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Preface

The basic theme of p-adic Hodge theory is to understand the relationship between
various p-adic cohomology theories associated to algebraic varieties over p-adic
fields. In the standard formulation, it is concerned with comparisons between alge-
braic de Rham cohomology, p-adic étale cohomology, and crystalline cohomology.
Each of these cohomology theories carry additional structure: de Rham cohomology
comes equipped with a filtration, étale cohomology with a Galois action, and crys-
talline cohomology with a semi-linear Frobenius operator. Comparisons between
these theories shed light on each of these individual structures, and the package of all
of these cohomology theories and the comparison isomorphisms between them is a
very rich structure associated to algebraic varieties over p-adic fields.

In recent years, there has been a surge of activity in the area related to integral
p-adic Hodge, non-Abelian phenomena, and connections to notions in algebraic
topology. The basic comparison isomorphisms of p-adic Hodge theory are defined
rationally and don’t directly provide information about the integral structures pre-
sent in the cohomology theories, and there have been recent developments in the
area to understand integral and torsion phenomena. Non-abelian phenomena can be
understood on several levels, but the most basic one is the development of theories
with coefficients. The connections with algebraic topology arise from the strong
relationship between crystalline cohomology and topological Hochschild homol-
ogy. This is also closely tied to the theory of the de Rham–Witt complex.

This proceedings volume contains chapters related to the research presented at
the 2017 Simons Symposium on p-adic Hodge theory. This symposium was
focused on recent developments in p-adic Hodge theory, especially those con-
cerning integral questions and their connections to notions in algebraic topology.

The volume begins with the chapter of Morrow on the Ainf -cohomology theory
which was introduced in the earlier fundamental paper of Bhatt, Morrow, and
Scholze on integral p-adic Hodge theory. The present chapter contains a detailed
presentation of the Ainf -cohomology theory, largely self-contained. The author
focuses, in particular, on de Rham–Witt theory and the p-adic analogue of the
Cartier isomorphism.

v



The chapter of Colmez and Niziol is concerned with a fundamental computation
of the pro-étale cohomology of the rigid analytic affine space in any dimension.
Contrary to the standard results for étale cohomology of algebraic varieties, these
pro-étale cohomology groups are nonzero and the authors describe them using
differential forms.

The third chapter by Chung, Kim, Kim, Park, and Yoo is concerned with a certain
invariant attached to representations of the fundamental group of the ring of
S-integers OF ½1=S� of a number field F, for some finite set of primes S. The authors
describe a theory of the “arithmetic Chern-Simons action”, inspired by the topo-
logical theory. The main result is a formula relating an invariant of a torsor over
OF ½1=S� to locally defined data. The authors also give several interesting applica-
tions of this formula.

Throughout the subject of p-adic Hodge theory various large rings play a central
role. The chapter of Kedlaya discusses various key basic algebraic properties of the ring
Ainf , which is the ring of Witt vectors of a perfect valuation ring in characteristic p.
This ring is, in particular, fundamental for the Ainf -cohomology developed by Bhatt,
Morrow, and Scholze, and in integral p-adic Hodge theory. This ring is quite
different from the ones occurring in classical algebraic geometry: for example, it is
not Noetherian. Nevertheless, the author discusses several favorable properties,
e.g., those related to vector bundles.

A fundamental result in complex Hodge theory is the Simpson correspondence
relating local systems and Higgs bundles. An analogue of this theory was developed
in characteristic p by Ogus and Vologodsky. The chapter of Gros is concerned with
the problem of lifting this characteristic p correspondence to a mixed characteristic
correspondence via a q-deformation.

The final chapter of Tsuji concerns the study of integral p-adic Hodge theory with
coefficients. Early in the development of p-adic Hodge theory, Faltings constructed a
theory of coefficients for integral p-adic Hodge theory. The present chapter refines this
theory and generalizes the work of Bhatt, Morrow, and Scholze to this context. The
chapter contains a detailed exposition of the many technical aspects of the theory and
contains many improvements in this regard to the existing literature as well.

Ann Arbor, MI, USA Bhargav Bhatt
Berkeley, CA, USA Martin Olsson
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Notes on the Ainf -Cohomology of Integral
p-Adic Hodge Theory

Matthew Morrow

Abstract Wepresent a detailed overviewof the construction of theAinf -cohomology
theory from the preprint Integral p-adic Hodge theory, joint with Bhatt and Scholze.
We focus particularly on the p-adic analogue of the Cartier isomorphism via relative
de Rham–Witt complexes.

Keywords p-adic Hodge theory · Prismatic cohomology · Perfectoid ·
de Rham–Witt complex

Extended abstract

These are expanded notes of a mini-course, given at l’Institut de Mathématiques de
Jussieu–Paris Rive Gauche, 15 Jan.–1 Feb. 2016, detailing some of the main results
of the article

[5]B.Bhatt,M.Morrow,P. Scholze, Integral p-adic Hodge theory, Publ.Math.
Inst. Hautes Études Sci. 128 (2018), 219–397.

More precisely, the goal of these notes is to give a detailed, and largely self-contained,
presentation of the construction of the Ainf -cohomology theory from [5], focussing
on the p-adic analogue of the Cartier isomorphism via relative de Rham–Witt com-
plexes. By restricting attention to this particular aspect of [5], we hope to have made
the construction more accessible. However, the reader should only read these notes
in conjunction with [5] itself and is strongly advised also to consult the surveys [2,
26] by the other authors, which cover complementary aspects of the theory. In par-
ticular, in these notes we do not discuss q-de Rham complexes, cotangent complex
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2 M. Morrow

calculations, Breuil–Kisin(–Fargues) modules, or the crystalline and de Rham com-
parison theorems of [5, Sect. 12–14], as these topics are not strictly required for the
construction of the Ainf -cohomology theory.1 Moreover, we refer to [5] for several
self-contained proofs to avoid verbatim repetition.

Section1 is an introductionwhich begins by recalling some classical problems and
results of p-adic Hodge theory before stating the main theorem of the course, namely
the existence of a new cohomology theory for p-adic schemes which integrally
interpolates étale, crystalline and de Rham cohomologies.

Section2 introduces the décalage functor, which modifies a given complex by a
small amount of torsion. This functor is absolutely essential to our constructions, as
it kills the “junk torsion” which so often appears in p-adic Hodge theory and thus
allows us to establish results integrally. An example of this annihilation of torsion,
in the context of Faltings’ almost purity theorem, is given in Sect. 2.2.

Section3 develops the necessary elementary theory of perfectoid rings, empha-
sising the importance of certain maps θr ,˜θr which generalise Fontaine’s usual map
θ of p-adic Hodge theory and are central to the later constructions.

Section4 is a minimal summary of Scholze’s theory of pro-étale cohomology for
rigid analytic varieties. In particular, in Sect. 4.3 we explain the usual technique by
which the pro-étale manifestation of the almost purity theorem allows the pro-étale
cohomology of “small” rigid affinoids to be (almost) calculated in terms of group
cohomology related to perfectoid rings.

Section5 revisits the main theorem and defines the new cohomology theory as
the hypercohomology of a certain complex AΩX. In Theorem 4 we state a p-adic
Cartier isomorphism, which identifies the cohomology sheaves of the base change
of AΩX along˜θr with Langer–Zink’s relative de Rham–Witt complex of the p-adic
scheme X. We then deduce all main properties of the new cohomology theory from
this p-adic Cartier isomorphism.

Section6 reviews Langer–Zink’s theory of the relative de Rham–Witt complex,
which may be seen as the initial object in the category of Witt complexes, i.e.,
families of differential graded algebras over the Witt vectors which are equipped
with compatible Restriction, Frobenius, and Verschiebung maps. In Sect. 6.2 we
present one of our main constructions, namely building Witt complexes from the
data of a commutative algebra (in a derived sense), equipped with a Frobenius, over
the infinitesimal period ring Ainf . In Sect. 6.3 we apply this construction to the group
cohomology of a Laurent polynomial algebra and prove that the result is precisely the
relative de Rham–Witt complex itself; this is the local calculation which underlies
the p-adic Cartier isomorphism.

Finally, Sect. 7 sketches the proof of the p-adic Cartier isomorphism by reducing
to the final calculation of the previous paragraph. This reduction is based on various
technical lemmas that the décalage functor behaves well under base change and

1To be precise, there is one step in the construction, namely the equality (dimX) in the proof of
Theorem 7, where we will have to assume that the p-adic scheme X is defined over a discretely
valued field; this assumption can be overcome using the crystalline comparison theorems of [5].
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taking cohomology, and that it transforms certain almost quasi-isomorphisms into
quasi-isomorphisms.

The appendices provide an introduction to Fontaine’s infinitesimal period ringAinf

and state a couple of lemmas about Koszul complexes which are used repeatedly in
calculations.

1 Introduction

1.1 Mysterious Functor and Crystalline Comparison

Here in Sect. 1.1 we consider the following common situation:

• K a complete discrete valuation field of mixed characteristic; ring of integersOK ;
perfect residue field k.

• X a proper, smooth scheme over OK .

For � �= p, proper base change in étale cohomology gives a canonical isomor-
phism

Hi
ét(Xk, Z�) ∼= Hi

ét(XK , Z�)

which is compatible with Galois actions.2 Grothendieck’s question of the mysterious
functor is often now interpreted as asking what happens in the case � = p. More pre-
cisely, howare Hi

ét(XK ) := Hi
ét(XK , Zp) and Hi

crys(Xk) := Hi
crys(Xk/W (k)) related?

In other words, how does p-adic cohomology of X degenerate from the generic to
the special fibre?

Grothendieck’s question is answered after inverting p by the Crystalline Com-
parison Theorem (Fontaine–Messing [15], Bloch–Kato [7], Faltings [12], Tsuji [28]
Nizioł [23], …), stating that there are natural isomorphisms

Hi
crys(Xk) ⊗W (k) Bcrys

∼= Hi
ét(XK ) ⊗Zp Bcrys

which are compatible with Galois and Frobenius actions (and filtrations after base
changing toBdR), whereBcrys andBdR are Fontaine’s period rings (which we empha-
sise contain 1/p; they will not appear again in these notes, so we do not define them).
Hence general theory of period rings implies that

Hi
crys(Xk)

[

1
p

]

= (Hi
ét(XK ) ⊗Zp Bcrys)

G K

2To be precise, the isomorphism depends only on a choice of specialisation of geometric points
of SpecOK . A consequence of the compatibility with Galois actions is that the action of G K on
Hi
ét(XK , Z�) is unramified.
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(i.e., the crystalline Dieudonné module of Hi
ét(XK )[ 1p ], by definition) with ϕ on

the left induced by 1 ⊗ ϕ on the right. In summary, (H n
ét(XK )[ 1p ], G K ) determines

(H n
crys(Xk)[ 1p ],ϕ). Similarly, in the other direction, (H n

ét(XK )[ 1p ], G K ) is determined

by (H n
crys(Xk)[ 1p ],ϕ,Hodge fil.).

But what if we do not invert p? There are various partial results in the literature,
including [8, 13], and a simplifying summary would be to claim that “everything
seems to work integrally if ie < p − 1”,3 where e is the absolute ramification degree
of K . With no assumptions on ramification degree, dimension, value of p, etc., we
prove in [5] results of the following form:

(i) The torsion in Hi
ét(XK ) is “less than” that of Hi

crys(Xk). To be precise,

length
Zp

H i
ét(XK )/pr ≤ lengthW (k) Hi

crys(Xk)/pr

for all r ≥ 1, as one would expect for a degenerating family of cohomologies.
In particular, if Hi

crys(Xk) is torsion-free then so is Hi
ét(XK ).

(ii) If H∗
crys(Xk) is torsion-free for ∗ = i, i + 1, then (Hi

ét(XK ), G K ) determines
(Hi

crys(Xk),ϕ).

It really is possible that additional torsion appears when degenerating the p-adic
cohomology from the generic fibre to the special fibre, as the following example
indicates (which is labeled a theorem as there seems to be no case of an X as above
for which Hi

ét(XK ) ⊗Zp W (k) and Hi
crys(X) were previously known to have non-

isomorphic torsion submodules):

Theorem 0 There exists a smooth projective relative surface X over Z2 such that
Hi

ét(XK ) is torsion-free for all i ≥ 0 but such that H 2
crys(Xk) contains non-trivial

2-torsion.4

Proof We do not reproduce the construction here; see [5, Proposition 2.2].

1.2 Statement of Main Theorem and Outline of Notes

The following notation will be used repeatedly in these notes:

• C is a complete, non-archimedean, algebraically closed field of mixed character-
istic5; ring of integers O; residue field k.

3Our results can presumably make this more precise.
4In [5, Theorem2.10]we also give an example forwhich H2

ét(XK )tors = Z/p2Z and H2
crys(Xk)tors =

k ⊕ k.
5More general, most of the theory which we will present works for any perfectoid field of mixed
characteristic which contains all p-power roots of unity.
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• O� := lim←−ϕ
O/pO is the tilt (using Scholze’s language [24]—orRO in Fontaine’s

original notation [14]) of O; so O� is a perfect ring of characteristic p which is
the ring of integers of C

� := FracO�, which is a complete, non-archimedean,
algebraically closed field with residue field k.

• Ainf := W (O�) is the first period ring of Fontaine6; it is equipped with the usual
Witt vector Frobenius ϕ. There are three key specialisation maps:

W (C�)

O Ainf
Fontaine′s map θ

de Rham���� crystalline �� ����

étale

��

W (k)

where Fontaine’s map θ will be discussed in detail, and in greater generality, in
Sect. 3.

The goal of these notes is to provide a relatively detailed overview of the proof of the
following theorem, establishing the existence of a cohomology theory, taking values
in Ainf -modules, which integrally interpolates the étale, crystalline, and de Rham
cohomologies of a smooth p-adic scheme:

Theorem 1 For any proper, smooth (possibly p-adic formal) scheme X over O,
there is a perfect complex RΓA(X) of Ainf -modules, functorial in X and equipped
with a ϕ-semi-linear endomorphism ϕ, with the following specialisations (which are
compatible with Frobenius actions where they exist):

(i) Étale: RΓA(X) ⊗L

Ainf
W (C�) � RΓét(X, Zp) ⊗L

Zp
W (C�), where X := XC is

the generic fibre of X (viewed as a rigid analytic variety over C in the case that
X is a formal scheme)

(ii) Crystalline: RΓA(X) ⊗L

Ainf
W (k) � RΓcrys(Xk/W (k)).

(iii) de Rham: RΓA(X) ⊗L

Ainf
O � RΓdR(X/O).

The individual cohomology groups

Hi
A
(X) := Hi (RΓA(X))

have the following properties:

(iv) Hi
A
(X) is a finitely presented Ainf -module;

(v) Hi
A
(X)[ 1p ] is finite free over Ainf [ 1p ];

(vi) Hi
A
(X) is equipped with a Frobenius-semi-linear endomorphism ϕ which

becomes an isomorphism after inverting any generator ξ ∈ Ainf of Ker θ, i.e.,

ϕ : Hi
A
(X)[ 1

ξ
] �→ Hi

A
(X)[ 1

ϕ(ξ)
];

6A brief introduction to O� and Ainf may be found at the beginning of Appendix 1.
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(vii) Étale: Hi
A
(X) ⊗Ainf W (C�) ∼= Hi

ét(X, Zp) ⊗Zp W (C�), whence

(Hi
A
(X) ⊗Ainf W (C�))ϕ=1 ∼= Hi

ét(X, Zp).

(viii) Crystalline: there is a short exact sequence

0 −→ Hi
A
(X) ⊗Ainf W (k) → Hi

crys(Xk/W (k)) −→ TorAinf
1 (Hi+1

A
(X), W (k)) −→ 0,

where the Tor1 term is killed by a power of p.
(ix) de Rham: there is a short exact sequence

0 −→ Hi
A
(X) ⊗Ainf O → Hi

dR(X/O) −→ Hi+1
A

(X)[ξ] −→ 0,

where the third term is again killed by a power of p.
(x) If Hi

crys(Xk/W (k)) or Hi
dR(X/O) is torsion-free, then Hi

A
(X) is a finite free

Ainf -module.

Corollary 1 Let X be as in the previous theorem, fix i ≥ 0, and assume
Hi

crys(Xk/W (k)) is torsion-free. Then Hi
ét(X, Zp) is also torsion-free. If we assume

further that Hi+1
crys (Xk/W (k)) is torsion-free, then

Hi
A
(X) ⊗Ainf W (k) = Hi

crys(Xk/W (k)) and Hi
A
(X) ⊗Ainf O = Hi

dR(X/O).

Proof We first mention that the “whence” assertion of part (vii) of the previous
theorem is the following general, well-known assertion: if M is a finitely generated
Zp-module and F is any field of characteristic p, then (M ⊗Zp W (F))ϕ=1 = M
(where ϕ really means 1 ⊗ ϕ).

Now assume Hi
crys(Xk/W (k)) is torsion-free. Then part (x) of the previous theo-

rem implies that Hi
A
(X) is finite free; so from part (vii) we see that Hi

ét(X, Zp) cannot
have torsion. If we also assume Hi+1

crys (Xk/W (k)) is torsion-free, then Hi+1
A

(X) is
again finite free by (x), and so no torsion terms appear in the short exact sequences
in parts (viii) and (ix) of the previous theorem.

Having stated the main theorem, we now give a very brief outline of the ideas
which will be used to construct the Ainf -cohomology theory.

(i) We will define RΓA(X) to be the Zariski hypercohomology of the following
complex of sheaves of Ainf -modules on the formal scheme X:

AΩX := Lημ

(

̂Rν∗(Ainf,X )
)

where:

• Ainf,X is a certain period sheaf of Ainf -modules on the pro-étale site Xproét of
the rigid analytic variety X (note that even if X is an honest scheme overO,
we must view its generic fibre as a rigid analytic variety);
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• ν : Xproét → XZar is the projection map to the Zariski site of X;
• the hat indicates the derived p-adic completion of Rν∗(Ainf,X ) (see also the
end of item (iv));

• Lη is the décalage functorwhichmodifies a given complex by a small amount
of torsion (in this case with respect to a prescribed element μ ∈ Ainf ).

(ii) Parts (ii) and (iii) of Theorem 1 are proved simultaneously by relating AΩX to
Langer–Zink’s relative de Rham–Witt complex WrΩ

•
X/O; indeed, this equals

Ω•
X/O if r = 1 (which computes de Rham cohomology of X) and satisfies

WrΩ
•
X/O ⊗Wr (O) Wr (k) = WrΩ

•
Xk/k (whereWrΩ

•
Xk/k is the classical deRham–

Witt complex of Bloch–Deligne–Illusie computing crystalline cohomology of
Xk).

(iii) If Spf R is an affine open of X (so R is a p-adically complete, formally smooth
O-algebra7) which is small, i.e., formally étale over O〈T ±1

1 , . . . , T ±1
d 〉 (:= the

p-adic completion ofO[T ±1
1 , . . . , T ±1

d ]), then wewill use the almost purity the-
orem to explicitly calculate RΓZar(Spf R, AΩX) in terms of group cohomology
and Koszul complexes. These calculations can be rephrased using “q-de Rham
complexes” over Ainf (=deformations of the de Rham complex), but we do not
do so in these notes.

(iv) Some remarks on the history and development of the results:

• Early motivation for the existence of RΓA(X) (e.g., as discussed by Scholze
at Harris’ 2014 MSRI birthday conference) came from topological cyclic
homology. These notes say nothing about that point of view, which may now
be found in [6].

• At the time of writing the announcement of our results [4], we only knew that
the definition of RΓA(X) in part (i) of the remark almost (in the precise sense
of Faltings’ almost mathematics) had the desired properties of Theorem 1,
so it was necessary to modify the definition slightly; this modification is no
longer necessary.

• Further simplifications of some of the proofs were explained in [2], some of
which are also taken into account in these notes.

• The definition of AΩX continues to make sense for any p-adic formal O-
scheme X, not necessarily smooth, and in particular the comparison isomor-
phisms of Theorem 1 have been extended to case of semi-stable reduction
by Česnavičus and Koshikawa [9].

• In late 2018 the authors of [5] realised that the period sheaf Ainf,X on Xproét

might not be derived p-adically complete, though this had been implicitly
used in the construction. This is easily fixed, without changing any of the

7Throughout these notes we follow the convention that formally smooth/étale includes the condition
of being topologically finitely presented, i.e., a quotient of O〈T1, . . . , TN 〉 by a finitely generated
ideal. Under this convention formal smoothness implies flatness. In fact, according to a result of
Elkik [11, Theorem7] (see Rmq. 2 on p. 587 for elimination of the Noetherian hypothesis), a p-
adically completeO-algebra is formally smooth if and only if it is the p-adic completion of a smooth
O-algebra.
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ensuing arguments, either by replacing Ainf,X by its derived p-adic com-
pletion (which is then a complex of sheaves) or else by derived p-adically
completing all occurrences of Rν∗(Ainf,X ) and RΓproét(−, Ainf,X ) in the the-
ory. In the published version of [5] the former approach is adopted, but in
these notes we will follow the latter route which has the conceptual advan-
tage that Ainf,X remains an honest sheaf of rings. Unfortunately this leads to
a notation inconsistency: the Ainf,X of these notes is H0(−) of the complex
of sheaves Ainf,X of [5].

• Most recently, a site theoretic definition of theAinf -cohomology is now avail-
able through the prismatic theory of Bhatt–Scholze [3].

2 The décalage Functor Lη: Modifying Torsion

For a ring A and non-zero divisor f ∈ A, we define the décalage functor which was
introduced first by Berthelot–Ogus [1, Chap. 8] following a suggestion of Deligne.
It will play a fundamental role in our constructions.

Definition 1 Suppose that C is a cochain complex of f -torsion-free A-modules.
Then we denote by η f C the subcomplex of C[ 1

f ] defined as

(η f C)i := {x ∈ f i Ci : dx ∈ f i+1Ci+1}

i.e., η f C is the largest subcomplex of C[ 1
f ] which in degree i is contained in f i Ci

for all i ∈ Z.

It is easy to compute the cohomology of η f C :

Lemma 1 The map on cocycles Zi C → Zi (η f C) given by m → f i m induces a
natural isomorphism

Hi (C)/Hi (C)[ f ] �→ Hi (η f C).

Proof It is easy to see that the map induces Hi (C) → Hi (η f C), and the kernel
corresponds to those x ∈ Ci such that dx = 0 and f x ∈ d(Ci−1), i.e., Hi (C)[ f ].
Corollary 2 If C

∼→ C ′ is a quasi-isomorphism of complexes of f -torsion-free A-
modules, then the induced map η f C → η f C ′ is also a quasi-isomorphism.

Proof Immediate from the previous lemma.

We may now derive η f . There is a well-defined endofunctor Lη f of the derived
category D(A) defined as follows: if D ∈ D(A) then pick a quasi-isomorphism
C

∼→ D where C is a cochain complex of f -torsion-free A-modules (e.g., pick a
projective resolution, at least if D is bounded above) and set



Notes on the Ainf -Cohomology of Integral p-Adic Hodge Theory 9

Lη f D := η f C.

This is well-defined by the previous corollary and standard formalism of derived
categories.

Warning: Lη f does not preserve distinguished triangles! For example, if A = Z then
Lηp(Z/pZ) = 0 but Lηp(Z/p2Z) = Z/pZ.

The general theory of the functor Lη f will be spread out through the notes (see
especially Remarks 7 and 9); now we proceed to two important examples.

2.1 Example 1: Crystalline Cohomology

The following proposition is the origin of the décalage functor, in which A = W (k)

and f = p; it is closely related to the Cartier isomorphism for the de Rham–Witt
complex.

Proposition 1 Let k be a perfect field of characteristic p and R a smooth k-algebra.
Then

(i) (Illusie 1979) The absolute Frobenius ϕ : WΩ•
R/k → WΩ•

R/k is injective and
has image ηpWΩ•

R/k , thus inducing a Frobenius-semi-linear isomorphism

Φ : WΩ•
R/k

�→ ηpWΩ•
R/k .

(ii) (Berthelot–Ogus 1978) There exists a Frobenius-semi-linear quasi-isomorphism

Φ : RΓcrys(R/W (k))
∼→ Lηp RΓcrys(R/W (k)).

Proof Obviously (i)⇒(ii), but (ii) was proved earlier and is the historical origin of
Lη: see [1, Theorem 8.20] (with the zero gauge). Berthelot–Ogus applied it to study
the relation between the Newton and Hodge polygons associated to a proper, smooth
variety over k.

(i) is a consequence of the following standard de Rham–Witt identities:

• ϕ has image in ηpWΩ•
R/k since ϕ = pi F on WΩ i

R/k and dϕ = ϕd.
• ϕ is injective since FV = V F = p.
• the image ofϕ is exactlyηpWΩ•

R/k sinced−1(pWΩ i+1
R/k) = F(WΩ i

R/k) [18, Equa-
tion I.3.21.1.5].
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2.2 “Example 2”: An Integral Form of Faltings’ Almost
Purity Theorem

We now present an integral form of (the main consequence of) Faltings’ almost
purity theorem; we do not need this precise result, but we will make use of Lemma 2
and the “goodness” of the group cohomology established in the course of the proof
of Theorem 2. Moreover, readers familiar with Faltings’ approach to p-adic Hodge
theory may find this result motivating. To recall Faltings’ almost purity theorem we
consider the following situation:

• C is a complete, non-archimedean, algebraically closed field of mixed character-
istic; ring of integers O.

• R is a p-adically complete, formally smoothO-algebra, which we further assume
is connected and small, i.e., formally étale overO〈T ±1〉 := O〈T ±1

1 , . . . , T ±1
d 〉. As

usual in Faltings’ theory, we associate to this the following two rings:
• R∞ := R̂⊗O〈T ±1〉O〈T ±1/p∞〉—this is acted on by Γ := Zp(1)d via R-algebra
automorphisms in the usual way: given γ ∈ Γ = HomZp ((Qp/Zp)

d ,μp∞) and

k1, . . . , kd ∈ Z[ 1p ], the action is γ · T k1
1 . . . T kd

d := γ(k1, . . . , kd)T
k1
1 . . . T kd

d .

• R := the p-adic completion of the normalisation of R in the maximal (ind)étale
extension of R[ 1p ]—this is acted on by Δ := Gal(R[ 1p ]) via R-algebra automor-
phisms, and its restriction to R∞ gives the Γ -action there.

Faltings’ almost purity theorem states R is an “almost étale” R∞-algebra, and the
main consequence of this is that the resulting map on continuous group cohomology

RΓcont(Γ, R∞) −→ RΓcont(Δ, R)

is an almost quasi-isomorphism (i.e., all cohomology groups of the cone are killed
by the maximal ideal m ⊂ O). This is his key to calculating étale cohomology in
terms of de Rham cohomology; indeed, RΓcont(Δ, R) is a priori hard to calculate and
encodes Galois/étale cohomology, while RΓcont(Γ, R∞) is easy to calculate using
Koszul complexes (as we will see in the proof of Theorem 2) and differential forms.

The following is our integral form of this result, inwhichwe apply Lη with respect
to any element f ∈ m ⊂ O:

Theorem 2 Under the above set-up, the induced map

Lη f RΓcont(Γ, R∞) −→ Lη f RΓcont(Δ, R)

is a quasi-isomorphism (not just an almost quasi-isomorphism!) for any non-zero
f ∈ m.

Remark 1 (i) The proof of Theorem 2 requires knowing nothing new about
RΓcont(Δ, R): a key remarkable property of Lη is that it can transform almost
quasi-isomorphisms into actual quasi-isomorphisms, having only imposed
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hypotheses on the domain, not the codomain, of the morphism; this will be
explained in the next lemma.

(ii) The theorem implies that the kernel and cokernel of Hi
cont(Γ, R∞) → Hi

cont
(Δ, R) are killed by f ; since f is any element ofm, the kernel and cokernel are
killed by m. Thus Theorem 2 is a family of on-the-nose integral results which
recovers Faltings’ almost quasi-isomorphism RΓcont(Γ, R∞) → RΓcont(Δ, R).

Lemma 2 Let M ⊆ A be an ideal of a ring and f ∈ M a non-zero-divisor. Say that
an A-module M is “good” if and only if both M and M/ f M contain no non-zero
elements killed by M. Then the following statements hold:

(i) If M → N is a homomorphism of A-modules with kernel and cokernel killed
by M, and M is good, then M/M[ f ] → N/N [ f ] is an isomorphism.

(ii) If C → D is a morphism of complexes of A-modules whose cone is killed by
M, and all cohomology groups of C are good, then Lη f C → Lη f D is a quasi-
isomorphism.

Proof Clearly (ii) is a consequence of (i) and Lemma 1. So we must prove (i).
Since the kernel of M is killed byM, but M contains no non-zero elements killed

by M, we see that M → N is injective, and we will henceforth identify M with
a submodule of N . Then M[ f ] = M ∩ N [ f ] and so M/M[ f ] → N/N [ f ] is also
injective.

Since the quotient N/M is killed by M, there is a chain of inclusions M f N ⊆
f M ⊆ f N ⊆ M . But M/ f M contains no non-zero elements killed byM, so f M =
f N , and this completes the proof: any n ∈ N satisfies f n = f m for some m ∈ M ,
whence n ≡ m mod N [ f ].
Proof (Proof of Theorem 2). To prove Theorem 2 we use Faltings’ almost purity
theorem and Lemma 2 (in the context A = O, f ∈ M = m): so it is enough to
show that Hi

cont(Γ, R∞) is “good” for all i ≥ 0. This is a standard type of explicit
calculation of Hi

cont(Γ, R∞) in terms of Koszul complexes. For the sake of the reader
unfamiliarwith this typeof calculation, the special case that R = O〈T ±1〉 is presented
in a footnote8; here in the main text we will prove the general case. Both there and

8In this footnote we carry out the calculation of the proof of Theorem 2 when R = O〈T ±1〉, in
which case R∞ = O〈T ±1/p∞〉. To reiterate, we must show that Hi

cont(Γ, R∞) is good for all i ≥ 0.
First note that R∞ admits a Γ -equivariant decomposition into O-submodules

R∞ = ̂

⊕

k∈Z

[

1
p

]OT k

(where the hat denotes p-adic completion of the sum), with the generator γ ∈ Γ acting on the rank-

one free O-module OT k as multiplication by ζk . Thus RΓcont(Zp,OT k) � [O ζk−1−−−→ O] (since
the group cohomology of an infinite cyclic group with generator γ is computed by the invariants
and coinvariants of γ, and similarly in the case of continuous group cohomology), and so

RΓcont(Zp, R∞) � ̂

⊕

k∈Z

[

1
p

][O ζk−1−−−→ O]
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here we pick a compatible sequence ζp, ζp2 , . . . ,∈ O of p-power roots of unity to
get a generator γ ∈ Zp(1) and an identification Γ ∼= Z

d
p; as a convenient abuse of

notation, we write ζk := ζa
p j when k = a/p j ∈ Z[ 1p ].

First note that O〈T ±1/p∞〉 admits a Γ -equivariant decomposition into O〈T ±1〉-
modules:

O〈T ±1/p∞〉 = O〈T ±1〉 ⊕ O〈T ±1〉non-int,

where

O〈T ±1〉non-int := ̂
⊕

k1,...,kd∈Z

[ 1
p

]

∩[0,1)
not all zero

O〈T ±1〉T k1
1 . . . T kd

d

(where the hat denotes p-adic completion of the sum), with the generators γ1, . . . ,
γd ∈ Γ acting on the rank-one freeO-moduleOT k1

1 . . . T kd
d respectively as multipli-

cation by ζk1 , . . . , ζkd .
Base changing to R we obtain a similar Γ -equivariant decomposition of R∞ into

R-modules

R∞ = R ⊕ Rnon-int
∞ , Rnon-int

∞ := ̂
⊕

k1,...,kd∈Z

[ 1
p

]

∩[0,1)
not all zero

RT k1
1 . . . T kd

d ,

and so RΓcont(Z
d
p, R∞) � RΓcont(Z

d
p, R) ⊕ RΓcont(Z

d
p, Rnon-int∞ ), where

RΓcont(Z
d
p, Rnon-int

∞ ) � ̂
⊕

k1,...,kd∈Z

[ 1
p

]

∩[0,1)
not all zero

RΓcont(Z
d
p, RT k1

1 . . . T kd
d )

(where the hat now denotes the derived p-adic completion of the sum of complexes).
Now we must calculate Hi

cont(Zp, ?) for ? = R or RT k1
1 . . . T kd

d .
In the first case, the action ofZd

p on R is trivial and so a standard group cohomology

fact says that Hi
cont(Z

d
p, R) ∼= ∧i

R Rd . In the second case, another standard group

(where the hat now denotes the derived p-adic completion of the sum of complexes), which has
cohomology groups

H0
cont(Zp, R∞) ∼= ̂

⊕

k∈Z
O ⊕ 0, H1

cont(Zp, R∞) ∼= ̂

⊕

k∈Z
O ⊕

⊕

k∈Z

[

1
p

]

\Z

O/(ζk − 1)O

(once some care is taken regarding the p-adic completions: see footnote 9).
We claim that both cohomology groups are good. Since O has no non-zero elements killed

by m, it remains only to prove that the same is true of O/aO, where a = f or ζk − 1 for some
k ∈ Z[ 1p ] \ Z. But this is an easy argument with valuations: if x ∈ O is almost a multiple of a, then
νp(x) + ε ≥ νp(a) for all ε > 0, whence νp(x) ≥ νp(a) and so x is actually a multiple of a.
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cohomology fact says that RΓcont(Z
d
p, RT k1

1 . . . T kd
d ) can be calculated by the Koszul

complex K R(ζk1 − 1, . . . , ζkd − 1); then Lemma 23 reveals (crucially using that not
all ki are zero) that

Hi
cont(Z

d
p, RT k1

1 . . . T kd
d ) ∼= R/(ζpr − 1)R(d−1

i−1)

where r := −min1≤i≤d νp(ki ) ≥ 1 is the smallest integer such that ζpr − 1|ζki − 1
for all i = 1, . . . , d.

Assembling9 these calculations yields isomorphisms

Hi
cont(Γ, R∞) ∼=

i
∧

R

Rd ⊕
⊕

k1,...,kd∈Z

[ 1
p

]

∩[0,1)
not all zero

R/(ζp−min1≤i≤d νp (ki ) − 1)R(d−1
i−1),

which we claim is good for each i ≥ 0. That is, we must show that R, R/ f R, and
R/(ζpr − 1)R, for r ≥ 1, contain no non-zero elements killed by m. This is trivial
for R itself since it is a torsion-free O-algebra, so it remains to show, for each
non-zero a ∈ m, that R/a R contains no non-zero elements killed by m; but R is a
topologically freeO-module [5, Lemma 8.10] and so R/a R is a freeO/aO-module,
thereby reducing the problem to the analogous assertion forO/aO, whichwas proved
in the final paragraph of footnote 8.

9This step requires some care about p-adic completions: the following straightforward result is
sufficient. Suppose (Cλ)λ is a family of complexes satisfying the following for all i ∈ Z: the group
Hi (Cλ) is p-adically complete and separated for all λ, with a bound on its p-power-torsion which
is independent of λ. Then Hi (̂

⊕

λCλ) = ̂

⊕

λ Hi (Cλ), where the left hat is the derived p-adic
completion of the sum of complexes, and the right hat is the usual p-adic completion of the sum of
cohomology groups. Proof. Set Cdisc := ⊕

λ Cλ and C = Ĉdisc (derived p-adic completion); then
the usual short exact sequences associated to a derived p-adic completion are

0

��
lim←−

1
r

Hi (Cdisc)[pr ]

��
0 �� Ext1

Zp
(Qp/Zp, Hi (Cdisc)) ��

��

Hi (C) �� HomZp (Qp/Zp, Hi+1(Cdisc)) �� 0

Ĥ i (Cdisc) = ̂

⊕

λ Hi (Cλ)

��
0

Our assumption that
⊕

λ Hi (Cλ) has bounded p-power-torsion implies that the right and top terms
vanish.
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3 Algebraic Preliminaries on Perfectoid Rings

Fix a prime number p, and let A be a commutative ring which is π-adically complete
(and separated) for some element π ∈ A dividing p. Denoting by ϕ : A/p A →
A/p A the absolute Frobenius, we have:

• the tilt A� := lim←−ϕ
A/p A of A, which is a perfect Fp-algebra, on which we also

denote the absolute Frobenius by ϕ. We sometimes write elements of A� as x =
(x0, x1, . . .), where xi ∈ A/p A and x p

i = xi−1 for all i ≥ 1, and unless indicated
otherwise the “projection A� → A/p A” refers to the map x �→ x0.

• the associated “infinitesimal period ring” W (A�) of Fontaine, which is denoted
by Ainf(A) in [5]. Note that, since A� is a perfect ring, W (A�) behaves just like
the ring of Witt vectors of a perfect field of characteristic p: in particular p is
a non-zero divisor of W (A�), each element has a unique expansion of the form
[x] + p[y] + p2[z] + · · · , and W (A�)/pr = Wr (A�) for any r ≥ 1.

The goal of this section is to study these constructions in more detail, in particular
to introduce ring homomorphisms

˜θr , θr : W (A�) −→ Wr (A)

which play a fundamental role in the paper, and to define perfectoid rings.

3.1 The Maps θr , ˜θr

The following lemma is helpful in understanding A� and will be used several times;
we omit the proof since it is relatively well-known and based on standard p-adic or
π-adic approximations:

Lemma 3 The canonical maps

lim←−
x �→x p

A −→ A� = lim←−
ϕ

A/p A −→ lim←−
ϕ

A/πA

are isomorphisms of monoids (resp. rings).

Before stating the main lemma which permits us to define the maps θr , we recall
that if B is any ring, then the associated rings of Witt vectors Wr (B) are equipped
with three operators:

R, F : Wr+1(B) → Wr (B) V : Wr (B) → Wr+1(B),

where R, F are ring homomorphisms, and V is merely additive. Therefore we can
take the limit over r in two ways (of which the second is probably more familiar):
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lim←−
r wrt F

Wr (B) or W (B) = lim←−
r wrt R

Wr (B).

Lemma 4 Let A be as above, i.e., a ring which is π-adically complete with respect
to some element π ∈ A dividing p. Then the following three ring homomorphisms
are isomorphisms:

W (A�) = lim←−r wrt R
Wr (A�) lim←−r wrt F

Wr (A�)
ϕ∞

(i)
��

(i i)

��
lim←−r wrt F

Wr (A)
(i i i)

�� lim←−r wrt F
Wr (A/πA)

where

(i) ϕ∞ is induced by the homomorphisms ϕr : Wr (A�) → Wr (A�) for r ≥ 1;
(ii) the right vertical arrow is induced by the projection A� → A/p A → A/πA;

(iii) the bottom horizontal arrow is induced by the projection A → A/πA.

There is therefore an induced isomorphism

W (A�)
�−→ lim←−

r wrt F

Wr (A)

making the diagram commute.

Proof We refer the reader to [5, Lemma 3.2] for the elementary proofs of the iso-
morphisms.

Definition 2 Continue to let A be as in the previous lemma, and r ≥ 1. Define
˜θr : W (A�) → Wr (A) to be the composition

˜θr : W (A�)
�−→ lim←−

r wrt F

Wr (A) −→ Wr (A),

where the first map is the isomorphism of the previous lemma, and the second map
is the canonical projection. Also define

θr := ˜θr ◦ ϕr : W (A�) −→ Wr (A).

We stress that the Frobenius maps F : Wr+1(A) → Wr (A) need not be surjective,
and thus θr ,˜θr need not be surjective; indeed, such surjectivity will be part of the
definition of a perfectoid ring (see Lemma 7).

To explicitly describe the maps θr and ˜θr , we follow the usual convention of
exploiting the isomorphism of monoids of Lemma 3 to denote an element x ∈ A�

either as x = (x0, x1, . . .) ∈ lim←−ϕ
A/p A or x = (x (0), x (1), . . .) ∈ lim←−x �→x p

A:
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Lemma 5 For any x ∈ A� we have θr ([x]) = [x (0)] ∈ Wr (A) and ˜θr ([x]) = [x (r)]
for r ≥ 1.

Proof The formula for ˜θr follows from a straightforward chase through the above
isomorphisms, and the corresponding formula for θr is an immediate consequence.

In particular, Lemma 5 implies that θ := θ1 : W (A�) → A is the usual map of
p-adic Hodge theory as defined by Fontaine [14, Sect. 1.2], and also shows that the
diagram

W (A�)
θr ��

��

Wr (A)

��
Wr (A�) �� Wr (A/p A)

commutes, where the left arrow is the canonical restrictionmap and the bottom arrow
is induced by the projection A� → A/p A.

The following records the compatibility of the maps θr and˜θr with the usual oper-
ators on theWitt groups; though it is probably the first set of diagrams which initially
appears more natural, it is the second set which we we will use when constructing
Witt complexes:

Lemma 6 Continue to let A be as in the previous two lemmas. Then the following
diagrams commute:

W (A�)

id
��

θr+1 �� Wr+1(A)

R

��
W (A�)

θr �� Wr (A)

W (A�)

ϕ

��

θr+1 �� Wr+1(A)

F

��
W (A�)

θr �� Wr (A)

W (A�)
θr+1 �� Wr+1(A)

W (A�)
θr ��

λr+1ϕ
−1

��

Wr (A)

V

��

where the third diagram requires an element λr+1 ∈ W (A�) satisfying θr+1(λr+1) =
V (1) in Wr+1(A). Equivalently, the following diagrams commute:

W (A�)

ϕ−1

��

˜θr+1 �� Wr+1(A)

R

��
W (A�)

˜θr �� Wr (A)

W (A�)

id
��

˜θr+1 �� Wr+1(A)

F

��
W (A�)

˜θr �� Wr (A)

W (A�)
˜θr+1 �� Wr+1(A)

W (A�)
˜θr ��

×ϕr+1(λr+1)

��

Wr (A)

V

��

Proof See [5, Lemma 3.4] for the short verification.
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3.2 Perfectoid Rings

The next goal is to define what it means for A to be perfectoid, which requires
discussing surjectivity and injectivity of the Frobenius on A/p A. We do this in
greater generality than we require, but this greater generality reveals the intimate
relation to the map θ and its generalisations θr , ˜θr .

Lemma 7 Let A be a ring which is π-adically complete with respect to some element
π ∈ A such that π p divides p. Then the following are equivalent:

(i) Every element of A/π p A is a pth-power.
(ii) Every element of A/p A is a pth-power.

(iii) Every element of A/π p A is a pth-power.
(iv) The Witt vector Frobenius F : Wr+1(A) → Wr (A) is surjective for all r ≥ 1.
(v) θr : W (A�) → Wr (A) is surjective for all r ≥ 1.

(vi) θ : W (A�) → A is surjective.

Moreover, if these equivalent conditions hold then there exist u, v ∈ A× such that
uπ and vp admit systems of p-power roots in A.

Proof The implications (i)⇒(ii)⇒(iii) are trivial since π p A ⊆ p A ⊆ π p A. (v)⇒
(vi) is also trivial since θ = θ1.

(iii)⇒(i): a simple inductive argument allows us to write any given element x ∈ A
as an infinite sum x = ∑∞

i=0 x p
i π pi for some xi ∈ A; but then x ≡ (

∑∞
i=0 xiπ

i )p mod
pπA.

(iv)⇒(ii): Clear from the fact that the Frobenius F : W2(A) → W1(A) = A is
explicitly given by (α0,α1) �→ α

p
0 + pα1.

(iv)⇒(v): The hypothesis states that the transition maps in the inverse system
lim←−r wrt F

Wr (A) are surjective, which implies that each map ˜θr is surjective, and
hence that each map θr is surjective.

(vi)⇒(ii): Clear since any element of A in the image of θ is a pth-power mod p.
It remains to show that (ii)⇒(iv), but we will first prove the “moreover” assertion

using only (i) (which we have shown is equivalent to (ii)). Applying Lemma 3 to both
A and A/π p A implies that the canonical map lim←−x �→x p

A → lim←−x �→x p
A/π p A is an

isomorphism.Applying (i) repeatedly, there therefore existsω ∈ lim←−x �→x p
A such that

ω(0) ≡ π mod π p A (resp. ≡ p mod π p A). Writing ω(0) = π + π px (resp. ω(0) =
p + π px) for some x ∈ A, the proof of the “moreover” assertion is completed by
noting that 1 + px ∈ A× (resp. 1 + πx ∈ A×).

(ii)⇒(iv): By the “moreover” assertion, there exist π′ ∈ A and v ∈ A× satisfying
π′p = vp. Note that A is π′-adically complete, and so we may apply the implication
(ii)⇒(i) for the element π′ to deduce that every element of A/π′ p A is a pth-power;
it follows that every element of A/I p is a pth-power, where I is the ideal {a ∈ A :
a p ∈ p A}. Now apply implication “(xiv)′ ⇒(ii)” of Davis–Kedlaya [10].

Lemma 8 Let A be a ring which is π-adically complete with respect to some element
π ∈ A such that π p divides p, and assume that the equivalent conditions of the
previous lemma are true.
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(i) If Ker θ is a principal ideal of W (A�), then

(a) Φ : A/πA → A/π p A, a �→ a p, is an isomorphism;
(b) any generator of Ker θ is a non-zero-divisor10;
(c) an element ξ ∈ Ker θ is a generator if and only if it is “distinguished”,

i.e., its Witt vector expansion ξ = (ξ0, ξ1, . . .) has the property that ξ1 is a
unit of A�.

(d) any element ξ ∈ Ker θ satisfying θr (ξ) = V (1) ∈ Wr (A) for some r > 1
is distinguished (and such an element exists for any given r > 1).

(ii) Conversely, if π is a non-zero-divisor and Φ : A/πA → A/π p A is an isomor-
phism (which is automatic if A is integrally closed in A[ 1

π
]), then Ker θ is a

principal ideal.

Proof Rather than copying the proof here, we refer the reader to Lemma 3.10 and
Remark 3.11 of [5]. The only assertion which is not proved there is the parenthetical
assertion in (ii), for which we just note that if A is integrally closed in A[ 1

π
], thenΦ is

automatically injective: indeed, if a p divides π p, then (a/π)p ∈ A and so a/π ∈ A.

We can now define a perfectoid ring11:

Definition 3 A ring A is perfectoid if and only if the following three conditions
hold:

• A is π-adically complete for some element π ∈ A such that π p divides p;
• the Frobenius map ϕ : A/p A → A/p A is surjective (equivalently, θ : W (A�) →

A is surjective);
• the kernel of θ : W (A�) → A is principal.

Remark 2 The first condition of the definition could be replaced by the seemingly
stronger, but actually equivalent and perhaps more natural, condition that “A is p-
adically complete and there exists a unit u ∈ A× such that pu is a pth-power.” Indeed,
this follows from the final assertion of Lemma 7.

We return to the maps θr , describing their kernels in the case of a perfectoid ring:

Lemma 9 Suppose that A is a perfectoid ring, and let ξ ∈ W (A) be any element
generating Ker θ (this exists by Lemma 7). Then Ker θr is generated by the non-
zero-divisor

10In all our cases of interest the ring A will be an integral domain, in which case it may be psycho-
logically comforting to note that A� and W (A�) are also integral domains. Proof. The ring W (A�) is
p-adically separated, satisfies W (A�)/p = A�, and p is a non-zero-divisor in it (these properties all
follow simply from A� being perfect). So, once we show that A� is an integral domain, it will easily
follow that W (A�) is also an integral domain. But the fact that A� is an integral domain follows

at once from the same property of A using the isomorphism of monoids lim←−x �→x p A
�→ A� which

already appeared in Lemma 4.
11Perhaps “integral perfectoid ring” would be better terminology to avoid conflict with the more
common notion of perfectoid algebras in which p is invertible.
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ξr := ξϕ−1(ξ) . . . ϕ−(r−1)(ξ)

for any r ≥ 1, and so Ker ˜θr is generated by the non-zero-divisor

˜ξr := ϕr (ξr ) = ϕ(ξ) . . . ϕr (ξ).

Proof It is enough to prove the claim about ξr , since the claim about˜ξr then follows
by applying ϕr . The proof is by induction on r ≥ 1, using the diagrams of Lemma
6 for the inductive step; we refer to [5, Lemma 3.12] for the details.

We finish this introduction to perfectoid rings with some examples:

Example 1 (Perfect rings of characteristic p) Suppose that A is a ring of character-
istic p. Then A is perfectoid if and only if it is perfect. Indeed, if A is perfect, then it
is 0-adically complete, the Frobenius is surjective, and the kernel of θ : W (A) → A
is generated by p. Conversely, if A is perfectoid, then Lemma 8(i)(c) implies that
the distinguished element p ∈ Ker(θ : W (A�) → A) must be a generator, whence
W (A�)/p ∼= A; but W (A�)/p = A� is perfect.

In particular, in this case A� = A and the maps θr : W (A�) → Wr (A) are the
canonical Witt vector restriction maps.

Example 2 If C is a complete, non-archimedean algebraic closed field of residue
characteristic p > 0, then its ring of integersO is a perfectoid ring. Indeed, if C has
equal characteristic p then O is perfect and we may appeal to the previous lemma.
If C has mixed characteristic (our main case of interest), then O is p1/p-adically
complete, integrally closed in O[ 1

p1/p ] = C, and every element of O/pO is a pth-
power since C is algebraically closed, so we may appeal to Lemma 8(ii); in this
situation the ring W (O�) will always be denoted by Ainf .

Example 3 Let A be a perfectoid ring which is π-adically complete with respect to
some non-zero-divisor π ∈ A such that π p divides p. Here we offer some construc-
tions of new perfectoid rings from A:

(i) The rings A〈T 1/p∞
1 , . . . , T 1/p∞

d 〉 and A〈T ±1/p∞
1 , . . . , T ±1/p∞

d 〉, which are by def-
inition the π-adic completions of A[T 1/p∞

1 , . . . , T 1/p∞
d ] and A[T ±1/p∞

1 , . . . ,

T ±1/p∞
d ] respectively, are also perfectoid.

(ii) Any π-adically complete, formally étale A-algebra is also perfectoid.

Proof Since the π-adic completeness of the given ring is tautological in each case,
we only need to check thatΦ : B/πB → B/π p B, b �→ bp is an isomorphism in each
case. This is clear for B = A〈T ±1/p∞〉 and A〈T 1/p∞〉, and it hold for and A-algebra
B as in (ii) since the square

B/π
ϕ �� B/π

A/π

��

ϕ
�� A/π

��
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is a pushout diagram (the base change of the Frobenius along an étale morphism in
characteristic p is again the Frobenius).

3.3 Main Example: Perfectoid Rings Containing Enough
Roots of Unity

Here in Sect. 3.3 we fix a perfectoid ring A which has no p-torsion and which
contains a compatible system ζp, ζp2 , . . . of primitive p-power roots of unity (to
be precise, since A is not necessarily an integral domain, this means that ζpr is a
root of the pr th cyclotomic polynomial), which we fix. The simplest example is
O itself, but we also need the theory for perfectoid algebras containing O such as
O〈T ±1/p∞

1 , . . . , T ±1/p∞
d 〉.

In particular we define particular elements ε, ξ,μ, . . ., which will be used repeat-
edly in our main constructions, and so we highlight (or rather box) the primary
definitions and relations. Firstly, set

ε := (1, ζp, ζp2 , . . .) ∈ A�, μ := [ε] − 1 ∈ W (A�),

and
ξ := 1 + [ε1/p] + [ε1/p]2 + · · · + [ε1/p]p−1 ∈ W (A�).

Lemma 10 ξ is a generator of Ker θ satisfying θr (ξ) = V (1) for all r ≥ 1.

Proof By Lemma 8(i)(d) it is sufficient to show that θr (ξ) = V (1) for all r ≥ 1.
The ghost map gh : Wr (A) → Ar is injective since A is p-torsion-free, and so it is
sufficient to prove that gh(θr (ξ)) = gh(V (1)). But it follows easily from Lemma 5
that the composition gh ◦θr : W (A�) → Ar is given by (θ, θϕ, . . . , θϕr−1), and so
in particular that

gh(θr (ξ)) = (θ(ξ), θϕ(ξ), . . . , θϕr−1(ξ)).

Since θ(ξ) = 0 and gh(V (1)) = (0, p, p, p, . . .), it remains only to check that
θϕi (ξ) = p for all i ≥ 1, which is straightforward:

θϕi (ξ) = θ(1 + [εpi−1 ] + [εpi−1 ]2 + · · · + [εpi−1 ]p−1) = 1 + 1 + · · · + 1 = p.

It now follows from Lemma 9 that Ker θr is generated by

ξr := ξϕ−1(ξ) . . . ϕ−(r−1)(ξ) =
pr −1
∑

i=0

[ε1/pr ]i ,

and that Ker ˜θr is generated by
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˜ξr := ϕr (ξr ) = ϕ(ξ) . . . ϕr (ξ) .

Proposition 2 μ is a non-zero divisor of W (A�) which satisfies

μ = ξrϕ
−r (μ), ϕr (μ) = ˜ξrμ, ˜θr (μ) = [ζpr ] − 1 ∈ Wr (A)

for all r ≥ 1.

Proof The final identity is immediate from Lemma 5. It is clear that μ = ξϕ−1(μ),
whence the identity μ = ξrϕ

−r (μ) follows by a trivial induction on r , and the central
identity then follows by applying ϕr . To prove that μ is a non-zero-divisor, it suffices
to show that ˜θr (μ) = [ζpr ] − 1 is a non-zero-divisor of Wr (A) for all r ≥ 1 (since
W (A�) = lim←−r wrt F

Wr (A)). Since A is p-torsion-free the ghost map is injective and
so we may check this by proving that

gh([ζpr ] − 1) = (ζpr − 1, ζpr−1 − 1, . . . , ζp − 1)

is a non-zero-divisor of Ar ; i.e., we must show that ζpr − 1 is a non-zero-divisor in
A for all r ≥ 1. But ζpr − 1 divides p, and A is assumed to be p-torsion-free.

