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Preface

The European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML PKDD) is the premier European machine
learning and data mining conference. In 2019, ECML PKDD was held in Würzburg,
Germany, during September 16–20.

During the first and last day of the conference, the workshop program allowed a
number of specialized and/or new topics to take the fore-front.

A record 46 workshop and tutorial topics were submitted to the 2019 conference.
The selection and merging process resulted in 25 workshops taking place over the two
days, of which 3 were combined with a tutorial.

The workshop program included the following workshops:

1. The 12th International Workshop on Machine Learning and Music (MML 2019)
2. Workshop on Multiple-aspect analysis of semantic trajectories (MASTER 2019)
3. The 4th Workshop on MIning DAta for financial applicationS (MIDAS 2019)
4. The Second International Workshop on Knowledge Discovery and User Modelling

for Smart Cities (UMCit 2019)
5. New Frontiers in Mining Complex Patterns (NFMCP 2019)
6. New Trends in Representation Learning with Knowledge Graphs
7. The Second International Workshop on Energy Efficient Scalable Data Mining and

Machine Learning (Green Data Mining)
8. Workshop on Deep Continuous-Discrete Machine Learning (DeCoDeML 2019)
9. Decentralised Machine Learning at the Edge (DMLE 2019)

10. Applications of Topological Data Analysis (ATDA 2019)
11. GEM: Graph Embedding and Mining
12. Interactive Adaptive Learning (AIL 2019)
13. IoT Stream for Data Driven Predictive Maintenance (IoT Steam 2019)
14. Machine Learning for Cybersecurity (MLCS 2019)
15. BioASQ: Large-scale biomedical semantic indexing and question answering
16. The 6th Workshop on Sports Analytics: Machine Learning and Data Mining for

Sports Analytics (MLSA 2019)
17. The 4th Workshop on Advanced Analytics and Learning on Temporal Data

(AALTD 2019)
18. MACLEAN: MAChine Learning for EArth ObservatioN
19. Automating Data Science
20. The 4th Workshop on Data Science for Social Good (DSSG 2019)
21. The Third Workshop on Advances in managing and mining Large Evolving

Graphs (LEG 2019)
22. Data and Machine Learning Advances with Multiple Views (DAMVL 2019)
23. Workshop on Data Integration and Applications (DINA 2019)
24. XKDD Tutorial and XKDD-AIMLAI Workshop
25. The First Workshop SocIaL Media And Harassment (SIMAH 2019)



Of these 25 workshops, 17 workshops decided to select and publish their best papers
with Springer. Two workshops were large enough to publish their own proceedings:
(i) MIDAS – the 4th Workshop on MIning DAta for financial applicationS and
(ii) AALTD – the 4th workshop on Advanced Analytics and Learning on Temporal
Data. The 15 other workshops received a total of 200 submitted papers, out of which 70
long and 46 short papers were selected for publication after the conference. These
papers are spread over two proceedings volumes.

This two-volume set contains the papers from the following workshops:

1. Automating Data Science
2. XKDD Tutorial and XKDD-AIMLAI Workshop
3. Decentralised Machine Learning at the Edge (DMLE 2019)
4. The Third Workshop on Advances in managing and mining Large Evolving

Graphs (LEG 2019)
5. Data and Machine Learning Advances with Multiple Views (DAMVL 2019)
6. New Trends in Representation Learning with Knowledge Graphs
7. The 4th Workshop on Data Science for Social Good (DSSG 2019)
8. The Second International Workshop on Knowledge Discovery and User Modelling

for Smart Cities (UMCit 2019)
9. Workshop on Data Integration and Applications (DINA 2019)

10. Machine Learning for Cybersecurity (MLCS 2019)
11. The 6th Workshop on Sports Analytics: Machine Learning and Data Mining for

Sports Analytics (MLSA 2019)
12. The First Workshop on SocIaL Media And Harassment (SIMAH 2019)
13. IoT Stream for Data Driven Predictive Maintenance (IoT Stream 2019)
14. The 12th International Workshop on Machine Learning and Music (MML 2019)
15. BioASQ: Large-scale biomedical semantic indexing and question answering

We would like to thank all participants and invited speakers, the workshop orga-
nizers and the reviewers, as well as the local organizers for making the workshop
program of ECML PKDD 2019 the success that it was. Sincere thanks also goes to
Springer for their help in publishing the proceedings.

January 2020 Peggy Cellier
Kurt Driessens
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Abstract. In this ongoing study, we propose a higher order data min-
ing approach for modelling district heating (DH) substations’ behaviour
and linking operational behaviour representative profiles with differ-
ent performance indicators. We initially create substation’s operational
behaviour models by extracting weekly patterns and clustering them
into groups of similar patterns. The built models are further analyzed
and integrated into an overall substation model by applying consensus
clustering. The different operational behaviour profiles represented by
the exemplars of the consensus clustering model are then linked to per-
formance indicators. The labelled behaviour profiles are deployed over
the whole heating season to derive diverse insights about the substa-
tion’s performance. The results show that the proposed method can be
used for modelling, analyzing and understanding the deviating and sub-
optimal DH substation’s behaviours.

Keywords: Clustering analysis · District heating · Higher order
mining · Outlier detection

1 Introduction

A district heating (DH) system provides an entire town, or part of it, with
heat. The heat is generated in a central boiler and delivered via a distribution
pipe network. The provided heat transfers through DH substations from the
distribution network into consumers’ buildings. This includes providing both
space heating for heating seasons and domestic hot water (DHW) for a whole
year. The DH system consists of two sides: primary and secondary. The primary
side includes a central boiler, a distribution network (pre-insulated pipes) and
consumers’ buildings. The secondary side consists of a heat exchanger, a main
piping system of the building, and radiators, convectors, or floor heating for the
rooms.

This work is part of the research project “Scalable resource-efficient systems for big
data analytics” funded by the Knowledge Foundation (grant: 20140032) in Sweden.
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The DH substations are made up of different components and each can be a
potential source of faults. Faults in substations and the secondary side can be
divided into three categories (1) faults resulting in comfort problems such as lack
of enough heat, (2) unsolved faults with known cause since their identification are
time demanding and costly, and (3) faults that require advanced fault detection
systems [1]. Faults in substations do not necessarily result in comfort problems
for the consumers, instead in most cases cause sub-optimal behaviour for a long
time before they are noticed. Therefore, early detection of faults and deviations
can reduce the maintenance cost and help avoid abnormal event progression.
Fault detection in DH substations can be performed by monitoring both primary
and secondary sides or only primary side.

Gadd and Werner [1] showed that hourly meter readings can be used for
detecting faults at DH substations. The authors identified three fault groups:
(1) low average annual temperature difference, (2) poor substation control, and
(3) unsuitable heat load patterns. The results of the study showed that address-
ing low average annual temperature differences are the most important issue
that can improve efficiency of the DH systems. Nevertheless, unsuitable heat
load patterns are probably the easiest and the most cost-effective problem to
consider first. In a recent study [2], the authors applied clustering analysis and
association rule mining to detect faults in DH substations. In another study, the
authors [3] proposed a method based on gradient boosting regression to predict
hourly mass flow of a well performing substation. Their built model was tested
by manipulating well performed substation data to simulate two different sce-
narios. Calikus et al. [4] proposed an approach to automatically discover heat
load patterns in DH systems. Heat load profiles reflected yearly heat usage in
an individual building. Moreover, their discovery is crucial for ensuring effective
DH operations and managements.

We propose a higher order mining (HOM)1 approach for modelling a DH
substation’s operational behaviour and linking it with two performance indica-
tors. At the modelling step, we use primary side features to build the substation
behaviour model by extracting the substation’s behaviour patterns on a weekly
basis. Heat demand is strongly influenced by social factors, e.g., the need dur-
ing weekdays versus weekends. However, the social patterns tend to repeat on
a weekly basis. Therefore, by considering the time window of a week rather
than a day, we can mitigate the social patterns and avoid discovering, e.g., the
demand transition between weekdays and weekends. The extracted patterns are
used to create weekly behaviour models by clustering them into groups of similar
patterns. The built models are further analyzed and integrated into an overall
substation model by applying consensus clustering. We consider the exemplars
of the consensus clustering model as the substation representative operational
behaviour profiles. Further, at the annotating step the exemplars are linked with
the two performance indicators. These indicators are calculated by using features
from both primary and secondary side data. The annotated behaviour profiles
can be deployed over the whole heating season to derive diverse insights about

1 HOM is a sub-field of knowledge discovery that applies to non-primary, derived data
or patterns to provide human-consumable results [5].



DH Substation Behaviour Modelling for Annotating the Performance 5

the substation’s performance. They can also be used to quantify the performance
of incoming heating weeks.

2 Methods and Techniques

2.1 Sequential Pattern Mining

Sequential pattern mining is the process of finding frequently occurring patterns
in a sequence dataset. The records of the sequence dataset contain sequences
of events whose orders are important. We use the PrefixSpan algorithm [6]
to extract frequent sequential patterns. PrefixSpan applies a prefix-projection
method recursively to find sequential patterns. The prefix-based projection
enables PrefixSpan to focus only on prefix sub-sequences and project on their
corresponding postfix sub-sequences. This yields less projections which in turn
reduces both the length and the number of sequences in the projected datasets.

2.2 Clustering Analysis

Affinity Propagation: We use the affinity propagation (AP) algorithm [7]
for clustering the extracted patterns. AP is based on the concept of message
passing between data points. Unlike clustering algorithms, such as k-means [8]
which requires the number of clusters as an input, AP estimates the optimal
number of clusters from the data. In addition, the chosen exemplars are real
data points and representative of the clusters.

Consensus Clustering: Gionis et al. [9] proposed an approach for clustering
based on the concept of aggregation, where a number of different clustering solu-
tions are given on some datasets of elements. The objective is to produce a sin-
gle clustering solution from those elements that agrees as much as possible with
the given clustering solutions. Consensus clustering algorithms deal with similar
problems to those treated by clustering aggregation techniques. Such algorithms
aim to synthesize clustering information about the same phenomenon coming
from different sources [10] or from different runs of the same algorithm [11]. In
this study, we use the consensus clustering schema proposed in [10] in order to
integrate the clustering solutions produced on the datasets collected on a weekly
basis for the heating season. The exemplars of the produced clustering solutions
are considered and divided into k clusters according to the degree of their sim-
ilarity by applying the AP algorithm. Subsequently, clusters whose exemplars
belong to the same partition are merged in order to obtain the final consensus
clustering.

2.3 Distance Measure

The similarity between the extracted patterns are assessed with a dynamic pro-
gramming version of Levenshtein distance (LD) metric [12]. The LD, also known
as edit distance, is a string similarity metric that measures the minimum number
of editing operations required to transform one string into the other.
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Fig. 1. Schematic illustration of the proposed approach

3 Proposed Method

Our approach has a preprocessing step and two main steps: (1) Modelling substa-
tion’s operational behaviour ; (2) Linking the substation’s representative behaviour
profiles with performance indicators. The modelling step consists of three dis-
tinctive sub-steps: (i) data segmentation and pattern extraction, (ii) weekly
behaviour model creation, and (iii) overall substation’s model. The approach
is schematically illustrated in Fig. 1.

Data Preprocessing: In order to prepare data for the modelling step all dupli-
cates are removed and missing values are imputed by averaging the neighbouring
values. The first and the last missing values are replaced with the next and the
previous available values, respectively.

In addition, extreme values that are often a result of faults in measurement
tools are smoothed out by a Hampel filter [13], which is a median absolute
deviation (MAD) based estimation. The filter computes the median, MAD, and
the standard deviation (SD) over the data in a local window. We apply the filter
with the default parameters; the size of the window is seven and the threshold
for extreme value detection is three, i.e., 3-neighbours on either side of a sample.
The threshold for extreme value detection is three. Therefore, in each window a
sample with the distance three times the SD from its local median is considered
as an extreme value and is replaced by the local median.

We monitor the operational behaviour of substations based on outdoor tem-
perature and the primary side features of the DH system. Our motivation for
this choice relates to the fact that the primary side data is always available while
the secondary side data requires specific hardware that might not be available
at the consumers’ building. After discussions with domain experts, we chose
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five features that have a strong negative correlation with outdoor temperature.
The selected features are: (1) primary return temperature, Tr,1st , (2) primary
temperature difference, ΔT1st , (3) primary energy, Q1st , (4) primary mass flow
rate, G1st , and (5) the substation performance indicator based on the hourly
consumed energy divided into the hourly mass flow rate, EE−F

s . The fifth fea-
ture represents how many units of energy one substation can provide from the
consumed volume flow rate.

Z-score normalization is applied on each feature and for every week’s period.
The normalization is performed to make it possible to assess and compare a
substation’s operational behaviours in different weeks.

In order to build the DH substation’s operational behaviour model using
the HOM paradigm, continuous features are converted into categorical features.
All five features together build patterns (sequences of events) that represent
the operational behaviour of the substation. In this study, we are interested in
contextual outlier detection. The context here is referred to as modelling the
DH substation’s behaviour, during only the heating season. For this purpose we
have applied k-means-based discretization method by setting the size of k to
four, similar to the number of seasons in Sweden.

1. Modelling DH substation’s operational behaviour:

(i) Data segmentation and pattern extraction: We extract the substa-
tion’s behaviour patterns on a weekly basis. The PrefixSpan algorithm is
used to find frequent sequential patterns with the length of five in each
week. Those sequential patterns that satisfy the user-specified support are
considered as frequent ones. The user-specified support threshold is set to
be one to capture daily patterns, i.e., any patterns that appear at least once
will be considered.

(ii) Weekly behaviour model creation: The extracted patterns from each
week are clustered into groups based on their similarities. Since the aim
is to build a DH substation behaviour model for the heating season, all
exemplars of the clustering models related to the weeks with the average
outdoor temperature above 10 ◦C are filtered out.

(iii) Overall substation’s model: The weekly behaviour models built at the
previous step are further integrated into an overall substation’s behaviour
model by applying a consensus clustering technique. The exemplars of the
consensus clustering solution are considered as representative profiles for
the substation’s behaviour, i.e., they can be used to further analyze the
substation’s behaviour and performance for the whole heating season.

2. Linking behaviour profiles with performance indicators: At this step
the derived substation’s behaviour profiles are linked to performance indicators.
In the current study, we annotate behaviour profiles with two performance indi-
cators: substation effectiveness and grädigkeit. The two indicators are computed
by considering features from both the primary and secondary sides.

Substation effectiveness is computed as ET
s = ΔT1st

Ts,1st−T
r,2nd

where, ΔT1st is
the difference between primary supply and return temperatures, Ts,1st is the
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primary supply temperature, and Tr,2nd is the return temperature at the sec-
ondary side. The efficiency of a well-performed substation should be close to 1 in
a normal setting. However, due to the affect of DHW generation on the primary
return temperature, the ET

s can be above 1.
Grädigkeit indicator, also known as the least temperature difference2, repre-

sents the difference between primary and secondary return temperatures and it
is computed as ΔTr,(1st,2nd) = Tr,1st −Tr,2nd . The grädigkeit of a substation can
be greater than or equal to zero, though it can go below zero due to usage of
DHW. A lower value of grädigkeit implies better performance.

For each considered performance indicator, we partition the substation’s rep-
resentative behaviour profiles into three categories with respect to the associated
performance indicator scores: low, medium and high. In that way, we have a group
of behaviour profiles that represents the substation’s sub-optimal performance
and two groups of profiles that are linked with satisfactory and optimal substa-
tion’s performance, respectively. The labelled behaviour profiles can be deployed
over the whole heating season in order to further analyze and understand the
substation’s operational behavior and performance. For example, the profiles
from the three different categories can be used to interpret the substation’s
operational behaviours for particular time intervals. In addition, it is possible to
backtrack from these higher order representative profiles to the weekly behaviour
models and to the hourly patterns.

4 Results and Discussion

We studied substations’ operational behaviour for ten buildings in 2017. We first
modeled each substation’s weekly operational behaviours. This was performed
by grouping the extracted frequent patterns into clusters of similar patterns. We
then stored the exemplars of the built clustering model if the average outdoor
temperature of the week was less than or equal to 10 ◦C. This step is motivated by
the fact that we want to model the substation’s overall operational performance
for the whole heating season. The collected exemplars were integrated into a
consensus clustering. At last, the obtained consensus clustering model was linked
(annotated) with the selected performance indicators. The extracted profiles
with respect to each indicator were used to assess behaviour of the substation
on a weekly basis.

For the rest of this section we focus on one specific building, B-21. We iden-
tified 13 profiles that model the operational behaviour of the substation for the
heating season. The extracted profiles were linked with the two performance
indicators, substation effectiveness and grädigkeit. In order to facilitate further
analysis, the profiles were sorted from the highest to the lowest performance sep-
arately for each indicator. For example, in case of the substation effectiveness
the profiles are within a range from 103% to 90%. Regarding the grädigkeit, the
profiles are within a range from −2.15 ◦C to 5.37 ◦C.
2 Frederiksen, S., Werner, S.: District heating and cooling, Studentlitteratur Lund

(2013).
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(a) Heatmap represents profiles’ fre-
quency in each week.

(b) Heatmap represents profiles’ fre-
quency in 24-hour period.

Fig. 2. The deployment of the annotated profiles according to substation effectiveness
for building B-21 over 2017 heating season. (Color figure online)

Figure 2a shows the substation’s effectiveness according to the built profiles
for each week. As one can notice the heatmap is sparse and only few weeks, e.g.,
weeks 3, 4, 7, 10, 14, 15, 17, and 18 represent a high number of frequency for
some of the profiles. The heatmap is not easy to interpret and it does not provide
interesting information about the substation’s weekly behaviour. Figure 2b, on
the other hand, provides more information by showing the effectiveness of the
same substation at a 24-h period for the whole heating season. For example,
one can recognize a yellowish bell shape. Evidently, the substation performed
on average 92% at early morning (0:00–5:00) and late evening (20:00–23:00).
However, for the rest of the day the performance of the substation is closer to
and above 100%. The low performance of the substation might be due to social
behaviour, which demonstrates low heat demand in the early morning and late
evening.

As mentioned before, we categorize the extracted profiles with respect to
their performance indicator labels (substation effectiveness or grädigkeit) into
three categories: low, medium, and high. In the case of substation effectiveness
low represents efficiency below 90%, medium indicates efficiency between 90%
to 100%, and high stands for efficiency above 100%. Figure 3a shows the overall
effectiveness of the substation over the weeks that space heating was required,
based on these three categories. As one can see the orange circles, which represent
the medium efficiency of the substation, closely follow the curve showing overall
substation’s effectiveness. This is also valid for the profiles from the other two
categories. For example, all profiles linked to optimal performance (blue circles in
Fig. 3a) are above the overall substation’s effectiveness curve. In Fig. 3a, we can
also notice that weeks 19 and 40 represent the end and beginning of the heating
season, respectively. The low efficiency of the substation in week 40 might be
related to the fact the system required sometime to adjust.

Regarding grädigkeit indicator, low represents temperature differences above
3 ◦C, medium denotes temperatures between 0 to 3 ◦C, and high shows temper-
ature differences equal or below to 0 ◦C. Figure 3b shows the overall grädigkeit
for the studied substation. Similar to Fig. 3a, the medium category is closely
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(a) Substation’s effectiveness.

.tiekgidärgs’noitatsbuS)b(

Fig. 3. The deployment of the annotated profiles according to performance indicators
for building B-21 over 2017 heating season. (Color figure online)

following the curve that represents the overall substation’s grädigkeit. Notice
that for grädigkeit indicator the temperature differences close to and below zero
show a high efficiency.

5 Conclusion and Future Work

We proposed a higher order mining approach for modelling a district heating
substation’s operational behaviour. The method summarized the substation’s
behaviour with a series of representative profiles that were linked with two per-
formance indicators. The labelled profiles were deployed over the whole heating
season to assess an overall substation’s behavior and performance. We applied
and studied our method on ten buildings. The initial results showed that the
proposed method can be used to analyze and evaluate the operational behaviour
of DH substations.

For future work we are interested in studying whether the derived represen-
tative behaviour profiles can be used to quantify the performance of incoming
heating weeks. In addition we plan to evaluate our approach with other perfor-
mance indicators.
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Abstract. In this paper we address the problem of modeling the evolu-
tion of clusters over time by applying sequential clustering. We propose
a sequential partitioning algorithm that can be applied for grouping dis-
tinct snapshots of streaming data so that a clustering model is built on
each data snapshot. The algorithm is initialized by a clustering solu-
tion built on available historical data. Then a new clustering solution is
generated on each data snapshot by applying a partitioning algorithm
seeded with the centroids of the clustering model obtained at the previ-
ous time interval. At each step the algorithm also conducts model adapt-
ing operations in order to reflect the evolution in the clustering struc-
ture. In that way, it enables to deal with both incremental and dynamic
aspects of modeling evolving behavior problems. In addition, the pro-
posed approach is able to trace back evolution through the detection of
clusters’ transitions, such as splits and merges. We have illustrated and
initially evaluated our ideas on household electricity consumption data.
The results have shown that the proposed sequential clustering algorithm
is robust to modeling evolving behavior by being enable to mine changes
and update the model, respectively.

Keywords: Behavior modeling · Clustering evolution · Data mining ·
Sequential clustering · Household electricity consumption data

1 Introduction

The need for describing and understanding the behavior of a given phenomenon
over time led to the emergence of new techniques and methods focused in tempo-
ral evolution of data and models [2,6,13]. Data mining techniques and methods
that enable to monitor models and patterns over time, compare them, detect and
describe changes, and quantify them on their interestingness are encompassed
by the paradigm of change mining [5]. The two main challenges of this paradigm
are to be able to adapt models to changes in data distribution but also to analyze
and understand changes themselves.

Evolving clustering models are referred to incremental or dynamic clustering
methods, because they can process data step-wise and update and evolve cluster

This work is part of the research project “Scalable resource efficient systems for big
data analytics” funded by the Knowledge Foundation (grant: 20140032) in Sweden.
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partitions in incremental learning steps [6,10]. Incremental (sequential) cluster-
ing methods process one data element at a time and maintain a good solution by
either adding each new element to an existing cluster or placing it in a new sin-
gleton cluster while two existing clusters are merged into one [1,7,17]. Dynamic
clustering is also a form of online/incremental unsupervised learning. However, it
considers not only incrementality of the methods to build the clustering model,
but also self-adaptation of the built model. In that way, incrementality deals
with the problem of model re-training over time and memory constrains, while
dynamic aspects (e.g., data behavior, clustering structure) of the model to be
learned can be captured via adaptation of the current model. Lughofer proposes
an interesting dynamic clustering algorithm which is also dedicated to incre-
mental clustering of data streams and in addition, it is equipped with dynamic
split-and-merge operations [10]. A similar approach defining a set of splitting
and merging action conditions is introduced in [8]. Wang et al. also propose a
split-merge-evolve algorithm for clustering data into k number of clusters [16].
However, a k cluster output is always provided by the algorithm, i.e. it is not
sensitive to the evolution of the data. A split-merge evolutionary clustering algo-
rithm which is robust to evolving scenarios is introduced in [4]. The algorithm
is designed to update the existing clustering solutions based on the data charac-
teristics of newly arriving data by either splitting or merging existing clusters.
Notice that all these algorithms have the ability to optimize the clustering result
in scenarios where new data samples may be added in to existing clusters.

In this paper, we propose a sequential (dynamic) partitioning algorithm that
is robust to modeling the evolution of clusters over time. In comparison with
the above discussed dynamic clustering algorithms it does not update existing
clustering, but groups distinct portions (snapshot) of streaming data so that
a clustering model is generated on each data portion. The algorithm initially
produces a clustering solution on available historical data. A clustering model
is generated on each new data snapshot by applying a partitioning algorithm
initialized with the centroids of the clustering solution built on the previous
data snapshot. In addition, model adapting operations are performed at each
step of the algorithm in order to capture the clusters’ evolution. Hence, it tackles
both incremental and dynamic aspects of modeling evolving behavior problems.
The algorithm also enables to trace back evolution through the identification
of clusters’ transitions such as splits and merges. We have studied and initially
evaluated our algorithm on household electricity consumption data. The results
have shown that it is robust to modeling evolving data behavior.

2 Modeling Evolving User Behavior via Sequential
Clustering

2.1 Sequential Partitioning Algorithm

In this section, we formally describe the proposed sequential partitioning algo-
rithm. The algorithm idea is schematically illustrated in Fig. 1.
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Assume that data sets D0,D1, . . . , Dn are distinct snapshots of a data stream.
Further let C = {Ci|i = 0, 1, . . . , n} be a set of clustering solutions (models), such
that Ci has been built on a data set Di. In addition, each clustering solution
Ci, for i = 1, 2, . . . , n, is generated by applying a partitioning algorithm (see
Sect. 2.2) on data set Di initialized (seeded) with the centroids of the clustering
model built on data set Di−1. The algorithm is initialized by clustering C0 which
is extracted from data set D0 (available historical data or the initial snapshot).

Fig. 1. Schematic illustration of the proposed sequential clustering approach

The basic operations conducted by our algorithm at each time window (on
each data snapshot) i are explained below:

1. Input: Cluster centroids of partition Ci−1 (i = 1, 2, . . . , n).
2. Clustering step: Cluster data set Di by seeding the partitioning algorithm

with the centroids of Ci−1.
(a) Initial clustering of Di.
(b) Check for empty initial clusters and adapt the partitioning respectively.
(c) Remove the seeded centroids and finalize the clustering by producing Ci.

3. Adapting step: For each cluster Cij ∈ Ci do the following steps
(a) Calculate the split condition for Cij .
(b) If the split condition is satisfied then split Cij into two clusters by applying

2-medoids clustering algorithm and update the list of centroids, respec-
tively.

4. Output: Updated clustering partition and list of centroids used to initialize
the clustering action that will be conducted on data set Di+1.

Note that at step 2(b) above we check whether there are empty clusters after the
initial clustering. If so, this means that the clustering structure is evolving, i.e.
some clusters may stop existing while others are merged together. Evidently, the
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death and merge transitions are part of the clustering step. Therefore the split
condition is only checked at step 31. We can apply different split conditions. For
example, the homogeneity of each cluster Cij may be evaluated and if it is below
a given threshold we will perform splitting. Another possibility is to apply the
idea implemented by Lughofer [10] in his dynamic split-and-merge algorithm.

In order to trace back the clusters’ evolution we can compare the sets of
cluster centroids of each pair of partitioning solutions extracted from the cor-
responding neighboring time intervals (e.g., see Fig. 6). This comparison can be
performed by applying some alignment technique, e.g., such as Dynamic Time
Warping (DTW) algorithm explained in Sect. 2.3. For example, if we consider
two consecutive clustering solutions Ci−1 and Ci (i = 1, 2, . . . , n), we can easily
recognize two scenarios: (i) a centroid of Ci−1 is aligned to two or more cen-
troids of Ci then the corresponding cluster from Ci−1 splits among the aligned
ones from Ci; (ii) a few centroids of Ci−1 is aligned to a centroid of Ci then the
corresponding clusters from Ci−1 merge into the aligned cluster from Ci.

2.2 Partitioning Algorithms

Three partitioning algorithms are commonly used for data analysis to divide the
data objects into k disjoint clusters [11]: k-means, k-medians, and k-medoids
clustering. The three partitioning methods differ in how the cluster center is
defined. In k-means clustering, the cluster center is defined as the mean data
vector averaged over all objects in the cluster. In k-medians, the median is cal-
culated for each dimension in the data vector to create the centroid. Finally, in
k-medoids clustering, which is a robust version of the k-means, the cluster center
is defined as the object with the smallest sum of distances to all other objects
in the cluster, i.e., the most centrally located point in a given cluster.

Fig. 2. Initial clustering model produced on the historical data.

2.3 Dynamic Time Warping Algorithm

The DTW alignment algorithm aims at aligning two sequences of feature vectors
by warping the time axis iteratively until an optimal match (according to a suit-
able metrics) between the two sequences is found [15]. Let us consider two matrices
A = [a1, . . . , an] and B = [b1, . . . , bm] with ai (i = 1, . . . , n) and bj (j = 1, . . . ,m)
column vectors of the same dimension. The two vector sequences [a1, . . . , an] and

1 Step 3 is not implemented into the current version of our sequential clustering algo-
rithm.



16 V. Boeva and C. Nordahl

Fig. 3. Clustering model produced on the first new data snapshot. Clusters C01 and
C03 have been empty after the clustering step. Clusters C02 and C04 are transformed
in clusters C11 and C12, respectively.

[b1, . . . , bm] can be aligned against each other by arranging them on the sides of a
grid, e.g., one on the top and the other on the left hand side. A distance measure,
comparing the corresponding elements of the two sequences, can then be placed
inside each cell. To find the best match or alignment between these two sequences
one needs to find a path through the grid P = (1, 1), . . . , (is, js), . . . , (n,m),
(1 ≤ is ≤ n and 1 ≤ js ≤ m), which minimizes the total distance between A
and B.

3 Case Study: Modeling Household Electricity
Consumption Behavior

3.1 Case Description

Suppose that a monitoring system for tracking changes in electricity consump-
tion behavior at a household level is developed to be used for some healthcare
application. For example, such a system can be used to monitor and look for
alterations in the daily routines (sleep-wake cycle) of elderly individuals who
have been diagnosed with a neurodegenerative disease. The system is supposed
to build and maintain an electricity consumption behavior model for each mon-
itored household. Initially, a model of normal electricity consumption behavior
is created for each particular household by using historical data [12]. In order to
monitor such a model over time it is necessary to build a new model on each new
portion of electricity consumption data and then compare the current model with
the new household electricity consumption behavior model. If changes are iden-
tified a further analysis of the current electricity consumption behavior model is
performed in order to investigate whether these are associated with alterations
in the resident’s daily routines.

3.2 Data and Experiments

We use electricity consumption data collected from a single randomly selected
anonymous household that has been collected with a 1-min interval for a period
of 14 months. During those 14 months, there were roughly 2 months worth of
data that had not been collected, i.e. zero values which have been removed. We
then aggregate the electricity consumption data into a one hour resolution from
the one minute resolution.
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Fig. 4. Clustering models produced on the second (above) and third (below) new data
snapshots, respectively.

We divide the data into four parts. The first 50% of the total data represent
the historical data (D0), and the remaining data is evenly distributed into the
other three data sets (D1, D2 and D3). In addition, D2 and D3 have their
contents shifted to simulate a change in their behavior over time. 8% of the
contents in D2 is randomly shifted 1 to 6 h ahead, and 2% of the contents 12 h
ahead. Similarly, D3 has 16% of the data shifted 1 to 6 h ahead and 4% 12 h
ahead. We choose these two scenarios to simulate both minor and drastic changes
in the sleeping pattern of the resident.

In order to cluster the historical data, we run k-medoids 100 times using
randomly initialized cluster medoids, for each k between 2 and 20. DTW is used
as the dissimilarity measure and it is restricted to only allow for a maximum warp
of two hours. This restriction is in place to allow for some minor alterations in the
daily behavior while keeping major alterations in check. The produced clustering
solutions are then evaluated using Silhouette Index [14], Connectivity [9], and
Average Intra-Cluster distance [3]. The medoids from the best scoring clustering
solution are then used as the initial seeds for the next snapshot of data, as
explained in Sect. 2.1.

Table 1. Distances between the clustering models generated on the first and second
new data snapshots (left), and on the second and third new data snapshots (right),
respectively.

C20 C21 C22

C10 0.142 0.428 0.222
C11 0.373 0.194 0.306
C12 0.235 0.326 0.163

C30 C31 C32

C20 0.123 0.384 0.290
C21 0.468 0.246 0.257
C22 0.212 0.358 0.209

3.3 Results and Discussion

Figure 2 shows the initial clustering model generated on the historical data. As
one can see the household electricity consumption behavior is modeled by five
different behavior profiles (clusters). C03 and C04 are the biggest clusters and
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represent the electricity consumption behavior more typical for working days
with clearly recognized morning and evening consumption peaks. Clusters C00

and C01 are smaller and have an additional consumption peak in the middle of
the day, i.e. they model behavior more typical for the weekends. Cluster C02

is comparatively big and represents electricity consumption behavior typical for
working days with a slightly later start.

Fig. 5. Heatmaps for distances between the clustering models generated on the first
and second new data snapshots (left), and on the second and third new data snapshots
(right), respectively.

Figure 3 depicts the clustering model derived from the first new data snap-
shot. As we can notice the electricity consumption behavior is modeled only by
three clusters. C01 and C03 have been empty after the initial clustering step and
their medoids are removed from the list of medoids. Clusters C02 and C04 are
transformed into clusters C11 and C12, respectively. It is interesting to observe
that C12 is also very similar to cluster profile C03. The latter observation is
also supported by the DTW alignment between the medoids of the two cluster-
ing models given in Fig. 6, where C03 and C04 are aligned to C12, i.e. they are
merged into one cluster. This is also the case for C00 and C01, which are replaced
by cluster C10 at the first time interval.

As it can be seen in Fig. 4 the number of clusters is not changed at the
second and third time windows. However, one can easily observe that behavior
profile C11 evolves its shape over these two time intervals. For example, it moves
far from C21 and gets closer to C20 at the third time window (see Table 1).
These observations are also supported by the heatmaps plotted in Fig. 5. One
can observe that the respective cells in the heatmap plotted in Fig. 5 (right) have
changed their color in comparison with the heatmap in Fig. 5 (left).

We can trace the evolution of the clusters at each step of our algorithm
by comparing the sets of cluster centroids of each pair of clusterings extracted
from the corresponding consecutive time intervals. This is demonstrated in Fig. 6
which plots the DTW alignment path between the clustering models generated
on the historical and first new data sets, respectively. This comparison can be
performed on any pair of clustering models generated on the studied data sets.
It is also possible to trace back the evolution of a given final cluster down to the
initial clustering model.
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Fig. 6. DTW alignment path between the clustering models generated on the historical
and first new snapshot data, respectively.

4 Conclusions and Future Work

In this paper, we have proposed a sequential partitioning algorithm that groups
distinct snapshots of streaming data so that a clustering model is generated
on each data snapshot. It enables to deal with both incremental and dynamic
aspects of modeling evolving behavior problems. In addition, the proposed app-
roach is able to trace back evolution through the detection of clusters’ transitions.
We have initially evaluated our algorithm on household electricity consumption
data. The obtained results have shown that it is robust to modeling evolving data
behavior by being enable to mine changes and adapt the model, respectively.

For future work, we aim to further study and evaluate the proposed clustering
algorithm on evolving data phenomena in different application domains.
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Abstract. Mobile phones are being used for more than just commu-
nication because of their wide range of capabilities in aspects of com-
putation and sensing. In this paper, we propose an approach based on
supervised learning to detect the user’s mode of transport based on the
smartphone’s built-in accelerometer sensor and the location data. We
create a convenient hierarchical classification system, proceeding from a
coarse-grained to a fine-grained classification and no requirements of spe-
cific position and orientation setting is needed. This study explores how
coarse-grained location data from smartphones can be used in combina-
tion with accelerometer data to recognize high-level properties of user
mobility. Our approach can achieve over 95% accuracy for inferring var-
ious transportation modes including tram, bus, train, walking, and sta-
tionary. The results suggest that our approach of adding coarse-grained
location data improves the accuracy of detection by 10% in comparison
with the accelerometer only approach. We present a review of existing
approaches for transport mode detection and compare them regarding
the type of devices used as sensing unit, the sensors used, the consid-
ered transport modes, energy efficiency, and the algorithms used for the
classification task.

Keywords: Transport mode · Smartphone-based · Accelerometer ·
Location data · Supervised learning · AdaBoost · SVM · Random
Forest

1 Introduction

Human activity recognition is an important but yet a challenging research
area. Efforts to understand human behavior have been subject to many studies
through centuries but the explosive spread of smartphones in recent years has
provided many fields with a new potential. Modern smartphones are much more
than just telecommunication devices, and their use is not anymore limited to the
traditional telecommunication field only. They have a wide range of capabilities
in aspects of computation and sensing, they are equipped with various sensors
that can sense motion, changes in orientation or environment conditions like
ambient light, temperature etc., making possible to capture valuable information
c© Springer Nature Switzerland AG 2020
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for users and about users themselves. These have given rise to mobile-centric con-
text recognition systems, which are able to recognize the context of the carrier—
context-awareness. Transportation technologies and strategies are emerging that
can help to meet the climate challenge, these include intelligent transportation
systems (ITS) and mobility management strategies that can reduce the demand
for private vehicles shifting towards less environmentally damaging transporta-
tion modes. Studies in this fields require knowledge of transportation activity
information and surveys are typically used to collect information for such needs,
but surveys conducted through conventional questionnaires to investigate when,
where and how people travel have many drawbacks.

Mobile Transport Mode Detection has the potential to solve most of the short-
comings associated with the conventional travel survey methods, including biased
response, no response or erroneous time reporting. The objective of our work is to
determine the added value of location data when combined together with a set of
different features from the [1] paper for accelerometer data and try to overcome
shortcomings of [1] and other works [2] that have already tried to fuse this two sen-
sors together but have not used the total potential of accelerometer features.

We implement a fine-grained classification, distinguishing not only between
pedestrian and motorized transport but also different modes of pedestrian and
motorized transport. To achieve this we base our implementation on the work
of [1] paper and then build on it by adding the location data, change filtering
algorithms and gravity reduction technique (using gravity sensor). We also dis-
cuss the reasons behind using different features and different choices like the
sensors that can be used related to what is our primary concern (e.g. accuracy
or energy cost), and choices about architecture set-up for instance mobile-based
(real-time) prediction versus server-based prediction. Our algorithm uses data
from the device’s accelerometer, while location data is used only sparsely for
obvious reason and later we further discuss some different solution on how to
further decrease the power consumption.

2 Related Work

The human activity recognition field has been widely studied, from the studies
about the general human activity recognition to more specific like the trans-
port mode detection (TMD). Thus, numerous studies attempt to tackle different
aspects of transport mode detection with different approaches.

Related work can be grouped based on main characteristics of approaches like
the hardware used, sensors used, the device position and orientation, algorithm
complexity and energy awareness, granularity.

In terms of hardware used the related work can be divided into two groups:
studies that use dedicated custom devices and those that use smartphones to
sense events. [18] is one of the first contributions to the activity recognition
problem, in which five biaxial accelerometers worn simultaneously on different
parts of the user’s body were used to collect the acceleration data recognising
everyday activities with an overall accuracy of 84%. However, using dedicated
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devices has the following disadvantages: (1) cost of devices that we need to
purchase is high, (2) in a real-world applications people tend not to like carrying
additional devices just for a specific task, (3) the devices need to be distributed
to all participants and this is very limiting for almost any kind of application, (4)
requires creating a new device infrastructure instead of re-using an existing one.
Conversely, using smartphones is very cost effective because we do not need to
purchase any devices because most of the people already use them and users will
not need to carry additional devices and integration to existing applications is
easy. In other words, the infrastructure is already established. For these reasons,
most of the studies especially those of TMD field prefer smartphones instead of
dedicated custom hardware, and it is also what we are going to use in this paper
as the sensing device. Thus, most of the studies that we will discuss here will be
of the second group: TMD using smartphones as the sensing device.

Related work based on the sensors used to determine the travel mode can be
divided into four groups: GPS only, accelerometer only, GPS with accelerometer
and GSM/WiFi sensors group.

GPS-Only Approaches: [8] builds an application Activity Compass which
helps guide a cognitively impaired person safely through the community. They
use GPS data to classify between three modes of transportation: bus, foot, or
car using an unsupervised method of learning a Bayesian model, building a
user personalized model based on historical GPS data of the user which means
that it is not very robust for the new users. Furthermore, it needs external GIS
information about the roads network and bus stops which despite increasing
the accuracy it has its limitations. On the other hand [7] do not use external
information and mines the knowledge only from the raw GPS data collected in
a frequency of one record every two seconds using custom sensing devices. They
identify a set of novel features including heading change rate, velocity change
rate and stop rate, for a final accuracy of 76.1% with four modes of transport
including car, walking, bus and bike. [3] achieves the highest accuracy in this
group and can detect various transportation modes including car, bus, train,
walking, biking and stationary. It is the first approach that performs fine-grained
classification between motorised transportation modes with high accuracy, but
in order to do that, it needs knowledge about the underlying transportation
network that includes: real-time bus locations, spatial rail and spatial bus stop
information which is not always available to us. Among the five classification
models that they consider, Random Forest model achieves the highest accuracy.

Accelerometer-Only Approaches: It is worth noting that the works in this
group are the most energy efficient because as we will see later in Sect. 3, the
accelerometer sensor is less power-hungry compared to other sensors like GPS or
GSM/WiFi sensors. [9] is an offline classification architecture performed by train-
ing a Support Vector Machine (SVM) with 253 features (250 FFT components
plus three statistical features) which detects four modes of transport including
walking, running, biking and driving with an accuracy of over 90%. However, the
authors point out in the paper that their testing is not as extensive as the other
works in this field. It could be said that the most significant work in this group
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is [1] paper, which consists on extracting a novel set of features capable of cap-
turing time, frequency and statistical characteristics of the acceleration signal.
On the contrary to the other TMD algorithms, which seem to fail in recognizing
the real characteristics of different modes of transport, [1] algorithm is capable
of capturing characteristics of acceleration and breaking patterns for different
transportation modes. The main contributions of the approach proposed by [1]
are an improved algorithm for estimation of the gravity components, the variety
of features used in the classification process and the decomposition of transport
mode detection hierarchically into subtasks, proceeding from a coarse-grained
classification towards a fine-grained distinction of transport modality. On the
contrary, most of the other accelerometer-based solutions estimate gravity com-
ponents as the mean over a window of fixed duration which does not work during
sustained acceleration or when the sensor orientation changes suddenly. In [19],
a decision tree classifies a set of features including 32 FFT coefficients and the
signal variance. Despite the high number of transportation modes identified in
[19], the classification accuracy is only slightly lower than that obtained by [1].

GPS with Accelerometer Approaches: Combining GPS data with
accelerometer data is a relatively new approach, but few studies that utilised
this combination of sensors have explored the potential that this combination
has and have given some encouraging results. For instance, [2] developed a classi-
fication system which consists of a decision tree followed by a first-order discrete
Hidden Markov Model and achieves an accuracy level of over 93%. The algo-
rithm proposed by [2] analyses GPS speed every second, together with variance
and frequency components of the accelerometer signal in order to identify trans-
portation modes, including stationary, walking, running, biking and motorised
transport. A study by [10] examines the merits of employing accelerometer data
in combination with GPS data in TMD, using Bayesian Belief Network to infer
transport modality. Results outline that the approach which combines GPS and
accelerometer data yields the best performance.

GSM/WiFi Approaches: The group of sensors that are widely used for
TMD except GPS and accelerometer include also GSM and WiFi sensors, with
approaches [4,12,13] that make use of them like the dominant sensor - rely-
ing exclusively on them to identify transport modality, or in a supporting role
- using them in combination with other sensors usually for specific purposes.
[2] proposes to use GSM sensor in order to detect when to start collecting data
from the dominant sensors GPS and accelerometer by detecting if the user has
gone outdoor and to that end saving energy by not using the power hungry GPS
sensor all the time; and [11] uses GSM sensor to derive speed statistics estimates
in case of GPS unavailability.

[13] and [12] use changes in the GSM signal environment for coarse-grained
detection of transportation modalities including stationary, walking and driving.
[12] extracts a set of seven different features to use in a two-stage classification
scheme consisting in classifying an instance as stationary or not and if classi-
fied as not stationary then determining if the instance was walking or driving.
Similarly, [4] combines GSM and WiFi for detecting between dwelling, walking
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and driving. Although these solutions obtain accuracies in range 80–90% and
being energy efficient compared to GPS solutions, these techniques are suscepti-
ble to varying cell densities and cell sizes between different locations, struggling
to generalise outside urban areas. As can be seen, all the techniques in this group
perform only a coarse-grained detection of transportation modalities since for a
fine-grained TMD algorithm including a more sensitive sensor like for instance
accelerometer is required.

Comparing all the different solutions available is a challenging task because
of the many parameters that have to be considered including identified classes,
implementation architecture, sensors used, quality of testing, accuracy and
energy cost. A study by [6] compares most of the works mentioned here and
concludes that the most interesting and promising works are those by [19] and
[1] since:

1. They detect the highest number of relevant transportation modes.
2. They rely only on accelerometer data, no need for external information like

GIS.
3. They do not require dedicated devices.
4. State of Art benchmark accuracy: the average accuracy of these two works is

83.5%.

However, the authors point out that caution is recommended with the [19] solu-
tion because the dataset is said to include “several hours” but is not actually
quantified which leaves suspicion about the quality of their dataset and testing.
On the other hand, [1] is thoroughly tested in different scenarios that include
different smartphone models, users and countries, with one of the largest dataset
found in the literature. So, they conclude that the work by [1] may be considered
as the most valuable among the works found in the literature. Our work consists
in building a system with the methodology proposed in [1] with some significant
changes such as the way we perform gravity components estimation, filter high-
frequency signals and then integrate location data from the available location
providers (Global Positioning System (GPS), WiFi and mobile cell data). We
integrate the location data in the final classifier where the classification of motor-
ized transportation modes is performed and is indeed a key challenge according
to the methodology we use.

3 Data Collection

The data used on this experiment are collected over 5 h of transportation data
including accelerometer and location data using an Android smartphone (LG
G4). We collected accelerometer data at the 60 Hz sample rate, whereas the loca-
tion data we collected with a frequency of at most every 15 s, using Android’s
standard options. No measure has been taken to ensure maintaining the loca-
tion data sample rate constant such as initially gaining a GPS lock or keeping
the phone screen on to maintain the connection like in [2]. To ensure that the
results of the experiments are not sensitive to the placement of the sensor the
data was collected from different smartphone placements. We considered the
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most common placements for a mobile phone in an urban space: trouser pock-
ets and jacket pockets including any other user choice placement. Furthermore,
in contrast to the work of [1] who have used an additional smartphone for the
ground truth annotations to avoid disturbing the sensing unit, we have used
the same device not only for the annotations but also for other daily activities.
Because the ground truth annotation is an inconvenient and sometimes even a
dangerous process, we simplified the process by allowing the users to not report
instances of being still when annotating modes that were not stationary (i.e.,
being still at a red light while in motorized transport, or at the bus or train
stops etc). These ambiguous instances are labeled with the annotation of the
primary mode. Figure 1 shows the distribution of training Fig. 1(a) and testing
Fig. 1(b) data based on transport mode.

(a) Training dataset (b) Testing dataset

Fig. 1. Distribution of the collected data based on transport mode

4 Data Preprocessing

Our approach relies on a relatively new practice which is sensor fusion. Sensor
Fusion1 is the combining of sensory data or data derived from sensory data such
that the resulting information is in some sense better than would be possible when
these sources were used individually. The idea here is that each sensor has its
strengths and weaknesses, by combining them in a specific way they can compen-
sate each other. In this case, if we knew something about the device orientation we
canmeasure the gravity component in a betterway, sowhat they do in sensor fusion
is extract the device orientation from gyroscope which measures the rate of rota-
tion related to the device itself and use it to gravity compensate the accelerometer;
the result of using this technique is illustrated in Fig. 2.

The raw measurements generated by the accelerometer sensors are contami-
nated with environmental noise and jitter that needs to be filtered out. A com-
mon practice, in this case, is to preprocess the raw measurements by applying
a low-pass filter. There are many algorithms and methods to accomplish this

1 http://www.inforfusion.org/mission.htm.

http://www.inforfusion.org/mission.htm
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Fig. 2. Separating gravity from accelerometer sensor using sensor fusion.

but moving average filters, and Savitzky-Golay filters are often used to clean up
signals, remove noise, perform data averaging and discover meaningful patterns.
The subsequent analysis that we will perform later during the feature extraction
which includes finding peaks, stationary periods and zero-crossings rate, may
be degraded by the presence of too much noise in the signal. Also, as we can
see in Fig. 3 it helps with removing what is called as the zero g bias level or
offset that causes non-zero readings even in cases with no acceleration (rest)
and in our case that is so high that it can even be measured as a peak. Our
approach was to apply a low-pass filter and try to increase signal-to-noise ratio
without distorting the signal and maintaining the patterns as much as possible
which are essential for us. For this reason, the Savitzky-Golay has the advantage
over moving-average because as we can see in Fig. 3, it keeps most of the signal
characteristics while reducing noise and offset.

Fig. 3. Separating gravity from accelerometer sensor using sensor fusion.

5 Feature Extraction

We need to transform the collected raw data into more informative and relevant
features. Given the significance of the problem, a large number of techniques
have been developed that can be used to generate a variety of features sets from
different domains for the task of TMD. The most representative domains are the
time domain, the statistical features domain and the frequency domain. From the
related works that we discussed, only [5] and [1] have used techniques to extract
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features from this three domains, and a vast majority of works have used only a
small subset of statistical features or frequency domain features. Furthermore,
in accordance with the approach of [1], we extract features on different levels
of granularity. We extracted three sets of features: the frame-based, peak-based
and segment-based features that differ on the length of the window, domains
and sensors used. There are two important parameters when designing a TMD
system that we need to consider: the window size and the sampling frequency,
as they both affect the computation and power consumption of the algorithm as
well as accuracy. The window size parameter refer to the windows that we use
to aggregate the raw sensor data during the feature extraction process; we use
different window sizes based on different levels of granularity with the intention
to capture various aspects of movement patterns which we will discuss in more
detail when we speak about the acceleration based features. Regarding the sec-
ond parameter of importance the sensor sampling frequency, investigations [14]
[17] outline that influences a trade-off between two essential objectives: increase
classification accuracy – increasing sampling frequency results in improved
classification accuracy; reduce power consumption – reducing the sampling
frequency helps to lower the energy overhead. [17] study asserts that performing
classification learning at the same sampling rate as the actual test sampling rate
has an only minimal effect on the classification accuracy. Hence, it is possible to
train an algorithm at the highest sampling frequency of smartphone sensor as
training phase is a one-time activity performed on the server side (offline learn-
ing) and then use a much lower sampling frequency in the actual TMD task to
reduce the energy overheads that come with high sampling frequency as shown
in Fig. 4. Furthermore, [17] report, as expected, that higher sampling frequency
usually results in better classification accuracy but that is not always the case as
it also depends on the features used, illustrated in Fig. 5 taken from [17] study.

Fig. 4. Power consumption vs sampling rate (from [15])
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Fig. 5. Sample rate effect on power consumption and classification accuracy

We performed a similar experiment with 1 Hz and 60 Hz sampling frequencies,
and we got very similar results for the classification accuracy, but our test was
not as extensive as the one of this study for obvious reasons as it was not the
intention of our work.

6 Classification Models

Our classification framework is a three-stage hierarchical structure proceeding
from a coarse-grained classification towards a fine-grained distinction of trans-
port modality similar to the one of [1]. It consists of three classifiers that infer
transport modality on different levels of granularity: at the root of hierarchy the
kinematic motion classifier which performs a coarse-grained detection between
walking and other modalities. When the kinematic classifier detects non-walking
activity, the process continues to the classifier on the next level – the station-
ary classifier which distincts between the stationary (pedestrian) and motorised
modality. When motorised activity is detected, we proceed to the motorised clas-
sifier responsible for fine-grained detection between (currently): bus, tram and
train modality. The types of classification algorithms used for the task of TMD
mostly depends on the system architecture: if the mobile device is only used as a
sensing device and the classification is performed on the server which we called
the server-based approach, then generative models are suitable because of better
classification accuracy that they may have. On the other hand, if the detection
is intended to run on mobile devices directly, generative models are less popu-
lar due to their computational costs and discriminative models are a better fit.
Our approach is smartphone-based prediction; so to determine the classifier that
most accurately predicts transport mode, we compared: (a) Adaptive Boosting,
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(b) Random Forests and (c) Support Vector Machines. We selected these classi-
fiers based on reports and their frequent use in existing literature [1–3,11].

6.1 Accelerometer Features

We extract a large set of accelerometer features on different levels of granularity
and domains, resulting in three sets of features: frame-based, peak-based and
segment-based features.

Frame-Based Features. We use this features to capture characteristics of
high frequency motion caused such as walking during pedestrian activity or
motion from vehicles engine and contact between its wheels and surface. From
each frame, we extract features of statistical domain (e.g., mean, variance, min,
max and kurtosis), time-domain features (e.g., integral, zero crossings, auto-
correlation and mean-crossing rate), and frequency-domain features (e.g., FFT
components, energy and entropy).

Peak-Based Features. Acceleration and breaking periods are key periods that
characterise the vehicle motion and peak-based features try to capture these
patterns to distinguish between different motorised transportation modalities.
For that reason we use these features only during the stationary and motorised
periods when the classifier which uses frame-based features has failed to detect
kinematic movement (pedestrian mode). To extract these features, we use a peak-
detection algorithm to find the peak areas that correspond to the acceleration
or breaking events. The algorithm that we have used is the smoothed robust
z-score algorithm2 which is a very robust algorithm based on the principle of
dispersion: if a new datapoint is a given x number of standard deviations away
from some moving mean (also called standard score or z-score), the algorithm
signals which means it identifies a peak area.

Segment-Based Features. These features characterize patterns of acceleration
and deceleration periods over an observed segment. We extract these features
for the stationary and motorised periods, when the kinematic classifier has failed
to recognize pedestrian activity. The features that we consider here are the fre-
quency and duration of stationary periods, the frequency of peak areas, and the
variance of peak-based features over the segment.

7 Evaluation and Results

In this section we evaluate performance of the classifiers. We present the mode
detection accuracy when we employ a filtering algorithm, compared to the detec-
tion accuracy on raw accelerometer data. We also discuss the effect of the window
size on the classification performance. Additionally, we use classification feature
selection to rank our initial set of features. Given this ranking, we then select
the highest rank features to build the final model. We analyse the performance

2 https://stackoverflow.com/a/22640362/930640.

https://stackoverflow.com/a/22640362/930640
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of the transport mode classifier using three quality metrics: accuracy, precision
and recall. To test the classifiers, we use the repeated stratified 10-fold cross-
validation which is quite frequently used in the literature. [16] concludes that in
contrast to the single cross-validation high variance of results, stratification is
generally a better scheme, both in terms of bias and variance, when compared
to regular cross-validation. Stratified K-Fold is a variation of KFold that returns
stratified folds. The folds are made by preserving the percentage of samples
for each class. Stratification seeks to ensure that each class is (approximately)
equally represented across each fold, which is important in our case because our
hierarchical classifiers which usually consist of one vs all others modes approach
which means that class imbalance is high. Both AdaBoost and RandomForests
classifier provide the Out-Of-Bag (OOB) error estimate which is almost identical
to that obtained by k-fold cross-validation. Usually, it gives a more pessimistic
estimation of error because it trains by a smaller number of samples compared to
10-fold cross-validation. Additionally, we use a separate unseen testing dataset
to further validate the obtained results and which is a good estimation about
how well the model will perform for new and unseen cases in the future.

The procedure we followed is:

1. Perform repeated stratified k-fold (RSKF) cross validation which gives us a
relatively good estimation error(the one we rely at the end)

2. Rebuild the model with the full dataset (the one that was split into folds in
the previous step)

3. Use a separate test set to try the final model obtaining a similar(almost surely
a higher) error than the one obtained by CV.

When it comes to model evaluation other works apply similar approaches for
model evaluation, for example [12] uses 5-fold simple CV and reports those val-
ues, but it confirms them in a controlled dataset. [2] uses a stratified version
of 10-fold cross-validation and validates the results on a separate 3.5 h smaller
dataset. However, we consider the approach of [1] as one of the best approaches
of how model evaluation should be performed. They use the data from 16 users
and perform leave-one-user-out cross-validation which has the following benefits:
it guarantees the independence of testing data from the training data which is
especially hard to ensure when working with time-series. They take advantage
of the independence between different participants data and this allows them
to break the strict temporal ordering, at least between individuals data. Unfor-
tunately, such a comprehensive dataset containing many participants currently
is not available to us, so we cannot apply this approach of population-informed
cross-validation. Table 1 shows the effect of window size in the classification per-
formance; the reason why we compare all classifiers with different window size
is that using only one window size we might ignore the fact that one algorithm
could perform really well with one window length and not that good with oth-
ers. It is clear that the performance of the classifiers increases with the increase
of window length for all the three classifiers, but we also notice an interesting
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pattern that after windows length of 15 s the performance of the classifiers sta-
bilizes such that the classifiers performance with window length of 15 and 20 s
is very similar (sometimes equal).

Table 1. The effect of window size in classifiers detection accuracy using Repeated
Stratified 10-fold CV

(%) Classifier 5 s 10 s 15 s 20 s

Kinematic AdaB 94.9 95.4 96.0 96.1

RF 97.9 98.8 99.3 99.6

LSVM 95.4 95.9 96.4 96.8

Stationary AdaB 82.9 86.6 89.2 91.2

RF 92.8 96.6 97.9 98.7

LSVM 77.0 78.4 81.1 84.2

Motorised AdaB 99.8 99.9 99.9 99.9

RF 94.6 98.3 98.6 98.6

LSVM 90.0 93.2 93.6 93.8

Table 2. The effect of window size on classifiers detection accuracy on the testing set

(%) Classifier 5 s 10 s 15 s 20 s

Kinematic AdaB 94.3 97.4 97.8 98.1

RF 96.2 96.6 97.9 98.5

LSVM 95.6 96.7 97.3 98.4

Stationary AdaB 80.6 78.8 81.3 80.1

RF 81.5 81.5 81.6 80.8

LSVM 81.8 81.8 82.0 82.1

Motorised AdaB 64.8 92.3 98.4 99.9

RF 83.7 86.9 90.4 95.4

LSVM 73.2 66.5 63.1 62.2

The results, presented on this table, indicate that for the kinematic and
stationary classifiers RandomForest classifier using 20 s windows achieve the best
results, whereas the motorised classifier achieves near perfect results (99.99%
detection accuracy) using AdaBoost at the same window length. Thus, our final
classification system, is made up of these two classifier algorithms combined
together.

As an external way to corroborate our classification model, we tested
the models using the testing dataset, which consists of transportation data
(accelerometer + location data) collected in one day. These data are indepen-
dent of those used to build our model; they are collected in different itinerary
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and different period of time (approx. 3 months after the collection of the train-
ing dataset). The results presented in Table 2 confirm the results of the Table 1
with the only exception being that in stationary classifier we have a drop in
the reported detection accuracy. We attribute it to a known human error made
during the labeling process; the user forgot to write down the time when he got
on the bus after previously was in the stationary mode. Because the dataset
contains small amounts of each modality, approximately 20 min of each travel
mode, the contribution of that error is noticed much more. However, for the
other two classifiers: kinematic and motorised classifier, we observe the reported
effect of window size in the performance of the classifiers and we also reconfirm
the very good performance of our models, near perfect accuracy for the case of
motorised transport mode detection 99.9% accuracy.

For hyperparameters optimization, in our case the maximum tree depth D
and the number of estimators(trees) N, we use traditional techniques like grid
search using CV for AdaBoost or using OOB error rate for the random forests.
We select a suitable values, which balance between the classifier accuracy and
classifier complexity. In order to retain classifier simplicity, we opted for the
minimal values, after which further increasing the value resulted only in marginal
gain in accuracy.

(a) Kinematic classifier (b) Stationary classifier (c) Motorised classifier

Fig. 6. Final models: the selected features and their relative importance

Using sqrt (square root of the number of features) as the maximum number
of features was the best performer. Whereas, regarding the number of estima-
tors(trees), N = 150 is optimal and further increasing the number of estimators
results only in marginal gain in accuracy. So, we decided to use RFs with 150
and 75 trees for the kinematic and stationary classifier, respectively. Whereas
for the motorised classifier with AdaBoost, we found that the parameter that is
crucial is the tree depth and regarding the number of trees any classifier with
more than 75 trees achieves good results. Both the Random Forest and AdaBoost
provide us with a ‘tool’ that makes very easy to measure the relative importance
of each features. In Figs. 6(a), (b), (c) we have presented features with the high-
est importance for each classifier; in the final classifiers we do not need to use
the complete set of features that we extracted but only a subset of features can
achieve a very similar performance.
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7.1 Effect of Filtering Raw Accelerometer Data on Classification
Accuracy

The problem with smoothing is that it is often less beneficial than we might
think that is why we decided to test how it affects the algorithm accuracy
in our classifiers. The results presented in Table 3 indicate that filtering raw
accelerometer values helps with overfitting and is especially noticeable in the
case of testing on the new unseen dataset with a lot of variability from the train-
ing dataset. Whereas the detection performance reported in Repeated Stratified
10-Fold CV and testing set is almost identical with the exception that filtering
helps RandomForest to achieve a better performance in the motorised classifier.
So, regarding the filtering of the raw sensor values we find it necessary and ben-
eficial, but further improvements are possible using different filtering techniques
or parameters.

Table 3. Detection accuracy comparison for the unseen dataset with/without filtering

Classifier With filtering Without filtering

Kinematic 98.3 98.3

Stationary 84.5 74.3

Motorised 70.0 52.2

7.2 Effect of Location Data on Classification Accuracy

Fig. 7. The effect on F1-score from
using location data for motorised trans-
port mode detection.

Figure 6(c), illustrates the relative impor-
tance of features included in the final
motorised classifier. We observe that three
of five most important features are loca-
tion based features including the average
accuracy, 95th percentile of speed and the
average speed ; giving a strong indication
about the predictive power of location
based features. Furthermore, the results
shown in Fig. 7 quantify the potential that
coarse-grained location data have in the
aspect of TMD. We observe in Fig. 7 how
the inclusion of location data significantly
improves F1 score of our approach for all
of the motorised transportation modalities. Our tests show 10% increase in over-
all detection accuracy when using accelerometer data combined with location
data compared to using only accelerometer data.
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8 Conclusion

In this paper, we detailed the design, implementation, and evaluation of the
transport mode detection system that runs and uses smart-phone sensors:
accelerometer and location data. We compared different design choices that need
to be made when building such a system: the choice of sensing unit, the sensors
selection, the sensor sampling frequency, etc. We gave details about the advan-
tages/disadvantages of different approaches encountered in the related work
regarding the system architecture, the achieved accuracy and power consumption
ratio, quality of testing, generalization capabilities to different environments and
the need for external information, and we motivated our choices. We considered
different aspects in our evaluation: the accuracy of transport mode detection,
generalization performance, and the robustness of the classifiers. In this study,
we employed the proposed solution in [1] as a base classifier and we built on
it by addressing its weaknesses and using new approaches on different parts of
the system. We extracted a large set of accelerometer features on different levels
of granularity and from different domains, that capture different characteristics
of user motion, and we also extracted a comprehensive set of location features
and we analyzed their discrimination capability. Using a three-stage hierarchical
classification system we inferred transport modality on different levels of granu-
larity going from coarse-grained classification towards a fine-grained distinction
of transport modality between different motorized transportation modes. The
choice of classification algorithms is constrained by the system architecture: for
the online mobile-based approaches like ours, the computational cost is impor-
tant. In order to determine the classifier that most accurately predicts transport
mode, a comparison was made between (a) Adaptive Boosting (AdaBoost); (b)
Random Forests (RF); (c) Support Vector Machines (SVM). Apart from a good
classification algorithm, the sliding window size and appropriate preprocessing
are also vital for achieving better results. We compared in detail the importance
of smoothing the raw accelerometer values and we also analyzed the importance
of the sliding window size in the performance of all three classifiers using windows
of different sizes. Using the user location data, we showed that it is possible to
address the weakness of previously proposed solution in [1]; that is, to distinguish
between motorized modes such as trains, buses, and cars with high accuracy. The
results showed that employing location data in the motorized classifier improves
the general classification accuracy by 10%, achieving an overall accuracy of over
95%. Future works might comprise energy efficiency strategies that switch off
the classification system during extended periods of stationary(indicating that
the user is indoors) until notable kinematic movement (e.g. walking for a rela-
tively long period of time) when the user is outside using changes in GSM cell
towers to determine the start of outdoor trips, presented in [2] which could pro-
vide significant reductions in power consumption. Furthermore, infusing a sensor
with low-energy footprint capable of stationary detection (i.e. GSM or WiFi),
would also help us in detection between pedestrian and vehicle movement and
clear up any ambiguity that often happens between these two modes (caused by
overlapping). In any case, the use of changes in GSM/WiFi cell towers has to be
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exploited in order to determine what is the impact in the classifier performance
compared to using the location data and if we could use them instead as they
(alone) have a lower power consumption. We also believe that collecting addi-
tional data and analyzing features, especially from the spectral domain (higher
FFT components can be used to potentially capture some periodical motions
that characterize motorized transport), more closely could help further improve
the accuracy of our model.
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Abstract. Traditionally, elections polls have been widely used to anal-
yse trend and to predict likely election results. However, these methods
are very expensive and labour intensive. With the widespread develop-
ment of several social media platforms, a large amount of unstructured
data become easily available, which in turn could be processed and anal-
ysed to extract meaningful information about several topics and events
such as election, sports, natural hazards etc. Hence, in this study, we
utilise twitter data to analyse the 2019 Indian general election and to
predict possible outcomes. We have collected 41 million election related
tweets during the months of April and May 2019. The proposed app-
roach works by initially performing hashtags based tweets segregation to
generate data for training the classification model. Subsequently, we aug-
ment different word embeddings with deep learning classification model
to support improved classification accuracy. The model achieves 87.30%
classification accuracy in amalgamation with fasttext word embedding.
Finally, the opinion analysis is performed on the classified tweets to deter-
mine possible election outcomes. To evaluate our proposed model, the
output results are validated with the available ground truth and have
shown a close correlation to the actual results. Furthermore, we have also
performed an in-depth analysis of the selected political parties tweets,
to provide an insight into top trending hashtags and mentions used by
people during election campaigns.

Keywords: Sentiment analysis · Deep learning · LSTM · Indian
general election 2019 · Lok Sabha election · Bhartiya Janta Party
(BJP) · Indian National Congress (INC)

1 Introduction

In the year 2019, the tenure of the 16th Lok Sabha got completed and India, the
world’s largest democracy witnessed 17th Lok Sabha election in the year 2019.
These elections were held in the seven phases for the 546 parliament constituen-
cies during the month of April and May; the first one held on April 19, 2019 and
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the last phase held on May 19, 2019. For any party, these general elections are
the biggest exercise to form government at the center (by winning 272 seats or
by proving majority with the help of alliances) and thus elect the Prime Minister
of India. The main responsibility for conducting elections in a fair manner lies in
the hands of the Election Commission of India (ECI). Even though the number
of parties registered for the general elections with the ECI has increased to 2354
as compared to 1616 in the year 2014, the main battle is between some major
parties namely Bhartiya Janta Party (BJP), Indian National Congress (INC)
and some other national parties Aam Aadmi Party, Mahagathbandhan (alliance
of several parties like Samajwadi party, Bahujan Samaj party and many more).

In the year 2019, the general elections were different from the previous elec-
tions in various ways. Firstly, the people of India were highly inclined towards the
positive governance of the current PM Narendra Modi (BJP). Secondly, the vari-
ous alliances were formed to oppose the current governing party BJP. Thirdly, in
the last few years, it has been seen that political parties are increasingly engag-
ing in dialogues with people over social media platforms (specifically Twitter)
and people are also increasingly using social platforms to express their views
on different political topics. Majority of the political parties leaders/candidates
have verified accounts and pages on Twitter, which they are using for their party
campaigns.

With the increasing popularity of social media platforms for expressing views
or opinions, information dissemination and social interactions, a large amount
of real-time data becomes easily available. Over the election duration, this real-
time data can be analysed to determine people semantics or opinions on the
different political parties or political orientations of the people, which in turn
could provide beneficial information on the election results. Hence, there is a
need for an automated system that could efficiently utilise such real-time tweet
data to predict election results. In the current work, we propose a system to
serve the desired purpose. The main research contribution of this work can be
summarised as follows:
– Over the decades, standard methods such as polls, surveys have been widely

used for predicting election results. Despite being accurate and reliable, these
methods require more efforts, costly and are time consuming. Hence, in cur-
rent work, we propose Twitter as a reliable platform to predict election results
from people tweets sentiments/opinions.

– In the current work, we proposed a semi-automated hashtag based approach
to initially segregate tweets for building sentiment classification model (to
support supervised learning).

– The current work combines deep learning based classification model (Long
Short Term Memory Network) with different word embeddings to provide
support for improved prediction accuracy.

– In the current work, we perform the State-wise analysis of people opinions on
two main national parties of India (BJP and Congress).

– To evaluate the reliability and accuracy of the proposed work, a compara-
tive analysis has been performed between the prediction results and available
ground truth.
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2 Literature Review

Election results prediction has emerged as a significant area of research in the
last few years. Traditional studies in the field have implemented econometric
methods to predict election results through demographic information. However,
with the emergence of social media platform, real-time people opinions data
has become the enrich source of information [9]. This real-time information can
be efficiently analysed for the task of decision making and results prediction
[1,3,13,20]. In literature, a number of research studies have been implemented
on the election related twitter data and some of them are as follows:

Srivastva et al. [20] analysed social network content for analyzing Delhi
assembly elections 2015 and trained classification model on the manually anno-
tated dataset for predicting election outcomes. The prediction results are evalu-
ated on the basis of the root-mean squared performance measure. Jose et al. [13]
proposed a lexicon analysis or word sense disambiguation based approach for
election results prediction. Amit et al. [4] they have performed geo-spatial senti-
ment analysis for UK-EU referendum by utilizing the Twitter data. Mehndiratta
et al. [16] performed twitter based sentiment analysis over 0.25 million public
tweets in reference to different politicians or political parties for the 2014 general
elections. Ahmed et al. [6] investigate the use of Twitter as a tool for campaigns
during the 2014 elections. The study aims to find answers to several research
queries including: identifying the party that most frequently uses twitter for
campaigns, to identify the dominant issues or topics and many other related
queries. Khatua et al. [15] performed sentiment analysis on the 2014 election
related data. The author investigated whether Twitter data predict the outcomes
of the elections. From the research results of this paper following inferences were
drawn: (a) Twitter can serve as an efficient tool for predicting election results
(b) Out of the tweet volume and sentiment score, sentiment score can be used
as an effective predictor of vote swing.

Ibrahim et al. [12] integrated buzzer (bot) detection tool with twitter analysis
to predict results for Indonesia Presidential elections. On the basis of experimen-
tal results, the authors have stated that Twitter can serve as an important tool
for any political activities. Tsakalidis et al. [22] proposed a novel approach that
combined twitter data with opinion polls for Germany, Netherlands and Greece
2014 election results prediction. The model treated twitter based features as time
series and implemented three different forecasting models to predict the target
results. The output results have proven the effectiveness of combining twitter
based features with polls by generating minimum prediction error. Burnap et al.
[8] combined prior party support data with current twitter results to predict
UK 2015 election results. The approach work by initially calculating tweets and
Leader based sentiment score, which in turn are combined to generate party
overall positive sentiment score. Subsequently, the integration of the UK 2010
election results with current sentiment scores is utilised to make constituency
based election results prediction.

Ebrahimi et al. [10] listed several challenges that occurs while perform-
ing sentiment analysis on dynamic events such as elections such as candidate
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Fig. 1. Methodology of the proposed approach for election results prediction.

dependency (name of both candidates in the same tweet), identifying users’
political preferences, availability of limited training dataset and interpretation
related challenges. Paul et al. [18] performed spatio-temporal analysis of US
elections. The approach combined machine learning models with twitter senti-
ment analysis for results prediction. The approach works by initially segregating
tweets on the basis of their relevance to the target event. Subsequently, senti-
ment analysis is applied to calculate sentiment polarity related to each tweet.
Finally, after being processed by burst event and spatio-temporal analytic mod-
ules, machine learning models are trained to the learn abstract representation of
the data, which in turn were used for results prediction. The approach provided
a prediction accuracy of 84.4%.

As listed above, a number of research studies have been performed on election
results prediction and sentiment analysis. However, the majority of these research
studies have targeted at United States (US) elections and very limited research
work has been carried out on India’s general election. Furthermore, to the best of
our knowledge, no previous studies have augmented deep learning models with
twitter data for election results prediction or target labeled data generation on
India’s election. Hence, in the current work, we proposed a twitter data based
hybrid approach for election results prediction while resolving all major issues
associated with analysis on dynamic events (as mentioned in). In addition to
this, the current approach combines deep learning model with different word
embeddings to achieve 87.30% classification accuracy.

3 Methodology

In this section, we explicate the methodology of the proposed election results
prediction approach. Figure 1 shows the broad level diagram of the methodology.
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3.1 Dataset Collection

We have collected data by using the Twitter streaming API. Data crawling can
be done in two ways, i.e. by using hashtags and the other one by using bound-
ing box. In this study, we collected dataset of 17th Lok Sabha election which
held in seven phases for 546 parliament constituencies. We have crawled the
dataset by using the hashtags corresponding to BJP and INC. Hashtags used
for BJP are (‘narendramodi’, ‘narendramodi in’, ‘BJP4India’, ‘modi’, ‘NDA’,
‘BJP’) whereas hashtags used for INC are (‘RahulGandhi’, ‘Congress’, ‘INCIn-
dia’, ‘INC’ ) and collected around 41 million tweets during April 5-2019 to May-
20-2019. Since, collected tweets contains a lot of meta information itself which
is off no use. So while downloading the tweets we store only useful information
such as userid, tweetid, tweet, location, date and time, RT count, Fav count,
hashtags, mentions. After that, we have performed data pre-possessing over the
collected tweets.

Data Preprocessing: Twitter post are generally informal, brief, unstructured
and often contain grammatical mistakes, misspelling and a lot of noise. It might
be due to the 140 character limit imposed on tweets previously, but on Novem-
ber 7, 2017, the restriction is doubled for most of the languages except Chinese,
Japanese, and Korean. Authors from the previous studies claim that users know-
ingly use the abbreviation, shortened, slang words and also uses an amalgamation
of prefix and suffix of the word. So it becomes very cumbersome to understand
some of the tweets like “Hvy trafic at strt of andheri brdge going 2wrds aiprt &
further”. Previously Agarwal et al. [2,5] and Subramainum et al. [21] uses dif-
ferent text mining techniques like edit Distance, Longest Common Subsequence
and Prefix Suffix match to handle noisy text in SMS. We have used the same
approach so that it could be converted to a readable form like “Heavy traffic
at start of andheri bridge going towards airport & further”. The various steps
involved in data pre-processing are as follows:

– “@” is used in Tweet by user to tag or refer other twitter users so that they
may follow on the tweet. So we remove “@” from the tweets.

– #hashtags were used by users before any relevant keyword or phrase to cat-
egorize their tweets and show their tweets more easily in twitter search. So
hashtags symbol # were removed as they carry no relevance.

– “URL” it is used to shared other web resource. But they carry no relevance
information. So we remove it.

– Remove all non-alphabetic terms and stop words (except only Userid,
Tweetid, date and time).

– Remove all the repeated characters like (“Trafficcccc” for “traf- fic”), (“stuck-
kkk” for “stuck”).

– Replacement of Abbreviation and Slang words
– Convert all the characters in to lower case.
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3.2 Hashtags Based Tweets Segregation

Hashtags play a predominant role in the identification and characterisation of
the tweets. They are basically synonyms that are used to represent the ongo-
ing twitter trends at any particular point of time. In the recent past, various
knowledge based or polarity lexicon based research techniques have been pro-
posed to generate sentiments polarity from the tweet hashtags i.e. to distinguish
tweets into different target sentiment classes [23]. With the emergence of a topic,
new hashtags go on quickly adding to the follow-up tweets of the same topic.
So, the process of defining sentiment polarity on the basis of tweets hashtags
become very cumbersome. In this context, we proposed a hybrid classification
framework to semi-automatically identify and categorize tweets on the basis of
initially available trending hashtags. The step by step working of this framework
is as follows:

1. Extract trending hashtags in relation to our current topic of interest.
2. Manually analyse and classify hashtags to target sentiment analysis.
3. Build initial tagged tweets dataset on the basis of resultant hashtags to train

classification model.
4. Train and Build sentiment polarity classification model.
5. utilise trained model to classify follow up/real-time tweets of a topic.

The set of initially extracted top 20 hashtags along with their target classes
are shown in Table 1. Furthermore, the statistics regarding the number of tweets
extracted (in relation to each target class) on the basis of initially available
hashtags are listed in Table 2.

3.3 Twitter Sentiment Classification

In the proposed work, initially, hashtags-based segmentation (as described in
Sect. 3.2) is applied to segment crawled dataset into two different target datasets
(BJP, Congress). Each of these data-sets are then individually used to train
independent classification models. In the present work, we have implemented
the Long-short term memory network (LSTM) [11] model for the classification
purpose. LSTM network models [11] have achieved state of the art performance
in several computer vision and text mining tasks [12]. These neural networks
have the capability of persisting the information or context present in the text.
Furthermore, in the present work, these classification models are augmented with
different vector representations i.e. word embeddings such as Word2Vec, Glove
and fasttext of the tweets to achieve better classification accuracy. The brief
introduction to these embeddings are given as follows:

– Word2Vec [17]: are basically two layer neural network models used to generate
vector representations for the input text corpus. The vector representations
are generated from a skip-gram model. The task of the model is to learn
the weights for the 300 (embedding dim) neurons in the hidden layer. These
weights themselves represent the distributed representation for a particular
word. The output of the output layer represents the probability distribution
for the remaining words.
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Table 1. Sentiment-wise top 20 trending hashtags corresponding to INC and BJP

INC +ve INC −ve BJP +ve BJP −ve

VoteForChange CongressTerror PhirEkBaarModiSarkar AbHogaNyay

AmethiKeDilMeinRahul CongressMuktBharat ModiHaiToVikasHai NyayForEmpowerment

JanSankalpRally CongressGundiHai AayegaToModiHi BJPJumlaManifesto

VaravayiRahulGandhi CongAdmitsJhoot DeshKiPasandModi AbHogaNYAY

VoteNyayVoteCongress RajivGandhiChorHai IndiaBoleNaMoPhirSe NyayYatra

MyVoteForCongress corruptcongress NamoAgain NyayforRajasthan

HogiCongressKiJeet IndiaRejectsCongress ModiOnceMore NYAYforKarnataka

SoniaGandhiRaeBareli CongressMuktBharat ModiAgain ShamelessChowkidars

PriyankaGandhiInAssam CongAdmitsJhoot HarVoteModiKo BJPGameOfThieves

CongressHaiNa RahulApologizes BharatKaGarvModi NYAYforIndia

VoteForCongress JumlaReturns IndiaVotesForNaMo IndiaMaangeNyay

JanaNayakanRaGa DynastMuktBharat NaMoForNewIndia FekuModi

MeraVoteCongressKo CongressChorHai IndiaBoleModiDobara ChowkidarChorHai

CongressForDelhi RahulControversy DeshModiKeSaath AbHogyaNyay

BengalWithRahulGandhi RahulGandhiChorHai EveryVoteForModi JaayegaTohModiHi

SilcharWithCongress Pappu IsBaarNaMoPhirSe ShameOnChowkidars

AmethiKaRahulGandhi NeechPoliticsOnPM ModiAaneWalaHai ModiKaFakeGDP

RahulForBehtarBharat DynastyMuktBharat MainBhiChowkidar ShameOnPMModi

BengalWithCongress CongInsultsPoor IndiaWantsModiAgain RafaleChorChowkidar

MeriAwazMeriCongress PappuDiwas ApnaModiAayega BJPInsultsMartyr

Table 2. Dataset statistic

Political party INC BJP

Sentiment class +ve −ve +ve −ve

Number of tweets Total 229645 292650 1271658 504976

Unique 8377 55888 79658 24068

– Glove [19]: The model combines the count based word embedding generation
model with the skip-gram model for word generation to improve the training
speed. This involves the generation of a co-occurrence matrix(X) for each pair
of words.

– Fasttext [14]: Fasttext interprets a single word as a collection of n-gram char-
acters obtained from the individual word. Thus, a word like ‘trendy ’ is rep-
resented by the collection of chunks of the original word, that is, the chunks
[‘trendy ’, ‘trend ’, ‘tren’, ‘tre’, ‘tr ’, ‘t ’ ] represent the original word. This is
useful for generating embedding for rare words and the words appearing from
out of the vocabulary of the training dataset.

The working of classification model in conjunction with different word embed-
dings is summarized in Algorithm 1 where G,W and F represents glove, word2vec
and fasttext embeddings respectively. Furthermore, the corresponding sentiment
class prediction results in terms of average prediction accuracy are listed in



Can Twitter Help to Predict Outcome of 2019 Indian General Election 45

Table 3. The term average prediction accuracy denotes the average of the classi-
fication model prediction performance on two initially segregated data-sets i.e.
Congress and BJP datasets.

3.4 Opinion Analysis Corresponding to Different States

In this section, we make use of the above classification results to perform the BJP
(Bharatiya Janata Party) and INC (Indian National Congress) related tweets
based opinion analysis. Previous studies [15,16,22] in the field have performed
the sentiment analysis (SA) with respect to different political parties as well as
some of the work also performed SA over the top leaders of different parties.
However, to the best of our knowledge, no previous studies have performed
opinion analysis with respect to different political parties at state-level. This
type of analysis could provide more insight about the users’ views corresponding
to different political parties at state-level as well as it can play a pivot role in
predicting the Exit polls results by analyzing the real-time state-wise segregated
tweets. So, in the preceding section, we find out users opinion w.r.t different
parties and try to find the correlation between the actual election results and
our findings [7].

Algorithm 1. Tweets Sentiments Classification
Input: Tweets, Glove: G, W2V : W, Fasttext : F
Output: Classified Tweets, Accuracy
1: Divide Input dataset into X train, X test, Y train, Y test
2: for each tweet in X train do
3: fit tokenizer on text : tokenizer.fit on texts(X train)
4: generate d-dimensional encoded representation
5: Use different word embeddings to generate embedding matrix for weight inputs

to classification model
6: end for
7: Train and build Stacked LSTM model.
8: for each tweet in X test do
9: fit tokenizer on text : tokenizer.fit on texts(X test)

10: generate d-dimensional encoded representation
11: end for
12: Evaluate model performance on test dataset.

Opinion Analysis Corresponding to BJP (Bharatiya Janata Party).
While performing the Opinion analysis, we first segregate the tweets with respect
to location information. The location information can be extracted into three
ways i.e. Profile Location, GPS enabled tweets (Lat and Log), and Content based
location information. In the current study, we segregate the tweets on the basis of
location information given in the users’ profile and also from GPS enabled tweets
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Table 3. Average accuracy prediction by using different word embedding representa-
tion method.

Model name Embedding size Average prediction accuracy

Without stop
words

Without stop words
& with Stemming

LSTM 300 80.50 81.65

Bi-LSTM 300 80.02 80.75

LSTM + word2vec
embedding

300 81.03 82.05

LSTM + Glove
embedding

300 83.60 85.50

LSTM + fasttext
embedding

300 85.78 87.30

(latitude and Longitude basis). Content based location information is not useful
in these type of studies because tweets only contain users views corresponding to
different political parties as well as their leaders, however it can play a vital role
during some emergency situation, crises etc. that contains location information
in the tweets itself.

By using profile location information, we are able to collect 12,71,658 positive
tweets and 5,04,976 negative tweets with respect to BJP (Bhartiya Janta Party)
as well as 2,29,645 positive tweets and 2,92,650 negative tweets corresponding
to INC (Indian National Congress) and the corresponding whole statistics are
listed in Table 2. While on the basis of latitude and longitude information, we
extracted only 657 tweets and 438 tweets, which constitute only 0.036% of total
BJP tweets and 0.083% of total INC tweets. After performing state-wise (location
based) tweets segregation, we calculated the ratio of positive and negative tweets
corresponding to each political party (BJP and INC) as per given Eqs. 1 and 2.

pos twt =
no. of positive tweets corresponding to each party

number of total tweets
(1)

neg twt =
no. of negative tweets corresponding to each party

number of total tweets
(2)

Figure 2(a) shows the state wise individual views in the form of positive and
negative with respect to BJP. It clearly shows that in 26 states BJP headed
with the higher positive response from total 29 states and 7 Union Territories.
A similar state-wise analysis is performed on tweets related to the INC and the
corresponding results are demonstrated in Fig. 2(b). From Fig. 2(b), it can be
seen that INC received a positive response from 21 states and Union Territories.
As the objective of our current research work is to provide an overall estimate
of people opinions on the two political parties (BJP and Congress), we further
performed a comparative analysis of people opinions on the tweets related to two
political parties and the corresponding results are demonstrated in Fig. 3. From
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(a) Positive/Negative BJP

(b) Positive/Negative INC

Fig. 2. State-wise opinion analysis with respect to Bharatiya Janata Party (BJP) and
Indian National Congress (INC)

the comparative experimental analysis, we came to the conclusion that 28 states
and Union territory are in favour of BJP out of 29 states and 7 union territories,
whereas 7 states are in favour of INC. In order to validate our research outcomes
or election predictions, we have compared our results with the actual Lok Sabha
election results1. From the comparative analysis, we have found that our results
align with the actual outcomes with an absolute error of 0.12%.

For an instance our prediction results shows high positive opinions rate of
BJP at several states and the corresponding actual outcomes are (Uttar Pradesh
in which BJP won 62 seats out of 80 (62/80), Haryana (10/10), Himachal
Pradesh (4/4), Arunachal Pradesh (2/2), Rajasthan (24/25), Chandigarh (1/1),
Bihar (33/40), Delhi (7/7), Manipur (1/2), Gujarat (26/26), Madhya Pradesh
(28/29), Maharastra (41/48), and Daman & Diu (1/1)) also evident/validates
of our findings.

1 http://www.elections.in/results/.

http://www.elections.in/results/
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(a) Positive BJP/INC

(b) Negative BJP/INC

Fig. 3. State-wise comparative analysis of opinions for Bharatiya Janata Party (BJP)
and Indian National Congress (INC)

Whereas in case of INC also our results align with the final results by exhibit-
ing positive response to INC for those states where INC acquire highest seat as
compared to BJP i.e Andaman & Nicobar Islands (1/1), Kerala (15/20), Lak-
shadweep (1/1), Puducherry (1/1), Punjab (8/13), Tamilnadu (8/38). Further-
more, Mizoram and Sikkim are the two states in which INC received highest
positive response as compared to the BJP but the seats are won by regional
parties. The state-wise comparative analysis of negative response for both the
political parties are demonstrated in Fig. 3.

Trending Hashtags w.r.t BJP and INC. People use different hashtags to rep-
resent ongoing trends at any particular point of time. So it can play a vital role over
the different micro-blogs such as Twitter, Facebook, and Instagram etc. for iden-
tification and characterisation of the tweets. In the present work, we have identi-



Can Twitter Help to Predict Outcome of 2019 Indian General Election 49

fied the top trending hashtags corresponding to BJP (Bhartiya Janta Party) and
INC (Indian National Congress) as it can play a significant role during informa-
tion diffusion. In our collected dataset, there were around 5532 different hashtags
used by BJP and INC Supporters out of which we selected only those hashtags
that were used by at least 10 (T = 10) different peoples. There are 1561 hash-
tags which satisfied this threshold condition. After that, we have manually iden-
tified the top 20 positive and negative hashtags corresponding to two parties as
shown in Table 1. For example, the positive hashtags used for BJP are (‘PhirEk-
BaarModiSarkar’, ‘ModiHaiToVikasHai’, ‘AayegaToModiHi’, ‘DeshKiPasand-
Modi’, ‘NamoAgain’) and negative are (‘AbHogaNyay’, ‘NyayForEmpowerment’,
‘BJPJumlaManifesto’, ‘NyayYatra’, ‘ShamelessChowkidars’) whereas the pos-
itive hashtags used for INC are (‘VoteForChang’, ‘AmethiKeDilMeinRahul’,

(a) BJP

(b) INC

Fig. 4. Top trending hashtags
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‘JanSankalpRally’, ‘VoteNyayVoteCongress’, ‘MyVoteForCongress’) and nega-
tive are (‘CongressTerror’, ‘CongressMuktBharat’, ‘CongressGundiHai’, ‘Con-
gressGundiHai’, ‘corruptcongress’).

Above hashtags were some examples of the positive and negative trend-
ing hashtags that were used during the election period. Furthermore, we have
analysed a broad picture of both the parties separately by identifying the
top 20 hashtags used by the individuals. To extract the top hashtags, we set
a threshold value (T = 500) over the extracted 1561 selected hashtags and
we left with 281 trending hashtags that have frequency more than 500. For
the visualization purpose, we have selected 20 hashtags out of these extracted
281 hashtags and the selected 20 hashtags along with their frequency count
value are depicted in Fig. 4(a). From the Fig. 4(a), it can be clearly seen that
14 out of the 20 BJP trending hashtags are related to Prime Minister of
India i.e (‘DeshKiPasandModi ’, ‘NamoAgain’, ‘PhirEkBaarModiSarkar ’, ‘Modi-
ONceMOre’, ‘BharatKaGarvModi ’, ‘AayegaToModiHi ’, ‘ModiAgainsaysIndia’,
‘BharatBoleNaMoNaMo’, ‘ModiHiAayega’, ‘NaMoForNewIndia’, ‘IndiaBoleMo-
diDobara’, ‘DeshModiKSaath’, ‘EveryVoteForModi ’, ‘IndiaBoleNamoPhirSe’)
and rest are related to Lok Sabha Election 2019. This clearly shows the influence
of PMO Narendra Modi in all states.

The similar kind of analysis has been performed on the hashtags related to
the INC and the corresponding top trending 20 hashtags are shown in Fig. 4(b).
From the analysis of INC top trending hashtags, it has been found that most
of the trending hashtags are related to other parties such as ‘AbHogaNyay’,
‘NYAY ’, ‘NyayForEmpowement ’, ‘BJPJumlaManifesto’, ‘NYAYforKarnataka’,
‘VoteNyayVoteCongress’ and there were no trending hashtags (in top 10) related
to any leader like Rahul Gandhi. So it may be one of the reasons to loose in Lok
Sabha election as they didn’t promote any leaders as other parties like BJP had
done. Furthermore, it has also been found that there were no negative hashtags
related to INC in BJP trending hashtags.

Top Trending @Mentions w.r.t BJP and INC. In this section, we
have find out the top mentions which were tagged by BJP and INC sup-
porters. Figure 5 (a) shows the trending mention related to BJP such as
‘@BJP4India’, ‘@narendramodi ’, ‘@AmitShah’, ‘@INCIndia’, ‘@RahulGandhi ’,
‘@PMOIndia’, ‘@rsprasad ’, ‘@ECISVEEP ’, ‘@nsitharaman’, ‘@AamAadmi-
Party ’ whereas in Fig. 5 (b) shows the trending mention related to INC such
as ‘@INCIndia’, ‘@RahulGandhi ’, ‘@BJP4India’, ‘@narendramodi ’, ‘@priyank-
agandhi ’, ‘@AamAadmiParty ’, ‘@ECISVEEP ’, ‘@priyankac19 ’, ‘@PMOIndia’,
‘@AmitShah’. We have also segregated the trending leaders in both of the parties
such as @narendramodi, @AmitShah, @rsprasad, @nsitharaman, @arunjaitley,
@PiyushGoyal, @nitin gadkari, @smritiirani were from BJP. whereas from INC
@RahulGandhi, @priyankagandhi, @JhaSanjay, @capt amarinder, @divyaspan-
dana, @digvijaya 28, @rssurjewala, @ShashiTharoor.
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(a) BJP

(b) INC

Fig. 5. Top trending @Mentions

4 Conclusion

Twitter has emerged as a successful platform for users’ to share their opinions
and views on various topics and events, information diffusion, and political activ-
ities, thus becoming a rich source of information. So, in the current study, we
utilise this abundant source of information to predict the 2019 Indian Lok Sabha
election results. The study initially performed hashtag based tweet segregation
to generate training data for deep learning model. Subsequently, the trained
model is then utilised to categorize tweets into their target political parties sen-
timent classes. The proposed model succeeds in achieving 87.30% classification
accuracy. Finally, we have performed the spatial analysis of classified tweets
to predict the state-wise election outcome. From the prediction results of the
proposed approach, the following inferences are drawn:
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– Twitter can be utilised as a reliable media for election results prediction in
the Indian context.

– The amalgamation of deep learning model with fasttext word-embedding pro-
vides support for improved classification accuracy.

– The outcome of the comparative analysis of prediction results with actual
results has shown that the proposed approach does accurate results prediction
and has lower (0.12) absolute error.

– Lastly, from the analysis of top trending hashtags and mentions w.r.t each
party, we found some interesting patterns which might be the conclusive fac-
tors to the 2019 Lok Sabha election outcomes. For example, most of the
trending hashtags used by INC supporters correspond to the other parties,
whereas BJP supporters have used hashtags corresponding to their party only.
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Abstract. Data-driven information services using wearable devices have
attracted attention in the areas of healthcare, medical care, and educa-
tional services. In the services, the users’ daily behaviors are modeled
with the sensing data of the physical statuses of individual users, e.g.,
body movements, heart rates, etc. However, to understand human behav-
iors more deeply, it is also important to know the context information of
the users, such as the surrounding environment and participating activ-
ities. In this paper, we describe extracting auditory context information
from ambient sound data sensed by smart watches. First, we describe a
prototype of our wearable ambient sound sensing system by using smart
watches. Then, we describe an analysis of the sound data sensed by the
system. We formalize the context extraction process as unsupervised seg-
mentation of multi-dimensional time-series data and apply non-negative
matrix factorization (NMF) and k-means clustering to the segmentation
at the first step of the study. We confirm that the periods segmented by
the analysis roughly correspond to actual contexts.

Keywords: Smart watch · Auditory context · Non negative matrix
factorization

1 Introduction

Recently, wearable devices are important tools for recent data-driven information
services: healthcare, medical care, and educational services. For example, smart
watches (e.g., Fitbit [1], Apple Watch [2], etc.) can continuously sense users’ activi-
ties,model the users’ daily behaviors based on the sensing data to provide personal-
ized information services. Currently, most of wearable devices are used for sensing
physical statuses of users, e.g., body movements, heart rates, etc. and have often
ignored to know background information of the behaviors, namely context infor-
mation. However, to understand human behaviors more deeply, it is important to
know context information, such as the surrounding environment and participat-
ing activities. If context information is available by using wearable devices, it is
possible to create a new service based on deep understanding of the behaviors.
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For example, we have developed a wearable telecare system by using smart
watches and wireless biosensors [3]. The service enables family members to share
physiological information of cared persons in a peer-to-peer manner. If the family
members can get the context information of their cared persons, it can be useful
to understand the meaning of physiological data.

In this paper, we describe how to extract auditory context information from
ambient sound data sensed by smart watches. Although researches of mobile
audio sensing using smartphones have been proposed [4,5], researches using
wearable devices to extract context information are few. As researches using
wearable devices are still immature compared to smartphones, it is necessary to
investigate the potential use of wearable sensing.

This paper is organized as follows: first, we show the prototype of our wear-
able ambient sound sensing system by using smart watches. Then, we describe
an analysis of the sound data sensed by the system. As the first step of the study,
we have applied non-negative matrix factorization (NMF) [6] and k-means clus-
tering to unsupervised segmentation of time-series data. At last, based on the
implementation and analysis, we discuss issues and future works of sensing and
sharing context information by using wearable devices.

2 Wearable Ambient Sound Sensing System

We describe the prototype of our wearable ambient sound sensing system by
using smart watches.

2.1 Wearable Device

The wearable ambient sound sensing system uses a commercially available smart
watch: Polar M600 [7]. We have implemented the system as an application pro-
gram on the Wear OS by GoogleTMsmartwatch OS.

The system has sensing and analyzing functions to extract auditory features
from ambient sound data. A graphical user interface (GUI) to start/stop the
sensing process is also implemented. The GUI using MPAndroidChart [8] shows
the recording status of smart watch, such as an auditory feature vector. Cur-
rently, communication facilities to share the sensing data with other users are
not implemented.

2.2 Auditory Sensing Data

Analyzing processes of the prototype system consist of three processes: sensing
ambient sound, converting it to auditory feature vectors, and recording them.

In the sensing process, a microphone of the device senses ambient sound as
16kHz, 16bit, monaural audio format. Then in the converting process, the device
immediately converts the data to audio feature vectors, Mel-Frequency Cepstrum
Coefficients (MFCC), pitch (F0), and sound pressure (SPL). In the process, the
system uses fast Fourier transform (FFT) to obtain the power spectrum of the
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signal, and calculates F0 and SPL. Then, to derive MFCC, it executes some steps
transforming the spectrum so as to reflect human auditory characteristics (e.g.,
Mel-scale, vocal tract, etc.). We have implemented the sensing and converting
processes by using an open source software: TarsosDSP [9]. In the recording
process, it records the auditory data in its internal memory. We can retrieve the
auditory data through a USB connection.

3 Extracting Context Information

Using our prototype system, we experimentally obtained auditory data of a user
who come home from his office by bicycle. After obtaining the data, we have
analyzed the data to investigate the feasibility of extracting context information.
The auditory data has been analyzed offline.

In this study, we assume that the auditory contexts are latent, continuous
periods characterized by auditory features. For example, if a user stayed at home
until noon and then moved to a hospital by car, the home, car, and hospital are
contexts of the user because they can be characterized by auditory features. As
auditory data recorded with the system records is a multi-dimensional time-series
data, it means that each context corresponds to a segment of the time-series
classified by auditory features.

3.1 Segmentation of Multi-dimensional Time-Series Data

At the first step of the study, we have applied NMF and k-means clustering to
segmentation of multi-dimensional time-series data.

The obtained data is 32 dimension time-series data. It represents MFCC,
SPL, F0. The length is 48271. At first, we converted the data to the averaged
data every 30 s, and normalized it so that it did not contain negative values. The
normalized data is shown as a heat map in Fig. 1. In the heat map, the x-axis
represents each feature of the data, the y-axis represents the time when the data
was recorded. Each cell corresponds to a feature value at each time. Darker cells
represent larger values and lighter cells represent smaller values.

As the data still contains artifacts which was caused by body movements.
We applied NMF to factorize the data so as to extract important features and
reduced the artifacts. In this experiment, the dimension of factorized data is 6.
Figure 2 shows a heat map of the factorized data representing a change of the
auditory features. The intensity of color indicates the degree of correlation with
each factor.

NMF factorizes a matrix according to non-negative constraints. The bases
tend to represent local features of the data, namely “parts.” As the parts can
better correspond to intuitive notions by humans, it is useful to visualize and
understand auditory contexts. The bases of other methods, such as principal
component analysis and vector quantization, do not always correspond to the
intuitive notions [10].
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Fig. 1. A heat map of averaged data every 30 s of feature vectors obtained by wearable
sensing system.

Fig. 2. A heat map of the feature vectors heat map of the feature vectors derived by
using non-negative matrix factorization.

Then we classified each vector in the factorized data using k-means clustering
(k = 4). The clustering was based on Euclidean distance of the 6 features of each
period.
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Fig. 3. Transitions of the auditory contexts classified by k-means clustering.

Figure 3 is a line graph that plotting the class labels, 0–3, assigned to each
period along a time axis. We can see that consecutive periods tend to be clas-
sified into the same cluster. This means that we have succeeded in extracting
temporally continuous acoustic features and segmenting the time-series data into
four contextual periods. Additionally, the extracted features roughly correspond
to actual contexts, such as riding a bicycle and eating at home.

4 Discussion and Future Work

This study is at the preliminary stage, so there are a lot of issues to realize the
system that senses and shares auditory context information using the wearable
devices.

An issue is when and where context information is extracted from the sensing
data and how it is shared. The analysis in this study is performed offline on a
personal computer. If we share the context information on wearable devices, we
require to design the total architecture of the service system, which includes
designing communication, data processing architecture, and user interactions.
Designing efficient architecture with limited computation resources of wearable
devices is future work.

Considering the privacy issue, the system is not designed to record raw sound
data. So it is difficult to validate the correctness of extracted context informa-
tion based on the raw data. To scale up the prototype to practical service,
more sophisticated unsupervised (or sem-unsupervised) approaches should be
required.

5 Conclusion

We have shown the prototype of our wearable ambient sound sensing system by
using smart watches. We experimentally obtained ambient sound data sensed by
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the system and analyzed the data to extract context information. In the analysis,
we formalized the context extraction process as an unsupervised segmentation
of multi-dimensional time-series data and applied NMF and k-means clustering
to the segmentation. We confirm that the periods segmented by the analysis
roughly corresponded to actual contexts.
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tion of Science (grant number 17K00145) and JST CREST, JPMJCR18A4.
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Abstract. The performance of modern relation extraction systems is
to a great degree dependent on the size and quality of the underly-
ing training corpus and in particular on the labels. Since generating
these labels by human annotators is expensive, Distant Supervision has
been proposed to automatically align entities in a knowledge base with a
text corpus to generate annotations. However, this approach suffers from
introducing noise, which negatively affects the performance of relation
extraction systems. To tackle this problem, we propose a probabilistic
graphical model which simultaneously incorporates different sources of
knowledge such as domain experts knowledge about the context and lin-
guistic knowledge about the sentence structure in a principled way. The
model is defined using the declarative language provided by Probabilis-
tic Soft Logic. Experimental results show that the proposed approach,
compared to the original distantly supervised set, not only improves the
quality of such generated training data sets, but also the performance of
the final relation extraction model.

Keywords: Probabilistic Soft Logic · Statistical Relational Learning ·
Distant Supervision · Relation Extraction · Natural Language
Processing

1 Introduction

Relation extraction (RE) from text is a learning task with many real-world
applications. While raw texts tend to be available in abundance, the bottleneck
in practice usually is the availability of annotated (labeled) data, since manual
annotation is costly. As a means to alleviate this problem, Distant Supervision
(Mintz et al. 2009) has been proposed, which automatically labels training data,
although at the cost of introducing noise by assigning wrong labels. In practice,
again, manual intervention may be required to clean up the training data.

This paper proposes a novel probabilistic approach to reduce noise from
distantly supervised training corpora. It incorporates several sources of domain
experts and linguistic knowledge in a structured and principled way and models
c© Springer Nature Switzerland AG 2020
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complex dependencies between training instances using Probabilistic Soft Logic
(PSL) introduced by Bach et al. (2015). It aims at making better use of the
domain experts time by letting them easily integrate valuable knowledge instead
of working on the level of single examples.

Most of the existing approaches discussed in Sect. 2, directly integrate
denoising-functionality in the training workflow and do not incorporate addi-
tional sources of knowledge. In practice it is therefore often necessary to manually
denoise training data based on heuristics and hard constraints which are usually
applied ad-hoc. To tackle these problems, we suggest a probabilistic approach
to integrate heterogeneous sources of knowledge to denoise distantly supervised
training samples. Our contribution can be summarized as follows:

1. We propose to integrate domain and linguistic knowledge to combine differ-
ent heuristics and take into account inconsistencies of different Named Entity
Recognition (NER)-models that are used to identify entity mentions with the
objective to reduce noise that results from error-propagation. We model rela-
tional dependencies between possible relation mentions in the corpus based
on semantic similarities in order to infer globally consistent training labels.

2. To integrate the knowledge in a structured and principled way, we derive a
probabilistic graphical model, a hinge-loss Markov random field (HL-MRF),
using a declarative language provided by PSL (Bach et al. 2015). This lan-
guage enables to define HL-MRFs in a compact way using comprehensible
and easy to extend First Order Logic Rules.

3. We measure the influence of the proposed model on the quality of the train-
ing set and on downstream-task performance. Experiments are conducted on
three publicly available data sets and results are compared with three base-
lines: Distant Supervision, a rule-based approach designed to mimic manual
post-processing, and a SRL approach similar to PSL, a so called Markov Logic
Network (MLN). The results show that our probabilistic model outperforms
the baselines and not only improves the quality of the training data set but
also the performance of the final RE -model trained on the data.

The paper is structured as follows: Section 2 discusses related work. Section 3
gives an overview over HL-MRFs and the declarative language PSL. Section 4
describes the proposed model structure, Sect. 5 presents experimental results and
in Sect. 6 we conclude with a summary and discuss future work.

2 Related Work

State-of-the-art information extraction approaches not only focus on identify-
ing independent phrases in text that describe real entities, but also on pre-
dicting the semantic relationship between entities, which is referred to as Rela-
tion Extraction (RE). The sentences below, for example, represent two men-
tions of the same relation r. The entity tuple (e1, e2) is bound by the relation
r(e1, e2) = founder of(LarryPage,Google).

“Larry Page, co-founder of Google, is now the CEO of Alphabet”
“Larry Page and Sergey Brin founded Google in 1998”
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Most state-of-the-art relation classification models, such as (Christopoulou
et al. 2019; Miwa and Bansal 2016), are based on deep learning architectures
which require a large training corpus to generalize. With such data-intense
model architectures the acquisition of annotated training data in sufficient size
becomes the bottleneck of the overall training workflow. Craven et al. (1999)
proposed an alternative paradigm, Distant Supervision, which enables to anno-
tate a large training corpus without manual supervision by aligning relations
present in an external knowledge base with a text corpus. It later was applied
by Mintz et al. (2009) who used Freebase as a knowledge base to generate train-
ing data. Given, for example, a knowledge base that contains the relation triple
founder of(LarryPage,Google), Distant Supervision first identifies entity men-
tions in a text and then assumes that each sentence in which both entities are
present is one mention of the relation founder of .

Following this assumption, the labels assigned to a sentence may often be
incorrect, either because of the incompleteness of a knowledge base (Min et al.
2013) or due to a high number of false positive matches (Riedel et al. 2010).
Facing this problem, Riedel et al. (2010) proposed Multi-Instance learning, which
assumes that only at least one sentence containing the entities e1 and e2 is
a representation of a relation present in the knowledge base. Hoffmann et al.
(2011) extended the multi-instance model and suggests Multi-Instance-Multi-
Label (MIML) learning, which assumes that one entity pair (e1, e2) can be a
representation of multiple relations. Surdeanu et al. (2012) introduced MIML-
RE, a graphical model to jointly model all entity-pair-instances and labels.

Recent approaches also integrate denoising functionality directly in the train-
ing process of neural models. Qin et al. (2018) apply Deep Reinforcement learn-
ing to automatically detect false positives and integrate these false positives as
negative examples in the training set. Lin et al. (2016) employed Convolutional
Neural Networks (CNN) and used the soft attention weights for all sentences to
reduce the weights of noisy relations and Ye and Ling (2019) proposed to not
only integrate intra-bag attention to assign weights to a group of sentences shar-
ing the same entity pair but also inter-bag attention to assign weights to groups
of sentences that are assigned the same relation label. Wu et al. (2018) use a
neural architecture with a neural noise converter to capture the noise and a con-
ditional optimal selector to predict relations based on a bag of sentences with the
same entity pair. One alternative approach introduced by Ratner et al. (2016)
enables users to define multiple heuristic functions, so called labeling functions,
that each independently infer noisy labels.

3 Probabilistic Soft Logic

PSL was introduced by (Bach et al. 2015) and is a statistical relational learn-
ing (SRL) framework which enables to model a probability distribution over
a set of random variables. Similar to most SRL-approaches, it can be divided
in two major building blocks, a Probabilistic Graphical Model (PGM) which
encodes the probability distribution and a declarative language to compactly
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define the PGM structure. A Hinge-Loss - Markov Random Field (HL-MRF)
constitutes the first building block of PSL and represents an undirected graph-
ical model which encodes distributions for continuous valued random variables.
Given a set of observed variables X = (X1, ...,Xn), a set of random variables
Y = (Y1, ..., Yn′), a set of potential functions φ = (φ1, ..., φm) and a set of weights
ω = (ω1, ..., ωm), a HL-MRF represents the following probability density func-
tion over Y conditioned on X:

P (Y |X) =
1

Z(ω,X)
exp[−

m∑

j=1

ωjφj(X,Y )] (1)

with Z as a normalization factor. This distribution can be translated in a
graph structure with each node representing one random variable. Each node
is assumed to be conditionally independent of all nodes in the graph it is not
directly connected to via an edge given the value of the nodes it is directly con-
nected to. A subset of fully connected nodes is called a clique. Each potential φj

takes the form of a hinge-loss function:

φj(X,Y ) = (max{lj(X,Y ), 0})pj (2)

with lj representing a linear function and pj ∈ {1, 2}.
Potential functions φj are real-valued non-negative functions defined per

clique and assign a probability mass to each clique state, meaning one assignment
of values to all random variables participating in that clique. When a potential
function assigns a higher value to one clique state, this state can be interpreted
as being more probable than a clique state assigned a lower value.

PSL is a declarative language, which enables to generate templates for poten-
tial functions in form of First Order Logic rules. A PSL-model is composed of
a set of these weighted rules that compactly describe an underlying HL-MRF
structure. Formula 3 displays an example:

w : Friends(A,B) ∧ PlaysGolf(A) =⇒ PlaysGolf(B) (3)

with w as the weight assigned to the rule, which indicates its importance.
Friends and PlaysGolf are called predicates. A and B are variables that serve
as placeholders and can be substituted by concrete instances, referred to as
constants. Given a set of rules and a set constants, the process in which all vari-
ables are replaced with these constants is called grounding. Each grounded rule
forms a clique in the underlying graph structure representing the HL-MRF, while
each grounded predicate participating in that rule represents a random variable
mapped to a node in the clique. The weight ωj of a potential φj assigned to a
grounded rule is determined by the weight of the rule template. Each potential
expresses a distance to satisfactions for the rule, which either takes the value 0 if
the rule is fully satisfied or a distance value measuring the degree of satisfaction.
Squaring a rule potential presented in Formula 2 and setting pj = 2 results in a
smoother trade off when trying to satisfy conflicting rules.
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Intuitively spoken, assignments of Y are more probable the fewer rules they
violate. The weight assigned to each rule template allows to control the influence
of one violated rule on the overall probability.

4 HL-MRF Model for Noise Reduction

The following section is dedicated to the PSL-model and its structure to denoise
a distantly supervised training data set. The PSL-model is designed to counter
to three major sources of noise which are present in Distant Supervision.

Incompleteness of the Knowledge Base (Min et al. 2013): False negative
relations can be extracted when a given entity mention pair (m1,m2) does not
have any corresponding relation triple in a knowledge base.

False Positive Relations (Riedel et al. 2010): A sentence containing a rela-
tion mention (m1,m2) mapped to the relation triple r(e1, e2) does not express this
relation.

Error Propagation from Named-Entity-Recognition (NER)-Models:
NER-systems applied to identify entity mentions do not deliver 100% accurate
results which can lead to additional noise in the training set.

The model consists of several components, each of them addressing one or
multiple of these noise sources which will be described in the following.

4.1 Prior Model

The prior model defines which values to assign to all unobserved ground atoms
by default. Table 1 displays the rules, variables and predicates.

Rule (1) in Table 1 forces all ground atoms of HasRel(z, r) for each relation
mention candidate z and over all relation types r to sum to one. This allows
to have only one label for each relation mention candidate. Rules (2) and (3)
reflect that all ground atoms for Ent1Type and Ent2Type initially are assigned
the truth value 0, meaning that the types for the named entity are not defined.
Rule (4) demonstrates the prior belief that, without any further information, the
relation type induced by Distant Supervision is assumed to be correct.

4.2 Consistency Between Predictions of NER Systems

Distant Supervision usually relies on entities extracted by NER-systems. These
systems not only identify named entities but also tag them with an entity type
according to a fixed set of types such as PERSON, LOCATION and ORGANI-
ZATION. As stated in the problem definition, NER-systems applied to identify
entity mentions and their entity types do not deliver 100% accurate results and
falsely tag entity mentions that do not represent entities or tag them with a
wrong type. This can lead to error propagation and the predicted relation types
can be inconsistent with the extracted entity types.

To address this problem, we suggest to incorporate an unobserved hidden
variable representing the true hidden entity type which is dependent on the
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Table 1. Variables, predicates and rules used in prior PSL-model

predictions of multiple NER-systems. This can be seen as a form of Multiview
Learning (Blum and Mitchell 1998). In this case we used the pretrained NER
taggers provided by Stanford Corenlp Tool1 and SpaCy2. Additionally we inte-
grated a simple heuristic pattern in order to raise the probability of an entity
mention being a true mention by checking if the first letter of an entity is capital-
ized. Table 2 displays the corresponding predicates and rules. These rules raise
the probability of an entity in a relation mention z to be of type t, if both NER-
taggers induce the type t and the first letter of the entity mention is capitalized.
This leads to lower truth values assigned to ground atoms of Ent1Type and
Ent2Type, when predictions of the taggers are inconsistent.

4.3 Sentence Structure Analysis

A variety of RE methods incorporate syntactic information to classify relations
(for example (Bunescu and Mooney 2005)). One common technique in NLP is to
extract the grammatical structure and relationships between words of a sentence,
incorporate these information into a dependency tree and extract features based
on that tree. Figure 1 displays such a dependency tree extracted with SpaCy.
Words in the sentence are associated with graph nodes, dependencies are repre-
sented as directed edges with assigned dependency labels. A dependency path
is considered as the concatenation of dependency edges and nodes along a path
1 http://nlp.stanford.edu/software/corenlp.shtml.
2 An open-source library for Natural Language Processing, https://spacy.io/.

http://nlp.stanford.edu/software/corenlp.shtml
https://spacy.io/
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Table 2. Entity rules and predicates

in the dependency graph. The words in the shortest path between the entities
“Rana” and “Pakistan” are marked in bold and indicate a placeofbirth relation
between the two entities.

Fig. 1. Dependency graph extracted by spaCy

To integrate these syntactic information in the model, we suggest the rule
set displayed in Table 3. Rules (1) and (2) build upon the work of Bunescu and
Mooney (2005), who presented a kernel method based on the shortest depen-
dency path between two entities in the dependency graph assuming that the
shortest path can capture all necessary information for relation extraction. Rule
(1) increases the probability that a relation mention candidate z labeled as r by
Distant Supervision really is of relation type r (excluding the “None” relation
type) when the length of the shortest dependency is small. Rule (2) increases the
probability that a relation mention candidate z labeled as r by Distant Supervi-
sion is of relation type “None” when the dependency path is long or there is no
direct path.

Rules (3) and (4) are inspired by a hypothesis stated in (Chklovski and Pantel
2004), that “verbs are the primary vehicle for describing events and expressing
relations between entities”. Rule (3) increases the probability of a relation men-
tion z being of relation type r when labeled as r by Distant Supervision and
when both entities e1 and e2 are connected through a predicate in the shortest
dependency path. Rule (4), in contrast lowers the probability of a relation men-
tion z being of relation type r when labeled as r by Distant Supervision when
the verb that is closest in dependency path to e1 and e2 is not the same.



70 B. Kirsch et al.

Table 3. Syntactic rules for the proposed PSL model.

Rules (5) and (6) assume the likelihood that two entities participate in a rela-
tion is higher when they are tagged with object- or subject-dependency labels.

Integrating the DSCandRel -predicate in the body of each rule forces it to
be automatically satisfied when a relation mention candidate is not assigned a
relation type r by Distant Supervision. With that, all rules only contribute to
the objective of lowering the noise caused by false positive training samples.

4.4 Context-Based Constraints

Distant Supervision is context-independent and only maps entity mentions iden-
tified in a sentence to relation tuples in a knowledge base. Thus, the induced
relation types often either do not correspond to the semantic meaning of a sen-
tence or the relation type is not consistent with the entity types participating in
the relation. Consider, for example, the following sentence:

“Gray moved to the nearby suburb with Johnston”
The sentence might be aligned with a relation place of birth(“Gray”, “John-

ston”) present in a knowledge base. When taking into account that the entity
type of Johnston is PERSON and looking at the context containing the word
“moved” it is obvious, that this sentence should not be labeled as a born in
relation. We suggest to incorporate this knowledge as displayed in Table 4.

Rules (1) and (2) enable domain experts to specify a set of words that indicate
the presence of a specific relation type. Rule (1) raises the probability of z being
assigned the “None” relation type, if the shortest dependency path does not
contain one of the specified words. Rule (2) raises the probability of z being
assigned the place of birth relation type when one of the words “born, birth or
native” appear in the shortest dependency path between entity mentions present
in z and the entity types are consistent with the relation type.
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Table 4. Context-based rules, predicates and variables

Rule (3) lowers the probability of z being assigned the relation type r when
the entity types of the entity mentions in r are not consistent with the relation
type. In the concrete example, when the first entity mention is not of type
PERSON it is less likely that z is assigned the place of birth relation.

Both Rules (1) and (3) remove false positive examples from the training set,
while Rule (2) compensates incompleteness of a knowledge base.

4.5 Semantic Similarity in Noise Reduction

Recently, multiple research works focused on using semantic similarity to perform
RE (Park et al. 2016; Ru et al. 2018; Grycner et al. 2014). Common approaches
for example define metrics to measure similarities between relations and then use
them to create clusters for each relation type. This follows the intuition that, if
two relation mentions have the same semantic meaning, they are likely to have
the same relation type. Thus, we introduce two similarity predicates, explained
in Table 5 that calculate a similarity between two relation mention candidates,
either based on their dependency path or based on the verb assigned to the
relation according to the dependency path.

The verb similarity in this case is determined by calculating the cosine sim-
ilarity of pre-trained word embeddings provided by (Mikolov et al. 2013). The
dependency path similarity is calculated using WordNet (Mihalcea et al. 2006).

We suggest to integrate these similarities according to the rule set displayed
in Table 5. Rule (1) raises the probability that two relation mention candidates
have the same relation type when both are assigned a similar verb according to
the dependency path. Rules (2) and (3) force the verb similarity to be transitive
and symmetrical. Rules (4), (5) and (6) equivalently model this dependency
based on the similarity of the shortest dependency path.

While all rules introduced in the previous subsections only model depen-
dencies between a relation mention candidate, the according entity types and
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Table 5. Similarity rules, predicates and variables

additional local features, these rules directly incorporate relational dependen-
cies between the target predicates. When performing inference, this forces the
model to jointly infer relation types and entity types in order to achieve global
consistency. At the same time, this compensates knowledge base incompleteness
and reduces the amount of false positive training examples.

5 Experimental Evaluation

This section describes the experiments performed to evaluate the performance of
our PSL model and presents the final results available on Github3. We conduct
two types of experiments. The first experiment measures the influence of the pro-
posed model on the quality of the training set. In order to analyze the importance
of each rule set (as presented in the different subsections of Sect. 4) individually,
we perform the same experiment with different rule subsets. The second exper-
iment measures the influence of the proposed model on the downstream-task
performance by using the denoised training corpus to train a RE model using a
state-of-the RE framework CoType (Ren et al. 2017).

5.1 Experimental Setup: Data and Models

The proposed method is evaluated using the following three different public4

data sets. In each data set 9 relation types including “None” are considered.

KBP Data Set: This data set, also used by Ren et al. (2017), contains a
manually annotated set with sentences from the 2013 KBP corpus (Ellis et al.
2012) and the Wiki-KBP corpus, (Ling and Weld 2012), which was constructed
via distant supervision by aligning Freebase relations with sentences from English
3 The code is available under: https://github.com/DSDenoisingPSL/DSDenoisePSL.
4 The data set can be downloaded from https://github.com/shanzhenren/CoType

https://code.google.com/archive/p/relation-extraction-corpus/downloads.

https://github.com/DSDenoisingPSL/DSDenoisePSL
https://github.com/shanzhenren/CoType
https://code.google.com/archive/p/relation-extraction-corpus/downloads
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Wikipedia articles. The 2013 KBP corpus is used as a test set and the WIKI-
KBP is used as a training corpus for the final relation extraction task.

New York Times News Corpus (NYT): This data set, provided by Riedel
et al. (2010), was generated by aligning Freebase relations with sentences from
the New York Times news corpus. It includes a test set with manually annotated
sentences Hoffmann et al. (2011).

Google Corpus: This data set was released by Google (Sun et al. 2013) and
consists of sentences sampled from Wikipedia, aligned by Freebase and judged
by humans. Thus, it does not suffer from incompleteness but may contain false
positive relations. In order to reduce recall, which was 100 percent, noise was
added by increasing the number of false-negative relations and randomly setting
labels obtained from Freebase to the None type.

In the experiments, the cosine similarity of word vectors was calculated using
the Vector Embedding Utility Package provided by Patel et al. (2018) and a pre-
trained word2vec-model5.

5.2 Experimental Setup: Benchmark Methods

The PSL model is compared to three baseline models.

Brute-Force model (BF): This model represents a baseline with a set of hard
constraints applied to filter the training set. Therefore, each PSL-rule was trans-
formed into a constraint using if-else-conditions. This mimics a manual approach,
where an expert adds different post-processing after performing Distant Super-
vision, but without any structured way to integrate the different evidences, as
it is possible with PSL.

Markov Logic Net (MLN): With the objective to evaluate, that PSL is a suf-
ficient approach to generate a relational model with the proposed structure, we
compared it to a Markov Logic Network. Similar to PSL, it provides a logic based
declarative language to describe an underlying probabilistic graphical model.
Thus, the rules described in Sect. 4 can be used to define the model structure.
The main difference to PSL is that a MLN model grounds out to a Markov
Random Field, in which all random variables take boolean values. Therefore, all
observed continuous values, such as the similarities, are converted to boolean val-
ues by rounding them. For inference in the MRF model the open-source package
Tuffy6 (Niu et al. 2011) was used.

Distant Supervision: Represents data generated by Distant Supervision.

5.3 Experimental Results

Training Set Quality: In the first experiment, the performance of the proposed
noise reduction method is estimated by measuring the quality of the denoised
5 Can be downloaded under https://code.google.com/archive/p/word2vec/.
6 http://i.stanford.edu/hazy/tuffy/.

https://code.google.com/archive/p/word2vec/
http://i.stanford.edu/hazy/tuffy/
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Fig. 2. F1-Score calculated for different rule combinations.

data sets. Therefore, precision, recall and F1-score are calculated on each test
data set after the three models, PSL, MLN and BF, have been applied. Figure 2
prototypically displays the F-scores for the PSL, MLN and BF models obtained
when applying the different rule combinations to the KBP corpus. The plot
illustrates F-scores for 19 different rule sets. From left to right, the first 8 rule
sets, labeled according to the descriptions in Sect. 4, represent distinct knowledge
types, while the last represent the combination of rule sets. For convenience,
rule set combinations {conPred, conFP, conSem}, {simV erbs, simPath} and
{synV erbs, synPath, synType} denote the con, sim and syn rule sets.

The results suggest that PSL performs at least as good as the baselines and
turns out to obtain significantly higher F-scores compared to the brute-force
approach when the combined rule sets are incorporated. The MLN approach
achieves a good performance when multiple rule sets are combined and only the
similarity-rule set reduces its F-score significantly. This effect can be explained
when looking at the differences between MLN and PSL: MLN uses boolean
values for the predicates and this approach does not allow to incorporate a
degree of similarity between instances such as PSL.

The KBP and NYT data sets suffer from low recall and each method
increases recall significantly. However, the BF approach produces lower recall
when compared with PSL and MLN.

For the Google data set the results are different, since the data set is not
influenced by low recall values, but it may contain false positive relations. There
is no significant improvement when incorporating the context rule set. Moreover,
the syntax rules synV erb significantly decrease the performance of all three
approaches. One reason for the degradation is that the Google data set contains
mostly a set of sentences where two entities do not belong to the same sentence.
Therefore, the short dependency path cannot be captured by a parser.
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The results for the first experiment are summarized in Table 6, where those
rule sets were chosen which produce the best F-scores for the three approaches
and the three data sets. While for two of the three data sets (KBP and NYT )
the PSL approach obtains remarkably higher F-scores, for the Google corpus
PSL only performs slightly better than the other models. However, the precision
and recall obtained with the PSL model are always higher.

Table 6. Performance of the PSL, MLN and the BF model.

Data Method Precision Recall F1 TP FP

KBP Freebase 0.840 0.265 0.403 79.0 15.0

PSLcon,ent 0.806 0.758 0.781 220 53

BruteForceconPred 0.708 0.559 0.625 151 62

MLNcon,ent,synV erb,synPath 0.834 0.713 0.769 207 41

NYT Freebase 0.246 0.251 0.248 62 190

PSLcon,synV erb,synPath,simPath,ent 0.801 0.553 0.654 141 35

BruteForceconFP,conPred 0.746 0.475 0.581 118 40

MLNcon,synPath,ent 0.713 0.539 0.614 137 55

Google Freebase 0.948 0.485 0.642 1286 70

PSLcon,ent 0.931 0.72 0.8122 1890 139

BruteForceconPred 0.784 0.814 0.799 2030 557

MLNcon,ent,synPath 0.854 0.548 0.668 1371 234

The results in Figure 2 show that the PSL model outperforms the BF model
over a wide variety of rule sets. The MLN model performs worse when the
similarity rules are integrated, while the performance of the BF model decreases
when more rules are added.

Results for Relation Extraction: This subsection describes the results
obtained by the second experiments. In a first step, MLN, PSL and BT mod-
els are applied to generate a training set. Each model is generated using (1) a
context rule sets, (2) the combination of context and entity rule sets and (3)
a combination of context, entity and syntax rule sets. In a second step, this
training set is used to train a RE model with CoType. The performance of the
trained RE model is evaluated based on the different model settings.

Figure 3 shows the F-curves generated using different thresholds during train-
ing of the relation extraction model with CoType. Figure 3 depicts that for both
data sets, KBP and NYT, the model obtained from the data set processed by
PSL and MLN performs better than the model trained on the original data set,
which is produced by aligning the sentences with Freebase. Moreover, the BF
approach performs undoubtedly poor and decreases the performance of the rela-
tion extraction model when trained on the KBP data set. Reason could be that
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Fig. 3. F1-score achieved with CoType applying different thresholds.

the brute force mechanism predicts numerous false positive relations and this
effect influences the final result. The results for the Google data set is different.
There is only a slight improvement due to the fact that this data set does not
suffer from incompleteness. Therefore, the results are not improved considerably,
but the model trained on the data set preprocessed using PSL performs better
with all thresholds. The results from the second experiment demonstrate that
the proposed approach improves the overall performance of the RE model.

6 Conclusions and Outlook

This paper proposes a novel probabilistic approach to denoise training corpora
generated for Relation Extraction with Distant Supervision. We derive a prob-
abilistic graphical model which incorporates additional knowledge, models rela-
tional dependencies between training instances and takes into account consis-
tency between different NER-systems. The model structure of a HL-MRF is
described using a declarative first-order logic based language provided by PSL.

The effectiveness of this model was evaluated in two experiments, one to
measure the quality of the training set after denoising with the proposed PSL-
model and one measuring the end performance of a RE model trained on the
denoised data set. Results are compared with the performance of a RE model on
the original distantly supervised set and with the performance of two baseline
models, a brute-force approach which mimics a manual post-processing by an
expert and a Markov Logic Network. The experimental results show that the
PSL-model outperforms the two baseline models in both experiments and suggest
that it not only improves the quality of the training data set generated by Distant
Supervision, but also the performance of the final RE model.

Although the experiments show promising results, further research has to be
conducted to compare the performance to end-to-end relation extraction models
that incorporate denoising directly in the training process (Ye and Ling 2019;
Wu et al. 2018). Additionally, we will focus on validating that the probabilistic
model can improve results when applied as a plug-in component combined with
an arbitrary end-to-end RE model.
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Abstract. As part of a national study in the United States to recruit one million
Americans (All of Us Research Program) and their Electronic Health Record data,
we set out to determine the degree to which care is fragmented across a sample
of participating health provider organizations (HPOs). We distributed a previ-
ously validated Privacy-Preserving Record Linkage (PPRL) tool to participating
sites to generate a unique set of keyed encrypted hashes for seven participating
institutions across three States in the Upper Midwest of the U.S. An honest bro-
ker received the resulting encrypted hashes to identify patients with the same
encrypted hashes shared across any combination of more than one institution as
a proxy for patients receiving care across institutions. Out of 5,831,238 individ-
uals, we identified 458,680 patients with data at more than one institution. Care
fragmentation varied significantly by State and by Institution ranging from 6.1%
up to 32.7%. Patients with fragmented care were more likely to be black (11.8%
vs 10.8%), and slightly older (Median birth year 1968 vs 1969) compared with
patients receiving care at only one participating institution. In contrast, patients
who maintained an address in a warmer state (“snowbirds”) were the least likely
to be black (7.5%) of all study groups. We identified conflicting or inconsistent
demographic information in 49.1% of patients with care fragmentation compared
with 5.6% of patients without care fragmentation. Privacy-preserving record link-
age can be an effective means to identify populations with care fragmentation and
poor data quality for focused clinical and data improvement efforts.
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1 Introduction

1.1 The All of Us Research Program

In 2016, the United States Congress launched the Precision Medicine Initiative (PMI)
with $200M in funding in order to advance the development and application of individu-
alized care based on a person’s unique lifestyle, environment, and biology. A core foun-
dation of the Precision Medicine Initiative, the All of Us Research Program (AoURP)
was initially allocated $130M to create a national cohort of over one million Americans
broadly representing the rich diversity of the U.S. population. Widespread adoption of
ElectronicHealthRecords (EHRs) across theU.S.was identified early in the design of the
AoURP as a potentially rich source of data on patient health conditions and treatments.

The AoURP designated and funded over 40 Health Care Provider Organizations
(HPOs) nationally to serve as recruitment centers. As part of the enrollment process,
HPOs are required to send EHR data for consented participants to the AoURP Data and
Research Center after verifying the identity of the participant and standardizing the EHR
data into the Observational Medical Outcomes Partnership (OMOP) data model [1].

1.2 Data Fragmentation Across Institutions

However, healthcare in theUnited States is delivered across awide variety of care settings
and lacks the availability of a universal patient identifier. As a result, patient records may
be fragmented across each location where a patient receives care, and unavailable both
for patient care, but also for aggregation for research purposes such as those envisioned
by the AoURP. Health Information Exchanges (HIEs) emerged as a means to address
data and care fragmentation, and use a master patient index to consistently track the
same patient across different care settings but are not available in many regions in the
United States, or have struggled to remain financially viable [2]. Some EHR systems
can link health records across institutions which use the same EHR system for routine
clinical care, but do not currently integrate these data together for research purposes
[3]. Because the AoURP aims to aggregate as much information about a participant as
possible, investigators at participating HPOs questioned how often participants might
receive care at a different care site than the HPO at which they might be enrolled. But
without cross-institutional data sharing agreements in place to allow for patient identifiers
to be shared across sites, and with many HPOs not part of HIEs, an alternate mechanism
to link the same patient record across sites was needed.

1.3 Prior Use of Privacy-Preserving Record Linkage

We previously developed software to generate keyed hashes of patient identifiers that
is fully compliant with HIPAA de-identification methods and could enable privacy pre-
serving record linkage across AoURP HPOs [4]. A key finding of the initial linkage
across seven healthcare institutions was the significant degree of data fragmentation
across care sites ranging from 11 to 28% over a several year span. We subsequently
demonstrated similar care fragmentation for specific populations including patients with
diabetic ketoacidosis [5] and systemic lupus erythematosus [6]. Notably, we identified
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worse clinical outcomes for patients with fragmented care vs those without care frag-
mentation, a finding consistent across each condition we studied. Relevant to a cohort
study such as the AoURP, we linked individual data between a longitudinal cohort study
(the Multi-Ethnic Study of Atherosclerosis or MESA) and EHR data in our region, and
identified gaps in data coverage in both sources of data even for conditions as seemingly
obvious as a myocardial infarction [7]. The combination of both multi-institutional EHR
data and prospectively collected data for a cohort study created a more complete set of
data for a given research study participant than any one source alone.

With this background and with the endorsement of the AoURP Steering Committee,
we set out to use our previously validated privacy preserving record linkage method to
determine howoften patients receive care across participatingAoURP institutionswithin
a geographically proximate region of three adjoining States in the Upper Midwest of the
United States. Our goal was to identify the degree of data fragmentation across AoURP
sites in order to determine whether to pursue additional data sources to fully characterize
research cohort participants.

2 Methods

We submitted and received approval for this study of de-identified patient level data
from the Northwestern Institutional Review Board. We defined the study population as
patients seen at participating institutions from January 1, 2011 through May 1, 2018.
We excluded patients aged 90 or over as of April 30, 2018 to comply with HIPAA Safe
Harbor restrictions on age. Seven institutions participated in the study, three based in the
State of Wisconsin, three in Illinois, and one in Indiana which had access to data from
the statewide Health Information Exchange.

At a kickoff meeting hosted in Wisconsin and through subsequent discussion, all
participating institutions agreed upon a common data dictionary to define key demo-
graphic and clinical fields to extract along with keyed hashes to uniquely identify a
patient (Table 1).

Table 1. Key data fields extracted by institutions to characterize the demographics and diagnoses
of the study population.

Demographics Diagnoses

Birth year Year

Gender Encounter type (e.g. Inpatient, Emergency Department)

Race Terminology (ICD9, ICD10, SNOMED)

Ethnicity Primary diagnosis (yes or no)

Insurance status (most recent)

3 digit ZIP code
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We distributed an executable software program with known matching performance
characteristics as described in our prior publication. Participating institutions installed
the software locally, and collectively identified a key to be used to hash the patient
identifiers that was kept separate from the group aggregating the data on behalf of the
study. Using a combination of last name, first name, date of birth, and social security
number (where available), sites encrypted multiple concatenated combinations of these
features in order to generate up to 17 secret key encrypted hashes. The central site
(Northwestern University) team, acting as an honest broker, received the keyed hashes,
alongwith attached demographic and clinical data as defined by the study data dictionary.

We matched the data across the participating institutions to evaluate the degree of
care fragmentation within each State, across States, and across all institutions. Because
we included three digit ZIP codes in our data set (which is a broad enough level of
geography to still be considered de-identified by HIPAA), we could identify the sub-
population of patients who also have a home address in a considerably warmer region
of the United States (the States of Alabama, Arizona, Arkansas, California, Florida,
Georgia, Louisiana, Mississippi, New Mexico, and Texas) during the winter months
(colloquially referred to as “snowbirds”). We analyzed the differences in demograph-
ics between those patients who have fragmented and non-fragmented care, as well as
between “snowbirds” and those less capable of escaping the cold winter weather in the
Upper Midwest.

Several data fields required additional translation between data terminologies in
order to be consistent for further analyses. Diagnoses in EHRs arrived as ICD9, ICD10,
and SNOMED codes and required significant re-mapping to a consistent and common
terminology, in this case MS-DRG-CM. We identified data quality issues including
missing data and data which conflicted across sites.

Due to of the large size of the total number of records, we conducted analyses using
Python 3.7 with pandas and numpy packages.

3 Results

In total, we received records on 5,831,238 individuals across the three states. We iden-
tified 458,680 patients with data at more than one institution. Table 2 describes the
demographics for our total study population, and the populations of patients with non-
fragmented care, fragmented care, and “snowbirds”. Demographics information that
was declined or missing at the point of recording, as well as patients that had conflicting
demographics information from multiple patient records were given the same category.
Considerable patient race information were found to be conflicted or missing, and as
high as 44.8% in fragmented patients.
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Table 2. Demographics of the total study population, patients with non-fragmented care,
fragmented care, and “snowbirds”.

Total
n = 5,831,238

Non-fragmented
n = 5,372,558

Fragmented
n = 458,680

Snowbirds
n = 79,701

Age Median birth year 1969 1969 1968 1964

Gender Female 46.8% 46.2% 54.3% 48.3%

Male 43.6% 44.0% 45.7% 44.2%

Other 8.9% 9.7% 0.0% 7.4%

Conflicted or
missing

0.7% 0.0% 8.3% 0.1%

Race White 58.1% 60.0% 35.4% 62.1%

Other 15.5% 16.2% 6.9% 14.6%

Black or African
American

10.9% 10.8% 11.8% 7.5%

Declined or
missing or
conflicted

12.1% 9.4% 44.8% 11.9%

Asian or other
Pacific Islander

2.5% 2.6% 1.0% 3.4%

Hispanic or
Latino

0.5% 0.6% 0.0% 0.2%

American
Indian/
Alaskan
Native

0.4% 0.4% 0.1% 0.3%

Ethnicity Not Hispanic or
Latino

89.5% 89.9% 84.3% 91.7%

Hispanic or
Latino

6.6% 6.8% 4.4% 4.9%

Conflicted or
Missing

3.9% 3.3% 11.4% 3.4%

3.1 Patient with Care Fragmentation

The distribution of patients with care fragmentation was unevenly distributed by State
and Institutions. The percent of patients with care fragmentation differed by state ranging
from 4.9% to 11.7% (Table 3).
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Table 3. Care fragmentation by State.

State Counts Total % of fragmented patients within state

Illinois 328,544 2,811,941 11.7%

Wisconsin 108,996 2,240,339 4.9%

Indiana 88,423 846,241 10.4%

The percent of patients with care fragmentation varied by site ranging from 6.1% to
32.7% (Table 4).

Table 4. Fragmentation by care site.

Site Counts Total % of fragmented patients within site

Northwestern University 253,543 1,931,853 13.1%

Rush University Medical Center 213,946 653,358 32.7%

University of Illinois at Chicago 150,918 516,593 29.2%

University of Wisconsin Madison 72,561 636,585 11.4%

Medical College of Wisconsin 63,252 1,031,119 6.1%

Marshfield Clinic 46,952 646,404 7.3%

Regenstrief Institute 88,423 846,241 10.4%

3.2 Data Quality Issues

We identified a significant percentage of records with conflicting demographic informa-
tion, with the majority of discrepancies for race (Table 5 and Fig. 1).

Table 5. Number of records with conflicting demographic information by feature.

Race Ethnicity Gender Birth
year

466,302 59,888 39,547 3,373
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8.00%

1.03% 0.68%
0.06%

Race Ethnicity Gender Birth Year

Percentage of Patients with Conflicting Demographics Information 
by Demographics Variable

Fig. 1. Most common demographic features with conflicting information.

Patients with care fragmentation had conflicting information at a much higher rate
than those without care fragmentation (49.1% vs 5.6%, Table 6)

Table 6. Counts and percentage of patients with conflicting information by fragmentation status.

# of patients
w/conflicted
information

# of patients w/o
conflicted
information

Percentage of patients
with conflicted
information

Patients that are
fragmented within
state

225,313 233,367 49.1%

Patients that are not
fragmented within
state

301,700 5,070,858 5.6%

3.3 Geographic Analysis to Characterize “Snowbirds”

Patients with home addresses (by 3 digit ZIP code) varied by State (Table 7) and by
Institution (Table 8).
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Table 7. Snowbirds by State

State Counts Total %

Illinois 49,996 2,811,941 1.78%

Wisconsin 26,882 2,240,339 1.20%

Indiana 3,025 846,241 0.36%

Table 8. Snowbirds by Institution

Site Counts Total % of snowbirds out of total patient
population

Northwestern University 38,846 1,931,853 2.01%

Medical College of Wisconsin 10,825 1,031,119 1.05%

University of Wisconsin Madison 8,748 636,585 1.37%

Rush University Medical Center 7,763 653,358 1.19%

Marshfield Clinic 7,449 646,404 1.15%

University of Illinois at Chicago 4,333 516,593 0.84%

Regenstrief Institute 3,025 846,241 0.36%

4 Discussion

We used a previously validated privacy preserving record linkage method based on gen-
erating keyed hashes of patient identifiers to identify the degree of data fragmentation
across a sample of HPOs within the AoURP. Data fragmentation varied from 3.6% to
32.7% with the greatest percentage at sites within IL and the more population-dense
Chicago-based institutions. Consistent with prior studies, patients with care fragmenta-
tion were more likely to be black and younger. In contrast, patients with the ability to
“snowbird” to warmer climes were least likely to be black.

A common problem with linking data across sites is the issue of conflicting data,
e.g. one site lists race as “Caucasian” and another site may list race as “unknown”. We
identified conflicting demographic information for 49.1%of those patients receiving care
at more than one institution. Even in patients who receive care at the same institution,
demographic information captured over time had conflicting information 5.6% of the
time. Race was the most common demographic feature with conflicting information.

There are several limitations to our study. Our study only included a small num-
ber of institutions within each State (those that participate in the AoURP), e.g. in the
Chicagoland area alone there are over 40 distinct healthcare institutions. Thus our esti-
mates of data fragmentation are likely significant underestimates. Because we focused
on sharing only demographic features compliant with HIPAA de-identification criteria,
we could not evaluate more specific geographic features beyond 3 digit ZIP code. Geo-
graphic features such as home address are likely to change over time for patients as they
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move, or to be collected in non-standardized fashions, and could be a common feature at
risk of conflicting across care sites. We defined “snowbirds” as having a listed address
in the EMR from one of several warm winter month states. However, many “snowbirds”
may only list their local address so our estimates likely significantly underestimate the
population size.

Our study demonstrated the utility of a privacy-preserving record linkage tool to
characterize care fragmentation across institutions spanning three contiguous States.
Our findings are consistent with prior findings that care fragmentation is associated with
at-risk populations but also demonstrates a novel association with significantly higher
proportion of conflicting data. We have ongoing work to analyze the differences in
insurance status and diagnoses across the study population and to use study results to
guide strategies to capture more comprehensive clinical data for patients enrolled in the
All of Us Research Program.
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Abstract. In 2010–2011, New Zealand experienced the most damaging
earthquakes in its history. It led to extensive damage to Christchurch
buildings, infrastructure and its surroundings; affecting commercial and
residential buildings. The direct economic losses represented 20% of New
Zealand’s GDP in 2011. Owing to New Zealand’s particular insurance
structure, the insurance sector contributed to over 80% of losses for a
total of more than NZ$31 billion. Amongst this, over NZ$11 billion of
the losses arose from residential building claims and were covered either
partially or entirely from the NZ government backed Earthquake Com-
mission (EQC) cover insurance scheme. In the process of resolving the
claims, EQC collected detailed financial loss data, post-event observa-
tions and building characteristics for each of the approximately 434,000
claims lodged following the Canterbury Earthquake sequence (CES).
Added to this, the active NZ earthquake engineering community treated
the event as a large scale outdoor experiment and collected extensive data
on the ground shaking levels, soil conditions, and liquefaction occurrence
throughout wider Christchurch. This paper discusses the necessary data
preparation process preceding the development of a machine learning
seismic loss model. The process draws heavily upon using Geographic
Information System (GIS) techniques to aggregate relevant information
from multiple databases interpolating data between categories and con-
verting data between continuous and categorical forms. Subsequently,
the database is processed, and a residential seismic loss prediction model
is developed using machine learning. The aim is to develop a ‘grey-box’
model enabling human interpretability of the decision steps.

Keywords: Seismic loss · Christchurch earthquake sequence · Data
aggregation using GIS

1 Background

1.1 The Christchurch Earthquake Sequence

In 2010–2011 New Zealand suffered the costliest natural disaster of its history
with a series of earthquakes known as the Canterbury Earthquake sequence
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(CES). The CES led to 182 fatalities and extensive building damage across the
region, with over NZ$50 billion of economic losses accounting for 20% of New
Zealand’s GDP [1,24]. The CES began on 4 September 2010 with the Mw 7.1
Darfield earthquake. The Darfield earthquake was centered approximately 40 km
west of Christchurch Central Business District (CBD) [12]. It affected mainly
unreinforced masonry buildings, induced liquefaction in wider Christchurch and
luckily, no lives were lost. In the next 15 months, the Canterbury region experi-
enced numerous aftershocks with around 60 earthquakes above Mw 5 and hun-
dreds over Mw 4, some of these such as the Mw 4.7 aftershock on 26 December
2010 resulted in further damage. Then on 22 February 2011 12.51 pm local
time, a Mw 6.2 shallow aftershock occurred directly under Christchurch CBD
at a depth of 5 km [13]. This was the most significant event in the CES. It
happened near lunch time when office and street pedestrian occupancies were at
their peaks. It caused collapses of unreinforced masonry buildings that were not
already removed from earlier aftershocks, irrecoverable damaged to many mid-
rise and high-rise buildings, and collapse of two notable concrete buildings that
led to 135 of the total 182 human casualties in the event [18]. It also prompted
liquefaction in Christchurch CBD and eastern residential areas which exacer-
bated building damage due to foundation displacement. Following this, there
were a number of other aftershocks that led to further building damage. In total
there were 11,200 aftershocks in the CES.

The CES highlighted a number of civil and earthquake engineering challenges,
importance of liquefaction, short-term heightened seismicity, rock slope stability
but also impacted the reconstruction and recovery [10]. An estimate of 70% of
the Christchurch CBD was demolished or partly reconstructed. Significant parts
of the CBD were cordoned off from public access for over 2 years from February
2011 until June 2013 [19]. The CES, being the fourth most costliest insurance
event in history globally at the time, also extensively affected the local and global
insurance sector regarding seismic building damage [20].

1.2 Seismic Insurance Following the Canterbury Earthquake
Sequence

Many countries located near tectonic plate boundaries are exposed to frequent
earthquakes. However, insurance uptake for geophysical events remains low (2%
in Italy, 5% in Turkey, 9% to 11% in Japan, 10% in Mexico, 26% in Chile, 38% in
US, and 80% in New Zealand [1]). New Zealand is an exception with an insurance
penetration of 80% [1,20]. Over the two years of the CES, major earthquake
events and multiple aftershocks led to 77 events for which more than 650,000
insurance claims have been lodged [17]. Apportionment of the losses by sector
is as follow: 59% account for the residential sector and 41% for the commercial
sector [2]. Most of the claims for residential buildings were lodged for the main
events of the 4 September 2010 and 22 February 2011. However, it was difficult
to assess the exact impact of each earthquake and aftershocks on buildings. As
the time between the event was too short to permit detailed building assessments
following each event, especially for such a large number of affected buildings. This
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also led to significant legal challenges between claimants, insurers and reinsurers
about the damage apportionment between events. Reports shows that 61% of
the residential insurance claims were settled by the Earthquake Commission
(EQC) and 39% by private insurers [2]. This distribution points the significant
participation of EQC.

1.3 The Earthquake Commission

The Earthquake Commission (EQC) is a Crown entity which has for its mission
to provide natural disaster insurance for residential property. EQC also man-
ages the Natural Disaster Fund (NDF) and promotes research and education
on solutions for reducing the impact of natural disasters. EQC involvement is
particularly visible with the EQC insurance EQCover [5]. EQCover provides
home and land insurance for natural disaster for every home that is covered by
private fire insurance. At the time of the CES, EQC provided coverage for the
first NZ$100,000 + 15% Goods and Service Tax (GST) of the building damage,
NZ$20,000 + GST for contents and land damage up to the value of the damaged
land (since 1 July 2019 the cap for residential building cover was increased to
NZ$150,000 but do not include the cover for contents anymore). EQC accessed
the NDF and its reinsurance cover to settle the claims. Before the CES, the
NDF had a value of NZ$6.1 billion (more than US$4 billion) though this has
now been significantly depleted to less than NZ$180 million following the CES
and a smaller Kaikoura earthquake in 2016 [8,11].

The CES brought major changes for New Zealand, especially for the insurance
industry [16]. EQC increased the annual levy in order to replenish the NDF
[4]. Owing to the largely unexpected losses for the private insurers since the
CES, there had been a trend of increased scrutiny of the risk profile of any
insurance cover. Private insurers are now currently applying risk-based premium
pricing for earthquake covers. This had led to increased premiums and at times
unavailability of earthquake insurance for some regions in New Zealand.

1.4 EQC’s Catastrophe Loss Models

Loss models are important for the insurance and reinsurance sector for quan-
tifying probable losses to ensure adequate provisions in case of a catastrophe.
EQC similarly relies on hazard and loss models for adjusting base cover, invest-
ment and reinsurance strategies and general planning for response to natural
catastrophe [23].

In early attempts to quantify the risk for New Zealand, EQC actuaries esti-
mated possible annual claims from historical data, and probable earthquake
intensities. With the evolution of individual computers in the 1980s, new mod-
elling opportunities arose. EQC first employed a computer-based modeling soft-
ware for loss simulation in 1993. In the past, EQC relied on two models that
work in tandem: a system dynamics model (SDM) called ‘Logjam’ for the man-
agement of the claims and a hazard and financial risk management system called
‘Minerva’ [23]. EQC employed Minerva for estimating claims numbers and losses
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following a major disaster, as well as for the predicting earthquake loss risk over
10 years in the future to design EQC levy structures and deductibles and to
maintain the reserves in the NDF. Minerva relied on an internal database as
well as external sources such as the EQC Building Costs or Aon Soils database
(Fig. 1a). An earthquake loss subsystem which entails an attenuation and a vul-
nerability model combined to simulate the losses for any one earthquake event
(Fig. 1b). Additionally, it has source models for New Zealand as well as 10-year
portfolio models that enable to predict the loss frequency data. Outputs from
these possible scenarios are stored in the Minerva database which can then be
accessed by the financial management sub-system [27]. Nowadays, EQC works
closely with reinsurance companies to ensure that New Zealand retains the nec-
essary international support in case of a disaster [7]. EQC still uses Minerva as
an impact estimation tool to predict likely losses for single events and one-year
probabilistic analyses.

Fig. 1. (a) Overall Minerva system architecture, (b) Schematic diagram of the Earth-
quake Loss sub system used in Minerva [27]

Without minimizing the great improvement that these tools offered to the
New Zealand insurance sector, limitations are still present. Since EQC offers nat-
ural disaster insurance for residential building on top of existing private insur-
ance, EQC does not retain a database of its policyholders. It thus uses New
Zealand records of real estate property as a base of its calculation [23]. This
led to limitations regarding the accuracy of the exact loss prediction per asset.
Moreover, the CES highlighted that the existing loss models did not accurately
capture liquefaction. Additionally, the models usually took the building stock as
undamaged at the time of the earthquake. But in the CES, the time between the
events was too short such that the structures could not have been repaired or
rebuilt. Cumulative damage occurred in reality but was not taken into account
by the loss models [3].
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1.5 Earthquake Commission Amendment Bill

On the 18 February 2019, the Earthquake Commission Amendment Bill 2018
(37-2) obtained royal assent [26]. The EQC Amendment Bill introduced changes
including an increase in the time limit to lodge a claim following an earthquake
event from three months to two years, the removal of the insurance cover for
content, but an increase in the cap for the building cover from NZ$100,000
to NZ$150,000. At the same time, the bill brought revisions to the information
sharing provision. EQC is now allowed to share information about the residential
property claims, which have been lodged with EQC. Homeowners and prospec-
tive buyers can now ask EQC to provide them with information on residential
property damage due to a natural disater [6]. The bill also enables EQC to share
information for public good purposes [26] which is favorable to the here pre-
sented project. While access to EQC’s property and claim database was granted
since November 2017, difficulties arose due to anonymized building coordinates.
Before March 2019, the latitude and longitude of each building in EQC’s prop-
erty database were rounded to approximately 70 m to protect privacy. This lead
to the difficulty to relate each claim with a specific street address thus making
impossible to merge EQC’s claim information with additional databases. The
Earthquake Commission Amendment Bill 2018 (37-2) loosened the rules. EQC
is now able to share the exact building location for each claim. This change in
legislation enabled new opportunities for this research. The accurate building
location enabled spatial joining and merging with new information on liquefac-
tion, soil conditions, and building characteristics.

2 Developing a Loss Prediction Model Using EQC’s
Residential Claim Database

2.1 Exploration of the Database

Following the changes brought by the 2019 Earthquake Commission Amendment
bill, EQC provided access to the claim database for research purposes only. The
exploration made in this paper uses the March 2019 version of the EQC claim
database. Over 95% of the insurance claims for the CES have been settled by that
time. However, revision of the event apportionment is still subjected to review
meaning that the division of the cost between EQC and the private insurers can
still change in future.

The EQC claim database is a wide dataset with 62 variables. It contains
the relevant information related to the claims such as the date of the event, the
opening and closing date of a claim, a unique property number, and the amount
of the claim for the building, content and land. At the time of the CES in 2010–
2011, EQC’s liability was capped to the first NZ$100,000 (+GST) of building
damage. Costs above this cap are borne by private insurers if building owner
previously subscribed to adequate insurance coverage. Private insurance could
not disclose information on private claim settlement, leaving the claim database
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for this study soft-capped at NZ$100,000 for properties with over NZ$100,000
damage.

CES insurance claims are organized according to the event date when the
damage is purported to have stemmed from. For the CES, the EQC database
entails 77 different earthquake events. Figure 2 shows the number of claims
against the 13 most significant events with more than 1,000 claims lodged. The
two most significant events are the 4 September 2010 earthquake (145,000 claims)
and 22 February 2011 aftershock (144,300 claims). Among the 62 variables, the
database also includes building features. However, not all meta-data were col-
lected in every instance and this led to incomplete data as highlighted in Fig. 3.
The original EQC database has 85% of the values missing for critical features
regarding the building characteristics (e.g. construction year, primary construc-
tion material, number of stories). Furthermore, the building characteristics may
be subjective to individual assessor’s visual observation.

Fig. 2. Number of claims per event in the Canterbury Earthquake Sequence (Source:
EQC database for claims on residential buildings)

2.2 Merging of Multiple Databases

To develop a loss prediction model using machine learning, it is necessary to
overcome the limitations of missing data for key variables. This is addressed by
combining information available in other sources. Figure 4 shows a schematic
overview of the databases that are combined with the EQC database.
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Fig. 3. Graphical overview of the data in the EQC claim database for the Canterbury
Earthquake sequence. Each column represent a variable and each claim is a row. White
areas represent missing values.

The RiskScape database [15] delivered critical information on buildings char-
acteristics. It contains detailed information on the construction type, use cate-
gory, building year, floor area, and deprivation index for every building in New
Zealand. The Canterbury maps [25] and the New Zealand Geotechnical Database
(NZGD) [9] provided records of the location and severity of liquefaction occur-
rence during CES based on interpretation of observations and LIDAR surveys.
Land Information New Zealand (LINZ) [21] and Land Resource Information Sys-
tems (LRIS) [22] databases provided further topographical and soil conditions
for the buildings of interest. Finally, the GeoNet [14] database provided strong
motion seismograph recordings of all events in the CES as recorded at 14 record-
ing stations located throughout Christchurch. This study focused on summary
data such as peak ground acceleration (PGA), peak ground velocity (PGV) and
peak ground displacement (PGD). This data enabled interpolation layers for all
Christchurch to be created through the use of GIS software. Figure 5 presents
an example of such an interpolated PGA map.

2.3 Challenges and Lessons Learned

During the process of merging the databases together, several challenges were
encountered. These challenges occurred primarily due to the non-exact matching
of the coordinates between the databases. Figure 6 shows the location of the EQC
claims compared to the actual location of the buildings taken from the RiskScape
database. From the map it is to see that the points from the two databases are
not close to each other. Additionally, for some property, it can be observed that
the EQC database entails two points meaning that multiple claims have been
lodged throughout the CES.

