more advanced approach for massive 3D digitization was proposed by the
Fraunhofer Institute with the project CultLab3D. This is an automatic system made
for quickly digitizing small museum artifacts utilizing a conveyor belt that moves the
object along different stages of the digitization process [145]. Although limited to
small artifacts, the system allows capture of the artifacts’ geometries, textures as well
as optical properties such as reflection and absorption. While on the conveyor belt,
the artifact passes through two nested aluminum scanning arcs, each holding nine
high-resolution cameras and nine ring lights. Each arc can describe a full hemisphere
moving around the artifact. From the related images the 3D texturized model can be
quickly generated with submillimeter accuracy using photogrammetry [151].

The latest example of systematic digitization is represented in Fig. 13.3 by the
collaboration between Indiana University (Bloomington, IN, USA) and the Uffizi
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Galleries (Florence, Italy). In May 2016, the two institutions signed an agreement
to digitize, over a five-year period, all the collections of Greek and Roman sculpture
belonging to the gallery, consisting of ca. 1,000 altars, basins, busts, herms, statues,
statue groups, and fragments [125]. The project presented several practical difficulties
arising, for example, from lighting conditions that are sometimes less than ideal, the
location of some objects very close to walls, which makes it difficult to photograph
the back sides, and the possibility of working in the gallery only at times when it is
closed to the public [82]. Despite these difficulties, which are undoubtedly typical of
what comparable projects will encounter at other museums, the project is proceeding
on schedule and made its website, as shown in Fig. 13.3, publicly available in August
2018 with publication of the first 300 models (www.digitalsculpture.org/florence).

Paintings
The first experiment of 3D digitization was made on a painting by the French artist
Jean-Baptiste-Camille Corot (1796–1875). In the first half of 1996, a large exhibition
of 163 of his finest paintings was held at the Grand Palais, Paris. The show traveled to
theNationalGallery ofCanada,Ottawa,where itwas open from June 21 to September
22, 1996, and to TheMetropolitanMuseum of Art, NewYork fromOctober 22, 1996
to January 19, 1997. On the occasion of the Canadian stop of the exhibition, the
Centre de Recherche et de Restauration des Musées de France (CRRMF) asked the
National Research Council (NRC) of Canada for permission to utilize their active 3D
technologies based on laser triangulation. The goal was to use them as instruments
in an experiment to evaluate their effectiveness for analyzing paintings [157]. The
NRC used its High-Resolution Color Laser Scanner, based on three collimated lasers
(respectively, red, green and blue), which had been specially developed for digitizing
museum objects in color. It was used in a configuration giving 50 micrometers of
resolution on the painting plane (xy) with uncertainty of less than 10 micrometers
along the z-axis. From the experiment it emerged that, although the exterior surface
of the painting was nearly flat owing to a layer of varnish, the 3D image captured by
the range sensor derived from the paint layer beneath the varnish rather than directly
from the varnish surface itself. This resulted in a detailed high-resolution recording
of the 3D structure of the paint layer, including brush stroke details as well as crack
patterns, paint losses, and other characteristics due to aging [72].

A second experiment of 3D scanning of paintings was made in 2002 during the
monitoring of the painting “The Adoration of the Magi” (Fig. 13.4) by Leonardo
da Vinci, displayed at the Uffizi Gallery in Florence, Italy. Over the centuries, the
painting—-made on a wooden support consisting of poplar planks—-suffered peri-
ods of poor conservation leading to a significant bending of the wooden support
with consequent deterioration of the painted layers. In addition, this Da Vinci mas-
terpiece was only partially varnished (its upper left corner was unfinished), and for
this reason it was very fragile and not suited to major restoration interventions. The
3D monitoring aimed therefore at establishing the deviation of the painting from its
theoretical flat shape, the level of craquelure at the center of the painted surface and
possible lack of material in the support. The digitization work was made with an
active device based on the projection of white light patterns, with a lateral resolu-

www.digitalsculpture.org/florence
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Fig. 13.4 Three-dimensional digitization of the painting on wood “Adoration of the Magi” by
Leonardo da Vinci for monitoring purposes: a 3D model of the front side, with colors; b 3D model
of the rear side, without colors; c deviation map from a fitting plane of the front side; d deviation
map of the rear. From such analysis a quantitative evaluation, for example, of the deep depression
on the rear side (–23 mm, pink spot in d), was possible [77]

tion on the painting plane of 270 µm over the whole painted surface, 90µm for the
central high-resolution area, and 350µm for the rear side. As a result it was possible
to measure deviations from planarity of 23mm in the rear side of the painting as
well as wrinkles in the painted layer of the central area as small as 50µm with an
uncertainty along z of 18µm [77].
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This analytical approach had its climactic early application in 2004, when a team
from the NRCCanada traveled to Paris with a portable version of the high-resolution
color laser scanner already used in the Corot experiment. The objective was to under-
take 3D scanning of the worldwide famous Mona Lisa by Leonardo Da Vinci. When
configured to render maximum resolution, this device was capable of sampling the
surface of the painting with a resolution of 60µm and an uncertainty along z of
10µm. The presence of three collimated RGB lasers allowed the scientists to pre-
cisely capture the color of the painting as well as the 3D geometry of its front and
rear sides. By exploiting the presence of three different wavelengths associated with
the three base colors, a variable penetration inside the painted layer was possible,
making it possible to interpret some of Leonardo’s painting techniques such as “sfu-
mato.” Finally, the ultra-high resolution of the device was able to document the 3D
pattern of brush strokes and cracks in a way never before possible [25].

In 2013, a custom system for documenting painting was presented that was based
on a high-resolution structured-light measurement headwith no IR andUV emission.
It wasmounted on an industrial robot arm that could be automatically positioned over
the painting surface [98].

In 2014, a team from TU-Delft developed a fringe encoded stereo vision system
specifically designed for 3D capture of painting [165]. Themetrological performance
was similar to the NRC color laser scanner of 1996 (50µm of resolution on the
painting plane and 9µmof uncertainty along z), but without the complication of three
collimated lasers. It also was able to observe the Technical Guidelines for Digitizing
Cultural Heritage in the reproduction of the colors [94]. The system was used to
document and physically reproduce a self-portrait by Rembrandt and the “Flowers
in a Blue Vase” by Van Gogh. An unprecedented level of fidelity of the artist’s
brush strokes was achieved in the reproduction of the painting by a 3D print of the
model. The digitization of paintings with strong 3D materiality was further explored
in 2015 with the digitization of “Alchemy” by Jackson Pollock [32]. Completed in
1947, the work is a recognized masterpiece of the twentieth century and one of the
first examples of so-called “action painting,” performed by placing the canvas on the
ground, and pouring/dripping/squeezing paint onto its surface. Digitization of the
painting was performed with a commercial fringe projection device. A resolution of
200µm on the painting plane was used, with two areas acquired at higher resolution
(100µm). The high-resolution 3D model allowed the conservators to investigate the
relationship between the shape of the painting and the painting process which was,
according to the artist, an essential part of the artwork.

Although 3D digitization of paintings at an instant in time, such as those men-
tioned above and several others available in the literature [2, 5], have provided useful
documentation for conservators, an even more interesting form of digitization is the
one repeated over time, since it can reveal deformations of the work of art. The
fiber-based nature of wood, widely used as painting support or canvas frame, gives
peculiar deformations arising from either such environmental conditions as humidity
and temperature or from conservation issues. In 2004, a first test of this nature was
made using multiple photogrammetric campaigns on the “Retable,” an English panel
painting of the thirteenth century on display in Westminster Abbey, London (UK)
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[140]. Between 2005 and 2007, several subsequent acquisitions were performed on
the “Pala Trivulzio,” a painting on canvas by Andrea Mantegna in the collection of
the Castello Sforzesco in Milan (Italy). The campaign started in March 2005, before
the beginning of a major restoration, then in May 2006 at the end of the replacement
of the frame, which resulted in flattening the whole canvas and eliminating macro-
scopic waves in its shape. It continued in July 2006 and in March 2007 for purposes
of monitoring [10]. In all these examples, the comparison was made using the same
equipment at different moments in time. More recently, an experiment of compari-
son between 3D digitization of the same painting at different times with completely
different devices and processeswas proposed, introducing amodified alignment algo-
rithm for identifying the long-term deformation resulting from aging/environmental
factors as well as the modification introduced by some restoration interventions [1].

Summarizing the technologies mentioned in the literature for the 3D digitization
of paintings, we have reported use of active sensors based on laser triangulation [10,
25, 157], on white light fringe projection (the large majority) [1, 2, 5, 10, 32, 77],
on active stereoscopy [165], and on standard (i.e., passive) photogrammetry [140].

Built Heritage
The survey of architecture has a long history. A well-established method based on
the measurement of few salient points of a building with theodolites or traditional
photogrammetry and the subsequent rendering of the surveyed building into 2D
sections, plans, and elevations has been the standard approach for representing built
structures, including those of cultural interest. Theweight of this traditional approach
undoubtedly contributed to the slow rate at which 3D digitization of buildings was
introduced as compared to that of other types of cultural assets such as sculptures,
where, as we have seen, the earliest experiments date to the mid-90s.

Initially, 3D digitization was introduced to capture the shape of specific buildings
composed of a complex system of pipes and tubes as, for example, power plants.
These were always difficult for the traditional approach to survey because of the
intrinsic difficulty of surveying the many rounded surfaces with no salient points.
However, soon the digital scanning method was ported to ancient and ruined heritage
monuments, typically no longer composed of their original regular and symmetric
shapes because of deterioration over time. So, the first works in this field date to
early 2000 with the presentation of the technology and the related methodologies
[27, 109], which were applied to a survey of ancient castles [33, 155].

After the first experiments, some general criteria were defined by those organi-
zations involved in the documentation of cultural heritage such as the “International
Council on Monuments and Sites” (ICOMOS) and its technical extension “Comité
International de la Photogrammétrie Architecturale” (CIPA). Some of the criteria
they emphasized included the importance of data integration, the advisability of
capturing different components of a built heritage by means of the most suitable
technologies for each component [19], and striving for redundancy in estimating the
quality of the obtained 3D measurements [132].

The first experiment in integrating different sensors to solve the problems of 3D
resolution dates to 2002. The first tests were done on the survey of a Roman villa
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Fig. 13.5 Digital model of the Pompei forum, originated by the integration of aerial photogram-
metry, TOF 3D laser scanning and terrestrial photogrammetry, covering a resolution ranging from
0.25 to 250 mm

beneath the Baptistry of the Florence Cathedral (Italy), and the 3D digitization of the
Pomposa Abbey (Italy). The first case illustrated the advantages of integrating the
high-resolution survey of a mosaic made with a triangulation device with the lower
resolution 3D capture of the architectural structure taken with a TOF laser scanner
through a common reference system measured by means of photogrammetry [89].
In the second case, a richly carved stone window captured with a triangulation-based
laser scannerwasmergedwith the low-resolutionmodel of the entire abbey generated
with traditional (non SFM/IM based) photogrammetry [54]. The concept was further
developed in the survey of the forum of Pompeii (Fig. 13.5), where many different
technologies were integrated to cover resolutions spanning three orders of magnitude
from 0.25 to 250 mm [84].

Sensor integration is commonly applied also to solve a typical problem in survey-
ing buildings with terrestrial technologies, such as the proper digitization of the top
of each building. Although attempts to digitize with laser scanners raised above the
building with hydraulic platforms have been successfully made, as has 3D scanning
with Aerial Laser Scanners (ALS) [106], the problem has been solved in a much
cheaper way with the introduction of photogrammetry using cameras mounted on
drones. Their data is then integrated with that captured by terrestrial devices [120].

Unmanned Aerial Vehicles (UAVs) have also become frequently used in archae-
ology for capturing entire areas [127], including, for example, documenting the
different layers of an ongoing excavation [41, 105].
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Underwater Heritage
Cultural heritage evidence can be found in several environments including the bottom
of water bodies such as lakes, seas, or oceans. Those environments, in addition to
preserving sites, structures, buildings, and artifacts made of inorganic materials, can
also include wooden vessels, human remains, or even food, thanks to the absence of
oxygen. This ledUNESCO to draw a specific convention in 2001 for the protection of
what is conventionally referred to as “Underwater Cultural Heritage” (UCH), defined
as “traces of human existence having a cultural, historical or archaeological character
which have been partially or totally under water, periodically or continuously, for at
least 100 years” [160].

UCH represents a great (and in large part still unexplored) cultural resource that is
accessible only to the very limited public involved in scuba diving or with access to
special equipment such as submersible vehicles. In this context, 3D digitization rep-
resents a valuable approach to documentUCHassets for different purposes, including
the presentation of such remains to the general public with the help of multimedia
presentations or virtual reality applications [31].

The methods for underwater 3D data acquisition range from ultrasound to optical
technologies, with significant differences in terms of resolution, sensor-to-surface
distance, and acquisition speed [118].

Because acousticwaves can easily propagate inwater, ultrasound is historically the
most suitable method and has been used for decades in sonar. The working principle,
also known asBathymetry, is based on themeasurement of sensor-to-surface distance
through the measurement of the time needed by a burst of ultrasound energy to go
from a probe to a surface and back to the receiver, similar to what happens when
laser light measures distances with the approach known as Time of Flight (TOF).
A proper scanning approach involves the measurement of the latitude and longitude
dimensions with a GPS installed on a ship moving according to a precise scanning
trajectory and equipped with an ultrasound unit pointed toward the sea bottom. This
makes it possible to generate 3D maps of the bottom of the sea, including possible
remains of archaeological interest [116].

Optical methodsmay use active devices such as anAerial Laser Scanner (ALS). In
general, a standardALSdoes not provide information from the sea bottombecause the
wavelength of near-infrared light is reflected by the sea surface and does not penetrate
the water. Using shorter wavelength lights (blue-green), a moderate penetration can
be obtained, allowing the mapping of archaeological structures on the sea bottom in
shallow waters [51].

However, the most commonly used approach for underwater 3D digitization at
high resolution is photogrammetry, which has been applied for several decades in
archaeology [12].

In underwater photogrammetry, the presence of multiple media with different
refraction indexes such as air, glass, and water tend to complicate the actual optical
configuration of the photogrammetric problem. For this reason, in traditional under-
water photogrammetry, a specific camera calibration was required [69]. One of the
reasons for the great success of SFM/IM photogrammetry in this context is its use
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Fig. 13.6 Underwater photogrammetry of a Roman amphorae cargo, sunk not far from Toulon
(France) and laying on the bottom of the sea at 300 meters of depth: a Remotely Operated Vehicle
(ROV) run by COMEX (France), while capturing the image dataset with the ORUS3D system; b
resulting 3D model published on the web (https://skfb.ly/6LnQz). Courtesy of the ROV3D project,
Laboratoire des Sciences de l’Information et des Systèmes (LSIS), Marseille, France

https://skfb.ly/6LnQz
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of self-calibration of cameras that compensates for refraction issues, recalibrating
the camera in its operating environment, thereby simplifying the photogrammetric
process [149].

In the literature, this method has been used with handheld cameras controlled
by a scuba diver [117] for 3D digitization of archaeological sites [30], shipwrecks
[43], amphorae, and other cargo of ships [47]. As an alternative, a vehicle holding
a camera and traveling around the object of interest can be used, for example, in
the early archaeological survey of a shipwreck in Turkey, made in the 1960s by the
archaeologistGeorgeF.Bass using theAsharan, a custom-built submersible equipped
with stereophotogrammetric gear [13].

More recently, Remotely Operated Vehicles (ROVs) like that shown in Fig. 13.6
have been used [53], in a fashion comparable to the way drones are used in the air,
or even Autonomously Operated Vehicles (AOVs), aquatic versions of a robot [96].
A vehicle without a human presence is particularly useful when the 3D survey has to
be done under conditions not suitable for a scuba diver such as those requiring long
periods of time, entry into dangerous conditions or into deep waters [9, 52].

Sensor fusion is sometimes utilized to take advantage of each of the aforemen-
tioned technologies [70], such as in the study of aWorldWar II battle site combining
Multibeam Bathymetry and SFM Photogrammetry [97].

13.2.2 3D Digitization of Intangible Cultural Heritage

As specified in the UNESCO Convention of 2003 about this topic [159], “intangi-
ble cultural heritage” means the practices, representations, expressions, knowledge,
skills—as well as the instruments, objects, artifacts and cultural spaces associated
therewith—that communities, groups and, in some cases, individuals recognize as
part of their cultural heritage. According to this definition, examples of such forms
of heritage include

• Oral traditions and expressions, including language as a vehicle of the intangible
cultural heritage

• Performing arts
• Social practices, rituals, and festive events
• Knowledge and practices concerning nature and the universe
• Traditional craftsmanship

The approach for digitally documenting an example of intangible heritage gener-
ally privileges description through pictures, audio, and video recordings along with
metadata organized according to proper ontologies [115]. In addition, recent stud-
ies emphasize how tangible and intangible heritage are strictly interconnected and
should be jointly considered [34]. Studies about the optimal way of visualizing such
forms of heritage [57] have also made clear how many forms of intangible heritage
include 3D content or elements. Examples include the performing arts and rituals
involving movement of a human body in 3D space. Such movement generates a 4D
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entity (3D + time) that can be conveniently captured with motion capture techniques
used in the gaming, animation, and movie industries as well as in the biomechanical
analysis of human postures and movements for sport or rehabilitation.

The most commonly used approach is based on dedicated studios equipped with
multiple synchronized cameras and dedicated illuminators aiming at the active vol-
ume through which the actor moves. The actor might wear a special suit equipped
with refractive targets for full body captures or spherical refractive targets attached
directly on the moving part of the body that is involved in this type of digitization.
Triangulation among homologous points identified by the targets on frames corre-
sponding to the same time instant generates the 3D information required, as is the
case in standard photogrammetry. A set of 3D points representing the position in
space of the targets for each time frame is, therefore, generated and used both for
visual analysis or for extracting geometrical data of interest. Several commercial
systems on the market perform this kind of motion capture, such as Vicon (www.
vicon.com) or Optitrack (www.optitrack.com). Although the precision of the system
is submillimetric, the limitation is represented by the 3D capture of only the targets’
positions, and not of the geometry of the entire moving scene.

A low-cost version of such a visual method is possible with RGBD devices devel-
oped for video gaming, such as the Microsoft Kinect, ASUS Xion, Structure Sensor,
or the Intel Realsense, which can provide streams of 3D data in real time from
the investigated volume. In this way, the motion capture of a skeleton extracted by
the raw 3D data can be provided [150]. An alternative approach is represented by
miniaturized Inertial Measurement Units (IMUs). A magneto-inertial measurement
unit typically embeds a triaxial gyroscope, a triaxial accelerometer, and a triaxial
magnetic sensor in the same assembly. By combining the information provided by
each sensor within a sensor fusion framework, it is possible to determine the unit
orientation with respect to a common global coordinate system. Recent advances in
the construction of microelectromechanical system devices have made possible the
manufacturing of small and light devices that makes it possible to apply them to the
moving body under investigation [36].