Remark 3 The reader may wish to note that the Teichmüller lifts [ζp], [ζp2 ], . . .
are not primitive p-power roots unity in Wr (A) in any reasonable sense. Indeed, it
follows from its ghost components gh([ζp]) = (ζp, 1, 1, . . . , 1) that [ζp] is not a root
of X p−1 + · · · + X + 1 when r > 1.

However, the element [ζpr ] − 1 ∈ Wr (A) will play a distinguished role in our
constructions and so we point out that it is a non-zero-divisor whose powers define
the p-adic topology. Indeed, it follows from the ghost component calculation of the
previous proposition that [ζpr ] − 1 is a root of the polynomial

((X + 1)pr − 1)/X = X pr −1 + pX (· · · ) + pr ,

whence p divides ([ζpr ] − 1)pr −1, and [ζpr ] − 1 divides pr . A particularly important
consequence of this is that Lη[ζpr ]−1 commutes with derived p-adic completion, by
[5, Lemma 6.20].

4 The Pro-étale Site and Its Sheaves

In this section we review aspects of pro-étale cohomology following [25, Sects. 3–4],
working under the following set-up:

• C is a complete, non-archimedean, algebraically closed field of mixed character-
istic; ring of integers O with maximal ideal m; residue field k.

• X is a quasi-separated rigid analytic variety over C.
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In particular, we will introduce various pro-étale sheaves on X which will play an
essential role in our constructions, and explain how to calculate their cohomology
via affinoid perfectoids and almost purity theorems.

4.1 The Pro-étale Site Xproét

We will take for granted that the reader is either familiar with, or can reasonably
imagine, étale morphisms and coverings of rigid analytic varieties, and we let X ét

denote the associated étale site of X . To define coverings in X ét (and soon in Xproét) it
is useful to view X as an adic space,12 and we therefore denote by |X | the underlying
topological space of its associated adic space X ad: for example, if T is an affinoid
C-algebra, then |Sp T | denotes the topological space of (equivalences classes of)
all continuous valuations on T , not merely those factoring through a maximal ideal
(which correspond to the closed points of the adic space).

We now define (a countable version of) Scholze’s pro-étale site Xproét in several
steps:

• An object of Xproét is simply a formal inverse system U = “ lim←− ”
i
Ui in X ét of the

form
...

��
U3

fin. ét. surj.��
U2

fin. ét. surj.��
U1

ét.��
X

In other words, U is the data of a tower of finite étale covers of U1, which is étale
over X . The underlying topological space of U is by definition |U | := lim←−i

|Ui |.

12There is an equivalence of categories between quasi-separated rigid analytic varieties over C and
those adic spaces over Spa(C,O) whose structure map is quasi-separated and locally of finite-type
[16, Proposition 4.5]. A collection of étale maps { fλ : Uλ → U } in X ét is a cover if and only if it
is jointly “strongly surjective”, which is equivalent to being jointly surjective at the level of adic
points [17, Sect. 2.1].
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• Up to isomorphism,13 a morphism f : U → V in Xproét is simply a compatible
family of morphisms between the towers

...

��

...

��
U3

��

f3 �� V3

��
U2

��

f2 �� V2

��
U1

���
��

��
�

f1 �� V1

����
��
��

X

• A morphism f as immediately above is called pro-étale if and only if it satisfies
the following additional condition: the induced finite étale map

Ui+1 −→ Ui ×Vi Vi+1

is surjective for each i ≥ 1. It can be shown that this implies that the induced
continuous map of topological spaces | f | : |U | → |V| is an open mapping [25,
Lemma 3.10(iv)].
Then a collection of morphisms { fλ : Uλ → U} in Xproét is defined to be a cover if
and only if each morphism fλ is pro-étale and the collection {| fλ| : |Uλ| → |U |}
is a pointwise covering of the topological space |U |. For the proof that this indeed
defines a Grothendieck topology we refer the reader to [25, Lemma 3.10].

This completes the definition of the pro-étale site Xproét .14

13This means that we are permitted to replace the towers “ lim←− ”
i
Ui and “ lim←− ”

i
Vi by “obvi-

ously isomorphic” towers, e.g., by inserting or removing some stages of the tower. To be precise,
first let pro- X ét denote the usual category of countable inverse systems in X ét : its objects are
inverse systems “ lim←− ”

i
Ui in X ét , and itsmorphisms are definedbyHom(“ lim←− ”

i
Ui , “ lim←− ”

j
V j ) :=

lim←− j
lim−→i

HomX ét (Ui , Vj ). Then call an object U of pro- X ét pro-étale if and only if it is isomorphic

in pro- X ét to an inverse system “ lim←− ”
i
Ui whose transition maps are finite étale surjective; and

call a morphism f : U → V pro-étale if and only if there exist isomorphisms U ∼= “ lim←− ”
i
Ui and

V ∼= “ lim←− ”
i

Vi in pro- X ét such that “ lim←− ”
i
Ui and “ lim←− ”

i
Vi have finite étale surjective transition

maps and such that the resulting morphism “ lim←− ”
i
Ui → “ lim←− ”

i
Vi has the shape described in the

main text. Then the category Xproét is more correctly defined as the full subcategory of pro- X ét
consisting of pro-étale objects, and covers are defined as in the main text using the more correct
definition of a pro-étale morphism.
14The topos of abelian sheaves on Xproét is “algebraic” in the sense of [27, Definition VI.2.3]; see
[25, Proposition 3.12] for this and further properties of the site. In particular, it then follows from
[27, Corollary VI.5.3] that if U ∈ Xproét is such that |U | is quasi-compact and quasi-separated, then
H∗
proét(U,−) commutes with filtered inductive colimits of sheaves.
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There is an obvious projection functor of sites

ν : Xproét −→ X ét

obtained by pulling back anyU ∈ X ét to the constant tower · · · → U → U → U →
X in Xproét; this satisfies the unsurprising15 property that if F is a sheaf on X ét , and
U = “ lim←− ”

i
Ui ∈ Xproét , then

ν∗F(U) = lim−→
i

F(Ui )

and more generally
Hi

proét(U , ν∗F) = lim−→ Hi
ét(Ui ,F)

for all i ≥ 0 [25, Lemma 3.16]. For this reason the most interesting sheaves on Xproét

are not obtained via pullback from X ét , although our first examples of sheaves on
Xproét are of this form.

The integral and rational structure sheaves O+
X ét

and OX ét on X ét are defined by

O+
X ét

(Sp T ) := T ◦ ⊂ T =: OX ét (Sp T )

where Sp T ∈ X ét is any rigid affinoid, and T ◦ denotes the subring of power bounded
elements inside T . The integral structure sheaf was not substantially studied in
the classical theory.16 Pulling back then defines the integral and rational structure
sheaves O+

X and OX on Xproét

O+
X := ν∗O+

X ét
⊂ OX := ν∗OX ét ,

which are our first examples of sheaves on Xproét .
We now describe the finer, local nature of the pro-étale site by introducing affinoid

perfectoids and stating the fundamental role which they play in the theory.

Definition 4 An object U = “ lim←− ”
i
Ui in Xproét is called affinoid perfectoid if and

only if it satisfies the following two conditions:

• Ui is a rigid affinoid, i.e., Ui = Sp Ti for some affinoid C-algebra Ti , for each
i ≥ 1;

• and the p-adic completion of the ring O+
X (U) = lim−→i

T ◦
i is a perfectoid ring.17

15Nonetheless, a condition is required: we must assume that the topological space |U | is quasi-
compact and quasi-separated; this is satisfied in particular when U is a tower of rigid affinoids.
16Unlike the rational structure sheaf, the integral structure sheaf can have non-zero higher coho-
mology on rigid affinoids.
17We emphasise that, in our current set-up, this perfectoid ring will always be the type considered
in Sect. 3.3: indeed, it is p-torsion-free since each Ti is p-torsion-free, and it contains a compatible
sequence of primitive p-power roots of unity since it contains O.
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The following key result makes precise the idea that X looks locally perfectoid in
the pro-étale topology, and that affinoid perfectoids are small enough for their coho-
mology to almost vanish, thereby allowing them to be used for almost calculations
à la Čech, as we will see further in Sect. 4.3.

Proposition 3 (Scholze)

(i) The affinoid perfectoid objects of Xproét form a basis for the site.
(ii) If U ∈ Xproét is affinoid perfectoid, then H ∗

proét(U ,O+
X /p) is almost zero (i.e.,

killed by m) for ∗ > 0.

Proof These are consequences of the tilting formalism and almost purity theorems
developed in [24]. See Corollary 4.7 and Lemma 4.10 of [25].

To complement the previous local result we recall also the key global result about
pro-étale cohomology, which we will need:

Theorem 3 (Scholze) If the rigid analytic variety X is moreover proper and smooth
over C, then the canonical map of O/pO-modules

Hi
ét(X, Z/pZ) ⊗Z/pZ O/pO −→ Hi

proét(X,O+
X /p)

is an almost isomorphism (i.e., the kernel and cokernel are killed by m) for all i ≥ 0.

Proof See [25, Sect. 5].

4.2 More Sheaves on Xproét

As indicated by Proposition 3(ii) and Theorem 3, the pro-étale sheaf O+
X /p on X

enjoys some special properties, and this richness passes to the completed integral
structure sheaf

̂O+
X := lim←−

s

O+
X /ps,

which is probably the most important sheaf on Xproét . We stress that it is not known
whetherO+

X (U) coincides with the p-adic completion ofO+
X (U) for arbitrary objects

U ∈ Xproét .
Further sheaves of interest on Xproét are collected in the following definition:

Definition 5 The tilted integral structure sheaf 18 is

O+�

X := lim←−
ϕ

O+
X /p,

18Usually denoted by ̂O+
X � to evoke the idea of it being the completed integral structure sheaf on

the tilt X � of X .
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where the limit is taken over iterations of the Frobenius map ϕ on the sheaf of Fp-
algebras O+

X /p. We will also need Witt vector forms19 of the completed and tilted
integral structure sheaves

Wr (̂O+
X ) and Wr (O+�

X ),

and the infinitesimal period sheaf

Ainf,X := W (O+�

X ).

By repeating Lemma 4 in terms of presheaves on Xproét and then sheafifying, we
obtain a canonical isomorphism of pro-étale sheaves

Ainf,X
�−→ lim←−

r wrt F

Wr (̂O+
X ).

As in the affine case in Sect. 3.1 we then denote the resulting projection maps and
their Frobenius twists by

˜θr : Ainf,X −→ Wr (̂O+
X ) and θr = ˜θr ◦ ϕr : Ainf,X −→ Wr (̂O+

X ).

To reduce further analysis of all these sheaves to the affine case of Sect. 3, we combine
the fact that X is locally perfectoid in the pro-étale topology (Proposition 3(i)) with
the fact that the sections of these sheaves on affinoid perfectoids are “as expected”:

Lemma 11 (Scholze) Let U = “ lim←− ”
i
Ui be an affinoid perfectoid in Xproét, with

associated perfectoid ring A := O+
X (U)̂p. Then

̂O+
X (U) = A, Wr (̂O+

X )(U) = Wr (A), O+�

X (U) = A�,

Wr (O+�

X )(U) = Wr (A�), Ainf,X (U) = W (A�).

On the other hand, for ∗ > 0 the pro-étale cohomology groups

H∗
proét(U , ̂O+

X ), H∗
proét(U , Wr (̂O+

X )), H∗
proét(U ,O+�

X ),

H∗
proét(U , Wr (O+�

X )), H∗
proét(U , Ainf,X )

are almost zero, i.e., killed respectively by m, Wr (m), m�, Wr (m
�), [m�].20

19If R is a sheaf of rings on a site T , then Wr (R) and W (R) are the sheaves of rings
obtained by applying the Witt vector construction section-wise, i.e., Wr (R)(U ) := Wr (R(U ))

and W (R)(U ) := W (R(U )) for all U ∈ T .
20Now seems to be an appropriate moment for mentioning some formalism of almost mathemat-
ics over Witt rings. By a “setting for almost mathematics” we mean a pair (V, I ), where V is a
ring and I = I 2 ⊆ V is an ideal which is an increasing union of principal ideals

⋃

λ tλV gen-
erated by non-zero-divisors tλ. Elementary manipulations of Witt vectors [5, Lemma 10.1 and
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Proof See Lemmas 4.10, 5.11 and Theorem 6.5 of [25] for the description of the
sections. The almost vanishings follow by taking suitable limits of Proposition 3(ii).

Corollary 3 The maps of pro-étale sheaves θr ,˜θr : Ainf,X → Wr (̂O+
X ) are surjec-

tive, with kernels generated respectively by the elements ξr ,˜ξr ∈ Ainf = W (O�)

defined in Sect.3.3; moreover, these elements (as well as μ ∈ Ainf , also defined in
Sect.3.3) are non-zero-divisors of the sheaf of rings Ainf,X .

Proof All assertions are local, so by Proposition 3(i) it is sufficient to prove the
analogous affine assertions after taking sections in any affinoid perfectoidU ∈ Xproét;
but using the descriptions of the sections given by the previous lemma, these affine
assertions were covered in Sects. 3.2–3.3.

4.3 Calculating Pro-étale Cohomology

This section is devoted to an explanation of how Proposition 3(ii) is used in practice
to (almost) calculate the pro-étale cohomology of our sheaves of interest; this is of
course the pro-étale analogue of Faltings’ purity theorem and techniques which we
saw in Sect. 2.2. We assume in this section that our rigid analytic variety X is the
generic fibre XC of a smooth p-adic formal scheme X overO; this will be the set-up
of our main results later.

Relatively elementary arguments show that X admits a basis of affine opens
{Spf R} where each R is a p-adically complete, formally smooth O-algebra which
is moreover small, i.e., formally étale over O〈T ±1

1 , . . . , T ±1
d 〉. Fix such an open

Spf R ⊆ X (aswell as a formally étalemapO〈T ±1〉 → R, sometimes called a “fram-
ing”); the associated generic fibre is the rigid affinoid space U := Sp R[ 1p ] ⊆ X ,

which is equipped with an étale morphism to SpC〈T ±1〉. We will explain how to
almost calculate the pro-étale cohomology groups H∗

proét(Sp R[ 1p ], ?) where ? is any
of the sheaves from Lemma 11.

For each i ≥ 1, let
Ri := R ⊗O〈T ±1〉 O〈T ±1/pi 〉

Corollary 10.2] then show that each Teichmüller lift [tλ] ∈ Wr (V ) is a non-zero-divisor and that
Wr (I ) := Ker(Wr (V ) → Wr (V/I )) equals the increasing union

⋃

λ[tλ]Wr (V ), which moreover
coincides with its square; in conclusion, the pair (Wr (V ), Wr (I )) is also a setting for almost math-
ematics. We apply this above, and elsewhere, in the cases (V, I ) = (O,m) and (O�,m�).

Upon taking the limit as r → ∞, the inclusion W (I ) := Ker(W (V ) → W (V/I )) ⊃ [I ] :=
⋃

λ[tλ]W (V ) is strict; the pair (W (V ), [I ]) is a setting for almost mathematics, but (W (V ), W (I ))
typically is not. So, strictly, speaking, the almost language should be avoided for the ideal W (m�),
though we will sometimes abuse this. However, if V is a perfect ring of characteristic p (e.g.,
V = O�), then [I ] and W (I ) coincide after p-adic completion (and derived p-adic completion) by
the argument of the proof of Lemma 22; so a map between p-adically complete W (V )-modules
(resp. derived p-adically complete complexes of W (V )-modules) has kernel and cokernel (resp. all
cohomology groups of the cone) killed by W (I ) if and only if they are killed by [I ].
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be the finite étale R-algebra obtained by adjoining pi -roots of T1, . . . , Td . Then
Sp Ri+1[ 1p ] → Sp Ri [ 1p ] is a finite étale cover of rigid affinoids for each i ≥ 0,
whence it easily follows that

U := “ lim←− ”
i

Sp Ri

[

1
p

]

−→ U

is a cover in Xproét .
In fact, Sp Ri [ 1p ] → U is a finite Galois cover with Galois group μd

pi , where

ζ = (ζ1, . . . , ζd) ∈ μd
pi acts on Ri in the usual way via ζ · T j1/pi

1 . . . T jd/pi

d :=
ζ

j1
1 . . . ζ

jd
d T j1/pi

1 . . . T jd/pi

d , and so for each s ≥ 1 there is an associated Cartan–
Leray21 spectral sequence

H a
grp(μ

d
pi , H b

proét(Ui ,O+
X /ps)) =⇒ H a+b

proét(U,O+
X /ps),

or writing in a more derived fashion

RΓgrp(μ
d
pi , RΓproét(Ui ,O+

X /ps))
∼→ RΓproét(U,O+

X /ps).

Taking the colimit over i yields an analogous quasi-isomorphism (and spectral
sequence) for the “Zp(1)d -Galois cover” U → U :

RΓgrp(Zp(1)
d , RΓproét(U ,O+

X /ps))
∼→ RΓproét(U,O+

X /ps).

However, U is affinoid perfectoid: indeed, since the power bounded elements
in the affinoid C-algebra Ri [ 1p ] are exactly Ri , we must show that (lim−→i

Ri )
̂

p =
R̂⊗O〈T ±1〉O〈T ±1/p∞〉 =: R∞ is a perfectoid ring; but R∞ is a p-adically complete,
formally étale O〈T ±1/p∞〉-algebra, whence it is perfectoid by Example 3. There-
fore the pro-étale cohomology H∗

proét(U ,O+
X /ps) almost vanishes for ∗ > 0 (by

Proposition 3(ii)) and almost equals R∞/ps R∞ for ∗ = 0 (by Lemma 11, using
thatO+

X /ps = ̂O+
X /ps); so the edge map associated to the previous line is an almost

quasi-isomorphism

RΓgrp(Zp(1)
d , R∞/ps R∞)

al. qu.-iso.−→ RΓproét(U,O+
X /ps)

(i.e., all cohomology groups of the cone are killed bym), wherewemention explicitly
that Zp(1)d is acting on R∞ as in Sect. 2.2. Finally, taking the derived inverse limit22

21Often called Hochschild–Serre in this setting. Here H∗
grp and RΓgrp refer to group cohomology

for a topological group acting on discrete modules.
22This process of taking the inverse limit deserves further explanation. By definition, when G
is a topological group and M is a complete topological G-module whose topology is defined
by a system {N } of open sub-G-submodules, we define its continuous group cohomology as
RΓcont(G, M) := RlimN RΓgrp(G, M/N ) and H∗

cont(G, M) := H∗(RΓcont(G, M)); of course, we
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over s yields an almost quasi-isomorphism

RΓcont(Zp(1)
d , R∞)

al. qu.-iso.−→ RΓproét(U, ̂O+
X ).

Arguing by induction and taking inverse limits, these almost descriptions may be
extended to the other sheaves in Lemma 11, giving in particular almost (wrt. Wr (m)

and W (m�) respectively) quasi-isomorphisms

RΓcont(Zp(1)
d , Wr (R∞))

al. qu.-iso.−→ RΓproét(U, Wr (̂O+
X ))

and

RΓcont(Zp(1)
d , W (R�

∞))
al. qu.-iso.−→ ̂RΓproét(U, Ainf,X ),

where the hat indicates derived p-adic completion. These “Cartan–Leray almost
quasi-isomorphisms” are crucial to all our calculations of pro-étale cohomology.

5 The Main Construction and Theorems

In this section we present the main construction and define the new cohomology
theory introduced in [5], before proving that its main properties, as stated in Theorem
1, can be reduced to a certain p-adic analogue of the Cartier isomorphism. We work
in the set-up of Sect. 1.2 throughout:

• C is a complete, non-archimedean, algebraically closed field of mixed character-
istic; ring of integers O with maximal ideal m; residue field k.

may always restrict the limit to any preferred system of open neighbourhoods of 0 by sub-G-
modules. In particular, RΓcont(Zp(1)d , R∞) = Rlims RΓgrp(Zp(1)d , R∞/ps R∞).

To take the inverse limit of the right, we show that the canonical map RΓproét(U, ̂O+
X ) →

Rlims RΓproét(U,O+
X /ps) is a quasi-isomorphism. Since the codomain may be rewritten as

RΓproét(U, Rlims O+
X /ps) by general formalism of derived functors, it is enough to show that

the canonical map ̂O+
X → Rlims O+

X /ps is a quasi-isomorphism (note that the topos of pro-étale
sheaves does not satisfy the necessary Grothendieck axioms to automatically imply that higher
derived inverse limits vanish in the case of surjective transition maps!), for which it is enough to
show that RΓproét(V, ̂O+

X ) → Rlims RΓproét(V,O+
X /ps) is a quasi-isomorphism for every affinoid

perfectoid V ∈ Xproét ; this is what we shall now do. Firstly, it is easily seen to be an almost quasi-
isomorphism by Lemma 11, and so in particular the cone is derived p-adically complete; since the
codomain is derived p-adically complete, therefore the domain is also; but the codomain is precisely
the derived p-adic completion of the domain, and hence the map is a quasi-isomorphism.

Unfortunately the same argument does not work for the sheaf Ainf,X , which seemingly fails to
be derived p-adically complete on Xproét ; in particular, the canonical map RΓproét(U, Ainf,X ) →
Rlims RΓproét(U, Ainf,X /ps) is only a quasi-isomorphism after replacing the domain by its derived
p-adic completion.
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• We pick a compatible sequence ζp, ζp2 , . . . ∈ O of p-power roots of unity, and
define μ, ξ, ξr ,˜ξ,˜ξr ∈ Ainf = W (O�) as in Sect. 3.3.

• X is a smooth p-adic formal scheme overO, whichwe do not yet assume is proper;
its generic fibre, as a rigid analytic variety over C, is denoted by X = XC.

• ν : Xproét → XZar is the projection map of sites obtained by pulling back any
Zariski open in XZar to the constant tower in Xproét consisting of its generic fibre.
That is, ν is the composition of maps of sites Xproét → X ét → Xét → XZar, where
the first projection map is what was previously denoted by ν in Sect. 4.1.23

The following is the fundamental new object at the heart of our cohomology theory:

Definition 6 Applying ν : Xproét → XZar to the period sheaf Ainf,X gives a “nearby
cycles period sheaf” Rν∗Ainf,X , which is a complex of sheaves of Ainf -modules on
XZar; we p-adically complete this in the derived sense and then apply Lημ to obtain
a complex of sheaves of Ainf -modules on XZar:

AΩX := Lημ

(

̂Rν∗Ainf,X
)

.

We will soon equip AΩX with a Frobenius-semi-linear endomorphism ϕ.

Remark 4 The previous definition used the décalage functor for a complex of
sheaves, whereas we only defined it in Definition 1 for complexes of modules; here
we explain the necessary minor modifications.

Let T be a site, A a ring, and f ∈ A a non-zero-divisor. Call a complex C of
sheaves of A-modules strongly K -flat if and only if

• Ci is a sheaf of flat A-modules for all i ∈ Z,
• and the direct sum totalisation of the bicomplexC ⊗A D is acyclic for every acyclic
complex D of sheaves of A-modules.24

For any such C we define a new complex of sheaves η f C by

T � U �→ (η f C)i (U ) := {x ∈ f i Ci (U ) : dx ∈ f i+1Ci+1(U )}.

Any complex D of sheaves of A-modules may be resolved by a strongly K -flat
complex C

∼→ D (e.g., see the proof of The Stacks Project, Tag 077J), and we define
Lη f D := η f C . This is a well-defined endofunctor of the derived category of sheaves
of A-modules on T . For further details, we refer the reader to [5, Sect. 6], themajority
of which is established in the generality of ringed topoi.

Warning: The décalage functor does not commute with global sections: there is
a natural “global-to-local” morphism

Lη f RΓ (T , C) −→ RΓ (T , Lη f C),

23We hope that this rechristening of ν does not lead to confusion, but we are following the (incom-
patible) notations of [25] and [5].
24This is not automatic from the first condition since C may be unbounded, and is a standard
condition to impose when requiring flatness conditions on unbounded complexes of sheaves.



Notes on the Ainf -Cohomology of Integral p-Adic Hodge Theory 31

but this is not in general a quasi-isomorphism.25

Remark 5 Before saying anything precise, we offer some vague descriptions of how
AΩX looks and how it can be studied. Ignoring the décalage functor for the moment,

̂Rν∗Ainf,X is obtained by sheafifying X ⊇ Spf R �→ ̂RΓproét(Sp R[ 1p ], Ainf,X ), as
Spf R runs over affine opens of X. We may suppose here that R is small and
so put ourselves in the situation of Sect. 4.3: R is a small, formally smooth O-
algebra corresponding to an affine open Spf R ⊆ X, with associated pro-étale cover
U = “ lim←− ”

i
Sp Ri [ 1p ] → Sp R[ 1p ], where U is affinoid perfectoid with associated

perfectoid ring R∞. As we saw in Sect. 4.3 there is an associated Cartan–Leray
almost (wrt. W (m�)) quasi-isomorphism

RΓcont(Zp(1)
d , W (R�

∞)) −→ ̂
RΓproét(Sp R

[

1
p

]

, Ainf,X ).

Recalling from Sect. 2.2 that the décalage functor sometimes transforms almost
quasi-isomorphisms into actual quasi-isomorphisms, AΩX can therefore be anal-
ysed locally through the complexes

Lημ RΓcont(Zp(1)
d , W (R�

∞)),

as Spf R various over small affine opens of X.26 These complexes will turn out to be
relatively explicit and related to de Rham–Witt complexes, Koszul complexes, and
q-de Rham complexes.

Remark 6 (de Rham–Witt complexes) Before continuing any further with Sect. 5 the
reader should probably first read Sect. 6.1, where the relative de Rham–Witt complex
WrΩ

•
X/O on X is defined; it provides an explicit complex computing both de Rham

and crystalline cohomology.
In the subsequent Sect. 6.2, which the reader can ignore for the moment, we will

explain methods of constructing “Witt complexes” over perfectoid rings. In partic-
ular, given a commutative algebra object D ∈ D(Ainf) equipped with a Frobenius-
semi-linear automorphism ϕD and satisfying certain hypotheses, we will equip the
cohomology groups

25For example, given a proper smooth variety Y over k, Proposition 1 provides a quasi-

isomorphism WΩ•
Y/k

∼→ LηpWΩ•
Y/k of sheaves; if the global-to-local comparison morphism

were an isomorphism, we would deduce that RΓcrys(Y/W (k))
∼→ Lηp RΓcrys(Y/W (k)), whence

Hn
crys(Y/W (k))

�→ Hi
crys(Y/W (k))/Hi

crys(Y/W (k))[p] for all i ≥ 0 by Lemma 1. But the p-power

torsion in Hi
crys(Y/W (k)) is bounded since it is a finitely generated W (k)-module, so the previ-

ous isomorphism would in fact force Hi
crys(Y/W (k)) to be p-torsion-free for all i ≥ 0; but this is

well-known to be false, e.g., when Y is an Enriques surface in characteristic two and i = 2 or 3 [18,
Proposition II.7.3.5].
26The astute reader may notice that in this argument we have just implicitly identified

Lημ

(

̂RΓproét(Sp R[ 1p ], Ainf,X )
)

and RΓZar(Spf R, AΩX), contrary to the warning of Remark 4;
this is precisely the type of technical obstacle which will need to be overcome in Sect. 7.1.
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W•
r (D) := H •((Lημ D)/˜ξr ), where (Lημ D)/˜ξr = (Lημ D) ⊗L

Ainf ,˜θr
Wr (O),

with the structure of a Witt complex for O → R (where R is an O-algebra depend-
ing on D); the differential d : W•

r (D) → W•+1
r (D) will be given by the Bockstein

Bock
˜ξr
.

To explain the main theorems we recall from Sect. 3.1 that there are two ways of
specialising from Ainf to Wr (O)

Ainf

θr

�������
���

���
���

�
˜θr =θr ◦ϕ−r

		 		��
���

���
���

�

Wr (O) = Ainf/ξr Ainf Wr (O) = Ainf/˜ξr Ainf ,

so we use these to form corresponding specialisations of the complex of sheaves of
Ainf -modules AΩX:

AΩX

θr





���
���

���
���

��
˜θr =θr ◦ϕ−r

�� �����
����

����
����

�

AΩX/ξr = AΩX ⊗L

Ainf ,θr
Wr (O) AΩX ⊗L

Ainf ,˜θr
Wr (O) = AΩX/˜ξr =: W̃r ΩX/O

The next theorem is the main new calculation at the heart of our results (and is the
reason for the chosen notation W̃rΩX/O on the right of the previous line), fromwhich
we will deduce all further results, in which WrΩ

•
X/O is the relative de Rham–Witt

complex of X over O:

Theorem 4 (“p-adic Cartier isomorphism”27) There are natural28 isomorphisms of
Zariski sheaves of Wr (O) = Ainf/˜ξr Ainf -modules

C−r
X : WrΩ

i
X/O

�−→ Hi (W̃rΩX/O)

for all i ≥ 0, r ≥ 1, which satisfy the following compatibilities:

(i) the restriction map R : Wr+1Ω
i
X/O → WrΩ

i
X/O is compatible with the map

W̃r+1ΩX/O → W̃rΩX/O induced by the inverse Frobenius on Ainf,X .

27In the case r = 1, the accepted terminology is now “Hodge–Tate comparison”.
28As written, this isomorphism is natural but not canonical: it depends on the chosen sequence of
p-power roots of unity. To make it independent of any choices, the right side should be replaced by
Hi (W̃r ΩX/O) ⊗Wr (O) (Ker ˜θr /(Ker ˜θr )

2)⊗i . HereKer ˜θr /(Ker ˜θr )
2 =˜ξr Ainf/˜ξ

2
r Ainf is a certain

canonical rank-one free Wr (O)-module, and sowe are replacing the right side by a type of Tate twist
Hi (W̃r ΩX/O){i}. This dependence arrises as follows: changing the chosen sequence of p-power
roots of unity changes μ up to a unit in Ainf : this does not affect Lημ (which depends only on the
ideal generated by μ), but does affect the forthcoming isomorphism in Remark 7(a) (see footnote
29).



Notes on the Ainf -Cohomology of Integral p-Adic Hodge Theory 33

(ii) the de Rham–Witt differential d : WrΩ
i
X/O → WrΩ

i+1
X/O is compatible with the

Bockstein homomorphism Bock
˜ξr

: Hi (W̃rΩX/O) → Hi+1(W̃rΩX/O).

Proof (Idea of forthcoming proof) Using the construction of Sect. 6.2 (summarised
in the previous remark), we will equip the sections H•(W̃rΩX/O)(Spf R) with the
structure of aWitt complex forO → R, naturally as Spf R varies over all small affine
opens of X, in Sect. 7.2. This will give rise to universal (hence natural) morphisms
of Witt complexes WrΩ

•
R/O → H•(W̃rΩX/O)(Spf R) which satisfy (i) and (ii) and

which will be explicitly checked to be isomorphisms (after p-adically completing
WrΩ

•
R/O) by reducing, via the type of argument sketched in Remark 5, to group

cohomology calculations given in Sect. 6.3.

Theorem 5 (Relative de Rham–Witt comparison) There are natural quasi-
isomorphisms in the derived category of Zariski sheaves of Wr (O) = Ainf/ξr Ainf -
modules

WrΩ
•
X/O � AΩX/ξr ,

for all r ≥ 1, such that the restriction map R : Wr+1Ω
•
X/O → WrΩ

•
X/O is compatible

with the canonical quotient map Ainf/ξr+1Ainf → Ainf/ξr Ainf .

In a moment we will equip AΩX with a Frobenius and check that Theorem 4
implies Theorem 5, from which we will then deduce Theorem 1; first we require
some additional properties of the décalage functor:

Remark 7 (Elementary properties of the décalage functor, I) Let A be a ring and
f ∈ A a non-zero-divisor.

(a) (Bockstein construction) One of the most important properties of the décalage
functor is its relation to the Bockstein boundary map. Let C be a complex of
f -torsion-free A-modules. From the definition of η f C it is easy to see that if
f i x ∈ (η f C)i is a arbitrary element, then x mod f Ci is a cocycle of the complex
C/ f C (since d( f i x) is divisible by f i+1), and so defines a class x ∈ Hi (C/ f C);
this defines a map of A-modules

(η f C)i −→ Hi (C/ f C), f i x �→ x .

Next, the Bockstein Bock f : H •(C/ f C) → H •+1(C/ f C) gives the cohomol-
ogy groups H •(C/ f C) the structure of a complex of A/ f A-modules, and we
leave it to the reader as an important exercise to check that the map

η f C −→ [H •(C/ f C),Bock f ],

given in degree i by the previous line, is actually one of complexes, i.e., that
the differential on η f C is compatible with Bock f . Even more, the reader should
check that the induced map
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(η f C) ⊗A A/ f A −→ [H •(C/ f C),Bock f ]

is a quasi-isomorphism. (The proof may be found as [5, Proposition 6.12].)
More generally, if D is an arbitrary complex of A-modules, then this can be
rewritten as a natural29 quasi-isomorphism

(Lη f D) ⊗L

A A/ f A
∼→ [H∗(D ⊗L

A A/ f A),Bock f ]

of complexes of A/ f A-modules.30

(b) (Multiplicativity) If g ∈ A is another non-zero-divisor, and C is a complex of
f g-torsion-free A-modules, then

ηgη f C = η f gC ⊆ C
[

1
g f

]

.

Noting that η f preserves the property the g-torsion-freeness, there is no difficulty
deriving to obtain a natural equivalence of endofunctors of D(A)

Lηg ◦ Lη f � Lηg f .

(c) (Coconnective complexes) Let D≥0
f-tf(A) be the full subcategory of D(A) con-

sisting of those complexes D which have Hi (D) = 0 for i < 0 and H 0(D) is
f -torsion-free. Any such D admits a quasi-isomorphic replacement C

∼→ D,
where C is a cochain complex of f -torsion-free A-modules supported in posi-
tive degree (e.g., if D is bounded then pick a projective resolution P

∼→ D and
set C := τ≥0P). Then

Lη f D = η f C ⊆ C
∼→ D,

whence Lη f restricts to an endofunctor of D≥0
f-tf(A), and on this subcategory

there is a natural transformation j : Lη f → id. In fact, all our applications of
the décalage functor take place in this subcategory.

(d) (Functorial bound on torsion) We maintain the hypotheses of (c). Then the mor-
phism j : Lη f D → D induces an isomorphism on H 0: indeed,

H 0(Lη f D) = Ker((η f C)0
d−→ (η f C)1) = Ker(C0 d−→ C1) = H 0(D).

More generally, for any i ≥ 0, the map j : Hi (Lη f D) → Hi (D) has kernel
Hi (Lη f D)[ f i ] and image f i H i (D): indeed, the composition

29Continuing the theme of the previous footnote, the left side depends only on the ideal f A while
the right side currently depends on the chosen generator f ; to make the construction and morphism
independent of this choice, each cohomology group on the right should be replaced by the twist
H∗(D ⊗L

A A/ f A) ⊗A/ f A ( f ∗ A/ f ∗+1A).
30Curiously, this shows that the complex (Lη f D) ⊗L

A A/ f A, which a priori lives only in the derived
category of A/ f A-modules, has a natural representative by an actual complex.
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Hi (D)/Hi (D)[ f ] �→ Hi (Lη f D)
j−→ Hi (D),

where the first isomorphism is Lemma 1, is easily seen to be multiplication by
f i , whence the assertion follows.
It may be useful to note that this f -power-torsion difference between D and its
décalage Lη f D can be functorially captured in the derived category, at least after
truncation.More precisely,multiplication by f i defines amap τ≤i C → τ≤iη f C ,
which induces a natural transformation of functors “ f i” : τ≤i → τ≤i Lη f on
D≥0

f-tf(A) such that the compositions

τ≤i “ f i ”−−→ τ≤i Lη f
j−→ τ≤i , τ≤i Lη f

j−→ τ≤i “ f i ”−−→ τ≤i Lη f

are both multiplication by f i .
(e) (a)–(d) have obvious modifications for complexes of sheaves of A-modules on

a site.

As promised, we will now equip AΩX with a Frobenius:

Lemma 12 The complex of sheaves of Ainf -modules AΩX is equipped with a
Frobenius-semi-linear endomorphism ϕ which becomes an isomorphism after invert-
ing ξ, i.e.,

ϕ : AΩX ⊗L

Ainf
Ainf

[

1
ξ

] ∼→ AΩX ⊗L

Ainf
Ainf

[

1
˜ξ

]

(recall that ˜ξ = ϕ(ξ)).

Proof TheFrobenius automorphismϕ on the period sheafAinf,X induces a Frobenius

automorphism ϕ on the completion of its derived image C := ̂Rν∗Ainf,X , which by
functoriality then induces a quasi-isomorphism of complexes of Zariski sheaves

ϕ : LημC
∼→ Lηϕ(μ)C.

We follow this map by

Lηϕ(μ)C = L η̃ξ LημC −→ LημC

to ultimately define the desired Frobenius ϕ : LημC → LημC , where it remains
to explain the previous line. The equality is a consequence of Remark 7(b) of the
previous remark since ϕ(μ) = ˜ξμ; the arrow is a consequence of Remark 7(c) since
H0(LημC) has no ˜ξ-torsion.31 Since the arrow becomes a quasi-isomorphism after
inverting ˜ξ, we see that the final Frobenius ϕ : LημC → LημC becomes a quasi-
isomorphism after inverting ξ.

31Proof. H0(C) = ν∗Ainf,X has no μ-torsion since Ainf,X has no μ-torsion by Corollary 3; thus

H0(LημC)
�→ H0(C) byRemark 7(d). But sinceH0(C) has noμ-torsion, it also has noϕ(μ) =˜ξμ-

torsion, thus has no˜ξ-torsion.
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Proof (Proof that Theorem 4 implies Theorem 5) As in the proof of the previous
lemma we write C := ̂Rν∗Ainf,X, which we equipped with a Frobenius-semi-linear
automorphism ϕ. Thus we have

Wr Ω
•
X/O

C−r
X∼= [H•(W̃r ΩX/O),Bock

˜ξr
] by Theorem 4

= [H•((LημC)/˜ξr ),Bock˜ξr
] rewriting for clarify

� (L η̃ξr
LημC)/˜ξr by the Bockstein − Lη relation, i.e., Remark 7(a)

= (L η̃ξr μ
C)/˜ξr by Remark 7(b)

ϕ−r

∼→ (LημC)/ξr functoriality and ϕ−r (˜ξr μ) = μ,

which proves Theorem 5.

Now we deduce the beginning of Theorem 1 from Theorem 5:

Theorem 6 If X is moreover proper over O, then RΓA(X) := RΓZar(X, AΩX) is a
perfect complex of Ainf -modules with the following specialisations, in which (i) and
(ii) are compatible with the Frobenius actions:

(i) Étale specialization: RΓA(X) ⊗L

Ainf
W (C�) � RΓét(X, Zp) ⊗L

Zp
W (C�).

(ii) Crystalline specialization: RΓA(X) ⊗L

Ainf
W (k) � RΓcrys(Xk/W (k)).

(iii) de Rham specialization: RΓA(X) ⊗L

Ainf ,θ
O � RΓdR(X/O).

Proof We prove the specialisations in reverse order. Firstly, since RΓA(X) is derived
ξ-adically complete,32 general formalism implies that RΓA(X) is a perfect com-
plex of Ainf -modules if and only if RΓA(X) ⊗L

Ainf
Ainf/ξAinf is a perfect complex of

Ainf/ξAinf = O-modules. But Theorem 5 in the case r = 1 implies that

RΓA(X) ⊗L

Ainf
Ainf/ξAinf � RΓZar(X,Ω•

X/O) = RΓdR(X/O),

32“Proof”. If f, g are non-zero-divisors of a ring A, and D is complex of A-modules which is
derived g-adically complete, then we claim that Lη f D is still derived g-adically complete: indeed,
this follows from the fact that a complex is derived g-adically complete if and only if all of its
cohomology groups are derived g-adically complete, that Hi (Lη f D) ∼= Hi (D)/Hi (D)[ f ] for all
i ∈ Z by Lemma 1, and that kernels and cokernels of maps between derived g-adically complete
modules are again derived g-adically complete. For a reference on such matters, see The Stacks
Project, Tag 091N.

It is tempting to claim that the previous paragraph remains valid for the complex of sheaves
̂Rν∗Ainf,X (which is indeed derived ξ-adically complete, since Rν∗ and derived p-adic completion

preserve the derived ξ-adic completeness of the pro-étale sheaf Ainf,X ), which would complete the
proof since RΓZar(X,−) also preserves derived ξ-adic completeness, but unfortunately the previous
paragraph does not remain valid for complexes of sheaves on a “non-replete” site (e.g., the Zariski
site). In fact, it seems that the derived ξ-adic completeness of RΓA(X) is not purely formal, and
requires the technical lemmas established in Sect. 7.1; therefore we have postponed a proof of the
completeness to Corollary 4.
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which is indeed a perfect complex.33

It follows that RΓA(X) ⊗L

Ainf
W (k) is a perfect complex of W (k)-modules; since

W (k) is p-adically complete, any perfect complex over it is derived p-adically com-
plete and so

RΓA(X) ⊗L

Ainf
W (k)

∼→ Rlimr (RΓA(X) ⊗L

Ainf
Wr (k))

= Rlimr (RΓA(X) ⊗L

Ainf
Wr (O) ⊗L

Wr (O) Wr (k))

∼→ Rlimr (RΓZar(X, WrΩ
•
X/O ⊗L

Wr (O) Wr (k)))

where thefinal line usesTheorem5.But the canonical base changemapWr Ω
•
X/O ⊗L

Wr (O)

Wr (k)
∼→ WrΩ

•
Xk/k is a quasi-isomorphism for each r ≥ 1 by Remark 8(vii), and so

we deduce that

RΓA(X) ⊗L

Ainf
W (k)

∼→ Rlimr RΓZar(Xk, WrΩ
•
Xk/k) = RΓcrys(Xk/W (k)).

It remains to prove the étale specialisation;we prove the stronger (sinceμ becomes
invertible in W (C�)) result that RΓA(X) ⊗L

Ainf
Ainf [ 1μ ] � RΓét(X, Zp) ⊗L

Zp
Ainf [ 1μ ].

Since Lημ only effects complexes up to μi -torsion in degree i (to be precise, use

the morphisms “μi” on the truncations of AΩX → ̂Rν∗Ainf,X , as in Remark 7), the

kernel and cokernel of Hi
A
(X) → Hi

Zar

(

X, ̂Rν∗Ainf,X
)

are killed by μi . The key to
the étale specialisation is now the fact that the canonical map

RΓét(X, Zp) ⊗L

Zp
Ainf −→ ̂RΓproét(X, Ainf,X )

(where the hat continues to denote derived p-adic completion) has cone killed by
W (m�) � μ; this is deduced from Theorem 3 by taking a suitable limit (see [25,
Proof of Theorem 8.4]); inverting μ completes the proof.

We remark that there is an alternative proof of the étale specialisation, due to
Bhatt [2, Remark 8.4], which is simpler in that it avoids Theorem 3.

We next discuss the rest of Theorem 1 (continuing the same enumeration):

Theorem 7 Continuing to assume that X is a proper, smooth, p-adic formal scheme
over O, then the individual Ainf -modules Hi

A
(X) := Hi

Zar(X, AΩX) vanish for i >

2 dimX and enjoy the following properties:

(iv) Hi
A
(X) is a finitely presented Ainf -module;

(v) Hi
A
(X)[ 1p ] is finite free over Ainf [ 1p ];

33Proof. By derived p-adically completeness, it is enough to check that RΓdR(X/O) ⊗L

O O/pO =
RΓdR(X ⊗O O/pO/(O/pO)) is a perfect complex ofO/pO-modules; this follows from the facts
that Ω•

X⊗OO/pO/(O/pO)
is a perfect complex of OX⊗OO/pO-modules by smoothness, and that

the structure map X ⊗O O/pO → SpecO/pO is proper, flat, and of finite presentation.
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(vi) Hi
A
(X) is equipped with a Frobenius-semi-linear endomorphism ϕ which

becomes an isomorphism after inverting ξ (or any other preferred genera-

tor of Ker θ), i.e., ϕ : Hi
A
(X)[ 1

ξ
] �→ Hi

A
(X)[ 1

˜ξ
].

(vii) Étale: Hi
A
(X)[ 1

μ
] ∼= Hi

ét(X, Zp) ⊗Zp Ainf [ 1μ ].
(viii) Crystalline: there is a short exact sequence

0 −→ Hi
A
(X) ⊗Ainf W (k) → Hi

crys(Xk/W (k)) −→ TorAinf
1 (Hi+1

A
(X), W (k)) −→ 0

(ix) de Rham: there is a short exact sequence

0 −→ Hi
A
(X) ⊗Ainf ,θ O → Hi

dR(X/O) −→ Hi+1
A

(X)[ξ] −→ 0

(x) If Hi
crys(Xk/W (k)) or Hi

crys(X/O) is torsion-free, then Hi
A
(X) is a finite free

Ainf -module.

Proof The étale and de Rham specialisations, i.e., (vii) and (ix), are immediate from
the derived specialisations proved in the previous theorem.

As mentioned at the start of the previous proof, the complex RΓA(X) is derived
ξ-adically complete; so to prove that its cohomology vanishes in degree > 2 dimX,
it is enough to note that the same is true of RΓA(X) ⊗L

Ainf
Ainf/ξAinf � RΓdR(X/O)

(where we have applied the de Rham comparison of Theorem 6).
(vi) follows from Lemma 12 and, similarly to the étale specialisation in

Theorem 6, one can give more precise bounds by observing that ϕ : AΩX → AΩX

is invertible on any truncation up to an application of the morphism “ξi”.
We now prove (iv) and (v) by a descending induction on i , noting that they

are trivial when i > 2 dimX. By the inductive hypothesis we may suppose that
all cohomology groups of τ>i RΓA(X) are finitely presented and become free after
inverting p, whence they are perfect Ainf -modules by Theorem 11(ii). It follows
that the complex of Ainf -modules τ>i RΓA(X) is perfect, which combined with the
perfectness of RΓA(X) implies that τ≤i RΓA(X) is also perfect. Thus its top degree
cohomology group Hi (τ≤i RΓA(X)) = Hi

A
(X) is the cokernel of a map between

projective Ainf -modules, and so is finitely presented.
To prove (v) we wish to apply Corollary 6, and must therefore check that

Hi
A
(X)[ 1

pμ
] is a finite free Ainf [ 1

pμ
]-module of the same rank as the W (k)-module

M ⊗Ainf W (k). Part (vii) implies that

Hi
A
(X)

[

1
pμ

] ∼= Hi
ét(X, Qp) ⊗Qp Ainf

[

1
pμ

]

,

which is finite free over Ainf [ 1
pμ

], while the derived crystalline specialisation of
Theorem 6 implies that

Hi
A
(X) ⊗Ainf W (k)

[

1
p

] �→ Hi
crys(Xk/W (k))

[

1
p

]

.
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(There are no higher Tor obstructions since H∗
A
(X)[ 1p ] is finite free over Ainf [ 1p ]

by the inductive hypothesis for ∗ > i .) Therefore we must check that the following
equality of dimensions holds:

dimQp H i
ét(X, Qp) = dim

W (k)
[ 1

p

] Hi
crys(Xk/W (k))

[

1
p

]

. (dimX)

This can be proved in varying degrees of generality as follows:

• In the special case that X is obtained by base change from a smooth, proper
scheme over the ring of integers of a discretely valued subfield of C (which is
perhaps the main case of interest for most readers), then the equality (dimX) is
classical (or a consequence of the known Crystalline Comparison Theorem): the
crystalline cohomology (with p inverted) of the special fibre identifies with the
de Rham cohomology of the generic fibre, which has the same dimension as the
Qp-étale cohomology by non-canonically embedding into the complex numbers
and identifying de Rham cohomology with singular cohomology.

• Slightly more generally, if X is obtained by base change from a smooth, proper,
p-adic formal scheme over the ring of integers of a discretely valued subfield of
C, then (dimX) follows from the rational Hodge–Tate decomposition [25, Corol-
lary 1.8] (which is an easy consequence of the results in the remainder of these
notes) and the same identification of crystalline and de Rham cohomology as in
the previous case.

• In the full generality inwhichwe areworking (i.e.,X is an arbitrary proper, smooth,
p-adic formal scheme overO), then the equality (dimX) follows from our general
Crystalline Comparison Theorem

Hi
crys(Xk/W (k)) ⊗W (k) Bcrys

∼= Hi
ét(XK , Zp) ⊗Zp Bcrys

(Proposition 13.9 and Theorem 14.5(i) of [5]), whose proof we do not cover in
these notes.34

Finally wemust prove (viii) and (x): but (viii) follows from the derived form of the
crystalline specialisation in Theorem 6, part (v), and Lemma 22, while (x) follows
by combining (viii) or (ix) with Corollary 5.

This completes the proof of Theorem 6, or rather reduces it to the p-adic Cartier
isomorphism of Theorem 4. The remainder of these notes is devoted to sketching a
proof of this p-adic Cartier isomorphism.

34Possibly (dimX) can be proved in this case by combining spreading-out arguments of Conrad–
Gabber with the relative p-adic Hodge theory of [25, Sect. 8], but the author has not seriously
considered the problem.
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6 Witt Complexes

This section is devoted to the theory of Witt complexes. We begin by defining Witt
complexes and Langer–Zink’s relative de Rham–Witt complex, and then in Sect. 6.2
present one of our main constructions: namely equipping certain cohomology groups
with the structure of aWitt complex over a perfectoid ring.We apply this construction
in Sect. 6.3 to the group cohomology of a Laurent polynomial algebra and prove that
the result is precisely the relative de Rham–Witt complex itself; this is the key local
result from which the p-adic Cartier isomorphism will then be deduced in Sect. 7.

6.1 Langer–Zink’s Relative de Rham–Witt Complex

We recall the notion of a Witt complex, or F-V -procomplex, from the work of
Langer–Zink [22].

Definition 7 Let A → B be amorphismofZ(p)-algebras.An associated relativeWitt
complex, or F-V -procomplex, consists of the following data (W•

r , R, F, V,λr ):

(i) a commutative differential graded Wr (A)-algebra W•
r = ⊕

n≥0 Wn
r for each

integer r ≥ 1;
(ii) morphisms R : W•

r+1 → R∗W•
r of differential graded Wr+1(A)-algebras for

r ≥ 1;
(iii) morphisms F : W•

r+1 → F∗W•
r of graded Wr+1(A)-algebras for r ≥ 1;

(iv) morphisms V : F∗W•
r → W•

r+1 of graded Wr+1(A)-modules for r ≥ 1;
(v) morphisms of Wr (A)-algebras λr : Wr (B) → W0

r for each r ≥ 1 which com-
mute with R, F , V .

such that the following identities hold:

• R commutes with both F and V ;
• FV = p;
• FdV = d;
• the Teichmüller identity35: Fdλr+1([b]) = λr ([b])p−1dλr ([b]) for b ∈ B, r ≥ 1.

Example 4 If k is a perfect field of characteristic p and R is a smooth k-algebra (or, in
fact, any k-algebra, but it is the smooth case that was studied most classically), then
the classical de Rham–Witt complex WrΩ

•
R/k of Bloch–Deligne–Illusie, together

with its operators R, F, V and the identification λr : Wr (R) = WrΩ
0
R/k , is a Witt

complex for k → R.

35The Teichmüller identity follows from the other axioms if W1
r is p-torsion-free:

pλr ([b])p−1dλr ([b]) = dλr ([b]p) = d Fλr ([b]) = FdV Fλr ([b])
= Fd(λr ([b])V (1)) = F(V (1))dλr ([b]) = pFdλr ([b]).
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There is an obvious definition ofmorphism betweenWitt complexes. In particular,
it makes sense to ask for an initial object in the category of all Witt complexes for
A → B:

Theorem 8 (Langer–Zink 2004) There is an initial object (WrΩ
•
B/A, R, F, V,λr )

in the category of Witt complexes for A → B, called the relative de Rham–Witt
complex. (And this agrees with WrΩ

•
R/k of the previous example when A = k and

B = R).

Remark 8 (i) The reason for the “relative” in the definition is that there has been
considerable work recently, mostly by Hesselholt, on the absolute de Rham–
Witt complex WrΩ

•
B“= WrΩ

•
B/F1

”.
(ii) Given a Witt complex for A → B, each W•

r is in particular a commutative
differential graded Wr (A)-algebra whose degree zero summand is a Wr (B)-
algebra (via the structure maps λr ). There are therefore natural maps of dif-
ferential graded Wr (A)-algebras Ω•

Wr (B)/Wr (A) → W•
r for all r ≥ 1 (which are

compatible with the restriction maps on each side).
In the case of the relative de Rham–Witt complex itself, each mapΩ•

Wr (B)/Wr (A)→ WrΩ
•
B/A is surjective (indeed, the elementary construction of WrΩ

•
B/A is

to mod out Ω•
Wr (B)/Wr (A) by the required relations so that the axioms of a

Witt complex are satisfied) and is even an isomorphism when r = 1, i.e.,
Ω•

B/A
�→ W1Ω

•
B/A.