As shown on Fig. 4, it was first attempted to join the EQC claim data with
RiskScape information using a spatial join function implemented in GIS software.
However, due to the distance between the points from EQC and RiskScape the
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Fig. 4. Overview of the available databases and steps to the final integrated database

software was not able to successfully merge both databases together. It was thus
decided to use a spatial nearest neighbor join (NNJoin) [28]. Nevertheless, the
RiskScape database entails information for houses as well as secondary buildings
such as garages and garden sheds. As shown on Fig. 7, multiple points might be
present within the limits of one property tile. Thus, in certain cases the NNJoin
led to the join of multiple buildings on one EQC claim. To reduce the number
of buildings to the principal property it was not sufficient to filter the merged
data by distance. Fortunately the RiskScape database includes information on
the building footprint and floor area. It was then possible to select the principal
house by filtering the data for each property title on the footprint area. However,
it still left the possibility of neighbouring property being incorrectly joined up.
To overcome this shortcoming, another approach applying reverse geocoding will
be explored in future studies.

In its raw version, EQC’s claim database is claim centric. This means one row
of data corresponds to one claim, and the total damage to a property can consists
of multiple claims or multiple rows of data filed at different dates, particularly
due to the nature of multiple events in the CES. The combination of information
with additional databases did not change the structure of the original EQC claim
database. The final aggregated database retained a claim centric structure. The
aim however, is to develop a machine learning model for the loss prediction on a
building by building basis. It is thus necessary to have training data that contains
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Fig. 5. Location of the GeoNet recording stations in Christchurch and interpolation of
the PGA for the 22 February 2011 earthquake

Fig. 6. Comparison of the spatial location of the EQC claim data (blue dots) and the
building location from RiskScape database (yellow dots) (Color figure online)
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Fig. 7. Comparison of the spatial location of the EQC claim data (blue dots) and the
location of NZ street address (pink dots) (Color figure online)

only one unique ID per property. This was achieved by pivoting the database to
make it property centric.

3 Future Model Development Using Machine Learning

The combined database will be used as an input for the development of a seis-
mic loss prediction model for residential building in New Zealand. The addi-
tional variables obtained through data integration enrich EQC’s claim database.
Machine learning is applied to process many variables and ‘learn’ from a large
number of instances. Both the 4 September 2010 and 22 February 2011 events
led to more than 140,000 claims each. This combined database constitutes the
input of a machine learning model for seismic loss prediction.

In the development of the machine learning model, several algorithms such
as linear regression, decision tree, support vector machine (SVM), and random
forest will be applied. Their prediction accuracy will be compared and the algo-
rithm leading to the most accurate prediction will be retained. The machine
learning will be able to extract patterns from the integrated database and evalu-
ate the relative importance of each variables. Nevertheless, particular attention
will also be paid to human interpretability of the model. Whenever possible,
intrinsically interpretable algorithms are preferred. More complex algorithms
are always applied in combination with post hoc methods to allow for human
interpretation. The aim is to develop a ‘grey-box’ model that would produce
intermediate output, which allow modelers to look through and validate the
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predictions at various key intermediate steps. A ‘grey-box model’ would allow
different stakeholders to extract information that matters to them. For instance,
a Civil Emergency Manager could be interested in the number of inhabitable
dwellings, whilst an insurer might be interested in monetary repair cost only.

A loss model built on machine learning offers the advantage to be retrained
easily. Whenever new data becomes available, it will be possible to iterate and
improve the model accuracy. The possibility to retrain a model also offers the
opportunity to test different parameters and their influences on the final losses.

4 Conclusion

This paper demonstrated the complex process of combining data from multiple
sources using GIS. The data integration process focused on having extensive
information for each property damaged during the CES. It merged information
about the building characteristics, soil type, liquefaction occurrence and seismic
demand on top of EQC’s claim database. It resulted in a aggregated database
that can later be used to develop a seismic loss prediction model for New Zealand
using machine learning. It allows for a future analysis of the relationship between
variables that are usually not directly considered in a building loss analysis.
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Abstract. Today’s enterprise decision making relies heavily on insights
derived from vast amounts of data from different sources. To acquire
these insights, the available data must be cleaned, integrated and linked.
In this work, we focus on the problem of linking records that contain
textual descriptions of IT products.

Following the insights of domain experts about the importance of
alphanumeric substrings for IT product descriptions, we propose a train-
able similarity measure that assigns higher weight to alpha-numeric
tokens, is invariant to token order and handles typographical errors.
The measure is based on Levenshtein distance with trainable param-
eters that assign more weight to the most discriminative tokens. Not
being frequency-based, the parameters capture the semantic specificities
of IT product descriptions.

For our task we assess the performance of the most promising
lightweight similarity measures, such as (a) edit measure (Levenshtein),
(b) frequency-weighted token-based (WHIRL) similarity measure, and
(c) the measure based on BERT embeddings after unsupervised retrain-
ing. We compare them with the proposed spelling-error-tolerant and
order-indifferent hybrid similarity measure that we call the Levenshtein
tokenized measure. Using a real-world dataset, we show experimentally
that the Levenshtein tokenized measure achieves the best performance
for our task.

Keywords: Record linkage · Similarity measure · IT products

1 Introduction

Data have become a precious resource for enterprise decision making. In the IT
industry, a company’s strategical marketing decisions are often made by consider-
ing information about products installed at a customer’s sites and products that
were already sold by the company to that particular customer. Such information
is available through internal and commercial datasets which have heterogeneous
representations of items. A fundamental and necessary step to gain insights from
such datasets is the ability to link items in the various sets.
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In this paper, we focus on the task of linking IT product records, which is
crucial for company modeling and future product recommendations [17,18,20].
Linking product records is also a building block of similarity searches [5,6,15,16]
and streaming data analysis [13,14,19] for the data series of IT products. A given
product can be represented in various more or less “similar” ways in different
data sources. The differences across these representations may include formats,
synonyms, abbreviations, acronyms and even typographical errors. An example
of records to be linked is shown in Fig. 1. The challenge is to detect whether all
these representations correspond to the same unique product entity.

Fig. 1. Example of linking records.

We consider a complete dataset of all products of interest, which we call
the master dataset1. The task we wish to accomplish is to match records of
a given query dataset against the master dataset. The objective is to find the
“best” matching catalog entry for each of the items from the query dataset. Both
query and master datasets are results of human input. Their vocabulary is not
standardized, meaning that product descriptions may contain typos, omissions,
and spelling varieties. To find the best matches, we need a quantitative similarity
measure to deal with such inconsistencies.

As only a limited amount of ground-truth data is available, it is not feasible to
apply supervised machine learning and probabilistic record-linking techniques.
In this work, we consider two types of techniques:

1. Record linkage based on advanced contextual word embeddings called BERT
(bidirectional encoder representations from transformers), where all the
tokens in the product descriptions are correlated. In this case, a BERT net-
work is retrained in an unsupervised manner with the product descriptions
available in our master dataset. Then, a similarity search for a query product
is performed in the space of retrained BERT product embeddings.

2. The second type of technique are the usual rule-based approaches, where
product descriptions are regarded as a string or an arbitrary set of words.
The main benefit of these approaches is their limited number of parameters
(sometimes no parameters at all) that can be successfully trained, given small
ground-truth datasets.

1 Sometimes also called a reference dataset.
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The main contributions of this work are the following:

– We analyze and compare lightweight similarity matching techniques from
different families to address the record linkage problem for IT products.

– We assess the applicability of context-based word embeddings (BERT) for
the task of linking IT product records.

– We propose a hybrid similarity measure called the Levenshtein tokenized mea-
sure that features trainable weights for alphanumeric2 tokens. For conve-
nience, we refer to this as the LT measure.

– We demonstrate experimentally that the LT measure outperforms both the
Levenshtein measure, a frequency-weighted, token-based measure and the
BERT-based measure using real data in our deployment.

2 Related Work

State-of-the-art methods of record linkage include fuzzy or probabilistic record
linkage based on supervised machine learning and deep learning models [10,27].
In the context of our application, the amount of training data is limited, making
these models infeasible. Thus, we consider either unsupervised machine learning
methods or lightweight3 supervised methods that nevertheless allow for certain
statistical inference and parameter tuning.

In 2018, BERT improved the state-of-the-art performance of various NLP
tasks such as sentiment analysis or question answering [7]. The principle of
BERT is to apply a deep bidirectional transformer architecture to encode long
sentences. Essentially, BERT leverages two previously proposed models. The first
one is ELMo [22], an LSTM cell architecture that allows contextual word repre-
sentation. The second is the generative pre-trained transformer (OpenAI GPT)
model [23], which uses a left-to-right architecture, where every token can be
expected only in the self-attention layers of the transformer. These two models
do not allow a word to have context both to its left and its right, thus limiting
their performance in some tasks where bi-directional context is important. The
major problem when considering a bi-directional context is that a word would
itself be taken into account by a bi-directional encoder. BERT uses the “masked
language modeling” training objective to predict the missing words, given their
bidirectional context.

We use the BERT model to place IT products into the space of BERT embed-
dings and, then, to make a similarity search within that space. Although we still
suspect that the amount of training data might be too small ito retrain such a
big network, it is worth comparing this model with much easier hybrid rule-based
and machine-learning methods.

Rule-based methods for record linkage are mainly focused on optimal simi-
larity measure searches. There are numerous different algorithms that measure
the distance between strings for approximate matching. They implement a simi-
larity function that maps two input strings to a number (a similarity score) such

2 Alphanumeric tokens must contain digits and may contain letters.
3 Lightweight methods are those with a small number of trainable parameters.
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that higher numeric values indicate higher similarity. According to [3], string
similarity metrics can be largely classified into edit-distance-based metrics and
token-based metrics.

Edit-based measures express similarity by counting the number of primitive
operations (insertion, deletion, substitution and transposition) required to con-
vert one string into another. Techniques belonging to this class consider different
subsets of these operations. Here are some examples of edit-based measures:

– The Jaro similarity measure [11] is designed for short strings such as people’s
names. It uses the number of matching characters and necessary transpo-
sitions to compute the string distance. The Jaro–Winkler distance [28] is a
variation of the former, which assigns more weight to common prefixes.

– The Levenshtein similarity [12] counts the number of insertion, deletion, and
substitution operations. Usually a unit cost is assigned to a single opera-
tion, and the sum of all costs is returned as the distance between strings. A
variant of this is the Damerau–Levenshtein distance, which also allows trans-
position of two characters. Different cost values can be assigned to individual
operations, leading to the weighted Levenshtein distance. By sacrificing the
metric’s properties, the Levenshtein distance measure can be turned into a
ratio (0 ≤ r ≤ 1) such that higher ratio values indicate greater similarity.

According to the comparison studies, the Levenshtein similarity measure outper-
forms other edit-based methods in most cases [2,3]. Therefore it is widely used
in many different application scenarios that require the computation of approxi-
mate string similarity measures ranging from plagiarism [24] to iris detection [26].
An ensemble approach that uses weighted compositions of Levenshtein and Jac-
card similarity measures for company record linkage is described in [9].

We choose the Levenshtein similarity measure as the underlying method for
the approximate matching of IT product descriptions because it allows for typos
and small uncertainties of hand-written text. There are also fast implementations
of the Levenshtein similarity algorithm. It is claimed in [1] that an approximation
of Levenshtein similarity can be computed in near-linear time.

Token-based distance measures consider strings as multisets of characters:

– The Jaccard coefficient originally comes from biology and is used to compare
finite sets. It is simply the quotient of the cardinalities of the intersection and
the union of all characters or tokens in two strings.

– The Cosine similarity [25] for strings is usually computed on vocabulary
vector encodings of a string.

– The WHIRL similarity [4,8] measures the distance of two strings in terms of
cosine similarity of weighted tf–idf vectors of words. This introduces statistical
weighting for the importance of terms in a set of documents.

– Q-grams with tf–idf [8] divide a string into q-grams instead of words and
computes the weight of each word according to its tf–idf. The distance between
two strings is computed as the cosine similarity of the weighted words.

For our task of linking the records of IT products, where the strings that
describe the products can contain words (tokens) in arbitrary order, we also
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assess the performance of WHIRL, the frequency-weighted token-based dis-
tance measure. We do not assess the performance of more advanced token-based
approaches, where tokens are smaller than words, as the word semantics in a
product description are very strong, and we do not want to lose this by splitting
the words into q-grams. Instead, to capture typos and small inconsistencies, we
exploit the Levenshtein similarity for a token.

3 Hybrid Similarity Measure

In our case of matching IT product descriptions, we need a similarity measure
that is independent of a token4 order, resilient to minor typos and text incon-
sistencies, and assigns more weight to matching scores of discriminative tokens.
On the one hand, the discriminative tokens can be defined in terms of tf–idf
weighting captured by the WHIRL similarity, the efficiency of which is assessed
in the experimental section (Sect. 4). On the other hand, with our customized
similarity measure, we check the hypotheses of the domain experts in IT prod-
ucts that almost all tokens are important in the product descriptions from the
query dataset and that the alphanumeric tokens should have more weight.

In this regard we propose a hybrid similarity measure (LT measure) based on
the Levenshtein measure that is applied to tokenized product descriptions. Before
applying the similarity measure, product descriptions from a query dataset are
preprocessed by removing unnecessary punctuation, spaces and upper case, and
short tokens are merged with consecutive numeric tokens, such as “DL 360” →
“DL360”. Vendor names are preprocessed further by eliminating uninformative
stop-words such as “inc.” or “corp.”, and by using special mapping dictionaries
for brand names and acronyms such as “hp” → “hewlett packard”.

Next, a record from the query dataset q is split into tokens ti, i = 1, 2, ..., n
which are compared with the tokenized records from the master dataset. For
each token in the query record, we search for the closest token rk, k = 1, ...,m
in the master record μ and obtain a similarity score of sti .

sti = max
rk∈µ

LevenshteinScore(ti, rk). (1)

The query token scores are aggregated to yield the similarity score of the
record pair. Let us note that A is a set of alphabetic5 and N a set of alphanumeric
tokens. The indicator function 1tj∈X outputs 1, if tj ∈ X, and 0 otherwise. The
LT similarity score can be written as

LT (q, μ) =
∑n

i=1 α · sti · 1ti∈A + sti · 1ti∈N∑n
i=1 α1ti∈A + 1ti∈N

. (2)

According to the assumption of the importance of alphanumeric tokens, we
assign them a weight of = 1, whereas the alphabetic tokens are assigned a

4 We refer to tokens as words.
5 Alphabetic tokens contain only letters.
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weight of α ∈ (0, 1]. Thus, we ensure that alphabetic tokens are always assigned
a smaller or equal weight. In the experimental section (Sect. 4) we verify the
hypothesis regarding the importance of the alphanumeric tokens. We also eval-
uate the influence of α ≥ 1, when alphabetic tokens are assigned more weight.
A pair with the highest LT similarity score is considered to be the best match.

As there are certain product records that should not be matched, there is one
more parameter β that depends on the similarity score, β ∈ (0, 1]. If the closest
similar record has a similarity score greater than β, we consider a product q
from a query dataset to be matched to a product μ from the master dataset,
otherwise q is considered to be unmatched:

q ∼ μ ⇐⇒ simscore(q, μ) ≥ β, (3)

where simscore is the score of a similarity function.
In this work, we consider only one best match with the similarity score greater

than β. For other applications, top-k matches might be considered using a similar
evaluation process. Parameters α and β are to be trained for the optimal LT
similarity measure. For comparison approaches, namely Levenshtein and WHIRL
similarity measures, only β is trained.

The proposed LT measure is similar to the Mongue–Elkan method [21] in that
it also combines edit-based and token-based similarities. As discussed above, the
LT measure additionally allows more impact for discriminative tokens.

4 Experimental Evaluation

In order to assess the performance of the promising similarity-matching tech-
niques for our task of linking records, we use a labeled dataset containing 3570
records of IT products based on real examples from the datasets in our deploy-
ment. The manual labeling process is quite complicated because the master table
contains 21 k products. A total of 544 records from the labeled dataset should
be matched to particular records in the master dataset of IT products, whereas
3026 records should not be matched because they correspond to missing product
entities in the master dataset. The query records contain certain variabilities of
the product descriptions, which comes partially from human error and partially
from variations of the product descriptions. One of the real examples combining
two types of variance is shown in Fig. 1. We treat matched and unmatched prod-
ucts as two classes that should be correctly labeled: class 1 stands for matched
products and class 2 for unmatched.

The similarity-matching algorithms we compare were chosen from the best
performers in their classes and do not require extensive supervised training.
These are the Levenshtein similarity measure as a representative of edit distance,
WHIRL as a representative of token-based similarity measures and BERT-based
similarity measure as a representative of contextual unsupervised neural net-
work models. We compare these algorithms with the new customized similarity
measure (LT measure) introduced in Sect. 3. Its accuracy is measured in terms
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of precision, recall and F1 score for each class. Precision means the ratio of cor-
rectly classified products among the retrieved products of a certain class. Recall
means the ratio of correctly classified products among all the products of a cer-
tain class. F1 score is a combined accuracy measure that is the harmonic mean
of precision and recall. We measure the F1 score for each class separately and
the aggregated average F1 score for both classes.

The labeled dataset is split into training (60%) and test (40%) datasets.
First, we tune the parameters of the similarity measure on the training dataset.
The records from the training dataset are matched against the master dataset.

For our application it is often more important to retrieve all the objects
from class 1 (matched products) correctly. Thus, we choose the best similarity
measure and its parameters, such as β and α, for the LT measure (only β for
other comparison measures) by maximizing the recall of the matched class in the
first place, and then by maximizing the average F1 score. A grid search serves
to optimize the parameters.

First, for the LT measure we choose the best α and β values in the training
set to maximize the recall of the matched class. The plot of the F1 score together
with the corresponding precision and recall values for various α levels is shown
in Fig. 2. The accuracy values correspond to β with maximum recall.

Fig. 2. Precision, recall and F1 score (training set) for class 1 as a function of the
weight of alphanumeric tokens.

According to these results, α = 0.3 provides the best retrieval of IT products
from the matched class. This means that alphanumeric tokens should have a
weight that is 3.3 times higher than that of alphabetical tokens. This supports
the initial hypothesis that matching the alphanumeric tokens for IT product
descriptions, such as “DL380” in “HPE ProLiant DL380” is much more impor-
tant than matching alphabetical tokens, such as “HPE” or “Server”.

Having chosen α = 0.3, we compare the performance of LT with Levenshtein
and WHIRL similarity measures for different values of β. The plot of performance
measure variations for each similarity technique is shown in Fig. 3.
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The maximum F1 scores for class 1, and overall, are reached at different
threshold levels β for each similarity measure. For the LT measure, the optimal
β (β∗) is 0.8, for the Levenshtein measure it is β∗ = 0.5, for WHIRL it is
β∗ = 0.3 and for the BERT-based measure it is β∗ ≥ 0.3. This shows that all the
distance measures indeed capture different characteristics of similarity between
the IT product descriptions. Other statistics on the performance of these three
methods as a function of β can be found in Table 1.

(a) WHIRL similarity measure. (b) Levenshtein similarity measure.

(c) BERT-based similarity measure. (d) LT similarity measure.

Fig. 3. Performance of three similarity measures. Label c1 corresponds to the records
that should be matched and label c2 to those that should be unmatched.

Note that the maximum precision and recall values reported in Table 1 do not
necessarily correspond to maximum F1 scores. For example, maximum precision
for class 1 of the WHIRL algorithm comes with quite low recall and F1 1 values,
namely 0.19 and 0.31, respectively, which can also be verified in Fig. 3a. Thus,
having a high precision for WHIRL means that, if WHIRL identifies a product
as belonging to class 1, this is indeed a product of class 1in 92% of cases. At the
same time, owing to the low recall of 19%, WHIRL is able to identify only 19%
of class 1 products among all the products belonging to class 1.

After using trained α and β parameters for these methods, we report the
accuracy values on the test set for class 1 in Fig. 4. According to the results,
the customized hybrid LT measure outperforms the best edit distance as well as
BERT-based, token and tf–idf-based WHIRL distances.
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Table 1. Maximum performance values of matching algorithms for various β values
on the training set. Labels c1 and c2 correspond to class 1 and class 2, respectively.

Acc. measure WHIRL Levenshtein BERT-based LT

max precision c1 0.95 0.74 0.66 0.84

max recall c1 0.67 0.45 0.12 0.80

max F1 c1 0.68 0.35 0.20 0.78

max precision c2 0.99 1.00 0.96 1.00

max recall c2 1.00 0.99 0.99 0.99

max F1 c2 0.98 0.95 0.94 0.98

max aggregated F1 0.83 0.65 0.56 0.88

optimal trained β 0.3 0.5 0.4 0.8

optimal trained α – – – 0.3

Fig. 4. Precision, recall and F1 score for test set.

A similar evaluation is performed to match vendor names of the products in
query and master datasets. After vendors have been matched, product descrip-
tions are matched within a vendor. In the case of vendor matching, the LT
similarity measure also performs the best with β∗ = 0.85. For lack of space,
we do not describe the vendor matching process here. Vendor names are used
as blocks within which the product records are matched in order to reduce the
number of comparisons.

Although the BERT-based similarity measure did not outperform others,
mainly having low recall for the products that should have been matched, we
believe it can be adapted for our task in a better way. Its low recall is mainly
associated with the fact that the large network (with many parameters) was
solely retrained in the unsupervised manner with a limited amount of data. In
addition, the task of linking IT product records is quite different from standard
NLP language modeling tasks because the tokens in product descriptions are
quite specific and therefore it is difficult to see them in usual texts. Moreover,
typos and inconsistencies of encoding models for IT products create additional
challenges for standard NLP modeling problems where vocabularies are fixed
and typos are omitted.
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5 Conclusions and Future Work

We introduced a customized similarity measure called the Levenshtein tokenized
measure with the purpose to link the records of IT products. This similarity mea-
sure combines the benefits of edit and token-based measures and does not require
extensive training. It also assigns higher weights to the alphanumeric tokens in
product descriptions. This leads to higher matching accuracy for the tasks of
record linkage and duplicate detection. We also evaluated the similarity mea-
sure based on contextual word embeddings. Although the LT measure did not
outperform the proposed hybrid measure, we believe that neural unsupervised
training of similar but easier neural network architectures combined with rule-
based approaches such as our proposed LT measure might improve the accuracy
of record linkage for IT products. We will investigate this in future work.

Acknowledgments. We thank the reviewers of this paper for their valuable com-
ments, which greatly improved the paper.
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Abstract. The practical advantage of a data lake depends on the
semantic understanding of its data. This knowledge is usually not exter-
nalized, but present in the minds of the data analysts who have used
a great deal of cognitive effort to understand the semantic relationships
of the heterogeneous data sources. The SQL queries they have written
contain this hidden knowledge and should therefore serve as the foun-
dation for a self-learning system. This paper proposes a methodology
for extracting knowledge fragments from SQL queries and representing
them in an RDF-based knowledge graph. The feasibility of this app-
roach is demonstrated by a prototype implementation and evaluated
using example data. It is shown that a query-driven knowledge graph
is an appropriate tool to approximate the semantics of the data con-
tained in a data lake and to incrementally provide interactive feedback
to data analysts to help them with the formulation of queries.

Keywords: Data lake · Semantic Web · Knowledge graph · Schema
inference · Query-driven · Data integration

1 Introduction

In the age of “Big Data” the requirements for data analysis have changed drasti-
cally. Whereas in the past we had to deal with manageable amounts of data and a
limited number of well-defined data sources and structures, today we need access
to many different heterogeneous data sources, which contain large amounts of
data that have to be processed at high speed. New hardware and programming
models help to achieve the necessary performance; however, a remaining chal-
lenge is to consolidate the semantic differences resulting from the heterogeneity
of the data in order to understand their meaning. The various methods of cur-
rent research to better understand data can be summarized under Data Profiling
[10]. This paper presents a new methodology that derives semantics by analyzing
SQL query logs and makes the results available in an RDF graph.

The traditional approach to providing data for analytical purposes is the
data warehouse. All data is periodically extracted from its original data sources,
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P. Cellier and K. Driessens (Eds.): ECML PKDD 2019 Workshops, CCIS 1168, pp. 112–124, 2020.
https://doi.org/10.1007/978-3-030-43887-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43887-6_10&domain=pdf
http://orcid.org/0000-0001-5287-7187
http://orcid.org/0000-0003-1551-4824
https://doi.org/10.1007/978-3-030-43887-6_10


Query-Driven Schema Inference for the Semantic Web 113

transformed into a uniform schema and merged into a central database. This
method has proven to be successful when working with a small and fixed num-
ber of internal data sources, whose structures and meanings are well-known. If,
however, external and heterogeneous data sources shall be used, this method
is not suitable because the cognitive effort for full data integration is too high,
resulting in long delays until new data sources become available for analysis.

A modern approach is the data lake: Heterogeneous, non-integrated data made
available via a uniform interface, usually SQL. The data is not merged into a com-
mon schema, instead, the structural and semantic data integration is performed as
part of the analysis.Thedata analystmust therefore performapartial data integra-
tion within the query. In that way, the analyst gradually gains a better understand-
ing of the relationships between the heterogeneous data sources and their meaning.
Unfortunately, this complex knowledge is not externalized, so other users cannot
benefit from it. However, the SQL queries executed by the data analyst contain
hints about the meaning of the data sources used, and this hidden knowledge could
be externalized by analyzing the query log.

2 Approach

Any SQL query contains information about the schema of the tables or data
sources referenced, which can be utilized to reconstruct the schema, at least par-
tially. Each query can therefore be regarded as a partial schema definition. The
more SQL queries are known, the more can be said about the interrelationships
of their data sources. The following SQL query illustrates the idea.

select sum( s a l a r y ) , dep . id , dep . name
from person p join department dep on p . dep_id = dep . id
where dep . l o c a t i o n = ’DE’ and dep . est_year between 1994 and

2019
group by dep . id
order by dep . name ;

Listing 1.1. Example query for demonstrating schema inference

From this SQL query, the following information can be derived, both about
the schema and about the values of possible tuples.

– person and department could have a foreign key relationship.
– location has “DE” as a possible value.
– est_year can take values between 1994 and 2019.
– salary is summable - possible data types integer or real.
– name is sortable - data type may be alphanumeric.

All these data points are then stored in a knowledge graph, which is amended
each time an SQL query is analyzed. That graph can later help data analysts to
formulate new SQL queries. In Fig. 1 a simplified knowledge graph can be seen.
In order to process the collected knowledge uniformly, an ontology is defined
that is able to partially describe the schema of a data source.
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For this paper, a prototype was developed, named Pharos, after the famous
lighthouse of Alexandria. The prototype can analyze SQL query protocols using
a set of predefined mapping rules and generate an RDF graph. This prototype
was then used to assess the effectiveness of the rules set by comparing the recon-
structed schema against the already known schema of the data source.

person department

location’DE’
equals

’FR’

equal
s

Fig. 1. Partial schema information stored in a knowledge graph

3 Related Work

In the Ocean research project [12], SQL query log analysis was done using a
graph-based approach [13]. Pharos extends this approach by integrating derived
schema information into an RDF-based knowledge graph. Little research has
already been done on expressing partial schema information as an ontology.
There are several approaches for the translation of a relational schema into an
ontology using a mapping language. Two of these mapping languages are now a
W3C recommendation. Those are Direct Mapping and R2RML. An overview of
the different techniques for RDB-RDF Mapping can be found in [11] and [6]. The
focus of most mapping languages is on the integration of relational schemata, as
these are the most important in the real word. However, the existing mapping
languages are only suitable for Pharos to a limited extent, since they usually
assume the existence of a complete schema on the one hand, and offer no means of
expressing the unsharpness of a possibly contradictory partial schema definition
on the other hand.

Apart from the way in which a mapping between the schemata of the data
sources and the ontology of the knowledge graph can be expressed syntactically
and semantically, the methods on how these mappings are created can also be
distinguished. The idea behind the approaches which can be summarized under
Ontology-based Data Integration is to use a domain-specific ontology to access a
variety of heterogeneous data sources using a uniform method. The nodes and
edges of the knowledge graph are created using the content of the different data
sources. If there is only one data source, the approach is called Ontology-based
Data Access [3]. The opposite way, automatically deriving a common ontol-
ogy from the data sources, can be called Database Reverse Engineering [8] as
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it tries to understand the intentions of the database developers who designed
the schema. If both ontologies and database schemata are already given that
are required by existing applications, it is important to achieve interoperability
between the platforms and synchronize the data. This can be done using Map-
ping Discovery [7] techniques which search for similarities between databases and
ontologies. The approach taken by Pharos does not fit into any of these cate-
gories: Although a predefined ontology exists, it is not domain-specific, but serves
to describe the schema of a data source approximately, whereby this knowledge
is derived from the requests of the users of the data sources.

4 Contribution

Schema inference is achieved in Pharos by relying on a query-driven approach.
The knowledge about the semantics of a data source that is available in the minds
of data analysts is utilized by analyzing the SQL queries data analysts have
written. At first glance, this may seem paradoxical. SQL is generally associated
with relational database systems that require the definition of a schema which
can trivially retrieved by any user.

In recent years, SQL has evolved into a general query language for heteroge-
neous data sources. This has already been implemented in some systems, such
as Apache Drill. Therefore, despite the usage of SQL, the meaning and structure
of a data source is often unknown, which is especially challenging when several
heterogeneous data sources have to be integrated with each other. A data source
can be completely unstructured (a sequence of bytes), it can be in a semistruc-
tured format, such as CSV, JSON or XML, or a relational database whose logical
schema is known but the conceptual schema has been lost or is not documented.

Typically, data sources are used in some way or the other, like processed
by other programs. This means that queries do exist, which were written with
the knowledge of the meaning of the data sources. Each SQL query contains
implicit knowledge about its data source, reflecting the user’s idea of how the
data source might be structured and what the stored data might mean. The
idea behind this approach is that each SQL query provides another piece of the
puzzle to iteratively reach a better understanding of the semantics.

4.1 Schema Inference

Any SQL query with a select statement can be considered as a partial schema
definition. A subset of attributes is specified in the projection list; the use of type
casts or aggregate functions allows inference about properties of these attributes,
such as order or summability. The selection clause provides information about
the value ranges of attributes, whether they are not null, about possible valid
values, and about their data types. Join operations indicate possible primary
key-foreign key relationships, a group by could indicate a hierarchical structure.
The frequent use of distinct could also mean that an attribute is not unique.
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Pharos uses Semantic Web [2] techniques to iteratively construct a knowl-
edge graph that approximates the meaning of heterogeneous data sources. This
knowledge graph can then be used to help data analysts formulate better queries
or discover new data sources that might fit their queries. As the knowledge graph
is stored in an RDF database with a SPARQL [9] interface, it can then later eas-
ily be queried for information that is interesting for the respective application
domain.

Record
query

Apply
extraction

rules

Store
knowledge
fragments

Adapt
weights

Execute
query

Fig. 2. Steps of the schema inference process

The more SQL queries are available for a data source, the more accurately
the schema can be reconstructed. It is important to note that SQL queries can
be “wrong”, especially if they were executed in interactive mode. A user could
experiment with the data and define completely meaningless joins or compare
attributes with values that would never be valid anyway. The inferred schema
is always only an approximation to the actual schema. Since it can be assumed
that meaningful queries are executed more frequently, but wrong queries exactly
only once, an obvious step is to weight schema information in relation to the
frequency of the queries they were obtained from.

Figure 2 shows the steps that are performed when analyzing a single query.
After the user has captured the query, the extraction rules discussed above are
applied to discover the hidden knowledge. The information obtained is then
inserted into the knowledge graph as a new fragment. If the same information has
already been derived from another query, the weighting of the affected statement
is adjusted accordingly. The query is then executed by the underlying database
system.

4.2 Ontology

For enabling typesafe querying of the knowledge graph, an ontology has been
defined. The namespace used by Pharos is http://pharos.cs.fau.de. The two
central resources that can be used as the subject of a statement are tables
and attributes. A table URI is made up of http://pharos.cs.fau.de/table/
name, an attribute URI is made up of http://pharos.cs.fau.de/table/name#
attr. Attributes whose assignment to a table is unknown are assigned to the
pseudo-table %unknown. This is necessary because identifiers are not always fully
qualified. In that case, it can no longer be reliably concluded to which table an
attribute belongs. The same applies to derived attributes such as the results of
aggregate functions.

http://pharos.cs.fau.de
http://pharos.cs.fau.de/table/name
http://pharos.cs.fau.de/table/name
http://pharos.cs.fau.de/table/name#attr
http://pharos.cs.fau.de/table/name#attr
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In addition to resources, there are a number of predicates. The first and most
basic is has_attribute. It defines a table-attribute relationship, so the subject
must always be a table and the object an attribute. Attribute types can be spec-
ified with is_type. Possible values are boolean, string, char, decimal, long,
double, time, and timestamp. The type of an attribute is determined using
assignments and comparisons with literals in the query. If an explicit type con-
version takes place, the predicate casted_to is used. Comparison operations are
represented by predicates like greater_than, less_than equal or not_equal.
For mathematical expressions the predicates add, subtract, multiply, divide
and modulus exist.

The predicate has_order is used to represent an order by clause. Possible
values are the literals ascending and descending. Derived attributes are calcu-
lated during execution. Examples are the results of SQL functions such as max,
sum or replace. Those attributes are described with produced_by, following
the name of the producing function. Tables and attributes can have an assigned
alias. Since the alias is chosen by the user, it can also contain a reference to the
semantics of the data used. For this purpose, aliased_by is available. Groupings
are represented by the predicate grouped_by. If several attributes are grouped,
the grouped_by predicate appears several times in the knowledge graph. Join
operations are initiated by the joined_with predicate, regardless of the syntax
used for the join operation in the SQL query. The join condition is treated as a
regular comparison operation.

All collected statements have to be weighted to express how often schema
information could be derived from the analyzed SQL queries. Statements having
a low weight could be a false positive, while a high weight indicates that the
derived schema information is likely to be part of the actual schema. Unfortu-
nately, the RDF data model corresponds to a directed, but unweighted graph.
There is, however, an RDF concept allowing to formulate statements about
statements. A statement itself is regarded as a resource, which in turn can par-
ticipate in predicate relationships both as a subject and as an object. These
statements are called Reified Statements in RDF jargon. The type used is
called rdf:Statement with the predicates rdf:subject, rdf:predicate and
rdf:object. Resources that are instances of this type can then have any addi-
tional predicates, making it possible to add meta-information to statements. In
Pharos, the two “metapredicates” observed and source are used. observed
is a counter that indicates how often a statement was derived, while source
refers to all the queries analyzed for a statement. Listing 1.2 contains a complete
document in turtle syntax that uses Reified Statements.

[ a rdf:Statement ;
rdf:subject <http://pharos.cs.fau.de/table/employee> ;
rdf:predicate pharos:has_attribute ;
rdf:object <http://pharos.cs.fau.de/table/employee#salary> ;
pharos:observed "1"^^xsd:int ;
pharos:source "select salary from employee" ] .

Listing 1.2. Reified Statements in Pharos
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5 Prototype

The prototype developed to demonstrate the feasibility of the proposed solution
is written entirely in Java, utilizing the Apache Jena framework for RDF and
SPARQL support. It can be used as a command line tool as well as a so called
JDBC proxy driver.

In command line mode, Pharos evaluates a set of SQL files and inserts
the extracted knowledge into an RDF document. The RDF document may be
empty, or may already contain statements from an earlier analysis run that are
supplemented by the new statements. This mode does not require a running
database system and works completely offline.

The alternative mode to run Pharos is as a JDBC proxy driver. This allows
Pharos to latch into an existing SQL session, record the queries that have been
sent, and analyze them in the background. The implementation concept of the
JDBC proxy driver and parts of its source code can already be found in the
Tsunami prototype, which was already presented in the bachelor thesis of the
author [4] and a subsequent conference paper [5]. This section is therefore partly
based on these publications.

The integration of Pharos into database management systems takes place
via a JDBC proxy driver, a database driver that implements the Java inter-
face java.sql.Driver, but forwards all calls to a second JDBC driver, which
in turn establishes the connection with the actual database management sys-
tem. The driver makes it possible to intercept all calls and to manipulate them
if necessary. This procedure is transparent for the actual database application.
Each application can therefore be used together with Pharos if it supports the
manual configuration of a JDBC driver. The concept of the JDBC proxy driver
has long been used in many applications for various purposes. For Pharos,
a generic driver was developed whose functionality can be easily changed by
defining hooks. A Java application that wants to use Pharos must load the
de.fau.cs.pharos.driver.ProxyDriver driver. When establishing a connec-
tion to the database, a JDBC URL with the following format must be passed:

jdbc:pharos:original-driver :original-arguments

If, for example, an application should be used together with Pharos, which
was connected directly to Apache Drill up to now, the corresponding JDBC URL
must be structured as follows:

jdbc:pharos:org.apache.drill.jdbc.Driver:jdbc:drill:zk=local

This string is interpreted by the proxy driver. It loads the specified original
driver and passes its arguments to it. The original driver establishes the con-
nection to the actual database management system and creates a new object
which implements the java.sql.Connection interface. At this point the deco-
rator pattern [1] is used. The Connection object is decorated with a wrapper
object, which also implements the Connection interface. This is done using the
java.lang.reflect.Proxy class, which allows you to intercept method calls and
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execute user-defined code. The code to be executed is defined in its own class,
which must implement the interface java.lang.reflect.InvocationHandler.
This interface defines the method invoke(), which is executed on every method
call of the decorated object. This makes it possible to log or edit arguments or
to change the return value of the called method.

As an intermediate step, the abstract class ProxyInvocationHandler<T>
was created, which makes it easier to intercept method calls of objects of differ-
ent types at a desired location in the code. For each type to be decorated,
a subclass must be created which implements beforeCall(), afterCall(),
onMethodError(), onHandlerError() and onCleanup(). Pharos uses this
interface to intercept all strings containing SQL queries so they can be analyzed.

The user of the proxy driver gets back a decorated Connection object after
establishing the connection. A call to createStatement() would also create
a decorated object of the type java.sql.Statement. With this object, it is
possible to intercept calls from execute() and executeQuery() and to read the
first argument of these methods, which contains the SQL query. This SQL query
can now be analyzed by Pharos and the resulting information can be stored in
the knowledge graph. The SQL query is then passed on to the original driver.

This flexible architecture allows the query analysis process to be completely
transparent to the database application, since the usual JDBC interface con-
tinues to be used. For the integration of an application into Pharos, only the
driver URL has to be adapted, as shown at the beginning of this section. It
is also possible to nest several of these proxy drivers into each other or even
manipulate SQL queries, which ensures easy extensibility of the prototype.

6 Evaluation

The Pharos prototype described in the last section is now used to validate the
feasibility of the given approach. A test data set consisting of seven large SQL
queries and SQL schemata with eleven tables is used to check to what extent the
prototype is able to correctly derive the real schemata of the underlying data
sources from these exemplary queries. The data set is based on the SQL exercise
sheets of our lecture Conceptual Modeling. By analyzing the SQL queries, a
knowledge graph shall be created that describes the semantics of the database
schema. Please note that the Pharos prototype does not know the database
schema, the input data consists exclusively of SQL queries. In the beginning,
the knowledge graph is empty and gets filled with every SQL query that is
analyzed. When the analysis phase is complete, the knowledge graph can be
utilized by executing SPARQL queries.

First, the aliases found in the SQL queries are examined. Since these aliases
were assigned by users, they could include a reference to the semantics of the
respective data. The necessary SPARQL query, which determines the aliases, can
be seen in Listing 1.3, the output in Table 1. Most aliases don’t reveal anything
interesting because they are just abbreviations of the table name. It’s different
with the aliases LtrName and LtrVorn, from which one could conclude that an
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Table 1. Result of query from Listing 1.3

Attribute Alias

<http://pharos.cs.fau.de/table/abteilung> “ab”
<http://pharos.cs.fau.de/table/dienstwagen> “dw”
<http://pharos.cs.fau.de/table/dienstwagen#fahrzeugtyp_id> “Typ”
<http://pharos.cs.fau.de/table/dienstwagen#id> “DIW”
<http://pharos.cs.fau.de/table/fahrzeug> “fz”
<http://pharos.cs.fau.de/table/fahrzeughersteller> “fh”
<http://pharos.cs.fau.de/table/fahrzeugtyp> “ft”
<http://pharos.cs.fau.de/table/mitarbeiter> “mi”
<http://pharos.cs.fau.de/table/mitarbeiter> “mi1”
<http://pharos.cs.fau.de/table/mitarbeiter> “mi2”
<http://pharos.cs.fau.de/table/mitarbeiter#abteilung_id> “Abt”
<http://pharos.cs.fau.de/table/mitarbeiter#name> “LtrName”
<http://pharos.cs.fau.de/table/mitarbeiter#vorname> “LtrVorn”
<http://pharos.cs.fau.de/table/versicherungsnehmer> “vn”
<http://pharos.cs.fau.de/table/versicherungsvertrag> “vv”

employee can be a leader of something1. The two aliases mi1 and mi2 can also
point to a self-join. This hypothesis can be tested by evaluating the source
predicate of the RDF statement that points to the underlying SQL queries.

select ? a t t r i bu t e ? a l i a s where
{

?x rd f : sub j e c t ? a t t r i b u t e .
?x rd f : p r ed i c a t e pharos : a l iased_by .
?x rd f : ob j e c t ? a l i a s .

}

Listing 1.3. Schema Inference: Aliases

In the next step the data types derived from the queries are checked (see
Listing 1.4). It is noticeable that only string and long are recognized, although for
example Abschlussdatum (inception date) of the table Versicherungsvertrag
(insurance policy) is declared as date. It is apparent that the prototype needs to
be refined to better recognize strings that might represent a date (Table 2).

select ? a t t r i bu t e ? type where
{

?x rd f : sub j e c t ? a t t r i b u t e .
?x rd f : p r ed i c a t e pharos : is_type .
?x rd f : ob j e c t ? type .

}

Listing 1.4. Schema Inference: Data types

1 The German word Leiter (abbreviated as Ltr) is used for a person representing a
department or group and can be translated as director or manager in English.
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Table 2. Result of query from Listing 1.4

Attribute Type

<http://pharos.cs.fau.de/table/mitarbeiter#abteilung_id> long
<http://pharos.cs.fau.de/table/abteilung#bezeichnung> string
<http://pharos.cs.fau.de/table/mitarbeiter#ist_leiter> string
<http://pharos.cs.fau.de/table/mitarbeiter#name> string
<http://pharos.cs.fau.de/table/mitarbeiter#vorname> string
<http://pharos.cs.fau.de/table/versicherungsnehmer#eigener_kunde> string
<http://pharos.cs.fau.de/table/versicherungsvertrag#abschlussdatum> string
<http://pharos.cs.fau.de/table/versicherungsvertrag#art> string

select ? a t t r i bu t e ? value where
{

?x rd f : sub j e c t ? a t t r i b u t e .
?x rd f : p r ed i c a t e pharos : equal .
?x rd f : ob j e c t ? value .
f i l t e r ( i s L i t e r a l (? va lue ) )

}

Listing 1.5. Schema Inference: Attribute values

Now, possible values for attributes shall be found. This is done with the
SPARQL request from Listing 1.5. The filter using the function isLiteral()
ensures that no statements are included in the result set whose object is another
RDF resource (Table 3).

Table 3. Result of query from Listing 1.5

Attribute Value

<http://pharos.cs.fau.de/table/abteilung#bezeichnung> “Vertrieb”

<http://pharos.cs.fau.de/table/mitarbeiter#ist_leiter> “J”

<http://pharos.cs.fau.de/table/mitarbeiter#ist_leiter> “N”

<http://pharos.cs.fau.de/table/mitarbeiter#name> “Braun”

<http://pharos.cs.fau.de/table/mitarbeiter#vorname> “Christian”

<http://pharos.cs.fau.de/table/versicherungsnehmer#eigener_kunde> “J”

<http://pharos.cs.fau.de/table/versicherungsvertrag#art> “HP”

<http://pharos.cs.fau.de/table/versicherungsvertrag#art> “TK”

<http://pharos.cs.fau.de/table/versicherungsvertrag#art> “VK”

In Listing 1.6, the previous SPARQL query is adjusted so that only values
of the Ist_Leiter attribute of the Employees table are displayed. The result
are the values “J” and “N”, which correspond to the semantics of the database
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schema. It is of course also possible to search for attributes to which certain
values have been assigned or which have been compared with certain values. To
do this, it is needed to simply put the concrete value in place of ?value and use
a variable such as ?attribute for the rdf:subject.

select ? value where
{

?x rd f : s ub j e c t <http :// pharos . c s . fau . de/ t ab l e / m i t a rbe i t e r#
i s t_ l e i t e r > .

?x rd f : p r ed i c a t e pharos : equal .
?x rd f : ob j e c t ? value .

}

Listing 1.6. Schema Inference: Possible Values for Ist_Leiter

SPARQL queries such as the ones shown above can be used to implement an
automatic completion system within a Business Intelligence tool. The application
could continuously send SPARQL queries with the current user input to an RDF
Triple Store in the background to interactively support the user in formulating
his SQL queries after evaluating the results, such as a list of possible values when
entering the where clause.

Therefore, it can be observed that the Pharos prototype can successfully
reconstruct a partial schema of the original database and has the potential to
provide valuable insights for data analysts, which helps them in writing better
queries. The proxy driver architecture of Pharos enables thereby a minimally
invasive deployment in existing environments.

7 Future Work

There are multiple unanswered questions and possible extension points remain-
ing. Until now, SQL queries were examined only in isolation, but not in the
context of a complete session. This would open up additional possibilities for
reconstructing the mental model from the user’s mind. The weight of a node in
the knowledge graph is currently determined by counting how often a statement
could be derived from a query. Queries passed within a session or with a close
chronological distance are often semantically related to each other, which should
be considered when building the knowledge graph. A further approach would be
the determination of the semantic distance between two queries, which is the
difference between the two subsets of the knowledge graph formed by the two
queries. By using these two distance measures and by also analyzing the result
set that is returned, it could be possible to recognize trends. If the next query
produces a less satisfying result, the user will likely undo his last change and
try a new approach. In this way, the user’s intention could be better understood
and more targeted suggestions could be made.



Query-Driven Schema Inference for the Semantic Web 123

8 Summary

The objective of this paper was to develop a system to better understand the
meaning of heterogeneous data sources in data lakes. It was presumed that data
analysts who have already explored the semantics behind a data source with
great cognitive effort have already written down this hidden knowledge in the
form of their SQL queries, but have not yet explicitly externalized it. Our app-
roach therefore started with the logs of the SQL queries and tried to derive
knowledge fragments from the individual clauses of an SQL query and stored
them in a knowledge graph to be later used by data analysts to support them
with the formulation of further SQL queries.

It was decided to use Semantic Web techniques to build and query the knowl-
edge graph in order to profit from already available, mature tools and to simplify
the possibility to use the collected data in other projects. The knowledge graph
was therefore created using the Resource Definition Format (RDF); the queries
were made using the SPARQL Protocol And RDF Query Language. A new ontol-
ogy was defined for being able to express partial schema definitions in RDF. This
ontology describes the tables and attributes of a data source as resources. The
predicates correspond to the different types of knowledge fragments that can be
extracted from an SQL query, such as “attribute salary has been casted to the
data type long”. Further conclusions can be drawn from this, for example that
salary can be summed. Tables or attributes with certain desired properties can
be determined using SPARQL queries. The possible contradictions between the
different knowledge fragments was addressed with a weighting; if a fragment can
be derived several times from different queries, it receives a higher weighting.
Because an RDF graph is originally unweighted, the RDF language construct
Reified Statements was used to formulate “statements about statements”. Using
this approach, the uncertainty of information can also be expressed in the knowl-
edge graph.

To demonstrate the feasibility of this approach, the prototype Pharos was
developed, named after the famous lighthouse of Alexandria. The prototype was
implemented as a JDBC proxy driver that makes it possible for Pharos to
connect to an existing SQL session of any program that has a JDBC interface,
and thereby to record and analyze all queries in the background. The prototype
was evaluated using a test database with a known schema and a set of test
queries. The purpose of this evaluation was to check whether the prototype was
capable of reconstructing the schema on the basis of the test queries. It has
been demonstrated that with each request the prototype has come closer to the
real schema; for example, the foreign key relationships between tables have been
correctly recognized.

It has been shown that a query-driven knowledge graph is a promising tool for
better understanding the importance of data sources and making this knowledge
widely available, as well as providing a foundation on which to build further
applications.
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Abstract. Entity Resolution is a crucial task to integrate data from dif-
ferent sources to identify records that represent the same entity. Entity
resolution commonly employs supervised learning techniques based on
training data of matching and non-matching pairs of records and their
attribute similarities as represented by similarity vectors. To reduce the
amount of manual labelling to generate suitable training data, we pro-
pose a novel active learning approach that does not require any prior
knowledge about true matches and that is independent of the learning
method used. Our approach successively identifies new training examples
based on an informativeness measure for similarity vectors by considering
their relationship to already classified vectors and the uncertainty in the
similarity vector space covered by the current training set. Experiments
on several data sets show that even for a small labelling effort our app-
roach achieves comparable results to fully supervised approaches and it
can outperform previous active learning approaches for entity resolution.

Keywords: Record linkage · Entropy · Uncertainty · Interactive
labelling

1 Introduction

Entity Resolution (ER) is the task of identifying pairs of records from different
data sources that refer to the same real-world entities [4]. ER is a crucial step for
different application domains such as census analysis, national security, and the
health, life, and social sciences. The quality and usefulness of any data analysis
based on linked data highly depends upon how accurate ER was conducted.

To identify pairs of records that refer to the same entity, the attributes of
records are generally compared using similarity functions such as approximate
string comparators [4]. A crucial part of ER is the classification of two records
as a match (same entity) or non-match (different entities) based on the calcu-
lated similarities between them. Machine learning approaches [13,23] can learn
a classifier over sets of known matching and non-matching record pairs based on
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the similarities of their attributes as represented by a similarity or weight vector.
For example, comparing first name, last name, street address, city and zipcode
leads to a five-dimensional similarity vector per compared record pair [4].

To generate a classification model, labelled pairs of records are necessary.
This however might require significant manual labelling efforts [26]. Moreover,
the number of true matches (record pairs that refer to the same entity) is gen-
erally very small compared to the number of non-matching pairs because of
the quadratic nature of the comparison space [4], and therefore the selection of
labelled pairs is challenging if one wants to learn an unbiased classifier [6]. Active
learning techniques promise to minimise the labelling effort as well as to select
representative pairs that result in a good classifier.

Previous work in active learning for ER [1,2,19,26] has focused on selecting
pairs based on a certain classification model and the resulting decision bound-
ary of the learned classifier. In this paper, we propose a novel active learning
approach for ER that considers the covered similarity vector space and the rela-
tionships between similarity vectors.

The main idea of our approach is to search for new unlabelled similarity vec-
tors around informative similarity vectors that already are classified as matches
or non-matches. In this process, we introduce an informativeness measure for a
similarity vector based on the current training data set. The most informative
vectors are then used to define a search space where new vectors are selected.
We specifically make the following contributions:

– We propose an active learning technique for ER that iteratively selects new
similarity vectors for manual classification by an oracle independent of any
classifier using an informativeness measure. This measure is based on infor-
mation entropy to characterise the relationship between vectors labelled as
matches as well as non-matches. Moreover, the measure considers uncertainty
so that new areas in the similarity vector space are queried.

– Our active learning technique is able to generate training data using a budget-
limited human oracle [26], and it does not require any prior knowledge about
true matches and non-matches.

– We evaluate our active learning technique on three data sets from different
application domains. Our results show that our proposed approach outper-
forms a previous budget-limited active learning approach for ER [26] and
achieves classification quality comparable to fully supervised approaches.

In the following we discuss work related to our approach. In Sect. 3 we for-
malise the problem that we aim to solve with our approach, which we describe
in detail in Sect. 4. In Sect. 5 we then experimentally evaluate our approach and
compare it with existing active learning as well as supervised methods for ER.

2 Related Work

ER is an essential part of data integration in various domains such as e-
commerce, health and social science research, or national security. As a result,
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(a) Music (b) Google Scholar (c) Cora

Fig. 1. Examples of similarity vectors where the monotonicity assumption does not
hold. The three plots show similarity vectors of the data sets we use in our evaluation in
Sect. 5. If an axis represents more than one similarity, they are summed and normalised
into [0, 1].

ER has been intensively studied [4,11,17,18]. One challenge of ER is the quality
of the data sources and their heterogeneity [20]. In order to overcome this prob-
lem, supervised as well as unsupervised approaches have been proposed [3,13,23].
Unsupervised approaches utilise clustering methods to identify groups of simi-
lar records that refer to the same entity. In contrast, supervised ER approaches
require and use a training data set consisting of verified true matches and true
non-matches to build a classifier. In general, unsupervised methods perform
worse than supervised approaches as shown by extensive studies [12], where
supervised approaches are able to achieve high ER quality for different domains
such as consumer products, bibliographic records, and census data.

A crucial part of supervised approaches is the amount and quality of data
available for training, because a non-informative or not representative training
data set can result in biased, over-fitted, or inaccurate classifiers.

To overcome such issues, active learning techniques [1,2,19,26] have been
applied to minimise the labelling effort and to select representative record pairs
for manual classification. An active learning approach is an iterative process [5]
where in each iteration a number of informative and unlabelled training instances
are selected that are then manually classified by a human oracle. Many active
learning approaches determine informative instances using the distance between
instances [25] or their entropy [21] according to a certain classification model.

Previous work in active learning for ER [1,2] allows to specify a minimum
required precision threshold, where the aim of these approaches is to then max-
imise the recall of the resulting classifier based on the selected record pairs.
However, these approaches have the underlying assumption of monotonicity of
precision which implies that a record pair with higher similarity is more likely
to be a match than a pair with a lower similarity.

Recent work by Wang et al. [26] however has shown that the assumption
of monotonicity does not generally hold. We validate this in Fig. 1 which shows
the distribution of true matches and non-matches for three data sets according



128 V. Christen et al.

to their similarities. As can be seen, in each data set there are clear examples
that violate the monotonicity assumption. Therefore, Wang et al. proposed a
cluster based active learning approach that iteratively selects record pairs from
a cluster. In each iteration, a cluster is processed by selecting a set of record pairs
to be labelled by a human oracle. The labelled vectors are then added to the
final training data set if the purity of the current cluster is above a user defined
threshold. Otherwise, the cluster is split into two by classifying the unlabelled
vectors of the current cluster based on the current classifier. The authors showed
that their approach requires less examples than earlier active learning approaches
for ER while achieving similar classification accuracy.

In comparison to our proposed approach, the selected examples by Wang
et al. [26], and thus the resulting training data set, depend upon the applied
classification model, and therefore the resulting ER quality can vary depending
upon the classifier employed in this active learning approach.

Ngonga-Ngomo et al. [19] proposed a generation method of link specifications
representing a complex match rule using genetic programming by iteratively
improving a set of determined link specifications representing match rules. In
each iteration, new examples are selected based on the disagreement according
to the current link specification (for example, if 5 of 10 specifications classify
a match for a record pair the disagreement is high). A disadvantage of this
approach is that the generation of link specifications is not deterministic.

Related to active learning is crowd-sourced based ER [8,16,24,27], where
ambiguous or controversial matches are resolved by evaluating votes from a
crowd of human evaluators. Mozafari et al. [16] proposed two such approaches,
named Uncertainty and MinExpError, being applicable for applications beyond
ER. The main idea of these approaches is to use non-parametric bootstraping
to estimate the uncertainty of classifiers. However, crowd-sourcing techniques
that rely on a large number of human resources (often non-experts) cannot be
used for sensitive data, such as personal health, financial, crime, or government
records, where only a small number of experts have access to the data.

In contrast to previous work, our approach is independent of the classifica-
tion model used to determine informative examples, because we characterise the
informativeness of similarity vectors by considering the relationships between
vectors within the vector space, as well as the relationships between unlabelled
and already labelled vectors. Moreover, our work does not rely upon the mono-
tonicity assumption that does not hold for many ER problems [26].

3 Problem Definition

Active learning approaches aim to reduce the manual efforts required for selecting
training data, while keeping the quality of ER classification at a high level [1,2,
26]. In general, the goal of ER is to identify matches mi ∈ M for a set of records R
from one or multiple data sources, where each mi = (rx, ry), with rx, ry ∈ R and
rx �= ry. To determine a match for a record pair (rx, ry), the set of attributes
A = {A1, ..., An} characterising these records is used to calculate similarities
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s1, ..., sn between attribute values. Similarity functions fj(rx.Aj , ry.Aj), with
1 ≤ j ≤ n, are used to measure how similar the values in attribute Aj are. We
assume each similarity function fj maps into [0, 1], where 1 means two attribute
values are the same and 0 means they are completely different [4].

A similarity or weight vector w ∈ [0, 1]n consists of the calculated
n similarities between the attributes in A. For example, the two records
r1 and r2 characterised by the attributes A = {surname, address} with
r1.surname=“ashworth”, r1.address= “fern hill” and r2.surname=“ashwort”,
r2.address= “fearn hill” might results in a similarity vector w = 〈0.74, 0.78〉
when using approximate string comparison functions such as edit distance [4].

The goal of an active learning approach is to identify a set of classified simi-
larity vectors T ⊂ W for a given set of unclassified vectors W, where T consists
of matches and non-matches and is used as training data to learn a classifier.
Our approach considers a predefined budget b of the total number of similarity
vectors that can be labelled by a human oracle. The approach selects in each
iteration a predefined number k of vectors where the selection depends on the
informativeness of each vector in T and the vector space covered by T.

As detailed below, to measure the informativeness info(wi,T), of a vec-
tor wi, we consider the relationship of wi to vectors wk ∈ T\{wi}, where we
calculate the similarity between two vectors wi and wk using the Cosine simi-
larity defined as sim(wi,wk) = wi·wk

||wi||·||wk|| . We assume that the area around
a vector wi consists of more informative vectors than for a vector wk, if
info(wi,T) > info(wk,T). The area S(wi) around wi represents the search
space for selecting new unclassified vectors, where S(wi) consists of similarity
vectors w ∈ W and where the similarity sim(wi,w) is above a certain threshold
that is dynamically calculated according to the current training data set T.

4 Informativeness-Aware Active Learning

In this section, we describe our active learning approach beginning with a high-
level description. Algorithm 1 describes our informativeness-aware active learn-
ing approach for generating a training data set T. This training data set is
generated by selecting a number of similarity vectors from the set of all similar-
ity vectors W, where a total budget b is available for manual labelling of selected
similarity vectors. The set of all (unlabelled) vectors W is generated by com-
paring record pairs based on the set of attributes A and appropriate similarity
functions [4]. Initially, we select a number of similarity vectors k > 1 from W
based on selection strategies such as stratified sampling or farthest first (line 1).

Throughout the learning process, we identify in each iteration a set of infor-
mative vectors I ⊆ T according to the current training data set T. The vectors
in I are used to determine a search space for selecting k new vectors from W
that are to be labelled by the oracle in the current iteration.

To identify the set I, we characterise the informativeness of a vector con-
sidering its relationship to all vectors already in T (line 4). In particular, the
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informativeness info(w,T) of a vector w ∈ T is calculated using an entropy-
based measure considering the similarities to vectors of both the same and the
other class. Moreover, info(w,T) considers the potential search space around
w with respect to the labelled vectors from T. We describe the calculation of
informativeness for similarity vectors and their selection in Sect. 4.2 below.

Algorithm 1. Informativeness-Aware Active Learning Approach
Input:
- W: Unlabelled similarity vectors
- b: Total manual labelling budget
- k: Number of similarity vectors to select in each iteration
Output:
- T: Training data set in the form of labelled similarity vectors

1 T ←initialSelect (W, k) // Select initial training data set
2 while |T| < b do
3 // Identify informative similarity vectors of the current training data set
4 I ←identifyInformativeVectors (T)
5 // Select unlabelled similarity vectors around informative vectors
6 Wo ←selectVectors (I,W, k,T)
7 T′ ←manualClassify (Wo) // Use oracle to classify selected vectors
8 T ← T ∪ T′ // Add newly classified vectors to the overall training data set
9 W ← W \ Wo // Remove classified vectors from set of unlabelled vectors

10 return T

For each similarity vector in I, we determine a search space based on its
location in the similarity vector space and the location of the closest similarity
vector in the opposite class as determined by the Cosine similarity. We consider
each unlabelled vector contained in the search space as a candidate (line 6). The
idea of the selection process is to identify similarity vectors in uncertain areas
that are close to the boundary of matches and non-matches. The identified set
of similarity vectors Wo is then manually classified by the oracle and added as
T′ to the total training data set T (lines 7 and 8). The approach terminates
once the number of classified similarity vectors reaches the total budget b. In
the following, we describe the initial selection strategies, the computation of
informativeness, and the identification of new training vectors in more detail.

4.1 Initial Selection

Initially, we select a set of similarity vectors from the set of all unclassified vectors
W. We propose two strategies: stratified sampling and farthest first [26].

Stratified sampling splits the set of similarity vectors W into several par-
titions {P1, ..,Px}. To determine an appropriate number of partitions, x, we
apply canopy clustering [15] on the unlabelled similarity vectors W. The gen-
erated partitions are used to determine the set of k initial similarity vectors.
We iteratively select similarity vectors over the x partitions, where in each iter-
ation we select the vector wi of partition Pi that is the closest vector to its
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(a) Stratified sampling with x = 3 (b) Farthest first

Fig. 2. Examples of initial selection strategies for k = 6. The grey circles represent the
selected similarity vectors while squares show the centroids of each partition. (Color
figure online)

cluster centroid, and add wi to T. After that, we remove wi from partition Pi.
The process terminates once the number of selected similarity vectors is k.

On the other hand, the farthest first method [26] initially selects a similarity
vector at random from W and adds it to T. After that, we iteratively add
another similarity vector to T that has the maximum distance to all vectors
already in T. We repeat this process until T contains k similarity vectors.

For example, in Fig. 2a, stratified sampling selects the similarity vectors w1,
w2, w3, w5, w6 and w7. The vector space is initially split into x = 3 partitions.
After that, for each centroid (blue squares) of a partition we select the closest
two similarity vectors. In Fig. 2b, the farthest first approach randomly selects,
for example, w6 as the first similarity vector and adds it to T. After that, w8 is
selected since it is the vector farthest away from w6. The next selected vectors
are w9, w10, w20, and w16, following the same process.

4.2 Informativeness of Similarity Vectors

In order to generate a representative training data set, we propose a selection
approach that considers the informativeness of similarity vectors w ∈ T. The
goal is to determine informative classified vectors that can be used to select
unclassified vectors from W. We describe the informativeness of a similarity
vector by considering its location with respect to the vectors of the same as well
as vectors from the other class in the vector space. The intuition is that we look
for new vectors in the areas of classified vectors that are not outliers (i.e. are
not surrounded only by vectors from the other class) but are also not easy to
classify vectors (i.e. are not surrounded only by vectors from the same class).

To determine informative vectors of the current training data set T, we define
the following measure info(wj ,T), as shown in Eq. (1), for a classified vector



132 V. Christen et al.

Fig. 3. Two examples for determining the informativeness of similarity vectors w5 and
w7 of T={w1, w2, w3, w5, w6, w7}, based on the location in the vector space and
the search spaces S(w5) and S(w7) for w5 and w7, as represented by the circles. Red
coloured circles represent classified non-match similarity vectors while green coloured
circles represent classified match vectors.(Color figure online)

wj ∈ T, where sim is the Cosine similarity as described in Sect. 3. This measure
is based on the entropy of a vector wj according to all vectors in T and the
uncertainty of a vector wj . Entropy and uncertainty are equally weighted when
α = 0.5.

info(wj ,T) = α · entropy(wj ,T) + (1 − α) · uncertainty(wj ,T) (1)

Information entropy [22] can be used to describe how balanced a data set is.
In our case, the entropy of a vector wj is high if it is close to vectors represent-
ing both matches as well as non matches. To determine the entropy of wj , we
compute the aggregated similarities between wj and each vector wk of Twj

S and
Twj

O , where Twj

S and Twj

O consist of vectors that are assigned to the same class
and the other class, respectively, according to wj , as shown in Eq. (2).

entropy(wj ,T) = −
[∑

wk∈T
wj
S

sim(wj ,wk)

|T|−1 · log(
∑

wk∈T
wj
S

sim(wj ,wk)

|T|−1 )

+
∑

wk∈T
wj
O

sim(wj ,wk)

|T| · log(
∑

wk∈T
wj
O

sim(wj ,wk)

|T| )
]

(2)

The uncertainty of a vector wj is determined by the reciprocal of the intersection
between the current training data set T and the search space determined as the
area between wj and the closest vector of the opposite class as shown in Eq. (3).

uncertainty(wj ,T) =
1

1 + |T ∩ S(wj)| (3)

For example, the entropy of w7 in Fig. 3 is 0.68 calculated by Eq. (2) utilising
the aggregated similarity to vectors of the same class (w6 and w5) as 0.65+0.4 =
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Algorithm 2. Selection Method of New Similarity Vectors
Input:
- I: Set of informative similarity vectors
- T Current classified training data set
- W: Set of unlabelled similarity vectors
- k: Number of similarity vectors to be selected
Output:
- Wo: Similarity vectors selected for manual classification by oracle

1 C = ∅ // Initialise empty set of candidates
2 foreach wj ∈ I do
3 // Determine vector being closest to wj from the opposite class
4 wc ← getClosest (wj ,T)
5 δ ← sim(wj ,wc) // Calculate threshold representing the search space of wj

6 foreach wu ∈ W do
7 // Add unlabelled vector if its similarity is above the threshold δ
8 if sim(wu,wj) > δ then
9 C ← C ∪ {wu}

10 // Identify the k most diverse vectors from candidate set
11 Wo ← farthestFirstSelection (C, k)
12 return Wo

1.05, as well as to vectors of the other class (w1, w3 and w2) as 0.73 + 0.91 +
0.78 = 2.42. The intersection between the search space S(w7) and the current
training data set T is empty and therefore uncertainty(w7) = 1. Consequently,
info(w7) is equal to 0.5 · 0.68 + 0.5 · 1 = 0.84. The informativeness for w5 is
calculated similarly where its entropy is 0.697 and its uncertainty is 0.5 since
S(w5) ∩ T = {w6}, and therefore info(w5,T) = 0.6.

We add a vector wj to I if info(wj ,T) is above the mean according to the
info measure for the vectors of the current training data set T. In our running
example, the mean of info according to the current training data set is 0.61, and
so we add w7 (info = 0.84) to I, but not w5. The set I of informative vectors is
then used to select vectors of W to be manually classified and added to T.

4.3 Training Data Selection

The selection method shown in Algorithm 2 determines for each similarity vector
of I a set of unlabelled vectors from W. For this, we identify for each vector
wj ∈ I a search space S(wj) determined by the closest vector wc from the
opposite class. For example, in Fig. 4 the closest vector from the other class for
w7 is w3.

The objective is to identify new vectors in uncertain areas so that in each
iteration an increasingly more representative training data set T is generated. A
vector wu ∈ W is added to the set C of candidates if it is contained in the search
space S(wj) consisting of vectors wu where the similarity sim(wj ,wu) is larger
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Fig. 4. Two examples of selecting new similarity vectors according to the search spaces
S(w3) and S(w7) represented as circles, where w3 and w7 are the informative vectors.
Red and green coloured circles represent classified vectors. (Color figure online)

than sim(wj ,wc) (line 9). At the end of the selection method, we determine the
most k-diverse vectors of C by applying a farthest first approach (line 11).

Figure 4 shows an example for selecting vectors based on w3 and w7. The
selection method selects all vectors as candidates into C that are in the search
spaces S(w7) and S(w3), shown as circles around w3 and w7. Consequently, the
combined candidate set, C, based on w7 and w3 consists of the similarity vectors
w9, w11, w16, w18, w19 and w20.

The identified set of similarity vectors Wo are then manually classified by
an oracle and added to T (Algorithm 1, line 8). The updated training data set
is used in the next iteration to identify a new set of informative vectors. This
loop ends once the number of manually classified similarity vectors reaches the
budget b.

4.4 Complexity Analysis

We now briefly discuss the complexity of our proposed approach. Because of
the independence of our approach with regard to the actual classification model
used, its complexity only depends upon the number of unlabelled similarity
vectors, W, the total budget b, and the number k of similarity vectors to be
selected in each iteration. In each iteration, we compute the similarities between
all pairs of vectors in the current training data set, T, resulting in a complexity
of O(|T|2). Moreover, we identify for each informative similarity vector of I the
closest unlabelled similarity vectors in W, a process which requires |W| · |I|
comparisons where |I| ≤ |T| holds. At the end of each iteration, we determine
the k most diverse similarity vectors of C, where |C| ≤ |W|, resulting in a
complexity O(k · |C|). Overall, the complexity to determine similarity vectors
for one iteration is O(|T|2 + |W| · |I| + k · |C|), with |I| ≤ |T| and |C| ≤ |W|.
The number of iterations is bound by k and b as b/k.
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5 Experiments and Results

We evaluated our active learning approach using three data sets as summarised
in Table 1. The Cora and Google Scholar (GS) [12] data sets contain publica-
tion records that are to be linked, where the GS data set consists of matches
between DBLP and GS. The Music data set contains records from the Music-
Brainz database1. This data set is corrupted [10] and consists of five sources
with duplicates for 50% of the original records. To avoid the comparison of the
full Cartesian product of vectors, we applied blocking [4] and filtering [14].

Table 1. Overview of evaluated data sets.

Data set Number of
records

|W| Match:
non-match

Attributes n = |w|

Cora 1,295 286,141 1:16 Title, authors, year,
venue

4

Google Scholar 2,616/64,263 472,790 1:89 Title, authors, year,
venue

6

Music 19,375 251,715 1:16 Title, artist, album, year,
language, number

7

The ratios between matches and non-matches (with blocking and filtering
applied) shown in Table 1 highlight the imbalance of these data sets and empha-
sise the challenges of selecting a representative training data set. The similarity
vectors (of dimension n) were calculated using string comparison functions on
the different attributes shown in Table 1, such as q-gram based Jaccard and Soft-
TF/IDF [4]. To classify the similarity vectors as matches and non-matches, we
used the decision tree classifier implemented in the Weka toolkit [7].

Our proposed active learning approach is implemented in Java 1.8 and we
ran all experiments on a desktop machine equipped with an Intel Core i7-4470
CPU with 8× 3.40 GHz CPUs, and 32 GBytes of main memory. To facilitate
repeatability, both code and data sets are available from the authors.

We evaluated different parameter settings for our approach. As initiali-
sation method we used farthest first, stratified sampling and random selec-
tion, set α = [0.3, 0.4, 0.5, 0.6, 0.7] to weight the entropy and uncertainty
in Eq. (1) when determining informative similarity vectors, set the number of
selected vectors in each iteration as k = [30, 35, 40, 45, 50], and the total bud-
get b = [200, 500, 1000, 2000, 5000]. We set default values as α = 0.5, k = 30,
b = 1000 and farthest first as the initialisation method, because we obtained
good results with these settings for all three data sets based on preliminary
experiments.

1 Available at: https://musicbrainz.org.

https://musicbrainz.org
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We compared our approach with the two basic active learning approaches
Smallest Margin [25] and Entropy [21], the Uncertainty selection approach [16],
as well as the only budget limited active learning approach for ER we are aware of
(named Clu-AL) [26]. We do not compare our approach with MinExpError [16]
because this approach does not scale well for large budgets. Furthermore, we
compared our approach with both fully supervised decision tree and support
vector machine (using RBF and linear kernels) classifiers, as also used for com-
parison in previous work on active learning for ER [26].

To allow a comparative evaluation of our proposed approach with these earlier
approaches we use the F-measure [9]. We acknowledge that there are issues when
this measure is used to comparatively evaluate different ER classifiers, however
there is currently no accepted alternative to the F-measure we are aware of.

5.1 Parameter Evaluation

Figure 5a shows the obtained ER classification quality for different initialisation
methods averaged over different iteration sizes k. Farthest first slightly outper-
forms stratified sampling and random selection by 0.75% and 0.95%, respectively,
for the Cora data set, and by 3.1% and 1.8% for Google Scholar. On the other
hand, Farthest first achieves a lower F-Measure by 1.17% compared to strati-
fied sampling for the Music data set. The small differences in F-measure results
for the different initial selection strategies show that our main selection strategy
based on the search space of informative vectors performs effectively independent
of the initial set of similarity vectors.

As can be seen in Fig. 5b, changes for the weight parameter α only slightly
influence the ER classification quality, between 2% to 4%, for the three data
sets. For the Cora data set we observe a decreasing quality for α > 0.5. With an
α weight over 0.5 our approach prioritises the entropy of a vector more than the
uncertainty, and therefore the approach mainly selects vectors as informative
that are located in-between true matches and non-matches.

For all three data sets, the F-measure slightly decreases with a higher number
of selected similarity vectors, k, per iteration as shown in Fig. 5c. This indicates
that a higher number of selected similarity vectors increases the probability
for selecting non-informative vectors. An increasing budget generally leads to an
improvement of F-measure results as shown in Fig. 5d. Even for a small budget of
b = 200, for all three data sets our approach achieves F-measure results of above
80%, with an increase up to 97% for the Music data set as more informative
vectors are added to the training set. The runtime scales quadratically with
respect to the total budget as shown in Fig. 5e, however, all runtimes are below
200 seconds for budgets up to b = 1, 000.
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Fig. 5. Classification F-measure results for (a) different initialisation methods, (b)
different values for weight parameter α of info, (c) different numbers of similarity
vectors per iteration k, (d) different total budgets b, and (e) runtime for different total
budgets b.
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5.2 Comparison with Existing Approaches

We compare our active learning approach, named InfoSpace-AL, with the active
learning approaches Smallest Margin, Entropy, and Uncertainty, as well as the
clustering based active learning approach Clu-AL [26]. We also compare our
approach with supervised approaches using fully supervised SVM and decision
tree classifiers. To compare the different active learning approaches, we exper-
imentally determined a suitable number of similarity vectors to select in each
iteration, k, for each approach separately over all data sets. We use the following
values for k: Smallest Margin: 45, Entropy : 50, Uncertainty : 45, and InfoSpace-
AL: 30. The Clu-AL approach follows an adaptive strategy for determining the
number of similarity vectors it selects in each iteration.
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Fig. 6. F-measure results of our approach (named InfoSpace-AL, InfSp) as com-
pared with the other active learning approaches Entropy (Entr) [21], Smallest Margin
(SmaMa) [25], Clu-AL [26] and Uncertainty (Unce) [16].

Table 2. F-measure results of our approach (InfoSpace-AL) as compared with fully
supervised classifiers (SVM and DTree) for a budget of b = 1, 000.

Data set Dtree SVM InfoSpace-AL

Google Scholar 88.63% 91.44% 91.21%

Cora 84.09% 82.22% 89.80%

Music 96.80% 96.90% 95.30%

Figure 6 shows the F-Measure of the considered approaches according to dif-
ferent budgets b. InfoSpace-AL is the only approach that, for a small budget,
achieves an F-Measure above 80% for all three data sets. Smallest Margin and
Uncertainty result in a high variance with an increasing budget, where the F-
Measure achieved by Uncertainty is reduced by up to 8.7% from a budget of
b = 200 to b = 500. In contrast, InfoSpace-AL achieves more stable F-Measure
results compared to Uncertainty even for small budgets of 200 ≤ b ≤ 1, 000.
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InfoSpace-AL and Clu-AL both achieve high F-Measure results for each data set
for small budgets of b = 500 and b = 1, 000. However, we observe that Uncer-
tainty achieves high F-Measure values above 90% for each data set if the budget
is above b = 2, 000. To summarise, our approach achieves results comparable
to Clu-AL and Uncertainty, and it is one of the best performing approaches for
small budgets of up-to b = 1, 000.

To evaluate the two supervised approaches, we applied 10-fold cross valida-
tion. Our approach achieves comparable results compared to the fully supervised
approaches as shown in Table 2. Our informativeness-based active learning app-
roach outperforms the supervised approaches by around 5.7% in F-Measure for
the Cora data set. On the other hand, the supervised approaches achieve higher
F-Measure results for the Google Scholar and Music data sets compared to our
active learning approach. However, we emphasise that our approach achieves
these comparable results with a moderate manual classification effort, so that
the labelling effort is reduced by around 99% compared to a fully supervised
classifier that requires much larger training data sets which are commonly not
available in real-world ER applications.

6 Conclusions and Future Work

We have proposed an active learning approach for entity resolution (ER) that
iteratively selects similarity vectors into a training data set based on the infor-
mativeness of vectors for a current training data set. Unlike with existing active
learning approaches for ER, the main advantage of our approach is that it is
independent of any intermediate classification results since it determines the
search space for new vectors based on a defined informativeness measure consid-
ering the location of vectors in the vector space, as well as the uncertainty of the
search space. In each iteration, our approach selects new vectors according to the
most informative vectors. The evaluation showed that our approach can achieve
results comparable to fully supervised approaches where much larger training
data sets are required to achieve a high ER quality compared to our budget
limited approach. Moreover, our approach outperforms a previous state-of-art
active learning method for ER that is also based on a limited budget for the
number of manual classifications possible. Furthermore, our approach does also
not rely on the assumption of monotonicity of precision [26].

For future work we aim to investigate adaptive methods for determining an
optimal number k of selected similarity vectors in each iteration such that the
probability for selecting non-informative similarity vectors is minimised. We also
plan to investigate filtering methods that initially reduce the set of vectors W
to avoid the selection of non-informative vectors. Moreover, we like to integrate
metric space approaches to improve the efficiency of the approach for determining
new unlabelled similarity vectors.
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Abstract. Hierarchical classification codes are widely used in many sci-
entific fields. Such codes might reveal sensitive personal information, for
example medical conditions or occupations. This paper introduces a new
encoding technique for encrypting sensitive codes, which preserves the
hierarchical similarity of the codes. The encoding was developed for the
use of hierarchical codes in Privacy-preserving Record Linkage (PPRL).
The technique is demonstrated with real-world survey data containing
occupational codes (ISCO codes). After describing the construction and
its similarity preserving properties, Hierarchy Preserving Bloom Filters
(HPBF) are compared with positional q-grams and standard Bloom fil-
ters in a PPRL context. The method presented here is similarity preserv-
ing for hierarchies, privacy-preserving and will increase linkage quality
when used in Bloom filter-based PPRL.

Keywords: Positional Bloom filters · Hierarchy Preserving Bloom
Filters · Entity resolution · ISCO codes · Hierarchical similarity ·
PPRL

1 Introduction

In many research settings, categorising elements with hierarchical categorical
schemes is daily practice. Examples include taxonomies in biology, the classifica-
tion of occupations [18], accident statistics [6,10], entity resolution of corporations
using NACE-codes [20], or classifying diseases or causes of death with the ICD.

In data science, matching identifiers of different records (Record Linkage) is a
central challenge [2]. In most applications, linkage is done on clear text identifiers.
However, numerical attributes, dates and geographical information might also be
used for linking. Hierarchical codes can be used for directly linking data as well [9].

For many applications, such hierarchical codes often relate to individuals,
i.e. job classifications. Therefore, these codes can be sensitive, requiring special
data protection, as would be the case for recording diseases of a person. Using
these codes in a data linkage scenario would require encrypting them, which,
while retaining discriminatory power, would lead to a loss of the hierarchical
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properties of the codes. However, a proper encoding technique for hierarchical
codes should: (1) preserve the similarity of different codes if they agree on higher
levels and disagree only on lower level details, (2) improve linkage quality by
using the information contained in the hierarchy.

To the best of our knowledge, no other privacy-preserving method for the
encryption of hierarchical codes has been published so far. Therefore, in this
paper we suggest a new encoding technique for hierarchical codes. The new
method is tested for use as an additional identifier in Privacy-preserving Record
Linkage (PPRL) settings.

2 Methods

The newly suggested method for privacy-preserving hierarchy will be based on
Bloom filters, which are commonly used for linking data privately [5,26].

2.1 Bloom Filters

Bloom filters [1] (BF) are binary vectors with a length of l bits in which infor-
mation is stored. They were first devised to rapidly check set membership [1],
but have been used in other applications as well. For Privacy-preserving Record
Linkage, they were first suggested [24] to be used by splitting strings into subsets
of the length q (q-grams or n-grams). These q-grams determine a number k of
bit positions Bi ∈ {1, . . . , l} to be set to one in a bit vector initially consisting of
l zero bits. Currently, it is recommended to randomly select these bit positions
by using the input q-gram together with a password as a seed for a PRNG that
selects k random bit positions that are set to a value of one [23]. An example is
shown in Fig. 1.

The attractive main property of Bloom filters is that they can be used to
encrypt strings in a similarity-preserving way. One method to compute the sim-
ilarity of two sets A and B of bigrams is the Dice coefficient, which is calculated
as the doubled intersect of the two sets divided by the number of elements in
both sets:

D =
2|A ∩ B|
|A| + |B| . (1)

As can be seen in Fig. 1, the names Sahra and Sarah share three out of four
bigrams (subsets of q = 2). This gives an unencrypted clear-text Dice similarity
of D = 2 ∗ 3

4+ 4 = 0.75.
For Bloom filters, the Dice similarity can be computed by comparing the

sets of bit positions of two Bloom filters. Here, the Dice similarity of the Bloom
filters is very close to the unencrypted bigram similarity, as both Bloom filters
have 6 resp. 7 bits set to one, while sharing 5 bit positions. This gives a Dice
coefficient for the encrypted names of DBF = 2 ∗ 5

7+ 6 ≈ 0.77.
Bloom filters have been used for encoding numerical attributes, dates [29]

and geographical information [7] as well. Up to now, no encoding technique
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Fig. 1. Bloom filters constructed for two similar names using a length of l = 15 bits
and k = 2 hash functions for each bigram.

for encoding hierarchical codes into Bloom filters has been suggested. A naive
approach would use unigrams (q = 1). Of course, this approach would result
in the loss of all hierarchical information, so using regular Bloom filters for
hierarchical codes is not advised.

2.2 Positional BFs (PBFs)

In hierarchical codes, the positions of the code matter. For many applications,
the first code position is the top of the hierarchy and important for all following
positions, as they change the meaning of all following codes. To the best of our
knowledge, no encoding of hierarchical codes into Bloom filters has been suggested
before. However, the literature mentions some encodings of positional information
of q-grams in strings. The concatenation of an index and the q-gram at the index
position was first proposed by [21] as positional q-grams. They have, for example,
been used in conjunction with Bloom filters in genome searches [11]. For PPRL
settings, it has been used before [2,25]. The application of positional unigrams to
hierarchical codes is straightforward: Taking the ISCO-88 code 3213 as an exam-
ple, a Bloom filter using positional unigrams would hash the values 31, 22, 13, and
34 into the bit vector, where the second digit is the q-gram position.

In contrast, a standard Bloom filter would only map the elements 2, 1 and 3
of the ISCO code 3213 to the bit vector. Although positional unigrams identify
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the position of a code element, it does not reflect the relative importance of the
code positions, as the first code positions in hierarchical codes are usually more
important than the last bits. Therefore, we expect that Record Linkage using
positional q-grams yields better results than naive representations of hierarchical
information, but will still omit information on the relative importance given by
the index position.

2.3 Hierarchy Preserving Bloom Filters (HPBFs)

As described in the last section, the code positions are crucial for preserving
hierarchies, as the first position determines the meaning of all following codes.
The same is true for all following positions. Since existing encoding methods
ignore this information, a new method is proposed. It is shown in Fig. 2. The
new encoding is based on two modifications of the standard procedure.

First, the code is split into unigrams. The first code position remains as is. All
following code positions will contain all unigrams of the previous code positions.
This will give more weight to the first positions.

Code: 2143 j = 4 c = 2 l = 40

2143

H1 = HMAC(2143, key)

3

i = 1

S1 = PRNG:
Seed = H1
n = c ∗ i
Range = {1 . . . l}

214

H2 = HMAC(214, key)

4

i = 2

S2 = PRNG:
Seed = H2
n = c ∗ i
Range = {1 . . . l}

21

H3 = HMAC(21, key)

1

i = 3

S3 = PRNG:
Seed = H3
n = c ∗ i
Range = {1 . . . l}

2

H4 = HMAC(2, key)

2

i = 4

S4 = PRNG:
Seed = H4
n = c ∗ i
Range = {1 . . . l}

111011010001001010011 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 1 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

S4 = {1, 2, 5, 7, 10, 16, 19, 28}; S3 = {7, 10, 14, 17, 20, 21}; S2 = {17, 21, 26, 27}; S1 = {32, 39}

Code += Code[j - i + 1]Code += Code[j - i + 1]Code += Code[j - i + 1]Code = Code[j - i + 1]

SeedSeedSeedSeed

Fig. 2. Constructing Bloom filters for hierarchical codes from the ISCO 88-Code for
electrical engineers (2143, code length j = 4). Bloom filter length is l = 40 with a
stream length modifier of c = 2. This way, 16 bit positions are set to one. Four bit
positions are set to one by more than one PRNG stream (Si).

Second, the number of bit positions for coding is dependent on the position
of the unigram within the code. To achieve this, the first positions receive more
bits in the representation than the last positions. In the implementation shown
here, the q-grams are hashed with an HMAC [15], such as SHA-3 [19], using a
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secret key. The numeric representation of the resulting hash is used as a seed for
a PRNG, which draws bit positions in the range from 1 to l. The number of bit
positions depends on the modifier c and the position within the code.

Since the first positions are more important than the last positions, for a
code of length j, the variable i ∈ {j, j − 1, . . . , 1} is multiplied by c, giving c ∗ i
elements to draw. In Fig. 2, c is set to a value of 2, leading to eight bit positions
to be drawn for the first code position, while the last code position sets only
two bit positions to one. This way, the more important the code position in the
hierarchy, the more bits are set to one.

Choice of c. In this particular application, the range of possible values for c is
small since most codes are limited to three or four digits. This way, possible
choices for c depend on the length and the frequency distribution of the actual
codes in the space of all possible codes. Up to now, we have chosen c empirically.
Finding an optimal value of c will require additional research, since it is highly
domain-dependent.

Algorithm 1: HierarchyPreservingBloomFilters(input, pwd = 42, l =
512, c = 1)

split ← strsplit(input)
BF ← [0] ∗ l
local H
local S
for i ← length(split) downto 1

do

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Code ← Code + split[length(split) − i + 1]
H[i] ← SHA2(Code, key = pwd)
comment:Use numeric representation of hash as seed for PRNG

S[i] ← PRNG(Seed = H[i], n = c ∗ i, min = 1, max = l)
BF [S[i]] ← 1

return (BF )

The pseudocode for the suggested procedure is shown in Algorithm 1. We
denote this encoding as Hierarchy Preserving Bloom Filters (HPBF) since the
term Hierarchical Bloom Filters has been used for different data structures [4,
14,17], which are not intended do preserve hierarchies in codes. To empirically
test this encoding, three datasets were used.

2.4 Data

Each of the three datasets used in the evaluation is described briefly.

Synthetic Data. Using ICD11-codes for classifying diseases, a sample of n =
20, 000 ICD11-codes was drawn. A second sample of n = 14, 000 codes was
generated. By chance, both codes will agree or disagree on several code positions.
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PASS ISCO-Codes. The PASS panel [28] is a longitudinal study on the effects
of unemployment. A classification of the occupation is given by the ISCO-codes
(ISCO-88).

Table 1. Exemplary jobs with their ISCO-88 major groups (M), sub-major groups
(SM), minor groups (MI) and units (UN) as well as descriptions of them.

M SM MI UN Description

1 Legislators, senior officials and managers

131 General managers

1314 General managers in wholesale and retail trade

1315 General managers of restaurants and hotels

3 Technicians and associate professionals

34 Other associate professionals

341 Finance and sales associate professionals

3413 Estate agents

Exemplary ISCO codes can be seen in Table 1. The first positions are the
major groups, where the largest differences between occupational groups are
obvious. Every subsequent code position describes the occupation more precisely.

To study the reliability of the codes the occupation of each person was coded
by two independent coding units. For our purpose here, we consider this as an
example for the intended application of HPBFs: if the data collection has been
done independently, the linkage between two datasets could be enhanced by using
the encoded ISCO-codes. This allows a direct comparison of the true positive
matches attained by HPBFs compared to exact matching and (positional) Bloom
filters.

Synthetic Data for PPRL. Pairs of randomly selected ISCO-codes of the PASS
study were randomly assigned to two real-life mortality datasets [25], for which
a gold standard linkage solution existed. The personal information (first and
last name and date of birth) were encrypted using CLKs with k = 20 hash
functions and a length of l = 1000, while the ISCO-codes were encrypted as
either standard Bloom filters, HPBFs or PBFs. These were then included in
the CLKs. As the true match state was known, PPRL linkage quality using
hierarchical information in different encodings can be evaluated.

2.5 Evaluation Methods

First, evaluation methods relating to the hierarchy-preserving properties of the
encryption methods are reviewed. Next, evaluating linkage quality in a PPRL
setting is discussed.
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Hierarchical Recall and Precision. To map a hierarchical code into a tree struc-
ture, code positions form the tree leaves, where each position determines a level.
An example is shown in Fig. 3.

To calculate precision and recall for a tree-based classification, a modification
of the standard definitions of precision and recall is necessary [27]. This can best
be explained by an example (see Fig. 3). Here, the true value (dark green, denoted
as Ylabels) is compared to a second classification (dark blue, denoted as Ŷlabels).
Let the true code be ZBC, while the second classification is the code ZBD.

The hierarchical precision is then calculated as the number of agreements on
the labels (Ŷlabels ∩ Ylabels) divided by the number of labels given by a classifier
(Ŷlabels).

The hierarchical recall is calculated as the number of agreements on the labels
(Ŷlabels∩Ylabels) divided by the number of labels given by the true label (Ylabels).

Z

A

E F

B

C D

ZBC ZBD

Fig. 3. Two example codes, Ylabels = ZBC (dark green) and Ŷlabels = ZBD (dark blue)
and their resulting tree structure. The path for querying both codes is drawn with
arrows. Both codes only differ on the final node, sharing two nodes (ancestors) on a
higher hierarchical level. Note that codes containing A, E and F are used in the full
classification, but not in the example codes ZBC and ZBD. (Color figure online)

In Fig. 3, the two exemplary codes (Ylabels = ZBC and Ŷlabels = ZBD) are
compared by tracing their sub-tree within the full tree. The final nodes for both
codes are C and D. The ancestors of a given node are all nodes on the path to
the root node (Z in this case) [12]. In this example, the sets of ancestors would
be Y = {Z,B,C} and Ŷ = {Z,B,D}. For this particular set of codes, both
hierarchical precision and hierarchical recall can be calculated as:

Hierarchical Recall = Rh =
|Ŷlabels ∩ Ylabels|

|Ylabels| , (2)

and

Hierarchical Precision = Ph =
|Ŷlabels ∩ Ylabels|

|Ŷlabels|
, (3)
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with the mean of both serving as the F-Score:

Fh =
1
2
(Ph + Rh). (4)

Both Y and Ŷ agree on two ancestors ({Z,B}), giving a size of the elements in
their intersect of |Ŷlabels ∩ Ylabels| = 2. Both have three ancestors (|Ŷlabels| = 3
and |Ylabels| = 3). Therefore, Ph = Rh = Fh = 2

3 ≈ 0.667.
Please note that hierarchical precision and recall require information on the

actual position within a tree. Therefore, it can only be used if the hierarchical
information is preserved in an encoding. In the following empirical study, we
compare the pairwise similarity of hierarchical precision and recall in the clear-
text with the pairwise Dice similarity of HPBFs.

Similarity by Linkage Category. If an encryption method is hierarchy-preserving,
a full match of codes should yield a higher similarity than partial matches. In
addition, a difference in the last characters of a code should result in a higher
similarity than a difference in the first code positions, as these are usually more
important for the code hierarchy. This idea is captured by the classification of
partial matches by Klug et al. [13]. In their application, they used ICD codes
and classified the type of agreement into six classes:

1. Full match (no code positions differ)
2. Subgroups differ (last two positions disagree)
3. Subgroups and fourth character differ (diagnostic subgroups differ)
4. Only the first two characters match (only diagnostic groups match)
5. Only the first character matches (only diagnostic chapter matches)
6. Full non-match (all code positions differ)

A full match should lead to similarities close to one, while a full non-match
should give similarity values close to zero. Ideally, for all categories in between,
the similarity values should not overlap, so that the range of similarity coefficients
for each category is small. We compared Dice similarities of Bloom filters within
each category given by the classification of Klug et al. [13].

Evaluation of Linkage Quality of PPRL Methods Using Hierarchical Codes. For
linking all three Bloom filter-based PPRL methods, we used Multibit trees.
Multibit trees were suggested for chemometrics by Kristensen et al. [16] and
proposed for PPRL by Schnell [22].

The efficiency of Multibit trees for comparing Bloom filters is due to the fact
that possible pairs below a pre-set similarity threshold are not evaluated. There-
fore, Multibit trees are being used as an error-tolerant blocking method. The
implementation of Multibit trees uses the Tanimoto similarity T as a similarity
measure. T is defined as number of bits set to 1 in both vectors A and B divided
by the total number of bits set to 1 in A and B:

T (A,B) =
Σi(Ai ∧ Bi)
Σi(Ai ∨ Bi)

(5)
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Lower thresholds will result in more pair comparisons and a higher number of
false positive classifications. Conversely, the amount of true matches will increase
as well.
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Fig. 4. Outcomes for linkage pairs by classification and true matching state.

For the empirical evaluation of the suggested method, we use the traditional
evaluation criteria of precision and recall

Recall =
TP

TP + FN
, (6)

Precision =
TP

TP + FP
, (7)

F =
1
2
(Recall + Precision), (8)

as given by Fig. 4 and the corresponding Eqs. 6 to 8. Following the critique by
[8], we use the unweighted arithmetic mean of precision and recall (F ) instead
of the harmonic mean (F-Score).

3 Results

First, results concerning the hierarchy-preserving properties of the encryptions
is reported, before linkage quality in PPRL settings is addressed.

Similarity by Linkage Category. Hierarchy-preserving encryptions should lead
to similar Dice coefficients for each linkage category (as defined by [13]; see
Sect. 2.5). To test this, the pairwise Dice similarities of the Bloom filters were
computed for each encryption method (HPBF, PBF and standard BF).
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The results are shown in Fig. 5, where the box plots for each category and
encryption method are shown.
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Fig. 5. Linkage categories and Dice similarity by method (HPBF with c = 1).

The HPBFs discriminate the categories very well and with little spread. In
contrast, both the positional and standard BFs show a wide spread of Dice
coefficients for all categories but the full match category. The plot demon-
strates that Hierarchy Preserving Bloom filters have more discriminating power
of encoded hierarchical codes than previous methods. To explore the properties
of the HPBFs further, we examine the functional relationship between the Dice
coefficient of pairs of Bloom filters and the corresponding hierarchical precision
and recall of unencrypted codes.

Hierarchical Precision and Recall. For each pair of ISCO codes, the hierarchical
precision and recall were computed [27]. Since ISCO occupational codes always
have four characters, the number of ancestors will always be four. This way,
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Rh = Ph, which is why only hierarchical recall (Rh) will be reported here. If the
encryption is hierarchy-preserving, the hierarchical recall should be a monotone
function of the Dice similarity of the two encrypted codes. By comparing the
ISCO-codes of the same person generated by two different coding units, this
relationship is shown for all methods in Fig. 6.
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Fig. 6. Hierarchical recall plotted against the Dice similarity of the encrypted codes
for Hierarchy Preserving Bloom filters (HPBF), positional Bloom filters (PBF) and
Standard Bloom filters (BF). The lines shown are loess smoothers (based on n = 5, 033
code pairs) with 2 standard errors (the shaded areas).

Given this dataset, standard and positional Bloom filters perform worse than
Hierarchy Preserving Bloom filters. Furthermore, the standard errors are consid-
erably larger at lower hierarchical recall and Dice coefficient values. In contrast,
the HPBFs have smaller standard errors. Furthermore, the numeric value of the
hierarchical recall is better approximated by the Dice coefficients of the HPBFs
(the smoothed curve is much closer to the diagonal reference line).

3.1 Privacy-Preserving Record Linkage (PPRL)

In a PPRL setting, using as many stable identifiers as possible is recommended
[23]. However, hierarchical codes can be unstable, especially when relying on
humans to classify hierarchical codes. In the given dataset, two encoding units
classified the persons’ jobs independently. Of the resulting n = 5, 033 ISCO code
pairs, only 2, 497 matched exactly.
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Fig. 7. True positive ISCO code matches by method and similarity threshold.

Increasing the number of matches by accepting differing codes at lower hierar-
chical levels (for example, 3122 and 3121: Computer equipment operators (3122)
and computer assistants (3121)) is shown in Fig. 7. Here, the number of true posi-
tive matches increases substantially when lowering the level of accepted minimal
similarity. HPBFs with a stream length modifier of c = 1 show the highest
number of true positives at all similarity thresholds below 0.90.

However, even allowing for errors yields only about 3, 000 matching code
pairs. Obviously, using the ISCO code as single identifier, even when allowing
for errors, is not sufficient for linking. Therefore, we studied the performance of
HPBFs in a PPRL setting.

The bit vectors resulting from the standard, positional (PBF) and Hierarchy
Preserving Bloom filter (HPBF) encryptions are inserted with an OR operation
into standard CLKs (composite Bloom filters [23]) for names and dates of birth
(with k = 20 hash functions and l = 1000 bits1). These CLKs are evaluated as
described in Sect. 2.5.

The resulting mean of precision and recall is shown in Fig. 8. Although the
same amount of information is encoded by all three methods, the combination
of HBPFs with CLKs considerably improves the linkage quality compared to
combining PBFs with CLKs and standard Bloom filters with CLKs.

1 Above a certain minimal length, choices for l are arbitrary as long as k is adjusted
accordingly.
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4 Conclusion

In many research applications, codes representing a hierarchical relation are used.
Preserving similarities of hierarchical codes with encrypted identifiers was shown
to be possible with Hierarchy Preserving Bloom filters (HPBFs) presented in
this paper. Using these encodings in Privacy-preserving Record Linkage (PPRL)
settings, linkage quality will improve compared to previous methods for encoding
hierarchical codes.

However, security of HPBFs remains an issue. As has been shown by Christen
et al. [3], bit patterns within Bloom filters can be used as attack vectors in cryp-
tographic attacks on Bloom filter encodings. Hence, reducing only the number
of frequent Bloom filters is not sufficient to prevent attacks. The implications of
these results for methods for encoding numerical and geographical information
[7,29] have not been studied at all in the literature. Therefore, a study on the
cryptographic properties and attack methods, as well as options to prevent these
attacks for Hierarchy Preserving Bloom filters is subject of ongoing research.
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Abstract. Among network analysts, “anomaly” and “outlier” are terms
commonly associated to network attacks. Attacks are outliers (or anoma-
lies) in the sense that they exploit communication protocols with novel
infiltration techniques against which there are no defenses yet. But due to
the dynamic and heterogeneous nature of network traffic, attacks may
look like normal traffic variations. Also attackers try to make attacks
indistinguishable from normal traffic. Then, are network attacks actual
anomalies? This paper tries to answer this important question from ana-
lytical perspectives. To that end, we test the outlierness of attacks in
a recent, complete dataset for evaluating Intrusion Detection by using
five different feature vectors for network traffic representation and five
different outlier ranking algorithms. In addition, we craft a new feature
vector that maximizes the discrimination power of outlierness. Results
show that attacks are significantly more outlier than legitimate traffic—
specially in representations that profile network endpoints—, although
attack and non-attack outlierness distributions strongly overlap. Given
that network spaces are noisy and show density variations in non-attack
spaces, algorithms that measure outlierness locally are less effective than
algorithms that measure outlierness with global distance estimations.
Our research confirms that unsupervised methods are suitable for attack
detection, but also that they must be combined with methods that
leverage pre-knowledge to prevent high false positive rates. Our findings
expand the basis for using unsupervised methods in attack detection.

Keywords: Outlier detection · Network traffic analysis · Feature
selection

1 Introduction

The study of previous research on network security analysis (NTA) at network
level [13] discloses three main claimed goals: (a) attack detection, (b) anomaly
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detection, and (c) traffic classification. These three topics are not the same, but
undoubtedly overlap. For instance, traffic classifications often include classes
that are attacks. An anomaly might be an attack, but an attack does not neces-
sarily show itself to be an anomaly. The traffic features selected for the analysis
obviously play a determining role to see if a network attack expresses itself as an
anomaly or not, but also the analysis perspective is relevant [33]. For example,
Distributed Denial of Service (DDoS) attacks usually appear as anomalous peaks
in network monitors that observe traffic as time series [12]; however, they are
hardly anomalies from a spatial perspective, in which they can take a significant
portion of the total captured traffic—note that DDoS attacks try to harm targets
by bombarding them with false connection requests. Actually, DDoS and other
types of illegitimate traffic (e.g., scanning activities) have become so common
that they can rarely be considered anomalies in most networks any more [11,22].

When the term “outlier” comes into play, things become even more confusing.
“Anomaly” and “outlier” are not smooth synonyms, and even the description of
outlier can be ambiguous in practical implementations [39]. For instance, it is
common to find small groups of close traffic instances that are distant from the
data bulk. Together, they form an outlying cluster ; individually, instances can be
deemed as outliers or not. Even in spite of such ambiguities, in related research
the meaning of anomaly is commonly assumed without discussion. Carefully
reviewing such works (and excluding time series analysis), the empirical meaning
of anomaly inferred from experiments habitually corresponds to network attacks
that show outlierness. Some authors identify attacks as anomalies and perform
their detection with outlier-based techniques [6,18,38]. Also many outlier-based
detection proposals appear in other field surveys [5,8,25].

But, do network attacks actually show themselves as outliers or outlying clus-
ters? This is the crux that will make unsupervised methods effective for attack
detection or not. Related works take it for granted, but the question must be ana-
lytically answered, not in vain most attacks are designed to pass unperceived. As
a starting point, we highly recommend that research works on anomaly detection
in NTA clearly establish their definition of anomaly. Otherwise, whenever theo-
retical proposals are implemented into real scenarios—far from lab conditions—
such methods are prone to trigger detection alarms in view of many harmless,
meaningless, noisy instances. This discussion is critical because precisely unac-
ceptable high false positives rates is what slows down the adoption of machine
learning in real-world network attack detectors [15,17]. If this is true for super-
vised machine learning, it is even more severe for unsupervised methods, which
are also commonly evaluated with the same Intrusion Detection System (IDS)
datasets (e.g., [6,18,38]). Note that IDS datasets are usually not designed to
match realistic ratios between normal and attack traffic, but to offer a variety of
attack classes with sufficient representation in the dataset [16]. This is not ideal
for unsupervised methods because they work by learning from the sample place-
ment and space geometries drawn by the analyzed data. From here, and without
considering irrelevant, easy-to-detect, illegitimate traffic that has become com-
mon, it naturally follows that the real-world ratio attack/non-attack is going to
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be considerably lower than in IDS datasets. Therefore, the probabilities for a
detected anomaly to be an actual attack drop dramatically. How the base-rate
fallacy affects IDS was already advised by Axelsson in [4].

The previous observations do not imply that unsupervised methods are not
valid for attack detection; instead, they introduce the necessity for evaluating
the outlierness of network attacks and to investigate if unsupervised methods
suffice by themselves for the actual detection in real implementations. Note
that signature-based detection or supervised approaches are limited in detect-
ing novel threats and zero-day attacks; therefore, the contribution of unsuper-
vised approaches is deemed highly valuable. A last challenge that unsupervised
methods must additionally face is their traditional high computational complex-
ity. Most popular outlier detection algorithms are naturally instance-based and
show considerable time and memory overloads [9,30]. Network traffic analysis
for attack detection must be fast and lightweight, since it must deal with ever-
growing volumes of traffic (big data, streaming data) and is expected to promptly
react when malicious instances are discovered.

The main contribution of this paper is answering the following questions:

– Are network attacks outliers? We study five popular and recent space
representations used in NTA security applications and experiment with five
popular and recent unsupervised outlier detection algorithms in order to elu-
cidate if network traffic attacks show a distinguishable outlier nature.

– What are the most suitable feature representations for attack detec-
tion? We investigate which existing feature vectors perform best in conjunc-
tion with outlier detection.

– Is the observed outlierness sufficient as indicator for implementing
real-world attack detection? We discuss if the detected outlierness suffices
for implementing effective detectors in real environments. Additionally, we
propose a new vector that maximizes attack/non-attack separation.

Unlike most papers that apply outlier detection in NTA, we do not use the
KDD-Cup98’, KDD-Cup99’ or NSL-KDD datasets, which have not been repre-
sentative any more for a long time. Moreover, such datasets use a set of ad-hoc
features whose extraction is obscure, costly and unfeasible for modern lightweight
detectors. Instead, our experiments are conducted on the CICIDS2017 dataset
[34], which is one of the most complete, reliable IDS evaluation datasets to date.
As for the selected features, we study five vector spaces created by the CAIA
[36], CISCO-Joy [3], Consensus [14], TA [22] and AGM [21] formats. Outlierness
ranks are obtained by using five different algorithms: k-nearest neighbours [32],
LOF [7], HBOS [19], isolation Forest [27], and SDO [23]. Scripts and experiments
are openly available for replication and reuse in [10].

2 Problem Spaces in NTA

When considering traffic at network level, the possibilities for extracting fea-
tures are immense. Irrespective of the specific features, NTA is mostly faced by
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constructing homogeneous vectors from different perspectives, therefore leading
to problem spaces where instances correspond to:

– Packets, meaning the contents of every datagram exchanged between two
network devices. This type of analysis allows dpi (deep packet inspection),
which has become obsolete due to high data rates, privacy concerns and
encryption. Hence, packet based analysis is computationally too demanding
and unable to explore modern network traffic with reasonable costs.

– Flows. The definition of a traffic flow given by IPFIX [1] is extremely flexible.
A flow is defined “as a set of packets or frames passing an Observation Point
in the network during a certain time interval. All packets belonging to a
particular Flow have a set of common properties”, which can vary depending
on the use case. We underline two special cases: (a) Application-based Flows.
For the last three decades flows have been principally defined with the 5-tuple
key: [IP source, IP destination, source Port, destination Port, Protocol], which
states the communication for a specific application between endpoints, e.g.,
a TCP connection. However, the use of the 5-tuple is not justified in terms
of security, it is simply a reminiscence from network policies implemented in
the 1990’s that have become a de facto standard. A myriad of works in NTA
for security assume the 5-tuple key (e.g., [24,26,35–37]). (b) Endpoint-based
Flows. Yet rare in literature, a flow key can also be a 1-tuple, i.e., using the
endpoint address as flow key (either IP source or IP destination). In such
cases, a flow summarizes the behavior of a single device (in its role of source
or destination) for a defined observation window.

– Aggregated flows. In this scenario, a set of features are timely aggregated to
reveal the current status of the network as a whole (e.g., number of sent pack-
ets per second). Such approach usually analyzes time series and is effective
to quickly detect attacks and events that have a strong impact in the net-
work. However, this top perspective is useless to capture subtle, more selective
attacks or threats that only aim at one or few destinations, or show a slow
propagation. Also, tracking back attack sources is a challenging task.

We discard the analysis of packets and aggregated flows due to the rea-
sons given above and focus on flows to capture application or device behavior
(5-tuple and 1-tuple flow key respectively). We select a set of feature vectors that
are popular in the NTA literature or have been recently proposed. They are:

– CAIA vector. As coined in [28], we use CAIA to refer to the feature vector
originally proposed by Williams et al. [36]. The same vector has been com-
monly applied (as defined or with minimal variations) in the context of NTA,
specifically when using machine learning-based solutions, e.g., [26,35,37]. The
original CAIA vector stores bidirectional information and consists of 22 fea-
tures. We extended it to 30 features as in [26].

– Consensus vector. In [14] a set of features for NTA are selected based
on a meta-study including 71 of the most relevant, cited papers in NTA.
This work concludes with 12 relevant features. We extend them based on the
considerations discussed in [14] and [28], obtaining a final 20-feature vector.
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Table 1. Studied NTA representations (feature vectors).
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Object: Source hosts (unidirectional)

Key: srcIP; Obs.window: 10sec

Features (22 total):

#dstIP

mode dstIP1

pkts mode dstIP

#srcPort

mode srcPort

pkts mode srcPort

#dstPort

mode dstPort

pkts mode dstPort

#protocol

mode protocol

pkts mode protocol

#TTL

mode TTL

pkts mode TTL

#TCPflag

mode TCPflag

pkts mode TCPflag

#pktLength

mode pktLength

pkts mode pktLength
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Object: Flows (unidirectional)

Key: srcIP, dstIP, protocol; Obs.window/timeout: 60sec

Features (13 total)

srcPort

dstPort

protocol

bytes

pkts

maxton

minton

maxtoff

mintoff

interval

seconds-active

bytes per seconds-active

pkts per seconds-active

C
A

IA

Object: Flows (bidirectional)

Key: srcIP, dstIP, srcPort, dstPort, protocol; Idle/active timeout: 300sec/1800sec

Features (30 total):

protocol

duration

srcPkts

srcBytes

dstPkts

dstBytes

min srcPktLength

mean srcPktLength

max srcPktLength

stdev srcPktLength

min dstPktLength

mean dstPktLength

max dstPktLength

stdev dstPktLength

min srcPktIAT

mean srcPktIAT

max srcPktIAT

stdev srcPktIAT

min dstPktIAT

mean dstPktIAT

max dstPktIAT

stdev dstPktIAT

#srcTCPflag:syn

#srcTCPflag:ack

#srcTCPflag:fin

#srcTCPflag:cwr

#dstTCPflag:syn

#dstTCPflag:ack

#dstTCPflag:fin

#dstTCPflag:cwr
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Object: Flows (bidirectional)

Key: srcIP, dstIP, srcPort, dstPort, protocol; Idle/active timeout: 300sec/1800sec

Features (20 total):

srcBytes

srcPkts

dstBytes

dstPkts

srcPort

dstPort

protocol

duration

max srcPktLength

mode srcPktLength

mode dstPktLength

min srcPktLength

median srcPktIAT

variance srcPktIAT

max dstPktLength

median srcPktLength

median dstPktLength

min dstPktLength

median dstPktIAT

variance dstPktIAT

C
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Object: Flows (bidirectional)

Key: srcIP, dstIP, srcPort, dstPort, protocol; Idle/active timeout: 300sec/1800sec

Features (650 total):

srcPort

dstPort

packet length sequence (100 features)

IAT sequence (100 features)

byte distribution (256 features)

public key length

#certificates

#SAN

offered cipherSuites (139 features)

selected cipherSuites (26 features)

offered TLSExtensions (13 features)

accepted TLS extensions (11)

1: Removed from the analysis. 2: The Cisco-Joy tool can extract more features. We removed features

that did not contain usable information in the CICIDS2017 dataset.

– Cisco-Joy vector. Anderson et al. recently proposed this feature vector,
which is able to discriminate attacks in supervised learning and is suitable
for encrypted traffic [2,3]. It contains 650 features and can be easily extracted
by using the Cisco/Joy open tool, https://github.com/cisco/joy.

– Time-Activity vector (TA). The Time-Activity vector [22] uses a 3/5-
tuple key and is unidirectional. It was devised to profile flows from a time-
behavioral perspective, allowing lightweight characterization of traffic by
means of clustering methods. The final vector is formed by 13 features.

https://github.com/cisco/joy
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– AGM vector. Designed for the discovery of patterns in the Internet Back-
ground Radiation [21], this vector allows profiling traffic sources or destina-
tions. The basic AGM vector contains 22 features, which are extended after
removing nominal features or transforming them into dummy variables if dis-
tributions are concentrated on few values (e.g., more than 90% of traffic uses
TCP, UDP or ICMP). The extended AGM vector is purely numerical.

The CAIA, Consensus, TA, and AGM vectors are compared in [28] for super-
vised attack detection with the UNSW-NB15 dataset [29]. Table 1 shows vector
features in the format used here. We apply the nomenclature described in [28].
We refer the interested reader to the original papers for detailed descriptions.

Fig. 1. A quick overview of how the studied algorithms estimate the outlierness (oa)
of a random point a.

3 Outlier Detection Algorithms

In this section we briefly introduce the used outlier detection algorithms (a visual
overview of the different approaches is shown in Fig. 1):

kNN. The k-nearest neighbor distance (kNN) has been used for measuring
object isolation in [32], where each instance outlierness is ranked based on the
distance to its kth nearest neighbor. kNN is an instance-based method where
estimations are locally approximated. It does not require training and the com-
putational effort appears every time that a new instance must be evaluated and
compared with the previous ones. kNN requires setting a k parameter.

LOF. The Local Outlier Factor algorithm (LOF) entailed a considerable
enhancement in the task of measuring instance outlierness within data [7], gen-
erating a varied family of derived algorithms [33]. LOF compares the density
estimate (Di) based on the k-nearest neighbors with the density estimates for
each of the k-nearest neighbors, thus adapting to different local densities. LOF
is also an instance-based method and does not require training. In a recent com-
parison, LOF has shown to be a good benchmark solution, which, in general,
has not been significantly outperformed by more recent methods in terms of
accuracy [9]. LOF uses the MinPts parameter, which is equivalent to k in kNN.

HBOS. Histogram-Based Outlier Detection (HBOS) [19] is a simple, straight-
forward algorithm based on evaluating the feature empirical distributions of the



Are Network Attacks Outliers? 165

analyzed dataset (i.e., histograms for continuous features and frequency tables
for nominal features). Since it assumes feature independence, it sacrifices preci-
sion to achieve fast performances in linear times. Outlierness is calculated based
on the relative position of the instance feature values with regard to the obtained
empirical distributions (hist). HBOS does not require parameterization, but for
the histogram binning, which allows static bin-widths (k equal width bins) or
dynamic bin-widths (in every bin falls N/k instances, being N the total number
of instances). In our experiments, bins-widths are “static”.

iForest. Isolation Forest (iForest) [27] is a model-based outlier ranking method
that shows linear time complexity with low memory requirements even in front of
large datasets. The operation principle is as follows: for a given instance, features
and splits are randomly selected in a procedure that progressively reduces the
range of feature values until the instance is isolated (i.e., the only instance in
the remaining subspace). The number of splits defines the outlierness value of
the instance, since outliers are expected to be easier to isolate (less splits) than
inliers (more splits). The partitioning procedure can be abstracted as a tree (an
iTree), therefore an iForest provides the weighted evaluations of a set of iTrees.
During training, iTrees are built using the training dataset; in application phases,
instances pass through iTrees to obtain outlierness scores. iForest parameters are:
t, the number of estimators or iTrees; ψ, the sample size to train every iTree;
and f , number of features passed to each iTree.

SDO. The Sparse Data Observers (SDO) algorithm is a model-based unsuper-
vised outlier ranking method that has been designed to provide fast evaluations
and be embedded in autonomous frameworks [23]. SDO is conceived to avoid
the common bottleneck problems implied by traditional instance-based outlier
detection when a continuous evaluation of incoming instances is demanded. SDO
creates a low density data model by sampling a training population. During
training, model instances—called observers (O)—are evaluated in a way that
low-active observers are removed. Thus, the low density model becomes free of
potential outliers. In application phases, observers provide instance outlierness
based on joined distance estimations. SDO is light, easy to tune, and makes the
most of pre-knowledge. SDO parameters are intuitive and stable, rule of thumb
parameterization works well in most applications. Parameters are: k, the number
of observers; x, the number of closest observers that evaluate every instance; and
q (or qv), which establishes the threshold for the removal of low-active observers.

4 Dataset

The CICIDS2017 dataset [34] was recently published by the Canadian Institute
for Cybersecurity (CIC). The CIC has developed some of the most widely-used
IDS and IPS (Intrusion Prevention Systems) datasets in research for the last
decades, including NSL-KDD and ISCX series. The CICIDS2017 dataset accom-
plishes the quality criteria that IDS/IPS datasets must meet in order to provide
suitable evaluation tests. These criteria [16] control that data is complete, realis-
tic, representative, diverse, and heterogeneous in terms of protocols, attacks, and
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legitimate uses, as well as in formats and supporting metadata. In CICIDS2017,
attack families are implemented according to the most common security threats
reported by McAfee in 2016, including: Web based, Brute force, DoS, DDoS,
Infiltration, Heart-bleed, Bot, and Scan. The CICIDS2017 dataset is available
at: https://www.unb.ca/cic/datasets/ids-2017.html.

Table 2. Used parameters in the experiments.

Consensus CAIA AGM TA Cisco-Joy

kNN k = 2 k = 2 k = 15 k = 3 k = 15

LOF MinPts = 5 MinPts = 5 MinPts = 18 MinPts = 5 MinPts = 39

HBOS k = 20 k = 22 k = 992 k = 21 k = 20

iForest t = 50, f = 37 t = 95, f = 26 t = 96, f = 2 t = 64, f = 1 t = 73, f = 428

ψ = 860 ψ = 873 ψ = 696 ψ = 529 ψ = 281

SDO k = 553, x = 9 k = 396, x = 5 k = 823, x = 11 k = 926, x = 23 k = 281, x = 11

qv = 0.2 qv = 0.25 qv = 0.2 qv = 0.5 qv = 0.2

5 Experiments

This section describes the conducted experiments. Henceforth, we refer to the
feature formats as the subset F and the used algorithms as the subset A:

F = {CAIA, Consensus, TA, Cisco-Joy, AGM} (1)

A = {kNN, LOF, HBOS, iForest, SDO} (2)

We describe the experiments step-by-step:

1. Flow extraction
From CICIDS2017 pcaps, we extracted features to match the studied represen-
tations. Therefore, for each vector format we obtained a structured dataset,
Di = Mi × (Ni + 2), where i ∈ F , Mi is the respective number of instances
(flows), and Ni + 2 is the respective number of features plus a binary label
(attack, non-attack) and a multiclass label (attack family). Feature vectors
were extracted with a feature extractor based on Golang1.
2. Cleaning and normalization
We removed nominal features from preprocessed datasets (see Table 1), except
for the “Protocol”, which was transformed into the dummies “TCP”, “UDP”,
“ICMP” and “others”. Datasets were min-max normalized:

Zi = normalize
(
remove nominal(Di)

)
(3)

1 https://golang.org/.

https://www.unb.ca/cic/datasets/ids-2017.html
https://golang.org/
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3. Stratified sampling
Datasets were sampled and a 5% subset was drawn for hyperparameter search
and tuning: Z ′

i = strat sample.05(Zi), where i ∈ F . The sampling process was
stratified with respect to the multiclass labels to keep balanced distributions.
4. Hyperparameter search
For each vector format (i ∈ F ) and algorithm (j ∈ A), hyperparameter search
was conducted by means of evolutionary algorithms2:

parami,j = hyperparam search(Z ′
i, j) (4)

Obtained hyperparameters are shown in Table 2.
5. Univariate analysis of outlierness ranks
We split each Zi dataset into a non-attack (Zin) and attack subsets (Zia).
Later, measures of central tendency and histograms over Zin and Zia were
extracted with each algorithm j.
6. Analysis with outlier ranking metrics
For each dataset Zi, the performance of each algorithm j was evaluated with
the metrics defined in Sect. 6.
7. Feature selection for maximizing outlierness
Finally, CAIA, Consensus and AGM formats (i.e., the best ones in previ-
ous experiments) were joined, vectors were extracted from pcaps, and a 5%
stratified sample was drawn, obtaining the final Z ′

F dataset. By means of
a forward wrapper with SDO as nested algorithm, features were gradually
selected to find a set that maximizes the separation between attack and non-
attack outlierness. ROC-AUC (Sect. 6) was selected as optimization criterion.
The obtained vector was named “OptOut” (from Optimized Outlierness), it
is shown in Table 4. Steps 4, 5 and 6 were repeated for the OptOut vector.

6 Outlier Detection Evaluation Indices

For evaluating algorithms, we have used the same metrics applied by Campos
et al. in their recent outlier detection algorithm comparison [9]. We refer the
reader to this paper for further explanations about the performance indices.
They are: P@n, precision at the top n ranks; AdjP@n, P@n adjusted for chance;
AP, average precision; AdjAP, AP adjusted for chance; MaxF1, Maximum F1
score [31]; AdjMF1, MaxF1 score adjusted for chance; ROC-AUC, area under
the ROC curve. Indices named adjusted are based on the recommendations given
by Hubert et al. [20]. Following Campos et al. [9], in our experiments P@n and
adjP@n define n as the number of instances of labeled outliers in the dataset.

2 https://github.com/rsteca/sklearn-deap.

https://github.com/rsteca/sklearn-deap
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7 Results and Discussion

We proceed to show results and discuss the questions raised in the Introduction.

7.1 Are Network Attacks Outliers?

Figure 2 shows box plots obtained from the univariate analysis of outlierness
ranks step. For the sake of visibility, extreme values (top outliers) have been
removed and outlierness ranks have been normalized. Upper and lower box
boundaries correspond to 75th and 25th percentiles respectively, whereas upper
and lower whiskers correspond to 95th and 5th percentiles. Additionally, we
show some histograms in Fig. 3 (attack and non-attack empirical densities are
equalized by normalizing histograms). There are four immediate evidences that
stand out from the statistics:

(a) The differences between attack and non-attack instances in terms of out-
lierness for the Cisco-Joy are useless for discriminating attacks. Note that
boxplots and distributions overlap or non-attacks show higher values.

(b) Regardless of the used algorithm, as a general rule attacks show higher
outlierness than non-attack instances when using the CAIA, TA or AGM
vectors, being AGM the format that shows major differences.

(c) Attack and non-attack outlierness ranges significantly overlap.
(d) SDO shows the best performances, followed by HBOS.

The inability of the Cisco-Joy format for discriminating attacks based on outlier-
ness (a) was expected since this vector uses a considerably high dimensional space
with a majority of binary features, drawing an input space highly unsuitable for
methods based on Euclidean metrics. On the other hand, the preponderance of

Fig. 2. Box plots for outlierness ranks.
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SDO and HBOS (d), when considered together with observations (b) and (c),
suggests that network attacks tend to be global, but clustered outliers, and not
local outliers. The spaces drawn by the feature vectors are highly noisy and rich
in density variations, and such noise and multiple densities are mainly generated
by legitimate traffic. Network attacks tend to set small clusters relatively far
from the data bulk. Such conditions favor non-local distance-based methods like
HBOS and SDO. In any case, the significant range overlap (c) makes detection
solely based on outlier ranking algorithms hardly suitable for real applications,
in which high false positive rates would be unacceptable.

7.2 What Are the Best Feature Vectors for the Task?

Table 3 shows the performance of algorithms for each feature vector with the
indices defined in Sect. 6. As for the algorithms, the evaluation measures corrob-
orate the findings discussed in Sect. 7.1, confirming the prevalence of HBOS and
SDO. On the other hand, noteworthy is the fact that the AGM vector shows
high ROC-AUC and low values of other indices, whereas CAIA and Consen-
sus show low ROC-AUC but higher values for the other indices when compared
with AGM. This fact suggest that, in the AGM case, most attacks show higher
outlierness than most non-attack instances, but still top outlierness values cor-
respond to legitimate traffic. Contrarily, in the CAIA and Consensus cases most
attacks and most non-attacks show similar outlierness, but top outlier positions
are considerably taken by attacks (note that attacks in the dataset are negligible
compared to normal instances). Such circumstance favors the use of the AGM
vector to build a general purpose detector, but CAIA or Consensus as a sup-
port detector for evaluating only extreme outlierness cases; more interestingly, it
suggests that vector formats are complementary and a new feature vector that
maximizes attack outlierness can be built from them.

Fig. 3. Normalized histograms (top 5% outliers removed for a better visualization).
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7.3 Can We Improve Vectors and Use Them in Real Detection?

Results in Table 3 show that the studied vectors would generate many false
positives in real-world applications. As described in Sect. 5, we constructed a
feature vector OptOut that maximizes the separation between attack and non-
attack outlierness. OptOut uses the 5-tuple key, but enriched with features that
describe the behavior of the network device as information source, therefore
instances profile application-based and endpoint-based behavior at the same
time. Table 4 shows the included features in the OptOut vector and Fig. 4 the
forward selection process. We performed hyperparameter search also for this
vector and obtained the following values: kNN, k = 15; LOF, MinPts = 50;
HBOS, k = 22; iForest, t = 50, f = 4, ψ = 456; SDO, k = 241, x = 25, qv = 0.35.
Some histograms are shown in Fig. 5.

Table 3. Algorithm performances.

P@n Adj. P@n AP Adj. AP Max. F1 Adj. mF1 ROC-AUC

Cons. HBOS 0.40 0.20 0.26 0.01 0.44 0.25 0.42

LOF 0.22 −0.04 0.20 −0.07 0.41 0.21 0.47

kNN 0.18 −0.10 0.06 −0.26 0.41 0.21 0.47

iForest 0.20 −0.07 0.12 −0.18 0.41 0.21 0.40

SDO 0.58 0.44 0.40 0.20 0.72 0.62 0.82

CAIA HBOS 0.45 0.27 0.27 0.02 0.47 0.29 0.45

LOF 0.21 −0.05 0.18 −0.10 0.41 0.20 0.47

kNN 0.18 −0.10 0.06 −0.26 0.41 0.22 0.47

iForest 0.31 0.08 0.21 −0.06 0.47 0.30 0.56

SDO 0.32 0.09 0.45 0.26 0.52 0.36 0.60

AGM HBOS 0.03 0.03 0.04 0.03 0.10 0.09 0.92

LOF 0.01 0.01 0.03 0.02 0.02 0.02 0.63

kNN 0.13 0.13 0.20 0.20 0.13 0.13 0.81

iForest 0.04 0.04 0.05 0.04 0.09 0.08 0.91

SDO 0.00 −0.00 0.00 −0.00 0.09 0.09 0.95

TA HBOS 0.03 0.03 0.04 0.04 0.03 0.03 0.53

LOF 0.00 0.00 0.00 −0.00 0.01 0.00 0.53

kNN 0.04 0.03 0.05 0.05 0.04 0.03 0.58

iForest 0.03 0.03 0.03 0.02 0.04 0.03 0.54

SDO 0.04 0.04 0.07 0.07 0.05 0.05 0.54

Cisco HBOS 0.02 −0.20 0.01 −0.21 0.32 0.17 0.26

LOF 0.09 −0.12 0.15 −0.04 0.32 0.17 0.28

kNN 0.01 −0.21 0.01 −0.21 0.31 0.15 0.12

iForest 0.02 −0.20 0.01 −0.21 0.33 0.18 0.27

SDO 0.02 −0.20 0.01 −0.21 0.52 0.41 0.65
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Fig. 4. OptOut forward selection process.

Fig. 5. OptOut vector. Normalized histograms (top 5% outliers removed for a better
visualization).

Obtained outlierness box plots are shown in Fig. 2, histograms in Fig. 5, and
performance indices in Table 5. Results disclose that the OptOut vector con-
siderably increases performances and, therefore, the capability of algorithms to
discriminate attacks based on outlierness (particularly when using SDO). How-
ever, real-world detection demands high accuracy to minimize the proliferation
of false positives. Attack detection based on unsupervised algorithms can hardly
solve the problem alone, but its combination with supervised methods and tech-
niques that leverage pre-knowledge is expected to build detection frameworks
with highly effective performances.
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Table 4. OptOut feature vector after forward selection (SDO nested).

Original vector Feature Description

AGM pkts mode dstIP Packets received by the most common IP
destination

AGM #TTL Number of different TTL used by the IP
source

CAIA/Consensus srcPkts Packets sent by the IP source

CAIA stdev dstPktLength Standard deviation of the length of the
packets sent by the IP destination

CAIA/Consensus srcBytes Bytes sent by the IP source

Table 5. Algorithm performances for the OptOut feature vector.

P@n Adj. P@n AP Adj. AP Max. F1 Adj. mF1 ROC-AUC

HBOS 0.74 0.65 0.93 0.90 0.87 0.83 0.96

LOF 0.20 −0.07 0.20 −0.07 0.41 0.21 0.46

KNN 0.09 −0.22 0.17 −0.11 0.40 0.20 0.43

iForest 0.78 0.70 0.72 0.63 0.79 0.72 0.92

SDO 0.90 0.87 0.97 0.96 0.92 0.90 0.98

8 Conclusions

In this work we have faced three relevant aspects of network attacks, namely:
(a) if they are actually outliers, (b) what are the most suitable algorithms and
feature vectors for implementing outlierness-based detectors, and (b) if the attack
outlierness is enough for implementing real-world detection. We have studied
these questions from analytical perspectives by evaluating five different feature
vectors used in the literature with five different outlier ranking algorithms. For
our experiments we have used a dataset for intrusion detection evaluation that
reflects modern attacks as well as legitimate behavior profiles.

The conducted experiments reveal that, as a general rule, network attacks
have higher global distance-based outlierness averages than normal traffic. Given
the characteristics of network feature spaces—noisy, highly varied, with nor-
mal instances covering a broad spectrum and drawing subspaces with many
density differences—local algorithms show low performances for attack detec-
tion. Algorithms with a more global space interpretation—like SDO or HBOS—
tend to perform better, specially when representation spaces capture the behav-
ior of network devices and hosts (e.g., the AGM format). We have proposed
a feature space that maximizes the separation of attacks and non-attacks in
terms of outlierness; however, the risk of high false positive rates still pre-
vails due to the base-rate fallacy problem inherent to network security spaces.
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Outlier detection algorithms can be a powerful tool for detecting known and
novel attacks, but leveraging pre-knowledge with supervised methods should
not be omitted, since supervised and unsupervised methods are complementary
and, together, can build highly refined solutions.
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Abstract. Cyber-attacks become more sophisticated and complex espe-
cially when adversaries steal user credentials to traverse the network of
an organization. Detecting a breach is extremely difficult and this is con-
firmed by the findings of studies related to cyber-attacks on organiza-
tions. A study conducted last year by IBM found that it takes 206 days on
average to US companies to detect a data breach. As a consequence, the
effectiveness of existing defensive tools is in question. In this work we deal
with the detection of malicious authentication events, which are responsi-
ble for effective execution of the stealthy attack, called lateral movement.
Authentication event logs produce a pure categorical feature space which
creates methodological challenges for developing outlier detection algo-
rithms. We propose an auto semi-supervised outlier ensemble detector
that does not leverage the ground truth to learn the normal behavior.
The automatic nature of our methodology is supported by established
unsupervised outlier ensemble theory. We test the performance of our
detector on a real-world cyber security dataset provided publicly by the
Los Alamos National Lab. Overall, our experiments show that our pro-
posed detector outperforms existing algorithms and produces a 0 False
Negative Rate without missing any malicious login event and a False Pos-
itive Rate which improves the state-of-the-art. In addition, by detecting
malicious authentication events, compared to the majority of the exist-
ing works which focus solely on detecting malicious users or computers,
we are able to provide insights regarding when and at which systems
malicious login events happened. Beyond the application on a public
dataset we are working with our industry partner, POST Luxembourg,
to employ the proposed detector on their network.

Keywords: Outlier detection · Ensemble learning · Cybersecurity ·
Embedding · Semi-supervised learning

1 Introduction

Lateral movement attack is a stealth and well orchestrated attack where the
adversaries gain shell access without necessarily creating abnormal network traf-
fic. They make use of legitimate credentials to log into systems, escalate privileges
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using lateral movements and subsequently manage to traverse a network without
any detection. The JP Morgan Chase [36] and Target hacks [23] are two well
known examples of attacks where the adversaries stayed undetected while they
traversed network.

Researchers have addressed malicious logins detection by evaluating their
methods on a real-world cyber security dataset provided freely by the Los Alamos
National Lab [19]. Existing works focus on detecting malicious users or comput-
ers which leads to classifying all the generated events from a user or computer as
malicious or legit. As a result, it fails to detect which specific events are malicious
and does not provide any information regarding when the adversaries manage
to impersonate benign users. Additionally, most of the existing approaches on
this dataset are questionable and the authors in [32] provide further details of
their study.

A common characteristic of login logs or authentication events is being com-
prised of multidimensional categorical variables. Categorical variables stem from
discrete entities and their properties, e.g. source user, destination computer, or
protocol type. The underlying values of this type of variables are inherently
unordered and as a consequence it is often hard to define similarity between
different values of the same variable. As such, detecting anomalies on discrete
data is challenging and is not a well studied topic in academia; the primary focus
is on continuous data. Moreover, the prominent challenge in the defensive cyber
world is to develop effective approaches which are realistic.

A possible solution to this point comes from the semi-supervised approaches
[22] that do not require anomalous instances in the training phase. These
approaches model the normal class and identify anomalies as the instances that
diverge from the normal model. In real-world problems where the amount of
unlabeled data is immense, identifying events that are not suspicious needs a lot
of manual work and underlies the risk of miss-labeling true anomalous events.
Hence, our motivation to develop our auto approach is to alleviate analysts
from time expensive and monotonous tasks that include a significant amount of
uncertainty.

In this work, we analyze authentication events using the Los Alamos authen-
tication dataset [19] and we aim at detecting unauthorized events to services
or computers in contrast to the majority of the existing works. We propose an
embedding based and automatic semi-supervised outlier detector to reduce the
false positives produced by an unsupervised outlier ensemble. In particular, our
approach is an ensemble approach where we develop an unsupervised outlier
ensemble to identify the most confident normal data points which will feed the
semi-supervised detector to ultimately detect outliers. Our technique could be
considered as a sequential outlier ensemble approach where two dependent com-
ponents are developed for an outlier detection task. We refer to the authors of [1]
for the details of outlier ensembles categories.

The contributions of our proposed approach are:

– We produce an embedding space via the Logistic PCA [25] algorithm that
has potentiality of better representing the normal behavior.
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– We develop the Restricted Principal Bagging (RPB) technique, an improved
variant of the well established feature bagging technique [27], that works on
the principal components space.

– We introduce a new unsupervised combination function, Vertical Horizontal
Procedure (VHP), that leverages gradually the predictions of individual and
smaller scale ensemble members.

– We automatically build an automatic semi-supervised ensemble by combining
the aforementioned novel components to effectively detect malicious events.

Overall, our approach improves current state-of-the-art by achieving a 0.0017
FPR and 0 FNR; without missing any malicious login event. It is tested on an
extremely imbalanced data sample of the real-world authentication log dataset
provided by Los Alamos. In this challenging data sample the percentage of mali-
cious events is 0.0066% which is 1348 times lower than the average outlier per-
centage in datasets used for outlier detection [33].

These improvements enhance our understanding of anomalous patterns since
existing state of the art methods fail to capture all the anomalous patterns. It
is particularly important for the practical implementation to keep the base rate
fallacy in mind: Reducing the number of the false positives by 150 compared
to state of the art means that we enable cyber analysts spending less time on
monotonous tasks of pruning false alerts.

Detecting malicious events instead of users or computers provides actionable
insights to analysts by answering questions related to when exactly and at which
systems a malicious event happened. Our work could also be used to extend
existing methodologies which detect malicious users to further detect malicious
events. To the best of our knowledge, this work is the first automatic semi-
supervised attempt that aims at detecting anomalous authentication events.

The rest of the paper is organized as follows. We briefly review related work
in Sect. 2. Then, we continue by describing extensively how we develop each
component of our approach in Sect. 3. In Sect. 4 we explain in detail the dataset
and we present the experimental settings and results. We close in Sect. 5, where
we conclude with remarks and future research directions.

2 Related Work

Anomaly Detection in Categorical Data. In [17], the authors proposed a
distance based semi-supervised anomaly detection method. In particular, the
distance between two values of a categorical attribute is determined by the co-
occurrence of the values of other attributes in the dataset. In [30], the authors
proposed an unsupervised anomaly detector based on subspaces. It examines
only a small number of low dimensional subspaces randomly selected to identify
anomalies. In [7], the authors proposed an anomaly detection method on hetero-
geneous categorical event data. The method maximizes the likelihood of the data
by embedding different events into a common latent space and then assessing
the compatibility of events. Furthermore, approaches that are based on pattern
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mining techniques have been developed. For instance, in [2], the authors pro-
posed to identify anomalies using pattern-based compression, and [14] detects
patterns in short sequences of categorical data.

Malicious Logins Detection. The Los Alamos National Lab provides a pub-
licly available dataset [19] which is the most used and is related to authentica-
tion login events. There is a non-exhaustive list of papers analyzing this dataset
for detecting abnormal authentication activities. The majority of the related
work of this dataset focuses on detecting anomalous entities, users or comput-
ers [4,13,15,16,21,39]. On the other hand, only few works [18,29,35] detect
anomalous events. The most used approach among all the existing works is the
bipartite graph.

This work effectively detects malicious authentication events instead of mali-
cious entities which gives the opportunity to analysts to correlate identified
malicious authentication events with malicious events on other data sources. In
addition, detecting anomalous entities could be considered as a subset of detect-
ing malicious events because from the latter we can derive the former but not
vice versa. Furthermore, our work is the first automatic semi-supervised outlier
ensemble approach that is developed with the aid of established theory on outlier
ensembles [1,44]. It is composed of novel and existed methods never tested for
outlier detection on categorical data and especially on authentication logs.

3 Methodology

We propose a novel outlier ensemble detector for categorical data which auto-
matically creates the “non-polluted” by outliers training set of a semi-supervised
ensemble. More specifically, first it builds in an unsupervised way an outlier
ensemble on all data points to identify with a relative confidence data points
that are normal Secondly, it develops a semi-supervised ensemble detector which
is trained only on the (normal) data points derived from the first phase. Finally,
the semi-supervised ensemble classifies new observations (data points not in the
training set) as belonging to the learned normal class or not. Figure 1 illustrates
the sequential and automatic nature of our approach. Throughout this work we
use outliers and anomalies interchangeably.

3.1 Phase 1

Unsupervised outier detection algorithms detect outliers based on their algo-
rithmic design [45]. In this work, we reverse the problem of unsupervised outlier
detection to unsupervised normal detection by using established oulier ensemble
theory. The aim of the this phase is to create the training dataset of the semi-
supervised model; normal data points. In particular, we independently employ
two unsupervised detectors to build an outlier ensemble on bagged subspaces
and finally identify the most confident normal data points.
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Fig. 1. Auto Semi-supervised Outlier Detector

Generation of Embeddings. Our dataset is a pure categorical dataset and
we produce the embeddings of our proposed detector via the Logistic PCA algo-
rithm [25]. This algorithm produces principal components and our aim is to find
principal components that explain at least 90% of the total variance. We sug-
gest a high percentage of explained variance because it means that we represent
an amount of information very close to the information included in the original
variables. We could have selected a different number of principal components
that explain more than 90% of the total variance but we leave this sensitivity
analysis for the future. Additionally, according to Theorem 2 of [25] we select
columns to decrease the deviance the most. This Theorem states that for Logis-
tic PCA the standard basis vector which decreases deviance the most is the one
corresponding to column with mean closest to 1/2.

Restricted Principal Bagging. Our motivation for developing the RPB -
Restricted Principal Bagging technique is to upper bound the sample space of
the principal components and then add randomness in a similar way like the
Feature Bagging technique [27]; randomness is a key ingredient of outlier ensem-
ble techniques. Our technique aims at capturing the individual contribution of
each principal component to the total explained variance. As such, we adjust the
Feature Bagging technique [27] to work for principal components and find sub-
spaces to detect ouliers more effectively. We explain in detail the RPB technique
in Algorithm 1.

Firstly, RPB creates multiple random subsets of the first p principal compo-
nents and each of these subsets is denoted by Sj . We denote by PCs the principal
components that we keep after we have applied the Theorem 2 and we also call as
V the set of all the Sj . Hence, V =

{
S1, S2, S3, S3, S4, S5

}
=

{
0.04 * | PCs |,

0.1 * | PCs |, 0.2 * | PCs |, 0.3 * | PCs |, 0.4 * | PCs |, 1.0 * | PCs |}. Then for
a Sj and for Iter iterations it samples from a uniform distribution U(d/2, d − 1)
without replacement, where d is the dimensionality of Sj . Hence, for each Iter iter-
ation Nj principal components are sampled out and create a dataset Fj . Finally,
an unsupervised outlier detector with random parameters is applied to Fj .
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Algorithm 1. Restricted Principal Bagging
Input:

• V the set of all the Sj

• OD is an unsupervised Outlier Detection Algorithm which outputs numeric outlier
scores for each data point
• Iter represents how many times we perform feature sampling

Output
• E is a vector composed of oulier scores for each data point

Procedure:

1: for all Sj in V do
2: for i = 1, 2, 3, 4, ...Iter do
3: Randomly sample from a uniform distribution between

[
d/2

]
and (d − 1),

where d is the number of the principal components in S
4: Randomly pick, without replacement, Ni principal components to create a

subset Fi

5: Apply OD on Fi feature space
6: end for
7: end for

Unsupervised Outlier Detectors. We employ two well performing and estab-
lished unsupervised detectors to combine them and identify the most confident
normal points that will feed afterwards the semi-supervised learner. We inten-
tionally select heterogeneous detectors in order to increase the probability that
they capture different patterns of anomalies. Also, we could have selected more
than two heterogeneous unsupervised detectors to build the ensemble but for
the current experiments we showcase the promising performance of the most
straightforward version of our approach.

Firstly, we select iForest [28] which is a tree-based and state-of-the-art detec-
tor which performs the best across many datasets [11] and applications [9,41].
Secondly, we select LOF [5] which is a proximity-based method and designed to
detect local outliers (see [1] for details in local and global outliers). It is also a
state-of-the-art outlier detection algorithm and there is a large body of research
on this detector [3,12,27,45].

The procedure that we follow at this phase is of running a detector over a
range of parameters without leveraging the ground truth to tune the detectors.
This procedure is interpreted as an ensemblar approach and we refer to [1]
where the authors discuss the topic extensively. As such, we run LOF with
different random values for the neighborhood parameter. Also, we run iForest
with the Cartesian product of parameters IF =

{
(Number Of Estimators ×

Maximum Samples×Maximum Features)
}
.

LOF and iForest independently apply RPB on set V to build the ensem-
ble version of LOF and iForest. Henceforth, we call LOF - RPB scoresj and
iForest - RPB scoresj the outlier scores that are produced by applying the RPB
technique on a subset Sj and employing the LOF and iForest respectively. The
final step is to combine these results in an unsupervised way to find the most
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confident normal data points. We introduce later the VHP combination function
to combine these results. Finally, we call as W the most confident normal data
points that will feed the semi-supervised algorithm to learn the normal behavior
and as O the least confident normal data points.

VHP Combination Function. As we discussed before, the RPB algorithm
builds a couple of LOF and iForest ensembles on each subset Sj . Hence, we
propose a strategy to effectively combine and gradually take advantage of these
couples of ensembles instead of applying a global combination function across all
the LOF - RPB scoresj and iForest - RPB scoresj . The authors in [43] develop
a novel local combination function and highlight the effectiveness of this type of
combination functions.

In our strategy we utilize the Averaging combination function to calculate the
average scores of ensemble members. The reason why we select this function is
that the average score is the most widely used in outlier ensemble literature and
performs the best in most cases [8]. It is worth noting that combining effectively
outlier ensemble members without leveraging the ground truth is challenging
and the authors in [1,24,44] extensively discuss the topic.

In particular, firstly we normalize all the LOF - RPB scoresj and
iForest - RPB scoresj and then apply the Averaging function to get the average
scores on each Sj . As such for each subset Sj we build an ensemble produced
by these combined outlier scores. We refer to this ensemble as LOF Ens & iFor-
est Ens. Afterwards, we convert the numeric outlier scores of each LOF Ens &
iForest Ens ensemble to binary values based on a threshold. Finally, we combine
these binary values by utilizing the unweighted majority voting [40] technique
to produce the output of Phase 1.

The conversion to binary values is referred as the Vertical Strategy and the
combination of the binary values as the Horizontal Strategy. Henceforth, we call
this combination function as VHP, Vertical Horizontal Procedure. All the outlier
scores are normalized with the Z-score normalization scheme which is the most
commonly used in outlier detection literature (see [1] for details in different
normalization schemes).

3.2 Phase 2

At this phase we leverage the produced W dataset of Phase 1 to build the
semi-supervised ensemble. The W dataset is composed of the most confident
normal class data points and via this dataset we learn the normal class patterns.
As a result this procedure of our analysis makes our approach sequential and
automatic at the same time. The desired outcome of this sequential approach is
to reduce significantly the number of false positives of O dataset after we have
learnt the contour of the normal class.

Hence, we employ the OCSVM - One-Class SVM algorithm [34] which is a
well performing algorithm that is applied to several problems such as, fraud
detection [37] and network intrusion detection [26]. OCSVM is a boundary
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method that attempts to define a boundary around the training data (normal
class), such that new observations that fall outside of this boundary are classified
as outliers [38].

Our proposed approach is developed on a pure unsupervised setup and as
a result we do not seek for the best performing parameters. Hence, without
any loss of generality we select as parameters of the OCSVM algorithm the
Cartesian product B =

{
(Type of kernel×Upper bound of training errors×

Kernel coefficient)
}
. The procedure that we follow at this phase is analogous

to Phase 1 where we execute each detector over a range of parameters without
leveraging the ground truth to tune the performance.

In particular, we independently execute several training runs of the OCSVM
on W with different parameter values from set B. The number of training exe-
cutions is equal to the carnality of set B. Next, for each execution of OCSVM
an outlier score vector is produced which has length equal to the number of
observations of O dataset. Finally, we combine these outlier score vectors, with-
out leveraging the ground truth, to ultimately produce the final outlier score for
each data point. It is worth noting that we could have selected any other set
of parameters as input for the OCSVM algorithm. The procedure of running a
detector over a range of parameters without the use of labels is interpreted as
an ensemblar approach (see [1] for details).

4 Experiments and Evaluation

The major objective of our experiments is to demonstrate the effectiveness of
our proposed auto semi-supervised detector by comparing it with works which
detect malicious login events. On the one hand, we do not leverage the ground
truth to tune any component of our methodology on the other hand, we use the
ground truth to present the performance of Phase 1 as well as Phase 2.

4.1 Dataset

The Los Alamos National Laboratory provides a freely available and compre-
hensive dataset1 [19]. It includes 58 consecutive days of credential-based login
events, of which days the 3 to 29 are labelled as malicious or normal via a
RedTeam table. This dataset consists of 1 billion events and is an excessively
imbalanced dataset; the percentage of the malicious login events is 0.000071%.

Each authentication event contains the attributes: time, source user, destina-
tion user, identifier per domain, source computer, destination computer, authen-
tication type, logon type, authentication orientation, and authentication result.
In addition, the authentication events are Windows-based authentication events
from both individual computers and centralised Active Directory domain con-
troller servers [20]. We also create a new attribute for each authentication event
based on if source computer and destination computer are the same or different.

1 https://csr.lanl.gov/data/cyber1/.

https://csr.lanl.gov/data/cyber1/
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This new boolean feature quantifies the Local or Remote rule respectively. In
our analysis, the time variable is excluded and as a result a purely categorical
feature space is produced.

Developing a data mining methodology on 1 billion events would require a
big data infrastructure but our work is not on proposing a computer engineering
tool. Hence, we use a data sample to develop and evaluate our methodology.
Sampling from a such an excessively imbalanced dataset usually produces sam-
ples composed of zero malicious login events which makes the evaluation of both
classes impossible.

Hence, we seek for a random sample of 150, 000 consecutive authentication
events that contains at least 5 malicious events in order to thoroughly evaluate
our approach. In other words, the percentage of malicious events has to be at
least 0.0033%. Consequently, our randomly selected sample contains 10 malicious
events and its percentage of malicious events is 0.0066%. Then, on the sampled
categorical space we apply the one-hot technique to produce the input binary
space of the Logistic PCA algorithm. The dimension of the this binary space is
150, 000 × 2700 and we refer to this dataset as D.

4.2 Experiment Environment

We used the logisticPCA [25] R package for the implementation of the Logistic
PCA algorithm and the data.table [10] R package for fast data manipulation. The
iForest, LOF and OCSVM algorithms were executed using the Python Scikit-
learn library [31].

4.3 Experimental Settings

Phase 1. We apply the Logistic PCA on the D dataset (150, 000 × 2700)
and we keep 900 principal components which explain 93% of the total variance.
Afterwards, we apply the Theorem 2 we explained in Sect. 3.1 and we return
500 principal components which will be the embeddings feature space denoted
by PCs.

The exact parameters of LOF and iForest are presented in Table 1. LOF is
employed with different number of neighbors as input whereas the input param-
eter set of iForest is the Cartesian product IF =

{
(Number Of Estimators×

Maximum Samples×Maximum Features)
}
.

Phase 2. Table 2 presents the parameters at Phase 2. In Sect. 3.2 we defined the
set B which is the Cartesian product of the input parameter values of OCSVM.
In addition, the Averaging combination function is utilized to unify the outlier
scores of all OCSVM executions.
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Table 1. Setting parameters

Subsets S Parameters

LOF V = {4%, 10%, 20%,
30%, 40%, 100%}

Neighbors = {5, 10,
15, 20, 30, 40, 50, 60,
70, 80, 90, 100}

iForest V = {4%, 10%, 20%,
30%, 40%, 100%}

NumberOfEstimators
= {100, 200, 300, 400}
MaximumFeatures =
{10%, 20%, 40%, 60%}
MaximumSamples =
{10%, 30%, 50%}

Table 2. Setting parameters

nu {0.0001, 0.0005, 0.001, 0.005}
gamma {0.01, 0.05, 0.09, 0.001}
kernel {“rbf”, “sigmoid”}

Settings for Comparisons: We develop the VHP-Ensemble with our proposed
VHP combination function accompanied with the RPB algorithm by leveraging
different subsets of principal components as we have discussed earlier. Also,
we develop the Vanilla-Ensemble to compare our proposed ensemble with. It
employs the iForest and LOF detector on the whole PCs embeddings space,
the feature bagging technique by Lazarevic [27] and the Averaging combination
function. The components of the developed ensembles and their corresponding
names are presented in Table 3.

Table 3. Ensembles of Phase 1

Detector Principal components of subsets S Combination Bagging

Ensmbles LOF iForest 20 50 100 150 150 200 500 VHP Avg. RPB Lazarevic

VHP Yes Yes Yes Yes Yes Yes Yes Yes No Yes No Yes No

Vanilla Yes Yes No No No No No No Yes No Yes No Yes

4.4 Evaluation

Phase 1
In Table 4, we summarize the performance of the ensembles discussed previously
and presented in Table 3. Since the output of Phase 1 is two sets, W and O, we
evaluate our detectors using the precision and recall measures. We also showcase
the sensitivity of the ensembles by reporting the presicion and recall scores based
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on different thresholds m; number of reported outliers. In our analysis m plays
the role of the confidence of finding normal data points.

We denote by P@m and R@m respectively, the precision and recall score
produced with m ranked data points which are considered as outliers. Table 4 is
a typical example of the trade off between precision and recall. In our proposed
approach the cost of higher precision is less than the cost of higher recall.

Table 4. Precision and Recall of the output of Phase 1

Enembles P@1500 R@1500 P@5000 R@5000 P@7000 R@7000

VHP 0.015 1.0 0.008 1.0 0.007 1.0

Vanilla 0.005 0.8 0.0016 0.8 0.0011 0.8

Phase 2.
Since all the components of this work are developed in a pure unsupervised setup
it is important to investigate the sensitivity of our approach, VHP-Ensemble.
As such, we test multiple variants of this ensemble detector based on different
numbers of reported outliers at Phase 1. In this way, we investigate the effect of
Phase 1 on building the semi-supervised ensemble detector.

Hence, we denote by Detector-1500 the semi-supervised detector which is
developed when a threshold rank m= 1500 is chosen for the VHP-Ensemble.
The most outlier point among the m= 1500 reported outliers has a rank of 1. In
the same fashion, we develop Detector-5000 and Detector-7000 where m= 5000
and m= 7000 respectively. Our motivation for selecting so large m is that we
want to feed the semi-supervised detector with the most confident normal data
points. We identify them based on our intuition for the outliers percentage in
our dataset. In our case, m is at least 150 times greater than the number of true
malicious authentication events.

We compare our methodology with works that are developed on the same
level of granularity; detecting malicious authentication events. Detecting mali-
cious users or computers means a huge amounts of events have to be further
analyzed to identify which specific events are malicious. Since the existing works
on malicious events is limited we compare our proposed detector with any kind
of machine learning(supervised, semi-supervised, unsupervised) approach that is
tested on authentication events. Hence, we evaluate all variants of our detector
with (i) Siadati et al. [35], (ii) Lopez et al. [29], (iii) Kaiafas et al. [18].

In Fig. 2 we present a summary of the FPR and TPR scores of all the com-
petitors. Amongst the competitors, Siadati et al. [35] achieves the lowest FPR
whereas Kaiafas et al. and all the variants achieve the highest TPR; they do
not miss any malicious login. In addition, Detector-1500 achieves the lowest
FPR among all the competitors. Ultimately, Detector-1500 improves FPR of
the Kaiafas et al. supervised detector by 10% (150 login events) and more than
doubles Siadati’s TPR. Siadati et al. detector is based on integrating security
analysts knowledge into the detection system in the form of rules that define login
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patterns. In other words, this detector does not improve the existing knowledge
of the cyber analysts for anomalous patterns but instead relies on known rules
to detect anomalies. As a consequence, the Siadati’s rule based visualization
detector misses 53% of the malicious logins.

In addition, each of the aforementioned approaches outperform the logisitic
classifier of Lopez et al. [29] which achieves AUC 82.79%. We do not plot their
reported FPR and TPR scores in Fig. 2 because their FPR scores are at least
5 times worse than the maximum FPR value in Fig. 2. Consequently, we avoid
presenting a figure that is less readable and informative for the majority of the
competitors.
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Fig. 2. Comparison of the Auto Semi-supervised Outlier Detector

5 Conclusion and Future Work

Our proposed automatic semi-supervised detector for malicious authentication
detection outperforms the existent supervised algorithms and tools with the
human in the loop. It is capable of capturing underlying mechanisms that pro-
duce anomalous authentication events. Our evaluation on a real-world authen-
tication log dataset shows that we do not miss any malicious login events
and improve the current state-of-the-art methods. Also, the sensitivity analy-
sis showed that the rank threshold at Phase 1 does not affect at all the TPR.
On the other hand, the effect of the threshold on the FPR is not so noticeable.
The semi-supervised ensemble detector improves the FPR of the unsupervised
ensemble almost 9 times while all the developed variants did not miss any true
malicious login events.

In the future we would like to extend this work by building an ensemble with
multiple heterogeneous one-class classification algorithms [38]. Also, we want
to model the authentication logs as graphs to produce embeddings with deep
learning models [6]. Additionally, we intend to extend the existing work with
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network representation learning techniques [42] instead of embeddings. Finally,
an extensive comparative evaluation will follow based on the above improvements
on many cyber-security datasets.
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Abstract. Deep neural networks (DNNs) have been enormously suc-
cessful across a variety of prediction tasks. However, recent research
shows that DNNs are particularly vulnerable to adversarial attacks,
which poses a serious threat to their applications in security-sensitive sys-
tems. In this paper, we propose a simple yet effective defense algorithm
Defense-VAE that uses variational autoencoder (VAE) to purge adver-
sarial perturbations from contaminated images. The proposed method is
generic and can defend white-box and black-box attacks without the need
of retraining the original CNN classifiers, and can further strengthen the
defense by retraining CNN or end-to-end finetuning the whole pipeline.
In addition, the proposed method is very efficient compared to the
optimization-based alternatives, such as Defense-GAN, since no itera-
tive optimization is needed for online prediction. Extensive experiments
on MNIST, Fashion-MNIST, CelebA and CIFAR-10 demonstrate the
superior defense accuracy of Defense-VAE compared to Defense-GAN,
while being 50x faster than the latter. This makes Defense-VAE widely
deployable in real-time security-sensitive systems. Our source code can
be found at https://github.com/lxuniverse/defense-vae.