Among the few applications in the cultural heritage field worth mentioning are the
digitization and visualization of several Kung Fumoves for the exhibition “300Years
of Hakka Kung Fu” (Fig. 13.7), held in 2017 at the Hong Kong Heritage Museum
(China) [37, 101]; the 4D capturing of the classical dances of India made by School
of Art Design at the Nanyang Technological University in Singapore [46]; and the
European project i-Treasures, dedicated to the study of an integrated system for
capturing intangible heritage [48].

www.vicon.com
www.vicon.com
www.optitrack.com
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Fig. 13.7 Digitization of intangible heritage: a Kung Fu master in motion capture studio at City
University of Hong Kong; b graphic representation of movements with colored trajectories of a few
nodes of the moving 3D model. (Both images by courtesy of Sarah Kenderdine, EPFL, Lausanne,
Switzerland)

13.2.3 3D Reconstruction of Damaged or No-Longer Extant
Monuments

In addition to the reality-based digital modeling of heritage assets described in the
previous sections, the 3D modeling of buildings, monuments, or entire cities that
do not physically exist anymore in their original status has defined from the 1990s
a new field of studies known as “Virtual Archeology” [126, 137], or more broadly
“Virtual Heritage” [143].

A Virtual Archaeology 3D model can be created by purely philological consider-
ations, using as source the existing archaeological literature on the monument to be
reconstructed. In this case, the geometrical deductions about shape and size of the
building and its components are entirely based on preexisting written documents,
possibly containing older surveys of the area, often made with survey technologies
much less accurate than those used in more recent times. This approach, although
useful for illustrative purposes, may involve a considerable uncertainty in the result-
ing reconstruction model [135].

By using a 3D digitization of the existing elements, it is possible to improve the
accuracy of the final reconstruction model by integrating the literature with trusted
data collected from the existing remains. Examples of this might include a building’s
footprint or the height of remains still standing, both generally very valuable pieces
of evidence in making a 3D reconstruction model.

This approach makes it possible to improve the accuracy of the initial data, for
example, published plans or sections. They can be normalized by taking into account
the new, trustworthy measured data, providing thereby a new starting point for draft-
ing the plan, sections and elevations of the structure [144]. Similarly, when the older
graphic documentation is not scientific but artistic, finding securely measurable sur-
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viving common elements in the older pictorial representation and in the monument
today can improve the reliability of the resulting 3D model [55]. Furthermore, a
precise three-dimensional representation of a building’s remains can provide useful
clues for estimating its height, a parameter not infrequently more difficult to estimate
from ancient documents than is the footprint provided by the foundations. Moreover,
the current height of a surviving architectural detail as well as its relationship to sur-
rounding features in the environment can provide clues helpful to the reconstruction.
The 3Dmeasurement of any surviving decorative elements (such as a statue) can also
help determine the size of niches and other architectural components, influencing the
general shape of the reconstructed monument [87]. An example of such a complete
reconstruction based on the integration of actual geometrical information currently
measurable on the field with archaeological data derived by ancient documents is
shown in Fig. 13.8.

However, the early 3D reconstructions [40, 59, 66] made clear that the many
degrees of freedomof an archaeological 3D reconstruction can produce several differ-
ent outcomes, and, therefore, they have to be governed by agreed-upon principles that
make scientifically traceable each 3D modeling choice. This led to the introduction
of the “London Charter,” offering recommendations for the use of computer-based
visualization methods in relation to intellectual integrity, reliability, documentation,
sustainability, and access [15, 44]. Such guidelines, proposed in 2006 and refined
in 2009, were further enriched in 2013 by the “International Principles on Virtual
Archaeology” (also known as the Seville Principles) [16], endorsed by ICOMOS in
2017 [92]. This framework gives a set of rules upon which to structure a solid digital
reconstruction of a site or building that no longer exists.

Apart from the technical issues of creating a 3D reconstruction of damaged or
destroyed monuments, it is important to recognize that such creations are visualiza-
tions and as such conform to the general use cases defined by Ware in [162]:

1. Facilitating the cognition of large amounts of data
2. Promoting the perception of unanticipated emergent properties
3. Highlighting problems in the quality of the data
4. Clarifying the relationship of large- and small-scale features
5. Formulating research hypotheses

The first use relates to the use of cultural heritage reconstruction models in educa-
tion in schools or public outreach by cultural heritage institutions. Generally, begin-
ning students and the general public have a hard time imagining how a building
reduced to its foundations originally looked and functioned, or how a statue reduced
to a fragmentary torso once appeared in terms of its geometry and polychromy. A
3D reconstruction is a highly effective way to present an integration of the surviv-
ing evidence complemented by the various hypotheses of restoration. In this case, it
ideally synthesizes and illustrates the collective views of experts who have studied
the relevant issues underlying a hypothesis of restoration.
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Fig. 13.8 Example of digital reconstruction of an archaeological site [87]: a 3Dmodel of the current
state of the templar group G at the archaeological site My Son (Vietnam); b virtual reconstruction
of its hypothetical ancient structure based on the state model and on archaeological information
about the area
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The second through fifth use cases relate more readily to research. A digitally
restored statue can be recontextualized into the digital reconstruction of its original
house or religious sanctuary, which itself can be embedded into a reconstruction
model of the entire settlement and set under a digitally recreated, dynamic, and
historically correct daytime and nighttime sky. This series of digital creations can,
to be sure, serve the purpose of the first use case (education and public outreach),
but it can also allow experts to make discoveries or have insights that would have
otherwise been impossible or impractical. For example, the recreated scene just
described might reveal that there is an alignment between the sun and the statue
at sunrise on a significant religious holiday. An example of such an alignment is
the statue of Osirantinous in the Antoneion at Hadrian’s Villa [61]. This might be
considered an unanticipated emergent property of the dataset constituted by the
statue and the foundations of the sanctuary as supplemented by various hypotheses
of restoration. Regarding Ware’s third use case, it does not infrequently happen that
when a 3D reconstruction is made of a building that has already been the subject of
a printed monograph by a building historian, it is discovered that some element or
other of the building has been neglected, e.g., there is a room without an entrance, a
floor that cannot be reached by a staircase, etc. [67]. In effect, creating a detailed 3D
reconstruction is a rigorous exercise that forces the creative team to make a complete
inventory of what is securely known, probably known, possibly known, and not
known at all. In short, it highlights the problems of the quality of the underlying
archaeological data.

Most interesting of all is Ware’s fifth use case, where the 3D visualization helps
the expert formulate, test, and refine research hypotheses, whether new or old. In the
case of the study of history by Humanists and Social Scientists, one great limitation
has always been the impossibility of turning back the clock to make observations
of past environments and the activities taking place in them. With an interactive
3D reconstruction, this limitation is mitigated, if not eliminated: now, for the first
time, it is possible for practitioners of historical disciplines to make observations,
recreate experiences, and run experiments in an environment that either no longer
exists or exists in a highly damaged form. This is the use of the 3D model as a
cognitive tool, a characteristic cultural heritage models share with a wide range of
scientific models in fields such as Astronomy, Biology, Chemistry, Engineering, and
Physics. It has been recognized by philosophers of science that such tools not only
illustrate previously accumulated knowledge but—because they are dynamic and,
in the case of cultural heritage models, often involve hypotheses of restoration—
can also generate new knowledge [163]. This use case has been recently termed
“simpiricism,” a portmanteau word combining “simulation” and “empiricism” [63].
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13.3 Capture, Modeling, and Storage of Digitized Cultural
Heritage

13.3.1 Capturing 3D Data from Cultural Heritage Assets

Digitization Approaches Versus Type of Cultural Heritage Object
Referring to tangible heritage, a first distinction among the 3D capturing techniques
can be made according to the size of the object to be digitized, that can range from
(a) small museum artifacts; (b) large museum artifacts like life-size or colossal stat-
ues; (c) buildings; (d) urban areas or archaeological sites; and (e) territories. This
has a direct impact on some functional parameters that directly define the most suit-
able 3D technology needed. The most evident parameters include the possibility of
working indoors or outdoors, the maximum spatial resolution, and the measurement
uncertainty.

It is, therefore, important to consider what needs to be captured. In addition to the
most strict 3D features associated with the object’s shape, its accurate visual repre-
sentation can be crucial, so that we should distinguish between (a) internal shape;
(b) external shape; (c) color texture; and (d) material reflectance. These features also
influence the physical principle behind the 3D technology to be chosen.

In addition, the methods we are considering involve no physical contact between
the 3D sensor and the heritage asset to be digitized. Therefore, every 3D technology
uses a radiating form of energy which, interacting with the surface to be measured,
is somehow altered by the interaction and is then collected by a sensor that produces
its measurement according to the amount of alteration arising from the interaction.
In most cases the radiated energy is light, and the response of the 3D sensing method
is affected by the nature of the material in terms of (a) reflectance (i.e., how shiny
is the material?); (b) transmittance (i.e., how transparent is the material?); and (c)
absorbance (i.e., how dark is thematerial?). In addition, if the light used for gathering
the 3D information is not generated by the 3D sensor itself, as happens in active 3D
devices, but is a natural or non-coded artificial light typically used in passive 3D
methods, the presence of recognizable visual features on the surface to be digitized
is also something that heavily influences the choice of 3D technology.

In addition to all the constraints to 3D digitization in terms of logistics, budget,
timing, and cost/benefit ratio, the singlemost important element driving technological
decision-making is the final purpose of the 3D model motivating the campaign of
digitization in the first place. Between the two extremes of, on one hand, a metric
model rendering a highly accurate virtual replica of the heritage object/scenario
and, on the other hand, a rough non-metric 3D model for an approximate visual
representation of the object (e.g., on a website aimed at the general public), there are
several mid-points on the spectrum of design choices available to any 3D digitization
project. Of course, the more accurate the model, the more analytical options are open
to its end-user in making geometric measurements and visual evaluations. However,
accuracy can come at a steep price in terms of 3D acquisition and processing time.
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Digitization Approaches Versus Type of Technology
The available tools can be divided into classes depending on their operating principle.
As mentioned above, in any case a form of radiating energy is always used for
gathering geometrical and visual information, so a first distinction can be made
between penetrating and non-penetrating radiations.

In the penetrating category, methods based on the same x-ray devices used in
medicine, or, at higher energy, in the mechanical industry, and in airport security,
make it possible to capture the inaccessible surfaces of heritage objects [35]. The
typical opto-geometrical configuration in this case involves a source of radiation on
one side of the object, and a sensing device on the opposite side.

Objects like Egyptian mummies may have amulets or materials used for the mum-
mification process under the exterior bandages that can be conveniently imaged with
penetrating radiations. Besides, the analysis of bones and teeth may reveal age, sex,
health state, and death reason of the deceased person (Fig. 13.9), resulting in an
informative complement for its historical interpretation [164].

X-Ray Computer Tomography (CT) is also useful for reverse engineering her-
itage objects in order to determine how they were assembled. In the research done
on a Japanese wooden statue of the XIII century preserved at “La Venaria Reale”
(Turin, Italy), the internal structure of its joints was identified with a portable CT
system for restoration purposes, as was the presence of nails and screws used in
previous restoration work to reattach the pieces with damaged joints [122]. This
analysis becomes even more important when complex metallic mechanisms have to
be analyzed without physically dismounting them on account of their fragility [68,
129].

Because it is not based on light, as is photogrammetry and active 3D sensing,
X-ray 3D imaging does not suffer from the typical limitations of the interactions of
light and materials that can compromise 3D digitization. This problem is typically
encountered in artworks made of translucid or transparent materials such as glass,
gemstones, amber, or ivory [107].

Although x-rays are the most common, different types of radiation such as accel-
erated neutrons can be involved in creating tomographic images that render a 3D
volumetric representation of the investigated heritage object [121]. Recent develop-
ments based on the use of alternative radiation frequencies have made it possible to
extend the approach from objects to larger structures, such as the attempt to 3D scan
the interiors of the Egyptian pyramids using cosmic rays [123].

For non-penetrating 3D, the electromagnetic energy covers the visible and the
infrared spectrum. The latter may also allow a little penetration under the illumi-
nated surface depending on the actual wavelength used, ranging from fractions of a
millimeter for Near InfraRed (NIR), to several millimeters for the Far Infrared (FIR)
used in so-called TeraHertz imaging. However, in most 3D applications in the field
of cultural heritage, penetrations inside the material are not important or useful, and
this is the reason why light sources for 3D never go beyond NIR.

Within non-penetrating devices a further distinction has to bemade between active
and passive 3D methods.
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Fig. 13.9 Different volume
renderings of a Computer
Tomography of a mummy
conserved at the
Archaeological Museum of
Milan, Italy, making evident
different structures: a
exterior bandage; b skin
around the head; c skull and
bones, showing an impacted
canine tooth

In a passive 3D method, light is used only to illuminate the details of the scene.
These details must be plainly visible elements contrasting with the background and
richly present on all the points of the surface of interest. All 3D passive devices (e.g.,
theodolites) or methods (e.g., photogrammetry) use this feature, since the measure-
ment process requires, first of all, that the same points be recognized in different
views of a scene from various positions, and this is possible only if the measured
object is provided with a contrast texture, or—when the object is uniformly colored
with no salient points—if the operator has added reference targets over the surface
of interest at a number of points sufficient for the task of estimating its 3D shape.
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The most widely used passive method is digital photogrammetry, that estimates
the 3D coordinates of a recognizable point in space by using at least two photos of
it taken from different positions. The position of the imaged point on each photo
implicitly defines a ray going from the point in the 3D space to its projection over the
camera sensor plane. The presence of at least two rays originated by two different
camera positions allows us to find an intersection in the space that identifies the 3D
coordinates of the imaged point, starting from the 2D coordinates of its projections
on two photographs. This condition is called “collinearity,” referring to the alignment
on the same line of the 3D point in space, the projection center of the camera, and the
projected point on the photograph. The collinearity condition is represented mathe-
matically by a system of two equations, called “collinearity equations,” providing the
projection coordinates on the sensor of a point, given its 3D coordinates, the camera
position and orientation (extrinsic parameters), and a set of parameters representing
how the projection is affected by the camera (intrinsic parameters). The intrinsic
parameters include the focal length of the objective used for taking the image and
a set of parameters taking into account the physical phenomena occurring in a real
camera that tend to make different and actual photographic images from a theoretical
perspective projection. Such parameters define the various lens distortions and the
misalignment of the sensor to the lens optical axis due to the mechanical tolerances
of the camera.

Therefore the photogrammetric process involves three phases: (i) calibration, for
identifying the intrinsic parameters of the camera used for taking the image; (ii) resec-
tion, for establishing the extrinsic parameters of the camera; and (iii) intersection,
for calculating the 3D coordinates of an imaged point starting from its projections
on two or more images taken from different positions.

A crucial activity for making the method work is identifying correspondences
among projections of the same points in different images. In general, the more reli-
able correspondences are found, the better are the results for the redundancy of infor-
mation thatmakesmore robust the identification of intrinsic and extrinsic parameters.
In its early days, such identification was based on a significant manual process of a
specialized operator who had to find out corresponding features on different images
framing the same area from different points of view. For this reason, the method was
suitable for regular geometries like modern buildings, where the knowledge of a few
salient points allows the operator to easily remodel their shape in 3D, but not par-
ticularly attractive for 3D digitizing the complex shapes of cultural heritage assets,
where the object’s contours are often geometrically complex and/or blurred by aging
or ruptures. However, Digital Photogrammetry has been extraordinarily improved
in the last twenty years thanks to the automation of feature recognition provided
by Computer Vision algorithms such as “Scale-Invariant Feature Transform” (SIFT)
[111] or “Speeded Up Robust Feature” (SURF) [14]. Such algorithms are at the
basis of the automation of the photogrammetric process. When the identification of
correspondences among different images is made by a computer rather than a human
operator, the considerable time needed for manually selecting the corresponding fea-
tures is reduced of several orders of magnitude and is performed automatically by
unattended computers. In this way, the number of correspondences can grow easily



13 3D Digitization of Cultural Heritage 659

from a few tens to many thousands, making the calibration and resection processes,
usually indicated as “Structure From Motion” (SFM) more reliable. The following
triangulation among corresponding elements of images is obtained by means of the
“ImageMatching” (IM) process. Starting frompicture elements of an oriented image,
it looks systematically for the most likelihood correspondence in another oriented
image (stereo matching), or group of images (multi-view matching), calculating the
3D coordinates of the point corresponding to the intersection of the two or more
rays associated with such picture elements. Each picture elements represent a regu-
lar subdivision of the original image made of square sub-images whose side ranges
from a few pixels to one single pixel. The output of that process is a dense cloud of
points, made of a 3D point for every matching sub-image [112]. Therefore, if each
sub-image is just one pixel, the maximum number of 3D points contained in the
cloud associated to each matching, can be as large as the number of overlapping pix-
els among the two or more images involved. Considering that the number of images
of a project may range from a few tens to thousands, and each image is made by
several millions of pixels, the SFM/IM process can easily generate several millions
of 3D points.

Although amanual intervention is always needed for scaling the 3Ddata according
to one or more reference points to be set on the 3D digitized scene and measured
with a different device, this highly automated version of the photogrammetric process
makes it possible to greatly improve 3D productivity with respect to the traditional
approach.

This is particularly valuable for 3D digitizing cultural heritage for the character-
istics of the majority of aged materials typical of heritage artifacts and sites, which
makes automatic feature extraction easy to be implemented. SFM/IM works well
with all the materials that have a nearly Lambertian (diffusive) reflection, no trans-
parency or translucency, and an irregular texture such as stone, bricks, and wood.
It might be problematic when light reflection is diffusive, but no texture nor micro-
irregularities are present at all, like, for example, in some white plaster copies of
sculptures. It might also give poor results when a recognizable texture is associated
with a high surface specularity like in ceramic vases or rough metal artifacts. Finally,
it becomes very faulty when the material is transparent or specular and with little or
no texture like, for example, glasses and polished metallic surfaces.

In an active 3D method, a coded light is projected onto the surface to be measured
in such a way as to represent a reference visible from a sensing device such as a
camera or a photodetector [26]. In this way, 3D measurement can also be done on
completely textureless surfaces. If the projected light intensity is not too high, then
environmental light may interfere with the coded light, making the device not usable,
for example, outdoors. In this domain a further distinction is made between

• Devices based on triangulation, where the optical sensor is made by a light source
and a camera set at a known distance, able to measure only small volumes but with
a very small uncertainty (below 0.2 mm);

• Devices based on the direct measurement of distance, such as Time-Of-Flight
(TOF) and Phase-Shift (PS) laser scanners, where the sensor-to-surface distance
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is evaluated by the time needed by light to go from the sensor to the surface and
back. These devices can be used at distances from few meters to few kilometers,
and are, therefore, suitable for digitizing buildings, large artifacts, archaeological
sites, or entire territories. In this case a much larger measurement uncertainty
occurs, ranging from few millimeters to a few decimeters. The same principle
is used in Laser Radars (LR), where the method for evaluating the distance is
based on frequency-modulated light and where the measurement uncertainty can
be reduced 20 times with respect to TOF laser scanners. Interferometry also works
on the same principle, even if the method in this case is suitable for 3D digitization
of very small samples (e.g., coins) with measurement uncertainty in the order of
few micrometers;

• Devices based on laser-driven selective focusing of the imaged scene such as
confocal microscopy, suitable for ultra-small samples or for the matter structure.

In any case, 3D active devices are the only ones capable of metrically acquiring the
geometry of a surface automatically, with no need to resize the final 3D results. The
result they produce is a “range image” representing the 3D view of the device from
the point of acquisition.

The range image, or structured 3D point cloud, is a matrix of 3D coordinates
similar to a color image where the color pixels are substituted by 3D coordinates.
Often the gray level or the color associated with the surface reflectivity in the 3D
recorded point is also provided as complementary information. 3D devices based on
a rectangular sensor, or on a 360-degree scanning, typically generate a structured
3D point cloud that has the advantage to contain the implicit information about the
normals associatedwith each point, pointing from the surface to the sensormeasuring
it. Such a piece of information is crucial for the following post-processing phases of
the 3D data.