(iii) If B is smooth over A, and p is nilpotent in A, then Langer–Zink construct nat-
ural comparison quasi-isomorphisms RΓcrys(B/Wr (A))

∼→ WrΩ
•
B/A, where

the left side is crystalline cohomology with respect to the usual pd-structure on
the ideal V Wr−1(A) ⊆ Wr (A) (note that the quotient Wr (A)/V Wr−1(A) is A)
defined by the rule γn(V (α)) := pn−1

n! V (αn). This is a generalisation of Illusie’s

classical comparison quasi-isomorphism RΓcrys(R/Wr (k))
∼→ WrΩ

•
R/k .

(iv) Langer–Zink’s proof of the comparison quasi-isomorphism in (iii) uses an
explicit description of WrΩ

•
B/A in the case that B = A[T1, . . . , Td ]; in [5,

Sect. 10.4] we extend their description to B = A[T ±1
1 , . . . , T ±1

d ].
(v) If B → B ′ is an étale morphism of A-algebras, then Wr (B) → Wr (B ′) is

known to be étale and it can be shown that WrΩ
n
B/A ⊗Wr (B) Wr (B ′) �→

WrΩ
n
B ′/A [5, Lemma 10.8]. From these and similar base change results one

sees that if Y is any A-scheme, then there is a well-defined Zariski (or even
étale) sheaf WrΩ

n
Y/A on Y whose sections on any Spec B are WrΩ

n
B/A.

(vi) If now X is a p-adic formal scheme over A, then there is similarly a well-
defined Zariski (or étale) sheaf WrΩ

n
X/A whose sections on any Spf B are the

following (identical36) p-adically complete Wr (B)-modules

(WrΩ
n
B/A)̂p (WrΩ

n
B/A)̂[p] lim←−

s

WrΩ
n
(B/ps B)/(A/ps A)

36For the elementary proof that the three completions are the same, see Lemma 10.3 and Corol-
lary 10.10 of [5].
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(vii) (Base change) In [5, Proposition 10.14] we establish the following impor-
tant base change property: if A → A′ is a homomorphism between perfec-
toid rings, and R is a smooth A-algebra, then the canonical base change map
WrΩ

n
R/A ⊗Wr (A) Wr (A′) → WrΩ

n
R⊗A A′/A′ is an isomorphism; moreover, the

Wr (A)-modules WrΩ
n
R/A and Wr (A′) are Tor-independent, whence WrΩ

•
R/A

⊗L

Wr (A) Wr (A′) ∼→ WrΩ
•
R⊗A A′/A′ .

In conclusion, in the set-up of Sect. 5, the relative de Rham–Witt complex
WrΩ

•
X/O is an explicit complex computing both de Rham and crystalline coho-

mologies.

6.2 Constructing Witt Complexes

From now until the end of Sect. 6 we fix the following:

• A is a perfectoid ring of the type discussed in Sect. 3.3, i.e., p-torsion-free and
containing a compatible system ζp, ζp2 , . . . of primitive p-power roots of unity
(which we fix); let ε ∈ A� and μ, ξ, ξr ,˜ξr ∈ W (A�) be the elements constructed
there.

• D is a coconnective (i.e., H∗(D) = 0 for ∗ < 0), commutative algebra object37 in
D(W (A�))which is equipped with aϕ-semi-linear quasi-isomorphismϕD : D

∼→
D (of algebra objects), and is assumed to satisfy the following hypothesis:

(W1) H0(D) is μ-torsion-free.

Here we will explain how to functorially construct, from the data D,ϕD , certainWitt
complexes over A: this will lead to universal maps from de Rham–Witt complexes
to cohomology groups of D, which will eventually provide the maps in the p-adic
Cartier isomorphism.

Example 5 The main examples are A = O with the following coconnective, com-
mutative algebra objects over Ainf = W (O�), which will be studied in Sects. 6.3 and
7.2 respectively:

(i) RΓgrp(Z
d , W (A�)[U±1/p∞

1 , . . . , U±1/p∞
d ]), or its derived p-adic completion.

(ii) The derived p-adic completion of RΓproét(Sp R[ 1p ], Ainf,X ), where Spf R is a
small affine open of a smooth p-adic formal O-scheme with generic fibre X .

We first explain our preliminary construction of a Witt complex from the data
D,ϕD , which will then be refined. In this construction, indeed throughout the rest of
the section, it is important to recall from Sect. 3 the isomorphisms˜θr : W (A�)/˜ξr

�→

37By this we mean that D is a commutative algebra object in the category D(W (A�)) in the most
naive way: the constructions can be upgraded to the level of E∞-algebras, but again this is not
necessary for our existing results.
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Wr (A), which we often implicitly view as an identification. In particular, for each
r ≥ 1, we may form the coconnective38 derived algebra object

D/˜ξr := D ⊗L

W (A�) Wr (A�)/˜ξr = D ⊗L

W (A�),˜θr
Wr (A)

over W (A�)/˜ξr = Wr (A), and take its cohomology

W•
r (D)pre := H •(D ⊗L

W (A�) W (A�)/˜ξr )

to form a gradedWr (A)-algebra. Equipping these cohomology groupswith theBock-
stein differential Bock

˜ξr
: Wn

r (D)pre → Wn+1
r (D)pre associated to the distinguished

triangle

D ⊗L

W (A�) W (A�)/˜ξr

˜ξr−→ D ⊗L

W (A�) W (A�)/˜ξ2r −→ D ⊗L

W (A�) W (A�)/˜ξr

makes W•
r (D)pre into a differential graded Wr (A)-algebra.

Next let
R′ : W•

r+1(D)pre → W•
r (D)pre

F : W•
r+1(D)pre → W•

r (D)pre

V : W•
r (D)pre → W•

r+1(D)pre

be the maps on cohomology induced respectively by

D ⊗L

W (A�) W (A�)/˜ξr+1
ϕ−1

D ⊗ϕ−1

−→ D ⊗L

W (A�) W (A�)/˜ξr

D ⊗L

W (A�) W (A�)/˜ξr+1
id⊗can. proj.−→ D ⊗L

W (A�) W (A�)/˜ξr

D ⊗L

W (A�) W (A�)/˜ξr
id⊗ϕr+1(ξ)−→ D ⊗L

W (A�) W (A�)/˜ξr+1,

which are compatible with the usual Witt vector maps R, F, V on Wr (A) =
W (A�)/˜ξr thanks to the second set of diagrams in Lemma 6.

As we will see in the proof of part (ii) of the next result, R′ must be replaced by39

R := ˜θr (ξ)
n R′ : Wn

r+1(D)pre → Wn
r (D)pre

if we are to satisfy the axioms of a Witt complex.

Proposition 4 The data (W•
r (D)pre, R, F, V ) satisfies all those axioms appearing

in the definition of a Witt complex (Definition 7) which only refer to R, F, V (i.e.,
which do not involve the additional ring B or the structure maps λr ). More precisely:

38From assumption (W1) and the existence of ϕD , it follows that H0(D) has no ϕr (μ) =˜ξr μ-
torsion, hence no˜ξr -torsion; so D/˜ξr is still coconnective.
39The reader should use the identities of Sect. 3.3 to calculate that˜θr (ξ) = [ζpr ]−1

[ζpr+1 ]−1 ∈ Wr (A).
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(i) W•
r (D)pre is a commutative40 differential graded Wr (A)-algebra for each r ≥

1.
(ii) R′ is a homomorphism of graded rings, and R is a homomorphism of differential

graded rings;
(iii) V is additive, commutes with R′ and R, and is F-inverse-semi-linear (i.e.,

V (F(x)y) = xV (y));
(iv) F is a homomorphism of graded rings and commutes with both R′ and R;
(v) FdV = d;

(vi) FV is multiplication by p.

Proof Part (i) is a formal consequence of D being a commutative algebra object of
D(W (A�)).

(ii): R′ is a homomorphism of graded rings by functoriality; the same is true of R
since it is twisted by increasing powers of an element. Moreover, the commutativity
of

0 �� W (A�)/˜ξr+1

˜ξr+1 ��

ξϕ−1

��

W (A�)/˜ξ2r+1
��

��

W (A�)/˜ξr+1
��

��

0

0 �� W (A�)/˜ξr

˜ξr �� W (A�)/˜ξ2r
�� W (A�)/˜ξr

�� 0

and functoriality of the resulting Bocksteins implies that

Wn
r+1(D)pre

d ��

R′

��

Wn+1
r+1 (D)pre

˜θr (ξ)R′

��
Wn

r (D)pre d
�� Wn+1

r (D)pre

commutes; hence the definition of R was exactly designed to arrange that it commute
with d.

(iii): V is clearly additive, and it commutes with R′ since it already did so before
taking cohomology. Secondly, the F-inverse-semi-linearity of V follows by passing
to cohomology in the following commutative diagram:

40Unfortunately this is not strictly true: if p = 2 then the condition that x2 = 0 for x ∈ Wodd
r (D)pre

need not be true; but this will be fixed when we improve the construction.
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D/˜ξr+1 ⊗L D/˜ξr+1
mult �� D/˜ξr+1

D/˜ξr+1 ⊗L D/˜ξr

id⊗ϕr+1(ξ)

��

can. proj.⊗id
��

D/˜ξr ⊗L D/˜ξr
mult �� D/˜ξr

ϕr+1(ξ)

��

It now easily follows that V also commutes with R′.
(iv): F is a graded ring homomorphism, and it commutes with R′ by definition,

and then easily also with R.
(v): This follows by tensoring the commutative diagram below with D over

W (A�), and looking at the associated boundary maps on cohomology:

0 �� W (A�)/˜ξr
�� W (A�)/˜ξ2r

��

ϕr+1(ξ)

��

W (A�)/˜ξr

ϕr+1(ξ)

��

�� 0

0 �� W (A�)/˜ξr
�� W (A�)/˜ξr˜ξr+1

�� W (A�)/˜ξr+1
�� 0

0 �� W (A�)/˜ξr+1
��

can. proj.

��

W (A�)/˜ξ2r+1
��

��

W (A�)/˜ξr+1
�� 0

(vi): This follows from the fact that ˜θr (ϕ
r+1(ξ)) = p for all r ≥ 1 (which is true

since θr (ϕ(ξ)) = θr (ϕ(ξ)) = F(θr+1(ξ)) = FV (1) = p, where the third equality
uses the second diagram of Lemma 6).

Unfortunately, there are various heuristic and precise reasons41 that W•
r (D)pre is

“too large” to underlie an interesting Witt complex over A, and so we replace it by

Wn
r (D) := ([ζpr ] − 1)nWn

r (D)pre ⊆ Wn
r (D)pre.

Lemma 13 The Wr (A)-submodules Wn
r (D) ⊆ Wn

r (D)pre define sub differential
graded algebras of W•

r (D)pre, for each r ≥ 1, which are closed under the maps

41For example, suppose that B is an A-algebra and that we are given structure maps λr : Wr (B) →
W0

r (D) under which (W•
r (D), R, F, V,λr ) becomes aWitt complex for A → B, thereby resulting

in a universal map of Witt complexes λ•
r : Wr Ω

•
B/A → W •

r (D); then from the surjectivity of the
restriction maps for Wr Ω

•
B/A and the definition of the restriction map R forW•

r (D)pre, we see that

Im λn
r ⊆

⋂

s≥1

Im(Wn
r+s(D)pre

Rs−→ Wn
r (D)pre) ⊆

⋂

s≥1

˜θr (ξs)
nWn

r (D)pre =
⋂

s≥1

( [ζpr ]−1
[ζps ]−1

)n
Wn

r (D)pre.

The far right side contains, and often equals in realistic situations, ([ζpr ] − 1)nWn
r (D)pre, which

motivates our replacement.
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R, F, V (and hence Proposition 4 clearly remains valid for the data (W•
r (D),

R, F, V )).

Proof This is a consequence of the following simple identities, where x ∈ Wn
r+1

(D)pre and y ∈ Wn
r (D)pre:

R(([ζpr+1 ] − 1)n x) =
( [ζpr+1 ]−1

[ζpr ]−1

)n
([ζpr+1 ] − 1)n R′(x) = ([ζpr ] − 1)n R′(x)

F(([ζpr+1 ] − 1)n x) = (F[ζpr+1 ] − 1)n F(x) = ([ζpr ] − 1)n F(x)

V (([ζpr ] − 1)n y) = V (F([ζpr+1 ] − 1)n y) = ([ζpr+1 ] − 1)n V (y)

Note that the first identity crucially used the definition of the restriction map R as a
multiple of R′.

Next we relate the groups Wn
r (D) to the cohomology of the décalage Lημ D of

D. From the earlier assumption (W1) and Remark 7(c) there is a canonical map
Lημ D → D, and by imposing the following two additional assumptions on D we
will show in Lemma 14 that the resulting map on cohomology

H n(Lημ D ⊗L

W (A�) W (A�)/˜ξr ) −→ H n(D ⊗L

W (A�) W (A�)/˜ξr ) = Wn
r (D)pre

is injective and has image exactly Wn
r (D).

From now on we assume that D satisfies the following assumptions (in addition
to (W1)):

(W2) The cohomology groups H∗(Lημ D ⊗L

W (A�)
W (A�)/˜ξr ) are p-torsion-free for all r ≥

0.
(W3) The canonical base change map Lημ D ⊗L

W (A�)
W (A�)/˜ξr → Lη[ζpr ]−1(D ⊗L

W (A�)

W (A�)/˜ξr ) is a quasi-isomorphism for all r ≥ 1.

Remark 9 (Elementary properties of the décalage functor, II—base change) We
explain the base change map of assumption (W3). If α : R → S is a ring homomor-
phism, f ∈ R is a non-zero-divisor whose imageα( f ) ∈ S is still a non-zero-divisor,
and C ∈ D(R), then there is a canonical base change map

(Lη f C) ⊗L

R S −→ Lηα( f )(C ⊗L

R S)

in D(S) which the reader will construct without difficulty. This base change map is
not a quasi-isomorphism in general,42 but it is in the following cases:

(i) When R → S is flat. Proof: Easy.

42On the other hand, if C ∈ D(S) then the canonical restriction map Lη f (C |A) → Lηα( f )(C)|D
in D(A), which the reader will also easily construct, is always a quasi-isomorphism.
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(ii) When S = R/gR for some non-zero-divisor g ∈ R (i.e., f, g is a regular
sequence in R) and the cohomologygroups ofC ⊗L

R R/ f R are assumed tobe g-
torsion-free.43 Proof: Since the base changemap is always a quasi-isomorphism
after inverting f , it is equivalent to establish the quasi-isomorphism after apply-
ing− ⊗L

R/gR R/( f, g), after which the base changemap becomes the canonical
map

[H •(C ⊗L

R R/ f R),Bock f ] ⊗L

R/ f R R/( f, g)

−→ [H •(C ⊗L

R R/gR ⊗L

R/gR R/( f, g)),Bock f mod gR]

by Remark 7(a). But our assumption implies that the left tensor product ⊗L

R/ f R
is equivalently underived, and that hence it is enough to check that the canonical
map H n(C ⊗L

R R/ f R) ⊗R/ f R R/( f, g) → H n(C ⊗L

R R/( f, g)) is an isomor-
phism for all n ∈ Z; but this is again true because of the g-torsion-freeness
assumption.

In the particular case of (W3), we are base changing along ˜θr : W (A�) →
W (A�)/˜ξr = Wr (A), noting that ˜θr (μ) = [ζpr ] − 1 ∈ Wr (A) is a non-zero-divisor
by Remark 3. There is no a priori reason to expect hypothesis (W3) to be satisfied
in practice, but it will be in our cases of interest.44

Lemma 14 The aforementioned map on cohomology

H n(Lημ D ⊗L

W (A�) W (A�)/˜ξr ) −→ H n(D ⊗L

W (A�) W (A�)/˜ξr ) = Wn
r (D)pre (†)

is injective with image Wn
r (D) = ([ζpr ] − 1)nWn

r (D)pre, for all r ≥ 1 and n ≥ 0.

Proof The canonical map Lημ D → D induces maps on cohomology whose kernels
and cokernels are killed by powers of μ, by Remark 7(d); hence the map (†) of
Wr (A)-modules has kernel and cokernel killed by a power of˜θr (μ) = [ζpr ] − 1. But
[ζpr ] − 1 divides pr by Remark 3, so from assumption (W2) we deduce that map
(†) is injective for every r ≥ 1 and n ≥ 0.

Regarding its image, simply note that (†) factors as

Hn(Lημ D ⊗L

W (A�)
W (A�)/˜ξr )

�−→ Hn(Lη[ζpr ]−1(D ⊗L

W (A�)
W (A�)/˜ξr )) −→ Wn

r (D)pre,

where the first map is the base change isomorphism of assumption (W3), and the
second map has image ([ζpr ] − 1)n W n

r (D)pre by Remark 7(d).

We summarise our construction of Witt complexes by stating the following theo-
rem:

43This was erroneously asserted to be true in the official announcement without the g-torsion-
freeness assumption.
44Note in particular that (W3) is satisfied if the cohomology groups of D ⊗L

W (A�)
W (A�)/μ are

p-torsion-free; this follows from Remark 9(ii) since˜ξr ≡ pr mod μW (A�).
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Theorem 9 Let A and D,ϕD be as at the start of Sect.6.2, and assume that D sat-
isfies assumptions (W1)–(W3). Suppose moreover that B is an A-algebra equipped
with Wr (A)-algebra homomorphismsλr : Wr (B) → H 0(D ⊗L

W (A�)
W (A�)/˜ξr )mak-

ing the following diagrams commute for all r ≥ 1:

Wr+1(B)

R

��

λr+1 �� H0(D/˜ξr+1)

ϕ−1
D

��
Wr (B)

λr �� H0(D/˜ξr )

Wr+1(B)

F

��

λr+1 �� H0(D/˜ξr+1)

can. proj.

��
Wr (B)

λr �� H0(D/˜ξr )

Wr+1(B)
λr+1 �� H0(D/˜ξr+1)

Wr (B)

V

��

λr �� H0(D/˜ξr )

×ϕr+1(ξ)

��

Then the cohomology groups W∗
r (D) = H∗(Lημ D ⊗L

W (A�)
W (A�)/˜ξr ) may be

equipped with the structure of a Witt complex for A → B, and consequently there
are associated universal maps of Witt complexes

λ•
r : WrΩ

•
B/A −→ W•

r (D)

(which are functorial with respect to D,ϕD and B,λr in the obvious sense).

Proof Combining the hypotheses of the theoremwithLemma13,we see thatW∗
r (D)

satisfies all axioms for a Witt complex for A → B, except perhaps for the following
two: that x2 = 0 for x ∈ Wodd

r (D)pre when p = 2; and the Teichmüller identity. But
these follow from the other axioms sinceW∗

r (D) is assumed to be p-torsion-free.45

Remark 10 (p-completions) In our cases of interest the complex D will some-
times be derived p-adically complete, whence the complexes Lημ D and Lημ ⊗L

W (A�)

W (A�)/˜ξr are also derived p-adically complete (by footnote 32); then each coho-
mology group Wn

r (D) is both p-torsion-free (by assumption (W2)) and derived
p-adically complete, hence p-adically complete in the underived sense. So, in
this case, the associated universal maps WrΩ

n
B/A → Wn

r (D) of the previous the-
orem factor through the p-adic completion (WrΩ

n
B/A)̂p which was discussed in

Remark 8(vi).

6.3 The de Rham–Witt Complex of a Torus as Group
Cohomology

We continue to let A be a fixed perfectoid ring as at the start of Sect. 6.2, and we fix
d ≥ 0 and set

Dgrp = Dgrp
A,d := RΓgrp(Z

d , W (A�)[U±1/p∞
1 , . . . , U±1/p∞

d ]),

452x2 = 0 so x2 = 0, c.f., footnote 40. For the Teichmüller identity see footnote 35.
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where the i th-generator γi ∈ Z
d acts on W (A�)[U±1/p∞] via the W (A�)-algebra

homomorphism

γiU
k
j :=

{

[εk]U k
j i = j

U k
j i �= j

(here k ∈ Z[ 1p ], and εk ∈ A� is well-defined since A� is a perfect ring). Here we will
apply the construction of Sect. 6.2 to Dgrp to build aWitt complexW•

r (Dgrp) for A →
A[T ±1], and show that the resulting universal maps λ•

r : WrΩ
•
A[T ±1]/A

→ W•
r (Dgrp)

are in fact isomorphisms. This is the key local result from which the p-adic Cartier
isomorphism will be deduced in Sect. 7.

In order to apply Theorem 9 to Dgrp wemust first check that all necessary hypothe-
ses are fulfilled; we begin with the basic assumptions:

Lemma 15 Dgrp is a coconnective algebra object in D(W (A�)) which is equipped
with a ϕ-semi-linear quasi-isomorphism ϕgrp : Dgrp ∼→ Dgrp and satisfies assump-
tions (W1)–(W3).

Proof Certainly Dgrp is a coconnective, commutative algebra object in D(W (A�)),
and it is equipped with a ϕ-semi-linear quasi-isomorphism ϕgrp : Dgrp ∼→ Dgrp

induced by the obvious Frobenius automorphism on W (A�)[U±1/p∞] (acting on the
coefficients as the Witt vector Frobenius ϕ and sending U k

i to U pk
i for all k ∈ Z[ 1p ]

and i = 1, . . . , d). Also, H 0(Dgrp) is μ-torsion-free since μ is a non-zero-divisor of
W (A�) by Proposition 2. Therefore Dgrp satisfies the hypotheses from the start of
Sect. 6.2, including (W1).

Next we show that the cohomology groups of Lημ D ⊗L

W (A�)
W (A�)/˜ξr and

D ⊗L

W (A�)
W (A�)/μ are p-torsion-free, i.e., that hypotheses (W2) and (W3) (by

footnote 44) are satisfied. This is a straightforward calculation of group cohomology
in terms of Koszul complexes, in the same style as the proof of Theorem 2. Indeed,
there is a Z

d -equivariant decomposition of W (A�)-modules

W (A�)[U±1/p∞] =
⊕

k1,...,kd∈Z

[ 1
p

]

W (A�)U k1
1 . . . U kd

d ,

where the generator γi ∈ Z
d acts on the rank-one free W (A�)-module W (A�)U k1

1

. . . U kd
d as multiplication by [εki ]. By the standard group cohomology calculation of

RΓgrp(Z
d , W (A�)U k1

1 · · · U kd
d ) as a Koszul complex, this shows that

RΓgrp(Z
d , W (A�)[U±1/p∞]) �

⊕

k1,...,kd∈Z

[ 1
p

]

KW (A�)([εk1] − 1, . . . , [εkd ] − 1).

It is now sufficient to show that the cohomology groups of ημK ⊗W (A�) W (A�)/˜ξr

and K ⊗W (A�) W (A�)/μ are p-torsion-free, where K runs over theKoszul complexes
appearing in the sum.
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Since it is important for the forthcoming cohomology calculations, we explicitly
point out now that, if k, k ′ ∈ Z[ 1p ], then [εk] − 1 divides [εk ′ ] − 1 if and only if
νp(k) ≤ νp(k ′).

We will first prove that the cohomology of K ⊗W (A�) W (A�)/μ is p-torsion-
free. Lemma 23 implies that there is an isomorphism of W (A�)-modules H n(K ) ∼=
W (A�)/([εk] − 1)(

d−1
n−1), where k = p−min1≤i≤d νp(ki ) and we have used that [εk] − 1

is a non-zero-divisor of W (A�) (so that the torsion term of that lemma vanishes).
But W (A�)/([εk] − 1) is p-torsion-free since p, [εk] − 1 is a regular sequence46 of
W (A�), and so both H n+1(K )[μ] and H n(K )/μ ∼= W (A�)/([εmin{k,0}] − 1)(

d−1
n−1) are

p-torsion-free; therefore H n(K ⊗W (A�) W (A�)/μ) is p-torsion-free.
Next we prove that the cohomology of ημK ⊗W (A�) W (A�)/˜ξr is p-torsion-free.

Lemma 24 implies that ημK ∼= KW (A�)(([εk1] − 1)/μ, . . . , ([εkd ] − 1)/μ) if ki ∈ Z

for all i , and that ημK is acyclic otherwise. Evidently we may henceforth assume we
are in the first case; then ˜θr induces an identification of complexes of W (A�)/˜ξr =
Wr (A)-modules

ημK ⊗W (A�) W (A�)/˜ξr
∼= KWr (A)

( [ζk1/pr ] − 1

[ζpr ] − 1
, . . . ,

[ζkd/pr ] − 1

[ζpr ] − 1

)

,

and it remains to prove that the Koszul complex on the right has p-torsion-free
cohomology. But Lemma 23 implies that each cohomology group of this Koszul
complex is isomorphic to a direct sum of copies of

Wr (A)
[ [ζp j ]−1

[ζpr ]−1

]

and Wr (A)/
[ζp j ]−1

[ζpr ]−1 ,

where j := −min1≤i≤d νp(ki/pr ) ≤ r . The left module is p-torsion-free since
Wr (A) is p-torsion-free, while the right module (which = Wr (A) if j ≤ 0, so
we suppose 1 ≤ j ≤ r ) can be easily shown to be isomorphic to Wr− j (A) via
F j : Wr (A) → Wr− j (A) [5, Corollary 3.18], which is again p-torsion-free.

Next we prove the existence of suitable structure maps:

Lemma 16 There exists a unique collection of Wr (A)-algebra homomorphisms
λr,grp : Wr (A[T ±1]) → H 0(Dgrp/˜ξr ), for r ≥ 1, making the diagrams of Theorem 9
commute and satisfying λr,grp([Ti ]) = Ui for i = 1, . . . , d.

Proof The maps ˜θr induce identifications W (A�)[U±1/p∞]/˜ξr = Wr (A)[U±1/p∞]
and thus H 0(Dgrp/˜ξr ) = Wr (A)[U±1]Zd

, where the latter term is the fixed points for
Z

d acting on Wr (A)[U±1] via

γiU
k
j :=

{

[ζk/pr ]U k
j i = j

U k
j i �= j

46Proof. We will show that εk − 1 is a non-zero-divisor of A�. If x ∈ A� = lim←−x �→x p A satisfies

εk x = x , then ζk/pi
x (i) = x (i) for all i ≥ 0, and so x (i) = 0 for i � 0 since then ζk/pi − 1 is a

non-zero-divisor of A, just as at the end of the proof of Proposition 2.
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(where the notation ζk/pr
was explained at the start of the proof of Theorem 2). Under

this identification of H 0(Dgrp/˜ξr ), it is easy to see that the maps ϕ−1
grp, “canonical

projection”, and ×ϕr+1
grp (ξ) in the diagrams of Theorem 9 are given respectively by:

• the ring homomorphism R : Wr+1(A)[U±1/p∞] → Wr (A)[U±1/p∞]which acts as
theWitt vector Restriction map on the coefficients and satisfies R(U k

i ) = U k/p
i for

all k ∈ Z[ 1p ] and i = 1, . . . , d;

• the ring homomorphism F : Wr+1(A)[U±1/p∞] → Wr (A)[U±1/p∞]which acts as
the Witt vector Frobenius on the coefficients and fixes the variables;

• the additive map V : Wr (A)[U±1/p∞] → Wr+1(A)[U±1/p∞] which is defined by
V (αU k1

1 . . . U kd
d ) := V (α)U k1

1 . . . U kd
d for all α ∈ Wr (A) and k1, . . . , kd ∈ Z[ 1p ].

Therefore the proof will be complete if we show that there is a unique collection of
Wr (A)-algebra homomorphisms λr,grp : Wr (A[T ±1]) → Wr (A)[U±1/p∞] commut-
ing with R, F, V on each side and satisfying λr,grp([Ti ]) = Ui for i = 1, . . . , d.

To prove this, we first use the standard isomorphism of Wr (A)-algebras47

Wr (A)[U±1/p∞] �→ Wr (A[T ±1/p∞]), U k
i �→ [T k

i ]
(

k ∈ Z

[

1
p

])

to define a modified isomorphism

τr : Wr (A)[U±1/p∞] �→ Wr (A[T ±1/p∞]), U k
i �→ [T k/pr

i ]
(

k ∈ Z

[

1
p

])

,

noting that the new maps τr respect R, F, V on each side (the reader should check
this by explicit calculation). Therefore the collection of maps

λr,grp : Wr (A[T ±1]) ↪→ Wr (A[T ±1/p∞])
τ−1

r�−→ Wr (A)[U±1/p∞]

satisfies the desired conditions (and their uniqueness was explained in the previous
footnote).

The previous two lemmas show that all hypotheses of Theorem 9 are satisfied,
and so there are associated universal maps of Witt complexes

λ•
r,grp : WrΩ

•
A[T ±1]/A −→ W•

r (Dgrp).

As already explained, the key local result underlying the forthcoming proof of the
p-adic Cartier isomorphism will be the fact that these are isomorphisms:

47This isomorphism is proved by localising the analogous assertion for A[T 1/p∞], which is an easy
consequence of [22, Corollary 2.4]. The cited result also implies that Wr (A[T ±1]) is generated
as a Wr (A)-module by the elements V j ([T k

i ]), for k ∈ Z, j ≥ 0, i = 1, . . . , d, which proves the
uniqueness of the maps λr,grp.
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Theorem 10 The map λn
r,grp : WrΩ

n
A[T ±1]/A

→ Wn
r (Dgrp) is an isomorphism for

each r ≥ 1, n ≥ 0.

Proof We will content ourselves here with proving that λn
r,grp,κ := λn

r,grp ⊗Wr (A)

Wr (κ) is an isomorphism,48 whereκ := A/
√

p A is the perfect ring obtained bymod-
ding out A by its ideal of p-adically topologically nilpotent elements. Recalling from
Remark 8(vii) that the canonical base change map WrΩ

n
A[T ±1]/A

⊗Wr (A) Wr (κ) →
WrΩ

n
κ[T ±1]/κ is an isomorphism, this means showing that λn

r,grp,κ induces an iso-

morphism WrΩ
n
κ[T ±1]/κ

�→ Wn
r (Dgrp) ⊗Wr (A) Wr (κ); this will turn out to be exactly

Illusie–Raynaud’s Cartier isomorphism for the classical de Rham–Witt complex.
We now begin the proof that λn

r,grp,κ is an isomorphism. By the Künneth formula
and the standard calculation of group cohomology of an infinite cyclic group, we
may represent Dgrp by the particular complex of W (A�)-modules

Dgrp =
d

⊗

i=1

[

W (A�)[U±1/p∞
i ] γi −1−→ W (A�)[U±1/p∞

i ]
]

,

where each length two complex is

W (A�)[U±1/p∞
i ] γi −1−→ W (A�)[U±1/p∞

i ], U k
i �→ ([εk] − 1)U k

i

(

k ∈ Z

[

1
p

])

.

(Note: although we previously used Dgrp to denote RΓ (Zd , W (A�)[U±1/p∞]) in a
derived sense, in the rest of this proof we have this particular honest complex of flat
W (A�)-modules in mind when writing Dgrp.) This length two complex obviously
receives a injective map, given by the identity in degree 0 and by multiplication by
μ in degree 1, from

Dgrp
int,i := [

W (A�)[U±1
i ] → W (A�)[U±1

i ]] , U k
i �→ [εk ]−1

μ
U k

i (k ∈ Z),

and tensoring over i = 1, . . . , d defines a split injection of complexes of W (A�)-
modules49

Dgrp
int :=

n
⊗

i=1

Dgrp
int,i −→ Dgrp.

48To then deduce that λn
r,grp itself is an isomorphism, one applies a form of Nakayama’s lemma

exploiting the fact that (the non-finitely generated Wr (A)-modules) Wr Ω
n
A[T ±1]/A

and Wn
r (Dgrp)

admit compatible direct sum decompositions into certain finitely generated Wr (A)-modules for
which Nakayama’s lemma is valid; see [5, Lemma 11.14] for the details.
49The complex Dgrp

int (resp. Dgrp
int,i ) is in fact the “q-de Rham complex” [ε]-Ω•

W (A�)[U±1]/W (A�)

(resp. [ε]-Ω•
W (A�)[U±1

i ]/W (A�)
) of W (A�)[U±1] (resp. W (A�)[U±1

i ]) associated to the element q =
[ε] ∈ W (A�).
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The content of the second sentence of the final paragraph of the proof of Lemma
15 was exactly that this inclusion has image in ημ Dgrp and that the induced map
q : Dgrp

int ↪→ ημ Dgrp is a quasi-isomorphism.
The next important observation (which is most natural from the point of view

of q-de Rham complexes) is that there is an identification Dgrp
int ⊗W (A�) W (κ) =

Ω•
W (k)[U±1]/W (κ)

: indeed, the canonical projection A� → A/p A → κ sends ε to 1,

and so the projection W (A�) → W (κ) sends ([εk] − 1)/μ = 1 + [ε] + · · · + [ε]k−1

to k, whence

Dgrp
int ⊗W (A�) W (κ) =

n
⊗

i=1

[

W (κ)[U±1
i ] U k

i �→kU k
i−→ W (κ)[U±1

i ]
]

= Ω•
W (κ)[U±1]/W (κ)

.

The final identification here is most natural after inserting a dummy basis element
dlogUi in degree one of each two term complex.

Base changing the Bockstein construction50 along W (A�) → W (κ) therefore
yields isomorphisms of complexes of Wr (κ)-modules

W•
r (Dgrp) ⊗Wr (A) Wr (κ)

�→ [H •(ημ Dgrp ⊗L

W (A�) W (κ)/pr ),Bock pr ]
q�← [H •(Ω•

W (κ)[U±1]/W (κ)
⊗W (κ),˜θr

Wr (κ)),Bock pr ]

But the complex on the right (hence on the left) identifies with WrΩ
•
κ[T ±1]/κ by the

de Rham–Witt Cartier isomorphism of Illusie–Raynaud [19, Sect. III.1], and the
resulting map

WrΩ
•
A[T ±1]/A ⊗Wr (A) Wr (κ)

can. map−→ WrΩ
•
κ[T ±1]/κ ∼= W•

r (Dgrp) ⊗Wr (A) Wr (κ)

is precisely λ•
r,grp,κ: this is proved by observing that the above isomorphisms (includ-

ing the de Rham–Witt Cartier isomorphism) are all compatible with multiplicative
structure, whence it suffices to check in degree 0, which is not hard (see [5, Theo-
rem 11.13] for a few more details). As we commented at the beginning of the proof,

50If α : R → S is a ring homomorphism, f ∈ R is a non-zero-divisor whose image α( f ) ∈
S is still a non-zero-divisor, and C ∈ D(R), then there is a base change map [H•(C ⊗L

R
R/ f R),Bock f ] ⊗R/ f R S/α( f )S → [H•(C ⊗L

R S/α( f )S),Bockα( f )]of complexes of S/α( f )S-
modules; it is an isomorphism if the R/ f R-modules H∗(D ⊗L

R R/ f R) are Tor-independent from
S/α( f )S, as the reader will easily prove (c.f., Remark 9(ii)).

Here we are applying this base change along the canonical map W (A�) → W (κ), which sends
˜ξr to pr , and the complex η f Dgrp. The Tor-independence condition is satisfied in this case since
the Wr (A)-modules W∗

r (Dgrp) are Tor-independent from Wr (k): indeed, the proof of Lemma 15
shows that the cohomology groups of ημ Dgrp/˜ξr are direct sums of Wr (A)-modules of the form

Wr (A), Wr (A)

[ [ζp j ]−1

[ζpr ]−1

]

, and Wr (A)/
[ζp j ]−1

[ζpr ]−1 , 1 ≤ j < r,

which are Tor-independent from Wr (κ) by Lemmas 3.13 and 3.18(iii) and Remark 3.19 of [5].
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the canonical base change map of relative de Rham–Witt complexes in the previous
line is an isomorphism, and so in conclusion λ•

r,grp,κ is an isomorphism.

7 The Proof of the p-Adic Cartier Isomorphism

This section is devoted to a detailed sketch of the p-adic Cartier isomorphism stated
in Theorem 4. We adopt the set-up from the start of Sect. 5, namely

• C is a complete, non-archimedean, algebraically closed field of mixed character-
istic; ring of integers O with maximal ideal m; residue field k.

• We pick a compatible sequence ζp, ζp2 , . . . ∈ O of p-power roots of unity, and
define μ, ξ, ξr ,˜ξ,˜ξr ∈ Ainf = W (O�) as in Sect. 3.3.

• X will denote various smooth formal schemes over O.

7.1 Technical Lemmas: Base Change and Global-to-Local
Isomorphisms

Here in Sect. 7.1 we state, and sketch the proofs of, certain technical lemmas which
need to be established as part of the proof of the p-adic Cartier isomorphism. We
adopt the following local set-up: let R be a p-adically complete, formally smooth
O-algebra and X := Spf R, with associated generic fibre being the rigid affinoid
X = Sp R[ 1p ]. We will often impose the extra condition that R is small, i.e., that

there exists a formally étale map (a “framing”) O〈T ±1〉 = O〈T ±1
1 , . . . , T ±1

d 〉 → R;
we stress however that we are careful to formulate certain results (e.g., Lemma 17)
without reference to any such framing (its existence will simply be required in the
course of the proof).

Firstly, as explained at the end ofRemark 4 (takingT = XZar andC = ̂Rν∗Ainf,X ),

there is a natural global-to-local morphism Lημ RΓZar(X, ̂Rν∗Ainf,X ) → RΓZar

(X, AΩX) of complexes of Ainf -modules; this may be rewritten as

AΩ
proét
R/O := Lημ

(

̂RΓproét(X, Ainf,X )
) −→ RΓZar(X, AΩX). (t1)

There is an analogous global-to-local morphism of complexes of Wr (O)-modules

W̃rΩ
proét

R/O := Lη[ζpr ]−1RΓproét(X, Wr (̂O+
X )) −→ RΓZar(X, Lη[ζpr ]−1Rν∗Wr (̂O+

X )).

(t2)
Thirdly, recalling Corollary 3 that˜θr : Ainf,X/˜ξr

�→ Wr (̂O+
X ) (which we continue to

often implicitly view as an identification), there is a base change morphism (see
Remark 9) of complexes of Wr (O)-modules
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AΩ
proét
R/O/˜ξr = Lημ

(

̂RΓproét(X, Ainf,X )
) ⊗L

Ainf
Ainf/˜ξr Ainf −→ Lη[ζpr ]−1RΓproét(X, Wr ( ̂O+

X ))

= W̃r Ω
proét
R/O .

(t3)
Here we implicitly use the facts that RΓproét(X, Wr (̂O+

X )) is already derived p-adic
complete by footnote 22 and that Lη[ζpr ]−1 preserves derived p-adic completeness by
Remark 3, so that there is no need to complete the codomain. As we have commented
earlier, global-to-local and base changemorphisms associated to the décalage functor
are not in general quasi-isomorphisms; remarkably, they are in our setting:

Lemma 17 If R is small then maps (t1), (t2), and (t3) are quasi-isomorphisms and,
moreover:

(i) the cohomology groups of W̃rΩ
proét

R/O are p-torsion-free;
(ii) if R′ is a p-adically complete, formally étale R-algebra, then the canonical

base change map

W̃rΩ
proét

R/O ̂⊗L
Wr (R)Wr (R′) → W̃rΩ

proét

R′/O

is a quasi-isomorphism.

The key to proving Lemma 17, and to performing necessary auxiliary calcu-
lations, is the Cartan–Leray almost quasi-isomorphisms of Sect. 4.3, for which
we must assume that R is small and fix a framing O〈T ±1〉 → R; set R∞ :=
R̂⊗O〈T ±1〉O〈T ±1/p∞〉 as in Sect. 4.3. Then, as explained in Sect. 4.3 and repeated
in Remark 5, there are Cartan–Leray almost (wrt. W (m�) and Wr (m) respectively)
quasi-isomorphisms of complexes of Ainf - and Wr (O)-modules respectively

RΓcont(Zp(1)
d , W (R�

∞)) −→ ̂RΓproét(X, Ainf,X )

and
RΓcont(Zp(1)

d , Wr (R∞)) −→ RΓproét(X, Wr (̂O+
X )).

Applying Lημ (resp. Lη[ζpr ]−1) obtains

AΩ�
R/O := Lημ RΓcont(Zp(1)

d , W (R�
∞)) −→ Lημ

(

̂RΓproét(X, Ainf,X )
) = AΩ

proét
R/O
(t4)

and

W̃r Ω
�
R/O := Lη[ζpr ]−1RΓcont(Zp(1)d , Wr (R∞)) −→ Lη[ζpr ]−1RΓproét(X, Wr (̂O+

X ))

= W̃r Ω
proét
R/O

(t5)
(The squares� remind us that the objects depend on the chosen framing.) The second
technical lemma, stating that the décalage functor has transformed the almost quasi-
isomorphisms into actual quasi-isomorphisms, and hence reminiscent of Theorem
2, is:
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Lemma 18 (t4) and (t5) are quasi-isomorphisms.

We now sketch a proof of the previous two technical lemmas. The arguments are
of a similar flavour to what we have already seen in Sects. 2.2 and 6.3, so we will not
provide all the details; see [5, Sect. 9] for further details. For the overall logic of the
proof, it will be helpful to draw the following commutative diagram of the maps of
interest:

RΓZar(X, W̃r ΩX/O) = RΓZar(X, AΩX)/˜ξr
(t7) �� RΓZar(X, Lη[ζpr ]−1Rν∗Wr ( ̂O+

X ))

AΩ
proét
R/O/˜ξr = Lημ

(

̂RΓproét(X, Ainf,X )
)

/˜ξr
(t3) ��

(t1)mod˜ξr

��

Lη[ζpr ]−1RΓproét(X, Wr ( ̂O+
X )) = W̃r Ω

proét
R/O

(t2)

��

AΩ�
R/O/˜ξr = Lημ RΓcont(Zp(1)d , W (R�∞))/˜ξr

(t6) ��

(t4)mod˜ξr

��

Lη[ζpr ]−1RΓcont(Zp(1)d , Wr (R∞)) = W̃r Ω
�
R/O

(t5)

��

The new maps, namely (t6) and (t7), are simply the base change maps associated
to the identifications˜θr : W (R�∞)/˜ξr

�→ Wr (R∞) and˜θr : Ainf,X/˜ξr
�→ Wr (̂O+

X ). In
particular, the diagramcommutes by the naturality of global-to-local and base-change
maps. We will show that (t1)–(t7) are quasi-isomorphisms. We begin by stating the
following abstract description of a certain group cohomology:

Lemma 19 RΓcont(Zp(1)d , Wr (R∞)) is quasi-isomorphic to the derived p-adic
completion of a direct sum of Koszul complexes KWr (O)([ζk1] − 1, . . . , [ζkd ] − 1),
for varying ki ∈ Z[ 1p ] .

Proof A self-contained proof of this may be found in [5, Lemma 9.7(i)].

Proof (Proof that (t5) is a quasi-isom.) Using Lemma 23 to calculate the coho-
mology of the Koszul complexes in Lemma 19 (and footnote 9 to exchange
cohomology and p-adic completions), it follows that each cohomology group of
RΓcont(Zp(1)d , Wr (R∞)) is isomorphic to the p-adic completion of a direct sum of
copies of

Wr (O), Wr (O)[[ζp j ] − 1], Wr (O)/([ζp j ] − 1), j ≥ 1,

each ofwhich is “good” in the sense of Lemma2 (wrt. A = Wr (O),M = Wr (m), and
f = [ζpr ] − 1)) by [5, Corollary 3.29]. So all cohomology groups RΓcont(Zp(1)d ,

Wr (R∞)) are good, whence Lemma 2 implies that (t5) is a quasi-isomorphism.
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Proof (Proof of Lemma 17(i)) Since Lη[ζpr ]−1 commutes with derived p-adic com-

pletion by Remark 3, Lemmas 19 and 24 imply that W̃rΩ
�
R = Lη[ζpr ]−1RΓcont

(Zp(1)d , Wr (R∞)) is quasi-isomorphic to the derived p-adic completion of a direct
sum of Koszul complexes

KWr (O)

( [ζp j1 ] − 1

[ζpr ] − 1
, . . . ,

[ζp jd ] − 1

[ζpr ] − 1

)

,

for varying j1, . . . , jd ≤ r . The calculation at the end of the proof of Lemma 15

therefore shows that the cohomology groups of W̃r Ω
�
R are p-torsion-free.Combining

this with quasi-isomorphism (t5) proves Lemma 17(i).

Proof (Proof of Lemma 17(ii) and that (t2) is a quasi-isom.) Let R′ be a p-adically
complete, formally étale R-algebra, and write R′∞ := R′

̂⊗O〈T ±1〉O〈T ±1/p∞〉. Since
Witt vectors preserve étale morphisms [5, Theorem 10.4], the maps Wr (R∞/pn) →
Wr (R′∞/pn) induced by the formally étale map R∞ → R′∞ are étale for all n ≥ 1,
whence the same is true of the maps Wr (R∞)/pn → Wr (R′∞)/pn (since the systems
of ideals (pnWr (B))n≥1 and (Wr (pn B))n≥1 are intertwined for any ring B; for a proof
see, e.g., [5, Lemma 10.3]). In particular, these latter maps are flat for all n ≥ 1,
whence the canonical map

W̃rΩ
�
R/O ̂⊗L

Wr (R)Wr (R′) −→ W̃rΩ
�
R′/O

is a quasi-isomorphism. The same is therefore true after replacing � by proét (since
(t5) is a quasi-isomorphism for both R and R′), and this proves Lemma 17(ii).

This is a strong enough coherence result to show that W̃rΩ
proét

R/O ̂⊗L
Wr (R)Wr (OX) →

Lη[ζpr ]−1Rν∗Wr (̂O+
X ) is a quasi-isomorphism of complexes of Wr (OX)-modules,

and it follows that (t2) is a quasi-isomorphism (see [5, Corollary 9.11] for further
details).

Proof (Proof that (t6) is a quasi-isom.)According to footnote 44, it is enough toprove
that the cohomology of the complex RΓcont(Zp(1)d , W (R�∞)) ⊗L

Ainf
Ainf/μAinf =

RΓcont(Zp(1)d , W (R�∞)/μ) is p-torsion-free.
We first check that this is true after replacing R byO〈T ±1〉. To show this we first

observe that there is an isomorphism of Ainf/μAinf -algebras

Ainf/μAinf 〈U±1/p∞〉 �−→ W (O〈T ±1/p∞〉�)/μ, Uk
i �→ [(T k

i , T k/p
i , T k/p2

i , . . .)]
(

k ∈ Z

[

1
p

])

,

which is proved by quotienting the “standard isomorphism” in the proof of Lemma
16 by [ζpr ] − 1 and then taking lim←−rwrtF

. By the same type of Koszul decomposition

argument which has been made several times, it now follows that RΓcont(Zp(1)d ,

W (O〈T ±1/p∞〉�)/μ) is quasi-isomorphic to the derived p-adic completion of
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⊕

k1,...,kd∈Z

[ 1
p

]

KAinf/μAinf ([εk1] − 1, . . . , [εk2 ] − 1).

The cohomology of each of these Koszul complexes is, by Lemma 23, a finite direct
sum of copies of

(Ainf/μAinf)[[εk] − 1] and Ainf/([εk] − 1)Ainf

for various k ∈ Z[ 1p ]. But these are p-torsion-free since p, [εk] − 1 is a regular

sequence of Ainf (see footnote 46) for any k ∈ Z[ 1p ] (including k = 1, to treat the
left term).

To treat the case of R itself one uses the framed period ring A(R)� over Ainf [5,
Sect. 9.2]: to summarise its pertinent properties, A(R)�/μ is a p-adically complete,
formally étale over Ainf/μAinf〈U±1〉, and equipped with a Γ -equivariant homomor-
phism

Ainf/μAinf〈U±1/p∞〉 ⊗Ainf/μAinf 〈U±1〉 A(R)� −→ W (R�
∞)

which is an isomorphism modulo any power of p and which is compatible with
the above identificationAinf/μAinf〈U±1/p∞〉 ∼= W (O〈T ±1/p∞〉�)/μ; note that the Γ -
action on Ainf/μAinf〈U±1〉 is trivial. Passing to group cohomology therefore shows
that

RΓcont(Zp(1)
d , W (O〈T ±1/p∞〉�)/μ) ⊗L

Ainf/μAinf 〈U±1〉 A(R)� ∼→ RΓcont(Zp(1)
d , W (R�∞)),

whose cohomology groups are indeed p-torsion-free since this has already been
shown to be true of the group cohomology on the left side and the base change is flat
modulo any power of p.

Proof (Proof that (t4) is a quasi-isom.) Proving that (t4) is a quasi-isomorphismwas
done in [5] via a subtle generalisation of the “good” cohomology groups argument
of Lemma 2, which required calculating RΓcont(Zp(1)d , W (O〈T ±1/p∞〉�)) in terms
of Koszul complexes51 (see Lemmas 9.12–9.13 and the first paragraph of Proposi-
tion 9.14). Here we will offer a simpler argument which was presented first in [2,
Remark 7.11].

We need the following strengthening of Lemma 2: “Let M ⊆ A be an ideal of a
ring and f ∈ M a non-zero-divisor; if C → D is a morphism of complexes of A-
modules whose cone is killed by M, and all cohomology groups of C ⊗L

A A/ f A
contain no non-zero elements killed by M2, then Lη f C → Lη f D is a quasi-
isomorphism.” This follows from the proof of [2, Lemma 6.14] and exploits the
relation between Lη and the Bockstein construction.

51Here we explain why the analogous calculations we have already seen do not generalise to this

case. Although there is an identification Ainf 〈U±1/p∞〉 �→ W (O〈T ±1/p∞〉�), the convergence of
the power series on the left is with respect to the 〈p, ξ〉-adic topology. But neither RΓcont(Zp(1)d , ·)
nor Lημ commute with derived 〈p, ξ〉-adic completion!
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Applying this in the case A = Ainf , f = μ, andM = W (m�), the proof immedi-
ately reduces to showing that the cohomology of RΓcont(Zp(1)d , W (R�∞)/μ) con-
tains no non-zero elements killed by W (m�)2. But the decomposition from the previ-
ous proof showed that each of these cohomology groups was the p-adic completion
of a direct sum of copies of the p-torsion-free modules

(Ainf/μAinf)[[εk] − 1] and Ainf/([εk] − 1)Ainf

for various k ∈ Z[ 1p ]; so it is enough to show for any k ∈ Z[ 1p ] (including k =
1, to treat the left term) that Ainf/([εk] − 1)Ainf contains no non-zero elements
killed by W (m�)2. But the maps ˜θr induce an isomorphism Ainf/([εk] − 1)Ainf

�→
lim←−r wrt F

Wr (O)/([ζk/pr ] − 1), and each Wr (O)/([ζk/pr ] − 1) contains no non-zero

elements killed by Wr (m)2 = Wr (m) (recall that Wr (m) is an ideal for almost math-
ematics, c.f., footnote 20), as we already saw above in the proof that (t5) is a quasi-
isomorphism.

Proof (Proof that (t1), (t3), and (t7) are quasi-isoms.) Since we now know that
(t4) is a quasi-isomorphism, the commutativity of the diagram implies that (t3) is
a quasi-isomorphism. Using this quasi-isomorphism, and by taking Rlimr wrt F of
the quasi-isomorphisms (t2), it can be shown that (t1) is a quasi-isomorphism [5,
Proposition 9.14]. Finally, the commutativity of the diagram implies that (t7) is also
a quasi-isomorphism.

This finishes the proofs of the technical lemmas, but we note in addition the
following consequence which was needed at the start of the proof of Theorem 6:

Corollary 4 If X is a smooth p-adic formal scheme over O, then the complex of
Ainf -modules RΓZar(X, AΩX) is derived ξ-adically complete.

Proof By picking a cover of X by small opens, we may suppose that X = Spf R
is a small affine as above. Then the complex RΓcont(Zp(1)d , W (R�∞)) is derived ξ-
adically complete since W (R�∞) is ξ-adically complete,52 whence AΩ�

R/O is derived
ξ-adically complete since Lημ preserves the completeness by footnote 32. Now
quasi-isomorphisms (t1) and (t4) complete the proof.

7.2 Reduction to a Torus and to Theorem 10

We continue to suppose that R is a p-adically complete, formally smoothO-algebra,
with notation X = Spf R and X = Sp R[ 1p ] as in Sect. 7.1. We wish to apply the
construction of Sect. 6.2 (with base perfectoid ring A = O) to the derived p-adic
completion

Dproét
R/O := ̂RΓproét(X, Ainf,X ),

52If A is any perfectoid ring then W (A�) is Ker θ-adically complete.
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and must therefore check that the necessary hypotheses are fulfilled:

Lemma 20 Dproét
R/O is a coconnective algebra object in D(Ainf) which is equipped

with a ϕ-semi-linear quasi-isomorphism ϕproét : Dproét
R/O

∼→ Dproét
R/O. If R is small, then

it moreover satisfies assumptions (W1)–(W3) from Sect.6.2 and there exist Wr (O)-
algebra homomorphisms λr,proét : Wr (R) → H 0(Dproét

R/O/˜ξr ) (natural in R) making
the diagrams of Theorem 9 commute.

Proof Dproét
R/O is clearly a coconnective algebra object in D(Ainf), and it is equipped

with a ϕ-semi-linear quasi-isomorphism ϕproét induced by the Frobenius automor-
phism of Ainf,X , similarly to Lemma 12.

Moreover, H 0(Dproét
R/O) = H 0

proét(X, Ainf,X ) is μ-torsion-free, since Ainf,X is a μ-
torsion-free sheaf on Xproét by Corollary 3; this proves that assumption (W1) holds.
It remains to check (W2) and (W3), as well as prove the existence of the maps λr ; for
this we must now assume that R is small (but we do not fix any framing). Hypotheses
(W2) and (W3) are then exactly the p-torsion-freeness and quasi-isomorphism (t3)
of Lemma 17.