1 Introduction

Deep neural networks (DNNs) have demonstrated remarkable success in solving
complex prediction tasks. However, recent studies show that they are particularly
vulnerable to adversarial attacks [2,22,29] in the form of small perturbations to
inputs that lead DNNs to predict incorrect outputs. For images, such perturba-
tions are often almost imperceptible to human vision system, while being very
effective at fooling DNN-based systems. Both white-box attacks [24] and black-
box attacks [23] have been proposed to attack DNNs, and they can often fool
the network with high probabilities. These attacks pose a serious threat to the
applications of DNNs in security-sensitive systems, e.g., identity authentication
surveillance, self-driving cars, malware detection, and voice command recogni-
tion. As a result, it is critical to develop effective and efficient defense mechanisms
to counter adversarial attacks.

In this paper, we propose a simple yet effective defense mechanism called
Defense-VAE that uses Variational AutoEncoder (VAE) [10,26] to purge the
adversarial perturbations from contaminated images before feeding the images
c© Springer Nature Switzerland AG 2020
P. Cellier and K. Driessens (Eds.): ECML PKDD 2019 Workshops, CCIS 1168, pp. 191–207, 2020.
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Fig. 1. Defense-VAE purges adversarial perturbations from contaminated images.
Example images are from MNIST, F-MNIST, CIFAR-10, and CelebA, respectively.
FGSM [7] with ε = 0.05 and ε = 0.1 are used to generate the adversarial attacks.

to the downstream CNN classifiers. To illustrate the idea, we generate some
adversarial images based on the FGSM attack [7] with ε = 0.05 and ε = 0.1 on
four popular image classification benchmarks: MNIST [13], Fashion-MNIST [31],
CIFAR-10 [11] and CelebA [14]. These adversarial images are then fed into
Defense-VAE for reconstruction. Figure 1 illustrates some of the typical exam-
ples from Defense-VAE. As we can see, the Defense-VAE generated images are
the faithful reconstructions from the underlying clean images, with the majority
of adversarial perturbations removed. As we will demonstrate later, such recon-
structed images can recover almost all the accuracy losses due to adversarial
attacks, without introducing much computation overhead compared to Defense-
GAN [28], a closely related state-of-the-art defense algorithm that is based on
Generative Adversarial Networks (GAN) [6].

Compared with the state-of-the-art defense algorithms, our method has the
following properties:

– Defense-VAE is very generic and can defend white-box attacks and black-box
attacks without the need of retraining the original CNN classifiers, and can
further strengthen the defense by retraining or end-to-end finetuning;

– Defense-VAE achieves much higher accuracy than the state-of-the-art defense
algorithms on white-box and black-box attacks. Especially, it outperforms
Defense-GAN by about 30% in defending black-box attacks on F-MNIST;

– Defense-VAE is very efficient compared to the optimization-based alterna-
tives, such as Defense-GAN, as no iterative optimization is needed for online
prediction. From our experiments, it shows that Defense-VAE is about 50x
faster than Defense-GAN. This makes our method widely deployable in real-
time security-sensitive applications.

2 Defense-VAE: The Proposed Algorithm

At a high level, Defense-VAE is a defense algorithm that is based on deep gen-
erative models for image reconstruction. That is, given an adversarial image
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as input, the generative model attempts to produce a denoised image that is
closely related to the underlying clean image, with the adversarial perturba-
tions removed. As the name suggested, Defense-VAE is built upon Variational
AutoEncoder (VAE) [10,26]. Therefore, we first give a brief introduction to VAE.

2.1 Variational Auto-Encoder

Variational Autoencoder (VAE) [10,26] is one of the most powerful deep gener-
ative models that is based on latent variable models. It consists of an encoder
network to encode an input image to the latent variable z and a decoder network
to decode the latent variable z back to the image domain:

z ∼ Enc(x) = q(z|x), x ∼ Dec(z) = p(x|z). (1)

Since the maximum likelihood (ML) estimate of this latent variable model is
intractable, a variational lower bound (ELBO) is optimized instead:

LVAE = −Eq(z |x)

[
log

p(x|z)p(z)
q(z|x)

]
(2)

= −Eq(z |x)[log p(x|z)] + DKL(q(z|x)‖p(z))

where the first term is the reconstruction error and the second term is a regular-
ization that prefers the posterior to be close to the prior. Typically, a simple unit
Gaussian prior is assumed in VAE. To facilitate efficient computation, a diagonal
covariance Gaussian posterior is further assumed, which enables the use of the
reparameterization trick to reduce the variance of Monte-Carlo sampling [10].

As a generative model, VAE can generate high quality images that follow the
similar distribution of the training images.

2.2 Defense-VAE

VAE is typically trained to reproduce the same image from an input image. As
for adversarial defense, reproducing the same adversarial images is an undesir-
able task as the adversarial perturbations may be preserved during the image
reconstruction. Instead, in Defense-VAE, we modify the encoder and the decoder
of the latent variable model as follows:

z ∼ Enc(x̂) = q(z|x̂), x ∼ Dec(z) = p(x|z), (3)

where x̂ = x + δ is an adversarial image with the perturbation δ added on top
of a clean image x. This adversarial image is encoded to a latent variable z,
which is decoded to the underlying clean image x. Accordingly, the training loss
of Defense-VAE is updated as follows:

LDefense−VAE = −Eq(z |x̂)

[
log

p(x|z)p(z)
q(z|x̂)

]
(4)

= −Eq(z |x̂)[log p(x|z)] + DKL(q(z|x̂)‖p(z)),
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Fig. 2. Training pipeline of Defense-VAE. Defense-VAE (left) and Classifier-REC
(right) can be trained separately, or jointly end-to-end (from scratch or by fine-tuning).
See text for more details.

where the input to Defense-VAE is an adversarial image x̂ = x + δ, and the
expected output is the underlying clean image x. The compatibility between
input and output pair is measured by the loss function 4.
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Fig. 3. Test pipeline of Defense-VAE

To train the Defense-VAE model, we can generate adversarial images given
any clean image from a training set. Since there are many different adversar-
ial attack algorithms and for each attack algorithm we can generate multiple
adversarial images with different configurations, we can in principle generate an
unlimited amount of training pairs for Defense-VAE, i.e., multiple adversarial
images can be mapped to one clean image. The detailed training pipeline is
demonstrated in Fig. 2 (left). Being an effective approach of generating sufficient
training pairs for Defense-VAE, using multiple attack algorithms to produce
adversarial training examples will also boost the capability of Defense-VAE to
counter an ensemble of adversarial attacks and make Defense-VAE a generic
defense algorithm that is robust to a wide range of attacks. As we will dis-
cuss later, this ensemble training strategy entails Defense-VAE superior defense
capability over Defense-GAN.

Once the Defense-VAE model is trained, we can also use the reconstructed
images from Defense-VAE to retrain the downstream CNN classifiers Fig. 2
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(right). As we will see later, the retrained CNN classifier can further boost the
defense accuracy over the original CNN classifier.

We can also train the whole pipeline end to end from scratch or finetuning
from pre-trained VAE and CNN classifier by optimizing the joint loss function:

LEnd−to−End = LDefense−VAE + λLCross−Entropy. (5)

As we will see from the experiments, this end to end training can boost the
defense accuracy even further.

After training the Defense-VAE model and potentially retraining CNN classi-
fiers or end-to-end finetuning the whole pipeline, we can use the trained Defense-
VAE to purge the adversarial perturbations from any contaminated images, and
the reconstructed images are then fed to the original CNN classifier or retrained
CNN classifier for the final image classification. This test pipeline is shown in
Fig. 3.

3 Related Work

Adversarial attacks and defenses is one of the active research areas in deep
learning, with tens of different attack and defense algorithms developed in the
past few years. For a general introduction to this exciting research area and
the related terminologies, we refer the readers to [28,30,33] for more details.
Here we will focus on the defense algorithms that are most closely related to
Defense-VAE.

Defending against adversarial attacks is a challenging task. Different types
of defense algorithms [18,25] have been proposed in the past few years. The
first type of defense algorithms [4,9,15] augments the training data to make
the DNN model resilient to the trained adversarial attacks. The second type of
defense algorithms [5,8,16,20,21,27] modifies the training process by introducing
regularization to the objective functions. The third type of defense algorithms [1,
9,32] attempts to remove the adversarial perturbations via input transformations
before feeding the image to the classifier. According to this categorization, our
Defense-VAE belongs to the input transformation based defense approach. In
the following, we will therefore review the defense algorithms that are closely
related to our work.

Adversarial training [7,12] is a popular and well investigated defense app-
roach against adversarial attacks. It attempts to use adversarial images as data
augmentation to train a robust classifier. It shows that this method can improve
the defense accuracy effectively and sometimes it can even improve the accu-
racy upon the model trained only on the original clean training set. However,
this defense mechanism is more effective in white-box attacks than in black-
box attacks due to the gradient masking problem. In Defense-VAE, we also use
adversarial examples to improve the robustness of the defense model. However,
instead of improving the targeted CNN classifiers directly, adversarial training
is used to train a Defense-VAE model to purge adversarial perturbations for the
downstream CNN classifiers.
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Magnet proposed by Meng and Chen [17] is another effective strategy to
defend adversarial attacks. Magnet has two phases for defense: detector network
and reformer network. Detector network learns the manifold of the normal clean
images so that it can detect if an input image is an adversarial. If an image is
detected as an adversarial, it will be forwarded to the reformer network, which
will modify the adversarial image to the manifold of normal images. In Magnet,
the reformer network is trained only on clean images with the goal of reconstruct-
ing the same clean input images, while Defense-VAE is trained on adversarial
and clean image pairs with the goal of removing the adversarial perturbations
from the contaminated images.

Another closely related work is Defense-GAN that is proposed by Saman-
gouei et al. in [28], where a Generative Adversarial Network (GAN) [6] is used
to reconstruct a clean image from an adversarial image. Defense-GAN firstly
trains a GAN model purely on a training set of clean images, and as such it
learns the distribution of the normal images. Then given an adversarial image,
multiple iterations of back-propagations are used to identify a proper z from the
clean image latent space, such that after decoded through the GAN generator,
the reconstructed image is expected to be as close as possible to the adver-
sarial image. Given the non-convex loss function of the GAN generator model,
multiple random z’s are used to initialize the back-propagation image search.
Typically, given an adversarial image, Defense-GAN needs to perform L itera-
tions of back-propagation for each of R random initializations, with the typical
values of L = 200 and R = 10. As a comparison, to reconstruction a clean image,
Defense-VAE can directly identify a proper z by forward-propagating an adver-
sarial image through the VAE encoder network, and the z is subsequently used
to reconstruct a clean image through the VAE-decoder network. No expensive
iterative online optimization is needed in Defense-VAE. As we will discuss later,
such reconstructed images are not only more accurate, but the whole process is
much faster than Defense-GAN.

4 Experiments

We validate our algorithm on four popular image classification benchmarks:
MNIST [13], F-MNIST [31], CelebA [14] and CIFAR-10 [11]. MNIST and F-
MNIST are two gray-level image datasets, each containing 60,000 training images
and 10,000 test images with the size of 28 × 28. While MNIST consists of 10
hand-written digits, F-MNIST contains 10 different articles, e.g., shoes, shirts,
etc. CelebA contains 202,599 RGB images of human faces, split into training
and test sets. We use this dataset for binary classification to distinguish if a face
image is from a male or a female. CIFAR-10 contains 10 classes of RGB images
of the size of 32 × 32, in which 50,000 images are for training and 10,000 images
are for test.

We consider both the white-box attacks and the black-box attacks to test
the defense performance of our algorithm. For the white-box attacks, FGSM [7],
Randomized FGSM [12], and CW [3] attacks are used. For the black-box attacks,
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we train a substitute model to generate adversarial images to attack the targeted
CNN classifiers. For a fair comparison, our experimental setups closely follow
those of Defense-GAN1.

To demonstrate the generalization of our algorithm, we test our algorithms
with the targeted CNN classifiers of different architectures: different number
of convolutional or full-connected layers, different convolution parameters, and
with/without dropout or batch normalization. For the black-box attacks, differ-
ent architectures are also considered for the substitute models. When we present
results, we denote the targeted model as A, B, C, D and the substitute model
as B, E. Detailed network architectures of the VAE model, the targeted CNN
classifiers and their substitutes are summarized in Appendix A.

For the defense algorithms, we compare our algorithm with Adversarial
Training [7,12], MagNet [17] and Defense-GAN [28]. All of our experiments
are performed on NVIDIA Titan-Xp GPUs. Our source code can be found at
https://github.com/lxuniverse/defense-vae.

4.1 Results on White-Box Attacks

First, we test our algorithm on three types of white-box attacks: FGSM, RAND-
FGSM and CW attacks. The targeted CNN models are trained on the original
training dataset for 10 epochs until convergence. Then for each clean training
image we generate 12 different adversarial images by using 3 different white-box
attack algorithms, each with 4 different configurations. For FGSM and RAND-
FGSM, 4 different ε = 0.25, 0.3, 0.35 and 0.4 are used. For the CW attack, 4
different learning rates lr = 6, 8, 10 and 12 are used. We combine these adver-
sarial images and the original clean images to form the input and output pairs
to train the Defense-VAE model. We initialize the weights of VAE with the nor-
mal distribution of N (0, 0.02) for the convolutional layers and N (1, 0.02) for the
batch normalization layers. We note that usually 5 epochs are required for the
Defense-VAE models to converge.

Additionally, we use the reconstructed images of Defense-VAE to retrain the
CNN classifiers to improve the classification accuracy. Although the original
CNN classifiers have already yielded very competitive performance compared
with Defense-GAN, we note that retraining CNN classifiers for Defense-VAE
can further strengthen the defense accuracy notably. Interestingly, the authors
of Defense-GAN reported that for Defense-GAN retraining of CNN classifiers has
negligible impact to the defense accuracy, while this is not true for Defense-VAE.

As discussed in Sect. 2.2, we can also train the whole pipeline end to end by
optimizing the joint loss function Eq. 5 directly. This can be done through two
approaches: (1) randomly initialize the VAE and CNN classifier model parame-
ters and train the whole pipeline from scratch, and (2) pretrain VAE and CNN
classifier separately and finetune the whole pipeline. Our experiments show that
both approaches are almost equally effective, with the finetuning yielding slightly
better results. We therefore only report the finetuning results in the following.

1 https://github.com/kabkabm/defensegan.
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Fig. 4. The end-to-end finetuning can boost the defense accuracy even further, and
yields the strongest defense model.

To demonstrate the effectiveness of this end-to-end finetuning approach, we
provide one typical learning curve of the finetuning process in Fig. 4, where the
adversarial attacks are generated by FGSM with ε = 0.3. Starting from sepa-
rately pretrained VAE model and CNN classifier (a.k.a., Defense-VAE-REC), we
finetune the whole pipeline by optimizing the joint loss function 5. As we can
see, the end-to-end finetuning boosts the defense accuracy by about 4% over the
Defense-VAE model.

Table 1 reports the defense accuracies of Defense-VAE on three different
white-box attacks: FGSM, RAND-FGSM and CW attacks. As a comparison,
we also include the results of Defense-GAN, MagNet and Adversarial Training
under the same experimental setups; for those results, we import them directly
from the Defense-GAN paper [28]. As we can see, Defense-VAE and Defense-
GAN are very competitive to each other, and outperform all the other defense
algorithms by significant margins on all four benchmarks. Defense-VAE achieves
superior performance over Defense-GAN, and can recover almost all the accu-
racy losses due to the adversarial attacks. We also note that retraining CNN
classifiers (Defense-VAE-REC) and finetuning (Defense-VAE-E2E) can further
improve the defense accuracies beyond the original CNN classifiers (Defense-
VAE) by a notable margin, with the finetuning yielding the strongest defense
against adversarial attacks.
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Table 1. Classification accuracies of different defense methods under FGSM, RAND-
FGSM and CW white-box attacks on the (top) F-MNIST and (bottom) MNIST
image classification benchmarks. The defense accuracies of Defense-GAN, MagNet,
and Adversarial Training are from Defense-GAN [28]. Results on CelebA and CIFAR-
10 have the same pattern as above. Details can be found in Appendix B.

Attack
Classifier

model

No

attack

No

defense

Defense

VAE

Defense

VAE-REC

Defense

VAE-E2E

Defense

GAN
MagNet

Adv. Tr.

ε = 0.3

FGSM

ε = 0.3

A 90.85 9.18 86.9 89.03 91.02 87.9 8.9 79.7

B 71.62 15.89 70.88 74.41 77.86 62.9 16.8 13.6

C 90.78 8.68 85.8 89.72 90.85 89.6 11.0 80.4

D 86.94 8.51 85.36 87.09 89.26 87.5 9.9 69.8

RAND

FGSM

ε = 0.3

α = 0.05

A 90.85 7.91 86.42 88.91 90.57 88.8 9.6 44.7

B 71.62 13.14 71.12 73.91 77.09 66.1 16.1 11.9

C 90.78 5.48 86.42 89.38 90.28 89.3 11.2 69.9

D 86.94 7.79 85.77 87.18 88.97 86.2 10.4 62.6

CW

l2 norm

A 90.85 11.67 81.81 86.99 88.54 89.6 6.0 15.7

B 71.62 18.74 67.43 73.69 74.72 65.6 13.1 11.8

C 90.78 7.70 78.64 87.47 88.69 89.6 8.4 10.7

D 86.94 9.35 64.38 86.21 87.83 87.5 6.9 14.9

Average 84.05 10.34 79.24 84.50 86.31 82.55 10.69 40.48

Attack
Classifier

model

No

attack

No

defense

Defense

VAE

Defense

VAE-REC

Defense

VAE-E2E

Defense

GAN
MagNet

Adv. Tr.

ε = 0.3

FGSM

ε = 0.3

A 99.15 14.65 98.29 98.98 99.28 98.8 19.1 65.1

B 96.10 1.81 95.92 95.97 96.91 95.6 8.2 6.0

C 99.08 29.53 98.41 98.91 99.24 98.9 16.3 78.6

D 97.87 4.33 97.56 98.16 98.05 98.0 9.4 73.2

RAND

FGSM

ε = 0.3

α = 0.05

A 99.15 8.65 98.40 99.08 99.34 98.8 17.1 77.4

B 96.10 1.65 95.83 96.04 96.87 94.4 9.1 13.8

C 99.08 5.99 98.33 98.87 99.35 98.5 15.1 90.7

D 97.87 3.25 97.81 98.3 98.05 98.0 11.5 53.9

CW

l2 norm

A 99.15 8.45 92.69 95.12 96.95 98.9 3.8 7.7

B 96.10 3.00 87.66 88.56 95.08 91.6 3.4 28.0

C 99.08 5.53 94.46 96.05 96.44 98.9 2.5 3.1

D 97.87 3.92 83.42 89.46 95.71 98.3 2.1 1.0

Average 98.05 7.56 94.90 96.13 97.61 97.39 9.80 27.38

4.2 Robustness Under Untrained Attacks

In principle we can train Defense-VAE on all known adversarial attacks to best
counter possible attacks in test. However, in reality new attacks are constantly
invented; it’s almost certain that after the deployment of Defense-VAE, some
new adversarial attacks will emerge and Defense-VAE has never been trained
on those attacks. To investigate the robustness of Defense-VAE in this circum-
stance, in this part of the experiments we train Defense-VAE on two attacks
and test its defense capability against the third untrained attack. Again, three
adversarial attacks are considered: FGSM, RAND-FGSM and CW, which gives
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three possible combinations that are shown in Table 2. As we can see, Defense-
VAE is very robust for the first two attacks: FGSM and RAND-FGSM as the
defense accuracies largely remain the same as it’s trained on all three attacks.
But for the CW attack, Defense-VAE is less robust, manifested by the signifi-
cant accuracy loss compared to the Defense-VAE trained on all three attacks.
Indeed, the CW attack is considered a much stronger attack and could have
a very distinct attack pattern to that of FGSM and RAND-FGSM. We there-
fore incorporate Deepfool [18] to the training of Defense-VAE to counter the
untrained CW attack since DeepFool and CW have very similar attack patterns.
The results in parentheses show that this is indeed the case and Defense-VAE
again can recover the most accuracy losses under untrained CW attack.

Table 2. Defense accuracy of Defense-VAE when it’s trained on two attacks but is
used to defend another attack. The results in parentheses are the accuracies after
incorporating DeepFool [19] as additional adversarial training examples for Defense-
VAE.

Attack Classifier Trained on other 2 Trained on 3

FGSM A 87.34 89.03

B 73.38 74.41

C 88.03 89.72

D 86.49 87.09

RAND
FGSM

A 87.30 88.91

B 73.59 73.91

C 88.19 89.38

D 86.73 87.18

CW A 43.48 (85.06) 86.99

B 34.52 (71.64) 73.69

C 44.45 (85.22) 87.47

D 30.77 (84.69) 86.21

4.3 Results on Black-Box Attacks

Next, we test the defense capability of Defense-VAE under black-box attacks on
the MNIST and F-MNIST datasets. We train the targeted CNN model on the
training set for 10 epochs with the batch size of 100 and the learning rate of
10−3 until convergence. Then the substitute model is trained with 150 images
from the test set with the labels predicted by the targeted CNN classifier.

In the black-box attacks, Defense-VAE, as a defender, has no prior knowl-
edge of the trained substitute model. Thus, we can only train Defense-VAE on
the white-box attacks. Therefore, the same Defense-VAE model trained from
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Table 3. Classification accuracies of different defense methods under FGSM black-
box attacks on different image classification benchmarks: (top) F-MNIST, (bottom)
MNIST. The defense accuracies of Defense-GAN, MagNet, and Adversarial Training
are from the Defense-GAN paper [28]. Results on CIFAR-10 have the same pattern as
above. Details can be found in Appendix B.

Classifier/

substitute

No

attack

No

defense

Defense-

VAE

Defense-

VAE-REC

Defense-

VAE-E2E

Defense-

GAN
MagNet

Adv. Tr.

ε = 0.3

A/B 90.85 37.92 83.69 86.64 86.39 58.60 54.04 73.93

A/E 90.85 24.94 76.97 83.02 83.61 47.90 33.11 69.45

B/B 71.62 17.61 73.66 72.42 75.22 49.40 38.12 31.77

B/E 71.62 13.44 69.29 69.36 71.78 37.20 31.19 26.17

C/B 90.78 39.14 83.64 86.88 87.67 52.89 46.64 77.91

C/E 90.78 22.89 76.27 80.16 80.32 48.71 30.16 75.04

D/B 86.94 32.87 80.31 85.80 84.78 57.79 54.78 61.72

D/E 86.94 23.51 70.66 79.48 77.53 40.07 33.96 50.93

Average 85.05 26.54 76.81 80.47 80.91 49.07 40.25 58.37

Classifier/

substitute

No

attack

No

defense

Defense-

VAE

Defense-

VAE-REC

Defense-

VAE-E2E

Defense-

GAN
MagNet

Adv. Tr.

ε = 0.3

A/B 99.15 65.89 98.68 98.71 99.16 93.12 69.37 96.54

A/E 99.15 76.32 98.64 98.92 99.19 91.39 67.10 96.68

B/B 96.10 14.40 95.89 95.95 96.71 90.57 56.87 20.92

B/E 96.10 26.48 96.26 95.81 97.09 88.41 46.27 11.20

C/B 99.08 60.74 97.91 98.02 99.15 93.57 75.71 98.34

C/E 99.08 72.73 98.30 98.59 99.28 92.23 67.60 98.43

D/B 97.87 33.36 97.68 98.22 97.85 92.72 68.17 76.67

D/E 97.87 39.95 97.72 98.22 97.69 91.64 60.73 76.76

Average 98.05 48.73 97.63 97.81 98.27 91.71 63.98 71.92

the experiments of white-box attacks is used to defend the black-box attacks.2

In this experiment, 4 targeted CNN classifiers: A, B, C, and D, and 2 sub-
stitute models: B and E are considered, and this produces 8 possible Clas-
sifier/Substitute combinations. In this part of experiments, only the black-
box FGSM attack is considered, with the results on MNIST and F-MNIST
reported in Table 3. As a comparison, we also include the results of Defense-
GAN, MagNet and Adversarial Training under the same experimental setups;
again, for this set of results, we import them directly from the Defense-GAN
paper [28]. As we can see, on both datasets Defense-VAE outperforms Defense-
GAN and all other defense algorithms by significant margins. In particular, on
F-MNIST, Defense-VAE improves the accuracy over Defense-GAN by about
30%. Also, as in the white-box attack experiments, retrained CNN classifiers

2 In other words, we just need to train one Defense-VAE to defend both white-box
and black-box attacks.
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(Defense-VAE-REC) and finetuning (Defense-VAE-E2E) can further boost the
defense accuracies over the original CNN classifiers (Defense-VAE) by a notable
margin, with the end-to-end finetuning yielding the best defense accuracies
among all the methods.

4.4 Why Is Defense-VAE so Effective?

The results above demonstrated superior performance of Defense-VAE over
Defense-GAN. For the black-box FGSM attack, the former even outperforms the
latter by about 30%. To understand why Defense-VAE can have such a large leap,
we investigate the reconstructed images by Defense-VAE and Defense-GAN in
this experimental setup, i.e., the black-box FGSM attack on F-MNIST. Figure 5
shows some typical examples from this experiment. As can be seen, the recon-
structed images from Defense-VAE often preserve the correct class information of
their underlying clean images, while Defense-GAN has a harder time to identify
a correct reconstruction even though it searches for the right z from R random
initializations and optimizes in L back-propagations, with typical R = 10 and
L = 200. As we discussed in Sect. 3, Defense-VAE identifies a proper z directly
by forward-propagating the input adversarial image through the VAE-encoder,
and reconstructs a high quality denoised image through the VAE-decoder, and
no online iterative optimization is involved.

Fig. 5. The example reconstructions by Defense-VAE and Defense-GAN from the
black-box FGSM attacks on F-MNIST: (a) original images; (b) adversarial images;
(c) reconstruction by Defense-GAN; (d) reconstruction by Defense-VAE.
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Table 4. Run time comparison between Defense-VAE and Defense-GAN, where ∗

denotes Defense-GAN recommended configuration.

Defense method Run time on 1000 Images (s)

Defense-VAE 9.03

Defense-GAN L∗ = 200, R∗ = 10 441.81

L = 400, R = 10 875.48

L = 200, R = 20 876.10

L = 400, R = 20 1720.13

4.5 Defense Speed

Besides the superior defense accuracy of Defense-VAE, another advantage of
Defense-VAE is its superior defense speed over Defense-GAN. As discussed
above, to identify a high quality reconstruction, Defense-VAE doesn’t need
expensive online iterative optimizations, while Defense-GAN requires L itera-
tive back-propagations with R random restarts. To have a quantitative speed
comparison between Defense-VAE and Defense-GAN, we calculate their recon-
struction times on 1000 adversarial images from F-MNIST, with the results
reported in Table 4, where different R and L configurations are considered.

As we can see, compared to the default Defense-GAN configuration, i.e.,
L = 200 and R = 10, Defense-VAE is about 50x faster than Defense-GAN.
Moreover, as L and R increase, Defense-GAN generally has a slightly better
defense accuracy, but the run time also increases linearly as O(L × R). The
constant run-time complexity of Defense-VAE makes it widely deployable in
real-time security-sensitive systems.

5 Conclusion

In this paper, we propose Defense-VAE, a fast and accurate defense algorithm
against adversarial attacks. The algorithm is generic and can defense both white-
box and black-box attacks without the need of retraining the original CNN
classifier, and can further boost the defense strength by retraining or end-to-
end finetuning. Compared with the state-of-the-art algorithms, in particular,
Defense-GAN, our algorithm outperforms them in almost all white-box and
black-box defense benchmarks. In addition, Defense-VAE is very efficient as com-
pared to the optimization-based defense alternatives, such as Defense-GAN, as
no expensive iterative online optimizations is needed. Speed test shows that
Defense-VAE is about 50x faster than Defense-VAE. Given the superior defense
accuracy and speed, we believe Defense-VAE is widely deployable in real-time
security-sensitive systems.
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A Network Architectures

The details of network architectures used in our experiments are described.
Table 5 shows the architectures of the CNN classifiers and their substitute mod-
els, which are identical to those used in Defense-GAN [28] for a fair comparison.

Table 5. The architectures of the classifiers and the substitute models used in the
white-box and black-box attacks.

A B C D E

Conv(*, 64, 5, 1, 2) Dropout(0.2) Conv(*, 128, 3, 1, 1) FC(200) FC(200)

ReLU Conv(*, 64, 8, 2, 5) ReLU ReLU ReLU

Conv(64, 64, 5, 2, 0) ReLU Conv(128, 64, 5, 2, 0) Dropout(0.5) FC(200)

ReLU Conv(64, 128, 6, 2, 0) ReLU FC(200) ReLU

Dropout(0.25) ReLU Dropout(0.25) ReLU FC(10) + Softmax

FC(128) Conv(128, 128, 5, 1, 0) FC(128) Dropout(0.25)

ReLU ReLU ReLU FC(10) + Softmax

Dropout(0.5) Dropout(0.5) Dropout(0.5)

FC(10) + Softmax FC(10) + Softmax FC(10) + Softmax

Table 6 shows the architecture of the Defense-VAE model used in the exper-
iments on MNIST and F-MNIST. The architectures used for CelebA [14] and
CIFAR-10 [11] are largely the same except that they are 1 or 2 layers deeper.

Table 6. The encoder and decoder of Defense-VAE used in the experiments.

Encoder Decoder

Conv(*, 64, 5, 1, 2) + BN + ReLU FC(128, 4096) + ReLU

Conv(64, 64, 4, 2, 3) + BN + ReLU ConvT(256, 128, 4, 2, 1) + BN + ReLU

Conv(64, 128, 4, 2, 1) + BN + ReLU ConvT(128, 64, 4, 2, 1) + BN + ReLU

Conv(128, 256, 4, 2, 1) + BN + ReLU ConvT(64, 64, 4, 2, 3) + BN + ReLU

FC1(4096, 128), FC2(4096, 128) ConvT(64, 64, 5, 1, 2) + BN + ReLU

B Experiments on CelebA and CIFAR-10

We perform the white-box and black-box attacks on CelebA [14] and CIFAR-
10 [11] datasets, with the results provided in Tables 7 and 8. Since Defense-GAN
didn’t provide results on CIFAR-10, we run their code on it and make sure the
experimental settings for both algorithms are the same. We didn’t provide the
results related to the classifier model B due to its improper configuration for
CIFAR-10, e.g., model B has much more parameters due to the large convolu-
tional kernel size (e.g., 8 × 8) and 3 input channels.
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Table 7. Classification accuracies of different defense methods under FGSM, RAND-
FGSM and CW white-box attacks on CelebA and CIFAR-10. Since the Defense-GAN
paper didn’t provide the white-box attack results on CIFAR-10, we run their code and
provide the results in the table.

Attack
Classifier

model

No

attack

No

defense

Defense

VAE

Defense

VAE-REC

Defense

VAE-E2E

Defense

GAN
MagNet

Adv. Tr.

ε = 0.3

FGSM

ε = 0.3

A 96.55 3.94 92.40 94.89 95.10 92.55 9.85 12.25

B 93.69 5.20 90.05 92.45 92.85 91.40 9.20 23.45

C 95.62 4.45 92.47 94.46 95.25 92.55 10.85 11.30

D 94.89 5.92 90.05 93.66 93.91 92.05 9.75 77.55

RAND

FGSM

ε = 0.3

α = 0.05

A 96.55 4.04 92.11 94.56 95.34 92.80 11.05 7.00

B 93.69 4.76 90.55 92.57 93.07 90.30 10.15 45.15

C 95.62 5.12 91.70 93.76 94.15 92.00 10.45 10.55

D 94.89 6.15 91.42 93.53 93.87 91.65 11.05 6.96

CW

l2 norm

A 96.55 4.94 93.70 95.07 95.90 82.10 9.85 56.90

B 93.69 4.90 90.65 92.40 93.55 74.65 9.55 7.25

C 95.62 8.00 93.28 94.57 95.92 79.85 9.85 26.35

D 94.89 6.47 91.15 93.12 93.39 77.40 10.40 50.10

Average 95.19 5.32 91.63 93.75 94.36 87.44 10.17 27.90

Attack
Classifier

model

No

attack

No

defense

Defense

VAE

Defense

VAE-REC

Defense

VAE-E2E

Defense

GAN

FGSM

ε = 0.3

A 86.52 2.44 44.86 48.52 50.72 51.92

C 87.62 5.05 43.92 47.29 47.39 47.84

D 61.76 8.24 47.75 50.69 53.36 33.80

RAND

FGSM

ε = 0.3

α = 0.05

A 86.52 3.71 39.84 47.80 50.51 50.36

C 87.62 3.87 41.28 46.16 47.91 48.52

D 61.76 7.94 47.88 50.67 51.18 26.78

CW

l2 norm

A 86.52 2.34 38.41 45.91 49.44 45.62

C 87.62 7.13 41.21 46.26 46.19 43.87

D 61.76 7.78 53.32 55.81 57.21 20.35

Average 78.63 5.39 44.27 48.79 50.43 41.01

Table 8. Classification accuracies under FGSM black-box attacks on CIFAR-10. Since
the Defense-GAN paper didn’t provide the black-box attack results on CIFAR-10, we
run their code and provide the results in the table.

Classifier/Substitute No
attack

No
defense

Defense-
VAE

Defense-
VAE-
REC

Defense-
VAE-
E2E

Defense-
GAN

C/E 87.62 14.13 37.22 42.68 45.72 20.24

D/E 61.76 10.39 32.60 38.10 37.18 11.68

Average 74.69 12.16 34.91 40.39 41.45 16.32
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Abstract. In this paper we offer a preliminary study of the application
of Bayesian coresets to network security data. Network intrusion detec-
tion is a field that could take advantage of Bayesian machine learning
in modelling uncertainty and managing streaming data; however, the
large size of the data sets often hinders the use of Bayesian learning
methods based on MCMC. Limiting the amount of useful data is a cen-
tral problem in a field like network traffic analysis, where large amount
of redundant data can be generated very quickly via packet collection.
Reducing the number of samples would not only make learning more
feasible, but would also contribute to reduce the need for memory and
storage. We explore here the use of Bayesian coresets, a technique that
reduces the amount of data samples while guaranteeing the learning of
an accurate posterior distribution using Bayesian learning. We analyze
how Bayesian coresets affect the accuracy of learned models, and how
time-space requirements are traded-off, both in a static scenario and in
a streaming scenario.

Keywords: Network intrusion data · Bayesian machine learning ·
Bayesian coresets · Logistic models

1 Introduction

Securing modern networks is a non-trivial challenge that requires high through-
put (to evaluate in real-time the behavior of the network) and expert knowledge
(to decide whether suspicious or malicious activity is taking place on the net-
work). Network intrusion detection, in particular, is concerned with the early
detection of attempts of breaking into and/or comprising a network. Packet
collection techniques allows the continuous monitoring of networks and the col-
lection of large amounts of traffic data.

Modern network intrusion detection data sets quickly exceeds the process-
ing capacity of human reviewers, and thus automatic processing techniques for
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filtering and analyzing the data become necessary. A simple solution consists in
eliciting knowledge from experts and encoding it into logical rules. Such rule-
matching or signature-matching algorithms can process the data quickly, but
their effectiveness is limited by the sort and the range of knowledge provided
by the experts; in particular, these algorithms lack any sort of generalization
and are unable to deal with novel data that do not perfectly match the encoded
rules [8]. Machine learning has been put forward as a potential solution to this
shortcoming. By learning directly from the data, and not from the particular
knowledge provided by experts, machine learning algorithms aim at learning
patterns that may hold not only for historical collected data, but also for future
unforeseen data.

Many current machine learning techniques rely on large amount of data
to learn useful patterns. The success of deep learning, in particular, has been
explained by, among other factors, the availability of big data sets [13]. How-
ever, large data sets have also significant drawbacks. Large collections of data are
problematic to archive and to store on drives; they are challenging to manipulate
and load, requiring either a high amount of memory or frequent swapping oper-
ations; they are often redundant, to the point that this redundancy contributes
little or nothing to the learning process.

Beyond deep learning, other machine learning algorithms may be severely
affected in a negative way by large redundant data sets. This is the case, for
instance, of Bayesian machine learning. Bayesian machine learning provides a
rigorous framework for performing inference over data. It allows the estimation
of complete probability distributions, a precise evaluation of uncertainty, the
possibility of neatly integrating prior expert knowledge in the learned model,
and the ability to update the learned model when provided with new data.
However, all these possibilities come at a high computational cost, as standard
Bayesian learning relying on Markov chain Monte Carlo (MCMC) algorithms
do not to scale well with respect to the size of the data.

In presence of large redundant data sets, a possible solution to make inference
via MCMC feasible consist in the reduction of the number of samples used to
learn. Simple solutions include statistical techniques like random sampling or
unsupervised learning algorithms such as clustering via k-means [2]. A more
exact approach is based on the idea of creating coresets: instead of learning on
the whole redundant data sets, it may be possible to define a (weighted) subset
of samples which is probabilistically guaranteed to return a result close to the
one that would be obtained by processing the whole data. In Bayesian machine
learning, [3,4] recently proposed an efficient and promising algorithm to learn
Bayesian coresets in Hilbert space (BCH) that computes a weighted subset of
samples by smartly exploiting the structure of that space.

As many other applications, network intrusion detection could take advan-
tage of Bayesian data analysis. A careful estimation of uncertainty when evalu-
ating the possibility of a threat on the network is critical in order to take deci-
sions. The possibility of integrating expert knowledge and update models are
also important features in the complex and constantly changing environment of
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networks. Unfortunately though, the amount of data collected by capturing pack-
ets on a network quickly exceeds the feasibility of performing Bayesian machine
learning via MCMC. By filtering redundant data and reducing the amount of
samples via BCH, network traffic data sets could be reduced in size (thus offering
a concrete benefit for storing and management) and processed using Bayesian
techniques (thus producing more complete and versatile results).

In this paper we conduct a preliminary study of the possibility of applying
BCH to network intrusion detection data and perform Bayesian machine learning
via MCMC. We consider two main problems. (i) How effective is the use of
BCH to learn models of network intrusion? We address this question considering
(subsets of) realistic network traffic data and evaluating the effectiveness of
BCH on a simple supervised learning problem. While an evaluation of BCH on
computer security data (phishing data sets) is already provided in [3,4] in terms
of metrics of posterior quality, we offer here an analysis in terms of accuracy,
which is more relevant to the field of cyber-security. In particular we consider
our results in light of the trade-off between time-space and accuracy and with
respect to the sensitivity of BCH to its hyper-parameters. (ii) How effective
is the use of BCH to reduce the amount of data in a streaming environment?
We answer this question by considering the same realistic network data, but
setting up a more challenging scenario in which the data samples are received
sequentially. In this context, we analyze, once again in terms of accuracy and
time-space savings, the advantages that BCH may bring when processing the
data in real-time, upon arrival. Our results confirms that the trade-off between
accuracy and time-space savings when using BCH is mainly regulated by one of
the free hyper-parameters of BCH. Moreover, we show that the algorithm could
be successfully used in a streaming environment, where it succeeds in sensibly
reducing the computational time over several iterations and in ensuring good
performances by aggregating coresets over the same iterations.

On the side, while tackling these questions, we also offer a practical contri-
bution in the form of a porting of BCH algorithms1 [3] into the framework of the
probabilistic programming library Edward [19]. Specifically, we adapt the origi-
nal code for coreset computation to work with Edward models, thus exploiting
the probabilistic programming features of Edward2 and the automatic differen-
tiation feature of Tensorflow3. Code for this implementation is available online4.

The rest of the paper is organized as follows. Section 2 briefly describes
Bayesian machine learning and BCH. Section 3 outlines the problem of net-
work intrusion detection and references previous work. Section 4 introduces our
experimental setup. Section 5 tackles our first research question by analyzing
the use of BCH on network traffic data. Section 6 deals with our second research

1 https://github.com/trevorcampbell/bayesian-coresets.
2 http://edwardlib.org/.
3 https://www.tensorflow.org/.
4 https://github.com/FMZennaro/BayesianCoresets-Edward.

https://github.com/trevorcampbell/bayesian-coresets
http://edwardlib.org/
https://www.tensorflow.org/
https://github.com/FMZennaro/BayesianCoresets-Edward
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question by evaluating the use of BCH in a streaming environment. Finally,
Sect. 7 summarizes our results and presents some of the several avenues avail-
able for further development of this work.

2 Background

In this section we first introduce our general notation for the learning problem.
We review the Bayesian approach to learning and its limitations. We then explain
how Bayesian coresets deal with the problem of scalability. Finally, we review
alternative approaches to work around the computational challenges of Bayesian
learning.

2.1 Notation

In the following, we will deal with standard supervised learning problems. We
consider a data matrix X of dimension N × F , containing N samples described
by F features; a sample xi is a vector of dimension 1 × F . We also assume we
are given a label vector y of dimension N , such that for each sample xi we have
a label yi. Our aim is to learn a model mapping samples to labels: fθ : xi �→ yi,
where θ is a set of parameters defining the mapping function f .

The standard approach of machine learning is to convert this learning prob-
lem in an optimization problem as a function of the parameters θ. The optimal
solution is found by computing the point estimate θ̂ of the parameters. For each
input sample xi we can then compute the output as yi = fθ̂ (xi). The result yi

(which can be interpreted probabilistically if calibrated [16]) is the output of the
single model fθ̂ on which we invested all our trust.

2.2 Bayesian Machine Learning

In Bayesian machine learning we tackle the problem of supervised learning with
the aim of computing a full distributional estimation P (θ) of the parameters θ,
instead of a point estimation. In this way, for each input sample xi we can com-
pute a distribution over the possible outputs P (yi|xi; θ). This result represents
the probability distribution of the output, computed considering all possible
values of the parameters θ scaled by the trust assigned to them.

More formally, in Bayesian machine learning we estimate the posterior distri-
bution π (θ) = P (θ|X) of the parameters given the data using Bayes’ formula:

P (θ|X) =
P (X|θ) P (θ)

P (X)
=

P (X|θ) P (θ)
∫

P (X|θ) P (θ)dθ
=

L (X; θ) π0 (θ)
∫ L (X; θ) π0 (θ) dθ

,

where π0 (θ) = P (θ) is the prior probability distribution over the parameters,
L (X; θ) = P (X|θ) is the likelihood function of the data with respect to the
parameters, and P (X) is the evidence.

Computing the posterior distribution is a challenging task that requires the
evaluation of the product of likelihood function L (X; θ) and prior distribution
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π0 (θ), and the evaluation of the evidence integral. Monte Carlo Markov chain
(MCMC) algorithms are a practical solution to this problem based on the idea
of sampling from the posterior distribution [10]. The main drawback of this app-
roach is the computational scalability as the complexity of sampling a posterior
point grows linearly with the size of the data [3].

2.3 Bayesian Coresets

Evaluating the posterior distribution via MCMC sampling requires the com-
putation of the likelihood L (X; θ). Under the assumption of independent and
identically distributed data, the likelihood for the whole data set L (X; θ) may
be factorized in the product of the likelihoods of individual data points L (xi; θ):

L (X; θ) =
∏

i|xi∈X

L (xi; θ) ,

or, equivalently, in the product of log-likelihoods:

log L (X; θ) =
∑

i|xi∈X

log L (xi; θ) .

Bayesian coresets compute a small weighted subset of the original data T ⊆
X such that the log-likelihood computed on T approximates the log-likelihood
computed on X:

log L (X; θ) =
∑

i|xi∈X

log L (xi; θ) ≈
∑

n|xn∈T

wn log L (xn; θ) = log L (T;w, θ) ,

where xn are samples belonging to the coreset and wn are the associated weights.
The degree of approximation may be evaluated in terms of epsilon-distance
between the original log-likelihood and the coreset likelihood:

|log L (X; θ) − log L (T;w, θ)| ≤ ε · |log L (X; θ)| ∀θ. (1)

Estimating this distance is challenging, and an approximation is offered by Hug-
gin’s algorithm [11].

Bayesian Coresets in Hilbert Spaces. A refinement of this solutions has been
proposed by [3], with the suggestion of embedding log-likelihoods in a Hilbert
function space. This reformulation has several advantages. First, by taking the
objects of this space to be functions of the form g : Θ → R, log-likelihoods
log L (xi; θ) or log L (xn;wn, θ) become vectors of this space; consequently, the
total likelihood over the whole data set log L (X; θ) or the coreset log L (T;w, θ)
can be expressed in terms of vector sum. Second, by taking as a norm of the
space a bounded sup norm ‖g‖ = supθ

∣
∣
∣ g(θ)
log L(X;θ)

∣
∣
∣, we can restate the constrained

problem in Eq. 1 as a sparse quadratic minimization problem:

min
w

‖log L (X;w) − log L (X)‖2
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under the constraints:

wn ≥ 0
∑

1 [wn > 0] ≤ M,

where 1 [c] is the identity function that returns 1 if c holds or 0 otherwise, and
M is a maximum number of coreset samples xn that we allow selecting. This
fomalization turns the problem of constructing a coreset into an optimization
problem aimed at finding the minimal set of samples xn that approximates the
log-likelihood on the data set. Finally, the structure of the Hilbert space allows
us to exploit the directionality of the space in order to account for residual errors
between log L (X;w) and log L (X) and to better select samples xn that would
improve the approximation. Algorithms for coreset construction that exploit the
properties of the Hilbert space include the coreset construction based on Frank-
Wolfe algorithm [3] and the GIGA algorithm [4].

Model Dependency of Bayesian Coresets. As it has been underlined by [5], it
is important to remark that a coreset computed by a BCH algorithm is tightly
connected to a specific family of models. Such a coreset does not constitute a
generic weighted non-redundant distillation of the original data set; it is a subset
of the original data optimized with respect to a specific family of models in order
to produce a posterior distribution as close as possible to the one that we would
learn from the original data set. In sum, a BCH is actually a tuple made up by
a family of models and a weighted set of samples.

2.4 Alternative Approaches to BCH for Bayesian Learning

BCH is just one of the possible approaches to make Bayesian machine learning
feasible on large data sets. Other approaches, which do not involve reducing the
number of samples, include variational Bayes, parallel MCMC and approximate
MCMC. Variational Bayes algorithms forgo the idea of using MCMC algorithms
to perform inference, and rely instead on variational approximations of the pos-
terior [2]. The variational approach allows learning in presence of large data
sets, but the method does not provide guarantees on the degree of approxima-
tion of the uncertainty of the posterior [9]. Parallel MCMC algorithms rely on
parallelization: large data sets are divided among multiple clusters; each cluster
runs locally Bayesian inference via MCMC and produces a posterior distribu-
tion; finally, all the posteriors are aggregated by finding a unique posterior in the
metric space of the posterior distributions [14,18]. The parallel approach allows
to deal with large data sets, but it still requires a high computational budget and
does not address the problem of storing redundant data. Finally, approximate
MCMC aims at speeding up existing algorithms by replacing costly transition
in the Markov chain process with approximations [12]. Again, this approach is
effective when we have to process large data sets, but it requires analyzing the
execution of the MC algorithm, and, once again, it does not consider the problem
of storing redundant data.
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3 Network Security

Network security is one of the main challenges in the management of online
systems. Network administrators try to monitor and prevent malicious activity
through the deployment of intrusion detection systems, the collection of network
traffic, and the analysis of this data [15]. Processing these data in a timely man-
ner in order to detect suspicious activity as early as possible is a crucial problem.
The ease with which large amount of data can be collected on a network poses
severe scalability problems, both in terms of storage and in terms of processing
[8]. Given this constraint, computationally-cheap algorithms, such as signature-
matching, random forests and support vector machines, have been favored; for a
review of pattern recognition and classical machine learning algorithms applied
to network security, see, for instance, [8] and [7].

4 Experimental Setup

In this section we provide a formal description of our study by defining the exact
learning problem we considered, by presenting the data sets and the transforma-
tions we applied to them, and, finally, by discussing the models we implemented.

Problem Definition. Given a large data set for network intrusion detection, we
express our learning problem as a supervised learning problem in which we try to
discover a function that maps network flows to an output defining whether a flow
is malicious or not. More precisely, we try to infer an optimal set of parameters
θ that define the mapping function fθ : xi �→ yi. In a first static scenario, we
process our data with and without BCH, running the simulations multiple times
ad observing the contribution of the BCH algorithm. In a second scenario, we
simulate the progressive collection of large chunks of data. All the data samples
are taken to be independent and identically distributed. In this case, we observe
what the contribution of BCH would be if we were to filter out data as soon as
they are collected.

Network Data Set. To run our experiments we use the network traffic data
collected in the CICIDS2017 data set [17]. Processing real-world network data
presents challenges from a privacy perspective; for this reason, the CICIDS2017
was collected running a simulated network designed to behave in a realistic
fashion. Five days of simulated traffic were collected; during each day, different
types of attacks and malicious behaviors were enacted. Network packets are
gathered and aggregated in network flows. In total, the data set contains more
than 2.5 million sample flows. Each sample is defined by a 78-dimensional vector
reporting features such as packet flags and packet lengths (see [17] for a complete
description of the data). Finally, a binary label has been assigned to each network
flow, denoting whether a flow is legitimate or not. We restrict our attention to
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the second day, Tuesday5, which is made up by 445708 data samples, of which
13835 constitute instances of brute force attacks.

Network Data Preprocessing. The CICIDS2017 data set contains a very limited
number of samples (201) with missing values for the day of Tuesday. Given their
limited number we simply assume that they are missing completely at random
[1] and we just drop them. Also, before each experiment we always standardize
the data to zero mean and unit variance by feature. Standardization parameters
are always computed exclusively on the training data being processed.

Data Set Subsampling. For the purpose of this preliminary study, we evaluate
our algorithms only on limited subsets of the large CICIDS2017 data set. Study-
ing smaller data sets guarantees some advantages: (i) it allows us to compare
Bayesian learning on coresets with the “ground truth” of learning on the whole
data sets, which would not be feasible if we were to consider the entire data set;
(ii) manipulating the data set allows us to simulate scenarios in which we receive
streaming data. While we plan to extend our evaluation to the full data set in
order to assess the true potential of BCH for network intrusion detection, we
were still able to get useful insights by studying its application on more modest-
sized subsets of the original data set. Thus, from the large original pool of data,
we programmatically create subsets by random sampling. In order to preserve
the imbalance between positive and negative instances in the training data, we
always select ten times as many positive samples as negative samples. The pro-
totypical training data set Xtr

i consists of 800 positive instances and 80 negative
instances. For a test data set, instead, we selected an even number of positive
and negative instances, thus simplifying the interpretation of the results. Our
prototypical test data set Xte

i consists of 200 positive an 200 negative samples.

Sample Reduction techniques. Given a training data set Xtr
i , in order to reduce

the amount of data samples, we apply BCH using the GIGA algorithm [4]. This
algorithm has two free hyper-parameters: (i) the number of random dimension
on which to project the samples; and (ii) the number of computational iteration
M , which implicitly limits the maximum number of coreset samples that can be
selected.

Network Models. For our simulations, we consider two models:

1. Bayesian logistic regression (BLR): a discriminative generalized-linear
Bayesian machine learning algorithm [2]. We define our weighted BLR
model as:

θ = N (0, 1)
yi = Bern ((σ (θxi))

wi)

5 Notice that we did not consider the data on Monday because no malicious activity
takes place on this day, thus providing us only with positive instances.
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where N (0, 1) is a Gaussian prior, and the likelihood L (X; θ) is the likelihood
under a Bernoulli pdf Bern (σ (θxi)) scaled by the weight wi associated to
the sample xi. If the data samples are not weighted, then wi = 1 for all xi,
and the model reduces to a standard BLR. Notice that, in general, if all the
samples xi are scaled by a constant value wi = k the inference process will
not change6.
Given a new sample xi, its probability of belonging to a class yi can be
obtained by integrating over all the models under the posterior: P (yi|xi) =∫

P (yi|xi, θ)P (θ)dθ.
2. Support Vector Machine (SVM): as a baseline and comparison, we consider

support vector machine, a linear maximum-margin discriminator [6]. We train
a SVM model to find the slope θ of a discriminating hyper-plane between
samples7.
Given a new samples xi, its class is computed as yi = sign (θxi), where sign (z)
is the sign function, sign (z) = 1 if z > 0, 0 otherwise.

5 Simulation 1: BCH Applied to Network Intrusion
Detection Data

In this simulation we analyze the use of BCH applied to network intrusion detec-
tion data. We evaluate the contribution they provide both from the point of view
of the performance they achieve and the time-space they save. We compare these
results to the baseline offered by SVM and by a BLR computed over the whole
data set.

Protocol. We generate five subsets of training data Xtr
i and test data Xte

i , 1 ≤
i ≤ 5, using the methodology presented in Sect. 4.

We apply BCH to each training data set Xtr
i . We set the free hyper-

parameters of BCH as follows: (i) we fix the number of random dimension to
500, following the experimental evaluation in [3]; (ii) we consider three values
for the number of computational iteration M , that is M = 1000, following again
the evaluation in [3], M = 500, and an aggressively lower value of M = 100,
which is expected to guarantee a higher saving in terms of space and time.

For each subset i, we train and test an SVM model, a BLR model trained on
the whole data set Xtr

i , and a BLR model trained on the coreset computed from
the training data Xtr

i .8 The SVM model is trained with default parameters from
the scikit9 library. The BLR models are trained using the Hamiltonian Monte

6 We take advantage of this constant scaling to prevent overflowing errors in the
simulations.

7 Notice that for a fair comparison with the BLR model, we compute only the slope
of the discriminating hyperplane and not its intercept.

8 Notice that we do not train the SVM model on the coresets because, as discussed
in Sect. 2.3, coresets are not generic non-redundant sub-data sets, but they are sub-
selections optimized for a specific statistical model.

9 https://scikit-learn.org/stable/.

https://scikit-learn.org/stable/
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Carlo algorithm offered in the Edward library with the following settings: sam-
pling 10000 points, using a burn-in period of half of the samples, thinning every
second sample, and adjusting the step size manually to guarantee an acceptance
rate around 0.8. When doing prediction, we use 1000 posterior samples. We
repeat each training and testing 10 times and we average the results.

We evaluate the results in terms of classification accuracy and wall-clock time
required for the training of the model (all the models are run on a non-dedicated
mid-range laptop machine with no GPU support).

Results. First of all, the data processing via BCH with different hyper-
parameters produced different coresets. Table 1 reports the number of data
points selected, specifying the number of samples in the minority class that
have been preserved, and the wall-clock computation time as a function of the
hyper-parameter M . Notice that the number of iterations M does not corre-
spond to the number of coreset samples selected; in all the cases the algorithm
selects a number of samples well below this threshold. With respect to the origi-
nal number of samples, the amount of data points selected by BCH ranges from
around one tenth, when using a low M = 100, to one third, when using a high
M = 1000.

Table 1. Coresets computed on each training data set Xtr
i . The table reports the

number of data points selected to the left of the slash (/), and the number of these
points belonging to the minority class to the right of the slash (/). The last column
reports average and standard deviation of the wallclock time to compute the coresets.

Hyper-parameter Xtr
1 Xtr

2 Xtr
3 Xtr

4 Xtr
5 Time(s)

M = 100 84/1 82/3 82/1 88/1 87/3 260.78 ± 2.37

M = 500 184/4 191/10 186/7 189/9 200/10 251.82 ± 3.05

M = 1000 259/5 270/15 239/4 252/8 252/6 268.63 ± 2.51

Figure 1 shows the accuracy of our models on the different data sets we
considered. Consistently with our expectations, the two linear models, SVM and
BLR on the whole data set, perform similarly; BLR models trained on coresets
show, in general, decreasing performances as we decreased the hyper-parameter
M of the BCH algorithm.

Figure 2 compares the wall-clock time of each algorithm. The highly opti-
mized SVM algorithm shows some variability, but in general terminates in tenths
of seconds. On the other hand, BLR takes up to two orders of magnitude longer.
BLR on coresets is faster, even if on the same time scale; surprisingly using
coresets with M = 500 took the shortest time, which may be due to the particu-
larly good sub-selection of points, or, more likely, to other contingent processes
running on the same machine.
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Fig. 1. Mean and standard deviation of accuracy of the models on each data set Xte
i .

Fig. 2. Mean and standard deviation of wall-clock time required for training the models
on each data set Xtr

i . Notice the different y-scale for SVM on the left side, and the
BLR model on the right side.

Discussion. These basic experiments highlight that the time-space savings
offered by BCH inevitably come at the cost of the accuracy of the final model.
The number of iterations M provides a key hyper-parameter to manage such a
trade-off, as it exchanges the dimension of the data set for the accuracy of the
model.

Notice that from these experiments, the time saving offered by coresets does
not appear particularly remarkable. It is worth, though, to underline that such
an improvement is relevant when related to the small data sets we are processing.
The time savings when using larger data set are discussed in detail in [3].

Interestingly, the computation of coresets has a subsampling effect with
respect to the minority class, as shown in Table 1: while in the original data
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set the ratio between the two classes was set to 1:10, this ratio has sensibly
decreased. This may seem undesirable if we were expecting BCH to produce
a more balanced data set; in reality, though, the algorithm selects only sam-
ples useful for a proper reconstruction of the likelihood function, and the result
seems to suggest that the instances of malicious behaviours may actually be quite
redundant, probably due to the fact that we are considering only one specific
form of attack (brute force).

6 Simulation 2: BCH in a Streaming Environment

In this simulation we try to setup a more interesting and realistic scenario. We
simulate the collection of batches of data in real-time and we learn from the
cumulative set of collected samples. The aim is to evaluate how the learning
process would be affected if the sets of collected data were to be downsized
using BCH before being processed and stored. Such a scenario seems particu-
larly interesting because BCH would immediately discard redundant data, thus
solving at once the problem of making Bayesian inference feasible and reducing
the required amount of memory and storage space.

Protocol. As before, we generate five subsets of training data Xtr
i and test data

Xte
i , 1 ≤ i ≤ 5. Now, however, instead of processing each data set independently,

we simulate the arrival of a data set Xtr
i at time steps ti. At each time step ti,

we want to learn from all the collected data sets and so we pool together all the
data Xtr

j , for j ≤ i. Notice that all the samples are independent and identically
distributed.

When using coresets, we apply BCH to each training data set Xtr
i as soon

as it is collected. At each time step ti, instead of aggregating together all the
previously collected data, we just aggregate the coresets. This operation is the-
oretically justified by the possibility of aggregating coreset computed in parallel
[3]. We use the same hyper-parameters for BCH used in the previous simulation.

We also run the same models as before, and we repeat each simulation 10
times.

Results. We work with the same coresets computed in the previous simulation
and we refer back the reader to Table 1 for their details.

Figure 3 shows the accuracy of the models on the different data sets we
generated. The starting values of accuracy computed on a single data set (X1) are
consistent with the values computed in the previous experiments and shown in
Fig. 1. When we start aggregating more data sets, we notice that the performance
of SVM and HMC on the whole data set is only slightly improved; on the other
hand, the performance of BLR on coresets shows a consistent improvement. Even
aggregating only two coresets (X1 + X2) the performance gap between BLR
on coresets and SVM or BLR on the whole data set is significantly reduced.
This improvement is expected when aggregating two coresets computed with
the hyper-parameter M = 500; in this case, the final amount of selected data
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points would be close to the amount obtained computing a single coreset with
the hyper-parameter M = 1000; and we know from the previous simulations
that the performance of BLR trained on a coreset computed with the hyper-
parameter M = 1000 is very close to the performance of BLR on the whole
data set. More surprising is the improvement registered by aggregating only two
coresets computed with hyper-parameter M = 100.

Fig. 3. Mean and standard deviation of accuracy of the models on each data set Xte
i .

Figure 4 compares the wall-clock time of each algorithm. Again, the time
scale of the two family of algorithms, SVM and BLR, are very different. However,
notice that while the computational time for SVM and BLR on the whole data
sets tend to grow in a linear fashion, the growth in the required computational
time when running BLR on coresets is almost flat.

Discussion. This simulation showed the potential advantages that could be
obtained by deploying BCH in a streaming scenario. In such an instance, the
aggregation of two or more coresets can provide a performance very close to
SVM or BLR trained on the whole data. One of the most significant advantages,
though, is that BCH reduces the amount of data in real-time before learning,
thus limiting the amount of memory necessary for processing; guaranteeing a
sub-linear growth in the time required for learning as more data are gathered
may prove especially advantageous when data is collected in real-world envi-
ronments in which batches of data are generated continuously over multiple
timesteps
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Fig. 4. Wall-clock time required for training the models on each data set Xtr
i . Notice

the different y-scale for SVM on the left side, and the BLR model on the right side.

7 Conclusion and Future Work

This preliminary study showed the feasibility of applying BCH to network data.
Network intrusion detection could take great advantage by employing fully prob-
abilistic descriptions of network traffic, and BCH may prove to be an enabler for
such an approach. Moreover, we showed that the same algorithm is also effective
in reducing the number of samples to be stored; this issue is particularly relevant
when collecting network packets, as the amount of data may quickly grow and
cause severe challenges in their management.

Our experiments first confirmed the concrete trade-off between model accu-
racy and time-space saving when adopting BCH. More interestingly, we also
investigated how BCH may be deployed in a dynamic streaming environment in
which data samples would be filtered in real-time before processing. This last
scenario returned particularly good and interesting results, showing that BCH
can be effectively used to sub-select relevant data samples at different time steps
and aggregate together only the coresets. We demonstrated that in a streaming
scenario the use of BCH may guarantee a better scalability by ensuring that the
computational time for learning grows in a strongly sub-linear fashion.

Of course this study is just a preliminary evaluation of the potential of BCH
applied to the challenging problem of processing the large data sets for network
security. Further investigation is clearly necessary to assess more precisely the
role that BCH may serve. Immediate directions of further study that we con-
sider are the following: applying our protocol to bigger and more realistic data
sets; include other typologies of attacks; compare BCH to other data reduction
techniques, such as random sampling or k-means. More interesting questions
concern also the recursive application of BCH in a streaming scenario and its
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effectiveness when used to process streaming data that do not conform to the
assumption of independent and identically distributed data anymore.
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Abstract. Soccer players have a variety of skills such as passing, tack-
ling, shooting and dribbling. However, their abilities are not fixed and
evolve over time. Understanding this evolution could be interesting from
many perspectives. We analyze player skill data from the FIFA video
game series by EA Sports using tensor methods. This data can be orga-
nized as a tensor over three dimensions, namely players, skills, and age,
which we explore in two different ways. First, we use a polyadic decom-
position to uncover hidden structures among skills and see how these
structures evolve over time. Second, we use a Tucker decomposition to
predict how a specific player’s skills will evolve over time.

1 Introduction

Playing soccer involves multiple technical skills such as passing, tackling, shoot-
ing and dribbling as well as physical skills like acceleration and endurance. Over
time, a player’s ability will change; with practice skills can improve, but as a
player ages certain skills will inevitably decline. Understanding this evolution is
interesting from several perspectives. First, gaining intuition about the relation-
ship between different skills and how they change over time can yield insights
into the game. Second, predicting how a player will evolve can help a club with
roster decisions such as identifying potential transfer targets or deciding which
current players to retain and for how long.

One potential source of skill data comes from the FIFA video game series,
where EA Sports models all soccer players using ratings for in-game skills with
the aim of reflecting their real-life soccer skills.1 In this paper, we explore model-
ing temporal evolutions in this skill data set. These data can be naturally mod-
eled using a tensor with three modes or axes: players, skills and age. We make
three contributions. First, we highlight a variety of challenges that arose while
analyzing the SoFIFA data. Second, we explored the SoFIFA data tensor using
the canonical polyadic decomposition (CPD) in order to extract interpretable
1 These skill ratings are accessible online at https://www.sofifa.com.
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latent structures. Moreover, this decomposition can yield some insights into how
these structures evolve over time. Third, we employ the Tucker decomposition
of a tensor in order to project how a specific player’s skills will evolve over time.
That is, we can predict a player’s ratings for each skill at a future age.

2 Tensors and the SoFIFA Data

We provide a brief background on tensors, describe our data set and highlight a
number of challenges encountered when analyzing this data.

2.1 Tensors

Tensors are a generalization of vectors and matrices that allow us to model
the interactions between different variables such as players, skills, and age. An
order-d tensor A ∈ R

n1×n2×···×nd can be identified with a d-array. The different
dimensions of the tensors are called the modes. This paper focuses on order-3
tensors, but all presented theory can be generalized to higher orders as well. See
the survey by Kolda and Bader [4] for more details.

2.2 Data Description

We used all available data from the FIFA 07 game up to the FIFA 18 game
to track players’ skill evolution. Human experts employed by EA Sports assign
each soccer player ratings between 0 and 100 for 24 different skills (e.g., cross-
ing, finishing, dribbling, etc; see Fig. 1). Which experts and how many assigned
ratings to each player is not known. Updating the skill ratings is done in an open-
source fashion; a community of 8,000 coaches, scouts and season ticket holders
can submit inconsistencies which are then checked and fixed by a small team of
25 EA producers [10]. SoFIFA.com details each player’s biological data, wage,
club, positions and skills in player cards (Fig. 1). These player cards are updated
through time. From 2007 to 2012, the player cards were updated biannually, and
thereafter EA Sports started updating them weekly.

For each player, we can capture the evolution of his skills as he ages in a
matrix by scraping the skill values on his player card as they were on January
1st of each year from 2007 to 2018. We then stack these player matrices in a
three-dimensional tensor of the form: players × skills × ages.

2.3 Data Challenges

Analyzing real-world data is challenging. In this paper, most of the challenges
are related to the quality of the skill ratings. We discuss five challenges.

Cold start. Players have played few matches at the start of their career. Hence
it is hard for experts to construct a player card with accurate skill ratings for
new players based on a small amount of data.

http://SoFIFA.com
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Fig. 1. Lionel Messi’s player card with his ratings for the 24 different skills [2]. Each
skill rating is a number between 0 and 100 that quantifies how proficient the player is
at that skill estimated by human experts. The overall rating is a weighted average of
the skill ratings. The exact weighting scheme employed by FIFA is unknown, as is the
way they predict the potential of a player, which is the highest overall rating a player
can attain in the future.

Human subjectivity. Rating players’ skills is inherently a subjective task. A
difference in experience between human experts can lead to different opinions
about the same player.

Ratings for irrelevant skills. Each player receives a rating for every skill
available, including those that are not relevant for their position (e.g., field
players receive ratings for goalkeeping skills).

Artificial boosts. EA Sports is known to manually boost the ratings for well-
known players if they disagree with the experts’ opinion [5], which disrupts
the quality and consistency of the ratings in the data set.

Disruptive skill corrections. Three types of corrections can occur that are
unrelated to actual changes in player skill. First, due to the cold start prob-
lem, early-career players can receive wildly inaccurate initial skill ratings,
which are later (when the player has played more matches) corrected by a
large value, causing a disruptive jump in the skill evolution. Second, a col-
lective correction can happen where rating for a specific skill is dramatically
altered for a large group of players. For example, all field players had their rat-
ing for the GK Kicking skill significantly lowered in the FIFA 11 edition of
the game. Finally, the newer FIFA games receive updates on a weekly basis
and hence, rating adjustments have become more event-related now compared
to older FIFA games, when updates only happened once or twice a year.
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For example, Messi’s penalty skill was lowered from 78 to 75 in the update from
21 December 2017 after he missed a penalty kick on 17 December 2017 [6,7].

3 Exposing Hidden Structure with CPD

Since we are dealing with temporal data that describes the evolution of players
over time, tensor decompositions provide a straightforward and natural way to
discover patterns and predict evolution. A decomposition that allows us to dis-
cover intelligible hidden, underlying patterns in the player data is the canonical
polyadic decomposition [3]. The CPD approximates a tensor A ∈ R

n1×n2×n3 as
a sum of r pure tensors Ai, where each Ai can be written as the tensor product
of the vectors pi, si, and ai, living in respectively R

n1 ,Rn2 and R
n3 :

A ≈
r∑

i=1

Ai =
r∑

i=1

pi ⊗ si ⊗ ai. (1)

Recall that for x ∈ R
n1 ,y ∈ R

n2 and z ∈ R
n3 we have

x ⊗ y ⊗ z := [xiyjzk]
(n1,n2,n3)
(i,j,k)=(1,1,1) ∈ R

n1×n2×n3 .

We then define the player factor matrix as P := [p1 p2 ... pr], the skill factor
matrix as S := [s1 s2 ... sr] and the age factor matrix as A := [a1 a2 ... ar]. If
the CPD is of rank r and all the elements in the rank-1 terms are non-negative,
then the rank-1 terms can be seen as the r dominant building blocks of our
tensor, which is conceptually similar to non-negative matrix factorization. A
crucial feature of CPD that distinguishes it from many matrix-based approaches
is that the factorization into the pure tensors Ai is unique up to the order of the
summands; see [1] for details.

To illustrate a CPD-based analysis, we take the rank-7 CPD of a tensor
containing skill ratings of 17,859 players for all 24 skills over the age range
[23..29]. Each term can be interpreted as a collection of correlated skills that
make up a common characteristic or trait observed in different soccer players.
Figure 2a illustrates each term’s skill vector containing the weights of all 24 skills.
Each weight in such a vector represents how important the skill is in the term.
Each term’s evolution over player age is visualized in Fig. 2b. For most of the
terms the evolution is near-constant. We now briefly discuss the terms.

1. Mean. The first term of the decomposition represents the mean of the data
as it is the most dominant part of the data.

2. Evolution term. The second term describes the overall positive evolution
of skills up to the age of 28–29.

3. Defender trait. The third term represents the trait of a defender, showing
high weights for the Marking and Standing Tackle skills.

4. Heading trait. The fourth term represents the trait of players that are good
at heading, showing high weights for Strength and Aggression. Interestingly,
this trait is also correlated with Acceleration and Sprint Speed according to
our decomposition.
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5. Goalkeeper trait. The fourth term represents the trait of goalkeepers, with
high weights for all goalkeeper skills (e.g., GK Diving, GK Handling, GK
Positioning) and more general skills also associated with goalkeepers (e.g.,
Strength, Reactions).

6. Correction term. Prior to FIFA 11, all players had a high rating for GK
Kicking. Starting from the FIFA 11 edition, all field players’ ratings for this
skill were significantly lowered. This term accounts for this correction and
illustrates how CPD can expose hidden structure in the data as we were
initially unaware of this correction in the data.

7. Striker trait. The seventh term is the trait of players who are good at skills
typically associated with strikers such as Finishing, Dribbling, Shot Power,
Long Shots. and Penalties.

Player Examples. We illustrate how each player is essentially a linear combi-
nation of these traits. The coefficients for each player can be found in the player
factor matrix. We give an example for a famous player in each position. Their
coefficients can be found in Table 1.

Table 1. Coefficients for Messi, Modrić, Chiellini and Buffon.

Player Position Mean Evolution Defender Heading Goalkeeper Correction Striker

Messi ATT 811.82 27.42 0.0 0.0 0.0 6.03 46.30

Modrić MID 766.61 34.63 26.55 0.0 0.26 9.70 14.88

Chiellini DEF 572.59 14.92 56.53 21.05 5.55 17.24 7.81

Buffon GK 98.32 12.17 7.62 4.52 75.19 2.06 29.51

Lionel Messi. His coefficients for the mean term (811.82) and the striker trait
(46.30) are extremely high. This matches his reputation as one of the best
offensive soccer players ever. His coefficients for the defender, heading and
goalkeeper traits are equal to zero, which also matches his playing style and
small stature.

Luka Modrić. With midfielders being a combination of attackers and defenders,
there is no real midfielder trait in the CPD. The Croatian player does not
possess particularly high coefficients for any of the traits compared to other
players, but is reasonably strong in all of them, except for heading.

Giorgio Chiellini. A typical classic defender. With his tall physical presence,
he is good at heading, as illustrated by his high coefficient for the heading
trait (21.05). Compared to Messi, whose coefficient for the heading trait is
zero, Chiellini shows significantly higher ratings than Messi for heading skills
such as Heading Accuracy (83 vs 70) and Strength (89 vs 59).
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(a) The skill vectors of the seven terms in the CPD of our data tensor.

(b) The age vectors of the seven terms in the CPD of our data tensor. The orange
evolution term describes the positive evolution of skills up to the age of 28-29. The
brown correction term accounts for the reduction in GK Kicking all players received
at the introduction of FIFA 11. The other five terms are relatively stable over all ages.

Fig. 2. The vectors of the rank-7 CPD visualized. (Color figure online)

Gianluigi Buffon. Buffon has a low coefficient for the mean (98.32) because
goalkeepers have low ratings for most skills. Naturally, his coefficient for the
goalkeeper trait (75.19) is extremely high compared to the field players. Hav-
ing a low value for the coefficient of the mean can cause other coefficients to
have illogical values; a small peak in any non-goalkeeper skill has to be fitted
by a non-goalkeeper trait with a large coefficient. As an example, Buffon has
a strong value for the striker trait (29.51) but that does not make him a
good striker. Interpreting the values of non-goalkeeper traits for goalkeepers
is often not useful.
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4 Predicting Skill Ratings Using Tucker Decomposition

Discovering underlying patterns in player data is certainly interesting from a
research perspective. However, a more interesting direction from an application
perspective is predicting a player’s evolution, as this can directly influence deci-
sion making on player acquisition and player retainment. Our task is then the
following:

Given: Skill ratings of players for ages [h1..hk]
Predict: Skill ratings of the same players for ages [hk+1..hN ]

We address this task by learning latent structures in a full tensor with training
data for ages [h1..hN ] using the Tucker decomposition. Unlike the CPD, the
factor matrices of this decomposition are less intuitive as they are not unique.

4.1 Tucker Decomposition Theory

The multilinear multiplication is a tensor multiplication in which a tensor is
multiplied with a matrix in each mode [4]. The multilinear multiplication in
which a tensor A ∈ R

n1×n2×n3 is multiplied in each mode i by matrix Mi ∈
R

mi×ni , is denoted by

(M1,M2,M3) · A ∈ R
m1×m2×m3 .

The Tucker decomposition can be seen as a higher-order analogue of the
principal component analysis [8]. In this decomposition, a tensor A ∈ R

n1×n2×n3

is factorized in a core tensor S ∈ R
r1×r2×r3 multiplied with factor matrices along

each mode. In the three-dimensional case, the factorization is

A = (U1, U2, U3) · S,
with A ∈ R

n1×n2×n3 the original tensor, S ∈ R
r1×r2×r3 the core tensor and

U1 ∈ R
n1×r1 , U2 ∈ R

n2×r2 , U3 ∈ R
n3×r3 the factor matrices.

If ni > ri, i = 1, 2, 3, the core tensor S can be seen as a compressed version
of the tensor A. It describes how and to which extent the elements of the tensor
interact with each other using the factor matrices.

4.2 Predicting Skill Ratings

Given the full data tensor A ∈ R
ptotal×M×N with ptotal players, M skills and

the data from age h1 until hN , the tensor is split into a training tensor Atrain ∈
R

ptrain×M×N with ptrain players and a test tensor Atest ∈ R
ptest×M×N with ptest

players, such that ptotal = ptrain + ptest. From the test set, only the first hk ages
are used. The predictions are made for the ages [hk+1..hN ].

In order to make predictions, a model has to be trained first. Unlike most
learning algorithms, there are no iterative steps in which a model is trained.
The latent structures are extracted by computing a single decomposition. Our
approach consists of the following three steps (see Fig. 3).
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1. Extracting latent structures. The latent structures of the data are
extracted using the Tucker decomposition on the training tensor Atrain. These
structures are represented by the factor matrices of the decomposition; Û1 for
the player factor matrix, Û2 for the skill factor matrix and Û3 for the age fac-
tor matrix (Fig. 3a).

2. Finding the player factor matrix. We find a player factor matrix Û test
1

such that the test tensor Atest is best approximated by a Tucker decom-
position using the core Ŝ, the skill factor matrix Û2 and the truncated age
factor matrix Û trunc

3 using only the rows of ages [h1..hk] from the train tensor
Atrain (Fig. 3b). Finding this player factor matrix can be reduced to solving
a least-squares problem.

3. Completing the test tensor. We can now complete the missing data in
Atest by multiplying the player factor matrix Û test

1 with the core Ŝ, the skill
factor matrix Û2, and the other part of the age factor matrix Ûother

3 corre-
sponding to the ages [hk+1..hN ] (Fig. 3c).

4.3 Experiments

To evaluate how well our tensor-based method can predict future skill ratings, we
address three different instances of our prediction task. hk : [hk+1..hN ] denotes
the task of using data of the players at age hk to predict their skill ratings at the
ages [hk+1..hN ]. We predict the evolution of young players (18 : [19..26]), mid-
career players (23 : [24..31]), and older players (26 : [27..34]). The goalkeeper
skills GK Diving, GK Handling, GK Kicking, GK Positioning, and GK Reflexes
are disregarded, as these skills are irrelevant for most players.

For each task, we report the mean absolute error (MAE) over all players over
all skills over ages [hk+1..hN ] and compare our tensor-based method against two
baseline models. The first baseline model predicts players to have no evolution
at all, i.e., we use a player’s skill ratings at age hk as the predictions for his
skill ratings at ages [hk+1..hN ]. The second baseline model uses the well-known
k-nearest neighbors algorithm (KNN) in which the predictions are made using
the k closest neighbors in the data set. The results can be found in Table 2.

Table 2. The mean absolute error of the models for the three prediction tasks.

Prediction method 18 : [19..26] 23 : [24..31] 26 : [27..34]

No evolution baseline 10.45 8.23 6.90

KNN baseline (k = 10) 8.31 7.82 7.67

Tensor-based method 8.57 7.71 6.74

If we focus on short-term predictions (1–2 years into the future), then the
no evolution model shows the best performance. This is expected, as soccer
players tend to improve gradually and thus show little evolution over 1–2 years.
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Atrain ≈ Û1 Ŝ

Û3

Û2

(a) The Tucker decomposition of the training tensor Atrain is computed. The ith row of
the player factor matrix, Û1, corresponds to the data of the ith player in the training
tensor.

Atest ≈ Û test
1 Ŝ

Û trunc
3

Û2

(b) Given Atest containing the data for ages [h1..hk] of the test players, core tensor Ŝ,
skill factor matrix Û2 and the truncated age factor matrix Û trunc

3 , the coefficients for
all players in the test set, Û test

1 , are computed.

P

≈ Û test
1 Ŝ

Ûother
3

Û2

(c) With Û test
1 computed, the predictions P are now calculated by using the multilinear

multiplication with Ûother
3 : P = (Û test

1 , Û2, Û
other
3 ) · Ŝ.

Fig. 3. The three steps of our tensor-based method to predict skill ratings.

If we focus on long-term predictions (5–7 years into the future), then KNN
shows the best performance. This matches the observations of Vroonen et al.
who showed the superiority of KNN over the no evolution baseline for long-term
predictions [9]. Our tensor-based method seems to hit a sweet spot between these
two prediction methods, as evidenced by its lowest overall MAE for two of the
three prediction tasks in Table 2.

Note that the predictions in our experiments are based on only one year
of data. The performance of the tensor-based method degrades if we use more
than one year of data. We can think of two reasons for this. First, the algorithm
to decompose a tensor aims to optimally compress the entire data set and not
necessarily to optimally predict missing data for certain ages. There is thus
a technical misalignment between our prediction task and the task that the
tensor decomposition is solving. Fixing this technical misalignment could be
interesting future work. Second, skill ratings barely change in one or two years.
Hence, taking three years instead of one year, for example, does not add much
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more information to the prediction model. Vroonen et al. [9] also came to the
conclusion that increasing the number of years of given data to make predictions,
has a limited effect on performance.

5 Conclusions

In this paper, we made three contributions to the field of soccer analytics. First,
we highlighted a variety of challenges that arose while processing the SoFIFA
data. Second, we explored the SoFIFA data tensor using the canonical polyadic
decomposition (CPD) in order to extract interpretable latent structures. We
showed how these latent structures group together related skills, how they evolve
over players’ ages, and how each player can be summarized as a linear combina-
tion of these latent structures. Third, we employed the Tucker decomposition of
a tensor in order to project how a specific player’s skills will evolve as he ages.
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Abstract. In recent years, professional soccer leagues have started col-
lecting tracking data of players on the pitch during all matches of the
league. This tracking data might provide an important addition to exist-
ing tactical analyses (e.g., video analysis and annotated events). By char-
acterizing the spatial relations between players over time, the dynamic
context in which success takes place can be determined. Tactical analy-
sis of events can be enriched with spatial relations between the players
during these events. Here, we demonstrate our automatized methodolog-
ical approach where we use tracking data of 48 matches to (1) identify
key events, (2) construct interpretable spatial relations between the play-
ers, (3) systematically examine the spatial relations over time, (4) define
the success of an event, and (5) discover interpretable and actionable
patterns in the spatial relations to report back to the coaching staff.
With our approach, future analyses of tactics can be less tedious and
more data-driven. Moreover, the context-of-play can be assessed in more
detail when implementing tracking data.

Keywords: Subgroup Discovery · Tracking data · Association football

1 Introduction

Data is having an increasing impact on the world around us, also on sports
such as soccer due to developments in sensor technology and optical tracking
[18]. Recently, in addition to the annotated event data of soccer match-play,
competition-wide high-quality tracking data of the players and the ball on the
pitch during match-play has become available. This spatio-temporal data is rich
and complex and offers many opportunities for analyzing and optimizing tactics
in soccer by applying modern data science techniques [22]. We will demonstrate
that it is possible to analyze tactical behavior in soccer without having to strictly
define beforehand which specific metrics may construe this tactical behavior by
adopting an exploratory data mining technique.

This work is part of the research programme Data-driven research on Sports & Healthy
Living with project number 629.004.012, which is (partly) financed by the Netherlands
Organization for Scientific Research (NWO).
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1.1 Tactical Analysis in Practice

In technical terms, tactics concern how teams and individuals manage space and
time, and adapt to the opponent and conditions of play [10]. The coach, often
supported by their staff, is the ‘tactical mastermind’ who designs the game plan.
Essentially, the coach has to make a head-to-head comparison: which strategy
works best specifically for us, against a specific opponent.

Currently, it is common practice to have a video analyst and often also an
embedded scientist to provide additional insights for the coaching staff. Video
analysts laboriously go through video footage of match-play to highlight specific
game situations (e.g., typical strengths and weaknesses). This kind of qualitative
analysis is highly tuned to the coaching staff’s philosophy, but often relies a great
deal on the ‘expert eye’, making it prone to bias.

An embedded scientist is more focused on quantitative analyses, for example
using annotated event data. This data varies from straightforward performance
indicators such as the number of successful passes per player, to more com-
plicated analyses such as passing networks among players highlighting who is
well-connected to whom [6]. The type of event is recorded (e.g., a pass), but also
the estimated location and the players involved [4]. Interestingly, these events
are available for almost every professional league worldwide. As such, this data
is even used to inform clubs about potential new acquisitions on the transfer
market [2,20] and can certainly be used for tactical analysis. However, the man-
ually coded data does not provide all the context in which a play took place
(i.e., what did all the players do up until the event).

Given the subjectivity of video analysis and the lack of context in event data,
the coaching staff could benefit from more systematic analyses of tactics that
allow for an objective comparison between the success rates of different playing
styles.

1.2 Positional Tracking Data

In one form or another, ‘data’ already plays a role in the decision-making process
of the coaching staff, however, a new type of data will make the role of data in
sports even more important. The latest development in soccer data is the semi-
automatic tracking of the positions of the players on the pitch by professional
leagues such as the German Bundesliga and the Dutch Eredivisie. This spatio-
temporal data has the potential to allow for the systematic analysis of tactical
behavior in invasion-based team sports (e.g., soccer, hockey, rugby) [18,22].

Although event data also contains information about space and time, event
data is much more superficial as only the locations of some players are known.
With positional tracking data on the other hand, the positions of the players
(and the ball) leading up to an event can be assessed (e.g., a pass to a closely
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guarded or an open player), thus providing the necessary context1 as to why a
sequence of actions may have been successful.

By coupling the events and the positioning of the players, novel and insightful
patterns can be uncovered in the tactics of an invasion-based game such as soccer.
In fact, the positional tracking data is so rich and complex, that numerous hand-
crafted metrics could be conceived. Indeed, in recent years metrics have been
developed that describe –for example– how threatening a player is on offence
(e.g., Dangerousity) [15], how well a player positioned itself off-the-ball [26],
or how effective a pass was, based on the displacement in the defensive team
it triggered [9,12]. Gudmundsson and Horton [11] provide a clear overview of
the pioneering work on tracking data in sports. They highlight that one of the
open problems is that not many spatially informed metrics for player and team
performance have been rigorously tested, often because only limited match data
is available. It is thus pertinent to carefully consider which (variation of a) metric
is the most indicative of success.

1.3 Aims

In the current paper, we aim to demonstrate a methodological approach that
deals with two challenges for tactical analysis in an invasion-based team sport.
First, current analyses either could be more objective and lack scalability (video
analysis), or could be more reliable and lack context (annotated event data).
We will demonstrate that with tracking data, the subjective constructs deemed
important by experts can be operationalized algorithmically. The second chal-
lenge is that with tracking data so many (slightly) different metrics can be
derived, that it is difficult to assess which is the most informative. Fortunately,
now that tracking data is abundantly available, it is possible to discover the
metrics that are most informative of success using a descriptive data mining
technique.

2 Methodological Approach

To put this spatio-temporal data information in an actionable and interpretable
context, we adopt an event-based approach. For a chosen type of event, we com-
pute many of the metrics that already exist in scientific literature. By formulating
a qualification of success, we can then use a descriptive data mining technique
to uncover actionable and interpretable patterns. Here, a pattern refers to the
features and their value ranges that best classify success. For our experiment,
we selected the event Turnovers, which we classified based on the location (in-
or outside the opponent’s penalty box). We used Subgroup Discovery to identify
patterns in the data.

1 Although sometimes ’context’ refers to the state of the match with respect to for
example goal differential or time remaining [16,23], we refer to context as the loca-
tions (and thus actions) of all players on the pitch around a key event.
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2.1 Key Events

During a match, discrete events occur that can be the key to understanding
successful performance. Taking a shot on goal, for example, is a key occurrence
that is directly related to winning a match. The outcome of an event can be
classified: if the shot on goal led to a goal, it was a successful event. However,
even with the increase of available data, goals and even shots on goal occur
so infrequently that other more frequently occurring key can be analyzed more
productively. Although dealing with sparse successful events is a key challenge
in soccer analytics, we here circumvent this issue by looking at a more frequently
occurring event such as the moment that a team loses possession of the ball.

Such changes in possession are an important part of soccer match-play as
they can reveal successful match-play, without relying on infrequent events such
as a scored goal. For our methodology, we define a turnover as the instant that
the opposing team gains possession of the ball.2 Typically, any turnover would
be considered as unsuccessful from the perspective of the team losing the ball.
However, our definition of Turnovers includes any change in possession, also
as a consequence of a goal or some other proxy of success (e.g., an intercepted
cross pass, a shot on- or off target). Based on the tracking data, our automa-
tized methodological approach identifies the location of the ball at the instant
that the possession changes team. Successful events are then the events where
the defending team gained possession inside their penalty box. That is, if an
attacking team managed to get the ball inside the opponent’s penalty box at
the instant the possession ended, the turnover was classified as successful. From
here onward, we refer somewhat counter-intuitively to possession sequences that
ended inside the opponents’ penalty box as successful Turnovers and all other
possession sequences as unsuccessful Turnovers. In other words, an attacking
sequence where the team in possession got very close to (scoring) a goal.

2.2 Feature Construction

The features that describe the key events are constructed from a range of theory-
driven metrics [1,7,8,15,19,22]. Here, we briefly explain the metrics conceptually,
but for algorithmic details we refer the reader to the literature. All metrics
require some form of spatial aggregation: a distance-based interpretation of what
is happening on the pitch. This could for example be the Width of the team,
which is the distance between the player closest to one and the player closest to
the other sideline. The metrics are always considered with respect to a team (i.e.,
the Width of the team with the ball). Additionally, it is possible to formulate

2 A possession starts the instant a player gains control over the ball and ends the
instant a player of the opposing team gains control over the ball. Control of the ball
is established when a player has been the closest player to the ball for at least 0.5 s,
with the limitation that the distance has to be less than 1.5 m. The ball carrier loses
control of the ball the instant that another player fits these criteria, or when the
distance to the ball is more than 4 m. Additionally, one-touch passes were identified
based on a direction change of the ball.
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slight variations (see A-D in Table 1) by for example excluding the goalkeeper or
looking at other subsets of players (e.g., the defenders, midfielders or attackers).

Distance-Based Metrics. In addition to the Width, we incorporated some
other distance-based metrics of what happens on the pitch. The Centroid refers
to the average positioning of the players on a team [7,8]. Similarly, the Spread
is the standard deviation of the distances between each player and its team’s
Centroid [1,19]. The Surface refers to the area covered by the Convex Hull, of
which we also take the Circumference [22], that can be drawn around different
subsets of players (e.g., the defenders) [8,22]. Finally, the shape ratio is the ratio
between the Width and distance between the player closest to- and farthest away
from- the goalkeeper [7].

Potential Danger. Moreover, the context of the players relative to each other
can be taken into account. Link and colleagues [15], for example, developed a
measure called Dangerousity which captures how threatening a ball carrier is. It
is a combination of the Pressure exerted by the defending team, the Zone the
player is in (i.e., closer to the goal and inside the penalty box is more threat-
ening), the Control the player has over the ball and the Density of the players
around the ball carrier. Pressure is based on the position of the defender(s) with
respect to the ball carrier. The closer a defender is to the ball carrier, the higher
the pressure. Additionally, pressure is scaled based on the defender’s position
with respect to the goal and the ball carrier. The pressure of a defender in the
’head-on’ zone (between the goal and the ball carrier) is weighted higher than
a defender in the ’hind’ zone (i.e., the ball carrier is in-between the defender
and the goal). Zone is a value assigned to each location in the final third of the
pitch. The Zone-values increase as the distance to the goal gets smaller, with an
additional increase for zones that Link and colleagues deemed threatening (e.g.,
inside the penalty box). Control is based on the difference in velocity between
the ball and the ball carrier, where a small difference indicates high control.
Finally, the Density is based on the number of players and how crowded they
are on the line between the ball carrier and the goal. For more details on how
Dangerousity and its components are defined, see Link and colleagues [15].

Temporal Aggregation. From the available metrics, the event-based features
are generated by reducing them to scalar values by systematically compressing
the temporal dimension. As can be seen in Table 1, from every metric we con-
struct multiple features. Multiple windows could be examined, but for the sake
of simplicity we limit ourselves to one specific window. We aggregate the metrics
from 10 until 5 s preceding each event. We opted for a window of 5 s as it cap-
tures a relatively short term process, as many decisive moments have a rather
immediate effect. By excluding the time directly preceding the event, we force a
more predictive analysis that captures what happens preceding, rather than at
the instant of, the event. We aggregate over time by taking the average and the
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standard deviation of the metrics. Furthermore, each metric is aggregated for
each team separately and for some of the metrics there are some more specific
variations as can bee seen in Table 1.

Table 1. An overview of all metrics and the features that were constructed from them.

Metric Team Method Variations Features (#)

Centroid [7,8] 2 2 2A 8

Circumference [22] 2 2 4

Control [15] 2 2 4

Dangerousity [15] 2 2 4

Density [15] 2 2 4

Pressure [15] 2 2 4B 16

Spread [1,19] 2 2 2C 8

Surface [8,22] 2 2 3D 12

Shape Ratio [7] 2 2 4

Width [7] 2 2 4

Zone [15] 2 2 4

Total number of constructed features 72
A With and without goalkeeper
B The maximum and average pressure of all defenders, the pres-
sure of the closest defender and the average pressure of all defend-
ers within 9 m.
C Spread (average distance to Centroid) and Spread Uniformity
(standard deviation of distance to Centroid)
D For the whole team, the midfielders & attackers, and the mid-
fielders & attackers per player

2.3 Discovering Patterns

Once the rich and complex positional data has been reduced to a tabular format,
the data can be explored for patterns. We will use Subgroup Discovery with
the tool Cortana [17]. Subgroup discovery is an exploratory, descriptive data
mining technique, targeted at labeled examples. It has previously been shown
to be informative in a sports-related setting [13,14]. A subgroup is a part of the
dataset that has a distribution of the target attribute that stands out compared
to that of the rest of the dataset.

Take the following example: of a dataset with shot attempts, each shot is
labeled as on target or not on target. In the whole dataset, the percentage
of shots on targets may be rather low. A subgroup, identified by a (set of)
condition(s), of the dataset might have a larger percentage of successful events.
It could be, for example, that the percentage of successful events increases when
the distance of the ball carrier to the goal is small.
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3 Experiment

In this experiment, we show an implementation of our methodology for the event
Turnovers. We defined success based on whether the possession ended inside the
opponent’s penalty box. We generated the features as presented in Table 1, which
we explored using Subgroup Discovery.

3.1 Data

We used a database with 48 matches from the seasons 2014–2018 from two top-
level soccer clubs in the Dutch premier division (‘Eredivisie’). The data was
collected by the clubs for performance analysis. The database included matches
from the regular competition, the national cup and the Europa League. The
clubs obtained written consent from the players to collect, share and store their
data. We, in turn, obtained written informed consent from the clubs, to allow us
to use the data for scientific purposes. All personal data was anonymized and the
principles of the Declaration of Helsinki were adhered to throughout the research
project. The X and Y coordinates of all players and the ball were recorded at
10 Hz with a video-based tracking system (SportsVU, STATS LLC, Chicago, IL,
USA). For our experiment, we used tracking data only; the ball possession and
key events were all computed algorithmically.

3.2 Subgroup Discovery

Our tabular data contained 6729 examples (i.e., Turnovers) and 72 features
(see Table 1). The prior was 13.5%, that is, 910 Turnovers took place inside the
opponent’s penalty box. To assess the quality of the subgroups, we will use the
Weighted Relative Accuracy (WRAcc):

WRAcc(S, T ) = p(S) ∗ (p(T |S) − p(T )),

where S is the subgroup indicator variable (a binary function that decides for
each example whether it is covered by the subgroup) and T the target vari-
able. Additionally, we compute the Area Under the Convex Hull of all of the
subgroups’ True- and False- Positive Rates (ROC AUC ). Subgroups that have
no correlation with the target (i.e., based on a random subset) will lie on the
diagonal of the ROC-curve, yielding an ROC AUC of 0.5 (i.e., the naive base-
line). We searched at depth 1, meaning that the exploration was restricted to
one condition per subgroup. We adopted the intervals strategy, which means
that conditions for subgroups could be formulated both as a range as well as a
cut-off. Through swap-randomization with 100 repetitions we determined that
subgroups with a WRAcc of at least 0.076 were not found by chance (p < 0.05).

3.3 Subgroups

We found 24 significant (p < 0.05) subgroups with an ROC AUC of 0.627 (see
Table 2), wh With a prior of 13.5%, the percentage-point increase varied from
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Table 2. Overview of significant subgroups (p < 0.05) ranked based on the WRAcc.
The coverage and posterior indicate how large and successful a subgroup is. The condi-
tion of the subgroup is specified by the interval of a feature constructed from a metric
referring to a specific Team (attacking or defending) and aggregation method (average
or standard deviation).

Rank Coverage WRAcc Posterior Metric Team Method Lower Upper

Related to the team’s dispersion on the pitch

1 2794 0.21 19.4% Circumference DEF AVG -inf 144

2 3050 0.20 18.7% Circumference ATT AVG 161 213

3 3630 0.19 17.7% SpreadA DEF AVG -inf 17.82

4 3687 0.19 17.6% SpreadB ATT AVG 8.60 15.19

5 3740 0.18 17.3% SpreadA ATT AVG 17.87 24.27

6 2595 0.18 19.0% SpreadB DEF AVG -inf 8.10

8 3582 0.17 17.3% SurfaceC DEF AVG -inf 1307

10 3477 0.17 17.3% SurfaceC ATT AVG 1352 2249

11 3363 0.15 17.0% SurfaceD DEF AVG -inf 12.21

14 3144 0.13 16.8% SurfaceE ATT AVG 118 166

15 3794 0.13 16.2% Width DEF AVG -inf 40.11

16 3188 0.13 16.7% Width ATT AVG 41.53 62.88

17 3250 0.12 16.4% SurfaceD ATT AVG 12.40 16.62

18 4373 0.12 15.6% SurfaceE DEF AVG -inf 121

Related to the team’s potential danger

7 3249 0.17 17.7% Control ATT AVG 0.09 1.00

9 3482 0.17 17.4% Control ATT STD 0.00 0.50

12 4776 0.14 15.8% Control DEF AVG -inf 0.06

13 4704 0.14 15.8% Control DEF STD -inf 0.00

19 951 0.10 22.0% Dangerousity ATT STD 0.00 0.33

20 937 0.10 22.1% Dangerousity ATT AVG 0.00 0.24

21 948 0.10 21.8% Zone ATT AVG 0.00 0.26

22 968 0.10 21.6% Zone ATT STD 0.00 0.38

23 606 0.08 24.3% Density ATT STD 0.10 0.44

24 766 0.08 21.5% Density ATT AVG 0.02 inf
A Average player distance to team centroid
B Variability of player distance to team centroid
C Of the whole team
D Of the midfielders and attackers
E Of the midfielders and attackers, divided by the number of players involved

1.7 to 10.6% for the different subgroups. The subgroups ranked highest had
the best combination of an increase in percent point successful events whilst
still covering many examples. Given the similarity of some of the constructed
features, we present the similar subgroups together.
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Dispersion. Many of the subgroups concern a measure that captures the disper-
sion of the players on the pitch. Subgroups of offensive sequences where the ball
ended inside the penalty box were either characterized by a relatively compact
defending team, or a relatively spread out attacking team. Note that although
there might be overlap between these subgroups, they do not necessarily concern
the same subsets of Turnovers. A compact defending team could refer to specific
game situations where all defenders are bunched together, such as a corner or
a free kick on the attacking half. A spread-out attacking team might in prac-
tice correspond to a counter attack situation, where the attacking players are
unorganized and thus spread out.

The width-related subgroups show us that an offensive success is slightly
more likely (increase from prior 13.5 to posterior 16.2%) if the defending team is
rather narrowly positioned (less than 40.11 m). In contrast, the attacking team
should be rather broadly positioned (given that the width of the pitch is 70 m).

Potential Danger. The various components of Dangerousity, and Dangerousity
itself, are all normalized between 0 and 1 to denote more (closer to 1) and less
(closer to 0) threatening situations. In terms of potential Control, the subgroups
indicate that the attacking team should and the defending team should not be in
control of the ball. Furthermore, the more threatening the Zone, the more likely
it is that success follows 5 s later. The Density reflects on how many players there
were around the ball carrier. The interval of the related subgroups indicates that
it should not be too crowded around the ball carrier. The subgroup based on
the standard deviation of the compound measure Dangerousity (rank 19) tells
us that there must have been a stark increase of Dangerousity.

4 Discussion

The focus of the current paper was on demonstrating the potential value of the
relatively new positional tracking data which could be employed to enrich event
data. First of all, the scalability and objectivity of current daily practice can
be improved by using tracking data. We demonstrated that key events can be
identified automatically, making it easier to analyze many matches at the same
time and reducing the variable errors. Secondly, the numerous features that can
be generated from tracking data can be dealt with by using an exploratory data
mining technique. We demonstrated that the most prominent patterns in the
data can be discovered among many features by using Subgroup Discovery.

Admittedly, the discovery that counter attacks lead to situations where the
ball is likely to end in the opponent’s penalty box will not revolutionize soccer.
Nevertheless, being able to quantify the importance of specific game situations
-regardless of how obvious these situations are- is a step forward in objectifying
soccer analyses. Moreover, our methodology can be tuned to a coaching staff’s
specific interests in many ways. The most difficult parameter choice is the label of
success. In our case, reaching the opponent’s penalty box, it is safe to assume that
there is some correlation with success. However, by itself reaching the penalty
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box will never result in winning a match. In our current approach, we simplified
the setting by reducing success to a Boolean. Future implementations of this
approach should consider other (numeric) targets as well.

There are also some other notable parameters that could be tuned. It might
be that a coach is interested in an entirely different type of key event. One could
apply specific conditions to an event (e.g., turnovers on the opponent’s half), but
also consider other familiar events such as Passes and Shots on goal. Another
aspect that could be examined further is how to compress the temporal dimen-
sion. Specifically, the window within which the metrics are aggregated could be
further explored. Windows could be chosen to reflect specific short- and/or long-
term processes. Currently, how the spatial relations develop over time is often
neglected by taking either an arbitrarily chosen window [8,9] or sometimes an
instantaneous value [15,19]. Our methodology allows for the systematic com-
parison of various windows, which could yield interesting insights on short- and
long-term processes during a match. Moreover, there are other aggregation func-
tion that could be considered in addition to the average and standard deviation
that we included in the current analysis. Particularly the minimum and maxi-
mum could be interesting, as in soccer success can be the result of seizing a small
window of opportunity. For example, Link and colleagues [15] aggregate their
Dangerousity measures over time by looking at the ‘peak danger’ during specific
periods of time. Finally, it is possible to extend the metrics that are included in
the analysis. Although we implemented a broad range of metrics, the list defi-
nitely not exhaustive. There are many more existing and yet-to-be-formulated
metrics that could be incorporated in our methodology. Most notably, there are
many more ways to quantify how an area on the pitch is controlled [3,5,21,24,25].
Each of these features could extend our methodology to cover more grounds in
finding the key tactics that lead to success.

Furthermore, to link the findings from our methodology to practice, it is per-
tinent to create a tool that demonstrates the metrics and their subgroups. There-
fore, future work would extend the practical value of our modelling approach by
creating an interactive and dynamic plotting tool where the (sometimes rather
abstract) features are plotted over time, for example in combination with the
positions of the players on the pitch in a two-dimensional bird’s eye view. Also,
the discovery of actionable patterns should be aimed at identifying strengths
and weaknesses of specific teams with respect to each other. By contrasting two
teams, a head-to-head comparison could be made that informs about what works
against whom, and vice versa (i.e., which strategy is typically successful for a
specific team).

From a scientific point of view, it is important to note that findings from data
mining are not the same as scientific facts in the traditional sense. For the more
applied sports science domain, these findings can still be highly informative as a
basis for generating new data-driven hypotheses. The findings from our approach,
could be used to inform about a fingerprint of tactical behavior. With such
a fingerprint, pertinent questions in the sports science domain can be further
examined, such as how tactics develops with age, or the differences between



Exploring Team Tactics 245

countries. With better tools to analyze tactics in soccer, the next step will be
to test the outcome of a specific intervention. When this can be reliably done,
this kind of analysis could be used in a tool for coaches. Our long-term vision
is that practitioners can experiment with their tactics in a ‘Cockpit’ that would
help them come up with the best intervention for the specific situation at hand.

4.1 Conclusions

Tracking data has the clear potential to add context of the goings-on on the
pitch to key events. Our methodological approach shows that interpretable and
actionable results could be obtained by systematically exploring many metrics
and determining how well they represent success and with which thresholds. Our
work also shows that care must be taken in generating features, as it is inevitable
that many arbitrary decisions have to be made. With more data available, data
mining techniques should be employed to critically assess which metrics best
represent success. Future work should focus on further developing the metrics
that represent the context-of-play. Moreover, future analyses should take the
playing style of specific teams, and maybe even players, into account. By making
a head-to-head comparison between teams, the contrasts could best highlight the
strengths and weaknesses for a specific team against another specific team.

Our proposed modelling approach can be used to further understand tactics
in invasion-based team sports by comparing specific targets, teams and styles of
play. When the full potential of tracking data is captured, it will affect the way
soccer and possibly other team sports are played.
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Abstract. In this work we present STEVE - Soccer TEam VEctors,
a principled approach for learning real valued vectors for soccer teams
where similar teams are close to each other in the resulting vector space.
STEVE only relies on freely available information about the matches
teams played in the past. These vectors can serve as input to various
machine learning tasks. Evaluating on the task of team market value
estimation, STEVE outperforms all its competitors. Moreover, we use
STEVE for similarity search and to rank soccer teams.

Keywords: Sports analytics · Representation learning ·
Self-supervised learning · Soccer · Football

1 Introduction

The field of soccer analytics suffers from poor availability of free and affordable
data. While Northern American sports have already been the subject of data
analytics for a long time, soccer analytics has only started to gain traction in
the recent years.

Feature vectors usually serve as an input to machine learning models. They
provide a numeric description of an objects characteristics. However, in the case
of soccer analytics these features are hard to obtain. For example, collecting
non-trivial features for a soccer player or a team involves buying data from a
sports analysis company which employs experts to gather data.

In this work we propose STEVE - Soccer TEam VEctors, a method to auto-
matically learn feature vectors of soccer teams. STEVE is designed to only use
freely available match results from different soccer leagues and competitions.
Thus, we alleviate the problem of poor data availability in soccer analytics.
Automatically extracted feature vectors are usually referred to as representa-
tions in the literature. These representations can conveniently serve as input to
various machine learning tasks like classification, clustering and regression. In
the resulting vector space, similar teams are close to each other. We base the
notion of similarity between soccer teams on four solid assumptions (Sect. 3).
The most important one is that two teams are similar if they often win against
the same opponents. Hence, STEVE can be used to find similar teams by com-
puting the distance between representations and to rank a self chosen list of
teams according to their strengths.
c© Springer Nature Switzerland AG 2020
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This paper is organized as follows: In Sect. 2 we review related work. It con-
sists of an in depth discussion of the process of learning real valued vectors for
elements in a set and its applications. We also briefly review a recent approach to
team ranking. In Sect. 3 we introduce STEVE, our approach to learn meaningful
representations for soccer teams. After giving an overview of the underlying idea,
we introduce the problem with more rigor and conclude the section by formu-
lating an algorithm for the task. In Sect. 4 we conduct various experiments to
evaluate the approach. Finally, Sect. 5 closes out with conclusions and outlines
future work.

2 Related Work

Learning real valued vectors for elements in a set has been been of particular
interest in the field of natural language processing. Elements are usually words
or sentences and their representation is computed in such a way, that they entail
their meaning. Modern approaches typically learn a distributed representation
for words [3] based on the distributional hypothesis [22], which states that words
with similar meanings often occur in the same contexts.

Mikolov et al. [16,17] introduced word2vec, a neural language model which
uses the skip-gram architecture to train word representations. Given a center
word word2vec by iteratively maximizes the probability of observing the sur-
rounding window of context words. The resulting representations can be used
to measure semantic similarity between words. According to word2vec the most
similar word to soccer is football. Moreover, vector arithmetic can be used to
compute analogies. Although having recently been put in question [2,12], a very
famous example is the following: king - man + woman = queen. The concept has
since then been extended to graph structured data to learn a representation for
each node in a graph. Perozzi et al. [21] and Dong et al. [7] treat random walks as
the equivalent of sentences. This is based on the assumption that these walks can
be interpreted as sampling from a language graph. The resulting sentences are
fed to word2vec. Building upon graph based representation learning approaches,
LinNet [20] builds a weighted directed match-up network where nodes represent
lineups from NBA basketball teams. An edge from node i to node j is inserted
if lineup i outperformed lineup j. The edge weight is set to the performance
margin of the corresponding match-up. Lineup representations are computed by
deploying node2vec [9] on the resulting network. Afterwards, a logistic regres-
sion model based on the previously computed lineup representations is learned
to model the probability of lineup λi outperforming lineup λi.

More recently, the aforementioned findings have also been applied to sports
analytics. (batter|pitcher)2vec [1] computes representations of Major League
Baseball players through a supervised learning task that predicts the outcome
of an at-bat given the context of a specific batter and pitcher. The result-
ing representations are used to cluster pitchers who rely on pitches with dra-
matic movement and predict future at-bat outcomes. Further, by performing
simple arithmetic in the learned vector space they identify opposite-handed
doppelgangers.
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Le et. al [14] introduce a data-driven ghosting model based on tracking data
of a season from a professional soccer league to generate the defensive motion
patterns of a league average team. To fine-tune the league average model to
account for a team’s structural and stylistic elements, each team is associated
with a team identity vector.

Our approach aims to learn representations for soccer teams and is thus
closely related to the presented approaches. As we use the representations to
rank teams, we briefly review related work on the topic.

Neumann et al. [18] propose an alternative to classical ELO and Pi rating
based team ranking approaches [6,11]. A graph based on the match results and
a generalized version of agony [10] is used to uncover hierarchies. The approach
is used to categorize teams into a few discrete levels of playing quality. General
match-up modeling is addressed by the blade-chest model [5]. Each player is
represented by two d-dimensional vectors, the blade and chest vectors. Team
a won if its blade is closer to team b’s chest than vice versa. Intransitivity is
explicitly modeled by using both blade and chest vectors, something that cannot
be accounted for by approaches that associate a single scalar value with each
team [4].

3 Soccer Team Vectors

In this section we present STEVE - Soccer Team Vectors. We first give an
overview of the underlying idea and the goal of this work. Afterwards we dis-
cuss the problem definition and introduce an algorithm to learn useful latent
representations for soccer teams.

3.1 Overview

STEVE aims to learn meaningful representations for soccer teams where repre-
sentations come in the form of low dimensional vectors. If two teams are simi-
lar, their representations should be close in vector space while dissimilar teams
should exhibit a large distance. Furthermore, these learned latent representations
can be used as feature vectors for various machine learning tasks like clustering,
classification and regression. Due to the fact that there is no clear definition of
similarity for soccer teams, we base our approach on the following four assump-
tions:

1. The similarity between two teams can be determined by accounting for the
matches they played in the past.

2. Frequent draws between two teams indicate that they are of approximately
equal strength. Hence, both teams are similar.

3. Two teams are similar if they often win against the same opponents.
4. More recent matches have a higher influence on the similarity than those a

long time ago.
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Since data acquisition is expensive and time-consuming, especially in the field of
sports analytics, STEVE is designed to learn from minimal information. More
precisely, we only use data about which teams played against each other, during
which season a match took place and whether the home team won, lost or the
match resulted in a draw. Note that the assumptions mentioned above do not
require any further information and are therefore well suited for this setting.

3.2 Problem Definition

To simplify definitions, let M = {1, 2, . . . ,m}, we assume that each of the m
soccer teams we want to learn a representation for is associated with an iden-
tification number i ∈ M . Further, let Φ ∈ R

m×δ, where each row Φi repre-
sents team i’s δ dimensional latent representation. The goal of this work is
to find Φ in such a way, that dist(Φi, Φj) is small for similar teams i and j
and dist(Φi, Φk) is large for dissimilar teams i and k. dist(·, ·) is some distance
metric and similarity between teams is determined according to the assump-
tions made in Sect. 3.1. To solve this task, data is given in the following form:
D = {(a, b, s, d) ∈ M × M × {1, . . . , xmax} × {0, 1}}. The quadruple (a, b, s, d)
represents a single match between teams a and b, s is an integer indicating dur-
ing which of the xmax seasons the match took place and d is a flag set to 1 if the
match resulted in a draw and 0 otherwise. If d = 0, the quadruple is arranged
such that team a won against team b.

3.3 Algorithm

According to the first assumption, we can loop over the dataset D while adjusting
Φ. If d = 1, we minimize the distance between Φa and Φb, thereby accounting for
the second assumption. The third assumption addresses a higher order relation-
ship, where teams that often win against the same teams should be similar. We
introduce a second matrix Ψ ∈ R

m×δ and call each row Ψi team i’s loser represen-
tation. Further, we call Φi the winner representation of team i. Both matrices Φ
and Ψ are initialized according to a normal distribution with zero mean and unit
variance. When team a wins against team b we minimize the distance between
Φa and Ψb, bringing b’s loser representation and a’s winner representation closer
together. That is, the loser representations of all teams a often wins against, will
be in close proximity to team a’s winner representation. Consequently, if other
teams also often win against these teams, their winner representations must be
close in order to minimize the distance to the loser representations. Parameters
Φ and Ψ are estimated using stochastic gradient descent where the objective we
aim to minimize is given as follows:

arg min
Φ,Ψ

∑

(a,b,s,d)∈D
d ∗ dist(Φa, Φb) + (1 − d) ∗ dist(Φa, Ψb)

We minimize the distance between Φa and Φb directly when both teams draw
(d = 1). Otherwise (d = 0) we minimize the distance between Φa (winner rep-
resentation) and Ψb (loser representation). With the squared euclidean distance
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as the distance metric, the expression can be rewritten as illustrated below.

arg min
Φ,Ψ

∑

(a,b,s,d)∈D
d ∗ ‖Φa − Φb‖2 + (1 − d) ∗ ‖Φa − Ψb‖2

In its current form, matches played in long past seasons contribute as much to
the loss as more recent matches. We alleviate this problem by down-weighting
matches from older seasons using the linear weighting scheme s

xxmax
, thereby

completing the formulation of the objective:

arg min
Φ,Ψ

∑

(a,b,s,d)∈D

s

xmax

[
d ∗ ‖Φa − Φb‖2 + (1 − d) ∗ ‖Φa − Ψb‖2

]

This approach has the advantage of no complex statistics having to be gathered.
All our assumptions are captured in the teams’s representations. We describe
the algorithm in more detail in Algorithm 1. Note that here gradients are com-
puted after observing a single data point and the regularization term is omitted.
This is done for illustration purposes only. In our implementation, we train the
algorithm in a batch-wise fashion. For In lines 9, 12 and 15 the representations
are normalized as we have found this to speed up training. It also helps to keep
distances within a meaningful range.

Algorithm 1. STEVE(D, m, δ, α, xmax,e)
1: Φ ∼ N (0, 1)m×δ � Initialize Φ
2: Ψ ∼ N (0, 1)m×δ � Initialize Ψ
3: for i in {1, . . . , e} do
4: D = shuffle(D) � Shuffle dataset
5: for each (a, b, s, d) in D do

6: L(Φ, Ψ) = s
xxmax

[
d ∗ ‖Φa − Φb‖2 + (1 − d) ∗ ‖Φa − Ψb‖2

]
� Compute loss

7: if d = 0 then � a won the match
8: Ψb = Ψb − α ∗ ∂L

∂Ψb
� Gradient descent on b’s loser representation

9: Ψb = Ψb/‖Ψb‖2 � Normalize b’s loser representation
10: else � Match is a draw
11: Φb = Φa − α ∗ ∂L

∂Φb
� Gradient descent on b’s winner representation

12: Φb = Φb/‖Φb‖2 � Normalize b’s winner representation
13: end if
14: Φa = Φa − α ∗ ∂L

∂Φa
� Gradient descent on a’s winner representation

15: Φa = Φa/‖Φa‖2 � Normalize a’s winner representation
16: end for
17: end for
18: return Φ, Ψ

4 Experiments

In this section, we provide an overview of the dataset. We also conduct various
experiments to investigate the expressiveness and efficacy of our approach.
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4.1 Dataset and Experimental Setup

The dataset consists of all the matches from the Bundesliga (Germany), Premier
League (Great Britain), Serie A (Italy), La Liga (Spain), Eredivisie (Nether-
lands), League 1 (France), Sper Lig (Turkey), Pro League (Belgium), Liga NOS
(Portugal), Europa League and the Champions League played from 2010 until
2019. A total of 29529 matches between 378 different teams was carried out where
approximately 25% ended in a draw. Unless stated otherwise, for all experiments
we set δ = 16 and batch size = 128. We use Adam [13] with a learning rate
α = 0.0001 for parameter estimation and train for e = 40 epochs. Additionally,
we add a small L2 weight penalty of 10−6.

4.2 Similarity Search

We select five European top teams and run STEVE on all the matches from
season 2010 until 2019 in the corresponding league. Since we are dealing with
small datasets, we set δ = 10 and batch size = 32. For each team, we note
the five most similar teams (smallest distance) in Table 1. Note that we use
the distance between the corresponding winner representations. As expected, we
clearly observe that top teams are similar to other top teams. For example, the
team most similar to Barcelona is Real Madrid. Both teams often compete for
supremacy in La Liga. In general, we observe that similarities in Table 1 roughly
reflect the average placement in the respective league.

Table 1. Five most similar teams for five European top teams.

Top soccer team per league chosen for similarity search

Bayern München Barcelona Paris SG Manchester U Juve. Turin

Five most similar teams chosen by STEVE

RB Leipzig Real Madrid Lyon Liverpool SSC Napoli

Dortmund Valencia Marseille Manchester C. AS Roma

Mönchengladbach Atletico Madrid Monaco Chelsea AC Milan

Leverkusen Sevilla St Etienne Tottenham Inter. Milano

Hoffenheim Villarreal Lille Arsenal SS Lazio

4.3 Ranking Soccer Teams

To retrieve a ranked list of soccer teams, one could simply use a league table.
However, the list will only reflect the team’s constitution accumulated over a
single season. The ranking will not take past successes into account. One might
alleviate this problem by averaging the league table over multiple seasons. Nev-
ertheless, another problem arises: the list will only consist of teams from a single
league. Combining league tables from different countries and competitions to
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obtain a more diverse ranking is considerably less straightforward. It gets even
more complicated when we wish to rank a list of self chosen teams, possibly
from many different countries. STEVE provides a simple yet effective way to
generate rankings for the use case mentioned above. Given a list of teams, we
simulate a tournament where each team plays against all other teams. The list
is then sorted according to the number of victories. To compute the outcome of
a single match (victory or defeat) between team a and b, let α = ‖Φa −Ψb‖2 and
β = ‖Φb −Ψa‖2. If α < β, then team b’s loser representation is closer to team a’s
winner representation than team a’s loser representation is to team b’s winner
representation. Thus, team a is stronger than team b and we increase team a’s
victory counter. The same line of reasoning is applied to the case where α > β.

In Fig. 1 we generated two rankings using the aforementioned approach.
Each list consists of twelve teams from different European countries of different
strengths. Our approach produces reasonable rankings: Highly successful inter-
national top teams like Real Madrid, FC Bayern Munich, FC Barcelona, and
AS Roma are placed at the top of the list while mediocre teams like Espanyol
Barcelona and Werder Bremen are placed further back in the list. The least
successful teams like FC Toulouse, Cardiff City, Fortuna Düsseldorf and Parma
Calcio occupy the tail of the list. STEVE can be seen as an alternative to pre-
vious soccer team ranking methods [11,15] based on the ELO rating [8].

1 Real Madrid, FC Bayern Munich, Inter Milano, Liverpool FC, Borussia Dortmund, Ajax
Amsterdam, FC Porto, Club Brugge KV, Werder Bremen, 1.FC Nuremberg, FC Toulouse, Cardiff

City
2 FC Barcelona, AS Roma, Atlético Madrid, Paris SG, Tottenham, PSV Eindhoven, Arsenal
London, SL Benfica, Espanyol Barcelona, VFB Stuttgart, Fortuna Dusseldorf, Parma Calcio

Fig. 1. Team rankings generated by STEVE. Each row1,2 depicts one ranked list from
the strongest (left) to the weakest team (right). Numbers represent a team’s relative
strength - the number hypothetical matches won.

4.4 Team Market Value Estimation

The goal of this work is to learn representations that are well suited for vari-
ous downstream machine learning tasks. We validate this property by evaluating
STEVE with respect to regression and classification performance. We argue that
a meaningful representation should carry enough information to reliably predict
a team’s market value. Therefore, both tasks involve predicting the value of a
team given its representation. We obtained current market values for all teams in
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the dataset from season 2018/2019. A team’s market value is determined by the
sum of the market values of all its players. On average, a team is worth e183.7
million with a standard deviation of e241.2M. The least valuable team is BV De
Graafschap (e10.15M) and the most valuable team is FC Barcelona (e1180M).
The first, second and third quartiles are e25M, e93.7M and e232.5M, respec-
tively. For regression and classification, we use the following team representations
as an input to a multi layer perceptron (MLP) with two hidden layers. The first
hidden layer has a size of 50, the second one 20. Apart from changing hidden
layer sizes, we use default parameters provided by [19] for all further analyses.

– STEVE. Representations are computed using STEVE with δ ∈ {8, 16, 32}.
A team’s winner and loser representation is concatenated to form its team
vector. The resulting feature vectors are of size 16, 32, 64.

– Season-stats. We extract count based features for each team in the dataset
to mimic traditional feature extraction. For season 2018/2019 we collect the
following statistics: number of victories, draws, defeats as well as goals scored
and goals conceded. Each feature is computed for matches in the Champions
League, Euro League and the respective national league. Additionally, we use
goals per match, goals per national and international match. This results in
a 18 dimensional feature vector (representation) for each team.

– Season-stats (CAT-x). Season-stats for the last x seasons are concatenated.
The resulting feature vectors are of size x ∗ 18.

– Season-stats (SUM-x). Season-stats for the last x seasons are summed
together. The resulting feature vectors are of size 18.

Comparability between the different representations mentioned above is ensured
due to the fact that none of them requires information absent in the dataset.

Season-Stats has many features that are intuitively well suited for team value
estimation. For example, a large proportion of teams that participate in inter-
national competitions are more valuable than those who don’t. Statistics about
goals and match results are helpful for assessing a team’s strength which is in
turn correlated to the team’s market value.

Regression. Team value estimation naturally lends itself to be cast as a regres-
sion problem. During training we standardize team values (targets) and Season-
Stats features by subtracting the mean and dividing by the standard deviation.
Evaluation is carried out using 5-fold cross-validation and results are reported
in Table 2.

Classification. By grouping team values into bins, we frame the task as classifi-
cation problem. Teams are assigned classes according to the quartile their value
lies in. Consequently, each team is associated with one of four classes. We apply
the same standardization procedure as in the case of regression and use 5-fold
cross-validation. Results are reported in Table 3.

Results. STEVE clearly outperforms the other representations both in terms of
regression and classification performance. While δ = 64 generally yields the best
results, even δ = 16 produces superior results compared to Season-Stats. In terms
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Table 2. Results for the regression task of team value estimation. To quantify the
quality of prediction, we use root mean squared error (RMSE), mean absolute error
(MAE) and the mean median absolute error (MMAE), all reported in million e.

RMSE MAE MMAE

STEVE-16 142.12 ± 75.22 88.37 ± 25.69 52.01 ± 13.42

STEVE-32 131.51 ± 40.15 83.20 ± 24.51 46.87 ± 21.89

STEVE-64 111.27 ± 48.58 67.14 ± 30.51 32.80 ± 10.42

Season-Stats 173.75 ± 119.35 110.32 ± 63.61 69.96 ± 15.43

Season-Stats (CAT-3) 200.77 ± 157.55 138.15 ± 87.06 86.98 ± 39.83

Season-Stats (CAT-5) 172.05 ± 70.83 119.81 ± 43.18 80.74 ± 18.96

Season-Stats (CAT-9) 151.09 ± 80.37 105.98 ± 41.96 68.82 ± 23.15

Season-Stats (SUM-3) 158.44 ± 108.50 105.65 ± 53.95 69.16 ± 11.39

Season-Stats (SUM-5) 154.71 ± 115.76 104.04 ± 59.34 69.81 ± 15.69

Season-Stats (SUM-9) 158.33 ± 120.90 106.67 ± 62.61 67.74 ± 17.75

Table 3. Results for the classification task of team value estimation, measured with
micro F1 score and macro F1 score.

Micro F1 Macro F1

STEVE-16 0.67 ± 0.10 0.64 ± 0.10

STEVE-32 0.74 ± 0.11 0.71 ± 0.14

STEVE-64 0.74 ± 0.10 0.72 ± 0.09

Season-Stats 0.52 ± 0.14 0.45 ± 0.19

Season-Stats (CAT-3) 0.50 ± 0.12 0.44 ± 0.15

Season-Stats (CAT-5) 0.55 ± 0.14 0.51 ± 0.16

Season-Stats (CAT-9) 0.60 ± 0.13 0.56 ± 0.11

Season-Stats (SUM-3) 0.49 ± 0.09 0.40 ± 0.10

Season-Stats (SUM-5) 0.48 ± 0.08 0.39 ± 0.07

Season-Stats (SUM-9) 0.47 ± 0.09 0.37 ± 0.15

of regression performance, we observe that Season-Stats is most competitive
when using information from multiple seasons (CAT-x and SUM-x). All forms of
representation manage to estimate the general tendency of a team’s market value
but STEVE’s predictions are far more precise. Similar conclusions can be drawn
when inspecting classification performance. The best competing representation
is Season-Stats (CAT-9) which is 162 dimensional, 92 dimensions more than
STEVE ( δ = 64). Still, STEVE ( δ = 64) provides ≈20% better performance
than Season-Stats (CAT-9). It can therefore be concluded that STEVE is able to
compress information needed for the task and succeeds to provide high efficacy
representations.
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5 Conclusion

In this work we introduced STEVE, a simple yet effective way to compute mean-
ingful representations for soccer teams. We provided qualitative analysis using
soccer team vectors for team ranking and similarity search. Quantitative analysis
was carried out by investigating the usefulness of the approach by estimating the
market values of soccer teams. In both cases, STEVE succeeds to provide mean-
ingful and effective representations. Future work might investigate further upon
different weighting schemes for the season during which a match took place. For
example instead one can use the exponential distribution to weigh down past
seasons. Moreover, including the number of goals scored during a match and
accounting for the home advantage might help to capture more subtleties.
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Abstract. In tennis, applying a proper game strategy is an important
aspect in performance optimization. In this work, we perform tactical
analyses for a specific professional tennis player by using a manually
annotated data collection of 4,593 points. Primarily, we will apply Sub-
group Discovery to find generic characteristics of successful points in
tennis and descriptions that are specific for our player of interest. To
demonstrate that easily understandable patterns can be gleaned from
our method, that are relatively simple to put into practice, we will focus
on finding the most important descriptions of won service points. In gen-
eral, the most profound characterisation of successful service points in
tennis are points that last maximally two strokes. For our specific player,
we have found that more service points are won if the player avoids hit-
ting a backhand.

Keywords: Data Mining · Subgroup Discovery · Tennis

1 Introduction

Many sports develop over the years. While some advancements are caused by
changes in the rules, others are a consequence of technological improvements.
For example, in tennis the developments in the materials and physical condition
of the players have increased the dynamics in matches [6]. As a consequence, it
has become more difficult for the players to improvise during points. Therefore,
there are patterns that frequently occur in professional tennis matches [5]. Since
most players adopt a specific style, the details of these patterns depend on the
players that are involved in the match. For coaches, it is a valuable asset to have
detailed information about these patterns before the start of a match. In this
way, the strengths and weaknesses of both players are made explicit, which can
be used for upon deciding on a proper match strategy and thereby optimizing
the chances of being successful [4].
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There are multiple data-driven approaches for identifying the main charac-
teristics of playing styles in professional tennis. First, computer vision techniques
have been applied to extract data from video sequences and analyse tennis tactics
[3,19,20]. Second, hand-crafted analyses are used to record certain key aspects in
tennis matches [10,11]. These data sets are mostly used to investigate dependen-
cies between single variables, e.g., first serve strategy versus winning percentage
[9]. Third, the introduction of Hawk-eye system [1] opened up the possibility to
collect spatiotemporal data. By using multiple cameras, the (x, y, z) position of
the ball is tracked. This information for example can be used to predict serve
directions [21] or analyse the efficiency of tennis services [18]. More recently, also
deep learning is applied on tracking data in tennis [8,22].

In this study, we will apply Subgroup Discovery [12,17] on a manually anno-
tated data collection of tennis points. The advantage of this approach is that we
can investigate dependencies between controlled combinations of the variables.
Furthermore, this technique has already proved its value in several other sport-
specific settings [13,14]. Since our data collection only consists of points that
feature a specific tennis player, we consider the specific task of personalization,
i.e., we will find player-specific characteristics. More specifically, we we will focus
on finding the main characteristics of successful service points. By using the data
set of service points of the opponents as a benchmark, we will make a distinction
between generic characteristics of successful service points and results that are
specific for our player of interest.

This article is structured as follows. First, we describe the data at hand and
the preprocession that we have applied. Hereafter, we discuss the feature engi-
neering procedure, which is an important part in our approach. Subsequently,
we discuss the methods that we have used and report on the results of our
experiments. Finally, we end with conclusions and mention possible directions
for future research.

2 Materials

To understand the content of the data and the performed analyses, it is impor-
tant to know the basic concepts in tennis. Readers that are not familiar with
tennis can find an overview of the rules and regulations in [2]. In the remainder
of this section, we will discuss the data that is available for our analyses and
also mention the preprocession that we have applied.

2.1 Data

We have a data collection consisting of 31 official tennis singles matches of which
twenty matches are played on hardcourt, nine matches on clay and two matches
on grass. The anonymous professional tennis player in case, that is the subject
of this study and from now on will be named as player X, is always one of the
two players.
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Of every match, we have a point-by-point description. In this data set, all
points of the matches are annotated manually. For every point, there is a sub-
stantial amount of information recorded. In the remainder of the section, we
will touch upon the most relevant attributes. First, we have general information
about the point. More specifically, we know

1. Match and game score The score in the match, set and game.
2. Number of strokes The number of strokes of the point. Points that consist

of more than 9 strokes are in the same category.
3. Start of the point The serve can be either hit from the advantage or deuce

side of the court.
4. Score type A variable that describes the end of the point.
5. Winner The player that has won the point.

In addition to this general information, our data collection contains informa-
tion about some strokes of the points. As recording the information of all strokes
would be extremely time-consuming, the data set captures only the characteris-
tics of the most important strokes. Therefore, we only have detailed information
about the first four and final two strokes of each point.

For every point, we can write the information about the strokes as a tuple
t = (A1, ..., Aj , ..., An), where n characterises the length of the point. For points
shorter than 6 strokes, the length of t is equal to the number of strokes in the
point. For the other points, the length of t is equal to 6. Moreover, Aj is a
collection of stroke-specific information with j specifying the stroke of the point,
e.g., A3 corresponds to the third stroke of the point.

The content of Aj depends on the stroke that is considered. In our data
collection, the first two strokes of the point, the serve and return respectively,
are treated with special care. For the service, we have

1. Service type The specific details about the serve.
2. Direction The direction of the serve.
3. Service volley Indicates if the server played a specific service strategy, i.e.,

service volley.

There are two specific properties of the return recorded

1. Type return The movements the receiving player had to make to return the
ball.

2. Block If the player blocked the ball.

In addition to these return-specific features, there is even more information
gathered about the return. For the return, we also have the following attributes

1. Intention The kind of intention with which the player hit the ball.
2. Situation The situation how the ball arrives at a player.
3. Direction The part of the court to which the ball is directed.
4. Stroke type The kind of stroke with which the player hits the ball.
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The attributes intention and situation can take several values, such as
‘opbouwend’ or ‘VvS’. The former indicates a constructive stroke and the latter
correspond to a stroke that prevents the opponent from scoring. These attributes
can be difficult to infer and are sensitive to human interpretation. This problem
is tackled by carefully instructing the people that are responsible for the annota-
tion. In case there were doubts, the values of the attributes were recorded after
consulting the embedded scientist of the tennis association.

The aforementioned four attributes are not only collected for the return, but
also for the two strokes after the return and the final two strokes. Finally, for
the third, fourth and last two strokes of the rally, we also have

1. Slice Indicates whether a type of effect, i.e., slice, is applied to the ball.

In total, we have a collection of binary, numeric and categorical attributes.
Moreover, the number of distinct categories varies between the different categor-
ical attributes.

2.2 Data Preparation

As human annotation is sensitive to errors, we need to investigate the quality of
the data thoroughly. This includes checking that the change in game score cor-
responds with the outcome of the previous point, there is no specific information
about a certain stroke if the point is already finished, and many other checks.
After performing these analyses, we had to reduce our data collection by almost
20%. Finally, we are left with a collection of 4,593 points consisting of 2,260
points in which player X is serving and 2,333 instances where the opponent is
starting the point with a serve.

In our data collection, there is information about the strokes of point but it
is not specified which of the two players hits the ball. This implies that the raw
data can not directly be used to analyse the playing style of player X. Thus, we
first make a distinction between the strokes of player X and the other strokes of
the point. Hence, instead of having a single tuple t that contains all information
about all strokes of the point, we introduce a player-specific tuple tP that only
contains the information of the strokes of player P. Note that the length of the
point determines the number of strokes that is part of tP. In this case, tP can
contain the attributes of the first stroke, the first two strokes or the first two
strokes and the last stroke of the player.

Finally, in our data collection the attribute stroke type of the fourth stroke
of the point contains many missing values. Therefore, this attribute is excluded
from the analyses. This implies that the player-specific tuples do not include the
stroke type of the player’s second stroke.

3 Feature Engineering

Before we can perform our analyses, we first use the data to construct a broad
range of different features that capture the most relevant information. We have
divided the features into several categories, which we will discuss separately.
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3.1 Point Characteristics (4 Features)

First, we include some specific information about the point. We take into account
the total number of strokes, the end of the point, e.g., winner or error, and from
which side of the court the server started the point. Recall that we could not
include the stroke type of the second stroke of the player in the player-specific
tuples due to the many missing values. Therefore, we have included the stroke
type of the third stroke in the point as a separate feature.

3.2 Match Situation (13 Features)

In the second category, we consider the match situation. First, the match situa-
tion is taken into account by the set and game number at the start of the point,
i.e., an integer i ∈ [1, 5] or i ∈ [1, 13], respectively. Note that we describe the
tiebreak as the thirteenth game. Second, we separately consider the scores in the
game, set and match, and we construct three categorical features that divide the
situation into three different situations. The value of these features is equal to 1
if the player is in the lead, 0 if both players are on equal footing and −1 if the
player is behind.

In our analyses, we also want to include temporal effects. First, we include
a numerical feature that describes the streak of points that the player is serv-
ing or returning. Second, we also incorporate mental aspects by introducing
features that take into account the outcome of previous points. As a start,
we have a binary feature that describes if the previous point was won or lost.
Moreover, we separately consider the previous five, four, three and two points
and determine the fraction of points the player won. This gives four additional
features. So, suppose the outcome of the previous 5 points is described by
m = (won,won, lost, lost,won), where the last element of m is the most recent
point. In this case, for example three of the last five points are won. Therefore,
the feature that quantifies the outcome of the previous five points is equal to
3/5. Similarly, the other features that describe the mental aspects take on the
values 2/4, 1/3, 1/2 and 1.

3.3 Stroke Characteristics (27 Features)

We have 27 features that describe characteristics of the different strokes. First,
there are three features that characterise the serve. We have the direction of the
service, the type of the service and whether the player applied service volley.
Here, the type is a categorical feature that combines the intention of the service
and whether it was a first or second serve. In this feature, the double fault, i.e.,
the second serve resulted in a fault, is treated as a separate category.

For the second stroke of the point, i.e., the return, we have six features.
Finally, we also have features about the second and final stroke of both players.
For the second stroke, we have four features per player and thus eight features
in total. The last stroke of the player is described by five distinct features. For
the return, there are some specific features, such as position where the return
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was hit. Other stroke characteristics, such as the direction or intention of the
stroke are features for the return, second and last strokes of both players.

In our data collection, the short points need some additional attention. Here,
short points have maximally five strokes. In this case, some of the aforementioned
strokes are not part of the point. As the features for the different strokes are
categorical, we introduce a separate category for these cases. Moreover, in this
case there is also some overlap between the strokes. For example, a point of three
strokes implies that for one of the players the second stroke is equal to the final
stroke. In this case, the values of the features for the two strokes are also equal.

3.4 Rally Features (61 Features)

In addition to features of specific strokes of both players separately, e.g., the
second or last stroke, we also consider features that describe the sequence of
shots between the tennis players, i.e., rally features. Therefore, for every point
we consider the collection of all strokes together and the strokes of both players
separately. Of these distributions, we first construct several binary features that
describe if certain categories of the aforementioned stroke-specific features are
present or not. As an example, consider a point of four strokes. Suppose the
directions of the strokes are ‘wide’, ‘down the line’, ‘cross’ and ‘cross’. In this
case, the rally feature that indicates if the direction ‘cross’ is present is equal
to one. However, the direction ‘middle’ is not present and therefore the feature
that specifies whether this direction is present is zero. By considering all different
categories, we have constructed 57 binary features.

Finally, we also introduce features that characterise the entire point. For these
features, we consider the values of the stroke-specific features of all strokes and
select the most common category. If there is no difference between the occurrence
of the two most frequent categories, we describe this with another label. We apply
this to the direction, intention, situation and stroke type. Therefore, this leads
to 4 additional features.

4 Experiments

In this work, we are interested in finding generic patterns in both successful and
unsuccessful points in tennis and characteristics that are specific for player X. To
find these descriptions, we have performed several experiments. In this section,
we will describe the experiments and elaborate on the results.

4.1 Methods

To find the main patterns in our data collection, we have used Subgroup Dis-
covery. Subgroup Discovery is an exploratory supervised data mining technique
that aims to find subsets of the data where the distribution in the target variable
is different from the distribution of the target in the entire data set.
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Table 1. Overview of the best subgroups of successful service points for player X. This
data collection consists of 2,260 service points from which 1,429 points, i.e., 63.2%,
are won by player X. For each subgroup, we give the size, the winning percentage and
the value for the Cortana Quality measure [13]. The threshold for this quality measure
for finding statistical significant results at α = 0.05 is roughly 0.06 and therefore
the listed subgroups are statistical significant. Finally, we specify the condition that
characterise the points that are part of the subgroups. The intentions ‘opbouwend’
and ‘VvS’ corresponds to a stroke with a constructive intention or a stroke with the
intention to prevent the opponent from scoring, respectively.

Coverage Winning percentage Quality Condition

1 894 85.1% 0.372 Point is maximally two strokes

2 659 92.9% 0.372 Last stroke of player X is ‘first serve’
or ‘double fault’

3 1164 77.2% 0.310 The point contains no stroke with
intention ‘opbouwend’

4 1378 74.7% 0.302 Player X is not hitting a backhand

5 1524 73.6% 0.301 Player X hits no stroke with intention
‘VvS’

In this work, we want to find characteristics of points that are often won or
lost by a specific player. Hence, we are in a classification setting as the point
outcome is characterised by a binary variable that takes on the value 1 if the
point is won, and 0 otherwise. To perform our classification experiments, we
have used the freely available online tool Cortana [16] and selected the Cortana
Quality measure that is introduced in [13].

In tennis, there are two distinct situations, i.e., the tennis player can be
either serving or receiving. In the first case, the first stroke of the player is the
service. For the second option, the player starts with a return. As both situations
are fundamentally different, we have performed our experiments for both cases
separately. In total, we therefore have four different cases. Namely, our tennis
player can have two different roles, i.e., serving or returning, and the point can
be either won or lost.

The data collection that consists of return points of player X is equivalent to
the data set of service points of a collection of several different tennis players.
Thus, this data set can be used for setting a benchmark for general characteristics
of winning service points in tennis. By comparing the results for this data set
with the results for the collection of service points of player X, we can find
service strengths of this specific player. Similarly, we can also find player-specific
strengths in return games as well as his weaknesses while serving or returning.
In the remainder of this work, for the sake of brevity we will restrict ourselves
to discussing strengths and weaknesses in service points.
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4.2 Serve Characteristics

In Tables 1 and 2, we show the characteristics of the best subgroups at search
depth 1 for successful service points of player X and for players serving against
player X, respectively. We observe that there are many qualitative similarities
between the subgroups. For example, we find that tennis players are more suc-
cessful on their serve if the point last maximally two strokes. Apart from these
similarities, we also find some differences between player X and the other players.
The other players are more successful on their first serve and player X is more
successful if player X does not hit a backhand.

Table 2. Overview of the best subgroups of successful service points for the data
collection of service points of tennis players in matches against player X. In total, this
set contains 2,333 service points of which 1,505 points, i.e., 64.5%, are won by the
serving player. The same characteristics of the subgroups as in Table 1 are displayed.
The subgroups are statistical significant as the threshold for this quality measure for
finding statistical significant results at α = 0.05 is equal to approximately 0.06. Recall
that the intention ‘opbouwend’ corresponds to a stroke with a constructive intention
and a stroke that is hit with the intention to prevent the opponent from scoring is
denoted by the intention ‘VvS’.

Coverage Winning percentage Quality Condition

1 562 94.0% 0.310 Last stroke of player X is ‘first
serve’ or ‘double fault’

2 797 82.6% 0.269 Length of point maximally two
strokes

3 1452 73.4% 0.242 Server hits a first serve

4 1239 74.7% 0.235 The point contains no stroke with
intention ‘opbouwend’

5 1761 70.8% 0.206 Server has no stroke with intention
‘VvS’

We have also performed experiments at search depth 2. For player X and
the other players, the best subgroup consists of service points that maximally
last two strokes and are started with a first serve. The values for the Cortana
Quality are 0.405 and 0.341 for player X and the other players, respectively. Also
at depth 2, there are some subgroups that are only of high quality for player
X. In this case, we specifically have found that player X is more successful if
the point maximally last two strokes and the point contains no stroke with the
intention of finishing the point.

We have used the distribution of false discoveries to determine a threshold
for the quality measure of the subgroups that indicates whether the results are
statistically significant [7]. For both data collections, the thresholds at confidence
level α = 0.05 are roughly 0.06 and 0.09 for search depths 1 and 2, respectively.



266 A.-W. de Leeuw et al.

As the quality of the presented subgroups is much larger than these thresholds,
we obtain results that are statistically significant.

The subgroups in Tables 1 and 2 only show the subgroups with highest value
for the quality measure. However, there are many more subgroups at both search
depth 1 and 2 that are statistically significant. These subgroups are described
by conditions on numerous different features. Therefore, there are also more
player-specific characteristics of successful service points. For example, if we
only focus on subgroups that are described by a condition on match situation
features, we find at search depth 1 that the opponents are more successful on
service points if they are in front in the game. However, for player X, there are
no statistical significant subgroups that are described by a condition on match
situation features. This suggests that players in general win more service points
if the are in front in the game, but that this is not the case for player X.

Fig. 1. The ROC Curve that illustrates the quality of the classification of successful
service points of player X. Every point in this figure, represents a subgroup that is
obtained from the Subgroup Discovery experiments at search depth 2. The Area under
the ROC Curve is equal to 0.79.

To assess the quality of the classification model, we consider the Receiving
Operation Characteristics (ROC) Curve. For every subgroup, we determine the
false positive and true positive rates. In Fig. 1, we show the ROC curve for the
data collection of service points of player X. By constructing the convex hull of
all subgroups, we can determine the Area Under the ROC Curve (AUC). This
measure quantifies the overall performance of the classification [15]. At search
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depth 2, we find values of 0.79 and 0.74 for the AUC of the data collection that
consists of service points of player X and the service points of the opponents
in matches against player X, respectively. This implies that the classification
potential is reasonable good.

In addition to considering all service points together, we can also look into
specific subsets to obtain characteristics of a specific class of service points.
For example, we considered the collection of points that started with a serve
of player X that last maximally three strokes. Interestingly, we have found a
statistically significant subgroup at search depth 1, that indicates that player
X is more successful if the direction of the service is the ‘T’ direction, i.e., a
service towards the center of the tennis court. For this subset, the quality of the
subgroups that consists of points with serves in the other directions is not above
the significance threshold. Thus, this suggest that player X is most successful
with a service in the ‘T’ direction. This is another example of a characterization
for the playing style of player X.

5 Conclusion

In this paper, we have performed tactical analyses in tennis. We have used a
manually annotated data set of 4,593 points that features a professional player
X. We have used Subgroup Discovery to find characteristics of successful service
points. By applying this technique to all service points of player X and comparing
the results with the outcomes for the service points of all opponents, we have
made a distinction between generic descriptions of successful service points and
characterizations that are specific for player X.

Primarily, we have focused on the descriptions of successful service points that
are most significant. At search depth 1, we have found the general description
that service points are more often won if the point is maximally two strokes long.
From our experiments at search depth 2, we have obtained that the serving player
is even more successful if in addition the aforementioned condition the point
starts with a first serve. Moreover, specifically for player X we have obtained
that player X is less successful on his first serve and is more vulnerable with his
backhand. Additionally, we have considered the subset of service points that are
maximally three strokes long and we have demonstrated that player X is more
successful if the service is directed towards the middle of the court. Moreover,
by determining the AUC for the classification of all service points of player X
and the collection of points where the opponent of player X is serving, we have
obtained that the quality of our classification is reasonably good.

In addition to the considered subset of short service points, it is also interest-
ing to look into other specific subsets. For example, we could compare the results
in different match situations to investigate whether this affects the playing style.
Moreover, the methods we have presented in this work also have many applica-
tions in other sports with a tactical component. For example, our approach can
be used for comparing playing styles of different football teams. As there are
many interesting sport-specific questions that can be addressed, it is undesirable
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to compare the results for all different settings manually. Therefore, a possible
direction of future research is to develop an automatised procedure for applying
Contrast Data Mining with Subgroup Discovery.
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Abstract. The difficulty of mountainbike downhill trails is a subjective
perception. However, sports-associations and mountainbike park opera-
tors attempt to group trails into different levels of difficulty with scales
like the Singletrail-Skala (S0-S5) or colored scales (blue, red, black, ...) as
proposed by The International Mountain Bicycling Association. Incon-
sistencies in difficulty grading occur due to the various scales, different
people grading the trails, differences in topography, and more. We pro-
pose an end-to-end deep learning approach to classify trails into three
difficulties easy, medium, and hard by using sensor data. With mbientlab
Meta Motion r0.2 sensor units, we record accelerometer- and gyroscope
data of one rider on multiple trail segments. A 2D convolutional neu-
ral network is trained with a stacked and concatenated representation
of the aforementioned data as its input. We run experiments with five
different sample- and five different kernel sizes and achieve a maximum
Sparse Categorical Accuracy of 0.9097. To the best of our knowledge,
this is the first work targeting computational difficulty classification of
mountainbike downhill trails.

Keywords: Sports analytics · Deep neural networks · Mountainbike ·
Accelerometer · Gyroscope · Convolutional neural networks

1 Introduction

Mountainbiking is a popular sport amongst outdoor enthusiasts, comprising
many different styles. There are styles like cross country riding, characterized by
long endurance rides, styles like downhill riding, characterized by short, intense
rides down trails, and more [1]. Mountainbiking, as it is known today, originated
in the US in the 1970s and since then went through various levels of popu-
larity [2]. Official, competitive riding started in the 1980s with the foundation
of the Union Cycliste Internationale (UCI), followed by the first World Cham-
pionship in 1990 [3]. In this work, we focus on the difficulty classification of
mountainbike downhill trails and do not take into account uphill or flat sections
of trails. There are multiple approaches in trail difficulty classification, whereby a
color-inspired grading is most commonly used [4–6]. The International Mountain
c© Springer Nature Switzerland AG 2020
P. Cellier and K. Driessens (Eds.): ECML PKDD 2019 Workshops, CCIS 1168, pp. 270–280, 2020.
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Bicycling Association (IMBA) proposes a trail difficulty rating system comprised
of five grades, ranging from a green circle (easiest) to a double black diamond
(extremely difficult) [4]. In addition, the IMBA Canada offers a guideline on
how to apply those gradings to mountainbike trails [7]. British Cycling also pro-
pose a colored difficulty scale, including four basic grades from green (easy) to
black (severe) with an additional orange for bike park trails [5]. Inspired by
rock climbing difficulty grading, as well as ski resort gradings, Schymik et al.
created the Singletrail-Skala, containing three main difficulty classes (blue, red,
black) and a more fine granular six grades ranging from S0 to S5 [6]. Trails on
Openstreetmap [8] are rated with respect to the IMBA grading as well as the
Singletrail-Skala, whereas the latter also describes tracks which are not specifi-
cally made for mountainbiking [9]. Due to factors like the various scales, different
people grading the trails or differences in topography, estimating the difficulty
of mountainbike trails consistently is not an easy task. This work aims to make
mountainbike track difficulty assessment less subjective and more measurable. In
order to do so, we collect acceleration-, as well as gyroscope-data from multiple
sensor units that are connected to the mountainbike frame as well as the rider.
Because we do not collect data in dedicated mountainbike parks, but on open
trails (hiking paths among others), we decided to use the three main difficulties
given by the Singletrail-Skala as the set of labels.

Table 1. Mapping of the Singletrail-Skala grades to the labels used in our data set.
Label 0 describes easy trails, label 1 medium trails, and label 2 hard trails.

Colored grading Fine grading Label Description

Blue S0, S1 0 Easy

Mostly solid and non-slip surface

Slight to moderate gradient

No switchbacks

Basic skills needed

Red S2 1 Medium

Loose surface, bigger roots and stones

Moderate steps and drops

Moderate switchbacks

Advanced skills needed

Black S3+ 2 Hard

Loose surface, slippery, big roots and stones

High drops

Tight switchbacks

Very good skills needed

Table 1 gives an overview of the three grades blue, red and black. Schymik
et al. [6] define the difficulties as follows: Blue describes easy trails, comprising
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the grades S0 and S1. Red describes medium trails and is equal to the grade S2.
Black describes all difficulties above and can be considered hard. Openstreetmap
provides difficulty classifications for all trails on which this dataset is collected [9].
We then train a 2D convolutional neural network with a stacked and concate-
nated representation of the aforementioned data as its input. Thereby we can
grade sections of downhill trails regarding their difficulty.

1.1 Related Work

For training purposes, mountainbikes of professional athletes get set up with
telemetry technology, such as BYB Telemetry’s sensors [10]. Their sensors are
connected to the suspension fork as well as the suspension shock and measure the
movement of each. Stendec Data extends those capabilities and adds sensors for
measuring brake pressure and acceleration in order to capture braking points,
wheel movements, and more [11]. However, the two systems mentioned above
are expensive and hard to get. Therefore, we use mbientlab Meta Motion sensor
units to capture acceleration and gyroscope data. Ebert et al. [12] automatically
recognized the difficulty of boulder routes with mbientlab sensor units. To the
best of our knowledge there is no scientific work regarding the difficulty classifi-
cation of mountainbike trails using accelerometers or gyroscopes yet. However,
there has been a great amount of work done in the field of activity recognition
with acceleration data [13–19]. Many of those approaches make use of classical
machine learning methods [13–16,20]. Preece et al. [20] compare feature extrac-
tion methods for activity recognition in accelerometer data. Bao et al. [14] clas-
sify activities using custom algorithms and five biaxial acceleration sensors worn
simultaneously on different parts of the body. Furthermore, there has been a
noticeable shift towards deep learning approaches in recent years [17–19]. Moya
Rueda et al. [21] use multiple convolutional neural networks which they con-
catenate in a later stage with fully connected layers. Zeng et al. utilize a 1D
convolutional neural network, treating each axis of the accelerometer as one
channel of the initial convolutional layer [18]. In a survey by Wang et al. the
authors give an overview of state-of-the art deep learning methods in activity
recognition [22]. The authors claim that deep learning outperforms traditional
machine learning methods and has been widely adopted for sensor-based activity
recognition tasks.

2 The Dataset

2.1 Collecting and Labeling Data

Instead of working with dedicated mountainbike telemetry systems, we use mbi-
entlab Meta Motion r0.2 sensor units to record data [23]. Those units contain
multiple sensors, including an accelerometer as well as a gyroscope. Mbientlab
sensors offer a Bluetooth Low Energy interface to which an Android or iOS appli-
cation can be connected. The rider is equipped with two sensor units. Figure 1
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Fig. 1. Mounting point on the helmet (left), mounting point on the downtube of the
frame (right)

visualizes the mounting points of the mbientlab sensor units. One unit is con-
nected to the downtube of the mountainbike, the other one to the back of the
rider’s helmet. For each recording, the sensors are facing the same direction to
keep the axes layout consistent. The accelerometer creates datapoints in three
axes (x, y, z) in the unit g (equals 9.80665 m/s2) with a frequency of 12.50 Hz.
The gyroscope creates datapoints in three axes (x, y, z) in the unit deg/s with a
frequency of 25.00 Hz. We synchronize the starting points of the recordings and
linearly interpolate missing datapoints to reach a constant frequency of 25.00 Hz
for all sensors.

Labeling of the data happens after the actual data collection process. We
record every downhill ride with an action camera (mounted to the rider’s chest),
synchronize the video with the data recordings, and manually label subsections
of the trail. For the majority of subsections on open trails, we use the difficulty
grading provided by Openstreetmap. Those gradings are made visible in moun-
tainbike specific Openstreetmap variants and can also be found in the (XML-
like) .OSM exports of an area. One “way” node (which describes a trail) then
includes another node “tag”, comprising the difficulty description. For subsec-
tions that the Singletrail Skala would consider to not represent this difficulty (as
per their description), we up- or downgrade the difficulty label. Downgrading
mostly occurs for fireroads or other very easy sections, upgrading for particu-
larly steep or tight sections.

2.2 Input Data Representation

For each ride, we collect data with two sensor units. Every unit provides data for
the accelerometer and the gyroscope sensors. Each sensor generates datapoints
for three axes (x, y, z) with an additional timestamp value. Zeng et al. [18]
interpret each axis of a sensor as a filter of the input to a 1D convolutional layer.
We keep the same procedure but additionally stack each of the four sensors (two
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Fig. 2. Input shape of one sample comprising four sensors with three dimensions (axes)
each

accelerometers, two gyroscopes) vertically to create an image-like representation.
Figure 2 visualizes the shape of our input data. Height and width of the image-
like representation are represented by four sensors and n datapoints. RGB-like
channels are represented by the three axes x, y, and z. The square in the top left
corner visualizes the kernel sliding across the input data. We split each recording
into smaller samples utilizing a sliding window with an overlap of 75%. This
allows us to create many examples from few data recordings. In our experiments
we test five different window sizes, namely 1000 ms, 2000 ms, 5000 ms, 10000 ms,
and 20000 ms resulting in 25, 50, 125, 250, and 500 data points per example.
This leads to 5937, 2971, 1150, 575, and 286 samples respectively. For each
experiment, we use a 80/20 test/train split in order to evaluate the network’s
performance on unseen data.