As an alternative, the 3D data can be represented as an unstructured cloud of 3D
points made by a list of xyz coordinates generated by saving the 3D data in neutral
interchange file formats based on text, like, for example, pts.

We have to point out that while a photogrammetric process provides a dense cloud
of points of the 3D digitized object all defined in the same coordinate system, an
active device gives a set of 3D images of the object taken from various points of
view, each one represented in the internal coordinate system of the device. Such a
non-negligible difference involves an entirely different procedure in the following
processing, as explained in the next section.

13.3.2 Modeling Cultural Heritage from Raw Data

After 3D data acquisition, a post-processing phase is crucial for transforming a set
of 3D points originated by a dense sampling of the heritage object’s surface, into a
reality-based 3D model.
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Point Cloud Provided by 3D Active Devices
When the scene is imaged from different points of view with an active 3D device,
each one provides a range image, whose 3D coordinates are represented in a local
reference system centered on the 3D device. Since all these coordinate systems are
unrelated it is necessary to align all 3D data into the same coordinate system for
obtaining a single 3D point cloud representing the object surface. Such process can
be achieved in three different ways:

1. Measuring some reference targets on the scene with a different 3D device pro-
viding their coordinates in a common reference. This approach is used more
frequently with laser scanners based on direct measurement of distance (TOF,
PS, LR), thanks to their large region of interest [146];

2. Using as references natural 3D features recognizable in more range images and
finding the best possiblematch between them through the “IterativeClosest Point”
(ICP) algorithm. This is the most used approach with triangulation-based devices,
but it is often used also with the other active devices when no reference targets
are available [22];

3. Using a complementary equipment like GPS+IMU, CMMs, Laser Trackers, or
Motion Capture cameras, to measure the range device position and orientation of
each acquired range image in a global reference system. The 3 coordinates and
3 rotations (6 degrees of freedom) of the 3D device can be used to calculate the
transformation matrix of each range image from the local coordinate system of
the 3D device to the global one. This allows us to provide on-the-fly the 3D data
gathered from different positions in a single global reference. For this reason, this
approach is at the heart of most mobile mapping device gathering 3D data from
aerial vehicles, cars, robots, or handheld 3D devices [86].

Once the set of 3D data is available in the same reference system, a meshing process
is able to transform them into a 3D polygonal model whose precision, accuracy, and
resolution are determined by the quality of the initial raw data. This can afterward
be edited and textured with an additional process [136].

Point Cloud Provided by a Photogrammetric Process
In the modern automatic photogrammetry techniques, the modeling process is far
more straightforward, since the measuring phase provides directly 3D data all ori-
ented within the same reference system.

The subsequent modeling phase consists in generating the polygonal from the
point cloud originated by the photogrammetric process, representing a dense sam-
pling of the exterior surface of the cultural heritage object.

Point Cloud Generated by Sensor Fusion
Integrating different devices for capturing cultural heritage sites or objects may give
both a set of point clouds suitable for being pre-meshed, as for a single active device,
or an unstructured point cloud as with photogrammetry, depending on the specific
use of such integration. This approach has been proved to be useful for two specific
purposes: (a) improving the global accuracy of the final result and (b) adapting the
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space resolution of the 3D capturing phase to the local richness of features of any
specific 3D object.

Creating a 3D Model from Raw 3D Data This step of the process can vary
depending on the technology providing 3D data and on the consequent structuring
of such data. Before to see in detail how the process of transforming a set of raw 3D
data into a 3D model works, it is appropriate to specify what is intended as a digital
3D model.

In general, a computer-based 3D model is defined as a digital representation of
an object, made by a collection of geometric primitives connected to each other.
Depending on the type and dimension of the primitives forming the 3D model, the
way it is generated, its digital representation into the computer memory, and even its
visual aspect can be very different.

A critical difference between modeling primitives is their dimensionality (i.e.,
1D, 2D, or 3D). We can make a distinction among

• Mono-dimensional primitives: segments or curves connecting two points in the
3D space;

• Bi-dimensional primitives: planar or curved surface patches whose edges are rep-
resented by 1D primitives. They can be planar polygons like triangles, quadrangles
(quads), or polygons with more than four sides (n-gons). As an alternative, they
can be made of curved surface patches represented by polynomial expressions
like the “Non-Uniform Rational B-Splines” (NURBS) or by surfaces obtained
by iteratively subdividing a polygonal model according to a specific subdivision
algorithm (Subdivision surfaces).

• Three-dimensional primitives: volumetric components like tetrahedrons, hexahe-
drons, cylinders, etc., aiming at representing the entire volume enclosed in the
primitive and not only the surface surrounding it.

According to themodeling primitive used, the resultingmodelwill result in a different
category.

When 1D primitives connect 3D points of the object surface, the resulting 3D
object is called a wireframe model. This type of representation describes the object
shape with coarse approximation. It was used at the beginning of the computer
graphics era when hardware resources were insufficient to render in real time a 3D
model represented in a more sophisticated way. Nowadays, the structuring of a 3D
model solely as a wireframe is obsolete. However, the associate visual rendering
is still used for more complex forms of models, for 3D editing purposes, since the
wireframe may help in making evident the inner model structure.

When 2D primitives connect lines or curves built upon 3D points of the objects,
trying to approximate at best the object shape, the resulting 3D object is called a
surface model. It can have different aspects depending on the actual 2D primitive
employed.

We talk about mesh models when planar polygons, generally triangular or quad-
rangular (quad) connect 3Dpoints belonging to the object surface. Such points, called
nodes or vertices, can be either defined by an operator through a Computer-Aided



13 3D Digitization of Cultural Heritage 663

Fig. 13.10 Different surface models of the same parallelepiped made of: a triangular polygons
built over the 3D point cloud originated by its 3D scanning; b manually edited quads

Design (CAD) tool or measured by a 3D sensor. In the first case, a minimal number
of salient points can be used for representing a shape, while in the second one the
3D model is originated by a high-resolution sampling of the same form, and the
generation of a mesh model made by many more polygons for representing the same
geometrical information.

Figure13.10 exemplifies the concept showing a 3D polygonal model of a paral-
lelepiped test object in our lab, measuring 100 mm × 60 mm × 270 mm, made with
a CAD program using the exact values of its size along x , y, and z (Fig. 13.10b).
Since this object is made of rectified iron and painted matte white to avoid reflec-
tions, it was also 3D scanned, and the resulting mesh is shown in Fig. 13.10a. The
lower model exhibits the ideal representation of the geometry of that object, while
the upper one shows its possible physical imperfections as well as the measurement
uncertainty of the 3D digitization process.

When a model is made by the connection of 3D primitives, it is called solid model
and it is intended as a volumetric description of the modeled object, including its
physical materiality. This type of models is generated as the combination of actions
typical of an industrial process for physically manufacturing the object, and for this
reason, they are mainly used in the mechanical engineering field since they work for
both a visual representation of the object and the physical simulation of its static and
dynamic behavior.
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In digital 3D modeling of cultural heritage, the large majority of the models are
surface models.

If generated by plans or blueprints, a surface model can be hand-drawn with a
CADmodeler allowing NURBS design (e.g., Rhinoceros byMacNeel, Alias Studio,
Maya, 3D StudioMax byAutodesk or the open-source package Blender), or polygon
design (e.g., Modo by Foundry, Maya and 3D Studio Max by Autodesk or the open-
source package Blender).

If generated by acquired point clouds, a dense polygonal mesh is instead the most
suitable 3D modeling approach, considering that the measured points can shape a
polygonal mesh representing the closest estimate of the object surface, within the
tolerance of the 3D acquisition device measurement error.

The available approaches for generating a mesh out of 3D scanned data changes
also depend on the nature and organization of the raw 3D data.

As seen in Sect. 13.3.1, we may have 3D sensors providing structured clouds
of 3D points where the meshing can be easily made on each 3D image using as
complementary information the relative position of each point to his neighbors. This
allows a direct transformation from cloud to mesh on the single 3D image, where for
each point on the sensor plane (xy), only one z value is available. This is also called
rangemap or 2.5Dpoint cloud.On such rangemaps, each point can be connectedwith
the neighbors, that is known due to the data structure, through a regular triangular
mesh. Each pre-meshed range map can be adequately segmented using the normals
(i.e., the normals of each polygon forming the mesh) as feedback for determining
break-lines over themesh. This is generallymade setting a threshold for themaximum
angular difference of normals associated with adjacent polygons. Therefore, for a
set of structured 3D data, the alignment phase ends up with a set of aligned 3D point
clouds that can also be represented as a set of mesh patches of the whole object
surface. The final mesh, in this case, can be obtained by merging different patches
and smoothing the data over the overlapping areas. This can be done with a technique
called zippering, consisting of eroding the regions at the intersection of the views
and re-triangulating the eroded areas for building the final model [158], or making a
smoothing on the overlapped region based on Venn diagrams [154].

If the raw 3D data that are not structured due to the way they are stored after being
collected by the sensor, or because they are generated by a photogrammetric process,
the triangulation is operated directly on the final dense 3D cloud. Such triangulation
is far more complex than the straightforward triangulation of a 2.5D range map, and
may involve two different strategies (Fig. 13.11) based on

• 3D data approximation, initially proposed in the Computer Graphics domain;
• 3D data interpolation, developed in the Geometric Processing domain.

The 3D data approximation approach aims at calculating a polygonal surface fitting
the 3D captured data but not passing from the actual measured points. The methods
belonging to this category can filter out possible noise and artifacts overlapped on the
real 3D information but, at the same time, tend to smooth possible fine details. Such
approximation may be convenient, for example, with data provided by 3D scanning
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Fig. 13.11 Meshing of a point cloud, represented by yellow dots, with different meshing
approaches: a data interpolation. Here all the points of the 3D cloud are also nodes of the mesh; b
data approximation. The mesh fits the 3D points leaving part of them invisible below the surface,
some visible because above the surface, and none of them corresponding to mesh nodes

archaeological sites with noisy TOF laser scanners or with poor photogrammetric
photo set.

The oldest algorithm belonging to this category, called “Marching Cubes,” is
derived from the medical imaging domain where devices like Computer Tomogra-
phy (CT) or Magnetic Resonance (MR) provide volumetric 3D data. This means that
a volume is subdivided into regular small cells shaped as rectangular boxes (voxels),
each associated with a measured density. Such data are mainly shown as a sequence
of adjacent images. But if a 3D shape, for example of a bone, has to be extracted
as a 3D entity from the entire dataset, all the cells containing a range of densities
associated with a bone, will be identified. The corresponding iso-surface, generated
in the form of a triangular mesh, will provide the 3D model of the bone [110]. The
3D scanned data are technically very different from CT or MR scans, since only the
surface of an object is described and not his inner densities, and the surface sampling
can be nonuniform. However, by defining a volume corresponding to the geometrical
extent of the digitized object along the three dimensions and subdividing it with a
proper granularity, it is possible to differentiate cells filled with a 3D point from those
empty and apply the same concept for extracting a triangular mesh in correspondence
of the filled cells [76]. Another very popular algorithm in this area is the Poisson
surface reconstruction [99], which identifies an approximating function as a solution
of a Poisson equation, using as inputs the coordinates of the 3D points, and the cor-
responding normals as samples of the gradients. This method was implemented, for
example, in the proprietary software Agisoft Photoscan to generate a mesh from pho-
togrammetric data. Although it provides a regular mesh without empty zones even in
the presence of nonuniform input data, it is characterized by a significant smoothing
of 3D details. For this reason, in 2013, it was improved with a version able to reduce
smoothing called “screened Poisson surface reconstruction” [100]. An implemen-
tation of this algorithm is available for example on the open-source 3D processing
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software MeshLab (www.meshlab.net), developed by the Visual Computing Lab of
the National Research Council in Italy [136].

The 3Ddata interpolationmethods can be valuable for generating accuratemeshes
from high-quality point clouds using each measured point as node of the mesh. For
example, after digitizing a small decorated artifact with an active 3D device based on
triangulation, an interpolation method allows to maintain the resolution of the raw
data on the mesh derived from it. The first algorithm introduced in this category was
based on the Delaunay triangulation, where the 3D data are projected on a plane,
the closest points are found, and possible redundant triangles are filtered in 2D with
Voronoi diagrams. Then the mesh is re-projected in the 3D space [39]. Based on
this concept well-known implementations are those proposed in 1999 by Amenta
and Bern [6], refined with the name “power crust” in 2001 [8]. Another idea was
implementing the “mesh growing” concept, as, for example, in the ball pivoting
algorithm. Here, starting with a seed triangle, a ball touching three points of the
3D cloud is imagined, revolving around the edge while keeping in contact with the
edge’s endpoints until it touches another point, forming another triangle [23]. The
co-cone algorithm is built on the same idea. In this case the mesh is originated by
the union of co-cones (double cones with an opening angle of π/8 with respect to
the estimated normal) placed at each point [7]. An efficient interpolation algorithm
has also been recently proposed by Boltcheva and Lévy [28].

3D Editing
This phase of the 3Dcontent generationmainly consists in (a) cleaningof the unavoid-
able topological errors in the mesh; (b) elimination of possible holes in the mesh that
may arise during the automatic process; (c) smoothing of details determined just
by artifacts and not corresponding to actual geometric details; and (d) possible rear-
rangement of the polygonal structure for optimizing themodel size whileminimizing
the lack of geometrical information.

Topological issues are particularly vicious because, especially when large meshes
are involved, they might be not evident at first, but they can produce issues in the
following processing phases. This includes wrong model texturing, visual impair-
ments in model rendering, unpredictable outcome of mesh simplification, or slower
3D interaction due to the presence of unexpected polygons inside the external mesh
shell.

There are several types of topological errors that can occur on amesh, representing
a situation impossible on a real surface. Most of the times, these are originated by
computational errors in the generation of the mesh, mostly due to noisy datasets or
to the presence of outliers in the point cloud.

We should recall that the building blocks of a mesh are vertexes (or nodes) con-
nected by triangular faces, each one characterized by a normal. And the digital
description of the model consists in a list of nodes, represented by their x , y, and z
coordinates in space, and a list of triangles, describing the connections between nodes
addressed through their index. With this in mind, a comprehensive list of possible
topological errors is presented in Fig. 13.12, where the following cases are shown:

www.meshlab.net
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Fig. 13.12 Possible topology errors in a 3D mesh: a duplicate vertex; b duplicate face; c zero
area face; d unreferenced vertex; e non-manifold edge; f non-manifold vertex; g flipped normal; h
crossing faces

• Duplicate vertex—The same vertex is present twice in the list of mesh nodes
(Fig. 13.12a)

• Duplicate face—The same face is repeated twice in the list of polygons despite
the nodes are the same (Fig. 13.12b)

• Zero area face—A triangle is generated between one vertex and two separate
instances of the same node, originating a degenerate triangle with zero area
(Fig. 13.12c)
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• Unreferenced vertex—A node listed in the node list but not connected to any
polygon (Fig. 13.12d)

• Non-manifold edge—An edge shared by more than two polygons (Fig. 13.12e)
• Non-manifold vertex—Anode shared bypolygons not connected eachother except
for itself (Fig. 13.12f)

• Flipped normal—This condition occurs when one of the polygons in the mesh
has a normal orientation in the opposite way with respect to those of its neighbor
polygon(s) (Fig. 13.12g)

• Crossing faces—This condition occurs when one or more polygons intersect the
rest of the mesh sharing no edges (Fig. 13.12h).

Such errors can be identified and corrected by some of the most diffused commercial
programs for mesh editing like Polyworks Modeler from Innovmetric (Canada) or
Geomagic Wrap from 3D Systems (USA). However, the most comprehensive set
of tools for spotting topological errors can be found in the open-source software
MeshLab.

Closing mesh holes is a part of the process that is needed when the focus of 3D
modeling is cultural heritage visualization. The mesh represents in fact the support
over which the texture is projected, and missing polygons in a mesh involve also a
missing part in the texture, that is visually rather humble. This action is also needed
if the model has to be 3D printed, because 3D printing is possible only on closed
(aka watertight) meshes.

On the other hand, if the model is aiming at the most accurate geometric represen-
tation of a cultural heritage object, any alteration of the shape produced by closing
the mesh with non-measured nodes extrapolated by the existing data while closing
holes, may result in a false geometric document that, for this reason, is avoided.

Whenever needed, the practical approaches for closing holes in amesh (Fig. 13.13)
can be based on the simple closure with a plane fitting the nodes of the hole border
smoothing the borders of such closure. This approach works in case of flat or quasi-
flat surfaces. Alternatively, if the hole lies in the middle of a surface characterized
by a significant curvature, the nodes surrounding the hole can be taken into account
with their normal for fitting a polynomial surface that can be afterward sampled and
meshed at the same spatial resolution of the surrounding mesh.

In the software packages that allow mesh editing, these two approaches are indi-
cated as “flat filling” (Fig. 13.13b) and smooth filling (Fig. 13.13c), respectively.

Another process that might be used is the smoothing filtering that can be applied
to the whole model or selectively if specific bad 3D digitization condition occurs in
a specific area of the mesh. These can be due to a material not optically cooperating
with the 3D digitization process (e.g., very dark or shiny surfaces acquired with
a triangulation laser scanner) or errors made by the 3D digitization operator (e.g.,
insufficient image overlap in a photogrammetric process).

When the operator is aware that the details shown on the mesh are not actually
present on the object but are just artifacts of the process, filtering—even if it is still
a “falsification” of the original data—can improve the quality of the final result, as
shown in Fig. 13.14.
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Fig. 13.13 Hole closure in the mesh representing a small terracotta sculpture: a mesh with the
hole; b closure with flat filling; c closure with smooth filling

Fig. 13.14 Mesh smoothing: a mesh artifacts originated by an insufficient image overlap in a
photogrammetric 3D digitization process; b smooth filtering of the surface

This rationalization of the mesh is useful also for the following simplification
stage that might be based on different criteria: arbitrary determination of the total
number of polygons in the final mesh or maximum deviation between the original
and simplified mesh. The first approach can be useful, for example, if the mesh has
to be used in an application with strong limitations in handling large numbers of
polygons (e.g., a virtual museum app implemented on a smartphone). Otherwise
the second criterion generally allows to maintain a better coherence between the
simplified mesh and the original one, especially if the maximum deviation between
the two is set smaller than the intrinsic measurement uncertainty of the 3D method
for digitizing the heritage asset.

13.3.3 Creating a 3D Repository for Cultural Heritage

Today, the wide range of digital 3D objects considered for digitization and the tech-
nological and methodological improvements have generated a considerable increase
in the production of digital 3D cultural heritage models, propelling the scientific
community to start moving from keeping unstructured repositories of 3D models to
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devising structured databases. The design of a digital library containing 3D models
of cultural heritage objects comprises two critical macro-components:

1. The semantic description of the digitized object through appropriately descriptive
attributes useful for searching the object in a database. Such attributes are data
describing other data (i.e., the actual 3D digital content), and for this reason are
called “metadata”.

2. The 3D content generation consisting of (i) the actual 3D digitization of the object
by means of a technology appropriate to its size and details; (ii) storage of the 3D
digitized object in a repository of considerable size owing to the large amount of
data usually associated with 3D content; (iii) online access to the resource; and
(iv) the availability of a suitable 3D viewer for visualizing the digitized heritage
asset.