Finally, the canonical maps of Zariski sheaves of rings OX → ν∗ ̂O+
X → Rν∗ ̂O+

X
on X induce analogous maps on Witt vectors (see footnote 19), namely Wr (OX) →
ν∗Wr (̂O+

X ) → Rν∗Wr (̂O+
X ), which are compatible with R, F, V on each term.

Applying H 0(X,−) to the composition then yields the following arrow which is
also compatible with R, F, V :

λr,proét : Wr (R) = H 0
Zar(X, Wr (OX)) −→ H 0

proét(X, Wr (̂O+
X ))

˜θr∼= H 0(Dproét
R/O/˜ξr ).

The isomorphism ˜θr is compatible with R, F, V on the left according to a sheaf
version of the second set of diagrams in Corollary 6; therefore, overall, these maps
λr,proét make the diagrams of Theorem 9 commute, and they are clearly natural in R,
as desired.

Continuing to assume that R is small, the previous lemma states that all hypotheses
of Theorem 9 are satisfied for Dproét

R/O, and so there are associated universal maps of
Witt complexes, natural in R,

λ•
r,proét : WrΩ

•
R/O −→ W•

r (Dproét
R/O) = H •(AΩ

proét
R/O/˜ξr ).

By Remark 10, these factor through the p-adic completion of the left side, i.e.,

̂λn
r,proét : (WrΩ

n
R/O)̂p −→ H n(AΩ

proét
R/O/˜ξr ).

The p-adic Cartier isomorphism will follow from showing that these maps are iso-
morphisms:

Lemma 21 The following implications hold:
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̂λn
r,proét is an isomorphism when R = O〈T ±1

1 , . . . , T ±1
d 〉.

⇓
̂λn

r,proét is an isomorphism for every small, formally smooth O-algebra R.

⇓
The p-adic Cartier isomorphism (Theorem 4) is true.

Proof The first implication is a consequence of the domain and codomain of̂λn
r,proét

behaving well under formally étale base change, according to Remark 8(v) and (vi)
and Lemma 17(ii).

For the second implication it is convenient to briefly change the point of view and
notation, by fixing a smooth p-adic formal scheme X overO and letting Spf R ⊆ X
denote any small affine open. We then consider the composition

Hn(AΩ
proét
R/O/˜ξr )

∼=
(t1)mod˜ξr

�� Hn
Zar(Spf R, W̃r ΩX/O)

edge map
�� Hn(W̃r ΩX/O)(Spf R)

and note that the edge map is an isomorphism by the coherence result of Lemma
17(ii).53 Since (WrΩ

n
R/O)̂p = WrΩ

n
X/O(Spf R) (Remark 8(vi)), the middle assump-

tion therefore leads to isomorphisms

WrΩ
n
X/O(Spf R)

�−→ Hn(W̃rΩX/O)(Spf R)

naturally as Spf R ⊆ X varies over all small affine opens; that proves the p-adic
Cartier isomorphism.

To complete the proof of the p-adic Cartier isomorphism we must prove the top
statement in Lemma 21, namely the following:

Proposition 5 The universal maps

̂λn
r,proét : (WrΩ

n
R/O)̂p −→ H n(AΩ

proét
R/O/˜ξr )

are isomorphisms in the special case that R := O〈T ±1
1 , . . . , T ±1

d 〉.
Proof The proof will consist merely of assembling results we have already estab-
lished: indeed, the technical lemmas of Sect. 7.1 imply that H n(AΩ

proét
R/O/˜ξr ) can be

calculated in terms of group cohomology,whichwe identifiedwith the deRham–Witt
complex in Theorem 10.

Note first that the map54 Ainf [U±1/p∞] → W (O〈T ±1/p∞〉�), U k
i �→ [(T k

i , T k/p
i ,

T k/p2

i , . . .)], when base changed along ˜θr , yields an inclusion Wr (O)[U±1/p∞] ↪→
Wr (O〈T ±1/p∞〉), U k

i �→ T k/pr

i which identifies the right with the p-adic completion

53Here we are of course using the trivial identification W̃r ΩX/O|Spf R = W̃r ΩSpf R/O in order to
appeal to the affine results in Sect. 7.1.
54This map is injective and identifies the right with the 〈p, ξ〉-adic completion of the left, i.e., with
Ainf 〈U±1/p∞〉, but we do not need this.
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of the left, i.e., with W (A�)〈U±1/p∞〉; indeed, this follows easily from the “stan-
dard/modified isomorphisms” which appeared in the proof of Lemma 16. The map
Ainf [U±1/p∞] → W (O〈T ±1/p∞〉�) is obviously also compatible with the actions of
the groups Z

d ⊆ Zp(1)d (induced by our fixed choice of p-power roots of unity) on
the left (from Sect. 6.3) and right, thereby inducing the first of the following maps:

RΓ (Zd , Ainf [U±1/p∞ ]) �� RΓcont(Zp(1)d , W (O〈T ±1/p∞ 〉�)) �� ̂
RΓproét(Sp R

[

1
p

]

, Ainf,X )

Dgrp
O,d Dcont

def.

Dproét
R/O

Here Dgrp := Dgrp
O,d was the object of study of Sect. 6.3, and the second map is the

Cartan–Leray almost quasi-isomorphism which has already appeared, for example
just after the statement of Lemma 17. Both maps in the previous line are morphisms
of commutative algebra objects in D(Ainf), compatible with the Frobenius on each
object (in particular, with ϕgrp on the left and ϕproét on the right).

Moreover,we claim that the compositionmakes the following diagramof structure
maps commute for each r ≥ 0:

H 0(Dgrp/˜ξr ) �� H 0(Dproét/˜ξr )

Wr (O[T ±1]) � � ��

λr,grp

��

Wr (O〈T ±1〉)
λr,proét

��

The proof of this compatibility is a straightforward chase through the definitions of
the structure maps λr,grp and λr,proét . We first identify the top row via ˜θr with the
composition of the top row of the following diagram:

Wr (O)[U±1/p∞]Zd U k
i �→T k/pr

i �� Wr (O〈T ±1/p∞〉)Zp(1)d �� H0
proét(Spf R, Wr (̂O+

X ))

Wr (O[T ±1]) � � ��

λr,grp

��

Wr (O〈T ±1〉)

λr,proét

��

� �

�������������������

The diagonal arrow here is the obvious inclusion (it is actually an isomorphism);
since the Cartan–Leray map (i.e., top right horizontal arrow) is one of Wr (O〈T ±1〉)-
algebras and λr,proét was defined to be precisely the algebra structure map, the result-
ing triangle commutes. Commutativity of the remaining trapezium is tautological:
the definition of λr,grp in the proof of Lemma 16 was exactly to make this dia-
gram (or, more precisely, the analogous diagram with Wr (O[T ±1/p∞]) instead of
Wr (O〈T ±1/p∞〉)) commute.

By the naturality of Theorem 9, the following diagram therefore commutes:
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Wn
r (Dgrp) �� Wn

r (Dproét
R/O)

WrΩ
n
O[T ±1]/O

λn
r,grp

��

�� WrΩ
n
O〈T ±1〉/O

λn
r,proét

��

The bottom horizontal arrow here becomes an isomorphism after p-adic comple-
tion,55 and λn

r,grp was proved to be an isomorphism in Theorem 10; so to complete

the proof it remains to show that the top horizontal arrow identifiesWn
r (Dproét

R/O) with
the p-adic completion ofWn

r (Dgrp). But the top horizontal arrow is precisely H n of
the composition

Lη[ζpr ]−1(Dgrp/˜ξr ) −→ Lη[ζpr ]−1(Dcont/˜ξr ) −→ Lη[ζpr ]−1(Dproét
R/O/˜ξr ),

where the second arrow is the quasi-isomorphism (t5) of Lemma 18. Meanwhile,
the first arrow identifies the middle term with the derived p-adic completion of
the left: indeed, Lη[ζpr ]−1 commutes with p-adic completion by Remark 3, so it
is enough to check that Dcont/˜ξr = RΓcont(Zp(1)d , Wr (O〈T ±1/p∞〉) is the derived
p-adic completion of Dgrp/˜ξr = RΓ (Zd , Wr (O)[U±1/p∞]); but this follows from
Wr (O〈T ±1/p∞〉) being the p-adic completion of Wr (O[T ±1/p∞]). So, finally, recall
that the cohomology groups of Lη[ζpr ]−1(Dgrp/˜ξr ) are p-torsion-free (since Dgrp

satisfies (W2) and (W3)), whence H n of its derived p-adic completion is the same
as the naive p-adic completion of its H n .

This completes the proof of the p-adic Cartier isomorphism and these notes.
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Appendix 1: Ainf and Its Modules

The base ring for the cohomology theory constructed in [5] is Fontaine’s infinites-
imal period ring Ainf := W (O�), where O is the ring of integers of a complete,
non-archimedean, algebraically closed field C of mixed characteristic. Since O is
a perfectoid ring (Example 2), the general theory developed in Sect. 3 (including
Sect. 3.3) applies in particular to O. Our goal here is firstly to present a few results
which are particular toO in order to familiarise the reader, who may be encountering

55By Remark 8(vi), the p-adic completions may be identified respectively with
lim←−s

Wr Ω
n
(O[T ±1]/ps )/(O/psO)

and lim←−s
Wr Ω

n
(O〈T ±1〉/ps )/(O/psO)

, which are clearly the same.
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these objects for the first time, with O and Ainf ; then we will explain some of the
finer theory of modules over Ainf .

We begin by recalling from [24, Sect. 3] that O� is the ring of integers of
C

� := FracO� (footnote 10 shows that O� is an integral domain), which is a non-
archimedean, algebraically closed field of characteristic p > 0,with the same residue
field k asO. The absolute value onC

� is given bymultiplicatively extending the abso-
lute value on O� given by

O� = lim←−
x �→x p

O x �→x (0)−→ O |·|−→ R≥0,

where the first arrow uses the convention introduced just before Lemma 5, and the
second arrow is the absolute value on O. The reader may wish to check that this is
indeed an absolute value, i.e., satisfies the ultrametric inequality, that C� is complete
under it, and that the ring of integers is exactly O�. The existence of the canonical
projectionO� → O/pO implies thatO� andO have the same residue field. Hensel’s
lemma shows that C

� is algebraically closed.56

Nowwe turn toAinf . Let t ∈ Ainf be any elementwhose image inAinf/pAinf = O�

belongs tom� \ {0}; examples include t = [π], where π ∈ m� \ {0}, and t = ξ, where
ξ is any generator of Ker θ. Then p, t is a regular sequence, and Ainf is a 〈p, t〉-
adically complete local ring whose maximal ideal equals the radical of 〈p, t〉; in
short, Ainf “appears two-dimensional and Cohen–Macaulay”.

In fact, as we will explain the result of this appendix, modules (more precisely,
finitely presentedmoduleswhich become free after inverting p) overAinf even behave
as though Ainf were a two-dimensional, regular local ring.57 Further details may be
found in [5, Sect. 4.2].

Remark 11 In light of the goal, it is sensible to recall the structure of modules over
any two-dimensional regular local ring Λ, such as Λ = OK [[T ]] where OK is a

56We sketch the proof here, which is obtained by reversing the roles of O and O� in [24, Proposi-
tion 3.8]. Let p� := (p, p1/p, p1/p2 , . . .) ∈ A�, whose absolute value |p�| = |p|wemay normalise
to p−1 for simplicity of notation. It is sufficient to prove the following, which allows a root to any
given polynomial to be built by successive approximation: If f (X) ∈ O�[X ] is a monic irreducible
polynomial of degree d ≥ 1, and α ∈ O� satisfies | f (α)| ≤ p−n for some n ≥ 0, then there exists
ε ∈ O satisfying |ε| ≤ p−n/d and | f (α + ε)| ≤ p−(n+1). Well, given such f (X) and α, use the fact
that C

� and C have the same value group (this is easy to prove), which is divisible since C is alge-
braically closed, to find c ∈ O� such that c−d f (α) is a unit ofO�. Then g(X) := c−d f (α + cX) is a
monic irreducible polynomial inC

�[X ]whose constant coefficient lies inO� (evenO�×); a standard
consequence of Hensel’s lemma is then that g(X) ∈ O�[X ]. Next observe that the canonical projec-
tionO� → O/pO has kernel p�O� (Proof. Either argue using valuations, or extract a more general
result from the proof of Lemma 8.), whence every monic polynomial in O�/p�O� has a root. So,
by lifting a root we find β ∈ O� satisfying g(β) ∈ p�O�; this implies that f (α + cβ) ∈ f (β)p�O�,
and so ε := cβ has the desired property.
57However, Ainf is not Noetherian, it is usually not coherent [20], and the presence of certain
infinitely generated, non-topologically-closed ideals implies that it has infinite Krull dimension
[21].
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discrete valuation ring. Let π, t ∈ Λ be a system of local parameters and m = 〈π, t〉
its maximal ideal.

(i) Most importantly, any vector bundle on the punctured spectrum SpecΛ \ {m}
extends uniquely to a vector bundle on SpecΛ.

(ii) Finitely generated modules over Λ are perfect, i.e., admit finite length res-
olutions by finite free Λ-modules. (Proof. Immediate from the regularity of
Λ.)

(iii) If M is any finitely generated Λ-module, then there is a functorial short exact
sequence

0 −→ Mtor −→ M −→ Mfree −→ M −→ 0

of Λ-modules, where Mtor is torsion, Mfree is finite free, and M is killed by a
power of m.
Proof. Mtor is by definition the torsion submodule of M , whence M/Mtor

restricts to a torsion-free coherent sheaf on the punctured spectrum SpecΛ \
{m}; but the punctured spectrum is a regular one-dimensional scheme, so this
torsion-free coherent sheaf is necessary a vector bundle, and so extends to a
vector bundle on SpecΛ by (i); this vector bundle corresponds to a finite free
Λ-module Mfree which contains M/Mtor, with the ensuing quotient M being
supported at the closed point of SpecΛ.

(iv) Finite projective modules over Λ[ 1
π
] are finite free.

Proof. Let N be a finite projective Λ[ 1
π
]-module, and pick a finitely generated

Λ-module N ′ ⊆ N satisfying N ′[ 1
π
] = N . Then N ′

p is a projective module
over Λp for every non-maximal prime ideal p ⊆ Λ: indeed either π /∈ p, in
which case N ′

p is a localisation of the projective module N , or p = 〈π〉, in
which case Λp is a discrete valuation ring and it is sufficient to note that N ′

p

obviously has no π-torsion. This means that N ′ restricts to a vector bundle on
the punctured spectrum, whose unique extension to a finite free Λ-module N ′′
satisfies N ′′[ 1

π
] = N .

Theorem 11 (i) (Kedlaya) Any vector bundle on the punctured spectrum

SpecAinf \ {the max. ideal of Ainf}

extends uniquely to a vector bundle on SpecAinf .
(ii) If M is a finitely presented Ainf -module such that M[ 1p ] is finite free over

Ainf [ 1p ], then M is perfect (again, this means that M admits a finite length
resolution by finite free Ainf -modules).

(iii) If M is a finitely presented Ainf -module such that M[ 1p ] is finite free over

Ainf [ 1p ], then there is functorial short exact sequence of Ainf -modules

0 −→ Mtor −→ M −→ Mfree −→ M −→ 0
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such that: Mtor is a perfect Ainf -module killed by a power of p; Mfree is a finite
free Ainf -module; and M is a perfect Ainf -module killed by a power of the ideal
〈p, t〉.

(iv) Finite projective modules over Ainf [ 1p ] are finite free.

Proof We have nothing to say about (i) here, and refer instead to [5, Lemma 4.6].
We will also only briefly comment on the remaining parts of the theorem, since these
self-contained results may be easily read in [5, Sect. 4.2].

(ii) By clearing denominators in a basis for M[ 1p ] to construct a finite free Ainf -

module M ′ ⊆ M satisfying M ′[ 1p ] = M[ 1p ], we may reduce to the case that M is

killed by a power of p, i.e., M is aAinf/pr
Ainf = Wr (O�)-module for some r � 0.By

an induction on r , using thatWr (O�) canbe shown to be coherent [5, Proposition 3.24]
(this is not a trivial result), one can reduce to the case r = 1, in which case it easily
follows from the classification of finitely presented modules over the valuation ring
O�: they have the shape (O�)n ⊕ O�/a1O� ⊕ · · · ⊕ O�/amO�, for some n ≥ 1 and
ai ∈ O�, and so in particular are perfect.

(iii) This is proved similarly to the analogous assertion in the previous remark.
(iv) This is proved exactly as the analogous assertion in the previous remark, once

it is checked that the localisation Ainf,〈p〉 is a discrete valuation ring.

Corollary 5 Let M be a finitely presented Ainf -module such that M[ 1p ] is finite free

over Ainf [ 1p ]. If either M ⊗Ainf W (k) or M ⊗Ainf O is p-torsion-free (equivalently,
finite free over W (k) or O respectively), then M is a finite free Ainf -module.

Proof It follows easily from the hypothesis that the map M → Mfree in Theorem
11(iii) becomes an isomorphism after tensoring by W (k) or O; hence M[ 1p ] and
M ⊗Ainf k have the same rankoverAinf [ 1p ] and k respectively.But an easyFitting ideal
argument shows that if N is a finitely presented module over a local integral domain
R satisfying dimFrac R(N ⊗R Frac R) = dimk(R)(N ⊗R k(R)), then N is finite free
over R.

To state and prove the next corollary we use the elements ξ, ξr ,μ ∈ Ainf con-
structed in Sect. 3.3:

Corollary 6 Let M be a finitely presented Ainf -module, and assume:

• M[ 1
pμ

] is a finite free Ainf [ 1
pμ

]-module of the same rank as the W (k)-module
M ⊗Ainf W (k).

• There exists a Frobenius-semi-linear endomorphism of M which becomes an iso-
morphism after inverting ξ.

Then M[ 1p ] is finite free over Ainf [ 1p ].

Proof Wemust show that each Fitting ideal of theAinf [ 1p ]-module M[ 1p ] is either 0 or
Ainf [ 1p ]; indeed, this means exactly that M[ 1p ] is finite projective overAinf [ 1p ], which
is sufficient by Theorem 11(iv). Since Fitting ideals behave well under base change,
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it is equivalent to prove that the first non-zero Fitting ideal J ⊆ Ainf of M contains a
power of p. Again using that Fitting ideals base change well, our hypotheses imply
that JAinf [ 1

pμ
] = Ainf [ 1

pμ
] and J W (k) �= 0; that is, J contains a power of pμ and

J + W (m�) contains a power of p, where W (m�) := Ker(Ainf → W (k)). Because
of the existence of the Frobenius on M , we also know that J and ϕ(J ) are equal up
to a power of ϕ(ξ). In conclusion, we may pick N � such that

(i) (pμ)N ∈ J ;
(ii) pN ∈ J + W (m);
(iii) ϕ(ξ)N ϕ(J ) ⊆ J and ϕ(ξ)N J ⊆ ϕ(J ).

Since W (m) is the p-adic completion of the ideal generated by ϕ−r (μN ), for all
r ≥ 0,58 observation (ii) lets us write pN = α + βϕ−r (μN ) + β′ pN+1 for some α ∈
J andβ,β′ ∈ Ainf , and r ≥ 0. Since 1 − β′ p is invertible, wemay easily suppose that
β′ = 0, i.e., pN = α + βϕ−r (μN ). Multiplying through by pN ξN

r gives ξN
r p2N =

pN ξN
r α + β pN μN , which belongs to J by (i) and (ii).

We claim, for any a, i ≥ 1, that

ξa
r psome power ∈ J =⇒ ξa−1

r psome other power ∈ J.

A trivial induction then shows that J contains a power of p, thereby completing
the proof, and so it remains only to prove this claim. Suppose ξa

r pb ∈ J for some
a, b, i ≥ 1. Then ϕr (ξr )

a pb ∈ ϕr (J ), and so ϕr (ξr )
a+N pb ∈ J (since an easy gen-

eralisation of (iii) implies that ϕr (ξr )
N ϕr (J ) ⊆ J ). But ϕr (ξr ) ≡ pr mod ξr , so

we may write ϕr (ξr )
a+N = pr(a+N ) + αξr for some α ∈ Ainf and thus deduce that

J � (pr(a+N ) + αξr )pb = pr(a+N )+b + αξr pb. Now multiply through by ξa−1
r and

use the supposition to obtain ξa−1
r pr(a+N )+b ∈ J , as required.

We will also need the following to eliminate the appearance of higher Tors in the
crystalline specialisation of the Ainf -cohomology theory:

Lemma 22 Let M be an Ainf -module such that M[ 1p ] is flat over Ainf [ 1p ]. Then

TorAinf∗ (M, W (k)) = 0 for ∗ > 1.

Proof Let [m�] ⊆ W (m�) be the ideal of Ainf which is generated by Teichmüller
lifts of elements ofm�. We first observe that Ainf/[m�] is p-torsion-free and has Tor-
dimension = 1 over Ainf : indeed, [m�] is the increasing union of the ideals [π]Ainf ,
for π ∈ m� \ {0}, and the claims are true for Ainf/[π]Ainf since p, [π] is a regular
sequence of Ainf .

Next, since Wr (m
�) is generated by the analogous Teichmüller lifts in Wr (O�) =

Ainf/pr
Ainf , for any r ≥ 1 (c.f., footnote 20), the quotient W (m�)/[m�] is p-divisible.

Combined with the previous observation, it follows that W (m�)/[m�] is uniquely p-
divisible, i.e., an Ainf [ 1p ]-module, whence

58By an easy induction using that p is a non-zero-divisor in Ainf/W (m), this follows from the fact
that the maximal ideal of Ainf/pAinf = O� is generated by the elements ϕ−r (ε) − 1, for all r ≥ 0.
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TorAinf∗ (W (m�)/[m�], M) = Tor
Ainf

[ 1
p

]

∗
(

W (m�)/[m�], M
[

1
p

])

,

which vanishes for ∗ > 0 by the hypothesis on M . Combining this with the short
exact sequence

0 → W (m�)/[m�] → Ainf/[m�] → Ainf/W (m�) = W (k) → 0

and the initial observation about the Tor-dimension of the middle term completes the
proof.

Appendix 2: Two Lemmas on Koszul Complexes

Let R be a ring, and g1, . . . , gd ∈ R. The associated Koszul complex will be denoted

by K R(g1, . . . , gd) = ⊗d
i=1 K R(gi ), where K R(gi ) := [R

gi−→ R]. Here we state two
useful lemmas concerning such complexes, the second of which describes the
behaviour of the décalage functor.

Lemma 23 Let g ∈ R be an element which divides g1, . . . , gd , and such that gi

divides g for some i. Then there are isomorphisms of R-modules

H n(K R(g1, . . . , gd)) ∼= R[g](d−1
n ) ⊕ R/gR(d−1

n−1)

for all n ≥ 0.

Proof [5, Lemma 7.10].

Lemma 24 Let f ∈ R be a non-zero-divisor such that, for each i , either f divides
gi or gi divides f . Then:

• If f divides gi for all i , then η f K R(g1, . . . , gd) ∼= K R(g1/ f, . . . , gd/ f ).
• If gi divides f for some i, then η f K R(g1, . . . , gd) is acyclic.

Proof [5, Lemma 7.9].
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On the Cohomology of the Affine Space

Pierre Colmez and Wiesława Nizioł

Abstract We compute the p-adic geometric pro-étale cohomology of the rigid ana-
lytic affine space (in any dimension). This cohomology is non-zero, contrary to the
étale cohomology, and can be described by means of differential forms.

1 Introduction

Let K be a complete discrete valuation field of characteristic 0 with perfect residue
field of positive characteristic p. Let C be the completion of an algebraic closure
K of K . We denote by GK the absolute Galois group of K (it is also the group of
continuous automorphisms of C that fix K ).

For n ≥ 1, let An
K be the rigid analytic affine space over K of dimension n and

An be its scalar extension to C . Our main result is the following theorem.

Theorem 1 For r ≥ 1, we have isomorphisms of GK -Fréchet spaces

Hr
proét(A

n, Qp(r)) � �r−1(An)/Ker d � �r (An)d=0,

where � denotes the sheaf of differentials.

Remark 2 (i) The p-adic pro-étale cohomology behaves in a remarkably different
way from other (more classical) cohomologies. For example, for i ≥ 1, we have:

• Hi
dR(An) = Hi

HK(An) = 0, where H •
HK is Hyodo-Kato cohomology (see [5] for its

definition),
• Hi

ét (A
n, Q�) = Hi

proét(A
n, Q�) = 0, if � �= p,

• Hi
ét (A

n, Qp) = 0. (Cf. [1] or Remark 11.)
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We listed the � �= p and � = p cases of étale cohomology separately because, if
� �= p, the triviality of the cohomology of An is a consequence of the triviality of
the cohomology of the closed ball (which explains why the pro-étale cohomology is
also trivial), but the p-adic étale cohomology of the ball is highly nontrivial.

(ii) Using overconvergent syntomic cohomology allows to prove a more general
result [2, Theorem1.8]: if X is a Stein space over K admitting a semistable model
over the ring of integers of K , there exists an exact sequence

0 → �r−1(X)/Ker d → Hr
proét(X, Qp(r)) → (B+

st ̂⊗ Hr
HK(X))N=0,ϕ=pr → 0.

However making syntomic cohomology overconvergent is technically demanding
and the simple proof below uses special features of the geometry of the affine space.

(iii) Another possible approach (cf. [6]) is to compute the pro-étale cohomology
of the relative fundamental exact sequence 0 → Qp(r) → B

ϕ=pr

cris → BdR/Fr → 0.

Let
◦
Bn be the open unit ball of dimension n. An adaptation of the proof of

Theorem1 shows the following result:

Theorem 3 For r ≥ 1, we have isomorphisms of GK -Fréchet spaces

Hr
proét(

◦
Bn, Qp(r)) � �r−1(

◦
Bn)/Ker d � �r (

◦
Bn)d=0.

2 Syntomic Variations

If r = 1, one can give an elementary proof of Theorem1 using Kummer theory, but
it does not seem very easy to extend this kind of methods to treat the case r ≥ 2.
Instead we are going to use syntomic methods.

Recall that the étale-syntomic comparison theorem [3, 7] reduces the computation
of p-adic étale cohomology to that of syntomic cohomology.1 The latter is defined
as a filtered Frobenius eigenspace of absolute crystalline cohomology (see [4] for
a gentle introduction and [7] for a more thorough treatment) and can be thought of
as a higher dimensional version of the Fontaine-Lafaille functor. Its computation
reduces to a computation of cohomology of complexes built from differential forms,
and hence is often doable.

More precisely, if X is a quasi-compact semistable p-adic formal scheme
over OK , then the Fontaine–Messing period map [4]

αFM : τ≤rR�syn(XOC , Zp(r)) → τ≤rR�ét (XC , Zp(r)) (1)

1The computations in [3] are done over K (or over its finite extensions), but working directly overC
simplifies a lot the local arguments because there is no need to change the Frobenius and the group
� of loc. cit. becomes commutative (hence so does its Lie algebra, whichmakes the arguments using
Koszul complexes a lot simpler).
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is a pN -quasi-isomorphism2 for a constant N = N (r). This generalizes easily to
semistable p-adic formal schemes overOC : the rational étale and pro-étale cohomol-
ogy of such schemes are computed by the syntomic complexes R�syn(XOC , Zp(r))Q

and R�syn(XOC , Qp(r)), respectively, where the latter complex is defined by taking
R�syn(XOC , Zp(r))Q locally and then glueing.

The purpose of this section is to construct a particularly simple complex that,
morally, computes the syntomic, and hence (pro-)étale as well, cohomology of the
(canonical formal model of the) affine space and the open ball, but does not use a
model of the whole space, only of closed balls of increasing radii.

Period rings. —Let C� be the tilt of C and let Acris ⊂ B+
cris = Acris[ 1p ] ⊂ B+

dR be the
usual Fontaine rings.

Let θ : B+
dR → C be the canonical projection (its restriction to Acris induces a

projection Acris → OC ), and let F•
θB

+
dR be the filtration by the powers of Ker θ and

F•
θAcris be the induced filtration. For j ∈ Z, let A j = Acris/F

j
θ (hence A j = 0 for

j ≤ 0 and A1 = OC ).
We choose a morphism of groups α �→ pα from Q to C∗ compatible with the

analogous morphism on Z. We denote by p̃α the element (pα, pα/p, pα/p2 , . . . )

of C� and by [ p̃α] its Teichmüller lift in Acris.

Closed balls. —For α ∈ Q+, let

Dα = {z = (z1, . . . , zn), vp(zm) ≥ −α, for 1 ≤ m ≤ n}

be the closed ball of valuation −α in An , and denote by O(Dα) (resp. O+(Dα)) the
ring of analytic functions (resp. analytic functions with integral values) on Dα . We
have

O(Dα) = C〈pαT1, . . . , p
αTn〉 and O+(Dα) = OC 〈pαT1, . . . , p

αTn〉.

Consider the lifts

R+
α = Acris〈[ p̃α]T1, . . . , [ p̃α]Tn〉 and Rα = R+

α [ 1p ]

ofO+(Dα) andO(Dα), respectively.We extend ϕ onAcris to ϕ : Rα → Rα by setting
ϕ(Tm) = T p

m , for 1 ≤ m ≤ n.

Definition 4 Let r ≥ 0. If α ∈ Q+ and 
 = Rα, R+
α , we define the complexes

Syn(
, r) := [HKr (
) → DRr (
)],

where the brackets [· · · ] denote the mapping fiber, and3

2It means that the kernel and cokernel of the induced map on cohomology are annihilated by pN .
3The differentials are taken relative to Acris.
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HKr (
) := [�•



ϕ−pr−−→ �•

],

Fr�•

 := (Fr

θ 
 → Fr−1
θ �1


 → Fr−2
θ �2


 → · · · ),
DRr (
) := �•


/Fr = ( · · · → Ar−i ⊗Acris �i



1⊗di Ar−i−1 ⊗Acris �i+1

 → · · · ).

The complex Syn(An, r). —The above complexes for varying α are closely linked:

• The ring morphism R0 → Rα , Tm → [ p̃α]Tm , for 1 ≤ m ≤ n, induces an isomor-
phism of complexes Syn(R0, r)

∼→ Syn(Rα, r).
• For β ≥ α, the inclusion ιβ,α : Rβ ↪→ Rα induces a morphism of complexes
Syn(Rβ, r)→Syn(Rα, r) thanks to the fact that ϕ([ p̃s]) = [ p̃s]p, for all s ∈ Q+.

(We have analogous statements replacing Rα by R+
α .)

The first point comes just from the fact that two closed balls are isomorphic, but the
second point, to the effect that we can find liftings of the O(Dα)’s with compatible
Frobenius, is a bit of a miracle, and will simplify greatly the computation of the
syntomic cohomology of An . In particular, it makes it possible to define the complex
Syn(An, r) := holimα Syn(Rα, r) and, similarly, HKr (An) and DRr (An).

For i ≥ 0 and X = An, Rα, R+
α , denote by HK

i
r (X), DRi

r (X), and Syni (X, r) the
cohomology groups of the corresponding complexes.We have a long exact sequence:

· · · → DRi−1
r (X) → Syni (X, r) → HKi

r (X) → DRi
r (X) → · · ·

Proposition 5 If i ≤ r , we have natural isomorphisms:

• Hi
ét (Dα, Qp(r)) ∼= Syni (Rα, r), if α ∈ Q+.

• Hi
proét(A

n, Qp(r)) ∼= Syni (An, r).

Proof Take α ∈ Q+. By the comparison isomorphism (1), to prove the first claim,
it suffices to show that the complex Syn(Rα, r) computes the rational geometric
log-syntomic cohomology of Dα := Spf O+(Dα), the formal affine space over OC ,
that is a smooth formal model of Dα . To do this, recall that the latter cohomology is
computed by the complex

R�syn(Dα, Zp(r))Q = [R�cr(Dα/Acris)
ϕ=pr

Q → R�cr(Dα/Acris)Q/Fr ],

where Acris is equipped with the unique log-structure extending the canonical log-
structure on OC/p. It suffices thus to show that there exists a quasi-isomorphism
R�cr(Dα/Acris)Q � �•

Rα
that is compatible with the Frobenius4 and the filtration.

But this is clear since Spf R+
α is a log-smooth lifting of Dα from Spf OC to Spf Acris

that is compatible with the Frobenius on Acris and O+(Dα)/p.

4Recall that the Frobenius on crystalline cohomology is defined via the isomorphism

R�cr(Dα/Acris)Q
∼→ R�cr((Dα,/p)/Acris)Q from the canonical Frobenius on the second term.
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To show the second claim, we note that, for β ≥ α, there is a natural map (an injec-
tion) of liftings (R+

β → O+(Dβ)) → (R+
α → O+(Dα)). This allows us to use the

comparison isomorphism (1) to define the second quasi-isomorphism in the sequence
of maps

τ≤rR�proét(A
n, Qp(r)) � τ≤r holimk R�ét (Dk , Qp(r)) � τ≤r holimk R�syn(Dk , Zp(r))Q

� τ≤r holimk Syn(Rk , r) = τ≤rSyn(An, r).

Here, the first quasi-isomorphism follows from the fact that {Dk}k∈N is an admissible
affinoid covering of An and the third one follows from the first claim. This finishes
the proof. �

3 Computation of HKi
r(A

n)

The group HKi
r (A

n) is, by construction, obtained from the HKi
r (Rα)’s, but the latter

are, individually, hard to compute and quite nasty: for example, HK1
1(Rα) is iso-

morphic to the quotient of Qp̂⊗O(Dα)∗ by the sub Qp-vector space generated by
O(Dα)∗; hence it is an infinite dimensional topological Qp-vector space in which
0 is dense. Fortunately Lemma 7 below shows that this is not a problem for the
computation of HKi

r (A
n).

For k = (k1, . . . , kn) ∈ Nn , we set |k| = k1 + · · · + kn and T k = T k1
1 · · · T kn

n . For
1 ≤ j ≤ n, let ω j be the differential form dTj

Tj
, and let ∂ j be differential operator

defined by d f = ∑n
j=1 ∂ j f ω j . For j = { j1, . . . , ji }, with j1 ≤ j2 ≤ · · · ≤ ji , we

set ωj = ω j1 ∧ · · · ∧ ω ji . All elements η of �i
Rα

can be written, in a unique way, in
the form

∑

|j|=i ajωj, where aj ∈ ( ∏

j∈j Tj
)

Rα .

Lemma 6 Let M be a sub-Zp-module ofAcris orOC . Let i ≥ 1 and k ∈ Nn. Forω =
T k ∑

|j|=i ajωj, with aj ∈ M, such that dω = 0, there exists η = T k ∑

|j|=i−1 bjωj,
such that dη = ω and bj ∈ p−N (k)M, with N (k) = inf j∈j vp(k j ).

Proof Permuting the Tm’s, we can assume that vp(k1) ≤ vp(k2) ≤ · · · ≤ vp(kn);
in particular, k1 �= 0. Decompose ω as

(

ω1 ∧ T k ∑

1∈j ajωj\{1}
) + ω′, and set η =

1
k1
T k ∑

1∈j ajωj\{1}; we have ω − dη = T k ∑

1/∈j cjωj and it has a trivial differen-

tial. But d(T k ∑

1/∈j cjωj) = k1T k ∑

1/∈j cjω{1}∪j + ∑

1/∈I c
′
IωI , hence cj = 0 for all

j, which proves that dη = ω and allows us to conclude. �

Lemma 7 Let α ∈ Q+ and let 
α = R+
α ,O+(Dα). Then H 0

dR(
α) = Acris,OC and
HK0

r (R
+
α ) = Aϕ=pr

cris , the natural maps

Hi
dR(
α+1) → Hi

dR(
α), i ≥ 1; HKi
r (R

+
α+2) → HKi

r (R
+
α ), i ≥ 2.

are identically zero, and the image of the map HK1
r (R

+
α+2) → HK1

r (R
+
α ) is annihi-

lated by pr .



76 P. Colmez and W. Nizioł

Proof The computation of the H 0’s is straightforward. The proof for the first map
is similar (but easier) to that of the second one, so we are only going to prove the
latter. Take i ≥ 2. Let (ωi , ωi−1) be a representative of an element of HKi

r (R
+
α+2).

That is to say

ωi ∈ �i
R+

α+2
, ωi−1 ∈ �i−1

R+
α+2

, dωi = 0 and dωi−1 + (ϕ − pr )ωi = 0.

Since dωi = 0, we deduce from Lemma 6 that there exists ηi−1 ∈ �i−1
R+

α+1
such that

ια+2,α+1ω
i = dηi−1 (we used here that 1

m [ p̃]m ∈ Acris). Let ωi−1
1 = ια+2,α+1ω

i−1 +
(ϕ − pr )ηi−1. Then dωi−1

1 = ια+2,α+1dωi−1 + (ϕ − pr )dηi−1 = 0; hence there
exists ηi−2 ∈ �i−2

R+
α
such that ια+1,αωi−1

1 = dηi−2. It follows that ια+2,α(ωi , ωi−1) =
d(ια+1,αηi−1, ηi−2), as wanted.

Take now i = 1 and use the notation from the above computation. Arguing as
above we show that (ω1, ω0) is in the same class as (0, ω0), with ω0 ∈ Acris. But
the map ϕ − pr : Acris → Acris is pr -surjective. This proves the last statement of the
lemma. �
Remark 8 (i) The same arguments would prove that there exists N : Q∗+ → N such
that, if β > α and i ≥ 1, the images of the natural maps Hi

dR(R+
β ) → Hi

dR(R+
α ),

HKi
r (R

+
β ) → HKi

r (R
+
α ) are killed by pN (β−α). This is sufficient to extend Corollary 9

and Lemma 10 below to the unit ball
◦
Bn .

(ii) Note, however, that N (u) → +∞ when u → 0+. This prevents the extension
of Lemma 10 to the integral de Rham cohomology of

◦
Bn which is good since this

integral de Rham cohomology, in degrees 1 ≤ i ≤ n, is far from 0 (but its p∞-torsion
is dense).

Corollary 9 If i ≥ 1 then HKi
r (A

n) = 0.

Proof Immediate from Lemma 7 and the exact sequence

0 → R1 lim←−
k

HKi−1
r (Rk) → HKi

r (A
n) → lim←−

k

HKi
r (Rk) → 0 �

4 Computation of DRi
r(A

n)

Lemma 10 If 1 ≤ i ≤ r − 1 thenDRi
r (A

n) � (

�i (An)/Ker d
)

(r − i − 1), if i ≥ r
then DRi

r (A
n) = 0, and, if r > 0, we have an exact sequence

0 → B+
cris/F

r
θ → DR0

r (A
n) → (

O(An)/C
)

(r − 1) → 0

Proof We have an exact sequence

0 → R1 lim←−
k

DRi−1
r (Rk) → DRi

r (A
n) → lim←−

k

DRi
r (Rk) → 0
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The DRi
r (Rk)’s are the cohomology groups of the complex

. . . Ar−i ⊗Acris �i
Rk

1⊗di
Ar−i−1 ⊗Acris �i+1

Rk
· · ·

In particular, they are trivially 0 if i ≥ r , so assume i ≤ r − 1. The kernel of 1 ⊗
di is Fr−i−1

θ Ar−i ⊗Acris �i
Rk

+ Ar−i ⊗Acris (�i
Rk

)d=0 while the image of 1 ⊗ di−1 is
Ar−i ⊗Acris d�i−1

Rk
. Since Fr−i−1

θ Ar−i is an OC -module of rank 1 (generated by the

image of (p−[ p̃])r−i−1

(r−i−1)! ), we have Fr−i−1
θ Ar−i ⊗Acris �i

Rk
� �i (Dk)(r − i − 1), which

gives us the exact sequence

0 → Ar−i ⊗Acris H
i
dR(Rk) → DRi

r (Rk) → (

�i (Dk)/Ker d
)

(r − i − 1) → 0.

For i = 0 this gives the sequence in the lemma.
Assume that i ≥ 1. The natural map Hi

dR(Rk+1) → Hi
dR(Rk) is identically zero

by Lemma 7. Hence

R j lim←−
k

(�i (Dk)/Ker d) � R j lim←−
k

DRi
r (Rk), j ≥ 0.

Now, note that since our systems are indexed by N, R j lim←−k
is trivial for j ≥ 2. Since

R1 lim←−k
�i (Dk)=0, we have R1 lim←−k

(�i (Dk)/Ker d)=0 (and R1 lim←−k
d�i =0). It

remains to show that lim←−k
(�i (Dk)/Ker d) � �i (An)/Ker d. But this amounts to

showing that R1 lim←−k
�i (Dk)d=0 = 0. This is clear for i = 0 and for i > 0, since

the system {Hi
dR(Rk)}k∈N is trivial (by Lemma 7), this follows from the fact that

R1 lim←−k
d�i−1(Dk) = 0. �

5 Proof of Theorems 1 and 3

5.1 Algebraic Isomorphism

From Proposition 5 we know that τ≤rSyn(An, r) � τ≤rR�proét(An, Qp(r)). From
the long exact sequence

· · · → DRi−1
r (An) → Syni (An, r) → HKi

r (An) → DRi
r (A

n) → · · ·

and Corollary 9 and Lemma 10, we obtain isomorphisms

(

�i−1(An)/Ker d
)

(r − i)
∼→ Syni (An, r), r ≥ i ≥ 2,

and the exact sequence
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0 → Syn0(An, r) → B+,ϕ=pr

cris → DR0
r (A

n) → Syn1(An, r) → 0,

which, using the fundamental exact sequence

0 → Qp(r) → B+,ϕ=pr

cris → B+
cris/F

r
θ → 0,

proves the first isomorphism in Theorem 1 (together with Syn0(An, r) ∼= Qp(r)).
The second is an immediate consequence of the fact that Hi

dR(An) = 0.
Since an open ball is an increasing union of closed balls, Theorem 3 is proved by

the same argument (see Remark 8).

Remark 11 (i) Let j ∈ N. We note that, since [ p̃]p ∈ pAcris, for every α ∈ Q+,
the maps5 �i (R+

α+m) j → �i (R+
α ) j , m ≥ pj , are the zero maps for i ≥ 1 and the

projection on the constant term for i = 0. It follows that

holimk HKr (R
+
k ) j � (Acris, j

ϕ−pr−−→Acris, j ), holimk DRr (R
+
k ) j � (Acris/F

r
θ ) j .

Computing as above we get (holimk,� Syn(R
+
k , r) j ) ⊗ Q � Qp(r). Hence, by the

comparison isomorphism (1), Hi
ét (A

n, Qp(r)) = 0, i ≥ 1, which allows us to recover
the result of Berkovich [1].

(ii) The above argument does not go through for the open unit ball: the integral
de Rham complex does not reduce to the constants in that case and Hi

ét (
◦
Bn, Qp(r))

is an infinite dimensionnal Qp-vector space if 1 ≤ i ≤ n.

5.2 Topological Considerations

It remains to discuss topology. In what follows, we write ∼= for an isomorphism of
vector spaces and ≡ for an isomorphism of topological vector spaces.

First, note that all the cohomology groups under consideration are cohomology
groups of complexes of Fréchet spaces (and even of finite sums of countable products
of Banach spaces), since these complexes can be built out of Čech complexes coming
from coverings by affinoids, and the corresponding complexes for affinoids involve
finitely many Banach spaces. It follows that, a priori, all the groups we are dealing
with are cokernels of maps F1 → F2 between Fréchet spaces. If such a group injects
continuously into a Fréchet space, then it is a Fréchet space (it is separated hence
the image of F1 in F2 is closed, and our space is a quotient of a Fréchet space by
a closed subspace), and if this injection is a bijection then it is an isomorphism of
Fréchet spaces by the Open Mapping Theorem.

Now, we have the following commutative diagram:

5The subscript j refers to moding out by p j .
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Hr
proét(A

n, Qp(r))

∼=

lim←−k
Hr

ét (Dk, Qp(r))

≡

Synr (An, r)
∼= lim←−k

Synr (Rk, r)

The horizontal maps are the natural maps (and are continuous), the bottom one being
an isomorphismby the earlier computations.The left vertical arrow is an isomorphism
by Proposition 5 and the right vertical arrow is a topological isomorphism because
the period maps (1) are pN -quasi-isomorphisms, with N depending only on r . Thus
proving that lim←−k

Synr (Rk, r) is Fréchet would imply that so is Hr
proét(A

n, Qp(r))
and that Hr

proét(A
n, Qp(r)) ≡ lim←−k

Synr (Rk, r).
For that, consider the map of distinguished triangles

Syn(Rk, r)

α

HKr (Rk)

β

DRr (Rk)

γ

�≥r (Dk)[−r ] �•(Dk) �≤r−1(Dk)

in which:

• the top line is the definition of Syn(Rk, r), the bottom one is the obvious one,
• γ is obtained by applying θ to the terms of the complex DRr (Rk),
• β is obtained by composing the natural map HKr (Rk) → �•

Rk
with θ ,

• α is obtained by composing the natural map Syn(Rk, r) → Fr�•
Rk

with θ .

All the maps are continuous (including the boundary maps). For r ≥ 2, taking
cohomology and limits we obtain the commutative diagram

lim←−k
DRr−1

r (Rk)
∂

∼=
∼=

lim←−k
Synr (Rk, r)

�r−1(An)/Ker d ≡ lim←−k
(�r−1(Dk)/Ker d)

d
∼= lim←−k

�r (Dk)
d=0 ≡ �r (An)d=0

The bottom map is an isomorphism because lim←−k
Hr

dR(Dk) � Hr
dR(An) = 0. The

top map is an isomorphism because, on level k, its kernel and cokernel are con-
trolled by HKr−1

r (Rk) and HKr
r (Rk) respectively, which die in Rk−2 by Lemma 7,

and the left vertical map is an isomorphism by the proof of Lemma 10. The space
�r (An) is Fréchet; it follows that all other spaces are also Fréchet (in particular
lim←−k

Synr (Rk, r)) and that all the maps are topological isomorphisms. This con-
cludes the proof of Theorem 1 if r ≥ 2.

For r = 1, the argument is similar, with lim←−k
DRr−1

r (Rk) in the above diagram

replaced by (lim←−k
DRr−1

r (Rk))/C .
The proof for the open ball is similar.
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classical Chern–Simons actions on spaces of Galois representations. In the subse-
quent sections, we give formulas for computation in a small class of cases and point
towards some arithmetic applications.

1 The Arithmetic Chern–Simons Action: Introduction and
Definition

The purpose of this paper is to cast in concrete mathematical form the ideas presented
in the preprint [17]. The reader is referred to that paper for motivation and specu-
lation. Since there is no plan to submit it for separate publication, we repeat here
the basic constructions before going on to a family of examples. This paper adheres,
however, to a rather strict mathematical presentation. As we remind the reader below,
the analogies in the background have come to be somewhat well-known under the
heading of ‘arithmetic topology.’ The emphasis of this paper, however, will be less
on analogies, and more on the possibility that specific technical tools of topology
and physics can be imported into number theory.

Let X = Spec(OF ), the spectrum of the ring of integers in a number field F . We
assume that F is totally imaginary. Denote by Gm the étale sheaf that associates to a
scheme the units in the global sections of its coordinate ring. We have the following
canonical isomorphism [20, p. 538]:

inv : H 3(X, Gm) � Q/Z. (∗)

This map is deduced from the ‘invariant’ map of local class field theory. We will
therefore use the same name for a range of isomorphisms having the same essential
nature, for example,

inv : H 3(X, Zp(1)) � Zp, (∗∗)

where Zp(1) = lim←−i
μpi , and μn ⊂ Gm is the sheaf of nth roots of 1. This follows

from the exact sequence

0 → μn → Gm
(·)n→ Gm → Gm/(Gm)n → 0.

That is, according to loc. cit.,

H 2(X, Gm) = 0,

while by op. cit., p. 551, we have

Hi (X, Gm/(Gm)n) = 0

for i ≥ 1. If we break up the above into two short exact sequences,
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0 → μn → Gm
(·)n→ Kn → 0,

and
0 → Kn → Gm → Gm/(Gm)n → 0,

we deduce
H 2(X,Kn) = 0,

from which it follows that

H 3(X,μn) � 1

n
Z/Z,

the n-torsion inside Q/Z. Taking the inverse limit over n = pi gives the second
isomorphism above. The pro-sheaf Zp(1) is a very familiar coefficient system for
étale cohomology and (**) is reminiscent of the fundamental class of a compact
oriented three manifold for singular cohomology. Such an analogy was noted by
Mazur around 50years ago [21] and has been developed rather systematically by a
number of mathematicians, notably, Masanori Morishita [23]. Within this circle of
ideas is included the analogy between knots and primes, whereby the map

Spec(OF/Pv) � X

from the residue field of a primePv should be similar to the inclusion of a knot. Let
Fv be the completion of F at the prime v and OFv

its valuation ring. If one takes this
analogy seriously (as did Morishita), the map

Spec(OFv
) → X,

should be similar to the inclusion of a handle-body around the knot, whereas

Spec(Fv) → X

resembles the inclusion of its boundary torus.1 Given a finite set S of primes, we
consider the scheme

X S := Spec(OF [1/S]) = X \ {Pv}v∈S.

Since a link complement is homotopic to the complement of a tubular neighbourhood,
the analogy is then forced on us between X S and a three manifold with boundary
given by a union of tori, one for each ‘knot’ in S. These of course are basicmorphisms
in 3 dimensional topological quantumfield theory [1]. From this perspective, perhaps

1It is not clear to us that the topology of the boundary should really be a torus. This is reasonable
if one thinks of the ambient space as a three-manifold. On the other hand, perhaps it’s possible to
have a notion of a knot in a homology three-manifold that has an exotic tubular neighbourhood?
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the coefficient system Gm of the first isomorphism should have reminded us of the
S1-coefficient important in Chern–Simons theory [6, 32]. A more direct analogue of
Gm is the sheafO×

M of invertible analytic functions on a complex variety M . However,
for compact Kähler manifolds, the comparison isomorphism

H 1(M, S1) � H 1(M,O×
M)0,

where the subscript refers to the line bundles with trivial topological Chern class,
is a consequence of Hodge theory. This indicates that in the étale setting with no
natural constant sheaf of S1’s, the familiar Gm has a topological nature, and can be
regarded as a substitute.2 One problem, however, is that theGm-coefficient computed
directly gives divisible torsion cohomology, whence the need for considering coef-
ficients like Zp(1) in order to get functions of geometric objects having an analytic
nature as arise, for example, in the theory of torsors for motivic fundamental groups
[4, 13–16].

We now move to the definition of the arithmetic Chern–Simons action. Let

π := π1(X, b),

be the profinite étale fundamental group of X , where we take

b : Spec(F) → X

to be the geometric point coming from an algebraic closure of F . Assume now that
the group μn(F) of nth roots of unity is in F and fix a trivialisation ζn : Z/nZ � μn .
This induces the isomorphism

inv : H 3(X, Z/nZ) � H 3(X,μn) � 1

n
Z/Z.

Now let A be a finite group and fix a class c ∈ H 3(A, Z/nZ). Let

M(A) := Homcont (π, A)/A

be the set of isomorphism classes of principal A-bundles over X . Here, the subscript
refers to continuous homomorphisms, on which A is acting by conjugation. For
[ρ] ∈ M(A), we get a class

ρ∗(c) ∈ H 3(π, Z/nZ)

that depends only on the isomorphism class [ρ]; if ρ2 = Ada ◦ ρ1 for some a ∈ A,
thenρ∗

2(c) = ρ∗
1(Ad

∗
a(c)), but c andAd

∗
a(c) are cohomologous byLemma7.2.Denote

2Recall, however, that it is of significance in Chern–Simons theory that one side of this isomorphism
is purely topological while the other has an analytic structure.
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by inv also the composed map

H 3(π, Z/nZ) H 3(X, Z/nZ)
inv
�

1
n Z/Z.

We get thereby a function

C Sc : M(A) 1
n Z/Z;

[ρ] inv(ρ∗(c)).

This is the basic and easy case of the classical Chern–Simons action3 in the arithmetic
setting.

Section2 sets down some definitions for ‘manifolds with boundary,’ that is, X S as
above. In fact, it turns out that the Chern–Simons action with boundaries is necessary
for the computation of the action even in the ‘compact’ case, in a manner strongly
reminiscent of computations in topology (see [7, Theorem 1.7 (d)], for example).
That is, we will compute the Chern–Simons invariant of a representation ρ of π
using a suitable decomposition

X“ = ”X S ∪ [∪vSpec(OFv
)]

and restrictions of π to X S and the Spec(OFv
).

To describe the construction, we need more notations. We assume that all primes
of F dividing n are in the finite set of primes S. Let

πS := π1(X S, b)

and
πv := Gal(Fv/Fv)

equipped with maps
iv : πv → πS

given by choices of embeddings F ↪→ Fv . The collection

{iv}v∈S

will be denoted by iS . There is a natural quotient map

κS : πS → π.

3The authors realise that this terminology is likely to be unfamiliar, and maybe even appears pre-
tentious to number-theorists. However, it does seem to encourage the reasonable view that concepts
and structures from geometry and physics can be specifically useful in number theory.
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Let
YS(A) := Homcont (πS, A)

and denote by MS(A) the action groupoid whose objects are the elements of YS(A)

with morphisms given by the conjugation action of A. We also have the local version

Y loc
S (A) :=

∏

v∈S

Homcont (πv, A)

as well as the action groupoid Mloc
S (A) with objects Y loc

S (A) and morphisms given
by the action of AS := ∏

v∈S A conjugating the separate components in the obvious
sense. Thus, we have the restriction functor

rS : MS(A) → Mloc
S (A),

where a homomorphism ρ : πS → A is restricted to the collection

rS(ρ) = i∗
Sρ := (ρ ◦ iv)v∈S.

