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Abstract. MeSH annotations are attached to the Medline abstracts to
improve retrieval and this service is provided from the curators at the
National Library of Medicine (NLM). Efforts to automatically assign
such headings to Medline abstracts have proven difficult, on the other
side, such approaches would increase throughput and efficiency. Trained
solutions, i.e. machine learning solutions, achieve promising results, how-
ever these advancements do not fully explain, which features from the
text would suit best the identification of MeSH Headings from the
abstracts. This manuscript describes new approaches for the identifi-
cation of contextual features for automatic MeSH annotations, which
is a Multi-Label Classification (BioASQ Task6a): more specifically, dif-
ferent approaches for the identification of compound terms have been
tested and evaluated. The described system has then been extended to
better rank selected labels and has been tested in the BioASQ Task7a
challenge. The tests show that our recall measures (see Task6a) have
improved and in the second challenge, both the performance for preci-
sion and recall were boosted. Our work improves our understanding how
contextual features from the text help reduce the performance gap given
between purely trained solutions and feature-based solutions (possibly
including trained solutions). In addition, we have to point out that the
lexical features given from the MeSH thesaurus come with a significant
and high discrepancy towards the actual annotations of MeSH Headings
attributed by human curators, which also hinders improvements to the
automatic annotation of Medline abstracts with MeSH Headings.

Keywords: Paragraph Vectors · Named Entity Recognition ·
Semantic Retrieval · UIMA · DeepLearning4j · BioASQ

1 Introduction

The scientific biomedical literature is being collected and archived by the
National Library of Medicine (NLM) over the past 150 years. Documents have
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manually been annotated with Medical Subject Headings1 in order to search
and access the documents efficiently. The process of manually assigning indexing
terms is very time consuming and thus tedious work. Furthermore, the biomed-
ical literature in PubMed has grown from 12 Million citations in 2004 [4] to 29
Million citations in 20192 having a growth rate of 4% per year [23] leading to
high pressure in delivering the MeSH annotations.

The growth in published biomedical literature as well as the difficulties in
manually assigning indexing terms shows the need for routines that automati-
cally annotate and index the scientific articles in order to use metadata terms
for information retrieval purposes. At best such supporting automatic solutions
should also contribute clues to the curators about the selection of most rele-
vant and best supported terms throughout all the stages of their work. Such
clues could be difficult to derive, e.g., from the scientific text, since the MeSH
Headings cover mostly compound terms, which – at best – have complex repre-
sentations in the text.

The Medical Text Indexer (MTI) has been developed by the NLM to provide
an automated indexing system for the Medical Subject Headings to the curators.
From 2000 onward, the NLM indexing initiative has been initiated, in particular
due to the availability of the electronic versions of the scientific articles since
the mid 90s [2]. However, the newly introduced automated indexing systems
had to be evaluated to compare and improve the performance against bench-
marks. The ongoing developments of the MTI then introduced machine learning
components that have been tested across different document types, e.g., clinical
health records that require different indexing approaches than merely assign-
ment of MeSH Headings. The performance of the MTI on clinical health records
has been evaluated in 2007 for the assignment of ICD-9 codes with promising
results [3].

Solutions for the automated assignment of MeSH Headings have barely ever
been evaluated, neither for their performance nor for their reproducibility. Con-
ceptually, the evaluation of six different MeSH taggers showed that the k-nearest
neighbour (k-NN) approach outperforms all other solutions [33]. Apart from the
NLM’s critical response with regards to reproducibility, NLM still emphasizes
“that current challenges in MeSH indexing include an increase of the scope of
the task” [26].

The demands for such evaluation has motivated the NLM improving MTI
as well as organizing large-scale evaluation challenges. Now MTI incorporates
k-NN clustering showing a boost in the performance of the system [15], and in
2012, the BioASQ challenge was initiated (funding horizon of 5 years) leading
to the evaluation of systems for large-scale biomedical indexing and question
answering [34].

1 https://www.ncbi.nlm.nih.gov/mesh. Accessed May 2019.
2 https://www.ncbi.nlm.nih.gov/pubmed/. Accessed May 2019.

https://www.ncbi.nlm.nih.gov/mesh
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2 Related Work

In 2013, the first BioASQ challenge was comprising two tasks, one on large-
scale semantic indexing for the automated assignment of MeSH Headings to
unlabeled Medline citations, the other one on question answering for scientific
research questions in the biomedical domain [27]. In the first BioASQ challenge,
11 teams participated in Task A with 40 systems. In Task B, three different
teams participated with 11 systems.