Description of CH Object for Online Access
The two macro-components just cited are equally important. Generally, the first step
is defining a general structure for the attributes describing the heritage objects to be
digitized. This step comes first because such structuring may influence the way the
raw data are collected during the digitization process and stored in a directory tree
coherent with the metadata structure [83].

Everything associated with the metadata of an object or a concept through terms
interconnected with each other for use by a computer is part of the much broader
areas of Artificial Intelligence (AI) and the Semantic Web. Both have been greatly
developed in the last three decades [74]. In this context, the way metadata is inter-
related with each other is called the “ontology”. This is a term generally inspired by
philosophy, where an ontology is a theory about the nature of existence, but in our
context “ontology” is a terminus technicus relating to a collection of statements that
define the relations between concepts in a language readable by a computer as well
as the logical rules making it possible for a computer to apply them correctly [24].
Such “reasoning” is allowed by the “ResourceDescription Framework” (RDF)which
facilitates representing structured information about any resource in the form of sim-
ple triple statements (subject, predicate, object). The assumption underlying RDF is
that resources can be described by means of semantically meaningful connections
between them.

Metadata and ontologies can be focused on specific disciplinary areas like health-
care, legislation, or biomedical research. The organization of information through
this approach started in the field of library automation, where in the 1980s a large-
scale digitization of library card catalogues was started in order to make it possible
to perform book searches with computers. This led to the creation of large databases
often arranged according to proprietary criteria and suitable for a search on a local
computer with a specific software package. The explosion of the Internet encour-
aged organizations and operators to find a way to make such databases searchable
independently of proprietary rules by adding a layer of “intelligence” to metadata,
making web searches more effective than they otherwise would have been.

The first structured attempt to give a semantic connotation to bibliographic
descriptions came at a workshop organized in 1995 by the Online Computer Library
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Table 13.1 Dublin core metadata elements

Dublin core element Use

Title A name given to the resource

Subject The topic of the resource

Description An account of the resource

Creator An entity primarily responsible for making the resource

Publisher An entity responsible for making the resource available

Contributor An entity responsible for making contributions to the resource

Date A point or period of time associated with an event in the lifecycle of
the resource

Type The nature or genre of the resource

Format The file format, physical medium, or dimensions of the resource

Identifier An unambiguous reference to the resource within a given context

Source A related resource from which the described resource is derived

Language A language of the resource

Relation A related resource

Coverage The spatial or temporal topic of the resource, the spatial applicability
of the resource, or the jurisdiction under which the resource is relevant

Rights Information about rights held in and over the resource

Center (OCLC) at their headquarters located at Dublin (Ohio), USA. Here more than
fifty people discussed how a core set of semantics for Web-based resources could be
useful for easier search and retrieval using the World Wide Web. The results of that
discussion became the “Dublin Core Metadata Schema,” a name that refers to the
location of the workshop. Originally developed to describe web resources, “Dublin
Core” (DC) has been used to describe a variety of physical and digital resources. It
is based on a “core” of 15 metadata elements (Table13.1).

From 1996 the “International Council of Museums” (ICOM), through its “Inter-
national Committee for Documentation” (CIDOC), extended the reasoning fromweb
resources to generic cultural objects, developing its “Conceptual Reference Model”
(CIDOC-CRM), an ontology for documenting cultural heritage andmuseum objects.
In order to better describe, for example, the history of a manufactured item or a his-
torical event, a set of refinements to the DC were added to make the schema able
to describe spatiotemporal events, with the introduction of actors, temporal entities,
and places where an action took place. Similarly, the active or passive involvement
of actors in a historical event was mapped through hierarchical metadata.

This was done with the conviction, demonstrated by practical applications, that
the explicit modeling of events leads to models of cultural contents that can better
be integrated [50].

The CIDOC-CRM was progressively refined until 2006, when it became an ISO
standard (ISO 21127).



672 G. Guidi and B. D. Frischer

In 2005, the effort to offer an improved level of interoperability among cultural
heritage data coming from different institutions was further pursuedwith the creation
of Europeana. It was conceived as an online resource for making Europe’s cultural
heritage accessible to all. To make this vast effort technically feasible, Europeana
was designed to give access to different kinds of digital contents hosted by the
heritage institutions in Europe rather than to collect the contents in a large central
repository. Therefore, the digital objects that the user can find through Europeana
remain with the cultural institution that created them, which is responsible for its
preservation and accessibility. Europeana collects only the metadata describing each
object, including a small picture of it (thumbnail). In functional terms, any user can
search a resource on Europeana through an online search engine running on its local
database of metadata provided by the various participating institutions. Once the
user finds what he is looking for, he can click a link to the actual content, and he is
automatically connected to a landing page arranged by the owner organization that
owns and maintains the original resource.

A specific data model was proposed, the “Europeana Data Model” (EDM), for
structuring the data that Europeana ingests, manages, and publishes, taking into
account the development status of the Semantic Web at that time [49]. EDM was
also an attempt to transcend the respective perspectives of the sectors represented
in Europeana, namely, museums, archives, audiovisual collections, libraries, and
research institutions.

However, it was only with the EU-funded project CARARE that the issue of
describing 3D models of cultural heritage for publication on Europeana was con-
sidered. CARARE was a “Best Practice Network” active from 2010 to 2013. It was
designed to involve and support Europe’s network of heritage agencies and orga-
nizations, archaeological museums and research institutions and specialist digital
archives in i) making available through Europeana their digital content for archaeo-
logical and architectural heritage; ii) aggregating content and delivering services; and
iii) enabling access to 3D and Virtual Reality content through Europeana. One of the
significant outcomes of the project was the development of a metadata schema with
specialized fields specifically designed for describing 3D content. The schema was
based on various semantic web pillars such as theDublin Core and the CIDOC-CRM,
but also on some more specialized standards including

• EDM, for maintaining compatibility with the Europeana Data Model
• MIDAS Heritage, for information about the historical environment
• POLIS DTD, conceived as an interoperability framework for cultural heritage
• LIDO (Lightweight Information Describing Objects), resulting from an interna-
tional effort in the museum sector

In recent years, the CARARE schema has been enriched thanks to the 3DICONS
project, another EU-financed initiative specifically aimed at populating Europeana
with 3Dmodels of cultural heritage (http://3dicons-project.eu). Through 3DICONS,
more than 3,000 models were produced and stored in local repositories in sixteen
European countries, and the related metadata was ingested into Europeana. The

http://3dicons-project.eu
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critical issues raised by this experience led to progressive refinements climaxing in
CARARE 3.0, a draft of which was circulating while this chapter is being written.

Apart from the many specific standards that cannot be analyzed in depth here
because of space limitations, anymetadata schema associatedwith 3D digital content
derived by a cultural heritage object will contain at least the following typologies of
data:

• Descriptive metadata. They include the name and identifier (e.g., inventory num-
ber) of the heritage asset. They also describe features like material, author (if
known), history, and significant dates of the described object, as well as its typol-
ogy (archaeological monument, historic building, industrial monument, archaeo-
logical landscape area, shipwreck, artifact, ecofact, etc).

• Technical metadata. They include technical information that applies to any 3D
object, including the sensor used for the 3D digitization, the process for creating
the 3Dmodel from the raw data, the 3Dmodel size in terms of polygons and texture
size, the file type and information about the software and hardware on which the
digital object can be rendered or executed.

• Administrative metadata. They include provenance information about who is
responsible for the digital preservation of the digital object as well as rights and
permission information that specifies, for example,what access to the digital object
is permissible.

Production and Online Access to CH Digital Object
The techniques used for 3D digitization of large sets of heritage objects are the same
as those described in Sect. 13.3.1, except for the fact that large-scale digitization
requires an optimized serialization of activities to make sustainable the production
of a large number of 3D models per operator and per time unit.

Previous experiences of this type to be reviewed here include i) the EU-financed
project 3DICONS (http://3dicons-project.eu), where the Politecnico di Milano pro-
vided more than 500 3D models under the leadership of one of the coauthors of this
chapter; and ii) The “Uffizi-Indiana University” project (www.digitalsculpture.org/
florence), led by the other coauthor of this chapter. In the latter project, currently still
underway, the Virtual World Heritage Lab at Indiana University is digitizing the ca.
1,000 ancient sculptures housed in the various collections of the Uffizi Galleries in
Florence (Italy).

As already mentioned in Sect. 13.2.1, the 3DICONS experience has shown that,
in case of the large-scale production of 3D models, the photogrammetric approach is
by far more suitable than 3D capture with active range sensors [78]. On average, each
operator in the 3DICONSprojectwas able to produce sixmodels permonth.The same
approachwith some further optimizationwas applied in theUffizi-IndianaUniversity
project. As a result, productivity was increased to sixteen models per operator per
month. The optimization of the process consisted in (i) the systematization of image
capture according to predefined settings suitable for gathering the level of detail
needed by the application (and not more); (ii) use of a monopod and a remote control
of the camera when dealing with large artifacts; (iii) the use of fixed focal length

http://3dicons-project.eu
www.digitalsculpture.org/florence
www.digitalsculpture.org/florence
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lenses to improve 3D data quality; (iv) capturing geometry normalized according
to a fixed base schema with local variations determined by the specific peculiarity
of each piece; (v) use of a quick single laser scan to speed up the scaling phase of
photogrammetric modeling; (vi) use of wide-angle lenses and illumination devices
for capturing surfaces of the artifacts positioned close to walls or to other occluding
elements; and (vii) systematic storing of the raw images and intermediate processing
in a way coherent with the object metadata [114].

Once the 3D models are available, the next technical issue concerns the design
of the repository. Fixed rules are difficult to prescribe owing to the great variability
of the size of the 3D models to be accessed from the database, the kind of cultural
heritage objects included, and the level of detail chosen for their data capture. The
previously mentioned experiences suggest some key best practices.

The two main requirements for a 3D repository are that it offers enough space
for accommodating all the 3D models expected to be included in the collection and
that it offers a Uniform Resource Locator (URL) for each model which is added to
its identifying metadata record. For example, in the 3DICONS project all the digital
objects were allocated on a Network Attached Storage (NAS) made of four physical
hard disks connected as a Redundant Array of Independent Disks (RAID). The data
protection was provided with internal redundancy with RAID 5, a RAID schema
with parity blocks cyclically distributed over the array, which is used to recover the
data in case of failure of one of the four disks of the array.

For the Uffizi-Indiana University project, the space for the 3D models was allo-
cated on a series of hard disks of the Virtual World Heritage Laboratory. A tape unit
provided by the Scholarly Data Archive of Indiana University (https://kb.iu.edu/d/
aiyi) provided for backup.

In general, the prediction of the actual space needed for an application like this
is very dependent on the digitized material and on the level of detail required by
end-users who will consult the 3D material. Usually, for the simple textured 3D
model (i.e., excluding all the images/measurements taken on the field to generate
the final three-dimensional representation of a museum artifact), a reasonable upper
limit is 500 MB per model. This results in a rough estimation of 2,000 models per
TB. Obviously, such an estimate may change dramatically in cases of models rep-
resenting large architectural structures not subdivided into elementary components
or of territorial models derived, for example, from aerial laser scanning or drone
photogrammetry.

The space required might be very different if the storage area is used for all
the material associated with the production of the model as well as for the model
itself. The latter is sometimes generated in a high-resolution master version with
one or more low-resolution variants for online delivery, depending on the purpose
of the repository. For example, this was the approach followed in the 3DICONS
project because of the need to respect the strict copyright laws of Italy. In Italy, a
low-resolution digital representation of a museum object can be freely distributed,
but a special authorization from the museum which owns the object is required if
the representation is above a certain resolution. Owing to the need for dual-model
generation (at low and high resolution) and the decision to preserve both the raw data

https://kb.iu.edu/d/aiyi
https://kb.iu.edu/d/aiyi
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and the final high- and low-resolution models, the space needed in the 3DICONS
project was on average 3 GB per item, leading to an average of ca. 300 models per
TB. Thus, the total space required for the 550 models of architectural structures and
museum objects, including the raw 3D data collected on the field for the generation
of the 3D models, was ca. 1.7 terabytes (TB).

Regarding web visualization of 3D content, both Open Source and commercial
solutions have become available in recent years. User interaction with a model can
be achieved in two different modes:

1. The 3D model is stored remotely in a standard format such as obj, ply or 3Dpdf
which can be read by a 3D viewer installed on the local computer of the end-user;

2. The 3D model is stored remotely on a dedicated portal in a format that is not
necessarily standard or known to the end-user, but the portal itself provides a 3D
viewer for accessing the material.

The way the model is visualized can also follow three different modalities, according
to the rendering type chosen:

a. Local rendering. The 3D content is first entirely downloaded by the end-user
before it can be visualized. Once the model is fully downloaded, in a time period
depending on its size and on bandwidth, the rendering is produced on the local
computer of the end-user, with a frame rate of the rendered scene depending on
the processing capability of the local computer. This approach is used either if
the 3D model is first downloaded in a standard format and shown with a local 3D
viewer (mode 1), or if after downloading, the 3D viewing function is provided by
the portal itself through a WebGL application (mode 2).

b. Remote rendering. The 3D model is preserved and rendered remotely while the
end-user accesses it [148]. Instead of downloading the 3D content locally, only a
stream of frames originated by the rendering is sent to the local end-user, resulting
inmuchhigher protection of the copyrighted 3Dmaterial. This rendering approach
always involves the use of mode 2.

c. Local rendering of 3Dmodel chunks remotely preserved. This approach offers two
advantages: (i) good data protection because the entire model is not transmitted
but only pieces of it at different resolutions depending on the virtual navigation
chosen by the user and (ii) low latency time since the rendering is done locally
on only a small part of the entire model.

For example, most of the 3Dmodels accessible on Europeana from the 3DICONS
project are stored as 3Dpdf files, downloadable through the link provided by a Euro-
peana search from the content provider. To access the 3D content the end-user must
have the original Acrobat Reader from Adobe, the only one able to read 3D contents
in pdf files. Hence, here we see exemplified implementation of interaction mode 1
with rendering type 1.

Nowadays, the most commonly used platform for sharing a 3D model online is
Sketchfab (https://sketchfab.com), a commercial web service conceived as a general-
purpose platform for accessing 3D content through the web, offering for 3D models

https://sketchfab.com
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a service similar to what YouTube offers for videos. It is widely used in the cul-
tural heritage community [90]. It exemplifies the case of interaction in mode 2 with
rendering of type 1.

In connection with the Stanford Digital Michelangelo Project, in the early 2000s,
a set of tools was developed that included Scanview, software for visualizing the
project’s 3D content using interaction mode 2 and rendering type 2 [104]. In the
early 2010s, the concepts behind this tool were further developed to exploit WebGL
(a standard that did not existwhenScanviewwas first conceived) by theDigital Sculp-
ture Project of the Virtual World Heritage Laboratory (http://www.digitalsculpture.
org).

A system that is sometimes used today to visualize cultural heritage content is the
“3D Heritage Online Presenter” (3DHOP), a framework for the creation of advanced
web-based visual presentations of high-resolution 3D content such as those needed
in the cultural heritage field. By using multi-resolution encoding, it is able to effi-
ciently stream high-resolution 3Dmodels such as those originated by 3D digitization
employed in cultural heritage applications [134]. In this case, the interaction uses
mode 2 with rendering type 3.

13.4 Experimental Application

13.4.1 3D Digitization of a Little Clay Sculpture with
Photogrammetry

The test object is a 48cm tall low-cost reproduction of one of the soldiers in the
so-called Terracotta Army, namely, a collection of terracotta sculptures depicting the
armies of Qin Shi Huang, the first Emperor of China.

For this example, the commercial toolAgisoftMetashape—oneof themostwidely
available SFM/IM tools used today—was employed. Among its various features, it
has the possibility to print coded targets to be used on the scene for scaling purposes.
Therefore, after having printed several sheets with 6 targets per page and having cut
three pairs of targets per page, four of these pairs were used for preparing the set
where the object was photographed, as shown in Fig. 13.15.

The table where the object was located, surrounded by illuminators, was first pre-
pared with coded targets taped over it. The targets’ relative distances were measured
with a metallic tape meter for having a scaling reference, as shown in the following
figure.

Two long distances between the centers of the coded targets were taken for con-
trolling the model scale:

• d(100, 107) = 492 mm
• d(98, 101) = 509.5 mm

http://www.digitalsculpture.org
http://www.digitalsculpture.org
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Fig. 13.15 Field preparation before starting the photogrammetric 3D digitization. Two long dis-
tances between coded targets are taken with a tape meter for controlling the model scale (d(100,
107) = 492 mm and d(98, 101) = 509.5 mm), while the shorter distances d(97, 98), d(99, 100),
d(101, 102), and d(107, 108), all equal to 95 mm, are used for checking the scaling result

The shorter distances [d(97, 98), d(99, 100), d(101, 102), d(107, 108)], all equal to
95 mm, were used for checking the scaling result at the end of the process.

The sequence of images was taken at a distance suitable for capturing all the
details of the surface whose minimal size was estimated in 0.5mm with a caliper,
before starting the photogrammetric campaign. According to the Shannon–Nyquist
sampling theorem [147], the minimal 3D sampling spacing that allows to reconstruct
such detail is half its size, therefore 0.25mmemerged to be theminimal 3D resolution
of the point cloud originated by this process, allowing to “see” such detail. In order
to correlate such value to the image resolution we have to consider that Agisoft
Metashape will be set in the following processing in a modality that generates one
3D sample for every 4 pixels, therefore we have to aim at an image resolution equal
to 0.25/4 = 0.0625 mm.

This value, also called in the photogrammetric literature as “Ground Sampling
Distance” (GSD) based on its original meaning in aerial photogrammetry, is deter-
mined by the camera-surface distance (d), the size of the pixel over the photographic
sensor (px), and the focal length of the lens used for taking the images ( f ). To find
the relationship between those parameters, it is sufficient to consider the diagram in
Fig. 13.16.
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Fig. 13.16 Geometrical relationship between the active cell of a photographic sensor and the GSD,
i.e., the spacing among adjacent pixels once projected over the imaged surface

Here a portion of the surface to be imaged, lying at a distance d by the projection
center of the camera, is projected over the sensor inside the photo-camera, lying at
a distance f from the projection center of the camera. The portion of the object’s
surface indicated as GSD is the one corresponding to the active pixels px over the
sensor. The two triangles sharing one vertex in the projection center are similar,
therefore the base/height ratio will be equal, which means

px/ f = GSD

d
.

If we want to know, what is the maximum distance at which to operate the camera
in order to guarantee the desired resolution, we need also to know some technical
details about the camera to be used. In our case, a Sony Alpha 6300 equipped with
a macro 30mm lens was used. This gives us two useful parameters of the problem:
f = 30mm and the pixel size px . The latter value requires some additional technical
information, viz., the size of the sensor in terms of both geometrical extension and
number of pixels. As easily found in the technical specifications of the camera, it
is equipped with an APS-C sensor whose size is 23.5mm × 15.6mm, providing 24
Mega Pixels organized as a 6000 × 4000 matrix. For this reason, the pixel size over
the sensor can be found either as 23.5 mm/6000 or 15.6 mm/4000 since the matrix
geometry tends to be dimensioned to ensure a square pixel. In both cases we get
px = 0.0039 mm.

Hence, if our digitization problem required an assignedGSD, theminimal camera-
object distance will be given by

d = GSD

px
f.