We will construct, in Sect. 2, a functor L from Mloc
S (A) to the 1

n Z/Z-torsors as a
finite arithmetic version of the Chern–Simons line bundle [7] over Mloc

S (A). To a
global representation ρ ∈ MS(A), the Chern–Simons action will then associate an
element (Eq. (2.3))

C Sc([ρ]) ∈ L(rS(ρ)).

Now, given [ρ] ∈ M(A), we pull it back to [ρ ◦ κS] ∈ MS(A) and apply the Chern–
Simons action with boundary to get an element

C Sc([ρ ◦ κS]) ∈ L([rS(ρ ◦ κS)]).

On the other hand, for each v ∈ S, we can pull back ρ to a local unramified repre-
sentation

ρurv : πur
v → π → A,

where πur
v is the unramified quotient of πv . The extra structure of the unramified

representation will then allow us to canonically associate an element

∑

v∈S

(βv) ∈ L([rS(ρ ◦ κS)]),

which can be interpreted as the Chern–Simons action of (ρurv )v∈S on ∪v∈SSpec(OFv
).

Theorem 1.1 (The Decomposition Formula) Let A be a finite group and fix a class
c ∈ H 3(A, Z/nZ). Then
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C Sc([ρ]) =
∑

v∈S

(βv) − C Sc([ρ ◦ κS])

for [ρ] ∈ M(A).

Section4 is devoted to a proof of Theorem 1.1. The key point of this formula is
that C Sc([ρ]) can be computed as the difference between two trivialisations of the
torsor, a ramified global trivialisation and an unramified local trivialisation.

In Sect. 5, we use this theorem to compute the Chern–Simons action for a class of
examples. It is amusing to note the form of the action when A is finite cyclic. That is,
let A = Z/nZ, α ∈ H 1(A, Z/nZ) the class of the identity, and β ∈ H 2(A, Z/nZ)

the class of the extension

0 Z/nZ
n

Z/n2
Z A 0.

Thenβ = δα, where δ : H 1(A, Z/nZ) = H 1(A, A) → H 2(A, Z/nZ) is the bound-
ary map arising from the extension. Put

c := α ∪ β = α ∪ δα ∈ H 3(A, Z/nZ).

Then
C Sc([ρ]) = inv[ρ∗(α) ∪ δρ∗(α)],

in close analogy to the4 formulas of abelian Chern–Simons theory.
However, our computations are not limited to the case where A is an abelian

cyclic group. Along similar lines, we will provide an infinite family of number fields
F and representations ρ such that C Sc([ρ]) is non-vanishing for [ρ] ∈ M(A) with
a different class c ∈ H 3(A, Z/2Z) and both abelian A (see Propositions 5.14, 5.16,
and 5.19) and non-abelian A (see Proposition 5.23).

In Sect. 6, we provide arithmetic applications to a class of Galois embedding
problems using the fact that the existence of an unramified extension forces a Chern–
Simons invariant to be zero.

In this paper, we do not develop a p-adic theory in the case where the bound-
ary is empty. In future papers, we hope to apply local trivialisations using Selmer
complexes to remedy this omission and complete the theory begun in Sect. 3. To
get actual p-adic functions, one needs of course to come to an understanding of
explicit cohomology classes on p-adic Lie groups, possibly by way of the theory of
Lazard [18]. Suitable quantisations of the theory of this paper in a manner amenable
to arithmetic applications will be explored as well in future work, as in [3], where a
precise arithmetic analogue of a ‘path-integral formula’ for arithmetic linking num-
bers is proved. In that preprint, a connection is made also to the class invariant
homomorphism from additive Galois module structure theory. A pro-p version of
this homomorphism is related to p-adic L-functions and heights, providing some
evidence for the speculation from [17].

4In fact, every cohomology class in H3(A, Z/nZ) can be written as this form (cf. [25, Sect. 1.7]).
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2 The Arithmetic Chern–Simons Action: Boundaries

We keep the notations as in the introduction. We will now employ a cocycle
c ∈ Z3(A, Z/nZ) to associate a 1

n Z/Z-torsor to each point of Y loc
S (A) in an AS-

equivariant manner. We use the notation

Ci
S :=

∏

v∈S

Ci (πv, Z/nZ)

for the continuous cochains,

Zi
S :=

∏

v∈S

Z i (πv, Z/nZ) ⊂ Ci
S

for the cocycles, and

Bi
S :=

∏

v∈S

Bi (πv, Z/nZ) ⊂ Zi
S ⊂ Ci

S

for the coboundaries. In particular, we have the coboundary map (see Appendix
“Appendix 1: Conjugation on Group Cochains” for the sign convention)

d : C2
S → Z3

S.

Let ρS := (ρv)v∈S ∈ Y loc
S (A) and put

c ◦ ρS := (c ◦ ρv)v∈S,

c ◦ Ada := (c ◦ Adav
)v∈S

for a = (av)v∈S ∈ AS , where Adav
refers to the conjugation action. To define the

arithmetic Chern–Simons line associated to ρS , we need the intermediate object

H(ρS) := d−1(c ◦ ρS)/B2
S ⊂ C2

S/B2
S .

This is a torsor for

H 2
S :=

∏

v∈S

H 2(πv, Z/nZ) �
∏

v∈S

1

n
Z/Z

([25, Theorem (7.1.8)]). We then use the sum map

Σ :
∏

v∈S

1

n
Z/Z → 1

n
Z/Z
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to push this out to a 1
n Z/Z-torsor. That is, define

L(ρS) := Σ∗[H(ρS)]. (2.1)

The natural map H(ρS) → L(ρS) will also be denoted by the sum symbol Σ .
In fact, L extends to a functor fromMloc

S (A) to the category of 1
n Z/Z-torsors. To

carry out this extension, we just need to extend H to a functor to H 2
S -torsors. Accord-

ing to Appendices “Appendix 1: Conjugation on Group Cochains” and “Appendix 2:
Conjugation Action on Group Cochains: Categorical Approach”, for a = (av)v∈S ∈
AS and each v, there is an element hav

∈ C2(A, Z/nZ)/B2(A, Z/nZ) such that

c ◦ Adav
= c + dhav

.

Also,
havbv

= hav
◦ Adbv

+ hbv
.

Hence, given a : ρS → ρ′
S, so that ρ

′
S = Ada ◦ ρS , we define

H(a) : H(ρS) → H(ρ′
S)

to be the map induced by

x �→ x ′ = x + (hav
◦ ρv)v∈S.

Then

dx ′ = dx + (d(hav ◦ ρv))v∈S = (c ◦ ρv)v∈S + ((dhav ) ◦ ρv)v∈S = (c ◦ Adav ◦ ρv)v∈S .

So
x ′ ∈ d−1(c ◦ ρ′

S)/B2
S,

and by the formula above, it is clear that H is a functor.5 That is, ab will send x to

x + hab ◦ ρS,

while if we apply b first, we get

x + hb ◦ ρS ∈ H(Adb ◦ ρS),

which then goes via a to

5While the functor H does depend on the choices of ha , they are intrinsic to A, in that they are
cochains on A, not a priori related to the Galois representations. So we may regard them as part of
the data defining the field theory, similar to c.
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x + hb ◦ ρS + ha ◦ Adb ◦ ρS.

Thus,
H(ab) = H(a)H(b).

Defining
L(a) = Σ∗ ◦ H(a)

turns L into a functor from Mloc
S to 1

n Z/Z-torsors. Even though we are not explic-
itly laying down geometric foundations, it is clear that L defines thereby an AS-
equivariant 1

n Z/Z-torsor on Y loc
S (A), or a 1

n Z/Z-torsor on the stack Mloc
S (A).

We can compose the functor L with the restriction rS : MS(A) → Mloc
S (A) to get

an A-equivariant functor Lglob from YS(A) to 1
n Z/Z-torsors.

Lemma 2.1 Let ρ ∈ YS(A) and a ∈ Aut(ρ). Then Lglob(a) = 0.

Proof By assumption, Adaρ = ρ, and hence, dha ◦ ρ = 0. That is, ha ◦ ρ ∈ H 2(πS,

Z/nZ). Hence, by the reciprocity law for H 2(πS, Z/nZ) ([25, Theorem (8.1.17)]),
we get

Σ∗(ha ◦ ρ) = 0.

By the argument of [7, p. 439], we see that there is a 1
n Z/Z-torsor

L inv([ρ])

of invariant sections for the functor Lglob depending only on the orbit [ρ]. This is the
set of families of elements

xρ′ ∈ Lglob(ρ′)

as ρ′ runs over [ρ] with the property that every morphism a : ρ1 → ρ2 takes xρ1 to
xρ2 . Alternatively, L inv([ρ]) is the inverse limit of the Lglob(ρ′) with respect to the
indexing category [ρ].

Since
H 3(πS, Z/nZ) = 0

([25, Proposition (8.3.18)]), the cocycle c ◦ ρ is a coboundary

c ◦ ρ = dβ (2.2)

for β ∈ C2(πS, Z/nZ). This element defines a class

C Sc([ρ]) := Σ([i∗
S(β)]) ∈ L inv([ρ]). (2.3)

A different choice β′ will be related by

β′ = β + z
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for a 2-cocycle z ∈ Z2(πS, Z/nZ), which vanishes when mapped to L((ρ ◦ iv)v∈S)

because of the reciprocity sequence

0 H 2(πS, Z/nZ) H 2
S

∑
v invv 1

n Z/Z 0.

Thus, the classC Sc([ρ]) is independent of the choice of β and defines a global section

C Sc ∈ Γ (MS(A), Lglob).

Within the context of this paper, a ‘global section’ should just be interpreted as an
assignment of C Sc([ρ]) as above for each orbit [ρ].

3 The Arithmetic Chern–Simons Action: The p-adic Case

Now fix a prime p and assume all primes of F dividing p are contained in S. Fix a
compatible system (ζpn )n of p-power roots of unity, giving us an isomorphism

ζ : Zp � Zp(1) := lim←−
n

μpn .

In this section, we will be somewhat more careful with this isomorphism. Also, it
will be necessary to make some assumptions on the representations that are allowed.

Let A be a p-adic Lie group, e.g., GLn(Zp). Assume A is equipped with an open
homomorphism6 t : A → Γ := Z

×
p and define An to be the kernel of the composite

map
A → Z

×
p → (Z/pn

Z)× =: Γn.

Let
A∞ = ∩n An = Ker(t).

In this section, we denote by YS(A) the continuous homomorphisms

ρ : πS → A

such that t ◦ ρ is a powerχs of the p-adic cyclotomic characterχofπS by a p-adic unit
s. (We note that s itself is allowed to vary.) Of course this condition will be satisfied
by any geometric Galois representations or natural p-adic families containing one.

As before, A acts on YS(A) by conjugation. But in this section, we will restrict
the action to A∞ and use the notationMS(A) for the corresponding action groupoid.

Similarly, we denote by Y loc
S the collections of continuous homomorphisms

6For example, one may choose t to be the determinant when A = GLn(Zp).
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ρS := (ρv : πv → A)v∈S

for which there exists a p-adic unit s such that t ◦ ρv = (χ|πv
)s for all v. Mloc

S (A)

then denotes the action groupoid defined by the product (A∞)S of the conjugation
action on the ρS .

We now fix a continuous cohomology class

c ∈ H 3(A, Zp[[Γ ]]),

where
Zp[[Γ ]] = lim←−

n

Zp[Γn].

We represent c by a cocycle in Z3(A, Zp[[Γ ]]), which we will also denote by c.
Given ρ ∈ YS(A), we can view Zp[[Γ ]] as a continuous representation of πS , where
the action is left multiplication via t ◦ ρ. We denote this representation by Zp[[Γ ]]ρ.
The isomorphism ζ : Zp � Zp(1), even though it’s not πS-equivariant, does induce
a πS-equivariant isomorphism

ζρ : Zp[[Γ ]]ρ � Λ := Zp[[Γ ]] ⊗ Zp(1).

Here, Zp[[Γ ]] written without the subscript refers to the action via the cyclotomic
character of πS (with s = 1 in the earlier notation). The isomorphism is defined as
follows. If t ◦ ρ = χs , then we have the isomorphism

Zp[[Γ ]] � Zp[[Γ ]]ρ
that sends γ to γs . On the other hand, we also have

Zp[[Γ ]] � Λ

that sends γ to γ ⊗ γζ(1). Thus, ζρ can be taken as the inverse of the first followed
by the second.

Combining these considerations, we get an element

ζρ ◦ ρ∗c = ζρ ◦ c ◦ ρ ∈ Z3(πS,Λ).

Similarly, if ρS := (ρv)v∈S ∈ Y loc
S , we can regard Zp[[Γ ]]ρv

as a representation of πv

for each v, and we get πv-equivariant isomorphisms

ζρv
: Zp[[Γ ]]ρv

� Λ.

We also use the notation
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ζρS :
∏

v∈S

Zp[[Γ ]]ρv
�

∏

v∈S

Λ

for the isomorphism given by the product of the ζρv
.

It will be convenient to again denote by Ci
S(Λ) the product

∏
v∈S Ci (πv,Λ) and

use the similar notations Zi
S(Λ), Bi

S(Λ) and Hi
S(Λ). The element ζρS ◦ ρ∗

Sc is an
element in Z3

S(Λ). We then put

H(ρS,Λ) := d−1(ζρS ◦ ρ∗
Sc)/B2

S(Λ) ⊂ C2
S(Λ)/B2

S(Λ).

This is a torsor for
H 2

S (Λ) �
∏

v∈S

H 2(πv,Λ).

The augmentation map
a : Λ → Zp(1)

for each v can be used to push this out to a torsor

a∗(H(ρS,Λ))

for the group ∏

v∈S

H 2(πv, Zp(1)) �
∏

v∈S

Zp,

which then can be pushed out with the sum map

Σ :
∏

v∈S

Zp → Zp

to give us a Zp-torsor

L(ρS, Zp) := Σ∗(a∗(H(ρS,Λ))).

As before, we can turn this into a functor L(·, Zp) on Mloc
S (A), taking into account

the action of (A∞)S . By composing with the restriction functor

rS : MS(A) → Mloc
S (A),

we also get a Zp-torsor Lglob(·, Zp) on MS(A).
We now choose an element β ∈ C2(πS,Λ) such that

dβ = ζρ ◦ c ◦ ρ ∈ Z3(πS,Λ) = B3(πS,Λ)

to define the p-adic Chern–Simons action
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C Sc([ρ]) := Σ∗a∗i∗
S(β) ∈ Lglob([ρ], Zp).

The argument that this action is independent of β and equivariant is also the same as
before, giving us an element

C Sc ∈ Γ (MS(A), Lglob(·, Zp)).

4 Towards Computation: The Decomposition Formula

In this section, we indicate how onemight go about computing the arithmetic Chern–
Simons invariant in the unramified case with finite coefficients. That is, we assume
that we are in the setting of Sect. 1. We provide a proof of Theorem 1.1 in a slightly
generalized setting.

Let X = Spec(OF ) and M a continuous representation of π = π1(X, b) regarded
as a locally constant sheaf on X . Assume M = lim←− Mi with Mi finite representations
such that there is a finite set T of primes in OF containing all primes dividing the
order of any |Mi |. Let U = Spec(OF, T ), πT = π1(U, b), and πv = Gal(Fv/Fv) for
a prime v of F . Fix natural homomorphisms

κT : πT → π and κv : πv → π.

We denote by ρT (resp. ρv) the composition of κT (resp. kv) with

ρ ∈ Homcont (π, M).

Finally, we write Pv for the maximal ideal of OF corresponding to the prime v and
rv for the restriction map of cochains or cohomology classes from πT to πv .

Denote by C∗
c (πT , M) the complex defined as a mapping fiber

C∗
c (πT , M) := Fiber[C∗(πT , M) →

∏

v∈T

C∗(πv, M)].

So
Cn

c (πT , M) = Cn(πT , M) ×
∏

v∈T

Cn−1(πv, M),

and
d(a, (bv)v∈T ) = (da, (rv(a) − dbv)v∈T )

for (a, (bv)v∈T ) ∈ Cn
c (πT , M). As in [10, p. 18–19], since there are no real places in

F , there is a quasi-isomorphism

C∗
c (πT , M) � RΓ (X, j! j∗(M)),
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where j : U → X is the inclusion. But there is also an exact sequence

0 j! j∗(M) M i∗i∗(M) 0,

where i : T → X is the closed immersion complementary to j . Thus, we get an exact
sequence

∏
v∈T

H 2(kv, i∗(M)) H 3(C∗
c (πT , M)) H 3(X, M)

∏
v∈T

H 3(kv, i∗(M)),

where kv := Spec(OF/Pv), from which we get an isomorphism

H 3
c (U, M) := H 3(C∗

c (πT , M)) � H 3(X, M),

since kv has cohomological dimension 1.
We interpret this as a statement that the cohomology of X

H 3(X, M)

can be identified with cohomology of a ‘compactification’ of U with respect to
the ‘boundary,’ that is, the union of the Spec(Fv) for v ∈ T . This means that a
class z ∈ H 3(X, M) is represented by (a, (bv)v∈T ), where a ∈ Z3(πT , M) and bv ∈
C2(πv, M) in such a way that

dbv = rv(a).

There is also the exact sequence

H 2(πT , M)
∏
v∈T

H 2(πv, M) H 3
c (U, M) 0,

the last zero being H 3(U, M) := H 3(πT , M) = 0. We can use this to compute the
invariant of z when M = μn . (Note that F contains μn and hence it is in fact iso-
morphic to the constant sheaf Z/nZ.) We have to lift z to a collection of classes
xv ∈ H 2(πv,μn) and then take the sum

inv(z) =
∑

v

invv(xv).

This is independent of the choice of the xv by the reciprocity law (cf. [20, p. 541]).
The lifting process may be described as follows. The map

∏

v∈T

H 2(πv,μn) −→ H 3
c (U,μn)
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just takes a tuple of 2-cocycles (xv)v∈T to (0, (xv)v∈T ). But by the vanishing of
H 3(U,μn), given z = (a, (b−,v)v∈T ), we can find a global cochain b+ ∈ C2(πT ,μn)

such that db+ = a. We then put

xv := b−,v − rv(b+).

Note that (0, (xv)v∈T ) is cohomologous to z = (a, (b−,v)v∈T ).
As before, we start with a class c ∈ H 3(A,μn) � H 3(A, Z/nZ). Then, we get a

class
z = j3 ◦ ρ∗(c) ∈ H 3(X,μn),

where j i : Hi (π,μn) → Hi (X,μn) is the natural map from group cohomology to
étale cohomology (cf. [22, Theorem 5.3 of Chap. I]). Letw be a cocycle representing
ρ∗(c) ∈ H 3(π,μn). Let Iv ⊂ πv be the inertia subgroup.We now can trivialise κ∗

v(w)

by first doing it over πv/Iv to which it factors. That is, the b−,v as above can be chosen
as cochains factoring through πv/Iv . This is possible because H 3(πv/Iv,μn) = 0.
The class (κ∗

T (w), (b−,v)v∈T ) chosen in this way is independent of the choice of the
b−,v . This is because H 2(πv/Iv,μn) is also zero. The point is that the representation of
z as (κ∗

T (w), (b−,v)v∈T )with unramified b−,v is essentially canonical.More precisely,
given κ∗

v(w)|(πv/Iv) ∈ Z3(πv/Iv,μn), there is a canonical

b−,v ∈ C2(πv/Iv,μn)/B2(πv/Iv,μn)

such that db−,v = κ∗
v(w)|(πv/Iv). This can then be lifted to a canonical class in

C2(πv,μn)/B2(πv,μn).

Nowwe trivialise κ∗
T (w) globally as above, that is, by the choice of b+ ∈ C2(πT ,μn)

such that db+ = κ∗
T (w). Then (b−,v − b+,v)v∈T will be cocycles, where b+,v :=

rv(b+), and we compute

inv(z) =
∑

v∈T

invv(b−,v − b+,v).

Thus, for a given homomorphism ρ : π → A, it suffices to find various trivialisations
of ρ∗(c) after restriction to πT and to πv for v ∈ T .

• We are free to choose a finite set T of primes in a convenient way as long as T
contains all primes dividing n. And then, for any v ∈ T , solve

db−,v = ρ∗
v(c) ∈ Z3(πv,μn).

In fact, b−,v comes from an element in C2(πv/Iv,μn) by inflation, so b−,v is
unramified.

• For chosen T , solve
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db+ = ρ∗
T (c) ∈ Z3(πT ,μn),

and we set b+,v = rv(b+) ∈ C2(πv,μn).

Then, we have the decomposition formula

C Sc([ρ]) =
∑

v∈T

invv([b−,v − b+,v]). (†)

In the case M = μn and S = T , a finite set of primes in OF containing all primes
dividing n, a simple inspection implies that

∑

v∈T

invv([b−,v − b+,v]) =
∑

v∈S

(βv) − C Sc([ρ ◦ κS]).

Thus, the formula (†) provides a proof of Theorem 1.1. In general, b−,v and b+,v

are not cocycles but their difference is. This corresponds to the fact that
∑
v∈S

(βv) and

C Sc([ρ ◦ κS]) are not an element of 1
n Z/Z but their difference is.

A few remarks about this method:

1. Underlying this is the fact that the compact support cohomology H 3
c (U,μn) can

be computed relative to the somewhat fictitious boundary of U or as relative coho-
mology H 3(X, T ;μn). Choosing the unramified local trivialisations corresponds to
this latter representation.

2. To summarise the main idea again, starting from a cocycle z ∈ Z3(π,μn) we
have canonical unramified trivialisations at each v and a non-canonical global rami-
fied trivialisation.

The invariant of z measures the discrepancy between the unramified local trivial-
isations and a ramified global trivialisation.

The fact that the non-canonicality of the global trivialisation is unimportant fol-
lows from the reciprocity law (cf. [20, p. 541]).

3. The description above that computes the invariant by comparing the local
unramified trivialisation with the global ramified one is a precise analogue of the
so-called ‘gluing formula’ for Chern–Simons invariants when applied to ρ∗(c) for a
representation ρ : π → Z/nZ and a 3-cocycle c on Z/nZ.

5 Examples

In this section, we provide several explicit examples of computation of C Sc([ρ]). We
still assume that we are in the setting of Sect. 1.
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5.1 General Strategy

To compute the arithmetic Chern–Simons invariants, we essentially use the decom-
position formula (†) in Sect. 4. The most difficult part in the above method is finding
an element b+ ∈ C2(πT ,μn) that gives a global trivialisation.

To simplify our problem, we assume that a cocycle c ∈ Z3(A,μn) is defined by
the cup product:

c = α ∪ ε,

where α ∈ Z1(A,μn) = Hom(A,μn) and ε ∈ Z2(A, Z/nZ) is a cocycle represent-
ing an extension

E : 0 Z/nZ Γ
ϕ

A 1.

We note that if we take a section σ of ϕ that sends eA to eΓ , then

ε(x, y) = σ(x) · σ(y) · σ(xy)−1 ∈ Ker ϕ = Z/nZ

(cf. [30, p. 183]). As discussed in Sect. 1, this assumption is vacuous if A = Z/nZ.
To find b−,v and b+,v in the decomposition formula (†), we first trivialise ε in πv

and πT , respectively. Namely, let

dγ−,v = ρ∗
v(ε) and dγ+ = ρ∗

T (ε).

Here, the precise choice of γ−,v will be unimportant, except it should be unramified
and normalised so that γ−,v(eA) = 0. Hence, we will be inexplicit below about this
choice. Again, let γ+,v = rv(γ+). Then, we have

d(ρ∗
v(α) ∪ γ−,v) = −ρ∗

v(α) ∪ dγ−,v = −ρ∗
v(α ∪ ε) = −ρ∗

v(c)

and
d(ρ∗

T (α) ∪ γ+) = −ρ∗
T (α) ∪ dγ+ = −ρ∗

T (α ∪ ε) = −ρ∗
T (c).

Therefore, we can find

b−,v = −ρ∗
v(α) ∪ γ−,v and b+,v = rv(b+) = rv(−ρ∗

T (α) ∪ γ+) = −ρ∗
v(α) ∪ γ+,v.

In summary, we get the following formula.

Theorem 5.1 For ρ and c as above, we have

C Sc([ρ]) := C S[c]([ρ]) =
∑

v∈T

invv(ρ
∗
v(α) ∪ ψv), (5.1)

where ψv = γ+,v − γ−,v ∈ Z1(πv, Z/nZ) = H 1(πv, Z/nZ) = Hom(πv, Z/nZ).



Arithmetic Chern–Simons Theory II 99

So, to evaluate the arithmetic Chern–Simons action, we need to study

• a trivialisation of certain pullback of a 2-cocycle ε, and
• the local invariant of a cup product of two characters on πv .

In the following two subsections, we will see how this idea can be realised.

5.2 Trivialisation of a Pullback of ε

As before, let ε ∈ Z2(A, Z/nZ) denote a 2-cocycle representing an extension

E : 0 Z/nZ Γ
ϕ

A

σ

1

with a section σ such that σ(eA) = eΓ .
Suppose that we have the following commutative diagram of group homomor-

phisms:

Ker( f )

f̃ |Ker( f )

Ã

f
f̃

Z/nZ Γ
ϕ

A.

(�)

Then, we can easily trivialise f ∗(ε) ∈ Z2( Ã, Z/nZ) using the following lemma.

Lemma 5.2 For any g ∈ Ã, let

γ(g) := σ( f (g)) · f̃ (g)−1.

Then, γ(g) ∈ Ker(ϕ) = Z/nZ and dγ = f ∗(ε) ∈ Z2( Ã, Z/nZ). Furthermore, we
have γ(eÃ) = 0 and γ(g · h) = γ(g) + γ(h) for any g, h ∈ Ker( f ).

Proof First,we note thatγ(g) ∈ Ker(ϕ) becauseϕ ◦ σ is the identity andϕ ◦ f̃ = f .
By definition and the fact that Ker(ϕ) is in the center of Γ ,

dγ(x, y) = γ(y) · γ(xy)−1 · γ(x) = γ(y) · γ(x) · γ(xy)−1

= {σ( f (y)) · f̃ (y)−1} · {σ( f (x)) · f̃ (x)−1} · {σ( f (xy)) · f̃ (xy)−1}−1

= {σ( f (y)) · f̃ (y)−1} · σ( f (x)) · f̃ (x)−1 · f̃ (x) · f̃ (y) · σ( f (xy))−1

= σ( f (x)) · {σ( f (y)) · f̃ (y)−1} · f̃ (y) · σ( f (xy))−1

= σ( f (x)) · σ( f (y)) · σ( f (x · y))−1

= f ∗(ε)(x, y).
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Therefore the first claim follows. Also, γ(eÃ) = 0 because σ( f (eÃ)) = σ(eA) = eΓ

and f̃ (eÃ) = eΓ . Finally, for any g ∈ Ker( f ), γ(g) = − f̃ (g), so it is a homomor-
phism because f̃ is a homomorphism and the image of f̃ |Ker( f ), which is contained
in Z/nZ, is abelian.

Remark 5.3 In Diagram (�), we can take Ã = Γ , f = ϕ and f̃ is the identity. For
the rest of this section, we always fix such a choice.

5.3 Local Invariant Computation

In this subsection, we investigate several conditions to ensure

invv(φ ∪ ψ) �= 0 ∈ 1

n
Z/Z,

where φ ∈ H 1(πv,μn)=Hom(πv,μn) and ψ ∈ Z1(πv, Z/nZ) = Hom(πv, Z/nZ).

Lemma 5.4 Suppose that φ is unramified, i.e., φ factors through πv/Iv . Then,

invv(φ ∪ ψ) = 0

if one of the following holds.

1. φ = 1, the trivial character.
2. ψ is unramified.

Proof If φ = 1, then φ ∪ ψ = 0 ∈ H 2(πv,μn). Thus, invv(φ ∪ ψ) = 0. Also, if ψ is
unramified, thenφ ∪ ψ arises from H 2(πv/Iv,μn) by inflation, which is 0. Therefore,
φ ∪ ψ = 0 ∈ H 2(πv,μn) and the result follows.

If v does not divide n, then we can prove more.

Lemma 5.5 Assume that v does not divide n. And assume that φ is an unramified
generator of Hom(πv,μn), i.e., a generator of Hom(πv/Iv,μn). Then,

invv(φ ∪ ψ) �= 0 ⇐⇒ ψ is ramified.

Proof Using a fixed primitive nth root ζ of unity, we fix an isomorphism

η : Z/nZ μn

a ζa

and using η, we get natural isomorphisms
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Hom(πv,
1
n Z/Z) Hom(πv, Z/nZ)

1
n ·(−)

η◦(−)

Hom(πv,μn).

η−1◦(−)

In this proof, we will regard φ as an element of Hom(πv,
1
n Z/Z) and ψ as one of

Hom(πv,μn) using the above isomorphisms.

If ψ is unramified, invv(φ ∪ ψ) = 0 by the above lemma. Since μn ⊂ Fv , by
the Kummer theory we can find an element a ∈ F∗

v such that δ(a) = ψ, where δ :
F∗

v /(F∗
v )n � H 1(πv, μn) = Hom(πv,μn). Let

ordv : F∗
v −→ Z

be the normalized valuation on F∗
v that sends a uniformiser � of OFv

to 1. Then,

ψ is ramified ⇐⇒ ordv(a) �≡ 0 (mod n).

Since φ is an unramified7 generator, φ(Frob) = t
n for some t ∈ (Z/nZ)×, where

Frob is a lift of the Frobenius in πv/Iv to πv . Then,

invv(φ ∪ ψ) = invv(φ ∪ δ(a)) = φ(Frobordv(a)) = t · ordv(a)

n
.

Combining the above two results, we obtain

ψ is ramified ⇐⇒ invv(φ ∪ ψ) �= 0

as desired.

Remark 5.6 When n = 2, the above lemmas are enough for the computation of
local invariants.

5.4 Construction of Examples

From now on, we assume that n = 2.
As a corollary of Sect. 5.2, if we have the following commutative diagrams

7This is where our assumption that v � n is used.
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πT
ρ̃+

κT

ρ+

Γ

ϕ

πv

κv

ρ̃v

ρv

Γ

ϕand

π
ρ

A π
ρ

A,

(��)

then we get
γ+ = (ρ̃+)∗(γ) and γ−,v = (ρ̃v)

∗(γ).

Thus we can explicitly compute C Sc([ρ]) using the previous strategy when we
are in the following situation:

Assumption 5.7

1. F is a totally imaginary field.
2. c = α ∪ ε with α : A → μ2 surjective, and ε representing an extension

E : 0 Z/2Z Γ A 1.

3. There are Galois extensions of F :

F ⊂ Fα ⊂ Fur ⊂ F+

such that

• Gal(Fur/F) is isomorphic to A and Fur/F is unramified everywhere.
• Gal(F+/F) is isomorphic to Γ and F+/F is unramified at the primes above
2.

• Fα is the fixed field of the kernel of the composition

Gal(Fur/F)
∼−→ A

α−→ μ2

and hence we get a commutative diagram

A α

π

ρ

Gal(Fur/F)

�

Gal(Fα/F)
�

μ2.

Suppose we are in the above assumption. Let S be the set of primes ofOF ramified
in F+, and S2 the set of primes ofOF dividing 2. Then by our assumption, S ∩ S2 = ∅.
Let T = S ∪ S2. Then, we can find a global trivialisation γ+ of ρ∗

T (ε) from the
following commutative diagram
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Z/2Z � Ker(φ) = Gal(F+/Fur)

φ̃|Ker(φ)=Id

Gal(F+/F)

φ
φ̃=Id

Z/2Z Γ � Gal(F+/F) A � Gal(Fur/F).

For each v ∈ T , let D(v) be the decomposition group of Gal(F+/F) at v. In other
words,

D(v) = {g ∈ Gal(F+/F) : gv = v} � Gal(F+
ν /Fv),

where ν is a prime of F+ lying above v. And let I (v) be the inertia subgroup of
D(v). Then, I (v) = 0 if and only if v divides 2. Thus,

γ+,v is unramified ⇐⇒ v ∈ S2.

Since ψv := γ+,v − γ−,v and we always take γ−,v unramified,

ψv is unramified ⇐⇒ v ∈ S2.

Furthermore,
ρ∗

v(α) is trivial ⇐⇒ f (D(v)) = 0,

where f is the natural projection fromGal(F+/F) toGal(Fα/F). And f (D(v)) = 0
exactly occurs when v splits in Fα. Note that ρ∗

v(α) is always an unramified generator
of Hom(πv,μ2) if it is not trivial.

Now we are ready to compute the arithmetic Chern–Simons invariants.

Theorem 5.8 Suppose we are in Assumption 5.7. Then,

C Sc([ρ]) =
∑

v∈T

invv(ρ
∗
v(α) ∪ ψv) = r

2
mod Z,

where ψv = γ+,v − γ−,v and r is the number of primes in S which are inert in Fα.

Proof The first equality follows from Theorem5.1. Thus, it suffices to compute
invv(ρ

∗
v(α) ∪ ψv) for v ∈ T . By Lemma5.4, invv(ρ

∗
v(α) ∪ ψv) = 0 if either ρ∗

v(α)

is trivial or ψv is unramified. By the above discussion, ρ∗
v(α) is trivial if and

only if f (D(v)) = 0, i.e., v splits in Fα; and ψv is unramified if and only if
v ∈ S2. Furthermore, if ρ∗

v(α) is not trivial and ψv is ramified, then by Lemma5.5,
invv(ρ

∗
v(α) ∪ ψv) = 1

2 . Thus the result follows.

Therefore to provide an example of calculation of the arithmetic Chern–Simons
invariants, it suffices to construct a tower of fields satisfying Assumption 5.7, which
is essentially the embedding problem in the inverse Galois theory. Instead, we will
consider the similar problems over Q, which are much easier to solve (or find from
the table). Then, we will construct a tower satisfying Assumption 5.7 from a tower
of fields over Q.
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Assumption 5.9 Suppose we have a number field L with its subfield K such that

1. Gal(L/Q) � Γ .
2. dL , the (absolute) discriminant of L , is an odd integer.8

3. Gal(K/Q) � A.
4. Q(

√
D) is a quadratic subfield of K , where D is a divisor of dK .9

5. K/Q(
√

D) is unramified at any finite primes.

Then, we have the following.

Proposition 5.10 Let F = Q(
√−|D| · t) be an imaginary quadratic field, where t

is a positive squarefree integer prime to D so that F ∩ L = Q. Then, there is a tower
of fields F ⊂ Fur ⊂ F+ satisfies Assumption 5.7. In fact, we can take

Fur = K F and F+ = L F.

Proof First, it is clear that F is totally imaginary. Next, since F ∩ L = Q

Gal(L F/F) � Gal(L/Q) � Γ and Gal(K F/F) � Gal(K/Q) � A.

Since the discriminant of L is odd, L/K is unramified at the primes above 2, and so
is L F/K F . Finally, it suffices to show that K F/F is unramified everywhere. Since
K/Q(

√
D) is unramified everywhere, K/Q is only ramified at the primes dividing

D. (Note that the discriminant of K is odd, hence it is unramified at 2.) Moreover,
the ramification degree of any prime divisor p of D is 2, and the same is true for
F/Q. Since p is odd, K F/F is unramified at the primes above p by Abhyankar’s
lemma [5, Theorem 1], which implies our claim.

Remark 5.11 Since the ramification indices of any prime divisor p of D are 2 in
both F/Q and K/Q, we can use Abhyankar’s lemma in both directions. (Note that
our assumption implies that D is odd.) In other words, K F/K is always unramified
at the primes dividing D.

The remaining part to check Assumption5.7 is the choice of Fα. Let

B := {F1, . . . , Fm}

be the set of quadratic subfields of Fur. Then, there is one-to-one correspondence
between the set of surjective homomorphisms Gal(Fur/F) → μ2 and B. Therefore

8We may consider when dL is even. Then later, it is not clear that F L/F K is unramified at the
primes above 2. Some choices of t (for F) can make it ramified. Then, it is hard to determine the
value of local invariants unless 2 splits in Fα/F .
9Here, we always take that dK is odd because we cannot use Abhyankar’s lemma when p = 2, and
hence we may not remove ramification in the extension F K/F at the primes above 2. In some nice
situation, we may directly prove that F(

√
D)/F is unramified at the primes above 2 even though

D is even. If so, our assumption on dK can be removed.
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m = #Hom(A,μ2) − 1 and we can define αi : A → μ2 so that Fαi = Fi due to the
(chosen) isomorphism Gal(Fur/F) � A.

Now, suppose Fα = F(
√

M) ⊂ Fur for some divisor M of D. LetQ1 = Q(
√

M)

andQ2 = Q(
√

N ), where N = (−|D| · t)/M . Then, we have the following commu-
tative diagram:

Fα = F(
√

M) = F(
√

N )

unramified

Q1 = Q(
√

M) F = Q(
√

M N ) Q2 = Q(
√

N )

Q

For a prime p, let ℘ denote a prime of OF lying above p. We want to understand the
splitting behaviour of ℘ in Fα.

Lemma 5.12 Let p be an odd prime.

1. Assume that p divides Dt. Then

℘ is inert in Fα ⇐⇒ p is inert either in Q1 or in Q2.

2. If p is inert in F, then ℘ always splits in Fα.
3. Assume that p splits in F. Then

℘ splits in Fα ⇐⇒ p splits in Q1.

Proof

1. In this case, p is ramified in F , and p is ramified either in Q1 or in Q2. Without
loss of generality, let p is ramified in Q2. Then, ℘ is inert in Fα if and only if p
is inert in Q1 from the above commutative diagram.

2. Let
(

a
b

)
denote the Legendre symbol. If p is inert in F , then

(
M N

p

) = −1. Therefore

either
(

M
p

) = 1 or
(

N
p

) = 1. Without loss of generality, let
(

M
p

) = 1 and
(

N
p

) = −1.
Then, p splits in Q1 and hence there are at least two primes in Fα above p. Since
℘ is the unique prime of F above p, ℘ splits in Fα.

3. Since
(

M N
p

) = 1, either
(

M
p

) = (
N
p

) = 1 or
(

M
p

) = (
N
p

) = −1. If
(

M
p

) = −1, then
there is only one prime in Q1 above p. Thus, there are at most two primes in
Fα above p. Since p already splits in F , ℘ is inert in Fα. On the other hand, if(

M
p

) = 1, then p splits completely in Fα because p splits completely both in Q1

and F . Thus, ℘ splits in Fα.

Let DL = dL/d2
K be the norm (toQ) of the relative discriminant of L/K . Then, L/K

is precisely ramified at the primes dividing DL , and hence
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S ⊂ {p ∈ Spec(OF ) : p | DL}.

(Note that S is the set of primes in OF that ramify in F+.) Let s be the number of
prime divisors of (DL , D), which are inert either in Q1 or in Q2. Then, we have the
following.

Theorem 5.13 Assume that we have ρ and c as above. Then,

C Sc([ρ]) ≡ s

2
(mod Z).

Proof First, we show that

S = {p ∈ Spec(OF ) : p | DL but p � t}.

For a prime divisor p of DL which does not divide t , we show that K F/K is
unramified at any primes above p, which implies that L F/K F is ramified at the
primes above p. If p does not divide D, then this is done because p is unramified
in F . On the other hand, if p divides D, K F/K is unramified at the primes above
p by Remark 5.11. Now, assume that p divides (DL , t), and let ℘ be a prime of
OK lying above p. Then, ℘ is ramified both in L/K and in K F/K . (Note that since
(t, D) = 1, K/Q is unramified at p but F/Q is ramified at p.) Therefore by the same
argument as in Remark 5.11, L F/K F is unramified at the primes above p, which
proves the above claim.

Next, by Theorem 5.8 it suffices to compute the number of primes in S which are
inert in Fα. Let ℘ ∈ S be a prime above an odd prime p. Assume that p does not
divide D. (Then p is unramified in F .) If p is inert in F , then ℘ always splits in Fα

by Lemma 5.12. If p splits in F and pOF = ℘ · ℘ ′, then℘ is inert (in Fα) if and only
if ℘ ′ is inert. Therefore to compute the invariant, the contribution from such split
primes can be ignored. So, we may assume that p divides D. Then, there is exactly
one (ramified) prime ℘ in OF above p, and our claim follows from Lemma5.12.

We remark that the computation of s is completely easy because Q1/Q and Q2/Q

are just quadratic fields. And this also illustrates that we only need information on
the primes dividing (DL , D) for the computation.

5.5 Case 1: Cyclic Group

Let A = Z/2Z, and Γ = Z/4Z. Then, we can easily find Galois extensions L/K/Q

in Assumption 5.9 by the theory of cyclotomic fields.
Let p be a prime congruent to 1 modulo 4. Then, we can take L as the degree 4

subfield of Q(μp), and K = Q(
√

p). Moreover, dL = p3 and dK = p.
Let F = Q(

√−p · t), where t is a positive squarefree integer prime to p. (Then,
F ∩ L = Q.)
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Proposition 5.14 Let ρ and c be chosen so that Fα = Fur = F K and F+ = F L.
Then,

C Sc([ρ]) = 1

2
⇐⇒

(
t

p

)
= −1.

Proof By Theorem 5.13, it suffices to check whether p is inert in Q(
√−t). If it is

inert, then C Sc([ρ]) = 1
2 , and 0 otherwise. Since p ≡ 1 (mod 4), the result follows.

5.6 Case 2: Non-cyclic Abelian Group

Let A = V4 := Z/2Z × Z/2Z, the Klein four group, and Γ = Q8 = Q, the quater-
nion group. To find Galois extensions L/K/Q in Assumption 5.9, we first study
quaternion extensions of Q in general.

Proposition 5.15 Let L/Q be a Galois extension whose Galois group is isomorphic
toQ. Suppose that dL is odd. Let K be a subfield of L with Gal(L/K ) � Z/2Z. Then,

1. K = Q(
√

d1,
√

d2) for some positive squarefree d1 and d2.
2. d1 ≡ d2 ≡ 1 (mod 4).
3. Let p be a prime divisor of d1d2. Then, p divides DL := dL/d2

K .

Proof Since K is a subfield of L ,dK is also odd.And sinceQhas a unique subgroupof
order 2, which is normal, K/Q is Galois andGal(K/Q) � Z/2Z × Z/2Z. Therefore
K = Q(

√
d1,

√
d2), where d1 and d2 are products of prime discriminants. If L is

totally real, then K must be totally real as well. If L is not totally real, then the
complex conjugation generates a subgroup of Gal(L/Q) of order 2. Since Q has a
unique subgroup of order 2, K must be a fixedfield of the complex conjugation,which
implies that K is totally real. So, d1 and d2 can be taken as positive squarefree integers.
Moreover, since they are products of prime discriminants and odd, d1 ≡ d2 ≡ 1
(mod 4).

Finally, let p be a prime divisor of d1, which does not divide d2. Note that
Q(

√
d1) ⊂ K ⊂ L and L/Q(

√
d1) is a cyclic extension of degree 4. Since p does

not divide d2, Q(
√

d2)/Q is unramified at p and hence K/Q(
√

d2) is ramified at the
primes dividing p. By [19, Corollary 3], L/K is ramified at the primes above p and
hence p divides DL . By the same argument, the claim follows when p is a divisor
of d2, which does not divide d1. Let p be a prime divisor of (d1, d2). Then, since

K = Q(
√

d1,
√

d2) = Q(
√

d1,
√

d1d2) = Q(
√

d1,
√

d1d2
p2 ) and p does not divide d1d2

p2 ,

the result follows by the same argument as above.

Now, let d1 and d2 be two squarefree positive integers such that

• d1 ≡ d2 ≡ 1 (mod 4).
• (d1, d2) = 1.10

10This is not a vacuous condition. In fact, there is a Q-extension L containing Q(
√
21,

√
33) [35].
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Let K = Q(
√

d1,
√

d2). Suppose that there is a number field L such that

• L/Q is Galois and Gal(L/Q) � Q.
• L contains K and the discriminant dL of L is odd.

Let F = Q(
√−d1d2 · t), where t is a positive squarefree integer prime to d1d2. Then

L ∩ F = Q because all quadratic subfields of L are contained in K , which is totally
real. Since Hom(A,μ2) is of order 4, there are three quadratic subfield of F K over
F :

F1 := F(
√

d1), F2 := F(
√

d2), and F3 := F(
√

d1d2) = F(
√−t).

Proposition 5.16 Let ρ and ci = αi ∪ ε be chosen so that Fαi = Fi , Fur = F K and
F+ = F L. Then,

C Sc1([ρ]) = 1

2
⇐⇒

∏

p|d1

(−d2 · t

p

)
×

∏

p|d2

(
d1
p

)
= −1.

C Sc2([ρ]) = 1

2
⇐⇒

∏

p|d1

(
d2
p

)
×

∏

p|d2

(−d1 · t

p

)
= −1.

C Sc3([ρ]) = 1

2
⇐⇒

∏

p|d1d2

(−t

p

)
= −1.

Proof By the above lemma and Theorem 5.13, it suffices to compute the number of
prime divisors of d1d2, which are inert in Q1 or in Q2.

First, compute C Sc1([ρ]). In this case, Q1 = Q(
√

d1) and Q2 = Q(
√−d2 · t). If

p is a divisor of d1, it is inert in Q2 if and only if

(−d2 · t

p

)
= −1.

Therefore, the number of such prime divisors of d1 is odd if and only if

∏

p|d1

(−d2 · t

p

)
= −1.

Similarly, the number of prime divisors of d2, which are inert in Q1, is odd if and
only if

∏

p|d2

(
d1
p

)
= −1.

Thus, we have

C Sc1([ρ]) = 1

2
⇐⇒

∏

p|d1

(−d2 · t

p

)
×

∏

p|d2

(
d1
p

)
= −1.
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The remaining two cases can easily be done by the same method as above.

We can find Galois extensions L/K/Q satisfying the above assumptions from the
database. Here, we take L/K/Q from the LMFDB [36] as follows. Let

g(x) = x8 − x7 + 98x6 − 105x5 + 3191x4 + 1665x3 + 44072x2 + 47933x + 328171

be an irreducible polynomial over Q, and β be a root of g(x). Let

L = Q(β) and K = Q(
√
5,

√
29).

So, d1 = 5 and d2 = 29. Moreover, DL = 32 · 52 · 292.
Let F = Q(

√−5 · 29 · t), where t is a positive squarefree integer prime to 5 · 29.
Corollary 5.17 Let ρ and ci = αi ∪ ε be chosen as above. Then,

C Sc1([ρ]) = 1

2
⇐⇒

(
t

5

)
= −1 ⇐⇒ t ≡ ±2 (mod 5).

C Sc2([ρ]) = 1

2
⇐⇒

(
t

29

)
= −1.

C Sc3([ρ]) = 1

2
⇐⇒

(
t

5

)
= −

(
t

29

)
.

Now,we provide another example. Let L/K/Q from the the LMFDB [37] as follows.
Let

g(x) = x8 − x7 − 34x6 + 29x5 + 361x4 − 305x3 − 1090x2 + 1345x − 395

be an irreducible polynomial over Q, and β be a root of g(x). Let

L = Q(β) and K = Q(
√
5,

√
21).

So, d1 = 5 and d2 = 21. Moreover, DL = 32 · 52 · 72.
Let F = Q(

√−105 · t), where t is a positive squarefree integer prime to 105.

Corollary 5.18 Let ρ and ci = αi ∪ ε be chosen as above. Then,

C Sc1([ρ]) = 1

2
⇐⇒

(
t

5

)
= −1 ⇐⇒ t ≡ ±2 (mod 5).

C Sc2([ρ]) = 1

2
⇐⇒

(
t

3

)
= −

(
t

7

)
⇐⇒ 2, 8, 10, 11, 13, 19 (mod 21).

C Sc3([ρ]) = 1

2
⇐⇒

(
t

3

)
·
(

t

5

)
·
(

t

7

)
= −1.

Now, we take A = V4, but Γ = D4, the dihedral group of order 8. We found L/K/Q

from the LMFDB [38] as follows. Let
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g(x) = x8 − 3x7 + 4x6 − 3x5 + 3x4 − 3x3 + 4x2 − 3x + 1

be an irreducible polynomial over Q, and β be a root of g(x). Let

L = Q(β) and K = Q(
√−3,

√−7).

If we take D = 21, then this choice satisfies Assumption 5.9. Moreover, dL = 36 · 74
and dK = 32 · 72.

Let F = Q(
√−21 · t), where t is a positive squarefree integer prime to 21.

(Then, F ∩ L = Q because all imaginary quadratic subfields of L are Q(
√−3) and

Q(
√−7).) Since Hom(A,μ2) is of order 4, there are three quadratic subfield of F K

over F :
F1 := F(

√−3), F2 := F(
√−7), and F3 := F(

√
21).

Proposition 5.19 Let ρ and ci = αi ∪ ε be chosen so that Fαi = Fi , Fur = F K and
F+ = F L. Then,

C Sc1([ρ]) = 1

2
⇐⇒

(
t

3

)
= −1 ⇐⇒ t ≡ 2 (mod 3).

C Sc2([ρ]) = 1

2
for all t.

C Sc3([ρ]) = 1

2
⇐⇒

(
t

3

)
= 1 ⇐⇒ t ≡ 1 (mod 3).

Proof Since DL = 32, the result follows from Theorem 5.13.

5.7 Case 3: Non-abelian Group

Let A = S4, the symmetric group of degree 4. Then, H 1(A,μ2) � Z/2Z and
H 2(A, Z/2Z) � Z/2Z × Z/2Z. Thus, there is a unique surjective map α : A � μ2

and three non-trivial central extensions Γi of A by Z/2Z:

• Γ1 = 2+S4 � GL(2, F3), the general linear group of degree 2 over F3.
• Γ2 = 2−S4, the transitive group ‘16T 65’ in [33].
• Γ3 = 2detS4, corresponding to the cup product of the signature with itself.

Let εi be a cocycle representing the extension

0 Z/2Z Γi A = S4 0.

In this subsection, we will consider the first two cases. There are another descriptions
of the groups Γ1 and Γ2. Let
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E : 1 SL(2, F3) Γ F
×
3 � Z/2Z 0.

If E splits, then Γ � Γ1, otherwise Γ � Γ2.
Let c = α ∪ ε1. (So,Γ = Γ1.) SupposeQ ⊂ Q(

√
D) ⊂ K ⊂ L is a tower of fields

satisfying Assumption 5.9. Let F = Q(
√−|D| · t), where t is a squarefree integer

prime to D and greater than 1. Then, F ∩ L = F ∩ Q(
√

D) = Q. (The first equality
holds because Γ has a unique subgroup of order 24.)

Proposition 5.20 Let ρ and c be chosen so that Fα = F(
√

D), Fur = F K and
F+ = F L. Then,

C Sc([ρ]) = 0.

Proof Since the extension

E : 1 SL(2, F3) GL(2, F3) F
×
3 � Z/2Z 0

splits, Gal(L/Q) � Gal(L/Q(
√

D)) � Gal(Q(
√

D)/Q).
Let p be a prime divisor of (DL , D). By our assumption, p is odd. Let Ip be

an inertia subgroup of Gal(L/Q) � Γ = GL(2, F3). Since L/K and Q(
√

D)/Q are
ramified at p but K/Q(

√
D) is not, the ramification index of p in L/Q is 4, and

Ip � Z/2Z × Z/2Z.
On the other hand, since p is odd, L/Q is tamely ramified at p and hence Ip must

be cyclic, which is a contradiction. Therefore (DL , D) = 1 and hence the result
follows by Theorem 5.13.

We can find several examples of such towers from the LMFDB. Let

g1(x) = x8 − 4x7 + 7x6 + 7x5 − 51x4 + 50x3 + 61x2 − 107x − 83

g2(x) = x4 − x − 1

be irreducible polynomials overQ [39, 40], and let L (resp. K ) be the the splittingfield
of g1(x) (resp. g2(x)). Then, Gal(L/Q) � GL(2, F3) and Gal(K/Q) � S4. More-
over, dL = 324 · 28324 and dK = 28312. Thus, D = −283 satisfies Assumption 5.9.
Note that since the discriminant D of g2(x) is squarefree, K/Q(

√
D) is unramified

everywhere (cf. [12, p. 1]).
Let F = Q(

√−283 · t), where t is a squarefree integer prime to 283, and t > 1.

Corollary 5.21 Let ρ and c be chosen so that Fα = F(
√−283), Fur = F K and

F+ = F L. Then,
C Sc([ρ]) = 0.
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Now, we consider another case. Let c = α ∪ ε2. (So, Γ = Γ2.) Let L be the splitting
field of

f (x) = x16 + 5x15 − 790x14 − 4654x13 + 234254x12 + 1612152x11 − 33235504x10

− 263221982x9 + 2331584048x8 + 21321377994x7 − 74566280958x6 − 825209618478x5

+ 922238608476x4 + 13790070608536x3 − 6704968288135x2 − 80794234036917x + 87192014930816.

Let K be the splitting field of

g(x) = x4 − x3 − 4x2 + x + 2.

Then, Gal(L/Q) � Γ = Γ2 and Gal(K/Q) � S4 = A.11 (See [33, 34].)

Lemma 5.22 We have the following.

1. K/Q(
√
2777) is unramified everywhere.

2. Q(
√
2777) is a unique quadratic subfield of L.

3. Q(
√
2777) ⊂ K ⊂ L.

4. DL is a multiple of 2777, i.e., L/K is ramified at the primes above 2777.

Proof For simplicity, let E := Q(
√
2777) and p = 2777.