In Task A, there were two baselines of Task A for large-scale semantic index-
ing, the first one was an unsupervised machine learning approach, the second one
was based on NLM’s MTI. The evaluation was conducted using the metrics Micro
F-measure (MiF) and Lowest Common Ancestor F-measure (LCA-F). The best-
performing system, even outperforming the MTI baseline, called AUTH [36], is
based on a binary Support Vector Machine (SVM) predicting N top labels for
each article with a certain confidence score to rank the predicted labels.

In Task B, two baselines were created as the top 50 and top 100 predictions
of an ensemble system that combines predictions of factoid and list questions,
yes/no questions, and summary questions. The evaluation metric was the Mean
Average Precision (MAP). The Wishart [10] system was able to outperform the
two baselines. It uses the PolySearch3 tool for query expansion and the retrieval
of candidate documents from which either entities or sentences are extracted as
answers for the respective questions.

The BioASQ challenge was then executed every year until today bringing
about a variety of approaches in both tasks A and B [5,8,19,25]. In Task A,
MeSHLabeler performed best the challenges 2014, 2015 and 2016 [21] using an
ensemble approach of k-NN, the MTI itself as well as further MeSH classification
solutions.

In recent years, term vector space representations have been introduced
exceeding classical bag-of-words approaches, since they are able to capture the
context of words in the text and to prioritize words in the vector representation
according to given similarity scores [24,30]. In addition, the word vectoriza-
tion allows for better use of sentence and paragraph representations [20] in the
machine learning approaches, e.g., deep learning. The organizers of the BioASQ
challenge also published a word2vec representation of PubMed articles [28] for
participants to improve their systems.

In 2017, the first deep learning based approach called DeepMeSH partici-
pated in the challenge of Task A and performed best [29]. In 2018, DeepMeSH
outperformed others in 2 out of 3 batches while the third batch was won by a set
of systems called “xgx” that is potentially associated to the AttentionMeSH sys-
tem [16]. This system uses end-to-end DeepLearning incorporating an attention
layer to emphasize predictions towards commonly used MeSH labels.

Further systems participated in the Task A employing named entity recog-
nition with lexical features such as a dictionary, and using Paragraph Vectors
also [22]. It has been shown that machine learning-based approaches based on

3 http://wishart.biology.ualberta.ca/polysearch/.

http://wishart.biology.ualberta.ca/polysearch/
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k-NN and Paragraph Vectors can be used to boost the performance in the
BioASQ challenge [17]. This paper describes the participation of a system for
Multi-Label Classification based on named entity recognition with lexical fea-
tures that incorporate Label Ranking derived from Paragraph Vectors in order
to achieve a conjoint system for Multi-Label Ranking.

3 Methodology

Task A of the BioASQ challenge is a Multi-Label Classification task, which in
addition can be subdivided into the two sub-tasks of Multi-Label Classification
and Label Ranking [35]. The resulting classification of multiple labels with an
assigned confidence score for each label is a Multi-Label Ranking [9].

Initially, a subset of MeSH Headings is attributed to each document in the
test set of Medline citations. Then, each MeSH Heading combined with its con-
fidence score representing the probability for the MeSH Heading being correctly
assigned to the respective Medline citation. The resulting set of MeSH Headings
is filtered according to the minimum confidence score.

The two sub-tasks, i.e. Multi-Label Classification and Label Ranking for a
Multi-Label Ranking, are given in the system architecture of this paper. The first
component creates an initial set of MeSH Headings for each document in the test
set for the Medline citations. Then, all MeSH Headings receive a confidence score
to generate the scored MeSH Headings.

The first component for the task of Multi-Label Classification is described
in Sect. 3.1 and the second component for the Label Ranking is described in
Sect. 3.2. The combined system for the Multi-Label Ranking is described in
Sect. 3.3.

3.1 Multi-label Classification

The Multi-Label Classification task is based on lexical features for the named
entity recognition solution that has been developed within the Unstructured
Information Management Architecture (UIMA)4 [11–14,31]. In the framework,
a reader for the BioASQ JSON format processes the document stream through
the Common Analysis System (CAS) of the pipeline. Tokenization is conducted
using an Offset Tokenizer that splits tokens at their whitespaces and punctu-
ations. Stemming of the tokens is conducted using the Snowball Stemmer [1].
The stemmed tokens are analyzed using the analysis engine ConceptMapper [32]
that uses a dictionary to annotate matching synonyms in the text with offset
information onto concept identifiers. In the last part of the UIMA-pipeline, the
documents with their annotated MeSH Headings are written with a CAS-Writer
into the BioASQ submission format. The implemented workflow is shown in
Fig. 1.