Thatwith thenumber of theproblemgivesd = (0.0625/0.0039) ∗ 30mm =481mm.
So, keeping the camera at least at 48.1cm from the object will ensure the needed 3D
resolution at the end of the photogrammetric process.

Of course, such reasoning is exact for a planar surface while for a round object
like the one in this example it gives a value depending on the point of the object
where the camera distance is evaluated, giving anyway an order of magnitude and
an upper limitation for the camera-object distance.
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Such precise estimation of resolution does not take into account the presence of
measurement uncertainty and 3D artifacts in the captured point cloud which can hide
details even if the 3D resolution is appropriate.

In addition, these considerations about 3D resolution have to be evaluated in
relation to the final purpose of the model. If the purpose is an accurate geometrical
documentation, the proper resolution is crucial. Contrariwise, if the goal is to create
a 3D object for purposes of visualization, the information contained in the texture
can be enough, and the geometrical resolution can be strongly reduced.

The second step in the preparatory phase is determining the camera positioning
that requires a set of views from different locations in order to capture all the surface
features of the object, maintaining an overlap level of at least two thirds from one
shot to the next, so that in the fully overlapped zone the same feature can be seen
in at least 3 subsequent images. We should first consider that for a camera equipped
with a sensor whose size is ws ∗ hs , shooting at a distance d with a lens having focal
length f , the framed area has width w f and height h f , given by

w f = d

f
ws, h f = d

f
hs .

For the settings evaluated before the camera-target distance is 481 mm, the focal
length is f = 30mm and the APS-C sensor has width ws = 23.5mm and height
hs = 15.6mm. Hence,w f = (481/30) ∗ 23.5mm = 377mm and h f = (481/30) ∗
15.6mm = 250mm, corresponding to an angular view of 43◦ horizontally and 29◦
vertically.

In these conditions, assuming we take portrait-oriented images in order to ensure
better capture of the geometry of a specific object, the 2/3 overlap rule will give a
lateral displacement s between adjacent images given by 1/3 of the horizontal frame
size, given in this case by h f since we are using the portrait orientation. In the case of
a lateral displacement (i.e., with the camera kept orthogonal to the imaged surface)
we would have s = 250mm/3 = 83mm. However, we have to take into account that
in this case the framing covers the entire sculpture, and there is a circular movement
of the shooting position around the object. The actual sculpture has a rectangular
base of 16cm by 14cm and is 48 cm tall. So, if we assume, for the sake of simplicity,
that we can approximate this sculpture with a cylinder whose diameter is 15 cm,
photographed from a distance of 48 cm (see Fig. 13.17), we can evaluate the angular
portion of the object “seen” by the camera considering the two right triangles having
the optical axis of the camera as the hypotenuse.

Each one has one side tangent to the cylinder and the smallest angle given approxi-
mately by arctan (7.5/48)=8.9◦. So, the other non-right anglewill be 90◦-8.9◦=81.1◦.
By doubling these values, we will obtain the angular coverage of the object from the
camera (17.8◦), and therefore the angular portion of the object seen from that point
of view (162.2◦).

By applying the 1/3 rule to this convergent shooting, we can see that the minimum
number of images will be one every 162.2◦/3=54◦, that means about 6.6 images
around the object. A higher number of images results in a better overlap that generates
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Fig. 13.17 Angular coverage of each image given the camera-target relative position

more redundancy and improved results. Therefore, the images actually taken in this
case numbered about 12 (nearly double of the minimum) at three different vertical
positions, in order to cover all the surfaces of the object, with the addition of a few
close-ups for some details like the legs or the arms.

Regarding the camera setting, the A mode was used (i.e., automatic with aperture
priority), in order to maintain a fixed aperture throughout the whole image set. This
allows a better estimation of the radial distortion parameters, strongly influenced by
aperture variations. The actual aperture was set to F8, which at the chosen operating
distance and with the selected lens and camera gives a depth of field of 8.5 cm,
sufficient for the depth of sculpture chosen. The total number of images taken ended
up being 57.A sample of the photo set is shown in Fig. 13.18.

The photogrammetric process could be therefore started with the image alignment
step that includes the automatic estimation of thousands of corresponding features
on the selected images, called in the vocabulary of the specific software used in this
example, “tie points.” This massive identification of corresponding features origi-
nates a redundant system of collinearity equations made by thousands of equations
(two for every feature).

The best approximate solution of such a system is found with the bundle adjust-
ment technique that gives as output the 3D coordinates of each tie point, the extrinsic
parameters of the cameras (i.e., the positions and angular orientations of the images
in the project), and the intrinsic parameters of the camera (i.e., the calibration param-
eters, the same for each image). It should be noted that the system of coordinates
used at this stage is relative and arbitrary, determined by the first image used as a
starting point for the process. The oriented images for this example are shown in
Fig. 13.19.

Good feedback for the quality of the alignment process is provided by reprojecting
the tie points over the images and checking the deviation from the coordinates of
the corresponding features initially identified over the images. Such quantity, called
reprojection error, should be generally below one pixel. The Metashape software
allows us to estimate this error and also to select the tie points with a reprojection
error above a predefined threshold. Once the tie points producing a larger reprojection
error are deleted, the bundle adjustment can be reiterated until the result gives a
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Fig. 13.18 A sample of the images taken for the photogrammetric 3D digitization of the sculpture

Fig. 13.19 Image distribution in space
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Fig. 13.20 Image distribution in space

satisfactory outcome. In the case of this example after one step of refinement, about
25,000 tie points were used, providing a reprojection error of 0.38 pixel.

After the images’ orientation, the project can be scaled using the reference points
measured at the beginning. The software used allows us to automatically identify
the coded targets on the scene. The user can then select pairs of identified targets,
defining one or more scale bars and assigning a size to it.

In Fig. 13.20 the targets photographed in Fig. 13.15 are shown in the photogram-
metric environment. Two scaling bars represented by the two diagonal distances
between (107, 100) and (98, 101) have been used for scaling the project, while the
short distances between (97, 98), (99, 100), (101, 102), (107, 108) for checking the
scaling result, as shown in Fig. 13.21.

These numbers provide a good feedback about the metrological quality of the
result, resulting 0.092mm on the control scale bars and better than 0.3mm on the
checking scalebars. Once the images in the set are oriented in space and the camera
parameters are known, it is possible to perform the image matching phase, that for
every image of the set, systematically generates a 3D point for each pixel or group
of pixels recognized in other images of the same set. Given the size of each image,
this process can easily generate millions of 3D points.

The software used in this example makes it possible to set the size of the matching
entity with a parameter indicated (rather misleadingly) as “quality.” A “super-high”
quality means matching pixel-by-pixel, a “high” quality matching 2 × 2 pixel win-
dows, a quality “medium” matching 4 × 4 pixel windows and so forth, halving the
linear image resolution at each step. So, starting from the same oriented images, the
number of 3D points originated at a certain quality level is reduced by four passing to
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Fig. 13.21 Scaling results. The distances between (98, 101) and (107, 100), measured in the field
with a tape measure, were used for imposing two scaling factors with an average error of 92
micrometers. The other recorded distances, theoretically equal to 95 mm, provide an average error
lower than 0.3 mm. Despite the caption of the table, all the values are expressed in mm

the lower level or multiplied by four passing to the higher level because the “quality”
is actual “density” or “3D sampling frequency.”

In this case, we chose a “medium” quality determining the 1:4 resolution ratio
between the 3D cloud and the images, mentioned at the beginning of this section. The
dense cloud created in this way turned out to have 4.3million 3D points (Fig. 13.22b).

The following step consisted in creating the mesh from this high definition set of
data. Theoretically, to maintain all the details contained in the dense cloud, a mesh
should contain approximately a number of polygons twice the number of 3D points.
However, since the software contains an intelligent simplification process that tends
to dynamically adapt the size of the polygon to the size of the represented feature,
it is possible to reduce the number of actual polygons in the final mesh. Depending
on the details in the 3D shape, the number of polygons may range from 20% to 50%
the number of 3D points in the dense cloud without a significant detail loss.

In addition, it has to be noted that the meshing algorithm implemented in this
software package belongs to the “3D data approximation” category, mentioned in
the subsection “Creating a 3DModel fromRaw3DData” of Sect. 13.3.2. This always
implies a certain level of smoothing passing from the dense cloud to the mesh. For
this reason, certain applications of SFM/IM photogrammetry to cultural heritage,
like for example 3D survey for monitoring purposes, tend to use the raw 3D point
cloud rather than the meshed model in order to reduce to a minimum any loss of
geometric details [130].

In this example, given the presence of large sections of the model with few details,
we arbitrarily decided to generate a mesh with 1.5 million polygons, that after some
editing with an external program was reduced to 1.2 million, owing to the cut of the
plane in the bottom part. The latter is shown untextured in Fig. 13.22c.

The final stage of the modeling consists in texturing the 3Dmodel with the images
initially used for creating its geometry (Fig. 13.22d). To map a 2D space on a three-
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Fig. 13.22 Four processing steps in the photogrammetric 3Dmodeling of the sculpture used in this
example: a 25,000 tie points identified on the surface of the object and in the close neighborhood; b
dense cloud made of 4.2 million 3D points; c untextured edited mesh made of 1.2 million polygons;
d same mesh textured using a 8k × 8k UV mapping space

dimensional surface, we use the well-known process called UV mapping, which is
a standard process in computer graphics.

The process consists in defining a square area whose axes are denoted U and V
and unwrapping the 3D model over such area, if necessary, breaking its geometry
into parts. This creates a bi-univocal mapping between the 3D surface and the 2D
area of the UV space whose extension goes conventionally from 0 to 1 on each
axis (Fig. 13.23). When this ideal space has to be converted in a digital map, this
is practically made with a square image whose side is, in general, a power of two,
typically 4096 x 4096, 8192 x 8192, and so forth.

When this operation is completed, every surface of themodel has a correspondence
with the pixels of this square image that is used for projecting the images of the
photogrammetric image set. The projection can be made with all the images of the
dataset or with a limited subset, for example, avoiding the images very inclined with
respect to the model surface, in order to avoid strong nonuniformity in the texture
resolution.

In order to optimize the uniformity of texture resolution, it is also possible to
include in the photogrammetric image set a few shots taken with the camera orthog-
onal to the artifact’s surface, taken from the main views (front, right, left, etc.),
selecting only those images and few integrative views in the texturing phase.

Once the UV parametrization is done, the same mapping space can be used not
only by a texture, but potentially by othermaps that can be used in computer graphics,
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Fig. 13.23 UV parametrization for the model shown in Fig. 13.21

like displacement, normals, ambient occlusion, opacity, emission, or transparency,
if the visualization environment used for interacting with the 3D model is able to
accommodate them. For some purely visual applications, this may allow us to greatly
reduce the model’s polygon count, baking the visual information into a set of maps,
as usually happens in 3D computer games, which require light 3D models to support
real-time rendering of dynamic interactions.

13.4.2 Overview of the Software Tools Used

As made clear in the previous section, digitizing an ancient artifact in 3D with
photogrammetry involves different tools that pertain to the different phases of the
process. In our specific example, we have used the software packages specified below
for the different phases of the process:

• Photogrammetry (feature extraction/camera calibration/image orientation):
Metashape by Agisoft (www.agisoft.com). The choice of this commercial tool
was motivated by the universally recognized stability of this tool for that part of
the process, together with the possibility to intervene manually on the refinement
of camera calibration parameters. Possible commercial alternatives to this program
are RealityCapture by Capturing Reality (www.capturingreality.com), ReCap by
Autodesk (www.autodesk.com/products/recap), Photomodeler by Photo-Modeler
Technologies (www.photomodeler.com), 3DF Zephyr by 3DFlow (www.3dflow.

www.agisoft.com
www.capturingreality.com
www.autodesk.com/products/recap
www.photomodeler.com
www.3dflow.net
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net), Pix4D by Pix4D SA (www.pix4d.com), and iWitnessPRO by DeChant Con-
sulting Services DCS Inc. (www.iwitnessphoto.com).

• Photogrammetry (Image matching): Metashape
• Mesh topology check/correction: Meshlab
• Mesh holes correction: Meshmixer
• Mesh smoothing: Meshmixer
• Mesh texturing: Metashape

13.5 Open Challenges

Technically, the production of 3D models for cultural heritage can be considered
a solved problem with respect to the geometrical component for many categories
of scenarios that are optically cooperative, independently of their size. A significant
difference does exist in terms of modeling time between steady active devices, which
still need substantial manual effort for post-processing the data, and mobile active
devices or photogrammetry, that make it possible to generate a reality-based 3D
model with minimal human effort. With the same types of materials, the generation
of the texture component can also be considered a solved problem for all applications
where the quality of a photographic image is considered adequately accurate.

In particular, the experience with recent EU-financed projects such as 3DICONS,
the project CultLab3D by Fraunhofer Institute, or the Indiana University-Uffizi 3D
Digitization Project, whose goal is digitizing the entire collection of ancient sculp-
tures in the Uffizi Galleries, demonstrated how today automatic photogrammetry
based on SfM/IM is the preferred technology for massive digitization of CH, making
it possible to produce a textured model 5 to 20 times faster than that required by
steady active 3D devices [82].

However, if the 3D digitization involves scenarios with non-cooperative materials
(e.g., those that are shiny or transparent), apart from penetrating radiations that may
work in some cases, we still lack efficient technological solutions for obtaining a
mesh model.

Regarding material reflectance, which is important for accurately rendering the
visual aspect of a digitized heritage asset, the existingmethods give good results only
on specific categories of objects, typically those small enough to fit into complex
structures for generating sequences of images with various illumination geometries.
Here 3D technology needs to progress to extend reflectance estimation to a broader
category of heritage objects while also reducing the time needed for making the
estimate.

What is still lacking in the Humanities and Social Science side is a complete
understanding of the metrological aspects related to 3D digitization. Any 3D captur-
ing technology gives limited resolution, accuracy, and precision, and a full awareness
of what is needed for a specific cultural heritage application has a direct impact on
the whole 3D digitization pipeline, with direct consequences for feasibility and costs.
Therefore, the nature, strengths, and limitations of the 3D capture technology chosen

www.3dflow.net
www.pix4d.com
www.iwitnessphoto.com
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for any given project should be completely understood by end-users in the Humani-
ties and Social Sciences when they must determine how best to handle the inevitable
trade-off between costs and benefits in any proposed 3D digitization project.

3D digitization of cultural heritage is triggering new opportunities and challenges
for sharing heritage goods. These changes are leading to an evolution of the eco-
nomic, cultural, and social value of heritage, which requires more innovative policy
and governance solutions than those generally adopted. This novel approach, also
known as “participatory governance of cultural heritage,” is becoming—especially
in Europe—a growing interdisciplinary area. It is a direct consequence of the mul-
tiple possibilities of interconnections between artifacts, sites, historical events, and
narratives, once in digital form. Historically speaking, the governance of cultural
heritage has often been a top-down approach: from institutions (i.e., the “experts”)
to the public. By contrast, participatory governance of cultural heritage combines
knowledge of the real interests and needs of the society with those of the cultural
heritage assets (collections, staff competence, etc.). As a result, it recognizes many
different “experts,” involving the participation of local communities and shaping the
perception of an identity related to a place and its cultural heritage.

13.6 Conclusion

After initial resistance by the cultural authorities to the introduction of the new tech-
nologies discussed herein, over the past twenty years, 3D digitization has gradually
become a routine activity for recording and preserving heritage. Especially in the
countries more endowed with tangible heritage such as Greece, Italy, France, or the
UK and that are fortunate to belong to a governmental structure (the EuropeanUnion)
which typically offers strong financial backing to cultural activities of all kinds, 3D
digitization is even required as a standard form of documentation for heritage sites
and monuments.

More generally, globalization, digitization, and the pervasive adoption of ICTs are
changing the way cultural heritage is produced, presented, accessed, and used. At the
same time, cultural heritage is increasingly recognized as a competitive advantage in
some areas of the world, leading to an evolution of the economic, cultural, and social
value of heritage, which requires more innovative policy and governance solutions
than those generally adopted.

The paradigm shift involved by those changes generates several challenges deter-
mined by the porting of cultural heritage to the digital era, for example, the strong
need of an interdisciplinarity approach bridging the humanities and the highly tech-
nical disciplines, or a new threat in the form of the long-term conservation of digital
objects, which are much more fragile than the pyramids or marble sculptures.
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Such new scenarios also open up new opportunities and new areas of study and
research that will require new professional figures up to the task of facing this aspect
of the digital revolution. We hope that the training of such new professionals will
benefit from this chapter.

13.7 Further Reading

This chapter touches several scientific areas, and of necessity it could not go into
too much depth when discussing the topics treated above, some of them, indeed, are
suitable for an entire book.

For this reason, several articles and books have been cited throughout the chapter,
both to support the statements made but also to suggest links to external readings
useful for deepening knowledge about specific topics.

Therefore, instead of suggesting other texts, we invite readers to search inside the
text the specific subject of interest and to refer to the papers/books mentioned there,
with particular emphasis on the review and state-of-the-art papers.

13.8 Questions

1. What are, in general, the possible purposes of 3D digitizing cultural heritage?
2. What makes a 3Dmodel more effective than an image in documenting a heritage

object?
3. What is meant by the acronym HBIM?
4. In the 3D digitization of sculpture and other museum artifacts, what is the most

difficult material to scan: wood, marble, or bronze? And, why?
5. Assuming you wish to create the 3D model of a sculpture, what is the quicker

method to obtain a texturized mesh: laser scanning or photogrammetry?
6. Does it make sense to digitize in 3D a painting? Can you cite any examples of

this being done?
7. Why is it sometimes useful to integrate different 3D technologies?
8. In the case of underwater photogrammetry of an ancient relic in deep waters

(i.e., > 100m) a ROV is generally used. What is that?
9. What type of technologies are used for digitizing intangible cultural heritage?
10. To what does the term “Virtual Heritage” refer?
11. What is the purpose of the criteria contained in the “London Charter” and in the

“Seville Principles”?
12. Which are the five benefits of visualization such as 3D reconstructions of cultural

heritage defined by Ware?
13. What is “simpiricism”?
14. Should the final purpose of a cultural heritage 3D model influence the cost of

the related 3D digitization process? If so, why?
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15. When is it appropriate to make 3D models of heritage assets by the use of
penetrating radiation such as X-rays?

16. What is the difference between active and passive 3D digitization methods?
17. What does the collinearity condition mean in photogrammetry?
18. How could the photogrammetric process become automatic in SFM/IM?
19. Which category of 3D active devices can be used in cultural heritage digitization?
20. How can 3D range maps originated by a 3D active device be registered in the

same coordinate system?
21. Considering the same heritage object, how is the genesis of a dense cloud orig-

inated by an active device different from one of a dense cloud originated by
SFM/IM photogrammetry?

22. Are 3D scanned heritage assets generally modeled as surface or volume 3D
models?

23. Meshing a 3D cloud can be done with two alternative approaches: data approxi-
mation or data interpolation.Which one is themost suitable for creating a detailed
mesh whose nodes are exactly corresponding with the measured points?