1. Since S4 has a unique subgroup of order 12, K has a unique quadratic subfield
K ′. Since the discriminant of g(x) is p, a prime, K ′ = E and K/E is unramified
everywhere (cf. [12, p. 1]).

2. Let βi be the roots of f (x). Then, L = ∪ Q(βi ). Since the discriminant of the
field Q[x]/( f (x)) is p12, Q(βi ) contains E , and so does L . On the other hand,
since Γ has also a unique subgroup of order 24, E is a unique quadratic subfield
of L .

3. Since

f (x) ≡ (x + 1372)4 · (x + 1791)4 · (x + 1822)4 · (x + 2653)4 (mod p),

the ramification index of p in Q(βi )/Q is 4. Since L = ∪ Q(βi ) and p is odd,
the ramification index of p in L/Q is 4 by Abhyankar’s lemma. Since L/Q is
tamely ramified at p, the inertia subgroup Ip of Gal(L/Q) � Γ is cyclic of order
4. Since Γ has a unique subgroup C of order 2, Ip contains C . Thus, L/M is
ramified at the primes above p, where M is the fixed field of C in L . Since E/Q

is also ramified at p, M/E is unramified at the primes above p, and hence M/E
is unramified everywhere.

11This example is provided us by Dr. Kwang–Seob Kim.
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L
ramified only at the primes above p

unique S4-subextension M

unramified everywhere A4-extension

unique quadratic subextension E
ramified only at p

Q

Now, it suffices to show that K = M . Let N = K ∩ M . Then, since K and M are
Galois over E , so is N . Also since the normal subgroups of Gal(K/E) � A4 �
Gal(M/E) are either {1}, V4 or A4,

Gal(N/E) � either {1}, Z/3Z or A4.

Note that the class group of E is Z/3Z. Let H be the Hilbert class field of E .
Then, the class group of H is V4. (This can easily be checked because the degree of
H/Q is small.) If Gal(N/E) � {1}, then E has two different degree 3 unramified
extensions given by K V4 and M V4 , which is a contradiction. IfGal(N/E) � Z/3Z,
then N = H and N has two different unramified V4 extensions K and M , which
is a contradiction. Thus, Gal(N/E) � A4 and hence K = N = M , as desired.

4. This is proved in (3).

Thus, we can take D = 2777. Let F = Q(
√−2777 · t) for a positive squarefree

integer t prime to 2777. Then, F ∩ L = Q because L has a unique quadratic subfield
Q(

√
2777), which is real.

Proposition 5.23 Let ρ and c be chosen so that Fα = F(
√

D), Fur = F K and
F+ = F L. Then,

C Sc([ρ]) = 1

2
⇐⇒

( −t

2777

)
=

(
t

2777

)
= −1.

Proof Since (DL , D) = 2777 and Fα = F(
√

D) = F(
√−t), the result follows

from Theorem 5.13.

Remark 5.24 Even in the non-abelian case,wehave infinite family of non-vanishing
arithmetic Chern–Simons invariants!

6 Application

In this section, we give a simple arithmetic application of our computation. Namely,
we show non-solvability of a certain case of the embedding problem based on our
examples of non-vanishing arithmetic Chern–Simons invariants.
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For an odd prime p, let p∗ = (−1)
p−1
2 p. Let

d1 =
s∏

i=1

p∗
i and d2 =

t∏

j=1

q∗
j ,

where pi , q j are distinct odd prime numbers, and d1, d2 > 0. Let

Ai :=
(

d2
pi

)
=

∏

1≤ j≤t

(
q j

pi

)
and B j :=

(
d1
q j

)
=

∏

1≤i≤s

(
pi

q j

)
.

Let
Δ(d1, d2) :=

∏

1≤i≤s

Ai and Δ(d2, d1) :=
∏

1≤ j≤t

B j .

Lemma 6.1 Δ(d1, d2) = Δ(d2, d1).

Proof Note that Δ(d1, d2) = ∏
1≤i≤s
1≤ j≤t

(pi

q j

)
. Since d1 is positive, the number of prime

divisors of d1 which are congruent to 3 modulo 4 is even. And the same is true for
d2. Thus by the quadratic reciprocity law,

Ai =
∏

1≤ j≤t

(
q j

pi

)
=

∏

1≤ j≤t

(
pi

q j

)
.

By taking product for all 1 ≤ i ≤ s, we get the result.

Recall that Q denotes the quaternion group.

Proposition 6.2 Let K = Q(
√

d1,
√

d2). If Δ(d1, d2) = −1, then there cannot exist
a number field L with odd discriminant, such that Gal(L/Q) � Q and K ⊂ L.

A referee of an earlier version of this paper has pointed out that this result can also be
obtained using the theorem12 of Witt in [31, p. 244] (or (7.7) on [8, p. 106]). (In our
situation, if such a field L exists, the theorem impliesΔ(d1, d2) = 1, which gives us a
contradiction.) So this proposition should be viewed as a new perspective rather than
a new result. In fact, Propositions 6.2 and 6.4 dealwith a class of embedding problems
wherein the existence of an unramified extension forces a Chern–Simons invariant
to be zero. The outline of proof together with the explicit formulas for computing the
Chern–Simons invariant should make clear that even the simplest Z/2Z-valued case
is likely to have a non-trivial range of applications. We consider the point of view
presented here as a simple and rough analogue of the classical theorem of Herbrand,
whereby the existence of certain unramified extensions of cyclotomic fields forces

12K extends to a quaternion extension if and only if the Hilbert symbols (d1, d2) and (d1d2,−1)
agree in the Brauer group.
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some L-values to be congruent to zero ([29, Sect. 6.3]). In future papers, we hope
to discuss this analogy in greater detail and investigate the possibility of ‘converse
Herbrand’ type results in the spirit of Ribet’s theorem [27].

Proof Suppose that there does exist such a field L/Q satisfying all the given prop-
erties above. Choose a prime 	 such that

• 	 does not divide d1d2.
• 	 ≡ 3 (mod 4).
• (−	

pi

) = Ai and
(−	

q j

) = B j for all i and j .

In fact, 	 ≡ a (mod 4d1d2) for some a with (a, 4d1d2) = 1, and hence there are
infinitely many such primes by Dirichlet’s theorem.

Now let d3 := 	∗ = −	. And let F = Q(
√

d1d2d3). Then by direct computation
using the quadratic reciprocity law, we get

(
d1d2

	

)
=

∏

1≤i≤s

(
pi

	

) ∏

1≤ j≤t

(
q j

	

)
=

∏

1≤i≤s

(−	

pi

) ∏

1≤ j≤t

(−	

q j

)
= Δ(d1, d2) · Δ(d2, d1).

Thus by the above lemma, we get

(
d1d2

	

)
= 1.

Furthermore, for all i and j

(
d2d3

pi

)
= A2

i = 1 and

(
d3d1
q j

)
= B2

j = 1.

Therefore by [19, Theorem 1], there is a Galois extension M/Q such that M/F is
unramified everywhere, and Gal(M/F) � Q. Furthermore K F = F(

√
d1,

√
d2) is

the unique subfield of M with Gal(M/K F) � Z/2Z.
Let A = V4, and let ci = αi ∪ ε, where αi ∈ H 1(A,μ2) and ε ∈ Z2(A, Z/2Z)

represents the extension Q. Since M/F is an unramified Q-extension, [ε] = 0 ∈
H 2(π, Z/2Z), where π = π1(Spec(OF ), b) as before. Thus, [ci ] = 0 ∈ H 3(X,μ2)

for all i . This implies that C Sci ([ρ]) = 0 for all i , where ρ ∈ Hom(π, A) factors
through

π � Gal(K F/F) � A.

Take α1 so that Fα1 = F(
√

d1). Since

∏

1≤i≤s

(−d2 · 	

pi

)
×

∏

1≤ j≤t

(
d1
q j

)
=

∏

1≤ j≤t

B j = Δ(d2, d1) = Δ(d1, d2) = −1

by assumption, we get
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Table 1 Some biquadratic fields and quaternionic extensions

d1 d2 Δ ∃L? d1 d2 Δ ∃L? d1 d2 Δ ∃L?

5 13 −1 No 13 17 1 Yes
[44]

17 21 1 Yes
[48]

5 17 −1 No 13 21 −1 No 17 29 −1 No

5 21 1 Yes
[37]

13 29 1 Yes
[45]

17 33 1 Yes
[49]

5 29 1 Yes
[41]

13 33 −1 No 17 37 −1 No

5 33 −1 No 13 37 −1 No 17 41 −1 No

5 37 −1 No 13 41 −1 No 17 53 1 Yes
[50]

5 41 1 Yes
[42]

13 53 1 Yes
[46]

17 57 −1 No

5 53 −1 No 13 57 −1 No 17 61 −1 No

5 57 −1 No 13 61 1 Yes
[47]

17 65 −1 No

5 61 1 Yes
[43]

13 69 1 No 17 69 1 Yes
[51]

C Sc1([ρ]) = 1

2

by Proposition 5.16, which is a contradiction. Thus, there cannot exist such L .

Remark 6.3 For the explicit construction of quaternion extensions L of Q, see [9]
or [28, Theorem 4.5].

In the LMFDB, you can search forQ-extensions L overQwith odd discriminants.We
make a table for readers,which verifies our theoremnumerically.HereΔ = Δ(d1, d2)
(Table1).

When d1 = 13 and d2 = 3 · 23 = 69, there cannot exist such L even though
Δ(d1, d2) = 1. This follows from the following proposition which is already known
to experts (e.g. [28]). For the sake of readers, we provide a complete proof as well.

Proposition 6.4 Let K = Q(
√

d1,
√

d2) as above. Let p be a prime divisor of di ,
which is congruent to 3 modulo 4. If

(d3−i

p

) = 1, then there cannot exist a number
field L such that Gal(L/Q) � Q and K ⊂ L.

Proof Let p be a prime divisor of d2, which is congruent to 3 modulo 4. Suppose
that

(d1
p

) = 1 and there exists such a field L . Then by the same argument as in

Proposition 5.15, the ramification index of p in L/Q is 4. LetO = Z[√d1] be the ring
of integers of Q(

√
d1). Then, since

(d1
p

) = 1, pO = ℘ · ℘ ′ for two different maximal
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ideals ℘ and ℘ ′. Thus, D(℘) = I (℘) � Z/4Z, where D(℘) (resp. I (℘)) is the
decomposition group (resp. inertia group) of ℘ in Gal(L/Q) � Q. Since O℘ � Zp,
the D(℘) = I (℘) � Z/4Z can be regarded as a quotient ofZ×

p � Z/(p − 1)Z × Zp.
Because p − 1 ≡ 2 (mod 4), this is a contradiction and hence the result follows.
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7 Appendix 1: Conjugation on Group Cochains

We compute cohomology of a topological group G with coefficients in a topological
abelian group M with continuous G-action using the complex whose component of
degree i is Ci (G, M), the continuous maps from Gi to M . The differential

d : Ci (G, M) → Ci+1(G, M)

is given by
d f (g1, g2, . . . , gi+1) = g1 f (g2, . . . , gi+1)

+
i∑

k=1

f (g1, . . . , gk−1, gk gk+1, gk+2, . . . , gi+1) + (−1)i+1 f (g1, g2, . . . , gi ).

We denote by
Bi (G, M) ⊂ Zi (G, M) ⊂ Ci (G, M)

the images and the kernels of the differentials, the coboundaries and the cocycles,
respectively. The cohomology is then defined as

Hi (G, M) := Zi (G, M)/Bi (G, M).

There is a natural right action of G on the cochains given by

a : c �→ ca := a−1c ◦ Ada,
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where Ada refers to the conjugation action of a on Gi .

Lemma 7.1 The G action on cochains commutes with d:

d(ca) = (dca)

for all a ∈ G.

Proof If c ∈ Ci (G, M), then

d(ca)(g1, g2, . . . , gi+1) = g1a
−1c(Ada(g2), . . . ,Ada(gi+1))

+
i∑

k=1

a−1c(Ada(g1), . . . ,Ada(gk−1),Ada(gk)Ada(gk+1),Ada(gk+2), . . . ,Ada(gi+1))

+(−1)i+1a−1c(Ada(g1),Ada(g2), . . . ,Ada(gi ))

= a−1Ada(g1)c(Ada(g2), . . . ,Ada(gi+1))

+
i∑

k=1

a−1c(Ada(g1), . . . ,Ada(gk−1),Ada(gk)Ada(gk+1),Ada(gk+2), . . . ,Ada(gi+1))

+(−1)i+1a−1c(Ada(g1),Ada(g2), . . . ,Ada(gi ))

= a−1(dc)(Ada(g1),Ada(g2), . . . ,Ada(gi+1))

= (dc)a(g1, g2, . . . , gi+1).

We also use the notation (g1, g2, . . . , gi )
a := Ada(g1, g2, . . . , gi ). It is well-known

that this action is trivial on cohomology.Wewish to show the construction of explicit
ha with the property that

ca = c + dha

for cocycles of degree 1, 2, and 3. The first two are relatively straightforward, but
degree 3 is somewhat delicate. In degree 1, first note that c(e) = c(ee) = c(e) +
ec(e) = c(e) + c(e), so that c(e) = 0.Next, 0 = c(e) = c(gg−1) = c(g) + gc(g−1),
and hence, c(g−1) = −g−1c(g). Therefore,

c(aga−1) = c(a) + ac(ga−1) = c(a) + ac(g) + agc(a−1) = c(a) + ac(g) − aga−1c(a).

From this, we get
ca(g) = c(g) + a−1c(a) − ga−1c(a).
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That is,
ca = c + dha

for the zero cochain ha(g) = a−1c(a).

Lemma 7.2 For each c ∈ Zi (G, M) and a ∈ G, we can associate an

hi−1
a [c] ∈ Ci−1(G, M)/Bi−1(G, M)

in such a way that
(1) ca − c = dhi−1

a [c];
(2) hi−1

ab [c] = (hi−1
a [c])b + hi−1

b [c].

Proof This is clear for i = 0 and we have shown above the construction of h0
a[c] for

c ∈ Z1(G, M) satisfying (1). Let us check the condition (2):

h0
ab[c](g) = (ab)−1c(ab)

= b−1a−1(c(a) + ac(b)) = b−1h0a[c](Adb(g)) + h0b[c](g) = (h0a[c])b(g) + h0b[c](g).

We prove the statement using induction on i , which we now assume to be ≥ 2. For
a module M , we have the exact sequence

0 → M → C1(G, M) → N → 0,

where C1(G, M) has the right regular action of G and N = C1(G, M)/M . Here,
we give C1(G, M) the topology of pointwise convergence. There is a canonical
linear splitting s : N → C1(G, M) with image the group of functions f such that
f (e) = 0, using which we topologise N . According to [24, Proof of 2.5], the G-
module C1(G, M) is acyclic,13 that is,

Hi (G, C1(G, M)) = 0

for i > 0. Therefore, given a cocycle c ∈ Zi (G, M), there is an

F ∈ Ci−1(G, C1(G, M))

such that its image f ∈ Ci−1(G, N ) is a cocycle and d F = c. Hence, d(Fa − F) =
ca − c. Also, by induction, there is a ka ∈ Ci−2(G, N ) such that f a − f = dka and

13The notation there for C1(G, M) is F0
0 (G, M). One difference is that Mostow uses the complex

E∗(G, M) of equivariant homogeneous cochains in the definition of cohomology. However, the
isomorphism En → Cn that sends f (g0, g1, . . . , gn) to f (1, g1, g1g2, . . . , g1g2 · · · gn) identifies
the two definitions. This is the usual comparison map one uses for discrete groups, which clearly
preserves continuity.
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kab = (ka)
b + kb + dl for some l ∈ Ci−3(G, N ) (zero if i = 2). Let Ka = s ◦ ka and

put
ha = Fa − F − d Ka .

Then the image of ha in N is zero, so ha takes values in M , and dha = ca − c. Now
we check property (2). Note that

Kab = s ◦ kab = s ◦ (ka)
b + s ◦ kb + s ◦ dl.

But s ◦ (ka)
b − (s ◦ ka)

b and s ◦ dl − d(s ◦ l) both have image in M . Hence, Kab =
K b

a + Kb + d(s ◦ l) + m for some cochain m ∈ Ci−2(G, M). From this, we deduce

d Kab = (d Ka)
b + d Kb + dm,

from which we get

hab = Fab − F − d Kab = (Fa)b − Fb + Fb − F − (d Ka)b − d Kb − dm = (ha)b + hb + dm.

8 Appendix 2: Conjugation Action on Group Cochains:
Categorical Approach

In this section, an alternative and conceptual proof of Lemma 7.2 is outlined.
Although not strictly necessary for the purposes of this paper, we believe that a
functorial theory of secondary classes in group cohomology will be important in
future developments. This point has also been emphasised to M.K. by Lawrence
Breen. More details and elaborations will follow in a forthcoming publication by
B.N.

8.1 Notation

In what follows G is a group and M is a left G-module. The action is denoted by am.
The left conjugation action of a ∈ G on G is denoted Ada(x) = axa−1. We have an
induced right action on n-cochains f Gn → M given by

f a(g) := a−1
( f (Ada g)).

Here, g ∈ Gn is an n-chain, and Ada g is defined componentwise.
In what follows, [n] stands for the ordered set {0, 1, . . . , n}, viewed as a category.
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8.2 Idea

The above action on cochains respects the differential, hence passes to cohomology.
It is well known that the induced action on cohomology is trivial. That is, given
an n-cocycle f and any element a ∈ G, the difference f a − f is a coboundary.
In this appendix we explain how to construct an (n − 1)-cochain ha, f such that
d(ha, f ) = f a − f . The construction, presumably well known, uses standard ideas
from simplicial homotopy theory [26, Sect. 1]. The general case of this construction,
as well as the missing proofs of some of the statements in this appendix will appear
in a separate article.

Let G denote the one-object category (in fact, groupoid) with morphisms G. For
an element a ∈ G, we have an action of a on G which, by abuse of notation, we will
denote again by Ada : G → G; it fixes the unique object and acts on morphisms by
conjugation by a.

Themain point in the construction of the cochain ha, f is that there is a “homotopy”
(more precisely, a natural transformation) Ha from the identity functor id: G → G

to Ada : G → G. The homotopy between id and Ada is given by the functor Ha :
G × [1] → G defined by

Ha|0 = id, Ha|1 = Ada, and Ha(ι) = a−1.

It is useful to visualise the category G × [1] as

0 ι

G

1

G

.

8.3 Cohomology of Categories

We will use multiplicative notation for morphisms in a category, namely, the com-
position of g: x → y with h: y → z is denoted gh: x → z.

Let C be a small category and M a left C-module, that is, a functor M : Cop → Ab,
x �→ Mx , to the category of abelian groups (or your favorite linear category). Note
that when G is as above, this is nothing but a left G-module in the usual sense. For
an arrow g: x → y in C, we denote the induced map My → Mx by m �→ gm.

Let C[n] denote the set of all n-tuples g of composable arrows in C,

g = • g1−→ • g2−→ · · · gn−→ •.

We refer to such a g as an n-cell in C; this is the same thing as a functor [n] → C,
which we will denote, by abuse of notation, again by g.
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An n-chain in C is an element in the free abelian group Cn(C, Z) generated by
the set C[n] of n-cells. For an n-cell g as above, we let sg ∈ ObC denote the source
of g1.

By an n-cochain on C with values in M we mean a map f that assigns to any
n-cell g ∈ C[n] an element in Msg. Note that, by linear extension, we can evaluate f
on any n-chain in which all n-cells share a common source point.

The n-cochains form an abelian group Cn(C, M). The cohomology groups
Hn(C, M), n ≥ 0, are defined using the cohomology complex C•(C, M):

0 −→ C0(C, M)
d−→ C1(C, M)

d−→ · · · d−→ Cn(C, M)
d−→ Cn+1(C, M)

d−→ · · ·

where the differential
d : Cn(C, M) → Cn+1(C, M)

is defined by

d f (g1, g2, . . . , gn+1) = g1( f (g2, . . . , gn+1)) +
∑

1≤i≤n

(−1)i f (g1, . . . , gi gi+1, . . . , gn+1)

+ (−1)n+1 f (g1, g2, . . . , gn).

A left G-module M in the usual sense gives rise to a left module on G, which we
denote again by M . We sometimes denote C•(G, M) by C•(G, M). Note that the
corresponding cohomology groups coincide with the group cohomology Hn(G, M).

The cohomology complex C•(C, M) and the cohomology groups Hn(C, M) are
functorial in M . They are also functorial in C in the following sense. A functor ϕ :
D → C gives rise to a D-module ϕ∗M := M ◦ ϕ Dop → Ab. We have a map of
complexes

ϕ∗ : C•(C, M) → C•(D,ϕ∗M), (8.1)

which gives rise to the maps

ϕ∗ : Hn(C, M) → Hn(D,ϕ∗M)

on cohomology, for all n ≥ 0.

8.4 Definition of the Cochains ha, f

The flexibility we gain by working with chains on general categories allows us to
import standard ideas from topology to this setting. The following definition of the
cochains ha, f is an imitation of a well known construction in topology.

Let f ∈ Cn+1(G, M) be an (n + 1)-cochain, and a ∈ G an element. Let Ha :G ×
[1] → G be the corresponding natural transformation. We define ha, f ∈ Cn(G, M)
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by
ha, f (g) = f (Ha(g × [1])).

Here, g ∈ C[n] is an n-cell in G, so g × [1] is an (n + 1)-chain in G × [1], namely,
the cylinder over g.

To be more precise, we are using the notation g × [1] for the image of the funda-
mental class of [n] × [1] in G × [1] under the functor g × [1] [n] × [1] → G × [1].
We visualize [n] × [1] as

(0, 1) (1, 1) · · · (n, 1)

(0, 0) (1, 0) · · · (n, 0)

Its fundamental class is the alternating sum of the (n + 1)-cells

(r, 1) · · · (n, 1)

(0, 0) · · · (r, 0)

in [n] × [1], for 0 ≤ r ≤ n. Therefore,

ha, f (g) =
∑

0≤r≤n

(−1)r f (g1, . . . , gr , a−1,Ada gr+1, . . . ,Ada gn). (8.2)

The following proposition can be proved using a variant of Stokes’ formula for
cochains.

Proposition 8.1 The graded map h−,a : C•+1(G, M) → C•(G, M) is a chain homo-
topy between the chain maps

id, (−)a : C•(G, M) → C•(G, M).

That is,
ha,d f + d(ha, f ) = f a − f

for every (n + 1)-cochain f . In particular, if f is an (n + 1)-cocycle, then d(ha, f ) =
f a − f .
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8.5 Composing Natural Transformations

Given an (n + 1)-cochain f , and elements a, b ∈ G, we can construct three n-
cochains: ha, f , hb, f and hab, f . A natural question to ask is whether these three
cochains satisfy a cocycle condition. It turns out that the answer is yes, but only
up to a coboundary dha,b, f . Below we explain how ha,b, f is constructed. In fact, we
construct cochains ha1,...,ak , f , for any k elements ai ∈ G, 1 ≤ i ≤ k, and study their
relationship.

Let f ∈ Cn+k(G, M) be an (n + k)-cochain. Let a = (a1, . . . , ak) ∈ G×k . Con-
sider the category G × [k],

0
ι0

G

1

G

ι1 · · · ιk−1
k.

G

Let Ha : G × [k] → G be the functor such that ιi �→ a−1
k−i and Ha|{0} = idG . (So,

Ha|{k−i} = Adai+1···ak .) Define ha, f ∈ Cn(G, M) by

ha, f (g) = f (Ha(g × [k])). (8.3)

Here, g ∈ C[n] is an n-cell in G, so g × [k] is an (n + k)-chain in G × [k].
To be more precise, we are using the notation g × [k] for the image of the funda-

mental class of [n] × [k] in G × [k] under the functor g × [k] [n] × [k] → G × [k].
We visualize [n] × [k] as

(0, k) (1, k) · · · (n, k)

...
...

...

(0, 1) (1, 1) · · · (n, 1)

(0, 0) (1, 0) · · · (n, 0)

Its fundamental class is the (n + k)-chain

∑

P

(−1)|P| P,

where P runs over (length n + k) paths starting from (0, 0) and ending in (n, k).
Note that such paths correspond to (k, n) shuffles; |P| stands for the parity of the
shuffle (which is the same as the number of squares above the path in the n × k grid).
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The most economical way to describe the relations between various ha, f is in
terms of the cohomology complex of the right module

M
• := Hom (C•(G, M),C•(G, M)) .

Here, Hom stands for the enriched hom in the category of chain complexes, and
the right action of G on M

• is induced from the right action f �→ f a of G on the
C•(G, M) sitting on the right. The differential on M

• is defined by

dM•(u) = (−1)|u|u ◦ dC•(G,M) − dC•(G,M) ◦ u,

where |u| is the degree of the homogeneous u ∈ C•(G, M).
Note that, for every a ∈ G×k , we have ha, f ∈ M

−k . This defines a k-cochain on
G of degree −k with values in M

•,

h(k) : a �→ ha,−, a ∈ G×k .

We set h(−1) := 0. Note that h(0) is the element in M
0 corresponding to the identity

map id: C•(G, M) → C•(G, M).
The relations between various ha, f can be packaged in a simple differential rela-

tion. As in the case k = 0 discussed in Proposition 8.1, this proposition can be proved
using a variant of Stokes’ formula for cochains.

Proposition 8.2 For every k ≥ −1, we have dM•(h(k+1)) = d(h(k)).

In the above formula, the term dM•(h(k+1)) means that we apply dM• to the values
(in M

•) of the cochain h(k+1). The differential on the right hand side of the formula
is the differential of the cohomology complex C•(G, M

•) of the (graded) right G-
module M

•.
More explicitly, let f ∈ Cn+k(G, M) be an (n + k)-cochain. Then, Proposition

8.2 states that, for every a ∈ G×(k+1), we have the following equality of n-cochains:

(−1)(k+1)ha1,...,ak+1,d f − dha1,...,ak+1, f = ha2,...,ak+1, f +
∑

1≤i≤k
(−1)i ha1,...,ai ai+1,...,ak+1, f +

(−1)k+1hak+1
a1,...,ak , f .

Corollary 8.3 Let f ∈ Cn+k(G, M) be an (n + k)-cocycle. Then, for every a ∈
G×(k+1), the n-cochain

ha2,...,ak+1, f +
∑

1≤i≤k

(−1)i ha1,...,ai ai+1,...,ak+1, f + (−1)k+1hak+1
a1,...,ak , f

is a coboundary. In fact, it is the coboundary of −ha1,...,ak+1, f .

Example 8.4 Let us examine Corollary 8.3 for small values of k.
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(i) For k = 0, the statement is that, for every cocycle f , f − f a is a coboundary.
In fact, it is the coboundary of −h f,a . We have already seen this in Proposition
8.1.

(ii) For k = 1, the statement is that, for every cocycle f , the cochain

hb, f − hab, f + hb
a, f

is a coboundary. In fact, it is the coboundary of −ha,b, f .

8.6 Explicit Formula for ha1,...,ak, f

Let f :G×(n+k) → M be an (n + k)-cochain, anda := (a1, a2, . . . , ak) ∈ G×k . Then,
by Eq. (8.3), the effect of the n-cochain ha1,...,ak , f on an n-tuple x := (x0, x1, . . . ,
xn−1) ∈ G×n is given by:

ha1,...,ak , f (x0, x1, . . . , xn−1) =
∑

P

(−1)|P| f (xP),

where xP is the (n + k)-tuple obtained by the following procedure.
Recall that P is a path from (0, 0) to (n, k) in the n by k grid. The l th component

xP
l of xP is determined by the l th segment on the path P . Namely, suppose that the
coordinates of the starting point of this segment are (s, t). Then,

xP
l = a−1

k−t

if the segment is vertical, and

xP
l = (ak−t+1 · · · ak)xs(ak−t+1 · · · ak)

−1,

if the segment is horizontal. Here, we use the convention that a0 = 1.
The following example helps visualize xP :

a−1
1

(a3a4)x3(a3a4)−1 (a3a4)x4(a3a4)−1

a−1
2

a4x2a−1
4

a−1
3

x0 x1

a−1
4
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The corresponding term is

− f (x0, x1, a−1
4 , a4x2a−1

4 , a−1
3 , (a3a4)x3(a3a4)

−1, (a3a4)x4(a3a4)
−1, a−1

2 , a−1
1 ).

The sign of the path is determined by the parity of the number of squares in the n by
k grid that sit above the path P (in this case 15).
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Some Ring-Theoretic Properties of Ainf

Kiran S. Kedlaya

Abstract The ring of Witt vectors over a perfect valuation ring of characteristic p,
often denoted Ainf , plays a pivotal role in p-adic Hodge theory; for instance, Bhatt–
Morrow–Scholze have recently reinterpreted and refined the crystalline comparison
isomorphism by relating it to a certain Ainf -valued cohomology theory. We address
some basic ring-theoretic questions about Ainf , motivated by analogies with two-
dimensional regular local rings. For example, we show that in most casesAinf , which
is manifestly not noetherian, is also not coherent. On the other hand, it does have the
property that vector bundles over the complement of the closed point in SpecAinf do
extend uniquely over the puncture; moreover, a similar statement holds in Huber’s
category of adic spaces.

Keywords Witt vectors · Perfectoid rings

Throughout this paper, let K be a perfect field of characteristic p equipped with a
nontrivial valuation v (written additively), e.g., the perfect closure of Fp((t)) with
the t-adic valuation. (Note that K = Fp is excluded by the nontriviality condition.)
Unless otherwise specified, we do not assume that K is complete.

A fundamental role is played in p-adic Hodge theory by the ring Ainf := W (oK ),
where oK denotes the valuation ring of K and W denotes the functor of p-typical
Witt vectors. The ring Ainf serves as the basis for Fontaine’s construction of p-
adic period rings and the ensuing analysis of comparison isomorphisms. Recently,
Fargues has used Ainf to give a new description of crystalline representations via a
variant of Breuil–Kisin modules [6], while Bhatt–Morrow–Scholze have described
the crystalline comparison isomorphism via a direct construction of these modules
[3].

Wediscuss several issues germane to [3] regarding ring-theoretic propositionerties
of Ainf , particularly those related to the analogy between Ainf and two-dimensional
regular local rings. In the negative direction, the ring Ainf is typically not coherent
(Theorem 1.2); in the positive direction, vector bundles over the complement of the
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closed point in Spec(Ainf) extend over the puncture (Theorem 2.7), and similarly if
the Zariski spectrum is replaced by the Huber adic spectrum (Theorem 3.9).

We also discuss briefly some related questions in the case where K is replaced
by a more general nonarchimedean Banach ring. These are expected to pertain to a
hypothetical relative version of the results of [3].

1 Finite Generation Properties

Definition 1.1 A ring is coherent if every finitely generated ideal is finitely pre-
sented. Note that an integral domain is coherent if and only if the intersection of any
two finitely generated ideals is again finitely generated [5].

A result of Anderson–Watkins [1], building on work of Jøndrup–Small [11] and
Vasconcelos [19] (see also [8, Theorem 8.1.9]), asserts that a power series ring over
a nondiscrete valuation ring can never be coherent except possibly if the value group
is isomorphic to R. Using a similar technique, we have the following.

Theorem 1.2 Suppose that the value group of K is not isomorphic to R. Then Ainf

is not coherent.

Proof It suffices to exhibit elements f, g ∈ Ainf such that ( f ) ∩ (g) is not finitely
generated. Suppose first that the value group of K is archimedean, i.e., the valuation
v can be taken to have values in R. Since K is perfect, its value group cannot be
discrete, and hencemust be dense inR.We can thus choose elements x0, x1, . . . ∈ oK
such that v(x0), v(x1), . . . is a decreasing sequence with positive limit r /∈ v(oK )

and v(x0/x1) > v(x1/x2) > · · · . Put f := [x0] and g := ∑∞
n=0 p

n[xn].
Recall that the ring Ainf admits a theory of Newton polygons analogous to the

corresponding theory for polynomials or power series over a valuation ring; see [13,
Definition 4.2.8] for details. To form the Newton polygon of g, we take the lower
convex hull of the set {(n, v(xn)) : n = 0, 1, . . . } inR2; the slopes of this polygon are
equal to −v(xn/xn+1) for n = 0, 1, . . . . If h = ∑∞

n=0 p
n[hn] ∈ Ainf is divisible by

both f and g, then on one hand, we have h/ f = ∑∞
n=0 p

n[hn/x0], so v(hn) ≥ v(x0)
for all n; on the other hand, the Newton polygon of h must include all of the slopes
of the Newton polygon of g, so its total width must be at least r . It follows that
v(h0) ≥ 2v(x0) − r .

Conversely, any h0 ∈ oK with v(h0) ≥ 2v(x0) − r extends to some h ∈ Ainf divis-
ible by both f and g, e.g., by taking h = g[h0]/[x0]. Since 2v(x0) − r /∈ v(oK ), it
follows that the image of ( f ) ∩ (g) in oK is an ideal which is not finitely generated;
consequently, ( f ) ∩ (g) itself cannot be finitely generated.

Suppose next that the value group of K is not archimedean. We can then choose
some nonzero x, y ∈ oK such that for every positive integer n, x is divisible by
yn in oK . Let r1, r2, . . . be a decreasing sequence of elements of Z[p−1]>0 whose
sum diverges. Put f := [x] and g := ∑∞

n=0 p
n[x/yr1+···+rn ]. As above, we see that

if h = ∑∞
n=0 p

n[hn] ∈ Ainf is divisible by both f and g, then on one hand, we have
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v(hn) ≥ v(x) for each n; on the other hand, the Newton polygon of h includes all of
the slopes of theNewton polygon of g, so its total widthmust exceed r1 + · · · + rn for
each n. It follows that v(h0) ≥ v(x) + nv(y) for every positive integer n; conversely,
any h0 with this property occurs this way for h = g[h0]/[x]. Again, this means that
( f ) ∩ (g)maps to an ideal of oK which is not finitely generated, so ( f ) ∩ (g) cannot
itself be finitely generated. �

Remark 1.3 It is unclear whether the ring Ainf fails to be coherent even if the value
group of K equalsR, especially if we also assume that K is spherically complete. It is
also unclear whether the ring Ainf [p−1] is coherent. By contrast, with no restrictions
on K , for every positive integer n the quotient Ainf/(pn) is coherent [3, proposi-
tion 3.24].

Remark 1.4 Let mK be the maximal ideal of K . In order to apply the formalism of
almost ring theory (e.g., as developed in [7]) to the ring Ainf , it would be useful to
know that the ideal W (mK ) of Ainf has the property that W (mK ) ⊗Ainf W (mK ) →
W (mK ) is an isomorphism. We do not know whether this holds in general; for
example, to prove that this map fails to be surjective, one would have to produce
an element of W (mK ) which cannot be written as a finite sum of pairwise products,
and we do not have a mechanism in mind for precluding the existence of such
a presentation. An easier task is to produce elements of W (mK ) not lying in the
image of the multiplication map W (mK ) × W (mK ) → W (mK ), as in the following
example communicated to us by Peter Scholze.

Example 1.5 Suppose that v(K×) = Q. We first construct a sequence r1, r2, . . . of
positive elements of Q with sum 1 such that every infinite subsequence with infi-
nite complement has irrational sum. To this end, take a sequence 1 = s0, s1, s2, . . .
converging to 0 sufficiently rapidly (e.g., doubly exponentially) and put r1 =
s0 − s1, r2 = s1 − s2, . . . ; any infinite subsequence with infinite complement can
be regrouped into sums of consecutive terms, yielding another infinite sequence with
rapid decay, and Liouville’s criterion implies that the sum of the subsequence is
irrational (and even transcendental).

Now choose x = ∑∞
n=0 p

n[xn] ∈ W (mK )with v(xn) = sn; we check that x �= yz
for all y, z ∈ W (mK ). If the equality x = yz were to hold, the Newton polygons of
y and z together would comprise the Newton polygon of x ; that is, each slope occurs
in xy with multiplicity equal to the sum of its multiplicities in the Newton polygons
of x and y. Due to the irrationality statement of the previous paragraph, this is
impossible if both y and z have infinitely many slopes; consequently, one of the
factors, say y, has only finitely many slopes in its Newton polygon. On the other
hand, if y = ∑∞

n=0 p
n[yn], there cannot exist c > 0 such that v(yn) ≥ c for all n, as

otherwise we would also have v(xn) ≥ c for all n. Putting these two facts together,
we deduce that v(yn) = 0 for some n, a contradiction.

The following related remark was suggested by Bhargav Bhatt.

Remark 1.6 Suppose that the value group of K is archimedean. Consider the fol-
lowing chain of strict inclusions of ideals:
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0 ⊂
⋃

�∈mK

[� ]Ainf ⊂ W (mK ) ⊂ (p) + W (mK )

The quotients by the idealsW (mK ) and (p) + W (mK ) are the integral domainsW (κ)

and κ , where κ := oK /mK is the residue field of K ; hence these two ideals are prime.
The ideal

⋃
�∈mK

[� ]Ainf is also prime: it contains x = ∑∞
n=0 p

n[xn] if and only if
the total multiplicity of all slopes in the Newton polygon of x is strictly less than
v(x0).

The previous argument shows that the global (Krull) dimension of Ainf is at least
3. In fact, one can push this further: by adapting a construction of Arnold [2] that
produces arbitrary long chains of prime ideals within the ring of formal power series
over a nondiscrete valuation ring, Lang–Ludwig [15] have shown thatAinf has infinite
Krull dimension.1

2 Vector Bundles

Recall that for A a two-dimensional regular local ring, the restriction functor from
vector bundles on Spec A (i.e., finite free A-modules) to vector bundles on the com-
plement of the closed point is an equivalence of categories. This is usually shown
by using the fact that a reflexive module has depth at least 2 [18, Tag 0AVA] in con-
junction with the Auslander–Buchsbaum formula [18, Tag 090U] to see that every
reflexive A-module is projective.

During the course of Scholze’s 2014 Berkeley lectures documented in [17], we
explained to him an alternate proof applicable to the case of Ainf ; this argument
appears as [17, Theorem 14.2.1], and a similar argument is given in [3, Lemma 4.6].
Here, we give a general version of this proof applicable in a variety of cases, which
identifies the most essential hypotheses on the ring A.

Hypothesis 2.1 Throughout Sect.2, let A be a local ring whose maximal ideal p
contains a non-zero-divisor π such that o := A/(π) is (reduced and) a valuation
ring with maximal ideal m. Put L := Frac o; in the case A = Ainf we have L = K.

Definition 2.2 Put X := Spec(A),Y := X \ {p}, andU := Spec(A[π−1]) ⊂ X . Let
B be the π -adic completion of A(π); note that within B[π−1] we have

A[π−1] ∩ B = A. (2.2.1)

Let Z be the algebraic stack which is the colimit of the diagram

Spec(A[π−1]) ← Spec(B[π−1]) → Spec(B).

1Heng Du has subsequently shown that the Krull dimension is at least the cardinality of the contin-
uum. See arXiv:2002.10358.

http://arxiv.org/abs/2002.10358
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Lemma 2.3 For ∗ ∈ {X,Y, Z}, letVec∗ denote the category of vector bundles on ∗.
(a) The pullback functor VecX → VecY is fully faithful.
(b) The pullback functor VecY → VecZ is fully faithful.
(c) For F ∈ Vec∗ and M := H 0(∗,F), the adjunction morphism M̃|∗ → F is an

isomorphism.

Proof For convenience, we writeO instead ofO∗ hereafter. To deduce (a), note that
by (2.2.1),

H 0(X,O) = H 0(Y,O) = H 0(Z ,O) = A.

To deduce (b), choose z ∈ A whose image in A/(π) is a nonzero element of m, so
that

Spec(A) = U ∪ V, V := Spec(A[z−1]);

then note that z is invertible in B, and within B[π−1] we have

A[z−1, π−1] ∩ B = A[z−1].

To deduce (c), note that in case ∗ = Y , the injectivity of the maps

H 0(U,O) → H 0(U ∩ V,O), H 0(V,O) → H 0(U ∩ V,O)

implies the injectivity of the maps

H 0(U,F) → H 0(U ∩ V,F), H 0(V,F) → H 0(U ∩ V,F)

and hence the injectivity of the maps

M → H 0(U,F), M → H 0(V,F).

It follows easily that the maps

M ⊗R H 0(U,O) → H 0(U,F), M ⊗R H 0(V,O) → H 0(V,F)

are isomorphisms. The case ∗ = Z is similar. �

The following lemma is taken from [17, Lemma 14.2.3].

Lemma 2.4 Let κ be the residue field of A, which is also the residue field of o. Let d
be a nonnegative integer. Let N be an o-submodule of Ld . Then dimκ(N ⊗o κ) ≤ d,
with equality if and only if N is a free module of rank d.

Proof By induction on d, we reduce to the case d = 1. We then see that dimκ(N ⊗o

κ) equals 1 if the set of valuations of elements of N has a least element, in which
case N is free of rank 1, and 0 otherwise. �
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Lemma 2.5 ForF ∈ VecZ of rank d, if the elements v1, . . . , vd ∈ H 0(Z ,F) gener-
ate both H 0(U,F) and H 0(Spec(L),F), then they also generate M := H 0(Z ,F).

Proof Choose anyv ∈ M . Sincev1, . . . , vd generate H 0(U,F), there exists a unique
tuple (r1, . . . , rd) over A[π−1] such that v = ∑d

i=1 rivi . In particular, there exists a
nonnegative integerm such thatπmr1, . . . , πmrd ∈ A. Ifm > 0, thenπmv is divisible
byπ inM , so itmaps to zero in H 0(Spec(L),F). Since v1, . . . , vd form a basis of this
module, πmr1, . . . , πmrd must be divisible by π in A and so πm−1r1, . . . , πm−1rd ∈
A. By induction, we deduce that r1, . . . , rd ∈ A. This proves the claim. �

Lemma 2.6 For F ∈ VecZ of rank d, the module M := H 0(Z ,F) is free of rank d
over A.

Proof By Lemma 2.3(c), M[π−1] = H 0(U,F) is a projective A[π−1]-module
of rank d, so we can find a finite free A[π−1]-module F and an isomorphism
F ∼= M[π−1] ⊕ P for some finite projective A[π−1]-module P . By rescaling by a
suitably large power of π , we may exhibit a basis of F consisting of elements whose
projections to M[π−1] all belong to M . This basis then gives rise to an isomorphism
F ∼= F0[π−1] for F0 the finite free A-module on the same basis. View

Gr M[π−1] :=
⊕

n∈Z
(M[π−1] ∩ πn F0)/(M[π−1] ∩ πn+1F0)

as a finite projective graded module of rank d over the graded ring

Gr A[π−1] :=
⊕

n∈Z
πn A/πn+1A ∼= o((π)),

then put
V := (Gr M[π−1]) ⊗o((π)) κ((π)).

Note that for theπ -adic topology, the image ofM inGr M[π−1] is both open (because
M contains a set of module generators of M[π−1]) and bounded (because the same
holds for the dual bundle). Consequently, the image T of M in V is a κ�π�-sublattice
of V . Choose v1, . . . , vd ∈ M whose images in V form a basis of T ; the images of
v1, . . . , vd in M ⊗A κ are linearly independent, so by Lemma 2.4, v1, . . . , vd project
to a basis ofM ⊗A o. It follows thatv1, . . . , vd also project to a basis ofM ⊗A A/(πn)

for each positive integer n.
Again by considering the dual bundle, we see that the image of F0 in M[π−1]

contains πnM for any sufficiently large integer n. Let e1, . . . , em be the images in
M of the chosen basis of F0; using the previous paragraph, we can find elements
e′
1, . . . , e

′
m ∈ Av1 + · · · + Avd such that e′

j = ∑
i Xi jei for some matrix X over A

with det(X) − 1 ∈ π A ⊂ p. The matrix X is then invertible, whence v1, . . . , vd gen-
erate M[π−1]. By Lemma 2.5, v1, . . . , vd generate M , necessarily freely. �

Theorem 2.7 The pullback functors VecX → VecY → VecZ are equivalences of
categories.
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Proof By Lemma 2.3(a), the functors VecX → VecY → VecZ are fully faithful, so
it suffices to check that VecX → VecZ is essentially surjective. For F ∈ VecZ , by
Lemma 2.6, M = H 0(Z ,F) is a finite free A-module. By Lemma 2.3(c), we have
M̃|Z ∼= F , proving the claim. �

3 Adic Glueing

We next show that vector bundles on SpecAinf can be constructed by glueing not
just for a Zariski covering, but for a covering in the setting of adic spaces; this result
is used in [17] as part of the construction of mixed-characteristic local shtukas. In
the process, we prove a somewhat more general result. Along the way, we will use
results of Buzzard–Verberkmoes [4], Mihara [16], and Kedlaya–Liu [13].

We begin by summarizing various definitions fromHuber’s theory of adic spaces,
as described in [10]. See also [12, Lecture 1].

Definition 3.1 We say that a topological ring A is f-adic if there exists an open
subring A0 of A (called a ring of definition) whose induced topology is the adic
topology for some finitely generated ideal of A0 (called an ideal of definition). Such
a ring is Tate if it contains a topologically nilpotent unit; in certain cases (as in [12,
Lecture 1]), one may prefer to instead assume only that the topologically nilpotent
elements generate the unit ideal, but we will not do this here.

Wewill only need to consider f-adic rings which are complete for their topologies,
which we refer to asHuber rings. Beware that this definition is not entirely standard:
some authors use the term Huber ring as a synonym for f-adic ring without the
completeness condition.

For A a Huber ring, let A◦ denote the subring of power-bounded elements of A;
we say that A is uniform if A◦ is bounded in A. (This implies that A is reduced, but
not conversely.) A ring of integral elements of A is a subring of A◦ which is open
and integrally closed in A.

A Huber pair is a pair (A, A+) in which A is a Huber ring and A+ is a ring
of integral elements of A. To such a pair, we may associate the topological space
Spa(A, A+) of equivalence classes of continuous valuations on Awhich are bounded
by 1 on A+. This space may be topologized in such a way that a neighborhood basis
is given by subspaces of the form

{v ∈ Spa(A, A+) : v( f1), . . . , v( fn) ≤ v(g) �= 0}

for some f1, . . . , fn, g ∈ A which generate an open ideal; such spaces are called
rational subspaces of Spa(A, A+). (When A is Tate, every open ideal of A is the
unit ideal, and so the condition v(g) �= 0 becomes superfluous.) For this topology,
Spa(A, A+) is quasicompact and even a spectral space in the sense of Hochster [9].

In addition, Huber defines a structure presheaf O on Spa(A, A+); in the case
where A is Tate and U is the rational subspace defined by some parameters
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f1, . . . , fn, g, the ring O(U ) may be identified with the quotient A
〈
f1
g , . . . ,

fn
g

〉
of

the Tate algebra A〈T1, . . . , Tn〉 by the closure of the ideal (gT1 − f1, . . . , gTn − fn).
We say that A is sheafy if O is a sheaf for some choice of A+; with a bit of work

[12, Remark 1.6.9], the same is then true for any A+. For example, by Proposition 3.3
below, this holds if A is stably uniform, meaning that (again for some, and hence
any, choice of A+) for every rational subspace U of Spa(A, A+), the ring O(U ) is
uniform.

Proposition 3.2 Let (A, A+) be a Huber pair with A Tate.

(a) Choose f ∈ A and suppose that

0 −→ A −→ A 〈 f 〉 ⊕ A
〈
f −1〉 (x,y)�→x−y−→ A

〈
f ±1〉 ��� 0

is exact without the dashed arrow. (It is then also exact with the dashed arrow;
e.g., see [12, Lemma 1.8.1].) Then the functor

VecSpec(A) → VecSpec(A〈 f 〉) ×VecSpec(A〈 f±1〉) VecSpec(A〈 f −1〉)

is an equivalence of categories.
(b) The conclusion of (a) holds whenever A is (Tate and) uniform.
(c) If A is (Tate and) sheafy, then the pullback functor VecSpec(A) → VecSpa(A,A+)

is an equivalence of categories, with quasi-inverse given by the global sections
functor.

Proof For (a), see [12, Lemma 1.9.12]. For (b), see [13, Corollary 2.8.9] or [12,
Lemma 1.7.3, Lemma 1.8.1]. For (c), see [13, Theorem 2.7.7] or [12, Theorem
1.4.2]. �

Using Proposition 3.2(a,b), one can deduce the following. However, we give refer-
ences in lieu of a detailed argument.

Proposition 3.3 (Buzzard–Verberkmoes, Mihara) Any stably uniform Huber ring
is sheafy.

Proof The original (independent) references are [4, Theorem 7] and [16, Theo-
rem 4.9]. See also [13, Theorem 2.8.10] or [12, Theorem 1.2.13]. �

With these results in mind, we set some more specific notation.

Hypothesis 3.4 For the remainder of §3, let R be a Huber ring which is perfect of
characteristic p and Tate, and let R+ be a subring of integral elements in R (which
is necessarily also perfect). For example, we may take R = K, R+ = oK in case K
is complete for a rank 1 valuation. Let x ∈ R be a topologically nilpotent unit; note
that necessarily x ∈ R+.

For the geometric meaning of the following definition, see the proof of
Theorem 3.8.
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Definition 3.5 Topologize

A1 := W (R+)[p−1], A2 := W (R+)[[x]−1], A12 := W (R+)[(p[x])−1]

as Huber rings with ring of definition W (R+) and ideals of definition generated by
the respective topologically nilpotent units p, [x], p[x]. Then put

B1 := A1

〈 [x]
p

〉

, B2 := A2

〈
p

[x]
〉

, B12 := A12

〈 [x]
p

,
p

[x]
〉

;

note that there are canonical isomorphisms of topological rings

B12
∼= B1

〈
p

[x]
〉

∼= B2

〈 [x]
p

〉

.

Also put

B ′
1 := A2

〈 [x]
p

〉

, B ′
2 := A1

〈
p

[x]
〉

;

note that there are canonical isomorphisms of underlying rings

B ′
1

∼= B1[[x]−1], B ′
2

∼= B2[p−1]

but these are not homeomorphisms for the implied topologies. For example, in thefirst
isomorphism, the rings of power-bounded elements coincide, but on this common
subring the induced topology from B ′

1 is the [x]
p -adic topology while the induced

topology from B1[[x]−1] is the p-adic topology.

Proposition 3.6 The following statements hold.

(a) The Huber rings C = A1, A12, B1, B2, B12, B ′
2 are stably uniform, and hence

sheafy by Proposition 3.3.
(b) The Huber ring C = A2 is uniform. (The same is true for C = B ′

1, but we will
not need this. See also Remark 3.7.)

Proof To prove (a), note that for C = A1, A12, B1, B12, B ′
2, p is a topologically

nilpotent unit in C . In these cases, by [13, Theorem 5.3.9], taking the completed
tensor product over Zp with Zp[pp−∞] yields a perfectoid ring in the sense of [13]
(which must be a Qp-algebra). By splitting from Zp[pp−∞] to Zp using the reduced
trace, we deduce thatC is stably uniform; see [13, Theorem 3.7.4] for further details.
For C = B2, p is no longer a unit in C but is still topologically nilpotent, and a
similar argument applies using perfectoid rings in the sense of Fontaine; see [14,
Corollary 4.1.14] or [12, Lemma 3.1.3].

To prove (b), note that A◦
2 is p-adically saturated in A2,W (R◦) is contained in A◦

2,
and the image of A◦

2/(p) → A2/(p) ∼= R is contained in R◦. These facts together
imply that A◦

2 = W (R◦), which is evidently a bounded subring of A2. �
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Remark 3.7 We believe that A2 is stably uniform, which would then imply that B ′
1

is stably uniform; but we were unable to prove either of these statements. One thing
we can observe is that if B ′

1 were known to be stably uniform, then combining the
preceding results with Proposition 3.2(a) and [12, Theorem 1.2.22] would imply that
A2 is sheafy (and then stably uniform).

We now obtain a comparison between algebraic and adic vector bundles.

Theorem 3.8 Put A := W (R+) and let X (resp. Y ) be the complement in Spec A
(resp. Spa(A, A)) of the closed subspace where p = [x] = 0. Then pullback along
the morphism Y → X of locally ringed spaces defines an equivalence of categories
VecX → VecY .

Proof For A1, A2, A12, B1, B2, B12, B ′
1, B

′
2 as in Definition 3.5, we have the follow-

ing coverings of adic spaces by rational subspaces.

U ∪ V U V U ∩ V
Y Spa(B1, B◦

1 ) Spa(B2, B◦
2 ) Spa(B12, B◦

12)

Spa(A1, A◦
1) Spa(B1, B◦

1 ) Spa(B ′
2, B

′◦
2 ) Spa(B12, B◦

12)

Spa(A2, A◦
2) Spa(B ′

1, B
′◦
1 ) Spa(B2, B◦

2 ) Spa(B12, B◦
12)

Spa(A12, A◦
12) Spa(B ′

1, B
′◦
1 ) Spa(B ′

2, B
′◦
2 ) Spa(B12, B◦

12)

For i ∈ {1, 2, 12},wemayapplyPropositions 3.2(c) and3.6(a) to see that the pullback
functor VecSpec(Bi ) → VecSpa(Bi ,B◦

i )
is an equivalence. We may also apply Proposi-

tions 3.2(a,b) and 3.6(b) to obtain an equivalence

VecSpec(Ai ) → VecSpec(B?
1)

×VecSpec(B12)
VecSpec(B?