The lexical features for the ConceptMapper are provided as a dictionary that
is created from the current MeSH (version 2019). In the dictionary, concepts are
4 https://uima.apache.org/. Accessed May 2019.

https://uima.apache.org/
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Fig. 1. The UIMA-based workflow with different combinations of configurations for
the ConceptMapper to produce the result set of MeSH Headings for Medline citations.

created for each MeSH Heading and synonyms are added from the MeSH Entry
Terms for the MeSH Heading. Further synonyms are created with the Snowball
Stemmer by stemming the concept name as well as each of the synonyms. The
resulting dictionary for the ConceptMapper contains 29,351 different concepts
with 251,463 synonyms.

The analysis engine ConceptMapper [32] provides various dictionary look-up
solutions that can match against different sequences of tokens. Before applying
a matching strategy, stop words and punctuation are removed. Then, one of the
three lookup strategies are applied with a flag for allowing partial matches or
allowing only complete matches. The different look-up solutions with the flag
for finding also partial matches of synonyms will result in 5 different pattern
matching configurations. For the BioASQ Task6a in 2018, each of the differ-
ent dictionary look-up approaches are listed as separate system enumerated as
SNOKE1 to SNOKE5. For the BioASQ Task7a in 2019, all the results from the
five different systems have been merged together into a union set.

3.2 Label Ranking

Paragraph Vectors allow for capturing contextual information of words in text.
The contextual information is trained by calculating the probability of certain
words preceding or succeeding the contextual word. The resulting Paragraph
Vector model enables the calculation of similarities of different texts according
to their probability of occurring close to each other.

The task of Label Ranking is conducted by creating such a Paragraph Vector
model to score all MeSH Headings for each document in the test set. Each MeSH
Headings gets an assignment of a confidence score ranging from −1 to 1. In
order to provide such a system for assigning confidence scores, an unsupervised
machine learning model is trained according to the algorithm described in [20]
(Fig. 2).
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Fig. 2. The Paragraph Vector model is trained on the BioASQ corpus with 225, 127
documents published from 2018 until January 2019 using the given MeSH Headings
from the documents as training labels. Documents during the challenge were inferred
using the trained model that resulted in a set Mpv of scored MeSH Headings for each
document.

The Paragraph Vectors were trained using the BioASQ corpus with 225, 127
citations that have been published either in 2018 or 2019 in conjunction with
their corresponding MeSH Headings of 25, 363 different labels in total. The Para-
graph Vector model is PV-DBOW based on Skip-Grams (length 4) and have been
trained using a configuration with 10 epochs, a learning rate of 0.025, a min-
imum learning rate of 0.001, and a batch size of 1000. The model is available
online5. The training as well as the predictions during the BioASQ challenge
were implemented using the DeepLearning4j framework6.

3.3 Multi-label Ranking

The task of Multi-Label Ranking is achieved by combining both systems for
Multi-Label Classification and for Label Ranking. The first system uses five
different vectors of MeSH Headings according to the pattern matching algorithm.
For each document, a single set of MeSH Headings is created by taking the union
set from the five different vectors.

Similarly, the Paragraph Vector model is used for assigning the confidence
scores to each of the MeSH Headings. This results in a set of 25, 363 Headings
for each document with a confidence score of −1 to 1 assigned to each Heading.
Then, both the union set as well as the confidence scores for the MeSH Headings
are joined by filtering the union set for only the top-k scored terms. K was chosen
for 500 and for 1, 0000 resulting in two different BioASQ Task7a submissions.
The algorithm for creating the sets Mtop500 and Mtop1000 for each document is
shown in Algorithm 1.
5 https://gitlab.zbmed.de/mueller/dl4j-models/blob/master/15000000. Accessed May

2019.
6 https://deeplearning4j.org/. Accessed May 2019.

https://gitlab.zbmed.de/mueller/dl4j-models/blob/master/15000000
https://deeplearning4j.org/
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Data: Mdx; Mpv; m ← length(D);
Result: Mtop500;Mtop1000;
Mtop500 ← {};
Mtop1000 ← {};
for (i ← 0; i < m; i ← i + 1) do

counter ← 0;
for p in Mpv[i] do

if Mdx[i].contains(p) AND counter < 500 then
Mtop500[i] ← Mtop500[i].add(p);

end
if Mdx[i].contains(p) AND counter < 1000 then

Mtop1000[i] ← Mtop1000[i].add(p);
end
counter ← counter + 1;

end

end
Algorithm 1: Algorithm for harmonizing the results by taking only MesH
Headings that are either scored in the top500 or the top1000 by the predictions
with the Paragraph Vector model.