24. How does the “marching cubes” algorithm operate to generate a mesh from the
raw data?

25. What does it mean when a mesh has a non-manifold edge?
26. Would it be better to close a hole in the mesh of a sculpture in a quasi-planar

region of the model by flat or smooth filling?
27. What do we mean when we speak about metadata for the 3D model of a cultural

heritage object?
28. In discussing metadata, to what does the term “ontology” refer?
29. What is the “Dublin Core”?
30. What are the possible approaches to create an online visualization of a 3Dmodel?
31. What are the open challenges in the 3D digitization of cultural heritage?
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Chapter 14
3D Phenotyping of Plants

Ayan Chaudhury and John L. Barron

Abstract In recent years, there has been significant progress in computer vision
based plant phenotyping technologies. Due to their non-invasive and non-contact
properties, imaging techniques are becoming state of the art in automated plant phe-
notyping analysis. There are several aspects of phenotyping, including plant growth,
organ classification and tracking, disease detection, etc. This chapter presents a broad
overview of computer vision based 3D plant phenotyping techniques. Some case
studies of state-of-the-art techniques are described in detail. In the first case study,
automated robotic systems for 3D plant phenotyping are discussed. The second study
focuses on general registration techniques of point cloud and alignment of multiple
view challenging plant point cloud data. Next, recently successful plant organ seg-
mentation techniques are reviewed. Finally, some open challenges of vision-based
plant phenotyping are discussed, followed by conclusion and some hands on exer-
cises.

14.1 Introduction

Due to the increase in the world population in recent years, the demand of food/crop
is increasing very fast. Automated analysis for crop production systems is of extreme
demand in order to fulfil the task of mass production as well as efficient monitor-
ing of crops. Computer vision based techniques can be very efficient because of the
non-invasive and non-contact nature of image-based analysis. Also, imaging sys-
tems can be more accurate than other approaches. In recent years, there has been
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tremendous progress in image-based analysis of plant phenotyping (measuring bio-
logically significant properties of plants) technologies. 3D imaging based approaches
are becoming state of the art in quantifying biological properties of plants. The advan-
tage of 3D over 2D are numerous. For example, in order to analyze the growth of a
plant, representing that plant as a 3D mesh model is a very effective methodology.
From the 3D mesh, it is possible to compute the 3D volume (the convex hull) and
3D surface area of the plant, in addition to analyzing other desirable properties. As
we will see later in this chapter, 3D laser scanners are widely used to perform 3D
plant phenotyping. Also consider the area of a leaf. If the leaf is curved, its 3D area
will be significantly different from the area computed from its 2D image.

Additionally, apart from the 3D based analysis of plants, data collection is also
an important aspect of an automated phenotyping system and cannot be ignored.
However, building a high throughput real-time system is a challenging task. Sev-
eral challenges include the following factors: communication among the hardware
devices, reliable data transfer and analysis, fault tolerance, etc. Ideally, the system
should be simple enough for a naive user to operate and obtain the phenotyping
result as a ready-made product. An ideal system should also be able to be general
enough to handle several varieties of plants and analyze their phenotypes accurately.
With the advancements of recent robotic technologies and high precision mechanical
devices, fully automated real-time systems are becoming possible. These systems are
shown to be reliable enough to capture and analyze the data throughout the lifetime
of a plant. Automation is also important to study the effect of several environmental
factors (e.g. lighting, temperature, humidity, etc.) on a plant. Designing controlled
chamber can fulfil the needs of restricted environmental factors. For example, if we
need to study the effect of light on a specific plant under certain temperature, then
we need to place the plant in a chamber where the temperature is controlled and
the lighting can be turned on/off at desired time of the day. This is an example of
an embedded system that can be programmatically controlled as needed. This is an
integral part of a 3D plant phenotyping system.

Recently, laser scanning systems have gained popularity to capture 3D data on
the surface of a plant. Laser scanning is an excellent way to perform non-invasive
3D analysis of plant phenotyping. Kinect laser scanners are now available at cheap
cost and are being widely used in various fields including plant phenotyping, 3D
modelling and remote sensing applications.Depending on the need of the application,
the resolution of the scanner can be controlled. For example, dense spacing of points
is needed in order to model a very detailed surface, whereas sparse scans might be
sufficient for applications that do not need much local details to be modelled. The
3D model of the plant can be obtained by aligning multiple overlapping views of the
scans taken from different directions around the plant. Then the merged point cloud
data can be used to analyze different aspects of phenotyping.

Phenotyping refers to measuring (or quantifying) various biologically interesting
properties of plants. There are several aspects of phenotyping. State-of-the-art tech-
niques in computer vision are adopted for different application areas. For example,
consider tracking a particular organ over time. To make the system fully automated,
first we need to set up a robotic system that will be able to place the laser scanner at
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a suitable position, scan the plant and extract the point cloud data. Having the raw
point cloud data, computer vision algorithms need to be designed to perform shape
matching of point clouds in order to identify the organ of interest. As the plant grows,
the robot should dynamically change its position to perform the scanning. There are
many challenges involved in this type of phenotyping. As the plant grows bigger, the
leaves occlude each other and the organ of interest might become partially or fully
occluded by some other organs. In these cases, a single scan might not be sufficient
to recognize the organ and the robot needs to be moved at suitable positions around
the occlusion and take multiple scans of the occluded object. This is just an example
of a challenging 3D phenotyping problem. Other types of phenotyping include the
growth analysis of living plants. In that case, multi-view points cloud data needs
to be aligned into a single point cloud, which can be triangulated to obtain a 3D
mesh model of the plant. This is a challenging task since aligning multiple views
of a complex plant structure is a difficult problem. Also, efficient triangulation is
very important to retain the detailed structure of the plant. From the 3D mesh model,
several properties like volume and surface area can be computed. Segmentation of
plant organs has also gained attention for phenotyping tasks. Estimation of leaf area,
stem diameter, etc. requires proper segmentation of the organs. Different types of
shape primitives are often used to extract the required structure. For example, tubular
shape fitting is a common technique to extract the round-shaped stem of a plant.

3Dplant phenotyping is highly inspired fromcomputer vision algorithms.Through-
out this chapter, we will see some applications of 3D plant phenotyping. Although
there are several components of phenotyping, we will discuss certain key areas,
which are the most popular, as well as challenging. Initially we will discuss about
automated systems for 3D plant phenotyping. Then registration of multi-view point
cloud data are described. Next, some popular techniques of plant organ segmentation
are studied. We also discuss in brief about related phenotyping problems to give an
overview of the recent focus of the phenotyping research community.

Theorganizationof the chapter is as follows. In the next section, related literature is
summarized. Then we discuss the key techniques in 3D plant phenotyping, followed
by the current challenges and concluding remarks. We end the chapter with some
hands-on exercises related to plant phenotyping techniques.

14.2 Related Work

A large body of work has been reported on computer vision based plant pheno-
typing in the last decade. In recent literature, several aspects of plant phenotyping
are discussed. Tremendous progress in automated plant phenotyping and imaging
technologies have created a mini-renaissance [1]. Software products are becoming
available for building high throughout phenotyping systems [2, 3]. Automated data
collection systems [4, 5] are becoming prevalent over tedious manual techniques
[6]. However, most of the automated systems have some limitations on the type, size
or geometrical properties of the plants that can be processed. The ultimate goal of
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computer vision-based automation techniques is to generalize these type of systems
[7–9]. Recently, a fully automated robotic system has been proposed [10]. The sys-
tem works in a fully automated way throughout the lifetime of a plant and analyzes
the growth pattern from the reconstructed 3D point cloud data. The system is gen-
eral and can be customized to perform different types of automated tasks related to
3D plant phenotyping. We discuss the related literature on different aspects of plant
phenotyping in the next subsections.

14.2.1 Organ Tracking

Detection and tracking of plant organ is a well-studied problem. Jimenez et al. [11]
proposed a fruit harvesting system that can detect fruits of a plant from their colour
and morphological properties. It was one of the first methods where laser scanners
were used in plant phenotyping analysis. These types of systems are of extreme
demand in agricultural applications. Chattopadhyay et al. [12] presented 3D recon-
struction of apple trees for dormant pruning (cutting off certain primary branches to
improve the yield and crop quality of the plant) applications in an automated manner.
These techniques can be very helpful in the pruning process as a part of intelligent
agricultural robotic application. Paulus et al. [13, 14] performed organ segmenta-
tion of wheat, grapevine and barley plants using a surface feature-based histogram
analysis of 3D point cloud data. Klodt et al. [15] performed segmentation to monitor
the growth of grapevines. Similar type of work on plant organ segmentation was
proposed in [16] via unsupervised clustering technique. Paproki et al. [17] measured
plant growth in the vegetative stage. They generated 3D point cloud from 2D images.
Golbach et al. [18] setup a multiple camera system and the 3Dmodel of the plant was
reconstructed using a shape-from-silhouette method. Then the geometric properties
(e.g. area, length) of the leaves and stems are computed by segmenting these organs.
The final results are validated by comparing with the ground truth data obtained by
destructing the plant by hand. Dellen et al. [19] built up a system to analyze leaf
growth of tobacco plants by tracking the leaves over time from time-lapsed video.
In each video frame, leaves are detected by assuming a circular leaf shape model. A
graph-based method is employed to track leaves through the temporal sequence of
video frames.

14.2.2 Plant Health Monitoring

Another type of plant phenotyping that has gained attention is determining the con-
dition of a plant from specific patterns of its leaves. Usually, the texture properties of
the leaves are exploited to perform the analyses, and then the leaves are tracked over
time. A challenging task to perform this type of analysis is to segment the leaves in
different imaging conditions [20]. Active contour model was used in [21] to detect
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lesions in ZeaMayes. This crop is widely used and lesion detection can be very help-
ful in disease detection at the early stages. Xu et al. [22] detected nitrogen-deficient
tomatoes from the texture of the leaves. Tracking the leaves of rosette plants can be
very useful for growth rate measurement. Similar type of work was presented in [23].

14.2.3 3D Reconstruction

3D reconstruction from multiple views is a quintessential part of many 3D pheno-
typing applications. This is a very challenging problem. The complex geometrical
structure of the plants makes the problem extremely difficult to handle. Pound et
al. [24, 25] reconstructed the 3D model of a plant using level set based technique.
Santos et al. [26] performed a structure from motion technique to reconstruct the 3D
point cloud model of the plant surface, and then a spectral clustering technique is
used to segment the leaves. Similar type of approach was used for visual odometry
applications in [27]. Kumar et al. [28] used a mirror-based system to obtain multiple
views of the plant. A visual hull algorithm is used to perform the reconstruction.
The setup alleviates the need for camera calibration due to the use of the mirrors.
Recently, Gibbs et al. [29] proposed to improve the image acquisition that results in
improving the overall 3D reconstruction. Instead of using a fixed camera position
for all types of plants, they proposed to change the camera position dynamically,
depending on the geometry of the plant. This type of approach can be embedded
in the intelligent robotic systems. Simek et al. [30] modelled spatial smoothness of
the branches of plant by Gaussian Process. Their method is designed to estimate the
thin structures of a plant from monocular images. Brophy et al. [31] presented an
approach to align multiple views of a plant into a single point cloud. The approach
exploits recently successful GaussianMixtureModel registration and mutual nearest
neighbour techniques. However, the method needs a good initial guess, which can
be rectified by automatic feature matching of junction points [32].

14.2.4 Rhythmic Pattern Detection

Rhythmic pattern of plant growth is a well-known phenomenon [33]. There have
been attempts to capture the circadian rhythm of plant movements using imaging
techniques [34]. Plant leaves are known to be affected by various lighting conditions.
Dornbusch et al. [35] captured the effect of rhythmic leaf movements by lighting via
laser scanning system. Tracking and growth analysis of seedling was studied in [36].
Corn seedling growth was studied by Barron and Liptay [37–39]. They demonstrated
that the growth is well correlated with room temperature.
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14.2.5 Structural Analysis

Structural analysis of plants is also studied in the literature [40]. Augustin et al. [41]
extracted geometric features of Arabidopsis plant for phenotypic analysis. Li et
al. [42] performed a 4D analysis to track budding and bifurcation events of plants
from point cloud data.

14.3 Key Techniques

In this section, we will focus on some specific aspects of 3D plant phenotyping and
explain the state-of-the-art techniques. Before we explain the key techniques, we
briefly discuss some terminologies that will be used throughout this section. The
flow of the section is as follows. First, we give an overview of some key terms.
Then we discuss different types of automated systems for 3D plant phenotyping.
These systems aim at collecting data without (or minimal) manual intervention.
We focus on 3D model building of plants, and that is why we discuss about aligning
multiple datasets to obtain a 3D point cloudmodel of a plant. Although the problem is
basically the general point cloud registration and alignment problem, we will discuss
certain variations of the standard algorithms related to plant structures. Finally, some
segmentation algorithms are discussed.

14.3.1 Terminologies

14.3.1.1 Point Cloud

A point cloud is simply a set of data points. Point clouds are typically generated by
range scanners, which record the point coordinates at the surface of an object. The
density of points depends on the scanner settings. In the general case, high density
of points encodes fine geometry of the object, and requires high computation time to
process the data. On the contrary, low density of points encodes less local geometry
and mostly keep the global shape of the object, and usually requires less computa-
tional time to process. 3D point clouds are usually stored as raw coordinate values
(x, y, z). However, the fourth attribute can be the colour or intensity information,
depending on the type of scanner used. Among different file formats for storing the
point cloud, the most commonly used extensions are: .xyz, .pcd, .asc, .pts, and .csv
formats.
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14.3.1.2 3D Mesh

A 3D mesh or a polygonal mesh is a data structure that connects the points in the
cloud by means of a set of vertices (which are the points themselves), a set of edges,
and polygonal elements (e.g. triangles for triangular mesh). Polygon meshes are also
referred as surfacemeshes which represent both the surface and the volumetric struc-
ture of the object. The process of making a triangular mesh is also called the triangu-
lation. The efficient rendering of the triangles can produce a realistic representation
of a synthetic object, which is a center of attention in the computer graphics research
community. Among different types of triangulation technique, most commonly used
are the Delaunay and Alpha shape triangulation algorithms. Let us consider a set
of points P = {p1, . . . , pn} ⊂ R

d . Let’s call these as sites. A Voronoi diagram is a
decomposition of Rd into convex polyhedra. Each region or Voronoi cell V(pi ) for
pi is defined to be the set of points x that are closer to pi than to any other site.
Mathematically,

V(pi ) = {x ∈ R
d | ||pi − x || ≤ ||p j − x || ∀ j �= i},

where ||.|| denotes the Euclidean distance. TheDelaunay triangulation of P is defined
as the dual of the Voronoi diagram.

The α-complex of P is defined as the Delaunay triangulation of P having an
empty circumscribing sphere with a squared radius equal to or smaller than α. The
Alpha shape is the domain covered by alpha complex. If α = 0, the α-shape is the
point set P , and for 0 ≤ α ≤ ∞, the boundary ∂Pα of the α-shape is a subset of the
Delaunay triangulation of P .

14.3.1.3 Registration of Point Cloud

In the general sense, registration of two point clouds refers to aligning one point
cloud to the other. One of the point cloud is called themodel point set, which remains
“fixed” in space. The other point cloud, referred as the data, is the “moving” point
set. We seek to find the transformation parameters (typically the rotation, translation
and scaling) of the data point cloud, that best aligns it to the model point cloud. By
best, we mean the alignment that has the minimal error with respect to the ground
truth. There are usually two cases in this regard: rigid and non-rigid. Rigid point
cloud registration problems are usually easier to handle, since estimation of the
transformation parameters is relatively less complicated. On the other hand, non-
rigid point cloud registration problems are hard in nature, and typically a single set
of transformation parameters are not sufficient to align the data to the model point
cloud. Among various types of challenges associated with non-rigid point cloud
registration, the following are the most prevalent ones: occlusion, deformation and
minimal overlap between the two point clouds.
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Fig. 14.1 A typical green house system [2]. Plants are placed on conveyor belts and images are
taken automatically as the belt moves around (licensed under the Creative Commons Attribution
4.0 International License)

14.3.1.4 Viewing Software

There are a variety of software available to visualize the point clouds andmeshes. The
following software are widely used in the computer vision and graphics community:
Meshlab,1 CloudCompare,2 Point Cloud Library3 (also offers lots of functionalities
for point cloud processing), etc.

14.3.2 Automated Systems for 3D Phenotyping

The goal of a high throughput plant phenotyping system is to monitor a mass crop
production system and analyze several phenotypic parameters related to growth,
yield and stress tolerance in different environmental conditions. An automated green
house system looks like the one in Fig. 14.1. The plants are placed on conveyor belts
and the image acquisition devices capture images in different time frames.

In many applications, the phenotyping demands high precision results. In order
to obtain high precision quality, robots can be used to perform the task in more
efficient manner. Subramanian et al. [5] developed a high throughput robotic system
in order to quantify seedling development. A 3-axis gantry robot system is used to
move the robot in the vertical X-Z plane. The movement of each axis is controlled
by linear servo motors. Two cameras are attached to the robot, one of them is of high
resolution and the other one is of low resolution. Perpendicular to the optical axis of
the cameras, a series of petri dish containing plant seedlings are attached to a sample
fixture.

1http://www.meshlab.net/.
2https://www.danielgm.net/cc/.
3http://pointclouds.org/.

http://www.meshlab.net/
https://www.danielgm.net/cc/
http://pointclouds.org/


14 3D Phenotyping of Plants 707

The robot periodically moves along the gantries and captures images of each petri
dish. A probabilistic localization is performed to locate the seedling. Focusing is also
performed automatically. As the seedlings grow over time, the system dynamically
analyzes the images with high accuracy. This type of automated system is very useful
in studying growth of mini-seedlings (a young plant grown from seed).

However, the system described above is not designed to monitor a whole plant
throughout its lifetime. Also, the robot system does not have enough degrees of free-
dom (DOF) to move anywhere around a plant to perform real-time 3D data capture.
Recently, a machine vision system has been proposed in order to perform real-time
3D system [10]. The system is fully automated, including the growth chamber, robot
operation, data collection and analysis. A naive user can obtain phenotyping results
with a few mouse clicks.

The system comprises of an adjustable pedestal and a 2-axis overhead gantry
which carries a 7-DOF robotic arm. A near-infrared laser scanner is attached at the
end of the arm, which can measure dense depth map of the surface of an object. The
arm provides high level of flexibility for controlling the position and orientation of
the scanner attached at the end. The plant is placed on a pedestal, which can bemoved
vertically to adjust the room for different plant sizes. The whole setup is housed in a
programmable chamber, which is fully controllable in terms of lighting, temperature,
humidity, etc. Different components of the system are integrated together as a single
system. The setup is shown in Fig. 14.2.

During an experiment, the chamber is programmed according to the requirements.
The plant is placed on the pedestal, and other parameters such as number of scans,
resolution, timings, etc., are provided by the user. Initially the robot remains at the
home position.When the scan starts, the robotmoves to the scan position and takes an
initial scan. This initial scan is performed to compute the bounding box comprising
the whole plant. The bounding box calculation is needed to dynamically change the
robot position as the plant grows over time. When the bounding box is determined,
actual scanning is performed. The laser scanner records point cloud data in xyz
format on the surface of the plant. If the scanner field of view is not able to enclose
the whole plant due to size constraint, multiple overlapping partial scans are taken.
After the first scan, the robot moves to the next scanning position and performs a
similar scanning routine. When the scan sets are complete, the robot goes back to the
home position until the next set of scan is scheduled. Captured data are transferred to
the server automatically and processing gets started immediately (aligning multiple
views are discussed in the next subsection).