2)
, B?

j =
{
Bj j ∈ i

B ′
j j /∈ i;

using the fact that A j → B ′
j factors through Bj (at the level of rings without topol-

ogy), it follows that

VecSpec(A1) ×VecSpec(A12)
VecSpec(A2) → VecSpec(B1) ×VecSpec(B12)

VecSpec(B2)

is an equivalence. In the 2-commutative diagram

VecX VecY

VecSpec(A1) ×VecSpec(A12)
VecSpec(A2)

VecSpec(B1) ×VecSpec(B12)
VecSpec(B2) VecSpa(B1,B◦

1 )
×VecSpa(B12 ,B◦

12)
VecSpa(B2,B◦

2 )
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every arrow exceptVecX → VecY is now known to be an equivalence; we thus obtain
the desired result. �

As a corollary, we obtain the following theorem.

Theorem 3.9 Let v0 be the valuation on W (oK ) induced by the trivial valuation on
the residue field of oK . Put A := W (oK ), X := Spa(A, A), Y := X \ {v0}. LetModff

A
be the category of finite free A-modules. Then the categoriesModff

A,VecX ,VecY are
equivalent via the functor Modff

A → VecX taking M to M̃, the pullback functor
VecX → VecY , and the global sections functor VecY → Modff

A.

Proof Combine Theorem 2.7 with Theorem 3.8. �

Onemight like to parlay Theorem 3.9 into a version with K replaced by R. However,
one runs into an obvious difficulty in light of the following standard example in the
category of schemes.

Example 3.10 Let k be a field, put S := k[x, y, z], and let M be the S-module

ker(S3 → S : (a, b, c) �→ ax + by + cz).

Put X := Spec S,Y := X \ {(x, y, z)}, Z := X \ {(x, y)}; then M̃ /∈ VecX but M̃ |∗ ∈
Vec∗ for ∗ ∈ {Y, Z}. Since X \ Y has codimension 3 in X and Y \ Z has codimension
2 in Y , M̃ |Z has a unique extension to an S2 sheaf (in the sense of Serre) on either X
or Y , namely M̃ itself. In particular, M̃ does not lift from VecZ to VecX .

With a bit of care, this argument can be translated into an example that shows that
Theorem 3.9 indeed fails to generalize to the case where K is replaced by R.

Remark 3.11 For (R, R+) as in Hypothesis 3.4, let p be the radical of the ideal
(p, [x]); it is generated by p and [x]p−n

for all n. Put

X := Spec(W (R+)), Y := X \ {p},

and let Z be the algebraic stack which is the colimit of the diagram

Spec(W (R+)[p−1]) ← Spec(W (R)[p−1]) → Spec(W (R)).

As in Lemma 2.3, we see that the functors VecX → VecY ,VecY → VecZ are fully
faithful, and that for∗ ∈ {Y, Z},F ∈ Vec∗,M = H 0(∗,F), the adjunctionmorphism
M̃|∗ → F is an isomorphism. However, one may emulate Example 3.10 so as to
produce an object of VecY and VecZ which does not lift to VecX ; see Example 3.14
below.
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Lemma 3.12 With notation as in Remark 3.11, for F ∈ Vec∗ and M = H 0(∗,F),
the natural homomorphism M∨ → H 0(∗,F∨) is an isomorphism. Consequently, the
map M → M∨∨ is an isomorphism, i.e., M is reflexive.

Proof From Remark 3.11, we see that the map is injective. To check surjectivity,
note that any f ∈ H 0(∗,F∨) restricts to maps M → W (R+)[p−1], M → W (R)

which induce the same map M → W (R)[p−1]. We again deduce the claim from the
equality W (R+)[p−1] ∩ W (R) = W (R+). �

Remark 3.13 Recall that for any ring S, a regular sequence in S is a finite sequence
s1, . . . , sk such that for i = 1, . . . , k, si is not a zero-divisor in S/(s1, . . . , si−1). If
s1, . . . , sk is a regular sequence in S, one computes easily that

TorSk (S/(s1, . . . , sk), S/(s1, . . . , sk)) ∼= S/(s1, . . . , sk) �= 0;

in particular, S/(s1, . . . , sk) has projective dimension at least (and in fact exactly) k
as an S-module.

Example 3.14 Let k be a perfect field of characteristic p. Let R+ be the (y, z)-adic
completion of the perfect closure of k�y, z�. Put x := yz ∈ R+. This notation is
consistent with Hypothesis 3.4, so we may adopt notation as in Remark 3.11.

Put I := ([y], [z], p)W (R+); note that the generators of I forma regular sequence.
By Remark 3.13, W (R+)/I has projective dimension at least 3, I has projective
dimension at least 2, and

M := ker(W (R+)3 → I : (a, b, c) �→ a[y] + b[z] + cp)

has projective dimension at least 1. In particular, M is not projective.
For ∗ ∈ {Y, Z}, the sequence

0 → M̃|∗ → O⊕3 → O → 0 (3.14.1)

of sheaves is exact, so M̃|∗ ∈ Vec∗. Because H 0(∗,O) = W (R+), applying the func-
tor H 0(∗, •) to (3.14.1) yields an isomorphism H 0(∗, M̃|∗) ∼= M .

However, if M̃ |∗ could be extended to an objectF ∈ VecX , wewould haveF ∼= Ñ
for some finite projective W (R+)-module N , and per Remark 3.11 we would have
N ∼= H 0(∗,F) = H 0(∗, M̃ |∗) ∼= M . This yields a contradiction.
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Sur une q-déformation locale de la
théorie de Hodge non-abélienne en
caractéristique positive

Michel Gros

Abstract Pour p un nombre premier et q une racine p-ième non triviale de 1, nous
présentons les principales étapes de la construction d’une q-déformation locale de
la “correspondance de Simpson en caractéristique p” dégagée par Ogus et Vologod-
sky en 2005. La construction est basée sur l’équivalence de Morita entre un anneau
d’opérateurs différentiels q-déformés et son centre. Nous expliquons aussi les liens
espérés entre cette construction et celles introduites récemment par Bhatt et Scholze.
Pour alléger l’exposition, nous nous limitons au cas de la dimension 1. For p a
prime number and q a non trivial pth root of 1, we present the main steps of the
construction of a local q-deformation of the “Simpson correspondence in character-
istic p” found by Ogus and Vologodsky in 2005. The construction is based on the
Morita-equivalence between a ring of q-twisted differential operators and its center.
We also explain the expected relations between this construction and those recently
done by Bhatt and Scholze. For the sake of readability, we limit ourselves to the case
of dimension 1.

Keywords p-adic Hodge theory · q-deformation · Rings of differential operators

1 Introduction

1.1. Ogus et Vologodsky ont dégagé dans [13] un analogue en caractéristique p > 0
de la théorie de Hodge non-abélienne, i.e. de la correspondance de Simpson com-
plexe. Soient S̃ un schéma plat sur Z/p2, X̃ , X̃ ′ deux S̃-schémas lisses de réduction
modulo p notées X et X ′, et F̃ : X̃ → X̃ ′ un S̃-morphisme. Supposons que ces don-
nées constituent un relèvement au-dessus de S̃ du morphisme de Frobenius relatif
FX/S : X → X ′ associé à X vu comme schéma au-dessus de S = S̃ ×Z/p2 Z/p. Elles
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permettent alors à Ogus et Vologodsky d’étendre ([13], Theorems 2.8, 2.26) auxOX -
modules munis d’une connexion intégrable dont la p-courbure est supposée seule-
ment quasi-nilpotente à la fois le théorème de descente de Cartier ([10], Theorem
5.1) et l’existence d’une décomposition du complexe deDeRhamobtenu parDeligne
et Illusie ([5], Remark 2.2(ii)) induisant l’opération de Cartier ([10], Theorem 7.2).
L’exposé oral d’A. Abbes et le nôtre ont été consacrés aux travaux d’Oyama [14],
Shiho [17] et Xu [19] qui ont permis de relever “modulo pn” cette correspondance
d’Ogus et Vologodsky. C’est ici une autre direction qui est explorée.

1.2. Sans rapport avec ce qui précède, Bhatt, Morrow et Scholze ont dégagé
([4], Theorem 1.8) un raffinement entier des théorèmes standards de comparai-
son entre cohomologies cristalline, de De Rham et étale p-adique pour un schéma
formel propre et lisse sur l’anneau des entiers d’une extension non-archimédienne
algébriquement close de Cp. Dans l’élaboration de celui-ci apparait un relèvement
de l’isomorphisme de Cartier ([4], Theorem 8.3) sur la cohomologie d’un objet ([4],
Definition 8.1) d’une certaine catégorie dérivée. Dans des situations géométriques
locales bien adaptées ([4], 8.5) auxquelles les auteurs se ramènent pour établir cet iso-
morphisme, l’existence de ce relèvement découle de l’étude de certains q-complexes
de De Rham ([4], 7.7) avec q une racine p-ième non triviale de l’unité dans Cp. Ces
derniers sont de vrais complexes qui “réalisent” ([4], Sect. 8) les objets des caté-
gories dérivées évoquées ci-dessus. Ils ont eux-aussi une cohomologie se calculant
par un relèvement de l’opération de Cartier ([16], Proposition 3.4, (iii); voir aussi
[15], Proposition 2.8) qui explique donc localement l’existence de la précédente. Il
nous semble plausible que l’extension espérée du théorème de comparaison entier
([4], Theorem 1.8) à des coefficients non constants [18] donne quelque intérêt à
essayer d’expliciter une q-déformation locale de la théorie de Hodge non-abélienne
incluant l’étude de ce type de complexes et les propriétés de leurs cohomologies.
Cela devrait peut-être éclaircir un peu d’éventuels liens entre les théories [13] et [4]
puis, ultérieurement, ceux avec la correspondance de Simpson p-adique [1].

1.3. Le but de ce rapport est d’esquisser, dans ces situations géométriques
locales bien adaptées, une telle variante. Les deux résultats principaux sont, d’une
part une q-déformation locale (Théorème 4) de la correspondance développée par
Ogus–Vologodsky (Théorème 2) et, d’autre part, sa compatibilité aux cohomologies
naturelles du but et de la source (Proposition 8). Un corollaire facile (Corollaire 1)
de notre résultat est l’existence de l’opération de Cartier “relevée” ([16], Proposition
3.4 ; voir aussi [15], 2.2). Dans le type de situation géométrique que nous consid-
érons, les résultats principaux d’Ogus–Vologodsky qui nous intéressent ici découlent
immédiatement d’une équivalence de Morita, à savoir celle associée à la neutralisa-
tion d’une algèbre d’opérateurs différentiels vue comme algèbre d’Azumaya sur son
centre ([13], Theorem 2.11). Nous développons simplement un q-analogue de tout
le tableau. Plusieurs choix doivent être faits lors des constructions et il est peu prob-
able que ces résultats puissent se globaliser par les techniques standards, purement
schématiques, de recollement (voir par exemple [16], Conj. 1.1 et infra, [15], 2.2 et
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3.4 pour une discussion de problèmes analogues, [4], Rem. 8.4).

1.4. Pour pallier ces difficultés de globalisation des q-complexes de De Rham,
Bhatt et Scholze ont introduit très récemment dans [3], à beaucoup d’autres fins
aussi (dont celle de réinterpréter les théorèmes de comparaison entiers évoqués plus
haut ainsi que les décompositions de Hodge-Tate, ...), de nouvelles techniques, en
particulier celles du site prismatique et du site q-cristallin. Ils utilisent pour ce faire
la théorie des δ-anneaux et leurs avancées fournissent pour nous un espoir de mon-
trer l’indépendance de tout choix auxiliaire (en particulier d’une coordonnée) dans
nos constructions, au moins à isomorphisme près. De toute façon, vu la généralité du
cadre dans lequel ils se placent et le potentiel d’applications, il nous a paru indispens-
able d’en tenir compte et de reconsidérer avec leurs nouveaux outils les questions
que nous nous posions au moment de la conférence et de la première version de cet
article puis d’indiquer les progrès réalisés depuis lors.

1.5. Ce rapport ne contient pas de démonstrations, pour lesquelles on renvoie à
[8] et à [9]. Nous insistons plutôt ici sur la mise en parallèle des théories modulo p
([8]) et q-déformées ([9]) en spécialisant cette dernière au cadre familier (notations,
hypothèses, terminologie, ...) de la théorie de Hodge p-adique, ce qui en allège très
largement la présentation. Nous résumons très succintement tout d’abord au §2 les
principales étapes suivies dans [8] pour établir la neutralisation (loc. cit., Theorem
4.13) mentionnée ci-dessus. La seule nouveauté par rapport à [8] est le résultat de
comparaison cohomologique contenu dans la Proposition 1. Nous passons ensuite au
§3, après avoir précisé le cadre géométrique, à la définition des opérateurs différen-
tiels q-déformés. Bien qu’on puisse les définir plus directement (cf. 3.6), c’est par un
processus de dualité et donc via la définition de parties principales q-déformées que
nous procédons afin de pouvoir raisonner comme dans la théorie modulo p. Dans le
§4, nous déterminons le centre de l’algèbre des opérateurs différentiels q-déformés
et montrons comment on peut diviser l’action induite par le “Frobenius” (Proposition
5) sur les modules de parties principales q-déformées. Que ceci soit possible est pour
l’instant l’aspect le plus miraculeux de toute cette théorie. Nous en déduisons enfin
la neutralisation (Théorème 3) d’une complétion centrale de l’algèbre des opérateurs
différentiels q-déformés. Le §5 reformule alors l’équivalence de Morita standard
qu’on déduit de cette neutralisation en termes de modules munis d’une q-dérivation
quasi-nilpotente et de modules de Higgs quasi-nilpotents (5.1) et les conséquences
cohomologiques (Proposition 8). Nous terminons enfin au §6 par quelques observa-
tions et questions en relation avec [3].

1.6. Ces résultats sont le fruit d’une collaboration avec B. Le Stum et A. Quirós
que l’auteur dégage de toute responsabilité pour les erreurs ou imprécisions qui
pourraient apparaitre. L’auteur remercie très sincèrement la Fondation Simons et les
organisateurs de la session Simons Symposium on p-adic Hodge Theory (8-12 Mai
2017), Bhargav Bhatt et Martin Olsson, de lui avoir donné l’opportunité d’avancer
sur toutes les questions soulevées par ce projet.
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2 Rappels sur la théorie d’Ogus et Vologodsky

2.1. Nous conservons dans cette section les notations et hypothèses de 1.1, résumées
par les deux diagrammes suivants :

X̃ F̃ X̃ ′ X
FX/S

X ′

S̃ S

Z/p2
Z/p

(1)

dont celui de droite est donc la réduction modulo p de celui de gauche. Dans ce
qui suit, nous allégerons la notation FX/S en simplement F mais en attirant bien
l’attention du lecteur sur le fait que cet allègement n’est pas tout à fait compatible
avec les notations adoptées dans [8] (dans loc. cit., F est noté FX et F y désigne le
Frobenius absolu de X ). Nous supposerons de plus S noethérien pour raccourcir la
preuve de la Proposition 1 ci-dessous.

2.2. Nous noterons également simplementDX laOX -algèbreD(0)
X des opérateurs

différentiels de X/S de niveau m = 0 introduite par Berthelot ([2], 2.2.1) et utilisée
dans ([8], Definition 2.5), parfois dénommée algèbre des opérateurs PD-différentiels
ou algèbre des opérateurs différentiels cristallins. Elle est engendrée par OX et par
les S-dérivations deOX (cf. [2], p. 218, Rem. (i)). Nous noterons ZDX (resp. ZOX ) le
centre deDX (resp. le centralisateur dansDX de sa sous-algèbreOX ). Nous noterons
enfin S(TX ′) la OX ′ -algèbre (graduée) symétrique du OX ′ -module TX ′ des fonctions
sur le fibré cotangent de X ′/S. L’application de p-courbure permet (cf. par exemple
([8], Proposition 3.6)) de construire un isomorphisme de OX -algèbres

c : S(TX ′)
∼→ F∗ZDX ; D ∈ TX ′ �→ D p − D[p]. (2)

On peut, de même (cf. loc. cit.), identifier ZOX à F∗S(TX ′) = OX ⊗OX ′ S(TX ′).

2.3. L’algèbre DX agit de manière naturelle de façon OX ′ -linéaire sur OX .
Soit KX le noyau de la surjection canonique DX → EndOX ′ (OX ). C’est un idéal

bilatère de DX . Nous noterons ̂DX (resp. ẐDX , resp. Ŝ(TX ′), resp. ẐOX , resp.
OX ⊗OX ′ Ŝ(TX ′)) le complété adique de DX (resp. ZDX , resp. S(TX ′), resp. ZOX ,
resp. OX ⊗OX ′ S(TX ′)) relativement à l’idéal bilatère KX (resp. KX ∩ S(TX ′), resp.
KX ∩ ZOX , resp. KX ∩ (OX ⊗OX ′ S(TX ′))).
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2.4. Dans cette situation restrictive d’existence de F̃, plusieurs des résultats
généraux de ([13], e.g. Theorem 2.8) découlent immédiatement du résultat suivant
([8], Theorem 4.13) que nous avons appris de P. Berthelot et dont nous rappelerons
brièvement le principe de preuve ci-dessous (2.8, 2.9).

Théorème 1 ([8], Theorem 4.13) Toute donnée de (X̃ , X̃ ′, F̃ : X̃ → X̃ ′) comme
précédemment définit canoniquement un isomorphisme de OX -algèbres

̂DX
∼→ EndŜ(TX ′ )(OX ⊗OX ′ Ŝ(TX ′)). (3)

On remarquera, en prévision de (6), que le but de (3) est simplement EndẐDX
(ẐOX ).

2.5. Un lemme classique d’algèbre linéaire ([8], Lem. 5.6) montre alors que les
anneaux ̂DX et Ŝ(TX ′) sont, d’une manière complètement explicite, équivalents au
sens de Morita : les deux foncteurs suivants entre les catégories de modules sur ces
anneaux, Mod (̂DX ) et Mod (Ŝ(TX ′), correspondantes sont quasi-inverses l’un de
l’autre

H : Mod (̂DX ) → Mod (Ŝ(TX ′)) ; E �→ Hom
̂DX

(F∗Ŝ(TX ′), E), (4)

M : Mod (Ŝ(TX ′)) → Mod (̂DX ) ; F �→ F ⊗Ŝ(TX ′ ) F
∗Ŝ(TX ′). (5)

Ce résultat fournit, une fois réinterprété (cf. [8], Proposition 5.2) les objets de ces
catégories, le résultat suivant :

Théorème 2 ([8], Theorem 5.8) Toute donnée de (X̃ , X̃ ′, F̃ : X̃ → X̃ ′) comme
précédemment définit canoniquement une équivalence entre la catégorie des OX -
modules munis d’une connexion intégrable de p-courbure quasi-nilpotente (cf. [8],
Proposition 5.5) et la catégorie des OX ′ -modules munis d’un champ de Higgs quasi-
nilpotent (cf. [8], Proposition 5.4).

On vérifie que dans cette équivalence, OX muni de sa connexion canonique d, cor-
respond à OX ′ muni du champ de Higgs nul.

2.6. Le complexe de Higgs d’unOX ′ -module de HiggsF ∈ Mod (Ŝ(TX ′)) est, par
définition, le complexe (avec F placé en degré 0)

0 → F θ−→ F ⊗OX ′ Ω1
X ′

(−)∧θ−→ F ⊗OX ′ Ω2
X ′

(−)∧θ−→ ... (6)

avec θ l’applicationOX ′ -linéaire provenant de la structure naturelle deS(TX ′)-module
sur F et, pour alléger, Ω i

X ′ le OS-module des différentielles relatives de de degré i
de X ′/S (noté Ω i

X ′/S lorsque une ambiguïté est possible). On en donnera ci-dessous
(10) une autre description. Il résulte facilement de cette équivalence la
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Proposition 1 Si E ∈ Mod (̂DX ) etF ∈ Mod (Ŝ(TX ′)) se correspondent par l’équi-
valence ci-dessus, alors l’image directe par F du complexe de De Rham de E est
quasi-isomorphe au complexe de Higgs de F .

Le principe de démonstration est le suivant. Pour calculer RHom
̂DX

(OX , E), on
utilise la résolution de Spencer deOX par desOX -modules localement libres surDX

[... → DX ⊗OX ∧2TX → DX ⊗OX TX → DX ] → OX → 0. (7)

On tensorise alors la partie entre crochets par ̂DX en préservant l’exactitude de (7) car
̂DX est plat sur DX puisque c’est le complété de DX relativement à un idéal bilatère
engendré par une suite centralisante. On a alors, notant Ω•

X pour alléger le complexe
Ω•

X/S des différentielles relatives de X/S, des isomorphismes

RHom
̂DX

(OX , E) � Hom
̂DX

(̂DX ⊗OX ∧•TX , E) � E ⊗OX Ω•
X (8)

Pour le complexe de Higgs, on utilise la résolution de Koszul de OX ′

[... → S(TX ′) ⊗OX ′ ∧2TX ′ → S(TX ′) ⊗OX ′ TX ′ → S(TX ′)] → OX ′ → 0. (9)

que l’on tensorise par Ŝ(TX ′) au-dessus de S(TX ′) en la laissant exacte. On obtient

RHom Ŝ(TX ′ )(OX ′ ,F) � Hom Ŝ(TX ′ )(Ŝ(TX ′) ⊗OX ′ ∧•TX ′ ,F) � F ⊗OX ′ Ω•
X ′ . (10)

Les deux foncteurs dérivés (8) et (10) pouvant se calculer à l’aide de résolutions
injectives du second argument, la proposition s’ensuit grâce à l’équivalence de caté-
gories donnée par H et M.

2.7. Notons ici que, par définition de KX et grâce au lemme d’algèbre linéaire
qu’on vient d’évoquer, les anneauxDX /KX etOX ′ sont équivalents au sens deMorita.
C’est, réinterprété dans ce langage, le classique théorèmede descente deCartier ([10],
Theorem 7.2). D’autre part, la Proposition 1 fournit exactement, une fois précisé les
isomorphismes, la décomposition du complexe de De Rham obtenue par Deligne-
Illusie ([5], Rem. 2.2(ii)).

2.8. La démonstration du Théorème 1 procède par dualité. Soient I ⊂ OX×S X

l’idéal définissant l’immersion diagonale X ↪→ X ×S X , PX son enveloppe à puis-
sances divisées (notée PX/S,(0) dans [8], 2.4), I ⊂ PX le PD-idéal engendré par I
et, pour n un entier ≥ 0, Pn

X = PX/I [n+1]. On a, par définition,

DX,n = HomOX (Pn
X ,OX ) ; DX = ∪n≥0DX,n. (11)

On remarque alors qu’on a simplement un isomorphisme

̂DX
∼→ HomOX (PX ,OX ). (12)
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et que ̂DX n’est autre que ce qui est classiquement appelé l’algèbre des opérateurs
hyper-PD-différentiels. D’autre part, notons�(Ω1

X ′) laOX ′-algèbre (graduée) à puis-
sances divisées canoniquement associée auOX ′-moduleΩ1

X ([8], Theorem 1.2). Une
vérification d’algèbre linéaire ([8], preuve deTheorem4.13) fournit un isomorphisme

EndŜ(TX ′ )(OX ⊗OX ′ Ŝ(TX ′))
∼→ HomOX (OX×X ′ X ⊗O′

X
�(Ω1

X ′),OX ) (13)

de sorte que le théorème 1 se réduit à la construction d’un isomorphisme d’algèbres
de Hopf

OX×X ′ X ⊗OX ′ �(Ω1
X ′)

∼→ PX . (14)

2.9. Cette construction procède selon les principales étapes suivantes :

• L’application canonique I → PX ; f → f [p] composée avec la projection canon-
ique PX → IPX est une application F∗-linéaire nulle sur I2 ([8], Lem. 3.1). Elle
induit donc ([8], Proposition 3.2) par passage au quotient et linéarisation une
application OX -linéaire

F∗Ω1
X ′ → PX/IPX (15)

• L’application (15) s’étend en un isomorphisme de OX -algèbres à puissances
divisées ([8], Proposition 3.3)

F∗�(Ω1
X ′)

∼→ PX/IPX . (16)

• La donnée de (X̃ , X̃ ′, F̃ : X̃ → X̃ ′) permet de factoriser le morphisme (15) en un
morphisme de OX -modules

F∗Ω1
X ′ → PX . (17)

C’est l’application Frobenius divisé, notée 1
p! F̃

∗ dans (Proposition 4.8, [8]). On

prendra garde ici que la surjection canoniquePX → PX/IPX n’est pas compatible
aux puissances divisées.

• L’application (17) s’étend en un morphisme deOX -algèbres à puissances divisées
([8], Proposition 4.8)

F∗�(Ω1
X ′) → PX (18)

factorisant l’isomorphisme (16).
• L’application (18) s’étend alors canoniquement ([8], Proposition 4.13)
en l’isomorphisme de OX -algèbres de Hopf (14) recherché.
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2.10. Il peut être utile au lecteur de savoir que si l’on composait la projection
canonique PX → PX/IPX avec l’inverse de (16) et qu’on dualisait l’application
obtenue, on retrouverait la composée S(TX ′) → F∗DX de l’application (2) de p-
courbure c et de l’application canonique ZDX ↪→ DX .

3 Opérateurs différentiels q-déformés

3.1. Soient R un anneau commutatif supposé muni d’un relèvement qu’on notera ici
simplement F du Frobenius absolu de R/p et q ∈ R. Soient également A une R-
algèbremunie d’unmorphisme étale f : R[t] → A (i.e. d’un framing au sens de [16],
§3 ; [4], §8, ...). Onmunit R[t] des deuxmorphismes de R-algèbresσ et F∗ induits par
σ(t) = qt et F∗(t) = t p. On supposera également, par simplicité, qu’il existe deux
morphismes de R-algèbres notés encore σ : A → A et F∗ : A′ := R↖F ⊗R A → A,
tels que respectivement σ(x) = qx et F∗(1 ⊗ x) = x p avec x := f (t) (élément par-
fois appelé coordonnée sur A). Signalons immédiatement, pour fixer les idées, un
exemple particulièrement intéressant pour nous où une telle situation se manifeste.
SoientQp une clôture algébrique deQp, q ∈ Qp une racine p-ième de 1 non triviale,
K l’extension finie totalement ramifiée de Qp engendrée par q et R := OK l’anneau
des entiers de K muni de F = IdR. Alors, la simple donnée de f étale comme ci-
dessus et des arguments standards suffisent à produire, par passage à la complétion
p-adique de A, une situation comme précédemment pour cette dernière.

On s’est limité au cadre de la dimension 1 mais tout ce qui précède et suit vaut
en dimension supérieure. On a également fixé une fois pour toutes ce dont on aura
besoin mais les données ne seront utilisés qu’au fur et à mesure (la donnée de Frobe-
nius n’est pas requise avant §4).

3.2. Pour u une indéterminée et n un entier ≥ 0, on pose (n)u = un−1
u−1 ∈ Z[u] ;

(n)u ! = ∏n
i=1(i)u ∈ Z[u] ;

(

n
k

)

u

= (n)u !
(k)u !(n−k)u ! ∈ Z[u]. Si maintenant q est un élé-

ment de R comme dans 3.1, les notations (n)q ; (n)q ! ;
(

n
k

)

q

signifient qu’on a

évalué les quantités précédentes en u = q afin d’obtenir des éléments de R. Ayant
à éviter plus bas une possible confusion avec la notation standard des puissances
divisées par des crochets, nous avons adopté la notation (n)q avec des parenthèses
plutôt que la notation [n]q de ([6] ou ([16], §1)).

3.3. Soient A comme dans 3.1 et fixons y ∈ A. On va définir tout d’abord
l’analogue q-déformé des sections de PX (2.8) sur un ouvert affine dans ce cadre.
Soit A〈ξ〉q,y le A-module libre de générateurs abstraits notés ξ[n]q,y avec n ∈ N (cf.
[9], §2). On abrégera, lorsqu’aucune confusion n’en résulte, ξ[0]q,y par 1, ξ[1]q,y par ξ
et ξ[n]q,y par ξ[n]. On notera I [n+1]q,y le sous-A-module libre de A〈ξ〉q,y engendré par
les ξ[k]q,y avec k > n.
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Proposition 2 ([9], Proposition 2.2) Soient m, n ∈ N. La règle de multiplication

ξ[n].ξ[m] =
min(m,n)

∑

i=0

(−1)i q
i(i−1)

2

(

m + n − i
m

)

q

(

m
i

)

q

yiξ[m+n−i] (19)

permet de munir A〈ξ〉q,y une structure de A-algèbre commutative et unitaire.
L’ensemble I [n+1]q,y est un idéal de A〈ξ〉q,y .

On dira alors que A〈ξ〉q,y est l’anneau des polynômes sur A à puissances divisées
q-déformées. Cette terminologie est justifiée par l’égalité, valide pour tout n ∈ N,

(n)q !ξ[n] =
n−1
∏

i=0

(ξ + (i)q y) =: ξ(n) (20)

et le fait que les ξ(n) forment, pour n ∈ N, une base de A[ξ] ([9], Lem. 1.1).

3.4. Soit encore A comme dans 3.1. Supposons désormais que y = (1 − q)x ∈ A.
Le lecteur remarquera que lorsque q = 1, l’algèbre A〈ξ〉q,y n’est autre que la A-
algèbre des polynômes à puissances divisées usuelles en ξ.

Définition 1 ([9], Definition 4.2) Soit n ∈ N. Le A-module des parties principales
q-déformées de A d’ordre au plus n (et de niveau 0) et le A-module des parties
principales q-déformées de A sont, respectivement,

P(0)
A/R,σ,n = A〈ξ〉q,y/I [n+1]q,y , (21)

P(0)
A/R,σ = lim←−

n∈N
A〈ξ〉q,y/I [n+1]q,y . (22)

Dans la suite, nous allégerons les notations P(0)
A/R,σ,n et P

(0)
A/R,σ en PA,σ,n et PA,σ respec-

tivement.

3.5. On conserve les hypothèses et notations de 3.4. Rappelons qu’il découle de
([12], Proposition 2.10) qu’il existe un unique endomorphisme R-linéaire ∂σ de A
tel que, pour tous z1, z2 ∈ A, on ait

∂σ(z1z2) = z1∂σ(z2) + σ(z1)∂σ(z2), (23)

i.e. une σ-dérivation canonique. Afin de construire les opérateurs différentiels q-
déformés par dualité, nous aurons besoin de la définition suivante.

Définition 2 ([9], Definition 4.5) L’application de Taylor q-déformée (de niveau 0)
est l’application

T : A → PA,σ (24)
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définie par T (z) = ∑+∞
k=0 ∂k

σ(z)ξ[k] pour tout z ∈ A.

On peut en fait définir T de manière plus formelle (cf. [9], Definition 4.5) et vérifier
que c’est un morphisme d’anneaux, puis décrire cette application grâce à ∂σ comme
on vient de le faire.

Si maintenant M est un A-module à gauche, l’écriture PA,σ,n ⊗′
R M signifie que

nous regardons PA,σ,n comme un A-module via l’application T (24). Autrement dit,
pour tous z ∈ A, s ∈ M, k ∈ N, on a :

ξ[k] ⊗′ zs = T (z)ξ[k] ⊗′ s (25)

Ceci permet de définir, pour chaque n ∈ N,

D(0)
A,σ,n = HomA(PA,σ,n ⊗′

A A, A). (26)

Pour n ∈ N, ces A-modules forment un système inductif et permettent donc de
considérer

D(0)
A,σ = lim−→

n∈N
D(0)

A,σ,n. (27)

On vérifie alors que la comultiplication

PA,σ → PA,σ ⊗′
A PA,σ (28)

définie par ξ[n] �→ ∑n
i=0 ξ[n−i] ⊗′ ξ[i] permet demunirD(0)

A,σ d’une structure d’anneau
(cf. [9], Proposition 5.6).

3.6. L’anneau (27) ainsi construit par dualité n’est autre (cf. [9], Proposition 5.7)
que l’extension de Ore DA/R,σ de A par σ et ∂σ, c’est-à-dire le A-module libre de
générateurs abstraits ∂k

σ (k ≥ 0) avec la règle de commutation ∂σz = σ(z)∂σ + ∂σ(z)
pour tout z ∈ A. Dans la suite, on utilisera cette notation DA,σ pour l’anneau D(0)

A,σ

(27) si aucune confusion n’en résulte.

4 p-courbure et Frobenius divisé q-déformés

4.1.On garde dans tout ce § les notations et hypothèses de 3.1 et l’on suppose de plus
que (p)q = 0 dans R et que R est q-divisible, c’est-à-dire (cf. [9], 0.3) que pour tout
m ∈ N, (m)q est inversible dans R s’il est non nul. Ces deux conditions (qui ne sont
pas nécessaires simultanément dans tous les énoncés) sont réalisées, par exemple,
dans le cas où R = OK (3.1) et q �= 1 une racine p-ième de l’unité. On continue de
poser y = (1 − q)x comme dans 3.4. Soient alors ZDA,σ le centre de l’anneau DA,σ

et ZAA,σ le centralisateur dans DA,σ de sa sous-algèbre A.
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Proposition 3 ([9], Proposition 6.3, Definition 6.5) Il existe une unique application
A-linéaire de A-algèbres

A[θ] → DA,σ ; θ �→ ∂ p
σ (29)

dite de p-courbure q-déformé (ou simplement p-courbure tordue). Elle induit un
isomorphisme de A-algèbres entre A[θ] et ZAA,σ et de A′-algèbres entre A′[θ] et
ZDA,σ .

Cette application est construite par dualité à partir des applications canoniques
PA,σ,np → PA,σ,np/(ξ).

4.2.L’analogueq-déforméducalcul local crucial permettant deprouver l’existence
de l’isomorphisme (16) est l’énoncé suivant.

Proposition 4 ([9], Definition 2.5, Theorem 2.6) L’unique application A-linéaire

A〈ω〉1,y p → A〈ξ〉q,y ; ω[k] �→ ξ[pk] (30)

est appelée Frobenius divisé q-déformé (ou simplement Frobenius divisé tordu). C’est
un homomorphisme d’anneaux induisant un isomorphisme de A-algèbres

A〈ω〉1,y p
∼→ A〈ξ〉q,y/(ξ). (31)

4.3. Pour n et i des entiers ≥ 0, on définit (cf. [9], Definition 7.4, Proposition 7.9)
des polynômes An,i (u), Bn,i (u) ∈ Z[u] par les formules

An,i (u) :=
n

∑

j=0

(−1)n− j u
p(n− j)(n− j−1

2

(

n
j

)

u p

(

pj
i

)

u

(32)

et
(n)u !An,i (u) = (n)u p !(p)n

u Bn,i (u). (33)

Les polynômes An,i (u) s’introduisent naturellement dans la description de l’action
induite par F sur les modules de parties principales q-déformées (cf. [9], Proposition
7.5). La possibilité de définir les polynômes Bn,i (u) vient, quant à elle, de l’examen
des coefficients des An,i (u).

Proposition 5 ([9], Proposition 7.12) L’application

[F∗] : A′〈ω〉1,y → A〈ξ〉q,y ; [F∗](ω[n]) =
pn

∑

i=n

Bn,i (q)x pn−iξ[i] (34)

est un homomorphisme d’anneaux.

Grâce à cette application, on montre, comme pour l’étape finale de (2.8) la
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Proposition 6 ([9], Proposition 7.13) L’application [F∗] induit un morphisme de
A-algèbres

[F∗] : A[ξ]/(ξ(p)q,y ) ⊗A′ A′〈ω〉1,y ∼→ A〈ξ〉q,y, (35)

qui est un isomorphisme.

C’est l’analogue q-déformé du calcul local crucial permettant de prouver l’existence
de l’isomorphisme (14) ([8], Theorem 4.13).

4.4. Par dualité, on déduit de la Proposition 6 la q-déformation suivante de ([8],
Proposition 4.8).

Proposition 7 ([9], Proposition 8.1) L’application [F∗] induit, par dualité, un mor-
phisme de A-modules

�A,σ : DA,σ → ZAA,σ ↪→ DA,σ ; ∂n
σ �→

n
∑

k=0

Bk,n(q)x pk−n∂ pk
σ . (36)

4.5. Soient, respectivement, D̂A,σ , ẐDA,σ , ẐAA,σ les complétés adiques de DA,σ ,
ZDA,σ , ZAA,σ (4.1) relativement à l’élément central ∂ p

σ ∈ ZDA,σ .

Théorème 3 ([9], Theorem 8.7) L’application �A,σ induit un isomorphisme de A-
algèbres

D̂A,σ
∼→ EndẐDA,σ

(ẐAA,σ). (37)

4.6. Pour q = 1, réduisant modulo p, cet isomorphisme redonne l’isomorphisme
(3). A un choix de normalisation près (correspondant exactement à la q-déformation
de la différence entre diviser par p ou par p! dans la construction du Frobenius
divisé en caractéristique p), pour A = R[t], f = Id, l’isomorphisme (37) se décrit
explicitement comme dans ([6], §4).

5 Théorie de Hodge non-abélienne q-déformée

On conserve dans ce § les hypothèses et notations générales du §4.

5.1. Le lemme classique d’algèbre linéaire ([8], Lem. 5.6) déjà évoqué en 2.5
montre alors que les anneaux D̂A,σ et ẐDA,σ sont équivalents au sens de Morita. On
va traduire cette conséquence en termes plus explicites.

Définition 3 ([9], §8) Soit M un A-module. Une σ-dérivation (de niveau 0) ou sim-
plement σ-dérivation de M est une application R-linéaire ∂σ,M (=: ∂<1>0

σ,M ) vérifiant,
pour tous r ∈ A, m ∈ M , l’égalité (règle de Leibniz q-déformée)
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∂σ,M(rm) = ∂σ(r)m + σ(r)∂σ,M(m). (38)

On a une notion évidente de morphismes entre modules munis de σ-dérivations.
Rappelons maintenant qu’on dit qu’un endomorphisme uG d’un groupe abélien G
est dit quasi-nilpotent si pour tout g ∈ G, il existe n ∈ N tel que un

G(g) = 0.

5.2.Dans le cadre géométrique du §4, l’analogue q-déformé de la correspondance
d’Ogus–Vologodsky (4), (5) est l’énoncé suivant.

Théorème 4 ([9], Corollary 8.9) La catégorie des A-modules M munis d’une σ-
dérivation quasi-nilpotente σM est équivalente à la catégorie des A′-modules H
munis d’un endomorphisme A-linéaire quasi-nilpotent uH .

L’équivalence est donnée explicitement (comparer avec [8], Proposition 5.7 pour la
situation en caractéristique p) par les deux foncteurs suivants quasi-inverses l’un de
l’autre

Hq : (M,σM) �→ (H := {m ∈ M | �A,σ(∂k
σ)(m) = ∂k

σ(m) pour tout k ∈ N}, ∂ p
σ ),

(39)
Mq : (H, uH ) �→ (M := A ⊗A′ H, ∂σ,M) (40)

avec ∂σ,M l’unique σ-dérivation de M telle que ∂σ,M(1 ⊗ h) = t p−1 ⊗ uH (h) pour
tout h ∈ H . Dans cette équivalence, (A, ∂σ) (3.5) correspond à (A′, 0).

5.3. Formulons maintenant les conséquences cohomologiques de cette équiva-
lence en termes analogues à ceux de la Proposition 1. Si M est un A-module muni
d’une σ-dérivation ∂σ,M , on lui associe son complexe de De Rham q-déformé ou,
s’inspirant de la terminologie de [16], complexe de q-De Rham de M

q-DR(M/R) : 0 → M
∇M−→ M ⊗A Ω1

A/R → 0 (41)

avec M placé en degré 0 et∇M (m) = ∂σ,M(m) ⊗ dx . Bien que cela ne joue pas de rôle
à ce niveau, signalons ici qu’il serait beaucoup plus canonique dans cette définition
d’utiliser le R-module des différentielles q-déformées Ω1

A/R,σ de ([11], Definition
5.3) plutôt que Ω1

A/R (qui lui est seulement non-canoniquement isomorphe).
D’autre part, pour H un A′-module muni d’un endomorphisme uH , on peut lui

associer son complexe de Higgs

Higgs (H/R) : 0 → H
θH−→ H ⊗A′ Ω1

A′/R → 0 (42)

avec H placé en degré 0 et θH (h) = uH (h) ⊗ dx .

Proposition 8 ([9], Corollary 8.10) Si (M, ∂σ,M) est un A-module muni d’une déri-
vation q-déformée quasi-nilpotente et (H, uH ) un A′-module muni d’un endomor-
phisme quasi-nilpotent se correspondant suivant les foncteurs Hq et Mq , alors le
complexe q-DR(M/R) est quasi-isomorphe au complexe Higgs (H/R).
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Corollaire 1 Il existe un isomorphisme (“de Cartier q-déformé”) de R-modules

Cq : Hi (q-DR(A/R))
∼→ Ω i

A′/R (43)

pour tout i .

Un suivi des différents morphismes permet de vérifier qu’il s’identifie bien à celui
donné dans [16], Proposition 3.4, (iii) pour l’exemple R = OK de 3.1.

5.4. La condition de q-divisibilité de 4.1 garde un sens lorsque p est remplacé par
une puissance de p et l’hypothèse de q-divisibilité de R correspondante est cruciale
pour généraliser à ce cadre les principaux résultats ci-dessus (cf. [9]). On notera ici
qu’elle n’est, en général, pas vérifiée pour R = OK et q �= 1 une racine pn-ième
(n > 1) de l’unité comme dans 3.1.

6 Questions-Travaux en cours

6.1. Pour ce qui est du lien avec [3], les questions que nous nous posons sont
toutes celles motivées par l’espoir suivant, dont les termes seront précisés le moment
venu :

L’équivalence de catégories du Théorème 4 est un corollaire de l’explicitation
locale d’une équivalence canonique, compatible (à torsion près en général) au pas-
sage à la cohomologie, entre une catégorie convenable de cristaux sur un site q-
cristallin ([3], 16.2) et une autre de cristaux sur un site prismatique ([3], 4.1).

Indépendamment de [3], une première étape pourrait consister à reformuler le
Théorème 4 comme un cas particulier d’une équivalence entre des catégories de D-
modules q-déformés convenables, le modèle “non q-déformé” étant le point de vue
proposé par Shiho ([17], Theorem 3.1) consistant à voir la correspondance d’Ogus
et Vologodsky comme cas particulier d’un résultat plus général. Pour ce faire, il
devrait être utile d’introduire (suivant les mêmes lignes que celles utilisées pour
définir (26)) un anneau d’opérateurs différentiels q-tordus de niveau -1 (avec q
“générique”) déformant celui introduit par Shiho ([17], §2) et intervenant dans sa
généralisation de [13].

Ensuite, dans une seconde étape, pour faire le lien entre [3] et nos constructions,
l’idée la plus naturelle est de généraliser la classique équivalence entre catégories de
cristaux et catégories deD-modules et sa compatibilité au passage à la cohomologie
au cadre des sites évoqués ci-dessus et des anneaux d’opérateurs différentiels q-
déformés qui leur correspondent.

Enfin, il restera, dans une dernière étape, à définir dans un cadre géométrique non
nécessairement “local”, le foncteur canonique entre cristaux qu’on espère pouvoir
s’expliciter comme “Frobenius divisé” au niveau des algèbres d’opérateurs différen-
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tiels q-déformés de niveau 0 et -1. Ce foncteur devrait simplement être celui induit
par le morphisme image inverse déduit du morphisme de sites décrit dans ([3], début
de la preuve du Theorem 16.17).

6.2. Donnons, en conservant les notations de 3.1 et en supposant que R modulo
(p)q soit q-divisible, quelques indications sur la première étape et sur la définition
de l’anneau D(−1)

A,σ d’opérateurs différentiels q-tordus de niveau -1 (d’autres niveaux

négatifs, comme dans [17], sont évidemment possibles). La définition de D(−1)
A,σ suit

celle de D(0)
A,σ (27) en remplaçant formellement partout A〈ξ〉q,y par A〈 ξ

(p)q
〉q p,y et en

modifiant en conséquence (2), etc. On montre alors que la donnée d’une structure de
D(−1)

A,σ -module sur un A-module M est équivalente à la donnée d’une σ p-dérivation

de niveau -1, i.e. (comparer avec (3)) d’une application R-linéaire ∂<1>1
σ p,M : M → M

telle que, pour tous r ∈ A, m ∈ M , on ait.

∂<1>1
σ p,M (rm) = (p)q∂σ p (r)m + σ p(r)∂<1>1

σ p,M (m). (44)

Il est facile de voir qu’il existe un foncteur “image inverse par Frobenius (relatif)”,
analogue q-déformé de ([17], Theorem 3.1), de la catégorie des D(−1)

A′,σ -modules dans

celle des D(0)
A,σ-modules dont nous pensons savoir démontrer ([7]) que c’est une

équivalence de catégories sur les objets quasi-nilpotents.
En particulier, lorsque q p = 1, un D(−1)

A′,σ -module M n’est pas autre chose qu’un
A′-module de Higgs et le théorème 4 serait alors un cas particulier de cette équiva-
lence de catégories plus générale.

6.3. Reprenons les notations de 3.1 et supposons de plus que R soit une algèbre
au-dessus de Zp[[q − 1]] munie d’une structure de δ-anneau ([3], Definition 2.1)
telle que δ(q) = 0 (comme pour Zp[[q − 1]]). Supposons également A munie d’une
structure de δ-R-algèbre telle que δ(x) = 0, structure qu’on étendra à A[ξ] en posant

δ(ξ) =
∑

1≤i≤p−1

1

p

(

p
i

)

x p−iξi . (45)

Le premier site qui nous intéresse dans 6.1 est le site q-cristallin1([3], 16.2) de
A/(q − 1) relativement à (R, (q − 1)). Le point crucial dans la seconde étape espérée
dans 6.1 est une identification de (A〈ξ〉q,y, I [1]q,y ) (3.3) avec la q-PD-enveloppe ([3],
Lemma 16.10) de (A[ξ], (ξ)). Précisons le résultat auquel nous parvenons. Pour
définition d’une q-PD-paire (B, J ) (comparer [3], Definition 16.2) ne retenons ici

1CAVEAT : Nous empruntons ici et plus bas, abusivement, la terminologie de [3] mais ignorons
dans nos rappels certaines des propriétés additionnelles sur les objets requises dans loc. cit. si elles
ne jouent pas de rôle dans ce que l’on veut expliquer ici (voir d’ailleurs, à ce sujet, les commentaires
sur leur éventuel caractère provisoire sous la définition 16.2 de [3]). Les ajustements précis avec les
hypothèses de [3], particulièrement ceux nécessitant de prendre en compte complétions et topologies
(ne serait-ce que dans la définition des sites) seront donnés dans [7].
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(cf. 1) que la donnée d’une δ-algèbre B au-dessus de (R, δ), sans (p)p-torsion, munie
d’un idéal J tel que φ(J ) ⊂ (p)q B avec φ(b) := bp + pδ(b) pour tout b ∈ B. Si C
est une δ-R-algèbre et I un idéal quelconque de C (auquel cas, on dira que (C, I ) est
une δ-paire, cf. ([3], Definition 3.2)), sa q-PD-enveloppe, notée (C [ ], I [ ]), est pour
nous ici la q-PD-paire universelle (dont la proposition ci-dessous prouve, pour le cas
qui la concerne, l’existence et l’unicité à isomorphisme près) pour le prolongement
(unique) à (C [ ], I [ ]) de tout morphisme (C, I ) → (B, J ) d’une δ-paire dans une
q-PD-paire. On a alors la

Proposition 9 ([7]) Si A est une δ-R-algèbre sans (p)q -torsion, alors la q-PD-
enveloppe1 de la δ-paire (A[ξ], (ξ)) s’identifie (A〈ξ〉q,y, I [1]q,y ) (3.3).

La démonstration consiste à se ramener au cas R = Zp[[q − 1]] et A = R[x]
puis, utilisant l’écriture p-adique de n = ∑

r≥0 kr pr , de montrer que les vn :=
ξk0

∏

r≥0(δ
r ([φ](ξ)))kr +1 forment, pour n ∈ N, une base, comme A-module, de

A〈ξ〉q,y . Ici

[φ] : A〈ξ〉q,y → A〈ξ〉q,y ; [φ](ξ[n]q,y ) =
pn

∑

i=n

Bn,i (q)x pn−iξ[i]q,y (46)

tient compte, par rapport à [F∗] (34), de l’usage du Frobenius absolu dans [3]
plutôt que relatif dans [9]. Si maintenant (B, J ) est une q-PD-paire, tout mor-
phisme de δ-paires u : (A[ξ], (ξ)) → (B, J ) s’étend alors uniquement à A〈ξ〉q,y

par un morphisme d’anneaux envoyant vn ∈ A〈ξ〉q,y sur f k0
∏

r≥0(δ
r (g))kr +1 ∈ B

avec f := u(ξ) et g ∈ B unique tel que φ( f ) = (p)q g.

Signalons que le cas q = 1 est celui traité dans ([3], Lem. 2.35) et, pour le lecteur
intéressé, l’existence d’un analogue ([15], Lem. 1.3), au moins lorsque q − 1 ∈ R×,
pour les λ-anneaux.

6.4. Conservons les notations de 6.3 et supposons que (R, (p)q) soit un prisme
borné ([3], Definition 3.2) pour pouvoir réfèrer à [3]. Notons A(1) le quotient
A′/(p)q A′. Le second site qui nous intéresse dans 6.1 est le site prismatique de A(1)

relativement à (R, ((p)q)). Comme dans 6.3, le point crucial dans la seconde étape
espérée dans 6.1 est de disposer d’une description adéquate (que nous appliquerons in
fine à A′ plutôt qu’à A) de l’enveloppe prismatique ([3], Corollary 3.14) de (A[ξ], (ξ))
relativement à (R, ((p)q)). Reprenant les termes de la construction donnée dans loc.
cit., considérons donc juste ici la questionduprolongement universel d’unmorphisme
de δ-paires (au-dessus de la δ-paire (R, ((p)q))) u : (A[ξ], (ξ)) → (B, ((p)q)) avec
B sans (p)q -torsion à une δ-paire de la forme (C, ((p)q)). Nous montrons qu’un
tel objet universel existe et nous l’appellerons (cf. 1) dans la proposition qui suit
enveloppe prismatique de (A[ξ], (ξ)).
Proposition 10 ([7]) Si A est une δ-R-algèbre sans (p)q -torsion, alors l’enveloppe
prismatique1 de la δ-paire (A[ξ], (ξ)) s’identifie à (A〈 ξ

(p)q
〉q p,y, ((p)q)) (6.2).
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En effet, la variante de (30) utilisant le Frobenius absolu de A plutôt que relatif
comme dans [9] fournit une application (dont (46) est la variante “divisée”)

φ : A〈ξ〉q,y → A〈ξ〉q,y ; φ(ξ[n]q,y ) =
pn

∑

i=n

An,i (q)x pn−iξ[i]q,y . (47)

L’équation (33) suffit alors à voir (rappelons au passage que φ(q) = q p) que
A〈 ξ

(p)q
〉q p,y est bien muni d’un relèvement de Frobenius et, par suite, d’une structure

de δ-anneau. Enfin, lemême argument que pour la Proposition 9 (avec u(ξ) = (p)q g)
donne le prolongement cherché de u : (A[ξ], (ξ)) → (B, (p)q B) à (A〈 ξ

(p)q
〉q p,y,

((p)q)).

6.5. Pour terminer, remarquons que les arguments de Shiho ([17]) ne nécessi-
taient pas d’interprétation de ses D(−1)-modules (loc. cit §2) quasi-nilpotents en
termes de cristaux sur un site mais que, lorsque q = 1, le site prismatique ([3], 4.1)
en fournit une, qui dans ce cas particulier est juste une variante “avec δ-structures”
de celle déjà établie dans ([14], Definition 1.3.1, [19], Definition 7.1) (l’ajout de δ-
structures évitant précisément les puissances divisées additionnelles sur les anneaux
d’opérateurs différentiels considérés des ces articles). Enfin, compte tenu des con-
sidérations topologiques délicates à développer sur les sites considérés dans 6.3-
6.4 nous laissons pour ailleurs la discussion d’une possible approche alternative
à l’équivalence cherchée dans 6.1 qui serait l’analogue de ([14], Theorem 1.4.3)
(équivalence de topos).
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Crystalline Z p-Representations
and Ainf -Representations with Frobenius

Takeshi Tsuji

Abstract In the late ’80s, Faltings established an integral p-adic Hodge theory
with coefficients, in which he generalized Fontaine–Laffaille theory of crystalline
Zp-representations of the absolute Galois group of a p-adic field to the fundamen-
tal group of a non-singular algebraic variety over a p-adic field with good reduc-
tion. In this paper, we study the theory of coefficients above in the framework of
integral p-adic Hodge theory via Ainf-cohomology recently introduced by Bhatt,
Morrow, and Scholze. We give a local theory (i.e. a theory on an affine open) of Ainf -
cohomology for a p-torsion free crystalline Zp-representation of the fundamental
group by constructing the associated Ainf -representation with Frobenius, which is a
variant of the construction by N. Wach of the (ϕ, Γ )-module associated to a crys-
talline Zp-representation of the absolute Galois group.

Keywords Integral p-Adic Hodge Theory · Relative Fontaine–Laffaille Theory ·
Ainf-Cohomology

Mathematics Subject Classification (2010) 14F30 · 14F20 · 14F40

1 Introduction

Let O be the ring of integers of a complete algebraically closed nonarchimedian
extension C of Qp, let k be the residue field of O, and let Ainf be the period ring
associated to O defined by Fontaine (see Sect. 2). Let X be a proper smooth formal
scheme over O. In [7], Bhatt, Morrow, and Scholze introduced a new cohomology
theory RΓAinf (X) lying in the derived category of Ainf -modules, and opened a way
to compare the integral p-adic étale cohomology Hi

ét(XC ,Zp) with the crystalline
cohomology Hi

crys(Xk/W (k)) and the integral de Rham cohomology Hi
dR(X/O) for

any i . In all related preceding work, we can deal with integral p-adic cohomolo-
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gies only when i is smaller compared to p, and we may say that their theory is a
breakthrough in the study of integral p-adic cohomologies. However the theory is
developed only for the constant coefficients, while an integral p-adic Hodge theory
with coefficients (for small i) was established by Faltings [10] in the late ’80s. There-
fore it is natural to ask whether we have a similar theory for the Ainf -cohomology.
The purpose of this paper is to give a partial positive answer to this question.