3 Classification Through a 2D Convolutional
Neural Network

In order to classify mountainbike downhill trails regarding their difficulty, we
apply a convolutional neural network. Figure 3 visualizes the network’s architec-
ture. The input to the first block is of shape (n, 4, 3), with n being the amount
of data points per sample. One sample consists of data of four sensors (vertically
stacked), with each three axes (filters), and a sample size of n data points. We
chain three convolutional blocks followed by two Dense Layers. Each convolu-
tional block consists of one Conv2D [24], a Batch Normalization [25], a ReLU
Activation [26], a Max Pool [27] and a Dropout Layer [28]. The convolutional
layers use a kernel of shape (m, 2) and a stride of (1, 1), with m being the length
of the kernel. Multiple values for n and m are tested in the experiments. All
convolutional layers use the padding ‘same’ [29]. With this setting, the width
and height dimensions of the in- and output of a convolutional layer stay the
same. Furthermore, we add L2 regularization to each convolutional layer [30].
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L2 regularization shifts outlier weights closer to 0. Max Pool layers use a pool
size of (2, 1), which reduces the shape by approximately half in length. The
dropout rate of each Dropout Layer is 0.3. The Conv2D Layers of the second
and third convolutional block have 8 and 16 filters respectively. After the con-
volutional blocks, we add two Dense Layers. The first layer has 128 units and a
ReLU Activation. The second and final layer has three Softmax activated units,
which represent the predicted label. The network uses the Adam optimizer [31]
with a learning rate of 0.001 and a Sparse Categorical Crossentropy as it’s loss
function. This configuration proofed to be the best in our experiments.

Fig. 3. Convolutional Neural Network for trail difficulty classification on stacked
accelerometer and gyroscope data. The input data is of shape (n, 4, 3), with n being
the amount of data points per sample. After the input layer, three convolutional blocks
and two fully connected layers follow.

3.1 Experiments

Due to the fact that there are no established neural network configurations
for trail difficulty classification, we evaluate 25 combinations of window- and
kernel sizes. We test five window sizes (1000 ms, 2000 ms, 5000 ms, 10000 ms,
20000 ms) and five kernel sizes ((5,2), (10,2), (20, 2), (40,2), (60,2)) (see Table 2).
For empty result cells, the amount of datapoints per sample is smaller than the
kernel length. The dataset includes approximately 32% of samples of label 0, 56%
of samples of label 1 and 12% of samples of label 2. This uneven distribution
led the model to rarely predict the labels 0 and 2. Therefore we decided to
compensate the inequality by copying existing examples of the underrepresented
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Table 2. Sparse categorical accuracy and amount of epochs of the experiments. A win-
dow size of 10000 ms with a kernel size of (60,2) creates the highest accuracy (0.9097)
after 781 epochs on the test dataset.

Kernel size Samples Samples after
over-sampling(5,2) (10,2) (20,2) (40,2) (60,2)

Window size
1000ms

0.4990 0.5313 0.5165
- - 5937 10368(271) (124) (249)

2000ms
0.5155 0.5585 0.5734 0.5599

- 2971 5073(259) (300) (247) (183)

5000ms
0.6181 0.6632 0.7743 0.6632 0.7778

1150 2019(300) (515) (726) (63) (79)

10000ms
0.7222 0.6875 0.7639 0.8681 0.9097

575 978(425) (473) (548) (607) (781)

20000ms
0.6250 0.6111 0.6111 0.6250 0.6806

286 498(456) (5) (162) (8) (545)

classes within the training set (so that the classes are balanced equally). In order
to reduce overfitting, we add an early stopping callback to the network, which
stops the training process when there is no improvement for 250 epochs (the
patience value). With smaller patience values the network stopped learning too
early in some cases. The maximum amount of epochs for training is 1500. We
run a batch size of 32 and a steady learning rate of 0.001. In Table 2 we show
the resulting Sparse Categorical Accuracy, the amount of epochs before training
was stopped and the amount of samples in the train set. The Sparse Categorical
Accuracy measures the accuracy of the result of sparse multiclass classification
problems [32]. For every experiment, we use a sliding window with an overlap
of 75%. To not have many highly similar examples in one batch, we shuffle the
data before training. Short window sizes (1000 ms, 2000 ms) show lower accuracy
than the larger samples across all kernel sizes. This could be attributed to the
low amount of datapoints within a sample (25) as well as the short sample not
representing the subsection of the trail.

The lowest accuracy (0.4990) was reached with window size 1000 ms and
kernel size (5,2). With a window size of 10000 ms and a kernel size of (60,2), we
achieve a high sparse categorical accuracy of 0.9097. This leads to the conclusion,
that a window length of 10000 ms is necessary to represent a downhill trail
subsection appropriately. Longer sequential dependencies (by using larger kernel
lengths) show a positive effect on the difficulty classification as well.

Figure 4 shows the curves of the Sparse Categorical Accuracy on the train as
well on the test dataset across 1000 epochs. Both values increase early on and
level out with no major overfitting visible in the plot. The highest accuracy on
the test dataset was achieved after 781 epochs.
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Fig. 4. Plot of the Sparse Categorical Accuracy (sca) on the train set (blue, upper) as
well as on the test set (orange, lower). (Color figure online)

Figure 5 shows the confusion matrix of the best resulting configuration,
namely a window size of 10000 ms and a kernel size of (60,2). Good results
for all three classes are shown, with only few false positives in neighbored areas.
The matrix also highlights the fact, that the label 2 (hard) is underrepresented.
However, the distribution of correctly predicted labels matches the distribution
of the raw dataset well.

Fig. 5. The confusion matrix for a window size of 10000ms and a kernel size of (60,2).
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4 Conclusion

In this work, we proposed an end-to-end deep learning approach to classify moun-
tainbike downhill trails regarding their difficulty. We gave an introduction to mul-
tiple official difficulty scales and decided to use the Singletrail-Skala for this work.
Using mbientlab Meta Motion r0.2 sensor units, we recorded multiple rides on
multiple trail segments, resulting in 2971 training examples for the best window-
size/kernel-size combination. The sensor units provided us with accelerometer
and gyroscope data in each three axes, which we concatenated to create an image-
like representation of the data. Downhill trails were labeled according to their
Singletrail-Skala rating and a subjective up- or downgrading for subsections,
that strongly diverge from their rating. We implemented a 2D convolutional
neural network with two dense layers at the end for the classification process.
We ran experiments with five different window sizes (1000 ms, 2000 ms, 5000 ms,
10000 ms, 20000 ms) and five different kernel sizes ((5,2), (10,2), (20,2), (40,2),
(60,2)). The best result could be observed with a sample size of 10000 ms and a
kernel size of (60,2), resulting in a Sparse Categorical Accuracy of 0.9097 on a
80/20 train/test split. In future work, one could think of a non-supervised clus-
tering method to avoid subjective input. Additionally, the dataset could possibly
be improved by using more sensors, like high-resolution barometers or heartrate
sensors. As can be seen in Fig. 5 more examples for hard sections (label 2) are
needed. This category is underrepresented in the data we collected.

With this work, we hope to reduce the amount of subjective rating of moun-
tainbike trails and make their difficulty measurable. An automated recognition
of downhill trail difficulty could be advantageous in diverse scenarios. For unla-
beled, or mislabeled trails, our sensor analysis architecture can generate a fitting
label. This can help tourist areas or mountainbike park operators describe the
difficulty of new or existing trails consistently across areas, topographies, or
countries. For social fitness networks like e.g. Strava [33] one could think of an
automated difficulty grading of rides (or subsections of rides). This would extend
the existing performance comparison factors, like speed or distance, by a value
for downhill trail difficulty. Furthermore, we hope to promote data analytics in
the sport of mountainbiking by releasing a bigger and improved version of our
dataset soon.
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33. Strava: Die beste app für läufer und radfahrer, June 2019. https://www.strava.
com/?hl=de

https://keras.io/layers/convolutional/
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-1-4842-4240-7_2
https://www.strava.com/?hl=de
https://www.strava.com/?hl=de


First Workshop on Categorizing
Different Types of Online Harassment

Languages in Social Media



Categorizing Online Harassment
on Twitter

Mozhgan Saeidi1(B), Samuel Bruno da S. Sousa1,2(B), Evangelos Milios1(B),
Norbert Zeh1(B), and Lilian Berton2(B)

1 Dalhousie University, Halifax, Canada
{mozhgan.saeidi,samuelsgousa}@dal.ca, {eem,nzeh}@cs.dal.ca

2 Federal University of São Paulo, São José dos Campos, Brazil
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Abstract. Harassment on social media is a hard problem to tackle since
those platforms are virtual spaces in which people enjoy the liberty to
express themselves with no restrictions. Furthermore, a large amount of
users generating publications on online media like Twitter contributes
to the hardness of controlling sexism and sexual harassment content,
requesting robust methods of Machine Learning (ML) to be applied in
this task. To do so, this work aims at comparing the performance of
supervised ML algorithms to categorize online harassment in Twitter
posts. We tested Logistic Regression, Gaussian Näıve Bayes, Decision
Trees, Random Forest, Linear SVM, Gaussian SVM, Polynomial SVM,
Multi-Layer Perceptron, and AdaBoost methods on the SIMAH Compe-
tition benchmark data, using TF-IDF vectors and Word2Vec embeddings
as features. As results, we reached scores above 0.80% of accuracy for
all the harassment types in the data. We also showed that, when using
TF-IDF vectors, Linear and Gaussian SVM are the best methods to pre-
dict harassment content, while Decision Trees and Random Forest bet-
ter categorize physical and sexual harassment. Overall, by using TF-IDF
vectors presented higher performance on these data, suggesting that the
training corpus for Word2Vec influenced negatively on the classification
task outcomes.

Keywords: Online harassment · Text classification · Twitter

1 Introduction

Language reveals the values of people and their perspectives [21]. Sexism in
language has been discussed in different communication media, such as adver-
tisements, newspapers, TV, and more recently in online social networks. Sexism
can be defined as an aggregate of hostile stereotypes towards women [22] man-
ifested on language, behaviors, and cultural traits. In social media platforms,
sexist comments present different categories, according to the intent they are
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written [21]. It is a widely known problem to detect sexist content online auto-
matically [19–21] since text is an unstructured data type, besides the intrinsic
ambiguity of language. To explore contents on social platforms, such as Twitter,
employing ML techniques, the most significant role is with the data [19], because
several processes have to be done to balance, collect, label, or even measure the
overlap of datasets’ classes.

Detecting harassment on online social media is a challenge in the field of Nat-
ural Language Processing (NLP) so recent as the major online social networks.
For instance, Facebook and Twitter were created in 2004 and 2006, respec-
tively. The discussion concerning online harassment types, in turn, only gained
large audiences in 2017 due the #MeToo movement, which encourages women
to denounce offensive content towards them in real life and online [20]. Since this
time, tools to control the spreading of offensive posts against women and other
groups were released, despite of not being able to detect 100% of the content in
the networks. Therefore, this is a promising research area [19,21] whose results
have an influential role to promote an educational culture among social network
users, as well as combating harassment online.

In this study, we focused on the sexual harassment tweets gathered by Sharifi-
rad and Matwin [19]. By using NLP and supervised classifiers, we classify tweets
into two groups: harassment versus no harassment in the first task. In the sec-
ond task, we categorized different types of online harassment tweets into three
categories: “indirect harassment”, “physical harassment” and “sexual harass-
ment”. The ML algorithms which we used for both tasks are included of: Logis-
tic Regression, Näıve Bayes, Decision Tree, Support Vector Machines, Random
Forest, Multi-layer Perceptron, and AdaBoost. The choice of a robust classifier
to detect this kind of content justifies testing of all of those different methods.

The rest of the paper is organized as follows: Sect. 2 presents some related
work to the problem. Section 3 includes the methodology, the dataset, algorithms
and word embeddings employed in the work. In Sect. 4, we will go through the
experiments and the required steps for them. In Sect. 5 we show the results based
on our experiments. Finally, Sect. 6 presents the conclusion and future works.

2 Related Work

Automatically detecting content containing sexual harassment could be the basis
for removing it, or flagging it for human evaluation. Sexism as a classification
task was introduced by [23], in which they collected tweets around the famous
Australian TV show My Kitchen Rules and the hashtag #mkr, annotated 16
thousand tweets, and categorized them as racist, sexist, or neither. In the next
step, different methods were performed in the task, such as character level grams
and word grams, and logistic regression with 10-fold cross-validation was run
to classify the tweets. In 2017, in the other work [11], they categorized tweets
exhibiting sexism, using several classifiers if they have one of the three follow-
ing features: “protective paternalism”, “complementary gender differentiation”
and “heterosexual intimacy”. Taking advantage of deep neural networks mod-
els happened in [1], which used the dataset collected in [23], input into different
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types of convolutional and recurrent neural networks, combining long-short term
memory (LSTM) with random embedding. Among the combinations, gradient
boosted decision Tree had the best performance.

The other work on this problem is considering the tweets towards top femi-
nists and collects a range of online abuse and categorize them into classes such
as sexual harassment, physical threats, flaming and trolling, stalking, electronic
sabotage, impersonation and defamation [14]. In the same manner, [21] came up
with new categories, with name, definitions, points, hints, and examples. They
ran a pilot study of 50 tweets labeled by one male and 12 women non-activist,
calculate the Kappa score. The application of affect classification on different
sexist has been showed in [20] and they categories by focusing on the sexist
dataset included of four categories of: Indirect harassment, Information threat,
Sexual harassment, and Physical harassment. This study aims to understand the
emotion type and intensity of emotion in each category of sexual harassment,
which shows there are some similarities in the physical and sexual harassment
categories.

Aware of pre-processing step influence in the methods’ final performance, [4]
gathered messages from Twitter and proposed a new method based on person
identification combined to word normalization leading to gain of performance.
Other common technique to boost the harassment detection in Twitter is text
augmentation, as performed by [19], who added more information to enrich the
dataset and compensate the lack of training data for some specific kinds of
harassment, as indirect harassment, which is more difficult to predict since it
is commonly presented as sarcasm or jokes against women [20]. This method
has been used in different applications like bioinformatics [13], image process-
ing [12], computer vision [7], video and audio processing [9,15]. However, in this
work, no text augmentation is performed since our main goal is to measure how
robust supervised classifiers are when running on imbalanced, non-structured,
and ambiguous textual data.

3 Methodology

In this section, the Twitter harassment dataset is described, as well as the nine
classifiers trained to classify sexist content on social media and the Word2Vec
model [16].

3.1 Data

The dataset is composed of 10,622 posts collected from Twitter in the English
language, whose statistics are presented in Table 1. In this benchmark for harass-
ment content classification, 6,374 data instances are available for training, 2,125
data instances were released for validation, while 2,123 are provided for the test.
The number of those tweets which present harassment content is 3,956, and sex-
ual harassment is the most numerous kind of hate speech in this set with 3,419
data instances. Besides sexual, there is also indirect and physical harassment
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(a) Harassment content. (b) Indirect harassment.

(c) Physical harassment. (d) Sexual harassment.

Fig. 1. Word clouds for the tweets which present each kind of harassment content.

content in the data. The former concerns sexism and indirect offenses, involving
conduct that is not directed at a particular individual but results in overall poi-
soned content, like the invasion of personal space, suggestive remarks or sounds,
offensive jokes, ridicule, innuendo; while the latter refers to violent threats on
the social media. By analyzing the table, it is possible to notice that the classes
are imbalanced. So special attention is required in the pre-processing step for
balancing the classes of the dataset.

Table 1. Dataset Statistics. ‘Indirect H.’ stands for indirect harassment; ‘Physical H.’
refers to physical harassment; and ‘Sexual H.’ means sexual harassment.

Subset Data instances Harassment Indirect H. Physical H. Sexual H.

Training 6,374 2,713 55 76 2.582

Validation 2,125 632 71 36 525

Test 2,123 611 197 100 312

Total 10,622 3,956 323 297 3,419

The content of the Tweets in this dataset comprises coarse language and
swear words, as shown in Fig. 1. Each kind of harassment presents specific lan-
guage constructions. For instance, the words in tweets with indirect harassment
content are related to sexism and offensive jokes (Fig. 1b), whereas physical



Categorizing Online Harassment on Twitter 287

harassment tweets present violent threats (Fig. 1c), and sexual harassment posts
are composed of terms and expressions with a sexual connotation (Fig. 1d).

3.2 Algorithms

The contribution of this work is on both binary and multi-class classification
tasks. The goal of binary classification is to learn a function F (x) that mini-
mizes the misclassification probability P (yF (x) < 0), where y is the class label
with +1 for positive and −1 for negative [17]. On the other hand, multi-class clas-
sification aims at assigning one of several classes to each data instance. This task
finds a model which maps an input vector x to binary vectors y, where y ∈ {0, 1}.
Since the detection of harassment is a brand-new task of NLP, we proposed to
compare supervised classifiers performance for this problem. Therefore, differ-
ent algorithms were chosen to be tested in our study. Among the methods for
classification, we used the supervised models, choosing based on [25], below:

– Logistic regression [17];
– Gaussian Näıve Bayes [17];
– Decision Trees (DTs) [17];
– linear, gaussian, and polynomial Support Vector Machines (SVM) [2];
– Random forest (RF) [3];
– Multi-Layer Perceptron (MLP) [17];
– AdaBoost [8].

3.3 Word Embeddings

Word embeddings are continuous representations of words and their semantic
features in low-dimensional vector spaces [5,10]. It is capable of capturing the
context of a word in a document, semantic and syntactic similarity, and relation
with other words. Word2Vec [16] is one of the most popular techniques to learn
word embeddings, whose representations can be obtained using two methods
(both involving Neural Networks): Common Bag-of-Words (CBOW) and Skip-
gram, using either hierarchical softmax or negative sampling.

CBOW takes the context of each word as the input and tries to predict the
word corresponding to the context [5], minimizing the values for the following
loss function:

loss = − log(p(−→wt|−→Wt)) (1)

in which wt is the target word in the sequence of words Wt.
Skip-gram, otherwise, usually tries to achieve the reverse of what the

CBOW model does [16]. It tries to predict the source context words (surrounding
words) given a target word (the center word).
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4 Experiments

The experiments pipeline started with the dataset pre-processing, which com-
prises tokenization, stop-words removal, stemming or lemmatization, and word
vectors extraction. We have tested different approaches to come up with features
for the classifiers and, after that, we performed the classification tasks, validating
the models on a 10-fold cross-validation setup.

4.1 Pre-processing

The start point working with tweets dataset is preprocessing, which in this
task includes removing hyperlinks, hashtags, numbers, and punctuation marks,
including hashtags and at signs. For the pre-processing step, we used the func-
tions provided by NLTK library1. They are: tokenization with ‘word tokenize’;
stop-words removal for the English language; lemmatization with Wordnet Lem-
matizer; or stemming with SnowBall stemmer. In addition to the standard
English stop words from Scikit-learn2 package, we have removed from the text
the Twitter acronyms and HTML tags showed in Table 2 since they play a role
as noise in the dataset. As we tested two different representations for the words
in the tweets, the lemmatized the words were used to extract their representa-
tions in the Word2Vec model, whereas the stemmed forms of the same words
were used to yield their term frequency-inverse document frequency (TF-IDF)
[18] representation with the ‘TfidfVectorizer’ function from Scikit-learn.

Table 2. Acronyms and HTML tags assigned as stop words in the tweets dataset
pre-processing.

Aditional stop words

‘don’, ‘http’, ‘amp’, ‘cc’, ‘rt’, ‘x89’, ‘x8f’, ‘x95’, ‘x9d’, ‘na’, ‘im’, ‘co’, ‘id’

After that, the TF-IDF vectors were computed for the posts to classify. The
original dataset (prior training and test sets) had 19,945 words, which lead to a
large and sparse matrix. Thus, it was needed to decrease the dimension of this
structure to reduce the time and computational complexity in the classification.
To do so, we pruned the number of terms, selecting the most relevant ones. We
started selecting the 25 most relevant according to TF-IDF scores, and increased
this number up to 50, running the 9 supervised classifiers described in Sect. 3.2,
with 10-fold cross-validation, and measuring the performance metric of accuracy
for each model. On the validation set, the achieved accuracies for the supervised
classifiers while varying the number of features from 25 to 50 with a stride of
5 suggest that 45 is the best number of features extracted from the tweets, as
demonstrated in the Table 4. Table 3, additionally, shows the 45 most relevant
words in the data when using TF-IDF scores to extract features from the text.
1 https://www.nltk.org/.
2 https://scikit-learn.org/.

https://www.nltk.org/
https://scikit-learn.org/
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Table 3. The 45 most relevant words in the dataset after stemming with SnowBall
stemmer.

Words selected according to TF-IDF scores

‘alway’, ‘ass’, ‘ava’, ‘becaus’, ‘bitch’, ‘black’, ‘chop’, ‘cumshot’, ‘friend’,

‘fuck’, ‘girl’, ‘good’, ‘got’, ‘guy’, ‘horni’, ‘just’, ‘know’, ‘like’,

‘littl’, ‘look’, ‘love’, ‘make’, ‘nake’, ‘nude’, ‘peopl’, ‘porn’, ‘pussi’,

‘realli’, ‘right’, ‘sassi’, ‘say’, ‘sex’, ‘shame’, ‘shit’, ‘slut’, ‘think’,

‘time’, ‘today’, ‘video’, ‘want’, ‘watch’, ‘whore’, ‘women’, ‘xxx’, ‘year’

As Table 1 showed, this dataset is imbalanced. Hence to avoid the dominant
influence of the major class on the outcomes of the algorithms, we have employed
SMOTE (Synthetic Minority Over-sampling Technique) [6] before running the
models. SMOTE makes the minor classes equal to the major class by yielding
synthetic samples of the instances with less recurrent labels. It selects similar
data points and randomly changes the values one column at a time in the range
of the difference to the nearest points.

4.2 Task A – Binary Classification

As mentioned in Sect. 4.1, we tested different numbers of features extracted
from text, according to TF-IDF scores. For each set of features, we have run the
models to classify whether a tweet has harassment content or not. The accuracy
scores for each model on the validation set are presented in Table 4. Among the
classifiers, LR RF, Linear SVM, Gaussian SVM, MLP, and Adaboost reached
performances above 0.90 of accuracy. GNB and DT did not perform as good as
the other ones since they are based on probabilities. So as many words overlap
in both classes, they lead to lower performance on assigning the correct label
to the data points. Polynomial SVM with degree 2 has also not performed well
since the polynomial kernel is likely to overfitting on classification.

Table 4. Accuracy values for the supervised methods on the validation set using
features extracted by TF-IDF scores.

Classifier 20 F. 25 F. 30 F. 35 F 40 F. 45 F. 50 F.

Logistic Regression 0.896 0.904 0.905 0.907 0.907 0.907 0.906

Gaussian Näıve Bayes 0.838 0.840 0.844 0.842 0.831 0.825 0.822

Decision Trees 0.887 0.888 0.894 0.888 0.891 0.888 0.890

Random Forest 0.889 0.894 0.896 0.896 0.899 0.900 0.899

Linear SVM 0.896 0.904 0.904 0.908 0.906 0.906 0.904

Gaussian SVM 0.887 0.897 0.896 0.901 0.802 0.903 0.895

Polynomial SVM 0.788 0.702 0.702 0.702 0.702 0.702 0.702

MLP 0.896 0.702 0.903 0.702 0.906 0.901 0.903

AdaBoost 0.891 0.903 0.904 0.905 0.904 0.906 0.898

Average 0.874 0.848 0.872 0.850 0.861 0.871 0.869



290 M. Saeidi et al.

We validated all the models on 10-fold cross-validation before classifying the
validation set. Figure 2 depicts the learning curves for each model on k-fold
cross-validation with k = {2, 4, 6, 8, 10}. It is possible to notice that Linear and
Gaussian SVMs hit the highest scores, whereas GNB and Polynomial SVM hit
the two least. The remaining classifiers surpassed 85% of accuracy.

Fig. 2. Classifiers learning curve on a 10-fold cross-validation over the validation set
with 45 TF-IDF features.

4.3 Task B – Multi-class Classification

This part is a multi-class classification of online harassment Tweets into three
categories of “indirect harassment”, “sexual harassment”, and “physical harass-
ment”. We have run the same algorithms over the dataset using the 45 features
extracted in Sect. 4.1. Physical harassment was the hardest content to classify
since it is the less frequent one among the classes in the dataset. On the other
hand, sexual harassment was easier to detect in the tweets, as shown in Table 5,
because sexual treats are explicitly written in the posts. RF results surpassed
the remaining methods’ on the three labels, hitting 0.935 of average accuracy.
As noticed in Sect. 4.2, Gaussian Näıve Bayes and Polynomial SVM were the
worst-performing models.

4.4 Classification with Word Embeddings

To verify how good word embeddings are to detect harassment content on social
media, we have trained a 50-dimensional CBOW model on the English Wikipedia
corpus, which is the largest text collection freely available to collect and train
models on. The Table 6 presents the results on the validation set.
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Table 5. Accuracy values on the three classes of harassment over the validation set
using 45 features extracted by TF-IDF scores.

Classifier Indirect H. Physical H. Sexual H. Average

Logistic Regression 0.913 0.913 0.949 0.925

Gaussian Näıve Bayes 0.827 0.807 0.944 0.859

Decision Trees 0.899 0.921 0.948 0.923

Random Forest 0.923 0.931 0.952 0.935

Linear SVM 0.912 0.872 0.949 0.911

Gaussian SVM 0.893 0.854 0.949 0.899

Polynomial SVM 0.779 0.736 0.949 0.821

MLP 0.918 0.877 0.949 0.915

AdaBoost 0.913 0.897 0.948 0.919

Average 0.886 0.868 0.949 0.901

Table 6. Accuracy values for the Word2Vec embeddings on the Validation set.

Classifier Harassment Indirect H. Physical H. Sexual H. Average

Logistic Regression 0.822 0.834 0.846 0.949 0.863

Gaussian Näıve Bayes 0.750 0.834 0.814 0.949 0.837

Decision Trees 0.706 0.957 0.957 0.939 0.890

Random Forest 0.787 0.963 0.973 0.950 0.918

Linear SVM 0.731 0.711 0.892 0.948 0.821

Gaussian SVM 0.727 0.966 0.982 0.776 0.863

Polynomial SVM 0.822 0.825 0.849 0.949 0.861

MLP 0.819 0.913 0.870 0.813 0.854

AdaBoost 0.786 0.935 0.938 0.948 0.902

Average 0.772 0.882 0.902 0.913 0.868

5 Results and Discussion

The results of the test data are presented in this section. The final experiments
were performed on the test set, which is the same data from the challenge pro-
posed by the SIMAH Competition. We have compared the performance of TF-
IDF feature vectors to Word2Vec embeddings and reported the best scoring
methods on both set of features.

5.1 Classification with TF-IDF Vectors

We performed both classification tasks on the 45 features extracted by TF-IDF val-
ues and measured the accuracy for each running on the test set. For the binary clas-
sification, LR, Linear SVM, and Adaboost surpassed the remaining algorithms.
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Otherwise, DT and RF presented the highest results when ran over the three kinds
of harassment content. The complete results are shown in the Table 7.

Table 7. Accuracy values for the TF-IDF vectors.

Classifier Harassment Indirect H. Physical H. Sexual H. Average

Logistic Regression 0.814 0.891 0.834 0.859 0.849

Gaussian Näıve Bayes 0.776 0.871 0.818 0.876 0.835

Decision Trees 0.799 0.879 0.887 0.876 0.860

Random Forest 0.813 0.886 0.895 0.876 0.867

Linear SVM 0.814 0.896 0.835 0.859 0.851

Gaussian SVM 0.810 0.870 0.817 0.859 0.839

Polynomial SVM 0.782 0.809 0.759 0.859 0.802

MLP 0.811 0.900 0.861 0.859 0.857

AdaBoost 0.814 0.887 0.867 0.862 0.857

Average 0.803 0.876 0.841 0.865 0.846

In order to evaluate the outcomes of the algorithms, we also have computed
the macro F1 scores for each class. This performance measure is the harmonic
mean of precision and recall and it aims to evaluate the classification performance
on all the classes, without taking into account whether the data is balanced or
not. As Table 8 shows, physical harassment is the hardest kind of offensive con-
tent to detect. DT and RF hit better results on physical and sexual harassment,
but on average LR and Linear SVM were the best scoring methods. The results
in the Table 8 are lower than the ones in the Table 7, since accuracy scores are
sensitive to the presence of the major classes [17].

Table 8. Macro F1 values for the TF-IDF vectors on all the classes.

Classifier Harassment Indirect H. Physical H. Sexual H. Average

Logistic Regression 0.726 0.775 0.598 0.793 0.723

Gaussian Näıve Bayes 0.691 0.738 0.593 0.798 0.705

Decision Trees 0.697 0.673 0.613 0.802 0.696

Random Forest 0.717 0.686 0.623 0.813 0.709

Linear SVM 0.728 0.773 0.596 0.793 0.722

Gaussian SVM 0.737 0.745 0.597 0.793 0.718

Polynomial SVM 0.668 0.687 0.568 0.793 0.679

MLP 0.726 0.763 0.595 0.793 0.719

AdaBoost 0.724 0.726 0.613 0.798 0.715

Average 0.712 0.729 0.599 0.797 0.709
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5.2 Classification with Word Embeddings

When we ran the supervised methods on the dataset represented by the word
vectors yielded by the Word2Vec model, the accuracy values for the binary clas-
sification were lower than the ones hit on the TF-IDF features, as the Table 9
shows. The main reason for this difference of performance is the nature of the
training data input to the Word2Vec model. As Wikipedia, in general, presents
only formal language the swear words in the tweets do not have meaningful repre-
sentations in the model. Furthermore, if we have trained Word2Vec on the data
used in this study, the word representations could lead to overfitting. Among
the supervised algorithms, RF and Gaussian SVM hit best results in most of the
tries.

Table 9. Accuracy values for Word2Vec Embeddings.

Classifier Harassment Indirect H. Physical H. Sexual H. Average

Logistic Regression 0.781 0.837 0.822 0.858 0.825

Gaussian Näıve Bayes 0.735 0.831 0.809 0.860 0.809

Decision Trees 0.660 0.899 0.933 0.857 0.837

Random Forest 0.760 0.909 0.948 0.858 0.869

Linear SVM 0.727 0.894 0.847 0.859 0.832

Gaussian SVM 0.707 0.907 0.952 0.847 0.853

Polynomial SVM 0.781 0.843 0.836 0.859 0.830

MLP 0.768 0.869 0.848 0.669 0.789

AdaBoost 0.752 0.899 0.912 0.857 0.855

Average 0.741 0.876 0.879 0.836 0.833

Table 10. Macro F1 values when using Word2Vec Embeddings.

Classifier Harassment Indirect H. Physical H. Sexual H. Average

Logistic Regression 0.731 0.666 0.599 0.791 0.696

Gaussian Näıve Bayes 0.692 0.665 0.589 0.794 0.685

Decision Trees 0.608 0.579 0.575 0.782 0.636

Random Forest 0.681 0.527 0.528 0.785 0.630

Linear SVM 0.533 0.667 0.595 0.793 0.647

Gaussian SVM 0.414 0.475 0.487 0.458 0.458

Polynomial SVM 0.729 0.670 0.604 0.793 0.699

MLP 0.716 0.513 0.523 0.583 0.583

AdaBoost 0.697 0.652 0.589 0.787 0.681

Average 0.644 0.601 0.565 0.729 0.635
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By computing the macro F1 scores (Table 10), we can see that LR and Poly-
nomial SVM presented the highest average values of F1 score, as well as the top
scores on most of the classes. The difference between accuracy and macro F1
scores is due F1 score penalizes low recall or low precision, at the same time as
accuracy values keep high when the model hits good results in the major classes.
Concerning the harassment content in the tweets, sexual harassment was the
easiest one to detect, mostly because the dataset presents it more frequently.

To assure the performance of our approaches for harassment content on social
media, we computed the average accuracies for the three kinds of offensive tweets
using the scores from the Table 7 and compared to the results reported by [19].
The 4 lines at the top and at the bottom of the Table 11 were extracted from
their work. In the top 4 rows of the table, AWR stands for a text augmentation
technique. In our experiments, we did not perform this kind of data enrichment.
As it is possible to notice, our results on the 45 TF-IDF vectors surpassed the
results reported by Sharifirad et al., 2018, without text augmentation. However,
when compared to their augmented dataset results, our approaches still have to
be improved. Anyway, the rise on accuracy compared to the results on literature
which do not make use of text augmentation shows that pre-processing tasks
have a huge influence on the results, and our approach is stable and robust to
detect harassment content on Twitter.

Table 11. Average accuracy values compared to the results in the literature.

Classifier Average

CNN + AWR 0.980

LSTM + AWR 0.980

SVM + AWR 0.920

Näıve Bayes + AWR 0.940

Logistic Regression 0.861

Gaussian Näıve Bayes 0.855

Decision Trees 0.880

Random Forest 0.885

Linear SVM 0.863

Gaussian SVM 0.848

Polynomial SVM 0.809

MLP 0.873

AdaBoost 0.872

CNN 0.750

LSTM 0.740

SVM 0.680

Näıve Bayes 0.600
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6 Conclusion and Future Works

In this paper, we aim to improve the classification performance of different mod-
els on Twitter data. By considering different types of online harassment on this
social media, we used 9 supervised algorithms to categorize them. We also per-
formed an empirical comparison between TF-IDF feature vectors and Word2Vec
embeddings trained on the Wikipedia English corpus. We have validated all the
runnings of the algorithms on a 10-fold cross-validation process, applied them
over a validation set, and after this step, we have classified the posts collected
from Twitter.

Among the 9 models to categorize offensive content online, DT, RF, and
Linear SVM showed the best results. DT and RF classify instances according to
information gain, whereas Linear SVM finds the hyperplane which maximizes
the boundary decision between the classes. In social media content, the infor-
mation gain of the first two algorithms is influenced by the frequency that each
word appears associated to some label, while in the last one the hyperplane is
calculated according to optimization functions (see [2] for more details). We also
have noticed that embeddings trained on textual corpus whose domain is differ-
ent from the target data tend to decrease the classification performance. It also
shows that these representations are not robust to perform well regardless of the
domain of the data in which the predictions are performed over.

This automatic classification into three categories of “indirect harassment”,
“sexual harassment”, and “physical harassment” will significantly improve the
process of detecting these types of speech on social media by reducing the time
and effort required by human beings. We also expect this word to leverage the
discussions on harassment detection on Twitter, as well as other social networks.
Furthermore, as future work, we plan to test deep architectures on our set of
features, as well as testing different strategies of data augmentation, especially
the ones based on pseudo-labeling [24].
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Abstract. This paper describes our submission to the SIMAH challenge
(SocIaL Media And Harassment). The proposed competition addresses
the challenge of harassment detection on Twitter posts as well as the
identification of a harassment category. Automatically detecting content
containing harassment could be the basis for removing it. Accordingly,
the task is considered to be an essential step to distinguishing different
types of harassment provides the means to control such a mechanism in
a fine-grained way. In this work, we classify a set of Twitter posts into
non-harassment or harassment tweets where the last ones are classified
as indirect harassment, sexual harassment, or physical harassment. We
explore how to use self-attention models for harassment classification in
order to combine different baselines’ outputs. For a given post, we use
the transformer architecture to encode each baseline output exploiting
relationships between baselines and posts. Then, the transformer learns
how to combine the outputs of these methods with a BERT represen-
tation of the post, reaching a macro-averaged F-score of 0.481 on the
SIMAH test set.

Keywords: Harassment detection · Self-attention models · Social
media

1 Introduction

Social networks have been the battlefield of users for many years. Natural lan-
guage reveals values, perspectives, and emotions. Among all types of hate and
abusive language, harassment tweets have been very dominant on social media
platforms such as Twitter and Facebook. The Canadian Human Rights Com-
mission1 defines harassment as a form of discrimination which includes any
unwanted physical or verbal behavior that offends or humiliates someone.

Harassment can also be a way to silence the speech of others, especially
women [8]. The extensive debate about the use of social media has allowed iden-
tifying that hate language is a catalyst for discrimination and social segregation2.
Thus, the concepts of sexism and harassment are very related.
1 https://www.chrc-ccdp.gc.ca/eng/content/what-harassment-1.
2 The Washington Post: http://tiny.cc/sltgcz.
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There are many definitions of sexism. For example, sexism is a form of dis-
crimination against women [9]. However, sexism is not just about discrimination,
and what is happening on social networks is far from this definition. This obser-
vation drives the need to conceptualize sexism and harassment on social media.
The categorization of sexism in social media into hostile or benevolent sexism
has changed over the years, giving way to a more specific vision in terms of the
types of harassments.

Waseem and Hovy [18] collected hateful tweets, categorizing them into sex-
ism, racism, or neither. Later, Jha and Mamidi [9] focused on sexist tweets
and proposed two categories of hostile and benevolent sexism. These categories
mutated to a finer granularity in [15]. That work proposed a distinct category
of sexism, including indirect harassment, information threat, sexual harassment,
and physical harassment. The work proposes a more comprehensive and in-depth
categorization of online harassment in social media. From that work, due to the
significant problem to apply automatic methods to strongly unbalanced data,
techniques such as text augmentation and text generation [13] have been applied
to achieve performance improvements.

In this paper, we focus on the categories proposed in [15]. Our approach
applies self-attention models for harassment classification in order to combine
different baselines outputs with a BERT-based representation of each tweet [5].
To accomplish this task, we use the transformer [16], a successful deep learning
architecture used for translation in natural language processing. The transformer
can detect which part of the data ingested is useful to solve a given task. As a
consequence, the encoding learned by the transformer can consistently produce a
better prediction of the harassment label than the ones provided by the baselines.
Experiments on the proposed dataset show that our proposal reaches a macro-
averaged F-score of 0.481 with an accuracy of 0.764.

This work is organized as follows. In Sect. 2 we present a literature review.
In Sect. 3 we introduce our proposal. Sections 4 and 5 present the experimental
configurations with the results. We conclude in Sect. 6 providing remarks and
outlining future work.

2 Related Work

The massiveness with which users interact on social networks has driven new
analytical tasks. Among them, the detection of hate speech in social media has
captured the interest of the scientific community. Due to the massive volume of
social media data, the need for automatic hate speech detection methods has
become increasingly urgent.

Several works have approached the problem from a classic machine learn-
ing perspective [3,4,17]. These jobs generally combine features extracted from
messages with features retrieved from user profiles, using a feature-engineering
strategy. Combining both sources of information, several of these methods train
supervised learning algorithms like support vector machines or random forests.
A limitation of many of these works is that they are sensitive to the imbalance of
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labeled data. In practice, many of these methods fail to generalize well to other
datasets, which limits their use in real environments. A thorough review of these
types of methods is addressed in [12].

More sophisticated models, such as those studied in deep learning, have also
been applied to the problem of hate speech detection. One of the advantages
of deep learning architectures is that they allow the neural network to learn an
adequate representation for the problem. The use of text encoders has offered
advantages to these types of models over conventional machine learning models.
For example, convolutional networks [7] have shown good results in the Wasem
and Hovy dataset [18]. Recurrent neural networks have also shown good results
in this dataset, based on the GRU architecture [20]. Nearly perfect results in this
dataset were also reported using deep learning by Badjatiya et al. [2]. Unfortu-
nately, many of these models have overfitting problems, and then, they are not
transferable to production. Recently, Arango et al. [1] showed that there are
also problems in the generation of these datasets considered as standard for the
evaluation of this type of tasks. Among these problems, the most worrying is the
population bias used to generate the samples that make up the dataset. These
works show that the hate speech detection problem is far from being solved.

A significant problem that these datasets have is the imbalance between
classes. The hate speech detection must be carried out in scenarios where most
of the conversations are mostly neutral, and the harassment is exceptional.
However, not being exceptional is less critical. The consequences that harass-
ment and hate language produce on social network users is fierce. To address
the problem of imbalance, in [13], the authors use techniques to increase and
generate texts that allow generating training data with balanced classes. In this
same line, Sharifirad et al. [15] show that a promising way to address the problem
is to define a finer type of harassment. Based on this latest work, the Simah chal-
lenge defines a dataset with three types of harassment, which will be addressed
by our work.

Hate speech has many variants and has been at the center of attention of
many researchers in recent years. Recently, the relationship between hate speech
and mood detection has shown to be a promising way of research [14], which
would allow linking two tasks that apparently might seem unconnected, senti-
ment analysis, and hate speech detection. The advances shown in the consolida-
tion of hate speech lexicons have also been impressive [4], which would allow the
flourishing of unsupervised techniques to address this task such as graph-based
techniques [10].

Far from showing itself as a task with mature and robust solutions, this task
shows many challenges. For more details on all hate speech detection variants,
the reader is recommended to review the Fortuna and Nunes survey [6].

3 Proposal

The SIMAH competition defines two sub-tasks. The first task is a binary clas-
sification to separate online harassment tweets versus non-harassment tweets.
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The second task is a multi-class classification of online harassment tweets into
indirect harassment, sexual harassment, and physical harassment. Our proposal
jointly faces both tasks without the need to have a phase for each sub-task. The
trained system employs an adaptation of the transformer [16] in order to exploit
its self-attention modules.

3.1 Applying Self-attention

For a given tweet, each baseline provides a label from the set of possible tags, i.e.,
Non-Harassment, Indirect Harassment, Sexual Harassment, or Physical Harass-
ment (Non-H, IH, SH, PH). To ingest these outputs into the transformer, we
encode each label using a one-hot encoding vector of the class, producing orthog-
onal vectors for different categories. To ingest the text of the tweet, we use
its BERT vector (Bidirectional Encoder Representations from Transformers) [5]
which are computed at sentence-level. BERT vectors are provided by Google
research in a library as a service3. Our model uses four baselines. We concate-
nate these four vectors with the BERT vector of the tweet, which is ingested
into the transformer. We use the encoder of the transformer using two layers,
each one with four attention heads. Each layer has an attention module and
a position-wise feed-forward layer. The position-wise layer is a crucial module
that allows to code from which baseline the data is encoded. The outputs of the
encoders are concatenated, and then by applying a Hadamard product between
them, we obtain a state vector that represents what the transformer learned
from the baselines and the tweet. Then, the vector is ingested into a softmax
layer, who is in charge of producing an output. The model is depicted in Fig. 1.

Despite the original architecture [16] was proposed as a sequence transduction
model based on an encoder-decoder structure, we only use the encoder of the
transformer with its attention mechanisms. Hence, the transformer uses stacked
self-attention and fully connected layers. The encoder used is composed of a stack
of two layers. The transformer uses a residual connection between each module
and a normalization. The links inside the transformer are produced by inputs and
outputs of the same dimension. The attention mechanism of the transformer is
wired using a scaled dot-product operator. Then, multi-head attention consists
of several attention layers running in parallel. After the attention module, a
position-wise feedforward module is applied to each position, consisting of two
linear transformations with ReLU activations in between. The output sequence
produced by the encoder gives five vectors, one for each input ingested into the
encoder, which are then combined using the Hadamard product.

3.2 Baselines

One of the baseline models is based on convolutional neural networks (CNN)
and the other three on recurrent neural networks (RNN). One RNN used one
recurrent layer while the others used two layers (as the CNN). Note that in the

3 https://github.com/google-research/bert#pre-trained-models.

https://github.com/google-research/bert#pre-trained-models
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Fig. 1. To apply self-attention, each baseline is encoded and concatenated with the
BERT vector of the tweet. This encoding is ingested into the transformer using two
levels of encodings, each one with a self-attention module and four attention heads.
At the output of the encoder, we apply a Hadamard product. The resulting vector is
ingested in a softmax layer producing the output.

case of RNNs, we used GRU layers. For the RNN baselines, the output was
produced using a softmax and focal loss as loss function while for CNN, we used
categorical cross-entropy. Table 1 shows the parameters of each architecture.

4 Experiments

4.1 Data

The dataset provided for this challenge contains 10622 annotated tweets, split
into training, validation, and testing partitions, as it is shown in Table 2. The
competition has two related tasks: the first one is a binary classification (harass-
ment or non-harassment tweet) and the second task is a multi-class classification
of online harassment tweets into three categories: indirect harassment, sexual
harassment, and physical harassment.

As social media data sources are unstructured and noisy, we need to do some
transforms of the irregular input text. Accordingly, we considered stopwords
removal, punctuation marks, digits removal, and text transform to lowercase.
Furthermore, it is worth mentioning that we leave important question marks
and exclamation marks since have proven to be helpful [19]. To process jar-
gon, we removed emojis. In addition, HTML marks were replaced by the term
<url>, #word with the term <hashtag>, @word terms by the term <user>,
and numerical terms with <number>.
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Table 1. Architecture of our baseline models. CNN1 cce: each convolutional layer is
followed by a max pool (stride = 3) and a batch normalization layer

Model configuration

CNN1 cce RNN1 focal RNN2 focal RNN3 focal

BatchNorm GRU-64 GRU-128 GRU-128

conv5-128 (relu) BatchNorm drop-0.3 drop-0.45

drop-0.65 drop-0.3 GRU-64 BatchNorm

conv5-64 (relu) drop-0.2 GRU-64

drop-0.65 dropout-0.2

F-100 (relu) BatchNorm

BatchNorm

Table 2. Distribution of tweets into training, validation, and testing data partitions
across each class. *Two tweets were labeled as harassment posts but they were not
classified into any valid category for the second task.

Non-H IH SH PH Total

Training 3661 55 2582 76 6374

Validation 1493 71 525 36 2125

Testing 1512 197 312 100 2123*

4.2 Traning

Baselines. Once each tweet was preprocessed, we used GloVe [11] word embed-
dings (pre-trained on a Twitter corpus) to represent each word in each tweet.
These 100 dimension vectors were used in the four baselines and were ingested
one-at-a-time as a sequence of word vectors per tweet.

Transformer. Once the baselines’ outputs were computed, we encoded each
output using class vectors with 768 dimensions, to be consistent with the dimen-
sionality of BERT. Each tweet was encoded using BERT as service4, a library
that maps a variable length-sentence to a fixed-length vector with 768 dimen-
sions. In the transformer, we used gradient descent for parameter update. The
size of the hidden units was set to 256 with a dropout of 0.3. We varied the
learning rate throughout training for 100 epochs, according to recommendations
provided by the transformer’s authors using a warmup of 500 and a factor of 3.
We used focal loss with class weights inversely proportional to each class size as
a loss function.

4 https://github.com/hanxiao/bert-as-service.

https://github.com/hanxiao/bert-as-service
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5 Results and Discussion

The performance of our model on the validation and testing sets is shown in
Tables 3 and 4. Together with the accuracy, in Table 3, we show macro-averaged
F1-score and per-class macro-averaged F1-scores as these metrics account for
the class imbalance. In this way, it is easy to appreciate that accuracy accuses
values that could be considered quite good considering the number of classes.
However, when observing the F-score, we note that the metric is much lower than
expected. The imbalance between classes explains this fact. Minority classes are
the most complicated classes to detect. This fact explains why theses classes
reach an F1-score of about 20% (16.7% for indirect harassment tweets).

Table 3. Results on the development and testing sets. Accuracy and F1-scores: macro-
averaged and per class

Accuracy Macro F Non-H IH SH PH

Validation 0.872 0.544 0.926 0.202 0.853 0.195

Testing 0.764 0.481 0.880 0.167 0.681 0.196

Table 4. Results on the development and testing sets. Precision and Recall macro-
averaged and per class

Precision Recall

Non-H IH SH PH Macro Non-H IH SH PH Macro

Validation 0.936 0.224 0.827 0.174 0.540 0.916 0.183 0.882 0.222 0.551

Testing 0.868 0.214 0.637 0.214 0.483 0.892 0.137 0.731 0.180 0.485

Table 4 shows the accuracy and recall per class (Non-H: Non-Harassment,
IH: Indirect Harassment, SH: Sexual Harassment, PH: Physical Harassment)
as well as the macro-averaged metrics. Indeed, the precision and recall metrics
are comparable between the validation and testing partitions. However, IH and
PH classes have a low recall, although they have good enough precision, given
the complexity of the task. This fact indicates that, of the total of examples
classified as indirect or physical harassment tweets, an acceptable portion is
correctly labeled, but the amount of recovered examples is insignificant. In other
words, the predictions for both classes are poorly contaminated but somewhat
incomplete, especially for the IH class with only 13.7%. This fact occurs due to
the difference in the distribution of the examples in the training partition versus
the evaluation partitions, which made it hard to recognize and extract patterns
correctly.
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6 Conclusions

We have presented a method based on the transformer architecture for harass-
ment detection and classification. Experimental results show that our model can
detect a substantial proportion of the hardest classes of this challenging task.
Our architecture achieves a macro-averaged F1-score of 0.481 in the Simah com-
petition dataset.

We are currently extending this work to improve its performance. One change
we are making is to replace the one-hot encoders of the baselines with their con-
fidence vectors. Another promising line is to use data augmentation techniques
to handle the imbalance in minority classes. The use of SMOTE techniques is
promising in this line of work.
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Abstract. Online harassment is a common issue since the beginning of
social networks and it’s still present nowadays, causing serious conse-
quences to victims because their gender, race, sexuality, among others.
We have seen efforts to fight these behaviors creating automated systems
to detect and report this kind of bad conduct. However, these solutions
tend to perform well only on a specific type of data without generalizing
well. In this paper, we present a new dataset of harassment detection on
Twitter with four classes, presented for the SIMAH competition. Then
we apply three different deep learning architectures (CNN, LSTM, and
BiGRU) to classify these tweets showing that it is a hard problem to solve
especially because of the lack of annotated data within some classes. The
results only on the test set reach 46% in f1-score and using all data to
train gives 55% using the same metric.

Keywords: Harassment detection · Text classification · Deep learning

1 Introduction

We are currently living in an era where hate language becomes more present in
social networks, where users can comment by hiding themselves behind a profile
without fear of reprisals. This hate language is generally used to attack other
people about their sexuality, ethnicity, political affiliation, among others, and
can cause great harm to them. This problem is so serious that studies1 indicate
that 41% of the adults in the United States have had personal experiences of
harassment or abusive behavior online.

Efforts have been made to combat harassment in which they intend to pub-
licly publicize these reprehensible attitudes. Within these we find campaigns
like #MeToo2 on Twitter that has fought sexual harassment and assault against
women, making public denunciations of men with high positions in Hollywood
who used their power to abuse many women. These campaigns also seek to
encourage victims to report harassment. However, it is difficult for them to

1 https://www.pewinternet.org/2017/07/11/online-harassment-2017/.
2 https://twitter.com/hashtag/metoo.
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make complaints for fear of repercussions. In social networks this kind of event
are public and every user can see the user’s interactions, so it would be very
useful to have automatic harassment detection systems in social networks which
trigger alarms when these situations occur in order to report bad user behaviors
and take action regarding these users.

Studies related to this problem have been carried out but the results indicate
that it is hard to make an accurate detection since the works of the state-of-
the-art show strong overfitting to the data used for their studies. Therefore, this
paper proposes different ways of detecting harassment on Twitter, showing that
this is still a difficult problem to solve.

This paper is organized as follows. In Sect. 2 we start with a review of inves-
tigations in harassment classification, what approaches on harassment detec-
tion have been researched. In Sect. 3 we discuss in detail the methodological
approaches taken to study the harassment on Twitter. Then, in Sect. 4 we explain
the data that we use in this study. Then we explain the processing over dataset
for the classification. And then we discuss experiments and results. Finally, we
conclude in Sect. 5 giving our conclusion about our findings outlining future
work.

2 Related Work

The harassment problem has been studied recently by [1,2]. In [1], the authors
made an in-depth characterization of the types of harassment that are more
common in social networks like Twitter. This more comprehensive categorization
will be used later in this work. In [2], the authors made a study focused on
the mental and effective state of people who comment with some intention of
harassment in their messages on Twitter. This work characterized each type of
harassment with the emotions that users convey in each of them.

In previous works, the harassment was encapsulated within another prob-
lem:the hate-speech detection [3–5]. This problem typically is treated as the
classification of racism, sexism or neither of them. And the harassment is con-
sidered inside the sexual class and it doesn’t have the details of the meaning of
each class presented in [1]. In the literature, works of the hate-speech problem
found different focuses to solve the problem. Some of them take advantage of
the input that they use, where they create different features embeddings to fed
another classifier, from machine learning techniques [3] and deep learning [4] to
adding more data than just the text [5].

Although it seems that the problem of detecting harassment and hate speech
in social networks is solved, a recent study [6] have shown otherwise. There is a
strong data overfitting in current state-of-the-art works and they don’t have the
ability to generalize with other data, as well as dataset bias.

We must also take into account that there are other social problems that have
a similar approach to the problem of harassment but that affects other groups
of people such as teenagers [7] and black people [8]. This could add another
difficulty layer to the detection problem making harder solving this problem.
Therefore it is important to continue with these studies.
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3 Method

For the harassment classification task, we will use neural networks and data
augmentation techniques.

We have the text of tweets and its labels, so our work is focus in the text. We
take the embedding for each word in the dataset from a pre-trained embedding
model GloVe [9]. After that, we take each tweet and create its embedding having
one embedding for each document/tweet. To create it, we take the average of
the embedding of each word of the tweet.

Once we have all embeddings, we feed a neural network with these documents
embeddings. Our election was Convolutional neural network [10] and Long short-
term memory [11]. The first, CNNs have recently been applied to various NLP
tasks and the results were promising. They give us a good tool for pattern
recognition over the text. The second, LSTM is a common neural network for
NLP tasks and give us a good point of comparison with CNN.

With the setup explained above, we can try to predict the harassment clas-
sification, however we treat with an unbalanced dataset. To face this problem,
we use a data augmentation technique. The technique is called SMOTE [12].
SMOTE allows to generate new artificial instances of the minority class by inter-
polating the real instances that belong to the minority class.

4 Experiments and Results

4.1 Dataset and Evaluation

For the harassment detection problem, we used the dataset published in [1].
This dataset allows us to make a granularity classification of three classes on the
harassment case, in which each is a different approach to online harassment in
social networks. The description of each class is shown below:

– Harassment: Indicates if a tweet contains harassment or not.
– Indirect harassment: If a tweet contains harassment and it’s indirect. They

are not directly violent or sexist and doesn’t have any swear words.
– Physical harassment: If a tweet contains harassment and it’s physical. They

directly refer to the biologic, physical or mental ability of an individual.
– Sexual harassment: If a tweet contains harassment and it’s sexual. They

are violent and allude to the use of force toward sex.

In this way, we take a configuration of four classes for the classification of
our proposal: “No harassment”, “Indirect harassment”, “Physical harassment”
and “Sexual harassment”. In Table 1 we show the distribution of each class in
the dataset.

To evaluate the performance of our proposal we used three basic measures of
statistical analysis: precision, recall and F1 score. For these measures, we used
the implementation provided by the Scikit-learn python library3. Due to the
unbalance of the classes shown above we don’t use the accuracy score.
3 https://scikit-learn.org/stable/modules/model evaluation.html.

https://scikit-learn.org/stable/modules/model_evaluation.html
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Table 1. Distribution of classes in the dataset.

Dataset No harassment Indirect h. Physical h. Sexual h. Total examples

Train 3661 55 76 2582 6374

Validation 1494 71 36 525 2126

Test 1512 198 100 313 2123

4.2 Data Processing

One important thing to notice is that the tweets already came without punctu-
ation, that means words like “don’t” appear as “don t” in the dataset. This is
the same for URLs where “w3.url.com” appears as “w3 url com”. Having said
that, we took the tweets and applied a basic preprocessing to the text: symbols
and numbers were removed.

After preprocessing the text embeddings were created for each word using
GloVe [9], a pre-trained embedding model. We use the implementation off Spacy
library for Python4 with the pre-trained model called ’en vectors web lg’, which
has 300 dimensions and it’s trained over common crawl texts. With Spacy we
have the embeddings for each word, but we worked at tweet level which means
there is one embedding for each tweet. So to pass from a word embedding to
tweet embedding we averaged the word embeddings per tweet. In this way, we
create an average word embedding for each tweet in the dataset. This decision
was made due both ways gave similar results but the average word embeddings
models took less time to train.

(a) Training and validation (b) Testing

Fig. 1. Visualization of the GloVe embeddings using PCA.

To visualize the embeddings of the tweets we apply the PCA technique to
bring the created 300-dimensional embeddings to two dimensions, as shown in
4 https://spacy.io/models/en.

https://spacy.io/models/en
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Fig. 1. The image shows that, for both training and testing data, there is no
clear division between the four classes.

Due to the imbalance between classes, we opted to use the data augmentation
technique SMOTE [12]. This oversampling strategy uses the local neighborhood
of the real samples to create synthetic data based on the mean of near data in the
space, allowing to have an equal number of samples per class. As embeddings
are n-dimensional vectors we passed the collection of embeddings to SMOTE
to generate the missing data in the unbalanced classes. In this new scenario, it
should be easier for the model to learn the minority classes. Finally, we had a
dataset of 20.616 examples as a result of applying over-sampling to both training
and validation dataset.

To compare the results of applying SMOTE, we handled a version of the data
with oversampling and a version without it.

4.3 Harassment Detection

The harassment detection tests were performed on three different deep learning
architectures: CNN, LSTM, and Bi-GRU. Those three networks were imple-
mented with 50 epochs, batch size of 32 examples and learning rate of 0,001.
The training dataset was divided into 80% to train and 20% to validate the
models. And the final results get of a test set with different data of training set.
With the aforementioned configuration, the results are shown in Table 2.

Table 2. Result of three models: CNN, LSTM and Bi-GRU with (+) and without
(w/o) smote.

Configuration F1 macro average Precision Recall

CNN base + smote 0.46 0.48 0.46

CNN w/o smote 0.43 0.49 0.45

LSTM + smote 0.46 0.46 0.47

LSTM w/o smote 0.41 0.54 0.44

Bi-GRU + smote 0.46 0.48 0.47

Bi-GRU w/o smote 0.44 0.44 0.46

To see how well the classifier sare working we show in Fig. 2 the confusion
matrix of the best architecture from Table 2. We can see the most difficult classes
for detecting are the minorities, the indirect and physical harassment, where we
just can detect it 12% and 4% of the examples respectively.

It is important to note that this dataset presents an unbalanced problem, so
we use a data augmentation technique, SMOTE, to compensate this. However,
it was not very useful since it only helped in a small percentage, although it
improves any base technique.
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(a) Training and validation (b) Mixing all data

Fig. 2. Confusion matrix for the CNN model + SMOTE. (0: non-harassment, 1: Indi-
rect, 2: Physical, 3: Sexual). Figure (a) shows the result of a train with training and
validation and figure (b) is using all data for training.

On the other hand, mixing the training and test set and taking it 80% to
train and 20% to test we get better results, reaching 55% of F1 macro with a
CNN with the same configuration mentioned above. This shows that the test
data could have examples that are not representative of the training set, and
doing a review of this set we verify that many examples look synthetic since
several of them are the same sentence and only change one word and keeping
the context. This could add noise to the classifier.

5 Conclusions

This work takes the problem of detecting harassment in social networks, specif-
ically on Twitter. We work with three neural networks of the state-of-the-art in
natural language processing, including CNN, LSTM, and Bi-GRU. Although the
results are not very encouraging, they show the difficulty of solving this problem.
However, this is not why this problem should be set aside. We must continue
working on this since the detection of harassment in social networks can be very
helpful for people who suffer from this harassment. Future work could explore
sophisticated architectures who put attention on minority classes.
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Abstract. We present a solution submitted to the Social Media and
Harassment Competition held in collaboration with ECML PKDD 2019
Conference. The dataset used is as set of tweets and the first task was
on the detection of harassment tweets. To deal with this problem, we
proposed a solution based on a gradient tree-boosting algorithm. The
second task was categorization harassment tweets according to the type
of harassment, a multiclass classification problem. For this problem we
proposed a LSTM network model. The solutions proposed for these tasks
presented good predictive accuracy.

Keywords: Harassment detection · Twitter mining · Sexism analysis

1 Introduction

In this paper, we present our solution for the SIMAH (Social Media And Harass-
ment) Discovery Challenge co-located with ECML/PKDD 2019. This competi-
tion focus on online harassment in Twitter.

According to [11], online harassment is emerging as a specific communica-
tion type in Twitter messages. As consequence, automatically monitoring these
messages becomes a very important task, with high social impact. State-of-the-
art studies address simple and broad categorization of media posts with sexism,
such as “sexist/non-sexist” content, “more negative than positive” sexist tweet
or a “hostile/benevolent” sexism categorization [5,9,10]. However, these studies
presented preliminary experimental results. Additionally, they have not focused
on the sentiment of sexist posts. An in-depth understanding and categorization
of online harassment in social media can reveal, for instance, the mental state
of the author [10], and can either avoid or reduce harmful consequences.

[10] proposes a comprehensive categorization of online harassment in social
media into the following categories: “indirect harassment”, “sexual harassment”,
“physical harassment” and “not sexist”. The SIMAH discovery challenge is essen-
tially based on [10]’s categorization and has two related tasks:
c© Springer Nature Switzerland AG 2020
P. Cellier and K. Driessens (Eds.): ECML PKDD 2019 Workshops, CCIS 1168, pp. 314–320, 2020.
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– the first (Task A) is a binary classification task, in which we are asked to
classify “harassment” tweets versus “non-harassment” tweets.

– The second (Task B) is a multi-class classification task in which we have to
classify harassment tweets into one of four categories “indirect harassment”,
“sexual harassment” or “physical harassment”.

The proposed solution is based on (i) a basic text pre-processing pipeline,
(ii) the Extreme Gradient Boosting (XGBoost) [1] algorithm for the first task
and (iii) the Long short-term memory (LSTM) [12] neural network algorithm for
the second task. Section 2 briefly describes the dataset used. Section 3 presents
the text pre-processing pipeline and the steps followed to get insights from the
dataset. Section 4 details our proposals for the two tasks. Experimental results
are in Sects. 5 and 6 concludes the paper.

2 Dataset Description

The data used has a set of tweets in English language without punctuation
characters. Competition provided the training and validation subsets to be used.
Table 1 describes the main characteristics of the dataset. While the dataset is
roughly balanced for the binary classification task, more the multiclass task there
is a highly imbalanced.

Table 1. Distribution of dataset classes.

# tweets Dataset

Train Validation Test (gold labels)

Harassment 2713 632 611∗

Indirect 55 71 197

Physical 76 36 100

Sexual 2582 525 312

Non-harassment 3661 1493 1512

Total 6374 2125 2123
∗2 harassment tweets without type label

3 Feature Engineering

We performed a basic text pre-processing pipeline for both tasks. Afterwards,
from tweets text data, we derived one more feature, also used in both tasks.
Finally, we tried a data visualization based on similarity network analysis in
order to get insights from the challenge dataset. Next, we describe such feature
engineering steps.
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3.1 Text Pre-processing Pipeline

The pre-processing of the tweets involved the following tokenizer steps: transfor-
mation to lower case, keeping of only alphanumeric characters, removal of stop
words using standard NLTK1 english language list and stemming with Porter
Stemmer, also from NLTK. It is important to mention that for task B the stan-
dard stop words list was extended with the ‘RT’ term, in order to remove retweets
referrals. After the token-level processing, we built a tf-idf matrix keeping very
frequent terms (present in more than 90% of tweets) and removing very infre-
quent terms (present in less than 5% of the tweets). We considered as tokens
[1–3]-grams. Finally, we applied the TruncatedSVD algorithm [4] to reduce the
number of predictive attributes to 300. Figure 1 illustrates this pipeline.

3.2 Feature Extraction

Using as primary feature the tweet text, the unique feature we derived was
“number of words”. It is worth mentioning that we applied a standard scaler to
standardize this feature to mean 0 and variance 1.

Fig. 1. Text pre-processing pipeline.

3.3 Visualizing Tweets as a Similarity Network

To extract insights from the Twitter dataset, we built a similarity network of
tweets (Fig. 2). Given that a tweet is represented by a vector from a correspond-
ing row of a tf-idf matrix, we computed the cosine similarity for each pair of
tweets. After, considering each tweet as a node, we link two tweets if they have
a similarity degree >0.7, building the similarity network. From Fig. 2 we can
infer that (i) non-harassment and sexual tweets are very similar and (ii) there
is no similarity between indirect and physical tweets. The similarity network
ratifies that the categorization of harassment tweets is a complex problem, not
addressed by a simple similarity measure.

4 Proposed Approaches

We experimentally investigated several algorithms and strategies, selecting the
best according to the training set results. Using the random forest algorithm as
baseline, we selected the tree-based boosting algorithm (task A) and the LSTM
neural network based algorithm (task B). The best results from the two tasks
are presented next.
1 NLTK Python package: https://www.nltk.org/.

https://www.nltk.org/
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4.1 Task A: Online Harassment Detection

In order to solve the binary classification task, we explored two ensemble tree-
based models and a recurrent neural network.

Fig. 2. Tweets cosine similarity network. Nodes are tweets. An edge (u, v) indicates
that u and v are similar. An edge weight indicates the degree of similarity of its nodes.
The color of the nodes indicates its tweet type. Only similarity relations with degree
>0.7 are presented.

Random Forest (RF). A random forest is an ensemble bagging meta estimator
that fits a number of independent decision tree classifiers on various sub-samples
of the dataset and uses averaging to improve the predictive accuracy and control
over-fitting. The RandomForestClassifier from scikit-learn library [7] was used
with default parameters.

Extreme Gradient Boosting (XGBoost). Boosting is an ensemble tech-
nique in which the predictors are not made independently, but sequentially.
Tree-based gradient boosting trains many decision trees models in a gradual,
additive and sequential manner, identifying the shortcomings of weak learners
by using gradients in the loss function [3]. XGBoost [1] is an implementation of
gradient boosting machines, sparsity-aware for sparse data, built to scale in a
distributed environment. The XGBClassifier from XGBoost library [1] was used
with parametrization of 300 estimators, max depth = 2 and learning rate = 0.1.

Long Short-Term Memory Network (LSTM). This algorithm is a recur-
rent neural network that uses internal memory to deal with different sequences
of inputs. Applied to text data, in natural language, it can capture dependen-
cies in a sequence of words, modeling the context very well [12]. The used
model implementation was from Keras library [2], with parametrization con-
sidering a Sequential model, a fixed number of 5000 most frequent words, a
sequence length of 15 and embedded dimension of 100. LSTM layer with 200
units, dropout = 0.2 and recurrent dropout = 0.2. Softmax as activation func-
tion. Categorical cross-entropy as loss function and Adam optimizer [6].
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4.2 Task B: Categorizing Types of Online Harassment

Second task is a multiclass classification problem in which we explored
approaches varying both the multiclass strategy and the classifier algorithms.
Regarding multiclass strategy, the one-vs-one strategy consists in fitting one
classifier per class pair. At prediction time, the class which received the most
votes is selected. The output-code based strategies consist in representing each
class with a binary code (an array of 0s and 1s). At fitting time, one binary
classifier per bit in the code book is fitted. At prediction time, the classifiers are
used to project new points in the class space and the class closest to the points is
chosen. As classifier algorithms we explored random forest to serve as baseline,
gradient boosting and catboost as boosting tree-based algorithms and LSTM for
a neural network-based model.

One-vs-One Random Forest (OORF). This is our baseline approach, run
with RandomForestClassifier and OneVsOneClassifier scikit-learn imple-
mentations over default parameter setup.

Output Code Random Forest (OCRF). Random forest algorithm with out-
put code multiclass strategy implemented using OutputCodeClassifier from
scikit-learn, with code size = 2.

Output Code with Gradient Boosting (OCGB). OutputCodeClassifier
with code size = 15 and GradientBoostingClassifier with 20 estimators,
learning rate = 1 and max depth = 7, both from scikit-learn library.

One-vs-One Catboost Classifier (OOCB). Catboost is a machine learning
algorithm also based on gradient boosting on decision trees [8]. We used the
CatBoostClassifier implementation from catboost library [8], tunned with 5
iterations, depth = 10, learning rate = 1, and logloss as loss function.

Long-Short-Term-Memory (LSTM). The same setup used for Task A.

5 Experimental Results

The SIMAH competition provided three datasets: train, validation and final
test. For our final solution, we trained all the models over the union of train and
validation datasets. The results here presented refer to application of our trained
models over final test dataset. Training models only over train dataset resulted
in lower performances for all approaches and we do not present the results in
this paper.

Figure 3 presents the results for Task A. XGBoost model achieved the best
performance for the binary classification problem. LSTM had a poor perfor-
mance, even below our RF baseline. Task B results are depicted in Fig. 4. Clearly,
LSTM reached the best performance, followed by the gradient boosting model
OCGB.
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Fig. 3. Experimental results for Task A harassment detection over final test dataset.

Fig. 4. Experimental results for Task B harassment categorization over final test data.

6 Conclusion

This paper presents a solution for the SIMAH discovery challenge. The com-
petition focus on posts with harassment content in Twitter. The solution for
the first task, a binary classification of “harassment/non-harassment” tweets,
is based on a XGBoost model which achieved F1 = 0.604. For the second task,
a multiclass classification problem (“indirect harassment”, “sexual harassment”
or “physical harassment”), LSTM neural network is our best model with F1
macro-average = 0.378.
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Abstract. In the era of social media and networking platforms, Twit-
ter has been doomed for abuse and harassment toward users specifically
women. Monitoring the contents including sexism and sexual harassment
in traditional media is easier than monitoring on the online social media
platforms like Twitter, because of the large amount of user generated
content in these media. So, the research about the automated detection
of content containing sexual or racist harassment is an important issue
and could be the basis for removing that content or flagging it for human
evaluation. Previous studies have been focused on collecting data about
sexism and racism in very broad terms. However, there is no much study
focusing on different types of online harassment attracting natural lan-
guage processing techniques. In this work, we present an multi-attention
based approach for the detection of different types of harassment in
tweets. Our approach is based on the Recurrent Neural Networks and
particularly we are using a deep, classification specific multi-attention
mechanism. Moreover, we tackle the problem of imbalanced data, using
a back-translation method. Finally, we present a comparison between
different approaches based on the Recurrent Neural Networks.

Keywords: Text classification · Twitter · Hate speech · Deep
learning · Attention mechanism

1 Introduction

In the era of social media and networking platforms, Twitter has been doomed
for abuse and harassment toward users specifically women. In fact, online harass-
ment becomes very common in Twitter and there have been a lot of critics that
Twitter has become the platform for many racists, misogynists and hate groups
which can express themselves openly. Online harassment is usually in the form of
verbal or graphical formats and is considered harassment, because it is neither
invited nor has the consent of the receipt. Monitoring the contents including
sexism and sexual harassment in traditional media is easier than monitoring
on the online social media platforms like Twitter. The main reason is because
of the large amount of user generated content in these media. So, the research
c© Springer Nature Switzerland AG 2020
P. Cellier and K. Driessens (Eds.): ECML PKDD 2019 Workshops, CCIS 1168, pp. 321–330, 2020.
https://doi.org/10.1007/978-3-030-43887-6_26
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about the automated detection of content containing sexual harassment is an
important issue and could be the basis for removing that content or flagging it
for human evaluation. The basic goal of this automatic classification is that it
will significantly improve the process of detecting these types of hate speech on
social media by reducing the time and effort required by human beings.

Previous studies have been focused on collecting data about sexism and
racism in very broad terms or have proposed two categories of sexism as benev-
olent or hostile sexism [1], which undermines other types of online harassment.
However, there is no much study focusing on different types online harassment
alone attracting natural language processing techniques.

In this paper we present our work, which is a part of the SociaL Media And
Harassment Competition of the ECML PKDD 2019 Conference. The topic of
the competition is the classification of different types of harassment and it is
divided in two tasks. The first one is the classification of the tweets in harass-
ment and non-harassment categories, while the second one is the classification
in specific harassment categories like indirect harassment, physical and sexual
harassment as well. We are using the dataset of the competition, which includes
text from tweets having the aforementioned categories. Our approach is based on
the Recurrent Neural Networks and particularly we are using a deep, classifica-
tion specific attention mechanism. Moreover, we present a comparison between
different variations of this attention-based approach like multi-attention and sin-
gle attention models. The next Section includes a short description of the related
work, while the third Section includes a description of the dataset. After that, we
describe our methodology. Finally, we describe the experiments and we present
the results and our conclusion.

2 Related Work

Waseem et al. [2] were the first who collected hateful tweets and categorized
them into being sexist, racist or neither. However, they did not provide specific
definitions for each category. Jha and Mamidi [1] focused on just sexist tweets
and proposed two categories of hostile and benevolent sexism. However, these
categories were general as they ignored other types of sexism happening in social
media. Sharifirad and Matwin [3] proposed complimentary categories of sexist
language inspired from social science work. They categorized the sexist tweets
into the categories of indirect harassment, information threat, sexual harassment
and physical harassment. In the next year the same authors proposed [4] a more
comprehensive categorization of online harassment in social media e.g. twitter
into the following categories, indirect harassment, information threat, sexual
harassment, physical harassment and not sexist.

For the detection of hate speech in social media like twitter, many approaches
have been proposed. Jha and Mamidi [1] tested support vector machine, bi-
directional RNN encoder-decoder and FastText on hostile and benevolent sexist
tweets. They also used SentiWordNet and subjectivity lexicon on the extracted
phrases to show the polarity of the tweets. Sharifirad et al. [5] trained, tested
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Table 1. Class distribution of the dataset.

Dataset Tweets Harassment Harassment (%) Indirect (%) Sexual (%) Physical (%)

Train 6374 2713 42.56 0.86 40.50 1.19

Validation 2125 632 29.74 3.34 24.76 1.69

Test 2123 611 28.78 9.28 14.69 4.71

and evaluated different classification methods on the SemEval2018 dataset and
chose the classifier with the highest accuracy for testing on each category of sex-
ist tweets to know the mental state and the affectual state of the user who tweets
in each category. To overcome the limitations of small data sets on sexist speech
detection, Sharifirad et al. [6] have applied text augmentation and text genera-
tion with certain success. They have generated new tweets by replacing words in
order to increase the size of our training set. Moreover, in the presented text aug-
mentation approach, the number of tweets in each class remains the same, but
their words are augmented with words extracted from their ConceptNet relations
and their description extracted from Wikidata. Zhang et al. [7] combined con-
volutional and gated recurrent networks to detect hate speech in tweets. Others
have proposed different methods, which are not based on deep learning. Burnap
and Williams [8] used Support Vector Machines, Random Forests and a meta-
classifier to distinguish between hateful and non-hateful messages. A survey of
recent research in the field is presented in [9]. For the problem of the hate speech
detection a few approaches have been proposed that are based on the Attention
mechanism. Pavlopoulos et al. [10] have proposed a novel, classification-specific
attention mechanism that improves the performance of the RNN further for the
detection of abusive content in the web. Xie et al. [11] for emotion intensity
prediction, which is a similar problem to ours, have proposed a novel attention
mechanism for CNN model that associates attention-based weights for every
convolution window. Park and Fung [14] transformed the classification into a
2-step problem, where abusive text first is distinguished from the non-abusive,
and then the class of abuse (Sexism or Racism) is determined. However, while
the first part of the two step classification performs quite well, it falls short
in detecting the particular class the abusive text belongs to. Pitsilis et al. [15]
have proposed a detection scheme that is an ensemble of RNN classifiers, which
incorporates various features associated with user related information, such as
the users’ tendency towards racism or sexism.

3 Dataset Description

The dataset from Twitter that we are using in our work, consists of a train
set, a validation set and a test set. It was published for the “First workshop
on categorizing different types of online harassment languages in social media”.
The whole dataset is divided into two categories, which are harassment and
non-harassment tweets. Moreover, considering the type of the harassment, the
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Fig. 1. Projection layer

tweets are divided into three sub-categories which are indirect harassment, sexual
and physical harassment. We can see in Table 1 the class distribution of our
dataset. One important issue here is that the categories of indirect and physical
harassment seem to be more rare in the train set than in the validation and test
sets. To tackle this issue, as we describe in the next section, we are performing
data augmentation techniques. However, the dataset is imbalanced and this has
a significant impact in our results.

4 Proposed Methodology

4.1 Data Augmentation

As described before one crucial issue that we are trying to tackle in this work is
that the given dataset is imbalanced. Particularly, there are only a few instances
from indirect and physical harassment categories respectively in the train set,
while there are much more in the validation and test sets for these categories. To
tackle this issue we applying a back-translation method [16], where we translate
indirect and physical harassment tweets of the train set from english to german,
french and greek. After that, we translate them back to english in order to achieve
data augmentation. These “noisy” data that have been translated back, increase
the number of indirect and physical harassment tweets and boost significantly
the performance of our models.

Another way to enrich our models is the use of pre-trained word embed-
dings from 2B Twitter data [17] having 27B tokens, for the initialization of the
embedding layer.

4.2 Text Processing

Before training our models we are processing the given tweets using a tweet
pre-processor1. The scope here is the cleaning and tokenization of the dataset.

1 https://pypi.org/project/tweet-preprocessor/

https://pypi.org/project/tweet-preprocessor/
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Fig. 2. Attention mechanism, MLP with l layers

4.3 RNN Model and Attention Mechanism

We are presenting an attention-based approach for the problem of the harass-
ment detection in tweets. In this section, we describe the basic approach of our
work. We are using RNN models because of their ability to deal with sequence
information. The RNN model is a chain of GRU cells [18] that transforms the
tokens w1, w2, ..., wk of each tweet to the hidden states h1, h2, ..., hk, followed by
an LR Layer that uses hk to classify the tweet as harassment or non-harassment
(similarly for the other categories). Given the vocabulary V and a matrix E ∈
Rd×|V | containing d-dimensional word embeddings, an initial h0 and a tweet
w =< w1, .., wk >, the RNN computes h1, h2, ..., hk, with ht ∈ Rm, as follows:

h
′
t = tanh(Whxt + Uh(rt � ht−1) + bh)

ht = (1 − zt) � ht−1 + zt � h
′
t

zt = σ(Wzxt + Uzht−1 + bz)

rt = σ(Wrxt + Urht−1 + br)

where h
′
t ∈ Rm is the proposed hidden state at position t, obtained using the

word embedding xt of token wt and the previous hidden state ht−1, � represents
the element-wise multiplication, rt ∈ Rm is the reset gate, zt ∈ Rm is the update
gate, σ is the sigmoid function. Also Wh,Wz,Wr ∈ Rm×d and Uh, Uz, Ur ∈
Rm×m, bh, bz, br ∈ Rm. After the computation of state hk the LR Layer estimates
the probability that tweet w should be considered as harassment, with Wp ∈
R1×m, bp ∈ R:

PRNN (harassment|w) = σ(Wphk + bp).

We would like to add an attention mechanism similar to the one presented in [10],
so that the LR Layer will consider the weighted sum hsum of all the hidden states
instead of hk:

hsum =
∑k

t=1 αtht

PattentionRNN = σ(Wphsum + bp)
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Alternatively, we could pass hsum through an MLP with k layers and then the
LR layer will estimate the corresponding probability. More formally,

PattentionRNN = σ(Wph∗ + bp)

where h∗ is the state that comes out from the MLP. The weights αt are pro-
duced by an attention mechanism presented in [10] (see Fig. 2), which is an MLP
with l layers. This attention mechanism differs from most previous ones [19,20],
because it is used in a classification setting, where there is no previously gener-
ated output sub-sequence to drive the attention. It assigns larger weights αt to
hidden states ht corresponding to positions, where there is more evidence that
the tweet should be harassment (or any other specific type of harassment) or not.
In our work we are using four attention mechanisms instead of one that is pre-
sented in [10]. Particularly, we are using one attention mechanism per category.
Another element that differentiates our approach from Pavlopoulos et al. [10] is
that we are using a projection layer for the word embeddings (see Fig. 1). In the
next subsection we describe the Model Architecture of our approach.

4.4 Model Architecture

The Embedding Layer is initialized using pre-trained word embeddings of dimen-
sion 200 from Twitter data that have been described in a previous sub-section.
After the Embedding Layer, we are applying a Spatial Dropout Layer, which
drops a certain percentage of dimensions from each word vector in the train-
ing sample. The role of Dropout is to improve generalization performance by
preventing activations from becoming strongly correlated [13]. Spatial Dropout,
which has been proposed in [12], is an alternative way to use dropout with con-
volutional neural networks as it is able to dropout entire feature maps from the
convolutional layer which are then not used during pooling. After that, the word
embeddings are passing through a one-layer MLP, which has tanh as activation
function and 128 hidden units, in order to project them in the vector space of
our problem considering that they have been pre-trained using text that has a
different subject. In the next step the embeddings are fed in a unidirectional
GRU having 1 Stacked Layer and size 128. We prefer GRU than LSTM, because
it is more efficient computationally. Also the basic advantage of LSTM which is
the ability to keep in memory large text documents, does not hold here, because
tweets supposed to be not too large text documents. The output states of the
GRU are passing through four self-attentions like the one described above [10],
because we are using one attention per category (see Fig. 2). Finally, a one-layer
MLP having 128 nodes and ReLU as activation function computes the final score
for each category. At this final stage we have avoided using a softmax function
to decide the harassment type considering that the tweet is a harassment, other-
wise we had to train our models taking into account only the harassment tweets
and this might have been a problem as the dataset is not large enough.
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5 Experiments

5.1 Training Models

In this subsection we are giving the details of the training process of our mod-
els. Moreover, we are describing the different models that we compare in our
experiments.

Table 2. The results considering F1 Score.

Model sexual f1 indirect f1 physical f1 harassment f1 f1 macro

attentionRNN 0.674975 0.296320 0.087764 0.709539 0.442150

MultiAttentionRNN 0.693460 0.325338 0.145369 0.700354 0.466130

MultiProjectedAttentionRNN 0.714094 0.355600 0.126848 0.686694 0.470809

ProjectedAttentionRNN 0.692316 0.315336 0.019372 0.694082 0.430276

AvgRNN 0.637822 0.175182 0.125596 0.688122 0.40668

LastStateRNN 0.699117 0.258402 0.117258 0.710071 0.446212

ProjectedAvgRNN 0.655676 0.270162 0.155946 0.675745 0.439382

ProjectedLastStateRNN 0.696184 0.334655 0.072691 0.707994 0.452881

Batch size which pertains to the amount of training samples to consider at
a time for updating our network weights, is set to 32, because our dataset is
not large and small batches might help to generalize better. Also, we set other
hyperparameters as: epochs = 20, patience = 10. As early stopping criterion we
choose the average AUC, because our dataset is imbalanced.

The training process is based on the optimization of the loss function men-
tioned below and it is carried out with the Adam optimizer [21], which is known
for yielding quicker convergence. We set the learning rate equal to 0.001:

L =
1
2
BCE(harassment) +

1
2
(
1
5
BCE(sexualH) +

2
5
BCE(indirectH)

+
2
5
BCE(physicalH))

where BCE is the binary cross-entropy loss function,

BCE = − 1
n

n∑

i=1

[yilog(y
′
i) + (1 − yi)log(1 − y

′
i))]

i denotes the ith training sample, y is the binary representation of true harass-
ment label, and y

′
is the predicted probability. In the loss function we have

applied equal weight to both tasks. However, in the second task (type of harass-
ment classification) we have applied higher weight in the categories that it is
harder to predict due to the problem of the class imbalance between the train-
ing, validation and test sets respectively.
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5.2 Evaluation and Results

Each model produces four scores and each score is the probability that a tweet
includes harassment language, indirect, physical and sexual harassment language
respectively. For any tweet, we first check the score of the harassment language
and if it is less than a specified threshold, then the harassment label is zero,
so the other three labels are zero as well. If it is greater than or equal to that
threshold, then the harassment label is one and the type of harassment is the
one among these three having that has the greatest score (highest probability).
We set this threshold equal to 0.33.

We compare eight different models in our experiments. Four of them have
a Projected Layer (see Fig. 1), while the others do not have, and this is the
only difference between these two groups of our models. So, we actually include
four models in our experiments (having a projected layer or not). Firstly, Last-
StateRNN is the classic RNN model, where the last state passes through an MLP
and then the LR Layer estimates the corresponding probability. In contrast, in
the AvgRNN model we consider the average vector of all states that come out of
the cells. The AttentionRNN model is the one that it has been presented in [10].
Moreover, we introduce the MultiAttentionRNN model for the harassment lan-
guage detection, which instead of one attention, it includes four attentions, one
for each category.

We have evaluated our models considering the F1 Score, which is the har-
monic mean of precision and recall. We have run ten times the experiment for
each model and considered the average F1 Score. The results are mentioned
in Table 2. Considering F1 Macro the models that include the multi-attention
mechanism outperform the others and particularly the one with the Projected
Layer has the highest performance. In three out of four pairs of models, the
ones with the Projected Layer achieved better performance, so in most cases the
addition of the Projected Layer had a significant enhancement.

6 Conclusion - Future Work

We present an attention-based approach for the detection of harassment language
in tweets and the detection of different types of harassment as well. Our approach
is based on the Recurrent Neural Networks and particularly we are using a deep,
classification specific attention mechanism. Moreover, we present a comparison
between different variations of this attention-based approach and a few baseline
methods. According to the results of our experiments and considering the F1
Score, the multi-attention method having a projected layer, achieved the highest
performance. Also, we tackled the problem of the imbalance between the training,
validation and test sets performing the technique of back-translation.

In the future, we would like to perform more experiments with this dataset
applying different models using BERT [22]. Also, we would like to apply the
models presented in this work, in other datasets about hate speech in social
media.
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Abstract. Data-driven predictive maintenance needs to understand
high-dimensional “in-motion” data, for which fundamental machine
learning tools, such as Principal Component Analysis (PCA), require
computation-efficient algorithms that operate near-real-time. Despite
the different streaming PCA flavors, there is no algorithm that pre-
cisely recovers the principal components as the batch PCA algorithm
does, while maintaining low-latency and high-throughput processing.
This work introduces a novel processing framework, employing tem-
poral accumulate/retract learning for streaming PCA. The framework
is instantiated with several competitive PCA algorithms with proven
theoretical advantages. We benchmark the framework in a real-world
predictive maintenance scenario (i.e. fault classification in a coal coke
production line) and prove its low-latency (millisecond level) and high-
throughput (thousands events/second) processing guarantees.

Keywords: Stream processing · PCA · Online learning · Predictive
maintenance · Fault identification · Fault classification

1 Introduction

Given today’s industrial IoT sensory streams, predictive maintenance systems
need to process streams of data under tight computational constraints for deci-
sion making (e.g. fault / normal operation). Processing data streams is quite
different from querying static data, as data might be transient and follow a non-
stationary distribution. These complications impose significant constraints on
the problem of streaming PCA, which is an essential building block for many
inference and decision making tasks. Due to its practical relevance, there is
renewed interest in this problem [17]. PCA is good at maintaining data struc-
ture in reduced subspaces in an unsupervised way. It is also useful in updating
the decision boundaries by adding discriminately informative features with newly
added samples through updating the feature vectors by incremental eigenvector
estimates [8]. This is highly relevant in multi-class classification problems, such
c© Springer Nature Switzerland AG 2020
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as fault identification in predictive maintenance [6]. However, there is no algo-
rithm that recovers the principal components in the same precision regime as
the batch PCA algorithm does, employing low-latency high-throughput process-
ing. The core contribution of the paper resides in exploiting a novel streaming
learning paradigm, termed accumulate-retract learning [2], that leverage state-
of-the-art PCA algorithms to achieve low-latency high-throughput processing,
in real-world predictive maintenance fault identification and classification.

2 Related Work

Recent focus in predictive maintenance is on understanding streaming high-
dimensional data, where the dimensionality of the data can potentially scale
together with the number of available sample points [12,19]. Current trends in
predictive maintenance have led to an exploration of the complexity of covari-
ance estimation underlying PCA [3]. Such algorithms have provable complexity
guarantees [7], but either store all samples (i.e. for looping through samples)
or explicitly maintain the covariance matrix. In high-dimensional applications,
such as sensory-rich production lines, storing all data is prohibitive. Different
from previous approaches, our work brings the focus on two critical quantities:
latency and throughput. In the streaming, data-driven, setting many approaches
for incremental or online PCA have been developed, some focusing on replacing
the inefficient steps in the traditional PCA algorithm [4]. Despite the multitude of
successful dedicated algorithms, such as [18], there is no algorithm that brings the
focus on the two critical quantities of focus in streaming predictive maintenance.
Our work utilizes a new paradigm for stream processing and learning and pro-
poses the implementation of several competitive streaming PCA algorithms for
efficient computation with low-latency and high-throughput. Our accumulate/
retract learning framework [2] offers a solution for incrementally computing
combinations of statistics and learning, as needed in fault identification. The
proposed framework is among the first attempts towards this paradigm shift
initially set by Massive Online Analytics (MOA) and algorithms like Adaptive
Windowing (ADWIN) [1]. Despite the fact that ADWIN implementations have
theoretical guarantees, they do not guarantee latency and throughput, the goal
of our system. Our system finds a trade-off between these two guarantees to be
able to perform inference (i.e. fault identification) with low-latency and high-
throughput. Similar to ADWIN, a main advantage of our approach is that it
does not require any prior about how fast or how often the stream will drift, as
it continuously estimates that while updating the models.

3 Methods

This section covers the design, implementation details, and the motivation to
tackle the inherent problems in traditional PCA impeding it to achieve low-
latency and high-throughput processing. We identified three aspects in existing
approaches which impact the streaming PCA formulation: (a) the continuous
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calculation of the mean and other descriptive statistics (i.e. covariance) on the
datastream; (b) sorting the dominant eigenvalues in the rank update of the QR
decomposition and the ordering of lower/upper triangular sub-matrices; (c) the
complexity of computations performed at each training step. Dissecting the the-
ory of PCA, we found those bottlenecks that kept PCA away from streaming
applications. Employing a novel method and system for online machine learn-
ing [2], capable of incrementally computing machine learning models on data
streams, we successfully instantiated multiple streaming PCA approaches in a
predictive maintenance scenario (i.e. fault identification in coal coke produc-
tion) and prove processing performance (i.e. low-latency, high-throughput). The
underlying computational mechanism in our approach is the accumulate-retract
framework. Such a framework allows for dual model updates as soon as new
data comes into the system and leaves the system, respectively, as the stream
progresses. The technique builds on top of the sliding window paradigm, and
provides a novel, incremental computation model for closed-form learning rules
used in streaming PCA. For example, the average calculation in the eigenvalue
update, in incremental form, can be visualized in Fig. 1. Such incremental com-
putation tackles successfully the first bottleneck, namely the incremental calcu-
lation of the mean and other descriptive statistics on the datastream. As shown
in Fig. 1, the average computation is split in dual operations that keep sub-
quantities in the update of the mean consistent as the stream progresses (i.e.
window slide). Going further, the second problem that the accumulate-retract
framework solves, is sorting the dominant eigenvalues in the rank update of
the QR decomposition. For this, let’s assume we need to sort the current list
of dominant eigenvalues, as shown in Fig. 2. In this case, the caches (i.e. fixed
memory areas) are used to store content (i.e. in buckets) on updates depending
on counts (i.e. histogram). Updates are done in buckets, which contain sorted
eigenvalues - which in follow a histogram sorting. Each time new eigenvalues are
computed sorting is triggered (Step 1). In such an instantiation the retraction
cache stores the last calculated eigenvalues (in time) in each bucket, whereas
when the accumulation cache moves according to the sliding convention, new
buckets are brought and the entire structure is sorted (Steps 2, 3, 4). Moreover,
in this instantiation, the buckets stored on disk or 3rd party storage devices con-
tain data organized based on value/indexes. The last eigenvalue (time-wise) in
each bucket has a reference in the retraction cache, as shown in Fig. 2. There are
many models for learning PCA efficiently: from stochastic approximation models
(i.e. Hebbian and Oja’s Learning Rules [9]), to subspace learning, and nonlinear
PCA denoising autoencoders [13]. Yet, in order to explore the potential that the
accumulate/retract learning framework offers, we selected three Streaming PCA
algorithms, which employ only local learning rules and have proven theoretical
advantages. Their dual, accumulate/retract implementation is one novel aspect
of this work, enabling such theoretical model to perform in real-world predictive
maintenance scenarios.
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Fig. 1. Streaming PCA incremental average update using accumulate/retract.

Fig. 2. Streaming PCA eigenvalues sorting on streams: histogram update using accu-
mulate/retract.

4 Materials

The first model considered in our experiments is a single-layer neural network
based on the Stochastic Gradient Ascent (SGA) [9]. We chose this model because
it efficiently provides a description of the covariance matrix, which is typically
too expensive to be estimated online. The accumulate/retract learning maps
easily on the structure of the network and the corresponding learning rule in
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Eq. 1 due to its dual operation when forward propagating from the input x(k)
to the hidden layer y(k) by updating the weight matrix W .

Δwj(t − 1) = γ(t)yj(t)(x(t) − yj(t)wj(t − 1) − 2
∑

i<j

yi(t)wi(t − 1)) (1)

where γ(t) is the learning rate. The second model employed in our experiments
is the Generalized Hebbian Algorithm (GHA) [10]. The model uses Hebbian
learning to achieve optimal unsupervised extraction of the eigenvectors of the
autocorrelation matrix of the input distribution, given samples from that distri-
bution. Each output of such a trained network represents the response to one
eigenvector, whereas outputs are ordered by decreasing eigenvalues. Considering
the same single-layer feed-forward neural network, the GHA-based Streaming
PCA learning rule is given by:

Δwij(t) = γ(t)(yj(t)xi(t) − yj(t)
∑

k<i

wkj(t)yk(t)) (2)

GHA requires only the computation of the outer products yxT and yyT so that
if the number of outputs is small the computational and storage requirements
can be correspondingly decreased.

Finally, the third Streaming PCA model employed in our experiments is the
Candid Covariance-free Incremental PCA (CCIPCA) [14]. This Streaming PCA
model is able to compute the principal components of a sequence of samples,
incrementally, without estimating the covariance matrix. The method is based
on the concept of statistical efficiency (i.e. the estimate has the smallest variance
given the observed data). In order to achieve this, CCIPCA keeps the scale of
observations and computes the mean of observations incrementally. Assuming
that we have a d − dimensional input stream u(n), n = 1, 2, ... with covariance
matrix A and given the definition, λx = Ax, and v = λx, then the learning rule
for CCIPCA is given by:

v(n) =
n − 1 − l

n
v(n − 1) +

1 + l

n
u(n)uT (n)

v(n − 1)
||v(n − 1)|| (3)

where l is the “amnesic parameter” (i.e. a forgetting parameter). Independent of
the learning rule the weights wj converge to the eigenvectors ci as the streaming
PCA model finds the unique set of weights which is both optimal and gives uncor-
related outputs. This is also true for the v(n), in 3, analog to w. In the accumulate/
retract framework such an update is performed as new elements are available
from the stream. The accumulate event (i.e. incoming) triggers an incremental
update of the weight matrix, whereas the retraction event (i.e. outgoing) trig-
gers a decremental update of the weight matrix. This ensures the weight matrix
stays consistent as the stream progresses. For each of the considered models,
we derived the closed form incremental learning rules in the accumulate-retract
framework. As shown previously, the eigenvectors z1, z2, z3, ..., zp are given by
Czi = λizi, where λi are the eigenvalues of the covariance matrix, C[cjk].
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We can then rewrite C as cjk = 1
n−1

∑n
i=1(zij − z̄j)(zik− z̄k) where z̄ = 1

n

∑n
i=1 zi

is the incremental average. Hence, we can rewrite the covariance matrix C as
C = 1

n−1

∑n
i=1(zi − z̄)(zi − z̄)T , which is, in fact, the autocorrelation. The prob-

lem is that these measures are not robust statistics and hence not resistant to
outliers. We replace z with its estimate at time t z(t) so that v = λz estimate
at time t is v(t) = 1

n

∑n
i=1 x(t)xT (t)z(t). We can now calculate the eigenvalues

and eigenvectors given v as we know that λ = ‖v‖. If we consider z = v
‖v‖ we can

rewrite v(t) = 1
n

∑n
i=1 x(t)xT (t) v(t−1)

‖v(t−1)‖ . Such computation steps provide a closed
form learning rule in the accumulate-retract framework [2]. Independent of the
considered streaming PCA model, the system converges from an initially random
set of weights to the eigenvectors of the input autocorrelation in the eigenvalues
order. The optimal weights are found by minimizing the linear reconstruction error
E{(x− x̂)2} when the rows of W span the first p eigenvectors of C and the Linear
Least Squares (LLS) estimate of x given y is x̂ = CWT (WCWT )−1y. If the rows
of W are the first eigenvectors then WWT = I and C = WTΛW where Λ is the
diagonal matrix of C in descending order. Then, y = Wx is the Karhunen-Loève
Transformation (KLT). In the LLS optimization routine, if we have an unknown
function f the best estimator of y is min

f

∑n
i=1(yi−f(xi))2. Moreover, if f is linear

in x and y = ax+b then the best estimator is the search for the best a, b that mini-
mize min

f

∑n
i=1(yi−axi−b)2. In the accumulate-retract framework such a problem

is incrementally solved as the datastream progresses, using simple updates shown
in Fig. 3 Given that covariance can be incrementally calculated as covxy(t) =
n−2
n−1covxy(t−1)+ 1

n (xn(t)− x̄n−1(t))(yn(t)− ȳn−1(t)), the problem in closed form

assumes calculating incrementally a and b as a(t) = covxy(t)
m2(t)

, b(t) = ȳ(t) − ax̄(t)
where m2(t) is the 2nd statistical moment in incremental form. Yet, up to now
we made the assumption that only y values contain errors while x are known

Fig. 3. Streaming PCA optimization using LLS in accumulate/retract framework.
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accurately. This is not true in practical applications, thus we are seeking the values
of a and b that minimize min

a,b

∑
i=1

(yi−axi−b)2

1+a2 , which amounts for the Total Least

Squares (TLS). It has been shown that the TLS problem can be solved by perform-
ing a Minor Component Analysis (MCA) [16], thus finding the linear combinations
(or directions) which contain the minimum variance. Since there might be errors in
both x and y, we incorporate y into x and reformulate the problem by finding the
direction d in ETLS = min

d

(dx+b)2

d2 over all inputs x (including y). We can rewrite

the same constraint as ETLS = nmin
d

dtRd+2bdTE(x)+b2

dT d
where R = 1

n

∑n
i=1 xix

T
i

is the autocorrelation of the input and E(x) = 1
n

∑n
i=1 xi is the average of the

input. At convergence (dETLS

dz = 0) we must have Rd + bE(x) − θd = 0 where

θ = dTRd+2bdTE(x)+b2

dT d
. We need to find a hyperplane dx + b = 0. Taking the

expectation we have C = −dE(x) which we can substitute in Cd − θd = 0 where
now θ = dTCd

dT d
and C = R − E(xxT ) is the covariance matrix. We can now see

that every eigenvector is a solution of the minimization of ETLS . Given the ana-
lytical walk-through of the methods, in the following section, we instantiate the
considered streaming PCA models within the accumulate-retract framework for
a multi-class classification problem. In such a problem, PCA acts as a preprocess-
ing step and due to its incremental nature, preserves the discriminant information
within the data and can provide classification boundaries [15].

5 Experiments and Discussion

This section introduces the results and the analysis of the three streaming
PCA models instantiated in our framework using Apache Flink [5]. Flink is
an open source system for parallel scalable processing on real-time streaming
data. At its core, Flink builds on an optimized distributed dataflow runtime
that supports our accumulate-retract framework, crucial in obtaining low-latency

Fig. 4. Analysis of QR-based PCA without accumulate/retract (left latency, right
throughput).
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high-throughput online learning. The experimental setup for our tests used 4
machines, each with 24 CPU cores and 196 GB RAM, and Flink for cluster
management. During the experiments we consider a fixed sliding window, but
the system can support also adaptive windowing. At the same time the caches
(i.e. in RAM) mechanism allows to maintain new and old data in order to allow
the retraction of individual stream events when sliding. This allows our system
to learn from continuous data in a single pass. We used a real-world stream with
sensory readings from a coal coke prediction production line (i.e. data from 1
preheater temperature sensor, 2 briquetting temperature sensors, 2 cooker tem-
perature sensors, 2 coke quencher temperature sensors, 2 coke transport system
temperature sensors and 2 blast furnace temperature sensors). We addressed the
problem of identifying faults in the production line and queried the eigenvalues
and eigenvectors to extract the normal and faulty operation configuration prior
to a multi-class classifier. The datastream contained 2M incoming events at 40
kHz. Moreover the datastream had the property that the eigenvalues of the input
X are close to the class labels (i.e. 1, 2, ..., d) and the corresponding eigenvectors
are close to the canonical basis of Rd, where d is the number of principal compo-
nents to extract and the class number for the multi-class classification task (i.e.
various types of faults and normal operation - in our scenario, we consider 10
classes, 9 faults and 1 normal). Basically, the system: (a) supports the automatic
generation of a concise, reliable, low-dimensional model which describes the oper-
ation mode of the various sensors in the coal coke production line; (b) identifies
different alarm type conditions (i.e. the eigenvectors configuration, given the 10
different classes); and (c) conjectures the most likely cause of failure (i.e. the
eigenvalues configuration). In order to evaluate the three streaming PCA mod-
els, we also implemented an efficient QR-based PCA of [11] using Householder
transformation as ground-truth and ran it in the accumulate-retract framework
on the same experimental setup. Important to note that the three streaming
PCA models do not need to compute the correlation matrix in advance, since
the eigenvectors are derived directly from the data. This is an important feature
of streaming PCA, particularly if the number of inputs is large. The scope of our
analysis is to emphasize that using simple incremental operations and exploiting
an efficient data orchestration, the accumulate/retract framework can leverage
low-latency high-throughput streaming PCA. Such a platform allows the three
streaming PCA models to learn from datastreams in a single pass. In our eval-
uation, the latency measure refers to the single stream event processing time,
whereas the throughput refers to the number of stream events processed in a
second. In order to provide a baseline, we performed initial experiments with
streaming PCA and the, ground-truth, QR-based PCA without the accumulate-
retract framework. As one can see in both Fig. 4 and Fig. 5, respectively, with-
out the accumulate-retract framework, the system can only process up to ∼21k
events independent of the chosen model. The latency distribution, is centered on
values ∼1 ms, as one can see in the left panel of both Figs. 4 and 5, respectively.
There is an advantage that the streaming PCA holds in the overall event process-
ing latency, with no event processed in over 8 ms. Important to mention that in
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Fig. 5. Analysis of streaming PCA (SGA model) without accumulate/retract (left
latency, right throughput).

both experiments the PCA model computed the eigenvectors and the eigenval-
ues simultaneously for each new incoming stream event. The central experiments
of this paper are meant to emphasize the advantages of the accumulate-retract
learning framework [2]. We now analyze a series of large-scale experiments meant
at extracting the eigenfeatures for the multi-class fault identification scenario
(i.e. 2M events streamed at 40 kHz, a coal coke production line in China). In
terms of latency, one can observe that the streaming PCA models outperform
the QR-based PCA model, with a substantial distribution of events processed
at 1 ms and just a limited number of events processed at over 8 ms (less than
1000), as shown in Fig. 6. This is supported by the gain of ∼1k events through-
put, as shown in Fig. 7 in the accumulate/retract framework and up to ∼10k
more than in the baseline experiments. This is also visible in the core distri-
bution of throughput ranges peaking at around 40k events/s (Table 1). To offer
an understanding of the actual estimation performance of the system, the next
table shows the eigenvalues of the input and how close they are to the class labels
(i.e. 1, 2, ..., d = 10) and the corresponding eigenvectors variance with respect to
the canonical basis of Rd. This analysis didn’t address a model comparison,
rather an emphasis on the capabilities of the accumulate/retract learning frame-
work to leverage streaming PCA models to reach guarantees of performance.
Pushing real-world performance constraints, the accumulate-retract framework
instantiation of various streaming PCA models stands out as good candidate
for low-latency high-throughput systems for dimensionality reduction, in criti-
cal applications such as fault identification in predictive maintenance. The code
repository for the Streaming PCA benchmarking is available at 1.

1 https://github.com/omlstreaming/iotstream2019.

https://github.com/omlstreaming/iotstream2019
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Fig. 6. Comparison of streaming PCA models latency in the accumulate/retract.

Fig. 7. Comparison of streaming PCA models throughput in the accumulate/retract.
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Table 1. Eigenvalues and Eigenvectors estimates analysis

Eigenvalue Eigenvalue estimate Eigenvector variance

1 0.994071965 0.033719458

2 1.99658601 0.023661145

3 3.00600192 0.013884741

4 4.00420688 0.025106736

5 5.04173253 0.022354039

6 5.95475267 0.007637369

7 6.88985141 0.011129644

8 7.87972194 0.015864081

9 8.90795326 0.007244545

10 10.0642228 0.014663302

6 Conclusion

Tackling the theoretical bottlenecks in traditional PCA algorithms and focusing
on two critical quantities, namely latency and throughput, the current work sup-
ports the renewed interest and performance improvements in streaming machine
learning. As our experiments show, streaming PCA models can be leveraged
by the accumulate/retract framework. Such a system offers flexibility, allowing
for arbitrary combinations of multiple functions underlying complex machine
learning models (i.e. average, least squares regression, histogram sorting) to be
calculated on the stream, with no time- and resource-penalty, by exploiting the
underlying hardware, data processing and data management for true low-latency,
high-throughput stream processing. In our predictive maintenance benchmark
scenario, our system could enable immediate alarming of conditions outside the
normal mode of operation (i.e. the system will provide the class label corre-
sponding to normal/fault operation). Failure identification would be based on
the capability of the system to “fingerprint” potential failure branch types, based
on the underlying eigenvectors/eigenvalues configurations. More experiments are
planned to prove the competitiveness of the approach.
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Abstract. We deal with a real predictive maintenance case study
encountered in modern Industry 4.0 settings: based on logs of past fail-
ures, we train a model to predict critical failures of equipment without
any other domain expert knowledge well in advance. We propose a novel
methodology that combines and extends the state-of-the-art in event-
based predictions with advanced time-series analytics. This renders our
technique applicable directly onto the sensor data, as it is produced in a
modern factory setting. Further, we show that employing unsupervised
learning techniques, such as continuous outlier monitoring, is a compet-
itive approach. Although our techniques are developed and tested in a
specific case study, they can be transferred to arbitrary settings.

1 Introduction

One of the key characteristics of the 4th Industrial Evolution, broadly known
as Industry 4.0, is the wide-spread of Predictive Maintenance (PdM), which is
reported to be capable of yielding “tremendous” benefits.1 The goal of PdM is to
eliminate machinery downtime and operational costs. Broadly, PdM capitalizes
on the benefits stemming from mature techniques in the fields of data analyt-
ics, machine learning and big data management in distributed and IoT/edge-
computing settings [11].

In this work, we aim to devise PdM techniques, when there is no prior domain
expert knowledge, e.g., rules or models that can be used to predict events. Event-
based PdM approaches train models with logged events to recognize patterns

1 https://www.pwc.nl/nl/assets/documents/pwc-predictive-maintenance-beyond-
the-hype-40.pdf.
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which precede a failure incident (called target events). We explore both super-
vised and unsupervised learning techniques. For the former, a novel technique for
timeseries discretization, which is based on [16], is utilized in order to leverage
event-based prediction approaches, especially in cases where the provided main-
tenance logs are not sufficient to be used for predictions (which is a commonplace
situation). In this way, the timeseries is transformed to a sequence of artificial
events, which may not have meaning in the physical world but are shown capa-
ble of capturing preceding hidden patterns before failures. Then, an event-based
PdM approach borrowed from the field of aviation industry is adapted to pro-
cess such artificial events and to feed a regression analysis model that predicts
prominent machinery failures.

In addition, we apply anomaly detection on streaming data [1] to detect early
signs of failure. Anomaly detection naturally lends itself to failure detection in
Industry 4.0; here we provide concrete evidence that it can also be used for
prediction per se and thus become part of an advanced PdM solution. The key
strength of this approach is that it does not rely on model training.

The approaches are tested in a real case study of a cold forming press in
the Philips Consumer Lifestyle plant in the Netherlands, but we ensure that the
approach is applicable to arbitrary settings, provided that sensor measurements
are available and, for the supervised learning approach, there exists information
about the time a failure occurred. We have provided the implementation of the
core parts of both the supervised and unsupervised learning techniques as open
source2, so that third parties can easily adapt our solution to their problems. In
summary, our contribution is threefold:

1. We present a novel methodology that is directly applicable to sensor mea-
surements. Our key rationale is to transform timeseries to a series of events,
which allow for state-of-the-art event-based PdM techniques to apply.

2. We present how streaming outlier detection can be leveraged to predict critical
equipment failures.

3. We evaluate our solutions to a real setting, and the results are particularly
encouraging. The supervised learning solution managed to achieve 61% preci-
sion and 61% recall (0.61 F1-score) when predicting 1–8 h ahead. The unsu-
pervised learning one managed to achieve different but equally interesting
trade-offs. The performance is further improved with combinations of predic-
tors, e.g., exhibiting 59% recall and 82% precision (0.67 F1-score).

Paper structure: the next section presents the case study we consider. In Sect. 3,
we present our novel methodology, which is based on combination of timeseries
and event-based PdM techniques. Section 4 discusses the application of outlier
detection directly on streaming data for PdM purposes. In Sect. 5, the obtained
results are discussed. We conclude with the related work and the final remarks
in Sects. 6 and 7, respectively.

2 http://interlab.csd.auth.gr/anaskos/pdm-solution.

http://interlab.csd.auth.gr/anaskos/pdm-solution
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2 The Case Study

High-Level Description. The focus of the current use case is the production line
of a Philips factory and more specifically, the cold forming press that is a part of
the line. During a production run the input material passes through many form-
shaping and quality check stages to reach its final form. The cold forming press
is one such form-shaping stage and a complex and expensive piece of equipment,
where a metal strip goes in and cold formed products come out. The press
contains various modules that cut, bend and flatten the input strip. The main
problem of the specific machinery is that it is acting as a black box, which means
that there is no option to monitor its status or the status of each individual
module that is contained within it, without completely stopping the machine.
The modules within the press are arranged in a specific order to produce the
correct output shape. The different modules form a pipeline, where the output
of one module upstream forms the input of the next module downstream. The
metal strip that comes into the press passes through all of the modules in the
specified order with its shape constantly changing. The metal strip comes from
an input reel and passes through the first quality check. The strip then enters
the press and is processed by each of the six modules. After the strip takes its
final form, it exits the press and passes a second quality check.

The modules are subject to breakage induced by age and other reasons,
which cascade from one module to the next in line and so forth. Hence, planned
preventive maintenance checks are applied removing the whole press from the
production line. The cost for stopping the production run and especially the cost
for repairing the faulty parts of the machinery can be very high for the company.
This means that there is a need for some type of prediction or early detection
of failures in the cold forming press.

Failure Types and Sensors Available. There are multiple data sources in place.
The first one considers the profile of the raw material (i.e. metal strip), such as
part number, while the second one considers the thickness and the temperature
of the metal strip entering the press. The quality check at the end product of
the press contain measurements on the thickness, the shape and other propri-
etary quality measurements. The final data source comes from the press itself.
To monitor the opaqueness of the cold forming process, an acoustic emission
sensor is placed in the press; overall, the different acoustic sensors are comprise
6 channels, and at each step, a measurement for each angle and channel is mon-
itored (the dimensionality of each acoustic channel is at the orders of several
hundreds). The sensor detects and emits the acoustic waves that radiate from
the material when it is processed by the press. The difference on the emission can
detect possible faults on the parts of the press that cannot be detected through
other means. In the following sections, acoustic emission measurements are used
to predict and/or detect prominent machine stops due to machinery failures.
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3 A Supervised Learning Technique Based
on a Timeseries Discretization Methodology

Our rationale is summarized as follows. We take for granted that event-based
machine learning for PdM is a rather mature field, in the sense that PdM tech-
niques tailored to Industry 4.0 setting have been developed, e.g., [8,12,14]. The
key characteristics of a PdM task compared to traditional classification is that
events are very rare and the feature set very sparse. Then, the main challenge
is to fill the gap from the initial measurements from sensors to event genera-
tion. Our key novelty is that, instead of classifying timeseries as a discrete set
of events, we map timeseries to a sequence of artificial events thus placing no
burden to engineers to annotate the sensor measurements. We only require infor-
mation about the time of several critical failures in order to train our methods.

The key part is the discretization of the timeseries to a series of events. To
this end, we employ the Matrix Profile (MP), which is a data structure that
annotates a time-series [16]3.

3.1 Data Pre-processing and MP-Based Timeseries Analytics

For the purpose of the Philips’s case study, we focus on subsequences of a pre-
defined pattern-length of size PL. The subsequences’s length corresponds to
individual acoustic measurements. Accoustic measurements are processed per
channel after taking the maximum value among all angles for each time point;
therefore, all acoustic channels are transformed to 1-dimensional series. For a
timeseries T of length n, we estimate MP, which is a vector of length n−PL+1.
MP (i) denotes the distance of the sub-sequence starting at the ith position in
T to its nearest neighbor. Any distance metric can be used, but as explained in
[16], the default option is the z-normalized Euclidean Distance. The MP vector
is accompanied by the Matrix Profile Index (MPI), which is of same size as MP .
MPI(i) keeps the pointer to the position of the closest neighbor of the subse-
quence of length PL starting at T (i). The lower the values in the MP, the higher
the similarity of the PL-size pattern beginning at the corresponding point to its
closest neighbor.

3.2 The MP-based Algorithm to Extract Artificial Events

We introduce an algorithm that is based on the estimation of MP in order to
create the artificial, yet significant, events through similarity estimates. Then,
on top of this, a complete technique for extracting hidden patterns to predicting
or early detect failures is developed. The technique for artificial event extraction
is summarized in Algorithm 1.

The proposed technique does not require any logs apart from raw measure-
ments, not even information about past failures. Given the pattern-length param-
eter (PL), we apply the MP methodology in order to compute the MP based on
3 Open source implementations are provided from https://www.cs.ucr.edu/∼eamonn/

MatrixProfile.html.

https://www.cs.ucr.edu/~eamonn/MatrixProfile.html
https://www.cs.ucr.edu/~eamonn/MatrixProfile.html
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Algorithm 1. Mapping timeseries values to artificial events
Require: A time-series of press incidents T = t1, . . . , tn, the pattern-length PL.
1: MP,MPI ← computeMatrixProfile(T,pl)
2: X ← 10 //default value for the X threshold
3: Y ← 2 //default value for the Y threshold
4: Z ← 2 //default value for the Z threshold
5: for i = 1 to n − PL + 1 do
6: if MP(i) > X*MP(MPI(i)) then
7: Remove the corresponding edge from MPI
8: end if
9: if MP(i) > Y*mean(MP) then

10: Remove the corresponding edge from MPI
11: end if
12: end for
13: conComp ← Calculate the weakly connected components of MPI
14: Filter the distinct components with less than Z members
15: for i = 1 to n − PL + 1 do
16: if MPI(i) belongs to a connected component then
17: map T(i) to the connected component id
18: end if
19: end for

subsequences of length PL and thus also generate the MPI. MPI is essentially
a directed graph, where each edge points to the most similar subsequence. We
consider the MPI as a graph G = (V,E), where the V = v1, ..., vn denotes a
set of nodes and E = e1, ..., ez defines the edges of the graph G weighted by
the values in MP . Some edges have either globally or locally very high weights.
Therefore, we apply a set of thresholds in order to eliminate the nodes that
probably are noise and are connected to other nodes with low similarity. More
specifically, we filter out the edges of the graph that connect two nodes when
their distance is X times greater than the distance of the edge connecting the
sink node to its nearest neighbor (local rule). A global rule is that we prune
all edges with a weight more than Y times the mean MP value. As a following
step, we estimate the weakly connected components (sub-graphs) of the MPI
graph and map each such component to a distinct artificial event, i.e., in this
step we disregard edge directions. We prune small components with less than
Z members. Finally, every point of the timeseries that is part of a connected
component is labeled by the id of that component. In Algorithm 1, we provide
default values for the three thresholds employed, based on our experiments in
the real dataset (we omit sensitivity analysis due to space constraints).

Variants. Similarly to the version of the algorithm that we described above, we
have also implemented and tested a community detection algorithm, proposed
in [4], for finding communities of graph nodes instead of connected components.
Then all the members of a detected community are labeled with the community
id.
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3.3 Supervised Event-Based PdM Approach Using Artificial Events

Utilizing the events generation technique presented in Sect. 3.2, we are able to
use any data-driven event-based prediction approach to tackle the PdM problem.
In this work, we showcase the usage of a PdM approach applied on aviation data
[8], adapted to the Philips use case. Adapting the selected PdM approach to the
press use case, the artificial events obtained by the MP-based algorithm are
subject to intensive preprocessing in order to expose the patterns of machine
failure and then leverage such patterns to train a model to predict prominent
machine failures. The proposed approach penalizes both rare and frequent events
(implicitly performing feature selection) and amplifies the strength of the events
closer to machine failure incidents, applying a Multi-Instance Learning (MIL)
technique to over-sample the aforementioned events. Such preprocessed log data
form the training set, which is then fed into a regression analysis algorithm
for the prediction of the machine failures. Next, we further elaborate on this
approach as a key representative of the state-of-the-art.

3.4 Event-Based PdM Solution Details

The artificial events are mapped to actual timestamps based on the origin time-
series and partitioned in ranges defined by the occurrences of the fault that
PdM targets. These ranges are further partitioned into time segments, the size
of which (i.e. minutes, hours, days) correspond to the time granularity of the
analysis. In the press use case, hourly segments are used, based on the knowl-
edge acquired from the maintenance engineers. More specifically, engineers want
to be warned at least one hour and at most several hours before the occurrence
of a machine failure. The rationale behind the time segmentation is that the
segments that are closer to the end of the range may contain fault events that
are potentially indicative of the main event. The goal is to learn a function that
quantifies the risk of the targeted failure occurring in the near future, given the
events that precede it. Hence, a sigmoid function is proposed, which maps higher
values to the segments that are closer to a machine failure. The steepness and
shift of the sigmoid function are configured to better map the expectation of
the time before the failure at which correlated events will start occurring. The
segmented data in combination with the risk quantification values are fed into a
Random Forests algorithm as a training set to form a regression problem.

In practice, the event types are hundreds if not thousands. Each event type is
essentially a dimension. Therefore, to increase the effectiveness of the approach
standard preprocessing techniques can be applied: (i) Multiple occurrences (MO)
of the same event in the same segment can either be noise or may not provide
useful information. Hence, multiple occurrences can be collapsed into a single
one. (ii) Standard feature selection (FS ) techniques (like [5]) can also be used in
order to further reduce the dimensionality of the data.

Finally, to deal with the imbalance of the labels (given that the fault events
are rare) and as several events appear shortly before the occurrence of the fault
events, but only a small subset of them is related to them, Multiple Instance
Learning (MIL) can be used for bagging the events and automatically detecting
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the events that can act as predictors. A single bag contains events of a single
hour. Also, the data closer to the fault events (according to a specified threshold)
are over-sampled, so that training is improved.

3.5 Experiments and Results

The experiments were done using historical timeseries and converting them to
a continuous stream. The ground truth used for the measurements is the infor-
mation of the timestamps that the machine stopped working due to technical
reasons, e.g. damage of a module on the press; this information has been pro-
vided by the engineers responsible for the examined machinery. Each machine
stop represents a failure mode, each prediction represents an alarm and the
detected stops are the ones that have at least one preceding alarm within a fixed
period before the fault. We assess the efficiency of the technique using the recall
and precision metrics adapted to the PdM context, measured according to the
following definitions: precision is the ratio of the successfully predicted stops to
the number of total alarms, and recall is the ratio of the predicted stops to the
number of total stops, where a stop is considered as successfully predicted if
there is any prediction made in a specified time gap before a machine stop. Mul-
tiple alarms inside the specified time gap for the same machine stop are counted
as a single alarm, while the false alarms (i.e. before the time gap) are counted
individually. The rationale is that the maintenance engineers are prompted to
respond to the first alarm for a specific machine stop, while in the case of the
false alarms, they are called to respond to every one of them.

The data used for the assessment of the supervised learning approach are the
acoustic emission measurements. The acoustic emission sensors are placed in 6
different spatial positions on the cold forming press, generating data in 6 distinct
channels providing measurements in hundreds of different angles per channel. We
perform dimensionality reduction through maintaining only the maximum value
across all angles per channel per time point. I.e., finally, for each timestamp, we
consider a single measurement per acoustic channel.

The experiments share a common parametrization and fine-tuning is beyond
the scope of this work (due to space limitations). Three values of pattern-length
(PL) for the Matrix Profile are used (i.e. 5, 10 and 50). The number of distinct
artificial events are depicted in Table 1. MO is enabled in all the experiments
and over-sampling is applied. The steepness and the shift parameters of the
sigmoid function are set to 0.8 and 4, respectively; the threshold for the value
of the sigmoid function to set an alarm is set to 0.3, while the time gap for true
alarm consideration is set between 1 and 8 h before a machine stop incident. All
measurements refer to 10-fold cross validation. As there are lots of event types,
FS preprocessing step is also tested. For partitioning the dataset into 10 folds,
we use the number of incidents and not the number of time segments.

Table 2 presents the recall and precision values, of the results that achieved
the best F1-score per channel. The second column depicts the pattern-length
used in the Matrix Profile algorithm, while the third one indicates the usage
of the FS preprocessing step. The Table also presents the results in two of
the channels (i.e. 1st and 2nd) where the community detection (CD) algorithm
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Table 1. Number of distinct artificial event types generated per pattern length (PL).

Source PL-5 PL-10 PL-50

Channel 1 6411 5615 1794

Channel 2 6401 5800 5234

Channel 3 6374 5722 3591

Channel 4 6334 5148 1305

Channel 5 6353 5837 3445

Channel 6 6396 5724 4216

Table 2. Experimental results on all the acoustic channels using the supervised learning
technique (CD: community detection).

Source PL FS Recall Precision F1-score

Channel 1 5 x 0.61 0.61 0.61

Channel 1 CD 5 x 0.57 0.63 0.59

Channel 2 10 0.63 0.53 0.55

Channel 2 CD 5 0.49 0.45 0.47

Channel 3 10 x 0.55 0.61 0.57

Channel 4 50 0.49 0.76 0.59

Channel 5 50 x 0.45 0.80 0.54

Channel 6 50 x 0.48 0.68 0.50

Table 3. Experimental results on all the acoustic channels using an ensemble of the
supervised learning technique.

Source Strategy Recall Precision F1-score

Ch.4 - Ch.1 AND 0.62 0.5 0.55

Ch.1 CD - Ch.1 OR 0.59 0.82 0.67

is used in place of the connected component (CC ) algorithm utilized in the
MP-based artificial event generation approach. As we observe, Channel 1 and
Channel 4 achieved the highest F1-score (0.61 and 0.59 resp.). There is no clear
winner between the different pattern-lengths and whether feature selection has
been applied or not. Regarding the application of the CD, the results are inferior
to those achieved by CC, despite the fact that the number of the generated
artificial event types is almost the same in both the cases.

Next, we employ two simple ensemble strategies with two predictors each: the
AND strategy, where two predictors need to raise an alarm, and OR strategy,
where an alarm is raised whenever at least one of the predictors votes for it.
We have computed the precision, recall and F1-score of all the possible pairs
between all the previous experiments. The results with the highest F1-score
per strategy are shown in Table 3. As we observe, the OR strategy was able to
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enhance the previous results, achieving 0.67 F1-score combining two cases with
low recall but high precision. Note that in this scenario, a random predictor
achieved F1-score of 0.31; moreover, a dummy predictor with recall 1 through
raising an alarm every 7 h cannot exceed F1-score of 0.58.

Table 4. Best results in terms of F1-score of the outlier detection technique for each
of the 6 acoustic channels. AND and OR refer to the ensemble experiments.

Source Recall Precision F1 score

Channel 1 0.57 0.41 0.48

Channel 2 0.83 0.48 0.61

Channel 3 0.74 0.49 0.59

Channel 4 0.38 0.82 0.52

Channel 5 0.73 0.48 0.58

Channel 6 0.84 0.43 0.58

Ch.5 - Ch.6 AND 0.72 0.75 0.74

Ch.2 - Ch.4 OR 0.84 0.57 0.68

4 An Unsupervised Learning Technique

In this section, we present the streaming distance-based outlier detection algo-
rithm, namely MCOD [7], that was used for early detection of failure on the
dataset. We employ sliding windows. Given a set of objects O and the threshold
parameters R and k, we report all the objects oi ∈ O for which the number of
objects oj , j �= i for which dist(oi, oj) ≤ R is less than k. The report should be
updated after each window slide. Note that according to this definition, outliers
may be reported during any time they belong to the window and not necessarily
when they are first inserted into it.

The experimental setting is the same as the one used in the supervised app-
roach with the difference that the precision is the ratio of all the true alarms to
the number of total alarms, where true alarm is any prediction (in the form of
warning outlier detection) made in a specified time gap before a machine stop.
To avoid the problem of fine-tuning, we experimented with the combinations of
3 values of R and 3 values of k, i.e., 9 combinations of parameters. The window
contains the last 3600 measurements and the window slide is fixed to 10% of the
window size. As previously, we aim to predict faults 1 to 8 h ahead.

In almost all of the experiments, there is a trade-off between recall and preci-
sion. Based on the algorithm parameters chosen, this trade-off can be configured
in favor of either of the measures depending on the output needed or preferred.
Table 4 shows the best results per channel in terms of the F1 score. An observa-
tion that can be drawn from the table is the difference in the results among the
data sources, which means that each source can have a different impact on the
PdM technique. It seems that especially regarding the acoustic emission sensors,
specific positions in the press can yield better understanding of the faults in
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the press. In general, the unsupervised learning one managed to achieve differ-
ent but equally interesting trade-offs compared to the supervised one, e.g., 83%
recall and 48% precision (0.61 F1-score). We also tested an ensemble of the dif-
ferent parameterizations of the acoustic emission channels. Running more than
one parameterization helps to improve the results and either exacerbate or miti-
gate the trade-off. Certain combinations can greatly increase one measure while
slightly decreasing the other one. The last two lines of Table 4 show indicative
results from this experiment.

5 Discussion

In the previous sections, we have presented a supervised predictive approach
based on a novel timeseries discretization approach and an unsupervised detec-
tion approach used as predictive mechanism. Both the approaches are applied
on the same use case and dataset. The results of the two approaches suggest
that there actually exist preceding hidden patterns or indications for most of
the machine stops and prove that the novel MP-based timeseries discretization
approach has managed to successfully reveal those previously unknown patterns.
In addition, outlier detection can also enhance PdM.

Some further comments on the logs are as follows. The logs with the machine
stops contained 82 records of 8 machine stop categories. These categories are
quite different in their nature. We did not preprocess the machine stop logs
before the execution of the experiments in order to assess the robustness of the
approaches. Cleaning the logs is expected to decrease the precision and affect
the recall of the unsupervised approach, however it will potentially increase the
metrics of the supervised approach. Also, to stress-test the supervised learning
approach, we have considered all the different machine stop categories as a sin-
gle failure category, thus training a single model. The results of the supervised
approach will potentially improve if separate models are used for each individual
machine stop category.

Finally, we clarify that the purpose of this research work is not to compare
the supervised against the unsupervised learning approach and promote the most
efficient or appropriate one. On the contrary, the goal is to promote the strengths
of each approach and to provide the basis for an heterogeneous ensemble solution
utilizing multiple instances of both the supervised and unsupervised approaches.
Overall, we envisage a multi-layer ensemble solution, where different instances of
the same predictor type are combined at a lower layer, while, at a higher-level,
different types of predictors form an ensemble.

6 Related Work

Data-driven techniques, where the data refer to past events, commonly in the
form of log entries, are widely used in PdM. [8] is a key representative of the state-
of-the-art. Another event-based approach is presented in [12], where historical
and service data from a ticketing system are combined with domain knowledge to
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train a binary classifier for the prediction of a failure. As in the previous work, a
feature selection [3] and an event amplification technique is used to enhance the
effectiveness of the SVM-based classifier. Event-based analysis, based on event
and failure logs, is also performed in [14], where it is assumed that the sys-
tem is capable of generating exceptions and error log entries that are inherently
relevant to significant failures. This work relies on pattern extraction and simi-
larity between patterns preceding a failure, while emphasis is posed on feature
selection.

The work in [17] proposes a correlation-driven approach between different
sensor signals and fault events to guide the PdM process. This approach tries
to identify correlations between detected anomalies in different sensor signals,
which are mapped to specific faults. Here, we focus on event processing, where
events are generated from the sensors artificially.

Data-driven PdM is also related to online frequent episodes mining; research
works [2] and [10] propose techniques in this topic. The key strength of [2] is that
it can apply to an online (i.e. streaming) scenario. [10] further improves upon it
through providing solutions for the case where the event types is unbounded.
Complex-event processing (CEP) [6] is also a technology that enables PdM
enforcement after warning sequential patterns have been extracted. A good
overview of the data-driven PdM is presented in [9].

Motif-detection in timeseries can also be used in prediction scenarios. The
authors in [15] propose a tool that is able to predict outcomes based on weakly
labeled time series of millions of data points. Finally, outlier detection is a vivid
research field that has developed broad and multifaceted algorithmic solutions.
The comparative study [13] presents a wide range of distance-based outlier detec-
tion algorithms and suggests that the MCOD algorithm, which is employed in
this work, is considered as a state-of-the-art solution in the streaming data pro-
cessing for distance-based outlier detection.

7 Conclusions and Future Work

In this work, three state-of-the-art techniques in timeseries analysis, event-based
PdM and streaming outlier detection are leveraged in order to provide effective
PdM solutions operating directly on the output of sensors. The key strength is
that no domain expert knowledge is required and one of the techniques does not
require model building at all. More specifically, a novel timeseries discretization
approach is proposed for the generation of artificial events, in order to enable the
utilization of event-based predictive approaches. In parallel, distance-based out-
lier detection is shown to be effective in capturing early signs of abnormal equip-
ment behavior. The solution is evaluated in a real setting, and the results are
particularly encouraging achieving high F1 scores and useful trade-offs between
the recall and precision metrics. As future work, we intend to work towards an
ensemble solution and derive an efficient manner to tune the various parame-
ters involved automatically. However, the most important next step is to build
on these early insights into the benefits of our proposal and proceed to a more
thorough experimentation and testing.
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Abstract. Forecasting of product quality by means of anomaly detec-
tion is crucial in real-world applications such as manufacturing systems.
In manufacturing systems, the quality is assured through tests performed
on sample units randomly chosen from a batch of manufactured units.
One of the major issues is to detect defective units among the sample
test units as early as possible in terms of test time and of course as accu-
rate as possible. Traditional way of detecting defective units is to make
use of human experts during test. However, human intervention is prone
to errors and it is time consuming. On the other hand, automated sys-
tems are efficient alternatives and of assistance to human experts. There
are on-line and off-line approaches for automated systems. Our ultimate
aim is to design a system that automates the detection of defective units
among the sampled freezer units manufactured in high volumes in a fac-
tory of one of the leading home appliances manufacturers. We start by
analyzing the data of the test units sampled from the batches of freezer
units. For analysis, we first embedded data in two-dimensional space to
observe if there are any structures exist in the data. Clustering was then
applied to see if the data can be grouped into two classes without their
labels. As off-line approaches, state-of-the-art classifier methods includ-
ing one-class-classifier are employed. Finally, a deep learning method for
time-series analysis combined with a classifier is applied as an on-line
method.

Keywords: Product quality · Anomaly detection · Forecasting ·
Manufacturing systems · On-line analysis · Off-line analysis

1 Introduction

Freezers are durable consumer goods that are manufactured in mass volumes. In
order to assure the quality during the manufacturing process, a certain number of
freezer units are randomly selected from each production batch and the selected
freezer units are tested for various types of defects including cosmetic defects
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and functional defects. In general, a human expert conducts tests, interprets
data and results, and concludes a decision. The way of detecting defective units
by means of human experts is prone to errors and takes time. It is highly desirable
to automate the process such that forecasting of product quality is performed
by means of anomaly detection preferably by applying machine learning and
data-driven methods.

Our ultimate aim is to design a system that automates the detection of
defective units during cooling tests of freezer units manufactured in high volumes
in a factory of one of the leading home appliances manufacturers, Arçelik (Beko).
In the design of such a system, extra attention should be paid to the sensitivity
(accuracy on detecting defective units), since missing a defective freezer unit
might potentially lead to a totally defective batch that may be delivered to
the market. However, false alarms (false positives) would only lead to an extra
manual test which is a small drawback comparing to a miss (false negative). We
start by analyzing the data of the test units sampled from the batches of freezer
units. Data is then embedded onto two-dimensions to visualize its distribution.
Such a visualization may yield particularly structures and outliers existing in
the data. Clustering is then applied to see if the data can be grouped into
two classes. As off-line approaches, state-of-the-art classifier methods including
one-class-classifier are employed. Finally, a deep learning method for time-series
analysis combined with a classifier is applied as an on-line approach.

2 Related Work

Anomaly detection is a major forecasting method used in assessing the prod-
uct quality in real-world applications. Several methods have been proposed to
detect anomalies in data [1,3]. Traditionally, statistical methods such as cumu-
lative sum (CUSUM) and exponentially weighted moving average (EWMA)
were employed [2]. There exist also methods based on Support Vector Machines
(SVM) [7,11]. When anomaly detection is defined as outlier detection, the solu-
tion may come from one-class support vector machine as well [13]. Technology
companies such as Twitter and Netflix have also proposed their own solutions for
this problem [5,6]. With its reemergence, Long Short Term Memory Networks
(LSTM) [4] became the most popular method for time series modeling and fore-
casting. Various methods exist to incorporate LSTMs; both stacked LSTMs and
an LSTM-based encoder-decoder for detecting anomalies in time series data have
been described [9,10]. However, a set of rules must be set in order to decide, if
the predicted points are indeed anomalies; Shipomon et al. compared different
rules for anomaly detection [12].

3 Data

The results of every freezer unit that has been tested between 2016 and 2018
at Arçelik (Beko) Refrigerator Plant are available as data. During the test of a
randomly selected unit, two sensors measure the temperature inside the freezer
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unit and another sensor measures the ambient temperature. Finally, a fourth
sensor measures the power consumed by the compressor. The freezer compressor
is both a motor and a pump that move the refrigerant through the system.
These measurements are recorded at each minute. Since the two sensors inside
the freezer unit give out the same temperature, we make use of only one of
them. The ambient temperature stays constant during the test. Therefore, only
one temperature sensor data is considered in the rest of this study.

Fig. 1. Sensor reading data of a non-defective freezer unit during cooling test. (Color
figure online)

Expected behavior of a non-defective freezer unit is given in Fig. 1 and it can
be described as follows. Temperature sensors start from ambient temperature
and drops down until around −20 ◦C, while power is consumed steadily. After
reaching the target temperature, freezer unit starts its cycling phase. During
this phase, compressor stops and thus power sensor starts reading zero. Simul-
taneously, temperature starts rising for a few degrees. Compressor then turns on
starts consuming power and also cooling the freezer unit. In Fig. 1, data drawn
with red color correspond to the temperature inside the freezer unit while the
consumed power data is given by purple color. A freezer unit is labeled as defec-
tive if it is unable to reach its target temperature in a few hours. The test goes
on until the human expert decides whether the unit is defective or not. This
means that the tests vary in terms of time depending on the experience of the
expert. Even though most tests are concluded in 120 min, there are tests that
last more than 220 min. Especially, the defective units are tested for several
hours so that the cause of failure becomes clear. In addition, freezer unit model
also affects the test time. Different models may take different lengths of test
time to reach their target temperatures. Similarly, there are some events that
disrupt the test process. During the test, a unit might be of subject for further
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examination or it might be tested for extreme cases. As a result, we have data
of units for which the human expert indicates to be OK with potentially anoma-
lous measurements. If a unit is labeled to be defective, a metadata is recorded
including model, product identification number, batch number, test date, and
error code. Furthermore, defective units are grouped according to their types of
defect and labeled with respective error codes.

Fig. 2. Plot of temperature sensor measurements of a sub-set of the original dataset
for 150min of the test. (Color figure online)

Figure 2 presents the plot of temperature sensor measurements of a subset
of the original dataset. Data drawn with red color represent the non-defective
freezer units whereas data drawn with blue color refer to the defective freezer
units.

4 Initial Analyses of Data

4.1 Embedding the Data in 2D Space

150 min temperature sensor data can be considered as a 150 dimensional feature
vector. We have embedded 150 dimensional feature vectors in a lower dimensional
space using t-Distributed Stochastic Neighbor Embedding (t-SNE) [8] with its
perplexity parameter set to 50. The embedding of data from 150-dimensional
space into 2-dimensional space is shown in Fig. 3; the data points with red color
correspond to defective freezer units while data points with black color corre-
spond to non-defective freezer units. Most of the data points corresponding to
defective freezer units are grouped in a cluster while the data points correspond-
ing to non-defective units are spread out. It is interesting to individually analyze
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Fig. 3. Embedding of temperature sensor data from 150-dimensional space onto 2-
dimensional space using t-SNE. (Color figure online)

each of the defective-labeled freezer units which are embedded among or nearby
non-defective units. About 95% of the defective freezer units can be separated
from non-defective units by a classifier based on a Support Vector Machine with
linear kernel.

4.2 Clustering the Data

We wanted to see if the data could be clustered with respect to the temperature
sensor measurement values into two groups as properly working and defective
freezer units. 150 dimensional feature vectors are used for a subset of freezer
units in the dataset. The result of applying k-means clustering algorithm with
k = 2 is shown in Fig. 4. Even though the data looks clustered neatly, resulting
cluster labels do not match with the original labels shown in Fig. 2.

4.3 Applying Classifiers

We have applied state-of-the-art classification algorithms to the original dataset
in order to have a baseline for further improvements. Since the dataset is
imbalanced, we have applied under-sampling to the data corresponding to non-
defective freezer units. We have applied the classifiers with 10-fold cross val-
idation and Table 1 shows the average accuracy and sensitivity values for the
tests.

4.4 One-Class Classification

One-class classification is a very common method employed in outlier detection.
We have used One-Class Support Vector Machines in order to be able to define
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Fig. 4. Result of k-means clustering based on temperature sensor measurement values
for 150min of test.

a hyper-plane containing of all data points corresponding to non-defective units.
Any data point that is outside this hyper-plane is considered to be an anomaly
(or defective). The results of this method greatly depend on the strictness of the
hyper-plane. When we select a hyper-plane that contains all of the data points
corresponding to non-defective units, only 70% of the data points corresponding
to defective units remain outside the hyper-plane whereas the other 30% are
inside the hyper-plane. This gives an accuracy score of 85% and a sensitivity score
of 70%. By changing the hyper-plane, these scores may change. However, the best
scores reached with this method are 85% of accuracy and 80% of sensitivity.

Table 1. Average accuracy and sensitivity values for different classifiers.

Decision tree Random forest SVM (RBF kernel) Multilayer perceptron

Accuracy (% ) 85 85 78 84

Sensitivity (%) 79 80 84 78

4.5 Applying Long Short-Term Memory Network Model

In order to make use of the time-series property of the data, we consider apply-
ing Long Short-Term Memory (LSTM) network models. The behavior of non-
defective freezer units under the cooling test is modeled by training a LSTM net-
work model with only data items corresponding to non-defective freezer units.
A fixed-length sliding window of a data item is taken as input in order first to
train for and then eventually to predict the value at the subsequent time step.
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We then calculate the error between the predicted value and the real measure-
ment value at that particular time step. We hypothesize that the error would be
higher for data items corresponding to defective freezer units compared to those
corresponding to non-defective units.

Fig. 5. Plot of the data of the two sensors (temperature sensor and power sensor) of
a defective unit along with the prediction values of the trained LSTM network model.
(Color figure online)

Figure 5 gives the plot of a data item of the two sensors (temperature sensor
and power sensor) for a defective unit along with the predictions of trained
LSTM network model. The actual temperature sensor values are shown by red,
temperature prediction values by blue, actual consumed power values by cyan
and finally power prediction values by black. Power values are multiplied by 10
in order to be able to show the details. Figure 6 gives the plot of the data of the
two sensors of a non-defective unit. It can be observed that prediction values
and the real values are very close in the non-defective unit graph. However, in
the defective case, the error between the prediction and actual values is high.

A threshold value for the error should be set in order to be able to decide if
the data item corresponding to a freezer unit is defective or not. There is again
a trade-off between the accuracy and the sensitivity score. We have tried several
window sizes; starting from a window size of 1 min and going up to 90 min. In
addition, different test duration values from 70 min up to 150 min and different
threshold values are tested. The best result is achieved by using a 40 min window
length: 91% of accuracy and 88% of sensitivity. Figure 7 shows the effect of the
threshold level on the accuracy. By lowering the threshold, sensitivity can be
increased. However, this also increases the number of false positives. An ideal
threshold should be determined according to the needs of the manufacturer.
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Fig. 6. Plot of the data of the two sensors (temperature sensor and power sensor) of
a non-defective unit along with the prediction values of the trained LSTM network
model.

Reducing the test time is one of the objectives of this study. We have picked
the best two performing window sizes and tested them with shorter test duration.
Table 2 shows the accuracy and sensitivity values for these settings. As expected,
as the test time reduces accuracy scores drop as well.

Table 2. Effect of test duration on the accuracy and sensitivity.

150min 140min 130min 110min 90min 70min

40min window accuracy (%) 91 90 89 87 87 86

60min window accuracy (%) 92 91 90 88 88 87

40min window sensitivity (%) 88 86 84 79 79 78

60min window sensitivity (%) 87 86 83 79 79 78

Aside from the increase in accuracy scores, LSTM network model also has
the advantage of being an on-line algorithm. This means that, the model can be
run simultaneously with the product test.
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Fig. 7. ROC curve of the best model.

5 Conclusion

Anomaly detection is an essential method in order to forecast the product quality
in manufacturing plants. The quality can be assured through tests performed
on sample units randomly chosen from a batch of manufactured units in such
a plant. With the aim to build an automated test system in Arçelik’s freezer
factory manufacturing in high volumes, our ultimate goal is to detect defective
units during the cooling test among the sample units as early as possible in
terms of test time and as accurate as possible. For this purpose, we analyzed
the cooling test data of the units sampled from the batches of manufactured
freezer units. The first steps of the analysis were composed of the embedding
and clustering of the data. Traditional classification algorithms were applied and
their performances were assessed. Finally, a deep learning method for time-series
analysis combined with a classifier was applied. Our analysis results showed the
feasibility of such an automated system. However, the classifier models described
in this study should be further studied and customized to be deployed under the
factory conditions.

An automated test system can be initially deployed to assist the human
expert performing the test. By this way, more data can be collected. Ultimately,
the automated test system should perform continual learning so that it would
learn and adapt itself in real-time. Various models of freezer units are produced
in the factory and therefore, building individual and customized test systems
for freezer models may yield better results. Since the products are sold to the
customers and problems occur at the customer side when the products are oper-
ational in the field, it would be very beneficial to find possible links between the
problems in the field and the results of quality tests performed in the factory.
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Abstract. Learning from the non-stationary imbalanced data stream is
a serious challenge to the machine learning community. There is a signif-
icant number of works addressing the issue of classifying non-stationary
data stream, but most of them do not take into consideration that the
real-life data streams may exhibit high and changing class imbalance
ratio, which may complicate the classification task. This work attempts
to connect two important, yet rarely combined, research trends in data
analysis, i.e., non-stationary data stream classification and imbalanced
data classification. We propose a novel framework for training base clas-
sifiers and preparing the dynamic selection dataset (DSEL) to integrate
data preprocessing and dynamic ensemble selection (DES) methods for
imbalanced data stream classification. The proposed approach has been
evaluated on the basis of computer experiments carried out on 72 arti-
ficially generated data streams with various imbalance ratios, levels of
label noise and types of concept drift. In addition, we consider six varia-
tions of preprocessing methods and four DES methods. Experimentation
results showed that dynamic ensemble selection, even without the use of
any data preprocessing, can outperform a naive combination of the whole
pool generated with the use of preprocessing methods. Combining DES
with preprocessing further improves the obtained results.

Keywords: Imbalanced data · Data stream · Dynamic ensemble
selection · Data preprocessing · Concept drift

1 Introduction

This work is an attempt to connect two of the important research directions,
i.e., data stream classification employing ensemble approach [12] as well as data
analysis with imbalanced data distribution [11]. Although the real data streams
may be characterized by high class imbalance ratio, which could further inhibit
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the classification task, there are not many state-of–art methods which take this
fact into account. There are only a few works that distinguish the differences
between imbalanced data stream classification problem and a scenario where the
prior knowledge about the entire data set is given. This divergence is a result of
the lack of knowledge about the class distribution and it is notably present in
the initial stages of the data stream classification. Additionally, during designing
classifiers for streaming data we have to take into consideration a few important
issues, which are usually ignored by the traditional classifier learning algorithms:

– Limited computational resources as memory and time are available.
– Usually short time limit to make a decision for each incoming sample.
– Possibility of concept drift appearance, i.e., changes in data distribution.
– Impossibility or delay in data labeling.

One of the very promising directions of the stream data analysis is classifier
ensemble, where a plethora of methods have been proposed, but this approach
still remains the focus of intense research and its high flexibility and accuracy
in many real-life decision problems brought its popularity. Nevertheless, obtain-
ing high-quality classifier ensemble depends on addressing the most important
problems on how to ensure a high diversity of the ensemble and how to produce
the final decision of the pool of individual models [20].

Kuncheva analysed different approaches of applying ensemble techniques to
data stream classification [13] and distinguished the following basic strategies of
their adaptation to new incoming data:

– Dynamic combiners, where base models are trained in advance, but the clas-
sifier ensemble is changing the combination rule (e.g., changing weights for
weighted voting or aggregation).

– Updating training data – recent training examples are used to online-update
base classifiers (e.g. in on-line bagging or its further generalizations [2]).

– Updating base classifiers.
– Update the classifier ensemble line-up, e.g., by replacing the worst performing

base classifiers by a new classifier trained on the newest data.

In this work we focus on the last strategy, precisely on the classifier (or
classifier ensemble) selection methods. They employ the idea of overproduce-
and-select, where for a given classification task we have more classifiers at our
disposal than we are going to use, but for each sample being recognized the local
competencies of individual models should be detected. Basically, there are two
approaches:

– Static selection, where a feature space is divided into several partitions and
for each of them one classification model is assigned. The decision about the
new instance is made by a classifier assigned to a partition where the example
belongs to.

– Dynamic Selection, in where the features space is not partitioned in advance,
but during the classification of a given example, the competencies of each
available classification model are evaluated and the final decision is made
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according to the most competent classifier. One of the important variation
of this domain is Dynamic Ensemble Selection (DES), which is recognized
as very promising direction in classifier ensemble learning [6]. DES uses the
notion of competence to select the best models to classify a given test instance.
Usually, the competence of a base classifier is estimated on the basis of its
immediate vicinity, called the local region of competence. It is formed using
a set of labeled samples from either the training or validation set, which is
called the dynamic selection dataset (dsel).

This work is focusing on dynamic ensemble selection used to mitigate the
difficulties related to skewed class distribution embedded in non-stationary data
streams using data preprocessing approach. In a nutshell, the main contributions
of this work are as follows:

– Presentation of several strategies used for forming dynamic selection dataset
(dsel), i.e., set of neighbouring examples of a recognizing sample.

– Proposition of a novel framework for training base classifiers and preparing
dsel for using the dynamic selection process during imbalanced data stream
classification.

– Experimental evaluation of the discussed approaches on the basis of diverse
data streams and a detailed comparison with the state-of-art method.

2 Dynamic Ensemble Selection and Data Preprocessing

Let us shortly discuss some of the most popular and recent approaches to
DES. Woloszynski and Kurzynski proposed Randomized Reference Classifier
[19], which produces supports for each class that are realizations of random
variables with the beta probability distributions. Lysiak et al. [15] discussed
how to enhance the selection step using diversity measures. Cruz et al. proposed
META-DES.Oracle [5], which employs meta-learning over multiple datasets and
feature selection to improve the selection process. Zyblewski et al. [21] proposed
the Minority Driven Ensemble algorithm, which employs dynamic classifier
selection approach to exploit local data characteristics and combat with data
imbalance.

In this paper, we consider four different DES strategies. Two of those strate-
gies (KNOR A-Eliminate and KNORA-Union) are based on oracle information,
while DES-KNN and DES-Clustering select classifiers on the basis of their local
competence but they also take into consideration an ensemble diversity. Let’s
briefly describe the methods we used during experiments.

– KNORA-Eliminate (KNORA-E) [10] selects only the local oracles - classifiers
which can correctly classify all samples within the local region of competence.
If no classifier is selected, the size of competence region is reduced by removing
the farthest neighbor,

– KNORA-Union (KNORA-U) [10] makes the decision based on weighted vot-
ing, where the weight assigned to each base classifier equals to the number of
correctly classified samples in the competence region,
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– DES-KNN [18] ranks the base models in decreasing order of accuracy and
increasing order of diversity and select the most accurate and diverse ones to
form the ensemble.

– DES-Clustering [18] uses the K-means algorithm for defining the region of
competence, then the most accurate and diverse classifiers ale selected for
the ensemble.

As we mentioned above, this work deals with DES application to imbal-
anced data classification. One of the most promising direction of imbalanced
data analysis is data preprocessing. Such methods focus on changing the data
distribution by reducing the number of majority class objects (undersampling)
or generating new minority class objects (oversampling), e.g., Random under-
sampling (rus) [1] removes random instances from the majority class, while
Random over-sampling (ros) replicates minority class examples. Nevertheless,
theses methods have the serious disadvantages, as rus may remove biased sam-
ples, what may deteriorate the classification performance, while ros may increase
the likelihood of overfitting. Therefore methods which are able to generate syn-
thetic minority examples have been developed. Chawla et al. proposed SMOTE
[4], which generates new instances from existing minority samples using its near-
est neighbors. Regular SMOTE does not impose any rule in selecting existing
instances. SVM SMOTE [16] uses an SVM classifier to find support vectors and
generate new samples based on them. Borderline SMOTE [8] selects only those
existing instances of which at least half of the neighbors are from the same class.
Borderline-1 SMOTE select neighbors from the same class as the existing sample
and Borderline-2 SMOTE considers neighbors from any class. Safe-level SMOTE
[3] samples minority instances along the same line with different weight degree,
computed by using nearest neighbour minority instances. ADASYN [9] is similar
to SMOTE but the number of generated samples is proportional to the number
of samples which are not from the same class as the selected existing instance in
a given neighborhood.

3 The Proposed Framework

To deal with the imbalanced data streams classification we propose the following
framework for classifier ensemble forming and preparing the dynamic selection
dataset (dsel) for the dynamic selection process.

Let’s assume that the data stream consists of fixed-size data chunks DSk,
where k is the chunk index and Ψk denotes the classifier trained on the basis of
the kth chunk. Each based model Ψk learns from the Tk training set which is
obtained by preprocessing DSk. dselk denotes dynamic selection dataset for the
kth data chunk and it is considered as previously preprocessed DSk−1. On the
beginning each new trained classifier (one per each incoming chunk) is added to
the ensemble until the maximum size of the ensemble (ES) is achieved. Then if
new model is added, we evaluate each classifier in the ensemble (according to bac
score) and the worst one is removed. Additionally, at each step we remove from
the ensemble all models which bac scores are lower than a given threshold α.
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Fig. 1. The framework for training base classifiers and to prepare a dsel for dynamic
selection process. Here, Tk is the training data produced by preprocessing (Preproc)
data chunk DSk and Ψk is the base classifier trained on the kth data chunk. E denotes
the classifier pool.

Pruning process is performed before adding kth classifier to the ensemble. The
concept behind the proposed framework is presented in Fig. 1 and the pseudocode
is shown in Algorithm 1.

In the beginning the classifier pool E is empty. We train our first classifier
(Ψ0) on the preprocessed zero chunk (steps 4, 5 and 6). When the first chunk
arrives, we use (Ψ0) to classify it and then we use it to train our second model
(steps 8, 9 and 10). We also store the T1 training set as the DSEL for future (step
12). Then, with the arrival of each chunk, the following steps are performed:

– In step 14, we use previously stored training set as DSEL for the dynamic
selection process to create the list of ensembles for classifying each test
instance in DSk.

– In step 15, we use the ensembles selected by DES method to classify instances
the current data chunk.

– In step 16, based on the current chunk, we evaluate bac scores of all models
in the ensemble in order to use this information for pruning in the next steps.

– In steps 17 and 18, we remove from the ensemble all models with bac scores
lower than a given threshold α.

– In steps 19 and 20, we remove the worst rated base model in the ensemble.
– In steps 21, 22 and 23 we use the data preprocessing method on the current

chunk to generate training set Tk, on the basis of which we train a new
classifier and add it to the pool E.

– Finally, in step 24, we store the current training set Tk in order to use it as
DSEL when the next chunk arrives.
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Algorithm 1. Pseudocode for the proposed framework

Input:
Fixed ensemble size (ES),
Pruning threshold (α)
E ← ∅

k ← −1
1: while Stream do
2: k ← k + 1
3: if k == 0 then
4: Tk ← Preprocess(DSk)
5: Ψk ← trainNewClassifier(Tk)
6: E ← Ψk

7: else if k == 1 then
8: DSk class ← classify(DSk, E)
9: Tk ← Preprocess(DSk)

10: Ψk ← trainNewClassifier(Tk)
11: E ← Ψk

12: DSEL ← Tk

13: else
14: DEk ← dynamicSelection(E,DSk,DSEL)
15: DSk class ← classify(DSk,DEk)
16: S ← scoreBaseModels(DSk)
17: if len(E) > 1 then
18: E ← pruneThreshold(E,S, α)
19: if len(E) > ES − 1 then
20: E ← pruneWorstClassifier(E,S)
21: Tk ← Preprocess(DSk)
22: Ψk ← trainNewClassifier(Tk)
23: E ← Ψk

24: DSEL ← Tk

25: end while

4 Experimental Evaluation

The goal of experiments is to show how the combination of dynamic ensemble
selection methods and preprocessing perform in terms of classifying imbalanced
data streams with various imbalance ratios and different types of concept drift.

4.1 Experimental Setup

As the experimental protocol test and train framework [12] was used, i.e.,
every classification model is trained on a recent data chunk, but it is evaluated on
the basis of the following one. Evaluation of the proposed framework was based



Data Preprocessing and Dynamic Ensemble Selection 373

on the balanced accuracy measure (bac) according to scikit-learn implementation
[17], which for the binary case is equal to the arithmetic mean of sensitivity (the
true positive rate) and specificity (the true negative rate) and geometric mean
measure (G-mean) according to imbalanced-learn implementation [14] defined
as g =

√
a+a−, where a+ denotes sensitivity and a− denotes specificity. As the

base classifier we used classification and regression tree (cart). For ensemble
pruning (see line 18 in Algorithm 1) we used α = 0.55, i.e., all base classifiers
which bac scores are lower than α were removed from ensemble. The choice of
this value was motivated to get the classifiers a slightly better than the random
ones. The maximum size of the classifier pool was ES = 20.

Experiments were implemented in Python programming language and may
be repeated according to source code published on Github1.

Performance of the naive aggregation of the whole classifier pool (Naive) and
the dynamic ensemble methods (KNORA-E, KNORA-U, DES-KNN and DES-
Clustering) is evaluated depending on the data preprocessing methods that they
were coupled with. Neighborhood size for des methods is k = 7.