4 Results

In BioASQ TaskA, the systems have been challenged to outperform the MTI for
the annotation of Medline citations with MeSH Headings. In the challenge, there
have been three test batches leading to 5 runs for each batch. For each run, a test
set of Medline citations has been published that have not yet been annotated
with MeSH Headings by human curators. The evaluation of the participating
systems for each of the runs in every batch is an automated process implemented
within the BioASQ infrastructure [6,7].

The evaluation infrastructure computes the results with two different classes
of measurements, flat and hierarchical. The comparison of the performance of
the participating systems are assessed with one flat and one hierarchical mea-
sure: the Lowest Common Ancestor F1-measure LCA.F [18] and the Label-Based
Micro F1-measure MiF. Besides the two main evaluation F1-measures, there is
also the Example-Based F1-Measure, Accuracy, Label-Based Macro F1-Measure,
and Hierarchical F1-Measure. For each F1-Measure, the respective precision and
recall measures are calculated.

The system for the Multi-Label Classification participated in the Task6a in
2018 and is explained in Sect. 4.1. The conjoint system that uses the initial
Multi-Label Classification for Label-Ranking in order to produce a Multi-Label
Ranking participated in the Task7a in 2019 and is explained in Sect. 4.2.

4.1 System for Multi-label Classification in Task6a

In the 2018 BioASQ Task6a, the maximum MiF score of 0.6880 was achieved
by the system xgx and the maximum LCA-F score of 0.5596 was achieved by
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Fig. 3. The 10 flat and the 6 hierarchical measures are sorted according to the F1
measure, Precision, and Recall for each of the different configuration setups in Task6a.
The maximum score achieved by the best participating system is given as green squares,
the minimum score achieved by the worst participating system as red squares. (Color
figure online)

the system xgx0. The maximum label-based micro-recall (MiR) was 0.6751 and
the maximum label-based micro-precision (MiP) was 0.8110. The highest lowest
common ancestor recall (LCA-R) was 0.5563 and the highest lowest common
ancestor precision (LCA-P) was 0.6212. For all participating systems, the ten-
dency was towards having a higher precision than having a higher recall.

Contrastingly, the submissions for the Multi-Label Classification system with
SNOKE1 to SNOKE5 reached higher recall measures than precision measures.
The maximum MiF score of 0.236 was achieved by both the submissions for
SNOKE1 and SNOKE2. The maximum LCA-F score of 0.261 was achieved by
the submission for SNOKE1. The highest MiR was 0.356 while the MiP was
0.221. A similar picture was shown for the highest LCA-R having a 0.408 while
the highest LCA-P was 0.298. In Fig. 3, the 10 flat and the 6 hierarchical mea-
surements for SNOKE1 to SNOKE5 are visualized.

4.2 System for Multi-label Ranking in Task7a

In the 2019 BioASQ Task7a, both the maximum MiF score of 0.733 and the
maximum LCA-F score of 0.612 was achieved by the system DeepMeSH5. The
maximum (MiR) was 0.707 and the maximum MiP was 0.791. The highest LCA-
R was 0.6 and the highest LCA-P was 0.663. Similar to the Task6a in 2018, the
tendency was again more towards having a higher precision than having a higher
recall.
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Fig. 4. The 10 flat and 6 hierarchical measures arranged according to their F1-Measure,
Precision, and Recall for each configuration setup in Task7a. The maximum score
achieved by the best participating system as green squares, the minimum score achieved
by the worst participating system as red squares. (Color figure online)

In comparison to the 2018 participation, the submissions for the Multi-Label
Ranking system SNOKE1 and SNOKE2 reached higher precision measures than
for the recall measures for the label-based micro-measures. The maximum MiF
score was 0.288 with a maximum MiP of 0.354 and a maximum MiR of 0.267.
For the measures of the lowest common ancestor, the recall was higher than the
precision. The maximum LCA − F score was 0.288 with a maximum LCA-P
of 0.356 and a maximum LCA-R with 0.428. In Fig. 4, the 10 flat and the 6
hierarchical measurements for the submissions of SNOKE1 and SNOKE2 are
visualized.