The system is designed for general use of phenotyping applications, and can
be customized according to the need. The robot arm can be exploited for tracking
specific organs by exploiting the high degree of flexibility of the arm. To handle
the case of occlusion of the organs, the robot arm can be programmed to move to
specific coordinates in order to obtain full view of the occluded organ. In recent
years, automated data collection through robotic system is performed in outdoor
environment for agricultural applications [43, 44].
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Fig. 14.2 Complete autonomous robotic system for 3D plant phenotyping applications. Top:
Schematic diagram of the gantry robot system. Bottom: High-level view of the system

14.3.3 Multiple-View Alignment

Although registration of 3D point cloud data has been studied extensively in the
literature, registration of plant structures is a challenging task. The self recursive
and thin structure makes the problem of pairwise registration extremely complicated
and non-rigid. Although different types of approaches exist for solving the pairwise
registration and multiple view alignment problem, recently probabilistic methods
have been successful inmany applications.Wefirst discuss the background of general
registration problem and then end by discussing the adaptation of the technique for
registration of plant structures.
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Recently, Gaussian Mixture Models (GMM) have been very successful in the
registration of non-rigid point sets. Let us consider two overlapping views (point
clouds) of a plant. One point cloud is called the model point set, and the other is
called the data point set. The target is to transform the data point set to the model
point set in order to obtain the merged point cloud. Mathematically, let’s say the
model point set is denoted as M = (x1, x2, ..., xM )T , and the observed data point
set is denoted as S = (y1, y2, ..., yN )T . The model point set undergoes a non-rigid
transformation T , and our goal is to estimate T so that the two point sets become
aligned. Then the GMM probability density function can be written as,

p(yn) =
M+1∑

i=1

P(zn = i)p(yn|zn = i), (14.1)

where zn are latent variables that assign an observed data point yn to aGMMcentroid.
Usually all the GMM components are modelled as having equal covariances σ 2, and
the outlier distribution is considered as uniform, i.e. 1/a, where a is usually set as the
number of points in the model point set. The unknown parameter ω ∈ [0, 1] is the
percentage of the outliers. Themembership probabilitiesπmn are assumed to be equal
for all GMM components. Denoting the set of unknown parameters θ = {T , σ 2, ω},
the mixture model can be written as

p(yn|θ) = ω
1

a
+ (1 − ω)

M∑

i=1

πmn

(2πσ 2)D/2
exp[−||yn − T (xm)||2

2σ 2
]. (14.2)

The goal is to find the transformation T . Sometimes a prior is used to estimate
the transformation parameters. A common form of prior [45] is

P(T ) ∝ exp[−λ

2
φ(T )],

where φ(T ) is the smoothness factor, and λ is a positive real number. The parameters
θ are estimated using the Bayes’ rule. The optimal parameters can be obtained as

θ∗ = argmax
θ

P(θ |S) = argmax
θ

P(S|θ)P(T ),

which is equivalent to minimizing the negative log-likelihood:

L(θ |S) = −
N∑

n=1

lnP(yn|θ) − lnP(T ). (14.3)

Jian and Vemuri [46] followed this approach and represented the point set by
Gaussianmixtures. They proposed an approach tominimize the discrepancy between
two Gaussian mixtures by minimizing the L2 distance between two mixtures.
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The Coherent Point Drift (CPD) registrationmethodwas proposed byMyronenko
et al. [47, 48]. Their method is based on GMM, where the centroids are moved
together. Given two point clouds,M = (x1, x2, ..., xM )T and S = (y1, y2, ..., yN )T ,
in general for a point x , the GMM probability density function will be p(x) =∑M+1

i=1 P(i)p(x |i), where:

p(x |i) = 1

(2πσ 2)D/2
exp[−||x − yi ||2

2σ 2
]. (14.4)

They minimize the following negative log-likelihood function to obtain the optimal
alignment:

E(θ , σ 2) = −
N∑

j=1

log
M+1∑

i=1

P(i)p(x j |i). (14.5)

There are many ways to estimate the parameters, such as gradient descent, Expec-
tation Maximization (EM) algorithm and variational inference. EM is a standard and
widely used technique to optimize the cost function. Basically the E-step (or the
Expectation) computes the posterior probability, and the M-step (or the Maximiza-
tion) computes the new parameter values from the likelihood function. The aim is to
find the parameters θ and σ 2.

Let us denote the initial and updated probability distributions as Pold and Pnew,
respectively. The E-step basically computes the “old” parameter values, and then
computes the posterior probability distributions Pold(i |x j ). In the M-step, the new
parameter values are computed by minimizing the log-likelihood function:

E = −
N∑

j=1

M+1∑

i=1

Pold(i |x j )log(P
new(i)pnew(x j |i)), (14.6)

which can be rewritten as

E(θ , σ 2) = 1

2σ 2

N∑

j=1

M+1∑

i=1

Pold(i |x j )||x j − T (yi , θ)||2 + NpD

2
logσ 2, (14.7)

where

Np =
N∑

j=0

M∑

i=0

Pold(i |x j ) ≤ N . (14.8)

Now the current parameter values θold is used to find the posterior probabilities:

Pold(i |x j ) = exp(− 1
2σ old2

||x j − T (yi , θ
old)||2)

∑M
k=1 exp(− 1

2σ old2
||x j − T (yk, θ

old)||2) + (2πσ 2)D/2 ω
1−ω

M
N

.

(14.9)
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Although pairwise registration works reasonably well, aligning multiple views is
problematic. The reason is that, the errors from pairwise registrations accumulate
during multiple alignment and as a result, the merging does not yield good results.
To handle this problem, Brophy et al. [31] proposed a solution based on the Mutual
Nearest Neighbour (MNN) [49] algorithm. The algorithm is based onCPDwhich can
align many views with minimal error. More specifically, it is a drift-free algorithm
for merging non-rigid scans, where drift is the build-up of alignment error caused by
sequential pairwise registration. Although CPD alone is effective in registering pairs
with a fair amount of overlap, when registering multiple scans, especially scans that
have not been pre-aligned; this method achieves a much better fit both visually and
quantitatively than CPD by itself, utilizing sequential pairwise registration.

First, the scans are aligned sequentially, and then a global method is used to refine
the result. The globalmethod involves registering each scan Xi to an “average” shape,
which we construct using the centroids of themutual nearest neighbors (MNN) [49]
of each point. For Xi , we use scans X j where j �= i to obtain the average shape Ycent
from the centroids, and Xi is then registered to this average shape. This is repeated
for every scan until the result converges.

For a point x , the density function is written as

p(x |i) = 1

(2πσ 2)D/2
exp[−||x − ŷi ||2

2σ 2
], (14.10)

where ŷi ∈ Ycent are the points in the target scan Ycent , which is constructed from all
scans other than itself.

For a pair of scans X and Y , a point xi ∈ X and y j ∈ Y is called MNN if xi = xin
and y jn = y j , where

xin = min(|xp − y j |),∀xp ∈ X, (14.11)

and

y jn = min(|yq − xi |),∀yq ∈ Y. (14.12)

For each point x j in scan Xi , the set of points {xk |xk ∈ Xl ∧ MNN (xk, x j )} are
found, where l �= i , i.e. all scans other than Xi . For each of these sets of points xk ,
the centroid is computed as

xcent =
n−1∑

k=1

xk
n − 1

. (14.13)

Xcent , the set of centroids calculated for each x j , is registered to scan Xi .
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Fig. 14.3 12 scans of the Arabidopsis plant, prior to registration, but with rotation and translation
pre-applied. Different colours indicate different scans [31]

14.3.3.1 Approximate Alignment

In general, to reconstruct a 3D model of a plant, a set of scans are captured around
the plant at specific increments. After acquiring them, the idea is to solve for the
rigid transformation T0 = (R0, t0) (where R is a rotation matrix and t is a translation
vector) between the first scan (X0) and the second scan (X1) using the rigid version
of CPD. After we solve for T0 only once, for each scan Xi , the transformation is
applied i times

The new set of transformed scans X̂ should now be roughly aligned in the coor-
dinate system of the last scan. This method is used to obtain a rigid registration. The
initial registration is important when the pair of scans to be registered has minimal
overlap. The result of approximately aligned scans on some real plant data is shown
in Fig. 14.3.
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14.3.3.2 Global Non-rigid Registration via MNN

Once the initial registration is complete, CPD is used in conjunction with MNN to
recover the non-rigid deformation field that the plant undergoes between the capture
of each scan. At this point, the scans should be approximately aligned to one another.
The centroid/average scan is constructed and the scan is registered to it.

14.3.3.3 Global Registration

Algorithm 14.1 is used to merge all scans, where MNN(·) computes the mutual
nearest neighbour for each point in scans Xi and X j and the centroids function
likewise takes the centroids computed for each point in each scan and combines
them into one average scan using Eq.14.13. For each point in scan Xi , the single
nearest neighbour from all other scans is found and we use this set of distances to
compute the L2-norm.

Algorithm 14.1 MNN Registration
1: X = [X1, . . . , Xn], where each Xi is a range scan that has been approximately adjusted. A

predefined tolerance tolmax .
2: tol = ∑n

i=1 error_L
2(Xi )/n

3: while tol < tolmax do
4: for i = 1 to n do
5: for j = 1 to n do
6: if j �= i then
7: Xicent = MNN( X j , Xi )
8: end if
9: end for
10: Xcent = centroids( X1cent , . . . , XNcent )
11: Xi =register_cpd( Xcent , Xi )
12: end for
13: end while

Figure14.4 shows all 12 scans, merged into a single point cloud after subsampling
each scan. Each colour in the point cloud represents a different scan.

A problem with GMM based registration is that the views need to have been
approximately aligned before the registration. For large rotation angle differences, the
algorithm fails drastically. In the literature, there has been significant work on feature
matching of two point cloud datasets. For example, Fast Feature Point Histogram
(FPFH) [50] is a popular technique for feature matching in point cloud. However,
these type of descriptors exploit surface normal information to uniquely characterize
an interest point. For thin structured plant data, accurately computing surface normal
is an extremely difficult and error-prone task. Traditional descriptors fail to produce
reasonable results for plant feature correspondence.

Bucksch et al. [51] presented a method to register two plant point clouds. Their
method performs skeletonization of the input point cloud and then estimates the
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Fig. 14.4 12 scans captured in 30◦ increments about the plant and then merged into a single point
cloud using MNN. Shown from two viewpoints, are the front facing scans on the left and the above
facing scans on the right. Different colours indicate different scans [31]

transformation parameters by minimizing point-to-line distances. The idea is to map
a point p0 from one point cloud to the line joining two nearest neighbour points p1
and p2 in the skeletonized second point cloud. That is, the mapping condition is the
following:

||p′
0p2 × p1p2|| = 0.

where p′
0 = Rp0 + t is the transformed point, R is the rotation matrix and t is the

translation vector. However, the algorithm needs the point clouds to be roughly
aligned in order to obtain good registration results.

A remedy to the above problem can be obtained by exploiting the junction points
as features, as proposed by Chaudhury et al. [32]. The advantage of using junctions
as feature points is that, even if there is deformation and non-rigidity in the point
cloud data, a junction point will not be affected by these factors. Initially, the neigh-
bourhood of each 3D point is transformed into 2D by performing the appropriate
3D coordinate transformations. The method is two step. First, a statistical dip test of
multi-modality is performed to detect non-linearity of the local structure. Then each
branch is approximated by sequential RANSAC line fitting and an Euclidean cluster-
ing technique. The straight line parameters of each branch are extracted using Total
Least Squares (TLS) estimation. Finally, the straight line equations are solved to
determine if they intersect in the local neighbourhood. Such junction points are good
candidates for subsequent correspondence algorithms. Using these detected junc-
tion points, the correspondence algorithm is formulated as an optimized sub-graph
matching problem.

14.3.3.4 Coordinate Transformation

Using a kd-tree algorithm, the nearest neighbour points of a point within a certain
radius can be obtained. Given such points in a local neighbourhood about some 3D
point, the data is transformed so that the surface normal of the plane fitting the data is
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Fig. 14.5 Planar vector
orientations

a line-of-sight vector (0, 0, 1). More specifically, the center of mass (xcm, ycm, zcm)

of the neighbourhood 3D points is computed first. To reformulate as a 2D problem,
the following steps are performed: translate the origin to the center of mass by
−(xcm, ycm, zcm), rotate about the x-axis onto the x − z plane by some Euler angle
α, rotate about the y-axis onto the longitudinal axis (0, 0, 1) by some Euler angle β

and finally transform the origin back to the previous location by (xcm, ycm, zcm). The
detailed calculations are shown below.

A plane of the form ax + by + cz + d = 0 is fitted to the neighbourhood data and
the parameters are obtained. Consider 3 points on a planar surface: P1(x1, y1, z1),
P2(x2, y2, z2) and P3(x3, y3, z3). Compute the vectors V1 and V2 (see Fig. 14.5) as

V1 =
⎡

⎣
x2 − x1
y2 − y1
z2 − z1

⎤

⎦ ,V2 =
⎡

⎣
x3 − x1
y3 − y1
z3 − z1

⎤

⎦

Then V1 × V2 is the normal to the surface ax + by + cz + 1 = 0. That is, V1 ×
V2 and (a, b, c)T are in the same direction.

We aim to nullify the effect of z-coordinates, which require the following steps.
First we translate the origin to the center of mass (CM) (−xm,−ym,−zm) so that
the origin coincides with the CM. We use 4D homogeneous coordinates to perform
all the matrix multiplications. In 3D heterogeneous coordinates, translation is spec-
ified as vector addition but in the equivalent 4D homogeneous coordinates it is now
specified by matrix multiplication, as are all the other operations, allowing matrix
concatenation of all matrices to be performed by one matrix. The 4D homogeneous
transformation matrix has the following form:
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Fig. 14.6 Rotation about V
is the same as rotation about
unix vector û

T (Tx , Ty, Tz) =

⎛

⎜⎜⎝

1 0 0 Tx
1 0 0 Ty

1 0 0 Tz
0 0 0 1

⎞

⎟⎟⎠ (14.14)

Thus, T (−xm,−ym,−zm) does the translation to the center of mass (the new
origin). Next we project the rotation axis onto the z-axis. This requires two steps:
rotate by some unknown α angle about x-axis so that the vector û is in the xz-plane,
and then rotate by some unknown β angle about the y-axis to bring vector û onto
the z-axis. We show how to calculate α and β in the next 2 subsections. Finally
we re-translate back the origin to the previous location by the inverse translation
T (xm, ym, zm).

Let us consider rotation about the z-axis. In that case, V is the rotation axis with
endpoints (x1, y1, z1) and (x2, y2, z2). We rotate about V (see Fig. 14.6), given by

V =
⎡

⎣
x2 − x1
y2 − y1
z2 − z1

⎤

⎦ =
⎡

⎣
x
y
z

⎤

⎦

In this case, û = V
||V||2 = (a, b, c) is the unit vector inV’s direction. The direction

cosines of V (the Euler angles) are given by

a = x

||V||2 , b = y

||V||2 and c = z

||V||2 .
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We use the following convention: û is the normal vector, andu is the unnormalized
vector (of the projection of û onto y − z plane).

14.3.3.5 Rotate û into the XZ-Plane

Let α be the rotation angle between the projection of u in the yz-plane and the
positive z-axis and u′ be the projection of û in the yz-plane (Fig. 14.7). That is,
û = (a, b, c)T =⇒ u′ = (0, b, c)T .

Then the angle α can be obtained simply from the equation,

u′ · k̂ = ||u′||2||k̂||2 cosα.

Let k̂ = (0, 0, 1) is the unit vector in the z-direction, i.e. ||k̂||2 = 1. Then

||u′||2 = √
u′ · u′ = √

(0, b, c) · (0, b, c) =
√
b2 + c2

=⇒ u′ · k̂ = (0, b, c) · (0, 0, 1) = c.

Thus,

c =
√
b2 + c2 · 1 · cosα =⇒ cosα = c√

b2 + c2
.

The vector product can also be used to compute sin α. Note that u′ × k̂ is a vector in
x’s direction, i.e., î . Then

u′ × k̂ = î ||u′||2 ||k̂||2 sin α = î
√
b2 + c2 sin α.

and

Fig. 14.7 Rotate û about the xz-plane. Left: first, project û onto the y − z plane as û′. Right:
second, û′ is rotated by α about the x axis onto the k̂ axis
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u′ × k̂ =
∣∣∣∣∣∣

î ĵ k̂
0 b c
0 1 1

∣∣∣∣∣∣
= bî .

Then bî = î
√
b2 + c2 sin α, or sin α = b√

b2+c2
.

Given sin α and cosα, we can specify the 4D homogeneous rotation matrix for
rotation about the x-axis as

RX (α) =

⎛

⎜⎜⎝

1 0 0 0
0 c√

b2+c2
−b√
b2+c2

0

0 b√
b2+c2

c√
b2+c2

0
0 0 0 1

⎞

⎟⎟⎠ (14.15)

This matrix rotates û onto the xz-plane.

14.3.3.6 Align ûxz Along Z-Axis

As shown in Fig. 14.8, we need to compute sin β and cosβ in this case.
Using the dot product we can write

ûxz · k̂ =
=1︷ ︸︸ ︷

||ûxz||2
=1︷︸︸︷

||k̂||2 cosβ

= (a, 0,
√
b2 + c2) · (0, 0, 1)T =

√
b2 + c2

=⇒ cosβ =
√
b2 + c2.

Fig. 14.8 Aligning û along the z-axis. Left: û is rotated by α about the x axis onto the x − z plane
as ûxz . Right: ûxz is rotated by β about the y-axis onto the k̂ axis as ûz
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Also, using the vector product, k̂ × ûxz is a vector in the direction of the y-axis, thus
resulting

ûxz × k̂ = ĵ

=1︷ ︸︸ ︷
||ûxz||2

=1︷︸︸︷
||k̂||2 sin β

and ∣∣∣∣∣∣

î ĵ k̂
a 0

√
b2 + c2

0 0 1

∣∣∣∣∣∣
= −a ĵ .

Thus, −a ĵ = ĵ sin β, or sin β = −a. Then the 4D homogeneous rotation matrix
about the y-axis can be specified as

RY (β) =

⎛

⎜⎜⎝

√
b2 + c2 0 −a 0
0 1 0 0
a 0

√
b2 + c2 0

0 0 0 1

⎞

⎟⎟⎠ (14.16)

which aligns ûxz with the z-axis. Thus we apply the transformations:

Ry(β)Rx (α)T (−xm,−ym,−zm) (14.17)

to all 3D points. If we wish to undo this transformation we could use

T (xm, ym, zm)RT
x (α)RT

y (β), (14.18)

where RT
x (α) ≡ R−1

y (α) and RT
y (β) ≡ R−1

y (β) because rotation matrices are unitary
and orthogonal.

Next, a plane of the form ax + by + cz + d = 0 is fit to the neighbourhood data
using Cramer’s rule. The parameters n = (a, b, c) are the plane’s surface normal.
Since these transformations result in vertical surface normals we need only be con-
cerned with the structure in the x − y plane, i.e. the problem is now 2D.