Six preprocessing methods chosen for the experiments are: SMOTE, SVM-
SMOTE, two variants of Borderline-SMOTE (B1-SMOTE and B2-SMOTE),
Safe-level SMOTE (SL-SMOTE) and ADASYN. We also check how the ensemble
methods behave without the use of any data preprocessing.

The proposed framework was evaluated using 72 artificially generated data
streams. Each stream is composed of one hundred thousand instances divided
into 200 chunks of 500 objects described by 8 features, and contains five concept
drifts. The base concepts were generated according to procedure of creating
the Madelon [7] synthetic classification dataset, the used stream generator is
available at Github2. Each combination was generated three times, based on
the determined seeds. The variety of streams was ensured by generating three
streams for each combination of the following parameters:

– the imbalance ratio—successively 10, 20, 30 and 40% of the minority class.
– the level of label noise—successively 0, 10 and 20%.
– the type of concept drift—sudden or incremental.

The results of experiments for two measures: bac (a) and G-mean (b) for dif-
ferent ir values and drift types are presented in Figs. 2 and 3. The radar charts
present how each data preprocessing technique influenced the performance of
a given DES method and are followed by the classification results for the best
performing dynamic selection methods coupled with the most effective data pre-
processing techniques. Presented methods were selected based on the statistical
evaluation and are compared to the aggregation of probabilities of the whole
classifier pool and to the results obtained only with the use of dynamic selection
or preprocessing. The Figs. 2 and 3 show results related to different imbalance

1 https://github.com/w4k2/ECML19-IoT-DES-preproc.
2 https://github.com/w4k2/ECML19-IoT-DES-preproc/blob/master/csm/

StreamGenerator.py.

https://github.com/w4k2/ECML19-IoT-DES-preproc
https://github.com/w4k2/ECML19-IoT-DES-preproc/blob/master/csm/StreamGenerator.py
https://github.com/w4k2/ECML19-IoT-DES-preproc/blob/master/csm/StreamGenerator.py
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ratios and drift types. The complete statistical evaluation of all methods, which
was the basis for all figures shown, is available on Github3 in PDF format.

Fig. 2. Comparison of different sampling approaches for different classifier ensembles
with respect to performance measures (BAC and G-mean) for imbalance ratio 1 : 9,
2 : 8 and 3 : 7.

During evaluation of the proposed framework in the case of different types
(sudden or incremental) of concept drift, we focus on the streams with high
imbalance ratios (i.e., 1 : 9 and 2 : 8), typical for the real-life decision tasks. The
comparison is shown in Fig. 3.

3 https://github.com/w4k2/ECML19-IoT-DES-preproc/blob/master/
paper appendix/ECML19 Statistical appendix.pdf.

https://github.com/w4k2/ECML19-IoT-DES-preproc/blob/master/paper_appendix/ECML19_Statistical_appendix.pdf
https://github.com/w4k2/ECML19-IoT-DES-preproc/blob/master/paper_appendix/ECML19_Statistical_appendix.pdf
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4.2 Lessons Learned

Based on the statistical analysis, which is available in its entirety on Github (see
footnote 3) repository, we can see that for the 1 : 9 imbalance ratio, according to
bac, DES-KNN was the best performing method without the use of any prepro-
cessing. In cases where we coupled DES with preprocessing methods, KNORA-U
performed best except for the use of SL-SMOTE, where it was not statistically
better than DES-KNN. According to G-mean for 1 : 9 ir DES-KNN was statisti-
cally the best dynamic ensemble selection method. For the Borderline2-SMOTE
preprocessing method, both DES-KNN and KNORA-U performed statistically
similar. The best preprocessing methods were SVM-SMOTE and Borderline2-
SMOTE.

Fig. 3. Comparison of different sampling approaches for different classifier ensembles
with respect to performance measures (BAC and G-mean) for imbalance ratio 4 : 6
and for sudden drift and incremental drift.
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For the 2 : 8 ir, both in terms of bac and G-mean, KNORA-U performed the
best when paired with any preprocessing method. In case of not using any data
preprocessing, DES-KNN was statistically the best. As for preprocessing tech-
niques, in most cases the SVM-SMOTE was statistically significant, Borderline2-
SMOTE performed the best for naive aggregation of the whole classifier pool.

For the 3 : 7 imbalance ratio, again, KNORA-U turned out to be statisti-
cally the best DES method. Only exception (according to G-mean) was the case
when we do not use preprocessing, then DES-KNN works best. Best performing
data preprocessing method for DES, according to both measures, was the SVM-
SMOTE. Borderline2-SMOTE again performed the best for naive aggregation.

In case of 4 : 6 ir according to both bac and G-mean KNORA-U was the
statistically significant DES method in every case. Borderline2-SMOTE worked
best for naive aggregation and in the remaining cases SVM-SMOTE was statis-
tically the best preprocessing method.

For sudden drift, in terms of both measures, DES-KNN was statistically the
best without the use of any preprocessing method and KNORA-U was statisti-
cally leading when paired with every oversampling method. Borderline2-SMOTE
was the best for naive aggregation and for KNORA-U according to G-mean, for
the rest of DES methods SVM-SMOTE performed the best.

Finally, for incremental drift, according to bac, DES-KNN performed statis-
tically the best without the use of preprocessing and for the SL-SMOTE while
KNORA-U was the best for other oversampling techniques. SVM-SMOTE was
the best preprocessing method for KNORA-E, DES-KNN and DES-Clustering
and Borderline2-SMOTE performed the best coupled with naive aggregation and
KNORA-U. According to G-mean, KNORA-U was statistically leading DES
method for Borderline2-SMOTE and ADASYN while DES-KNN was statisti-
cally significant for all other preprocessing techniques. SVM-SMOTE worked
best with KNORA-E and DES-KNN, Borderline2-SMOTE proved to be statis-
tically significant for naive aggregation, KNORA-U and DES-Clustering.

In general, the order of the presented approaches in terms of performance,
starting with the worst, is as follows: (1) naive aggregation without the use of
any preprocessing methods → (2) naive aggregation combined with preprocessing
→ (3) dynamic ensemble selection methods without preprocessing → (4) DES
methods coupled with preprocessing methods. The lower the imbalance ratio, the
smaller the differences between approaches, but the order is maintained. The
conducted experiments showed that the best performing DES method among
the considered strategies across all tested imbalance ratios is the KNORA-U,
which uses the weighted voting scheme. As the KNORA-Union method selects
all base models that are able to correctly classify at least one instance in the
local region of competence and then it combines them based on the weighted
voting, where the number of votes is equal to the number of correctly recognized
samples, it allows us to select both accurate and diverse ensemble. As both of
these characteristics are determinants of a good classifier ensemble model, they
may be the reason for high results of this DES method. Worth mentioning is also
the DES-KNN, which is doing well for high imbalance ratios, especially for the
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10% of minority class and for incremental drift in terms of G-mean. DES-KNN
performs the best for high IR (10 and 20% of minority class) in case of not using
any preprocessing method. The worst performing DES method, for low IR (30
and 40%) worse even than naive aggregation, was KNORA-E. This may be due
to the fact, that the local oracles are found only for regions of competence with
a significantly reduced size, which negatively affects the performance.

Based on the results achieved by DES-KNN and DES-Clustering methods
we may suspect that the K-Nearest Neighbors technique is better suited for
defining the local region of competence in case of imbalanced data streams than
the clustering technique. Despite the higher computational cost, KNN allows for
more precise estimation of the region of competence which leads to more possible
ensemble configurations for classifying new instances.

On the other hand, SVM-SMOTE and Borderline2-SMOTE have proven to
be the preferred preprocessing strategies for the used dynamic ensemble selec-
tion methods. The combination of KNORA-U or DES-KNN with one of those
preprocessing methods always leads to the best classification performance.

5 Conclusions

The main goal of this work was to propose a novel framework for training base
classifiers and preparing the dynamic selection dataset (dsel) for the dynamic
selection process during imbalanced data stream classification. We proposed
the self-updating ensemble model employing data preprocessing techniques. The
computer experiments confirmed the effectiveness of the proposed framework and
based on the statistical analysis we can conclude that dynamic ensemble methods
coupled with data preprocessing techniques are statistically significantly better
than the approaches that do not combine both of these concepts.

The results presented in this paper are quite promising therefore they encour-
age us to continue our work on employing dynamic ensemble selection for imbal-
anced data stream classification. Future research may consist of analysing dif-
ferent methods of defining the local region of competence (e.g. applying various
distance metrics) and the development of a weighted voting combination app-
roach based on the KNORA-Union, specialized in dealing with imbalanced data.
Analysing the impact of pruning threshold α value on the performance of DES
methods for the proposed framework might be another idea worth noting.
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Abstract. Data are growing fast in today’s world and great portion
of that is in the form of stream. In many situations, data streams are
imbalanced making it difficult to use with classical data mining methods.
However, mining these special kinds of streams is one of the most attrac-
tive research area. In this paper, we propose two algorithms for learning
from imbalanced regression data streams. Both methods are based on
Chebychev’s inequality but in a different way. The first method, under-
samples from the frequent target value examples while the second method
over-samples the rare and extreme target value examples. This way, the
learner will focus in the rare and more difficult cases. We applied our
methods to train regression models using two benchmark datasets and
two well-known regression algorithms: Perceptron and FIMT-DD. Our
obtained results from the simulations indicate the usefulness of our pro-
posed methods.

Keywords: Data streams · Imbalanced data streams · Chebyshev’s
inequality

1 Introduction

Data streams are a large volume of data originated from one or more sources
arriving in a sequential manner. There are various applications that generate
streaming data, like network traffic, financial transactions, telecommunication
calling records, remote surveillance system, share market data, remote sensor
etc. The data coming from these sources must be processed before they become
outdated and the decisions must be taken in real time. The big volume and speed
of data streams are the two main challenges in their mining process. Data stream
mining can be investigated in classification and regression problems depending
whether the target variable is discrete or continuous. In both domains, data
stream can be skewed meaning that the distribution of the target variable is
imbalanced and its most important values are scarcely represented [3].

Take for example, the problem of predicting the probability of debtor’s delin-
quency from a credit scoring data stream. In such data stream, only small per-
centage of the observations are delinquent but the goal is to have a prediction for
c© Springer Nature Switzerland AG 2020
P. Cellier and K. Driessens (Eds.): ECML PKDD 2019 Workshops, CCIS 1168, pp. 380–389, 2020.
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these cases as much correct as possible. Similar situations are observed in other
areas, such as detecting network intrusions [5], managing risk and predicting
failures of technical equipment.

In these kind of problems, classical learning algorithms lose their effectiveness
because they concentrate in the frequent cases, and tend to ignore rare cases.
The learned model will be biased towards the frequent cases. In other words,
classical learning algorithms have problems in dealing with infrequent and rare
cases.

Performance evaluation may also be affected by imbalanced data sets. Imag-
ine in the above-mentioned example, we use accuracy as the metric for evaluation
the model. In such situation, the accuracy of the model may be high but the
predicted values of the probability for delinquent debtors can be disappointing.
That is because the model is trained mostly over the frequent cases, the accuracy
of prediction for these cases are high affecting the overall accuracy. However, in
this case, the accuracy of the prediction for our desired cases (i.e. delinquent
debtors) may be disappointing. This example shows that conventional metrics
based on the average behavior, such as accuracy or mean square error, are no
longer effective for assessing the performance of a given model.

The focus of this paper are regression problems. We propose two novel
under/over sampling methods for handling imbalanced data streams. In the
next section, we have a brief review over past works in this area. We present
our methods in Sect. 3 which is followed by illustrating our obtained results in
Sect. 4. Finally, we draw our conclusions in Sect. 5.

2 Related Work

One of the solutions for tackling imbalanced distribution problems is modifying
the original collection of training set in order to reduce or eliminate the extent
of imbalance in datasets. Generating new examples for the rare cases (over-
sampling) [1], getting rid of objects from frequent cases (under-sampling) [7]
and combining both methods [9] to change the distribution balance of original
data are the techniques called data-level solutions.

Nitesh et al. [4] proposed a method for classification in imbalanced context
called SMOTE (Synthetic Minority Over-sampling TEchnique), that has gained
intensive attention. In their approach, synthetic examples are generated from
the minority class examples. Each synthetic example is generated from the com-
bination of a minority class example and any or all of its k nearest neighbours.
Their experiments showed that the combination of SMOTE and random under-
sampling surpassed their previous methods.

SmoteR [11] was introduced for addressing imbalanced regression tasks,
which has been inspired from SMOTE. SmoteR partitioned samples into normal
and interesting cases by using a user defined relevance function. Cases with a
relevance value higher than a user defined threshold are considered interesting,
and the others are considered normal cases. To get ride of imbalanced distribu-
tion, both under-sampling and over-sampling is applied by SmoteR. The normal
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cases are randomly under-sampled while interesting cases are over-sampled in a
more informed way. The over-sampling of SmoteR is an adaption of that from
SMOTE in which two interesting examples are picked up and a new synthetic
example is build by their interpolation. Also, weighted average of the target
values of the two examples yields the target value for the new created example.

Random Over-Sampling (RO) and introduction of Gaussian Noise (GN),
which was originally developed for classification tasks, were adopted recently
for regression problems in [3]. The range of the target variable is partitioned
into several bins where each bin contains only the interesting examples or the
normal examples. To specify whether an example is interesting or normal, a user
defined relevance function and threshold is used as in SmoteR. Starting from the
smallest target value, each example is labeled as normal or interesting. At the
end, consecutive examples with the same label construct a bin in which all exam-
ples are normal or interesting. In the RO method, replicas of the examples in
the interesting bins are added to make the dataset balanced. In the GN method,
normal examples are randomly under-sampled but for over-sampling, they have
adopted the classification method described in [8] for regression tasks. To create
a new example, they chose an example from interesting bin and add a random
noise to both its features and its target value. Another method introduced in [3]
is WEighted Relevance-based Combination Strategy (WERCS) in which exam-
ples are given a weight based on their relevance value of the target variable.
Each example can be over or under sampled but with a different probability.
Examples with high relevance value (weight) have small chance to be selected
for removing from the dataset (under-sampling) but have a great chance to be
candidate for contributing in an over-sampling procedure.

3 Problem Definition

We consider the online learning framework. In this framework, when an example
becomes available, the current decision model makes a prediction. Only after the
prediction has been taken, the environment reacts providing feedback, e.g. the
true value of the target variable.

In this paper we address regression problems in which the output variable
is continuous. Suppose a sequence of instances in the form of pairs (xt, yt−1),
arriving one at a time. xt is a p-dimensional vector belonging to an instance space
X observed at time t, and yt−1 is the true value for the output corresponding
to xt−1. Prediction of yt−1 has been done over xt−1 at time t − 1. Instead of
minority class examples, we use rare extreme values, as the target variable is
continuous. Let H(x) be the online learner, updating its hypothesis H : X → Y
sequentially with the example at the current time step. When a target instance
xt arrives, the task of H(x) is to predict its output value i.e. yt, such that this
prediction minimize the prediction error on cases in which the target variable
has a rare extreme value, during the learning process.
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4 Proposed Method

In the following sections, we propose two methods for learning from imbalanced
data stream. Both methods are based on the Chebyshev inequality. This inequal-
ity is derived from Markov inequality and can be used to bound the tail proba-
bilities of a random variable Y .

The Chebyshev inequality guarantees that in any probability distribution,
‘nearly all’ values are close to the mean. More precisely no more than 1

t2 of
the distribution’s values can be more than t standard deviations away from
the mean. Although conservative, the inequality can be applied to completely
arbitrary distributions (unknown except for mean and variance). Let Y be a
random variable with finite expected value y and finite non-zero variance σ2.
Then for any real number t > 0:

Pr(|y − y| ≥ tσ) ≤ 1
t2

(1)

Only the case t > 1 provides useful information. When t < 1 the right-hand side
is greater than one, so the inequality becomes useless, as the probability of any
event cannot be greater than one. When t = 1 it just says the probability is less
than or equal to one, which is always true. Therefore, for t = |y−y|

σ and t > 1,
the rareness score of an observation Y is:

P (| y − y |= t) =
1

( |y−y|
σ )2

(2)

The above definition states that the probability of observing y far from the
mean is small and it decreases as we get farther away from the mean. In imbal-
anced data streams, rare cases are more likely to occur far from the mean while
frequent examples are closer to the mean. So, given mean and variance of a
random variable, the Chebyshev’s inequality is an indication of the degree of
rareness of an observation.

Figure 1a shows the probability values calculated from Eq. 2 for ailerons
dataset1, which is an imbalanced dataset. Box plot of the output variable for
the mentioned dataset is also illustrated in Fig. 1b. As can be seen from these
figures, Chebyshev’s probability value for examples near to the mean is close to
one and the value decreases as we are getting far from the mean until it gets
close to zero for examples in the farthest distance. As a result, the output value
from Eq. 2 can indicate if an example is a rare case or a frequent one.

After being able to specify if an example in data stream is a rare extreme
value case or a frequent one, the next step would be training the learner using
this extra information. In this paper, we use this extra information and propose
an under-sampling as well as an over-sampling method.

1 https://www.dcc.fc.up.pt/∼ltorgo/Regression/ailerons.html.

https://www.dcc.fc.up.pt/~ltorgo/Regression/ailerons.html
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(a) Chebyshev’s probability

(b) Boxplot

Fig. 1. Chebyshev’s probability and Boxplot for the target variable Y in ailerons
dataset

4.1 Under-Sampling

As it is mentioned above, Chebyshev’s probability value for the frequent target
value examples are high while the value is low for the rare extreme target value
cases. In order to do under-sampling over data, first, Chebyshev’s probabilities
value of the examples are reversed. Then the learner is trained over each example
based on the corresponding inverted probability of the example. The probabilities
value are reversed by subtracting them from the max value that is one, as follows:

inv(P (| y − y |= t)) = 1 − P (| y − y |= t) =

{
1 − σ2

|y−y|2 , t > 1

0, t ≤ 1
(3)

Figure 2 shows the output of Eq. 3 for the ailerons dataset, which is the inverse
of Fig. 3b. Our proposed under-sampling method is illustrated in Algorithm 1.

Fig. 2. Inverted probability values for the Ailerons dataset using Eq. 3
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In this algorithm, first, a learner is created with random value for its param-
eters. Then, it calculates the mean and the variance from the target variable
examples through recursive methods. That is, they can be estimated for a dataset
including n + 1 examples if we just have access to the mean and the variance
values for n examples and we access to the (n+1)-th example itself. The greater
n we have, the more accurate estimation will be. For the first examples, mean
and variance are not accurate and, therefore, Chebyshev’s probability will not be
accurate enough. That means that, we can not specify if the incoming example is
a rare or a frequent one. In this situation the learner is trained over the example
but we use the example for calculating mean and variance. We define this phase
of the algorithm as the warming phase. Using the warming phase, our estimates
of the used statistics (i.e. mean and variance) become stable, which enables the
algorithm to detect rare and frequent examples. The warming phase size (WS)
parameter in the algorithm determines the number of examples considered for
making the statistics value stable. After the warming phase, for each incom-
ing example, inverted Chebyshev’s probability is computed and the learner is
trained over the example only if a random number is less than that value. So,
it is expected the learner to be trained over large portion of rare cases and a
small percentage of frequent examples. This results in training the learner over
a nearly balance dataset.

Algorithm 1. The proposed Under-sampling Algorithm
1: procedure under-sampling(S:datastream, WS: warming phase size)
2: H ← CreateEmptyModel()
3: i ← 0
4: while true do
5: 〈x, y〉 ← GetExample()
6: ŷ ← H(x)
7: y, σ ← UpdateStatistics(y)
8: if i < WS then
9: H ← TrainModel(H, 〈x, y〉)

10: else
11: p ← ComputeInvProbability(y, y, σ) � Equation 3
12: if RandomNumber < p then
13: H ← TrainModel(H, 〈x, y〉)
14: end if
15: end if
16: i ← i + 1
17: end while
18: end procedure

4.2 Over-Sampling

Instead of training the learner over a small portion of frequent examples, we can
re-train the learner several times over rare extreme value cases. We compute the
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value of t = |y−y|
σ , where t can be any number in [0 + ∞). Like the previous

case, the value for frequent examples is small, while it is large for the rare cases.
We limit the function to produce only natural numbers as follows:

k = �t =
|y − y|

σ
�, t > 1 (4)

For each observation, the output value of Eq. 4 corresponds to the number
of times that the learner is trained with that observation. Algorithm 2 describes
our over-sampling proposed method.

Algorithm 2. The proposed Over-sampling Algorithm
1: procedure OverSampling(S: datastream,WS: warming phase size)
2: H ← CreateEmptyModel()
3: i ← 0
4: while true do
5: 〈x, y〉 ← GetExample()
6: ŷ ← H(x)
7: y, σ ← UpdateStatistics(y)
8: if i < WS then
9: H ← TrainModel(H, 〈x, y〉)

10: else
11: k ← ComputeK(y, y, σ) � Equation 4
12: for i ← 1 to k do
13: H ← TrainModel(H, 〈x, y〉)
14: end for
15: end if
16: i ← i + 1
17: end while
18: end procedure

Like in the previous method, we use a warming phase to stabilize the statistics
parameters. After that, the learner is trained one or multiple times over each
example based on the output of Eq. 4 for that example.

5 Experimental Results

As we mentioned before, in real world, the cost of the errors over rare cases is
more than those over the frequent examples. To simulate this, we have used a
relevance function φ() [10] giving weight to each example of dataset. Figure 3
shows the weights given to the examples in the aileron dataset, according to the
distribution of the target variable. This relevance function takes values between
0 and 1 and smoothly interpolates boxplot statistics of the target variable. The
goal is that 0 is assigned to the median of the target variable and 1 to the
most extreme cases. As can be seen in Fig. 3a, value of the weights for frequent
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(a) Relevance Function φ()

(b) Boxplot of the target variable.

Fig. 3. φ() relevance function and boxplot of the target variable Y in ailerons dataset

examples is small but it grows as we go far from the mean until it reaches its
maximum over the rare cases.

As evaluation metric, we use modified RMSE function formulated in Eq. 5
where the prediction error for each example is multiplied by the relevance φ()
value assigned to that example, according to its target variable value.

RMSEφ =

√√√√ 1
n

n∑
i=1

φ(yi) × (yi − ŷi)2 (5)

In the above equation, yi,ŷi and φ() refer to the true value, the predicted
value and relevance value for i-th example in the dataset, respectively.

To demonstrate the effectiveness of our proposed methods, we perform exper-
iments over two real world datasets which are summarized in Table 1. We use
a combination of Java (using MOA package) and R programming language in
a laptop equipped with an Intel Core i7-45510U CPU @ 2.00 GHz processor
and 8.00 GB of RAM for implementations. We report the mean and variance of
RMSEφ averaged over 10 runs.

Table 1. Datasets characterization.

Dataset # Attributes # Examples

Ailerons 40 13750

Elevator 19 16559

We have used two learner models for prediction over each dataset: percep-
tron [2] and fast incremental model trees with drift detection (FIMT-DD) [6].
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In each experiment two instances from one type of a learner model are created
with the same random initial parameters. One of the instances is trained using
our methods and the other is trained over all of the examples in the dataset. In
all experiments, warming size parameter has been set to 100. We use prequential
evaluation scheme in which we first make prediction for each example and then
the example is considered as a candidate for training. The obtained results for
the proposed methods are reported in Tables 2 and 3.

Table 2. RMSEφ for the Baseline and the Under-sampling method (Algorithm 1)

Dataset Perceptron FIMT-DD

Baseline Under-sampling Baseline Under-sampling

Ailerons 0.0079 ± 0.0052 0.0022 ± 0.0007 0.0063 ± 0.0000 0.0006 ± 0.0000

Elevator 0.0257 ± 0.0189 0.0096 ± 0.0004 0.0317 ± 0.0129 0.0100 ± 0.0013

Table 3. RMSEφ for the Baseline and the Over-sampling method (Algorithm 2)

Dataset Perceptron FIMT-DD

Baseline Over-sampling Baseline Over-sampling

Ailerons 0.0079 ± 0.0052 0.0043 ± 0.0010 0.0063 ± 0.0000 0.0060 ± 0.0000

Elevator 0.0257 ± 0.0189 0.0210 ± 0.0012 0.0317 ± 0.0129 0.0241 ± 0.0027

As can be seen from the above tables, our method yields to smaller RMSEφ

in all cases. Also, the proposed under-sampling method seems to be more effective
than our over-sampling method.

6 Conclusions and Future Work

In this paper, we introduce two data-level algorithms for learning from imbal-
anced regression data streams. Both methods are independent of the learning
algorithm. Both methods are based on Chebychev’s inequality but in a different
way. The first method, under-samples from the frequent target value examples
while the second method over-samples the rare and extreme target value exam-
ples to create a more balanced dataset for the learner. We applied our methods
to train regression models using two benchmark datasets and two well-known
regression algorithms: Perceptron and FIMT-DD. For comparative purposes, we
use, as baseline, the same regression algorithms, without any re-sampling tech-
nique. The experimental results, show that our methods reduce prediction errors,
in both datasets The impact of the re-sampling strategies is a reduction of the
largest errors of the baseline.
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This improvement encourages us to further pursue this work. The methods
needs to be compare with other state-of-art algorithms from data stream mining
community. There are still some issues that need to be addressed. For example,
the optimum value for the warming size parameter should be better explored. In
the future works, we will apply our methods over more datasets and using other
learning models.

Acknowledgments. This research was carried out in the context of the project Fail-
Stopper (DSAIPA/DS /0086/2018).
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Abstract. Many aspects of life are associated with places of human
mobility patterns and nowadays we are facing an increase in the perva-
siveness of mobile devices these individuals carry. Positioning technolo-
gies that serve these devices such as the cellular antenna (GSM net-
works), global navigation satellite systems (GPS), and more recently
the WiFi positioning system (WPS) provide large amounts of spatio-
temporal data in a continuous way. Therefore, detecting significant places
and the frequency of movements between them is fundamental to under-
stand human behavior. In this paper, we propose a method for discov-
ering user habits without any a priori or external knowledge by intro-
ducing a density-based clustering for spatio-temporal data to identify
meaningful places and by applying a Gaussian Mixture Model (GMM)
over the set of meaningful places to identify the representations of indi-
vidual habits. To evaluate the proposed method we use two real-world
datasets. One dataset contains high-density GPS data and the other one
contains GSM mobile phone data in a coarse representation. The results
show that the proposed method is suitable for this task as many unique
habits were identified. This can be used for understanding users’ behav-
ior and to draw their characterizing profiles having a panorama of the
mobility patterns from the data.

Keywords: Habits · Meaningful places · Gaussian Mixture Model ·
Pattern · Mobility · Spatio-temporal clustering

1 Introduction

Understanding human mobility patterns can help in the exploration of the under-
lying driving factors of society as many aspects of life are associated with them.
The first efforts to learn human mobility patterns were associated with classic
social sciences. Since the nineteenth century, sociologists in what are called time-
use or time-budget studies have been measuring the time people spend doing dif-
ferent activities throughout the day [13]. In contrast, methods for human mobil-
ity data collection have shifted over time as now both developed and developing
countries are facing the increase of the pervasiveness of mobile devices [3,6].
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https://doi.org/10.1007/978-3-030-43887-6_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43887-6_32&domain=pdf
https://doi.org/10.1007/978-3-030-43887-6_32


Mining Human Mobility Data to Discover Locations and Habits 391

Positioning technologies that serve these devices such as the cellular antenna
(GSM networks), global navigation satellite systems (GPS), and more recently
the WiFi positioning system (WPS) provide large amounts of spatio-temporal
data in a continuous way at low costs [9]. When dealing with raw data, final users
cannot make sense of it without processing and applying techniques to extract
meaningful information from its content. Many researchers have made efforts
in exploring these data in order to find places, locations, and regions [7,17,18].
Hence, individuals can state a place as something with a meaning such as work,
home, university while a pair of numbers like “39.98450, 116.29929” has no use-
ful meaning to them. Therefore, detecting significant places and the frequency
of movements between them is fundamental to understand human behavior.

Several studies confirmed the intuition that human mobility is highly pre-
dictable, centered on a small number of base locations [5]. This opens a wide
range of opportunities for more intelligent recommendations and support for
routine activities. Still, empirical studies on individual mobility patterns are
scarce.

The main contributions of this paper are related as follows: we introduce
a new dataset acquired from a Telecom company that comprises many differ-
ent cities in Brazil. We also present a new density-based clustering for spatio-
temporal data to identify meaningful places. Moreover, in the last step, we apply
a Gaussian Mixture Model (GMM) over the Origin × Destination matrix of trips
between meaningful places to automatically separate the trajectories for identi-
fication of user habits.

The following section presents the literature review and the most important
related works. The remainder of the paper describes the methodology and the
data sets utilized to assert the validity of the methods in Sect. 3, in Sect. 4 we
discuss the experiments and results obtained. Finally, the conclusions and future
work are presented in Sect. 5.

2 Related Work

Many researchers have been proposing methods to identify meaningful locations
and habits from users for diverse goals. In this section, we review some relevant
works which leverage the information contained in GPS and mobile phone data
(GSM) for a multitude of different applications.

According to [7], several methods based on density have been proposed in
order to discover regions of interest although most of these methods are used
to aggregate spatial point objects. Some authors were more interested in the
semantic movement trajectories. [8] introduced a model that makes use of move-
ment datasets which has trajectories defined as sequences of time-stamped stops
and moves between locations. In order to discover personalized visited-POIs,
[11] proposed a method to estimate fine-grained and pre-defined locations. In [1]
the authors explore raw GPS data to identify meaningful places in a region and
describe user’s profiles and similarities among them.

Many researchers were also interested in mobility patterns. Most location-
based services provide recommendations based on a user’s current location or
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a given route or destination. Even though there are indications that human
movement is highly predictable, daily and weekly routines of individual users
constitute a largely unexplored and unexploited area. [12] used more than 800
million of CDR data to identify weekly patterns of human mobility through
mobile phone data. In [10], the authors present a methodology based on density-
based clustering, clustering-based sequential mining and Apriori algorithm for
analyzing user location information in order to identify user habits.

3 Problem Statement and Methodology

The objective of this work is to propose a methodology to identify user habits
from GPS and GSM data without any apriori or external information. We pro-
pose a variation of DBSCAN clustering technique that is able to perform cluster
of locations like buildings and squares in a better way and apply a GMM in
order to separate the days and hours a given user moves between the clustered
locations.

Before entering in details of the methodology, we introduce the definition of
points and trajectories:
A point is a triple of the form p = (latitude, longitude, time) that represents
a latitude-longitude location and a time-stamp. A trajectory is a sequence of
ordered points triples Tr = (p1, p2, . . . , pn) where pi is a point and p1.time <
p2.time < ... < pn.time.

The first step of the methodology is the preprocessing task that is including
among other activities, the data cleaning process where we perform outliers and
noise removal. The second is the feature engineering to derive new information
from the original data (in the form of latitude, longitude, and a time-stamp)
to calculate key features such as time delta of the transitions, traveled distance
between points, velocity, start and stop positions, time and day of the week,
length and duration of a trajectory. In this work, we denote a new trajectory
every time an individual stop moving or the time delta between points is more
than 30 min.

3.1 User Stay Points Detection

Stay points are regions where a given user has stayed for a while within a defined
radius. The algorithm is a hybrid density and time-based proposed in [15] that
calculates the distance between two sets of points p1 and p0 in order to find
those that are below a distance threshold. Next, it checks for how long the user
stayed in that radius by looking at time threshold. At last step, it calculates the
stay points centroid by getting the mean of the coordinates of the set of points.
For this experiment, we set the parameters Distance-threshold as 200 m and the
Time-threshold to 20 min as suggested in [18].
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3.2 Meaningful Locations

A meaningful place is defined as a frequent location visited by an individual and
does not need to be related to any other person or group like in the case of the
POIs. Taking into account we already have the user’s stay points, now we need
to look for those places (stay points) a person visits repeatedly in order to form
the so-called users’ meaningful places.

Location detection techniques commonly make use of density-based meth-
ods. This is because the mechanism of density-based clustering is able to detect
clusters of arbitrary shapes without specifying the number of the clusters in the
data a priori and is also tolerant of outliers (noise).

The Location Clustering method proposed by [2], operates attributing in a
way that once it forms a cluster, these points are eliminated from the neigh-
bourhood and avoid new points to overlap to them. In this way, the remaining
observations are available to form new clusters surrounding the previous center
that could maybe be part of it. Our method, on the other hand, keeps a short
memory for those points revisiting and maybe reclassifying them to the new
cluster as the density of the new class turns to be more relevant.

One main advantage over the classical DBSCAN [4] implementation is that
given the arbitrary shape of the trajectories, sometimes the clusters form straight
chains which may not be a good representation of a location as normally build-
ings are in a squared or circular shape. Our method is robust to these situa-
tions as it classifies as noise those points that fall out of the neighbour’s radius
which is away from the centroid of the cluster. Another drawback of this original
DBSCAN approach is that it does not return a centroid for each cluster. As we
are looking for meaningful places over the set of stay points (Sect. 3.1), we need
to find the centroid for each of the returned labels of the DBSCAN.

To overcome these issues, we propose a variation of the clustering algorithm
DBSCAN [4] and Location Clustering [2] methods. The method starts searching
for a given p point neighbours (MinPts) in as Eps radius. While the set of
neighbours still changing, it keeps on looping through the data points. Once it
stops changing, it checks if the number of items in the class is greater than the
minimum points to form a cluster. If this condition holds, we set all the points
into this given neighbourhood to noise and move the centroid of the list of points
to iterate over again. The algorithm proposed is described the pseudo-code 1.

3.3 Identification of Habits

Individuals have a remarkable propensity to return to their frequently visited
places. Hence, the interactions between individuals and these places are likely to
represent the individual’s characteristics. After clustering the user stay points
into meaningful places as described in Sect. 3.2 we ended up with: trajectories
connecting non-meaningful places (those who start and end in places classified
as noise), trajectories connecting one meaningful place at the end or at the start
and trajectories connecting two meaningful places. For the habits study purpose,
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Algorithm 1. DBMeans Algorithm
1: function DBMeans(P, eps, MinPts)
2: % P : a set of points (lat, long)
3: % eps: the radius of the cluster > 0
4: % MinPts: the minimum size of a cluster > 0
5: % C: the label of each point in P
6: C ← NOT VISITED
7: Centroids ← []
8: while ∃ pc ∈ P |C(pc) = NOT VISITED do:
9: M ← {pc}
10: Mbak ← {∅}
11: C(pc) ← NOISE � Mark pc as noise
12: c = pc � Random choice from shuffled input P
13: while M �= Mbak do
14: Mbak ← M
15: M ← {∅}
16: CM ← []
17: for each px ∈ P do:
18: if distance(c, px) < eps then
19: M ← M ∪ {px}
20: if C(px) /∈ {NOTV ISITED, NOISE} then
21: CM ← CM ∪ {C(px)}
22: c ← Mean(M)
23: for each cm ∈ set(CM ) do:
24: if |cm| ≥ MinPts then
25: CM (CM = cm) ← NOISE � Mark cm as noise
26: Centroids ← Centroids \ cm
27: C(M) ← cc � Mark all neighbour points with the same class
28: Centroids(cc) ← c

29: C ← predict(P, Centroids, eps)
30: return C

we will focus on the last item as we are interested in discovering frequent move-
ments across meaningful places.

From this list of grouped trajectories is possible to identify the most impor-
tant places of a given user as we can perform a count on the occurrences of trips
connecting two locations. Groups with very low values, close to zero, means that
there are no habits connecting those places or the eps parameter used to perform
the clustering in step 3.2 is too small. For this study, we are considering only
the two locations that have at least 5 (five) trajectories connecting them.

3.4 Gaussian Mixture Model to Classify the Different Habits

In order to discover user habits, we need to analyze the features that are emerging
from the discovery process. One way we can utilize to separate the trips into
habits is by the time they happen. To tackle this issue we create two new features,
deriving a sine and cosine transform from the start hour.

In Fig. 1 we show an example of the transformation based on the start hours
all trajectories of a user to show the new representation of time.

The cyclical representation of the time is not enough when dealing with
individuals that use to go to a certain place in a non-strict way. The distribution
of the data may be non-normal resulting in more than one peak along the day.
Here we propose utilizing a Gaussian Mixture Model to handle these cyclical data
and segment it into habits in a dynamic way. Figure 2 shows the starting hours of
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Fig. 1. Transformation of the start hour based on the Sin and Cos. The left image
represents the hours in a plain representation (X axis is the trajectory order), the right
is a circular where two or more points can fall over the same region no mater the
trajectory order

a given user habit. One can notice that this user has 37 different starting hours
for the same Origin × Destination pair and is possible to verify the segmentation
made by the multiple Gaussians in the start hour distribution. Note that there
are blue dots on the top and the bottom of the left image representing the same
class of trajectories that occur close to 23:00 pm and 02:00 am.

(a) Starting hours and
their classes.

(b) Histogram of the starting
hours with three main peaks.

(c) Densities of the mix of
Gaussians found over the

distribution.

Fig. 2. GMM model over the start hours of the trajectories. (Color figure online)

4 Experiments and Results

In this section, several experiments with the two real-world datasets are per-
formed to evaluate our proposed method. The datasets description and their
preparation are described in Subsect. 4.1. Subsection 4.2 corresponds to cluster-
ing results and Subsect. 4.3 presents the results regarding the habits extraction.

4.1 Datasets

Geolife GPS Dataset. This GPS trajectory dataset was collected in (Microsoft
Research Asia) Geolife project by 182 users in a period of over three years (from
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April 2007 to August 2012). The dataset contains 17,621 trajectories with a total
distance of about 1,2 million kilometers and a total duration of 48,000+ hours.
These trajectories were recorded by different GPS loggers and GPS-phones, and
have a variety of sampling rates. 90% of the trajectories are logged in a dense
representation, e.g. every 1 to 5 s or every 5 to 10 meters per point [16–18].

GSM Telecom Dataset. This is a new dataset based on mobile phone (GSM)
data. The dataset contains 526,894 instances from a period of 12 months or 350
days starting on September 2017 and finishing in September 2018 consisting of
4,545 different individuals. After cleaning and removing the duplicates, it was
reduced to 461,778 instances. The points were recorded in many cities in Brazil
with a coarse granularity of one point at every 15 min. No information about the
users is derived from these data, as the entire dataset is anonymized. Each point
consists of a user sequential identification number, a pair of (latitude, longitude),
and a timestamp. All the data was delivered in a single file that is available in
the project folder on the web page.1

4.2 Clustering Results

Following we present the results of the experiments over the two datasets with
respect to the identification of Meaningful Places. To conduct the experiments
over the Geolife dataset we elected the individual ‘004’ who seems to be an
average person. This user has 1.100 trajectories starting from 2008-10-23 to
2009-07-28 in which are related to 2.437 stay points. From those stay points, 50
meaningful places (MPs) were identified by using the clustering method proposed
in Sect. 3.2. The top two MPs are latitude = 39.99993, longitude = 116.32730
which has 659 visits, and latitude = 40.01086, longitude = 116.32186 with a
counting of 235 times. Here we set the Home (Qinghuayuan Residential Dis-
trict) and Work (Tsinghua University Northwest) locations respectively based
on the frequency of these observations as many other works propose [2,5,10,14].
To perform a visual inspection of the formed clusters, Fig. 3 illustrates the differ-
ences obtained using each one of the methods. Notice that our approach results
in clusters that are more robust and handle the noise with more efficiency.

Regarding the GSM Mobile Telecom dataset, as in this dataset the granu-
larity is coarse, the results are quite different from the ones shown in the GPS
dataset as we have one observation at every 15 min. Although Brazil is a very
large and populated country, the latitudes and longitudes encountered in this
dataset fall into some very small up to medium cities with traffic conditions very
different from Beijing. One can notice that in this case, a 15-min interval can
lead to the transportation of the individual to a very different location without
any details of the trajectory taken. Basically, we end up with the start and end
of the trajectory only. To conduct the experiments over this dataset we elected
the individual ‘10837’. This user has 19 trajectories starting from 2018-05-10
to 2018-07-01 in which are related to 135 stay points from 4 meaningful places
1 https://bit.ly/2ZVERKO.

https://bit.ly/2ZVERKO


Mining Human Mobility Data to Discover Locations and Habits 397

(a) Our method returns
more concise clusters as it
doesn’t erase the nearby
points after forming a

cluster. The surrounding
points are set to noise
when the mean of the

points inside the radius
stops changing.

(b) Location Clustering:
returns satellite clusters

over the main location as it
works erasing those points
who form a cluster after
the mean stops changing.
Noisy points can be set to
a possible new cluster as

can be seen in detail.

(c) DBSCAN: forms very
large clusters from

chaining points which are
density-connected. This is
of the main disadvantage

in this context as the shape
of the locations is usually

in squared or circular
different from ellipses.

Fig. 3. The dense region in the top shows the clear difference among the methods:
while our approach (a) returns only two clusters, the Location Clustering (b) returns
9 and DBSCAN (c) returns only one large cluster. The X symbol stands for noise

(MPs). The top two MPs are latitude = −18.96081, longitude −48.32141 which
has 38 visits, and latitude = −18.94969, longitude = −48.31219 with a counting
of 6 times. In Fig. 4 we can see the locations over the map of Uberlândia/Brazil.

4.3 Habits Results

The knowledge discovery process over raw location data has led us to a panorama
of the mobility patterns of the given community. Main factors that characterize
habits are related to the start hour, length and duration of the trajectories that
follow an Origin × Destination pattern. The Fig. 5 shows the three different
habits returned from the Gaussians for the trajectories of the user connecting
the two locations. The Fig. 6 illustrates the hourly distribution of the trajectories
between the two main groups of meaningful places for the Geolife dataset user
‘004’.

The length of the trajectories is also a discriminant feature, as users tend
to follow the same path to go from places according to evaluated conditions
such as day of the week, the hour of the day, weather. In rush hours is more
reasonable to avoid areas with too many people and traffic as the time taken to
run the same path can be completely distinct. The Fig. 7 shows the length of
the trajectories with respect to their groups of meaningful places. As we can see,
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Fig. 4. Meaningful locations (colored circles) of the user 10837 over the
Uberlândia/Brazil map. The x symbol stands for noise (Color figure online)

Fig. 5. Three main habits returned from the start hours connecting the top two loca-
tions of the user ‘004’

Fig. 6. Distribution of starting hours from the top two meaningful locations of the user
‘004’
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Fig. 7. Distribution of trajectory distance from the top two meaningful locations of
the user ‘004’

Fig. 8. Distribution of the trajectories according to the day of week from the top two
meaningful locations of the user ‘004’

Fig. 9. Distribution of the trajectories according to the hour and day of week from the
top two meaningful locations of the user ‘004’

some few trajectories have distance greater than 2 km. Those can be justified as
non-habitual paths.

Another relevant way to analyze habits is looking for the day of the week a
trip was taken. Routines are very common in human patterns and some of them
may occur less often than the others. In Figs. 8 and 9 we show the distribution
of the trips in a weekly view.
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5 Conclusions and Future Work

A historical record of the daily mobility pattern of the users hides an unexpect-
edly high degree of potential predictability despite the apparent randomness of
human nature. Following this idea, we show that most people have a relatively
regular schedule of moments when they travel from one location to another.

In this research, we present a new density-based clustering method to filter
mobility data finding the most frequent places of a given individual and compare
our method with two other proposals and show that this approach provides more
informative results for this context. We also explore a new GSM dataset of diverse
cities in Brazil showing the usefulness of the proposed clustering method to
identify meaningful places over data with different granularity. We also introduce
a Gaussian Mixture Model to find individuals’ habits from the clustered data in
a dynamic way.

For future work, we intend to propose a method to find the patterns of people
visiting and leaving different places at different times in an order (weekly basis,
daily basis) similar to sequential pattern mining methods. Also includes some
map matching tasks including external information in order to find the semantic
meaning of the individuals’ movements. We also intend to apply the method in
other datasets to verify its usefulness generalizing in other scenarios. Location
prediction is also a field that is considered the results of this paper are strongly
related to it.

Acknowledgement. This work is financed by National Funds through the Por-
tuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia within project:
UID/EEA/50014/2019.

References

1. Andrade, T., Gama, J.: Identifying points of interest and similar individuals from
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Abstract. Imbalanced data streams have gained significant popular-
ity among the researchers in recent years. This area of research is not
only still greatly underdeveloped, but there are also numerous inher-
ent difficulties that need to be addressed when creating algorithms that
could be utilized in such dynamic environment and achieve satisfactory
results when it comes to their predictive abilities. In this paper, a novel
algorithm that combines both over- and under-sampling techniques in
order to create a more robust classifier dedicated to imbalanced data
streams is proposed. The efficiency and high predictive quality of the
proposed method have been confirmed on the basis of extensive experi-
mental research carried out on the real and the computer-generated data
streams.

Keywords: Imbalanced data · Data stream classification · Data
preprocessing

1 Introduction

In the last couple of years, a sharp rise in products and systems using machine
learning to enhance their performance is observed. Many of the applications
such as predicting user behavior on social platforms like Twitter, or client activ-
ity on online stores fall into the category of imbalanced data stream classification
[24]. When designing methods for data stream classification one has to take into
account the characteristics of a data stream such as the sequential manner that
the data arrives, over which one has no control when it comes to the order of
the arriving samples, as well as the fact that the size of the stream could be pos-
sibly infinite. Due to that requirement, it is impossible to process the upcoming
data in multiple passes and such the samples can be processed once [26]. Fur-
thermore, one has to consider the rapid rate at which the data arrives, at the
same time ensuring that the processing of the data stream is done in a timely
fashion such that the delay in the performance of the algorithm is minimal.
Data streams can exhibit a change in data and target concepts over time (so-
called Non-stationary data streams) [16,26]. Such a phenomenon is called concept
drift [12] and it is quite common i.e. the change of popular topics on Twitter.
c© Springer Nature Switzerland AG 2020
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https://doi.org/10.1007/978-3-030-43887-6_33
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Due to the concept drift the performance of the classifier can degrade over time
and as such the classifier has to be trained incrementally to accommodate the
changes of concepts of non-stationary data streams. Moreover, the proportion
between classes is often skewed with one class being over-represented. In cases
where the imbalance ratio is present traditional accuracy driven methods are
not applicable especially when misclassification of the minority class examples is
much more costly, as is often the case i.e. fraud detection [24]. It is worth men-
tioning that not only the imbalance ratio can influence the performance of the
classifier. Some examples can be easy to classify even when the IR is high if the
classes are separated from each other the decision boundary and be determined
with ease. However, it has been observed that instances of the minority class
have a tendency to create sparsely spread throughout the object space clusters,
often surrounded by majority class examples [4]. The presence of noise and out-
liers is another difficulty factor that needs to be addressed. In [3,15] authors
created preprocessing methods with those issues in mind.

Data streams may be processed either in blocks or one instance at a time. One
of the most important issues in learning from the data stream is when to update
the classifier [22]. Most researchers distinguish between two approaches: active
and passive. In the former, the update is performed only if drift is detected while
the later updates the classifier continuously regardless if the drift was detected
or not [9]. In order to satisfy the time and memory requirements, a forgetting or
data management mechanism must be used. One of the most popular approaches
to forgetting is using sliding windows, which can be either sequence based, where
the size of the window is defined by a number of instances and time stamp based
where the window is defined by a certain duration time. In the simplest example
sliding windows are of fixed size, and include only the most recent examples. The
oldest samples in a window are discarded in favor of new ones. Some methods
implement sliding windows of varying size depending on the response from drift
detectors [2].

The main contributions of this work are as follows:

– Proposition of the two novel imbalanced data stream classifiers (DSC-R and
DSC-S) which employ under- and oversampling techniques for balancing data.

– Experimental evaluation of the proposed algorithms and their comparison
with state-of-art methods.

The article is organized as follows. Sections 1 and 2 present a brief introduc-
tion to the problem of imbalance data stream classification and a quick overview
of the state-of-the-art algorithms dedicated to it. Section 3 offers an in-depth
explanation of the proposed solution. Section 4 showcases the results of the com-
puter experiments, comparing the proposed algorithm to different techniques for
imbalanced data classification, proving the usefulness of the developed algorithm.
Section 5 presents the conclusions and describes possible future improvements to
the proposed method.
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2 Related Works

Studies over the years presented algorithms dedicated to data stream analysis.
Very fast decision tree (VFDT) proposed by Domingos and Hulten [13] was among
the first methods for stream analysis, that to this day has been a basis for many
modifications. VFDT utilizes the Hoeffding bound in order to calculate the proper
number of examples needed to select the split-node. The algorithm incrementally
creates a tree form fromadata streamensuring that once the exampleswere used to
update the tree they are negligible and can be removed. The aforementioned modi-
fications include ideas such as pruningmechanisms or utilizing slidingwindows and
drift detectors in order to better the algorithms in case of non-stationary streams
[10]. Worth noting are several methods using ensembles of classifiers. Weighted
Majority Algorithm [18] adjusts the weights of the classifiers in the ensemble so
that the weight of an expert that misclassified an instance is decreased accord-
ingly to the user-specified value. A modification of the method with an added pro-
cedure which adds new classifiers to the ensemble when the overall performance
is unsatisfactory called Dynamic Weighted Majority (DWM) was introduced in
[14]. In Accuracy Weighted Ensemble (AWE) a new classifier is added only if the
ensemble’s size is not exceeded [25] while in Learn++.NSE [8] such a constraint
is not applied. In Learn++.CDS Ditzler and Polikar combine their previous work
Learn++.NSE with SMOTE sampling in order to better address the data imbal-
ance and later replacing SMOTE with an original bagging-based method of data
balancing [7]. In SEA [23] a new classifier candidate is evaluated to determine
whether or not it is worth including into the ensemble at the cost of replacing some
other classifier already in the ensemble. Other approaches such as OUSEnsem-
ble (Over Under Sampling Ensemble) [11] make use of sampling techniques. The
stream is divided into blocks that consist of examples from both majority and
minority class. The idea is to propagate all the instances of the minority class from
the previous block and under-sample the majority examples in the current block
such that the desired imbalance ratio is acquired. Afterwards, from the resultant
subset, datasets later used to build component classifiers for the ensemble, are cre-
ated by propagating all instances of the minority class to each of the datasets while
each example from the majority class is propagated to only one dataset. Proposed
by Chen and He the Selectively Recursive Approach (SERA) [5] uses a Maha-
lanobis distance to determine which of the examples from the minority class in
the previous block are most similar to the minority examples in the current block.
Based on that a limited number of minority class examples is selected and added
to the majority class examples in the current block. Chen and He later designed a
Recursive Ensemble Approach (REA) [6]. In REA minority class examples from
the previous block that are nearest neighbors of minority class examples from the
current block are added in order to balance the given training block. Both REA
and SERAproved tomake more accurate predictions than the method proposed by
[19]. A Chunk-based ensemble approach, proposed by Wang et al. called KMean-
Clustering [25] utilizes k-mean clustering in order to under-sample the majority
class, by using the centroids created in the clustering process to resample the
majority instances.
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3 The Deterministic Sampling Classifier

The proposed method, called Deterministic Sampling Classifier (DSC), for data
stream classification, processes the upcoming data in chunks. Each chunk is
used in two operations. Firstly, the instances of the majority class present in
the currently processed block are under-sampled in order to produce a balanced
class representation in a data chunk (Fig. 1).

Fig. 1. Proposed method flow diagram

The resulting data (referred to in the Fig. 1 as NEW STORED DATA) is
then stored in a memory buffer (DATA STORAGE). Secondly, that same block
of data is combined with a part of the data from the buffer, called OLD STORED
DATA, using GET NEW CHUNK, which copies the data from the currently pro-
cessed block and the GET DATA method, which takes OLD STORED DATA
from the DATA STORAGE buffer. OLD STORED DATA, consists of all the pre-
viously accumulated under-sampled chunks. When a new chunk of data arrives
the data from NEW STORED DATA are moved to the OLD STORED DATA
part of the buffer. The DATA STORAGE is of fixed size. When the buffer is
full, the oldest examples are removed from it. Afterward, the imbalance ratio of
the data block created as a result of the GET NEW CHUNK and GET DATA
is calculated, and if the value is lower than 0.45, an oversampling of the minor-
ity class is performed, and then a classification model is trained. Otherwise,
the algorithm accepts the chunk as properly balanced and uses it to train the
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model right away. The implementation allows one to choose sampling algorithms
of their liking. In this paper, the authors created two versions of the method
DSC-S (Deterministic Sampling Classifier-SMOTE) and DSC-R (Determinis-
tic Sampling Classifier-Random). For the DSC-R method the chosen sampling
methods were: random over- and under-sampling and for the DSC-S: SMOTE
and NearMiss (implementation from the imbalanced-learn library [17]) for over-
and under-sampling accordingly.

4 Experimental Evaluation

The quality of the proposed algorithms was evaluated on the basis of computer
experiments, using 26 real and 60 synthetic data streams. The evaluation proce-
dure used in order to assess the predictive performance of a data stream classifier
was conducted by interleaving testing with training (test-then-train) [16]. Each
block is first used to test the classifier and afterward it is used for training.
As a measure of comparison, the following methods were used: OUSEnsem-
ble, KMeanClustering, REA, Learn++.CDS, Learn++.NIE and MLPClassifier
(Multi-layer Perceptron classifier), using a k-NN as a base classifier. The algo-
rithms were implemented in Python using Scikit-learn [20] and imbalanced-learn
[17] libraries1. The selected real streams were downloaded from the KEEL [1] and
PROMISE Software Engineering Repository [21]. The chosen datasets consisted
of multidimensional binary classification problems with the imbalance ratio rang-
ing from 1 to 39. The datasets were described in Table 1. The results were ana-
lyzed using the KEEL software evaluation tool [1]. Non-parametrical statistical
tests were performed namely the Friedman Test as well as a Nemenyi’s Post-Hoc
Procedure. The metrics chosen were F-score, Gmean and AUC score. Tables 2,
3 and 4 present the obtained results. The table presents the obtained results
as the mean value for each of the metrics, as well as, the information on those
methods that performed poorly in comparison with the method named in the
column, placed directly below the score. For instance, given the abalone-17-vs-
7-8-9-10 dataset, the DSC-R algorithm performed statistically better than the
3rd, 5th, the 7th and 8th algorithm in the table (read from left to right). The
obtained results prove the usefulness of the proposed algorithms. For the F-score
the proposed DSC-R and DSC-S algorithms along with the REA algorithm have
the best results. What is interesting the MLPC algorithm performed consistently
the worst. For the Gmean the results are similar. The methods introduced in the
paper perform favorably in comparison with other algorithms, the Learn++.CDS
and Learn++.NIE techniques, as well as REA, have comparable results to the
DSC-R and DSC-S methods. Lastly, the results in Table 4 representing the results
for AUC score indicate the proposed algorithm obtained satisfactory results,

1 Repository link: https://github.com/w4k2/iot-ecml2019.

https://github.com/w4k2/iot-ecml2019
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with only the LCDS algorithm performing marginally better. It is worth men-
tioning, that the created methods are robust enough, so that imbalance ratio
(whether low or high) does not negatively impact their performance.

Table 1. Overview of datasets selected for experimental evaluation (source: KEEL and
PROMISE Software Engineering Repository).

Dataset imb. ratio samples features

abalone-17 vs 7-8-9-10 39 2338 8

australian 1 690 14

glass-0-1-2-3-vs-4-5-6 3 214 9

glass0 2 214 9

glass1 2 214 9

heart 1 270 13

jm1 4 10885 22

kc1 5 2109 22

kc2 4 522 22

kr-vs-k-three vs eleven 35 2935 6

kr-vs-k-zero-one vs draw 26 2901 6

page-blocks0 9 5472 10

pima 2 768 8

segment0 6 2308 19

shuttle-c0-vs-c4 14 1829 9

vehicle0 3 846 18

vowel0 10 988 13

wisconsin 2 683 9

yeast-0-2-5-6-vs-3-7-8-9 9 1004 8

yeast-0-2-5-7-9-vs-3-6-8 9 1004 8

yeast-0-3-5-9-vs-7-8 9 506 8

yeast-0-5-6-7-9-vs-4 9 528 8

yeast-2-vs-4 9 514 8

yeast1 2 1484 8

yeast3 8 1484 8
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Table 2. Overview of the results for F-score.

Dataset 1 2 3 4 5 6 7 8

DSC-R DSC-S KMC LCDS LNIE REA OUSE MLPC

abalone-17-vs-7-8-9-10 0.237 0.208 0.060 0.250 0.046 0.176 0.072 0.000

3,5,7,8 3,5,7,8 8 3,5,7,8 – – 8 –

australian 0.571 0.601 0.444 0.514 0.604 0.518 0.602 0.000

3,8 3,6,8 8 8 3,4,6,8 8 3,4,6,8 –

electricity-normalized 0.631 0.623 0.580 0.588 0.598 0.575 0.593 0.324

3,4,5,6,7,8 3,4,6,7,8 8 8 8 8 8 –

glass-0-1-2-3-vs-4-5-6 0.765 0.801 0.781 0.814 0.768 0.782 0.452 0.000

7,8 7,8 7,8 7,8 7,8 7,8 8 –

glass0 0.662 0.673 0.592 0.640 0.516 0.597 0.473 0.000

5,7,8 5,7,8 7,8 7,8 8 8 8 –

glass1 0.687 0.649 0.576 0.517 0.558 0.412 0.573 0.000

4,5,6,8 6,8 6,8 8 6,8 8 6,8 –

heart 0.583 0.569 0.489 0.569 0.641 0.538 0.580 0.144

8 8 8 8 3,8 8 8 –

jm1 0.395 0.390 0.182 0.399 0.372 0.331 0.317 0.170

3,7,8 3,7,8 – 3,6,7,8 3,8 3,8 3,8 –

kc1 0.387 0.394 0.186 0.377 0.394 0.331 0.311 0.127

3,7,8 3,6,7,8 – 3,7,8 3,7,8 3,8 3,8 –

kc2 0.532 0.560 0.198 0.511 0.509 0.467 0.380 0.389

3 3,7,8 – 3 3 3 3 3

kr-vs-k-three-vs-eleven 0.701 0.847 0.256 0.730 0.408 0.836 0.335 0.000

3,5,7,8 1,3,4,5,7,8 8 3,5,7,8 3,8 1,3,4,5,7,8 8 –

kr-vs-k-zero-one-vs-draw 0.673 0.804 0.395 0.773 0.591 0.785 0.367 0.000

3,7,8 1,3,5,7,8 8 1,3,5,7,8 3,7,8 1,3,5,7,8 8 –

page-blocks0 0.541 0.576 0.252 0.359 0.335 0.533 0.352 0.323

3 3,4,5,7,8 – – – 3,7 – –

pima 0.601 0.578 0.508 0.539 0.536 0.581 0.518 0.370

3,5,7,8 8 8 8 8 8 8 –

segment0 0.671 0.792 0.405 0.587 0.339 0.580 0.294 0.123

3,4,5,6,7,8 1,3,4,5,6,7,8 7,8 3,5,7,8 8 3,5,7,8 8 –

shuttle-c0-vs-c4 0.995 0.995 0.923 0.960 0.931 0.995 0.955 0.202

3,5,7,8 3,5,7,8 8 8 8 3,5,7,8 8 –

vehicle0 0.812 0.824 0.653 0.744 0.563 0.758 0.563 0.257

3,5,7,8 3,4,5,7,8 8 5,7,8 8 5,7,8 8 –

vowel0 0.682 0.753 0.274 0.553 0.272 0.553 0.251 0.059

3,5,7,8 3,4,5,6,7,8 8 3,5,7,8 8 3,5,7,8 8 –

wisconsin 0.966 0.951 0.708 0.942 0.941 0.949 0.862 0.019

3,8 3,8 8 3,8 3,8 3,8 3,8 –

yeast-0-2-5-6-vs-3-7-8-9 0.446 0.393 0.358 0.362 0.389 0.514 0.257 0.073

7,8 8 8 8 8 3,4,7,8 8 –

yeast-0-2-5-7-9-vs-3-6-8 0.667 0.710 0.580 0.675 0.590 0.722 0.366 0.000

7,8 3,5,7,8 7,8 7,8 7,8 3,5,7,8 8 –

yeast-0-3-5-9-vs-7-8 0.251 0.288 0.222 0.265 0.145 0.403 0.185 0.018

8 8 8 8 – 3,5,7,8 8 –

yeast-0-5-6-7-9-vs-4 0.350 0.432 0.327 0.428 0.257 0.379 0.176 0.000

7,8 7,8 7,8 7,8 8 7,8 8 –

yeast-2-vs-4 0.615 0.670 0.581 0.569 0.571 0.702 0.389 0.000

7,8 7,8 8 8 8 7,8 8 –

yeast1 0.527 0.495 0.520 0.504 0.430 0.476 0.498 0.000

8 8 8 8 8 8 8 –

yeast3 0.566 0.589 0.429 0.573 0.436 0.644 0.314 0.100

7,8 7,8 8 7,8 8 7,8 8 –
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Table 3. Overview of the results for Gmean score.

Dataset 1 2 3 4 5 6 7 8

DSC-R DSC-S KMC LCDS LNIE REA OUSE MLPC

abalone-17-vs-7-8-9-10 0.782 0.818 0.541 0.684 0.102 0.282 0.536 0.000

3,5,6,7,8 3,5,6,7,8 5,8 5,6,8 – – 5,8 –

australian 0.622 0.640 0.433 0.557 0.187 0.580 0.100 0.000

3,5,7,8 3,4,5,6,7,8 5,7,8 3,5,7,8 8 3,5,7,8 – –

electricity-normalized 0.682 0.676 0.639 0.644 0.510 0.635 0.284 0.393

3,4,5,6,7,8 3,4,5,6,7,8 5,7,8 5,7,8 7,8 5,7,8 – 7

glass-0-1-2-3-vs-4-5-6 0.865 0.892 0.836 0.905 0.869 0.869 0.165 0.000

7,8 7,8 7,8 7,8 7,8 7,8 – –

glass0 0.739 0.756 0.588 0.720 0.287 0.697 0.071 0.000

3,5,7,8 3,5,7,8 5,7,8 5,7,8 8 5,7,8 – –

glass1 0.750 0.717 0.560 0.600 0.254 0.526 0.127 0.000

3,4,5,6,7,8 3,4,5,6,7,8 5,7,8 5,7,8 8 5,7,8 – –

heart 0.623 0.618 0.518 0.589 0.346 0.566 0.284 0.205

3,8 3,8 8 8 – 8 – –

jm1 0.660 0.666 0.275 0.675 0.630 0.557 0.369 0.291

3,6,7,8 3,6,7,8 – 3,6,7,8 3,7,8 3,7,8 – –

kc1 0.651 0.670 0.278 0.655 0.658 0.557 0.391 0.204

3,6,7,8 3,6,7,8 – 3,6,7,8 3,6,7,8 3,7,8 8 –

kc2 0.717 0.772 0.230 0.711 0.715 0.618 0.259 0.347

3,7,8 3,7,8 – 3,7,8 3,7,8 3,7 – –

kr-vs-k-three-vs-eleven 0.988 0.985 0.911 0.981 0.836 0.985 0.933 0.000

3,7,8 3,7,8 8 3,7,8 8 3,7,8 8 –

kr-vs-k-zero-one-vs-draw 0.970 0.965 0.898 0.932 0.873 0.933 0.935 0.000

3,5,7,8 3,5,8 8 8 8 8 8 –

page-blocks0 0.850 0.848 0.543 0.586 0.649 0.812 0.805 0.447

3,4,5,8 3,4,5,8 – – – 3,8 3,8 –

pima 0.690 0.673 0.590 0.634 0.400 0.670 0.197 0.482

3,4,5,7,8 3,5,7,8 5,7,8 5,7,8 7 3,5,7,8 – 7

segment0 0.911 0.934 0.719 0.848 0.585 0.851 0.415 0.242

3,4,5,6,7,8 3,4,5,6,7,8 5,7,8 3,5,7,8 7,8 3,5,7,8 8 –

shuttle-c0-vs-c4 0.995 0.995 0.949 0.963 0.950 0.995 0.996 0.304

8 8 8 8 8 8 3,5,8 –

vehicle0 0.916 0.901 0.819 0.881 0.723 0.882 0.708 0.380

3,5,7,8 3,5,7,8 5,7,8 5,7,8 8 5,7,8 – –

vowel0 0.937 0.938 0.523 0.797 0.634 0.790 0.634 0.224

3,4,5,7,8 3,4,5,7,8 8 3,5,7,8 8 3,8 8 –

wisconsin 0.974 0.960 0.747 0.953 0.950 0.957 0.781 0.042

3,8 3,8 8 3,8 3,8 3,8 8 –

yeast-0-2-5-6-vs-3-7-8-9 0.761 0.661 0.685 0.709 0.683 0.745 0.511 0.178

7,8 8 7,8 7,8 8 7,8 8 –

yeast-0-2-5-7-9-vs-3-6-8 0.862 0.848 0.827 0.879 0.839 0.875 0.681 0.000

7,8 7,8 7,8 7,8 7,8 7,8 8 –

yeast-0-3-5-9-vs-7-8 0.617 0.650 0.517 0.596 0.339 0.651 0.470 0.069

8 7,8 8 8 – 8 8 –

yeast-0-5-6-7-9-vs-4 0.750 0.822 0.777 0.783 0.612 0.694 0.485 0.000

7,8 7,8 7,8 7,8 8 8 8 –

yeast-2-vs-4 0.827 0.826 0.801 0.830 0.723 0.847 0.731 0.000

8 8 8 8 8 8 8 –

yeast1 0.634 0.616 0.599 0.612 0.330 0.593 0.344 0.000

5,7,8 5,7,8 5,7,8 5,7,8 8 5,7,8 8 –

yeast3 0.871 0.855 0.815 0.841 0.773 0.875 0.698 0.197

7,8 7,8 8 7,8 8 5,7,8 8 –
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Table 4. Overview of the results for AUC score.

Dataset 1 2 3 4 5 6 7 8

DSC-R DSC-S KMC LCDS LNIE REA OUSE MLPC

abalone-17-vs-7-8-9-10 0.997 0.989 0.684 0.999 0.828 0.967 0.789 0.329

3,5,6,7,8 3,5,6,7,8 8 3,5,6,7,8 3,8 3,5,7,8 3,8 –

australian 0.827 0.829 0.551 0.819 0.662 0.803 0.578 0.448

3,5,7,8 3,5,7,8 8 3,5,7,8 3,7,8 3,5,7,8 8 –

electricity-normalized 0.961 0.961 0.927 0.974 0.871 0.971 0.551 0.671

3,5,7,8 3,5,7,8 5,7,8 1,2,3,5,6,7,8 7,8 1,2,3,5,7,8 – 7

glass-0-1-2-3-vs-4-5-6 0.988 0.989 0.894 0.989 0.879 0.984 0.731 0.722

7,8 7,8 8 7,8 8 7,8 – –

glass0 0.937 0.929 0.792 0.930 0.724 0.881 0.628 0.675

3,5,7,8 3,5,7,8 5,7 3,5,7,8 – 5,7,8 – –

glass1 0.913 0.918 0.681 0.830 0.668 0.790 0.546 0.669

3,5,6,7,8 3,5,6,7,8 – 5,7 – 7 – –

heart 0.846 0.855 0.728 0.877 0.662 0.860 0.632 0.374

3,5,7,8 3,5,7,8 8 3,5,7,8 8 3,5,7,8 8 –

jm1 0.866 0.862 0.398 0.906 0.788 0.858 0.720 0.467

3,5,7,8 3,5,7,8 – 1,2,3,5,6,7,8 3,7,8 3,5,7,8 3,8 –

kc1 0.865 0.860 0.405 0.902 0.786 0.858 0.734 0.399

3,5,7,8 3,5,7,8 – 1,2,3,5,6,7,8 3,7,8 3,5,7,8 3,8 –

kc2 0.877 0.889 0.487 0.908 0.832 0.882 0.769 0.757

3,8 3,7,8 – 3,7,8 3 3,7,8 3 3

kr-vs-k-three-vs-eleven 1.000 1.000 0.981 1.000 0.987 1.000 0.978 0.968

3,5,7,8 3,5,7,8 – 3,5,7,8 7,8 3,5,7,8 – –

kr-vs-k-zero-one-vs-draw 1.000 1.000 0.972 1.000 0.982 0.999 0.981 0.691

3,5,7,8 3,5,6,7,8 8 3,5,6,7,8 8 3,5,7,8 8 –

page-blocks0 0.994 0.994 0.850 0.999 0.962 0.992 0.913 0.734

3,5,7,8 3,5,7,8 – 1,2,3,5,6,7,8 3,7,8 3,5,7,8 – –

pima 0.870 0.871 0.736 0.890 0.725 0.850 0.645 0.508

3,5,7,8 3,5,7,8 7,8 3,5,7,8 7,8 3,5,7,8 8 –

segment0 0.996 0.997 0.859 0.993 0.831 0.975 0.794 0.628

3,5,6,7,8 3,4,5,6,7,8 7,8 3,5,6,7,8 7,8 3,5,7,8 8 –

shuttle-c0-vs-c4 1.000 1.000 0.999 1.000 0.500 1.000 0.999 0.480

5,8 5,8 5,8 5,8 – 5,8 5,8 –

vehicle0 0.988 0.990 0.881 0.987 0.834 0.970 0.841 0.767

3,5,6,7,8 3,5,6,7,8 8 3,5,7,8 – 3,5,7,8 – –

vowel0 0.997 0.999 0.852 0.999 0.862 0.989 0.870 0.260

3,5,6,7,8 3,5,6,7,8 8 3,5,6,7,8 8 3,5,7,8 8 –

wisconsin 0.998 0.997 0.929 0.997 0.716 0.995 0.958 0.081

7,8 7,8 8 7,8 8 7,8 8 –

yeast-0-2-5-6-vs-3-7-8-9 0.951 0.943 0.789 0.989 0.807 0.929 0.803 0.444

3,5,7,8 3,5,7,8 8 1,2,3,5,6,7,8 8 3,5,7,8 8 –

yeast-0-2-5-7-9-vs-3-6-8 0.983 0.979 0.896 0.997 0.925 0.978 0.900 0.252

3,5,7,8 3,5,7,8 8 2,3,5,6,7,8 8 3,5,7,8 8 –

yeast-0-3-5-9-vs-7-8 0.947 0.940 0.659 0.989 0.741 0.889 0.730 0.270

3,5,7,8 3,5,7,8 8 3,5,6,7,8 8 3,5,7,8 8 –

yeast-0-5-6-7-9-vs-4 0.984 0.975 0.867 0.994 0.891 0.965 0.828 0.089

3,5,7,8 3,5,7,8 8 3,5,6,7,8 8 3,5,7,8 8 –

yeast-2-vs-4 0.987 0.986 0.906 1.000 0.911 0.982 0.891 0.326

3,7,8 3,7,8 8 1,2,3,5,6,7,8 8 3,7,8 8 –

yeast1 0.887 0.885 0.768 0.922 0.754 0.877 0.655 0.339

3,5,7,8 3,5,7,8 7,8 3,5,7,8 7,8 3,5,7,8 8 –

yeast3 0.987 0.984 0.919 0.996 0.953 0.982 0.904 0.380

3,5,7,8 3,5,7,8 8 1,2,3,5,6,7,8 7,8 3,5,7,8 8 –
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5 Conclusions and Future Directions

The proposed in this paper methods for imbalanced stream classification DSC-R
and DSC-S performed favorably in comparison with other dedicated algorithms.
The evaluation of the predictive abilities of the techniques was conducted on
the basis of computer experiments. The obtained results were analyzed using
statistical tests and for all the chosen metrics F-score, Gmean and AUC score,
the proposed methods obtained satisfactory results, comparable to algorithms
such as REA or Learn++.CDS or Learn++.NIE. The algorithm utilizes memory
buffer in order to propagate the instances from the previous block that were
chosen as the representatives. Since the buffer is of fixed size, after it is full some
instances must be removed from it. In the current implementation, the oldest
examples are deleted. A more advanced “forgetting” mechanism, that could favor
the instances from the minority class and only the instances from the majority
that are the best representatives could be introduced in order to further improve
the performance of the classifier. Additionally testing other sampling methods
for under- and over-sampling may prove to produce better results.
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Abstract. In industrial machining processes, the wear of a tool has a
significant influence on the quality of the produced part. Therefore, pre-
dicting wear upfront can result in significant improvements of machining
processes. This paper investigates the applicability of machine learning
approaches for predicting tool wear in industrial milling processes based
on real-world sensor data on exerted cutting forces, acoustic emission
and acceleration. We show that both Gradient Boosting Machines and
Temporal Convolutional Networks prove particularly useful to this end.
The validation was performed using the PHM 2010 tool wear prediction
dataset as a benchmark, as well as using a proper dataset gathered from
an industrial milling machine. The results show that the approach is able
to predict the tool wear within an industrially-relevant error margin.

Keywords: Tool wear prediction · Industrial milling processes ·
Temporal Convolutional Network · Gradient Boosting Machine

1 Introduction

In industrial machining processes, the wear of a tool has a significant influence
on the quality of the produced part. When the amount of tool wear is too great,
the process quality diminishes and unacceptable risks will occur (such as tool
breakage, collision of machines, etc.). Consequently, being able to predict the
wear of a tool upfront can lead to significant benefits for the production process,
such as a reduction of the machine downtime or a reduction of the scrap that
is generated during production with a tool that has worn too much. Therefore,
tool wear prediction can contribute to increase the automation of production
processes and is an important step towards Industry 4.0 for manufacturing com-
panies.
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However, the prediction of tool life, i.e., the time a tool can work with an
acceptable amount of tool wear, is a non-trivial challenge. In most cases the the-
oretical lifetime of a tool is estimated by the tool suppliers at certain conditions
(e.g., speeds, amount of material to be machined within a certain time), based
on which safety zones can be defined in which the tool will be replaced. However,
these theoretical estimates are often too conservative and the actual operating
conditions are taken into account only to a limited extent. More accurate esti-
mation models can lead to a very important gain in production processes. This
problem can be solved in two ways: either the current amount of wear can be
estimated based on historical data and the actual operating conditions, or the
tool’s remaining useful life (RUL, i.e., the remaining time during which the tool
can be used with an acceptable amount of wear) can be predicted at a certain
point. When production companies know that the RUL is larger than the time
needed for a certain product, they can safely use that tool for producing another
product.

However, predicting tool wear is challenging, since wear is influenced by a
lot of factors such as friction, heat generation and cutting forces. Traditionally,
model- or physics-based approaches are used to predict the tool wear. However,
developing these kinds of mathematical models typically requires a thorough
understanding of the physical properties of the system. This prior knowledge
on the properties of a system is not always available, especially in the case of
complex manufacturing systems and processes. Due to the increasing availabil-
ity of sensors and infrastructure to monitor these machines and the respective
manufacturing processes, there is a growing interest in data-driven techniques
to perform tool wear prediction.

A number of data-driven approaches for the purpose of tool wear prediction
have already been proposed. Whereas they perform well, these methods are
typically only validated on benchmark data, which is typically generated using
optimal conditions. In this paper, the applicability of machine learning for tool
wear prediction is examined on real-world industrial data. We will focus on
milling, which is a machining operation where material from a workpiece is
removed by a rotary cutter. During this process, the milling condition is a crucial
factor for the quality of the workpiece. If the wear is too large, the milling process
becomes unstable and errors may occur. Examples of errors are a workpiece with
too rough of a surface, a cutter that breaks off or a collision of machine parts. The
main motivation to focus on milling operations is that the failure of a milling
tool can be responsible for 20% of the time that a milling machine is out of
service or not operational [8].

2 Related Work

Early research on tool wear prediction mostly focused on model-based approaches
to form mathematical formulas representing the accumulation of wear [2,7,9,16],
which requires expert knowledge of the underlying physical dynamics of the milling
process. This knowledge is costly and not always available.
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In contrast, data-driven models try to derive wear based on historical data
gathered by sensors on working machines. This problem got increased attention
since it was the subject of the PHM 2010 Data Challenge [14]. More specifi-
cally, the challenge focused on RUL estimation for a high-speed CNC milling
machine cutter using dynamometer, accelerometer, and acoustic emission data.
Since then, most recent papers use the resulting dataset as a benchmark for this
problem setting.

Several regression models have been tested on their ability to predict tool
wear using sensory input. Convolutional neural networks (CNN) [10] are typi-
cally used to address problems involving sequential data, and have already been
used for tool wear prediction [15,19]. However, generic CNNs are only able to
capture spatial information from input data, which limits their predictive accu-
racy on temporal data. Long short-term memory networks (LSTM) are capable
of capturing this temporal information. They typically outperform less com-
plex models such as support vector machines, random forests and multilayer
perceptrons [20]. In an effort to combine the strengths of LSTMs and CNNs,
combinations of both network types have emerged, such as the convolutional
LSTM [18]. Different variants of these networks have been used to predict tool
wear. Zhao et al. [19] compare two types of auto-encoders, a deep belief network,
a regular and a bi-directional LSTM and a convolution network for this problem.
The current state-of-the-art results on the PHM 2010 Challenge Dataset were
obtained by Qiao et al. [15] using a time-distributed convolutional LSTM, which
also exploits the temporal properties of the milling process to estimate the wear.
Besides LSTMs, gradient boosting machines (GBMs) have also been shown to
accurately predict tool wear [13].

During our research, we observed however that a number of papers apply ran-
domized cross-validation on a time series data set. As pointed out by Bergmeir,
Hyndman and Koo [3], this is an incorrect approach when dealing with time
series data. For example, Wu et al. [17] first combine 3 time series datasets,
randomly shuffle them and subsequently split them into training and test sets.
By doing so, one overfits on the test set as the model gains knowledge on the
process in each of the sets due to the random shuffling of the data.

3 Model Selection

As the goal of this paper is to test the industrial applicability of machine learning
for tool wear prediction in industrial milling processes, the methods were selected
based on their computation speed (to enable near-real time prediction) as well
as their accuracy, were we put a threshold error margin of 20µm in order to be
industrially relevant. Gradient Boosting Machine was selected due to its accuracy
in predicting the tool wear as well as its computation speed for predictions on
new input data. As a second model, Temporal Convolutional Network (TCN) was
selected due to its ability to exploit the temporal properties of the data, which
voids the need for manual feature engineering. While performance should be
comparable to LSTMs, in contrast TCNs are shown to be more computationally
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efficient at prediction time. In this section, the most important elements of both
methods are briefly discussed.

3.1 Gradient Boosting Machine

A gradient boosting machine for regression is an ensemble learning method devel-
oped by Friedman [4], consisting of multiple weak learners, typically decision
trees. Gradient boosting is a technique where weak learners are iteratively added
to the current model in a stage-forward fashion. These weak learners are fitted to
predict the negative gradient of any differentiable loss function. If the loss func-
tion L(y, F (x)) = (y − F (x))2/2 with y the target value, F (x) the prediction of
the current model for input example x and J =

∑
i L(yi, F (xi)) the function to

minimize, it follows that

∂J

∂F (xi)
=

∂
∑

i L (yi, F (xi))
∂F (xi)

=
∂L (yi, F (xi))

∂F (xi)
= F (xi) − yi. (1)

This can be rearranged to

yi − F (xi) = − ∂J

∂F (xi)
, (2)

which shows that we can interpret the residuals as the negative gradients.
Decision trees in which the response is continuous are called regression trees. This
iterative process is repeated until the model consists of a predefined amount of
regression trees.

The negative gradient is the direction of a step towards the minimum of the
loss function, but it does not determine the size of the step. The size of a step is
determined using the line search technique. This technique attempts to optimize
the loss function in function of the step size. For a regression tree with T leaf
nodes, the negative gradient will be calculated T times, once for every leaf node.
For every such computation, line search will be applied.

The shrinkage parameter is used to shrink the step size by a fixed factor.
The decrease of the step size should lead to better generalization capacities of
the gradient boosting machine [5].

3.2 Temporal Convolutional Network

The convolutional neural network variant suggested to capture spatio-temporal
information from sequential data is called a temporal convolutional network. A
temporal convolutional network is simply put a combination of a one-dimensional
fully-convolutional network and (dilated) causal convolutions. This network also
makes use of residual blocks.
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Dilated Causal Convolutions. Since the TCN is a one-dimensional fully–
convolutional network (FCN) [12], the network consists solely of learnable filters
in one dimension, including the final layer of the network. This means that deci-
sions are only based on local spatial input. Causal convolutions guarantee that
no information from the future leaks to the past. Regular convolutions can only
reach a history with size linear in the depth of the network. Dilated convolutions
are used to circumvent this by enabling a receptive field that is exponentially
large in relation to the amount of layers in the network. The dilation depends
on a dilation factor d and a filter size k. The dilation factor indicates per layer
a fixed step between every two adjacent filter taps. This factor d is increased
exponentially with the depth of the network, which ensures that there is a filter
that hits each input within the effective history. The filter size k determines the
length of the filter and thus the amount of input elements that are used for a
convolution.

Residual Blocks. The receptive field of the TCN depends on the chosen values
for the dilation factor and filter size. Depending on these values, the network
can become too deep or large to be able to predict simple functions, such as
the identity function for example. To be able to overcome this, the TCN is
made of residual blocks [6] which aims to increase the stability of the network.
A residual block adds the input to the output of the transformations at the
end block, which makes the network learn modifications to the entity mapping
rather than the entire transformation. An 1 × 1 convolution is used to alleviate
possible discrepancies between the width of input and output. Within the used
implementation, a residual block consists of two dilated convolutional layers,
each followed by weight normalization, a rectified linear unit (ReLU) for non-
linearity and a spatial dropout layer. This setup is shown on Fig. 1.

Residual block (k, d)

1x1 Conv 
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+
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(i)
, . . . , ẑ
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T
i−1))

x0 x1 . . . xT−1 xT

++

ẑT
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Dropout

ReLU
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Dilated Causal Conv

Fig. 1. Residual block and residual connection where blue lines represent filters and
green lines are identity mappings [1] (Color figure online)
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4 Experiments

To validate their industrial applicability, both the GBM and the TCN setup
were tested on both a benchmark dataset as well as on a dataset gathered from
an industrial setup. In this section, we will briefly discuss the datasets, the
experimental setup, the preprocessing steps and the model parametrization, as
well as the achieved results.

4.1 Data and Experimental Setup

The results will be evaluated on two different datasets, namely the PHM 2010
Challenge Dataset [14], which we will use as a benchmark dataset, as well as a
dataset gathered from an industrial setup in the Precision Manufacturing Lab of
Sirris. Both datasets contain time series data on forces (X, Y, Z), accelerations
(X, Y, Z) and the root mean square of the acoustic emission (AE), resulting in
a set of 7 parameters.

The benchmark dataset consists of six sets. In this paper, we will only use
subsets c1, c4 and c6, as these are the most frequently used sets in state-of-the-
art comparisons. Each of the sets consists of 315 cuts and for each cut around
220k measurements are available. The industrial dataset consists of 2 groups of
data, which each contain 3 sets. The groups differ in terms of cutting speed and
feeding rate, only the first group of sets will be used in this paper. Each set
consists of approximately 100 cuts, with around 7k measurements for the forces
and the AE and 80 measurements for the accelerometer data (due to a lower
sampling rate of the available sensor). The milling operations in the industrial
dataset were performed with a Haas Super Minimill 3-axis milling machine, using
a Sandvik milling tool with a diameter of 16 mm. A similar setup as Li et al. [11]
was used (as depicted in Fig. 2), yet in contrast to the benchmark dataset, the
AE sensor is placed on the spindle instead of on the part itself. This was done
to keep the distance between the sensor and the cutting point constant. The
cutting speed and feed rate was set to 200 m/min and 159 mm/min respectively.
The cutting diameter was 16 mm, the radial and axial cutting depth were both
set to 1 mm.

4.2 Preprocessing

Benchmark Data. This dataset is already fairly preprocessed in the sense
that it is ready to use the sensory data to generate features (for the GBM) or
to reduce the amount of time steps (for the TCN). Some force signals, however,
have very high peaks throughout the signals, which may be due to sensor faults.
The affected cuts have one or more of their force signals shifted, as shown in
Fig. 3. These peaks are flattened by linear interpolation between the beginning
and end of such peaks to verify the impact of these peaks on the performance
of both the GBM and TCN. The peak-flattening can occur on any force signal
and on one or more of its axes independently.
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Workpiece

Accelerometer AE Sensor

Cutter

Accelerometers

Dynamometer

Fig. 2. Sensors on milling machine (taken from [11])

To this end, first the mean for every force signal for every cut is calculated.
We iterate over these mean values until we encounter an absolute change in value
that exceeds a set threshold. The current index in the iteration is then defined
as the end of the peak. From this index we iterate in a backwards fashion until
we encounter an index of which the corresponding absolute value is less than the
absolute value of the end of the peak. This index is the start of the peak. We
do a linear interpolation for all indices between the start and end of the peak
and continue the iteration from the end of the peak, continuing the search for
more peaks. When the end of the list of mean values is reached, we subtract this
flattened list from the original list. The result is then a list with the differences
between the flattened and original values at indices where a peak is present,
and zero on all other indices. For each cut in a set, the differences are added to
all values of the corresponding force signal of that cut, which undoes the shift
shown on Fig. 3.

Industrial Data. The data gathered from the industrial process is raw and
thus requires extensive preprocessing. Only the main preprocessing steps will be
explained. First, the measured acoustic emission ranges over multiple frequen-
cies. These measurements will be converted into a one-dimensional signal per cut
by calculating the root mean square (RMS) over all frequencies per time step.

Fig. 3. Shifted force signal on x axis
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(a) Before (b) After

Fig. 4. Drift correction on force signal

Second, since measurements start before and after a complete cut, only the part
of the signal during which the tool is in physical contact with the workpiece is
retained. This results in the synchronization of the signals. Third, due to the
nature of dynamometers, the reference point in the sensors is not constant which
leads to gradually shifting measured force values throughout operation. This
symptom is called drift and is corrected by subtracting the rolling mean of the sig-
nal from the signal. The correction of drift is shown in Fig. 4. Figure 4b also shows
that both ends of the signal may contain values that are different compared to the
vast majority of the signal. To limit the influence of these varying values, the first
and last 1, 000 measurements of a signal are pruned. This amount of pruning has
been empirically shown to be the optimal value for both models. We believe that
this value is the optimal value in the trade-off between removing more deviating
values (higher value) and removing less potentially useful measurements (lower
value).

4.3 Feature Selection and Hyperparameter Tuning

Gradient Boosting Machine. For the benchmark set, maximum, minimum,
median, average, standard deviation, sum of the absolute values and the differ-
ence between the current mean and the mean of the previous cut were considered
for each of the parameters. For the industrial dataset, the same features except
the latter one were taken into account. Feature selection per parameter was
performed using a genetic algorithm.

Temporal Convolutional Network. As suggested by the TCN literature, the
signals are summarized in multiple time steps by taking the maximum and the
average per time step. The number of measurements per time step thus equals
the number of measurements in the signal divided by the number of chosen time
steps. For the benchmark dataset, 100 time steps were used, whereas for the
industrial dataset the number of time steps was limited to 50 due to the more
limited number of acceleration measurements per cut. The features were scaled
using min-max scaling.
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4.4 Results

The results expressed in terms of mean absolute error (MAE) for the benchmark
dataset are shown in Table 1. The column names indicate the subset that was
used for testing, using the remaining two subsets for training the model. For
example, C1 indicates that subset c1 was used as test set, while subsets c4 and
c6 were used to train the model. The rows marked with an asterisk indicate
that for this model the hyperparameters were optimized using grid search. The
results are given in micrometer and are rounded to 1 decimal. The results are
the average of 3 predictions with the same parameters.

Table 1. MAE for different models on the benchmark data

Model C1 C4 C6

GBM 10.9 14.4 13.7

GBM* 10.9 14.4 13.7

TCN 9.3 10.9 16.4

TCN* 9.5 10.9 8.5

CBLSTM [20] 10.8 7.1 9.8

TDConvLSTM [15] 6.99 6.96 7.5

The GBM was also compared with other methods that require manual feature
engineering (SVM and Random Forest), showing that the GBM obtained the
lowest MAE. Interesting to note is that the hyperparameter optimization did
not improve the results for the GBM.

Overall, the TCN with optimized hyperparameters obtains the best results.
These results are shown in Fig. 5. The results of the mean MAE are 2.5µm worse
than the state-of-the-art models. The respective papers, however, do not provide
any additional statistics regarding the number of runs that were required to
obtain these results. The best average MAE for the TCN with optimized hyper-
parameters is 8.9µm. Next to the best average MAE, the TCN also achieves the
lowest mean standard deviation of errors per predicted set. This means that the
size of the errors within a prediction does not differ that much from one another.

Fig. 5. Prediction of TCN* (Benchmark data)
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Similarly, Table 2 shows the obtained results on the industrial dataset. Also
for this dataset, the TCN obtains the best results for all calculated statistics.
The TCN with optimized hyperparameters not only obtains a good MAE, but
also a relatively low standard deviation of 0.09 on the average MAE results.
Across the 3 iterations, the average MAE thus remains stable. Figure 6 again
visually represents the results for the best performing model.

Table 2. MAE for different models on the industrial data

Model I1 I2 I3

GBM 17.5 22.3 16.6

GBM* 13.7 21.1 16.6

TCN 14.3 24.1 14.3

TCN* 13.3 20.8 12.8

Fig. 6. Prediction of TCN* (Industrial data)

Next to the accuracy, another important criterion for the industrial appli-
cability is the prediction time. On average, training the GBM with optimized
hyperparameters took 30 ms on a standard laptop. The prediction takes less than
8 ms (for both datasets). The TCN with optimized hyperparameters needed close
to 6 min for training and on average took 0.5 s for predicting on specialized com-
puting infrastructure. For the industrial datasets, this took close to 13 min for
training and 1 s for testing. Both models thus warrant a near-real time predic-
tion.

Overall, the results show that the TCN performs similar to the state of the
art on the PHM 2010 dataset, which confirms that convolutional networks are a
valid alternative for recurrent networks for predictions based on temporal data.
Also for the industrial dataset, the TCN was well able to predict the tool wear.
Both the TCN and the GBM resulted in the targeted accuracy of less than 20µm
in MAE on the industrial dataset.

The difference in accuracy between both datasets is probably caused by the
low sampling frequency of the accelerations in the industrial dataset, due to
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which the acceleration signals are only taken into account to a limited extent
by the models. Also the sampling frequency of the forces and the acoustic emis-
sion is about 100 times larger in the benchmark dataset when compared to the
industrial dataset, which can have an influence on the resulting model perfor-
mance. The training time measurements show that the TCN with optimized
hyperparameters requires approximately 3 times less time to train and half of
the time to predict when compared to the same model without hyperparameter
optimization. The hyperparameters thus have a strong influence on the speed of
the model. Since the TCN is more accurate than the GBM but requires in com-
parison much more training and prediction time, the choice between the TCN
and GBM for industrial settings needs to be based both on the requirements
regarding accuracy as well as on the available hardware to train the models and
make the predictions.

5 Conclusion and Future Work

In this paper, we investigated the applicability of two machine learning meth-
ods for predicting tool wear in industrial milling processes using sensor data on
exerted cutting forces, acoustic emission and acceleration. To this end, the use
of Gradient Boosting Machines and Temporal Convolutional Networks was vali-
dated on both a benchmark dataset as well as on a real-world industrial dataset.
The results show that both methods are able to predict the tool wear within an
industrially-relevant error margin of 20µm in an acceptable computation time.

In future work, the generalizability of the approach to additional machine
settings (i.e., cutting speed, temperature) will be explored, as this could offer
new insights into the factors that determine the wear. Also the influence of the
material of the workpiece on the performance of the model will be examined
in more detail. Whereas currently only the force, accelerometer and acoustic
emission measurements of externally-mounted sensors were taken into account
as parameters for the prediction, also the use of parameters that are directly
gathered by the machine (i.e., power consumption) will be investigated.
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Abstract. In this paper, we approach the problem of detecting segments
of singing voice activity in opera recordings. We consider three state-of-
the-art methods for singing voice detection based on supervised deep
learning. We train and test these models on a novel dataset comprising
three annotated performances (versions) of Richard Wagner’s opera “Die
Walküre.” The results of our cross-version experiments indicate that the
models do not sufficiently generalize across versions even in the case that
another version of the same musical work is available for training. By fur-
ther analyzing the systems’ predictions, we highlight certain correlations
between prediction errors and the presence of specific singers, instrument
families, and dynamic aspects of the performance. With these findings,
our case study provides a first step towards tackling singing voice detec-
tion with deep learning in challenging scenarios such as Wagner’s operas.

Keywords: Opera · Singing voice detection · Supervised deep learning

1 Introduction

The automatic identification of vocal segments in music recordings—known
as singing voice detection (SVD)—is a central problem in music information
retrieval (MIR) research [1]. In relevant literature, most SVD approaches are tai-
lored to popular music [6–8,12,13,15,16]. However, Scholz et al. [19] showed that
SVD quality considerably depends on the music genre, and that systems do often
not generalize well across genres. Partly, this is due to the genre-specific usage of
instruments and singing styles. A particular case is Western opera, where singing
is often embedded in a rich orchestral accompaniment and instruments often
imitate singing techniques such as vibrato [20]. Dittmar et al. [2] studied SVD
within an opera scenario involving several versions of Weber’s “Der Freischütz.”
Using carefully selected audio features and random forest classifiers, they showed
that bootstrap training [12,22] helps to leverage the genre-dependency problem.
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They further demonstrated the benefit of a cross-version scenario by performing
late fusion of the individual versions’ results. We are not aware of any studies
dealing with SVD for Wagner’s operas, which constitute a challenging scenario
due to their large and complex orchestration and highly expressive singing styles.
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c) LR-PCEN
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Fig. 1. The three examined DL models. Red modules denote non-trainable, predefined
functions. Green modules denote parameterized functions subject to optimization. The
cross symbol ⊗ denotes the element-wise multiplication introduced in [11]. (Color figure
online)

As the system used in [2], early approaches to SVD [14,15] typically consist of
two parts—the extraction of audio features and the supervised training of clas-
sifiers such as random forests. Recently, SVD based on deep learning (DL) has
become popular [7–9,17]. As for the contributions of this paper, we apply several
state-of-the-art (SOTA) approaches [11,18,23]—proposed for SVD in popular
music—to the opera scenario. We systematically assess their efficacy on a lim-
ited dataset comprising three semi-automatically annotated versions of Richard
Wagner’s opera “Die Walküre” (first act). Our experiments demonstrate that
the models do not sufficiently generalize across versions even when the training
data contains other versions of the same musical work. Finally, we highlight spe-
cific challenges in Wagner’s operas, pointing out interesting correlations between
errors and the voices’ registers as well as the activity of specific instruments.

2 Deep-Learning Methods

In this paper, we examine three SVD approaches based on supervised DL
(Fig. 1).1 Lee et al. [6] give an overview and a quantitative analysis of DL-based
SVD systems. Our first model (Fig. 1a) is based on a convolutional neural net-
work (CNN) followed by a classifier module. CNNs have been widely used for
SVD [16–18]. To achieve sound-level-invariant SVD, Schlüter et al. [18] introduce
zero-mean convolutions—an update rule that constrains the CNN kernels to have
zero mean. We use this zero-mean update rule within the specific architecture
presented in [18] for our first model (denoted as 0µ-CNN). As an alternative
1 Due to limited space, we only provide an overview of the models. For details, we refer

to the relevant literature [7,11,18,23] and our source code: https://github.com/Js-
Mim/wagner vad.

https://github.com/Js-Mim/wagner_vad
https://github.com/Js-Mim/wagner_vad
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approach to sound-level-invariant SVD, Schlüter et al. [18] suggest per-channel
energy normalization (PCEN) [23]. For our second model (Fig. 1b, denoted as
PCEN-RNN), we consider this technique as front-end followed by recurrent lay-
ers and the classifier, realized by feed-forward network (FFN) layers. Recurrent
neural networks (RNNs) have been used for SVD in [7], among others. As our
third model, we examine a straightforward extension to PCEN involving a low-
rank autoencoder (Fig. 1c, denoted as LR-PCEN). For both RNN-based models
(PCEN-RNN and LR-PCEN), we include skip-filtering connections [11], which
turns out to be useful for “pin-pointing” relevant parts of spectrograms [10].

For pre-processing, we partition the monaural recording into non-overlapping
segments of length 3 s. Inspired by previous approaches [6,7,18], we compute a
250-band mel-spectrogram for each segment. As input to the 0µ-CNN model [17],
we use the logarithm of the mel-spectrogram. For the PCEN-RNN model, we use
the mel-spectrogram as input to the trainable PCEN front-end [23] followed by
a bi-directional encoder with gated recurrent units (GRUs) and residual connec-
tions [11]. The decoder predicts a mask (of the original input size) for filtering the
output of the PCEN. For the LR-PCEN, we replace the first-order recursion [23,
Eq.(2)] with a low-rank (here: rank one) autoencoder that shares weights across
mel-bands. The output of the autoencoder is used alongside residual connec-
tions with the input mel-spectrogram. We randomly initialize the parameters
and jointly optimize these using stochastic gradient descent with binary cross-
entropy loss and the Adam [5] solver setting the initial learning rate to 10−4 and
the exponential decay rates for the first- and second-order moments to 0.9. We
optimize over the training data for 100 iterations and adapt the learning rate
depending on the validation error. Moreover, we perform early stopping after 10
non-improving iterations.

3 Dataset

We evaluate the systems on a novel dataset comprising three versions of Wagner’s
opera “Die Walküre” (first act) conducted by Barenboim 1992 (Bar), Haitink
1988 (Hai), and Karajan 1966 (Kar), each comprising 1523 measures and roughly
70 min of music. Starting with the libretto’s phrase segments, we manually anno-
tate the phrase boundaries as given by the score (in musical measures/beats).
To transfer the singing voice segments to the individual versions, we rely on
manually generated measure annotations [24]. Using the measure positions as
anchor points, we perform score-to-audio synchronization [3] for generating beat
and tatum positions, which we use to transfer the segmentation from the musical
time of the libretto to the physical time of the performances.

Since alignment errors and imprecise singer performance may lead to offsets
between the transferred segment boundaries and the actual singing, we man-
ually refined our semi-automatic annotations for the Kar recording, which we
use as test version in our experiments. Almost every phrase boundaries was
adjusted, thus affecting rouhgly 4% of all frames in total. Due to our annotation
strategy, there might be another issue. Since we start from the libretto with its
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Fig. 2. Percentage of frames (Kar version) with (a) annotated singing voice, (b) activity
of individual singers, (c) activity of instrument sections and their combination.

Table 1. Data splits used for the experiments.

Data split DS-1 DS-2 DS-3

Training Bar, Hai, Kar Bar, Hai Bar

Validation Kar Kar Hai

Test Kar Kar Kar

phrase-level segments, the annotations do not account for smaller musical rests
within textual phrases—an issue that is also common for SVD annotations in
popular music. To estimate the impact of these gaps within phrases (labeled
as “singing”), we compute the overlap between the phrase-level singing regions
from the libretto (Kar) and note-level annotation derived from an aligned score.
The two annotations match for only 94% of all frames. This suggests that in the
opera scenario, phrase-level annotations as well as automatic alignment strate-
gies may not be precise enough for high-quality SVD evaluated on the frame
level. We therefore regard an accuracy or F-measure of 94% as a kind of upper
bound for our experiments.

In our dataset, singing and non-singing frames are quite balanced (Fig. 2a).
Among the three singers performing in the piece, the tenor dominates, followed
by soprano and bass (Fig. 2b), while they never sing simultaneously. Regard-
ing instrumentation, the string section alone plays most often, followed by all
sections together, and other constellations (Fig. 2c). For systematically testing
generalization to unseen versions, we create three data splits (Table 1). In DS-1,
the test version (Kar) is available during training and validation. DS-2 only sees
the test version at validation. DS-3 is the most realistic and restrictive split.
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4 Experiments

For our results, Table 2 reports precision, recall, and F-measure with singing as
the relevant class. Let us look at the results of the scenario DS-1 where the Kar
version is used both for training and testing. All models perform well here and
almost reach the upper bound of 94% discussed above. For the more realistic
scenario DS-2, where the test version (Kar) is only available for validation, the
F-measures of all models decrease. Furthermore, the models tend towards more
false negatives (precision> recall). Both effects are particularly prominent for
0µ-CNN. In the scenario DS-3, where the Kar version is only used for testing,
the results further deteriorate. Again, all models show a clear tendency towards
false negatives (most prominently 0µ-CNN). This points to detection problems in
presence of the orchestra, which become particularly relevant when generalizing
to unseen versions with different timbral characteristics and acoustic conditions.

Table 2. SVD results for all models (0µ-CNN, PCEN-RNN, LR-PCEN) and data splits.

Data split DS-1 DS-2 DS-3

Models 0µ-CNN PCEN-RNN LR-PCEN 0µ-CNN PCEN-RNN LR-PCEN 0µ-CNN PCEN-RNN LR-PCEN

Precision 0.95 0.93 0.94 0.96 0.91 0.92 0.97 0.87 0.90

Recall 0.91 0.92 0.90 0.81 0.88 0.88 0.69 0.76 0.74

F-Measure 0.93 0.93 0.92 0.88 0.89 0.90 0.80 0.81 0.82
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Fig. 3. (a) False positive and (b) false negative frames as detected by the 0µ-CNN
model (Kar version). We plot the percentage of errors for regions with certain instru-
ment sections or constellations playing, in relation to these regions’ total duration.

We want to study such hypotheses in more detail for the realistic split DS-3.
Regarding individual singers, the 0µ-CNN model obtains higher recall for the
bass (74% of frames detected) than for tenor and soprano (each 68%). Interest-
ingly, both PCEN models behave the opposite way, obtaining low recall (<50%)
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for the bass and high recall (almost 80%) for the others. We might conclude that
the 0µ-CNN is less affected by the imbalance of singers in the training data.
Since segments typically imply a certain length, we conduct a further experi-
ment using median filtering for removing short segments in a post-processing
step (not shown in the table). As observed in [2], F-measures improve by 2–4%
for all models using a median filter of roughly one second length.

Finally, we want to investigate correlations between errors and specific instru-
ment activities for the LR-PCEN model’s results (Fig. 3). For most instrument
combinations, we cannot observe any strong preference for producing false posi-
tives or negatives, with two interesting exceptions. When only brass instruments
are playing without singing, the LR-PCEN practically never produces false pos-
itive predictions. In contrast, when brass only occurs together with singing, we
observe a strong increase of false negatives. The highest frequency of false pos-
itives occurs for tutti passages (all three sections playing). When listening to
false-positive regions, we often find expressive strings-only passages. In contrast,
false-negative regions often correspond to soft and gentle singing. Examining
this in more detail, we observed a slight loudness-dependency for all models. As
reported for popular music [18], singing frames are usually louder leading to more
“loud” false positives and “soft” false negatives. This indicates that, despite the
models’ level invariance, confounding factors such as timbre or vibrato might
affect SVD quality.

Our experiments and analyses only provide a first step towards understand-
ing the challenges of SVD in complex opera recordings. From the results, we
conclude that the systems do not sufficiently generalize across versions due to
their different acoustic characteristics—even if the specific musical work is part
of the training set. While all models are capable of fitting the data to a reason-
able degree (given the reliability and precision of our annotations), generalization
becomes problematic as soon as the test version is not seen during training or
validation. Even if loudness dependencies are eliminated, our results suggest that
more work has to be done to impose further invariances and constraints. A nice
example is given in [21] where the generalization performance of the models
is optimized. Furthermore, considering techniques such as data augmentation
or unsupervised domain adaptation [4] might be useful to achieve robust SVD
systems for the opera scenario.
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Abstract. Transferring a song from one genre to another is most dif-
ficult if no instrumentation information is provided and genre is only
defined by the timing and pitch of the played notes. Inspired by the
CycleGAN music genre transfer presented in [2] we investigate whether
recent additions to GAN training like spectral normalization and self-
attention can improve transfer. Our preliminary results show that spec-
tral normalization improves audible quality, while self-attention hurts
content retention due to its non-locality. We further provide insights into
genre attribution, showing that often only few notes are genre-decisive.

1 Introduction

What if you could listen to your favourite Beethoven symphony as a Jazz inter-
pretation at the press of a button? Humans are capable of performing such
transcription tasks, but it requires considerable skill, effort and creativity. The
goal of music genre transfer is to automate this task by training deep neural
networks on large amounts of music data. Unsupervised methods excel at this
task by allowing us to find structure in complex data in the absence of explicit
ground truth labels. Deep generative models have been particularly successful,
exemplified by methods such as Variational Autoencoders [5] and Generative
Adversarial Networks [3]. One natural application of deep generative models is
domain transfer, in which we learn a mapping function between two domains and
thus implicitly parts of the underlying data generating distributions. This has
led to many impressive applications such as rendering photographs in the style
of different painters [13]. However, most applications have focused on images
and only recently approaches for other types of data such as music have been
proposed. In this work we focus on the task of transferring pieces of music in the
MIDI format between different genres, e.g., from classic to jazz. For that purpose
we extend the architecture from [2] with recent advances in GANs, in particular
spectral normalization [8] and self-attention layers [12], and present respective
transfer performance as measured by an automatic classifier-based metric, as
well as inherent problems of using self-attention in domain transfer. With this,
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we introduce a simple content change metric to quantify content retention in
transferred pieces. We further give insights in the decisions made by a neural
network based genre classifier using a gradient-based attribution method [10] to
better understand genre differences.

2 Related Work

Most neural network based domain transfer approaches are build on either
VAEs [5] or GANs [3], or a combination of the two. Liu et al. [7] use a pair
of GANs to learn the joint distribution of observations. Their method cannot
directly perform domain transfer, but it can generate multiple versions of the
same image in different domains (e.g., the same face with different hair color).
Liu et al. [6] use a VAE architecture with a shared latent space to perform unsu-
pervised image-to-image translation. Zhu et al. [13] introduce an architecture
called CycleGAN which consists of a pair of GANs and is trained to perform
domain transfer using a cycle consistency loss. While aforementioned methods
are generally applicable, they focus their empirical evaluation on images, where
best practices are well established.

In contrast, we focus on domain transfer in music. Mor et al. [9] use an autoen-
coder based architecture with a shared domain-invariant latent space to transfer
input sounds to different instruments. While instruments can be indicative of
genre, we focus on the task of genre transfer in absence of any instrumenta-
tion information. Brunner et al. [1] force one dimension of the latent space of
a VAE to encode the genre by attaching a style classifier. Genre transfer can
then be achieved by manipulating this latent genre label. They also propose a
classifier-based metric to automatically evaluate the genre transfer. In a follow
up work, Brunner et al. [2] adapt the original CycleGAN architecture to per-
form music genre transfer and achieve good results as measured by a slightly
improved classifier-based metric. However, GANs are known to be difficult to
train and there are many common failure modes, such as mode collapse or the
discriminator overpowering the generator. We therefore investigate the effect of
two recent advances in GANs that have been shown to improve GAN perfor-
mance. In particular, we apply spectral normalization [8] to both the genera-
tor and discriminator. We further incorporate self-attention, a recent advance
in neural network architectures that has been applied successfully for language
modeling [11] and music generation [4]. Self-attention has been incorporated into
GANs and together with spectral normalization was shown to improve training
stability and overall performance [12]. We investigate both self-attention and
spectral normalization in our setup and compare with the genre transfer perfor-
mance of [2] as measured by a classifier-based metric. We further evaluate their
individual impact and show that self attention hinders content retention.
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3 Methodology

3.1 Dataset

Our dataset is based on polyphonic multi-instrument MIDI (Musical Instrument
Digital Interface) files from three genres: jazz, classic and pop. We use the same
dataset and preprocessing steps as [2]. That is, we remove the drum track and
merge the remaining instrument tracks into a single piano track, resulting in
a two dimensional matrix usually referred to as a piano roll, where the one
dimension represents time steps and the other represents pitches. Each matrix
entry indicates whether that note is played at the corresponding time. To acquire
a homogeneous dataset, we omit songs whose time signature is not consistently
4
4 . We choose a sampling rate of 16 time steps per bar and combine 4 consecutive
bars into one training example. This means that the shortest possible note we
consider is the 16th note. While music in MIDI files can have pitch values between
0 and 127, i.e., note pitches ranging from C−1 to C9, a standard piano can only
play pitches between 21 to 108, i.e., notes ranging from A0 to C8. Since we
merge all tracks into a single-instrument piano track we discard pitches beyond
that range. Therefore, each input piano roll matrix has dimensions 64 × 84,
corresponding to 16 ∗ 4 timesteps and 84 possible pitches respectively.

3.2 Architecture

Our neural network architecture is based on Generative Adversarial Networks
(GANs [3]), where a generator and a discriminator are optimized by playing
a minimax game. Since we want to perform style transfer in two directions,
i.e., from domain A to domain B and vice versa, two GANs are arranged in a
CycleGAN architecture [13]. In particular we use as baselines the “full” models
from [2] with the additional discriminators.1 We add two self-attention layers
each to the discriminator and generator. For the generator, we add them after
the second to last and the last residual blocks. For the discriminator, we add the
attention layers after both hidden layers. Spectral normalization is applied to all
convolution layers of each discriminator and generator. We use a batch size of
16 and the Adam optimizer with a learning rate of 0.0002. The generators and
discriminators are both updated at each step. While training the discriminator,
we add Gaussian noise with mean 0 and standard deviation σD as this was found
to improve genre transfer performance in [2].

3.3 Metrics

As discussed in [1,2], human genre transfer evaluation is time consuming and
cannot be applied continuously during development. Thus, a classifier based
metric was introduced in [1] and slightly adapted in [2]. The classifier is a 5-layer

1 See https://github.com/sumuzhao/CycleGAN-Music-Style-Transfer for more details
on the baseline architecture.

https://github.com/sumuzhao/CycleGAN-Music-Style-Transfer
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CNN that performs binary classification between two genres. To evaluate genre
transfer, the classifier is applied before and after transfer. For example, when
performing transfer from A to B, the original piece should be classified as A,
the transferred piece as B, and the transferred-back piece again as A. We report
the transfer strength SD

tot, a measure of average difference in correctly classified
samples [2]. Specifically, let PA(x) be the empirical probability of classifying x
as genre A. We then calculate the A → B transfer strength as

SD
A→B =

1
2
(PA(xA) + PA(x̃A) − 2 · PA(x̂B))

where xA is a sample from domain A, x̂B is the same sample transferred to
domain B and x̃A is the sample transferred back to domain A. SD

tot is then
calculated as

SD
tot =

1
2
(SD

B→A + SD
A→B)

where SD
B→A is defined symmetrically to SD

A→B . For the sake of brevity we refer
to [2] for more details.

Further, as genre classification does not capture content retention, we intro-
duce a new content change metric. We quantify content change by counting the
number of added/removed notes in the piano roll, divided by the number of non-
zero entries in the source piano roll. Specifically, for input sample x ∈ {0, 1}64×84

we calculate the content change c(x) as

c(x) =

∑
t,p |xt,p − x̂t,p|
∑

t,p xt,p

where x̂ is the transferred sample and t and p are the indices into the time and
pitch dimension. For a more fine grained analysis we can additionally look at
added/removed notes individually:

cadded(x) =

∑
t,p max(x̂t,p − xt,p, 0)

∑
t,p xt,p

cremoved(x) =

∑
t,p max(xt,p − x̂t,p, 0)

∑
t,p xt,p

Note that instead of looking at all notes one could also apply a heuristic for
melody extraction, e.g., taking the skyline notes, to quantify melody change
(as opposed to overall content change). However, we show that the simple met-
ric based on all nodes already correlates well with human ranking of content
retention.

3.4 Genre Attribution

We note that genre is ill defined, but the decisions of deep neural networks
could provide insights into its nature. We therefore apply a gradient based input
attribution method to the trained genre classifier in order to highlight notes that
are most important in deciding genre. For instance, a 1-entry in the piano roll
matrix corresponds to a played note, and if the back propagated class activation
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gradient is high for that note, then removing it would decrease the confidence in
the corresponding genre classification, indicating that the presence of the note
was significant in determining its genre. We use the saliency map attribution
method [10], which multiplies all positive gradients with the original sample
element-wise.

4 Experiments and Results

4.1 Genre Transfer

We fix σD = 1 as this worked best in [2] and compare our new models with
the corresponding re-trained full model from [2], here referred to as Baseline.
The genre transfer results in Fig. 1 show that self-attention (SA) and spectral
normalization (SN) – individually and combined – improve the transfer in two
out of the three genre pairings. Moreover, we see that transfer strength mainly
depends on the genre pair investigated, as the boundary between some genres
is ill defined. Further, the classifier metric does not measure content retention
and audible quality, two aspects we are also interested in when performing genre
transfer. To preliminarily investigate these aspects we took the classic vs. pop
models and asked 12 people of our lab to rank the anonymized and randomly
ordered transfers of the 4 models (Baseline, SN, SA, SN + SA) on 8 song snippets
(4 transferred from classic to pop and 4 from pop to classic). Each participant
thereby ordered for each song the transfers according to (a) content retention
and (b) audible quality with respect to the target domain. We aggregated the
rankings linearly into a normalized human ranking score sMhr by scoring each
model M according to

sMhr =
1
N

K∑

r=1

#{rank of M = r}K − r

K − 1

where K is the number of models compared (4 in our case) and N is the number
of participants. Note that rank one corresponds to the best and rank K to the
worst transfer. Figure 1 (right) shows that our content change metric introduced
above correlates negatively (Pearson correlation −0.805) with the human content
retention ranking, indicating that this is a good heuristic to quantify content
retention. Also visible in the figure is that models with self-attention score worse
on content retention. This is also reflected in the content change metric over all
test samples reported in Table 1, which shows an average content change of 0.92
for the Baseline model, 0.52 for SN, 2.11 for SA and 2.19 for SN + SA.

We therefore suspect that the use of self-attention can actually be harmful, as
the generators can encode information in a global manner, as every time step and
every pitch level attends to all other time-pitch cells, and hence the generators
can alter the content of the source piece more strongly while still being able to
achieve cycle-consistency. Explicit regularization techniques to retain parts of
the content, e.g., the melody, could be developed in future work. As for audible
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Table 1. Results of the content change metric for the different models. Shown is the
mean and standard deviation over the test set samples.

Baseline SN

C → P P → C C → P P → C

Added 0.82 ± 0.45 0.28 ± 0.17 0.57 ± 0.38 0.08 ± 0.09

Removed 0.27 ± 0.17 0.46 ± 0.12 0.91 ± 0.07 0.3 ± 0.11

Total 1.10 ± 0.5 0.75 ± 0.25 0.66 ± 0.38 0.38 ± 0.16

SA SN + SA

Added 1.47 ± 0.41 0.85 ± 0.79 1.78 ± 1.33 0.72 ± 0.66

Removed 0.95 ± 0.04 0.95 ± 0.04 0.95 ± 0.05 0.93 ± 0.05

Total 2.42 ± 0.42 1.79 ± 0.78 2.73 ± 1.33 1.65 ± 0.66

J vs. P C vs. P J vs. C
Baseline 28.49% 64.62% 57.64%

SN 32.16% 61.88% 63.98%
SA 44.85% 59.35% 63.56%

SN+SA 33.23% 53.07% 66.76%
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Fig. 1. Top: Genre transfer performance SD
tot. J: Jazz, C: Classic, P: Pop, SN: With

spectral normalization, SA: With self-attention. Right: Content change metric to
human evaluation correlation.

quality, the results of our small user study were less homogeneous. On average,
models with spectral normalization where slightly preferred over the others: the
Baseline scored 0.47, SN 0.60, SA 0.42 and SN + SA 0.51, where scores are
between 1 (always ranked best) and 0 (always ranked worst). Note that the user
study only reflects relative audio quality among the studied models, and that
there is room for improvement in terms of absolute fidelity. In particular, the
genre transfer seems to introduce quite many dissonant notes. However, note
that audible quality is already an issue with the original pre-processed pieces,
because we reduce music pieces to single-instrument tracks, remove the drums
and get rid of some of the dynamics (ignoring velocity, constant tempo). Using
a richer input representation as, e.g., done in [1], would already result in more
pleasing audio.2

2 Additional results and audio samples can be found here: http://bit.ly/31VnTxS.

http://bit.ly/31VnTxS
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4.2 Attribution

Figure 2 depicts source piano rolls from the jazz and classical genres, along with
the corresponding attributed piano roll. Intensity-thresholded instance normal-
ized saliency maps [10] are presented. Pixels with intensity less than one-fourth of
the maximum were removed in order to reduce clutter around more significantly
attributed notes. Attribution was conducted on correctly classified samples with
high gradient magnitudes to show interesting examples.

Fig. 2. Piano rolls (top) with corresponding saliency maps (bottom). Jazz samples are
to the left of the delimiter, classical to the right.

The saliency maps are dominated by a few hyperintense pixels. Therefore,
what distinguishes a sample’s genre from the perspective of a deep classifier
is truly subtle. We find that in jazz samples, often a sequence of notes in the
lower pitch ranges are highlighted. This is somewhat similar to how humans
recognize jazz, where genre becomes clear upon hearing a bass play a simple,
rhythm-keeping line, over which different melodies are played.

One limitation of gradient-based attribution is that it is only a first order
approximation and it is unable to capture complex dependencies across notes.
Furthermore, patterns are not always obvious or provable. Nonetheless, the attri-
bution provides a qualitative insight into the decisions of the deep classifier,
highlighting certain musical motifs and revealing the nuance of musical genre in
its ability to be determined mostly by a small number of notes. Identifying and
isolating such motifs would make for fascinating future work in better defining
genre and extracting genre specific features.

5 Conclusion

We presented preliminary qualitative insights on automated music genre trans-
fer using MIDI files. We start from the CycleGAN model presented in [2] and
show the effect of adding spectral normalization and self-attention on transfer
as measured by a classifier-based metric. Further, we find on subsequent inspec-
tion that self-attention often makes the transferred songs less recognizable from
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a human viewpoint, which is emphasized by our simple content change metric
which seems to correlate well with human perception. To the best of our under-
standing this is due to the global attention mechanism scrambling the pitch/time
locality of notes. We further show that genre is often a matter of changing a few
notes by looking at the attribution of our genre classifier. Our work offers many
directions for follow up work, including the development of a better metrics for
genre transfer as well as a quantitative analysis of motifs that make up a genre
using attribution on classifiers. To stimulate further research in this direction
make our code publicly available.3
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Abstract. The task of music emotion recognition (MER) has previously
been explored using a variety of audio, lyrical, and basic meta-data fea-
tures. As feature extraction and classification algorithms advance, the
need for relevant extra-musical features becomes apparent. The efficacy
of familiarity as a feature in a MER system was evaluated by a Ran-
dom Forest feature importance analysis on a novel dataset of 5000 clips
with annotated familiarity and valence. Familiarity was correlated to
perceived valence (r = 0.250) and resulted in a statistically significant
increase of 0.011 in the F-score of a baseline MER classifier upon its
inclusion.

Keywords: Music emotion recognition · Familiarity · Music
perception

1 Introduction

The perceived emotion of a piece of music has long been part of the societal
discourse around sound. The algorithmic prediction of this emotion is of increas-
ing interest in the age of streaming. Personalized playlists are generated and
customized based on these, and many other, algorithmic predictions about, and
features of, music. However, these systems have traditionally used very few extra-
musical features in this task other than standard music meta-data, i.e. genre,
year of release, artist(s), etc. These extra-musical features are not contained in
the actual audio signal and are useful in search and recommendation tasks as
the catalogue of recorded music continues to increase. Subjective familiarity has
been shown to impact a subject’s perception of emotion present in a piece of
music [18]. While music emotion recognition (MER) systems have been created
using context-based features [5,7] and higher dimension emotional mapping [4],
none have included familiarity.

2 Related Work

Labels are inherent in both music making and its consumption, with listeners
able to accurately predict some labels in less than a second [8]. Many systems
have been developed with the goal of automatically labeling mood or emotion
c© Springer Nature Switzerland AG 2020
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in music. A written-query corpus study showed that 80% of production music
queries contained emotional terms [6], indicating the importance of emotion in
semantic music descriptions. Therefore it is in the interest of music recommen-
dation as well as playlist creation services to leverage the power of emotion
labels.

The development of these automated MER systems involves a series of deci-
sions regarding the emotion and annotation parameters, leading to difficulties in
system comparisons [1]. These decisions require researchers to choose between
dynamic or static annotation protocols as well as between perceived or induced
emotion annotation. “Perceived emotion” is the emotion a subject thinks the
music is communicating, while “induced emotion” is the emotion the subject
personally feels while listening to the music. MER systems typically predict
perceived emotion as induced emotion tasks require more complex annotation
tasks and do not offer the same level of clarity of inter-subject comparisons. For
example, a song that communicates a positive perceived emotion may induce a
negative emotion in a subject if the music is associated with negative memories.
Emotion annotations also vary as they typically include semantic mood classifi-
cation, “happy” or “angry” etc., as well as dynamic annotation in valence-arousal
space [7]. Valence ranges from negative to positive while arousal typically ranges
from low to high. Inverse u-shaped trends, originally noted by Berlyne [3], have
been widely seen when visualizing emotion annotations in the valence-arousal
2D Cartesian plane [4]. In MER, this trend translates to few songs and semantic
concepts existing with neutral valency and high/low arousal [7]. An inverse-U
relationship between familiarity and musical preferences was proposed after the
trend was widely noted [15].

Familiarity with a piece of music is an important contextual enhancer in
the perception of emotion in music and is a function of factors including the
number of previous exposures, context of the exposure, and intensity of the
elicited emotional reactions. Subjects consistently rank the perceived emotion of
a clip as more intense if they are familiar with the song [19]. This phenomenon
is also seen in neuroscience as the emotion and reward circuits of the brain have
shown increased activity in fMRI studies when subjects are listening to familiar
music, regardless of musical preferences [17].

Music that is subjectively familiar to a patient has been effectively used
to improve certain music therapy practices [2] and elicits notable physiological
responses, such as increases in the speed and consistency of a subject’s gait [10]
as well as increased affective modulation of subject anxiety states [20,21]. It has
also been noted, both by researchers [19] and by the broadcasting community,
that people are more likely to rate familiar music favorably when compared to
unfamiliar music of a similar style [16]. These different responses to familiarity
have been explored in EEG based emotion recognition systems which achieved
a classification accuracy of 82% in a 4-class model of emotion [11].

Popular music is often more familiar as listeners are likely to have heard
popular songs more often in public spaces or have been biased towards them
by recommendation algorithms. While popularity and familiarity are correlated,
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they are inherently separate concepts that capture different information about
the listener’s relation to a piece of music. Familiarity is individually subjective
while popularity is largely culturally and contextually dependent. As a result
of this, familiarity is not a binary variable. There is a gradient of familiarity
ranging from no previous exposure to the clip or similar clips, to over-learned
familiarity [13]. The subjective familiarity that exists between these binary states
is akin to the ’feeling of knowing’ (FoK) widely discussed in psychology [13]. FoK-
type familiarity allows for a scale of familiarity as well as associations related
to the clip. For example, a subject might have heard much of an artist’s work,
yet is uncertain if they have heard a specific song that is being played. Studies
have previously shown a positive correlation between this FoK-type familiarity
and differences in the perceived emotion in music [16,17]. Familiarity was noted
as a feature of interest in the development of an MER benchmark following the
MediaEval 2013–2015 MER tasks [1]. However, the feature could not be studied
due to annotators not being familiar with the large public-domain data sets
historically used in MER tasks.

State-of-the-art MER systems use low-level audio features and/or meta-data;
combined with a ground truth measure of emotion, to train and test classifiers [1].
Modern classifiers typically use a deep-learning framework [17], achieving aver-
aged root-mean square errors below 0.25. Comparable classification accuracies
of over 85% have been achieved by support vector machine (SVM) models [14].
Context-based systems, such as mood classification within known genre fami-
lies [9], have been used to improve mood and emotion classification accuracies
in MER systems of 67% combined with a finer grain model of emotion and
emotion-state-transitions [5]. Following the conclusion of the 2013–2015 Medi-
aEval MER task, recurrent neural recurrent neural networks with large feature
sets were shown to outperform other models [1]. Extra-musical features, such as
familiarity, would prove particularly useful as neural network systems become
more elaborate as these are features that cannot be extracted or learned from
the audio.

The psychological and physiological effects of familiar music have been lever-
aged in other music information retrieval (MIR) problems. The inference of famil-
iarity in a listener profile has been explored by clustering listeners into different
groups based on their individual preferences for novelty and complexity in new
music [12]. Other techniques, such as efficient user prompting or correlating num-
ber of plays, may also be explored to further leverage psychological phenomena
in MER.

2.1 Dataset

50 songs from across 6 genre families and 7 decades of release were collected
from Vevo certified YouTube videos with more than 100k streams. Two 20-s
clips were taken from each song and root-mean squared (RMS) normalized. One
clip contained the hook or chorus of the song and the other included either a
verse or bridge section. The use of these two types of clips allowed for reports of
perceived emotion to change depending on the section of the song and provided
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an additional level of robustness to the self-reported familiarity. The clip length
was chosen to exceed the 15-s threshold for perceived emotion reporting [7], but
short enough to allow for each annotator to label all of the clips. The Spotify
API was used to collect a measure of valence to ensure that no bias relating
valence to genre or release year was present in the dataset. This was validated
by calculating the Spearman’s correlation (−0.032) between year of release and
annotated valence by an initial group of 32 annotators.

2.2 Labeling

50 annotators aged of 18–30 with no reported hearing impairments performed
individual annotations on all 100 clips. The 50 annotators consisted of 28 males,
21 females, 1 gender non-conforming individual with 52% of annotators identify-
ing as non-musicians, 36% amateur musicians, and 12% professional musicians.
Annotators were played a 20-second clip and asked to complete 3 questions at
the conclusion of each clip: (1) Rate the subjective familiarity of the clip using
a scale of 1–4, (2) If the emotion conveyed in the clip was more positive or
negative, and (3) How intensely that emotion was conveyed on a 4 point scale.

A seven-class valence model was developed classifying these annotations into
7 classes, allowing for the reported emotions to be ranked and classified without
the need for a semantic explanation. Valence was selected as the annotation
parameter as it has previously been shown to be correlated to familiarity [17].

A notable trend in the annotations was that more clips were classified as
having a more positive perceived emotion. This phenomenon may be a result
of the collection of clips themselves, alluding to the difficulty of constructing a
data set for a familiarity task that balances across genre family, year, subjec-
tive familiarity, and perceived emotion. Incomplete annotations were removed,
resulting in a total dataset of 4722 annotations spread out among the 100 clips.
Each clip received on average 47.2 +/− 1.5 annotations, with a maximum of 50
and minimum of 45 annotations. As subjective familiarity cannot be averaged
among annotators, each clip-annotation pair was used an individual data point
in the dataset.

2.3 Algorithms and Analysis

The effect of familiarity on annotated valence was assessed via (1) a correlation
analysis, (2) a feature importance analysis and (3) the inclusion of familiarity as
a feature to a baseline MER system. This analytical framework was selected to
assess the effectiveness of familiarity at a variety of applied levels.

A significant Spearman’s correlation (r = 0.250) was found between familiar-
ity rating and annotated valence class. Other notable and significant correlations
were found between familiarity rating and response time (−0.132), familiarity
and if the clip contained the hook/chorus section (−0.104), and between year of
release and class (−0.094). A suite of 55 audio features were extracted for each
clip using the Librosa library. These included the first 13 Mel Frequency Cepstral
Coefficents (MFCCs), tempo, zero-crossing rate as well as spectral bandwidth,
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center, contour and roll-off. Tempo and spectral features were selected to con-
struct a baseline model as they have previously been used to great effect within
SVM MER systems. The mean and standard deviation of all features over the
clip were both used in the models.

Feature importance was calculated by the change in prediction error when the
out-of-bag error of the feature was altered, all else constant, in a Random Forest
model. This was repeated for each variable-tree pairing, producing a ranked list of
feature importance with percentage inclusion and standard deviation measures.
As seen in Fig. 1, self-rated familiarity rating and response time ranked higher
than the acoustic features by a statistically significant amount.

Fig. 1. Feature importance rankings for all 58 features. Familiarity rating and rating
time were ranked as significantly more important.

A SVM model was chosen to construct a baseline as it has been implemented
successfully in many systems [7,14] and allows for a more meaningful analysis
of the effect of including additional features while still non-trivially modeling
non-linearities. Neural networks do slightly outperform SVM MER systems [7],
however, the lack of feature-effect transparency inherent in neural network sys-
tems precluded them from the study. A baseline model was constructed and
optimized using all 56 audio features while the proposed model included all 56
audio features as well as 2 additional familiarity features. These features where
the familiarity rating as well as the response time to complete the familiarity
assessment in seconds. A randomized third of the data was left out of each of the
500 iterations as testing data and the mean of the F-scores across all iterations
was calculated. One model was trained on n principal components while another
was trained on the same n principal components as well as the reported famil-
iarity. The gamma and penalty parameters were optimized using a grid search
and the values remained constant for each model throughout the analysis.
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3 Results

Radial basis function (RBF) and second degree polynomial kernels were used to
evaluate the effect of the inclusion of reported familiarity’s effect on the MER
SVM system performance. The improvement in F-score and accuracy is largest
when 6 or fewer principal components are used, regardless of the SVM kernel.
The model with familiarity included consistently outperformed the base model
at each number of included components.

Fig. 2. The normalized mean confusion matrix of the RBF SVM both with and without
familiarity. Class labels correspond to 0 - very low valence to 6 - very high valence.

No significant difference between SVM kernels was found past 15 included
components. Systems with the familiarity feature included have a statistically
significant improvement in F-score of 0.01 and an increase in accuracy of 0.01
once 15 or more principal components are included. This gain in system per-
formance is comparable to those seen in innovations in state-of-the-art MER
systems, a decrease in RMSE of 0.02. The systems that use an RBF kernel
reached the maximum F-score with fewer features than the systems that use the
polynomial kernel. The difference in F-score distribution between the two RBF
SVM models yielded a highly significant Wilcoxon T of 1.18e5 with a p-value
of 8.372e − 42. This increase in performance is hypothesized to be a result of
including familiarity rating, a feature which is both personalized on the level of
the annotator and has previously been shown to correlate with the perceptions
of emotion in music.

Both confusion matrices in Fig. 2 show a strong diagonal trend, indicating
that the classifier is not overly biased in classifying clips into only a subset of
classes. This strong diagonal trend also indicated that, in the majority of cases
when clips were misclassified, they were incorrectly classified into the nearby
classes. As the 7 class valence model is ordered and neighboring classes are
hierarchically related, the reclassification into neighboring classes was expected.
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Fig. 3. F-score vs the number of included components. The standard error of all points
is less than 10e–4.

When reduced to a simpler 3 class model of emotion, positive, negative and
neutral, a system accuracy of 70.42% is achieved. This is far closer to the state-of-
the-art SVM accuracies of over 80% [7,14]. The most accurate classification the
model achieved was in the most intense emotional categories (0 and 6) (Fig. 3).

4 Conclusion and Future Work

Through leveraging findings in psychology and neuroscience, the extra-musical
feature of subjective familiarity was identified and a dataset constructed, anno-
tated, and analyzed to show the efficacy of the inclusion of subjective familiar-
ity ratings in MER systems. The findings support the notion that subjective
familiarity may be a useful feature in the context of MER and possibly other
MIR tasks. Given the size of current MER system improvements, the increase
in performance generated through the inclusion of familiarity may motivate its
inclusion to larger scale MER systems. Future work would include identifying
the most efficient means to collect or infer subjective familiarity within an MER
system. Possible proxies for familiarity, such as number of plays and other group-
filtering features, may also be investigated in the future.
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Abstract. Music that is generated by recurrent neural networks often
lacks a sense of direction and coherence. We therefore propose a two-stage
LSTM-based model for lead sheet generation, in which the harmonic
and rhythmic templates of the song are produced first, after which, in
a second stage, a sequence of melody notes is generated conditioned on
these templates. A subjective listening test shows that our approach
outperforms the baselines and increases perceived musical coherence.

Keywords: Music generation · Lead sheets · Neural networks

1 Lead Sheets

Lead sheets are widely used to represent the fundamental musical information
about almost any contemporary song: they contain a chord scheme, a melody
line, some navigation and repetition markers, and sometimes lyrics. They seldom
contain information about the instrumentation or accompaniment, so any band
can take a lead sheet as a guideline and make the song their own, sometimes
even by improvising over the chord schemes. In this paper we focus on generating
chords and melody lines for lead sheets from scratch.

A major difficulty in music generation is that harmony, melody and rhythm
all influence each other. For example, a melody note can change whenever the
underlying harmony changes, and vice versa. Rhythmic patterns can influence
which notes are played, and rhythm and harmony together define the overall
groove of the piece. To tackle this issue, we split the generation process into two
stages. First, we generate a harmonic progression using chord sequences, while
simultaneously picking the most appropriate rhythmic patterns. And in a second
step the melody is generated on top of this harmonic and rhythmic template.

We are, however, not the first to tackle the problem of lead sheet generation
and, in general, music generation. Briot et al. provide a recent and extensive
overview of all deep learning based techniques in this field [1]. Regarding lead
sheets specifically, Liu et al. use GAN-based models on piano roll representa-
tions, but the melody and chords are still predicted independently by different
generators [9]. Roy et al. devise a lead sheet generator with user constraints
c© Springer Nature Switzerland AG 2020
P. Cellier and K. Driessens (Eds.): ECML PKDD 2019 Workshops, CCIS 1168, pp. 454–461, 2020.
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C G i ci ri mi

1 C quarter G4
2 C eighth E4
3 C eighth G4
4 C half C5
5 | | |
6 G quarter D5
7 G quarter B4
8 G half G4
9 | | |

Fig. 1. Example of a lead sheet decomposition into chords, rhythms and melodies.

defined by Markov models, and harmonic synchronization between melody and
chords through a probabilistic model that encodes which melody notes fit on
which chords [11]. There have also been many efforts in the past that learn to
generate chords for a given melody [3,8,10] or the other way round [12]. In this
paper we want to show that, on the one hand, a two-stage generation process
greatly improves the perceived quality of the music. And, on the other hand, we
show that melodic coherence improves when the melody generator gets to look
ahead at the entire harmonic template of the song.

We formally define a lead sheet x1:n of length n, characterized by a sequence
of chords c1:n, rhythms r1:n and melody pitches m1:n. At each time step i in the
piece, each of these quantities take some value:

x1:n = {c1:n, r1:n,m1:n} , xi = {ci, ri,mi} . (1)

In this equation, the compact xj:k notation denotes the sequence (xj , xj+1 . . . xk).
Figure 1 shows an example of this decomposition. Notice that the chords are
repeated until there is a change in harmony, thereby allowing us to model the
entire lead sheet using a single shared time scale. We also point out that there is
only one melody note per time step, which is not a severe restriction, since most
lead sheets only contain monophonic melodies. Finally, we choose to treat the
barlines as separate elements in the sequence, which is indicated by the vertical
bars in Fig. 1.

2 The Wikifonia Dataset

In this paper we will make use of the Wikifonia dataset, a former public lead
sheet repository hosted by wikifonia.org. It contains more than 6,500 lead sheets
in MusicXML format, and in all sorts of modern genres. This section goes over
the different preprocessing and encoding steps that are executed on the dataset
in order to obtain a clean collection of lead sheets.

2.1 Preprocessing

Eliminate Polyphony. Whenever multiple notes sound at the same time, we only
retain the note with the highest pitch, as it is often the note that characterizes
the melody.
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Ignore Ties. Connections between two notes with the same pitch that extend
the first note’s duration are ignored. The two notes are therefore treated as two
separate notes with their original duration.

Delete Anacruses. Incomplete bars that often appear at the start of a piece, are
removed from all lead sheets.

Unfold Repetitions. Lead sheets can contain repetition and other navigation
markers. If a section should be repeated, we duplicate that particular section,
thereby unfolding the piece into a single linear sequence.

Remove Ornaments. Since such ornaments do not contribute much to the overall
melody, we leave them out.

2.2 Data Encoding and Features

After preprocessing, we encode the melody, rhythm and chord symbols into
feature vectors such that they can be used as input to our generators.

Encoding Rhythms. We retain the 12 most common rhythm types in the dataset,
which are given in Appendix B. We remove 184 lead sheets from the dataset that
contain other than these 12 types. Together with the representation for a barline,
we encode rhythm into a 13-dimensional one-hot vector ri.

Encoding Chords. A chord is described by both its root and its mode. There
are 12 possible roots (C, C�, D, D�, . . . , B) and we choose to convert all acci-
dentals to either no alteration or one sharp. We count 47 different modes in the
dataset, which we map to one of the following four: major, minor, diminished
or augmented. This mapping only very slightly reduces musical expressivity and
interestingness. The mapping table can be found in Appendix A. The 12 roots
and 4 modes give 48 chord options in total, resulting in a 49-dimensional one-hot
vector ci if we include the barline.

Encoding Melody. The MIDI standard defines 128 possible pitches. We assign
two additional dimensions for rests and barlines, resulting in a 130-dimensional
one-hot encoded melody vector mi.

3 Recurrent Neural Network Design

As mentioned in Sect. 1, the lead sheet generation process happens in two stages:
in stage one the rhythm and chord template of the song is learned, and in stage
two the melody notes are learned on top of that template. We will use separate
LSTM-based models for both stages [2]; the models are trained independently
of each other, but they are combined at inference time to generate an entire lead
sheet from scratch. Figure 2 shows the complete architecture.
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Fig. 2. The RNN architecture for both stage one (left) and stage two (right). The
output dimensionality for every layer is written in each of the blocks. Whenever two
blocks appear next to each other, the (output) vectors are concatenated.

Stage One. In this stage, the rhythm and chord vectors are first concatenated
and are subsequently given as inputs to two LSTM layers followed by a dense
layer. All LSTM layers have a output dimensionality of 512 states, as indicated in
the figure. The output of the dense layer is cut in two vectors, both on which we
apply a softmax nonlinearity with temperature τ , controlling the concentration
of the output distribution. This way we are effectively modeling a distribution
over the chord and rhythm symbols that come next in the sequence.

Stage Two. The second model will process the generated sequence of predicted
chords and rhythms. To this end, each chord and rhythm vector is again con-
catenated before being processed by two BiLSTM layers. These BiLSTM states
allow the pitch generator to look back and also ahead at the harmonic sequence,
as inspired by [8]. The dimensionality of the BiLSTM layers is 512 in both direc-
tions, adding up to a total of 1024 states. After concatenation with the previous
melody vector, the BiLSTM states are fed through another stack of two LSTM
layers. The output of the last dense layer is used to predict the next melody
note, again using a softmax nonlinearity controlled by a temperature parameter.

3.1 Optimization Details

In this paper we train both stages separately; it is possible to jointly train both
models through reparameterization tricks [4], but we leave this as future work.
While training is done separately, inference of lead sheets from scratch is easily
done by feeding the output of the first model to the input of the second model.
We use a standard cross-entropy loss function on all outputs. In stage one we
sum the losses on both the chord and rhythm outputs with hyperparameter α:

Lstage 1(ĉ, r̂) = α · LCE(ĉ) + (1 − α) · LCE(r̂) . (2)

In this equation, LCE(·) indicates the cross-entropy loss. In stage two the loss
function is equal to the cross-entropy loss on the melody output.

Lstage 2(m̂) = LCE(m̂) . (3)
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We use Adam with learning rate λ to optimize both models [6]. During optimiza-
tion, the training data is augmented by shifting the pitches and chords with a
random number of semitones between −12 and 12, that is, between plus or minus
one octave. This virtually increases the amount of training data by a factor of 25,
thereby aiding model generalization towards less frequently appearing keys.

4 Experiments

Hyperparameters. In all experiments we use a batch size of 128 sequences, each
of length 100. The learning rate λ is set fixed to 0.001. We empirically found
that a value α of 0.5 leads to good results, so we set it fixed to that value. We
also set the temperature τ slightly lower than 1 during inference of the melody,
which helps to improve the perceived quality of the generated music; we varied it
between 0.75 and 1.0 during the experiments. For the rhythm and chord patterns
a temperature of 1.0 gives the most pleasing results.

Baselines. We will compare our model against two baselines:

1. An unconditioned LSTM-based model similar to the stage one model in Fig. 2,
but now the melody is also concatenated to the input and output. The melody
is no longer conditioned on the entire chord and rhythm sequence. We also
add an extra LSTM layer, adding up to a total of three.

2. A two-stage model where the BiLSTM layers are replaced by regular LSTM
layers, so that the melody cannot look ahead at the harmonic sequence. We
keep all other parameters identical to the original model.

Subjective Listening Test. We conducted an online listening test in which we
asked 40 participants to score 12 short audio clips, each of approximately one
minute long. The following songs were included in the test1:

– 3 pieces generated by the two-stage model from scratch,
– 3 pieces generated by the two-stage model, but conditioned on the chord and

rhythm scheme of existing songs: I Have a Dream (Abba), Autumn Leaves
(jazz standard) and Colors of the Wind (Alan Menken),

– 2 pieces generated by the one-stage baseline model,
– 2 pieces generated by the two-stage baseline model,
– 2 (relatively unknown) human-composed songs: You Belong to my Heart

(Bing Crosby) and One Small Photograph (Kevin Shegog).

As stated in Sect. 1, a lead sheet only encodes the basic template of a song,
and it ideally needs to be played by a real musician. We therefore gave all lead
sheets to a semi-professional pianist; the pianist stayed true to the sheet music,
but was free to create an accompaniment that suited the piece. In our regards,
this evaluation method reflects best how a lead sheet, produced by an AI model,
would in practice be used and experienced by musicians and listeners.
1 Listen to the audio clips at https://users.ugent.be/∼cdboom/music.

https://users.ugent.be/~cdboom/music
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Table 1. Results of the subjective listening experiments. We report averaged Z̄-scores
for each of the questions, along with the standard deviations.

Model Pleasing Z̄ Coherence Z̄ Turing Z̄

One-stage −0.23± 0.34 −0.24± 0.31 −0.22± 0.29

Two-stage, without BiLSTM −0.04± 0.35 −0.07± 0.33 −0.09± 0.33

Two-stage, with BiLSTM −0.01± 0.36 0.01± 0.34 −0.02± 0.34

Two-stage, with existing chords 0.15± 0.37 0.09± 0.36 0.13± 0.36

Human-composed songs 0.03± 0.34 0.13± 0.36 0.13± 0.34

The audio clips were presented to each user in randomized order. For each
clip we asked the user to rate on a scale of 1 to 5 how much he likes the piece,
if the melody is musically coherent, and whether the piece is composed by a
computer (1) or a human (5). We also asked the user to indicate if he recognizes
the piece. Since each user has his own rating bias and spread [5,7], we converted
the ratings for each user to a standardized Z score between −0.5 and 0.5:

Zc,u =
Rc,u − μu

maxc′ Rc′,u − minc′ Rc′,u
. (4)

In this formula, Rc,u is the rating of user u for clip c, μu is the average rating of
user u, and Zc,u is the associated standardized score. Table 1 reports the average
Z̄ score across the audio clips for each of the three questions in the survey, along
with the standard deviation. A negative score means that the ratings are below
average overall, and a positive score indicates an overall above-average rating.

We observe that the scores are, by far, better for the two-stage models com-
pared to the unconditioned one-stage model. This shows that first sampling a
harmonic and rhythmic sequence, and conditioning the melody on top of this
sequence, is more beneficial than sampling all quantities simultaneously. Next
to this, we also notice that adding the BiLSTM layers improves the score for all
three questions. And although by a small margin, we can conclude that the musi-
cal quality improves when the melody generator can look ahead in the harmonic
sequence. When we condition the melody generator on an existing chord and
rhythm scheme, it is remarkable that the human-composed and AI-composed
songs perform almost on par. The AI-composed songs are even considered most
pleasing. Related to this observation, 4 participants indicated having recognized
a piece from the two-stage model, 5 recognized a piece that was generated based
on existing chords, and 3 participants recognized a human-composed song.

Finally, we also want to point out that the standard deviations are very
substantial, which shows that there is a high level of disagreement between the
reviewers. It is however interesting to point out that the standard deviation
is slightly higher for better performing models. This might indicate that there
is more consensus on what it means for music to sound ‘badly’, but that the
definition of ‘good’ music is more subjective and person-dependent.
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5 Conclusion

We have proposed a two-stage LSTM-based model to generate lead sheets from
scratch. In the first stage, a sequence of chords and rhythm patterns is generated,
and in the second stage the sequence of melody notes is generated conditioned
on the output of the first stage. We conducted a subjective listening test of
which the results showed that our approach outperformed the baselines. We can
therefore conclude that conditioning helps the quality of the generated music,
and that this approach can be explored further in the future.

A Mode Mapping for Chords

In Table 2 we show how different chord modes are mapped to one of the following
four options: major, minor, diminished or augmented.

Table 2. Chord modes are mapped to one of four options.

Original mode Mapped mode Original mode Mapped mode

6 major major-6-9 major

7 major major-7 major

9 major major-9 major

augmented augmented major-minor major

augmented-7 augmented minor minor

augmented-9 augmented minor-11 minor

diminished diminished minor-13 minor

diminished-7 diminished minor-6 minor

dominant major minor-7 minor

dominant-11 major minor-7-b5 diminished

dominant-13 major minor-9 minor

dominant-7 major minor-major minor

dominant-9 major minor-major-7 minor

half-diminished diminished power major

major major sus2 major

major-13 major sus4 major

major-6 major sus4-7 major
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B Rhythm types

Table 3 provides an overview of the twelve rhythmic figures that are used.

Table 3. The rhythm types that are considered in this paper.

Textual description Musical symbol

32nd note ˇ
“
*

32nd dotted note ˇ
“
*
‰

16th note ˇ
“
)

8th triplet note

3

ˇ
“

==

8th note ˇ
“
(

quarter triplet note
3

ˇ
“

8th dotted note ˇ
“
(
‰

quarter note ˇ
“

quarter dotted note ˇ
“

‰

half note ˘
“

half dotted note ˘
“

‰

whole note ¯
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Abstract. Writing chorales in the style of Bach has been a music theory
exercise for generations of music students. As such it is not surprising
that automatic Bach chorale harmonization has been a topic in music
technology for decades. We suggest several improvements to current neu-
ral network solutions based on musicological insights into human choral
composition practices. Evaluations with expert listeners show that the
generated chorales closely resemble Bach’s harmonization style.

Keywords: Bach chorale harmonization · Deep learning · Beam search

1 Introduction

Chorales by J.S. Bach traditionally play an important role in Western music edu-
cation. Concise voice leading techniques and precepts such as the often quoted
prohibition of parallel fifths make these chorales interesting as subject in music
theory. But they are also interesting for computational music analysis and gen-
eration. Especially automatic harmonization of melodies, i.e., producing a four-
part chorale given the soprano part, has been a topic for a long time.

In 1986, the first significant attempt was made: The CHORAL system [4]
used over 270 hand-engineered rules for harmonization. Later, focus shifted from
rule-based systems to neural networks [11,15]. In 2002, the usage of Recurrent
Neural Networks (RNN) and Long Short-Term Memory cells (LSTM) [7] by Eck
and Schmidhuber [5] specifically addressed the sequential nature of music and
produced state-of-the-art results at that time. A decade later, statistical models
like Hidden Markov models and Bayesian networks were developed [1,13,16].
Recent solutions such as BachBot [10] and DeepBach [6] again use LSTMs and
incorporate metadata such as information on fermatas or metrical positions of
notes to enhance the results.

Although various music theory concepts have been applied for evaluation of
the resulting chorales, the actual human composition process has not yet been
used for modeling neural networks. We therefore propose a Convolutional Neural
c© Springer Nature Switzerland AG 2020
P. Cellier and K. Driessens (Eds.): ECML PKDD 2019 Workshops, CCIS 1168, pp. 462–469, 2020.
https://doi.org/10.1007/978-3-030-43887-6_39
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Network (CNN) architecture that follows—to some extent—workflows that are
documented and commonly recommended in music theory literature and taught
in music theory classes for writing four-part chorales.

Expert listening tests with musicologists and music majors indicate that some
of our generated harmonizations are more Bach-like than the originals, in the
sense that they were believed to be the work of Bach even in direct comparison
to the master’s original harmonization of the same soprano part.

2 Musicologically Informed Harmonization

Contemporaries of the Baroque epoch as well as modern experts recommend
to start four-part harmonization by elaborating a bass part given the soprano
part, see for example [3,8]. The bass part is not only considered one of four
equitable voices but also an indicator of the tonal skeleton: Once the bass line is
determined, the structure of the chorale is mostly set. Only small leeway is left
for the middle voices that are formed in a second step and can be very plain,
solely blending into the harmonic progression [3, p. 255]. Telemann emphasizes
in [14] that the alto part should be written before the tenor part so that the
closest possible voicing can be accomplished. The advantages of generating the
bass line first in generative systems have already been discussed [16].

Particular attention should be paid to the ends of musical phrases, typically
marked by fermatas. Such phrases oftentimes end with rather canonical cadences
and thus should be prepared in advance as Daniel suggests [3, p. 159]. Daniel also
argues, that in many cases there is only one solution for a valid choice of alto and
tenor notes [3, p. 256]. Therefore, sometimes during harmonization the choices of
specific notes lead to dead ends in a sense that further voice development breaks
common voice leading rules. These problems are commonly solved by simply
going back and revising certain notes.

In summary, expert knowledge teaches us to use the following strategies when
harmonizing Bach chorales:

– Generate the bass part first given the soprano part
– Support close voicings by choosing tenor notes after the alto
– Give enough context to allow for correct cadences
– Allow changes to previously generated notes

The following sections describe how these insights were integrated in our
approach.

2.1 Data Processing and Augmentation

Symbolic score data is retrieved from and processed with the music21 [2] frame-
work for Python. Besides offering various possibilities to process symbol music,
it also includes a corpus with numerous chorales composed by Bach. To augment
this dataset, all pieces are transposed up and down to different keys. Transposi-
tions are limited in such way that no voice part exceeds the tonal range as used
by Bach in order to ensure generation of “singable” results.
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The smallest time unit used in Bach chorales is a semiquaver. Therefore we
use a semiquaver time resolution to retain all information. For each time step,
we compute one-hot vectors per part. The individual vectors can encode one of
three slightly different events for each time step:

– New note If a new note starts at the given time step, its pitch is encoded.
– Rest Rests are handled as if they were notes with a special pitch value.
– Continuation In case that a note or rest is tied, i.e., not finished yet, we

set a special continuation flag.

Additional score information (hereinafter called metadata) such as the current
time position within a measure, the overall key of the choral, its time signature
and the position of fermatas are also fed as one-hot vectors into the network.

We are aware, that Bach sometimes used the same melody to compose several
different chorales. Therefore, it may happen that a specific melody has been
present in the training as well as the test dataset due to random splitting of the
dataset. Since the harmonizations in such cases are still different, we follow the
practice of similar generative systems [6,10] and do not take this circumstance
further into account.

Fig. 1. Scheme of the bass part generation. The one-hot encoded data is fed into several
fully connected layers to generate the output for a single time step. Afterwards, the
context window is shifted by one step into the future. (Context size shown in blue is
deliberately reduced compared to the actual implementation to enhance readability.)
(Color figure online)
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2.2 Network Architecture

Our proposed architecture features three similar consecutive networks. The first
network creates a single bass note. It takes a frame of the soprano part, meta-
data and the prior bass notes as an input. After the entire bass line is gener-
ated, two networks are alternated to generate alto and tenor notes based on
the soprano/bass part, metadata and the previously generated middle voices.
Each part is generated using only a single hidden layer of size 650. Input and
output layer dimensions are defined by the individual pitch range of each part.
The output layers use softmax nonlinearities, all other layers use SELUs [9]. The
ordering of note generation is as follows:

1. The entire bass line is generated first. A bass event bi depends on the soprano
and metadata in a local context of ±32 time steps si−32:i+32,mi−32:i+32 and
32 previous bass events bi−32:i−1 (see Fig. 1). We use 32 steps (8 quarter
notes) as a context as it provides a sufficient look ahead to prepare cadences
as suggested by Daniel [3, p. 159]. The probability model for predicting bi is
thus

p(bi|si−32:i+32,mi−32:i+32, bi−32:i−1).

2. After the bass line and thus the harmonic outline is completed, tenor and
alto voice are generated from time step to time step. The alto prediction
ai is generated based on soprano and metadata context as above but with
current and future bass events, which have been generated in the previous
step, as well as previous alto events ai−32:i−1 and tenor events ti−32:i−1. The
underlying probability model is thus

p(ai|si−32:i+32,mi−32:i+32, bi−32:i+32, ai−32:i−1, ti−32:i−1).

3. The tenor is generated similar to the alto, but it also depends on the alto
note generated in the current time step i, i.e., it depends on ai−32:i:

p(ti|si−32:i+32,mi−32:i+32, bi−32:i+32, ai−32:i, ti−32:i−1).

2.3 Beam Search

For every time step i, our network predicts the probabilities p(bi|·), p(ai|·) and
p(ti|·) conditioned on the local context. We want to find the sequence that max-
imizes the total probability, which is the product of the probabilities for each
choice1

N∏

i=0

p(bi|·)
N∏

i=0

p(ai|·) p(ti|·).

A greedy approach would select pitches with maximal probability at every pre-
diction step. However, since future predictions depend on previous ones (see

1 The multiplication is split in two parts to emphasize that the entire bass line is
created first.
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Sect. 2.2), always choosing the highest local probability option can lead to sub-
optimal total probability of the sequence.

We therefore use beam search [12] to find solutions that help maximizing the
total probability of the sequence. Beam search is a best-first search algorithm
where only a fixed number of candidate alternatives are maintained to limit run-
time and memory requirements. Previous work in Bach chorale harmonization
has in fact suggested to use beam search, see [10]. Up to now this has, however,
not been implemented and evaluated. Figure 2 provides a graphical example of
how we employ beam search for generation of the bass part. The alto and tenor
parts are generated in a similar manner.

Fig. 2. Example of beam search for bass part with beam width of 2 in comparison
to a greedy approach. P denotes the total probability of the branch, p denotes the
conditional local probability.

3 Generation Results

At first glance, the chorales produced exhibit similarities to original Bach
chorales. Two of the generated chorales were randomly chosen and given to
Lydia Steiger, music theory teacher at the Detmold University of Music, for an
in-depth musical analysis. She provided the following feedback:

– In several places voice leading rules were violated.
– The algorithm lacked sensitivity for musical tension and therefore sometimes

choses a plain solution in places were a more sophisticated composition would
have been more appropriate.

– The network uses common musical phrases used by J.S. Bach. In some places,
the algorithm split these phrases arbitrarily across voices.

Further development of this approach should aim to address these shortcom-
ings. All generated chorales of the test dataset and other pieces can be reviewed
online at the project homepage2, see Fig. 3 for a generation example.