5 Conclusion

This paper describes the participation of two different systems and their com-
bined solution in the Task6a and the Task7a of the BioASQ challenge. The first
system that participated in Task6a is a Multi-Label Classification system that
incorporates lexical features from MeSH. The system was extended for the par-
ticipation in the Task7a for the functionality of introducing Label Ranking for
the assignment of confidence scores to MeSH Headings resulting in a conjoint
system for Multi-Label Ranking.

The first system for Multi-Label Classification participated in the Task6a of
the BioASQ challenge. The results indicate that the recall for the system are
higher than the precision although the general tendency of the other participating
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systems is the opposite. Nevertheless, the label-based macro F1-measure shows
better performance than the label-based micro F1-measure.

The second system that incorporates both Multi-Label Classification and
Label-Ranking for Multi-Label Ranking participated in the Task7a of the
BioASQ challenge. All performance measures were improved in comparison to
the first system that participated in the Task6a of the BioASQ challenge. Gen-
erally, the precision has been boosted in comparison to the earlier participation.

6 Discussion

In the BioASQ challenge, systems are supposed to outperform the baseline of
the MTI for the assignment of MeSH Headings to Medline citations. Two dif-
ferent participations in the BioASQ challenge are described in this paper, one
for Task6a and one for Task7a. The initially developed system that incorporates
lexical features from the MeSH thesaurus is extended to a ranking of MeSH
Headings according to the confidence values.

The participation of the first system in Task6a generally shows higher recall
than precision performance. The extended system that exploits the ranking of
MeSH Headings was able to increase both, precision and recall, resulting in better
F1-measures overall. However, the initially assigned MeSH Headings based on
lexical features still have a low overlap in comparison to the assigned MeSH
Headings by the human curators.

References

1. Agichtein, E., Gravano, L.: Snowball: extracting relations from large plain-text
collections. In: Proceedings of the Fifth ACM Conference on Digital Libraries, pp.
85–94. ACM, New York (2000). https://doi.org/10.1145/336597.336644

2. Aronson, A., et al.: The NLM indexing initiative. In: AMIA 2000, American
Medical Informatics Association Annual Symposium, Los Angeles, CA, USA, 4–8
November 2000 (2000)

3. Aronson, A., et al.: From indexing the biomedical literature to coding clinical text:
experience with MTI and machine learning approaches. In: Biological, Transla-
tional and Clinical Language Processing, BioNLP@ACL Prague, Czech Republic,
pp. 105–112 (2007)

4. Aronson, A., Mork, J., Gay, C., Humphrey, S., Rogers, W.: The NLM indexing ini-
tiative’s medical text indexer. Stud. Health Technol. Inform. 107, 268–272 (2004)

5. Balikas, G., Kosmopoulos, A., Krithara, A., Paliouras, G., Kakadiaris, I.: Results
of the BioASQ tasks of the question answering lab at CLEF. In: Conference and
Labs of the Evaluation forum, Toulouse, France (2015). http://ceur-ws.org/Vol-
1391/inv-pap7-CR.pdf

6. Balikas, G., Partalas, I., Baskiotis, N., Artieres, T., Gausier, E., Gallinari, P.:
Evaluation infrastructure software for the challenges 2nd version. Technical report
D4.7 (2014)

7. Balikas, G., Partalas, I., Baskiotis, N., Artieres, T., Gaussier, E., Gallinari, P.:
Evaluation infrastructure. Technical report (2013)

https://doi.org/10.1145/336597.336644
http://ceur-ws.org/Vol-1391/inv-pap7-CR.pdf
http://ceur-ws.org/Vol-1391/inv-pap7-CR.pdf


Selected Approaches Ranking Contextual Term 579

8. Balikas, G., Partalas, I., Ngonga-Ngomo, A., Krithara, A., Paliouras, G.: Results
of the BioASQ track of the question answering lab at CLEF. In: Working Notes
for CLEF 2014 Conference, Sheffield, UK, pp. 1181–1193 (2014). http://ceur-ws.
org/Vol-1180/CLEF2014wn-QA-BalikasEt2014.pdf
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