14.3.3.7 Dip Test for Multi-modality

The detection of multi-modality in numeric data is a well-known problem in statis-
tics. A probability density function having more than one mode is denoted as a
multi-modal distribution. Hartigan et al. [52] proposed a dip test for unimodality
by maximizing the difference between the empirical distribution function and the
unimodal distribution function. In the case of a unimodal distribution, the value for
the dip should asymptotically approach 0, while for the multi-modal case it should
yield a positive floating point number. Zhao et al. [53] exploited this idea to detect
bifurcations in the coronary artery. A similar idea is applicable in this case too. Points
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Fig. 14.9 Distribution of data: column 1 are the neighbourhood point clouds under consideration,
column 2 are the histograms of the x coordinate distribution and column 3 are the histograms of
the y coordinate distribution for a single stem (first row), a leaf (second row) and a stem with 2
branches (last row). The later is potentially a junction point

having non-linear local neighbourhood are potential candidates for a junction point.
The idea is to perform the dip test for a local neighbourhood of a point. If it is a stem
or a leaf, the data should be uniform and the distribution should only be unimodal.
For a junction point likely due to a bifurcation, it should exhibit multi-modality. The
dip value can thus be used as a measure of multi-modality (Fig. 14.9).

The dip test is performed along the x and y directions (note that aswe have reduced
the dimensionality from 3D to 2D the z-coordinates can be ignored) and obtain the
maximum dip value. The neighbourhood is determined to be multi-modal if the dip
value is over some threshold. However, the threshold value of the dip value is highly
dependent on the data and should be tuned carefully (done visually for now).

The dip measurement is used for initial filtering of non-junction neighbourhood
data. Note that non-linearity and high dip values in local neighbourhood do not guar-
antee that those points are junction points. For some leaf and stem data, sometimes
the data shows high dip values. Instead of relying blindly on dip test results, further
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processing is needed in order to confirm the presence of junction in the neighbour-
hood.

14.3.3.8 RANSAC Fitting and TLS Approximation

Consider the case of a maximum three branches at an intersection point (which is
typically the case in real life): the branches may intersect at a single point (the red
dot in Fig. 14.10c) or at two different points (the red dots in Fig. 14.10d).

Assuming the fact that the main stem will be thicker than the branches, the thick
stem can be extracted simply by using RANSAC straight line fitting using a high dis-
tance threshold for inliers. Other branches can be estimated by sequential RANSAC
fitting. However, there may be other points due to additional branches, a leaf or a

Fig. 14.10 Examples of detected junction points (red dots) on the real Arabidopsis plant data [32]
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noise event (or some combination of the three). After removing the RANSAC fit-
ted main stem, Euclidean clustering is performed on the rest of the data to choose
the biggest connected component(s) to extract the sub-branches. Two sets of points,
Xi = {

pi ∈ P}
andX j = {

pj ∈ P}
form two different clusters, if the following con-

dition holds
min||pi − pj||2 ≥ τ,

where τ is the distance threshold. The branches may be straight or curved, but by
usingRANSACwe can estimate the principal direction of the branch [54]. A criterion
is imposed to estimate a broken branch shape (due to occlusion): two branches are
merged if they are spatially close to each other and have the roughly same direction.

After estimating the points for each branch, we need to know the straight line
parameters in order to estimate their intersection (if any).We use TLS to approximate
the straight line represented by a set of points in a branch and extract the parameters.
Consider a set of points (x1, y1), . . . , (xn, yn) and the normal line equation ax +
by + c = 0. [Note that a is cos(θ) and b is sin(θ) where θ is the angle of the normal
line with respect to the positive x axis and c is minus the magnitude of the line from
(x, y) to (0,0).] To fit all the points to the line, we have to find parameters a, b and c
to minimize the sum of perpendicular distances, i.e. we minimize

E =
n∑

i=1

(axi + byi + c)2 (14.19)

(as cos2 θ + sin2 θ = 1). Equating the first order derivative to zero we get

∂E

∂c
=

∑
−2(axi + byi + c) = 0

=⇒ c = −a

n

∑
xi + −b

n

∑
yi = −ax̄ + −bȳ.

(14.20)

Replacing c in Eq. (14.19) with its value in Eq. (14.20) we obtain

E =
∑ [

a(xi − x̄) + b(yi − ȳ)
]2

. (14.21)

To minimize the above equation we rewrite it in the following form:

E =

∥∥∥∥∥∥∥

⎡

⎢⎣
x1 − x̄ y1 − ȳ

...
...

xn − x̄ yn − ȳ

⎤

⎥⎦
[
a
b

]
∥∥∥∥∥∥∥

2

. (14.22)

The expression in the right-hand side of the above equation can be written as
(UN )T (UN ), where U is an n × 2 matrix having rows (xi − x̄, yi − ȳ) and N is
(a, b)T . Setting dE

dN = 0, we obtain 2(UTU )N = 0, the solution of which (subject to
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||N ||2 = 1), is the eigenvector of UTU associated with the smallest eigenvalue. We
extract the parameters a, b, x̄ and ȳ from the equation a(xi − x̄) + b(yi − ȳ) = 0.

After approximating the straight lines, we solve the equations given below to
determine if these lines intersect or not. Recall that two branches are approximated
by two straight lines, and the presence of junction is confirmed if the lines intersect.
For two straight line equations of the form ax + by + c = 0 and dx + ey + f = 0,
the intersection point can be obtained as

x = −b f − ce

ae − db
and y = cd − f a

ae − db
. (14.23)

If the straight lines are parallel, the discriminant (ae − db) will be equal to zero.
If the lines are non-parallel, we check if the intersection point is contained in the
local neighbourhood or not. Note that the obtained intersection point is 2D, so we
apply the reverse transformation to find the actual 3D point. Finally non-maximal
suppression is performed based on the highest dip value to reduce the number of
points.

14.3.3.9 Correspondence Matching

The detected junction points from the last phase are potential candidates for corre-
spondences and can be used as features points for matching. For raw 3D point cloud
data, local surface normals, neighbourhood information, etc., are typically used for
encoding the local structure and points are matched based on the descriptor similar-
ities. This idea typically fails for plant data because the thin structures do not allow
for good local surface normal calculations and because of deformations, the local
structure can change abruptly in adjacent images. An approach to solve the problem
is to exploit sub-graph matching theory as discussed below.

First, the data is triangulated using Delaunay triangulation in 3D (note that we
converted the problem temporarily to 2D just for detection of junction points). Using
the vertex information from triangulation, we can construct a graph connecting all
the points. To handle the cases of missing or occluded data, the points to the near-
est triangle vertex can be connected so that all the points are included in a single
graph. Then, for each junction point, Dijkstra’s shortest path algorithm can compute
geodesic distance to all other junction points. The same procedure is followed for
the second point cloud as well. Then the pairwise distances will be used to be the
criteria for graph matching.

Consider two graphs G1 = (V1, E1) and G2 = (V2, E2). Each junction point is
considered to be a node of the graph. Each node stores the geodesic distances to all
other nodes. In the end, this yields a set of edges. Compatibility of two nodes in G1

andG2 are defined as a closest distancematch. For example, let us suppose twographs
G1 and G2 have n1 and n2 nodes. Each node V1i in G1 stores all distances to all other
nodes. We denote this is as the set of attributes of node V1i :Dv1i

= {dv1i v1 j },∀ j ∈ n1.
Similarly inG2, the set of attributes of nodeV2i is defined asDv2i

= {dv2i v2k },∀k ∈ n2.
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The compatibility of two nodes, V1i and V2i , are formulated as the sum of the squares
of the difference of nearest distances, multiplied by the number of matches. Suppose
G1 and G2 contain 5 and 7 nodes, respectively. Let the attributes of a node V1i
contain the following distances: {d1, d2, d3, d4} (ignoring self distance). Similarly,
V2i contains the distances {d ′

1, d
′
2, d

′
3, d

′
4, d

′
5, d

′
6}. We use a threshold ε (= 0.2) for

the match of two distances. Suppose there are 3 distance matches given by d1 ∼ d ′
4,

d3 ∼ d ′
2, d4 ∼ d ′

1. Then the affinity of the two vertices is computed as

Av1i v2i
= 3 ∗ [(d1 − d ′

4)
2 + (d3 − d ′

2)
2 + (d4 − d ′

1)
2] (14.24)

The logic for using this kind of distance matching is that any outlier is likely to be
eliminated by a lower number of matches. On the other hand, compatible points will
only have the maximum number of distance matches.

Using the compatibility of two vertices, we can obtain the initial node corre-
spondence by using the Hungarian algorithm [55]. The outliers are likely to get
rejected by unmatched distance attributes. However, there still may be non-optimal
matches of the vertices. Cour et al. [56] proposed a graph matching technique, which
is shown to be robust and unambiguous. Given two graphs, G1 = (V1, E1, A1) and
G2 = (V2, E2, A2), where each edge e = ViVj ∈ E has an attribute Ai j . The objec-
tive is to find N pairs of correspondences (Vi , Vj ) where Vi ∈ V1 and Vj ∈ V2. The
affinity Ai j (Eq. 14.24) defines the quality of the match between nodes Vi and V ′

i .
Denoting the similarity function of pairwise affinity as f (·, ·), the matching score
can be computed as:

λ(N) =
∑

i i ′, j j ′∈N
f (Ai j ,A′

i ′ j ′) (14.25)

RepresentingN as a binary vector x so that x(i i ′) = 1 if i i ′ ∈ N , the above equation
can be written as

maxx λ(x) = xTWx, (14.26)

where Wii ′, j j ′ = f (Ai j ,A′
i ′ j ′). The optimal solution of the above equation is given

by
x∗ = argmaxx (x

TWx). (14.27)

The permutation matrix provides the correspondence among the vertices (or the
junction points in this case). Finally the outliers (or wrong matches) can be pruned
out using RANSAC.

14.3.4 Organ Segmentation

Classification of different plant organs from point cloud data is an important plant
phenotyping. Segmenting leaves, stems, fruits and other plant parts can help in track-
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ing specific organ over time. There are different approaches of organ segmentation
in the literature. Paulus et al. [13] presented a surface feature-based histogram tech-
nique to segment stems and leaves of grapevines, and wheat ears. The method is
based on Fast Point Feature Histogram (FPFH) [50]. The idea is to build histogram
for each point in the cloud and classify the histograms using Support VectorMachine
(SVM). For every point p in the cloud, the surface normal is computed by considering
a local neighbourhood within radius rH around the point. For each point pn in the
neighbourhood, three types of features are computed. Let us say np and npn are the
estimated normals at p and pn , respectively. A coordinate frame uvw is defined as
follows:

u = np, v = (pn − p) × u,w = u × v.

Then for each p and pn , the following features are computed,

f0 = v · npn,

f1 = (u · (pn − p))/||pn − p||,
f2 = arctan(w · npn, u · npn).

Then for every point, a histogram is built, where the index of the histogram bin
is calculated by using the following formula:

∑2
i=0(

fi ·b
fi(max)− fi(min)

) · bi , where b is the
division factor for the histogram size.

Next, the histogram for each point is represented as the normalized weighted sum
of the histograms of the neighbouring points. For k neighbours around a point p
having their histograms as hn(pk), the weighted histogram of a point is expressed as

hw(p) = 1

k

∑

k

wb(k) · hn(pk) + (1 − wb(k)) · hn(p), (14.28)

wb = 1 − (0.5 + d
rH

· 0.5), d is the distance from the source to the target point. These
histograms encode primitive shapes like plane, sphere, cone and cylinder, which will
be able to classify plant organs like flat leaf surface, cylinder-shaped stems, etc. The
histograms are classified using SVM.

Wahabzada et al. [16] developed an unsupervised clustering method as an exten-
sion of the histogram-based method discussed above. The idea is to compare the
histograms by some efficient metric, and then perform clustering like k-means using
Euclidean distance measure. However, Euclidean distance metric performs poorly
in presence of noise. As other alternatives, two different types of distance measures
are used for histogram comparison. The first one is the standard Kullback–Leibler
(KL) divergence, which usesHellinger distance for computing the distance between
two histograms. This is basically a probabilistic analog of the Euclidean distance.
For two histograms x and y, the Hellinger distance is given by

dH (x, y) =
∑

i

(
√
xi − √

yi )
2. (14.29)
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The other metric is to use the Aitchison distance given by

dA(x, y) =
√∑

i

(ln
xi

g(x)
− ln

yi
g(y)

)2, (14.30)

where g(·) is the geometric mean. The k-means objective function is iteratively
optimized by the standard EM algorithm.

In a different approach, Li et al. [42] formulated the organ segmentation task as
an energy minimization problem. The goal of their work was to detect events (such
as budding and bifurcation) from time lapse range scans. A key stage to detect these
events is to segment the plant point cloud into leaves and stems. The problem is
formulated as a two stage binary labelling problem. In the first stage of labelling,
leaves and stems are classified, and in the second stage, individual leaves are classified
separately. An organ hypothesis H t is formulated as, H t := Lt

l ∪ Sts for frame Ft ,
where L and S are leaf and stem categories, Lt

l is the l-th leaf, Sts is the s-th stem.
For any point, pt in the point cloud Pt in the current frame Ft , the aim is to find a
labelling that maps pt intoH t . The first stage finds a binary labeling fB that mapsPt

to {Lt , St }, and the second stage consists of two labellings fL and fS that decompose
Lt and St into individual leaves Lt

l and Sts .
The energy function to find the labelling fB is formulated as

E( fB) =
∑

pt∈Pt

Dpt ( fB(pt )) +
∑

(pt ,qt )∈NPt

V ( fB(pt ), fB(qt )) (14.31)

where NPt is the neighbourhood around a point. The data term Dpt penalizes the
cost of classifying pt as leaf or stem, and the smoothness term V ( fB(pt ), fB(qt ))

ensures spatial coherence.
The data term is formulated based on the curvature values, considering the fact that

leaves are generally flatter than stems. For the smoothness term, penalty of labelling
is designed as high for neighbouring points to different organs, but less near organ
borders. The term is defined as

V ( fB(pt ), fB(qt )) =
{
max( 1

C(pt ) ,
1

C(qt )
), if f (pt ) �= f (qt )

0, if f (pt ) = f (qt )
(14.32)

where C(pt ) is the curvature of pt , obtained from the eigenvalues from principal
component analysis of neighbourhood points.

Similar approach is followed for labelling in the second stage, with some mod-
ifications. To segment the individual leaves (which might be touching each other,
thus forming a single connected component), adjacent frames are looked at simulta-
neously to confirm the hypothesis. Similar hypothesis is built for the data term, and
short stems are trimmed out based on a threshold. The energy is minimized by the
well-known α-expansion algorithm [57, 58].
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A more recent work on segmentation can be found in the work of Jin et al. [59].
They performed segmentation of stem and leaf ofMaize plants on 3DLight detection
and ranging (LiDAR) data.

14.4 Main Challenges

There are several challenging problems associated with vision-based plant pheno-
typing. First of all, no efficient registration algorithm exists that can handle every
dataset. In the presence of occlusion and non-rigidity, most of the existing algorithms
fail to generate good results. Incorporation of prior knowledge about the plant struc-
ture in the registration process might be worth studying. Environmental factors such
as wind make a plant to jitter constantly. This can make the pairwise registration
problem extremely challenging. Occlusion is still an unsolved problem. Handling
these cases are open research problems. Also, the optimal number of scans needed
to capture the geometric details of a plant has not been studied.

In general, Delaunay or alpha shape triangulations are widely used to polygonize
3D point cloud data. However, in order to retain the thin structure, perfect tuning of
the parameters is very crucial in these cases. However, if the application demands
very tiny details to be visible in the polygonized mesh, more efficient triangulation
algorithms will be more demanding.

Regarding 3D point cloud segmentation methods, although it has been studied
widely in the literature, the problem is still challenging for different scenarios with
complex background. Also, segmentation in the case of highly occluded point cloud
structure is a challenging problem. In fact, the problem is more complicated in terms
of generalizing the algorithm for the sheer variety of phenotypes presented by plants.

14.5 Conclusion

This chapter has summarized the basic concepts of some recently successful 3D
plant phenotyping techniques. Emphasis has been put on an automated system for
3D phenotyping, pairwise registration and alignment of plant point cloud data and
organ segmentation techniques. Vision-based plant phenotyping is becoming more
demanding these days, dedicated conferences and workshops are getting organized
frequently.4,5 Challenging datasets are getting released also. Although we have not
covered the recent deep learning techniques in plant phenotyping, interested readers
are encouraged to read some recent work like [60] for 3D segmentation.

4https://www.plant-phenotyping.org/CVPPP2019.
5http://liris.univ-lyon2.fr/IAMPS2019/.

https://www.plant-phenotyping.org/CVPPP2019
http://liris.univ-lyon2.fr/IAMPS2019/
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14.6 Further Reading

An interesting mathematical aspect of plant structures can be found in the book by
Prusinkiewicz and Lindenmayer [61]. For an overview of recent plant phenotyping
technologies, the readers are invited to read [1] and a more recent review [62]. Other
reviews of imaging techniques can be found in [9, 63]. A detailed description of
the setup, procedure and experiments of annotated datasets is available in [64]. The
details of plant organ segmentation in energy minimization framework can be found
in [42].

14.7 Exercises

1. Vascusynth6 is a software for generating synthetic vascular (tree-like) structures.
Generate some custom data using the software. Then perform CPD registration
and report the average Root Mean Square (RMS) error from ground truth data.
Source code of CPD is available both in Matlab7 and Python.8

2. Add some Gaussian noise in the data above and perform CPD registration again.
Increase the level of noise and report the threshold beyond which the registration
algorithm fails (you can consider error up to say 5% as acceptable).

3. Add some deformation (e.g. applying random rotation to some random parts) to
the data and repeat the registration task.

4. Extend the pairwise registration into a multi-view alignment problem. Align
multiple views to obtain a single point cloud by exploiting the idea of pairwise
registration in a sequential manner.

5. Obtain the ground truth junction points in the point cloud data in Vascusynth.
Assume that the matching of junction points are available. Now apply large
amount of rotation to one of the views and perform pairwise registration. The
results might not be good at this stage. In order to improve the registration result,
we will test if initial rough alignment of the junction points help or not. Using
the ground truth matching of the junction points, retrieve the transformation
parameters (rotation, translation and scaling), and apply reverse transformation
to the data. Now perform the registration. Report the effect of pre-alignment on
the registration error.

6. Select some random points in the 3D point cloud above. Extract small neigh-
bourhoods (say 50 × 50) around these points. These neighbourhoods will also
be 3D. Then apply the coordinate transformation as described in Sect. 14.3.3.4
to convert the data into 2D. Now compare the original 3D data of these neigh-
bourhood structures and the transformed point cloud. If you are getting all the
z-coordinate values of the transformed point cloud as almost the same, then the

6http://vascusynth.cs.sfu.ca/Welcome.html.
7https://sites.google.com/site/myronenko/research/cpd.
8https://github.com/siavashk/pycpd.

http://vascusynth.cs.sfu.ca/Welcome.html
https://sites.google.com/site/myronenko/research/cpd
https://github.com/siavashk/pycpd
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result is correct. Also, plot both 3D and 2D data and see if the transformation
has preserved the original structure or not.

7. Perform Principal Component Analysis (PCA) of the above 3D neighbourhood
structures. Look at the eigenvalues and eigenvectors. Can you tell anything about
the local structure from these quantities?

8. Obtain the challenging vegetation dataset from ASL database.9 Apply state-of-
the-art point cloud feature matching algorithms and report their limitations on
this type of data.

9. Perform CPD registration of the same dataset as above.
10. Triangulate the point cloud data using some standard algorithms like Delaunay

triangulation10 or alpha shape algorithm.11 Adjust the parameters to get the best
result. Do you think that these algorithms are efficient enough to triangulate the
dataset?

11. Obtain the dataset of Li et al. [42].12 Implement the segmentation method as
described in detail in the paper.
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Underwater heritage, 647
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