2 See http://www.cemfi.de/research/bachnet (accessed: 2019-09-03).

http://www.cemfi.de/research/bachnet
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Fig. 3. Generated harmonization given the melody from “Ich ruf zu dir, Herr Jesu
Christ” (BWV 177.5) by Bach.

4 Evaluation

We also evaluated our network with two online listening tests. The first test
without beam search was conducted with the help of music majors. Thus we
expect a high degree of familiarity with Bach chorale harmonization. The test
presented paired samples consisting of (A) the original four-part chorale by Bach
and (B) our generated harmonization using the same soprano part. Participants
first had to give a self-assessment about their familiarity with Bach chorale
harmonization and were then asked to identify the original Bach chorale for
each pair. In case participants were unsure, question could be skipped. In 61% of
the presented pairs, the participants could correctly identify the Bach work. 39%
misjudged our generated pieces to be composed by Bach or skipped questions (see
Fig. 4). Interestingly, 5 of 17 generated chorales could not be correctly identified
by the majority of the participants.

After implementing beam search, we once more evaluated our solution. Since
the results had subjectively improved, we decided to evaluate our network with
participants that had an even greater expertise by directly addressing profes-
sional musicologists. Apart from the new harmonizations, the same online survey
was used. Only 66% could distinguish the Bach pieces from the artificial ones,
34% chose the generated harmonizations or gave no answer. Although some of
the musicology experts might be familiar with the exact Bach chorale, still 3
of 17 generated chorales were not correctly identified by more than 50% of the
participants. One chorale was even preferred over the authentic work.
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Fig. 4. Summarized results of the online evaluation. The chart shows how both par-
ticipating groups scored in identifying the original Bach chorale given a generated
harmonization as well as the master’s work broken down by the self-assessment given.
5 corresponds to a high familiarity with Bach chorale harmonization, 1 corresponds to
a low familiarity. 68 music majors and 127 musicologists participated.

To conclude this paper, we encourage future research on harmonization and
automatic composition based on neural networks to take the human music cre-
ation process into account. The question, why several pieces sound more Bach-
like than the original works even to experts could also be an interesting topic:
What is it that deceives the listener and makes these chorales sound “bacher
than Bach”?
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Abstract. Human supervision is necessary for a correct edition and
publication of handwritten early music collections. The output of an
optical music recognition system for that kind of documents may con-
tain a significant number of errors, making it tedious to correct for a
human expert. An adequate strategy is needed to optimize the human
feedback information during the correction stage to adapt the classifier
to the specificities of each manuscript. In this paper, we compare the
performance of a neural system, difficult and slow to be retrained, and
a nearest neighbor strategy, based on the neural codes provided by a
neural net, trained offline, used as a feature extractor.

1 Introduction

Optical Music Recognition (OMR) investigates how computers can read music
notation in scores. Although research in printed modern notation has achieved
good performances [5], the task becomes much harder when dealing with col-
lections of early music handwritten scores. In particular, this work is applied
to documents written in the Spanish white mensural notation system from the
16th and 17th centuries (see Fig. 1), for which a perfect recognition cannot be
expected as the initial output of the OMR system [4].

The automatic pattern recognition approach has been traditionally focused
on accomplishing a fully-automated operation. Nevertheless, in our approach,
complete automation is not possible, although a perfect transcription of the
original documents is needed for editing and publishing a collection. Therefore,
we have to focus on the human-machine interaction tasks and how to optimize
the expert user feedback loop [6].

The errors made by the system are usually seen as an issue outside the
research process because correcting them is considered as the procedure for con-
verting the system hypothesis into the desired result. However, semi-automatic
approaches in which the human operator has the eventual responsibility of ver-
ifying and completing the task are the key to an efficient solution [7].

In this paper, we will study how using the user’s corrections help the classi-
fier to learn its model incrementally, decreasing the error throughout the task.
Deep convolutional neural nets (DCNN) [3] are improving the state of the art
c© Springer Nature Switzerland AG 2020
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Fig. 1. The kind of documents processed (here a fragment of a page) are single-voice
vocal music written in the Spanish variant of the white mensural notation.

in computer image analysis tasks. Although there are works already that per-
mit to modify these recognition models as a continuous learning process as new
classes of data arrive [9], the task is still computationally demanding. We explore
the possibility of combining the ability of DCNN for extracting good image fea-
tures, with the simplicity of a nearest-neighbor (1-NN) classifier to adapt its
performance to a specific training set along the edition stage.

2 Data Structure

The dataset for this study is a collection of pages P = {P1, P2, ..., P|P|} annotated
with their ground-truth categories. This way, each page Pp can be considered
as a training subset X (Pp) = {(xi, yi)}|Pp|

i=1 , where the xi represent the symbol
bounding boxes in page Pp and yi their corresponding labels.

Fig. 2. Examples of bounding boxes for some symbols and how they are adapted to
a 30 × 30 window in different situations. (Left and right:) fit to a 30 × 30 window,
keeping aspect ratio and background padding; (center:) no bounding box stretching is
done when it is smaller than the target window.

The symbol bounding boxes were extracted from the image and re-scaled to
a 30 × 30-pixel window (only if the bounding box is bigger than that), keeping
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the aspect ratio of the box and padding the background with its maximum pixel
value (see Fig. 2 for some examples).

When this window is the input for the DCNN, no additional processing is
made, since the filters of the network input layer process the window regardless
of its size. Nevertheless, the 1-NN will classify every window considering it as
a vector x ∈ [0, 255]30×30. Due to its sensitivity to the dimensionality of the
feature space, we have transformed the windows by downsampling, keeping the
central pixel of every non-overlapping 3 × 3 pixel area, assigning to it the mean
of the 9 pixels involved. This is equivalent to low-pass filtering of the window,
keeping the main features of the image in a smaller space ([0, 255]10×10).

3 Incremental Learning

The key point in this work is to study how can we adapt the recognition model
to the data and do it incrementally. In real operation, a collection of scores is
presented to the user by pages. Each page is processed, and the symbols are
classified (see [1] for details). Then, the user makes corrections to the symbols
that were incorrectly classified. This happens when the system hypothesis does
not match the ground-truth label or when the symbol belongs to previously
unseen classes. User corrections will be simulated. These interactions are utilized
to improve the model for the classification of the next pages.

The recognition algorithm (the model M) is a key issue in any pattern clas-
sification system, but in an interactive architecture, the most relevant feature
is the ability of the algorithm to adapt to the specificities of the data through
the error corrections made by the user. In the interactive paradigm, the efficient
exploitation of human expert knowledge is the main objective, so the correctness
of the system output is no longer the main issue to assess. The challenge now
is the development of interactive schemes capable of efficiently exploiting the
feedback to eventually reduce the user’s workload.

In light of that, we have selected a very simple, but flexible, classification
algorithm as the nearest neighbor is. It does not need a parametric analysis of
the feature space for operation, and the training set X can be incrementally
built by adding new pairs as they are found in the input in operation time:
X (k+1) = X (k)

⋃ {(xi, yi)}Ni=1. Only an initial model M(1), trained offline, is
needed to start classifying. This model can be trained with the symbols on the
first page X (P1), including the labels for the symbols on it, yi ∈ C(P1), or with
an initial subset of pages if the model needs more examples, as explained below.

Also, it is easy to add new classes dynamically by adding new labels, if
needed. Besides, editing and condensing methods [8] can be easily applied to
the training set if advised by the user corrections. The system must operate in
real-time, so the user can interact with it comfortably. This is another feature
that advises using simple, adaptive, and fast classification algorithms.

The algorithm outline is shown below (Algorithm1). As explained, errors in
a page Pp can be due to symbols belonging to unseen classes. In such a case, the
interaction step includes the addition of the new class to the training set, with
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the symbols seen on the current page as prototypes. This algorithm will try to
minimize the number of errors �(p), and so the need of user corrections, as the
pages are processed.

Algorithm 1. Outline of the method
Input: A collection of pages P = {P1, P2, ..., P|P|}
X (1) = X (P1)

Train the model M(1) with X (1)

for p = 2 to |P| do
Apply M(p−1) to samples in Pp

�(p) = |{xi ∈ Pp | ŷi �= yi}|
Interaction: the user fixes wrong ŷi to actual yi

X (p) = X (p−1) ⋃ X (p)

Train M(p) with X (p)

end for

This algorithm does not change independently of the classification model uti-
lized, M. Only the X (1) considered might be different, as explained below.

We want to explore a trade-off between accuracy in the classification and
speed and flexibility in re-training the model. DCNN are state-of-the-art image
classification methods, but the usual size of these models make their adaptation
difficult and time-consuming. On the other hand, in many classical classification
algorithms, like the 1-NN, the adaptation is straightforward, because it needs
only updating the training set to adapt to a new situation in real-time (we
consider as real-time any situation in which the user does not perceive that he
or she has to wait for the system to make a decision).

Taking these considerations into account, we plan to compare three different
classification models:

1. DCNN: the model M is a deep convolutional neural network. It is expected
to achieve good performance (low error rates) but long retraining times.

2. 1-NN: M is a nearest neighbor classifier. Retraining and recognition can be
done in real time, but higher error rates are expected.

3. NC+1NN: A DCNN learned on a subset of initial pages of P is used as a
feature extractor (neural codes [2], NC) and the 1-NN is applied to the NC
to implement the incremental classification described in the algorithm.

The network utilized is composed of 7 convolutional layers with 100 3 × 3
filters each. Then, a global max-pooling layer provides a R100 vector that will
be the NC features for the nearest neighbor (in the case 3.) or fully connected to
a layer with as many neurons as classes that will be classified with a softmax in
the case of full DCNN classification (1.). The network architecture is displayed
in Fig. 3. For training, Adam optimization has been used with a learning rate
of 0.001 during 100 epochs, using minibatches of 64 images. Units have ReLU
activations.
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Fig. 3. Architecture of the DCNN used. Neural codes are the activations of the 100-
neuron layer after pooling. For that, the last layer is removed and the neuron activations
are the input to a nearest neighbor classifier.

4 Data and Results

We have selected a Mass in A minor from a collection of sacred vocal music
from the 17th century. In this case, we have |P| = 124 pages. Each page has
a maximum of 6 staves of monophonic music, containing between 20 and 30
symbols each on average, for a total of 17,114 samples.

Initial Training Set. According to the instructions in Algorithm 1, the initial
training set is X (1) = X (P1), but some considerations about this follow.

The number of prototypes in X (P1) is 143 from 23 classes. The C and F
clefs received special consideration. Since the initial pages were written in the
G clef, 6 prototypes of each of the other clefs were included in X (1) from other
composition. This way, |X (1)| = 143 + 12 prototypes from 25 classes.

When the DCNN is utilized, either as a classifier or for feature extraction, we
need more data to train such a large structure properly. For that, an initial subset
of the first 16 pages was considered: X (1) =

⋃16
p=1 X (Pp). This way, |X (1)| =

2440 + 12 prototypes from 44 classes. In this case, the Algorithm 1 runs for
p = 17 to |P|.

As the algorithm runs, the number of classes will increase. Each time an
unseen class appears, it produces errors. As this page is included in the training
set for the next step, the unknown class appears for the next iteration. The final
number of classes is 53 for this composition.

Results. First, a study of the difference between with and without interaction
is shown (see Fig. 4). The graph shows that, when the user corrections are used,
a rapid drop in the error rate for the 1-NN is initially observed. The error
rises again when another voice of the same composition begins to be processed.
When the effect of the new pages is learned by the model, it is able to reduce
the error again. Every time a change in the conditions happens the system
degrades its performance, but it is able to continue learning later on, improving
its performance.
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On the contrary, when the training set remains fixed (using the 16 first pages
for it), the error not only does not decay but tends to increase, because the
system is not able to adapt to the specificities of the new pages.

Fig. 4. Smoothed evolutions of the error rate (%) along the 124 pages of the studied com-
position, using 1-NN for classification. In solid line: error rate when using the interactive
scheme. In dotted line: error rate without interaction, using a fixed training set.

One interesting feature is that pages from 60 to 65 have specificities not
seen before. In that situation, both curves degrade. But when a similar situation
occurs again from page 100 onwards, the incremental method is robust against
that particular situation (solid line), while the non-incremental method is not
and its performance degrades again.

Figure 5 shows the performance of the three recognition systems compara-
tively. When only the nearest neighbors are used (dotted line) the results are
displayed from page p = 2, but when the nets are used they use the first 16
pages for initial training, so the results are displayed from p = 17.

The 1-NN adapts the best but performs the worst (an average error of 9.6%
for the last 15 pages), but it runs in real time, without the user noticing any
delay. On the other hand, the DCNN is able to reach a 1.1% of error at the
end, but running the whole Algorithm1 using that model took 7749 s in a GPU
computer (note from Algorithm 1 that the network is retrained with the new
training set after each page). The 1-NN applied to the neural codes was able to
adapt to the data (less than using the 1-NN alone), reaching a nice 4.4% of error
at the end. This approach works in real time, since the network learning is made
only once, before starting the classification and adaptation.
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Fig. 5. Evolution of the error rates for the different methods considered. 1-NN (dot-
ted): only nearest neighbors classifying the pixel values; DCNN (thin solid): only deep
convolutional nets classifying the bounding boxes; NC + 1NN (thick solid): nearest
neighbors classifying the extracted neural codes.

5 Conclusion

The presence of the expert user in the learning loop opens up new possibilities for
study adaptive learning algorithms. The presented study shows that a combina-
tion of DCNN acting as a feature extractor and a nearest neighbor for classifying
the extracted neural codes can provide a good trade off between precision and
real-time operation. In any case, there are many ways left to be explored to make
the human-in-the-loop approach efficient and effective.
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Optical music recognition: state-of-the-art and open issues. Int. J. Multimedia Inf.
Retrieval 1(3), 173–190 (2012). https://doi.org/10.1007/s13735-012-0004-6

6. Sober-Mira, J., Calvo-Zaragoza, J., Rizo, D., Iñesta, J.M.: Pen-based music docu-
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Abstract. The classification of musical instruments of instruments of
the same type is a challenging case of study. In this paper we conduct
feature-based machine learning experiments to classify electric guitar
recordings from different manufacturers and models. The Constant-Q
Transform features and the Support Vector Machine algorithm obtained
an accuracy of 95% in a binary classification task of guitars from two
manufacturers, and 78% in a multiclass problem with four classes, dis-
tinguishing specific models from two different manufacturers.

Keywords: Musical instruments classification · Machine learning ·
Electric guitars · Music information retrieval

1 Introduction

Musical instruments recognition and sound characterization is a common subject
of research in many different areas related to audio and music. Up to now several
studies explored the identification of musical instruments of different classes (e.g.
distinguishing a saxophone from a piano) but to the best of our knowledge, little
research has been conducted to identify different types of the same instrument,
for example distinguishing a Les Paul guitar from a Stratocaster model.

Johnson and Tzanetakis [1] studied the classification of guitars, mostly acous-
tic guitars, using hand-crafted features such as Mel-Frequency Cepstral Coeffi-
cients (MFCC), spectral moments, zero crossing rate and other features typically
used in Musical Information Retrieval. They concluded that guitar models have
unique sound characteristics that allows the use of classification algorithms such
as k-Nearest Neighbours (kNNs) and Support Vector Machines (SVMs) to iden-
tify different guitar types. In their conclusion they state overall results with an
accuracy just above 50%.

Setragno et al. [2] used feature-based analysis to investigate timbral charac-
teristics of violins discerning two classes of violins (historical and modern) using
machine learning techniques.

The goal of our study presented in this paper is to use feature-based repre-
sentations and machine learning classification methodologies to classify different
models of electrical guitars from two different manufacturers. A guitar model
refers to a specific guitar type with certain design and construction characteris-
tics chosen by its manufacturer.
c© Springer Nature Switzerland AG 2020
P. Cellier and K. Driessens (Eds.): ECML PKDD 2019 Workshops, CCIS 1168, pp. 478–484, 2020.
https://doi.org/10.1007/978-3-030-43887-6_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43887-6_41&domain=pdf
https://doi.org/10.1007/978-3-030-43887-6_41


Feature-Based Classification of Electric Guitar Types 479

2 Methodology

2.1 Electric Guitars Audio Recordings Dataset

To populate the dataset we recorded single notes of 17 electric guitars: 6 Fender
Stratocasters, 3 Fender Telecasters, 3 Epiphone Les Pauls, 1 Epiphone Casino, 1
Epiphone Dot and 3 Epiphone SGs. All recordings were performed by the same
musician, using all pickup positions and playing notes in different frets of the
neck. The single notes recorded include all open strings, and notes from an A
minor scale starting at the fifth fret of the sixth string played using a 3 notes
per string pattern.

The audio was acquired using the cleanest signal path possible, without any
amplifiers or effects processors and using a sample rate of 44100 Hz and 16-bit
depth. Table 1 gives a summary of all recorded models and the number of notes
per model.

Table 1. Number of notes recorded from each electric guitar model

Brand Model No. of notes

EPIPHONE LES PAUL STANDARD 202

EPIPHONE SG 188

FENDER SQUIER STRATOCASTER MOD. VINTAGE 183

FENDER SQUIER STRATOCASTER MOD. SM 169

FENDER AMERICAN STRATOCASTER STD HSS 168

FENDER AMERICAN STRATOCASTER STD 162

FENDER STRATOCASTER STD SPECIAL TREMOLO (MEX) 155

FENDER STRATOCASTER STD (MEX) 152

FENDER JAP. TELECASTER REI. ’62 CUSTOM MOD 99

EPIPHONE CASINO 96

EPIPHONE DOT 95

EPIPHONE LES PAUL STUDIO 94

EPIPHONE SG PRO 92

FENDER TELECASTER (MEX) 92

FENDER SQUIER TELECASTER 92

In this paper we study two machine classification tasks: one classifying each
note according to the manufacturer of the guitar model (two classes) and another
using 4 classes in order to distinguish Fender Stratocasters, Fender other models,
Epiphone Les Pauls and Epiphone other models.

The fact that there are more Fender guitars in the dataset and that the
Fender Stratocaster has usually 5 pickup positions whereas the Epiphones have
normally 3 pickup positions, results in the dataset to be highly imbalanced. To
account for this problem we create two subsets by applying a random under-
sampler from the Imbalanced-learn (version 0.4.2) [3] package for Python to
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under-sample the majority class to achieve an equal number of observations for
each class. One subset is used for Binary Classification and another subset is
used in the Multiclass Classification problem. We refer to an observation in this
paper as a member of the dataset.

The total number of notes is 2040: 1273 notes from Fender guitars and 767
from Epiphone guitars. After random undersampling, the subset used for the
binary classification experiment resulted in 767 notes from each guitar manufac-
turer. For the classification experiment with 4 classes, there are 990 notes from
Fender Stratocasters, 296 notes from Epiphone Les Pauls, 471 from other models
of Epiphone and 283 notes from Fender Telecasters resulting in a subset after
the random under-sampling with 283 notes per class.

We split the subsets into training/testing sets with a 0.25 ratio of audio
recordings in the testing set randomly preserving the percentage of observations
for each class.

2.2 New Approach: Feature Analysis and Classification Algorithm

To perform the machine learning classification experiments we extracted features
typically used in Music Information Retrieval (MIR) such as Mel-Frequency
Cepstral Coefficients (MFCC), the Constant-Q Transform (CQT), and spectral
features (centroid, bandwidth, contrast, flatness, kurtosis and skewness).

The audio files are loaded into Python 3.5 using Librosa (version 0.5.1) [4]
keeping its original sample rate and bit-depth and are processed using overlap-
ping frames with 2048 audio samples and a hop length of 1024, or 50% overlap.

A challenging point in these classification tasks is that we are dealing with
audio recordings of different duration. It’s a common practice in many cases to
trim or zero-pad audio files in order to have a fixed number of audio samples for
all audio recordings.

In our experiments we decided to extract the features from the audio record-
ings using all audio samples resulting in features vectors with a different number
of frames. To have features vectors with the same number of features for all
observations we average the features from frames that lie inside the same energy
band. We refer to an energy band as frames that lie inside two Root-Mean-
Square (RMS) energy percentage boundaries (e.g. RMSE percentage between
22% and 11%). The final features vector is a flattened version of the averaged
features. Because we are dealing with frame-based calculations, the borders of
the energy bands can vary slightly as we are taking the first element bigger than
the calculated energy border value.

An example of this averaging procedure is described in Fig. 1. In this example
we use an audio recording with a duration of 5.06 s, or 111505 audio samples.
We calculate 84 MFCCs, using a frame length of 2048 samples and a hop length
equals to 1024. This, results in a feature vector of 84 coefficients× 218 frames.
We then compute 10 RMS energy bands and discard the frames inside the first
and the last bands. We average the MFCCs of frames inside the same energy
bands resulting in 84 coefficients× 8 frames. The final features vector used is a
normalized flattened version with 672 elements.
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Fig. 1. RMS energy bands averaging procedure example.

We use three different sets of features: Spectral Features, MFCCs Features
and the Constant-Q Transform Features. Librosa [4] is used to extract all features
with the same frame length of 2048, a hop length of 1024 audio samples and the
Hann window. Features are standardized to have zero mean and unit variance.

Spectral Features. The spectral features vector consists of a vector with the
spectral centroid, spectral contrast, spectral bandwidth, spectral flatness, spec-
tral kurtosis and spectral skewness calculated for each frame and averaged using
the RMS energy bands averaging procedure as explained before. The result is a
vector with 48 elements (6 spectral features× 8 energy bands) per observation.

Mel-Frequency Cepstral Coefficients. The MFCC features vector is
extracted using 84 coefficients resulting in a features vector with 672 elements
per observation.

Constant-Q Transform. The Constant-Q transform is calculated using a total
of 84 bins, 12 bins per octave, resulting in a features vector with 672 elements
per observation.

Classification Algorithm. The classification algorithm used is the SVM using
a Polynomial kernel with degree equals to 3, the Penalty Parameter C equals to
0.01 and the kernel coefficient Gamma of 1.0. The classification experiment is
run using Scikit-Learn (version 0.20.0) [5] library for Python.
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The features and classification algorithm selected are chosen observing the
results from previous works in similar tasks by Johnson and Tzanetakis [1], and
Setragno et al. [2] as a starting point and all the hyperparameters are tuned
empirically with tryouts from many experiments. In contrast to the works men-
tioned above, our study is focused solely in electric guitars, we are including the
Constant-Q Transform as an audio feature, and we are interested in discerning
models from two different manufacturers.

3 Classification Experiments

3.1 Binary Classification

The CQT features outperformed the other features vectors achieving an accuracy
of 95%, predicting the correct guitar manufacturer 364 times from the total of
384 guitar recordings present in the test set (Table 2).

Table 2. Binary classification results

Spectral MFCC CQT

Evaluation Epiphone Fender Epiphone Fender Epiphone Fender

Recall 76.6% 72.4% 75.0% 84.4% 95.3% 94.3%

Precision 73.5% 75.5% 82.8% 77.1% 94.3% 95.3%

F1- Score 75.0% 73.9% 78.7% 80.6% 94.8% 94.8%

Accuracy 74.0% (286/384) 80.0% (306/384) 95.0% (364/384)

3.2 Multiclass Classification

The Spectral and MFCC features performed poorly in a more complex task
with 4 classes achieving less than 60% accuracy. The CQT features obtained
an accuracy of 78%. We decided to include a features vector concatenating the
CQT features vector with the Spectral features vector multiplied by a factor of
2 (giving it more weight), resulting in a vector with 720 elements (672 CQT fea-
tures + 48 spectral features) and the accuracy improved slightly to 81%. Table 3
displays the results for the multiclass classification experiments.
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Table 3. Multiclass classification results

Spectral Features

Evaluation Epiphone Les Paul Epiphone Others Fender Stratocaster Fender Others

Recall 57.7% 52.1% 47.1% 62.0%

Precision 54.3% 45.1% 63.5% 63.8%

F1- Score 54.3% 48.4% 54.1% 63.0%

Accuracy 55.0% (155/283)

MFCC Features

Evaluation Epiphone Les Paul Epiphone Others Fender Stratocaster Fender Others

Recall 50.7% 42.3% 32.9% 62.0%

Precision 45.0% 41.1% 40.0% 61.1%

F1- Score 47.7% 41.7% 39.7% 61.1%

Accuracy 47.0% (133/283)

CQT Features

Evaluation Epiphone Les Paul Epiphone Others Fender Stratocaster Fender Others

Recall 87.3% 74.5% 68.6% 80.3%

Precision 72.9% 79.1% 81.4% 79.2%

F1- Score 79.5% 76.8% 74.4% 79.7%

Accuracy 78.0% (220/283)

CQT+(Spectral * 2) Features

Evaluation Epiphone Les Paul Epiphone Others Fender Stratocaster Fender Others

Recall 91.5% 71.8% 81.4% 80.3%

Precision 72.2% 83.6% 86.4% 86.4%

F1- Score 80.7% 77.3% 83.8% 83.2%

Accuracy 81.0% (230/283)

4 Conclusion

In this study we conducted feature-based machine learning classification exper-
iments to distinguish guitars from different manufacturers and models.

We recorded 17 different guitars from two manufacturers: Fender and Epi-
phone. We used three sets of features (spectral features, MFCCs and CQT) and
one classification algorithm (SVM). The CQT features vector achieved an accu-
racy of 95% in a binary classification problem, correctly predicting the manufac-
turer of 364 guitar notes out of the total of 384. In the multiclass classification
problem, the spectral and MFCC had a very poor performance, and a weighted
concatenation of the CQT features with the spectral feature values multiplied
by 2 obtained an accuracy of 81% with 230 correct predictions from 283 notes.

Due to the substantial difference between the datasets used, it is not possible
to compare the results of our study with the previous studies mentioned. Johnson
and Tzanetakis [1] studied mostly acoustic guitars and they addressed, among
other things, the influence of the acoustics of the room where the acoustic guitars
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were recorded in their work. This issue is not present in our work with electric
guitars.

It seems to us that common Music Information Retrieval features and stan-
dard machine learning classification algorithms have a good performance for
binary classification of guitar notes from two quite distinctly sounding manufac-
turers and models. However, more complex tasks, such as distinguishing similar
sounding guitars requires different techniques for features extraction and classi-
fication.

The dataset of electric guitars recordings is constantly being expanded with
different models and manufacturers. This will allow more complex and reliable
experiments. In future work we plan to use Deep Learning techniques and explore
generative models for different applications and problems.
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Abstract. We introduce two algorithms, RecurSIA and RRT,
designed to increase the compression factor achievable using point-set
cover algorithms based on the SIA and SIATEC pattern discovery algo-
rithms. SIA computes the maximal translatable patterns (MTPs) in a
point set, while SIATEC computes the translational equivalence class
(TEC) of every MTP in a point set, where the TEC of an MTP is the
set of translationally invariant occurrences of that MTP in the point set.
In its output, SIATEC encodes each MTP TEC as a pair, 〈P, V 〉, where
P is the first occurrence of the MTP and V is the set of non-zero vectors
that map P onto its other occurrences. RecurSIA recursively applies
a TEC cover algorithm to the pattern P , in each TEC, 〈P, V 〉, that it
discovers. RRT attempts to remove translators from V in each TEC
without reducing the total set of points covered by the TEC. When eval-
uated with COSIATEC, SIATECCompress and Forth’s algorithm on the
JKU Patterns Development Database, using RecurSIA with or with-
out RRT increased compression factor and recall but reduced precision.
Using RRT alone increased compression factor and reduced recall and
precision, but had a smaller effect than RecurSIA.

Keywords: Pattern discovery · Point sets · Music analysis · Data
compression · SIATEC · COSIATEC · SIATECCompress · Forth’s
algorithm · Geometric pattern discovery in music

1 Introduction

The principle of parsimony posits that, when given two models that account
equally accurately for a given set of observations (data), then the simpler model
is less likely to be an accurate description of the data by chance. That is, the
simpler model is more likely to be a faithful representation of the true process
that gave rise to the data. This principle, commonly known as “Ockham’s razor”,
has been formalized in various ways in recent times, including Rissanen’s minimal
description length principle [17] and Kolmogorov’s structure function [18]. The
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principle has been one of the foundational principles of scientific enquiry since
antiquity and recent results in information theory [19] have shown that data
compression is almost always the best strategy both for model selection and
prediction.

In recent years, we have had some success in using compression-based point-
set pattern discovery algorithms, such as COSIATEC [10,13,14,16], SIATE-
CCompress [11,13,14] and Forth’s algorithm [4,5], in conjunction with nor-
malized compression distance, to carry out classification tasks such as folk song
tune family detection [8,12,13]. Moreover, Louboutin and Meredith [8] found a
highly significant correlation between compression factor and performance on
the task of automatically discovering fugue subjects and countersubjects [6,7].
This motivates us to search for ways to improve the compression factor achieved
by such algorithms in the hope that improving compression factor may also
result in improved performance on a variety of musicological tasks. Our research
programme is driven by the hypothesis that shorter encodings of data objects
represent better ways of understanding those objects. We therefore strive to
devise algorithms that compute encodings of musical data objects that are as
parsimonious as possible.

Let D be a set of k–dimensional points, such that D ⊂ R
k and |D| = n.

We call D a dataset. For any vector, v ∈ R
k, the maximal translatable pat-

tern (MTP) in D is defined as MTP(v,D) = D ∩ (D − v). The SIA algorithm
[15] computes all the non-empty MTPs in such a dataset in Θ(n2 log2 n) time.
Two point sets, P1, P2, are translationally equivalent, denoted by P1 ≡T P2, if
and only if there exists a vector, v, such that P1 = P2 + v. The translational
equivalence relation partitions the powerset of D exhaustively and exclusively
into translational equivalence classes (TECs), such that the TEC to which a
point set, P ⊆ D, belongs is defined to be TEC(P ) = {Q | Q ⊆ D ∧ Q ≡T P}.
The SIATEC algorithm [15] computes the TEC of every non-empty MTP in a
dataset, D, in Θ(n3) time. A TEC, TEC(P ), can be encoded in a compressed
form as a pair, 〈P, V 〉, where V is the set of non-zero vectors, {v | P + v ⊆ D}.
Each TEC in the output of SIATEC is encoded in this form. Given a TEC,
T = TEC(P ) = 〈P, V 〉, we define P (T ) = P and V (T ) = V . P (T ) is called the
TEC’s pattern and V (T ) is called the TEC’s translator set or set of translators.
The covered set of a TEC, T , is the union of the point sets in the TEC and is
given by C(T ) = P ∪ ⋃

v∈V (T ) (P (T ) + v). The compression factor of a TEC,
T = TEC(P ) = 〈P, V 〉 is defined as CF(T ) = |C(T )|/ (|P (T )| + |V (T )|). It is
the ratio of |C(T )|, the number of points whose coordinates need to be explicitly
specified if the covered set of the TEC is described in extenso, to |P (T )|+|V (T )|,
the number of points and vectors whose coordinates need to be specified if the
TEC is encoded as a pair, 〈P, V 〉, as defined above.

SIATECCompress and Forth’s algorithm use SIATEC to compute the
MTP TECs in a dataset, D, and then attempt, using a greedy strategy,
to select a subset of these TECs, E, such that

⋃
T∈E C(T ) = D and∑

T∈E (|P (T )| + |V (T )|) is minimized. That is, these algorithms attempt to find
a minimum-length description of the dataset in terms of a cover constructed from
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TEC covered sets. The TEC covered sets in the covers computed by SIATEC-
Compress and Forth’s algorithm may share points. However, the COSIATEC
algorithm typically achieves better compression than these algorithms by parti-
tioning the input dataset exhaustively and exclusively into non-intersecting TEC
covered sets. It does this by incrementally constructing an encoding, E, by (1)
running SIATEC, (2) adding the TEC with the best compression factor to E,
(3) removing the covered set of this TEC from D and then repeating this three-
step process on progressively smaller, unencoded subsets of the dataset until all
the points in the dataset have been covered.

RECURSIA(A, D)
1 E ← A(D)
2 if |E| = 1 ∧ |E[0][1]| = 1 returnE
3 for i ← 0 to |E| − 1
4 e ← RECURSIA(A,E[i][0])
5 if |e| > 1 ∨ |e[0][1]| > 1
6 E[i][0] ← e
7 returnE

Fig. 1. The RecurSIA algorithm

In this paper, we introduce two novel techniques for improving the compres-
sion factor achieved using TEC cover algorithms. First, an algorithm, Recur-
SIA, is presented, that recursively applies a TEC cover algorithm to the pattern,
P , in each TEC in the cover it generates. Second, an approximation algorithm,
RRT, is presented, that aims to remove as many translators from each TEC as
possible without removing points from its covered set. The two techniques are
evaluated separately and in combination on the effect that they have on compres-
sion factor, recall and precision, when used with COSIATEC, SIATECCom-
press and Forth’s algorithm on the JKU Patterns Development Database [2].

2 The RecurSIA Algorithm

Figure 1 gives pseudocode for the RecurSIA algorithm. RecurSIA has two
parameters, a TEC cover algorithm, A (e.g., COSIATEC, SIATECCompress
or Forth’s algorithm) and a dataset D. RecurSIA runs A on D to obtain an
encoding, E (line 1 in Fig. 1), which is a list of TECs, E = 〈T1, T2, . . . , T|E|〉.
Each TEC, Ti, is encoded as a pair, 〈Pi, Vi〉, as defined above. If the encoding,
E, contains only one TEC and the pattern for this TEC has only one occurrence,
then A failed to find any non-trivial MTPs in D. In this case, A is not applied
to the pattern in this TEC, so RecurSIA returns E (see line 2 in Fig. 1). If A
finds more than one TEC or at least one TEC whose pattern has more than one
occurrence, then RecurSIA is applied recursively to the pattern, Pi = E[i][0],
in each TEC in E (Fig. 1, lines 3–4). This generates a new encoding, ei, for
each pattern, Pi. If the encoding, ei, for a pattern, Pi, contains more than one
TEC, or a TEC whose pattern occurs more than once, then ei is a compressed
encoding of Pi and ei replaces Pi in the TEC, E[i] (Fig. 1, lines 5–6).
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3 The RRT Algorithm

Given a TEC, T = TEC(P ) = 〈P, V 〉, the RRT algorithm attempts to replace
V with one of the smallest possible subsets of V —let us call it V ′—such that
C(〈P, V ′〉) = C(T ), where C(T ) denotes the covered set of T , as defined above.
Exhaustively testing every subset of V to determine if the resulting covered set
is the same as C(T ) would take time exponential in the size of V and would
therefore only be practical for relatively small translator sets. RRT therefore
uses a greedy approximation strategy with a polynomial time complexity instead
of carrying out an exhaustive search.

RRT(T )
1 F ← COMPUTEPOINTFREQSET(T )
2 if F[|F| − 1][0] = 1 return T
3 S ← COMPUTESIAMVECTORTABLE(T,F)
4 R ← COMPUTEREMOVABLEVECTORS(T,S)
5 M ← COMPUTEMAXPOINTS(T,R,F)
6 if M = ∅ then T [1] \← R, return T
7 V ← COMPUTEVECTORMAXPOINTSETPAIRS(M )
8 Q ← COMPUTERETAINEDVECTORS(V)
9 return REMOVEREDUNDANTVECTORS(T,Q,R)

Fig. 2. The RRT algorithm

Figure 2 provides pseudocode for the RRT algorithm. For convenience, we
define the function V (p, T ) to be the set of vectors in V (T ) that map points in
P (T ) onto the point p. Formally,

V (p, T ) = {p − q | p − q ∈ V (T ) ∧ q ∈ P (T )}. (1)

The first step in the algorithm is to compute for each p ∈ C(T ) the ordered
pair 〈f(p, T ), p〉, where f(p, T ) = |V (p, T )|. These ordered pairs are placed in a
sequence in lexicographical order and stored in the variable, F (Fig. 2, line 1).
We call f(p, T ) the frequency of p in T . For example, for the TEC,

〈{〈1, 1〉, 〈2, 2〉, 〈3, 3〉}, {〈0, 0〉, 〈1, 1〉, 〈2, 2〉, 〈3, 3〉, 〈4, 4〉}〉 (2)

the ComputePointFreqSet function would return

〈〈1, 〈1, 1〉〉, 〈1, 〈7, 7〉〉, 〈2, 〈2, 2〉〉, 〈2, 〈6, 6〉〉, 〈3, 〈3, 3〉〉, 〈3, 〈4, 4〉〉, 〈3, 〈5, 5〉〉〉.
If, for some p ∈ C(T ), f(p, T ) > 1, then we call p a multipoint. If F contains no
multipoints, then none of the translators in V (T ) can be removed without also
removing points from C(T ). This will be the case if and only if the frequency
of the last entry in F is one. We therefore check for this in line 2 of Fig. 2 and
return the TEC unchanged if it is the case.

The set of translators that can be removed from V (T ) is a subset of those
vectors that map the whole pattern, P (T ), onto multipoints. That is, if a trans-
lator, v ∈ V (T ), maps any point in P (T ) onto a point in C(T ) that is not a
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multipoint, then we know that v cannot be removed from V (T ) without remov-
ing points from C(T ). We therefore define a removable vector to be a translator
that maps the TEC’s entire pattern, P (T ), onto a set of multipoints. In lines
3–4 of Fig. 2 we compute a list, R, of these removable vectors. This is done
by using the initial steps of the SIAM algorithm [10,20] to compute the set,
S = {〈q − p, p〉 | p ∈ P (T ) ∧ q ∈ C(T ) ∧ f(q, T ) > 1}. This set S or vector table
is sorted lexicographically to give the list, S, (line 3 in Fig. 2) from which the
maximal matches of the TEC pattern, P (T ), to the multipoints in C(T ) can be
obtained. For example, for the TEC in Eq. 2, ComputeSIAMVectorTable
returns the following sorted SIAM vector table, where each maximal match is
printed on its own line:

〈〈〈−1, −1〉, 〈3, 3〉〉,
〈〈0, 0〉, 〈2, 2〉〉, 〈〈0, 0〉, 〈3, 3〉〉,
〈〈1, 1〉, 〈1, 1〉〉, 〈〈1, 1〉, 〈2, 2〉〉, 〈〈1, 1〉, 〈3, 3〉〉,
〈〈2, 2〉, 〈1, 1〉〉, 〈〈2, 2〉, 〈2, 2〉〉, 〈〈2, 2〉, 〈3, 3〉〉,
〈〈3, 3〉, 〈1, 1〉〉, 〈〈3, 3〉, 〈2, 2〉〉, 〈〈3, 3〉, 〈3, 3〉〉,
〈〈4, 4〉, 〈1, 1〉〉, 〈〈4, 4〉, 〈2, 2〉〉,
〈〈5, 5〉, 〈1, 1〉〉〉

(3)

The ComputeRemovableVectors function (Fig. 2, line 4) scans this sorted
SIAM vector table to identify the vectors that map the entire pattern onto mul-
tipoints (i.e., the ones for which the maximal matches have the same cardinality
as the TEC pattern itself). For the TEC in Eq. 2, the list R returned by Com-
puteRemovableVectors would be 〈〈1, 1〉, 〈2, 2〉, 〈3, 3〉〉.

We say that p ∈ C(T ) is a maxpoint if and only if all the vectors in V (p, T )
(as defined in Eq. 1) are removable vectors, i.e., V (p, T ) ⊆ R. If C(T ) contains
any maxpoints, then it will not be possible to remove all the vectors in R from
V (T ) without also removing the maxpoints from the covered set. Indeed, we
can remove all the vectors in R from V (T ) if and only if C(T ) contains no
maxpoints. In line 5 of Fig. 2, the maxpoints are computed and then, in line 6,
if there are no maxpoints, all the removable vectors, R, are removed from the
TEC’s translator set and the modified TEC is returned. The ComputeMax-
Points function, called in line 5 of the RRT algorithm (line 5 in Fig. 2) actually
returns a set of ordered pairs, M = {〈p1, R1〉, 〈p2, R2〉, . . . , 〈p|M |, R|M |〉}, where
each 〈pi, Ri〉 gives the maxpoint, pi, and the set of removable vectors, Ri, that
map pattern points onto that maxpoint. As an example, the TEC in Eq. 2 has
just one maxpoint, so the ComputeMaxPoints function returns the following:
{〈〈4, 4〉, {〈1, 1〉, 〈2, 2〉, 〈3, 3〉}〉}.

If C(T ) contains maxpoints, then our goal is to find the smallest subset of
R that contains, for each maxpoint, at least one vector that maps a point in
P (T ) onto that maxpoint. We first compute a list of 〈v, P 〉 pairs that give, for
each removable vector, v, the set of maxpoints, P , onto which v maps points
in the TEC pattern, P (T ). This is computed by the ComputeVectorMax-
PointSetPairs function in line 7 of the RRT algorithm in Fig. 2. Formally,
ComputeVectorMaxPointSetPairs computes the set, V , defined as fol-
lows: V = {〈v, P 〉 | v ∈ R ∧ P = {p | p ∈ M ∧ p − v ∈ P (T )}}. This set is then
sorted to give an ordered set, V, so that the 〈v, P 〉 pairs are in decreasing order
of maxpoint set size (i.e., pairs in which P is larger appear earlier in the list).
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COMPUTERETAINEDVECTORS(V)
1 Q ← ∅
2 while V �= 〈〉
3 Q ← Q ∪ {V[0][0]}
4 for i ← 1 to |V| − 1 doV[i][1] ← V[i][1] \ V[0][1]
5 Y ← 〈〉
6 for i ← 1 to |V| − 1
7 if V[i][1] �= ∅ then Y ← Y ⊕ 〈V[i]〉
8 V ← Y
9 returnQ

Fig. 3. The ComputeRetainedVectors function. (A ⊕ B concatenates the lists A
and B.)

We then use V in a greedy strategy to find a small subset of R that contains,
for each maxpoint, at least one vector that maps a point in P (T ) onto that
maxpoint. This set of retained vectors is computed in line 8 of Fig. 2 by the
ComputeRetainedVectors function (shown in Fig. 3). The first step in this
function is to add to the list of retained vectors, Q, the vector associated with
the largest set of maxpoints, that is, the first in the list V (see lines 1–3 of
Fig. 3). All the maxpoints mapped to by that vector from points in the TEC
pattern can then be removed from the maxpoint sets of the other elements in V
(line 4 in Fig. 3). The effect of lines 5–8 of Fig. 3 is to remove from V the first
element and every other element whose maxpoint set is empty after removing
the maxpoint set of the first element. The process is repeated, with the vector
of the first pair in the list being selected on each iteration until V is empty.
This results in a list, Q, of retained vectors that constitute a subset of the
removable vectors that is sufficient to generate all the maxpoints. Finally, in line
9 of Fig. 2, the RemoveRedundantVectors function removes from the TEC’s
set of translators all removable vectors that are not retained vectors.

4 Evaluation

Figure 4(a) shows the effect of RecurSIA and RRT on the compression factor
achieved using a variety of SIATEC-based TEC cover algorithms, when these
algorithms were used to analyse the five pieces in the JKU Patterns Development
Database [2]. Three basic algorithms, COSIATEC, SIATECCompress and
Forth’s algorithm were run, each with and without compactness trawling [3]
(indicated by ‘CT’) and with or without the SIA algorithm replaced by SIAR
[1] (indicated by ‘R’). Each of these 12 algorithms was run in its basic form
(orange curve), with RecurSIA (blue curve), with RRT (green curve), and
with both RecurSIA and RRT (red curve). As expected, using RecurSIA
and RRT together nearly always improved compression factor, with particularly
large gains being observed on the Beethoven and Mozart sonata movements when
Forth’s algorithm was used with compactness trawling. Using RRT alone only
had a noticeable effect on the Bach fugue and the Beethoven sonata movement.
Over all pieces and algorithms, using RecurSIA in combination with RRT
improved compression factor by 12.5%, using RecurSIA alone improved it by
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9.2% and using RRT alone improved it by 2.1%. Figure 4(b) shows the effect
that RecurSIA and RRT had on three-layer precision (TLP) [13], averaged over
the pieces in the JKU-PDD and for the same 12 algorithms, each run in “Raw”
mode, “BB” mode and “Segment” mode (see [13]). On average, over all pieces,
algorithms and modes, using RecurSIA in combination with RRT reduced
TLP by 20.3%, using RecurSIA alone reduced it by 21.2% and using RRT
alone reduced it by 0.7% (see Fig. 4(b)). On the other hand, on average, over all
pieces, algorithms and modes, using RecurSIA and RRT together increased
three-layer recall (TLR) [13] by 7.2%, using RecurSIA alone increased it by
10.3%. Using RRT alone reduced TLR by 3.7% (see Fig. 4(c)).

– CT R RCT – CT R RCT – CT R RCT
COSIATEC Forth SIATECCompress

– CT R RCT – CT R RCT – CT R RCT
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J.S. Bach, Fugue in A minor, BWV. 889 L. van Beethoven, Piano Sonata in F minor, Op. 2, No. 1, 3rd. mvt F. Chopin, Mazurka in B� minor, Op. 24, No. 4 O. Gibbons, Madrigal, “Silver Swan” A. Mozart, Piano Sonata in E� major, K. 282, 2nd. mvt.
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Fig. 4. Effect of RecurSIA and RRT on compression factor (a), three-layer precision
(b) and recall (c), over the pieces in the JKU-PDD. (Color figure online)

5 Conclusion

Two algorithms, RecurSIA and RRT, have been presented, designed to increase
the compression factor achieved using any TEC cover algorithm. When tested
with three basic algorithms and evaluated on the JKU Patterns Development
database, using RecurSIA with or without RRT increased compression factor
and three-layer recall but reduced three-layer precision. Using RRT alone gen-
erally had a smaller effect than using RecurSIA, and, on average, increased
compression factor but reduced both recall and precision on the JKU-PDD.

Supplementary Materials
The results reported in this paper were obtained using the implemen-
tations of the algorithms in the OMNISIA software [9]. The source
code for the version of OMNISIA used here is available on GitHub
at https://github.com/chromamorph/omnisia-recursia-rrt-mml-2019. An exe-
cutable JAR file is also available at http://www.titanmusic.com/software/
omnisia/201904151348OMNISIA.zip.

https://github.com/chromamorph/omnisia-recursia-rrt-mml-2019
http://www.titanmusic.com/software/omnisia/201904151348OMNISIA.zip
http://www.titanmusic.com/software/omnisia/201904151348OMNISIA.zip
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Abstract. To acquire new skills in a high-level music context, students
need many years of conscious dedication and practice. It is understood
that precise motor actions have to be incorporated into the musicians’
automatic executions, where a repertoire of technical actions must be
learned and mastered. In this study, we develop a computer modelled
assistant applying machine learning algorithms, for self-practice musi-
cians with the violin as a test case. We recorded synchronized data from
the performer’s forearms implementing an IMU device with ambient
sound recordings. The musicians perform seven standard bow gesture.
We tested the model with three different expertise levels to identify rel-
evant dissimilitudes among students and teachers.

Keywords: Machine learning · Music education · Hidden Markov
Model

1 Introduction

1.1 Motivation

To become an expert performer in the context of music education is not only
needed natural attitudes, as well, many years of conscious practice. It is under-
stood that specific fine-motor actions must become part of the automatic exe-
cution (system 1) [10] in other words, a “learned technique of the body” [3],
known as musical gesture, has to be developed and incorporated through precise
practice and repetition. The standard strategy behind new skills development is
based on the coupling of sound qualities, expressiveness and motor executions.
However, the standard master-apprentice educative model based in imitation by
example has some weaknesses, where the students could develop bad habits in
self-practising hours. Therefore, in the context of Telmi (Technology Enhanced
Learning of Musical Instrument Performance), we are investigating the impli-
cations of applying a computer modelled assistant to novice students, particu-
larly at the moment to acquire new skills practising standard classical gestures
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with the test case of violin performers. We intend to stretch the gap of “good-
practice” feedback, providing immediate information about gestural executions
in real-time.

1.2 Gesture Recognition in Musical Context

To address the first stage of recognising specific gestures executions, we imple-
mented Machine Learning (ML) techniques broadly found in the literature such
a Hidden Markov Models (HMM) [2].

Bevilacqua et al. [1] presented a study in which an HMM system reports
gesture time-progressions and its likelihood windowing. The ML model can be
adjusted in states; which estimates Gaussian probabilities inside gesture pro-
gressions. Authors are not focused on specific gestural analysis; instead, they
presented an optimal “low-cost” algorithm without the need for big datasets.
Fiebrink and Cook [6] introduced the open-source multi-platform application
called Wekinator, which includes a set of ML algorithms for pattern classifica-
tions, as well, dynamic time warping algorithms for time-related events. The tool
is broadly used in academics and workshops for prototyping, artistic interactive
music applications or as an educative reference of ML applicability in research
topics. Fiebrink et al. [7] Executed the Wekinator to analyze bow-stroke artic-
ulations in a cello player. Authors embedded an IMU device in the bow-frog
called K-Bow. The main goal was to allow the performer to interact in real-time
through the gestures with a compositional computer-assistant. Françoise et al.
[8,9] First exposed a gestural descriptor applying HMM and introduced the con-
cept of mapping-by-demonstration as a principle of teaching with small amount
of data the ML algorithms to then be used in the context of music education
or real-time music interaction. In the next publication, authors describe prob-
abilistic models such as Gaussian Mixture Models (GMM), Gaussian Mixture
Regression (GMR), Hierarchical HMM (HHMM) and Multimodal Hierarchical
HMM (MHMM). Dalmazzo and Ramirez [4] Based on IMU device and EMG
data recorded from left-hand violinist players, authors estimated fingering dis-
position in the violin’s neck. Two ML approaches (DT and HMM) were com-
pared to determine accuracy. The main goal is to develop a computer-assisted
pedagogical tool for self-regulated learners. Tanaka et al. [14] Based on the
mapping-by-demonstration principle, authors describe different ML approaches
to interact with generative sound and upper limb gestural patterns, applying
techniques such as Static Regression, Temporal Modelling (HMM), Neural Net-
work Regression and Windowed Regression, where the ML was feed using an
IMU device including electromyogram (EMG) musician muscle-activity of the
forearm signals. Dalmazzo and Ramı́rez [5] presented an ML approach to describe
seven standard bow-stroke articulations (Détaché, Martelé, Spiccato, Ricochet,
Sautillé, Staccato and Bariolage). A high-level expert violinist recorded the ges-
tures, and then the system was used as a gestural estimator with an accuracy
of 94%. ML model is based on HHMM, which is trained using audio descriptors
and inertial motion information from the IMU device called Myo. The primary



496 D. Dalmazzo and R. Ramı́rez

Music score for the seven Bow-Stroke articulations

Fig. 1. Music score reference for the seven bow-strokes. Gestures 1, 2, 3, 4, and 6 are
in G mayor. Gesture 5 in G melodic-minor and gesture 7 in G chromatic scale. All
gestures were recorded with a metronome with a fixed tempo of Square-note 80 BPM.

purpose is to develop a computer-assistant for specific real-time feedback
provider for self-regulated music students.

2 Methods and Materials

2.1 Music Score

Seven bow-strokes were recorded following a score with a fixed tempo of quarter-
note in 80 bpm. Gestures were recorded in the key of G major, except for Tremolo
(G minor) and Collegno (Chromatic G scale). In the violin, two octaves starting
from G3 covers the whole neck and also the four strings are needed (Fig. 1).

2.2 Recordings and Synchronization

For the study, nine musicians (4 female) were recorded performing all gestures
and a final music piece (Kreutzer 4), which include several bow-strokes examples.
The data is composed of two expert performers categorized as L1, three high-
level students categorized with the L2 with more than nine years of practice,
and four middle-level violin students categorized as L3 with less than eight years
of practice (5–7 years of practice). Data from two IMU devices Myo placed on
both forearms were recorded using a C++ application which receives Bluetooth
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HHMM Blocks

Fig. 2. Each block is an input of an HHMM which then gives as an output seven
likelihood progressions and seven classification outputs of the most common number
identified by the ten blocks

signals and formats it in a CSV file. Audio samples are synchronized with the
Myo signals, recording all files with the same length in terms of time-reference.
Both files are created and stored in the same time-events triggers. Audio playback
has a timing reference in milliseconds, which is directly used to read Myo’s data.
−5 ms offset is needed to synchronize inertial data with audio sampling. A time
reference value is stored with the inertial data which is transmitted at a 200 Hz
ratio, that time reference is used from the audio player to sync gestures and
sound.

2.3 OpenFrameworks Visualization

An application programmed in C++ using the open-source platform called
Openframeworks (OF) [11] is used to visualize the data. From OF the data
is send to Max 8 patch (via Open-Sound-Control) which has an HHMM imple-
mented using the MUBU object extension [13] for real-time gesture estimation.
For offline analysis, the python library hmmlearn is implemented [12].

2.4 Machine Learning Model

In a previous publication, we have implemented an HHMM to recognize gestures
based on the mapping-by-demonstration principle [5]. In the current model, we
intended to design a more generalist probabilistic estimation to be tested by dif-
ferent students. For that we have an architecture based on ten blocks of HHMM
sampling ten different dispositions of gestures over the four strings of the violin;
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ten sub-blocks are trained with one of the experts L1 and the other ten sub-
blocks are trained with the second L1 expert. A median is then extracted as a
final output for all likelihood gestures estimations (Fig. 2).

3 Results

Three different performers were selected from the original nine recordings, one
for each expertise level, L1, L2, L3, being L1 the expert as a model, L2 high-level
students and L3, middle-level student. Confusion Matrix in the Fig. 3 is com-
posed of three different expertise levels: L1 corresponds to a high-level expert. L2
corresponds to an advanced student. L3 corresponds to a beginner-level student.
Gestures are distributed as (1) Martelè (2) Staccato (3) Detaché (4) Ricochet
(5) Tremolo (6) Collè and (7) Collegno. L1, L2 and L3 identification are at the
right part of the matrix.

Weighted probabilities in the Fig. 4 in letters (E), (F), (G) AND (H) plot the
output of the average block as a result of the ten HHMM blocks estimations.
(E) is Ricochet gesture from L1 and (F) is Ricochet gesture from L2. (G) is the
Tremolo gesture from L1, and H) is the Tremolo gesture from L2. Those maps
are distributed in a range of 0.0 to 1.0 (normalized), where 1.0 is the highest
probability that the current gesture is being recognized.

Confusion Matrix of three different performer’s levels

Fig. 3. Confusion Matrix figure of the three different levels (L1, L2 and L3) numbers
are classes identifications per gesture. The colour code is based on a linear gradient
where white is 0.0, and full orange is 1.0 (Color figure online)
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Likelihood Comparison and Weighted Maps

A)

C)

E)

G)

B)

D)

F)

Staccato

Ricochet

Tremolo

Collè

Collegno

L1 L2

L1 L2

L1 L2

L2
H)

L1

Fig. 4. (A) and (B) corresponds to the second gesture (Staccato) from the L1 and L2
performers; (C) and (D) corresponds to Ricochet from the levels L1 and L2 respectively.
(E) and (F) Are weighted-maps (WM) in a range from 0.0 to 1.0 in the X-axis, where
1.0 corresponds to 100% accuracy in gesture estimation. (E) is the WM from gesture 4
(Ricochet) from L1, and (F) is the same WM for gesture 4 in the case of L2. (G) and
(H) are WM of the gesture 5 (Tremolo) comparing the levels L1 and L2. Dotted lines
in X-axis are markers for each note in the scale where the gesture was performed

4 Discussion and Conclusions

In the case where a small amount of training data is available, HHMM is a
robust algorithm for pattern recognition of temporal events. The mapping-by-
demonstration principles is sufficient for modelling an ML human gestures clas-
sifier; as in the case of generative music and gesture interaction [14]. However,
for a more generalist model, similar to an MNIST [15], another approach would
be needed, perhaps the implementation of Recurrent Neural Networks (RNN),
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and bigger datasets. The HHMM approach based on blocks reported accurate
results in recognizing the seven gestures explained above. Nevertheless, some
curious differences among L1 and L2 were observed for the gestures Ricochet (4)
and Tremolo (5). The Confusion Matrix in Fig. 3 in the case of L1 reported
69.5% and 83.9% of accuracy in gestures 4 and 5 consecutively, and for the L2
case it was higher 83.1% and 90%, however, in the Fig. 4 different probabilistic
weighted-maps (graph (C) and (D), as well, (E) and (F)), are visible, in (C) L1
gesture estimation oscillates between 100% to bellow 20% and L2 in (D) keeps
more stable around 50% of certainty. As the HHMM blocks are build using two
experts, we consider that both have some dissimilitudes, particularly when the
first string of the violin is played. It opens the discussion that strings two, three
and four might have a more constrained range of movement as the bow needs
to avoid contact with the neighbour’s strings, therefor performers permit some
execution-freedom in the first string.

In the Fig. 3, the Confusion Matrix give an insight of the variability among
the three levels, where L1 is above 82% in gestures Martelé, Detaché, Tremolo,
Collè and Collegno, L2 has some variations especially in the gestures Tremolo,
Collè and Collegno; and the L3 has a broader variability. Staccato is a ges-
ture commonly confused with Martelé; it is characterized as an isolated distinct
sound; it does not have a strong attack; however, it has some similitude with
Detaché. In Fig. 4 this similitude can be seen in the (A) and (B) examples, where
L1 model mixes Staccato and Detaché; and (B) L2 case Staccato appears at the
beginning of some gestures, but the model also detects Detaché, Collè and even
Tremolo.

4.1 Future Work

From the perspective of building a general model for bow-stroke gestural detec-
tion, it is needed a broader dataset, also to apply data augmentation, as the
motion information is based on an imaginary direction in terms of quaternions,
it is possible to expand by extrapolating to many other horizontal angles. A
new algorithm based on Long-Short Term Memory (RNN) would be tested in a
mixture architecture with Hidden Markov Models.

References

1. Bevilacqua, F., Zamborlin, B., Sypniewski, A., Schnell, N., Guédy, F., Rasami-
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Abstract. This paper presents a study of associative music classifica-
tion with sequential patterns. The analysis focuses on class prediction
from multiple patterns, considering aggregation of pattern-level measures
and evaluation of pattern-set measures. The study complements recent
work in music classification which has employed unsupervised pattern
discovery followed by instance-based classification.

Keywords: Music classification · Associative classification ·
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1 Introduction

Research in music classification has explored different symbolic representations,
including global features and sequential representations [8,11]. Inter-opus pat-
terns, i.e. patterns recurring across several pieces in a music corpus, offer a hybrid
representation: when expressed as boolean predicates (presence vs. absence of
a pattern in a music piece), they can be considered global features which cap-
ture sequential information about a music piece [3]. Given a data set organised
into classes of examples, supervised pattern discovery identifies patterns which
describe distinctive properties of classes [18]. Associative classification refers to
classification employing patterns associated with a class.

In symbolic music classification, pattern-based approaches have largely
focused on instance-based classification combined with unsupervised pattern dis-
covery, i.e. pattern discovery not taking into account class information [1,6,15].
Only few music studies have explored associative classification [2,16]. Those
studies follow the classic CBA (Classification Based on Associations) method
[14], which learns patterns for each of the classes and predicts the class label of
a test example based on the best pattern. Modifications and extensions to CBA
evaluate multiple patterns for prediction by integrating their individual contri-
butions [12,13]. Alternatively, multiple patterns can be described by measures
at the pattern-set rather than pattern level [7].
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The research presented in this paper implements associative classification
with sequential musical patterns. It compares different strategies to derive class
predictions from multiple patterns and explores pattern-set measures for class-
label prediction.

Table 1. Selected viewpoints used in pattern-based classification.

int melodic interval from previous note (in semitones)

intref interval from tonic reference note (diatonic interval)

c3(pitch) 3-point pitch contour (ascending, descending, equal)

ioi inter-onset-interval

c3(dur) duration contour (longer, equal, shorter)

c3i(level) metric level contour (stronger, equal, weaker)

phrpos position in phrase (first, within, last)

2 Pattern-Based Classification

Pattern-based classification methods generally comprise several steps: discover-
ing strong patterns, ranking and selecting discovered patterns (optional), and
using the patterns to predict a class label for a given test example. This paper
focuses on comparing different prediction strategies.

2.1 Pattern Representation

In the current study, sequences in a symbolic music data set are represented by
viewpoints, which have been successfully employed in earlier classification studies
[4,6]. Each note in a music sequence constitutes an event. A viewpoint maps an
event to a more abstract event feature (see Table 1). Two or more viewpoints
may be linked in order to specify combinations of event features, e.g. int ⊗ ioi
to represent interval–duration sequences. A viewpoint pattern is a sequence of,
individual or linked, features over contiguous events, e.g. [int:+2, int:+2, int:-4].
A music sequence can contain patterns based on different viewpoints.

2.2 Pattern Discovery

Patterns identified by supervised descriptive pattern mining can be expressed as
class association rules, i.e. rules of the form X → C, where X refers to a pattern
and C refers to a class [14]. The cover of a pattern is the set of examples in a
data corpus covered by the pattern: a music sequence is covered by a sequential
pattern if it contains the pattern one or more times. The cover of a class is the
set of examples labelled by that class. Let D denote the data set, cov(C) the
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cover of class C and cov(X) the cover of pattern X. A rule is frequent if its
support

s(X → C) =
|cov(X) ∩ cov(C)|

|D|
satisfies a minimum support threshold; it is strong if its confidence

c(X → C) =
|cov(X) ∩ cov(C)|

|cov(X)|
meets a minimum confidence threshold.

To reduce the number of spurious and redundant rules in the discovery out-
put, the current study applies two pruning strategies during pattern discovery:
(1) significance pruning – retaining only significant frequent and strong rules,
whose p-values (here computed by Fisher’s exact test) satisfy a given significance
level α [12]; (2) redundancy pruning – retaining only the most general strong and
significant rules while pruning their specialisations, which extend the pattern by
another event feature.

2.3 Pattern Ranking and Selection

For pattern-based classification, classifiers are generally built from a subset of
discovered strong patterns. Using a sequential-covering strategy to select rules
for inclusion in the classifier, rules are first ranked by – in descending priority
– decreasing confidence, decreasing support and increasing pattern length, to
impose a global order on the set of discovered rules [14]. In a second step, the
covering strategy iterates over the ordered list of rules, adding a rule to the
classifier if it correctly classifies at least one training example; once an example
has been covered by a specified number δ of rules, it is removed from the training
set [13]. Finally, a default rule is attached to the end of the list, which assigns
the majority class among uncovered training examples – or the majority class
of the complete data set if no uncovered examples remain – in order to classify
test examples which are not covered by any rule in the list.

2.4 Pattern-Based Prediction

In the prediction phase unlabelled test examples are classified by evaluating
those rules in the classifier whose antecedent (pattern) covers the test example.

Prediction Based on Pattern Measures. In most associative classification
methods, prediction is based on measures of the individual patterns, either indi-
rectly by exploiting the order of the ranked rules or directly by aggregating
individual rule scores. Here we consider the following prediction strategies:

– Decision list: Given a test example to classify, the CBA method [14] and its
adaptations to music classification [2,16] iterate over the ranked list of rules
and assign the class label C predicted by the first, i.e. strongest, rule X → C
whose antecedent X covers the test example.
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– Majority voting: The test example is assigned the class label of the class with
the highest number of covering rules [17]. Thus majority voting considers the
number of covering rules for each class rather than pattern strength; it is
nevertheless included here as a frequently used prediction strategy and for
comparison with other voting methods.

– Rank-weighted voting: Weighted voting strategies assign a weight to each rule
and for each class separately sum the weights of the rules covering the test
example. The class with the highest sum determines the class label for the test
example. Linear Weighted Voting and Inverse Weighted Voting [17] compute
the weight w of a rule from the rule’s rank in the ordered list of rules as
w = 1 − rank/(|R| + 1) and w = 1/rank respectively, where |R| is the total
number of rules in the list.

– Metric-weighted voting: Instead of using a rule’s rank, rule confidence (or
another rule metric) can provide the rule weight: w = c(X → C). Again the
contribution of covering rules is summed separately for the different classes
and the test example is assigned to the class with the highest score [12].

– Probabilistic prediction: Rule confidence corresponds to the conditional prob-
ability of class C given pattern X: c(X → C) = P (C|X). Probabilistic pre-
diction evaluates the conditional probabilities for all classes C1, ..., Ck asso-
ciated with a pattern X, by attaching the class distribution to each rule:
X → Ci [P (C1|X), ..., P (Ck|X)]. The class with the highest average condi-
tional probability over all rules covering the test example is chosen as the
example’s class label [9].

Prediction Based on Pattern-Set Measures. In order to define measures
at pattern-set level, cover is re-defined to accommodate sets of patterns [7]: the
cover of a pattern set X = {X1, ...,Xm} is the union over the single-pattern
covers, cov(X ) =

⋃
i cov(Xi), i.e. the set of examples which each contain one or

more patterns in the pattern set. Then common rule measures can be adapted
to describe rule sets (for convenience, let XC denote a set of association rules
Xi → C sharing the same class):

– Pattern-set confidence: Given the above notations, confidence can be re-
defined at pattern-set level as

c(XC) =
|cov(X ) ∩ cov(C)|

|cov(X )|
– Pattern-set accuracy: Accuracy evaluates correctly and incorrectly classified

examples [7]. It can be approximated as

acc(XC) = |cov(X ) ∩ cov(C)| − |cov(X ) ∩ cov(¬C)|
– Pattern-set weighted accuracy: Weighted accuracy takes into account the pro-

portion of covered examples relative to the size of the class C and the back-
ground ¬C respectively [7],

wacc(XC) =
|cov(X ) ∩ cov(C)|

|cov(C)| − |cov(X ) ∩ cov(¬C)|
|cov(¬C)|
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To employ pattern-set measures in the prediction phase of associative classifica-
tion, the patterns covering a test example are divided according to the different
classes, thus deriving rule sets XC for each class C, and the test example is
assigned to the class with the highest score for the chosen measure.

3 Results

Results are presented for geographic folk song classification on a data set used
in an earlier study [2]: 195 folk songs from Austria (102 songs) and Switzerland
(93 songs). Figure 1 gives results for four selected viewpoint combinations: in the
cases of a single linked viewpoint (Fig. 1, top), all patterns in a music sequence
share the same representation; with multiple viewpoints (Fig. 1, bottom), pat-
terns in a sequence can be of different types. The diagrams display the proportion
of correctly classified test examples across a range of minimum confidence thresh-
olds; classification performance varying with the choice of confidence threshold
is a well-known challenge in associative classification.
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Fig. 1. Proportion of correctly classified test examples at different minimum confidence
thresholds (smin = 0.05, α = 0.1, δ = 10, 10-fold cross-validation).
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The results support the following observations: first, considering multiple
patterns generally leads to higher classification accuracies than prediction based
on a single, strongest pattern. At lower confidence thresholds, however, classi-
fication using a decision list outperforms pattern-set based strategies and, here
with the exception of the linked viewpoint int ⊗ ioi, majority voting. Second, in
the current case study strategies integrating individual pattern measures overall
give better classification results than those based on pattern-set level measures.
Majority voting, which does not consider pattern strength directly, performs
well especially at confidence thresholds 0.75 and 0.8. Note that here pattern-set
measures are only applied during prediction but not taken into account during
pattern discovery or selection. Third, the best classification results reported here
(77.4% for homogeneous pattern sets, 79.5% for heterogeneous pattern sets) can
be achieved with different prediction strategies.

Previous work on the data set of Austrian and Swiss folk tunes allows to
contextualise the results: reference classification accuracies are a baseline of 52%
for always predicting the majority class, 66% using logistic regression on global
features and 75% using a trigram model on interval-duration sequences [2]. Asso-
ciative classification with feature-set patterns – using a decision list but without
a default rule – led to 77% of classified songs being labelled correctly, albeit at a
test set coverage of only 43% [2]. Against these reference results, the classification
performance in the current study competes well.

4 Conclusions

To complement existing work on unsupervised pattern discovery and instance-
based classification in music, this paper draws attention to associative classi-
fication, with a particular focus on class prediction from multiple sequential
patterns. Results of an exploratory study on geographical folk song classifica-
tion compare well against related published work; they also suggest directions
for future research, such as integration of viewpoint selection strategies to deter-
mine the best single viewpoint or multiple-viewpoint set, parameter-free pattern
discovery [5], analysis of the interaction between different phases in associative
classification (e.g. pattern evaluation measures, pattern selection criteria and
prediction strategies) or optimisation of pattern-set measures during pattern
discovery and selection [10].
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Abstract. We propose a genetic algorithm (GA), OPTISIA, for
efficiently finding optimal parameter combinations when running
OMNISIA [15], a program that implements a family of analysis and
compression algorithms based on the SIA point-set pattern discovery
algorithm [20]. The GA, when given a point-set representation of a piece
of music as input, runs OMNISIA multiple times, attempting to evolve a
combination of parameter values that achieves the highest compression
factor on the input piece. When evaluated on two musicological tasks,
the system consistently selected well-performing parameters for Forth’s
algorithm [6] compared to combinations found in published evaluations
on the same musicological tasks.

Keywords: Pattern discovery · Genetic algorithm · Parameter
optimization · Music analysis · COSIATEC · OMNISIA · Geometric
algorithms · Forth’s algorithm · Point sets

1 Introduction

Genetic algorithms (GAs) provide a biologically inspired, evolutionary approach
to optimisation problems [9]. Previous work suggests that GAs can provide a
time-efficient and custom-fit solution when finding optimal parameter combina-
tions in a variety of contexts [7,14]. We propose a decimal-encoding-based GA for
efficiently finding optimal parameter combinations when running OMNISIA [15],
a program that implements a family of analysis and compression algorithms
based on the SIA point-set pattern discovery algorithm [20]. OMNISIA pro-
vides implementations of three compression-based pattern mining algorithms,
COSIATEC [21], SIATECCompress [18], and Forth’s algorithm [6]. Moreover, it
allows each of these algorithms to be run with a wide range of options, such as
replacing SIA with SIAR [3] or SIACT [5] or using chromatic or morphetic pitch
representations [16,17].

In this paper, we present OPTISIA, a GA-based algorithm that runs
OMNISIA on a point-set representation of a piece of music multiple times, evolv-
ing a combination of parameter values that optimise the achieved compression
c© Springer Nature Switzerland AG 2020
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factor. The output of this evolutionary process is the analysis of the input piece
generated by the particular parameter value combination represented by the
simplest chromosome in the final generation that achieves the maximum com-
pression factor on that input piece.

The choice of compression factor as our fitness function is motivated by
the widely accepted principle that the shortest (lossless) encodings of a data
object represent the best explanations for that object. This parsimony principle
(a.k.a. “Ockham’s razor”) can be traced back to antiquity and has been for-
malized in more recent times in various ways, including the MDL principle [22]
and Kolmogorov’s structure function [24]. A number of recent studies in music
information retrieval have demonstrated the potential of using the parsimony
principle for classification and clustering tasks [2,12,19] and thematic/motivic
analysis [18]. We have tested our new approach on two music-analytical tasks: (1)
discovering subject and countersubject entries in the fugues of the first book of
J. S. Bach’s Das Wohltemperirte Clavier [8]; and (2) discovering themes and sec-
tions in the polyphonic version of the JKU Patterns Development Database [4].

2 Previous Work on Parameter Tuning with Genetic
Algorithms

Genetic algorithms present a biologically inspired approach to optimisation prob-
lems based on evolution [9]. This approach creates a map of parameters which can
be used as possible permutations of genes. To create a population, chromosomes
are formed by chaining genes. The population is advanced by computing a fitness
score for each parameter combination (chromosome) to perform selection. There
are a number of widely used selection methods such as fitness proportionate,
roulette-wheel sampling, and elitist selection [10,13]. When the number of chro-
mosomes is reduced to a desired group (parent population), their chromosomes
are recombined in pairs (crossover) to produce members for the next generation.
Mutation might also be applied to chromosomes, resulting in a potential value
change on one or more of the genes. The randomly selected value from the gene
types is often allowed to hold its previous value, resulting in no mutation. Genetic
algorithms can, with the application of evolutionary principles, evolve optimal or
near-optimal parameter combinations over generations [7]. Genetic algorithms
are able to reduce the time required for parameter optimisation [7]. Moreover,
they allow the encoding of interval values. This is illustrated in [14], where the
proposed decimal encoding of nominal and interval parameters results in shorter
chromosomes and the accuracy reaches that obtained with binary encoding. Due
to shorter chromosomes the search efficiency of the approach is increased relative
to other encoding methods.

3 OMNISIA

OMNISIA [15] is a Java program that implements a family of analysis and com-
pression algorithms based on the SIA point-set pattern discovery algorithm [20].
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OMNISIA provides implementations of three compression-based pattern dis-
covery algorithms, COSIATEC [21], SIATECCompress [18], and Forth’s algo-
rithm [6]. Moreover, it allows each of these algorithms to be run with a wide
range of optional parameter settings. The program has been used in a number
of previous studies on music analysis and generation [1,11,19].

The descriptions of the various algorithms implemented in OMNISIA and
their parameters are given in the original papers describing the algorithms and
summarised in [19]. Figure 1 illustrates the effect of some of these switches on
the output generated by OMNISIA for the C minor Prelude (BWV 871) from
Book 2 of J. S. Bach’s Das Wohltemperirte Clavier.

Fig. 1. Example outputs of the OMNISIA program. (a) Point set representation of
the prelude from BWV871 given as input. (b) Output generated by COSIATEC using
chromatic pitch. (c) Output generated by COSIATEC using morphetic pitch with -d
switch selected. (d) Output generated using morphetic pitch and compactness trawler
(-ct switch). (e) Output generated when SIA is replaced with SIAR.
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4 OPTISIA: An Evolutionary Approach to Parameter
Optimisation in OMNISIA

To solve the problem of optimising parameters for the OMNISIA program, the
various compression-based pattern mining algorithms and their options were
mapped. OMNISIA can use three base algorithms: COSIATEC (COS) [21],
SIATECCompress (SCo) [18], and Forth’s algorithm (FoA) [6]. The first two
require 7 switches, while Forth’s algorithm requires 11. The option values of
switches were sorted, based on them being nominal (enabled/disabled) or inter-
val (a range of values). The interval values were mapped to ordinal ones to shrink
the search space of the optimisation (Table 1).

Table 1. The outline of option switch prefixes, their nominal–interval distinction and
presence when using different base algorithms to run OMNISIA.

Switches Base algorithms

Switch prefixes Nominal (N) or Interval (I) COSIATEC, SIATECCompress Forth

-d N X X

-ct N X X

-cta I X X

-ctb I X X

-rsd N X X

-r I X X

-rrt N X X

-crlow I X

-comlow I X

-cmin I X

-bbcomp N X

To design a gene pool for each element of the chromosomes, the base algo-
rithm options need to be encoded. Following the work of Liu and Wang [14] the
values are decimal-encoded. Therefore, gene values range from 0 to 9 instead
of multiple genes describing a single parameter that has more than two types.
Decimal encoding was chosen to minimise the number of genes the algorithm has
to handle during evolution, lowering the required population size and generation
count, and consequently the running time of the algorithm.

Some options in OMNISIA are dependent on each other. Therefore, when
creating chromosomes, if the nominal values of ‘-ct’ (compactness trawling) [5]
or ‘-rsd’ (r superdiagonals) [3] are not set to ‘True’, the dependent parameters
of ‘-cta’ (minimum compactness of trawled patterns), ‘-ctb’ (minimum size of
trawled patterns), and ‘-r’ (number of superdiagonals used in SIAR) should
not hold values either. This relation between genes was respected during the
crossover and mutation operations of the GA. In a chromosome, if the dependent
values were not set beforehand, they were initialised at random to complete it.
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To create the first population of chromosomes, genes were selected in ran-
domised combinations, discarding repeated ones, therefore no chromosomes were
the same at the start. The population size was chosen based on the amount of
genes required to encode all chromosomes (7 for COS and SCo, and 11 for FoA).
Due to the selection and recombination described below, it is more beneficial to
choose population counts divisible by 3. Taking the calculated population sizes
based on Gutowski’s [9, p. 198] inequality, the previously described divisibility,
and the observed population counts [14,23] into account, we tested the execution
time and fitness on a single piece from the Fugues database [8] with population
sizes of 12, 15 and 18 for COS and SCo, and 18, 21 and 24 for FoA. If the achieved
maximum fitness scores were identical in two cases, the lower execution time was
used to set the population size, resulting in 12 for COS and SCo, and 21 for FoA.

Fitness scores were acquired by running the parameter combinations and
retrieving the resulting compression factors. To create subsequent generations,
1/3 of the population was kept with elitism-based selection. The genes of these
parent-chromosomes were recombined in randomly selected pairs to create 4 off-
spring chromosomes each, so that the new generation could reach the set popula-
tion size. An illustration of the selection and recombination can be seen in Fig. 2.
Finally, each gene within the offspring chromosomes had its mutation chance set
to 100/Clen where Clen is chromosome length. Genes undergoing mutation were
allowed to take their previous values at random.

Fig. 2. The figure shows the first 3 generations of chromosomes and their calculated
fitness scores. Green cells show parent chromosomes. Blue lines show the recombination.
(Color figure online)

The GA optimisation was terminated if the fitness failed to improve (stag-
nated) for k generations after a minimum of g generations, where k = 15 and
g = 30 for COS and SCo, and k = 30 and g = 40 for FoA, following the generation
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Fig. 3. Results of using OPTISIA to discover subjects and countersubjects in the fugues
of the first book of J. S. Bach’s Das Wohltemperirte Clavier (left-hand side of figure, in
black); and discover repeated themes and sections in the JKU Patterns Development
Database (right-hand side of figure, in red). Values are for three-layer F1 score [19,
pp. 256–259]. See main text for details. (Color figure online)

count estimation proposed in [9, p. 198]. In most cases, the parameter optimi-
sation of each piece was stopped by the previously described early-termination
mechanism.

5 Evaluation

We evaluated our approach on two music-analytical tasks: (1) discovering sub-
ject and countersubject entries in the fugues of the first book of J. S. Bach’s Das
Wohltemperirte Clavier [8]; and (2) discovering themes and sections in the poly-
phonic version of the JKU Patterns Development Database [4]. Figure 3 summa-
rizes the results obtained. In each of the two experiments, the best-compressing
chromosome discovered by the GA for each of the three basic algorithms (COS,
SCo and FoA) was run in “Raw”, “BB” and “Segment” mode (see [19] for an
explanation of these terms). The rows headed “GA” in Fig. 3 show the three-
layer F1 (TLF1) scores [19, pp. 256–259] obtained using these nine algorithm–
mode combinations on the two experiments. The rows headed “M15” in Fig. 3
show, for each experiment, for each basic algorithm and for each mode, the range
of TLF1 scores obtained for that experiment in [19] for parameter combinations
using the same algorithm and mode.
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For FoA, Fig. 3 shows that, for all modes, the chromosome automatically
selected by the GA performed well compared with the best of the Forth chromo-
somes tested in [19] on both the JKU-PDD and the fugues database. However,
for COS and SCo, the GA typically selected a chromosome that performed poorly
relative to previously tested parameter combinations. Indeed, in several cases,
the GA-selected chromosome performs worse than any of the previously tested
parameter combinations for the given algorithm and mode. We speculate that
the poorer performance of our GA-based approach on COS and SCo, is at least
partly due to the lower gene count in the chromosomes for these algorithms. Per-
haps this problem could be mitigated by increasing the probability of mutation
in order to avoid the population converging on a relatively poorly-performing,
but locally optimal, parameter combination.

6 Conclusion and Suggestions for Future Work

We used a GA with compression factor as a fitness function to evolve parame-
ter combinations for the SIATEC-based analysis algorithms implemented in the
OMNISIA point-set analysis program. When the approach was evaluated on two
musicological pattern discovery tasks, it was found that it consistently selected
a high performing parameter value combination for Forth’s algorithm [6], but
relatively poorly-performing parameter combinations for COSIATEC [21] and
SIATECCompress [18]. It may be possible to improve the genetic algorithm’s
efficiency, and possibly increase the achieved compression factor, by mapping
the base algorithm options that were mapped to hold ordinal values to inter-
val ones instead. In addition, the effect of using fitness proportionate selection
should be investigated. Lastly, it can be hypothesized that this approach, as
opposed to elitist selection, would require more computation time, but it would
be less prone to stagnation despite the presence of local maxima in the space
defined by the fitness function.
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Abstract. We present a machine–learning model for predicting the per-
formance dynamics in melodic motifs from classical pieces based on
musically–meaningful features calculated from score–like symbolic rep-
resentation. This model is designed to be capable of providing expressive
directions to musicians within tools for expressive performance practice,
and for that reason, in contrast with previous research, all modeling is
done on a phrase level rather than note level. Results show the model is
powerful but struggles with the generalization of predictions. The robust-
ness of the chosen summarized representation of dynamics makes its
application possible even in cases of low accuracy.

Keywords: Expressive music performance · Machine learning · Violin

1 Introduction

The development of computer models of music expression has been an active field
of research for over 30 years with a wide range of approaches [9]. Most models
that have been proposed by the research community share the trait of being
designed with the goal of improving computer performance. Our motivation, on
the other hand, is to make use of smart technologies to improve the tools available
for learning to play music, and in particular, to help musicians improve their
expressive performance skills. In our envisioned scenario [12], a computer system
powered by a meaningful expressive performance model could give musicians
expressive directions during performance or visual feedback regarding a recording
based on information extracted from a musical score. As an effort to enable
such scenario, this paper presents a machine learning model for predicting the
dynamics of an ensemble based on high-level features extracted from a score–like
symbolic representation of the musical piece. The proposed method focuses on
modeling long-term dynamics variations, so as to allow a musician to follow the
modeled dynamics suggestions during performance.

1.1 Related Work

Several computer models of expression have been successful in the generation
of convincing performances, particularly of classical piano pieces, as could be
c© Springer Nature Switzerland AG 2020
P. Cellier and K. Driessens (Eds.): ECML PKDD 2019 Workshops, CCIS 1168, pp. 517–523, 2020.
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witnessed in the RENCON competition [8]. Most recent are the automatic com-
positions in the context of project Magenta [7] but the nature of the model
makes composition and performance inherently inseparable whereas our learn-
ing scenario primarily requires producing performances for already composed
and well-established pieces. An approach more related to our own is seen in
the YQX system [16], which predicts timing, dynamics and articulation vari-
ations in classical piano pieces, and in [6] where a system for predictions of
ornamentations in jazz guitar melodies is described. In both cases, melodic lines
play an important role, characterized by their Narmour Implication/Realization
model classes [11]. In our case, the same type of information is presented to our
machine–learning algorithm using a different representation based on pitch curve
coefficients. We differ from both, however, by predicting phrase–level instead of
note–level expression. Most applicable to our desired scenario are the models
reported in [3], which, as in our case, are able to output predictions of expressive
parameters based on score information, but a sensible difference is that these
models use dynamics markings from the score as a starting point whereas ours
seek to generate predictions without using any input indication of expression.

2 Materials and Methods

2.1 Materials

An adequate dataset for the intended model design required a wide variety of
melodic themes in both audio and synchronized symbolic representation. Corpi
of solo piano pieces such as the MAESTRO [7] were not optimal for the prob-
lem since we were interested in mapping the relationship between melody and
harmony in the modeled features, and these elements tend to be fully blended
in piano parts. The MusicNet dataset [14] provides audio–to–score synchroniza-
tion as well as the necessary melodic diversity and still allows a clear distinction
between main melodic lines and harmonies thanks to the abundance of cham-
ber music pieces with individual instrument parts, and was thus chosen for the
task. To distinguish the main melody from harmony, violin parts were treated as
melodies and all other instruments, as harmony. Only the subset of pieces which
contained a violin were used, resulting in 122 pieces and a total of 874 min
of recordings. For estimating the dynamics performed by the ensembles, the
momentary loudness in windows of 0.1s according to the EBU R128 standard [4]
was computed with the help of the Essentia library [1].

2.2 Methods

The designed model consists of a feed–forward neural network trained to predict
the dynamics curve of a musical motif, that is, a short phrase of roughly one or
two bars. An important aspect of the modeling is that each training instance
represents a motif rather than a single note. This design decision is motivated
by two beliefs: first, that musicians plan and execute their expressive movements
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considering a horizon of a few notes rather than momentarily focusing on each
one; and second, that in our music learning scenario, performance suggestions
based on model outputs can be best visualized and interpreted in that level of
granularity. As a consequence of choosing to train the model on motifs, it is
necessary to determine musically-relevant motif boundaries in the pieces as well
as appropriate features for this representation. The motif boundary detection
is done by applying the LBDM [2] algorithm to estimate boundary probabili-
ties, and recursively dividing the piece until one of two conditions is met: either
no boundary probability is two standard deviations larger that the rest, or the
resulting segment has fewer than 10 notes. Table 1 summarizes the input features
used for training. Piece keys and modes were estimated from pitch profiles as
detailed in [13]. The output features of the model should represent the dynamics
of the motif and its variation on time. We have summarized that information
by approximating the performance loudness curve extracted with Essentia by a
parabola, fit using the least-squares method. This is consistent with the obser-
vation by Todd [10] and other researchers [5,15] that dynamics variations tend
to follow a quadratic profile. Given this approximation, the task of the neural
network is optimizing the three coefficients that define the dynamics curve.

To facilitate the optimization task, some data conditioning was performed.
Loudness measurements of each piece were normalized to zero mean and unit
variance to eliminate differences caused by inconsistent recording conditions.
Motifs with less than 4 notes and outliers (z-score above 10 in any feature)
were discarded, all nominal features were converted to “one-hot” format and all
numeric features were standardized. The resulting dataset had around 10.000
instances, which were divided into training and test sets containing 90% and
10% of instances, respectively.

The feed-forward network was programmed in the PyTorch1 framework and
built with two hidden layers of 25 nodes each, using ReLU as an activation
function and standard mean-squared error as a loss function. The training was
run for 1800 epochs in stochastic gradient descent optimization with batches of
100 instances, learning rate of 0.2 and momentum of 0.1. The learning rate was
decreased by a factor of 10 every 600 epochs. All parameters were cross-validated
using a subdivision of the training set prior to the final training round.

3 Results and Discussion

3.1 Results

Table 2 shows the obtained correlation coefficients for each of the dynamics coef-
ficients predicted for all instances in the test set. Examples of the loudness curve,
ground-truth quadratic approximation and predicted curve for three motifs can
be seen in Fig. 1. Table 3 provides some perspective on the accuracy of the mod-
eled dynamics by indicating root-mean-square errors for a deadpan prediction,
for the ground-truth approximations, and for the model’s output.

1 http://pytorch.org.

http://pytorch.org
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Table 1. Input features of the model.

Feature Data type Description

Beat in measure x ∈ [0, 4] The beat where the motif begins

Metric strength x ∈ {3, 2, 1, 0} How strong the start beat is
e.g.: down beat = 3

Number of notes x ∈ N Total of notes in motif

Duration x ∈ [0,∞) Motif duration in beats

Location in piece x ∈ [0, 1] Where in the piece the motif is played

Pitch curve
coefficients

x0, x1, x2 ∈ R Quadratic coefficients approximating the MIDI
pitches of motif notes

Pitch contour
coefficients

x0, x1, x2 ∈ R Quadratic coefficients approximating the
variation in MIDI pitches of motif notes

Rhythm drops Boolean Whether a note with higher duration follows
another with shorter duration in the motif

Rhythm rises Boolean Whether a note with shorter duration follows
another with higher duration in the motif

Rhythm contour
coefficients

x0, x1, x2 ∈ R Quadratic coefficients approximating the
variation in duration of motif notes

Strongest note
location

x ∈ [0, 1] Where in the motif is the note with highest
metric strength

Piece key A - G# Tonality estimation of motif piece

Piece mode Major/Minor Mode estimation of motif piece

Chord
probabilities

x0..x6 ∈ [0, 1] Estimated diatonic chords presence
probabilities

Initial chord
degree

I - VII Most likely chord in motif start

Final chord
degree

I - VII Most likely chord in motif end

Has dissonance Boolean Whether there are notes from a different
tonality

Dissonance
location

x ∈ [0, 1] Location of first occurence of dissonant note

Is solo piece Boolean Solo or ensemble piece

Table 2. Correlation coefficients for output features.

Output coefficient Pearson’s r (test set) Pearson’s r (training set)

x2 0.2177 0.5222

x1 0.2375 0.7054

x0 0.2383 0.6818
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Fig. 1. Comparison of loudness values measured in performance, their ideal (ground-
truth) approximation, and model output for three motifs.

3.2 Discussion

The Pearson correlation coefficients obtained for the training set show that the
model is sufficiently powerful to predict the complex relationships present in this
scenario, but the lower correlation values seen in the test set indicate that some
overfitting occurred, and the meaningful correlations detected in the data only
partially explain the observed dynamics. The deadpan-level (Ed) and ground-
truth-level (Eg) errors in Table 3 can be seen as lower and upper boundaries of
accuracy, indicating that this modeling approach offers a potential reduction in
prediction error of up to Ed − Eg = 2.17 dB. The 3.39 dB value obtained with
our predictions implies an error reduction of Ed − 3.39 = 0.47 dB compared to
the deadpan baseline, which corresponds to 0.47/2.17 = 21.65% of the predicted
potential. That is consistent with the correlation coefficient values and shows
that the prediction of coefficients translates well into prediction of dynamics
levels.

Table 3. RMS error in loudness levels prediction.

Prediction type Error level

Deadpan performance 3.86 dB

Ground-truth approximation 1.69 dB

Model prediction 3.39 dB

The prediction examples highlighted in Fig. 1 illustrate some relevant con-
clusions: It can be seen that most of the short–term variation in loudness levels
occurs on note boundaries due to note articulation, and in terms of perceived
dynamics can be understood as noise. The quadratic approximation (labeled
ground-truth) provides a cleaner and more intuitive visualization of the varia-
tion of loudness in a phrase, and in most individually–inspected cases represents
it quite well. The leftmost example is an exception, as it shows a case in which
the phrase boundaries chosen by the algorithm don’t seem to match the per-
former’s choice, hence the silence during the phrase and the poor results even in
the proposed ground-truth approximation. In many observed cases, as shown in
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the middle and rightmost graphs, the predicted curve shows robustness, espe-
cially with relation to the x2 and x1 coefficients, since some variation in their
predictions doesn’t affect the character of the interpretation. It is reasonable to
assume that despite the difference between ground-truth and predicted values
in such cases, performances executed according to instructions from the latter
could be considered just as pleasing.

Logical improvements to our proposed approach under consideration include
adding information that relates to the repetition of motifs, detecting key modula-
tions or modal harmony in pieces, augmenting the training set with multiple dif-
ferent divisions of motifs per piece and experimenting with different treatments
of time–series data such as training with long short–term memory networks.
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Abstract. Statistical context models for sequence generation provide
probabilities for each event in a sequence, conditioned on the context
or history of the event in the sequence. A fundamentally different type
of generative method inverts this view entirely, stating only what pat-
terns cannot occur, allowing all other possibilities. The two concepts of
statistical models and unexpectedly absent words can be combined for
sequence generation, by sampling from a statistical model while avoiding
generation of any unwords. A desirable feature of this approach is that
an efficient random walk procedure can be used even for long sequences.

Keywords: Music generation · Statistical models · Pattern discovery

1 Introduction

In the context of a project on the reconstruction of Mozarabic chant [6], a statis-
tical generation method has been used to generate pieces that instantiate prede-
fined templates. This method allows the specification of several types of features
in templates, including contour relations between successive events, intra-opus
patterns expressing equality relations between distant fragments, and defined
pitches.

Figure 1 shows a fragment from the León antiphoner (E-L 8, Catedral de
León), the most important source of Mozarabic chants, dating from the early
tenth century, containing over 3000 chants preserved in adiastematic neume nota-
tion. Although pitch information is absent, the adiastematic neumatic notation
indicates the contours of the melodies, and the lyrics and the adiastematic neume
notation therefore determine a hypothetical contour sequence (o: any; e: equal;
l: lower; h: higher) which can be used as a template for generation [6]. The
opening pitch is fixed to an A3 (midi 57). Two different intra-opus patterns are
highlighted in the figure, each having two instances. The presence of intra-opus
patterns is an important aspect of the generation method as they allow long
range relations between music segments to be specified. For these patterns the
same pitch material must be generated in all instances of the pattern, while
still obeying the contour sequences (and possibly defined pitches) under these
patterns.
c© Springer Nature Switzerland AG 2020
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[|o:57|-he-l o oh]-ohh-o o-ohh-ol [ohhohohl] ohl-ohh olh-o [o he-l-o-oh]-ohl [ohhohohl] ohhh ohol-ohl-ol oh-l

Fig. 1. The first line of the responsory Dominus ab utero formavit me for the feast
of St. John the Baptist in the early tenth-century León antiphoner (E-L 8, 214r2),
with two intra-opus patterns. Below the León image a template of contour letters (also
defining the first pitch as 57), with intra-opus patterns in brackets. Bottom: a generated
sequence compatible with the template.

The method has successfully been employed to efficiently generate an entire
suite of new chants that were performed in a festival (Nederlands Gregoriaans
Festival, ’s-Hertogenbosch, June 14–16, 2019). Nevertheless, several open points
remain to improve the method [10]. One of these is the avoidance of large melodic
intervals that may be produced by the left-to-right random walk sampling pro-
cedure, in the presence of patterns and defined pitches.

Though samples can be drawn exactly from models with simple unary
pitch constraints [8,11], such models are inadequate for chant generation, which
requires the modelling of intra-opus patterns. The presence of these patterns
implies an intractable sampling problem [4,13,14] because the fraction of times
a particular sequence is sampled will not necessarily correspond to its proba-
bility. This can mean that low probability sequences, possibly poor and having
stylistic violations, can be generated.

More precisely, an information peak will arise when the left boundary of a
repeated pattern instance, or a defined pitch, restricts the set of possibilities for
an event, and only low probability (high information content) continuations are
available given previously generated material. These information peaks may be
within unwords [5]: patterns that should never appear in a generated sequence.
This paper presents a method for generating sequences while avoiding surprising
unwords: those expected to appear in a corpus but in fact never appear. In this
method the unavoidable presence of an unword will cause backtracking to the
previous position rather than resampling of an entirely new sequence.

2 Methods

This section describes in more detail the problem of information peaks and pro-
poses unwords as a possible solution. The concept of unwords is formally defined,
and a method for generating sequences while avoiding unwords is outlined.
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2.1 Sampling into Templates

Statistical models for music generation are typically context models, defining
distributions of next events given a context already generated or provided [2].
They can be guided by a template which for chant generation is a specification
of patterns, defined pitches, and contours. Sequences are generated by sampling
instances of a template from a model: those sequences compatible with all con-
straints defined in the template. For context models this can be done with the
help of constraint satisfaction methods [4], maintaining and adjusting the sets
of permissible events during every step of the left-to-right random walk. This
can be done without any backtracking, provided that the underlying statistical
model is non-exclusive: assigning a probability, however tiny, to every possible
event at every position.

2.2 Information Peaks

For context models without constraints, the random walk procedure suffices to
sample from the correct sequence distribution. However once constraints are
posted on the generated sequence, random walk becomes inexact. The basic
problem is that when constrained events are encountered, the continuation from
the context may be required to “snap” back to the constrained event, with a
very high information content.

These information peaks are spikes in the information content time series
and may be within low probability sampled sequences. Figure 2 shows this phe-
nomenon with a real template and model. It can be seen that a peak of informa-
tion content occurs exactly at a defined pitch (first magenta vertical bar, pitch
E4 note 140). The melody, which has moved earlier to the high end of the range
(pitch A6), moves as required down to the area of E4 although with an unnatural
cadence A5-B5-E4, and a substantially low probability event at E4 (information
content above 10 bits).

Thus information peaks may give rise to unwords and a way to define and
avoid these unwords can be used productively to avoid information peaks in
generated music. It should be noted that some information peaks are acceptable:
here only those peaks that cause unwords are avoided.

2.3 Unwords

For pattern discovery one can invert the task and ask: what are the patterns
that do not occur in a corpus? Patterns that are completely absent from a large
dataset may be expected to also be absent in any new pieces in the style or genre
under consideration, including generated pieces.

This definition however is too broad to be useful because in any corpus most
theoretically possible unwords are absent merely due to statistical sparseness of
a corpus, while the interesting unwords are those that were expected to occur
but did not. A method for computing the statistical significance of an unword
[5] is briefly outlined here.
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Fig. 2. Information peaks illustrated, from the template Dum complerentur (E-L 8,
210r14). Magenta vertical lines refer to the position of defined pitches. Information
content: negative log probability. Bottom: focus around the defined pitches at positions
140 and 141 (see top of Fig. 3 for the full sequence information content)

The piece count of a pattern Φ in a corpus is the number of pieces in the
corpus that instantiate the pattern. An unword is any pattern Φ with a piece
count of zero, and which is not subsumed by any other such pattern (i.e., unwords
are minimal absent patterns). To evaluate the significance of an unword, let X
be a random variable modelling the piece count of a pattern, so P (X = k) is
the probability that the observed piece count of the pattern is exactly k (≥ 0).
The p-value P (X = 0) of an unword can indicate whether the unword is purely
statistical (insignificant p-value), versus structural (significant, low p-value): see
[5] for details. The p-value is determined by computing the expected number of
pieces in the corpus containing the absent pattern: the p-value being lower with
higher expectation and therefore indicating a more surprising unword.

The algorithm for unword discovery is a refinement tree search that uses
two refinement operators to specialize patterns [3]. For unword discovery, paths
are explored until a piece count of zero is reached, at which point it is assessed
whether the p-value is lower than a specified threshold α. Paths can be termi-
nated early if they only lead to patterns with a p-value greater than α: see [7]
for the p-value bounding conditions.

2.4 Generation Using Unwords

To employ unwords during generation, random walk with backtracking is used.
At every position, compatibility with the template is tested and an event is
sampled from the compatible distribution. To incorporate unwords, at every
sequence position the entire set of unwords is scanned to see if any unword is a
suffix of the proposed updated sequence. Such events are not permitted. In the
case no events are compatible, backtracking to the previous position occurs.
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3 Results

A corpus of 115 Gregorian offertories [9] was used to train a trigram model on
absolute pitches occurring in the corpus. Though the data is purely symbolic
(spelled pitches) MIDI numbers can be used for convenience as there are no
enharmonics. For prediction the PPM (prediction by partial match [1]) algorithm
with Method C backoff probabilities was employed.

For unword discovery, the same corpus was used. Unword expectations [5]
were determined using a unigram model of absolute pitches (thus, only unwords
of length 2 or more are reported). A total of 559 unwords were found at a p-value
threshold of α = 0.001. Table 1 presents a selection of unwords identified in the
corpus.

Table 1. A small selection of significant unwords in Gregorian chant. Boxed: the
unword occurring in the fragment shown in Fig. 2

Unword − log(p-value)

72,62 248.7

72,64 223.9

65,74 219.4

62,71 167.7

72,65,72 160.2

65,72,67 157.4

67,72,65 157.4

65,72,65 144.8

69,71,64 32.3

72,65,65,65 29.9

Sequences were sampled into a long template for the chant Dum complerentur
(E-L 8, 210r14) which contains several intra-opus patterns and defined pitches.
Figure 3 presents these results. The use of unwords is able to reduce the height
of information peaks, producing a sequence with no peaks of more than 10 bits.
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Fig. 3. Sequence generation with unwords for the template Dum complerentur (E-L
8, 210r14). (a) basic random walk; (b) with unwords; (c,d) focus around the defined
pitches at positions 140 and 141

4 Conclusions

This paper has proposed the incorporation of unwords into statistical music gen-
eration, as a way to remove unacceptable information peaks while still retain-
ing the efficiency of random walk sampling. Results are promising and a larger
follow-up study will explore a larger catalog of templates, and including inter-
opus patterns: those occurring across different pieces.

In a related study [12], all patterns of length greater than a specified length
are prohibited in generated sequences, with the intention of reducing literal lift-
ing of long material from the corpus. These however are not unwords and provide
only weakly applicable constraints on generated sequences.

Other approaches to handle information peaks should be studied, particu-
larly blocked Gibbs sampling (many events sampled concurrently in each step),
although such approximate sampling methods may be too inefficient for practical
use when inter-opus patterns are considered. On that point, one of the motiva-
tions of this work is the generation of an entire suite of Mozarabic chants with
global coherence provided by intra- and inter-opus patterns.
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Abstract. Expression is the added value of a musical performance, in
which deviations in timing, energy, and articulation are introduced by
musicians. Computational models have been proposed aiming at under-
standing and modelling the expressive content of music performances, to
convey concrete expressive intentions. However, little work has been done
to investigate the intrinsic variations that musicians might introduce, i.e.
when no specific expressive indications are provided. In this contribution,
we present a machine learning approach to study the expressive varia-
tions that nine different guitarists introduce when performing the same
musical piece, for which no performance indications are provided. We
study the correlations on the variations in timing and energy. We extract
features from the score to obtain predictive models for each musician to
later cross-validate among them. Preliminary results indicate that musi-
cians use similar variations when applying these variations, based on
correlation measures. Also, similar correlation indexes are found on the
cross-validation exercise.

Keywords: Classical guitar · Expressive performance modelling ·
Machine learning

1 Introduction

Musicians introduce deviations to the score when performing a musical piece
in order to achieve a particular expressive intention. Computational expressive
music performance modelling (CEMPM) aims to characterise such deviations
using computational techniques (e.g. machine learning techniques). In this con-
text, CEMPM aims to formulate a hypothesis on the expressive devices musicians
use when performing (consciously or unconsciously), which can be empirically ver-
ified on measured performance data. Empirical models are often obtained from the
quantitative analysis of musical performances, based on measurements of timing,
dynamics, and articulation (e.g Shaffer et al. 1985; Clarke 1985; Gabrielsson 1987;
c© Springer Nature Switzerland AG 2020
P. Cellier and K. Driessens (Eds.): ECML PKDD 2019 Workshops, CCIS 1168, pp. 531–536, 2020.
https://doi.org/10.1007/978-3-030-43887-6_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43887-6_48&domain=pdf
https://doi.org/10.1007/978-3-030-43887-6_48


532 S. Giraldo et al.

Palmer 1996a; Repp 1999; Goebl 2001, to name a few). State of the art reviews are
presented in Gabrielsson (2003). Computational models have been implemented
as rule-based models (Friberg et al. 2000; the KTH model), mathematical models
(Todd 1992), structure-level models (Mazzola 2002).

Machine Learning techniques have been used to predict performance varia-
tions in timing, articulation and energy (e.g. Widmer 2002), to model concrete
expressive intentions (e.g. mood, musical style, performer etc). Most of the liter-
ature focus on classical piano music (e.g. Widmer 2002). The piano keys work as
ON/OFF switching devices (e.g. MIDI pianos), which simplifies the process of
data acquisition, where performance data has to be converted into machine read-
able data. Some exceptions can be found in in jazz saxophone music where case-
based reasoning (Arcos et al. 1998) and inductive logic programming (Ramirez
et al. 2011) have been used. Jazz guitar expressive performance modelling has
been studied by Giraldo and Ramirez (2016a, b), in which special emphasis is
done in melodic ornamentation.

However, few studies have been done in the context of classical guitar, aiming
to study the intrinsic variations performers introduce when no specific expressive
intentions are provided. In this study, we present a machine learning approach
in which CEMPM techniques are applied to study the expressive variations that
nine different guitarists introduce when performing the same musical piece, for
which no performance indications are provided. We study the correlations on the
variations in timing and energy. We extract features from the score to obtain
predictive models for each musician to later cross-validate among them.

2 Materials and Methods

For this study we obtained recordings of nine professional guitarists performing
the same musical piece. The piece was written for classical guitar, and was com-
posed specifically for this study. Musicians did not knew the piece before hand,
and any particular expressive/performance indications were provided (nor writ-
ten or verbally). The performers were allowed to freely introduce the expressive
variations to their taste/criteria. Musicians were also allowed to practice the
piece as long as they wanted, until they were satisfied with their interpretation,
before recording. The recordings took place at different studios/institutions and
were collected by the Department of Music form the Faculty of Arts of the
University of Quebec in Montreal (UQAM) Canada.

2.1 Framework

The general framework of the project is depicted in Fig. 1.

Data Processing. The musical score was created in musicXML format from
which we obtained machine readable data (MIDI type) information of each note,
i.e. its onset (in seconds), duration (in seconds), pitch, and velocity (which refers
to volume). We used the score as the dead-pan performance (i.e. robotic or
inexpressive performance).
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Fig. 1. Framework and data processing flow.

In a second stage we obtained machine readable data of the performance
in MIDI type format. This process was performed in a semi-automatic fashion,
where we used score-informed Non-negative Matrix Factorisation (NMF). The
NMF method decomposes an input spectrogram X ∈KxN with K frequency bins
and N frames as:

X = WH (1)

where W ∈KxR contains the spectral bases for each of the R pitches and H ∈RxN

is the pitch activity matrix across time. The number of R pitches and the W
and W matrices initial weights were initialised, informed by the score (for an
overview see Clarke 1985). Later, manual correction was performed over the
spectrum. Finally, energy information (i.e velocity) was obtained from the RMS
value, calculated over the audio wave, in between the obtained note boundaries.

Similarly, we performed automatic beat extraction (Zapata et al. 2014), fol-
lowed by manual correction to obtain the beat information (in seconds) over the
audio signal.

Data-set Creation. Feature extraction from the score was performed by
extracting local information of the notes in the score (e.g pitch, duration, etc.)
as well as contextual information in which the note occurs (e.g. previous/next
interval, metrical strength, harmonic/melodic analysis, etc.). For an overview
see Giraldo and Ramirez (2016a, b). A total of 27 descriptors were extracted for
each note. Later, deviations in tempo variation, measured in Beats Per Minute
(BPM) and Inter Onset Interval (IOI) for each note/performer, were calculated
by considering the difference among the theoretical BPM/IOI values in the score
and the corresponding values in the performance. Finally, we obtained data-sets
for each of the nine performers, as well as for each of the three performance devi-
ations considered (i.e. energy, BPM, and IOI deviations). A total of 27 data-sets
were obtained, where each instance is composed by the feature set extracted for
each note, and the considered deviations are the value to be predicted.
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Machine Learning Modelling. Each of the nine performer data-sets were
used as both train and test sets in a all-vs-all cross-validation fashion. This
consisted in obtaining a predictive model for each performer (i.e all performer
data sets were used as train set) and applying each of them to all the performers
(i.e all the performer data sets were used as test set), and finally obtaining a
model evaluation for each pair.

Evaluation. A preliminary evaluation consisted in obtaining the correlations
among the actual deviations for each note, among all performers. Later, at the
Machine Learning stage, the performance of the predictive models was addressed
by obtaining the Correlation Coefficient (CC) among the predicted values of the
model and the actual values at the test set. The algorithms considered were
Support vector regression (SVR, with radial kernel), Regression Trees (RT, with
pruning), and Artificial Neural Networks (ANN, fully connected with one hid-
den layer), for which CC’s on preliminary tests are presented in Table 1. Given
that ANN out performed at the prediction of the three considered expressive
deviations, in this paper we report on the CC obtained with ANN.

Table 1. Mean Correlation Coefficient (CC) comparison among models.

Deviations SVR RT ANN

(CC) (CC) (CC)

Energy 0.45 0.42 0.61

IOI 0.58 0.60 0.82

BPM 0.68 0.69 0.87

Fig. 2. BPM percentage of deviation among nine performers for each consecutive note

3 Results

Figure 2 show the measured deviations in percentage of BPM of each consecu-
tive note for each performer. It can be noticed the correspondence of peaks and
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valleys (with different amplitude/deviation degree) among performers. Figure 3
present the scaled graph of the obtained correlation coefficients using ANNs. The
numbers on the vertical axis indicate the performer data sets (numbered from
1 to 9) used as train set, whereas the horizontal axis represent the performers
data set when used as test set. At each intersection, the colour map represents
the correlation coefficient obtained using each pair of train/test data sets. As
expected, the diagonal shows higher correlations, representing the performance
on the train set (i.e train and test set are the same performer). Higher correla-
tions can be found at the BPM and IOI deviations. Also, a similar pattern can
be observed on the CCs obtained among performers. This might indicate that
the majority of the performers introduce similar timing variations based on the
information provided by the score. This tendency can be observed as well at
Fig. 2 (e.g. as seen at the ritardando introduced by most performers at the end
of the piece). In contrast, lower level of correlations were obtained on the energy
deviation models, which might indicate that the decision on the loudness of a
note is less consistent among performers. However, other external factors, such
as different recording conditions (e.g. the use of a different guitar, or recordings
being done at different studios) might bias this result.

Fig. 3. Scaled graph of the correlations obtained for each performer model, for each of
the three expressive deviations considered (from left to right: BPM, IOI and Energy).
Vertical axis correspond to performer data used as train set (from 1 to 9), and horizontal
axis corresponds to performer data used as test set (from 1 to 9)

4 Conclusion

In this paper we have presented a machine learning approach based on compu-
tational modelling of expressive music performance to study the correlations on
the intrinsic expressive deviations that musicians introduce when performing a
musical piece. We have obtained recordings of the same musical piece by nine
professional guitarists, in which any indications of expressiveness is indicated,
and performers have freely choose on the expressive actions performed. We have
extracted descriptors from the score, and measure the deviations introduced on
the performance by each performer in terms of the BPM, IOI and Energy devia-
tions. We have obtained machine learning models using ANNs, and for each per-
former, and cross-validated the performance among interpreters’ models based
on CC. Preliminary results indicate, that performer take similar actions in terms
of timing deviations, whereas less correlation was obtained in energy deviations.
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Abstract. De-essing is the process of attenuating vocal sibilance in
audio recordings. Especially in audio mastering, conventional de-essers
often degrade the clarity of the source signal due to unreliable differen-
tiation between vocal sibilance and other high-pitched sounds. Machine
learning poses a promising solution to this problem. In this context, a new
de-essing approach based on a convolutional neural network architecture
is presented. The introduced prototype de-esser outperforms existing de-
esser plugins in terms of erroneous signal attenuation and was rated
favorably by audio professionals.

Keywords: De-essing · Audio mastering · CNN

1 Introduction

The combination of machine learning and digital signal processing has led to new
automated production tools, such as in the form of intelligent dynamic compres-
sion or re-mixing of complete mixes [5,6]. These techniques can be especially
beneficial in mastering, where typically only complete mixes are altered [4].

A common time-consuming task in mastering is de-essing. De-essing aims to
eliminate sharp vocal sibilance in audio recordings [3]. While conventional de-
essers perform this task automatically, they may compromise the audio material
beyond the desired sibilant parts, since complete mixes may contain other high-
pitched sounds besides vocal sibilance that trigger the de-esser.

Deep convolutional neural networks (CNNs), on the other hand, have been
successfully tested for sound classification and may provide new opportunities
for the reliable identification of vocal sibilance in complete mixes [9,11]. This
may overcome the detection limitations of conventional de-essers and allow for
more precise automated de-essing in the mastering process.

In this context, data engineering steps and a CNN architecture for a de-esser
prototype named Cytrus are presented. Cytrus surpasses the detection accuracy
and precision of three prominent conventional de-esser plugins. In combination
with an equalizer, the de-essing performance of Cytrus is favored by a major
group of surveyed audio professionals, depending on the music genre.

The remainder of this paper is organized as follows. Conventional de-essing is
briefly introduced in Sect. 2. All data related steps are presented in Sect. 3. The
prototype architecture is presented in Sect. 4. Evaluation results are presented
and discussed in Sect. 5. A summary is given in Sect. 6.
c© Springer Nature Switzerland AG 2020
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2 Conventional De-Essing

Conventional de-essers use traditional signal processing techniques to detect
vocal sibilance in audio signals [7,8]. For this purpose, frequencies in the upper
frequency spectrum of a given audio signal are boosted or isolated and branched
off into a side chain.

Whenever a defined dynamic threshold in the side chain is exceeded, sibilance
is detected. In order to attenuate detected sibilance, the side chain signal is either
processed directly and mixed back into the source signal or the processing of the
source signal is controlled according to the side chain analysis. Processing usually
consists of dynamic compression or equalization.

Despite advanced de-essing techniques, such as in the form of adaptive fil-
ters described in [1], existing approaches offer no reliable distinction between
vocal sibilance and other sibilant sounds. Applying a conventional de-esser thus
affects any sibilant sound that exceeds the de-essing threshold, such as cymbals
or hi-hats, and compromises the clarity of the entire audio material. This is espe-
cially relevant in audio mastering, where complete mixes are processed [4]. Hence
Cytrus, as presented in the following, meets a demand for de-essers that reliably
attenuate vocal sibilance while leaving the remaining audio material unaltered.

3 Data Preparation

Training the CNN of the Cytrus prototype de-esser required a considerable
amount of data. The authors annotated 8296 occurrences of vocal sibilance in 51
Pop music mixes from professional mastering projects. The files were sampled at
44.1 kHz and 24 bit resolution. A few files contained solo vocals, e.g. the singer’s
performance, while the majority were complete mixes with a fully instrumented
playback and multiple vocal layers.

Binary classification was used to label vocal sibilance. Sibilance labelled as 1
was considered to require processing by the de-esser, while all the remaining
audio material was automatically labelled 0. The annotations were linked to their
exact sample positions in the respective source file, i.e. the labels refer to sample
regions, not FFT windows. The authors discussed edge cases to ensure consistent
labelling. The annotated sibilance regions ranged from 210 to 41584 samples in
length, roughly corresponding to a right-skewed Gaussian distribution.

The audio data was converted to the frequency domain via fast Fourier trans-
form. A FFT window size of 1024 samples was chosen to especially take short
sibilance peaks into account. The windows overlapped by one quarter of their
length and were modified by the von Hann window function. Zero-padding was
applied to each window to double the resolution of the calculated auto power
spectrum. The sample positions from the annotation process were converted to
window labels accordingly.

The unfrequent occurrence of vocal sibilance compared to non-sibilant parts
in the training data set required data augmentation. A duplicate of each posi-
tively labelled window was shifted by five frequency bins, as expressed in Eq. 1
with the binary shift matrix C:
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[
a1 a2 . . . a1024

] · C =
[
a1020 . . . a1024 a1 . . . a1019

]
. (1)

Another set of duplicates of all positively labelled windows was created by
shifting all frequency bins between the 200th and 750th index one index back-
wards. All other bins were replaced by uniformly distributed random noise. This
followed the idea of confronting the model with the same sibilant frequencies in a
different context of other surrounding frequencies. These two data augmentation
steps improved the validation accuracy by about ten percentage points, but may
become obsolete through more labelled sibilance.

The training data was optimized for the sigmoid activation function, as
shown in Eq. 2. The auto power spectrum windows were shifted and compressed
to center the spectrum at 0 and reduce the range of the most relevant sibilance
peaks in the identified interval [190, 350] to the interval [−2.22, 4.88].

[190.00, 350.00]
−240

shift
��

sigmoid(x)

��

[−50.00, 110.00]
· 2
45

compression
��

sigmoid(x)

��

[−2.22, 4.88]

sigmoid(x)

��

[1.00, 1.00] [0.00, 1.00] [0.10, 0.99]

(2)

The optimization for the sigmoid activation function led to a better model
performance than using more linear activation functions, such as relu. The final
interval of [−2.22, 4.88] also yielded better results than smaller intervals, such as
[−1.00, 1.00], within the more linear slope of the sigmoid function.

In a last step, the 1024 × 1 auto power spectrum vectors were reshaped to
32 × 32 matrices for the two-dimensional convolutional input layer of the network.
The reshaping filled the 32× 32 matrix with the consecutive entries of the 1024×1
vector in row-major order. This improved the validation accuracy by three more
percentage points.

The good performance of the network with these two-dimensional input
matrices is surprising, given a horizontal distance of 21.5 Hz, but a vertical
distance of approximately 688 Hz between frequency bins in the 32 × 32 matri-
ces. Comparable one-dimensional networks with 1024 × 1 input vectors and a
constant frequency bin distance of about 21.5 Hz, however, only yielded signifi-
cantly lower validation and test scores. This may be explained by vocal sibilance
characteristic spanning across a wide frequency range which may be easier to
detect with this frequency bin arrangement.

4 Prototype Architecture

Cytrus consists of a CNN for sibilance detection and a high shelf filter for
sibilance attenuation. A great variety of neural network architectures was
implemented and evaluated in Keras. The two-dimensional CNN schematically
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depicted in Eq. 3 yielded the best validation accuracy of about 95% after opti-
mization on the training data.
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Three two-dimensional convolutional layers with sigmoid and relu activations
are followed by one max pooling layer, a dropout layer and one dense layer before
the output layer with softmax activation. All convolutional layers have 64 filters
and a kernel size of 5. The max pooling layer uses a stride of 1.

Batch normalization is applied before each layer except the dropout layer.
Dropout and batch normalization were identified to prevent early overfitting
during training [2,10]. This also led to better predictions for music genres that
the network had not been trained on.

A high shelf filter was connected to the output of the CNN for sibilance atten-
uation. The windows that were classified as sibilant by the CNN were converted
to sample ranges. The frequency response of these ranges was then attenuated by
the high shelf filter by 6 dB from 7000 Hz upwards. As presented in Sect. 5, this
simple approach already produced promising listening results. However, more
sophisticated attenuation techniques can be expected to yield a more pleasing
frequency attenuation in future iterations of Cytrus.

5 Evaluation

The detection accuracy of Cytrus was compared to the FabFilter Pro-DS, the
DMG Audio Essence and the Logic Pro X de-esser plugins. In addition, a group
of audio professionals was asked to rank the performance of all four de-essers.

For the quantitative evaluation, a selection of short music snippets of different
music genres was assembled and annotated. About half of these music snippets
notably differ from the Pop music genre the CNN was trained on.

The three conventional de-esser plugins provide a monitoring mode which
only outputs the attenuated audio. This output was used for comparison to the
true annotated labels. The obtained comparison metrics are denoted in Table 1.

Cytrus detects true positives and true negatives more reliably than the other
de-essers with an accuracy of approximately 93%. From the standpoint of this
paper, however, precision is more relevant, since false positives degrade the qual-
ity of faultless audio material. In this regard, Cytrus surpasses the conventional
de-essers with a precision of about 61%. From these presented metrics, the set
goal of reducing the degradation of non-sibilant audio material can be considered
achieved. The recall score of Cytrus may be improved through a greater variety
of training material in the future.
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Table 1. Detection metrics in percentage. Cytrus achieves better accuracy, precision
and F-score, but a slightly lower recall score than the conventional de-essers.

Essence Pro-DS Logic Cytrus

Accuracy 75.56 75.60 84.22 92.84

Precision 22.59 24.67 27.64 60.54

Recall 67.76 79.67 43.55 65.00

F-score 33.88 37.67 33.81 62.67

For the subjective evaluation of Cytrus, a Hip Hop, Acoustic Folk, Funk and
Pop music snippet between twelve and 20 s were processed by the three con-
ventional de-essers and Cytrus. The processed snippets were randomly renamed
and sent to ten audio professionals who are familiar with the audio mastering
process, as well as the mailing list members of the Music DSP mailing list by
the Columbia University Computer Music Center.

An online questionnaire asked survey participants which processed version
of each snippet they favor. The participants were introduced to the two goals
of reliable vocal sibilance detection and no degradation of the remaining audio
material. The 16 responses to the questionnaire are denoted in Table 2.

Table 2. Survey results. The percentages show how often each reference file of the
respective de-esser was favored by survey participants, alongside the percentage of
participants who commented that they had no preference.

Essence Pro-DS Logic Cytrus Undecided

Hip Hop 18.75 18.75 6.25 37.50 18.75

Folk 25.00 18.75 0.00 43.75 12.50

Funk 0.00 31.25 25.00 12.50 31.25

Pop 37.50 6.25 12.50 18.75 25.00

Average 20.31 18.75 10.94 28.13 21.88

Despite its simple high shelf filter design, the Hip Hop and Folk snippet
from the medley processed by Cytrus were favored by about 38% and 44% of
the participants, respectively. Regarding the Funk and Pop snippet, Cytrus was
outperformed by the FabFilter Pro-DS and DMG Audio Essence plugin. In these
cases, however, the number of participants who had no preference were equal or
slightly below the favored option. This may indicate that the Funk and Pop
snippet alternatives were difficult to distinguish from one another.

Overall, the snippets processed by Cytrus were favored most often by about
28% of the participants. On average, about 22% of the participants had no
preference among each set of snippet alternatives, which indicates that very close
attention or personal experience might have been crucial for confident decisions
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and might not have applied to all participants. If undecided answers are not
considered, however, Cytrus reaches an average preference of about 36%.

6 Summary

A prototype architecture and data engineering approach for the neural net-
work driven detection of vocal sibilance was presented. The CNN architecture
surpasses the accuracy and precision of three conventional de-essers in the per-
formed test. The combination of the CNN and a simple filter for frequency atten-
uation convinced most surveyed audio professionals on average and was favored
by a substantial margin in two of four cases. The presented results suggest that
the use of neural networks is a promising approach to the reliable detection of
vocal sibilance in complete mixes. If trained with a larger variety of data and
combined with more advanced signal processing, future iterations of Cytrus are
likely to produce even more convincing results. In future versions, the sequential
nature of the audio signal may also be taken into account through the use of
other neural network architectures, such as long short-term memory.
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Abstract. Playlists have become a significant part of our listening expe-
rience because of digital cloud-based services such as Spotify, Pandora,
Apple Music, making playlist recommendation crucial to music services
today. With an aim towards playlist discovery and recommendation, we
leverage sequence-to-sequence modeling to learn a fixed-length repre-
sentation of playlists in an unsupervised manner. We evaluate our work
using a recommendation task, along with embedding-evaluation tasks, to
study the extent to which semantic characteristics such as genre, song-
order, etc. are captured by the playlist embeddings and how they can be
leveraged for music recommendation.

Keywords: Playlists · Sequence-to-sequence · Recommendation

1 Introduction

In this age of cloud-based music streaming services such as Spotify, Pandora,
Apple music among others, users have grown accustomed to extended music
listening experiences typically provided by playlists. As a result, playlist rec-
ommendation has been getting a lot of attention over the past couple of years.
However, the playlist recommendation task has so far been analogous to playlist
prediction [1] and continuation [2] rather than discovery. With billions of playlists
already out there, and thousands being added every day, playlist discovery forms
a significant part of the overall playlist recommendation pipeline. This work
focuses on finding and recommending these existing playlists. We take inspi-
ration from research in the domain of natural language processing to model
playlist embeddings the way sentences are embedded by leveraging the relation-
ship playlist:songs :: sentences:words, and model playlists using the sequence-to-
sequence [3] learning technique.

In this work, we learn playlist embeddings in an unsupervised manner. We
consider two main kinds of embedding models for this work: (a) Seq2seq models
and (b) Bag of Words (BoW) models. We evaluate the models using recommen-
dation and embedding-evaluation tasks, with the goal of analyzing the extent
of information encoded by different models, and assessing the suitability of our
approach for the purpose of recommendation. To the best of our knowledge, our

c© Springer Nature Switzerland AG 2020
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work is the first attempt at modeling and extensively analyzing compact playlist
representations for playlist recommendation. The demo, dataset, and slides for
our work can be accessed online at http://www.playlist2vec.com/.

2 Seq2Seq Learning

Here we briefly describe the RNN Encoder-Decoder framework, proposed first in
[4] and later improved in [3], upon which our model is based. Given a sequence of
input vectors x = {x1, x2, x3...xT }, the encoder reads this sequence and outputs
a vector c called the context vector. The context vector represents a compressed
version of the input sequence which is then fed to the decoder which predicts
tokens from the target sequence. One of the significant limitations of this app-
roach was that the model was not able to capture long term dependencies for
relatively longer sequences [5]. This problem was partially mitigated in [3] by
using LSTM units instead of vanilla RNN units and feeding the input sequence
in the reversed order to solve for lack of long-term dependency capture.

Bahdanau et al. [6] introduced the attention mechanism to solve this problem
which involved focussing on a specific portion of the input sequence when pre-
dicting the output at a particular time step. The attention mechanism ensures
the encoder doesn’t have to encode all the information into a single context
vector. In this setting, the context vector c is calculated using weighted sum of
hidden states hj :

ci =
Tx∑

j=1

αijhj (1)

where αij is calculated as follows:

αij =
exp (eij)∑Tx

k=1 exp (eik)
(2)

where eij = a (si−1, hj) and si−1 is the decoder state at time step i−1 and hj is
the encoder state at time step j. a(.) is the alignment model which scores how
well the output at time step i aligns with the input at time step j. The alignment
model a is a shallow feed forward neural network which is trained along with
the rest of the network.

3 Embedding Models

In this section, we present the embedding models that we consider for this work:

1. Bag-of-words Model (BoW): For baseline comparison we apply a vari-
ant [7] of BoW, which uses a weighted averaging scheme to get the sentence
embedding vectors followed by their modification using singular-value decom-
position (SVD). This method of generating sentence embeddings proves to be
a stronger baseline compared to traditional averaging.

http://www.playlist2vec.com/
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2. Base Seq2seq Encoder (base-seq2seq): We use a deep, unidirectional
RNN-based model with global attention for our base seq2seq model.

3. Bidirectional Seq2seq Encoder (bi-seq2seq): For this model, the
encoder generated hidden states ht, where t ∈ {1, . . . , n} are the concate-
nation of a forward RNN and a backward RNN that read the sentences in
two opposite directions. Global attention is used for this model as well.

4 Experimental Setup

4.1 Data: Source and Filtering

We created the corpus by downloading 1 million publicly available playlists from
Spotify using the Spotify developer API. As part of cleaning up the data before
training, we follow [8] in discarding the less frequent, and less relevant items
from our dataset. First, we remove the tracks occurring in less than 3 playlists,
thereby removing rare songs from the corpus. This is a common preprocessing
step in NLP-based works, which is equivalent of denoising the data by making
the association weight between the more popular words stronger through the
removal of their associations with less frequent words, as mentioned in [9]. All
duplicate tracks from playlists are also removed. Finally, playlists with lengths
in the range {10 . . . 5000} are retained and the rest are discarded. This resulted
in a total of 745,543 unique playlists, 2,470,756 unique tracks, and 2680 unique
genres, which we consider as training data.

4.2 Data Labeling: Genre Assignment

The songs in our dataset do not have genre labels, however artists do. Despite
there being a 1:1 mapping between an artist and their song, we do not use the
artist genre for the song because (1) an artist can have songs of different genres
and (2) since genres are subjective in their nature (rock vs. soft-rock vs. classic
rock), having a large number of genres for songs would result in an ambiguity
between the genres with respect to empirical evaluation (classification) and add
to the complexity of the problem. Hence, we aim to bring down the number of
genres such that they are relatively mutually disjoint.

To achieve this we train a word-2-vec model [10]1 on our corpus to get song
embeddings which capture the semantic characteristics (such as genre) of the
songs by virtue of their co-occurrence in the playlists. Separate models are
trained for embedding sizes k = {500, 750, 1000}. For each of the embedding
sizes, the resulting song embeddings are then clustered into 200 clusters2. For
each cluster, the artist genre is applied to the corresponding song and a genre-
frequency (count) dictionary is created. From this dictionary, the genre having

1 Word2vec details: algorithm: Skipgram, playlists length range: {30 . . . 3000}, min.
frequency threshold of the songs: 5, negative sampling: 5, window size: 5.

2 This number was chosen to get maximum feasible clusters while keeping the number
within limit which makes it feasible for annotating the data.
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a clear majority3 is assigned as the genre for all the songs in that cluster. All
the songs in a cluster with no clear genre majority are discarded from the cor-
pus. Based on the observed genre-distribution in the data, and as a result of
clustering sub-genres (such as soft-rock) into parent genres (such as rock), the
genres finally chosen for annotating the clusters are: Rock, Metal, Blues, Coun-
try, Classical, Electronic, Hip Hop, Reggae and Latin. To validate our approach,
we train a classifier on our dataset consisting of annotated song embeddings.
With training and test set kept separate at the time of training, we achieve a
94% test4 accuracy.

For playlist-genre annotation, only the playlists having annotations for all
the songs are considered, which leaves us with 339,998 playlists in total. This is
done to perform a confident evaluation of the playlist embeddings by not making
any assumptions about the genre information of songs that are not annotated.
Further, since we use hard-labels [11] for the annotation process to make the
evaluation task simpler, only those playlists are assigned genres for which more
than 70% of the songs have the same genre. These playlists are used for the
GDPred and the Recommendation evaluation tasks described in Sect. 5.

4.3 Training

We now outline our approach for estimating playlist embeddings using the fol-
lowing models:

1. BoW Model: We experiment with a weighted BoW model where the weight
assigned to each song w is a/(a + p(w)). Here, a is the control parameter
between [e−3,e−5

], and p(w) is the (estimated) song frequency.
2. Seq2seq-based Models: We train our seq2seq models as autoencoders

(where the target sequence is the same as the source sequence, a playlist)
where the encoders and decoders are 3-layer networks with hidden state
k ∈ {500, 750, 1000}. We experiment with both LSTM and GRU units, using
Adam and SGD optimizers. We also set the maximum gradient norm to 1 to
prevent exploding gradients.

5 Evaluation Tasks

In this section, we outline the criteria to evaluate our playlist embeddings for
information content and playlist recommendation. As per the definition of a
playlist [12] and the characteristics which make up for a good playlist [13], a
good playlist embedding should encode information about the genre of the songs
it contains, the order of songs, length of playlist (which directly shapes and
impacts the listening experience of the user), and songs themselves, among many
other traits. Based on that, we propose the following experiments for embedding
playlist evaluation:
3 This was a subjective decision. For example, a dictionary having {rock: 5, indie-rock:

3, blues: 2, soft-rock: 7} is assigned the genre rock.
4 Result achieved for embedding size 750. Comparable results achieved for other sizes.
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Fig. 1. Permute Classification Task Results: Seq2seq models outperform the BoW
model in capturing the order of songs in a playlist. Also, the performance of the seq2seq
models improve with the increasing proportion of permuted songs.

– Genre Diversity Prediction Task (GDPred-Task): This task measures
the extent to which the playlist embedding captures the homogeneity and
diversity of the songs (with regards to their genre) constituting it. Given a
playlist embedding, the goal of the classifier is to predict the number of genres
spanned by the songs in that playlist. The task is formulated as multi-class
classification, with 3 output classes being low diversity (0–3 genres), medium
diversity (3–6 genres) and high diversity (6–9 genres).

– Song-content Task (SC-Task): This closely follows the Word Content
(WC) task [14] which evaluates whether it is possible to recover information
about the original words in the sentence from the sentence embedding. We
pick 750 mid-frequency songs (the middle 750 songs in our corpus of songs
sorted by their occurrence count), and sample equal numbers of playlists
that contain one and only one of these songs. We formulate it as a 750-way
classification problem where the aim of the classifier is to predict which of
the 750 songs does a playlist contain, given the playlist embedding.

– Permute Classification Task: Through this task we aim to answer the
question: Can the proposed embedding models capture song order, and if they
can, to what extent? We split this task into two sub tasks: (i) Shuffle
Task, and (ii) Reversal task. In the Shuffle task, for each playlist in our
task-specific dataset5, we randomly select a fraction of all the songs in that
playlist and shuffle them to create a permuted playlist. We then train a binary

5 A list of 38168 playlists with lengths in the range {50, . . . , 100}.
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classifier to distinguish between the original and the permuted playlist embed-
ding. The Reversal task is similar to the Shuffle task except that the ran-
domly selected sub-sequence of songs is reversed.

– Recommendation Task: Recommendation being inherently subjective in
nature is best evaluated by having user-labeled data. However, in the absence
of such annotated datasets, we evaluate our proposed approach by measuring
the extent to which the playlist space created by the embedding models is rele-
vant, in terms of the similarity of genre and length information of closely-lying
playlists. We quantify the relevance of the embedding space by calculating the
precision recall scores in terms of genre and length labels, for a set of query
playlists selected from the embedding space.

We use the Approximate Nearest Neighbors Algorithm using Spotify
ANNOY library [15] to populate the tree structure with the genre-annotated
playlist embeddings mentioned in Sect. 4.2. A query playlist is randomly
selected and the search results are compared with the queried playlist in
terms of genre and length information. There are nine possible genre labels.
For comparing length, ten output classes (spanning the range {30 . . . 250})
corresponding to bins of size 20 are created. The final precision value is cal-
culated by taking an average of precision values for 100 queries for each recall
value.

6 Results

The results for the GDPred-Task and the SC-Task are outlined in Table 1. In
the GDPred-Task, the BoW model performs better than the seq2seq models
achieving 80% accuracy while seq2seq models achieve an accuracy of 76%.

Fig. 2. Recommendation Tasks Results. (a) Genre Recommendation (b) Length Rec-
ommendation. BoW model captures genre information better, whereas seq2seq models
capture length information better.
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For the SC-Task, the seq2seq models perform poorly compared to the BoW
model. However, our results for the seq2seq models closely match the results for
the same task in [14], where the authors cite the inability of the seq2seq models
to capture the content-based information due to the complexity of the way the
information is encoded.

As seen in Fig. 1, for the Permute Classification Task, seq2seq model is
able to distinguish correctly the permuted playlists from the original playlists as
the proportion of the permutation is increased6.

BoW model, on the other hand, fails the task as it is not able to capture
the order information, thus making the seq2seq models better for capturing the
song-order in the playlist.

The Recommendation task, as shown in Fig. 2a and b, captures some inter-
esting insights about the effectiveness of different models for capturing different
characteristics. Firstly, high precision values demonstrate the relevance of the
playlist embedding space which is the first and foremost expectation from a
recommendation system. Also, BoW models capture genre information7 better
than seq2seq models (Fig. 2a), while length information is better captured by
the seq2seq models (Fig. 2b), demonstrating the suitability of different models
for different tasks.

Table 1. Evaluation task accuracies for the embedding models for size 750.

GDPred-Task SC-Task

BoW 80.5 44.3

seq2seq 75.8 15.3

bi-seq2seq 76.2 21.7

7 Conclusions

We have presented a sequence-to-sequence based approach for learning playlist
embeddings, which can be used for tasks such as playlist comparison and rec-
ommendation. First we define the problem of learning a playlist-embedding and
describe how we formulate it as a seq2seq-based problem. We compare our pro-
posed model with the weighted BoW model on embedding evaluation tasks as
well as on a recommendation task. We show that our proposed approach is
effective in capturing the semantic properties of playlists, and suitable for rec-
ommendation purposes.

Acknowledgement. The authors thank ASU, Adidas, and the National Science
Foundation for their funding support. This material is partially based upon work sup-
ported by Adidas and by the National Science Foundation under Grant No. 1828010.

6 Results for bi-seq2seq model follow a similar trend.
7 Since BoW created playlist embeddings lie in the song space (as calculated using

arithmetic mean of song embeddings) where genre annotation happens, they perform
better.
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Abstract. The results of the seventh edition of the BioASQ challenge
are presented in this paper. The aim of the BioASQ challenge is the
promotion of systems and methodologies through the organization of a
challenge on the tasks of large-scale biomedical semantic indexing and
question answering. In total, 30 teams with more than 100 systems par-
ticipated in the challenge this year. As in previous years, the best systems
were able to outperform the strong baselines. This suggests that state-
of-the-art systems are continuously improving, pushing the frontier of
research.

Keywords: Semantic indexing · Question answering · Biomedical
knowledge

1 Introduction

The aim of this paper is twofold. First, we aim to give an overview of the data
issued during the BioASQ challenge in 2019. In addition, we aim to present
the systems that participated in the challenge and evaluate their performance.
To achieve these goals, we begin by giving a brief overview of the tasks, which
took place from February to May 2019, and the challenge’s data. Thereafter, we
provide an overview of the systems that participated in the challenge. Detailed
descriptions of some of the systems are given in the workshop proceedings. The
evaluation of the systems, which was carried out using state-of-the-art measures
or manual assessment, is the last focal point of this paper, with remarks regarding
the results of each task. The conclusions sum up this year’s challenge.

2 Overview of the Tasks

The challenge comprised two tasks: (1) a large-scale biomedical semantic index-
ing task (Task 7a) and (2) a biomedical question answering task (Task 7b). In
this section a brief description of the tasks is provided focusing on differences
from previous years and updated statistics about the corresponding datasets. A
complete overview of the tasks and the challenge is presented in [58].
c© Springer Nature Switzerland AG 2020
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Table 1. Statistics on test datasets for Task 7a.

Batch Articles Annotated articles Labels per article

1 7,358 7,194 11.67

7,166 7,021 12.95

11,019 10,831 13.04

5,566 5,482 12.32

6,729 6,353 12.96

Total 37,838 36,881 12.31

2 6,380 6,098 12.51

6,785 6,621 12.75

6,207 5,927 12.75

7,382 7,079 13.00

7,240 6,756 12.65

Total 33,994 32,481 12.27

3 6,266 5,835 12.58

11,455 10,386 12.86

4,750 3,947 12.67

7,338 5,021 12.70

6,920 4,554 12.63

Total 36,729 29,743 12.14

2.1 Large-Scale Semantic Indexing - 7a

In Task 7a the goal is to classify documents from the PubMed digital library
into concepts of the MeSH hierarchy. Here, new PubMed articles that are not
yet annotated by MEDLINE indexers are collected and used as test sets for
the evaluation of the participating systems. Similarly to task 5a and 6a, articles
from all journals were included in the test data sets of task 7a. As soon as the
annotations are available from the MEDLINE indexers, the performance of each
system is calculated using standard flat information retrieval measures, as well
as, hierarchical ones. As in previous years, an on-line and large-scale scenario was
provided, dividing the task into three independent batches of 5 weekly test sets
each. Participants had 21 h to provide their answers for each test set. Table 1
shows the number of articles in each test set of each batch of the challenge.
14,200,259 articles with 12.69 labels per article, on average, were provided as
training data to the participants.

2.2 Biomedical Semantic QA - 7b

The goal of Task 7b was to provide a large-scale question answering challenge
where the systems had to cope with all stages of a question answering task for
four types of biomedical questions: “yes/no”, “factoid”, “list” and “summary”
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questions [5]. As in previous years, the task comprised two phases: In phase
A, BioASQ released 100 questions and participants were asked to respond with
relevant elements from specific resources, including relevant MEDLINE articles,
relevant snippets extracted from the articles, relevant concepts and relevant RDF
triples. In phase B, the released questions were enhanced with relevant articles
and snippets selected manually and the participants had to respond with exact
answers, as well as with summaries in natural language (dubbed ideal answers).
The task was split into five independent batches and the two phases for each
batch were run with a time gap of 24 h. In each phase, the participants received
100 questions and had 24 h to submit their answers. Table 2 presents the statis-
tics of the training and test data provided to the participants. The evaluation
included five test batches.

Table 2. Statistics on the training and test datasets of Task 7b. All the numbers for
the documents and snippets refer to averages.

Batch Size Documents Snippets

Train 2,747 11.14 13.91

Test 1 100 3.07 3.93

Test 2 100 2.64 3.22

Test 3 100 3.08 4.05

Test 4 100 2.78 3.71

Test 5 100 2.39 2.62

Total 3,247 9.85 12.31

3 Overview of Participants

3.1 Task 7a

For this task, 12 teams participated and results from 30 different systems were
submitted. In the following paragraphs we describe those systems for which a
description was available, stressing their key characteristics. An overview of the
systems and their approaches can be seen in Table 3.

The National Library of Medicine (NLM) team, in its “ceb” systems [48],
adopts an end-to-end deep learning architecture with Convolutional Neural Net-
works (CNN) [27] to improve the results of the Medical Text Indexer (MTI) [35].
In particular, they combine text embeddings with journal information. They also
consider information about the years of publication and indexing, to capture
concept drift and variations in the MeSH vocabulary respectively. They also
experiment with an ensemble of independently trained DL models.

The Fudan University team builds upon their previous “DeepMeSH ” sys-
tems, which are based on document to vector (d2v) and tf-idf feature embed-
dings [43], the MESHLabeler system [28] and learning to rank (LTR). This year,
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Table 3. Systems and approaches for Task 7a. Systems for which no description was
available at the time of writing are omitted.

System Approach

ceb CNN, embeddings, ensembles

DeepMesh d2v, tf-idf, MESHlabeler, attention scheme, PLT

Iria bigrams, Luchene Index, k-NN, ensembles, UIMA
ConceptMapper

MeSHProbeNet-P Bidirectional RNN (GRU), attention scheme,
encoder-decoder architecture

Semantic NoSQL KE UIMA ConceptMapper, par2vec, DeepLearning4ja

ahttps://deeplearning4j.org/ Accessed June 2019

they incorporate AttentionXML [66], a deep-learning-based extreme multi-label
text classification model, in the “DeepMeSH ” framework. In particular, Atten-
tionXML combines a multi-label attention mechanism, to capture label-specific
information, with a shallow and wide probabilistic label tree (PLT) [18], for
improved efficiency.

The “Iria” systems [52] are based on the same techniques used by their
systems for the previous version of the challenge which are summarized in Table 3
and described in the corresponding challenge overview [38].

The “MeSHProbeNet-P” systems are upgraded versions of MeSH-
ProbeNet [61], which participated in BioASQ6 with the name “xgx”. Their app-
roach is based on an end-to-end deep learning model with an encoder-decoder
architecture. The encoder consists of a recurrent neural network with multiple
attentive MeSH probes to extract different aspects of biomedical knowledge from
each input article. In “MeSHProbeNet-P” the attentive MeSH probes are also
personalized for each biomedical article, based on the domain of each article as
expressed by the journal where it has been published.

Finally, the “Semantic NoSQL KE” system variants [37] were developed
extending previous year’s “SNOKE” systems. The systems are based on the ZB
MED Knowledge Environment [36], utilizing the Snowball Stemmer [1] and the
UIMA [56] ConceptMapper to find matches between MeSH terms and words
in the title and abstract of each target document, adopting different matching
strategies. Paragraph Vectors [24] trained on the BioASQ corpus are used to
rank and filter all the MeSH headings suggested by the UIMA-based framework
for each document.

Similarly to the previous year, two systems developed by NLM to assist
the indexers in the annotation of MEDLINE articles, served as baselines for
the semantic indexing task of the challenge. MTI [35] with some enchantments
introduced in [67] and an extension of it, incorporating features of the winning
system of the first BioASQ challenge [59].

https://deeplearning4j.org/
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3.2 Task 7b

The question answering task was tackled by 73 different systems, developed by
18 teams. In the first phase, which concerns the retrieval of information required
to answer a question, 6 teams with 23 systems participated. In the second phase,
where teams are requested to submit exact and ideal answers, 13 teams with 52
different systems participated. An overview of the technologies employed by each
team can be seen in Table 4.

Table 4. Systems and approaches for Task7b. Systems for which no information was
available at the time of writing are omitted.

Systems Phase Approach

AUTH A, B MetaMap, BeCAS, Lucene Index, ElasticSearch,
Wordnet, ELMo, SentiWordnet, w2vec, BiLSTM

AUEB A BM25, w2vec, BERT, DL (BCNN, PACRR,
PDRMM)

MindLab A ElasticSearch, BM25, QuickUMLS, w2vec, WMD,
DL (CNN)

sys A Word and Sentence embeddings, Pseudo Relevance
Feedback, BM25, LSI

BJUTNLP B SQUAD, GloVe, BiLSTM, Pointer Network

BIOASQ VK B ELMo, DMN attention mechanisms, NLTK-VADER

DMIS B BioBERT, SQUAD, transfer learning

google B BERT, CoQA, Natural Questions

L2PS B SQUAD, Quasar-T, DRQA (RNN, LSTM), PSPR
(LSTM), BioBERT

LabZhu B PubTator, Stanford POS tool, SPARQL

MQU B w2vec, tf-idf, DL (LSTM), Reinforcement Learning

UNCC B BioBERT, SQUAD, Stanford POS tool, AllenNLP
entailment

unipi-quokka-QA B ELMo, ELMo-PubMed, BERT, BioBERT, SciSpacy

The “AUTH ” team participated in both phases of Task 7B, with focus on
phase B. For the document retrieval task, they experimented with approaches
based on the BioASQ search services and ElasticSearch, querying with the con-
junction of words in each question for the top 10 documents. In Phase B, for
factoid and list questions they used updated versions of their BioASQ6 sys-
tem [11], based on word embeddings, MetaMap [3], BeCAS [40] and WordNet.
For yes/no questions they experiment with different deep learning methods,
based on ELMo embeddings [46], SentiWordnet [12] and similarity matrices to
represent the question/answer pairs and use them as input for different BiLSTM
architectures [11].
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The “AUEB” team participated in Phase A on document and snippet
retrieval tasks yielding great results. They built upon their BioASQ6 document
retrieval systems [6,29], which they modify to yield a relevance score for each
sentence and experiment with BERT and PACRR [30] for this task. For snippet
retrieval, they utilize a BCNN [64] model and a model based on POSIT-DRMM
(PDRMM) [30]. They also introduce JPDRMM, a novel deep learning approach
for joint document and snippet ranking, based on PDRMM [42].

Another approach based on deep learning methodologies for Phase A, focus-
ing again on document and snippet retrieval, was proposed by the “MindLaB”
team from the National University of Colombia [47]. For the document retrieval
they use the BM25 model [53] and ElasticSearch [15] for efficiency, along with a
Word Mover’s Distance [22] based re-ranking scheme. For snippet retrieval, as in
the previous approach, they utilized a very large collection of PubMed articles
to train a CNN with similarity matrices of question-answer pairs. More specif-
ically, they employ the BioNLPLab1 w2vec embeddings that take into account
the Part of Speech of each word. Also, they deploy the QuickUMLS [55] tool to
create a cui2vec embedding for each snippet.

The “ sys” systems also participated in Phase A of Task 7B. These systems
filter the queries, using stop-word lists and regular expressions, and expand them
using word embeddings and pseudo-relevance feedback. Relevant documents are
retrieved, utilizing Query Likelihood with bigrams and BM25, and reranked,
based on Latent Semantic Indexing (LSI) and document vectors. In particular,
document vectors based on averaging sentence embeddings are adopted. Finally,
different lists of documents are merged to form the final result, considering the
position of the documents in each list.

In phase B, most systems focused on using embeddings and deep learning
methodologies to tackle the tasks. For example the “BJUTNLP” system uti-
lizes the SQUAD Dataset for pre-training. The system uses both GloVe embed-
dings [45] (fine tuned during training) and character-level word embeddings
(through a 1-dimensional CNN) as input to a BiLSTM model and for each
question a Pointer Network [54] is finally responsible for pinpointing the exact
start and end position of the answer in the relevant snippets.

The “BIOASQ VK” systems were based on BioBERT [25], but with novel
modifications to allow the model to cope with yes/no, factoid and list ques-
tions [41]. They pre-trained the model on the SQUAD dataset (for factoid and
list questions) and SQUAD2 (for yes/no questions) to leverage the small size of
the BioASQ dataset and by exploiting different pre-/post-processing techniques
they obtained great results on all subtasks.

The “DMIS” systems focused on the importance of the information (words,
phrases and sentences) for a given question [65]. To this end, sentence level
embeddings based on ELMo embeddings [46] and attention mechanisms facili-
tated by Dynamic Memory Networks (DMN) [21] are deployed. Moreover, senti-
ment analysis is performed on yes/no questions to guide the classification (pos-
itive corresponds to yes) using the NLTK-VADER [17] tool.

1 http://bio.nlplab.org Accessed June 2019.

http://bio.nlplab.org
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The “google” systems [16], focus on factoid questions and are based on BERT
based models [9], specifically the one in [2] trained on the Natural Questions [23]
dataset, while also utilizing the CoQA [50] and the BioASQ datasets. They
experiment with different input to the models, including the abstracts of rel-
evant articles, the provided gold snippets and predicted relevant snippets. In
particular, they focus on error propagation in end-to-end information retrieval
and question answering systems, reaching the interesting conclusion that the
information retrieval part is a bottleneck for such end-to-end QA systems.

Interesting results come from the “L2PS” team where they quantify the
importance of pre-training and fine-tuning models for question answering and
view the task under different regimes, namely Reading Comprehension (RC)
and Open QA [19]. For the RC regime they use DRQA’s document reader [7]
while for the Open QA they utilize the PSPR model [26]. They experiment with
different datasets (SQUAD [49] for RC and Quasar-T [10] for Open QA) for
fine-tuning the models, as well as BioBert [25] embeddings to gain insights on
the effect of the context length in this task.

The “LabZhu” [44] systems improved upon their systems from BioASQ6, with
focus on exact answer generation. In particular, for factoid and list questions
they developed two distinct approaches. One based on traditional information
retrieval approaches, involving candidate answer generation and ranking, and one
Knowledge-Graph based approach. In the latter approach, the answer type and
the topic entity of the question are predicted and a SPARQL query is generated
based on them and used to retrieve some results from the Knowledge Graph.
Finally, the results of the two approaches are combined for the final answer of
the question.

The Macquarie University (“MQU ”) team focused on ideal answers and
approached the task under a classification approach for snippet relevance [33].
Extending their previous work [31,32] the snippets are marked as summary
relevant or not, utilizing w2vec embeddings and tf-idf vectors of the question-
sentence pairs, showcasing that a classification scheme is more appropriate than a
regression one. Also, based on their previous work [34], they conduct experiments
using reinforcement learning towards the ROUGE score of the ideal answers and
a correlation analysis between various ROUGE metrics and the BioASQ human
evaluation scores, observing poor correlation of the ROUGE-Recall score with
human evaluation.

The “UNCC” team focused on factoid, list and yes/no questions [57]. Their
work is based on the BioBERT [25] embeddings fine-tuned on previous years of
BioASQ. They also utilize the SQUAD dataset for factoid answers and incorpo-
rated the Lexical Answer Type (LAT) [13] and POS-tags along with hand made
rules to address specific errors of the system. Furthermore, they incorporated the
entailment of the candidate sentences in yes/no questions using the AllenNLP
library [14].

Finally, the “unipi-quokka-QA” system tackled all the different question types
in phase B [51]. Their work focused on experimenting with different Transformer
models and embeddings, namely: ELMo, ELMo-Pumbed, BERT and BioBERT.
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They used different strategies depending on the question type, such as ensembles
on yes/no questions, biomedical named entity extraction (using SciSpacy [39])
on list questions and different pre-/post-processing procedures.

In this challenge too, the open source OAQA system proposed by [63] served
as baseline for phase B. The system which achieved among the highest per-
formances in previous versions of the challenge remains a strong baseline for
the exact answer generation task. The system is developed based on the UIMA
framework. ClearNLP is employed for question and snippet parsing. MetaMap,
TmTool [60], C-Value and LingPipe [4] are used for concept identification and
UMLS Terminology Services (UTS) for concept retrieval. The final steps include
identification of concept, document and snippet relevance, based on classifier
components and scoring, ranking and reranking techniques.

4 Results

4.1 Task 7a

Each of the three batches of Task 7a were evaluated independently. The classi-
fication performance of the systems were measured using flat and hierarchical
evaluation measures [5]. The micro F-measure (MiF) and the Lowest Common
Ancestor F-measure (LCA-F) were used to choose the winners for each batch [20].

According to [8] the appropriate way to compare multiple classification sys-
tems over multiple datasets is based on their average rank across all the datasets.
On each dataset the system with the best performance gets rank 1.0, the second
best rank 2.0 and so on. In case two or more systems tie, they all receive the
average rank. Table 5 presents the average rank (according to MiF and LCA-F)
of each system over all the test sets for the corresponding batches. Note, that the
average ranks are calculated for the 4 best results of each system in the batch
according to the rules of the challenge.

The results in Task 7a show that in all test batches and for both flat and
hierarchical measures, some systems outperform the strong baselines. In par-
ticular, The “MeSHProbeNet-P” systems achieve the best performance in the
first batch, outperformed by the “DeepMeSH ” systems in the last two batches.
More detailed results can be found in the online results page2. Comparison of
these results with corresponding system results from previous years reveals the
improvement of both the baseline and the top performing systems through the
years of the competition as shown in Fig. 1.

4.2 Task 7b

Phase A: For phase A and for each of the four types of annotations: documents,
concepts, snippets and RDF triples, we rank the systems according to the Mean
Average Precision (MAP) measure. The final ranking for each batch is calculated

2 http://participants-area.bioasq.org/results/7a/.

http://participants-area.bioasq.org/results/7a/
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Table 5. Average system ranks across the batches of the Task 7a. A hyphenation
symbol (-) is used whenever the system participated in fewer than 4 tests in the batch.
Systems with fewer than 4 participations in all batches are omitted.

System Batch 1 Batch 2 Batch 3

MiF LCA-F MiF LCA-F MiF LCA-F

DeepMeSH5 - - 1,00 1,00 1 1

DeepMeSH4 - - 9,50 9,50 2,25 1,75

DeepMeSH3 8,25 8,50 3,50 5,00 2,5 2,75

DeepMeSH1 5,00 6,25 2,00 2,63 3,75 4,13

DeepMeSH2 7,25 7,25 3,50 4,50 4,75 4,38

MeSHProbeNet-P2 2,63 2,63 4,63 5,88 6,5 8,25

MeSHProbeNet-P1 3,25 2,13 6,38 4,25 6,88 6,5

MeSHProbeNet-P3 5,00 4,63 8,38 7,25 7,5 7,38

MeSHProbeNet-P 2,38 3,25 7,00 4,38 8,13 7,75

MeSHProbeNet-P0 1,50 1,25 6,25 5,63 8,75 7,88

ceb 1 ensemble - - - - 11 11

Default MTI 9,75 8,75 12,00 11,75 12,25 12,25

ceb1 8,75 9,25 11,00 11,25 12,25 13,5

MTI First Line Index 11,50 11,25 13,00 12,50 13,25 12

iria-mix - - 14,00 14,00 14,5 14,75

Semantic NoSQL KE 2 - - - - 16 16

Semantic NoSQL KE 1 - - - - 17 17,75

Fig. 1. The micro f-measure achieved by systems across different years of the BioASQ
challenge. For each test set the micro F-measure is presented for the best performing
system (Top) and the MTI, as well as the average micro f-measure of all the partici-
pating systems (Avg).
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Table 6. Results for snippet retrieval in batch 4 of phase A of Task 7b.

System Mean
precision

Mean
recall

Mean F-
measure

MAP GMAP

aueb-nlp-2 0.2060 0.4039 0.2365 0.2114 0.0075

aueb-nlp-1 0.2124 0.4083 0.2440 0.2086 0.0065

aueb-nlp-5 0.2157 0.4235 0.2467 0.1821 0.0098

MindLab QA Reloaded 0.1587 0.2760 0.1723 0.1527 0.0013

Deep ML methods for 0.1331 0.2692 0.1589 0.1234 0.0009

MindLab Red Lions++ 0.1371 0.2538 0.1535 0.1187 0.0014

aueb-nlp-3 0.1488 0.3427 0.1779 0.1149 0.0053

MindLab QA System ++ 0.1288 0.2049 0.1364 0.1136 0.0010

aueb-nlp-4 0.1520 0.3237 0.1791 0.1116 0.0056

MindLab QA System 0.1297 0.2536 0.1478 0.1094 0.0016

lh sys1 0.0399 0.0810 0.0478 0.0178 0.0001

lh sys3 0.0233 0.0437 0.0266 0.0151 0.0001

lh sys5 0.0233 0.0437 0.0266 0.0151 0.0001

lh sys4 0.0233 0.0437 0.0266 0.0148 0.0001

lh sys2 0.0182 0.0281 0.0193 0.0051 0.0001

Table 7. Results for document retrieval in batch 3 of phase A of Task 7b. Only the
top-10 systems are presented.

System Mean
precision

Mean
recall

Mean F-
measure

MAP GMAP

aueb-nlp-4 0.1750 0.6266 0.2471 0.1199 0.0151

aueb-nlp-2 0.1740 0.6139 0.2449 0.1121 0.0156

aueb-nlp-5 0.3599 0.6128 0.4034 0.1102 0.0164

aueb-nlp-1 0.1700 0.5912 0.2380 0.1041 0.0118

auth-qa-1 0.2675 0.3896 0.2894 0.1033 0.0018

aueb-nlp-3 0.1600 0.5806 0.2266 0.0986 0.0104

lh sys4 0.1420 0.5490 0.2081 0.0920 0.0069

Ir sys1 0.1410 0.5365 0.2059 0.0907 0.0059

lh sys1 0.1420 0.5449 0.2076 0.0881 0.0063

MindLab QA Reloaded 0.1330 0.5288 0.1950 0.0863 0.0062

as the average of the individual rankings in the different categories. In Tables 6
and 7 some indicative results from batches 3 and 4 are presented. Full results
are available in the online results page of Task 7b, phase A3. These results are

3 http://participants-area.bioasq.org/results/7b/phaseA/.

http://participants-area.bioasq.org/results/7b/phaseA/
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Table 8. Results for batch 5 for exact answers in phase B of Task 7b. Only the top-10
systems are presented along with the BioASQ baseline.

System Yes/No Factoid List

Acc. F1 Str. Acc. Len. Acc. MRR Prec. Rec. F1

BioBERT-DMIS-3 0.8286 0.8250 0.2857 0.4286 0.3452 0.5653 0.4131 0.4619

BioBERT-DMIS 0.8000 0.7822 0.2571 0.4571 0.3224 0.5236 0.3714 0.4202

unipi-quokka-QA-5 0.8000 0.7939 0.0857 0.1714 0.1152 0.1713 0.5873 0.2537

BioBERT-DMIS-2 0.7429 0.7200 0.2571 0.4571 0.3271 0.5486 0.3992 0.4468

BioBERT-DMIS-4 0.7429 0.7351 0.2286 0.4571 0.3238 0.5069 0.3575 0.4051

google-gold-input-ab 0.7143 0.6941 0.2286 0.2857 0.2571 0.1774 0.4175 0.2415

unipi-quokka-QA-4 0.7143 0.6941 0.0857 0.1714 0.1152 0.1713 0.5873 0.2537

unipi-quokka-QA-3 0.6857 0.6578 0.0857 0.1714 0.1152 0.1713 0.5873 0.2537

google-gold-input 0.6571 0.6023 0.2857 0.3714 0.3167 0.2159 0.4452 0.2824

DMIS 0.6571 0.6023 0.2857 0.5143 0.3638 0.5050 0.3714 0.4124

BioASQ Baseline 0.4857 0.4643 0.0571 0.1429 0.0867 0.2127 0.3619 0.2573

preliminary. The final results for Task 7b, phase A will be available after the
manual assessment of the system responses.

Phase B: In phase B of Task 7b the systems were asked to produce exact and
ideal answers. For ideal answers, the systems will eventually be ranked according
to manual evaluation by the BioASQ experts [5]. Regarding exact answers4, the
systems were ranked according to accuracy, F1 score on prediction of yes answer,
F1 on prediction of no and macro-averaged F1 score for the yes/no questions,
mean reciprocal rank (MRR) for the factoids and mean F-measure for the list
questions. Table 8 shows the results for exact answers for the last batch of Task
7b. These results are preliminary. The full results of phase B of Task 7b are
available online5. The final results for Task 7b, phase B will be available after
the manual assessment of the system responses.

The results presented in Fig. 2 show that this year the performance of systems
in the yes/no questions, has clearly improved. In batch 5 for example, presented
in Table 8, some systems outperformed the strong baseline based on previous
versions of the OAQA system, with the top system achieving almost double the
score of the baseline. Some improvement is also observed in the performance of
the top systems for factoid and list questions in the preliminary results. However,
there is even more room for improvement in these types of question as can be
seen in Fig. 2.

4 For summary questions, no exact answers are required.
5 http://participants-area.bioasq.org/results/7b/phaseB/.

http://participants-area.bioasq.org/results/7b/phaseB/
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Fig. 2. The performance achieved by systems in exact answer generation part of Task
B, Phase B, across different years of the BioASQ challenge. For each test set the
performance of the best performing system (Top) is presented based on the official
evaluation measures. Since BioASQ6 the macro-averaged F1 score (macro F1) is the
official measure for Yes/No questions, but accuracy (Acc), the former official measure,
is also presented. The results for BioASQ7 are preliminary. The final results for Task
7b, phase B will be available after the manual assessment of the system responses.

5 Conclusions

In this paper, an overview of the seventh BioASQ challenge is presented. The chal-
lenge consisted of two tasks: semantic indexing and question answering. Overall,
as in previous years, the best systems were able to outperform the strong base-
lines provided by the organizers. This suggests that advances over the state of the
art were achieved through the BioASQ challenge but also that the benchmark in
itself is challenging. Moreover, the shift towards systems that incorporate ideas
based on deep learning models observed in the previous year, is even more clear.
Novel ideas have been tested and state-of-the-art deep learningmethodologies have
been adapted to biomedical question answering with great results. Specifically,
the breakthroughs in different NLP tasks using clever techniques with the advent
of new language-models, such as BERT and gpt-2, gave birth to new approaches
that significantly boost the performance of the systems. In the future, we expect
novel methodologies, such as the newly proposed XLNet [62], to further cultivate
research in the biomedical information systems field. Consequently, we believe that
the challenge is successfully pushing the research frontier of this domain. In future
editions of the challenge, we aim to provide even more benchmark data derived
from a community-driven acquisition process.
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Abstract. MeSH annotations are attached to the Medline abstracts to
improve retrieval and this service is provided from the curators at the
National Library of Medicine (NLM). Efforts to automatically assign
such headings to Medline abstracts have proven difficult, on the other
side, such approaches would increase throughput and efficiency. Trained
solutions, i.e. machine learning solutions, achieve promising results, how-
ever these advancements do not fully explain, which features from the
text would suit best the identification of MeSH Headings from the
abstracts. This manuscript describes new approaches for the identifi-
cation of contextual features for automatic MeSH annotations, which
is a Multi-Label Classification (BioASQ Task6a): more specifically, dif-
ferent approaches for the identification of compound terms have been
tested and evaluated. The described system has then been extended to
better rank selected labels and has been tested in the BioASQ Task7a
challenge. The tests show that our recall measures (see Task6a) have
improved and in the second challenge, both the performance for preci-
sion and recall were boosted. Our work improves our understanding how
contextual features from the text help reduce the performance gap given
between purely trained solutions and feature-based solutions (possibly
including trained solutions). In addition, we have to point out that the
lexical features given from the MeSH thesaurus come with a significant
and high discrepancy towards the actual annotations of MeSH Headings
attributed by human curators, which also hinders improvements to the
automatic annotation of Medline abstracts with MeSH Headings.

Keywords: Paragraph Vectors · Named Entity Recognition ·
Semantic Retrieval · UIMA · DeepLearning4j · BioASQ

1 Introduction

The scientific biomedical literature is being collected and archived by the
National Library of Medicine (NLM) over the past 150 years. Documents have
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manually been annotated with Medical Subject Headings1 in order to search
and access the documents efficiently. The process of manually assigning indexing
terms is very time consuming and thus tedious work. Furthermore, the biomed-
ical literature in PubMed has grown from 12 Million citations in 2004 [4] to 29
Million citations in 20192 having a growth rate of 4% per year [23] leading to
high pressure in delivering the MeSH annotations.

The growth in published biomedical literature as well as the difficulties in
manually assigning indexing terms shows the need for routines that automati-
cally annotate and index the scientific articles in order to use metadata terms
for information retrieval purposes. At best such supporting automatic solutions
should also contribute clues to the curators about the selection of most rele-
vant and best supported terms throughout all the stages of their work. Such
clues could be difficult to derive, e.g., from the scientific text, since the MeSH
Headings cover mostly compound terms, which – at best – have complex repre-
sentations in the text.

The Medical Text Indexer (MTI) has been developed by the NLM to provide
an automated indexing system for the Medical Subject Headings to the curators.
From 2000 onward, the NLM indexing initiative has been initiated, in particular
due to the availability of the electronic versions of the scientific articles since
the mid 90s [2]. However, the newly introduced automated indexing systems
had to be evaluated to compare and improve the performance against bench-
marks. The ongoing developments of the MTI then introduced machine learning
components that have been tested across different document types, e.g., clinical
health records that require different indexing approaches than merely assign-
ment of MeSH Headings. The performance of the MTI on clinical health records
has been evaluated in 2007 for the assignment of ICD-9 codes with promising
results [3].

Solutions for the automated assignment of MeSH Headings have barely ever
been evaluated, neither for their performance nor for their reproducibility. Con-
ceptually, the evaluation of six different MeSH taggers showed that the k-nearest
neighbour (k-NN) approach outperforms all other solutions [33]. Apart from the
NLM’s critical response with regards to reproducibility, NLM still emphasizes
“that current challenges in MeSH indexing include an increase of the scope of
the task” [26].

The demands for such evaluation has motivated the NLM improving MTI
as well as organizing large-scale evaluation challenges. Now MTI incorporates
k-NN clustering showing a boost in the performance of the system [15], and in
2012, the BioASQ challenge was initiated (funding horizon of 5 years) leading
to the evaluation of systems for large-scale biomedical indexing and question
answering [34].

1 https://www.ncbi.nlm.nih.gov/mesh. Accessed May 2019.
2 https://www.ncbi.nlm.nih.gov/pubmed/. Accessed May 2019.
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2 Related Work

In 2013, the first BioASQ challenge was comprising two tasks, one on large-
scale semantic indexing for the automated assignment of MeSH Headings to
unlabeled Medline citations, the other one on question answering for scientific
research questions in the biomedical domain [27]. In the first BioASQ challenge,
11 teams participated in Task A with 40 systems. In Task B, three different
teams participated with 11 systems.

In Task A, there were two baselines of Task A for large-scale semantic index-
ing, the first one was an unsupervised machine learning approach, the second one
was based on NLM’s MTI. The evaluation was conducted using the metrics Micro
F-measure (MiF) and Lowest Common Ancestor F-measure (LCA-F). The best-
performing system, even outperforming the MTI baseline, called AUTH [36], is
based on a binary Support Vector Machine (SVM) predicting N top labels for
each article with a certain confidence score to rank the predicted labels.

In Task B, two baselines were created as the top 50 and top 100 predictions
of an ensemble system that combines predictions of factoid and list questions,
yes/no questions, and summary questions. The evaluation metric was the Mean
Average Precision (MAP). The Wishart [10] system was able to outperform the
two baselines. It uses the PolySearch3 tool for query expansion and the retrieval
of candidate documents from which either entities or sentences are extracted as
answers for the respective questions.

The BioASQ challenge was then executed every year until today bringing
about a variety of approaches in both tasks A and B [5,8,19,25]. In Task A,
MeSHLabeler performed best the challenges 2014, 2015 and 2016 [21] using an
ensemble approach of k-NN, the MTI itself as well as further MeSH classification
solutions.

In recent years, term vector space representations have been introduced
exceeding classical bag-of-words approaches, since they are able to capture the
context of words in the text and to prioritize words in the vector representation
according to given similarity scores [24,30]. In addition, the word vectoriza-
tion allows for better use of sentence and paragraph representations [20] in the
machine learning approaches, e.g., deep learning. The organizers of the BioASQ
challenge also published a word2vec representation of PubMed articles [28] for
participants to improve their systems.

In 2017, the first deep learning based approach called DeepMeSH partici-
pated in the challenge of Task A and performed best [29]. In 2018, DeepMeSH
outperformed others in 2 out of 3 batches while the third batch was won by a set
of systems called “xgx” that is potentially associated to the AttentionMeSH sys-
tem [16]. This system uses end-to-end DeepLearning incorporating an attention
layer to emphasize predictions towards commonly used MeSH labels.

Further systems participated in the Task A employing named entity recog-
nition with lexical features such as a dictionary, and using Paragraph Vectors
also [22]. It has been shown that machine learning-based approaches based on

3 http://wishart.biology.ualberta.ca/polysearch/.
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k-NN and Paragraph Vectors can be used to boost the performance in the
BioASQ challenge [17]. This paper describes the participation of a system for
Multi-Label Classification based on named entity recognition with lexical fea-
tures that incorporate Label Ranking derived from Paragraph Vectors in order
to achieve a conjoint system for Multi-Label Ranking.

3 Methodology

Task A of the BioASQ challenge is a Multi-Label Classification task, which in
addition can be subdivided into the two sub-tasks of Multi-Label Classification
and Label Ranking [35]. The resulting classification of multiple labels with an
assigned confidence score for each label is a Multi-Label Ranking [9].

Initially, a subset of MeSH Headings is attributed to each document in the
test set of Medline citations. Then, each MeSH Heading combined with its con-
fidence score representing the probability for the MeSH Heading being correctly
assigned to the respective Medline citation. The resulting set of MeSH Headings
is filtered according to the minimum confidence score.

The two sub-tasks, i.e. Multi-Label Classification and Label Ranking for a
Multi-Label Ranking, are given in the system architecture of this paper. The first
component creates an initial set of MeSH Headings for each document in the test
set for the Medline citations. Then, all MeSH Headings receive a confidence score
to generate the scored MeSH Headings.

The first component for the task of Multi-Label Classification is described
in Sect. 3.1 and the second component for the Label Ranking is described in
Sect. 3.2. The combined system for the Multi-Label Ranking is described in
Sect. 3.3.

3.1 Multi-label Classification

The Multi-Label Classification task is based on lexical features for the named
entity recognition solution that has been developed within the Unstructured
Information Management Architecture (UIMA)4 [11–14,31]. In the framework,
a reader for the BioASQ JSON format processes the document stream through
the Common Analysis System (CAS) of the pipeline. Tokenization is conducted
using an Offset Tokenizer that splits tokens at their whitespaces and punctu-
ations. Stemming of the tokens is conducted using the Snowball Stemmer [1].
The stemmed tokens are analyzed using the analysis engine ConceptMapper [32]
that uses a dictionary to annotate matching synonyms in the text with offset
information onto concept identifiers. In the last part of the UIMA-pipeline, the
documents with their annotated MeSH Headings are written with a CAS-Writer
into the BioASQ submission format. The implemented workflow is shown in
Fig. 1.

The lexical features for the ConceptMapper are provided as a dictionary that
is created from the current MeSH (version 2019). In the dictionary, concepts are
4 https://uima.apache.org/. Accessed May 2019.
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Fig. 1. The UIMA-based workflow with different combinations of configurations for
the ConceptMapper to produce the result set of MeSH Headings for Medline citations.

created for each MeSH Heading and synonyms are added from the MeSH Entry
Terms for the MeSH Heading. Further synonyms are created with the Snowball
Stemmer by stemming the concept name as well as each of the synonyms. The
resulting dictionary for the ConceptMapper contains 29,351 different concepts
with 251,463 synonyms.

The analysis engine ConceptMapper [32] provides various dictionary look-up
solutions that can match against different sequences of tokens. Before applying
a matching strategy, stop words and punctuation are removed. Then, one of the
three lookup strategies are applied with a flag for allowing partial matches or
allowing only complete matches. The different look-up solutions with the flag
for finding also partial matches of synonyms will result in 5 different pattern
matching configurations. For the BioASQ Task6a in 2018, each of the differ-
ent dictionary look-up approaches are listed as separate system enumerated as
SNOKE1 to SNOKE5. For the BioASQ Task7a in 2019, all the results from the
five different systems have been merged together into a union set.

3.2 Label Ranking

Paragraph Vectors allow for capturing contextual information of words in text.
The contextual information is trained by calculating the probability of certain
words preceding or succeeding the contextual word. The resulting Paragraph
Vector model enables the calculation of similarities of different texts according
to their probability of occurring close to each other.

The task of Label Ranking is conducted by creating such a Paragraph Vector
model to score all MeSH Headings for each document in the test set. Each MeSH
Headings gets an assignment of a confidence score ranging from −1 to 1. In
order to provide such a system for assigning confidence scores, an unsupervised
machine learning model is trained according to the algorithm described in [20]
(Fig. 2).
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Fig. 2. The Paragraph Vector model is trained on the BioASQ corpus with 225, 127
documents published from 2018 until January 2019 using the given MeSH Headings
from the documents as training labels. Documents during the challenge were inferred
using the trained model that resulted in a set Mpv of scored MeSH Headings for each
document.

The Paragraph Vectors were trained using the BioASQ corpus with 225, 127
citations that have been published either in 2018 or 2019 in conjunction with
their corresponding MeSH Headings of 25, 363 different labels in total. The Para-
graph Vector model is PV-DBOW based on Skip-Grams (length 4) and have been
trained using a configuration with 10 epochs, a learning rate of 0.025, a min-
imum learning rate of 0.001, and a batch size of 1000. The model is available
online5. The training as well as the predictions during the BioASQ challenge
were implemented using the DeepLearning4j framework6.

3.3 Multi-label Ranking

The task of Multi-Label Ranking is achieved by combining both systems for
Multi-Label Classification and for Label Ranking. The first system uses five
different vectors of MeSH Headings according to the pattern matching algorithm.
For each document, a single set of MeSH Headings is created by taking the union
set from the five different vectors.

Similarly, the Paragraph Vector model is used for assigning the confidence
scores to each of the MeSH Headings. This results in a set of 25, 363 Headings
for each document with a confidence score of −1 to 1 assigned to each Heading.
Then, both the union set as well as the confidence scores for the MeSH Headings
are joined by filtering the union set for only the top-k scored terms. K was chosen
for 500 and for 1, 0000 resulting in two different BioASQ Task7a submissions.
The algorithm for creating the sets Mtop500 and Mtop1000 for each document is
shown in Algorithm 1.
5 https://gitlab.zbmed.de/mueller/dl4j-models/blob/master/15000000. Accessed May

2019.
6 https://deeplearning4j.org/. Accessed May 2019.

https://gitlab.zbmed.de/mueller/dl4j-models/blob/master/15000000
https://deeplearning4j.org/
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Data: Mdx; Mpv; m ← length(D);
Result: Mtop500;Mtop1000;
Mtop500 ← {};
Mtop1000 ← {};
for (i ← 0; i < m; i ← i + 1) do

counter ← 0;
for p in Mpv[i] do

if Mdx[i].contains(p) AND counter < 500 then
Mtop500[i] ← Mtop500[i].add(p);

end
if Mdx[i].contains(p) AND counter < 1000 then

Mtop1000[i] ← Mtop1000[i].add(p);
end
counter ← counter + 1;

end

end
Algorithm 1: Algorithm for harmonizing the results by taking only MesH
Headings that are either scored in the top500 or the top1000 by the predictions
with the Paragraph Vector model.

4 Results

In BioASQ TaskA, the systems have been challenged to outperform the MTI for
the annotation of Medline citations with MeSH Headings. In the challenge, there
have been three test batches leading to 5 runs for each batch. For each run, a test
set of Medline citations has been published that have not yet been annotated
with MeSH Headings by human curators. The evaluation of the participating
systems for each of the runs in every batch is an automated process implemented
within the BioASQ infrastructure [6,7].

The evaluation infrastructure computes the results with two different classes
of measurements, flat and hierarchical. The comparison of the performance of
the participating systems are assessed with one flat and one hierarchical mea-
sure: the Lowest Common Ancestor F1-measure LCA.F [18] and the Label-Based
Micro F1-measure MiF. Besides the two main evaluation F1-measures, there is
also the Example-Based F1-Measure, Accuracy, Label-Based Macro F1-Measure,
and Hierarchical F1-Measure. For each F1-Measure, the respective precision and
recall measures are calculated.

The system for the Multi-Label Classification participated in the Task6a in
2018 and is explained in Sect. 4.1. The conjoint system that uses the initial
Multi-Label Classification for Label-Ranking in order to produce a Multi-Label
Ranking participated in the Task7a in 2019 and is explained in Sect. 4.2.

4.1 System for Multi-label Classification in Task6a

In the 2018 BioASQ Task6a, the maximum MiF score of 0.6880 was achieved
by the system xgx and the maximum LCA-F score of 0.5596 was achieved by
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Fig. 3. The 10 flat and the 6 hierarchical measures are sorted according to the F1
measure, Precision, and Recall for each of the different configuration setups in Task6a.
The maximum score achieved by the best participating system is given as green squares,
the minimum score achieved by the worst participating system as red squares. (Color
figure online)

the system xgx0. The maximum label-based micro-recall (MiR) was 0.6751 and
the maximum label-based micro-precision (MiP) was 0.8110. The highest lowest
common ancestor recall (LCA-R) was 0.5563 and the highest lowest common
ancestor precision (LCA-P) was 0.6212. For all participating systems, the ten-
dency was towards having a higher precision than having a higher recall.

Contrastingly, the submissions for the Multi-Label Classification system with
SNOKE1 to SNOKE5 reached higher recall measures than precision measures.
The maximum MiF score of 0.236 was achieved by both the submissions for
SNOKE1 and SNOKE2. The maximum LCA-F score of 0.261 was achieved by
the submission for SNOKE1. The highest MiR was 0.356 while the MiP was
0.221. A similar picture was shown for the highest LCA-R having a 0.408 while
the highest LCA-P was 0.298. In Fig. 3, the 10 flat and the 6 hierarchical mea-
surements for SNOKE1 to SNOKE5 are visualized.

4.2 System for Multi-label Ranking in Task7a

In the 2019 BioASQ Task7a, both the maximum MiF score of 0.733 and the
maximum LCA-F score of 0.612 was achieved by the system DeepMeSH5. The
maximum (MiR) was 0.707 and the maximum MiP was 0.791. The highest LCA-
R was 0.6 and the highest LCA-P was 0.663. Similar to the Task6a in 2018, the
tendency was again more towards having a higher precision than having a higher
recall.
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Fig. 4. The 10 flat and 6 hierarchical measures arranged according to their F1-Measure,
Precision, and Recall for each configuration setup in Task7a. The maximum score
achieved by the best participating system as green squares, the minimum score achieved
by the worst participating system as red squares. (Color figure online)

In comparison to the 2018 participation, the submissions for the Multi-Label
Ranking system SNOKE1 and SNOKE2 reached higher precision measures than
for the recall measures for the label-based micro-measures. The maximum MiF
score was 0.288 with a maximum MiP of 0.354 and a maximum MiR of 0.267.
For the measures of the lowest common ancestor, the recall was higher than the
precision. The maximum LCA − F score was 0.288 with a maximum LCA-P
of 0.356 and a maximum LCA-R with 0.428. In Fig. 4, the 10 flat and the 6
hierarchical measurements for the submissions of SNOKE1 and SNOKE2 are
visualized.

5 Conclusion

This paper describes the participation of two different systems and their com-
bined solution in the Task6a and the Task7a of the BioASQ challenge. The first
system that participated in Task6a is a Multi-Label Classification system that
incorporates lexical features from MeSH. The system was extended for the par-
ticipation in the Task7a for the functionality of introducing Label Ranking for
the assignment of confidence scores to MeSH Headings resulting in a conjoint
system for Multi-Label Ranking.

The first system for Multi-Label Classification participated in the Task6a of
the BioASQ challenge. The results indicate that the recall for the system are
higher than the precision although the general tendency of the other participating



578 B. Müller and D. Rebholz-Schuhmann

systems is the opposite. Nevertheless, the label-based macro F1-measure shows
better performance than the label-based micro F1-measure.

The second system that incorporates both Multi-Label Classification and
Label-Ranking for Multi-Label Ranking participated in the Task7a of the
BioASQ challenge. All performance measures were improved in comparison to
the first system that participated in the Task6a of the BioASQ challenge. Gen-
erally, the precision has been boosted in comparison to the earlier participation.

6 Discussion

In the BioASQ challenge, systems are supposed to outperform the baseline of
the MTI for the assignment of MeSH Headings to Medline citations. Two dif-
ferent participations in the BioASQ challenge are described in this paper, one
for Task6a and one for Task7a. The initially developed system that incorporates
lexical features from the MeSH thesaurus is extended to a ranking of MeSH
Headings according to the confidence values.

The participation of the first system in Task6a generally shows higher recall
than precision performance. The extended system that exploits the ranking of
MeSH Headings was able to increase both, precision and recall, resulting in better
F1-measures overall. However, the initially assigned MeSH Headings based on
lexical features still have a low overlap in comparison to the assigned MeSH
Headings by the human curators.
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Abstract. MEDLINE is the indexed subset of the National Library of
Medicine’s (NLM) journal citation database. It currently contains over 25
million biomedical citations, each indexed with a controlled vocabulary
called MeSH. Since 1990, there has been a sizable increase in the number
of articles indexed each year for MEDLINE, and since 2002, the NLM
has been using automatic MeSH indexing systems to assist indexers with
their increasing workload. This paper explores a deep learning approach
to the automatic MeSH indexing problem. We present a Convolutional
Neural Network (CNN) for automatic MeSH indexing and evaluate its
performance by participating in the BioASQ 2019 task on large-scale
online biomedical semantic indexing. The CNN model demonstrates com-
petitive performance and outperforms the NLM’s Medical Text Indexer
(MTI) by about 3%. The paper presents a preliminary analysis compar-
ing the results of the CNN model to MTI and also outlines the advantages
of end-to-end deep learning approaches to automatic MeSH indexing.

Keywords: Automatic MeSH indexing · Medical text indexing ·
Convolutional neural network · Deep learning

1 Introduction

MEDLINE R©/PubMed R© is the National Library of Medicine’s (NLM) premier
bibliographic database, and MEDLINE is the indexed subset of the database.
MEDLINE currently covers more than 5,200 international journals and contains
over 25 million indexed biomedical citations. The database is freely available
online and can be searched via the PubMed1 web interface. From an information
retrieval perspective, the unique value of MEDLINE is that citations are man-
ually indexed with a hierarchical controlled vocabulary called Medical Subject
Headings (MeSH R©).2 The assigned MeSH descriptors can be used in PubMed
to define advanced search queries.

Indexing of MEDLINE articles is a time-consuming and highly specialized
activity. NLM indexers review the full text of an article and then assign MeSH

1 https://www.ncbi.nlm.nih.gov/pubmed/.
2 https://www.nlm.nih.gov/mesh/.
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descriptors that represent the central concepts as well as every other topic that
is discussed to a significant extent. Indexers are required to have a working
knowledge of the large MeSH vocabulary and also scientific expertise in the
subject indexed.

Since 1990, there has been a steady and sizable increase in the number of
articles indexed each year for MEDLINE. Between 1990 and 2018 the number of
articles indexed per year has increased from about 400,000 to over 900,000, and
the NLM expects to index over one million articles annually within a few years.
To help indexers cope with their increasing workload, the NLM has developed
an automated indexing system called the Medical Text Indexer (MTI) [11]. MTI
is a machine learning and rule-based system that takes the article title and
abstract as its input and returns predicted MeSH terms as its output. The system
improves productivity by providing a pick list of recommended MeSH terms that
can be quickly selected by indexers.

Automatic MeSH indexing is a difficult machine learning problem. It is usu-
ally treated as a multi-label text classification problem, and the main challenges
are the large number of MeSH descriptors and their highly imbalanced frequency
distribution. There are over 29,000 MeSH descriptors in the 2019 MeSH vocab-
ulary. At the end of 2018, the most frequent descriptor ‘Humans’ had been
indexed more than 17 million times, whereas the 20,000th most frequent descrip-
tor ‘Ananas’ had only been indexed 454 times.

Despite these challenges, effective systems for automatic MeSH indexing have
been developed at the NLM and elsewhere. Since 2013, much of the progress in
the field has been driven by the large-scale online biomedical semantic indexing
task of the BioASQ challenge [14]. For this task, test sets of soon-to-be indexed
articles are provided to participants and MeSH descriptor predictions must be
submitted within 24 h (i.e. before the articles have been indexed).

Deep learning is a type of machine learning algorithm, based on artificial
neural networks, that uses multiple processing layers to learn representations of
data with multiple levels of abstraction [7]. In the last few years, deep learning
approaches have demonstrated state-of-the-art (SOTA) performance in a wide
variety of natural language processing (NLP) tasks, including text classification.
Deep learning technologies have also been used to improve automatic MeSH
indexing performance. Initially, these technologies were used to enhance existing
systems [12], but more recently, end-to-end deep learning models (e.g. [15]) have
demonstrated SOTA performance.

This paper presents an end-to-end deep learning model for automatic MeSH
indexing that uses a Convolutional Neural Network (CNN) architecture. The
model is evaluated by participating in task 7a of the BioASQ 2019 challenge
and is shown to have competitive performance - outperforming the current NLM
indexing system (MTI) in terms of micro F1 score. The presented CNN architec-
ture has a number of customizations for the MeSH indexing task and these are
shown to improve performance in an ablation study. We perform a preliminary
analysis comparing the BioASQ challenge results of the CNN and MTI systems
and also highlight the advantages of end-to-end deep learning approaches to
automatic MeSH indexing.
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2 Related Work

Automatic MeSH indexing is a well-studied multi-label classification problem,
and since 2013, the BioASQ challenge has provided a useful benchmark for
automatic MeSH indexing research. In recent challenges, two high-performing
approaches have emerged: learning to rank based approaches (e.g. MTI [11],
DeepMeSH [12]) and end-to-end deep learning approaches (e.g. MeSHProbeNet
[15], AttentionMeSH [4]).

Learning to rank [10] is a supervised machine learning technique that is used
to solve ranking problems. For automatic MeSH indexing the algorithm is used
to rank candidate MeSH descriptors by integrating multiple sources of evidence.
MTI uses learning to rank to boost its prediction performance [17], and candidate
MeSH descriptors are obtained using MetaMap [1], PubMed Related Citations
(PRC) [8], and machine learning algorithms. MetaMap maps biomedical text to
UMLS R© Metathesaurus3 concepts. These concepts are then mapped to MeSH
descriptors using the Restrict to MeSH [2] algorithm. PRC is a nearest neighbor
algorithm that identifies similar articles based on their title and abstracts. MeSH
descriptors from similar articles are considered as candidates. There are some
special MeSH descriptors called Check Tags and these cover concepts that are
mentioned in almost every article (e.g. Human, Animal, Male, Female, Child,
etc.). 12 of the 40 Check Tags are identified by individually trained binary classi-
fiers. The final list of MeSH descriptors is obtained after applying indexing rules
to the ranked candidate descriptors.

The DeepMeSH system has demonstrated consistently high performance in
recent BioASQ challenges. It combines learning to rank with a separate model
to predict the number of MeSH descriptors. Like MTI, DeepMeSH uses nearest
neighbors and binary classifier algorithms to identify candidate descriptors. A
novel aspect of DeepMeSH is that it represents the title and abstract as the
concatenation of term frequency inverse document frequency (TFIDF) and doc-
ument to vector [6] (Doc2Vec) features.

Deep neural networks have been shown to be very effective for many NLP
problems. Universal language models (e.g. [3]) are currently the SOTA for many
tasks, but convolutional neural networks and recurrent neural networks (RNN)
still provide excellent performance, often with lower computational cost (e.g.
[5,16]). MeSHProbeNet was the best performing system in the BioASQ 2018
challenge, and it uses an end-to-end deep learning model with an RNN archi-
tecture. Specifically, it uses two bidirectional gated recurrent unit (GRU) layers
followed by an attention layer to obtain a fixed length embedding of the concate-
nated title and abstract. The attention layer is novel because it uses multiple
independent query vectors (MeSH probes) to generate different embedded rep-
resentations (views) of the input text. The network output layer has one node
for each MeSH descriptor and uses a sigmoid activation function to generate
confidence scores between zero and one.

3 https://www.nlm.nih.gov/research/umls/.

https://www.nlm.nih.gov/research/umls/
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A CNN is a type of neural network that uses convolution operations to extract
salient features. They are most commonly applied to image processing problems,
but they have also been shown to be effective for many NLP tasks, including text
classification. An effective CNN architecture for text classification is presented
by Kim et al. [5] in their paper on sentence classification. This architecture uses
a convolution layer followed by a max pooling layer to generate a fixed length
text representation. A major advantage of CNNs is that they are quick to train
because the CNN architecture is highly parallelizable.

Rios et al. [13] were the first to use a CNN model for MeSH indexing, and they
trained independent binary classifiers for 12 Check Tags and another 17 hard-
to-classify MeSH descriptors. The paper shows an improvement in performance
compared to previous work, but it would not be practical to scale their binary
relevance approach to the full MeSH vocabulary. Liu et al. [9] propose a CNN
for extreme multi-label text classification, and they use a compression layer to
allow the simultaneous prediction of up to 670,000 labels. The presented model
demonstrated very competitive performance when evaluated on 6 extreme multi-
label text classification benchmarks.

3 Methods

The CNN architecture (Fig. 1) is based on the architecture proposed by Liu et al.
[9] for extreme multi-label classification. We customize their architecture with
separate text inputs for the title and abstract and by adding journal, publication
year, and year indexed inputs to the hidden layer. The outputs of the model are
confidence scores for each MeSH descriptor. The following sections describe the
different aspects of the model architecture in detail.

3.1 Title and Abstract Embeddings

The article title and abstract serve very different purposes, and we therefore
choose to process them as separate inputs. The idea is to make it easy for the
model to learn different rules for the title and abstract, if necessary. For example,
one might expect the model to assign higher importance to features detected in
the title compared to the abstract.

A CNN component is used to process the title and abstract and generate
the fixed length embeddings required by the hidden layer. Let xi ∈ R

k be the
k-dimentional word embedding corresponding to the i-th word in the input text.
Input text of length m is represented as the concatenation of word embeddings
x1:m = [x1,x2, ...,xm] ∈ R

mk. Let xi:i+j refer to the concatenation of words
xi,xi+1, ...,xi+j . A convolution operation applies a filter w ∈ R

hk to a window
of h words to produce a new feature.Feature ci is generated from a window of
words xi:i+h−1 by

ci = f(w ∗ xi:i+h−1 + b), (1)

where f is the ReLU activation function, * is the convolution operation, and
b ∈ R is the bias term. A feature vector is obtained by applying the filter to each
possible window position:
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Fig. 1. The model architecture

c = [c1, c2, ..., cm−h+1] ∈ R
m−h+1. (2)

Next, a dynamic max pooling operation [9] is used to select r features for this
particular filter (assuming m is dividable by r):

ĉ = [max{c1:mr }, ...,max{cm− m
r +1:m}] ∈ R

r. (3)

The advantage of dynamic max pooling over standard max pooling is that some
position information is retained.

This section has described the process by which r features are extracted by
one filter. The model uses multiple filters with different window sizes. The title
and abstract text are processed using the same word embeddings and convolution
layer weights to produce embeddings etitle and eabstract respectively. Standard
max pooling is used for the title due to its short length.

3.2 Journal Embedding

Most MEDLINE journals have a narrow topic and are indexed with a small
subset of the MeSH vocabulary. Providing the article journal as a model input
was found to improve performance, and we expect this is because the model can
learn the MeSH descriptor distribution for each journal.

In the presented architecture, the article journal is treated as a categorical
input. As such, it could be represented using a sparse one-hot vector, but instead
we represent each journal with a fixed size embedding ejournal ∈ R

d, where d
is the embedding size. We hope that an embedded representation will allow for
better generalization between journals. The journal embeddings are randomly
initialized and learned during training.
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3.3 Year Encoding

One of the challenges of automatic MeSH indexing is that the MEDLINE dataset
has significant time-variance. There are many factors that cause time-variance,
and these include changes to the MeSH vocabulary, changes to indexing policy,
changes to the list of indexed journals, and concept drift due to scientific progress
and trends. In order to allow the neural network to effectively model the time-
variance of the dataset, both the publication and indexing year are provided
as inputs. The indexing year is required to model time-variance resulting from
changes to the MeSH vocabulary and indexing policy, while the publication year
is required to model time-variance due to concept drift.

The year inputs are represented using a special encoding that is intended to
capture the sequential nature of time and to facilitate generalization between
years. The encoding for a year eyear ∈ {0, 1}s from a consecutive range of s
years is defined as

ei
year =

{
0 i > Δ
1 i ≤ Δ

, (4)

where Δ is the difference between the year and the minimum year that needs to
be encoded. Figure 2 is an illustration of this encoding for years between 2014
and 2018.

Fig. 2. Illustration of the special encoding used for year inputs. The example shows
how years between 2014 and 2018 would be encoded.

3.4 Hidden and Classification Layers

The embedded inputs are concatenated to form the input e to the hidden layer:

e = [etitle,eabstract,ejournal,epub year,eyear indexed]. (5)

Next, the hidden layer activations ah are computed as

ah = f(Whe + bh), (6)

where f is the ReLU activation function, and Wh, bh are the hidden layer
weights. The final confidence scores p̂ ∈ [0, 1]L for each of the L MeSH descriptors
are computed as

p̂ = σ(Wcah + bc), (7)
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where σ is the sigmoid activation function, and Wc, bc are the classification layer
weights.

Dropout regularization is implemented to reduce overfitting to the training
data, and it is applied to the title and abstract embeddings (etitle,eabstract) and
the hidden layer activations (ah).

3.5 Optimization

A binary-cross entropy objective function is formulated as

min
Θ

− 1
N

N∑
n=1

L∑
l=1

[ynllog(p̂nl) + (1 − ynl)log(1 − p̂nl)], (8)

where Θ represents the model parameters, N is the number of training examples,
and y are the indexer annotations. This objective was minimized using mini-
batch gradient descent and the Adam optimizer. Batch normalization was found
to improve the model performance and was implemented for the hidden and
convolution layers.

4 Experiments

4.1 Dataset

The dataset is comprised of citation data for MEDLINE articles published from
2004 onward. Only articles with both a title and abstract were included, and fully
or semi-automatically indexed articles were excluded. Semi-automatic index-
ing is when MTI has been used as the “first line indexer,” and the results
have later been reviewed (and potentially modified) by human indexers.4 Semi-
automatically indexed articles were excluded (in addition to fully automatically
indexed articles) because we believe that the indexing may be biased towards
MTI’s predictions. The indexing method of an article is provided as an attribute
in the latest PubMed XML format.5 The final dataset contains about 8.5 mil-
lion articles: 20,000 2018 articles were randomly selected for the validation set,
and 40,000 2018 articles were randomly selected for the ablation study test set.
Citation data was downloaded from the MEDLINE/PubMed 2019 annual base-
line6 because the BioASQ training data does not include the indexing year or
indexing method.

The model performance was evaluated by participating in the large-scale
online biomedical semantic indexing task of the BioASQ 2019 challenge. The
challenge required participants to make predictions for 15 test sets of approxi-
mately 10,000 articles. The tests sets were released weekly, and the overall chal-
lenge was divided into 3 batches of 5 consecutive tests sets. Citation data for
4 https://ii.nlm.nih.gov/MTI/MTIFL.shtml.
5 https://www.nlm.nih.gov/pubs/techbull/ja18/ja18 indexing method.html.
6 https://www.nlm.nih.gov/databases/download/pubmed medline.html.

https://ii.nlm.nih.gov/MTI/MTIFL.shtml
https://www.nlm.nih.gov/pubs/techbull/ja18/ja18_indexing_method.html
https://www.nlm.nih.gov/databases/download/pubmed_medline.html
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the test set articles was downloaded from the MEDLINE/PubMed daily update
files.7 It would have been possible to use the BioASQ test set citation data, but
it was simpler for us to process the daily update files as our system is designed
to import data in PubMed XML format.

4.2 Evaluation Metric

Binary MeSH descriptor predictions ŷ ∈ {0, 1}L are obtained by applying a
single decision threshold to all model outputs. The evaluation metric is the micro
F1 score (MiF ) and this is defined as the harmonic mean of the micro precision
(MiP ) and the micro recall (MiR):

MiF =
2 · MiP · MiR

MiP + MiR
, (9)

where

MiP =
∑N

n=1

∑L
l=1 ynl · ŷnl∑N

n=1

∑L
l=1 ŷnl

, (10)

MiR =
∑N

n=1

∑L
l=1 ynl · ŷnl∑N

n=1

∑L
l=1 ynl

. (11)

There is an optimum decision threshold that results in the highest F1 score, and
this threshold was determined by a linear search on the validation set.

4.3 Configuration

The model was implemented in Keras (v2.1.6) with a Tensorflow (v1.12.0) back-
end, and its hyperparamters are listed in Table 1. The word embeddings were
randomly initialized and trained with the model. The learning rate was reduced
by a factor of 3 if the validation set micro F1 score did not improve by more
than 0.01 between epochs, and training was stopped early if the F1 score did
not improve by more than 0.01 over two epochs. Training the model takes about
1 day on a single NVIDIA Tesla V100 (16 GB) GPU. Making predictions for a
test set of 40,000 articles takes about 30 s.

4.4 Evaluation Results

We participated in task 7a of the BioASQ 2019 challenge with two systems.
The first system (‘CNN’) is the model described in this paper, and the second
system (‘CNN Ensemble’) is the same model with ensembling. Ensembling was
implemented by training 9 separate ‘CNN’ models and then taking the average
of their predictions. Predictions from the ‘CNN’ model were submitted for all
15 test sets of the challenge, while predictions from the ‘CNN Ensemble’ model
were only submitted for the last 4 test sets.
7 ftp://ftp.ncbi.nlm.nih.gov/pubmed/updatefiles/.

ftp://ftp.ncbi.nlm.nih.gov/pubmed/updatefiles/
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Table 1. CNN hyperparameters

Hyperparameter Value

Vocabulary size 400,000

Word embedding size (k) 300

Title max words 64

Abstract max words 448

Number of convolution filters 350

Convolution filter sizes (h) 2, 5, 8

Dynamic max pooling number of regions (r) 5

Activation function for classification layer Sigmoid

Activation function for all other layers Relu

Hidden layer size 3365

Journal embedding size (d) 50

Dropout rate 0.15

Batch size 128

Learning rate 0.001

Table 2 shows the evaluation results for the top performing systems in the
challenge. The average and sample standard deviation of the test set micro F1
score is shown for each system and batch. For teams participating with multiple
versions of the same system, this analysis considers only the best performing
configuration in each test set. The ‘CNN’ system predictions for batch 3 week 1
were erroneous and are therefore ignored in the analysis. The full results of the
2019 challenge are available on the BioASQ website,8 and on the website our sys-
tems are named ‘ceb 1’ and ‘ceb 1 ensemble’. The challenge results show that, as
expected, the CNN model with ensembling outperforms the same model without
ensembling. The ‘CNN Ensemble’ system is also found to outperform the current
MTI implementations (‘Default MTI’ and ‘MTI First Line Index’) by about 3%.
Compared to the other systems in the challenge, the CNN model demonstrated
competitive performance, and it was typically the 3rd best performing system
across all evaluations.

We were interested in evaluating the performance of a pure deep learning
approach to automatic MeSH indexing, and for this reason our challenge systems
did not make use of MTI’s predictions. This may have put our systems at a
disadvantage because approximately 20% of the articles in the challenge test sets
were from semi-automatically indexed journals, and we suspect that the NLM’s
semi-automatic indexing methods are biased towards MTI’s predictions. To get
an idea of the performance improvement that can be achieved by making use
of MTI’s predictions, the performance of a hybrid system was evaluated on the
articles in the last four test sets of the challenge. The hybrid system uses ‘MTI

8 http://bioasq.org/.

http://bioasq.org/
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Table 2. Average and sample standard deviation of test set micro F1 scores for the
top performing systems in the BioASQ 2019 challenge.

Batch

System 1 2 3

CNN 0.648 ± 0.006 0.654 ± 0.003 0.656 ± 0.005

CNN Ensemble N/A N/A 0.672 ± 0.005

DeepMeSH 0.667 ± 0.022 0.714± 0.012 0.724± 0.012

Default MTI 0.639 ± 0.004 0.643 ± 0.004 0.653 ± 0.005

MeSHProbeNet 0.683± 0.005 0.689 ± 0.003 0.693 ± 0.005

MTI First Line Index 0.624 ± 0.004 0.633 ± 0.007 0.649 ± 0.007

First Line Index’ predictions for articles that were semi-automatically indexed
(‘Curated’ indexing method in the PubMed XML files) and ‘CNN Ensemble’
predictions for all other articles. The hybrid system is found to achieve a micro
F1 score of 0.687, an improvement of approximately 2% over the micro F1 score
of the ‘CNN Ensemble’ model.

5 Ablation Study

This section presents the results of an ablation study (Table 3) that explores how
different aspects of the model architecture contribute to its overall performance.
Five different models with ablations were trained and their performance was
evaluated on the ablation test set (see Sect. 4.1). The study considers three abla-
tions concerning task specific architectural features (removing separate title and
abstract inputs, removing journal input, removing year inputs) and two abla-
tions concerning more general architectural features (removing batch normal-
ization, removing dynamic max pooling). The study finds that the task specific
architectural features increase the model performance by 1.2–1.5%, and batch
normalization also increases model performance by 1.1%. Dynamic max pooling
offers the smallest performance improvement of 0.4%.

Table 3. Model performance with ablations

Model description MiF Difference (%)

CNN 0.6548

CNN with single text input (concat. title & abstract) 0.6449 −1.5

CNN without journal input 0.6466 −1.3

CNN without year inputs 0.6471 −1.2

CNN without batch normalization 0.6475 −1.1

CNN without dynamic max pooling 0.6523 −0.4
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Even if the model architecture is unchanged, there will be some variation
in performance due to the random initialization of parameters and stochastic
gradient descent. To understand the scale of this variation, the micro F1 score
performance of 10 independently trained ‘CNN’ models was measured on the
ablation test set. The sample standard deviation of the micro F1 score was
found to be 0.0004, and this gives us confidence that the ablation study results
are significant.

6 Discussion

We were able to perform a preliminary analysis comparing the results of the
‘CNN’ and ‘Default MTI’ systems using the BioASQ results and the final indexed
MEDLINE citations. We reviewed the results from 78,574 fully human indexed
citations containing 979,014 NLM indexed MeSH descriptors. From this set we
can see that the ‘Default MTI’ system had slightly higher recall with 615,347
correct MeSH descriptors versus 603,973 for the ‘CNN’ system. But, the ‘CNN’
system was much more precise with only 288,146 incorrect MeSH descriptors
compared to ‘Default MTI’ providing 371,658 incorrect MeSH descriptors. Note
that the CNN decision threshold was selected for best micro F1 score, but this
can be adjusted to increase recall at the cost of precision. Looking closer at
the MeSH descriptors that both systems used, we see that the ‘Default MTI’
system used 21,158 distinct MeSH descriptors, while the ‘CNN’ system only
used 19,745 distinct MeSH descriptors. Of these, 18,710 MeSH descriptors were
common to both systems, ‘Default MTI’ had 2,448 unique MeSH descriptors
which were correct 43.45% of the time, and the ‘CNN’ system had 1,035 unique
MeSH descriptors which were correct 34.65% of the time.

Looking at the final indexed MeSH descriptors that both systems missed,
we see the usual suspects including age related Check Tags (e.g. Young Adult,
Adolescent) and sex related Check Tags (e.g. Female, Male). We looked at a small
sample of 10 cases where both systems missed the most MeSH descriptors and
found that, in 9 out of the 10 cases, the missing information was only available
in the full text of the article. This confirmed our suspicions that the information
was just not available to the two systems, since the NLM indexers index the
article from the full text, while the automated systems only have access to the
title and abstract. Our overall impression is that the ‘CNN’ system tends to
predict more general MeSH descriptors, whereas the ‘Default MTI’ system does
well on certain important MeSH descriptors that we have specifically focused on
detecting in the past.

This paper has shown that the CNN model outperforms the current MTI
implementation, and from a software engineering perspective, the deep learning
approach also has a number of other advantages. A key advantage is that it
is an end-to-end system without any dependencies. This will make it easier to
deploy and maintain than a complex multi-component system, like MTI. For
example, when the MeSH vocabulary needs to be updated at the end of the year,
it will take approximately one day to retrain the CNN model. In comparison,
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it usually takes about a week to update MTI with a new MeSH vocabulary.
Another advantage of the CNN model is that it will be possible to support the
NLM indexers with a single model instance running on a GPU enabled server.
For comparison, MTI uses parallel processing with 70 clients on 6 servers to
achieve the level of required throughput. The close to real-time predictions of
the CNN model will also make it possible to develop more interactive indexer
tools in the future.

A pure deep learning solution does have some disadvantages. A major dis-
advantage is that a learning based system is unable to make predictions for
new MeSH descriptors or follow new indexing rules. MTI also suffers from this
problem because it has machine learning components, however, its MetaMap
component is able to detect new descriptors based on the information in the
UMLS. MTI also uses a lookup list of new terms and their synonyms to ensure
they are recommended, and current indexing policy is enforced using manually
coded rules.

Another disadvantage of the CNN model is that it is a black box - it does
not provide any explanation for why a particular set of MeSH descriptors were
predicted. Having more interpretable predictions would be of great benefit to
indexers and is something that we plan to look into in the future. For example, it
should be possible to determine which n-grams most influence the CNN model’s
predictions, and these n-grams could then be highlighted in the text.

7 Conclusion

This paper has presented a CNN model for automatic MeSH indexing. The
model demonstrated competitive performance in the BioASQ 2019 task on large-
scale online biomedical semantic indexing, outperforming the NLM’s current
automatic indexing system, MTI, by about 3%. The paper has also presented
an ablation study highlighting how task specific customizations to the model
architecture result in improved performance.

In the future, we will explore the possibility of replacing MTI with a deep
learning based system. We plan to complete our analysis comparing the strengths
and weaknesses of the CNN and MTI systems, and our goal is to achieve higher
performance by combining the best aspects of the two systems. Providing the rea-
sons why a particular MeSH descriptor was recommended would be very useful
for indexing staff, and we therefore plan to research deep learning architectures
that offer more interpretable predictions.
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Abstract. This paper describes the participation of the MindLab
research group in the BioASQ 2019 Challenge for task 7b, document
retrieval and snippet retrieval. For document retrieval, Elastic Search
was used for the initial document retrieval step with BM25 as a scoring
function. In the second stage, the top 100 retrieved documents were re-
ranked with several strategies to exploit embedding semantic similarity.
For the snippets retrieval subtask, the proposed approach was based on
textual and conceptual information similarity patterns that were com-
bined into a feature matrix that was subsequently processed by a con-
volutional neural network architecture. Our approach reached the third
and second positions for the document retrieval and snippet retrieval
task respectively.

Keywords: BioASQ · Snippet retrieval · Biomedical document
retrieval

1 Introduction

In the biomedical domain, experts constantly search in previous works to sup-
port their research hypothesis, investigate causes, diseases symptoms, etc. The
number of published documents is growing continuously, more than 3000 articles
are indexed every day in biomedical journals [17], making it harder to find and
access valuable information.

Question Answering (QA) systems can help to retrieve concise information
naturally, given the precise answer and supporting passages for any information
need. The interest in QA systems in the biomedical domain has been growing
[1,17] and is playing an important role in the closed domain information access
and is considered to be the next step in information retrieval systems [19].

BioASQ is a closed domain information retrieval challenge over biomedical
articles [17], this challenge has helped to advance the research in the biomedical
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information retrieval field. Mindlab team has participated in the last two edi-
tions. Here we will describe our second participation for the seventh edition in
task B.

The goal of the target task is: given a question the system must return
relevant concepts, relevant documents (from 2018 PubMed articles baseline [11]),
relevant snippets (extracted from articles), and relevant Resource Description
Framework (RDF) triples from designated ontologies [17]. In this year, our focus
was document and snippet retrieval. Our method was based on a convolutional
neural network model that takes as input a question-snippet similarity matrix. It
combines different embeddings of words and medical concepts with the purpose
of building a more meaningful representation.

The structure of this paper is as follows: Sect. 2 describes the system archi-
tecture, the strategies used for document retrieval are presented in Sect. 3 using
Okapi-BM25 and Elastic Search as the first filter for efficiency and then rep-
resenting documents and questions as word embeddings [10] for Doc Centroid
Rerank and Word Mover’s Distance as re-ranking functions. In Sect. 3.1, we
present the passage retrieval module with the proposed method. Some perfor-
mance analysis experiments were performed with the BioASQ6 data to evaluate
and compare the proposed strategies for document and snippet retrieval, these
results are shown in Sect. 4. The results of the current challenge are presented
in Sect. 4.1 and finally, conclusions and future works in Sect. 5.

2 The MindLab System at a Glance

Our approach consists of two main components: the document retrieval and the
snippet retrieval modules, as shown in Fig. 1.

The first module has the goal of producing a set of documents where the
answer for a posed questions can reside. The Elastic Search (ES) information
retrieval platform [6] was configured to index and query the PubMed Baseline
Repository (MBR) document set [11]. This year the BioASQ challenge used the
2018 MBR. Those documents are bio-medical papers with title and abstract
sections, also they contain meta-information such as MESH Terms, year of pub-
lication and keywords.

Based on a posed question, a query string is submitted to the ES search
engine, the engine returns a set of 100 documents that are relevant to the query.
The next step is a fine-grained document filtering using the query and document
terms, the goal is to reduce the number of documents to 10. Our approach for
document filtering is based on Word Mover’s Distance (WMD) and Document
Centroid semantic match.

The selected relevant documents are analyzed in depth. Snippets of the 10
most relevant documents are extracted and ranked with our Convolutional Neu-
ral Network (CNN) model that exploits semantic similarity patterns.

In the end, the top 10 scored documents and snippets are submitted in
descending order to the BioASQ server.
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Fig. 1. BioASQ model diagram

2.1 Document Re-Ranking

The results produced by ES suffer from lack of precision. To alleviate this, we
perform a re-ranking of the top-n documents using a more precise, but costly,
semantic matching method based on semantic similarity. In our experiments,
we evaluated two embedding similarity measures: Word Mover’s Distance and
Document Centroid.

Word Mover’s Distance: The first was Word Mover’s Distance (WMD) [8], a
particular case of the Earth Mover’s Distance [13]. The query and each document
are represented as a weighted point cloud of embedded words as shown in Fig. 2.
The distance between them is the minimum cumulative distance that words from
the query need to travel to match exactly the point cloud of the document.

Fig. 2. Word Mover’s Distance between two documents.
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Let q be the query user, d ∈ D where D is a set of n relevant documents,
and |q|, |d| the number of distinct tokens in q and d respectively. Let TTT be a flow
matrix where TTTww′ denotes how much the word w in q travels to word w′ in d
and C is the transportation cost with Cw,w′ := dist(vvvqw , vvvd′

w
) normally provided

by their Euclidean distance in the word2vec embedding space. Finally, we can
define the WMD between the query and document as the minimum cumulative
cost required to move all words from q to d.

min
TTT≥0

n∑

w,w′
TTTww′C(w,w′) (1)

Document Centroid Similarity: For a given query q and each document
d we compute the centroid of the corresponding word vectors. The similarity
of a query and a document corresponds to the cosine similarity between their
corresponding centroids.

2.2 Snippet Retrieval

Traditional passage retrieval methods use only textual information to identify
the semantic match between the question and the answer. However, in domains
such as biomedicine, there is a good number of structured knowledge resources in
the form of ontologies, thesaurus, and taxonomies. The use of structured sources
could provide advantages such as unambiguous knowledge representation, the
possibility of applying automated reasoning methods [18], and the facility of
linking different information facts, among others. The proposed approach for
passage retrieval takes advantage of the huge amount of textual data in the
biomedical domain in conjunction with structured-knowledge data sources.

Our passage retrieval model is based on two main hypothesis: first, that ques-
tion and answer passages are semantically correlated term by term and concept
by concept; second, that structured and unstructured information are comple-
mentary modalities that can jointly represent, in a better way, the semantic
content of questions and passages.

The proposed method has two stages as Fig. 3 shows. The first one (train-
ing phase) has the objective to learn the similarity patterns for question-answer
pairs. In the second stage (testing), the trained similarity model is used to obtain
the ranking scores of a set of candidate answers (snippets) for a particular ques-
tion. The method uses two representations schemes, textual and conceptual, for
both answers and questions. Both representations are used as input indepen-
dently. The representations are combined using a different fusion strategy.
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Fig. 3. Passage retrieval process

The details of the steps depicted in Fig. 3 are discussed next.

– Step 1 - Extract the representation: The question and answer pairs
are transformed to feed the neural network, the process is different for each
modality.

• Textual Representation: First the text is cleaned and tokenized, a
grammatical tagging is carried out with NLTK POS-tagger to extract
syntactical information that will be used in salience weighting; each term
is transformed later in a vector embedding using a pre-trained word2vec
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model provided by NLPLab, which is trained on Wikipedia and PubMed
documents.1

• Conceptual representation: To identify medical concepts we use
QuickUMLS [15] which is an unsupervised biomedical concept extraction
tool. Those identified concepts are then transformed into a continuous
vector representation using a cui2vec embedding. This embedding maps
medical concepts instead of words. Concepts are referred by their con-
cept unique identifier (CUI) from the Unified Medical Language System
(UMLS) thesaurus [2]. In contrast with textual representation, there are
fewer words, 4 concepts in average per question, in the text fragments
that can be embedded in the conceptual representation as it is shown
in Fig. 4. This has to do with the reduced size of the cui2vec vocabu-
lary. To overcome this restriction we applied expansion to question CUI
embeddings following the centroid method proposed by Kuzi et al. [9].

Fig. 4. Question terms and cuis distribution

– Step 2 - Calculate the similarity matrices: Each i, j-entry of the sim-
ilarity matrices Mt and Ms, represents the semantic relatedness of the i-th
question term (or concept) and the j-th answer term (or concept) according
to the embedding (nlplab or cui2vec).

• Textual similarity Matrix Mt: In the case of textual representation
the cosine similarity between terms is weighted based on the grammatical
function of the term pair, this grammatical weighting is called a salience
score sal(qti, atj). The similarity between element i-th and j-th is calcu-
lated as Eq. 2 shows.

Mi,j = scos(qti, atj) ∗ sal(qti, atj) (2)

scos(qti, atj) = 0.5 +
qti · atj

2 ‖qti‖2 ‖atj‖2
(3)

1 BioNLP word vector representation, trained with biomedical and general-domain
texts http://bio.nlplab.org.

http://bio.nlplab.org
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sal(qti, atj) =

⎧
⎨

⎩

1 if imp(qti) + imp(atj) = 2
0.6 if imp(qti) + imp(atj) = 1
0.3 if imp(qti) + imp(atj) = 0

(4)

Where imp(qti) and imp(atj) are the importance weighting for every
question and answer term. The related function returns 1 if the term is a
verb, noun or adjective, otherwise, returns 0.

• Concept similarity matrix Ms: In the case of conceptual information
we calculate just the cosine similarity between cui2vec concept vectors.

– Step 3. Convolutional model: The architecture of the convolutional model
is shown in Fig. 3 step 3. A convolutional layer is fed with both similarity
matrices Mt and Ms, CNN layer will identify element-similarity patterns to
rank the relevance of a question-answer pair using both knowledge represen-
tations. Patterns identified by each CNN filter are sub-sampled by a pooling
layer. The pooling layer for all the filters is merged with two fully connected
layers, first one with 64 units and the second one with 16 units, a regularized
dropout of 10% is used between them. The total number of parameters for
the fusion model is 6,173.

– Step 4. Multimodal fusion: The dense outputs of the modalities are
merged in a unique dense layer, which feeds another dense layer. Finally,
the output score of the model is generated by a sigmoid unit on top of the
last dense layer.

– Step 5. Pair Ranking: Candidate answers (a1, a2, ..., ak) are ranked against
the query q using the trained similarity model. The model produces the final
similarity score taking into account information from both modalities.

Information Fusion Approaches: As we have used information that comes
from textual representation and conceptual representation the combination of
those modalities is also a model parameter to explore. In that way we have
evaluated four different configurations to measure the performance involving
different information representation approaches:

– Approach 1: Only textual representation. Questions and candidate answers
are represented using only the textual embedding.

– Approach 2: Mixed data representation intermediate method –MIF. In this
model, the fusion of textual and conceptual representations is carried out
in an intermediate dense layer after the textual and conceptual patterns are
identified by CNN’s layers Fig. 3. The merged layer is then connected to the
sigmoidal output unit with dropout as regularization strategy.

– Approach 3: Mixed Data Representation Late Fusion –MLF. In this approach
each model (textual and conceptual) independently calculates a score for
each question-answer pair, score t for textual representation, and score s for
conceptual representation. Lastly, a linear combination produces the final
score f score, as shown in Eq. 5. The alpha value was found using cross-
validation with the validation partition; it was set to 0.73.

f score(q, ak) = (1 − α) ∗ scoret(q, at) + α ∗ scores(q, as) (5)
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3 Model Performance Tuning

To evaluate the performance of the proposed methods, we used the BioASQ
6 dataset. The experimentation process is divided into two phases, the first
one focused on the document retrieval process and the second one for snippets
retrieval.

3.1 Document Retrieval

We indexed the full data of the 2018 MBR in ES version 6.2.2 with the default
configuration, this is our baseline. For b and k1 BM25 parameters we evaluated
the default values and the values proposed by CLEF eHealth evaluation lab 2016
[4].

The number of processed files was 928 and the total number of medical
articles was 26,759,399. For each article, we extracted the title, MESH concepts
and abstract to be indexed. The indexing time was around 18 h in an Intel Xeon
processor Intel(R) at 2.60 GHz with 82 GB RAM and GeForce GTX TITAN X.

We evaluated four experiments: retrieve the 10 most relevant docu-
ments with BM25 default configuration (BM25 v1), the second one is to
retrieve documents with BM25 clef tuned parameters (BM25 v2), the third
is using BM25 clef tuned parameters and re-rank using Word Mover’s Distance
(BM25 v2 WMD). The last one is to retrieve documents with BM25 clef tuned
parameters and re-rank using Doc Centroid Rerank (BM25 v2 centroid).

The averaged results over the five 6b batches are presented in Table 1. Adjust-
ing BM25 parameters (b) for document length scaling and (k1) for document
term scaling have a positive impact on the overall ES document retrieval per-
formance. The centroid re-ranking strategy was not successful, but the use of
Word Mover’s Distance has a slightly better performance over the BM25 initial
document set.

Table 1. Document retrieval results for BioASQ 6 (summarized)

Model Mean precision Recall F-Measure MAP GMAP

BM25 v1 0.2074 0.4724 0.2174 0.1319 0.0257

BM25 v2 0.2147 0.4810 0.2241 0.1354 0.0279

BM25 v2 WMD 0.2256 0.4910 0.2384 0.1483 0.0286

BM25 v2 centroid 0.2084 0.4706 0.2186 0.1332 0.0228

3.2 Snippet Retrieval

The training was done with the question and answer pairs from 2016, 2017 and
2018 BioASQ Task B training datasets. The total number of used question-
answer pairs were 124,144. The obtained dataset was very unbalanced, only 18%
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of the total number of pairs were labeled as a relevant answer. To balance the
dataset, the sample extraction in the training phase was done with the same
number of positive and negative samples, this strategy is also applied in the
validation phase.

The model training was done using RMSprop optimization algorithm with
32 samples per mini-batch and the loss function was binary cross entropy. The
number of maximum epochs was set to 50. In each epoch, we evaluated MAP
and MRR, and after 5 epochs without any improvement in MAP metric, we
applied early stopping to avoid over-fitting.

We have conducted our experimentation with the released batches for
BioASQ 6, as it was done for the document retrieval stage. The scores obtained
from BioASQ results submission page [17] are presented in Table 2. We have
included the results from the winning team at BioASQ 6 challenge snippet
retrieval sub-task [3] for performance comparison.

Table 2. Snippet retrieval results averaged at BioASQ 6b

Method Mean precision Mean recall F-measure MAP GMAP

aueb-nlp-5 0.3807 0.3655 0.3452 0.3320 0.0536

mindlab 0.2074 0.2437 0.2021 0.2102 0.0076

Only Textual 0.2074 0.2437 0.2021 0.2102 0.0161

MIF 0.2181 0.2517 0.2161 0.2201 0.0098

MLF 0.2014 0.2217 0.2100 0.2095 0.0086

The experimental evaluation shows that the incorporation of conceptual
information can improve the performance in passage retrieval. Moreover, mul-
timodal intermediate fusion outperforms the use of each modality individually
and late fusion approaches.

Model Parameters. The model hyper-parameters were tuned using hyper-
parameter exploration. The parameters chosen are listed next.

– Convolution parameters: The number of convolutional filters used are 64,
width 3 and length 3, the stride used is 1 without padding.

– Convolution activation function: After a convolutional layer, it is useful
to apply a nonlinear layer [5]. We tested different activation functions and
RELU gave us the best performance.

– Pooling layers: For the pooling layer, we used max pooling.
– Dropout layer: We add a dropout layer as a regularization strategy [16],

setting the parameter in 10%.
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4 Results at BioASQ 2019 and Discussion

4.1 Document Retrieval

The results are shown in Table 3. It shows that our document retrieval imple-
mentation could still improve. In most batches, the top competitor gets approx-
imately the double of our score.

The best result was obtained in batch 3 (Recall = 0.5213 and GMAP =
0.0070), with the tuned parameters for BM25, Index-v2. This improves our
results obtained in the past competition [12], but the team leader in this batch
reached 0.6128 in Recall and 0.0164 in GMAP, an important difference.

Document retrieval is relevant for snippet retrieval task, because it is the first
information filter. The snippet retrieval method works on the top 10 documents
retrieved in this phase, if it has low precision, the performance of the snippet
retrieval method is affected.

Table 3. BioASQ 7 document retrieval results

Batch Model Mean precision Recall F-Measure MAP GMAP

7b1 Our model 0.1120 0.5087 0.1660 0.0742 0.0039

Top competitor 0.1190 0.5216 0.1746 0.0809 0.0047

7b2 Our model 0.0950 0.4733 0.1444 0.0579 0.0021

Top competitor 0.1260 0.5967 0.1905 0.0771 0.0075

7b3 Our model 0.1280 0.5213 0.1887 0.0803 0.0070

Top competitor 0.3599 0.6128 0.4034 0.1102 0.0164

7b4 Our model 0.1040 0.5103 0.1573 0.0726 0.0033

Top competitor 0.3332 0.6141 0.3783 0.1015 0.0116

7b5 Our model 0.0550 0.3476 0.0888 0.0326 0.0005

Top competitor 0.0710 0.3937 0.1120 0.0425 0.0010

4.2 Snippet Retrieval

As Table 4 shows, the snippet retrieval approach obtained a good performance
despite the low precision and recall in document retrieval. The results were
enough to reach the second position in the last 4 batches and the first position
in the first one.

It is important to highlight that the number of parameters to learn in our
model is not large (5,192) compared to other QA Deep Learning approaches
which are in order of millions and hundreds of thousands [7,14].

Part of the error in the snippet retrieval phase is propagated from document
retrieval. If we improve the results in document retrieval, we could have better
results in this phase because we only retrieve the snippets present in the top 10
documents from the document retrieval phase. Even though, the incorporation of
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conceptual information can improve the performance in passage retrieval because
the medical terms are referred by their concept unique identifier, which is unique
for different words associated to the same concept.

Table 4. BioASQ 7 snippet retrieval results

Batch Model Mean precision Recall F-Measure MAP GMAP

7b1 Our model 0.0951 0.2447 0.1253 0.0808 0.0008

Top competitor - - - - -

7b2 Our model 0.0900 0.2243 0.1212 0.0893 0.0004

Top competitor 0.1447 0.3722 0.1855 0.1438 0.0019

7b3 Our model 0.1371 0.2519 0.1617 0.1404 0.0009

Top competitor 0.2159 0.3634 0.2472 0.2206 0.0081

7b4 Our model 0.1587 0.2760 0.1723 0.1527 0.0013

Top competitor 0.2060 0.4039 0.2365 0.2114 0.0075

7b5 Our model 0.0440 0.1823 0.0656 0.0499 0.0001

Top competitor 0.0542 0.2411 0.0818 0.0631 0.0003

5 Conclusion

In this paper we have presented the approaches and results obtained in our
second participation for the seventh BioASQ challenge version. The proposed
method for document retrieval was based on the Elastic Search platform with
BM25 as scoring function, then a second document filtering was carried out using
Word Mover’s Distance (WMD) and Document Centroid semantic match.

For the snippet retrieval sub-task, the selected approach was based on a
convolutional neural network that extracts similarity patterns over mixed data
input representation. We have tested different fusion approaches to combine
information coming from conceptual and textual sources.

The results obtained are promising for snippets retrieval, where we reach
the second position despite the not very good performance of our approach for
document retrieval. This motivates our future work which will focus on improving
the document retrieval phase.
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Abstract. We present the submissions of aueb to the bioasq 7 doc-
ument and snippet retrieval tasks (parts of Task 7b, Phase A). Our
systems build upon the methods we used in bioasq 6. This year we
also experimented with models that jointly learn to retrieve documents
and snippets, as opposed to using separate pipelined models for docu-
ment and snippet retrieval. We also experimented with models based on
bert [5]. Our systems obtained the best document and snippet retrieval
results for all batches of the challenge that we participated in.

Keywords: Information retrieval · Document retrieval · Document
reranking · Snippet retrieval · Snippet extraction · Sentence selection ·
Biomedical question answering · Machine learning · Deep learning

1 Introduction

bioasq [26] is a biomedical document classification, retrieval, and question
answering competition. It provides, among other information, tuples contain-
ing questions, gold relevant documents, and gold relevant snippets of relevant
documents. All questions are expressed in natural language by human experts
of the biomedical field. For the document and snippet retrieval tasks, the com-
petitors receive a set of questions and must retrieve relevant documents and
then extract relevant snippets from the retrieved documents. The available doc-
uments are abstracts from a collection of approx. 28 million medline/pubmed
biomedical articles. In this paper, we provide an overview of the submissions of
aueb to the document and snippet retrieval tasks (parts of Task 7b, Phase A)
of bioasq 7.1

1 See http://bioasq.org/participate/challenges.
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Most related research for biomedical document retrieval and snippet retrieval
(or ‘snippet extraction’ or ‘sentence selection’) focuses mainly on one of the two
tasks. When tackling both tasks, researchers usually follow a pipelined architec-
ture where two models are trained separately and then run in sequence: docu-
ment retrieval followed by snippet extraction from the retrieved documents. A
major novel research direction of our participation this year is a new deep learn-
ing model which is jointly trained for both document and snippet retrieval. We
build upon our bioasq 6 models for document retrieval [3,17] and modify them
to also yield a relevance score for each sentence of the documents; we treat each
sentence as a snippet, hence we use the two terms as synonyms. Since neural doc-
ument retrieval methods are computationally intensive, we rely on conventional
information retrieval (ir) methods to pre-fetch a list of possibly relevant docu-
ments, and then rerank the top retrieved documents and their sentences using
the neural models. To our knowledge this is the first work on deep learning for
joint document and snippet reranking. We also experimented with pipelined and
joint models for document and snippet retrieval that employ bert [5].

Our systems scored at the top for all batches of the challenge we participated
in. Although a plain bert model outperformed the other methods we considered
for document retrieval, our joint document and snippet retrieval model obtained
substantially better snippet retrieval results, even without using bert and even
though it uses much fewer parameters than the corresponding pipelined models.
We make publicly available the database, code, and trained models.2

2 Document Retrieval Models

bioasq requires competitors to return a list of 10 relevant documents and 10
relevant snippets (from the 10 documents) per query. As already noted, we use
conventional (bm25-based) ir methods to pre-fetch possibly relevant documents,
which we then rerank using neural models. We experimented with two neural
models for document reranking, one based on pacrr [17] and one based on
bert [5]. pacrr was one of the best document retrieval methods in bioasq 6;
and bert has led to state of the art results in several tasks [5].

2.1 Term-PACRR

The first model we use for document retrieval is term-pacrr [3,17], a modi-
fication of pacrr [9].3 To train term-pacrr, we use mini-batches containing
randomly selected relevant and irrelevant documents (in equal numbers) from
the top N documents that the ir engine retrieves per training query, and we
minimize binary cross-entropy. As in [3], we use a final linear layer that com-
bines the term-pacrr score with traditional ir features like bm25, unigram and
bigram overlap, and idf-weighted unigram overlap. Consult [3] for details.

2 See https://github.com/nlpaueb/aueb-bioasq7.
3 term-pacrr is called pacrr-drmm in [17].

https://github.com/nlpaueb/aueb-bioasq7
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2.2 BERT Based Document Retrieval

and right contexts, and (b) the next sentence. In the second document retrieval
model, we employ bert [5], which has recently led to state of the art results
in several tasks, including document reranking on other datasets [20,23,30]. We
add a task-specific logistic regression classifier on top of bert, similar to other
deep learning architectures [17,19,25]. We pre-trained our own bert model on
the pubmed corpus using the titles and abstracts of the articles, and identical
parameter settings to the uncased bert large model [5].4 This is similar to
biobert [13], however unlike that work, we do not initialize the model with the
public pre-trained bert base instance, and we use a custom wordpiece model
[29] also trained on pubmed.

When fine-tuning bert on bioasq data or when using it a test time, we feed it
with the concatenation of a question and a (relevant or irrelevant) document. As
standard, a special [cls] token is added to the start of the concatenation, while
a [sep] token separates the question from the document (concatenated title and
abstract), as illustrated in Fig. 1. The output vector of bert for the [cls] token
is passed through a logistic regression layer (linear layer with sigmoid) to obtain
a bert-based score for the document. This score is then concatenated to extra
features of the document (bm25 score and string overlap features), which are
the same as in term-pacrr. Finally, another logistic regression layer is applied
to the concatenated vector to get the final score of the document.

Fig. 1. bert document ranking, with extra features added in a final layer.

During fine-tuning, negative samples (irrelevant documents to be concate-
nated with a training query) are drawn randomly from the non-relevant (accord-
ing to the expert annotators) documents in the list of top N documents that the
conventional ir system (the same as in the other methods) returned for the par-
ticular query. Critically, we found that incurring two losses per training instance
helped accuracy. The first loss is standard, the binary cross-entropy of the final

4 Max length was set to 512. Instances exceeding this threshold where truncated.
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document score. The second loss is also binary cross-entropy, but computed on
the bert-based score, before concatenating it with the extra features. The two
losses are summed. We found that this forced the model to use the bert layers
more effectively, otherwise the system tended to rely almost exclusively on the
additional features during training.

Similarly to [3], we also experiment with a high-confidence version of bert.5
In this model, only documents with scores (probabilities of being relevant)
greater than 0.01 were returned as relevant, hence fewer than 10 documents (the
maximum allowed in bioasq) might be returned. This helped improve snippet
retrieval as it focused that component only on the most relevant documents.

3 Snippet Retrieval Models

For snippet retrieval, we used two deep learning methods. The first one is the
‘basic cnn’ of [32], bcnn for short. It had the best snippet retrieval results in
bioasq 6 [3]. The second method, posit-drmm, pdrmm for short, had the best
document retrieval results in the experiments of [17], but here we use it to score
snippets, as a first step towards a joint model for document and snippet retrieval.

3.1 BCNN

bcnn [32] is a cnn-based snippet scoring method, which is fed with pairs con-
sisting of a query and a snippet (relevant or irrelevant). For each pair, it returns
an estimate of the probability that the snippet is relevant to the query. Following
[3], we concatenate the score of bcnn to extra features of the snippet (sentence):
the length of the sentence and the query (in tokens), the bm25 score of the sen-
tence compared to the query, the number of tokens in the sentence excluding
stopwords, the unigram and bigram token overlap of the sentence and the query,
and finally the sum of the idf scores of the overlapping tokens of the sentence
and query divided by the sum of the idf scores of the query’s tokens. A logistic
regression layer is then applied to obtain the final score of the snippet. As in [3],
bcnn is trained on (relevant and irrelevant) snippets sampled (in equal numbers)
from the relevant (gold) documents in the list of top N documents returned by
the ir engine. Consult [3] for further details.

3.2 PDRMM

The second model we investigate is a modification of posit-drmm [17], hence-
forth pdrmm. pdrmm was proposed for document scoring (reranking of docu-
ments retrieved by a conventional ir system), but here we use it for snippet
scoring (reranking the sentences of retrieved documents). We first describe the
original pdrmm, and then how we modified it to score snippets.

Given a query q = 〈q1, . . . , qn〉 of n query terms (q-terms) and a document
d = 〈d1, . . . , dm〉 of m terms (d-terms), pdrmm computes context-sensitive term
5 In [3], the high-confidence models were for another model, abel-drmm.
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embeddings c(qi) and c(di) from the static (e.g., word2vec) embeddings e(qi)
and e(di) by applying two stacked convolutional layers with trigram filters, resid-
uals [8], and zero padding to q and d, respectively.6

pdrmm then computes three similarity matrices S1, S2, S3, each of dimen-
sions n × m (Fig. 2). Each element si,j of S1 is the cosine similarity between
c(qi) and c(dj). S2 is similar, but uses the static word embeddings e(qi), e(qj).
S3 uses one-hot vectors for qi, dj , signaling exact matches. To each matrix (S1,
S2, or S3) we apply three row-wise pooling operators to extract 9 features for
each q-term: max-pooling (to obtain the similarity of the best match between
the q-term of the row and any of the d-terms), average pooling (to obtain the
average match of each q-term to all d-terms), and average of k-max (to obtain
the average similarity of the k best matches per q-term).7 We concatenate the
three features extracted from each row of the three similarity matrices (9 fea-
tures in total) and concatenate them to obtain a new matrix S′ of dimensions
n × 9 (Fig. 2, right). Each row of S′ indicates the similarity of the correspond-
ing q-term to any of the d-terms, through three different views of the terms
(one-hot, static, context-aware embeddings). Each row of S′ is then passed to a
Multi-Layer Perceptron (mlp) to obtain a single match score per q-term.8

Fig. 2. pdrmm scoring documents with respect to a query. The same model can be used
to score individual sentences with respect to a query, with different extra features.

6 In [17], a bilstm is used instead of convolutions, but the latter are faster and do not
degrade performance.

7 In our experiments, k = 5. We added the average pooling to pdrmm to balance the
other two pooling operators that favor long documents.

8 This mlp consists of one dense layer with 8 neurons and leaky relu activation
function, followed by a second dense layer with 1 output and no activation function.
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Each context-aware q-term embedding is also concatenated with the corre-
sponding idf score (Fig. 2, bottom left) and passed to another linear layer that
computes a score for each q-term. A SoftMax activation function is then applied
across all the q-term scores to compute the importance of each q-term (e.g.,
words with low idfs may not be helpful to answer the question).9 Let v be the
vector containing the n match scores of the q-terms, and u the vector of the cor-
responding n importance scores (Fig. 2, bottom). We extract an initial relevance
score for the document as r̂(q, d) = vTu, which is then concatenated with four
extra features: z-score normalized bm25 [24]; percentage of q-terms with exact
match in d (regular and idf weighted); percentage of q-term bigrams matched
in d. An mlp computes the final relevance r(q, d) from the five features.10

In its original form, pdrmm is trained on triples 〈q, d, d′〉, where d is a relevant
document from the top N that the ir engine (the same as in the other methods)
returned for query q, and d′ a randomly sampled irrelevant document among the
top N . Hinge loss is used, requiring r(q, d) to exceed r(q, d′) by a margin.

In this work, we also use pdrmm to score snippets (sentences) by feeding
it with query-snippet pairs, instead of query-document pairs, i.e., the d-terms
(top of Fig. 2) are now the tokens of a particular snippet s from a retrieved
document (relevant or irrelevant), and the output (bottom right of Fig. 2) is now
the relevance score r(q, s) of s. We also use different extra features when scoring
snippets with pdrmm, which are the same as in bcnn (Sect. 3.1), instead of the
extra features that are used when pdrmm scores documents. pdrmm is again
trained on triples 〈q, d, d′〉, where q is a query, while d and d′ are relevant and
irrelevant documents, respectively, sampled from the top N documents that the
ir engine returned for query q. Unlike the original pdrmm that scores documents,
we use binary cross-entropy loss when training pdrmm to score snippets, treating
the snippets of d that were selected by bioasq’s human annotators as relevant,
and all the other snippets from d and d′ as irrelevant.

4 Joint Document and Snippet Retrieval Models

4.1 JPDRMM

As pdrmm can be used for both tasks, we create a joint pdrmm-based model,
called jpdrmm, which given a query and a document, outputs relevance scores
for each sentence (snippet) of the document, along with a relevance score for
the entire document. jpdrmm applies the same process described in Sect. 3.2
to compute a score for each sentence in the document (Fig. 2, now operating
on sentences). Then the maximum score of all the sentences is selected and
concatenated to the extra features of the document (left part of Fig. 3), which

9 The importance scores of the q-terms can also be viewed as self-attention scores.
10 This mlp also consists of one dense layer with 8 neurons and leaky relu activation

function, followed by a second dense layer with no activation function.



AUEB at BioASQ 7: Document and Snippet Retrieval 613

are the same as when pdrmm scores documents.11 The score of the document is
computed by applying an mlp to the concatenated features.12 The scores of the
sentences are then revised to take into account the score of the entire document;
the intuition is that snippets from relevant documents are more likely to be
relevant. To do so, we concatenate the score of each sentence to the document
score (Fig. 3, right part), and pass each pair of sentence-document scores through
a logistic regression layer to obtain the final sentence score.

Fig. 3. The final layers of jpdrmm. The scores of the sentences (left) are generated by
pdrmm (Fig. 2) operating on sentences. The maximum sentence score is concatenated
with the external features of the document. An mlp produces the document score. A
logistic regression layer then revises the score of each sentence, taking into account the
original score of the sentence and the score of the document.

Like the original pdrmm, jpdrmm is trained on triples 〈q, d, d′〉, where q is a
query, and d, d′ are relevant and irrelevant documents, respectively, sampled from
the top N documents returned by the ir engine for q. In this case, however, we
apply a sentence splitter to d and d′, and use jpdrmm to obtain relevance scores
for d, d′, and each one of their sentences. We compute a document hinge loss
from the scores of d and d′ as when pdrmm scores documents, and a binary cross-
entropy loss for each sentence (relevant or irrelevant) of d and d′ as when pdrmm
scores sentences. The document hinge loss is added to the average sentence cross-
entropy loss (averaged over all the sentences of d and d′), and their sum is used
to train the entire model via backpropagation.

We create two versions of jpdrmm: one using pre-trained word2vec embed-
dings, and one using pre-trained embeddings obtained from the top layer of the
publicly available bert base instance [5].13 We call w2v-jpdrmm and bert-
jpdrmm the two versions, respectively. bert’s tokenizer splits words into sub-
word units (wordpieces) [29]. In bert-jpdrmm, in order to use idf scores of
entire words and compute exact matches across entire words, as in w2v-jpdrmm,
we reconstruct the words from the subword units before feeding them to the rest
11 We also experimented with other pooling operators to obtain the document score

from the sentence scores, including combinations of max-pooling, average pooling,
average of top k pooling, but they did not improve performance.

12 This mlp consists of one dense layer with 8 neurons and leaky relu activation
function, followed by a second dense layer with no activation function.

13 We also experimented with biobert [13], but there was no notable improvement.



614 D. Pappas et al.

of the model. Also, we use bert’s top-level embedding for the first wordpiece of
each reconstructed word as the pretrained embedding of that word.

5 Overall System Architecture

Figure 4 presents the architecture of our pipelined systems. The first step is
retrieving N documents using a conventional bm25-based ir engine given a
user question; see Sect. 6.1 below for details. Then a neural document retrieval
model reranks the N documents and selects the top Kd. The Kd documents are
reranked by a neural snippet retrieval model, which returns the top Ks snippets.
bioasq requires Kd = Ks = 10, and we set N = 100.14

Fig. 4. Architecture of our pipelined document and snippet retrieval systems. The ir
engine retrieves candidate relevant documents (left). A neural document retrieval model
ranks the retrieved documents and returns the top 10. Then a neural snippet retrieval
model ranks the snippets from the 10 documents and returns the top 10 snippets.

Figure 5 illustrates the architecture of our joint document and snippet
retrieval models. The same ir engine is used to retrieve N documents. Then a
joint model assigns relevance scores to the N documents and their snippets. We
return the Kd documents with the highest relevance scores, and the Ks snippets
with the highest relevance scores among all the snippets of the Kd documents.
We use the same N,Kd,Ks values as in the pipelined models.

6 Experiments

6.1 Data and Experimental Setup

The document collection consists of approx. 29M ‘articles’ (titles and abstracts)
from the ‘medline/pubmed baseline 2019’ collection.15 We discarded approx.
10M ‘articles’ that contained only titles, since very few of them had been judged
as relevant by the expert annotators for any question. We created an index of
14 Setting N to larger values had no impact on the final results.
15 See https://www.nlm.nih.gov/databases/download/pubmed_medline.html.

https://www.nlm.nih.gov/databases/download/pubmed_medline.html
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Fig. 5. Architecture of our joint document and snippet retrieval systems. The ir engine
retrieves candidate relevant documents. The joint neural model assigns scores to the
sentences of the retrieved documents and their snippets. We return the 10 documents
with the highest scores, and the 10 snippets of those documents with the highest scores.

the remaining approx. 19M articles using Galago.16 For indexing purposes, we
removed stopwords and applied Krovetz’s stemmer [12]. To train the neural mod-
els (or to fine-tune the bert-based ones), we used years 1–6 of the bioasq data
(2,647 questions), using batch 5 of year 6 as development set (100 questions).

In term-pacrr, bcnn, pdrmm (as sentence ranker), and w2v-jpdrmm, we
use the biomedical word2vec embeddings and the pre-computed idf scores
of [17]. We do not update the word embeddings when training these models.
Similarly, when training bert-jpdrmm, we use the same idf scores and we do
not update the bert instance that provides the wordpiece embeddings; recall
that we reconstruct the tokens from the wordpieces and use the first wordpiece
embedding for each reconstructed token in bert-jpdrmm. For tokenization, in
methods that do not use wordpieces, we rely on the ‘bioclean’ tool provided
by bioasq. Even for models using wordpieces, the features for the final logistic
regression layer are derived using ‘bioclean’ in order to have tokens consistent
with the same idf table used in the other models. A slightly modified version of
‘bioclean’ is also used when constructing the index of the ir engine. The same
‘bioclean’ version (plus stopword removal) is also applied to the question when
passing it as a query to the ir engine. In snippet retrieval, we use nltk’s English
sentence splitter.17

term-pacrr was trained using default settings from the public release.18 The
bert based document ranker (Sect. 2.2) was also trained using default settings
from the public release.19 The only exception was that we used a learning rate
of 5e−6 for fine-tuning, based on development set performance.

16 We used Galago version 3.10. Consult http://www.lemurproject.org/galago.php.
17 We used nltk v3.2.4. See https://www.nltk.org/api/nltk.tokenize.html.
18 See https://github.com/nlpaueb/aueb-bioasq6.
19 See https://github.com/google-research/bert.

http://www.lemurproject.org/galago.php
https://www.nltk.org/api/nltk.tokenize.html
https://github.com/nlpaueb/aueb-bioasq6
https://github.com/google-research/bert
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For bcnn, we used the publicly available code.20 bcnn was trained using the
settings that won last year’s snippet extraction task [3], using Adagrad [6], with
learning rate 0.08, and batch size 200. The model was trained for a maximum
of 50 epochs. We keep for testing the parameters of bcnn from the epoch with
the best snippet Mean Average Precision (map) score [16] on the development
set. Document and snippet map are the official scores for document and snippet
retrieval, respectively, in bioasq.

We re-implemented pdrmm (as a sentence ranker) in pytorch [21] replicat-
ing the code of [3]; we also implemented jpdrmm in pytorch.21 We trained
pdrmm and w2v-jpdrmm for a maximum of 20 epochs, and bert-jpdrmm for
a maximum of 4 epochs, selecting the parameters from the epoch with the best
development snippet map for pdrmm and document map the two jpdrmm ver-
sions. We also applied early stopping and stopped training when development
performance (snippet or document map) stopped improving for 4 consecutive
epochs. For the two jpdrmm versions, one could also monitor snippet map on
development data, instead of document map, or a combination of the two. We
plan to examine how this affects the performance of jpdrmm in future work.
w2v-jpdrmm, bert-jpdrmm, and pdrmm were trained using Adam [11] with
a learning rate of 0.01, β1/β2 = 0.9/0.999, and a batch size of 32.

6.2 Official Submissions

We submitted five different systems to bioasq 7 (Task 7b, Phase A), all of which
consist of components described above.

auebnlp-1: w2v-jpdrmm for both document retrieval and snippet extraction.
auebnlp-2: bert-jpdrmm for both document retrieval and snippet extraction.
auebnlp-3: pipeline consisting of term-pacrr for document retrieval, fol-
lowed by bcnn for snippet retrieval in batches 2 and 3, or pdrmm in batches 4
and 5.
auebnlp-4: pipeline consisting of bert for document retrieval, followed by
bcnn for snippet retrieval in batches 2 and 3, or pdrmm in batches 4 and 5.
auebnlp-5: pipeline of bert high confidence (Sect. 2.2, last paragraph) for
document retrieval, followed by bcnn for snippet retrieval in batches 2 and 3,
or pdrmm in batches 4 and 5.

In all five systems, after obtaining the top 10 documents and top 10 snippets,
we reranked the top 10 snippets by the scores of the documents they came from.
The goal was to promote snippets coming from highly relevant documents. In
the first two systems, which use jpdrmm versions, this final reranking of the
snippets made almost no difference, since jpdrmm internally revises the scores
of the snippets taking into account the scores of the documents they come from.

20 bcnn’s code is also available from https://github.com/nlpaueb/aueb-bioasq6.
21 The original code of pdrmm is also available from https://github.com/nlpaueb/

aueb-bioasq6. All the additional code of this paper will also be made available.

https://github.com/nlpaueb/aueb-bioasq6
https://github.com/nlpaueb/aueb-bioasq6
https://github.com/nlpaueb/aueb-bioasq6
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6.3 Results

Table 1 reports our test results (f1, map) for batches 2–5 of bioasq 7. We did
not participate in batch 1. We observe that the bert document ranker (used
in aueb-nlp-4) has the best document map scores in all batches; recall that
document map is the official document retrieval measure of bioasq and also
the measure we monitored on the development data to select the best training
epoch. The bert high confidence document ranker (used in aueb-nlp-5) has
the second best document map overall, but with greatly improved f1.

Table 1. Performance on bioasq Task 7b, Phase A (batches 2–5) for document and
snippet retrieval. Top Comp. is the top scoring submission from other teams.

Document retrieval Snippet retrieval

System Rank F-M. MAP GMAP System Rank F-M. MAP GMAP

Batch 2 Batch 2

aueb-nlp-1 9 17.84 7.41 0.66 auebnlp-1 1 18.55 14.38 0.19
aueb-nlp-2 10 18.23 7.41 0.62 aueb-nlp-2 3 17.64 12.90 0.28
aueb-nlp-3 5 19.05 7.71 0.75 aueb-nlp-3 6 11.11 6.25 0.13
auebnlp-4 1 19.11 8.49 0.67 aueb-nlp-4 5 10.96 6.43 0.14
aueb-nlp-5 2 34.43 8.30 0.49 aueb-nlp-5 2 19.01 13.62 0.23

Top Comp. 3 18.77 7.91 0.48 Top Comp. 4 12.12 8.93 0.04

Batch 3 Batch 3

aueb-nlp-1 4 23.80 10.41 1.18 auebnlp-1 1 24.72 22.06 0.81
aueb-nlp-2 2 24.49 11.21 1.56 aueb-nlp-2 2 25.63 21.97 0.89
aueb-nlp-3 6 22.66 9.86 1.04 aueb-nlp-3 7 14.43 9.90 0.28
auebnlp-4 1 24.71 11.99 1.51 aueb-nlp-4 5 15.44 11.26 0.37
aueb-nlp-5 3 40.34 11.02 1.64 aueb-nlp-5 3 24.56 19.21 0.85

Top Comp. 5 28.94 10.33 0.18 Top Comp. 4 16.17 14.04 0.09

Batch 4 Batch 4

aueb-nlp-1 4 20.56 9.51 1.01 aueb-nlp-1 2 24.40 20.86 0.65
aueb-nlp-2 3 20.51 9.68 0.83 auebnlp-2 1 23.65 21.14 0.75
aueb-nlp-3 5 19.42 9.09 0.83 aueb-nlp-3 7 17.79 11.49 0.53
auebnlp-4 1 21.48 10.34 1.12 aueb-nlp-4 9 17.91 11.16 0.56
aueb-nlp-5 2 37.83 10.15 1.16 aueb-nlp-5 3 24.67 18.21 0.98
Top Comp. 6 18.53 8.35 0.51 Top Comp. 4 17.23 15.27 0.13

Batch 5 Batch 5

aueb-nlp-1 3 9.90 3.68 0.06 aueb-nlp-1 3 8.04 5.81 0.02
aueb-nlp-2 6 9.00 3.55 0.06 auebnlp-2 1 8.18 6.31 0.03
aueb-nlp-3 5 9.91 3.66 0.07 aueb-nlp-3 8 5.81 3.87 0.02
auebnlp-4 1 11.20 4.25 0.10 aueb-nlp-4 6 6.53 4.16 0.02
aueb-nlp-5 2 20.12 3.99 0.08 aueb-nlp-5 2 9.89 6.17 0.03
Top Comp. 4 9.27 3.68 0.05 Top Comp. 4 6.56 4.99 0.01
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Interestingly, the joint model (used in aueb-nlp-1/2) outperformed com-
parable pipelined systems (aueb-nlp-1 vs. aueb-nlp-3, aueb-nlp-2 vs. aueb-
nlp-4) by a wide margin in snippet map. It obtained very competitive results
in snippet map even without using bert embeddings (aueb-nlp-1) and against
pipelines that used bert for document retrieval (aueb-nlp-4) and additional
reranking heuristics (aueb-nlp-5). Recall, also, that in the joint model we
selected the best training epoch by monitoring the document map on develop-
ment data, whereas for the snippet retrieval components of the pipelined models
(aueb-nlp-3/4/5) snippet map was monitored; hence, the snippet map scores of
the joint model might improve further by monitoring snippet map. We also note
that the joint models use much fewer trainable parameters than the pipeline
models (Table 1); and they outperform aueb-nlp-3, which was one of the best
systems of bioasq 6. It is also interesting that in both document and snippet
retrieval, there is no clear difference between aueb-nlp-1, which does not rely
on bert at all, and aueb-nlp-2, which uses bert to obtain word embeddings
(Table 2).

Table 2. Number of trainable parameters for systems submitted.

Model Number of parameters

aueb-nlp-1 5,793
aueb-nlp-2 3,541,551
aueb-nlp-3 16,519
aueb-nlp-4/5 (with bcnn for snippets) 109,499,902
aueb-nlp-4/5 (with pdrmm for snippets) 109,489,455

It is particularly interesting is that the joint model (aueb-nlp-1/2) outper-
forms the bert based high-confidence model (aueb-nlp-5). Similarly to [3], we
observed that passing only high-confidence retrieved documents to the snippet
ranking component in pipeline systems improved snippet retrieval greatly (com-
pare the snippet scores of aueb-nlp-4 vs. aueb-nlp-5), because it allowed the
snippet retrieval component to operate only on documents that were likely to
be relevant. However, jpdrmm did not require such heuristics. Instead, since it
models the fact that good snippets come from good documents and vice-versa,
it naturally selected snippets mostly from high confidence documents. Thus the
empirical results validate the hypothesis that joint modeling is beneficial. An
open question is why the joint models do worse on document ranking compared
to the pipelined models (aueb-nlp-4/5). This is likely due to bert (the doc-
ument scorer of aueb-nlp-4/5) being such a powerful model. A future line of
investigation is to build joint models that integrate bert to a larger extent,
instead of just providing word embeddings to jpdrmm as in bert-jpdrmm.



AUEB at BioASQ 7: Document and Snippet Retrieval 619

7 Related Work

7.1 Document Retrieval

Neural document ranking models [7,9,10,17,18] have only recently managed to
improve upon the rankings of traditional ir systems (e.g., rankings based on
bm25). See also [14] for caveats.

pacrr [9] uses a matrix containing the cosine similarities between each query
term embedding and each document term embedding; the multiple similarity
matrices of pdrmm [17] (Sect. 3.2, Fig. 3.2) are an extension of pacrr’s similarity
matrix. pacrr applies convolutions with multiple filters of kernel size 2 and 3
to its similarity matrix to capture bigram and trigram matches, respectively;
pdrmm skips these convolutions, since one of its similarity matrices already
contains similarities between context-aware embeddings. pacrr then employs
max-pooling (over the outputs of kernels of the same size) followed by row-
wise k-max pooling to obtain the k-best unigram, bigram, and trigram matches
between each query term and the entire document, producing 3k document-
aware features per query term; these pooling operations are again very similar
to the ones of pdrmm. The idf score of each query term is then appended to
its 3k features, and the features of all the query terms are then concatenated
into a single vector, which is passed to an mlp that produces the relevance score
of the document. The only difference between pacrr and term-pacrr [3,17]
(Sect. 2.1) is that the latter passes the features of each query term separately
to the mlp, obtaining a separate relevance score per query term, and then uses
a linear layer to combine the relevance scores.22 By contrast, pdrmm computes
a weighted sum of the feature vectors of the query terms (weighted by their
importance scores, bottom right of Fig. 1) and passes the weighted sum to the
mlp that produces the document’s relevance score.

term-pacrr’s final layers, which apply an mlp separately to document-
aware features of each query term and then combine the resulting relevance
scores of the query terms using a linear layer, are very similar to the corre-
sponding layers of drmm [7]. In drmm, however, the document-aware features
of each query term represent a histogram of (frequencies of buckets of) the cosine
similarities between the embedding of the query term and all the terms of the
document. These histogram representations are non-differentiable, hindering the
end-to-end training of the model via backpropagation. By contrast, all the mod-
els used in our work are fully differentiable, following [17].

The document retrieval model of Zhu et al. [33] was designed to handle med-
ical questions. It uses a bigru with self-attention [2,4] to produce a single query
embedding from the query’s word embeddings; and a hierarchical bigru [31] to
produce a single document embedding. The word-level bigru of the hierarchical
bigru reads the word embeddings of a single sentence of the document at a
time, turning each sentence into a sentence embedding; it also employs a cross-
attention mechanism between the word embeddings of the query and those of

22 We note again that term-pacrr is called pacrr-drmm in [17].
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the sentence. The sentence-level bigru reads the sentence embeddings and pro-
duces the document embedding using a self-attention mechanism. The relevance
score of the document is then computed by taking the element-wise product of
the query and document embeddings and feeding it to an mlp. Although we
hope to compare to the model of Zhu et al. in future work, we note that their
experiments were conducted on a dataset much smaller than bioasq’s, contain-
ing only 7.5k documents and 7.5k queries with only one relevant document per
query. Furthermore, the documents of Zhu et al.’s dataset were article sections
from a healthcare portal and the queries were produced by annotators looking
at a particular article. The annotators were not biomedical experts, hence their
queries and terminology were much simpler compared to bioasq’s, where the
annotators are biomedical experts and queries reflect real needs.

bert based models have recently been explored for document ranking. Most
approaches train shallow task-specific layers on top of bert [20,30], much as
in our bert based document retrieval model (Sect. 2.2, Fig. 1). MacAvaney
et al. [15] explored ways to combine elmo [22] and bert [5] with complex neural
ir models such as drmm [7] and pacrr [9]. It would be interesting to explore
similar ways to improve bert-jpdrmm (Sect. 4.1), e.g., by using cosine similar-
ity matrices (Fig. 2) computed on wordpiece embeddings coming from different
layers of bert, or by concatenating the embedding of bert’s [cls] token (Fig. 1)
with the extra document features in the final layers of jpdrmm (Fig. 3).

7.2 Snippet Extraction

bcnn (Sect. 3.1) is one of the several cnn-based models explored by Yin
et al. [32]. We used bcnn in our pipeline systems (Sect. 6.2), because it had
the best snippet retrieval results in bioasq 6 [3]. As we demonstrated with
pdrmm, however, neural document retrieval models can also be used to rank
snippets, and in our experiments pdrmm performed better than bcnn for snip-
pet retrieval, which is why it replaced bcnn in our pipeline systems in batches
4 and 5.

Amiri et al. [1] use context-sensitive autoencoders to create question and
sentence vectors. They compute the cosine similarity between the question and
sentence vectors and rank the sentences in the dataset. They experiment on three
datasets, including treq qa [27], which includes biomedical data. Their method
is unsupervised and performed competitively compared to former state-of-the-
art supervised models. However, it does not take into account the relevance of
the documents when ranking sentences.

Other neural models have also been proposed for snippet extraction in
biomedical question answering. Wang et al. [28] use a stacked bilstm that reads
the concatenation of the question and a candidate sentence. In each timestep,
the model produces a relevance score for the sentence, taking into account the
tokens read so far. Then a mean pooling operation extracts the final relevance
score of the sentence. Wang et al. combine the relevance score of the neural
model with a keyword matching score, in order to distinguish tokens with simi-
lar embeddings and to favor exact token matches. In pdrmm and jpdrmm, this
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effect is achieved by external overlap features in the final linear layer, but also
by including in the neural model a similarity matrix (view) with one-hot token
embeddings (Fig. 2). As in the model of Amiri et al. discussed above, the model
of Wang et al. does not take into account the relevance of the documents when
ranking sentences.

8 Discussion and Future Work

We presented the models, experiments, and results of the submissions of aueb for
the document and snippet retrieval tasks of bioasq 7. Our systems obtained the
best document and snippet retrieval results in the four batches we participated in.

We introduced a new jointly trained model for document and snippet
retrieval. The joint model outperformed comparable pipelined architectures by a
wide margin in snippet retrieval. It obtained very competitive results in snippet
retrieval even without using bert at all, and against pipelines that used bert
for document retrieval and additional reranking heuristics. On the other hand,
a bert based document ranker performed better at the document retrieval level
than the joint model. We aim to investigate if tuning the weights of the document
and snippet losses of the joint model could help it perform better in document
retrieval too. We also aim to integrate more tightly bert into our joint model,
e.g., by using similarity matrices based on embeddings coming from different
levels of bert, instead of using only the top-level bert embeddings (as in one
version of our joint model), and by adding the embedding of bert’s [cls] token
to the extra features of the joint model. Finally, we aim to extend the joint model
to also perform exact answer extraction (part of bioasq Task 7b, Phase B).
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Abstract. Task B Phase B of the 2019 BioASQ challenge focuses
on biomedical question answering. Macquarie University’s participa-
tion applies query-based multi-document extractive summarisation tech-
niques to generate a multi-sentence answer given the question and the set
of relevant snippets. In past participation we explored the use of regres-
sion approaches using deep learning architectures and a simple policy
gradient architecture. For the 2019 challenge we experiment with the
use of classification approaches with and without reinforcement learning.
In addition, we conduct a correlation analysis between various ROUGE
metrics and the BioASQ human evaluation scores.
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1 Introduction

The BioASQ Challenge1 includes a question answering task (Phase B, part B)
where the aim is to find the “ideal answer”—that is, an answer that would
normally be given by a person [12]. This is in contrast with most other question
answering challenges where the aim is normally to give an exact answer, usually
a fact-based answer or a list. Given that the answer is based on an input that
consists of a biomedical question and several relevant PubMed abstracts2, the
task can be seen as an instance of query-based multi-document summarisation.

As in past participation [6,7], we wanted to test the use of deep learning and
reinforcement learning approaches for extractive summarisation. In contrast with

1 http://www.bioasq.org.
2 https://www.ncbi.nlm.nih.gov/pubmed/.
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com/r/dmollaaliod/bioasq7b.
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past years where the training procedure was based on a regression set up, this
year we experiment with various classification set ups. The main contributions
of this paper are:

1. We compare classification and regression approaches and show that classifi-
cation produces better results than regression but the quality of the results
depends on the approach followed to annotate the data labels.

2. We conduct correlation analysis between various ROUGE evaluation metrics
and the human evaluations conducted at BioASQ and show that Precision
and F1 correlate better than Recall.

Section 2 briefly introduces some related work for context. Section 3 describes
our classification and regression experiments. Section 4 details our experiments
using deep learning architectures. Section 5 explains the reinforcement learn-
ing approaches. Section 6 shows the results of our correlation analysis between
ROUGE scores and human annotations. Section 7 lists the specific runs submit-
ted at BioASQ 7b. Finally, Sect. 8 concludes the paper.

2 Related Work

The BioASQ challenge has organised annual challenges on biomedical semantic
indexing and question answering since 2013 [12]. Every year there has been a
task about semantic indexing (task a) and another about question answering
(task b), and occasionally there have been additional tasks. The tasks defined
for 2019 are:

BioASQ Task 7a: Large Scale Online Biomedical Semantic Indexing.
BioASQ Task 7b: Biomedical Semantic QA involving Information Retrieval

(IR), Question Answering (QA), and Summarisation.
BioASQ MESINESP Task: Medical Semantic Indexing in Spanish.

BioASQ Task 7b consists of two phases. Phase A provides a biomedical ques-
tion as an input, and participants are expected to find relevant concepts from
designated terminologies and ontologies, relevant articles from PubMed, relevant
snippets from the relevant articles, and relevant RDF triples from designated
ontologies. Phase B provides a biomedical question and a list of relevant articles
and snippets, and participant systems are expected to return the exact answers
and the ideal answers. The training data is composed of the test data from all
previous years, and amounts to 2,747 samples.

There has been considerable research on the use of machine learning
approaches for tasks related to text summarisation, especially on single-
document summarisation. Abstractive approaches normally use an encoder-
decoder architecture and variants of this architecture incorporate attention [10]
and pointer-generator [11]. Recent approaches leveraged the use of pre-trained
models [2]. Recent extractive approaches to summarisation incorporate recurrent
neural networks that model sequences of sentence extractions [8] and may incor-
porate an abstractive component and reinforcement learning during the training
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Table 1. Summarisation techniques used in BioASQ 6b for the generation of ideal
answers. The evaluation result is the human evaluation of the best run.

System Abstractive approaches Extractive approaches

[7] (none) Regression & Reinforcement learning

[4] Fusion Maximum marginal relevance

[1] (none) Lexical chains

[9] Fine-tuned pointer generator coverage Learning to rank

stage [13]. But relatively few approaches have been proposed for query-based
multi-document summarisation. Table 1 summarises the approaches presented
in the proceedings of the 2018 BioASQ challenge.

3 Classification vs. Regression Experiments

Our past participation in BioASQ [6,7] and this paper focus on extractive
approaches to summarisation. Our decision to focus on extractive approaches
is based on the observation that a relatively large number of sentences from the
input snippets has very high ROUGE scores, thus suggesting that human anno-
tators had a general tendency to copy text from the input to generate the target
summaries [6]. Our past participating systems used regression approaches using
the following framework:

1. Train the regressor to predict the ROUGE-SU4 F1 score of the input sentence.
2. Produce a summary by selecting the top n input sentences.

A novelty in the current participation is the introduction of classification
approaches using the following framework.

1. Train the classifier to predict the target label (“summary” or “not summary”)
of the input sentence.

2. Produce a summary by selecting all sentences predicted as “summary”.
3. If the total number of sentences selected is less than n, select n sentences with

higher probability of label “summary”.

Introducing a classifier makes labelling the training data not trivial, since the
target summaries are human-generated and they do not have a perfect mapping
to the input sentences. In addition, some samples have multiple reference sum-
maries. [3] showed that different data labelling approaches influence the quality
of the final summary, and some labelling approaches may lead to better results
than using regression. In this paper we experiment with the following labelling
approaches:

threshold t: Label as “summary” all sentences from the input text that have a
ROUGE score higher than a threshold t.

top m: Label as “summary” the m input text sentences with highest ROUGE
score.
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As in [3], The ROUGE score of an input sentence was the ROUGE-SU4 F1
score of the sentence against the set of reference summaries.

We conducted cross-validation experiments using various values of t and m.
Table 3 shows the results for the best values of t and m obtained. The regres-
sor and classifier used Support Vector Regression (SVR) and Support Vector
Classification (SVC) respectively. To enable a fair comparison we used the same
input features in all systems. These input features combine information from the
question and the input sentence and are shown in Fig. 1. The features are based
on [5], and are the same as in [6], plus the addition of the position of the input
snippet. The best SVC and SVR parameters were determined by grid search.

– tf.idf vector of the candidate sentence.
– Cosine similarity between the tf.idf vector of the question and the

tf.idf vector of the candidate sentence.
– The largest cosine similarity between the tf.idf vector of candidate

sentence and the tf.idf vector of each of the snippets related to the
question.

– Cosine similarity between the sum of word2vec embeddings of the
words in the question and the word2vec embeddings of the words
in the candidate sentence. We used vectors of dimension 200 pre-
trained using PubMed documents provided by the organisers of
BioASQ.

– Pairwise cosine similarities between the words of the question and
the words of the candidate sentence. We used word2vec to compute
the word vectors. We then computed the pairwise cosine similarities
and selected the following features:
• The mean, median, maximum, and minimum of all pairwise

cosine similarities.
• The mean of the 2 highest, mean of the 3 highest, mean of the

2 lowest, and mean of the 3 lowest.
– Weighted pairwise cosine similarities where the weight was the

tf.idf of the word.

Fig. 1. Features used in the SVC and SVR experiments.

Preliminary experiments showed a relatively high number of cases where the
classifier did not classify any of the input sentences as “summary”. To solve this
problem, and as mentioned above, the summariser used in Table 3 introduces a
backoff step that extracts the n sentences with highest predicted values when
the summary has less than n sentences. The value of n is as reported in our prior
work and shown in Table 2.

Table 2. Number of sentences returned by the regression-based summarisers and the
backoff step of the classification-based summarisers, for each question type

Summary Factoid Yesno List

n 6 2 2 3
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The results confirm [3]’s finding that classification outperforms regression.
However, the actual choice of optimal labelling scheme was different: whereas
in [3] the optimal labelling was based on a labelling threshold of 0.1, our experi-
ments show a better result when using the top 5 sentences as the target summary.
The reason for this difference might be the fact that [3] used all sentences from
the abstracts of the relevant PubMed articles, whereas we use only the snippets
as the input to our summariser. Consequently, the number of input sentences is
now much smaller. We therefore report the results of using the labelling schema
of top 5 snippets in all subsequent classifier-based experiments of this paper.

Table 3. Regression vs. classification approaches measured using ROUGE SU4 F-
score under 10-fold cross-validation. The table shows the mean and standard deviation
across the folds. “firstn” is a baseline that selects the first n sentences. SVR and SVC
are described in Sect. 3. NNR and NNC are described in Sect. 4.

Method Labelling ROUGE-SU4 F1
Mean ± 1 stdev

firstn 0.252 ± 0.015

SVR SU4 F1 0.239 ± 0.009

SVC threshold 0.2 0.240 ± 0.012

SVC top 5 0.253 ± 0.013

NNR SU4 F1 0.254 ± 0.013

NNC SU4 F1 0.257 ± 0.012

NNC top 5 0.262 ± 0.012

0.22 0.23 0.24 0.25 0.26 0.27

4 Deep Learning Models

Based on the findings of Sect. 3, we apply minimal changes to the deep learning
regression models of [7] to convert them to classification models. In particular,
we add a sigmoid activation to the final layer, and use cross-entropy as the loss
function.3 The complete architecture is shown in Fig. 2.

The bottom section of Table 3 shows the results of several variants of the
neural architecture. The table includes a neural regressor (NNR) and a neural
classifier (NNC). The neural classifier is trained in two set ups: “NNC top 5”
uses classification labels as described in Sect. 3, and “NNC SU4 F1” uses the
regression labels, that is, the ROUGE-SU4 F1 scores of each sentence. Of interest

3 We also changed the platform from TensorFlow to the Keras API provided by Ten-
sorFlow.
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Fig. 2. Architecture of the neural classification and regression systems. A matrix of
pre-trained word embeddings (same pre-trained vectors as in Fig. 1) is used to find the
embeddings of the words of the input sentence and the question. Then, LSTM chains
are used to generate sentence embeddings—the weights of the LSTM chains of input
sentence and question are not shared. Then, the sentence position is concatenated
to the sentence embedding and the similarity of sentence and question embeddings,
implemented as a product. A final layer predicts the label of the sentence.

is the fact that “NNC SU4 F1” outperforms the neural regressor. We have not
explored this further and we presume that the relatively good results are due
to the fact that ROUGE values range between 0 and 1, which matches the full
range of probability values that can be returned by the sigmoid activation of the
classifier final layer.

Table 3 also shows the standard deviation across the cross-validation folds.
Whereas this standard deviation is fairly large compared with the differences in
results, in general the results are compatible with the top part of the table
and prior work suggesting that classification-based approaches improve over
regression-based approaches.

5 Reinforcement Learning

We also experiment with the use of reinforcement learning techniques. Again
these experiments are based on [7], who uses REINFORCE to train a global
policy. The policy predictor uses a simple feedforward network with a hidden
layer.

The results reported by [7] used ROUGE Recall and indicated no improve-
ment with respect to deep learning architectures. Human evaluation results are
preferable over ROUGE but these were made available after the publication of
the paper. When comparing the ROUGE and human evaluation results (Table 4),
we observe an inversion of the results. In particular, the reinforcement learning
approaches (RL) of [7] receive good human evaluation results, and as a matter of
fact they are the best of our runs in two of the batches. In contrast, the regres-
sion systems (NNR) fare relatively poorly. Section 6 expands on the comparison
between the ROUGE and human evaluation scores.
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Table 4. Results of ROUGE-SU4 Recall (R) and human (H) evaluations on BioASQ
6b runs, batch 5. The human evaluation shows the average of all human evaluation
metrics.

Run System Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

R H R H R H R H R H

MQ-1 First n 0.46 3.91 0.50 4.01 0.45 4.06 0.51 4.16 0.59 4.05

MQ-2 Cosine 0.52 3.96 0.50 3.97 0.45 3.97 0.53 4.15 0.59 4.06

MQ-3 SVR 0.49 3.87 0.51 3.96 0.49 4.06 0.52 4.17 0.62 3.98

MQ-4 NNR 0.55 3.85 0.54 3.93 0.51 4.05 0.56 4.19 0.64 4.02

MQ-5 RL 0.38 3.92 0.43 4.01 0.38 4.04 0.46 4.18 0.52 4.14

Encouraged by the results of Table 4, we decided to continue with our exper-
iments with reinforcement learning. We use the same features as in [7], namely
the length (in number of sentences) of the summary generated so far, plus the
tf.idf vectors of the following:

1. Candidate sentence;
2. Entire input to summarise;
3. Summary generated so far;
4. Candidate sentences that are yet to be processed; and
5. Question.

The reward used by REINFORCE is the ROUGE value of the summary
generated by the system. Since [7] observed a difference between the ROUGE
values of the Python implementation of ROUGE and the original Perl version
(partly because the Python implementation does not include ROUGE-SU4), we
compare the performance of our system when trained with each of them. Table 5
summarises some of our experiments. We ran the version trained on Python
ROUGE once, and the version trained on Perl twice. The two Perl runs have
different results, and one of them clearly outperforms the Python run. However,
given the differences of results between the two Perl runs we advice to re-run the
experiments multiple times and obtain the mean and standard deviation of the
runs before concluding whether there is any statistical difference between the
results. But it seems that there may be an improvement of the final evaluation
results when training on the Perl ROUGE values, presumably because the final
evaluation results are measured using the Perl implementation of ROUGE.

We have also tested the use of word embeddings instead of tf.idf as input
features to the policy model, while keeping the same neural architecture for the
policy (one hidden layer using the same number of hidden nodes). In particular,
we use the mean of word embeddings using 100 and 200 dimensions. These word
embeddings were pre-trained using word2vec on PubMed documents provided by
the organisers of BioASQ, as we did for the architectures described in previous
sections. The results, not shown in the paper, indicated no major improvement,
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Table 5. Experiments using Perl and Python versions of ROUGE. The Python version
used the average of ROUGE-2 and ROUGE-L, whereas the Perl version used ROUGE-
SU4.

Training on Python ROUGE Perl ROUGE

Python implementation 0.316 0.259

Perl implementation 1 0.287 0.238

Perl implementation 2 0.321 0.274

and re-runs of the experiments showed different results on different runs. Con-
sequently, our submission to BioASQ included the original system using tf.idf
as input features in all batches but batch 2, as described in Sect. 7.

6 Evaluation Correlation Analysis

As mentioned in Sect. 5, there appears to be a large discrepancy between ROUGE
Recall and the human evaluations. This section describes a correlation analy-
sis between human and ROUGE evaluations using the runs of all participants
to all previous BioASQ challenges that included human evaluations (Phase B,
ideal answers). The human evaluation results were scraped from the BioASQ
Results page, and the ROUGE results were kindly provided by the organisers.
We compute the correlation of each of the ROUGE metrics (recall, precision,
F1 for ROUGE-2 and ROUGE-SU4) against the average of the human scores.
The correlation metrics are Pearson, Kendall, and a revised Kendall correlation
explained below.

The Pearson correlation between two variables is computed as the covariance
of the two variables divided by the product of their standard deviations. This
correlation is a good indication of a linear relation between the two variables,
but may not be very effective when there is non-linear correlation.

The Spearman rank correlation and the Kendall rank correlation are two
of the most popular among metrics that aim to detect non-linear correlations.
The Spearman rank correlation between two variables can be computed as the
Pearson correlation between the rank values of the two variables, whereas the
Kendall rank correlation measures the ordinal association between the two vari-
ables using Eq. 1.

τ =
(number of concordant pairs) − (number of discordant pairs)

n(n − 1)/2
(1)
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It is useful to account for the fact that the results are from 28 independent sets
(3 batches in BioASQ 1 and 5 batches each year between BioASQ 2 and BioASQ
6). We therefore also compute a revised Kendall rank correlation measure that
only considers pairs of variable values within the same set. The revised metric
is computed using Eq. 2, where S is the list of different sets.

τ ′ =
∑

i∈S [(number of concordant pairs)i − (number of discordant pairs)i]
∑

i∈S [ni(ni − 1)/2]
(2)

Table 6 shows the results of all correlation metrics. Overall, ROUGE-2 and
ROUGE-SU4 give similar correlation values but ROUGE-SU4 is marginally bet-
ter. Among precision, recall and F1, both precision and F1 are similar, but pre-
cision gives a better correlation. Recall shows poor correlation, and virtually no
correlation when using the revised Kendall measure. For reporting the evalua-
tion of results, it will be therefore more useful to use precision or F1. However,
given the small difference between precision and F1, and given that precision
may favour short summaries when used as a function to optimise in a machine
learning setting (e.g. using reinforcement learning), it may be best to use F1 as
the metric to optimise.

Table 6. Correlation analysis of evaluation results

Metric Pearson Spearman Kendall Revised Kendall

ROUGE-2 precision 0.61 0.78 0.58 0.73

ROUGE-2 recall 0.41 0.24 0.16 −0.01

ROUGE-2 F1 0.62 0.68 0.49 0.42

ROUGE-SU4 precision 0.61 0.79 0.59 0.74

ROUGE-SU4 recall 0.40 0.20 0.13 −0.02

ROUGE-SU4 F1 0.63 0.69 0.50 0.43

Figure 3 shows the scatterplots of ROUGE-SU4 recall, precision and F1 with
respect to the average human evaluation4. We observe that the relation between
ROUGE and the human evaluations is not linear, and that Precision and F1
have a clear correlation.

4 The scatterplots of ROUGE-2 are very similar to those of ROUGE-SU4.
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7 Submitted Runs

Table 7 shows the results and details of the runs submitted to BioASQ. The
table uses ROUGE-SU4 Recall since this is the metric available at the time of
writing this paper. However, note that, as explained in Sect. 6, these results might
differ from the final human evaluation results. Therefore we do not comment
on the results, other than observing that the “first n” baseline produces the
same results as the neural regressor. As mentioned in Sect. 3, the labels used
for the classification experiments are the 5 sentences with highest ROUGE-SU4
F1 score.

Table 7. Runs submitted to BioASQ 7b

Batch Run Description ROUGE-SU4 R

1 MQ1 First n 0.4741

MQ2 SVC 0.5156

MQ3 NNR batchsize = 4096 0.4741

MQ4 NNC batchsize = 4096 0.5214

MQ5 RL tf.idf & Python ROUGE 0.4616

2 MQ1 First n 0.5113

MQ2 SVC 0.5206

MQ3 NNR batchsize = 4096 0.5113

MQ4 NNC batchsize = 4096 0.5337

MQ5 RL embeddings 200 & Python ROUGE 0.4787

3 MQ1 First n 0.4263

MQ2 SVC 0.4512

MQ3 NNR batchsize = 4096 0.4263

MQ4 NNC batchsize = 4096 0.4782

MQ5 RL tf.idf & Python ROUGE 0.4189

4 MQ1 First n 0.4617

MQ2 SVC 0.4812

MQ3 NNR batchsize = 1024 0.4617

MQ4 NNC batchsize = 1024 0.5246

MQ5 RL tf.idf & Python ROUGE 0.3940

5 MQ1 First n 0.4952

MQ2 SVC 0.5024

MQ3 NNR batchsize = 1024 0.4952

MQ4 NNC batchsize = 1024 0.5070

MQ5 RL tf.idf & Perl ROUGE 0.4520
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Fig. 3. Scatterplots of ROUGE SU4 evaluation metrics against the average human
evaluations.

8 Conclusions

Macquarie University’s participation in BioASQ 7 focused on the task of gen-
erating the ideal answers. The runs use query-based extractive techniques
and we experiment with classification, regression, and reinforcement learning
approaches. At the time of writing there were no human evaluation results,
and based on ROUGE-F1 scores under cross-validation on the training data we
observed that classification approaches outperform regression approaches. We
experimented with several approaches to label the individual sentences for the
classifier and observed that the optimal labelling policy for this task differed
from prior work.

We also observed poor correlation between ROUGE-Recall and human eval-
uation metrics and suggest to use alternative automatic evaluation metrics with
better correlation, such as ROUGE-Precision or ROUGE-F1. Given the nature
of precision-based metrics which could bias the system towards returning short
summaries, ROUGE-F1 is probably more appropriate when using at develop-
ment time, for example for the reward function used by a reinforcement learning
system.

Reinforcement learning gives promising results, especially in human evalua-
tions made on the runs submitted to BioASQ 6b. This year we introduced very
small changes to the runs using reinforcement learning, and will aim to explore
more complex reinforcement learning strategies and more complex neural models
in the policy and value estimators.
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Abstract. We propose SUSIE, a novel summarization method that can
work with state-of-the-art summarization models in order to produce
structured scientific summaries for academic articles. We also created
PMC-SA, a new dataset of academic publications, suitable for the task of
structured summarization with neural networks. We apply SUSIE com-
bined with three different summarization models on the new PMC-SA
dataset and we show that the proposed method improves the perfor-
mance of all models by as much as 4 ROUGE points.

Keywords: Text summarization · Natural language processing · Deep
learning

1 Introduction

Having informative summaries of scientific articles is crucial for dealing with the
avalanche of academic publications in our times. Such summaries would allow
researchers to quickly and accurately screen retrieved articles for relevance to
their interests. More importantly, such summaries would lead to high quality
indexing of the articles by (academic) search engines, leading to more relevant
academic search results.

Currently, the role of such summaries is played by the abstracts produced by
the authors of the articles. However, authors usually include in the abstract only
the contributions and information of the paper that they consider important and
ignore others that might be equally important to the scientific community [6].

A solution to the above problem would be to employ state-of-the-art
abstractive summarization approaches [13,15], in order to automatically cre-
ate short informative summaries of the articles to replace and/or accompany
author abstracts for machine indexing and human inspection. However, these
approaches have focused on the summarization of newswire articles, while aca-
demic articles exhibit several differences and pose major challenges compared to
news articles.

First of all, news articles are much shorter than scientific articles and the news
headlines that serve as summaries are much shorter than scientific abstracts.
Secondly, scientific articles usually include several different key points that are
c© Springer Nature Switzerland AG 2020
P. Cellier and K. Driessens (Eds.): ECML PKDD 2019 Workshops, CCIS 1168, pp. 636–645, 2020.
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scattered throughout the paper and need to be accurately included in a summary.
These problems make it difficult to use summarization models that achieve state-
of-the-art performance on newswire datasets for the summarization of academic
articles.

We propose SUSIE (StrUctured SummarIzEr), a novel training method that
allows us to effectively train existing summarization models on academic arti-
cles that have structured abstracts. Our method uses the XML structure of
the articles and abstracts in order to split each article into multiple training
examples and train summarization models that learn to summarize each section
separately. We call such a task structured summarization. We further contribute
a novel dataset consisting of open access PubMed Central articles along with
their structured abstracts. SUSIE can easily be combined with different summa-
rization models in order to address the problem of long articles and has been
found to improve the performance of state-of-the-art summarization models by
4 ROUGE points.

We also created PMC-SA (PMC Structured Abstracts), a novel dataset that
consists of academic articles from the biomedical domain. The articles for this
dataset were collected from the PubMed Central Open Access (PMC-OA) repos-
itory and follow the IMRD (Introduction, Methods, Results, Discussion) struc-
ture. The abstracts in this dataset are also structured in a similar manner and
each section of the full text can be paired with the corresponding section of the
abstract.

2 Related Work

2.1 Summarization Methods

Automatic text summarization methods fall into two categories. Extractive
methods [4,10] select the most informative sentences from the source text and use
them to construct a summary. On the other hand, abstractive methods [2,13,15]
compose a coherent summary by generating new text and paraphrasing. In this
work our main focus will be on the latter, because it is similar to the way that
humans summarize text.

Advances in recurrent neural networks (RNNs) have demonstrated impres-
sive capabilities of generating fluent language [1,16]. State-of-the-art summa-
rization methods use RNNs with the encoder-decoder architecture (or sequence-
to-sequence architecture). These methods usually treat the whole source text as
an input sequence, encode it into their hidden state and generate a complete
summary from that hidden state.

Strong results have been achieved by such models when combined with an
attention mechanism [3,11,14]. Adding a pointer-generator mechanism has been
shown to further improve results [15]. The pointer-generator mechanism gives
the model the ability to copy important words from the source text in addition
to generating words from a predefined vocabulary. Adding a coverage mecha-
nism has been shown to lead to even better results. [15]. The coverage mech-
anism prevents the model from repeating itself, which is a common problem
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with sequence-to-sequence models. The LSTM cells in the model of [15], were
replaced in [5] with a new type of RNN unit, called rotational unit of memory,
in order to overcome the fundamental limitation of LSTM cells in dealing with
long sequences. Recent work utilizes reinforcement learning and policy gradient
to further improve the performance of baseline models [2,13].

2.2 Summarization Datasets

Most of the summarization datasets that are found in the literature such as
Newsroom [7], Gigaword [12] and CNN/Daily Mail [8] are focused on newswire
articles. The average article lengths are relatively small and range from 50 words
(Gigaword) to a few hundred words (CNN/Daily Mail, Newsroom). The aver-
age summary lengths are also rather small and range from a single sentence
(Gigaword, Newsroom) to a few sentences (CNN/Daily Mail).

TAC 2014 (Text Analysis Conference 2014) is a well known dataset that
focuses on the summarization of (biomedical) academic articles. The articles
have an average of 9,759 words and the summaries an average of 235 words.
However, as it consists of just 20 articles, it is not useful for training complex
neural network summarization models. Another dataset of academic articles is
CSPubSum [4] which exploits ScienceDirect1 and uses the highlight statements
submitted by authors as target summaries for each article. CSPubSum consists
of approximately 10,000 articles and thus was mainly used for extractive sum-
marization.

Finally, the BioASQ challenge [17] includes a sub-task where participants
are given a question and a set of snippets, taken from academic biomedical
publications, containing the correct answer and are asked to produce paragraph-
sized summaries of theses snippets as ideal answers. BioASQ 2019 released a
training set of 2747 pairs of snippets with ideal answers. This could be considered
as a related dataset concerning query-focused summarization of academic papers.
Again this is too small to be helpful for training state-of-the-art abstractive
summarization methods.

3 Summarizing Academic Papers

3.1 Flat Abstract Summarization

A simple approach to summarizing academic papers would be to train sequence-
to-sequence models using the full text of the article as source input and the
abstract as reference summary. However, sequence-to-sequence models face mul-
tiple difficulties when given long input texts. A very long input sequence requires
the encoder RNN to run for a lot of time steps. This greatly increases the com-
putational complexity of the forward pass. To make things worse, the training
of the encoder on very long input sequences becomes increasingly difficult due
to the computational complexity of the backward pass. The training becomes
1 https://www.sciencedirect.com/.

https://www.sciencedirect.com/
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Table 1. The different sections that we annotate and the keywords associated with
them.

Section Keywords

introduction introduction, case

literature background, literature, related

methods methods, method, techniques, methodology

results result, results, experimental, experiments, experiment

discussion discussion, limitations

conclusion conclusion, conclusions, concluding

increasingly slower and in many cases the vanishing gradients prevent the model
from learning useful information.

A solution to this problem would be to truncate very long sequences (more
than 600 words), but this can result in serious information loss which would
severely affect the quality of the produced summaries.

Even harder is the training of a decoder with very long output sequences. In
this case, the computational complexity and memory requirements of the decoder
make it pointless to try and train a model with very long reference summaries.

Another problem of this straightforward approach, is that the different parts
of an academic paper are not equally important for the task of summarization.
Sections like the introduction include core information for the summary, while
others like the experiments are noisy and usually include little useful information.

3.2 SUSIE

SUSIE (StrUctured SummarIzEr) is a novel summarization method that exploits
structured abstracts in order to address the aforementioned problems.

Many academic articles, especially in the life sciences domain follow the typi-
cal IMRD structure with sections like introduction, background, methods, results
and conclusion. When the abstract of the article is structured it usually includes
similar sections too. We employed a very simple method that looks for specific
keywords in the header of each section in order to annotate both the article
and abstract sections. For example, sections that include keywords like methods,
method, techniques and methodology in their header are annotated as methods.
Table 1 presents the different section types and the keywords associated with
them.

Once the article and abstract sections are annotated, we pair each section
of the full text with the corresponding section of the abstract and create one
training example per section. We can then use one of the existing summarization
methods and train a model for the summarization of single sections. Summarizing
a single section of an article is a much easier task since the input and output
sequences are a lot shorter and the information is more compact and focused on
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Table 2. Per section type number of words for the articles in the PMC-SA dataset.

Section type Source length Abstract length

mean std mean std

introduction 570.26 381.40 58.25 41.00

methods 1,133.32 638.90 80.26 38.98

conclusion 152.08 178.14 49.92 23.83

specific aspects of the article. In addition, section annotation allows us to filter
out particular sections that are not useful for summarization.

At test time we extract the specified sections of the article and run the
summarization model for each of them in order to produce section summaries.
Then we combine those summaries in order to get the full summary of the article.

4 PMC Structured Abstracts

PubMed Central (PMC) is a free digital repository that archives publicly acces-
sible full-text scholarly articles that have been published within the biomedical
and life sciences journal literature. The PMC-SA (PMC Structured Abstracts)
dataset was created from the open access subset of PMC, comprising approxi-
mately 2 million articles. We used the XML format downloaded from the PMC
FTP server to create the dataset. Only the articles that have abstracts struc-
tured in sections were selected and included in the dataset. PMC-SA has a total
of 712,911 full text articles along with their abstracts. The full texts of the arti-
cles have an average length of 2,514 words and are used as source texts for the
summarization, while the abstracts have an average length of 260 words and
are used as reference summaries. Code and instructions for the creation of the
PMC-SA dataset will be made available online.2 When compared with the exist-
ing datasets discussed in Sect. 2.2 PMC-SA is clearly different in multiple ways.
The articles and summaries are significantly longer compared to the different
newswire datasets and this makes it a much harder task. Also, the new dataset
is a lot larger than both the TAC 2014 dataset and CSPubSum [4] that focus on
academic publications. This makes it suitable for the training of state-of-the-art
summarization models.

We can easily apply SUSIE on PMC-SA since the XML format allows us to
effectively split the full text and abstract into annotated sections. In Table 2 we
show detailed statistics about the source and abstract length for each section
type.

5 Experiments

As we mentioned, SUSIE can be combined with a number of different summariza-
tion models. In order to evaluate the effectiveness of SUSIE the three different
2 https://github.com/AlexGidiotis/PMC-StructuredAbstracts-Dataset.

https://github.com/AlexGidiotis/PMC-StructuredAbstracts-Dataset
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Table 3. Experimental results. Best result per evaluation measure is highlighted in
bold typeface.

Model ROUGE-1 F1 ROUGE-2 F1 ROUGE-L F1

Flat SUSIE Flat SUSIE Flat SUSIE

attention sequence-to-sequence 0.2833 0.3341 0.1043 0.1261 0.2619 0.3026

pointer-generator 0.3020 0.3591 0.1020 0.1416 0.2726 0.3179

pointer-generator + coverage 0.3300 0.3716 0.1142 0.1466 0.2893 0.3296

Table 4. Statistics about the training sets for the two experiments. In the flat abstract
experiment each training example is an article and the whole abstract is used as refer-
ence summary. With SUSIE we create an average of 2 examples per article. The source
inputs are article sections and the corresponding abstract sections are the reference
summaries.

Flat SUSIE

# training articles 641,994 641,994

# training examples 641,994 1,211,826

avg. source length (words) 1,451 677

avg. summary length (words) 260 130

summarization models that were described in Sect. 2.1 are trained and evaluated
on PMC-SA using both the flat abstract method from Sect. 3.1 and SUSIE.

The training set has 641,994 articles, the validation set has 35,309 articles and
the test set 10,111 articles. In all experiments we included for summarization only
the introduction, methods and conclusion sections because we have found that
these particular section selection gives us the best performing models. For the flat
abstract method, the selected sections are concatenated and used as source input
paired with the concatenation of the corresponding abstract sections as reference
summary. For SUSIE one example is created for each of the selected sections with
the corresponding abstract section as reference summary. In Tables 4 we provide
detailed statistics about the training data used in the two different methods.

5.1 Experimental Setup

We used the implementation of the three models provided by [15]3. The hyper-
parameter setup used for the models is similar to that of [15].

In order to speed up the training process we start off with highly truncated
input and output sequences. In more detail, we begin with input and output
sequences truncated to 50 and 10 words respectively and train until convergence.
Then we gradually increase the input and output sequences up to 500 and 100
words respectively.

3 https://github.com/abisee/pointer-generator.

https://github.com/abisee/pointer-generator
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When using the flat abstract method, we truncate each section to L
n words

before concatenating them to get the input and output sequences, where L is
the required article length and n is the number of extracted sections from this
article.

The truncation of an academic article to a total of 500 words is definitely
going to result in some severe information loss but we deemed it necessary due
to the difficulties described in Sect. 3.1. To get the coverage model we simply add
the coverage mechanism to the converged pointer-generator model and continue
training.

At test time, for the flat abstract method, we truncate each input section to
L
n with L = 500 words and concatenate them to get an input sequence of 500
words. Then we run beam search for 120 decoding steps in order to generate
a summary. For SUSIE each of the selected sections is truncated to 500 words
before we run beam search for 120 decoding steps to get a summary for each one
of them. Then we concatenate the individual summaries to get the summary of
the full article.

5.2 Results

We evaluate the performance of all models with the ROUGE family of met-
rics [9] using the pyrouge package4. In specific, we report F1 scores for ROUGE-
1, ROUGE-2 and ROUGE-L. ROUGE-1 and ROUGE-2 measure the overlap,
in unigrams and bigrams respectively, between the generated and the reference
summary. ROUGE-L measures the longest common subsequence overlap.

Table 3 presents the results of our experiments. We can see that the pointer-
generator model achieves higher scores than the simple attention sequence-to-
sequence and adding the coverage mechanism further improves those scores
which is in line with the experiments of [15].

We also notice that SUSIE improves the scores of the flat summarization app-
roach for all three models by as much as 4 ROUGE points. The performance of
the best model, pointer-generator with coverage, is improved by approximately
13%, 28% and 14% in terms of ROUGE-1, ROUGE-2 and ROUGE-L F1 score
respectively. It is clear that the flat approach suffers from information loss due
to the truncation of the source input. In the appendix we illustrate the differ-
ence in the quality of the summaries produced by the two different methods by
presenting generated examples for a real article.

6 Conclusion

This work focused on the summarization of academic publications. We have shown
that summarization models that perform well on smaller articles have difficulties
when applied on longer articles with a lot of diverse information like academic arti-
cles. We proposed SUSIE, a novel approach that allowed us to successfully adapt

4 https://pypi.org/project/pyrouge/0.1.3.

https://pypi.org/project/pyrouge/0.1.3
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existing summarization models to the task of structured summarization of aca-
demic articles. Also, we created PMC-SA, a new dataset of academic articles that
is suitable for the training of summarization models using SUSIE. We found that
training with SUSIE on the PMC-SA greatly improves the performance of sum-
marization models and the quality of the generated summaries.

Acknowledgements. We would like to thank the anonymous reviewers for their com-
ments that helped us significantly improve this work.

A Appendix

Here we will provide an example of summaries generated by the best performing
model, namely pointer-generator with coverage, for a sample article from the
test set. We provide two summaries, one generated from a model trained with
the flat method and another generated from a model trained with SUSIE. We
also provide the original abstract of the article for reference. One can find the
original article with PMCID PMC5051331 at the PMC website5.

Comparing the two generated summaries, we can see that the one generated
with SUSIE is superior to the flat one in terms of structure, readability and
factual correctness. When compared with the original abstract, we can see that
both summaries are not perfect but the one generated with SUSIE is in many
cases acceptable.

A.1 Reference Summary

Objective. To examine the efficacy of psychological and psychosocial interven-
tions for reductions in repeated self-harm.

Design. We conducted a systematic review, meta-analysis and meta-regression
to examine the efficacy of psychological and psychosocial interventions to reduce
repeat self-harm in adults. We included a sensitivity analysis of studies with a low
risk of bias for the meta-analysis. For the meta-regression, we examined whether
the type, intensity (primary analyses) and other components of intervention or
methodology (secondary analyses) modified the overall intervention effect.

Data Sources. A comprehensive search of medline, psycinfo and embase (from
1999 to june 2016) was performed.

Eligibility Criteria for Selecting Studies. Randomised controlled trials of
psychological and psychosocial interventions for adult self-harm patients.

Conclusions. Consideration of a psychological or psychosocial intervention over
and above treatment as usual is worthwhile; with the public health benefits of
ensuring that this practice is widely adopted potentially worth the investment.
However, the specific type and nature of the intervention that should be deliv-
ered is not yet clear. Cognitive–behavioural therapy or interventions with an
interpersonal focus and targeted on the precipitants to self-harm may be the
best candidates on the current evidence. Further research is required.
5 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5051331.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5051331
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A.2 Flat P-Gen + Coverage

Clinically treated non-fatal self-harm (we use the term self-harm henceforth) is
common in terms of adverse outcomes such as repetition of self-harm, suicide
and all-cause mortality; mental health morbidity, quality of life and physical,
psychological and social functioning, mental health morbidity, quality of life
and physical, psychological and social functioning. It is also costly in terms of
immediate and ongoing treatment of self-harm of 16.3% after 1 year and 7%
after 9 years. A more recent review of 177 studies from western and non-western
countries indicated little change in these estimates, with reported repetition of
self-harm of 16%, while the suicide rate was 1.6.

A.3 SUSIE P-Gen + Coverage

Objective. To evaluate the efficacy of psychological and pharmacological inter-
ventions for reducing repetition of self-harm in unselected populations, but again
highlight the poor quality of the evidence base in pooling data. In addition to
these cochrane reviews, a number of trials have been published and several sys-
tematic reviews produced that aim to highlight what interventions are most
often efficacious interventions (cbt) (and not problem-solving therapy).

Methods. We searched medline, embase, and the cochrane central register of
controlled trials (rct) published up to february 2016 to identify randomized
controlled trials evaluating the efficacy of psychological and psychosocial inter-
ventions to reduce repeat self-harm, (primary outcome) and to reduce suicidal
ideation, depression and hopelessness (secondary outcomes) using meta-analysis;
and (2) examine whether the type, intensity or other specific components of the
interventions, or study methodology, modify the pooled intervention effect using
meta-regression analysis.

Conclusions. our study is consistent with the updated cochrane review, which
in contrast to the original version showed no support for problem-focused (pre-
dominantly problem-solving therapy) interventions but a significant effect of
interventions. Our study has shown that psychological or psychosocial interven-
tions are effective overall, with cbt and psychodynamic interpersonal therapy
currently the most promising for implementation.
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Abstract. Using deep learning models on small scale datasets would
result in overfitting. To overcome this problem, the process of pre-
training a model and fine-tuning it to the small scale dataset has been
used extensively in domains such as image processing. Similarly for ques-
tion answering, pre-training and fine-tuning can be done in several ways.
Commonly reading comprehension models are used for pre-training, but
we show that other types of pre-training can work better. We com-
pare two pre-training models based on reading comprehension and open
domain question answering models and determine the performance when
fine-tuned and tested over BIOASQ question answering dataset. We find
open domain question answering model to be a better fit for this task
rather than reading comprehension model.

Keywords: Deep learning · Reading comprehension · Open domain
question answering

1 Introduction

Deep learning models have been widely used in several NLP tasks since the emer-
gence of large scale labelled datasets. In Question Answering (QA) specifically on
open domain, several neural network models have been introduced, such as Con-
volutional Neural Networks (CNN), Recurrent Neural Networks (RNN) using
GRUs or LSTMs and attention mechanisms, Self-attention networks (Transform-
ers), and Pretrained language models like ELMO, BERT which can be fine-tuned
to Question Answering task. Several kinds of Question Answering (QA) related
tasks are widely studied such as Answer Sentence Selection, Reading Compre-
hension and Open QA.

Reading Comprehension (RC) is a QA task where a question and a relevant
paragraph are given and the goal is to extract the answer string present in the
c© Springer Nature Switzerland AG 2020
P. Cellier and K. Driessens (Eds.): ECML PKDD 2019 Workshops, CCIS 1168, pp. 646–660, 2020.
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paragraph. The main assumption of this task is that the answer is present in the
paragraph, like in SQUAD v1.0 [12]. Variants of this task include unanswerable
questions such as in [11]. Answers are usually short phrases or entities. There is
a leaderboard on SQUAD dataset1 which showcases lot of models built for this
task [1,2,14].

Open QA is a QA task where a question is given and the goal is to retrieve
an answer. An answer has to be retrieved from a set of documents or pas-
sages of textual sources as Wikipedia articles or news. Answers are also usually
short phrases or entities. In NN approaches for Open QA, generally answers are
extracted using a reading comprehension model on the subset of the retrieved
documents or passages considered as relevant [3,4].

One of the main differences between Reading Comprehension (RC) and Open
QA tasks is that the answer must be present in the paragraphs (or documents)
for Reading Comprehension, but for Open QA this condition might not hold
true because the retrieved documents considered to be relevant to the question
might not contain the answer. Another characteristic is that in the Open QA
task, several paragraphs or documents contain the answer.

The BIOASQ Phase B task provides dataset for biomedical question answer-
ing which is a small scale labelled dataset for factoid questions (779 question
in BIOASQ 7). Each question is associated with multiple relevant paragraphs,
some irrelevant ones, and one or several answers. The work of [15] transforms
the BIOASQ Phase B dataset into the format of a Reading Comprehension task
where each question has an answer text along with the offset in a paragraph
which contains the answer. If a paragraph does not contain an answer, it is dis-
carded. This modification of the BIOASQ dataset enables to use a RC model
off-the-shelf.

By using such a model on BIOASQ dataset which is a small scale labelled
dataset, it will not result in similar performance as on the large scale open domain
datasets due to overfitting. One way of overcoming this problem as reported by
[6,15] is by pre-training a deep learning model on a large scale dataset and fine-
tuning the same model to the target small scale dataset. The intuition is that
the model learns better representations when learnt on a large scale dataset than
having a randomly initialized model trained only on the small scale dataset.

However the BIOASQ task resembles more towards an Open QA task than
a RC task because of the existence of paragraphs without answers even though
they are considered relevant. Thus we propose a new way to tackle the BIOASQ
task by using an Open QA model that takes into account this particularity.

We present a comparison of using different pre-training models (reading com-
prehension and open QA models) for BIOASQ question answering task and also
report the performance of a single model without pre-training and without fine-
tuning to show the importance of this process.

We report the performance of our model on different datasets and show that
in some cases it outperforms the state-of-the-art systems of BIOASQ [5,7,15] in
average.

1 https://rajpurkar.github.io/SQuAD-explorer/.

https://rajpurkar.github.io/SQuAD-explorer/
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2 State of the Art

Since BIOASQ 5, deep learning methods were introduced by [15] by automat-
ically adapting BIOASQ QA task as Reading Comprehension task and pre-
training the model with SQUAD v1.0 dataset. Similar approach of pre-training
and fine-tuning are used by [5] who pre-train their models using DRQA [1] and
BioBert [7] using Bert [2].

The models discussed in this article for the BIOASQ task use automatic
annotations as done by [16] who transform the BIOASQ dataset into reading
comprehension dataset by using the gold standard answer strings by searching
them in the snippets for exact match and are treated as answers if only they are
found in the snippets, i.e., the answer string must be a substring of the snippet.

As the NN models participating to BIOASQ are based on domain adaptation,
we first present general approaches used for that purpose before presenting how
it is done by the BIOASQ NN models.

2.1 Domain Adaptation

Pre-training is a training process started from randomly initialized model
weights. Fine-tuning is also a training process but started from the model weights
of pre-trained model and not randomly initialized model weights. Both pre-
training and fine-tuning together can be termed as Domain Adaptation when
the domain of data used for pre-training and fine-tuning are different. For exam-
ple, open domain and biomedical domain.

Pre-training and fine-tuning or domain adaptation can be done in several
ways. The general approaches are listed below.

Type 1 - The task remains the same for pre-training and fine-tuning. Pre-training
should be done on a large scale dataset from random initialization of parameters.
Fine-tuning should be done on a small scale dataset by loading the model param-
eters from pre-trained model rather than random initialization. This approach
is used when a target dataset is small scaled and using it to train a deep neural
network would result in overfitting. This type of pre-training is common in com-
puter vision field where models are pre-trained on Imagenet [13] and fine-tuned
on target image classification datasets.

Type 2 - The tasks are different for pre-training and fine-tuning. Pre-training
should be done on a large scale dataset from random initialization of parameters.
Fine-tuning should be done on a different model which uses certain parameters
from the pre-trained model which are frozen (non-trainable) and learns some
parameters which are randomly initialized on a different task. These approaches
in NLP were initially proposed for sequence labelling tasks by [9] which were later
evolved into ELMO (Embedding Language Models) by [10] which significantly
improved the state of the art across a broad range of challenging NLP tasks such
as question answering, textual entailment and sentiment analysis. This type of
method uses special contextual text embeddings obtained from the pre-trained
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models that are added as features into downstream models built for another
task.

Type 3 - The tasks are different for pre-training and fine-tuning. Pre-training
should be done on a large scale dataset from random initialization of parameters.
Fine-tuning should be done on the pre-trained model by modifying certain layers
to fit to the new task. Newly added layers can be randomly initialised and pre-
trained model layers together with newly added ones are trained on the new task.
This approach is similar to Type 2 approach with a difference that the reference
model can be slightly modified for target task rather than building a different
model. This type of approach proposed by [2] is being widely used in NLP tasks
such as question answering, textual entailment, sentiment analysis, named entity
recognition, relation extraction etc. which are easily done by modifying a final
output layer of the original model and fine-tuned. Fine-tuning can be done either
by learning the whole model parameters or learning only a part of the model by
freezing the rest.

Our work uses Type 1 domain adaptation and compares the results with Type
3 domain adaptation results reported by [7].

2.2 Deep Learning and Domain Adaptation in BIOASQ

The work by [16] comes under Type 1 domain adaptation using SQUAD v1.0
pre-training. Since the introduction of pre-trained language models by [9], works
by [2,10] have been used in several NLP tasks and have been proven to out-
perform many prior state of the art models. BioBert by [7] have been shown
to be useful in biomedical domain tasks such as named entity recognition, rela-
tion extraction and BIOASQ question answering. This work belongs to Type 3
domain adaptation methods where the authors use Bert model by [2] and re-
train it on the same task but on biomedical domain texts. Later this model is
modified for different biomedical tasks and tested. This method, as reported in
the paper [7], fetches state of the art scores on BIOASQ QA task which is listed
in Table 3 under BioBert column.

3 Question Answering Tasks and Models

In this section, we describe the two kinds of question answering tasks and the
related models we used for domain adaptation towards biomedical domain.

3.1 Tasks

Question Answering (QA) is a field of research which lies in the intersection
of Natural Language Processing and Information Retrieval disciplines. Several
types of tasks exists which are commonly referred as Question Answering.

In this article, we focus on Reading Comprehension (RC) task a.k.a Machine
Reading task, and Open Domain Question Answering a.k.a Open QA or Open
Question Answering.
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Reading Comprehension task contains questions, a relevant paragraph and
answers from the paragraph. RC is also called as Answer Extraction because the
answer is known to be present in the paragraph.

Open QA task contains questions and their short answers without any para-
graphs. Open QA can be formulated as a parent task which involves two child
tasks, (1) Retrieving the relevant paragraphs for a question and (2) Extracting a
short answer from the paragraphs. In Open QA, the first task is generally referred
as paragraph selection or answer sentence selection and the second task is often
modelled as Reading Comprehension although there exists several relevant and
irrelevant paragraphs. Open QA models should distinguish if the paragraph is
relevant and then extract the answer unlike the RC models.

BIOASQ phase B task is a question answering task with questions in biomed-
ical domain. For a question, there are relevant documents, paragraphs, answers
given. Below is an example from the dataset.

Q: Which calcium channels does ethosuximide target?
A: T-type calcium channels
P1: ..neuropathic pain is blocked by ethosuximide, known to block
T-type calcium channels,..
P2: Theta rhythms remained disrupted during a subsequent week
of withdrawal but were restored with the T-type channel blocker
ethosuximide.

The goal of BIOASQ question answering task is to extract the correct answer
from supporting data. As shown in the example, one paragraph (P1) has the gold
standard answer and the other (P2) does not (i.e. it does not contain the exact
match of the answer string). Therefore this resembles more like an Open QA
task than a Reading Comprehension task.

The evolution of deep learning methods led to the emergence of large scale
datasets for these two types of tasks in open domain Question Answering. We
use two models for RC and Open QA which are shown in the Fig. 1 and are
described below.

3.2 Reading Comprehension - DRQA Model

DRQA’s document reader developed by [1] is a simple LSTM model for Reading
Comprehension task which takes as input a question and a paragraph and aims at
extracting an answer from the paragraph. As per the assumption of the RC task,
the answer is always present inside the paragraph as a substring. An overview
of the model can be seen on the left figure of Fig. 1. Both the question and the
paragraph are tokenized and their word embeddings are used for the model i.e.
question words Q = {q1, ....., qm} and paragraph words S = {s1, ....., sn} are
sequences which are encoded using an embedding layer of dimension D.

E(Q) = {E(q1), .., E(qm)} (1)

E(S) = {E(s1), .., E(sn)} (2)
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Fig. 1. Left: DRQA - Paragraph Reader (RC task). Right: PSPR - Paragraph Selector
and Paragraph Reader model (Open QA task)

A pre-attention mechanism captures the similarity between paragraph words
and question words in the same layer. For this purpose, a feature Falign shown
in Eq. 3 is added as a feature to the LSTM layer.

Falign(pi) = Σjai,jE(qj) (3)

Where ai,j is,

ai,j =
exp (α(E(si)) · α(E(qj))

Σj′ exp(α(E(si)) · α(E(qj′))
(4)

which computes the dot product between nonlinear mappings of word embed-
dings of question and paragraph.

They are followed by a 3-layer Bidirectional LSTM layers for both question
and sentence encodings.

{E(q1), .., E(qn)} = Bi-LSTM({Ẽ(q1), .., Ẽ(qn}) (5)

{E(s1), .., E(sn)} = Bi-LSTM({Ẽ(s1), .., Ẽ(sn}) (6)

These LSTM states are connected to two independent classifiers that use a
bilinear term to capture the similarity between paragraph words and question
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words and compute the probabilities of each token being start or end of the
answer span.

Pstart(i) ∝ exp (piWsq) (7)

Pend(i) ∝ exp (piWeq) (8)

During prediction, we choose the best span from token i to token i′ such that
i ≤ i′ ≤ i + 15 and Pstart(i) × Pend(i′) is maximized.

To make the scores compatible across paragraphs in one or several retrieved
documents, unnormalized exponential is used and an argmax is taken over all
considered paragraph spans for the final predictions which are offset to start and
end of an answer span in the paragraph.

Answer probability for the answer span can be computed among several other
answer spans as shown in Sect. 3.3 in Eq. 9. This probability score can be used
to return top 5 answers for BIOASQ task which is explained in Sect. 4.2.

3.3 Open QA - PSPR Model

PSPR model is an Open QA model by [8] whose overview is presented in the
right figure of Fig. 1. This model has two parts, namely Paragraph Selector
(PS) and Paragraph Reader (PR) in a cascade fashion. Although PSPR model
contains a Reading Comprehension task submodule for answer extraction, the
main difference comes from learning the answer extraction module using the
paragraph probabilities computed by the paragraph selector. Paragraphs for
the questions are retrieved using an information retrieval technique. Then the
Paragraph Selector model predicts a probability distribution Pr (pi|q, P ) over
all the retrieved paragraphs where P is the set of paragraphs for the question.

The Paragraph Reader model extracts answer spans as shown in the DRQA
model and predicts a probability Pr (a|q, pi) for each answer span where pi is
ith paragraph in Paragraph set P .

The reader model gives two probabilities (one for start and one for end token
given by two classifiers) as described in Eqs. 7 and 8. The answer probability
Pr(a|q, P ) is computed as shown below:

Pr (a|q, pi) =
∑

j

Pr
(
aj
s

)
Pr

(
aj
e

)
(9)

The answer with highest probability is returned as the final prediction.
The Paragraph Selector uses tokenized question words Q = {q1, ....., qm}

and tokenized paragraph words P = {p1, ....., pn} which are encoded using an
embedding layer of dimension D.

E(Q) = {E(q1), .., E(qm)} (10)

E(P ) = {E(p1), .., E(pn)} (11)

A RNN layer encodes the contextual information of the sequence.

{E(q1), .., E(qm)} = RNN({Ẽ(q1), .., Ẽ(qm}) (12)
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{E(p1), .., E(pn)} = RNN({Ẽ(p1), .., Ẽ(pn}) (13)

Using this hidden representation, a self attention operation is applied to get
the question representation q:

q̂ =
∑

j

αjq̂j (14)

where αj encodes the importance of each question word against the other
question words which is calculated as:

αi =
exp (wbqi)∑
j exp (wbqj)

(15)

Where w is the learnt weight vector. Finally, the probability of each paragraph
is calculated via a max-pooling and a softmax layer as shown below:

Pr (pi|q, P ) = softmax

(
max

j

(
p̂j
iWq

))
(16)

where W is a learnt weight matrix.
Since not all the paragraphs contain an answer in the Open QA setting, the

probability scores from Eq. 16 should indicate if there exists an answer or not.
While training, the paragraphs containing the answer are highlighted as 1

and the rest as 0. And while testing, the paragraph with highest probability
is chosen to extract the answer. Combining the two probabilities, the overall
answer is chosen by choosing the highest probable answer from Pr(a|q, P ) for a
question q which is calculated as :

Pr(a|q, P ) =
∑

pi∈P

Pr (a|q, pi) Pr (pi|q, P ) (17)

For Paragraph Reader, the DRQA model can be used directly as shown in
the Fig. 1 with small differences. During training the reader model extracts the
answer only when there is an answer in it. i.e. when the paragraph probability
score (Eq. 16) of that paragraph is 1. During testing, the reader model extracts
the answer from the paragraph which has the highest probability score.

Only difference while adapting this to BIOASQ is that number of answers
to be extracted for BIOASQ is top 5 and not 1. Because of this, instead of
choosing from only the top most probable paragraph, we select top 5 answers
from combined probability scores in Eq. 17, which might consider 1 or several
paragraphs to extract answers from.

3.4 Domain Adaptation for BIOASQ Task

Pre-training and fine-tuning or domain adaptation can be done in several ways,
the following is a general abstraction of the two processes:
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– Type 1
• Build a reference model (Model R) for task A.
• Train the Model R with a sufficiently large scale dataset on task A.
• Save the Model R weights and model.
• DO NOT randomly initialize Model R weights, instead use the saved

weights of model R from the previous step.
• Train the Model R again on a small scale target dataset on task A.
• Predict and Evaluate.

– Type 2
• Build a reference model (Model R) for task A.
• Train the Model R with a sufficiently large scale dataset on task A.
• Save the Model R weights and model.
• Build a model from scratch (Model S) for task B.
• Model S is built to use some features from model R.
• Initialize the model S weights randomly (apart from the Model R features

which are used right away).
• Train the Model S on a large or small scale target dataset on task B.
• Predict and Evaluate.

– Type 3
• Build a reference model (Model R) for task A.
• Train the Model R with a sufficiently large scale dataset on task A.
• Save the Model R weights and model.
• Build a Model S, which is built upon Model R (by Adding or Modifying

the input or output layers of Model R to work on task B).
• Initialize the model S weights randomly (All of Model R features can

be used right away, or some partially used and partially randomized for
training).

• Train the Model S on a large or small scale target dataset on task B.
• Predict and Evaluate.

In this work, we apply Type 1 domain adaptation.

The Data for Pre-training. Two datasets correspond to each of the two tasks:
SQUAD V1.0 dataset for RC task and QUASAR-T dataset for Open QA task
and we show below their differences.

– QUASAR-T which is based on Trivia questions is generated synthetically, and
SQUAD is annotated manually by humans on a crowd-sourcing platform.

– Each question in QUASAR-T is associated to 100 sentence-level passages
retrieved from ClueWeb09 dataset based on Lucene, whereas SQUAD 1.0 has
1 relevant paragraph.

– Some paragraphs in QUASAR-T do not have an answer.2

2 SQUAD 2.0 is a variant of SQUAD dataset which contains questions without
answers. We do not use this because the reference models also do not use v2.0
to pre-train.
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Comparing the above differences with BIOASQ dataset, the QUASAR-T
dataset resembles more closely to BIOASQ than that of SQUAD v1.0 due to the
following reasons.

– BIOASQ data has more than 1 relevant paragraphs per question.
– Some paragraphs do not have an answer.

4 Experiments and Results

For fine-tuning the models we use BIOASQ datasets. The statistics of different
sets are reported in the Table 1.

Table 1. Datasets used in the experiments along with their splits. The numbers rep-
resent number of questions.

Datasets Train Dev Test

BIOASQ 4b 427 59 161

BIOASQ 5b 544 75 150

BIOASQ 6b 685 94 161

SQUAD v1.0 87,599 10,570 9,533

QUASAR-T 37,012 3,000 3,000

Table 2. Results reporting the importance of Pre-Training and Fine-Tuning a model.
DRQA model by [1] is used for these experiments. S.Acc is Strict Accuracy, L.Acc is
Lenient Accuracy (the correct answer is in the top 5) and MRR is Mean Reciprocal
Rank.

Datasets Metrics No-Pre No-Fine Pre+Fine

4b S.Acc 08.98 23.96 24.00

L.Acc 16.56 35.26 39.21

MRR 11.36 28.40 29.34

5b S.Acc 25.91 32.17 32.43

L.Acc 34.86 45.58 47.73

MRR 29.27 36.75 38.37

6b S.Acc 13.40 26.24 26.72

L.Acc 27.08 40.60 43.72

MRR 19.20 32.57 33.80

Average S.Acc 16.09 27.45 27.71

L.Acc 26.16 40.48 43.55

MRR 19.94 32.57 33.83
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4.1 Importance of Pre-training and Fine-Tuning

To show the importance of Pre-Training and Fine-Tuning for domain adaptation
to biomedical domain, we experimented three approaches on a single model
DRQA without altering any hyperparameters. (Default parameters as used by
[1]3)

(1) No-Pre model is the DRQA model trained on BIOASQ dataset only.
(2) No-Fine model is the DRQA model trained on SQUAD v1.0 dataset only.
(3) Pre+Fine is the DRQA model trained on SQUAD v1.0 dataset and fine-

tuned on BIOASQ dataset.
Results are shown in the Table 2 for different BIOASQ test sets. When a

model is only trained on a small dataset like BIOASQ, the results are very low
as shown in the column No-Pre. When a model is trained on a large dataset
like SQUAD v1.0, the model can be straight away used to predict results on the
biomedical dataset. No-Fine shows an improvement doing so, against No-Pre.
Lastly, Pre+Fine pre-training on a large scale dataset and fine-tuning on the
biomedical dataset shows an improvement over the other approaches. This set
of experiments show that the best approach is to do pre-training and fine-tuning
on smaller domain specific datasets.

4.2 Experiments with the Two QA Modellings: DRQA and PSPR

In this section, we experiment mainly with the two models for a Reading Com-
prehension task and an Open QA task.

For studying the modelling of the BIOASQ QA task as a Reading Com-
prehension task, we use SQUAD v1.0 dataset for pre-training and experiment
with the DRQA model. For studying its modelling as an Open QA task, we use
QUASAR-T dataset for pre-training and experiment with PSPR model.

We also experiment using the paragraph probabilities for reranking the
DRQA answers and choosing the top 5. As the PSPR model is a cascaded
model with paragraph selector and paragraph reader, we use the paragraph
probabilities predicted by the paragraph selector and multiply them with the
answer probabilities obtained using DRQA model to select the top 5 answers
which have combined higher probabilities. Note that this approach is not the
same as cascaded PSPR model because the PSPR model’s reader model uses
the paragraph probabilities to learn the extraction of answers which might have
a different impact.

For obtaining top 5 answers with DRQA model, if there are more than 5
paragraphs for the question, we take 1 answer from each paragraph and choose
top 5 based on the answer probabilities. We do this to make sure each para-
graph’s top answer is contributed towards top 5 answers. If there are less than
5 paragraphs, we take top 5 answers based on answer probabilities to keep it
simple.

Results are shown in Table 3 for different BIOASQ test sets. We compare
different model results with BioBert scores reported in [7]. The scores from
3 https://github.com/facebookresearch/DrQA.

https://github.com/facebookresearch/DrQA
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Table 3. DRQA is the Reading Comprehension model by [1], PSPR is the Open
QA model by [8], DRQA+PS is answers chosen with scores by multiplying answer
probabilities of DRQA with Paragraph Selector probabilities of PSPR. SOTA scores
are reported by [7] who average the best scores from each batch (possibly from multiple
different models). Results from BIOASQ 4b, 5b and 6b test sets. 7b test set cannot be
evaluated yet due to lack of gold standard answers. S.Acc is Strict Accuracy, L.Acc is
Lenient Accuracy and MRR is Mean Reciprocal Rank. Experiments are done with the
original BIOASQ data.

Datasets Metrics BioBert by [7] DRQA DRQA+PS PSPR

4b S.Acc 36.48 24.00 26.22 30.28

L.Acc 48.89 39.21 32.33 40.34

MRR 41.05 29.34 26.54 34.19

5b S.Acc 41.56 32.43 30.62 46.59

L.Acc 54.00 47.73 47.86 53.76

MRR 46.32 38.37 36.96 49.55

6b S.Acc 35.58 26.72 26.50 43.91

L.Acc 51.39 43.72 42.16 51.34

MRR 42.51 33.80 32.07 45.70

Average S.Acc 37.87 27.71 27.78 40.26

L.Acc 51.43 43.55 40.78 48.48

MRR 43.29 33.83 31.85 43.14

PSPR model shows that the performance is better than BioBert on Strict and
Lenient accuracy on 5b and 6b test sets. By taking paragraph probability into
account PSPR allows to better rank top 1 correct answer than BioBert which
extracts answers only from the longer pre-processed paragraphs which have cor-
rect answers.

Although PSPR has a reader model similar to DRQA, considering the para-
graph probability seems to improve the answer extraction in PSPR model.

4.3 Experiments with Longer Contexts (Modified BIOASQ Data)

For the BIOASQ task we noted that the method used by [7] with BioBert modi-
fies the original paragraphs. For computing the BioBert model, the authors have
retrained the original Bert model by [2], using Pubmed and PMC articles. For
applying it on the BIOASQ task, the authors use longer documents (instead of
the actual snippets) from Pubmed corresponding to the data given by BIOASQ
in the “documents” field to access the Pubmed documents for each question.
Therefore the modification of the dataset leads to different results for BioBert
compared to the performance on the regular BIOASQ dataset. The exact pre-
processing of BIOASQ dataset in order to do this is not very clear from the
paper, however the authors release the modified dataset in their repository4.
4 https://github.com/dmis-lab/biobert.

https://github.com/dmis-lab/biobert
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Table 4. Experiments with data containing longer contexts (Document level) by [7].
DRQA is a Reading Comprehension model by [1]. BioBert-Unaltered is the original
BIOASQ dataset with questions and paragraphs which contain answers. Biobert by [7] is
the modified BIOASQ dataset where the paragraphs are longer paragraphs (documents
from respective articles), where all the models are pre-trained on SQUAD v1.0 dataset
and finetuned on BIOASQ dataset. SOTA scores are reported by [7] who average the
best scores from each batch (possibly from multiple different models). Results from
BIOASQ 4b, 5b and 6b test sets. 7b test set cannot be evaluated yet due to lack of
gold standard answers. S.Acc is Strict Accuracy, L.Acc is Lenient Accuracy and MRR
is Mean Reciprocal Rank.

Datasets Metrics SOTA DRQA BioBert-Unaltered BioBert by [7]

4b S.Acc 20.59 18.49 13.08 36.48

L.Acc 29.24 32.51 18.54 48.89

MRR 24.04 23.88 15.48 41.05

5b S.Acc 41.82 28.92 22.84 41.56

L.Acc 57.43 46.54 32.46 54.00

MRR 47.73 35.88 25.94 46.32

6b S.Acc 25.12 21.70 16.35 35.58

L.Acc 40.20 41.51 22.61 51.39

MRR 29.28 28.60 18.72 42.51

Average S.Acc 29.18 23.03 17.42 37.87

L.Acc 42.29 40.18 24.53 51.43

MRR 33.68 29.45 20.04 43.29

In order to evaluate the importance of this data modification, we did three
experiments: (1) DRQA with longer contexts (2) BioBert with unaltered data
from BIOASQ (3) BioBert results with modified paragraphs and as reported by
[7] in their paper.

The results are shown in Table 4. The results of BioBert is as presented in [7]
where the authors have fine-tuned the models first using SQUAD v1.0 dataset
and adapted it to BIOASQ data. We use the modified dataset to experiment
it with the DRQA model to determine if it would improve the performance of
the pre+fine DRQA model as reported in Table 2. We got lower performances
to that of the DRQA model trained on the original BIOASQ data.

For comparison, we try the BioBert model on the original BIOASQ data i.e.
paragraphs given by BIOASQ data and not pre-processed. The results in Table 4,
under the column BioBert-Unaltered represents these results. It is evident that
the modification performed on the BIOASQ data fetches better results using
BioBert model.
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5 Conclusion

In this work we have shown the importance of pre-training and fine-tuning pro-
cess a.k.a domain adaptation for biomedical domain question answering. We
have also compared two QA models based on i.e. (1) Reading Comprehension
task (2) Open QA task, and found that the performance is better when using
an Open QA model than a Reading Comprehension model.

Based on a different pre-processing done by [7] on the biomedical dataset
by using longer contexts from documents than shorter contexts, we found that
the Reading Comprehension model performs worse on the pre-processed longer
contexts compared to the shorter contexts originally given by BIOASQ data.

On the other end, a large pre-trained language model such as BERT performs
much better on the pre-processed longer contexts than shorter contexts. Future
work shall focus on training BERT model on Open QA task which will better
suit the BIOASQ dataset.

Acknowledgements. This work is funded by the ANR project GoAsQ (ANR-15-
CE23-0022).
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Abstract. The field of question answering has gained greater atten-
tion with the rise of deep neural networks. More and more approaches
adopt paradigms which are based primarily on the powerful language
representations models and transfer learning techniques to build efficient
learning models which are able to outperform current state of the art
systems. Endorsing this current trend, in this paper, we strive to take
a step towards the goal of answering yes/no questions in the field of
biomedicine. Specifically, the task is to give a short answer (yes or no)
for a question written in natural language, finding clues including in a
set of snippets that are related with this question. We propose three dif-
ferent deep neural network models, which are free of assumptions about
predefined specific feature functions, while the key elements of these are
the ELMo embeddings, the similarity matrices and/or sentiment infor-
mation. The results have shown that incorporating the sentiment, we can
improve the performance of a yes/no question answering system while the
proposed learning models significantly outperform the BioASQ baseline.

Keywords: Yes/no question answering · BioASQ challenge · ELMo
embeddings · Deep neural networks

1 Introduction

The recent rise of deep neural networks is having a significant impact on the field
of question answering. Especially after the introduction of the SQuAD bench-
mark [8], more and more approaches adopt deep learning techniques, while a lot
of effort has been put into building powerful and general language representation
models, such as BERT [1] and ELMo [7]. Furthermore, using transfer learning,
models built on a specific classification task can be reused on another task with
improved results compared to building a model from scratch trained on the latter
task [15].

This interesting view of solving tasks has influenced biomedical question
answering too. In the BioASQ [10] challenge, which provides a benchmark for the
evaluation of biomedical question answering systems, more and more approaches
adopt the above paradigm (i.e. language representations and transfer learning)
to build efficient models that overcome the previous state of the art. For example,
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BioBERT [5], a fined-tuned version of BERT in biomedical text, has achieved
state of the art results in biomedical question answering, while previously, pre-
trained word embeddings were being used in the task of biomedical question
answering [2,12].

In this paper, endorsing this current perspective in question answering, we
deal with this task focusing on yes/no question type. Especially, using the defi-
nition provided by BioASQ, our aim is to give an answer (yes or no) given a set
of snippets that are related with a question. This task is quite similar with the
reading comprehension (RC) task but it differs in some points:

1. In RC, only one snippet is related with a question and it is important that
the answer is included in this. In contrast, we must cope with several snippets
written by different authors and no one guarantees that the answer is part of
the snippets or inferred from these.

2. The sub language of biomedical domain is complex and there are plenty of
biomedical terms making the task of building a representative language rep-
resentation model a difficult task. On the other hand, the RC is based on
general English which means that a large amount of resources around the
web can be used to build a useful language representation model.

An additional issue, we must address, is the nature of the problem of yes/no
question answering. Particularly, most of the current approaches (excluding those
in yes/no question answering) are focused on finding part of text in the given
textual sources (i.e. snippets), whereas in our case, the answer is inferred by the
given textual sources.

The main contribution of this paper dealing with the above challenges is the
introduction of three different deep learning architectures. The first one is based
on ELMo embeddings. The second one extends the first one by enriching the
feature space with sentiment information. The last one exploits the similarity
between the words of a question and the snippets to build a similarity matrix that
is given as input to a deep neural network. Furthermore, we show that sentiment
has impact to yes/no question answering. To the best of our knowledge, these
architectures have not been used in yes/no question answering.

The rest of this paper is organized as follows. Section 2 describes our methods.
Section 3 presents experimental results in BioASQ 2019 along with results on the
dataset provided by the BioASQ. Section 4 makes an overview of the existing
approaches in yes/no question answering focusing on systems participated in the
BioASQ challenge. Finally, Sect. 5 presents the conclusions of this work.

2 Methods

We present three methods for yes/no question answering. We use ELMo embed-
dings in two of our methods to represent the textual sources, one of which incor-
porates sentiment information by leveraging SentiWordnet [3]. Our last approach
uses a similarity matrix, where each cell is the cosine similarity between a word
from the question and a word from the snippets, which is passed as input to a
neural network.
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2.1 ELMo Embeddings

In the first step, the question and the related snippets are passed through the
ELMo layers (one layer that gets the question as input and the other that gets
the snippets). These layers are responsible for converting the question and each
snippet to multi-dimensional vectors. Let us denote the question vector as q and
each snippet vector as pi where 1 ≤ i ≤ m and m is the number of snippets.
Next, we concatenate all vectors (X = [q; p1; p2; ...; pm]) to build a joint repre-
sentation of question and snippets. The produced vector is then passed through
a bidirectional LSTM that is fully connected with a two-layered neural network:

H = BILSTM(X)
dense1 = ReLU(W1 ∗ H + b1)

dense2 = Sigmoid(W2 ∗ dense1 + b2)

where W1,W2 are the weights of each layer and b1, b2 the corresponding offsets
(biases). Because yes/no question answering can be considered as a binary clas-
sification problem, the last layer (dense2) consists of one unit which corresponds
to the target of the learning model (no = 0, yes = 1).

We used two ELMo layers instead of one, without sharing the weights across
the network because the training parameters must be updated independently.
Particularly, the ELMo layer getting the question as input, should pay more
attention to words such as “do”, “does”, “is”, “are” etc. and to the syntax of
the question which is different from the syntax of a snippet.

2.2 ELMo Embeddings and Sentiment

As previously, we converted the given question and snippets to multi-dimensional
vectors. However, we also used SentiWordnet to get the sentiment scores for each
word included in the question and snippets. SentiWordnet maps each word to a
triple of sentiment scores (positive, negative, neutral score).

To build the question and snippets sentiment vectors we considered
Algorithm 1. Let us denote the sentiment question vector as qs =
(qs1, qs2, ..., qsn) where qsi is the sentiment score of the i-th word contained
in the question. For snippets, we denote the snippets sentiment vectors as
psi = (psi1, psi2..., psim), where psij is the sentiment score of the j-th word
contained in the i-th snippet. The sentiment vectors update the question vector
as follows:

a = ReLU(W1 ∗ qs + b1)
b = tanh(W2 ∗ a + b2)

probs = Softmax(W3 ∗ b + b3)
mult = q ◦ probs

where ◦ denotes the element-wise multiplication between question vector and
question sentiment vector. With a similar way, we update the snippets with the
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sentiment scores. However, on top of the last equation we apply bidirectional
LSTM. Defining the last function as H we concatenated the outputs as follows:
X = [mult;H], which is fully connected with a two-layered neural network as in
the first method.

Result: Sentiment Vector
vectorS = [] ;
for word ∈ text do

pos,neg,neuta = SentiWordnetWrapper(word)b;
if pos > neg then

if pos > neut then
vectorS.append(pos);

else
vectorS.append(neut);

end
else

if neg > neut then
vectorS.append(-neg);

else
vectorS.append(neut);

end
end

end
Algorithm 1. Text to Sentiment Vector

a The neutral score in SentiWordnet is referred as objective score
b SentiWordnet returns the sentiment scores of a specific synset but a word could

correspond to many of these synsets, thus, we built a wrapper function that
finds the most common synset corresponds to the given word and returns the
sentiment scores of this synset.

Sentiment is an important information for yes/no question answering because
it helps us to recognize agreements/contradictions between the given question
and the related passages. Considering the question “Is the protein Papilin
secreted?”, the passage “the protocadherin cdh-3, and two genes encoding
secreted extracellular matrix proteins, mig-6/papilin and him-4/hemicentin.”
agrees with the question because there aren’t negative words to transform the
passage to a negative statement.

2.3 Similarity Matrix

Instead of passing the question and snippets as input to a neural network, we
built a similarity matrix. We first use pre-trained word vectors to represent
the words of both the question and the snippets. Then, we estimate the cosine
similarity for each pair of question and snippets words. Thus, each row in the
similarity matrix corresponds to the similarities of a question word with all
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the words contained in the snippets. This similarity matrix (Smatrix) passes
through the following equations:

a = BILSTM(Smatrix)
dense1 = tanh(W1 ∗ a + b1)

dense2 = Sigmoid(W2 ∗ dense1 + b2)

The inspiration of this work was from [13] which proposes a QA Matrix where
each cell is the semantic similarity between a term of a question and a term of
an answer. However, our similarity matrix encodes the similarity between words
of the question and words from snippets. Furthermore, our bidirectional LSTM
captures the dependencies between the words in snippets where each word is a
vector and each dimension of this vector corresponds to the similarity of this
word with a word of the question.

Although, recurrent neural networks aim to process sequences, the similarity
matrix fits as input to these networks, considering as timesteps the rows of the
similarity matrix and as dimensionality of the input, the columns of the matrix.

3 Experimental Setup and Results

To build our models, we used the BioASQ benchmark1, which contains 745
yes/no questions along with their related snippets. 67% of these pairs of questions
and snippets was used as training set and the rest 33% as validation set. We
used the ELMo embeddings available at TensorFlow Hub2 and the pre-trained
word2vec embeddings provided by BioASQ3. Our architectures were built with
the Keras framework4. We set the batch size to 24, because a larger number
would lead to fewer updates of the model weights slowing down convergence.
We used the Adam optimizer [4] because it works well in practice using the
default learning rate (0.001), while larger learning rates cause divergence of the
training criterion. Binary cross entropy was used as loss function for training
the supervised neural network via the back-propagation algorithm. We used the
SentiWordnet from the nltk5.

Figure 1 shows the training and validation loss of our methods. Typically,
the validation loss should be similar to, but slightly higher than, the training
loss. However, in our cases, this doesn’t happen. The reason is the class weight
that is used during training while, in the validation step, it is not defined. Thus,
during training the “no” class gets more attention than during the validation.
Furthermore, the convergence of the first and the last methods happens earlier
than in the second method. We believe that this happens because the second
method incorporates additional information (i.e. sentiment scores) to the model.
Thus, the model must put more effort to incorporate this information in its

1 http://participants-area.bioasq.org/Tasks/7b/trainingDataset/.
2 https://www.tensorflow.org/hub.
3 http://participants-area.bioasq.org/tools/BioASQword2vec/.
4 https://keras.io/.
5 http://www.nltk.org/.

http://participants-area.bioasq.org/Tasks/7b/trainingDataset/
https://www.tensorflow.org/hub
http://participants-area.bioasq.org/tools/BioASQword2vec/
https://keras.io/
http://www.nltk.org/
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(a) ELMo (b) ELMo + Sentiment (c) Similarity Matrix

Fig. 1. Training and validation loss of our methods

(a) ELMo (b) ELMo + Sentiment (c) Similarity Matrix

Fig. 2. Training and validation accuracy for our methods

feature space. In Fig. 2, we present the accuracy of each method both for training
and validation. We observe that with ELMo and sentiment scores, we achieve the
best accuracy before the model overfits on the training set. One phenomenon that
we also observe is the increase of the validation accuracy despite the overfitting.
This happens because the dataset is imbalanced, consequently, answering some
questions randomly as yes, the accuracy is being increased. To participate in
BioASQ 2019, we selected those models with the best accuracy before the model
overfits on the training set.

Table 1 summarizes the results of our participated methods against the
BioASQ baseline. As we observe, in 3/5 batches the architecture of ELMo embed-
dings fits better to the test sets rather than that architecture with the similarity
matrix. Furthermore, sentiment seems to improve the MaF1 score in test batch
5. Finally, all methods overcome the BioASQ baseline excluding test batch 2
where our approach on Similarity Matrix is slightly worse than the baseline.

Based on the BioASQ leaderboard6, our team (auth-qa-*7) is at the 2nd
place in the first three batches, 5th in the fourth batch and 4th in the fifth
and final batch. Furthermore, we observed that in some cases the performance
of our systems is worse than the performance of other participated systems
(e.g. BioBERT-DMIS, google-*-input) for a test batch, while there are some
batches in which our systems overcome them. This means that there aren’t clear
evidences about a state of the art system in the challenge.

6 http://participants-area.bioasq.org/results/7b/phaseB/.
7 This is the prefix of our systems’ names in the BioASQ Leaderboard.

http://participants-area.bioasq.org/results/7b/phaseB/
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Table 1. MaF1 score for each approach on each test batch - BioASQ 2019. Bold
indicates the best score in a particular batch.

Systems Batches - MaF1

1 2 3 4 5

ELMo embeddings .5397 .6296 .4866 .5490 .5658

ELMo embeddings + Sentiment – – – – .6274

Similarity matrix – .4223 .5165 .5461 .4697

BioASQ baseline .4727 .4258 .1481 .4348 .4643

4 Related Work

Our work shares the high-level goal of answering yes/no questions with many
works before us. Due to the fact that we cannot do full justice of related works
given space constraints, we focus on two works participating in the BioASQ
challenge.

Yes/No question answering can be considered as a binary classification prob-
lem where a supervised model learns to predict the truthiness of a question. In
this direction, the OAQA system [14] uses a set of hand-written features that
were extracted from the given question and snippets to build a binary classifier.
Our work shares the main idea with the OAQA system. Particularly, we also
consider the yes/no question answering as a binary classification task as well as
we incorporate sentiment in one of our methods which helped to improve the
accuracy. However, we enforce non-linear functions with millions of parameters
to better map the input textual sources to the answer. Furthermore, we use a
language representation model to capture the syntax and semantics of the raw
input sources (i.e. questions and snippets) letting the model to learn from these
representations to predict the answer rather than from a predefined set of fea-
tures provided by an expert. Finally, instead of incorporating sentiment as a
single feature in our model, we firstly find the sentiment of each word of ques-
tion and snippets and next we input question and snippets sentiment vectors in
the model where each dimension corresponds to the sentiment of a specific word
either in question or in a snippet from the set of snippets.

A score mechanism was enforced by [9] to answer yes/no questions. Par-
ticularly, they used SentiWordnet to get the sentiment score for each word of
each snippet. Then, they calculated the sentiment score for each snippet while
the decision for the answer either as “yes” or “no” is based on the number of
positive and negative snippets. We also use SentiWordnet to get the sentiment
scores for each word of a question and snippets, however our aim is to use these
sentiment scores as additional information in the feature space of our learning
model rather than making these scores the central part of our methods.

Although, answering yes/no questions is very challenging in biomedicine, a
few works have been proposed to solve this task in BioASQ challenge, either
because the dataset provided by BioASQ was extremely imbalanced and those
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participants who answered yes to the questions got very good results (e.g. [6]),
or because the dataset was quite small and one cannot build efficient learning
models. However, the rise of transfer learning and fine-tuned language repre-
sentation models as well as the introduction of MaF1 to BioASQ challenge as
additional measure to evaluate yes/no question answering systems, motivated
the participants to deal with the task this year.

5 Conclusions

In this work, we present three methods for solving the yes/no question answering
task. The incorporation of sentiment improved the final results w.r.t the MaF1
score. We expect that if we used language representation models fine-tuned on
biomedical texts (e.g. BioBERT), the results would be better. Grid search, ran-
dom search or even hyper-parameter optimization could be considered for tun-
ing our models. The presented methods overcome the BioASQ baseline while we
observed that despite the imbalanced dataset and without exhausted tuning, the
models can capture some negative cases presented in the test sets.
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Abstract. Biomedical question answering is a great challenge in NLP
due to complex scientific vocabulary and lack of massive annotated cor-
pora, but, at the same time, is full of potential in optimizing in critical
ways the biomedical practices. This paper describes the work carried
out as a part of the BioASQ challenge (Task-7B Phase-B), and targets
an integral step in the question answering process: extractive answer
selection. This deals with the identification of the exact answer (words,
phrases or sentences) from given article snippets that are related to
the question at hand. We address this problem in the context of fac-
toid and summarization question types, using a variety of deep learning
and semantic methods, including various architectures (e.g., Dynamic
Memory Networks and Bidirectional Attention Flow), transfer learning,
biomedical named entity recognition and corroboration of semantic evi-
dence. On the top of candidate answer selection module, answer predic-
tion to yes/no question types is also addressed by incorporating a sen-
timent analysis approach. The evaluation with respect to Rouge, MRR
and F1 scores, in relation to the type of question answering task being
considered, exhibits the potential of this hybrid method in extracting
the correct answer to a question. In addition, the proposed corroborat-
ing semantics module can be added on top of the typical QA pipeline to
gain a measured 5% improvement in identifying the exact answer with
respect to the gold standard.

Keywords: Question Answering · Text comprehension · Attention ·
Dynamic Memory Networks · Biomedical embeddings · Semantic
analysis · Entity corroboration · Transfer learning

1 Introduction

Question Answering (QA) is one of the most challenging Natural Language Pro-
cessing (NLP) tasks, which requires advanced capabilities such as causal reasoning
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and semantic inferences, generally referred to as Natural Language Understanding
(NLU).

In the life science domains, such as biomedical, there exists a huge potential
for both improving the existing practices and developing optimized methods for
automatic discovery. Neural-based extraction techniques are gaining significant
importance with the fast advancements of deep learning methodology and archi-
tectures. With the Stanford’s freely available machine comprehension generic
dataset, SQUAD1, the interest in machine comprehension increased at an expo-
nential rate [21]. But the availability of training data becomes a restriction for
specific domains, one being the biomedical domain.

Transfer learning2, weakly supervised automated annotation3, and synthetic
data generation [23] are proposed for solving such issues, but the extent of the
improvement is still to be defined. In the biomedical domain for instance, a major
challenge is to deal with a highly complex vocabulary, specific abstractions and
polysemy.

The availability of specific domain information contributes however heavily
to domain language understanding. BioASQ [24] is one such initiatives in the
biomedical domain which provides datasets for the evaluation of the main steps
involved in the question answering process. The BioASQ challenge4 includes
multiple tasks, providing an end-to-end pipeline to improve the way we discover
relevant information from the scientific literature (in this case, Pubmed articles),
such as semantic indexing, information retrieval (IR), question answering (QA)
and summarization.

This paper presents results for the BioASQ Task B-Phase B, where the focus
is to predict an answer to a given question, given the contexts (i.e., relevant snip-
pets of support information from Pubmed) with respect to the question made
available. Based on the question type, the goal is to predict the exact answer.
The challenge includes four types of questions: yes/no, factoid, list, and summary
types. In the summary type, the ideal answer is assumed to be the precise span or
rephrase, while in the factoid type of question, the answer is considered to be one
of the top-5 candidates representing the text spans extracted from the relevant
snippets. Among the various modules in a QA system, answer extraction repre-
sents the module which decides the candidates, that is the contexts’ sub-spans
from which the best answer can be derived. Existing approaches towards this
decision often contain a ranking mechanism of candidates using either typical
NLP processing methods like feature-based cues [17], or more recently, neural
methods and embedding spaces. The goal of this work is to integrate the best
deep learning approaches for question answering, while outlining and mitigating
their limits in the biomedical domain. We explore deep learning machine com-
prehension modules, which outputs the candidate answers ranked in the order
of their probability to be most relevant to the question at hand. The evaluation

1 https://stanford-qa.com.
2 http://ruder.io/transfer-learning/.
3 https://hazyresearch.github.io/snorkel/.
4 http://bioasq.org/.
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http://ruder.io/transfer-learning/
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is done separately for each question type, and, in this work, we propose adapted
techniques to each type of question in the BioASQ challenge, excluding list, for
which deeper semantic analysis is deemed necessary.

One problem that we identify in general deep QA systems is that the answer
contexts are targeted, partially by most candidates, but this may not be always
done with the best precision: additional residual contextual text can remain as
a part of the candidate answer.

The efficacy of deep learning methods made it possible to obtain very good
results even in specific domains, even in the lack of sufficient data (since trans-
fer learning we can mitigate some of these issues). But, at the same time, the
learned representation denotes still a lack of understanding of the semantics
behind complex biomedical expressions, compound abbreviations, and how to
solve ambiguous cases. In the quest of targeting the exact answers, our aim is to
improve the precision of the deep learning systems by semantically re-ranking
predictions (in the factoid QA task), and extracting the best sub-spans (in the
summarization QA task).

In the next section, the relation between the approaches developed in this
work and the existing state-of-the-art is presented, with a focus on the biomedical
domain.

2 Literature Review

Machine Comprehension has been addressed using a large variety of approaches
e.g., using information retrieval (IR)/search-based methods, information extrac-
tion (IE)/semantic methods, neural or even hybrid [2,27]. In an IR-based QA
system, the information indexed from large collections are used to derive the
answers. While in a knowledge-based system, semantic representations of user
queries are formulated, and then used to query semantic graphs.

In the recent years, deep learning approaches have heavily contributed to
the fast advancements towards obtaining usable results for such a complex task.
Attention mechanisms [5] are heavily contributing to the success of recent neural
architectures like bidirectional attention flow (bidaf) [10,22], and transformer
architectures [7,29] fine-tuned for question answering. Vector representations
(aka. embeddings) constructed at character, word or sentence level are found
to automatically capture to a certain extent the syntactic and semantic prop-
erties of the text, leaving behind the need for tedious feature engineering step
of more traditional approaches. These embeddings range from Word2Vec [16],
Glove [19], to domain-specific transfer embeddings for the biomedical task [26],
or BioBERT [13] etc. Further, the embeddings at sentence-level (i.e., for multi-
token expressions) like bioSent2Vec [4] have also been transferred to the biomed-
ical domain.

In open domain QA, i.e, machine comprehension in the generic domain, accu-
racy results are around 90% on datasets such as SQUAD5. The same successful

5 https://github.com/google-research/bert.

https://github.com/google-research/bert
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algorithms, but applied in specific domains, where the data availability is an
issue (in addition to dealing with a vocabulary that is different in structure
and expression), construct models which are less performant. Transfer learning
through fine-tuning to questions answering, or to the biomedical domain, has
proven a reliable method [26] to bridge the specificity gap. The benefit is most
visible for models that are meant to perform in specific domains, because they
can benefit from the generically-learned patterns, especially when the available
training dataset is quite small compared to the generic domain.

Adapted solutions to the biomedical consider specific training data sources
(e.g., Pubmed), datasets such as BioASQ, and semantic resources like biomedi-
cal ontologies and knowledge bases which are rigorously curated and maintained.
Although semantic technologies can support the information seeking, they can-
not solve by themselves machine comprehension, in the same flexible and efficient
way deep learning approaches manage to.

Having built a deep learning biomedical model for QA, further incorporating
best practices in the area of NLP such as Named Entity Recognitions (NER),
syntactic parsing, or predicate labelling [8] appears to be a promising way to
bridge the semantic gap [12,14,25] and improve the results. This paper explores
a variety of techniques including deep learning in collaboration with semantic
analysis for answering to the factoid, yes/no, and summary type of questions in
the BioASQ Task-B Phase-B challenge.

In the next section, we describe the proposed approach for each type of stud-
ied question. Section 4 presents the experimental settings, analysis and discussion
of the results. Finally, conclusions and future work insights are briefed in Sect. 5.

3 Biomedical QA Methodology

This section is structured around the three types of questions existing in the
BioASQ challenge for question answering: factoid, summarization and yes/no.
For more information about the types of questions and the standard evaluation
associated, we direct the reader to the reference description of the challenge6.

Factoid QA has been addressed using bidirectional attention flow mechanism
integrated with semantic corroboration. For the summary-based QA, we have
approached the problem from an extractive summarization point-of-view, and
applied dynamic memory networks (DMN) in conjunction with ELMo embed-
dings. For yes/no types, the problem is viewed as a sentiment analysis task,
where positivity towards the question represents a yes, and, the contrary case,
a no.

We further detail these methods.

3.1 Factoid QA

For Factoid QA, a deep learning approach is chosen due to its astonishing success,
as demonstrated by recent [13,25,26], even in the biomedical domain which is
specific and complex.
6 http://bioasq.org/participate/challenges.

http://bioasq.org/participate/challenges
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In recent years on BioASQ, the accuracy of state-of-the-art models has
increased from an MRR of 28% [26] to almost 50% claimed by BioBert [13]
within two years, just by considering the neural architecture innovations.

Recently Bert [7]-based architectures achieve on SQUAD an F1 metric of
90%. With a number of less than 1000 annotated factoid questions in the BioASQ
dataset, we are still very far from the more than 100,000 annotations of SQUAD.
The biomedical domain suffers from a lack of annotated data which limits the
ability to obtain the same range of accuracies with the same type of performant
algorithms. Additionally, in the biomedical domain the decisions derived from
the QA systems can have critical consequences, therefore boosting the precision
and robustness of models is critical.

Having the neural architectures evolving towards deriving more distilled mod-
els, we focus our attention of how can we semantically analyze the predicted
answer candidates. to mitigate the problem that in the biomedical domain the
QA model predictions are not so precise as in the generic domain.

Specifically, for factoid QA, we adapt Jack the Reader [25] machine com-
prehension framework (initially presented and tested for generic domain QA)
to the biomedical domain using transfer learning, and applying a bidirectional
attention flow process similar to [22]. The proposed approach for factoid QA is
depicted in Fig. 1.

Fig. 1. Factoid question answering approach

The system integrates various domain-adaptation methods: first, the use
of transfer learning to infer appropriate embeddings for the biomedical [26];
second, the use of an appropriate semantic analysis and parsing/tokenization
using biomedical lexicons and specific biomedical expressions extractor; third,
we add a post-processing module which leverages the different forms in which the
answer is presented, through normalization of recognized entities, and additional
candidate-to-question coherency study, using bio-phrase embeddings.

Although deep neural networks bring an important improvement with respect
to the identification of answer precise location across multiple contexts, even
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state-of-the-art models have difficulties in precisely identifying the best answer.
Statistical analysis of candidates with respect to the gold standard shows that
the ‘expected answer’ is present in the candidates set in 83% of cases. This
is an important finding, denoting that the neural model gets the answer, but
either not in the best order (with respect to the MRR metric), or not in the
ideal/compatible format (the same concept is expressed differently), and possibly
in a less concise form. However, the typical measures for evaluating factoid QA
systems give a high score to a test result if all the candidates are in the right order
of relevance, and when the candidate text is strictly equal to the gold standard.
These conditions are very hard to achieve, and with respect to the neural model
predictions, these measures are not capturing in the best way what we expect
from a biomedical QA application, from a usability point of view.

Measuring token overlap is not always appropriate, due to the complex vocab-
ulary that needs to be first normalized across all the data sources.

Studying empirically the root cause, we observe that, most of the time, the
context of the answer is correctly targeted by the model, but the indications
of the attention pointers are not perfectly precise. As a result, the candidates
might be ranked in the wrong order. MRR expects the first candidate to be pre-
cisely the gold standard answer, and the subsequent good answers are evaluated
decrementally. In addition, the typical evaluation does not take into account
synonyms and variation of expression: first, expression of the same concept or
entity in different forms, and second, lack of normalization across texts (e.g., of
biomedical abbreviated expressions); finally, compositionality is not taken into
account by the typical tokenizers used. To resume, the lack of uniformity in
expression, and mis-parsing complex expressions takes away the opportunity for
the neural model to develop clear intuitions around strong patterns denoting
complex concepts.

A human can however leverage this high conceptual overlap of the neural
candidates, when targeting the right answer contexts. To mitigate these prob-
lems, considering that in the majority of cases the answer is ‘hidden’ somewhere
in the predicted candidates, then rather than considering the output of the deep
model as the final step, an originality of this work is to consider the resulting
candidate answer spans to a question in a buffer space in which corroboration
of information can be applied.

The first step towards this is semantically normalizing the candidates (e.g.,
‘alpha-synuclein’ to be equivalent to ‘α-synuclein’, ‘(mmp)-9’ to be equivalent
to ‘matrix metalloproteinase-9’, etc.), which in turn needs entity identification,
aggregation of the semantic evidence, and correlation to the intent of the ques-
tion. The semantic analysis is expensive in general, but considering applying it
to quite short candidate answer spans (in our model, that would be an average
length of 25 characters, but in general this is dependent on the neural model
parameters), the processing is much more affordable and ultimately, scalable.
In order to mitigate the above mentioned issues, we introduce two main origi-
nal steps: corroboration of entities within candidates, and candidate-to-question
coherence measurement.
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Corroborating Semantics. This module has been introduced to diminish the
importance of out-of-biodomain candidate answers, with respect to the question
intent, and to improve the robustness of results. Corroboration is a typical notion
for interpreting evidence applied in a possible unreliable setting (e.g., decentral-
ized systems) when trying to assess the “truth” of a hypothesis, currently in
question. In our case, we can understand it as a voting mechanism that occurs
between the agents involved in the ‘decision’, that is, the candidates outputted
by the neural model for a question.

The corroboration of entities makes sure the answers that we get are being
“agreed” as relevant for the biomedical domain by all candidates. To exemplify,
Fig. 2 presents a typical output of candidates from a neural QA model, given a
test question, and how corroborating entities extracted from all (typically, top 5)
candidates, directly by aggregating concept occurrence, can help in re-ranking
the candidates towards the rightful order expected by the gold standard. The
corroboration score is normalized to have values between 0 and 1.

Note that here we work with what the neural models give as results, therefore
this corroboration logic works only because the neural model reaches already a
reasonable precision in identifying the answer location, and conceptual overlap,
even though it might be introducing surrounding text, and the same concepts
might be expressed differently in different candidates. This is the reason for
applying Named Entity Recognition (NER) first, so that we target the core of
an answer, and make abstraction of differences in candidate answer length. Since
we focus on the semantic relevance scores of candidates with respect to the tar-
get biomedical domain, we open the possibility of linking more evidence and
involving more elaborate semantic analysis (e.g., link prediction and graph min-
ing), by augmenting at the same time the interpretability of the results. The first
step towards this corroboration is to apply a biomedical NER to assess whether
there are entities recognized in the candidates text. This step also normalizes
the candidates, in order for them to express in the same way the formulated
concepts.

Candidate-to-Question Coherence. Cui2Vec [1] is a recent multimodal biomedi-
cal concept embedding scheme, which associates an embedding vector to a CUI
as defined by UMLS thesaurus7.

Additionally, recognizing that the coverage will never be perfect since biodata
are enriched and evolve constantly, we conclude that Cui2Vec embeddings are
useful in the coherency computation of a candidate text with respect to the
question, but they need to be used as a boost, and unfortunately not as a reliable
resource: in the case of missing embedding for a CUI, we need to have a back-up
strategy.

If no entities are identified at all in the candidates, the approach turns towards
considering n-grams in the corroboration process. This ensures that the cor-
roboration and coherence study can be applied between the neural candidates

7 https://www.nlm.nih.gov/research/umls/.

https://www.nlm.nih.gov/research/umls/
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Fig. 2. Factoid questions approach

and the question even in the absence of knowledge from available lexicons, or CUIs
embeddings.

The intent coherence step has been introduced to diminish the importance
of out-of-scope candidate answers. This verification step consists in measuring
the neural candidate span coherence with the question, computed as the cosine
similarity between their embeddings. This enforces the condition of relevancy
to the question intent, since the neural model has a strong bias towards the
contexts from which it has learned from.

The embedding scheme is chosen depending on whether or not there are
biomedical concepts mapped to Cui2Vec; in the positive case, we retrieve the
conceptual embeddings for the text, and we sum them up. We do the same for the
question, and next, their similarity in the embedding space is measured. In the
case in which 1. The candidates and question do not contain biomedical concepts
at all (rare, but existing cases), 2. The concepts haven’t been recognized, or there
exists no Cui2Vec embedding associated, the default case applies: we backup
to overall n grams corroboration and candidate n-grams coherence study. For
that, the alternative embedding model must be able to operate at the level
of multi-token expressions/sentence, therefore BioSent2Vec [4] is chosen as the
most appropriate option.

Finally, the re-rank score is the multiplication of the corroboration and coher-
ence scores, and each candidate is ranked in accordance with these new proba-
bilities.

3.2 Extractive Answer Selection Module

The focus of this section is to produce extractive summaries using dynamic
memory networks adapted for biomedical data. For the generation of a proper
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ideal answer, a combination of extractive and abstractive summarization needs to
be applied. While for question types such as yes/no, list and factoid, an extractive
summarization alone may suffice. But if we view the generation of ideal answer
as a stand-alone task, the end goal will be to produce a comprehensive human
readable summary. Here we focus on the summary QA and yes/no QA.

Fig. 3. Workflow for answer selections using neural extractive summarization

The general workflow for this task is depicted in Fig. 3. The work focuses
on the extractive answer selection module, which selects the sentences that are
possible elements of the ideal answers. The task here is synonymous to finding
an extractive summary from the contexts given, with respect to the question
at hand. Hence the aim is to train a model that attends to the sentences that
can possibly be the candidates of the ideal answer space. In the proposed work,
Dynamic Memory Networks (DMN) are utilized, which are the attention models
specifically trained for QA problems. DMNs refine the attention mechanism, so
that questions trigger an iterative attention process which allows the model to
condition its attention on the inputs and the result of previous iterations [11,28].
The sub-modules are briefly described in the subsequent sections.

Sentence Embedding Module. The input to this module is a triplet (Question,
Context, Ideal Answer), referred to as (Q, C, A). All these elements are sub-
jected to sentence tokenization. For simplicity, the ideal answer is just referred
to as ‘Answer’. The proposed approach uses sentence-level attentions for which
sentence vectors for (Q, C, A) are computed using ELMo: Deep contextual-
ized word representations [20]. ELMo embeddings captures syntax and semantic
characteristics and the variations across linguistic contexts. A deep bidirectional
language model (biLM) pre-trained on a large text corpus is used to learn these
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vectors. In the current work, contextualized ELMo embeddings provided by Ten-
sorflow hub is used to construct the sentence vectors8. The inputs represented
with ELMo embeddings are fed to attention module.

Sentence-level Attention using Dynamic Memory Networks. DMN comprises an
input module, question module, episodic memory module and an answer mod-
ule. The sentence vectors from the embedding module is encoded to form the
question and context encoders using gated recurrent units (GRU) [6]. In general,
given a training set of input sequences (here context or snippets)and questions,
DMN forms episodic memories, and use them to generate relevant answers. This
module consists of an attention mechanism and a recurrent network that updates
its memory based on given facts. The attention in this model is computed by
constructing similarity measures between each fact, the current memory, and the
original question. So during each iteration, the attention mechanism produces
and episode based on the facts or contexts, question and the previous memory.
The memory is updated by doing a weighted pass with a GRU over the input
facts. In order to avoid adding incorrect information into memory when the con-
text is shorter then the full length of the matrix, an attention mask is created.
The final state of GRU is the input to the answer module. The resulting sentence
vector is the sentence in the context that is closest in distance to the result in
our final output. This sentence is selected by assigning a score for each sentence,
which is the final result’s distance from the sentence. Consequently, the top k
(here k= 2) sentences are extracted, which form the candidate sentences for the
ideal answer9.

3.3 Yes/No Answering Model

In the proposed work, a preliminary model for yes/no QA is also tried out. In
this model, the output of the candidate answer selection module, i.e., the ideal
answers are used as the input. If the exact word ‘Yes’ or ‘No’ is already in the
selected sentences, then it is a definitive ‘Yes’ or ‘No’ respectively. Otherwise, a
sentence based sentiment analysis is performed, to check whether the sentence
conveyed a positive or negative sentiment. This is done using the NLTK-VADER
sentiment analyzer [9]. A senti-score is computed, and if it is positive, an ‘Yes’
is assigned, or a ‘No’ in the contrary case. In the neutral cases, an ‘Yes’ is
assigned (this is a crude approach, observing that most of the BioASQ answers
relate to ‘Yes’). The next section presents the experimental settings, analysis
and discussions of the results obtained in Task-B Phase-B.

4 Experimental Analysis

We further detail in the experiments section the method choices and experiments,
for the studied question types.
8 https://tfhub.dev/google/elmo.
9 https://www.oreilly.com/ideas/question-answering-with-tensorflow.

https://tfhub.dev/google/elmo
https://www.oreilly.com/ideas/question-answering-with-tensorflow
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4.1 Factoid QA

For factoid QA, we apply deep learning by training on the BioASQ dataset
7b for question answering, which contains around 800 proper factoid questions
annotated with relevant snippets, and gold standard answers.

In the experiments for the factoid QA we first train the neural QA model.
The best obtained bidirectional attention flow model has been trained with the
following parameters: repr dim of 25, max span size of 25, Adam value 0.001,
dimension of vectors 500, all trained over 30 epochs, with a biomedical word2vec
(transfer embeddings) vocabulary size of 1,943,494. The results exhibit in terms
of MRR surpass the 26% of [26] with 2%. Knowing that the best model of
the 2018 competition on factoid achieved a best of 30% [3], these results are
statistically significant. Better results are obtained with the recent Biobert [13].

In our experiments, we have employed an adapted parser for the biochemical
space10, and included a couple of biomedical NER tools, in-house or generic e.g.,
BioBert for NER11).

The UMLS concept identification technique12 has been used as alternative to
typical entity recognition. UMLS concepts identified, we can retrieve their CUI
(Concept Unique Identifier) mapping, needed further for retrieval of Cui2Vec [1]
embeddings. With more than 100,000 concepts covered, Cui2Vec is considered
the largest collection of embeddings for the biomedical domain. However, in our
experiments, we observed that the Cui2Vec collection is still incomplete with
respect to all possible biomedical concepts present in text.

The intuition behind the post-processing of candidates for factoid QA relies
on the availability of accurate embedding schemes for the biomedical domain,
and the completeness of knowledge bases which can assist the corroboration.

The experiments show an improvement of 5% on the exact answer identifi-
cation, which is statistically significant. This approach has the merit of being
potentially applicable to various machine comprehension models, since it starts
operating once we have the candidates answers given by the neural model, thus
boosting the results of any neural QA model in a post-prediction phase.

Further experiments include exploring more candidates re-ranking schemes
and different bio-embeddings types, which has a direct influence on the accuracy
of results, and beyond, on the different QA system usecases.

4.2 Summary and Yes/No QA

For Summary and Yes/No QA, the DMN neural model is trained with the follow-
ing parameters for extractive answer selections: a learning rate of 0.005, dropout
probability 0.5, 4 number of passes in episodic memory, and a recurrent layer
size of 128, 1024 dimension of vectors, and a hidden layer size of 256, considering
30,000 training-iterations, and number of attended sentences, k equal to 2.

10 http://chemdataextractor.org/.
11 https://github.com/dmis-lab/biobert.
12 https://github.com/Georgetown-IR-Lab/QuickUMLS.

http://chemdataextractor.org/
https://github.com/dmis-lab/biobert
https://github.com/Georgetown-IR-Lab/QuickUMLS
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A demo of the candidate sentence selection task done using the above app-
roach is shown in Figs. 4 and 5.

Fig. 4. Attention mechanism: case 1 (Color figure online)

Fig. 5. Attention mechanism: case 2 (Color figure online)

The highlighted portion (red color) in each of these figures, represent the
sentences attended by the attention mechanism used in proposed approach. In
both cases, it can be observed that the attended sentences potentially represent
the answer space.

In Fig. 4, it can be observed that some of the sentences which appear to be
more important are less attended. For instance, here the first sentence needs
to be given a high priority based on human understanding. In future, these
problems will be focused, and the intepretability also will be investigated.

In BioASQ challenge, for Summary QA, Rouge score is used to automatically
evaluate the ideal answers. Rouge measures the overlap between the ideal answer
generated to the reference answer constructed by human experts. The widely
used versions of Rouge, R2 and RSU4 are used in the challenge. R2 computes
the n-gram overlap, where n=2. RSU4 is the version of ROUGESU with the
maximum distance between words of any skip bigram is limited to 4 [15].

In the BioASQ Task-7B Phase-B challenge, the proposed approach for yes/no
and summary QA using extractive answer selections was tested in Batch 4 and 5.
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For the Yes/No questions, accuracy is computed by comparing against the exact
answers provided by the experts. Here the accuracy is defined as the ratio of cor-
rectly answered yes/no questions (c) to the total number of yes/no questions (n).

Analyzing the experimental results of different BioASQ challenges from 1–7,
it was noted that in different batches, the performances varied subjective to the
test data set. For Yes/No questions, the top performances varied from 0.87 to
1.00 while for summary the top performance range was from 0.3 to 0.75. Taking
into account these factors of variability, the comparison is done only with the
top score systems in challenge-7 (batch 4 and 5), where the proposed approach
was tested for yes/no and summary type QA. In Table 1, the comparison of
proposed approach on the SUmmary and Yes/No QA types is compared with
the top-performing systems of BioASQ challenge-7 (batch 4 and 5).

Table 1. Comparison of proposed approaches with BioASQ challenge top ranked sys-
tems.

Batch System Yes/No Summary

Accuracy Macro F1 Rouge-2 Rouge-SU4

Batch 4 BioBERT-DMIS-4 0.8696 0.7928 * *

MQ-4 0.7391 0.425 0.5177 0.5246

Proposed 0.6087 0.5801 0.368 0.3813

Batch 5 BioBERT-DMIS-4 0.8286 0.825 * *

MQ-4 0.5429 0.3519 0.5035 0.507

Proposed 0.5143 0.386 0.4818 0.4896

In Batch 4 and 5, BioBERT-DMIS-4 is top ranked in Yes/No QA while
MQ-4 in Summary QA. For the Yes/No QA, the proposed approach used a
simple model using the NLP based sentiment analysis over the results obtained
after extractive answer selections, which gives a macro-F1 score of 0.58 in Batch
5 and 0.35 in Batch 5. The result indicates that the approach is not sufficient
enough to derive to exact Yes/No answer from the attended sentences. Analyzing
the performance of MQ-4 on the same, it is found that performance is almost
comparable.

In Summary QA, the proposed approach exhibited a reasonable performance
on both batches, and was second ranked according to the task evaluation after
the MQ-4 systems13. An improvement in system performance from Batch 4 to 5
is also noted, which can be attributed to training with larger amount of data. Still
the complete data was not used, which will be addressed in future. We believe
that the performance can be improved by using bio-embeddings and integration
of semantic approaches.

13 *BioBERT-DMIS-4 results on Summary was blank, assuming they didn’t participate
for the same.
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5 Conclusion and Future Insights

The main focus of this work is to explore the different deep learning and knowl-
edge based approaches for biomedical QA. This paper analyzes the potential
of using various deep learning models and embeddings, in collaboration with
a novel method of semantic post-processing of results to enhance the accuracy
of results. For extractive answer selection, a sentence-level attention mechanism
with contextualized vector representations is studied. The automatic evaluation
with Rouge scores for the summarization part exhibits good performance.

A novel approach is presented for the semantic re-ranking of candidates
using the concepts of corroboration and coherence. Experiments show this post-
processing step of neural candidates can improve with 5% the identification of
exact answer, on top of the neural model performance.

More experiments are ongoing for the assessment of the degree in which
semantics can help, what is the relative importance of the tools we use, especially
related to the embeddings, and other sources of knowledge considered in the
process.

Semantic information can be extracted from multiple biomedical knowledge
bases and ontologies, such as PubMed Mesh14, EBI15 etc. Aggregating these
semantic sources and computing graph embeddings can be beneficial towards
seemingly incorporating semantics into neural networks and enhancing the rep-
resentation learning. Computing better embeddings for the biomedical domain
is a very promising direction, and aggregating more knowledge is also expected
to further improve the results.

BioASQ dataset is still very small in comparison with state-of-the-art
machine comprehension datasets such as SQUAD. A fair pursuit would be to
explore the potential of weakly supervised techniques for biomedical QA, and
other automatic and semi-automatic annotation methods.

We believe that the deep neural models and knowledge-based systems com-
plement the biomedical domain QA system needs, especially in terms of inter-
petability: therefore our vision goes towards a tighter collaboration between the
two, at architecture level [18], for more precise and reliable biomedical text com-
prehension.
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Abstract. In this work we present Google’s submission to the BioASQ 7
biomedical question answering (QA) task (specifically Task 7b, Phase B).
The core of our systems are based on BERT QA models, specifically the
model of [1]. In this report, and via our submissions, we aimed to investi-
gate two research questions. We start by studying how domain portable
are QA systems that have been pre-trained and fine-tuned on general
texts, e.g., Wikipedia. We measure this via two submissions. The first
is a non-adapted model that uses a public pre-trained BERT model and
is fine-tuned on the Natural Questions data set [4]. The second system
takes this non-adapted model and fine-tunes it with the BioASQ train-
ing data. Next, we study the impact of error propagation in end-to-end
retrieval and QA systems. Again we test this via two submissions. The
first uses human annotated relevant documents and snippets as input to
the model and the second predicted documents and snippets. Our main
findings are that domain specific fine-tuning can benefit Biomedical QA.
However, the biggest quality bottleneck is at the retrieval stage, where
we see large drops in metrics – over 10pts absolute – when using non
gold inputs to the QA model.

Keywords: Biomedical · Question answering · BERT

1 Introduction

BioASQ [11] is a large-scale online biomedical research competition. There
are many tasks within the competition: question answering (QA), informa-
tion retrieval and semantic indexing. Our submissions focus on Task 7b, Phase
B which requires participating systems to generate ideal or exact answers to
biomedical questions using mainly PubMed articles. We focus on exact answers
which can include factoid, list, and yes/no question types.

The systems we used for QA were all BERT-based [2] models using the pub-
lic available large pre-trained models and fine-tuned on the Natural Questions
corpus [1,4] and Conversational Question Answering dataset [10]. Additionally,
three of the four systems we submitted were further fine-tuned on the BioASQ
training data. The difference between the biomedical specific models is the input
into the models: using only snippets, using snippets from the previous informa-
tion retrieval phase (Task 7b, Phase A) and a mixture of snippets and abstracts.
c© Springer Nature Switzerland AG 2020
P. Cellier and K. Driessens (Eds.): ECML PKDD 2019 Workshops, CCIS 1168, pp. 686–694, 2020.
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This work-flow has no pre-processing of the data necessary and uses very little
in-domain knowledge to achieve successful results.

Our systems focused mainly on factoid questions and their results. The evalu-
ation metrics for factoid were strict accuracy, lenient accuracy, and Mean Recip-
rocal Rank (MRR) [11]. The results of the competition show that all our models
are always in the top half of systems for factoid questions which indicate that
neural QA models based on large pre-trained language models are very robust
across domains. In addition, since our system used snippets from the previous
information retrieval phase and had a lower but still competitive accuracy indi-
cated that the limiting factor of this neural model is the document and snippet
retrieval architecture and not the QA model itself.

In this paper we start with a literature review which explains our reasoning
for using BERT-based models and the architectures of previous entrants for the
BioASQ challenge, then we go in-depth into explaining the differences between
our 4 systems that were submitted, lastly we discuss the performance of our
systems and how error propagates between retrieval and QA systems.

2 Related Work

The use of BERT-based models [2] is becoming ubiquitous in the field of question
answering (QA). At the time of this writing, out of the top 5 systems in SQuAD
2.0 [9], 4 are BERT models. For the CoQA [10] challenge, all of the top 5 systems
are BERT models. With the success of BERT models, many papers are tuning
these models to their specific domain. One such paper is BioBERT [5], where
the authors created a domain specific language representation biomedical BERT
model for a few biomedical tasks, one being question answering. They evaluated
their models on BioASQ test sets for BioASQ 4, 5 and 6. They saw a an absolute
improvement of 9.61% with the models.

The BioASQ [11] competition has been very popular amongst researchers.
Some of the early systems in BioASQ were not neural architectures. For the
2nd BioASQ challenge, [7] developed a system that tries to extract the lexical
answer type of the question. Then, they selected the relevant snippets for each
question and provided these as inputs to MetaMap1 which extracted candidate
answers for each factoid question. For the 3rd iteration of the challenge [14]
used a three layer architecture for factoid and list questions. The architecture is
based on the framework [13] and including many components like MetaMap and
ClearNLP2. In BioASQ 4 both [7] and [13] improved their models using more
biomedical information into their systems. Neural architecture systems started
to appear more frequently from BioASQ 5, with the DeepQA systems using the

1 https://metamap.nlm.nih.gov/.
2 https://github.com/clir/clearnlp/.

https://metamap.nlm.nih.gov/
https://github.com/clir/clearnlp/
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then state-of-the-art QA model, FastQA [12]. The FastQA was extended by using
biomedical word embeddings and pre-training on QA datasets (SQuAD) then
fine-tuning on the BioASQ training set. In the last BioASQ challenge (BioASQ
6), there were numerous systems that used neural architectures like LSTMs [3,6].

3 BERT Model

Recent work on learning word representations have focused on learning context
dependent representations. An example, the word bank, it could mean the land
alongside the river/lake or a financial establishment. Previous methods would
have a single representation of the word bank unlike more modern methods which
will have two representations for the word based on its context in the sentence.
BERT [2] is one such method to produce contextualized word embeddings. The
most common instantiation of BERT is pre-trained using bidirectional trans-
formers to predict randomly masked words in a sequence, thus removing the
limitation that previous bidirectional language models had: the fact that future
words should not be seen. In addition, BERT predicts the next sentence given
a previous sentence and these two tasks allow BERT to obtain state-of-the-art
performance on many NLP tasks.

Our QA model follows the Natural Questions (NQ) baseline model [1], an
extractive QA model based on BERT [2]. In the context of the BioASQ data:
given a pair of question (the body) Q and context/body (the snippets or some
augmentation of the snippets) S, the model predicts the answer by scoring all
the sub-spans (candidate answers taken from S) and then ranking all these sub-
spans by their score. For more in-depth details, see [1].

4 Systems Overview

There were four systems that we submitted for evaluation in BioASQ Task 7b,
Phase B. Below is a brief overview of each system, we give more details in further
sub-sections.

– google-gold-input: fine-tuned on BioASQ training data, used the provided
gold snippets as input to the QA model (see Fig. 1)

– google-gold-input-ab: fine-tuned on BioASQ training data, used the pro-
vided gold snippets and the abstract of the top ranked document as input to
the QA model

– google-gold-input-nq: no in-domain training, used the provided gold snip-
pets as input to the QA model

– google-pred-input: fine-tuned on BioASQ training data, used snippets from
the top-ranked submission from Task 7b, Phase A as input to the QA model
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Fig. 1. A figure showing a model which was fine-tuned on BioASQ training data using
provided BioASQ test (gold) snippets from test batches to generate the answers for
questions (google-gold-input).

4.1 No In-Domain Training

To give our baseline system, google-gold-input-nq, exposure to a broad set of
domains, we trained on both the NQ [4] and CoQA [10] datasets. Both NQ
and CoQA contain Wikipedia data, while CoQA adds four additional domains,
covering news and fiction.

After training on NQ as in [1], we further fine-tuned on CoQA with a learning
rate of 5e−5, batch size of 32, for 2 epochs.

4.2 BioASQ Fine-Tuning

Two of our models – accounting for three of our systems – were fine-tuned using
the BioASQ training data. The difference between these two models is that one
uses a concatenation of relevant snippets as model context (google-gold-input)
while the other uses the abstract of the most relevant document concatenated
with any remaining snippets (google-gold-input-ab), see Table 1 for an example.
We used only one abstract as using abstracts from lower ranked documents would
dramatically increase the noise-to-signal ratio.

Starting with the model trained in Sect. 4.1, we fine-tuned on the BioASQ
training set using a learning rate of 1e−7, batch size of 32, for 10 epochs. The
large number of epochs was necessary due to the very small training dataset size
of ∼2700 questions.

4.3 Snippet Retrieval

The model, google-gold-input, and the model used for snippet retrieval, google-
pred-input, is the same, however, the difference between them is at test time.
Instead of using the gold-standard test snippets provided by BioASQ, google-
pred-input used snippets from the top ranking submission to Task 7b, Phase A
[8]. This allows us to analyze the effect of information retrieval on the QA system
since the only difference between google-pred-input and google-gold-input is the
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Table 1. Table showing the differences between the input at test time for each model.

System Context

google-gold-input Vaspin expression is increased in white adipose tissue \n
Visceral adipose tissue-derived serine protease inhibitor
(Vaspin) is an adipocytokine that has been shown to exert
anti-inflammatory effects and inhibits apoptosis under
diabetic conditions

google-gold-input-ab Vaspin suppresses cytokine-induced inflammation in 3T3-L1
adipocytes via inhibition of NFu\03baB pathway.\n Vaspin
expression is increased in white adipose tissue (WAT) of
diet-induced obese mice and rats and is supposed to
compensate HFD-induced inflammatory processes and insulin
resistance in adipose tissue by . . . \n Visceral adipose
tissue-derived serine protease inhibitor (Vaspin) is an
adipocytokine that has been shown to exert anti-inflammatory
effects and inhibits apoptosis under diabetic conditions

context given to the QA system. One interesting property is that the predicted
set of snippets is often much larger than the gold set. This is partly due to
the nature of the data, where the annotators were tasked with finding enough
relevant snippets to support the correct answer – not all the relevant snippets.

4.4 Yes/No and List Question Types

Even though our systems participated in some yes/no and list batches, these
were heuristic based and not a core part of our model. For yes/no questions,
if yes or no was present in the candidate answers, then we selected the one
with the higher log probability. If we could not find yes or no in the candidate
set, we selected yes by default. For list type questions, we selected the top 5
candidates and split the results into single words or phrases by punctuation and
then selected the top 5 results from those. Since these were heuristic based, we
do not discuss these results in the paper.

5 Results

We took part in the last three batches of Task 7b, Phase B. More specifically: the
answers of google-gold-input and google-pred-input were evaluated on batches
3, 4 and 5 and google-gold-input-nq and google-gold-input-ab were evaluated on
batches 4 and 5. For batch 3 our google-gold-input was always in the top two
system scores for all factoid evaluations, while google-pred-input had the lowest
place of 6th for factoid evaluations. For batches 4 and 5 our scores were generally
in the top ten for factoids.

For a comparison of the best system’s score and our models see Table 2.
The table alludes to a number of interesting results some we discuss in later
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Table 2. Performance on BioASQ Task 7b, Phase B for batches 3 to 5. The underlined
system is the best scoring system from Google’s entries and bold indicates the system
is the top from all official entries in that batch. Best Score is the top scoring entry that
is not among Google’s submissions.

Batch 3 Batch 4 Batch 5

Strict Lenient MRR Strict Lenient MRR Strict Lenient MRR

Best Score 0.4483 0.6552 0.5115 0.5882 0.8235 0.6912 0.2857 0.5143 0.3638

gold-input 0.4138 0.6552 0.5023 0.4706 0.7059 0.5495 0.2857 0.3714 0.3167

pred-input 0.3448 0.5517 0.4322 0.3529 0.5882 0.4338 0.1429 0.2857 0.2057

gold-input-ab – – – 0.4706 0.6471 0.5255 0.2286 0.2857 0.2571

gold-input-nq – – – 0.4706 0.5882 0.5132 0.2857 0.3714 0.3057

Table 3. Performance on BioASQ Task 4 and 5b, Phase B averaged over all batches. The
bold system is the top scoring. Best Participant and BioBERT results are from [5].

BioASQ 4 BioASQ 5

Strict Lenient MRR Strict Lenient MRR

Best Participant 0.206 0.294 0.240 0.418 0.574 0.477

BioBERT [5] 0.365 0.489 0.411 0.416 0.540 0.463

google-gold-input 0.311 0.540 0.400 0.458 0.615 0.520

subsections. One of those results is that adding abstracts was not significantly
helpful and indicates that there is a noise-to-signal issue where the system might
get diminishing or negative gains after a certain amount of data is used for the
context.

It should be noted that these results are preliminary. Humans have yet to
judge the outputs off all participating systems. As a precursor to participat-
ing in BioASQ7, we investigated the performance of our model on prior year’s
data. The advantage of doing this is that the test annotations are much more
complete, since they also include all the correct answers from the systems that
participated that year. We compare to two baselines. The first is the best system
that participated in that specific year’s challenge. The second is a recent state-
of-the-art model BioBERT [5]3. This model is similar in nature to our model,
with some differences. First, it is pre-trained on biomedical data. Second, it is
only fine-tuned on the BioASQ training data and does not use any additional
fine-tuning data, i.e., natural questions. Note that all models are comparable:
(1) they are trained with the specific training data for the year being tested; and
(2) they use provide gold snippets as input.

Table 3 shows the results. We can see here that our model is very competitive
with previous models on this data, including other BERT-based models. The
main take-away here is that adding domain general fine-tuning data (i.e., the
Natural Questions data) can lead to gains in performance.

3 The authors of this system also participated in BioASQ7 and preliminary have the
highest scoring submission.
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Table 4. Domain portability for factoid biomedical QA

No-Biomedical fine-tuning Biomedical fine-tuning Δ

google-gold-input-nq google-gold-input-ab

Strict Lenient MRR Strict Lenient MRR Strict Lenient MRR

Batch 4 0.4706 0.6471 0.5255 0.4706 0.5882 0.5132 – 0.0589 0.0123

Batch 5 0.2286 0.2857 0.2571 0.2857 0.3714 0.3057 −0.0571 −0.0857 −0.0486

Table 5. Performance on BioASQ Task 4 and 5b, Phase B averaged over all batches to
measure domain portability. The bold system is the top scoring. ∗This model is slightly
different from the submitted system as it uses only gold snippets as input.

BioASQ 4 BioASQ 5

Strict Lenient MRR Strict Lenient MRR

BioBERT [5] 0.365 0.489 0.411 0.416 0.540 0.463

google-gold-input 0.311 0.540 0.400 0.458 0.615 0.520

google-gold-input-nq∗ 0.302 0.488 0.376 0.451 0.603 0.509

5.1 Domain Portability

To measure domain portability we investigate the model fine-tuned only on the
NQ dataset (google-gold-input-nq) and the model that was further fine-tuned on
BioASQ training data (google-gold-input-ab). For this experiment, these models
use the top-ranked abstract concatenated with snippets from other documents
as input. Results for factoid QA are shown in Table 4. We can see that as of
the preliminary results, there is no clear pattern to determine which system is
best. This suggests that the QA model, while trained on non-biomedical data,
has learned at least as well as a domain-specific model to generalize matching
questions to spans of text using the context of the match. Also, when looking at
the accuracy of the models against the field of submissions, the non-ported NQ
QA model is fairly strong - easily in the top third of submitted systems. This
suggest that even general domain QA models can do a reasonable job on new
domains, including hyper-specialized ones like biomedical literature.

Again, these results are preliminary, we can again look at previous BioASQ
batches with more compete test annotations. Table 5 has the results. From here
we can see that the biomedical specific model (google-gold-input) outperforms
the domain general model (google-gold-input-nq) consistently, but not by a large
margin. Furthermore, the domain general model is competitive with the previ-
ous state-of-the-art BioBERT models. These results present stronger empirical
evidence that large-scale domain general models do port well to new domains.

It should be noted that we did not measure the effect of in-domain pre-
training. BioBERT [5] tested this and did find that for BioASQ 4–6 significant
increases in factoid QA metrics could be achieved when using in-domain pre-
training. This could suggest that pre-training and not fine-tuning are the keys
to improving domain portability of BERT-based QA models.
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Table 6. Error propagation for factoid biomedical QA

Gold inputs Noisy inputs Δ

google-gold-input google-gold-pred

Strict Lenient MRR Strict Lenient MRR Strict Lenient MRR

Batch 3 0.4138 0.6552 0.5023 0.3448 0.5517 0.4322 0.0690 0.1035 0.0701

Batch 4 0.4706 0.7059 0.5495 0.3529 0.5882 0.4338 0.1177 0.1177 0.1157

Batch 5 0.2857 0.3714 0.3167 0.1429 0.2857 0.2057 0.1428 0.0857 0.1110

5.2 Error Propagation

To test error propagation we used our main model: snippets as input; pre-trained
BERT; fine-tuned on NQ; and further fine-tuned on BioASQ training data. We
then tested two scenarios,

– Gold inputs (google-gold-input): we used gold standard snippets generated
by humans as input to the QA model. This is the standard setting for almost
all participants in the track, as these were provided by the organizers.

– Noisy inputs (google-gold-pred): We used predicted snippets as input to the
QA model. This was provided by [8], a team that participated in 7b Phase
A and whose document and snippet retrieval were the highest scoring sub-
missions. Specifically, we used there BERT-based high-confidence document
reranker plus snippet extractor.

Table 6 contains the results. We measure error propagation only for factoid
QA for batches 3–5, which were the batches that we participated in. We can
see from these results that feeding the QA model non-gold inputs leads to a
dramatic drop in all metrics: from 7pts up to 14pts absolute. In one case (batch
5, strict accuracy), the metric is halved.

These results strongly suggest that when considering the QA system holis-
tically – retrieval followed by QA – the largest bottleneck is the quality of the
retrieval system, and not necessarily the QA model. For batch 3, our model was
at the top or near the top for all metrics. However, for batches 4 and 5, our
model was significantly lower than the top reporting system and we can see that
error propagation is amplified for these batches. It would be useful to measure
error propagation against the best reporting BioASQ models for these batches.

6 Conclusion

In this paper, we set out to investigate the domain portability of neural QA
systems [1] and to determine what is the impact of error propagation in end-
to-end retrieval and QA systems. We found that even though our base QA
model was trained on non-biomedical data, it was able to generalize matching
questions to spans of text and gave very good results compared to systems that
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were trained with biomedical data. In addition, our results suggest that when
using end-to-end QA systems the bottleneck is the quality of the retrieval system
and not necessarily the QA model itself.
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Abstract. In this paper, we detail our submission to the 7th year
BioASQ competition. We present our approach for Task-7b, Phase B,
Exact Answering Task. These Question Answering (QA) tasks include
Factoid, Yes/No, List Type Question answering. Our system is based
on a contextual word embedding model. We have used a Bidirectional
Encoder Representations from Transformers (BERT) based system, fined
tuned for biomedical question answering task using BioBERT. In the
third test batch set, our system achieved the highest ‘MRR’ score for
Factoid Question Answering task. Also, for List type question answer-
ing task our system achieved the highest recall score in the fourth test
batch set. Along with our detailed approach, we present the results for
our submissions, and also highlight identified downsides for our current
approach and ways to improve them in our future experiments.

Keywords: BioASQ · Question answering · Factoid · List-type ·
UNCC

1 Introduction

BioASQ1 is a biomedical document classification, document retrieval, and ques-
tion answering competition, currently in its seventh year. We provide an overview
of our submissions to semantic question answering task (7b, Phase B) of BioASQ
7 (except for ‘ideal answer’ test, in which we did not participate this year). In
this task systems are provided with biomedical questions and are required to
submit ideal and exact answers to those questions. We have used BioBERT [9]
based system, see also Bidirectional Encoder Representations from Transformers
(BERT) [4], and we fine tuned it for the biomedical question answering task. Our
system scored near the top for factoid questions for all the batches of the chal-
lenge. More specifically, in the third test batch set, our system achieved highest
‘MRR’ score for Factoid Question Answering task. Also, for List-type question
answering task our system achieved highest recall score in the fourth test batch
1 http://BioASQ.org/participate/challenges.

c© Springer Nature Switzerland AG 2020
P. Cellier and K. Driessens (Eds.): ECML PKDD 2019 Workshops, CCIS 1168, pp. 695–710, 2020.
https://doi.org/10.1007/978-3-030-43887-6_62
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set. Along with our detailed approach, we present the results for our submis-
sions and also highlight identified downsides for our current approach and ways
to improve them in our future experiments.

The QA task is organized in two phases. Phase A deals with retrieval of
the relevant document, snippets, concepts, and RDF triples, and phase B deals
with exact and ideal answer generations. Exact answer generation is required for
factoid, list, and yes/no type question.

BioASQ competition provides the training and testing datasets. The training
data consists of questions, golden standard documents, snippets, concepts, and
ideal answers (which we did not use in this paper, but we used last year [2]). The
test data is split between phase A and phase B. The phase A dataset consists
of the questions, unique ids, question types. The phase B dataset consists of the
questions, golden standard documents, snippets, unique ids and question types.
Exact answers for factoid type questions are evaluated using strict accuracy
(consider the top answer), lenient accuracy (consider the top 5 answers), and
MRR (Mean Reciprocal Rank) which takes into account the ranks of returned
answers. Answers for the list type question are evaluated based on precision,
recall, and F-measure.

2 Related Work

2.1 BioASQ

Sharma et al. [16] describe a system with two stage process for factoid and
list type question answering. Their system extracts relevant entities and then
runs supervised classifier to rank the entities. Wiese et al. [18] propose neural
network based model for Factoid and List-type question answering task. The
model is based on Fast QA and predicts the answer span in the passage for a
given question. The model is trained on SQuAD data set and fine tuned on the
BioASQ data. Dimitriadis et al. [5] proposed two stage process for Factoid ques-
tion answering task. Their system uses general purpose tools such as Metamap,
BeCas to identify candidate sentences. These candidate sentences are represented
in the form of features, and are then ranked by the binary classifier. Classifier is
trained on candidate sentences extracted from relevant questions, snippets and
correct answers from BioASQ challenge. For factoid question answering task
highest ‘MRR’ achieved in the 6th edition of BioASQ competition is ‘0.4325’.
Our system is a neural network model based on contextual word embeddings
[4] and achieved a ‘MRR’ score ‘0.6103’ in one of the test batches for Factoid
Question Answering task.

2.2 A Minimum Background on BERT

BERT stands for “Bidirectional Encoder Representations from Transformers” [4]
is a contextual word embedding model. Given a sentence as an input, contextual
embedding for the words are returned. The BERT model was designed so it can
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be fine tuned for 11 different tasks [4], including question answering tasks. For a
question answering task, question and paragraph (context) are given as an input.
A BERT standard is that question text and paragraph text are separated by a
separator [Sep]. BERT question-answering fine tuning involves adding softmax
layer. Softmax layer takes contextual word embeddings from BERT as input and
learns to identity answer span present in the paragraph (context). This process is
represented in Fig. 1. For detailed understanding of BERT Architecture, please
refer to the original BERT paper [4].

Fig. 1. BioBERT fine tuned for question answering task

Comparison of Word Embeddings and Contextual Word Embeddings.
A ‘word embedding’ is a learned representation. It is represented in the form of
vector where words that have the same meaning have a similar vector represen-
tation. Consider a word embedding model ‘word2vec’ [12] trained on a corpus.
Word embeddings generated from the model are context independent that is,
word embeddings are returned regardless of where the words appear in a sen-
tence and regardless of e.g. the sentiment of the sentence. However, contextual
word embedding models like BERT also takes context of the word into consid-
eration.
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2.3 Comparison of BERT and Bio-BERT

‘BERT’ and BioBERT are very similar in terms of architecture. Difference is that
‘BERT’ is pretrained on Wikipedia articles, whereas BioBERT version used in
our experiments is pretrained on Wikipedia, PMC and PubMed articles. There-
fore BioBERT model is expected to perform well with biomedical text, in terms
of generating contextual word embeddings.

BioBERT model used in our experiments is based on BERT-Base Archi-
tecture; BERT-Base has 12 transformer Layers where as BERT-Large has 24
transformer layers. Moreover contextual word embedding vector size is 768 for
BERT-Base and more for BERT-large. According to [4] Bert-Large, fine-tuned
on SQuAD 1.1 question answering data [13] can achieve F1 Score of 90.9 for
Question Answering task where as BERT-Base Fine-tuned on the same SQuAD
question answering [13] data could achieve F1 score of 88.5. One downside of
the current version BioBERT is that word-piece vocabulary2 is the same as that
of original BERT Model, as a result word-piece vocabulary does not include
biomedical jargon. Lee et al. [9] created BioBERT, using the same pre-trained
BERT released by Google, and hence in the word-piece vocabulary (vocab.txt),
as a result biomedical jargon is not included in word-piece vocabulary. Modifying
word-piece vocabulary (vocab.txt) at this stage would loose original compatibil-
ity with ‘BERT’, hence it is left unmodified.

In our future work we would like to build pre-trained ‘BERT’ model from
scratch. We would pretrain the model with biomedical corpus (PubMed, ‘PMC’)
and Wikipedia. Doing so would give us scope to create word piece vocabulary
to include biomedical jargon and there are chances of model performing better
with biomedical jargon being included in the word piece vocabulary. We will
consider this scenario in the future, or wait for the next version of BioBERT.

3 Experiments: Factoid Question Answering Task

For Factoid Question Answering task, we fine tuned BioBERT [9] with ques-
tion answering data and added new features. Figure 1 shows the architecture of
BioBERT fine tuned for question answering tasks: Input to BioBERT is word
tokenized embeddings for question and the paragraph (Context). As per the
‘BERT’ [4] standards, tokens ‘[CLS]’ and ‘[SEP]’ are appended to the tokenized
input as illustrated in the figure. The resulting model has a softmax layer formed
for predicting answer span indices in the given paragraph (Context). On test
data, the fine tuned model generates n-best predictions for each question. For
a question, n-best corresponds that n answers are returned as possible answers
in the decreasing order of confidence. Variable n is configurable. In our paper,
any further mentions of ‘answer returned by the model’ correspond to the top
answer returned by the model.

2 vocab.txt and all other software and data is available in our GitHub Repo https://
github.com/telukuntla/BioMedicalQuestionAnswering UNCC.

https://github.com/telukuntla/BioMedicalQuestionAnswering_UNCC
https://github.com/telukuntla/BioMedicalQuestionAnswering_UNCC
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3.1 Setup

BioASQ provides the training data. This data is based on previous BioASQ
competitions. Train data we have considered is aggregate of all train data sets till
the 5th version of BioASQ competition. We cleaned the data, that is, question-
answering data without answers are removed and left with a total count of 530
question answers. The data is split into train and test data in the ratio of 94 to
6; that is, count of 495 for training and 35 for testing.

The original data format is converted to the BERT/BioBERT format, where
BioBERT expects ‘start index’ of the actual answer. The ‘start index corre-
sponds to the index of the answer text present in the paragraph/Context. For
finding ‘start index’ we used built-in python function find(). The function returns
the lowest index of the actual answer present in the context(paragraph). If the
answer is not found ‘−1’ is returned as the index. The efficient way of finding
start index is, if the paragraph (Context) has multiple instances of answer text,
then ‘start index’ of the answer should be that instance of answer text whose
context actually matches with what’s been asked in the question.

Example (Question, Answer and Paragraph from [17]):
Question: Which drug should be used as an antidote in benzodiazepine overdose?
Answer: ‘Flumazenil’
Paragraph(context):

“Flumazenil use in benzodiazepine overdose in the UK: a retrospective survey
of NPIS data. OBJECTIVE: Benzodiazepine (BZD) overdose (OD) continues to
cause significant morbidity and mortality in the UK. Flumazenil is an effective
antidote but there is a risk of seizures, particularly in those who have co-ingested
tricyclic antidepressants. A study was undertaken to examine the frequency of
use, safety and efficacy of flumazenil in the management of BZD OD in the UK.
METHODS: A 2-year retrospective cohort study was performed of all enquiries
to the UK National Poisons Information Service involving BZD OD. RESULTS:
Flumazenil was administered to 80 patients in 4504 BZD-related enquiries, 68
of whom did not have ventilatory failure or had recognised contraindications
to flumazenil. Factors associated with flumazenil use were increased age, severe
poisoning and ventilatory failure. Co-ingestion of tricyclic antidepressants and
chronic obstructive pulmonary disease did not influence flumazenil administra-
tion. Seizure frequency in patients not treated with flumazenil was 0.3%”.

Actual answer is ‘Flumazenil’, but there are multiple instances of word ‘Flu-
mazenil’. Efficient way to identify the start-index for ‘Flumazenil’ (answer) is to
find that particular instance of the word ‘Flumazenil’ which matches the context
for the question. In the above example ‘Flumazenil’ highlighted in bold is the
actual instance that matches question’s context. Unfortunately, we could not
identify readily available tools that can achieve this goal. In our future work, we
look forward to handling these scenarios effectively.

Note: The creators of ‘SQuAD’ [13] have handled the task of identifying
answer’s start index effectively. But ‘SQuAD’ data set is much more general and
does not include biomedical question answering data.
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3.2 Training and Error Analysis

During our training with the BioASQ data, learning rate is set to 3e-5, as men-
tioned in the BioBERT paper [9]. We started training the model with 495 avail-
able train data and 35 test data by setting number of epochs to 50. After training
with these hyper-parameters training accuracy (exact match) was 99.3% (over-
fitting) and testing accuracy is only 4%. In the next iteration we reduced the
number of epochs to 25 then training accuracy is reduced to 98.5% and test
accuracy moved to 5%. We further reduced number of epochs to 15, and the
resulting training accuracy was 70% and test accuracy 15%. In the next itera-
tion set number of epochs to 12 and achieved train accuracy of 57.7% and test
accuracy 23.3%. Repeated the experiment with 11 epochs and found training
accuracy to be the same 57.7% and the test accuracy 22%. In the next itera-
tion we set number of epochs to 9 and found training accuracy of 48% and test
accuracy of 15%. Hence optimum number of epochs is taken as 12 epochs.

During our error analysis we found that on test data, model tends to return
text in the beginning of the context (paragraph) as the answer. On analysing
train data, we found that there are 120 (out of 495) question answering data
instances having start index:0, meaning 120 (about 25%) question answering
data has first word(s) in the context(paragraph) as the answer. We removed
70% of those instances in order to make train data more balanced. In the new
train data set we are left with 411 question answering data instances. This time
we got the highest test accuracy of 26% at 11 epochs. We have submitted our
results for BioASQ test batch-2, got strict accuracy of 32% and our system
stood in 2nd place. Initially, hyper-parameter- ‘batch size’ is set to 400. Later it
is tuned to 32. Although accuracy (exact answer match) remained at 26%, model
generated concise and better answers at batch size 32, that is wrong answers are
close to the expected answer in good number of cases.

Example.(from [17])
Question: Which mutated gene causes Chediak Higashi Syndrome?
Exact Answer: ‘lysosomal trafficking regulator gene’.

The answer returned by a model trained at 400 batch size is ‘Autosomal-
recessive complicated spastic paraplegia with a novel lysosomal trafficking regula-
tor’, and from the one trained at 32 batch size is ‘lysosomal trafficking regulator’.

In further experiments, we have fine tuned the BioBERT model with both
‘SQuAD’ dataset (version 2.0) and BioASQ train data. For training on ‘SQuAD’,
hyper parameters- Learning rate and number of epochs are set to ‘3e-3’ and 3
respectively as mentioned in the paper [4]. Test accuracy of the model boosted
to 44%. In one more experiment we trained model only on ‘SQuAD’ dataset, this
time test accuracy of the model moved to 47%. The reason model did not perform
up to the mark when trained with ‘SQuAD’ alongside BioASQ data could be
that in formatted BioASQ data, start index for the answer is not accurate, and
affected the overall accuracy.



UNCC BioASQ QA Systems 701

4 Our Systems and Their Performance on Factoid
Questions

We have experimented with several systems and their variations, e.g. created
by training with specific additional features (see next subsection). Here is their
list and short descriptions. Unfortunately we did not pay attention to naming,
and the systems evolved between test batches, so the overall picture can only be
understood by looking at the details.

When we started the experiments our objective was to see whether BioBERT
and entailment-based techniques can provide value for in the context of biomed-
ical question answering. The answer to both questions was a yes, qualified by
many examples clearly showing the limitations of both methods. Therefore we
tried to address some of these limitations using feature engineering with mixed
results: some clear errors got corrected and new errors got introduced, with-
out overall improvement but convincing us that in future experiments it might
be worth trying feature engineering again especially if more training data were
available.

Overall we experimented with several approaches with the following aspects
of the systems changing between batches, that is being absent or present:

* training on BioASQ data vs. training on SQuAD
* using the BioASQ snippets for context vs. using the documents from the

provided URLs for context
* adding or not the LAT, i.e. lexical answer type, feature (see [3,8] and an

explanation in the subsection just below).

For Yes/No questions (only) we experimented with the entailment methods.
We will discuss the performance of these models below and in Sect. 6. But

before we do that, let us discuss a feature engineering experiment which eventu-
ally produced mixed results, but where we feel it is potentially useful in future
experiments.

4.1 LAT Feature Considered and Its Impact (Slightly Negative)

During error analysis we found that for some cases, answer being returned by
the model is far away from what it is being asked in the Question.

Example: (from [17])
Question: Hy’s law measures failure of which organ?
Actual Answer: ‘Liver’.

The answer returned by one of our models was ‘alanine aminotransferase’,
which is an enzyme. The model returns an enzyme, when the question asked for
the organ name. To address this type of errors, we decided to try the concepts of
‘Lexical Answer Type’ (LAT) and Focus Word, which was used in IBM Watson,
see [6] for overview; [3] for technical details, and [8] for details on question
analysis. In an example given in the last source we read:
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POETS & POETRY: He was a bank clerk in the Yukon before he published
“Songs of a Sourdough” in 1907.
The focus is the part of the question that is a reference to the answer. In
the example above, the focus is “he”. LATs are terms in the question that
indicate what type of entity is being asked for.
(...) In the example, LATs are “he”, “clerk”, and “poet”.

For example in the question “Which plant does oleuropein originate from?”
([17]). The LAT here is ‘plant’. For the BioASQ task we did not need to explicitly
distinguish between the focus and the LAT concepts. In this example, the expec-
tation is that answer returned by the model is a plant. Thus it is conceivable that
the cosine distance between contextual embedding of word ‘plant’ in the question
and contextual embedding for the answer present in the paragraph(context) is
comparatively low. As a result model learns to adjust its weights during training
phase and returns answers with low cosine distance with the LAT.

We used Stanford CoreNLP [11] library to write rules for extracting lexical
answer type present in the question, both ‘parts of speech’(POS) and dependency
parsing functionality was used. We incorporated the Lexical Answer Type into
one of our systems, UNCC QA1 in Batch 4. This system underperformed our
system FACTOIDS by about 3% in the MRR measure, but corrected errors such
as in the example above.

Assumptions and Rules for Deriving Lexical Answer Type. There are
different question types: ‘Which’, ‘What’, ‘When’, ‘How’ etc. Each type of ques-
tion is being handled differently and there are commonalities among the rules
written for different question types. Question words are identified through parts
of speech tags: ‘WDT’, ‘WRB’, ‘WP’. We assumed that LAT is a ‘Noun’ and
follows the question word. Often it was also a subject (nsubj). This process is
illustrated in Fig. 2.

LAT computation was governed by a few simple rules, e.g. when a question
has multiple words that are ‘Subjects’ (and ‘Noun’), a word that is in proximity
to the question word is considered as ‘LAT’. These rules are different for each
“Wh” word. Perhaps because of using only very simple rules, the accuracy for
‘LAT’ derivation is 75% that is, in the remaining 25% of the cases LAT word is
being identified wrong. And similarly the overall performance the system that
used LATs was slightly inferior to the system without LATs, but the types of
errors changed. We need to improve our ‘LAT’ derivation logic, and then perhaps
with the neural network techniques they will yield better results.

Overall, the impact of training BioBERT with the LAT feature (as part of the
input string) has been slightly negative. However, it works mostly as expected.
The errors it introduces usually involve finding the wrong element of the correct
type e.g. wrong enzyme when two similar enzymes are described in the text,
or ‘neuron’ when asked about a type of cell with a certain function, when the
answer calls for a different cell category, adipocytes, and both are mentioned
in the text. We feel with more data and additional tuning or perhaps using an
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Fig. 2. A simple way of finding the lexical answer types, LATs, of factoid questions:
using POS tags to find the question word (e.g. ‘which’), and a dependency parse to
find the LAT within the window of 3 words. If a noun is not found near the “Wh-”
word, we iterate looking for it, as in the second panel.

ensemble model, we might be able to keep the correct answers, and improve the
results on the confusing examples like the one mentioned above.

4.2 Impact of Training Using BioASQ Data (Slightly Negative)

Training on BioASQ data in our entry in Batch 1 and Batch 2 under the name
QA1 showed it might lead to overfitting. This happened both with (Batch 2)
and without (Batch 1) hyperparameters tuning: abysmal 18% MRR in Batch 1,
and slightly better one, 40% in Batch 2 (although in Batch 2 it was overall the
second best result in MRR but 16% lower than the highest score).

In Batch 3 (only), our UNCC QA3 system was fine tuned on BioASQ and
SQuAD 2.0 [13], and for data preprocessing Context paragraph is generated
from relevant snippets provided in the test data. This system underperformed,
by about 2% in MRR, our other entry UNCC QA1, which was also an overall
category winner for this batch. The latter was also trained on SQuAD, but not
on BioASQ. We suspect that the reason could be the simplistic nature of the
find() function described in Sect. 3.1. So, this could be an area where a better
algorithm for finding the best occurrence of an entity could improve performance.
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Fig. 3. An example of a using BioBERT with additional features: Contextual word
embedding for Lexical Answer Type (LAT) given as feature along with the actual con-
textual embeddings for the words in question and the paragraph. This change produced
mixed results and no overall improvement.

4.3 Impact of Using Context from URLs (Negative)

In some experiments, for context in testing, we used documents for which URL
pointers are provided in BioASQ. However, our system UNCC QA3 underper-
formed our other system tested only on the provided snippets.

In Batch 5 the underperformance was about 6% of MRR, compared to our
best system UNCC QA1, and by 9% to the top performer (Fig. 3).

5 Performance on Yes/No and List Questions

Our work focused on Factoid questions. But we also have done experiments on
List-type and Yes/No questions.

5.1 Entailment Improves Yes/No Accuracy

We started by answering always YES (in batch 2 and 3) to get the baseline
performance. For batch 4 we used entailment. Our algorithm was very simple:
Given a question we iterate through the candidate sentences and try to find any
candidate sentence is contradicting the question (with confidence over 50%), if
so ‘No’ is returned as answer, else ‘Yes’ is returned. In batch 4 this strategy
produced better than the BioASQ baseline performance, and compared to our
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other systems, the use of entailment increased the performance by about 13%
(macro F1 score). We used ‘AllenNlp’ [7] entailment library to find entailment
of the candidate sentences with question.

5.2 For List-Type the URLs Have Negative Impact

Overall, we followed the similar strategy that’s been followed for Factoid Ques-
tion Answering task. We started our experiment with batch 2, where we sub-
mitted 20 best answers (with context from snippets). Starting with batch 3,
we performed post processing: once models generate answer predictions (n-best
predictions), we do post-processing on the predicted answers. In test batch 4,
our system (called FACTOIDS) achieved highest recall score of ‘0.7033’ but
low precision of 0.1119, leaving open the question of how could we have better
balanced the two measures.

In the post-processing phase, we take the top 20 (batch 3) and top 5 (batch
4 and 5), predicted answers, tokenize them using common separators: ‘comma’,
‘and’, ‘also’, ‘as well as’. Tokens with characters count more than 100 are elimi-
nated and rest of the tokens are added to the list of possible answers. BioASQ
evaluation mechanism does not consider snippets with more than 100 characters
as a valid answer. Considering lengthy snippets in to the list of answers would
reduce the mean precision score. As a final step, duplicate snippets in the answer
pool are removed. For example, consider these top 3 answers predicted by the
system (before post-processing):

{ "text": "dendritic cells",

"probability": 0.7554540733426441,

"start_logit": 8.466046333312988,

"end_logit": 9.536355018615723 },

{ "text": "neutrophils, macrophages and

distinct subtypes of dendritic cells",

"probability": 0.13806867348304214,

"start_logit": 6.766478538513184,

"end_logit": 9.536355018615723 },

{ "text": "macrophages and distinct subtypes of dendritic",

"probability": 0.013973475271178242,

"start_logit": 6.766478538513184,

"end_logit": 7.24576473236084 },

After execution of post-processing heuristics, the list of answers returned is as
follows:

["dendritic cells"],["neutrophils"],
["macrophages"],["distinct subtypes of dendritic cells"]
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6 Summary of Our Results

The tables below summarize all our results. They show that the performance of
our systems was mixed. The simple architectures and algorithm we used worked
very well only in Batch 3. However, we feel we can built a better system based on
this experience. In particular we observed both the value of contextual embed-
dings and of feature engineering (LAT), however we failed to combine them
properly (Table 1).

Table 1. Factoid Questions. In Batch 3 we obtained the highest score. Also the rel-
ative distance between our best system and the top performing system shrunk between
Batch 4 and 5.

System Strict accuracy Lenient accuracy MRR

Batch 1

QA1 0.1538 0.2308 0.1761

Top Competitor 0.4103 0.5385 0.4637

Batch 2

QA1 0.36 0.48 0.4033

Top Competitor 0.52 0.64 0.5667

Batch 3

UNCC QA1 0.4483 0.5862 0.5115

UNCC QA2 0.4138 0.5862 0.4856

UNCC QA3 0.4138 0.5862 0.4943

Top Competitor 0.36 0.48 0.5023

Batch 4

FACTOIDS 0.5294 0.7353 0.6103

UNCC QA1 0.4706 0.7353 0.5833

Top Competitor 0.5882 0.8235 0.6912

Batch 5

UNCC QA1 0.2857 0.4286 0.3305

UNCC QA3 0.2286 0.3143 0.2643

QA1 0.2286 0.3714 0.2938

Top Competitor 0.2857 0.5143 0.3638

6.1 Factoid Questions

Systems Used in Batch 5 Experiments

System description for ‘UNCC QA1’: The system was finetuned on the
SQuAD 2.0. For data preprocessing Context/paragraph was generated from rel-
evant snippets provided in the test data.
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System description for ‘QA1’: ‘LAT’ feature was added and finetuned with
SQuAD 2.0. For data preprocessing Context/paragraph was generated from rel-
evant snippets provided in the test data.

System Description for ‘UNCC QA3’: Fine tuning process is same as it
is done for the system ‘UNCC QA1’ in test batch-5. Difference is during data
preprocessing, Context/paragraph is generated from the relevant documents for
which URLS are included in the test data.

6.2 List Questions

For List-type questions, although post processing helped in the later batches,
we never managed to obtain competitive precision, although our recall was good
(Table 2).

Table 2. List questions

System Mean precision Recall F-measure

Batch 2

QA1 0.0471 0.2898 0.0786

Top Competitor 0.5826 0.4839 0.4732

Batch 3

UNCC QA1 0.0780 0.4711 0.1297

Top Competitor 0.4267 0.3058 0.3298

Batch 4

FACTOIDS 0.1119 0.7033 0.1893

UNCC QA1 0.1087 0.6968 0.1846

UNCC QA3 0.1087 0.6968 0.1846

Top Competitor 0.4841 0.5051 0.4604

Batch 5

UNCC QA1 0.2051 0.5127 0.2862

Top Competitor 0.5653 0.4131 0.4619

6.3 Yes/No Questions

The only thing worth remembering from our performance is that using entail-
ment can have a measurable impact (at least with respect to a weak baseline).
The results (weak) are in Table 3.
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Table 3. Yes/No questions

System Accuracy F1 Yes F1 No Macro F1

Batch 1

QA1 0.7931 0.8846 – 0.4423

Top Competitor 0.8276 0.8980 0.4444 0.6712

Batch 2

QA1 0.5667 0.7234 – 0.3617

Top Competitor 0.8333 0.8387 0.8276 0.8331

Batch 3

QA1 0.7826 0.8780 – 0.4390

UNCC QA3 0.7826 0.8780 – 0.4390

Top Competitor 0.8696 0.9231 0.5714 0.7473

Batch 4

UNCC QA1 0.6087 0.7097 0.4000 0.5548

FACTOIDS 0.7391 0.8500 – 0.4250

UNCC QA3 0.7391 0.8500 – 0.4250

Top Competitor 0.8696 0.9143 0.7273 0.8208

Batch 5

UNCC QA2 0.5429 0.7037 – 0.3519

Top Competitor 0.8286 0.8500 0.8000 0.8250

7 Discussion, Future Experiments, and Conclusions

Summary. In contrast to 2018, when we submitted [2] to BioASQ a system
based on extractive summarization (and scored very high in the ideal answer
category), this year we mainly targeted factoid question answering task and
focused on experimenting with BioBERT. After these experiments we see the
promise of BioBERT in QA tasks, but we also see its limitations. The latter
we tried to address with mixed results using feature engineering. Overall these
experiments allowed us to secure a best and a second best score in different test
batches. Along with Factoid-type question, we also tried ‘Yes/No’ and ‘List’-type
questions, and did reasonably well with our very simple approach.

For Yes/No the moral worth remembering is that reasoning has a potential
to influence results, as evidenced by our adding the AllenNLP entailment [7]
system increased its performance.

All our data and software is available at Github, in the previously referenced
URL (end of Sect. 2).

Future Experiments. In the current model, we have a shallow neural network
with a softmax layer for predicting answer span. Shallow networks however are
not good at generalizations. In our future experiments we would like to create



UNCC BioASQ QA Systems 709

dense question answering neural network with a softmax layer for predicting
answer span. The main idea is to get contextual word embedding for the words
present in the question and paragraph (Context) and feed the contextual word
embeddings retrieved from the last layer of BioBERT to the dense question
answering network. The mentioned dense layered question answering neural net-
work need to be tuned for finding right hyper parameters.

In one more experiment, we would like to add a better version of ‘LAT’
contextual word embedding as a feature, along with the actual contextual word
embeddings for question text, and Context and feed them as input to the dense
question answering neural network. By this experiment, we would like to find
if ‘LAT’ feature is improving overall answer prediction accuracy. Adding ‘LAT’
feature this way instead of feeding this word piece embedding directly to the
BioBERT (as we did in our above experiments) would not downgrade the quality
of contextual word embeddings generated form ‘BioBERT’. Quality contextual
word embeddings would lead to efficient transfer learning and chances are that
it would improve the model’s answer prediction accuracy.

We also see potential for incorporating domain specific inference into the
task e.g. using the MedNLI dataset [15]. For all types of experiments it might be
worth exploring clinical BERT embeddings [1], explicitly incorporating domain
knowledge (e.g. [10]) and possibly deeper discourse representations (e.g. [14]).
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Abstract. We describe our experiments in building a system to tackle
task B of the BioASQ 2019 challenge on semantic question answering.
We built separate systems to handle the five different types of questions
in the dataset. We explored using transformer-based models using both
ELMo, BERT and BioBERT. For the yesno questions, the results of our
submissions using BERT ranked first in batches 3 and 4, while second
best in batch 5.

Keywords: Question-answering · Transformer · ELMo

1 Introduction

Along the years the BioASQ challenge has been growing in popularity as well
in the difficulty of the tasks to perform. The three tasks of the BioASQ 2019
challenge [7] concern biomedical semantic indexing and question answering.

Task B on Biomedical Semantic Question Answering requires creating an
automated system capable of responding to a set of biomedical questions with
relevant concepts, articles, snippets, and RDF triples, from designated resources,
as well as exact and ‘ideal’ answers. Questions are divided into various types
according to the expected answer (yes/no, a single fact, a list of entities, or
a summary). Systems often exploit different strategies to address each type of
questions.

2 Dataset

The BioASQ training dataset for Task 7b consists of 2747 questions in the biology
and medical domain. All questions were constructed by biomedical experts from
around Europe. Each dataset item consists of several fields, the most relevant of
which are:

– type: type of the question;
– exact answer: exact answer (absent in summary questions);
– ideal answer: an answer summarizing the most relevant information;

c© Springer Nature Switzerland AG 2020
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– documents: PubMed articles relevant to the question. The supplied answer
snippets are extracted from these documents.

Questions are classified into the following types:

– yes-no: systems must provide a “yes” or “no” answer;
– list : systems must provide a list of entity names (e.g. a list of gene names);
– factoid : similar to list answers, these require as an answer a single entity

name (e.g. a disease, drug, or gene), a number, or a similar short expression.
Differently from list questions though there are lesser entities in the answer:
often, only a single entity or up to 3–4 in a few cases;

– summary : these questions must be answered by producing a short text sum-
marizing the most relevant information.

Besides answers of the types described above, submissions may provide an
ideal answer : a single text paragraph that best summarizes the most relevant
information answering the question.

For each question, a list of snippets is provided. Snippets are short texts that
are expected to contain the information needed to answer the corresponding
question. However, some of them may not be useful for extracting the answer.

Table 1 shows in detail the composition of the training dataset.
Most of the questions have 1 to 15 associated snippets while only a few of them
have a larger number of snippets (>40).

Table 1. Dataset composition

Question type Number Dataset %

List 556 20,2

Summary 667 24,2

Yesno 745 27,1

Factoid 779 28,3

Total questions 2747 100

Yesno Questions. There is a great imbalance in the answers to these questions:
82% of the answers are “yes” and only 18% have a “no” answer.

List Questions. List answers contain between 1 and 38 entities, but over 80%
have less than 10 elements.

Factoid Questions. The answer to a factoid question might be phrased dif-
ferently, therefore for some questions, there may be multiple answers with
different wording. This is important since it may affect the scoring, which is
based on MRR (Mean Reciprocal Rank).

Summary Questions. For these types of questions no exact answer is
requested; but the system is expected to provide just a kind of ideal answer.
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3 Models

Since the challenge expects different types of answers according to the type of
questions, we developed specialized systems for each of them. We explored several
solutions, some of which had to be discarded because they did not produce
good results. Simpler approaches were tried first, such as Sentiment Analysis or
information retrieval based on a bag-of-words model, and more complex ones
were attempted as soon as the simpler ones showed unsatisfactory results.

In the following sections, a detailed description of the models employed for the
competition is presented. The discussion is organized into sections corresponding
to the type of questions to handle.

3.1 Models for YesNo Questions

In order to answer this type of questions, we exploited different versions of word
embeddings. We explored embeddings created from the BioASQ dataset itself
using word2vec [13]. Given the small size of the dataset however this type of
embeddings showed poor results.

Embeddings of ELMo, BERT, and ELMo-Pubmed (described below) have
been extracted using Flair [3] since it offers the same pre-trained weights and
simple programming interfaces.

ELMo. Elmo [15] is a deep contextualized word representation that models both
complex characteristics of word use (e.g., syntax and semantics), and how these
uses vary across linguistic contexts (i.e., to model polysemy). These word vectors
are learned functions of the internal states of a deep bidirectional language model
(biLM), which is pre-trained on a large text corpus.

This model consists of two layers of 4096 LSTM units. Of these units, half
handle the forward language modeling, and the remaining the backward language
modeling.

We exploited a pre-trained model on the “One billion word Benchmark” [5].
Figure 1 shows the network architecture.

Fig. 1. Elmo architecture
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ELMo-Pubmed. This model is identical to the one described in Sect. 3.1,
except that it is trained on PubMed abstracts.

BERT. BERT [6] stands for Bidirectional Encoder Representations from Trans-
formers. The BERT Large model consists of a stack of 24 Transformer encoders.
Each encoder incorporates an attention mechanism to help the model focus on
the most relevant parts of the input.

In this model, the attention mechanism is a multi-headed one with 16 atten-
tion heads.

The model was trained on the entire Wikipedia and BookCorpus [18] for a
total of 1 million update steps.

BERT architecture is showed in Fig. 2.

Fig. 2. Bert architecture

BioBERT. The BioBERT model [11] has the same architecture as Sect. 3.1 but
it was trained on PubMed abstracts.

After evaluating the performance of this model on the validation set we
decided not to use it for the yes-no questions.

Data Pre-processing. Before feeding the models with data, the following pre-
processing steps were performed on all questions and snippets:

– removal of spurious newlines,
– tokenization.

Each of the pre-trained models handles tokenization differently. All models
are capable of handling case sensitive text, so there was no need to lowercase
inputs. The inputs were normalized by each model in its own way, and the
resulting embeddings are of fixed size.
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To extract the embeddings from the BioBERT model we prepared the input
concatenating the question, a separator token, and its snippets. However, since
the max token length for BioBERT is 512, we built multiple inputs by pairing a
question with each sentence from the snippets. Scispacy [14] was used to perform
sentence splitting on the snippets.

Classifier Inputs. Given a dataset consisting of questions {Qn, n < N}, their
corresponding answer snippets {Sn,k, k < K} and outputs {yn, n < N}, a train-
ing set is created consisting of inputs {xi = 〈Qn, Sn,k〉, n < N, k < K} and
outputs {yi}, where i is the index n of the Qn corresponding to xi. In other
words we create pairs of each question with all its related snippets and assume
that they would all have the same answer. This is realistic, since all snippets
are assumed to have been chosen in the previous stage of question answering as
candidates for containing the answer.

Questions and snippets are transformed into a vector representation by using
a language model as follows.

For all models except the one based on BioBERT, for each input pair xi =<
Qi, Si > we pass separately through the language model the sequence of tokens
from the question Qi and those from the snippet Si.

By means of functions from the Flair library, we extract the embeddings from
all layers of the language model for each token of the input sequence. The vectors
for the question tokens are added together and similarly those from the snippet,
obtaining fixed length vectors irrespective of the length of the sentences. A mean-
pooling is applied to the question vectors and snippet vectors so produced for
each layer, to obtain the final vectors representing the i-th question, Emb(Qi),
and the i-th snippet, Emb(Si). These two vectors are concatenated to obtain
vector

[Emb(Qi);Emb(Sj)]

to be used as input to the classifier described below. We tested also using differ-
ent types of pooling (min and max), but they led to poorer results with respect
to mean-pooling. Embeddings vectors computed through BioBERT did not pro-
vide improvements with respect to the previous models, therefore we did not
employ them in our submissions for the yes-no questions. Even though BioBERT
is trained on the biomedical domain, the fact that has fewer parameters than
BERTLARGE is probably the cause of performance improvements lack.

Classifiers. Since the rules of the BioASQ challenge allow participants to send
up to 5 submissions, we trained 5 different classifiers with different embeddings
and different architectures.

Before training, the dataset yes-no ratio was re-balanced as shown in the
column Yes-No in Table 3 to avoid bias towards “yes” answers.

The classifier consists of fully connected feed-forward networks with the archi-
tecture described in Fig. 3.

The classifier was implemented using Keras [4] on a TensorFlow [2] backend.
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Fig. 3. Yes-No model with feed-forward network. The activation functions are tanh for
the input and hidden layers and the sigmoid for the output layer. The vector dimensions
are shown in Table 2.

The hyperparameters for each model were tuned by performing grid searches,
in order to find the best combination of:

– number of hidden layers → [1 . . . 5]
– size of vectors in the first layer → [50 . . . 120]
– size of vectors in the hidden layers → [50 . . . 150]
– type of optimizer → [Sgd,RmsProp,Adam]
– activation functions for the hidden layers → [tanh,ReLU ]
– activation function for the input layer → [tanh,ReLU ]

We used 80% of the training set as development set and the remaining 20%
as the validation set. We also performed a 4-fold cross-validation on the devel-
opment set in order to select the best models for each task.

We then trained each classifier on the development dataset and tested it on
the validation set, to estimate the ability of the model to generalize to unseen
data.

The results of the grid searches are summarized in Table 2, while Table 3
shows the scores on yes-no questions on the validation and test datasets.

Note. By inspecting the answers of the models and the training curves as well,
we noticed an increase in the validation score respect to training score. Since
in the 4-fold CV all the models had less data, more epochs were needed to fit.
During training we noticed a classifier tendency to overfit. To limit this problem,
we implemented an early stopping technique with patience equal to 4.
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Table 2. Grid search results.

System QA-1 QA-2 QA-3 QA-4 QA-5

Embedding Elmo-pubmed BERT LARGE

Pooling Mean

Num h. layers 1

Neurons h. layer 120 120 120 120 80

Neurons 1-st layer 90 90 90 90 50

Act. hidden tanh

Act. input tanh

Optimizer RMSProp

Loss Binary-crossentropy

Fig. 4. Ensemble of classifiers for the Yes/No Model. The result is obtained by majority
voting

Ensemble Classifier. A ensemble of K classifiers is used to classify each pair of
question/snippet < Qi, Si > for the same Qi and the answer is obtained through
a majority vote among these classifiers. More precisely, the ensemble outputs:

– model QA-1 : “yes” if (votes ≥ floor(K/2))
– other models: “yes” if (votes > floor(K/2))

The last system, QA-5, was trained on an augmented dataset constructed
by manually annotating the yes-no datasets of the previous editions of the
BioASQ challenge. Since previous models appeared biased towards giving posi-
tive answers, we chose to add to the training set just the questions with negative
answers.

3.2 Models for List Questions

To answer this type of questions we explored two approaches: one based on
frequency and tf-idf and one based on the analysis of the dependency trees of
questions and snippets.
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Table 3. Scores before retraining.

System Yes-No% Epochs 4-fold VL score Held-out TS score

QA-1 50-50 40 0.9861 0.9612

QA-2 50-50 40 0.9861 0.9564

QA-3 50-50 50 0.9840 0.9668

QA-4 50-50 50 0.8801 0.9429

QA-5 60-40 50 0.8201 0.8455

The processing pipeline to produce the list of entities for the answer consists
in the following steps:

– data pre-processing : stop words such as “list”, punctuation and parentheses
were removed from the input texts;

– entity extraction: entities from both questions and snippets were extracted
using scispacy [14] and then converted to lowercase;

– ranking : the extracted entities were scored with the metrics discussed below;
– filtering : unrelated entities were dropped;
– rank-boosting: entities that were more likely to be an answer received an

increase in their score;
– list-trimming : entities with a score below a given threshold are discarded.

Entity Extraction. We explored two approaches for entity extraction. The first
one is the simplest: the scispaCy mention detector was used to extract entities
from questions and snippets. We used the en core sci md model available from
the scispaCy website.1

This model was trained on a collection of biomedical data, recognizes a wide
variety of entity types, has a vocabulary of 101,678 tokens and includes 98,131
word vectors.

Entities that are already present in the question were dropped, assuming that
a question will typically look for answers not already known and hence terms
appearing in the question are unlikely to be part of an answer.

The second approach is based on the analysis of parse trees. First we deter-
mine the main entity in the question, that is the entity required as answer to the
question. For example, consider the following question: “Which miRNAs could
be used as potential biomarkers for epithelial ovarian cancer?”. The main entity
is miRNAs, since a list of entities of this type is the required answer.

The next step splits the snippets into sentences and then it parses them with
scispaCy. From the parse trees, we extract the entities that:

– are child nodes of an entity similar to the main entity;
– are child nodes of a verb that is the same of the main one;

1 https://allenai.github.io/scispacy/.

https://allenai.github.io/scispacy/
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– are child nodes of an entity similar to the father of the main entity in the
question’s parse tree;

– are child nodes of an entity similar to the verb of the main entity’s father in
the question’s parse tree.

The similarity between two entities is based on string comparisons. An app-
roach with distances between vector representation has been taken into account
but it was not possible to finish it before the deadline of the last batch.

All the resulting entities are merged with those obtained with the first app-
roach described at the beginning of this section. The whole list is sent to the
ranking phase.

Ranking. In this phase all elements of the entity list are ranked based on the
frequency of occurrence in the snippet list. So e.g. the entity genes appear three
times in question’s snippets, then Score(genes) = 3.

We investigated also a different type of scoring scheme based on tf-idf. In this
case the collection of documents was composed of all snippets in the training set,
and the terms to be scored are the elements of the list created in the previous
steps.

The entities list is then sorted according to the scores.

Filtering. Filtering of entities is based mainly on Part of Speech tags from
scispacy. If the considered entity is composed of a single word, and this word is
a verb or an adjective we delete this element from the list. The same is done
if the entity is composed of 2 words and POS are verbs and adposition. In this
way we discard entity like “associated with”.

Score Boosting. In this phase the score of each entity in the resulting list is
increased according to the context of the question.

First, there is an ontology checking, where the entities are boosted if they
appear in a local database of the biomedical domain (the choice of the database
depends on the main entity of the question). Available databases are: bacteria
[1], viruses [1], genes [9,10], drugs [8], proteins, human symptoms, human organs.

We check if the main entity concern one of the domains above. If it happens,
all the entities of the list are searched in the databases and, if an entity is found,
its score is increased. This process increases the probability of finding the entities
required for the answer with greater rank in respect to those that are unrelated.

In the presented code the score of an entity is increased by the mean of all
the ranks >= 1.2

After the ontology checking, tf-idf boosting is performed. Thanks to the
tfidf() function we can extract the value of the entities based on an analysis
of all the snippets in the dataset. With some analysis and test, we found that

2 This is only an empirical choice due to the short time of development, but it could
easily changed with more in-depth work.
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entities which have a value between 3 and 4 have more chances of being a good
answer to the question.

Based on these considerations, we boosted another time the scores of these
entities. In the presented code this function doubles the entity’s rank. This choice
is empirical and could be refined through a more accurate and in-depth analysis
of the problem.

Normalization. Before the trimming phase, scores of all the entities are nor-
malized in the [0,1] range with the formula:

score′ =
score − min score

max score − min score

Where score is the actual score of the entity and max and min score are the
maximum and minimum score of entities in the list.

List Trimming. The last phase of the process is based on a threshold. All
entities that have a score below this threshold are removed. Anyway, if the list
exceeds the 100 elements then only the first 100 are returned as the answer.

The threshold has been determined experimentally by running the entire
pipeline with different thresholds and evaluating the final Mean F1 Score, since
it is the official metrics for these types of questions.

In the current implementation, the threshold is fixed at 0.15.

3.3 Model for Factoid Questions

The approach used for this kind of answer was to exploit the very well known
BERT [6] and how it is used for the challenge SQuAD [17]. As a matter of fact,
SQuAD is, to some extent, a factoid task.

We employed the pre-trained BioBERT [11] model and the technique of fine-
tuning, in order to better fit the results to our dataset.

Pre-processing and Augmentation. We needed to build the training data in
the form of a SQuAD task. To do so, it was necessary to create a unique context,
formed by the concatenation of the snippets. The exact answer had to be inside
of this context. Indeed, SQuAD models need also the index of the answer inside
the context, found by lower-casing both the answer and the context. At the end
of the process, a JSON file is created, where each question has this format, e.g.:
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{” qas ” : [{
” ques t i on ” : ”Which i s the t a r g e t p ro t e in

o f the drug nivolumab ?” ,
” id ” : ”56 af9 f130a360a5e45000015 ” ,
” answers ” : [{” text ” : ”plasma membrane” ,

” an swe r s t a r t ” : 827} ] ,
” i s imp o s s i b l e ” : ” f a l s e ”} ] ,

” context ” : ” . . . ”
}

The field is impossible is used to define a test/validation question (when is
“false”, means that there is no exact answer inside the context).

As already mentioned in the description of the dataset, some factoid ques-
tions have more than one answer, to avoid misinterpretation. Each of them has
been cloned a number of times equal to the provided exact answers, but with a
different id.

For the final training, the dataset was augmented with the second and the
fifth version of the BioASQ challenge data, available thanks to [11] and the
BioASQ team itself. Unfortunately, the two datasets were the only others avail-
able, so there was no possibility to integrate more training sets of past editions.

Post-processing and Evaluation. Up to 5 possible answers are allowed in a
submission and the evaluation metrics for the factoid task is the MRR (Mean
Reciprocal Rank). This means that the system should aim to produce exact
answers with a confident estimate since an answer at a lower ranking position is
highly penalized.

By analyzing the answers returned by the model on the validation set, we
decided to introduce two post-processing steps:

– Parentheses’ fix : correcting or removing a sentence that has unbalanced open
or closed parenthesis.

– Dashes’ fix : if there is an answer with a dashed word in the first position
(e.g.“S-adenosyl-L-methionine”), a variant without dashes is added in the
last ranking position (in order to minimize the misinterpretation of the answer
given by the system).

Due to the complexity of the model, the evaluation of the fine-tuning was
done only by varying the number of epochs (and only with a very small batch
size). A validation set of 127 answers was created from the given training set, in
order to validate the model.
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3.4 Model for Summary and Ideal Questions

Since there are no exact answers in the summary questions, they have been
treated with the ideal answers of the entire dataset. Similarly to the factoid
system, BERT, BioBert and SQuAD approach have been used also for the gen-
eration of the ideal answers.

Nevertheless, the answer does not have to appear (always) inside the context,
but it has to be a completely “original” summary of the paragraph, related to the
question. OpenAI’s GPT architecture [16] is promising, but the released model
has fewer parameters than BERT and its later more sophisticated version, GPT-
2, has not been released by its authors.

Our idea was to keep exploiting BERT model, in order to find the most
attentive part of the context.

Pre-processing and Augmentation. In order to select as answer the most
relevant part of the text and at the same time follow the structure of the SQuAD
approach, we exploit the same evaluation metric used in the BioASQ ideal
answer’s task, ROUGE [12]. In fact, the answer start index is found by calcu-
lating the ROUGE score between the returned answer and all the sentences of
the snippets. The same idea was also used in the testing/validating phase. In
addition, the dataset of the second and the fifth version of the BioASQ challenge
were also added to the training, as we did for the factoid question model.

Post-processing and Evaluation. The post-processing phase aims mainly at
finding the proper sentence within the text of the full answer returned by the
model, and ROUGE metric has been used between all the sentences. Our model
achieved a ROUGE-2 score of 0.4137 on the validation set. We tried increasing
the number of epochs, but the score did not improve.

We tried also to build the answer starting from the factoid model but the
results were worse (ROUGE-2 score of 0.0345).

4 Results

The competition benchmarks were split into 5 batches. We participated in batch
3, 4 and 5 shown in Tables 4, 5 and 6 respectively. Below results are reported
for each of the submissions and the ranks obtained against other participating
systems.
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Table 4. Batch 3 results. Best result indicates the best scoring system across all
participant systems. The score is the average of each question type. Highest scores are
in bold.

Type Metric System Best result

QA-1 QA-2 QA-3 QA-4 QA-5 BioBERT-DMIS

Yes/No Accuracy 0.8261 0.8696 – – – 0.6087

F1 Yes 0.9000 0.9231 – – – 0.7429

F1 No 0.3333 0.5714 – – – 0.1818

Macro-F1 0.6167 0.7473 – – – 0.4623

List Mean Prec. – – – – – 0.4267

Recall – – – – – 0.3058

F-Measure – – – – – 0.3298

Factoid Strict acc. – – – – – 0.6207

Lenient acc. – – – – – 0.4724

MRR – – – – – 0.4267

Average 0.2055 0.2491 – – – 0.4215

Table 5. Batch 4 results. Best result indicates the best scoring system across all
participant systems. The score is the average of each question type. Highest scores are
in bold.

Type Metric System Best Result

QA-1 QA-2 QA-3 QA-4 QA-5 BioBERT-DMIS

Yes/No Accuracy 0.7391 0.7391 0.8261 0.8696 - 0.7391

F1 Yes 0.8421 0.8421 0.8889 0.9143 – 0.8125

F1 No 0.2500 0.2500 0.6000 0.7273 – 0.5714

Macro-F1 0.5461 0.5461 0.7444 0.8208 – 0.6920

List Mean Prec. 0.1442 0.1442 0.1442 0.1442 – 0.4841

Recall 0.6268 0.6268 0.6268 0.6268 – 0.5051

F-Measure 0.2163 0.2163 0.2163 0.2163 – 0.4604

Factoid Strict acc. 0.2059 0.2059 0.2059 0.2059 – 0.882

Lenient acc. 0.3824 0.3824 0.3824 0.3824 – 0.8235

MRR 0.2730 0.2730 0.2730 0.2730 – 0.6912

Average 0.3451 0.3451 0.4112 0.4367 – 0.6145

4.1 Ideal Answers

Table 7 summarizes the results obtained by our systems in the ideal answer type
of questions. The Manual Scores were not yet published at the time of this
writing.
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Table 6. Batch 5 results. Best result indicates the best scoring system across all
participant systems. The score is the average of each question type. Highest scores are
in bold.

Type Metric System Best result

QA-1 QA-2 QA-3 QA-4 QA-5 BioBERT-DMIS-3

Yes/No Accuracy 0.5429 0.5429 0.6857 0.7143 0.8000 0.8286

F1 Yes 0.6800 0.6800 0.7556 0.7727 0.8293 0.8500

F1 No 0.2000 0.2000 0.5600 0.6154 0.7586 0.8000

Macro-F1 0.4400 0.4400 0.6578 0.6941 0.7939 0.8250

List Mean Prec. 0.1713 0.1713 0.1713 0.1713 0.1713 0.5653

Recall 0.5873 0.5873 0.5873 0.5873 0.5873 0.4131

F-Measure 0.2537 0.2537 0.2537 0.2537 0.2537 0.4619

Factoid Strict acc. 0.0857 0.0857 0.0857 0.0857 0.0857 0.2857

Lenient acc. 0.1714 0.1714 0.1714 0.1714 0.1714 0.4286

MRR 0.1152 0.1152 0.1152 0.1152 0.1152 0.3452

Average 0.2696 0.2696 0.3422 0.3543 0.3876 0.5440

Table 7. Rouge scores on Ideal Answers. Best result indicates the best scoring system.

Batches Automatic Scores Manual Scores Best Result (MQ-4)

Rouge-2 Rouge-SU4 Readability Recall Precision Repetition Rouge-2 Rouge-SU4

Batch 4 0.3511 0.3638 – – – – 0.5177 0.5246

Batch 5 0.4265 0.4275 – – – – 0.5035 0.5070

5 Conclusions

Our participation in task B of the BioASQ 2019 competition focused mainly on
answering the yesno questions.

We started developing our system just 5 days before the scheduled release
of the first test set. Despite the time constraints, our yes-no answering systems
achieved top scores ones in Batch 3 and Batch 4 and ranked second in Batch 5.
We exploited an ensemble of classifiers, whose input was obtained by processing
questions and snippets though transformer-based language models. Our app-
roach was incremental, we tried to exploit simpler word embeddings first, and
as soon as they showed limitations due to task complexity, we moved to more
powerful embeddings. Contextual embeddings obtained from deep models like
ELMo and transformer-based language model (BERT) provided better results
thanks to the built in attention mechanisms and to their ability to capture long
term dependencies. These deep models are the core of our submitted systems,
BERT specifically is employed for three out of four question types. Questions
and snippets were processed separately. Concatenating them before processing
might allow exploiting better the attention mechanism.
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Submissions for factoid and list achieved lower scores. The latter type of
question were more challenging given the presence of duplicate entities, lexical
variation among entities, and the number of entities to be returned as answer.
We noticed by inspecting a number of question that sci-spacy was able to extract
almost all the required answer items, among noisy entities. Based on this empiri-
cal observation, we decided to try the described approach instead of a more com-
putationally demanding fine-tuning of BERT. We had several ideas under devel-
opment for improving these answers that we could not complete in time for the
submission deadline: using tf-idf as main ranking metrics, removing duplicated
entities using a clustering algorithm on their vector representation, improved
entity extraction from parse trees.

The overall ranking of our submissions on all question types was fourth in
Batch 4 and third in Batch 5.

The approach to semantic question answering using classifiers on top of
transformer-based language models has proved quite effective and there are still
margins for improvements.

Acknowledgments. The experiments were run on a server equipped with 4 Nvidia
P100 GPUs, partly funded by the University of Pisa under grant “Grandi Attrezzature
2016”.

References

1. GBIF—The Global Biodiversity Information Facility (2019). https://www.gbif.
org/

2. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems (2015). Software available from http://tensorflow.org/

3. Akbik, A., Blythe, D., Vollgraf, R.: Contextual string embeddings for sequence
labeling. In: 27th International Conference on Computational Linguistics, COLING
2018, pp. 1638–1649 (2018)

4. Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras
5. Chelba, C., et al.: One billion word benchmark for measuring progress in statistical

language modeling (2014)
6. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidi-

rectional transformers for language understanding. CoRR abs/1810.04805 (2018).
http://arxiv.org/abs/1810.04805

7. Balikas, G., Krithara, A., Partalas, I., Paliouras, G.: BioASQ: a challenge on large-
scale biomedical semantic indexing and question answering (2015)

8. Wishart Research Group. https://www.drugbank.ca/
9. HGNC: HUGO Gene Nomenclature Committee at the European Bioinformatics

Institute. http://www.genenames.org/
10. MacArthur Lab: Lists of gene lists. https://github.com/macarthur-lab/gene lists
11. Lee, J., et al.: BioBERT: a pre-trained biomedical language representation model

for biomedical text mining. arXiv preprint arXiv:1901.08746 (2019)
12. Lin, C.Y.: ROUGE: a package for automatic evaluation of summaries. In: Text

Summarization Branches Out (2004)

https://www.gbif.org/
https://www.gbif.org/
http://tensorflow.org/
https://github.com/fchollet/keras
http://arxiv.org/abs/1810.04805
https://www.drugbank.ca/
http://www.genenames.org/
https://github.com/macarthur-lab/gene_lists
http://arxiv.org/abs/1901.08746


726 M. Resta et al.

13. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. CoRR abs/1310.4546
(2013)

14. Neumann, M., King, D., Beltagy, I., Ammar, W.: ScispaCy: fast and robust models
for biomedical natural language processing. CoRR abs/1902.07669 (2019). http://
arxiv.org/abs/1902.07669

15. Peters, M.E., et al.: Deep contextualized word representations. In: Proceedings of
NAACL (2018)

16. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language
models are unsupervised multitask learners. OpenAI Blog 1, 8 (2019)

17. Rajpurkar, P., Jia, R., Liang, P.: Know what you don’t know: unanswerable ques-
tions for squad. CoRR abs/1806.03822 (2018). http://arxiv.org/abs/1806.03822

18. Zhu, Y., et al.: Aligning books and movies: towards story-like visual explanations
by watching movies and reading books. arXiv preprint arXiv:1506.06724 (2015)

http://arxiv.org/abs/1902.07669
http://arxiv.org/abs/1902.07669
http://arxiv.org/abs/1806.03822
http://arxiv.org/abs/1506.06724


Pre-trained Language Model
for Biomedical Question Answering

Wonjin Yoon , Jinhyuk Lee , Donghyeon Kim , Minbyul Jeong ,
and Jaewoo Kang(B)

Korea University, Seoul, Korea
{wjyoon,jinhyuk lee,donghyeon,minbyuljeong,kangj}@korea.ac.kr

Abstract. The recent success of question answering systems is largely
attributed to pre-trained language models. However, as language models
are mostly pre-trained on general domain corpora such as Wikipedia,
they often have difficulty in understanding biomedical questions. In
this paper, we investigate the performance of BioBERT, a pre-trained
biomedical language model, in answering biomedical questions includ-
ing factoid, list, and yes/no type questions. BioBERT uses almost the
same structure across various question types and achieved the best per-
formance in the 7th BioASQ Challenge (Task 7b, Phase B). BioBERT
pre-trained on SQuAD or SQuAD 2.0 easily outperformed previous state-
of-the-art models. BioBERT obtains the best performance when it uses
the appropriate pre-/post-processing strategies for questions, passages,
and answers.

Keywords: Biomedical question answering · Pre-trained language
model · Transfer learning

1 Introduction

Language models pre-trained on large-scale text corpora achieve state-of-the-art
performance in various natural language processing (NLP) tasks when fine-tuned
on a given task [4,13,15]. Language models have been shown to be highly effective
in question answering (QA), and many current state-of-the-art QA models often
rely on pre-trained language models [20]. However, as language models are mostly
pre-trained on general domain corpora, they cannot be generalized to biomedical
corpora [1,2,8,29]. Hence, similar to using Word2Vec for the biomedical domain
[14], a language model pre-trained on biomedical corpora is needed for building
effective biomedical QA models.

Recently, Lee et al. [8] have proposed BioBERT which is a pre-trained lan-
guage model trained on PubMed articles. In three representative biomedical
NLP (bioNLP) tasks including biomedical named entity recognition, relation
extraction, and question answering, BioBERT outperforms most of the previ-
ous state-of-the-art models. In previous works, models were used for a specific
bioNLP task [9,18,24,28]. However, the structure of BioBERT allows a single
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model to be trained on different datasets and used for various tasks with slight
modifications in the last layer.

In this paper, we investigate the effectiveness of BioBERT in biomedical
question answering and report our results from the 7th BioASQ Challenge [7,10,
11,21]. Biomedical question answering has its own unique challenges. First, the
size of datasets is often very small (e.g., few thousands of samples in BioASQ) as
the creation of biomedical question answering datasets is very expensive. Second,
there are various types of questions including factoid, list, and yes/no questions,
which increase the complexity of the problem.

We leverage BioBERT to address these issues. To mitigate the small size
of datasets, we first fine-tune BioBERT on other large-scale extractive question
answering datasets, and then fine-tune it on BioASQ datasets. More specifically,
we train BioBERT on SQuAD [17] and SQuAD 2.0 [16] for transfer learning.
Also, we modify the last layer of BioBERT so that it can be trained/tested on
three different types of BioASQ questions. This significantly reduces the cost of
using biomedical question answering systems as the structure of BioBERT does
not need to be modified based on the type of question.

The contributions of our paper are three fold: (1) We show that BioBERT pre-
trained on general domain question answering corpora such as SQuAD largely
improves the performance of biomedical question answering models. Wiese et
al. [25] showed that pre-training on SQuAD helps improve performance. We test
the performance of BioBERT pre-trained on both SQuAD and SQuAD 2.0. (2)
With only simple modifications, BioBERT can be used for various biomedical
question types including factoid, list, and yes/no questions. BioBERT achieves
the overall best performance on all five test batches of BioASQ 7b Phase B1,
and achieves state-of-the-art performance in BioASQ 6b Phase B. (3) We further
analyze the role of pre- and post-processing in our system and show that different
strategies often lead to different results.

The rest of our paper is organized as follows. First, we introduce our system
based on BioBERT. We describe task-specific layers of our system and vari-
ous pre- and post-processing strategies. We present the results of BioBERT on
BioASQ 7b (Phase B), which were obtained using two different transfer learning
strategies, and we further test BioBERT on BioASQ 6b on which our system
was trained.

2 Methods

In this section, we will briefly discuss BioBERT2 [8] and our modifications3 for
the BioASQ Challenge (Fig. 1).

1 http://participants-area.bioasq.org/results/7b/phaseB/.
2 The source code for BioBERT is available at https://github.com/dmis-lab/biobert.
3 The source code and pre-processed datasets are available at https://github.com/

dmis-lab/bioasq-biobert.

http://participants-area.bioasq.org/results/7b/phaseB/
https://github.com/dmis-lab/biobert
https://github.com/dmis-lab/bioasq-biobert
https://github.com/dmis-lab/bioasq-biobert


Pre-trained Language Model for Biomedical Question Answering 729

Fig. 1. Overview of our system

2.1 BioBERT

Word embeddings are crucial for various text mining systems since they repre-
sent semantic and syntactic features of words [14,22]. While traditional models
use context-independent word embeddings, recently proposed models use contex-
tualized word representations [4,13,15]. Among them, BERT [4], which is built
upon multi-layer bidirectional Transformers [23], achieved new state-of-the-art
results on various NLP tasks including question answering. BioBERT [8] is the
first domain-specific BERT based model pre-trained on PubMed abstracts and
full texts. BioBERT outperforms BERT and other state-of-the-art models in
bioNLP tasks such as biomedical named entity recognition, relation extraction,
and question answering [6,19].

An input representation of BioBERT for a given token is composed of the cor-
responding token, segment, and position embeddings. BioBERT utilizes Word-
Piece embeddings [26] which use sub-word units to address the out-of-vocabulary
(OOV) problem. Broken sub-word units are denoted by ## (e.g. organoid =
organ + ##iod). Positional embeddings are learned during training and seg-
ment embeddings are used to mark the location of question and passage tokens
in the input sequence. Following the design of BERT, a special token embedding
for [CLS] was added to the beginning of every sequence to process yes/no type
questions.

2.2 Task-Specific Layer

The BioBERT model for QA is illustrated in Fig. 2. Following the approach of
BioBERT [8], a question and its corresponding passage are concatenated to form
a single sequence which is marked by different segment embeddings. The task-
specific layer for factoid type questions and the layer for list type questions both
utilize the output of the passage whereas the layer for yes/no type questions uses
the output of the first [CLS] token.

Factoid and List Questions. In (Bio)BERT, the only additional trainable
parameters needed for factoid and list type questions are the softmax layer for a
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Fig. 2. Example of a single sequence (Question-Passage pair) processed by the
BioBERT.

linear transformation of hidden vectors from BioBERT. Following the notation
used in the BERT study, we denote the trainable start vector as S ∈ R

H and the
trainable end vector as E ∈ R

H where H denotes the hidden size of BioBERT.
The probabilities of the i-th token being the start of the answer token and the
j-th token being the end of the answer token can be calculated by the following
equations:

P start
i =

eS·Ti

∑
k e

S·Tk
, P end

j =
eE·Tj

∑
k e

E·Tk

where Tl ∈ R
H denotes l-th token representation from BioBERT and · denotes

the dot product between two vectors.

Yes/No Questions. We use the first [CLS] for the classification of yes/no
questions. Here, we denote the representation of the [CLS] token from BioBERT
as C ∈ R

H . The parameter learned during training is a sigmoid layer consisting of
W ∈ R

H which is used for binary classification. The probability for the sequence
to be “yes” is calculated using the following equation.

Pyes =
1

1 + e−CW

Loss. For the factoid/list question layer, we minimize Loss during training,
which is defined below. Loss is the arithmetic mean of the Lossstart and Lossend,
which correspond to the negative log-likelihood for the correct start and end
positions, respectively. The ground truth start/end positions are denoted as ys
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for the start token, and ye for the end token. The losses are defined as follows:

Lossstart = − 1
N

N∑

k=1

logP start,k
ys

, Lossend = − 1
N

N∑

k=1

logP end,k
ye

Loss = (LossStart + LossEnd)/2

where k iterates for a mini-batch of size N .
For yes/no questions, the binary cross entropy between probability Pyes and the
corresponding ground truth was used as the training loss.

Loss = −(yyes logPyes + (1 − yyes) log (1 − Pyes))

2.3 Pre-processing

To solve the BioASQ 7b Phase B dataset as extractive question answering, the
challenge datasets containing factoid and list type questions were converted into
the format of the SQuAD datasets [16,17]. For yes/no type questions, we used
0/1 labels for each question-passage pair.

The dataset in the SQuAD format consists of passages and their respective
question-answer sets. A passage is an article which contains answers or clues for
answers and is denoted as the context in the dataset. The length of a passage
varies from a sentence to a paragraph. An exact answer may or may not exist
in the passage, depending on the task. According to the rules of the BioASQ
Challenge, all the factoid and list type questions should be answerable with the
given passages [21]. An exact answer and its starting position are provided in the
answers field. We used various sources including snippets and PubMed abstracts,
as passages. Multiple passages attached to a single question were divided to
form question-passage pairs, which increased the number of question-passage
pairs. The predicted answers of the question-passage pairs which share the same
question are later combined in the post-processing layer.

Yes/no type questions are in the same format as the questions in the SQuAD
dataset. However, binary answers are given to yes/no type questions, rather than
answers selected based on their location in passages. Instead of providing an
exact answer and its starting position in the answers field, we marked yes/no
type questions using the strings “yes” or “no” and the Boolean values “false”
and “true” in the is impossible field. Since the distribution of yes/no answers in
the training set is usually skewed, we undersampled the training data to balance
the number of “yes” and “no” answers.

We used the following strategies for developing the datasets: Snippet as-is
Strategy, Full Abstract Strategy, and Appended Snippet Strategy.

• Snippet as-is Strategy Using snippets in their original form is a basic method
for filling passages. The starting positions of exact answers indicate the posi-
tional offsets of exact matching words. If a single snippet has more than one
exact matching answer word, we form multiple question-passage pairs for the
snippet.
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• Full Abstract Strategy In the Full Abstract Strategy, we use an entire abstract,
including the title of an article, as a passage. Full abstracts are retrieved from
PubMed using their provided PMIDs. The snippets field of the original dataset
is used to find the location of the correct answer. First, we look for the given
snippet (e.g., a sentence in a typical case) from the retrieved abstract. Then,
we search for the offset of the first exact matching words in the snippet, and
add it to the offset of the snippet in the paragraph. In this way, we can find
a plausible location of the answer within the paragraph.

• Appended Snippet Strategy The Appended Snippet Strategy is a compromise
between using snippets as-is and full abstracts. We first search a given snippet
from an abstract and concatenate N ∈ N sentences before and after the given
snippet, forming 2N + k sentences into a passage (k denotes the number of
sentences in a snippet, which is usually 1).

2.4 Post-processing

Since our pre-processing step involves dividing multiple passages with a same
single question into multiple question-passage pairs, a single question can have
multiple predicted answers. The probabilities of predicted answers for question-
passage pairs sharing the same question, were merged to form a single list of
predicted answers and their probabilities for a question. The answer candidate
with the highest probability is considered as the final answer for a given factoid
type question. For list type questions, probability thresholding was the default
method for providing answers. Answer candidates with a probability higher than
the threshold were included in the answer list. However, a considerable number
(28.6% of BioASQ 6b list type questions) of list type questions contain the
number of required answers. From the training example “Please list 6 symptoms
of Scarlet fever,” we can extract the number 6 from the given question. We
extracted the number provided in the question and used it to limit the length
of the answer list for the question. For questions that contain the number of
answers, the extracted number of answers were yielded.

For factoid and list type questions, we also filtered incomplete answers.
Answers with non-paired parenthesis were removed from the list of possible
answers. Pairs of round brackets and commas at the beginning and end of answers
were removed.

3 Experimental Setup

3.1 Dataset

For factoid and list type questions, exact answers are included in the given
snippets, which is consistent with the extractive QA setting of the SQuAD [17]
dataset. Only binary answers are provided for yes/no questions. For each ques-
tion, regardless of the question type, multiple snippets or documents are provided
as corresponding passages.
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The statistics of the BioASQ datasets are listed in Table 1. A list type ques-
tion can have one or more than one answer; question-context pairs are made for
every answer of a list type question. In our pre-processing step, 3,722 question-
context pairs were made from 779 factoid questions in the BioASQ 7b training
set. For yes/no questions, we undersampled the training data to balance the
number of “yes” and “no” answers.

About 28.2% of factoid type questions and 5.6% of list type questions in the
BioASQ 7b training set do not have an answer in their corresponding snippets.
We excluded unanswerable questions, following the approach of Wiese et al. [24].

Table 1. Statistics of the BioASQ training set.

Question type BioASQ
version

# of questions in
original datasets

# of pre-processed
question-passage pairs

Factoid 6b 618 3,121

7b 779 3,722

List 6b 485 6,896

7b 556 7,716

Yes/No 6b 612 5,921

7b 745 6,676

3.2 Training

Our system is composed of BioBERT, task-specific layers, and a post-processing
layer. The parameters of BioBERT and a task-specific layer are trainable. Our
training procedure starts with pre-training the system on the SQuAD dataset.
The trainable parameters for factoid and list type questions were pre-trained on
the SQuAD 1.1 dataset, and the parameters for yes/no type questions were pre-
trained on the SQuAD 2.0 dataset. The pre-trained system is then fine-tuned on
each task.

We tuned the hyperparameters on the BioASQ 4/5/6b training and test
sets. We used a probability threshold of 0.42 as one of the hyperparameters
for list type questions. The probability threshold was decided using the tuning
procedure.

4 Results and Discussion

In this section, we first report our results for the BioASQ 7b (Phase B) Challenge,
which are shown in Table 2. Please note that the results and ranks were obtained
from the leaderboard of BioASQ 7b [3]. Then we evaluate our system and other
competing systems on the validation set (BioASQ 6b). The results are presented
in Table 3. Finally, we investigate the performance gain due to the sub-structures
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of the system (Tables 5 and 6). Mean reciprocal rank (MRR) and mean average F-
measure (F1) were used as official evaluation metrics to measure the performance
on factoid and list type questions from BioASQ, respectively. We reported strict
accuracy (SAcc), lenient accuracy (LAcc) and MRR for factoid questions and
mean average precision, mean average recall, and mean average F1 score for list
questions 4. Since the label distribution was skewed, macro average F1 score was
used as an evaluation metric for yes/no questions.

4.1 Results on BioASQ 7b

Our results on Task 7b (Phase B) of the BioASQ Challenge are reported in
Table 2. Each participant can submit up to 5 systems per batch. We submitted 1
to 5 systems which use different combinations of pre- and post-processing strate-
gies. We report the rankings and scores of our best performing system and those
of other competing systems for each task in Table 2. Competing systems are the
best and second best systems, other than our system, from distinct participants.
Manually corrected gold-standard answers are not yet available at the time of
writing; therefore, we report the scores based on the online leaderboard5.

Table 2. Batch results of the BioASQ 7b Challenge. We report the rank of the systems
in parentheses.

Batch Yes/no Factoid List # of

systems

Participating system Mac F1 Participating system MRR Participating

system

F1

1 (1) Ours 67.12 (1) Ours 46.37 (3) Ours 30.51 17

(2) auth-qa-1 53.97 (2) BJUTNLPGroup 34.83 (1) Lab Zhu,

Fudan Univer

32.76

(3) BioASQ Baseline 47.27 (3) auth-qa-1 27.78 (4) auth-qa-1 25.94

2 (1) Ours 83.31 (1) Ours 56.67 (1) Ours 47.32 21

(2) auth-qa-1 62.96 (3) QA1 40.33 (3) LabZhu, FDU 25.79

(4) BioASQ Baseline 42.58 (4) transfer-learning 32.67 (5) auth-qa-1 23.21

3 (5) Ours 46.23 (6) Ours 47.24 (1) Ours 32.98 24

(1) unipi-quokka-QA-2 74.73 (1) QA1/UNCC QA 1 51.15 (2) auth-qa-1 25.13

(3) auth-qa-2 51.65 (3) google-gold-input 50.23 (4)

BioASQ Baseline

22.75

4 (2) Ours 79.28 (1) Ours 69.12 (1) Ours 46.04 36

(1) unipi-quokka-QA-1 82.08 (4) FACTOIDS/UNCC 61.03 (2) google-gold-

input-nq

43.64

(8) bioasq experiments 58.01 (9) google-gold-input 54.95 (9) LabZhu, FDU 32.14

5 (1) Ours 82.50 (1) Ours 36.38 (1) Ours 46.19 40

(2) unipi-quokka-QA-5 79.39 (3) BJUTNLPGroup 33.81 (6) google-gold-

input-nq

28.89

(6) google-gold-input-ab 69.41 (4) UNCC QA 1 33.05 (7) UNCC * 28.62

4 For more details, please visit http://participants-area.bioasq.org/Tasks/b/eval
meas 2018/.

5 The official results of the competition will be provided at http://bioasq.org.

http://participants-area.bioasq.org/Tasks/b/eval_meas_2018/
http://participants-area.bioasq.org/Tasks/b/eval_meas_2018/
http://bioasq.org
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4.2 Validating on the BioASQ 6b Dataset

We compared the performance of existing systems and our system on the BioASQ
6b dataset from the last year (2018), which is shown in Table 3. We micro aver-
aged the scores from five experiments and reported the scores in Table 3. Simi-
larly, the leaderboard scores of the best performing system for each batch were
micro averaged and reported as the Best System scores [5,12,27]. Our system
obtained much higher scores on the BioASQ 6b dataset than the top systems
from leaderboard of BioASQ 6b Challenge.

Table 3. Performance comparison between existing systems and our system on the
BioASQ 6b dataset (from last year). Note that our system obtained a 20% to 60%
performance improvement over the best systems.

System Factoid (MRR) List (F1) Yes/no (Macro F1)

Best System 27.84% 27.21% 62.05%

Ours 48.41% 43.16% 75.87%

Pre-training. In Table 4, we compare the performance of the pre-trained mod-
els. BioBERT fine-tuned on the BioASQ 6b dataset outperformed BERTBASE

fine-tuned on BioASQ in both factoid and list type questions. BioBERT first
pre-trained on SQuAD and then fine-tuned on BioASQ 6b obtained the best
performance over other two experiments, demonstrating the effectiveness of pre-
training BioBERT on SQuAD, a comprehensive and large-scale question answer-
ing corpus.

Table 4. Performance comparison between pre-trained models.

Pre-trained models Factoid List

SAcc LAcc MRR Prec Recall F1

BERTBASE+BioASQ Finetune 24.84% 36.03% 28.76% 42.41% 35.88% 35.37%

BioBERT+BioASQ Finetune 34.16% 47.83% 39.64% 44.62% 39.49% 38.45%

BioBERT+SQuAD+BioASQ Finetune 42.86% 57.14% 48.41% 51.58% 43.24% 43.16%

Pre-/Post-processing. The performance of our system is largely affected by
how the data is pre-processed (Table 5). However, the effectiveness of the pre-
processing strategy varies depending on the type of question. For example, the
Appended Snippet strategy and Full Abstract strategy obtained good perfor-
mance on factoid questions, while the Snippet As-is strategy achieved the high-
est performance on list and yes/no type questions. Table 6 shows the effect of
post-processing on the performance of a system evaluated on list type questions.
In our study, both extracting the number of answers from questions and filtering
predicted answers were effective.
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Table 5. Performance comparison between pre-processing methods. Scores on the
BioASQ 6b dataset.

Strategy Factoid List Yes/no

SAcc LAcc MRR Prec Recall F1 MacroF1

Snippet 40.99 55.90 47.38 51.58 43.24 43.16 75.10

Full Abstract 42.86 57.14 48.41 42.66 32.58 33.52 66.76

Appended Snippet 39.75 58.39 48.00 44.04 41.26 39.36 –

Table 6. Ablation study on the post-processing methods. Scores for list type questions
in the BioASQ 6b dataset.

Strategy Precision Recall F1

Baseline (Snippet) 51.58 43.24 43.16

Baseline without filter 50.79 43.24 42.64

Baseline without answer # extraction 50.01 44.32 42.58

Ensemble. Starting from test batch 4 of BioASQ 7b, we submitted model
ensemble results as one of our systems. The performance gain of the model
ensemble on our evaluation set was relatively small; the performance ranged
from 0.2% to 2% depending on the task. The model ensemble improved the
performance on factoid questions the most (2% gain), but applying the model
ensemble to list questions did not obtain higher performance than the single
model. Although the model ensemble obtained high scores in the BioASQ 7b
Challenge, it could only obtain the highest score on factoid type questions in
batch 5.

Qualitative Analysis. In Table 7, we show three predictions generated by
our system on the BioASQ 6b factoid dataset. Due to the space limitation,
we show only small parts of a passage, which contain the answers (predicted
answers might be contained in other parts of the passage). We show the top
five predictions generated by our system which can also be used for list type
questions. In the first example, our system successfully finds the answer and
other plausible answers. The second example shows that most of the predicted
answers are correct and have only minor differences. In the last example, we
observe that the ground truth answer does not exist in the passage. Also, the
predicted answers are indeed correct despite the incorrect annotation.

The prediction result of list question from the BioASQ 6b is presented in
Table 8. We found that our system is more likely to produce incorrect predic-
tions on list questions than on factoid questions. Our system internally outputs
a list of predictions and the list is likely to include prediction with erroneous
span. Even though incorrect prediction (“JBP”) with erroneous span has a lower
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Table 7. Predictions by our BioBERT based QA system on the BioASQ 6b factoid
dataset

No Type Description

1 Question What causes “puffy hand syndrome?”

Passage Puffy hand syndrome is a complication of intravenous drug
abuse, which has no current available treatment

Ground Truth “intravenous drug abuse”

Predicted Answer “intravenous drug abuse”,

“drug addiction”,

“Intravenous drug addiction”,

“staphylococcal skin infection”,

“major depression”

2 Question In which syndrome is the RPS19 gene most frequently
mutated?

Passage A transgenic mouse model demonstrates a dominant
negative effect of a point mutation in the RPS19 gene
associated with Diamond-Blackfan anemia

Ground Truth “Diamond-Blackfan Anemia”,

“DBA”

Predicted Answer “Diamond-Blackfan anemia”,

“Diamond-Blackfan anemia (DBA)”,

“DBA”,

“Diamond Blackfan anemia”,

“Diamond-Blackfan anemia. Diamond-Blackfan anemia”

3 Question What protein is the most common cause of hereditary
renal amyloidosis?

Passage We suspected amyloidosis with fibrinogen A alpha chain
deposits, which is the most frequent cause of hereditary
amyloidosis in Europe, with a glomerular preferential
affectation

Ground Truth “Fibrinogen A Alpha protein”

Predicted Answer “fibrinogen”,

“fibrinogen alpha-chain. Variants of circulating fibrinogen”,

“fibrinogen A alpha chain (FGA)”,

“Fibrinogen A Alpha Chain Protein. Introduction:
Fibrinogen”,

“apolipoprotein AI”

probability than the true prediction (“JBP1” and “JBP2”), it can have consid-
erable absolute probabilities. On factoid questions, selecting a top one answer is
required. Hence we can ignore incorrect prediction on factoid questions. On the
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contrary, on list questions, prediction with erroneous span gets higher probabil-
ity through merging predictions in post-processing step. Since our model utilizes
fixed threshold value, prediction with erroneous span is imperfect but achieved
a higher possibility than the threshold.

Table 8. Prediction by our BioBERT based QA system on the BioASQ 6b list dataset

No Type Description

1 Question Which enzymes are responsible for base J creation in
Trypanosoma brucei?

Passage JBP1 and JBP2 are two distinct thymidine
hydroxylases involved in J biosynthesis in genomic DNA
of African trypanosomes

Here we discuss the regulation of hmU and base J
formation in the trypanosome genome by JGT and base
J-binding protein

Ground Truth “JBP1”,

“JBP2”,

“JGT”

Predicted Answer “JBP1”,

“JBP”,

“thymidine hydroxylase”,

“JGT”,

“hmU”,

“JBP2”

5 Conclusion

In this paper, we proposed BioBERT based QA system for the BioASQ biomed-
ical question answering challenge. As the size of the biomedical question answer-
ing dataset is very small, we leveraged pre-trained language models for biomed-
ical domain which effectively exploit the knowledge from large biomedical cor-
pora. Also, while existing systems for the BioASQ challenge require different
structures for different question types, our system uses almost the same structure
for various question types. By exploring various pre-/post-processing strategies,
our BioBERT based system obtained the best performance in the 7th BioASQ
Challenge, achieving state-of-the-art results on factoid, list, and yes/no type
questions. In future work, we plan to further systematically analyze the incor-
rect predictions of our systems, and develop biomedical QA systems that can
eventually outperform humans.
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