Let K be a complete discrete valuation field of mixed characteristic (0, p) with
perfect residue field k, and let OK be the ring of integers of K . We assume that
p is a uniformizer of OK . Let X be a proper smooth scheme over OK . In [10],
as a theory of coefficients, Faltings generalized the theory of Fontaine–Laffaille on
p-torsion crystalline representations of the absolute Galois group of K to locally
constant constructible p-torsion sheaves on XK ,ét . More precisely, he introduced
the category MF∇

[a,b],tor(X) (0 ≤ b − a ≤ p − 2) consisting of “p-torsion filtered
Frobenius crystals of level with in [a, b]”, and constructed a fully faithful functor
Tcrys to the category of locally constant constructible p-torsion sheaves on XK ,ét .
We have an obvious analogue of the theory for smooth Zp-sheaves on XK ,ét . In this
paper, we show that there exists a hopeful local theory of Ainf -cohomology for a
torsion free smooth Zp-sheaf contained in the essential image of the functor Tcrys as
follows.

We fix some notation used throughout this paper. Let K , k, and OK be as above.
Let X = Spec(A) be an affine smooth scheme over Spec(OK ) such that the special
fiber Spec(A ⊗OK k) is non-empty and geometrically connected, let A be the p-
adic completion of A, which is a noetherian regular domain, and assume that there
exist coordinates t1, . . . , td ∈ A× of A over OK . We choose and fix an algebraic
closure K of K , OK denotes its ring of integers, and GK denotes the Galois group
Gal(K/K ). Let K be the field of fractions of A, let K be an algebraic closure of K
containing K , and let Kur be the union of all finite extensions L ⊂ K of K such that
the integral closure ofA[ 1p ] in L is étale overA[ 1p ]. We define GA (resp. ΔA) to be
the Galois group Gal(Kur/K) (resp. Gal(Kur/KK )), which is the fundamental group
of the generic fiber (resp. the geometric generic fiber) of Spec(A) with base point
Spec(K). LetA be the integral closure ofA inKur, and let Ainf(A) be the Fontaine’s
period ring associated to A (see Sect. 2 for details).

For a “free” object M of the category MF∇
[0,p−2](A), we construct a semilinear

Ainf(A)-representation T Ainf(M) of GA with Frobenius structure (Sect. 8), general-
izing some arguments (Sects. 6 and 7) used in the proof of the theorem of Wach [20]
relating (ϕ, Γ )-theory and Fontaine–Laffaille theory. For the free Zp-representation
Tcrys(M) of GA associated to M , the representation T Ainf(M) is eventually char-
acterized as a unique free GA-stable “lattice” of Tcrys(M) ⊗Zp Ainf(A)[ 1

π
] “trivial”

modulo π (see Proposition 76, Theorem 70 and Lemma 64). Here π is the element
denoted by μ in [7] and is defined in the paragraph after (1).We prove that the functor
T Ainf is fully faithful (Theorem 63 (1)), and together with the above characterization,
we obtain a new proof of the fully faithfulness of the functor Tcrys (Theorem 77).

The Ainf -cohomology RΓAinf (X) is defined as the cohomology of a complex of
Ainf(O)-modules on XZar denoted by AΩX, and its (derived) section on a (small)
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affine formal scheme Spf(R) is given by “AΩR = LημRΓ (Δ, Ainf(R))”. A natural
candidate of an analogue of AΩR for M is AΩA(M) := LηπRΓ (ΔA, T Ainf(M))

(Sect. 15). We see that this has the following relation to the Zp-representation
Tcrys(M) ofGA and to the de Rham complex ofM similarly to [7, Theorem 14.1]. For
the former, the characterization of T Ainf(M) as a lattice of Tcrys(M) ⊗Zp Ainf(A)[ 1

π
]

immediately implies that AΩA(M) is isomorphic to RΓ (ΔA,

Tcrys(M) ⊗Z Ainf(A)) after inverting π (Theorem 106). As for the latter, there exists
a canonical isomorphism independent of the choice of t1, . . . , td (Theorem 204)

Acrys(OK )̂⊗OK M ⊗A Ω•
A

∼=−→ Acrys(OK )̂⊗L
Ainf (OK )AΩA(M)

in the derived category of Acrys(OK )-modules with semilinear action of GK (:=GK

with the discrete topology). We can apply the construction of T Ainf(M) also to the
period ring A�

inf(A) associated to a framing (i.e. t1, . . . , td ) considered in [7, Sect.
9], and obtain an A�

inf(A)-representation with Frobenius T A�
inf(M) (Sect. 13). Then

we can describe AΩA(M) in terms of the Koszul complex associated to T A�
inf(M)

similarly to [7, Sect. 9], and it allows us to construct the isomorphism above with
GK -action forgotten (Sect. 15). This construction of the isomorphism heavily relies
on the framing, and we prove the independence by giving an alternative construction
(different from [7, Sect. 12]), towhich the last five sections (Sects. 17–21) are devoted,
and which recovers GK -action as well.

2 Period Rings

Let σ be the unique lifting of the absolute Frobenius of k to K . As in Sect. 1, let K
be an algebraic closure of K , and let OK be the ring of integers of K . Let C be the
completion of K , let OC be the ring of integers of C , and let vC be the valuation of
C normalized by vC(p) = 1.

LetΛ be a normal domain containing OK . Assume thatΛ/pΛ 	= 0 and the abso-

lute Frobenius of Λ/pΛ is surjective. Let RΛ be the inverse limit of Λ/pΛ
F←−

Λ/pΛ
F←− Λ/pΛ

F←− Λ/pΛ
F←− · · · , where F denotes the absolute Frobenius. Then

the absolute Frobenius of RΛ is bijective. We regard RΛ as a k-algebra by the homo-
morphism k → RΛ; x �→ (x p−n

)n∈N. We define the OK = W (k)-algebra Ainf(Λ)

to be the ring of Witt vectors W (RΛ), which is p-torsion free, and p-adically
complete and separated. It has a canonical lifting of the absolute Frobenius of
W (RΛ)/p ∼= RΛ compatible with σ, which is an automorphism and is denoted
by ϕ in the following. We have a ring homomorphism θ : Ainf(Λ) → ̂Λ charac-
terized by θ([a]) = limn→∞ ã pn

n for a = (an)n∈N ∈ RΛ, where ̂Λ denotes the p-
adic completion lim←−m

Λ/pmΛ of Λ and ãn denotes a lifting of an in Λ for each
n ∈ N ([12, 1.2.2], [10, II (b)]). By the assumption that the absolute Frobenius of
Λ/pΛ is surjective, we see that θ is surjective ([12, 1.2.2], [10, II (b)], [18, Lemma
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A1.1]). The homomorphism θ is compatible with the OK -algebra structures because
θ([(x p−n

)n∈N]) = limn→∞[x p−n ]pn = [x] for x ∈ k.
Choose a compatible system of pnth roots βn (n ∈ N) of p in OK : β

p
n+1 = βn (n ∈

N), β0 = p, and define the element p of RΛ to be (βn mod p)n∈N. The projection to
the first component RΛ → Λ/pΛ; (an)n∈N �→ a0 is surjective, its kernel is generated
by p, and p is not a zero divisor in RΛ ([10, II (b)], [18, Lemma A2.1]). This
implies that the projection to the (l + 1)th component RΛ → Λ/pΛ; (an)n∈N �→ al
is surjective and its kernel is generated by ppl because its composition with the lth
power of the absolute Frobenius of RΛ coincides with the projection to the first
component and the absolute Frobenius of RΛ is bijective. The element ξ := p − [p]
of Ainf(Λ) is a non-zero divisor and generates the ideal Ker(θ) ([10, II (b)], [18,
Corollary A2.2]). This implies that an element a of Ker(θ) generates Ker(θ) if and
only its image in Ainf(Λ)/p ∼= RΛ is contained in pR×

Λ ([12, 5.1.2], [18, Corollary
A2.4]). We define Filr Ainf(Λ) (r ∈ N) to be Ker(θ)r if r > 0 and Ainf(Λ) if r ≤ 0.

For a = (an)n∈N ∈ ROK
, we put vR(a) = vC(θ([a])). Then vR is a valuation of

ROK
, with which ROK

is a complete valuation ring, and its field of fractions is
algebraically closed. We have vR(p) = p because θ([p]) = p. This implies that, for
any non-zero element a of ROK

, we have pn ∈ aROK
for some n ∈ N, and therefore

the image of a in RΛ is regular.

Lemma 1 Let a be an element of Ainf(OK ), and assume that its image a in
Ainf(OK )/pAinf(OK ) ∼= ROK

is neither zero nor invertible.

(1) The (p, a)-adic topology of Ainf(Λ) coincides with the (p, [p])-adic topology.
(2) Ainf(Λ) is (p, a)-adically complete and separated.
(3) Ainf(Λ)/aAinf(Λ) is p-torsion free, and p-adically complete and separated.
(4) Ainf(Λ) and Ainf(Λ)/pn (n ∈ N>0) are a-torsion free, and a-adically complete

and separated.

Lemma 2 Let R be a flat Zp-algebra p-adically complete and separated, and let a
be an element of R such that R/pR is a-torsion free, and a-adically complete and
separated.

(1) R is (a, p)-adically complete and separated.
(2) R/an R (n ∈ N>0) are p-torsion free, and p-adically complete and separated.
(3) R and R/pn R (n ∈ N>0) are a-torsion free, and a-adically complete and sep-

arated.

Lemma 3 Let R be a commutative ring.

(1) Let M be an R-module, and let a and b be two elements of R regular on M.
Then we have a canonical isomorphism (M/aM)[b] ∼= (M/bM)[a].

(2) Let 0 → M1 → M2 → M3 → 0 be an exact sequence of R-modules. Let a be an
element of R regular on M3. Then, if twoof the three R-modules Mi (i ∈ {1, 2, 3})
are a-adically complete and separated, then the remaining one is also a-adically
complete and separated.



Crystalline Zp-Representations and Ainf -Representations with Frobenius 165

Proof (1) We obtain the claim by applying the snake lemma to the multiplication by
b on the short exact sequence 0 → M

a−→ M → M/aM → 0.
(2) Since a is regular on M3, the exact sequence in the claim induces exact

sequences 0 → M1/an → M2/an → M3/an → 0 (n ∈ N). By taking the inverse
limit over n, we obtain the following homomorphism of short exact sequences

0 M1 M2 M3 0

0 lim←−n
M1/an lim←−n

M2/an lim←−n
M3/an 0.

If the two of the three vertical homomorphisms are isomorphisms, then so is the
rest. �

Proof of Lemma 2 Since R/p is a-torsion free, and R is p-torsion free and p-
adically complete and separated, we see that R/pn is a-torsion free by induction on
n, and that R is a-torsion free by taking the inverse limit. Since a and p are regular
in R, we have R/an[p] ∼= R/p[an] = 0 by Lemma 3 (1). By applying Lemma 3 (2)

to the exact sequence 0 → R
an−→ R → R/an → 0, we see that R/an is p-adically

complete and separated.

We have an exact sequence 0 → R/pn
p−→ R/pn+1 → R/p → 0 since R is p-

torsion free. Since R/p is a-torsion free and a-adically complete and separated
by assumption, we see that R/pn is a-adically complete and separated by induc-
tion on n by applying Lemma 3 (2) to the above exact sequence. Now we have
R ∼= lim←−n

R/pn ∼= lim←−n
(lim←−m

R/(pn, am)) ∼= lim←−(n,m)
R/(pn, am), i.e., R is (a, p)-

adically complete and separated. Finally we have R ∼= lim←−n
(lim←−m

R/(an, pm)) ∼=
lim←−n

R/an because R/an is p-adically complete and separated. �

Proof of Lemma 1By the assumption on a, there existsm ∈ N such that am ∈ pROK

and pm ∈ aROK
. Since a − [a] ∈ pAinf(OK ), we have the equality (p, a) = (p, [a])

of ideals of Ainf(OK ), which implies the following inclusions of ideals of Ainf(Λ):
(p, a)m ⊂ (p, [p]) and (p, [p])m ⊂ (p, a). Hence the claim (1) holds. The image
of a in RΛ is regular as observed before Lemma 1. As the kernel of the projection
RΛ → Λ/p; (an)n∈N �→ al is generated by ppl for l ∈ N, Ainf(Λ)/p = RΛ is p-
adically complete and separated. Since am ∈ pROK

and pm ∈ aROK
, Ainf(Λ)/p is

a-adically complete and separated. Thus we can apply Lemma 2 to Ainf(Λ) and a,
and obtain the claims (2), (3), and (4). �

Lemma 4 Let Λ′ be another normal domain containing Λ such that Λ′/pΛ′ 	= 0
and the absolute Frobenius of Λ′/pΛ′ is bijective. Assume that the homomor-
phism Λ/pΛ → Λ′/pΛ′ is injective. Let a and a be the same as in Lemma 1.
Then the natural homomorphism Ainf(Λ) → Ainf(Λ

′) and its reduction modulo pm

(m ∈ N>0), modulo a, and modulo (a, pm) (m ∈ N>0) are injective. In particu-
lar, Ainf(Λ) → Ainf(Λ

′) is strictly compatible with the filtrations Fil•. (Note that
ξr ∈ Ainf(OK ) (r ∈ N>0) satisfy the condition on a in Lemma 1.)
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Proof We assert that the claim for the reduction modulo (a, p) implies those for
the other ideals as (a, p) ⇒ (a, pm) ⇒ (pm), (a) ⇒ (0). One can prove the first

implication by induction on m using the exact sequence 0 → Ainf(Λ
(′))/(a, pm)

p−→
Ainf(Λ

(′))/(a, pm+1) → Ainf(Λ
(′))/(a, p) → 0 (Lemma 1 (3)). As for the second

one, we note that an (n ∈ N>0) also satisfy the condition on a in Lemma 1. Then
the claim follows from the fact that Ainf(Λ

(′))/pm (resp. Ainf(Λ
(′))/a) is a (resp. p)-

adically complete and separated (Lemma 1 (4) (resp. (3)). Similarly the last implica-
tion is a consequence of the fact that Ainf(Λ

(′)) is p-adically complete and separated.
Let us prove the claim for the reduction modulo (a, p). Put a = (an)n∈N (an ∈

OK /p), and choose an integerm such that am 	= 0, which implies vR(a) < vR(ppm )

and ppm ROK
⊂ aROK

because we have an isomorphism ROK
/ppm

∼=−→ OK /pOK ;
(xn)n∈N �→ xm . Let am be a lifting of am in OK . Then we have isomorphisms

Ainf(Λ
(′))/(p, a) = RΛ(′) /a = RΛ(′) /(ppm , a)

∼=−→ Λ(′)/(p, am) = Λ(′)/am induced
by RΛ(′) → Λ(′)/p; (xn)n∈N �→ xm . The injectivity of Λ/p → Λ′/p implies that of
Λ/am → Λ′/am because the multiplication by pa−1

m on Λ(′) induces an injective
homomorphism Λ(′)/am ↪→ Λ(′)/p. This completes the proof. �

We endow Ainf(Λ) with the (p, [p])-adic topology. In the following, we assume
that we are given a subring Λ0 of Λ over which Λ is integral and that Frac(Λ)/

Frac(Λ0) is a Galois extension. LetG(Λ/Λ0) denote the Galois group Gal(Frac(Λ)/

Frac(Λ0)). Then Λ is a G(Λ/Λ0)-stable subalgebra of Frac(Λ), and therefore we
have a natural action of G(Λ/Λ0) on Ainf(Λ) with ϕ and Filr . The homomorphism
θ : Ainf(Λ) → ̂Λ is G(Λ/Λ0)-equivariant.

Lemma 5 The action of G(Λ/Λ0) on Ainf(Λ) is continuous.

Proof Let n and m be positive integers, and put l = m + (n − 1). Then the homo-
morphism Wn(RΛ) → Wn(RΛ)/[ppm ] factors through Wn(RΛ/ppl ) because

(a0 p
pl , a1 p

pl , . . . , an−1 p
pl ) =

n−1
∑

ν=0

pν[a p−ν

ν ppl−ν ] ∈ [ppm ]Wn(RΛ)

for aν ∈ RΛ (ν ∈ N ∩ [0, n − 1]). The action of G(Λ/Λ0) onWn(RΛ/ppl ) with the

discrete topology is continuous because RΛ/ppl ∼= Λ/p; (an)n∈N �→ al . �

Before introducing another period ring Acrys(Λ), we give twopreliminary lemmas.
Let γ be the unique PD-structure on the ideal pOK of OK .

Lemma 6 Let S be an OK -algebra, and let (IS, γS) be a PD-ideal of S for which
p ∈ IS and γS is compatible with the unique PD-structure γ on pOK . Let R be an
S-algebra, let I be an ideal of R, and let (R, I , δ) be the PD-envelope of (R, I )
compatible with γS ([4, I Définition 2.4.2], [5, 3.19 Theorem]).
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(1) The OK -algebra R with the ideal I
′ := I + pR equipped with the PD-structure

δ′ compatible with δ and γ is the PD-envelope of (R, I + pR) compatible
with γS.

Suppose that we are given liftings ϕS : S → S and ϕR : R → R of the absolute
Frobenius of S/pS and R/pR compatible with σ : OK → OK such that ϕS is a
PD-morphism with respect to (IS, γS) and ϕR ◦ f = f ◦ ϕS for the structure homo-
morphism f : S → R. By (1),ϕR andϕS induce an endomorphismϕR of the PD-ring
(R, I

′
, δ′) compatible with ϕS.

(2) The reduction mod p of ϕR is the absolute Frobenius of R.

(3) For r ∈ N ∩ [0, p − 1], the rth divided power I ′[r ]
of I

′
([4, I Définition 3.1.1],

[5, 3.24 Definition]) satisfies ϕR(I
′[r ]

) ⊂ pr R.

Proof The claim (1) is obvious by the construction of the PD-envelope in the proof
of [4, I Théorème 2.4.1] (see [5, 3.20 Remarks (1)]). The R-algebra R is generated
by δ′

n(x) (x ∈ I + pR, n ∈ N>0) by [4, I Proposition 2.4.3 (ii)] (or [5, 3.20 Remarks

(3)]), and the ideal I
′[r ]

(r ∈ N>0) is generated by δ′
n1(x1) · · · δ′

ns (xs) (x1, . . . , xs ∈
I + pR, n1 + · · · + ns ≥ r) by [4, I Propositions 2.4.3 (ii), 3.1.3]. Let x ∈ I + pR.
Then there exists y ∈ R such that ϕR(x) = x p + py. Hence, for n ∈ N>0, we
have ϕR(δ′

n(x)) = δ′
n(x

p + py) = γn(p)((p − 1)!δp(x) + y)n ∈ pmin{n,p−1}R, and
δ′
n(x)

p = p!δ′
p(δ

′
n(x)) ∈ pR. This implies the claims (2) and (3). �

Lemma 7 Let (Mn)n∈N>0 be an inverse system consisting of flatZ/pn-modules such

that the transitionmap induces an isomorphism Mn+1 ⊗Z/pn+1 Z/pn
∼=−→ Mn for every

n ∈ N>0. Then the inverse limit M := lim←−n
Mn is flat overZp, and the natural homo-

morphism M/pn → Mn is an isomorphism for every n ∈ N>0. In particular, M is
p-adically complete and separated.

Proof Letm be a positive integer. By assumption, the multiplication by pm onMn+m

induces an exact sequence 0 → Mn → Mn+m → Mm → 0. By taking the inverse

limit over n, we obtain an exact sequence 0 → M
pm−→ M → Mm → 0. �

Let m ∈ N>0. We define Acrys,m(Λ) to be the divided power envelope compatible
with γ of Ainf(Λ)/pm with respect to the kernel of (θ mod pm). In Acrys,m(Λ),
we have [p]p = (p − ξ)p = p!(−ξ)[p] + p

∑p
ν=1

(p
ν

)

pν−1(−ξ)p−ν ∈ pAcrys,m(Λ).
The action of G(Λ/Λ0) on Ainf(Λ) induces its action on the PD-ring Acrys,m(Λ),
which is continuous with respect to the discrete topology of Acrys,m(Λ) by Lemma 5
because the homomorphism Ainf(Λ)/pm → Acrys,m(Λ) factors through
Ainf(Λ)/(pm, [p]pm) and Acrys,m(Λ) is generated by divided powers of the image of
ξ in Acrys,m(Λ) over Ainf(Λ)/pm ([4, I Proposition 2.4.3 (ii)], [5, 3.20 Remarks (3)]);
the image ξ ∈ Acrys,m(Λ) of ξ is invariant under an open subgroup H of G(Λ/Λ0)

by Lemma 5, and we have g(ξ
[n]

) = g(ξ)[n] = ξ
[n]

for n ∈ N>0 and g ∈ H .
We define Filr Acrys,m(Λ) (r ∈ N>0) to be the r th divided power of the divided

power ideal of Acrys,m(Λ) ([4, I Définition 3.1.1], [5, 3.24 Definition]), which is gen-
erated by ξ[s] (s ∈ N ∩ [r,∞)) as an ideal and also as an Ainf(Λ)/pm-module ([4, I
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Propositions 2.4.3 (ii), 3.1.3 (i)]). It is stable under the action of G(Λ/Λ0). We set
Filr Acrys,m(Λ) = Acrys,m(Λ) for an integer r ≤ 0.ByLemma6 (1) and (2), the canon-
ical lifting of the absolute Frobenius on Ainf(Λ) induces a lifting ϕ of the absolute
Frobenius of Acrys,m(Λ)/p to Acrys,m(Λ) compatible with the G(Λ/Λ0)-action and
the PD-structure on pAcrys,m(Λ) + Fil1Acrys,m(Λ) defined by the PD-structure on
Fil1Acrys,m(Λ) and γ. By Lemma 6 (3), we have ϕ(Filr Acrys,m(Λ)) ⊂ pr Acrys,m(Λ)

(r ∈ N ∩ [0, p − 1]). We define Acrys(Λ) to be the inverse limit of Acrys,m(Λ)

(m ∈ N>0) endowed with the inverse limit topology of the discrete topology of
Acrys,m(Λ). It is naturally endowed with a continuous action of G(Λ/Λ0), a decreas-
ing filtration Filr Acrys(Λ) and a σ-semilinear endomorphism ϕ.

The algebras Acrys,m(Λ) and Acrys(Λ) with Filr , ϕ and G(Λ/Λ0)-actions can
be explicitly constructed as follows. Let W PD(RΛ) be the divided power envelope
of W (RΛ) with respect to Ker(θ) compatible with γ. The action of G(Λ/Λ0) on
W (RΛ) induces its action onW PD(RΛ). We define FilrW PD(RΛ) (r ∈ N>0) to be the
r th divided power of the divided power ideal ofW PD(RΛ), which is stable under the
action ofG(Λ/Λ0).We define FilrW PD(RΛ) to beW PD(RΛ) for an integer r ≤ 0. By
Lemma 6,ϕ ofW (RΛ) induces aG(Λ/Λ0)-equivariant endomorphism ofW PD(RΛ)

compatible with σ, which is denoted again by ϕ. We have a unique PD-structure on
Ker(θ)[ 1p ] ⊂ W (RΛ)[ 1p ] defined by x �→ xn

n! (n ∈ N) ([4, I 1.2.1], [5, 3.2 Examples
2]), and it is compatible with γ. Hence, by the universal property of divided power
envelopes, the homomorphismW (RΛ) → W (RΛ)[ 1p ] induces a PD-homomorphism

W PD(RΛ) → W (RΛ)[ 1p ] compatible with ϕ and G(Λ/Λ0)-actions. This homomor-

phism is injective, and therefore we may identify W PD(RΛ) with its image, which
is the W (RΛ)-subalgebra of W (RΛ)[ 1p ] generated by ξn

n! (n ∈ N) ([12, 2.3.3], [10, II

(b)], [18, Proposition A2.8]). We have FilrW PD(RΛ) = W PD(RΛ) ∩ FilrW (RΛ)[ 1p ]
for r ∈ Z ([18, Lemma A2.9]). In particular, FilsW PD(RΛ)/FilrW PD(RΛ) (r, s ∈
Z, s > r) is p-torsion free. Thus we obtain an explicit construction of W PD(RΛ).
Since pmOK is a sub PD-ideal of pOK , divided power envelopes compatible
with γ are compatible with taking the reduction mod pm ([5, 3.20 Remarks (8)]).
Therefore the homomorphism W (RΛ) → Ainf(Λ)/pm induces an isomorphism

of PD-algebras W PD(RΛ)/pm
∼=−→ Acrys,m(Λ) compatible with ϕ and G(Λ/Λ0)-

actions. Since W PD(RΛ)/FilrW PD(RΛ) is p-torsion free, we see that the surjec-
tive homomorphism FilrW PD(RΛ)/pmFilrW PD(RΛ) → Filr Acrys,m(Λ) is an iso-
morphism for r ∈ Z. Since W PD(RΛ) is p-torsion free, the above description of
Acrys,m(Λ) implies that Acrys(Λ) and Filr Acrys(Λ) (r ∈ Z) are p-torsion free, and

p-adically complete and separated, and we have isomorphisms Acrys(Λ)/pm
∼=−→

Acrys,m(Λ) and Filr Acrys(Λ)/pm
∼=−→ Filr Acrys,m(Λ) (r ∈ Z) by Lemma 7. We then

obtainϕ(Filr Acrys(Λ)) ⊂ pr Acrys(Λ) for r ∈ N ∩ [1, p − 1] fromϕ(Filr Acrys,r (Λ))

⊂ pr Acrys,r (Λ) = 0, and see that the topology of Acrys(Λ) coincides with the
p-adic topology. For r ∈ N, the multiplication by ξr

r ! induces an isomorphism

̂Λ ∼= W (RΛ)/Fil1W (RΛ)
∼=−→ grrFilW

PD(RΛ) ([18, Proposition A2.9 (2)]). Therefore
grrFilW

PD(RΛ) (r ∈ Z) is p-torsion free and p-adically complete and separated, and
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we obtain an isomorphism grrFilW
PD(RΛ)

∼=−→ grrFilAcrys(Λ) (r ∈ Z) by taking the
p-adic completion of the exact sequence 0 → Filr+1W PD(RΛ) → FilrW PD(RΛ) →
grrFilW

PD(RΛ) → 0 ([10, II (b)], [18, Lemma A2.11 (1)]). This implies that
Acrys(Λ)/Filr Acrys(Λ) (r ∈ N>0) is p-torsion free, and therefore p-adically com-
plete and separated by Lemma 3 (2).

Lemma 8 Let Λ′ be the same as in Lemma 4. Let m and r be positive integers,
and let a (resp. a′) be one of the ideals (pm), Filr , (pm,Filr ), and (0) of Acrys(Λ)

(resp. Acrys(Λ
′)). Then the natural homomorphism Acrys(Λ)/a → Acrys(Λ

′)/a′ is
injective.

Proof Since Acrys(Λ), Acrys(Λ
′), Acrys(Λ)/Filr , and Acrys(Λ

′)/Filr are p-torsion
free, and p-adically complete and separated, it suffices to prove the claim for (p) and
(p,Filr ). The homomorphism Fp[T ] → RΛ; T �→ p = (ξ mod p) is flat because
it factors through Fp[[T ]] and p is regular in RΛ (Proposition 143 (1)). Therefore, by
[5, 3.21 Proposition], we see that Acrys(Λ)/p = Acrys,1(Λ) is a free RΛ/pp-module
with a basis (ξ[pm] mod p) (m ∈ N). Note that the PD-polynomial ring Fp〈T 〉 is
a free Fp[T ]/(T p)-module with a basis T [pm] (m ∈ N). Combining with the same
claim for Λ′, we are reduced to showing that RΛ/ps → RΛ′/ps (s ∈ N ∩ [1, p]) is
injective, which has been verified in the proof of Lemma 4. �

In the following, we assume, in addition, that

Λ is integral over a noetherian normal subring. (1)

For s ∈ N, let I s Ainf(Λ) (resp. I s Acrys(Λ)) be the ideal of Ainf(Λ) (resp. Acrys(Λ))
consisting of x such that ϕν(x) ∈ Fils for all ν ∈ N. They are stable under the action
of G(Λ/Λ0) and ϕ. We have I r · I s ⊂ I r+s (r, s ∈ N). Let ε = (εn) be a basis of
Zp(1)(OK ) = lim←−n∈N μpn (OK ), and let ε denote the element (εn mod p) of ROK

.

We have ϕR(ε − 1) = p
p−1 because vC((εn − 1)p

n
) = p

p−1 for every n ∈ N>0. This

implies (ε − 1)p−1 ∈ pp · R×
OK

.
The element π := [ε] − 1 ∈ Ainf(Λ) is a non-zero divisor and the ideal I s Ainf(Λ)

is generated by πs ([12, 5.1.3 Proposition (i)], [18, Proposition A3.12]). We have
π p−1 ∈ pAcrys(Λ) ([18, Lemma A3.1]). For s ∈ N, we have the inclusion
ϕ(I s Acrys(Λ)) ⊂ ps Acrys(Λ), and if s ∈ [0, p − 1], the natural homomorphism
Ainf(Λ)/I s Ainf(Λ) → Acrys(Λ)/I s Acrys(Λ) is an isomorphism by [12, 5.3.1 Propo-
sition] and [18, Proposition A3.20]. For the latter, note π = ∑

n≥1 t
[n] ≡ t mod I 1

Acrys(OK ). This congruence together with [18, Proposition A3.23 and Exam-
ple A2.7] also implies that, for r, s ∈ N ∩ [0, p − 1] with s < r , (I s Acrys(Λ) ∩
Filr Acrys(Λ))/(I s+1Acrys(Λ) ∩ Filr Acrys(Λ)) is generated by ξr−sπs as an W (RΛ)-
module. Since ξr−sπs ∈ Filr Ainf(Λ), we obtain isomorphisms

Filr Ainf(Λ)/I s Ainf(Λ)
∼=−→ Filr Acrys(Λ)/I s Acrys(Λ) (2)

(r, s ∈ N, 0 ≤ r ≤ s ≤ p − 1).
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For s ∈ N, Ainf(Λ)/I s Ainf(Λ), I s Ainf(Λ), Acrys(Λ)/I s Acrys(Λ) and I s Acrys(Λ) are
p-torsion free, and p-adically complete and separated ([18, Lemmas A3.11, A3.19
and A.3.27]).

Put q := ∑

a∈Fp
[ε[a]] ∈ Ainf(Λ), π0 := q − p and q ′ := ϕ−1(q), where εb = (εbn

mod p)n∈N for b ∈ Zp. Then the ideal Fil1Ainf(Λ) is generated by q ′ ([12, 5.2.6
Proposition (ii)], [18, Example A2.7]), which implies that g(q) ∈ q · Ainf(Λ)× for
g ∈ G(Λ/Λ0).

Lemma 9 (1) For a ∈ Zp, the series
∑

n∈N
(a
n

)

πn converges to [εa] in Ainf(OK )

with respect to the π-adic topology.
(2) The ideal I p−1Ainf(Λ) is generated by π0, and we have π0

p ∈ I p−1Acrys(Λ).

Proof (1) Since Ainf(OK ) is π-adically complete and separated, and Ainf(OK )/πl

is p-adically complete and separated by Lemma 1 (3) and (4), it suffices to prove
[εa] ≡ ∑

n∈N∩[0,l−1]
(a
n

)

πn mod πl Ainf(OK ) + pm Ainf(OK ) for every l,m ∈ N>0.
Put N := max{vp(n!); n ∈ N ∩ [0, l − 1]} + m. Then for any b ∈ Zp, we have

[εbpN ] − 1 = ∑

n∈N∩[1,pN ]
(pN

n

)

([εb] − 1)n ∈ πl Ainf(OK ) + pm Ainf(OK ) because

[εb] − 1 ∈ I 1Ainf(OK ) = πAinf(OK ). Hence [εa] ≡ [εa′ ] mod πl Ainf(OK )+
pm Ainf(OK ) for any a′ ∈ N such that a ≡ a′ mod pN

Zp. This completes the proof
because

(a′
n

) ∈ Zp (n ∈ N ∩ [0, l − 1]) converges to (a
n

) ∈ Zp as a′ ∈ N tends to a.
(2) The second claim follows from the first one and p−1π p−1 ∈ I p−1Acrys(Λ). For

n ∈ N ∩ [1, p − 1], the sum ∑

a∈Fp
[a]n is equal to 0 if 1 ≤ n ≤ p − 2, and p − 1 if

n = p − 1. Therefore
∑

a∈Fp

([a]
n

)

vanishes if 1 ≤ n ≤ p − 2, and is equal to 1
(p−2)!

if n = p − 1. Hence (1) implies that π0 is of the form 1
(p−2)!π

p−1(1 + πc), c ∈
Ainf(OK ). We have 1 + πc ∈ Ainf(OK )× because Ainf(OK ) is π-adically complete
and separated (Lemma 1 (4)). This completes the proof. �

Lemma 9 (2) implies g(π0) ∈ π0 · Ainf(Λ)× for g ∈ G(Λ/Λ0). We have ϕ(π0) ∈
π0q p−1 · Ainf(Λ)× because π0 ∈ π p−1Ainf(Λ)× and π

ϕ−1(π)
generates the ideal

Fil1Ainf(Λ) ([12, 5.1.2], [18, Example A 2.6]). This implies

ϕ(I p−1Ainf(Λ)) ⊂ q p−1Ainf(Λ). (3)

Let A, K, Kur, GA, and A be as in Sect. 1. Then we see that the absolute Frobe-
nius of A/pA is surjective by showing that the equation x p2 − px = a has a solu-
tion in A for every a ∈ A as follows: Put L = K(a), which is a finite extension
of K, and let A(a) be the integral closure of A in L. Then A(a) is p-adically
complete and separated as it is finite over A, and we have a ∈ A(a). The finite
freeA(a)-algebra C := A(a)[X ]/(X p2 − pX − a) is étale after inverting p because
(X p2 − pX − a)′ = p(−1 + pX p2−1), and the image of−1 + pX p2−1 in C is invert-
ible. Hence, for any solution x ∈ K, the image of the A(a)-homomorphism C → K
defined by X �→ x is contained in A. Thus we may apply the above construction of
Ainf(Λ) and Acrys(Λ) to Λ = A and Λ0 = A.

Let B be a flat OK -algebra p-adically complete and separated such that the
homomorphism OK /pm → B/pm is smooth for every m ∈ N>0. Put Bm := B/pm ,



Crystalline Zp-Representations and Ainf -Representations with Frobenius 171

OK ,m := OK /pm ,ΩBm := ΩBm/OK ,m form ∈ N>0, andΩB := lim←−m
ΩBm .Weassume

that there exist s1, . . . , se ∈ B× such that d log si (i ∈ N ∩ [1, e]) form a basis ofΩBm

for every m ∈ N>0, and that we are given a surjective OK -homomorphism B → A
and a lifting ϕB : B → B of the absolute Frobenius of B1 compatible with σ of OK .
Put ϕBm := ϕB ⊗Z Z/pmZ for m ∈ N>0.

We introduce a period ring Acrys,B(A) associated to B → A and A/A. It is an
Acrys(A) ⊗OK B-algebra equipped with an action of GA, a decreasing filtration, and
an integrable connection, andwill be used to describe explicitly theZp-representation
ofGA associated to anobjectM ofMF∇

[0,p−2],free(A, Φ) (Sect. 4) in termsof the “eval-
uation” of M/pm on the PD-envelope of Spec(A/pm) ↪→ Spec(B/pm) (Lemma 37,
(38)). See [8, Sect. 6.1] for the case B = A.

We begin by introducing the PD-envelope mentioned above. Recall that γ denotes
the unique PD-structure on the ideal pOK of OK . Put Am := A/pm for m ∈ N>0.
For m ∈ N>0, we define Pm to be the divided power envelope compatible with γ
of Bm with respect to the kernel of the homomorphism Bm → Am . We define the
decreasing filtration FilrPm (r ∈ Z) of Pm by ideals to be the r th divided power
of the divided power ideal of Pm if r > 0 ([4, I Définition 3.1.1], [5, 3.24 Defini-
tion]) and Pm if r ≤ 0. We have FilrPm · FilsPm ⊂ Filr+sPm (r, s ∈ Z). The OK ,m-
algebra Pm is naturally endowed with an OK ,m-linear derivation ∇Pm : Pm → Pm

⊗Bm ΩBm compatible with the derivation d : Bm → ΩBm and integrable as a con-
nection with respect to Bm/OK ,m ([4, IV Sect. 1.3]). We have ∇(x [n]) = x [n−1] ⊗
dx for x ∈ Fil1Pm and n ∈ N>0 ([4, IV (1.3.6)]). This implies ∇Pm (FilrPm) ⊂
Filr−1Pm ⊗Bm ΩBm (r ∈ Z). By Lemma 6 (1), (2), the lifting of the absolute Frobe-
nius ϕBm induces a lifting of the absolute Frobenius ϕPm on Pm compatible with
∇Pm . We have ϕPm (FilrPm) ⊂ prPm for r ∈ N ∩ [0, p − 1] by Lemma 6 (3). The
ring Pm and their ideals FilrPm (r ∈ Z) are flat over OK ,m ([14, I Lemma (1.3) (2)]).

We have natural PD-isomorphisms Pm+1 ⊗OK ,m+1 OK ,m
∼=−→ Pm compatible with ϕ

and∇, and isomorphisms FilrPm+1 ⊗OK ,m+1 OK ,m
∼=−→ FilrPm form ∈ N>0 and r ∈ Z

(loc. cit.). We define the OK -algebra P and its filtration by ideals FilrP (r ∈ Z) to
be lim←−m

Pm and lim←−m
FilrPm . By Lemma 7, the ring P and its ideals FilrP (r ∈ Z)

are flat over OK , and p-adically complete and separated, and we have isomorphisms

P/pm
∼=−→ Pm and FilrP/pmFilrP

∼=−→ FilrPm for m ∈ N>0 and r ∈ Z. By taking the
inverse limit of ∇Pm and ϕPm , we obtain ∇P : P → P ⊗B ΩB and ϕP : P → P .
We have ϕP(FilrP) ⊂ prP for r ∈ N ∩ [0, p − 1].

We first introduce a period ring Acrys,B,m(A) defined over OK ,m , and then take
the inverse limit over m. Put Am := A/pm for m ∈ N>0. For m ∈ N>0, we define
Acrys,B,m(A) to be the divided power envelope compatible with γ of (Ainf(A) ⊗OK

B)/pm with respect to the kernel of the surjective homomorphism to Am induced
by (θ mod pm) : Ainf(A)/pm → Am and Bm → Am . The homomorphism from
Bm (resp. Ainf(A)/pm) to (Ainf(A) ⊗OK B)/pm induces a homomorphism Pm →
Acrys,B,m(A) (resp. Acrys,m(A) → Acrys,B,m(A)) of PD-algebras over OK ,m . The
action ofGA on Ainf(A) induces its action on the PD-ringAcrys,B,m(A), which is con-
tinuouswith respect to the discrete topology ofAcrys,B,m(A) by Lemma 5 because the
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composition (Ainf(A) ⊗OK B)/pm → Acrys,m(A) ⊗OK ,m Pm → Acrys,B,m(A) factors
through the quotient modulo [p]pm (see the paragraph after Lemma 7) and

Acrys,B,m(A) is generated over (Ainf(A) ⊗OK B)/pm by divided powers of ele-
ments of the kernel of (Ainf(A) ⊗OK B)/pm → Am ([4, I. Proposition 2.4.3 (ii)], [5,
3.20 Remark (3)]). The homomorphism Pm → Acrys,B,m(A) (resp. Acrys,m(A) →
Acrys,B,m(A)) mentioned above is GA-stable (resp. GA-equivariant). We define the
decreasing filtration FilrAcrys,B,m(A) (r ∈ Z) of Acrys,B,m(A) by ideals to be the
r th divided power of the divided power ideal if r > 0 and Acrys,B,m(A) if r ≤ 0.
The filtration FilrAcrys,B,m(A) (r ∈ Z) is GA-stable, and we have FilrAcrys,B,m(A) ·
FilsAcrys,B,m(A) ⊂ Filr+sAcrys,B,m(A) for r, s ∈ Z. The homomorphisms Pm →
Acrys,B,m(A) and Acrys,m(A) → Acrys,B,m(A) are compatible with the filtrations
because they are PD-homomorphisms. The ring Acrys,B,m(A) is naturally endowed
with a GA-equivariant Acrys,m(A)-linear derivation ∇ : Acrys,B,m(A) →
Acrys,B,m(A) ⊗Bm ΩBm compatible with ∇ : Pm → Pm ⊗Bm ΩBm and integrable as
a connection with respect to Bm/OK ,m ([4, IV Sect. 1.3]). We have the inclu-
sion∇(FilrAcrys,B,m(A)) ⊂ Filr−1Acrys,B,m(A) ⊗Bm ΩBm (r ∈ Z). By Lemma 6 (1),
(2), the lifting of the absolute Frobenius ϕB and the Frobenius of Ainf(A) induce
a lifting of the absolute Frobenius ϕ on Acrys,B,m(A) compatible with ∇ and
the action of GA. The homomorphisms Pm → Acrys,B,m(A) and Acrys,m(A) →
Acrys,B,m(A) are compatible with ϕ’s. By Lemma 6 (3), we have the inclusion
ϕ(FilrAcrys,B,m(A)) ⊂ prAcrys,B,m(A) for r ∈ N ∩ [0, p − 1]. We have a natural
PD-homomorphismAcrys,B,m+1(A) → Acrys,B,m(A) compatiblewith theGA-action,
Filr , ϕ, and the homomorphisms from P• and Acrys,•(A).

The ring Acrys,B,m(A) with the GA-action, Filr , ∇ and ϕ is explicitly described
as follows. Let s1, . . . , se be elements of B× such that d log si (i ∈ N ∩ [1, e]) form
a basis of ΩBm for every m ∈ N>0. For each i ∈ N ∩ [1, e], choose a compatible

system of pnth roots si,n ∈ A×
(n ∈ N) of the image of si inA×, let si be the element

(si,n mod p)n∈N of R×
A, and let ui,m be the image of [si ] ⊗ s−1

i − 1 in Acrys,B,m(A).

Then we have ui,m ∈ Fil1Acrys,B,m(A) and an isomorphism of PD-algebras over
Acrys,m(A) ([15, Lemma 1.8])

Acrys,m(A)〈U1, . . . ,Ue〉 ∼=−→ Acrys,B,m(A);Ui �→ ui,m, (4)

where the left-hand side is the PD-polynomial ring with variables Ui . This further
gives the following explicit description of the filtration onAcrys,B,m(A), where |n| =
∑

1≤i≤e ni .

⊕

n=(ni )∈Ne

Filr−|n|Acrys,m(A)
∏

1≤i≤e

U [ni ]
i

∼=−→ FilrAcrys,B,m(A) (r ∈ Z) (5)
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Let ε = (εn) ∈ Zp(1)(OK ) and ε ∈ ROK
⊂ RA be as in the definition of π after (1).

For each i ∈ N ∩ [1, e], we define the continuous map ηi : GA → Zp by g(si,n) =
si,nε

ηi (g)
n (n ∈ N). Then the action of GA on ui,m is given by

g(ui,m) = [εηi (g)]ui,m + ([εηi (g)] − 1) (g ∈ GA). (6)

For ∇ and ϕ, we have

∇(u[n]
i,m) = −u[n−1]

i,m (ui,m + 1) ⊗ d log si , (7)

ϕ(ui,m) = (ui,m + 1)ps pi ϕB(si )
−1 − 1 (8)

for i ∈ N ∩ [1, e]. Since ui,m + 1 ∈ Acrys,B,m(A)× for every i ∈ N ∩ [1, e], (5) and
(7) imply

FilrAcrys,B,m(A)∇=0 = Filr Acrys,m(A) (r ∈ Z). (9)

The description (4) implies thatAcrys,B,m(A) is flat over OK ,m and the natural homo-
morphism Acrys,B,m+1(A) ⊗OK ,m+1 OK ,m → Acrys,B,m(A) is an isomorphism.

We defineAcrys,B(A) to be the inverse limit ofAcrys,B,m(A) (m ∈ N>0), which is
naturally equipped with a continuous action of GA, a decreasing filtration Filr (r ∈
Z),∇ : Acrys,B(A) → Acrys,B(A) ⊗B ΩB,ϕ : Acrys,B(A) → Acrys,B(A), and homo-
morphisms from P and Acrys(A). We obtain an explicit description of Acrys,B(A)

just by taking the inverse limit of the description of Acrys,B,m(A) given above. We
write ui (i ∈ N ∩ [1, e]) for the element of Acrys,B(A) defined by the compatible
system (ui,m)m∈N>0 . By Lemma 7, the ringAcrys,B(A) is flat over OK and p-adically
complete and separated, and its reduction mod pm is isomorphic to Acrys,B,m(A).
The last fact together with ϕ(FilrAcrys,B,r (A)) = 0 (r ∈ N ∩ [1, p − 1]) implies
ϕ(FilrAcrys,B(A)) ⊂ prAcrys,B(A) for r ∈ N ∩ [0, p − 1].

When B = A and the surjective homomorphism B → A is the identity map, we
writeAcrys,m(A) andAcrys(A) forAcrys,B,m(A) andAcrys,B(A), respectively. In this
case,we havePm = Am , FilrPm = 0 (r ∈ N>0),∇Pm = d : Am → ΩAm , andϕPm =
ϕAm . By taking the inverse limit over m ∈ N>0, we obtain P = A, FilrP = 0 (r ∈
N>0),∇P = d : A → ΩA, andϕP = ϕA.Whenwe consider the explicit description
(4) of Acrys,m(A) and its inverse limit for Acrys(A) by using t1, . . . , td ∈ A× such
that d log ti is a basis of ΩAm for every m ∈ N, we write ti,n , t i , vi,m and vi for the
elements corresponding to si,n , si , ui,m and ui .

3 Filtered Crystals

We define filtered crystals on a big crystalline site, and give an interpretation of
filtered crystals in terms of modules with integrable connections simply generalizing
that for crystals. See Remark 19 for the relation with the work of Ogus in [17].
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We first introduce some terminology concerning filtered modules over filtered
rings used throughout this paper.

Definition 10 Let E be a topos or site.
(1) A filtered ring on E is a pair of a (commutative) ring R on E and a decreasing

filtration Filr R (r ∈ Z) of R by ideals such that Fil0R = R and Filr R · Fils R ⊂
Filr+s R for all r, s ∈ Z. If E is the topos of sets, it is simply called a filtered ring. A
homomorphism of filtered rings (R,Fil•R) → (S,Fil•S) on E is a homomorphism
of rings f : R → S such that f (Filr R) ⊂ Filr S for every r ∈ Z.

(2) A filtered module over a filtered ring (R,Fil•R) on E is an R-module M with
a decreasing filtration Filr M (r ∈ Z) by R-submodules such that Filr R · FilsM ⊂
Filr+sM for all r, s ∈ Z.Ahomomorphismof filteredmodules over (R,Fil•R) is an R-
linear homomorphism sending Filr into Filr for every r ∈ Z. For s ∈ Z, we define the
filtered module R(s) over (R,Fil•R) by R(s) = R and Filr R(s) = Filr−s R (r ∈ Z).

(3) We say that a filtered module (M,Fil•M) over a filtered ring (R,Fil•R) on E

is finite filtered free if there exists an isomorphism ⊕ν∈N∩[1,N ]R(rν)
∼=−→ M of filtered

modules over (R,Fil•R) for some N ∈ N and rν ∈ Z (ν ∈ N ∩ [1, N ]). For integers
a, b ∈ Z with a ≤ b, we say that (M,Fil•M) is finite filtered free of level [a, b] if
a ≤ rν ≤ b for every ν ∈ N ∩ [1, N ].

(4) Let f : (R,Fil•R) → (S,Fil•S) be a homomorphism of filtered rings on E ,
and let (M,Fil•M) be a filtered module over (R,Fil•R). We define the scalar exten-
sion of (M,Fil•M) by f to be M ⊗R, f S with the decreasing filtration Filr (M ⊗R, f

S) defined by the sum of the images of Filr−sM ⊗R, f Fils S (s ∈ Z). This construc-
tion is compatible with compositions of homomorphisms of filtered rings.

Definition 11 (1) A filtered ringed topos is a pair (E, (R,Fil•R)) of a topos E and a
filtered ring (R,Fil•R) on E . Let MF(E, (R,Fil•R)) denote the category of filtered
modules over (R,Fil•R).

(2) A morphism of filtered ringed topos f = ( f,ϕ) : (E ′, (R′,Fil•R′)) →
(E, (R,Fil•R)) is a pair of a morphism of topos f : E ′ → E and a morphism of
filtered rings ϕ : ( f −1(R), f −1(Fil•R)) → (R′,Fil•R′).

(3) Let f = ( f,ϕ) : (E ′, (R′,Fil•R′)) → (E, (R,Fil•R)) be a morphism of fil-
tered ringed topos, and let (M,Fil•M) be a filtered module over (R,Fil•R). We
define the pull-back f ∗(M,Fil•M) of (M,Fil•M) by f to be the scalar extension of
the filtered module ( f −1(M), f −1(Fil•M)) over ( f −1(R), f −1(Fil•R)) by ϕ (Def-
inition 10 (4)). This construction is compatible with compositions of morphisms of
filtered ringed topos.

Remark 12 Let (E, (R,Fil•R)) be a filtered ringed topos, and letMod(E, R) be the
category of R-modules on E . Then we have a fully faithful functor Mod(E, R) →
MF(E, (R,Fil•R)) defined by M �→ (M,Fil•R · M). This functor is compatible
with the pull-back by a morphism of filtered ringed topos.

Lemma 13 Let f = ( f,ϕ) : (E ′, (R′,Fil•R′)) → (E, (R,Fil•R)) be a morphism
of filtered ringed topos.
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(1) We have f ∗(R(s)) ∼= R′(s) for every s ∈ Z.
(2) Let a and b be two integers satisfying a ≤ b. If a filtered module (M,Fil•M)

over (R,Fil•R) is finite filtered free of level [a, b], then so is f ∗(M,Fil•M).

Proof The claim (2) follows from (1). The claim (1) is reduced to the case s = 0 by
shifting the filtration, and then it follows from ϕ( f −1(Filr−s R))Fils R′ ⊂ Filr−s R′ ·
Fils R′ ⊂ Filr R′ and ϕ( f −1(Fil0R))Filr R′ = Filr R′ for r, s ∈ Z. �

Lemma 14 Let f = ( f,ϕ) : (E ′, (R′,Fil•R′)) → (E, (R,Fil•R)) be a morphism
of filtered ringed topos, and let f ∗ : MF(E, (R,Fil•R)) → MF(E ′, (R′,Fil•R′)) be
the pull-back functor (Definition 11 (3)). Then f ∗ is canonically regarded as a left
adjoint of the functor f ∗ : MF(E ′, (R′,Fil•R′)) → MF(E, (R,Fil•R)) defined by
f ∗(M ′,Fil•M ′) = ( f∗M ′, f∗Fil•M ′).

Proof Let (M,Fil•M) (resp. (M ′,Fil•M ′)) be a filtered module over (R,Fil•R)

(resp. (R′,Fil•R′)). Let α : M → f∗M ′ be an R-linear homomorphism, and let
β : f ∗M = f −1(M) ⊗ f −1(R) R′ → M ′ be its left adjoint. Then we haveα(Filr M) ⊂
f∗Filr M ′ for all r ∈ Z if and only if the image of f ∗Filr M → f ∗M

β−→ M ′ is con-
tained in Filr M ′ for all r ∈ Z. The latter condition is equivalent to β(Filr ( f ∗M)) ⊂
Filr M ′ for all r ∈ Z because Filr−s R′ · FilsM ′ ⊂ Filr M ′ for every r, s ∈ Z. �

Definition 15 (1) A PD-ringed topos is a pair (E, (R, J, γ)) of a topos E and a
PD-ring (R, J, γ) on E ([4, I Définitions 1.9.1, 1.9.3]).

(2) For a PD-ringed topos (E, (R, J, γ)), we define the ideal Filr R (r ∈ Z) of R
to be the r th divided power J [r ] of J if r > 0, and R if r ≤ 0. Then (R,Fil•R) is a
filtered ring. By a filtered module on (E, (R, J, γ)), we mean a filtered module over
(R,Fil•R).

(3) A morphism of PD-ringed topos is a pair f = ( f,ϕ) : (E ′, (R′, J ′, γ′)) →
(E, (R, J, γ)) of a morphism of topos f : E ′ → E and a morphism of PD-rings
ϕ : f −1(R, J, γ) → (R′, J ′, γ′) ([4, I Définition 1.9.3]). It induces a morphism of
filtered ringed topos (E ′, (R′,Fil•R′)) → (E, (R,Fil•R)). We define the pull-back
of a filtered module on (E, (R, J, γ)) by f to be the pull-back by this morphism of
filtered ringed topos (Definition 11 (3)).

Let (T,JT , γT ) be a PD-scheme ([4, I Définition 1.9.6]). Then the Zariski
topos TZar with (OT ,JT , γT ) is a PD-ringed topos. By a filtered OT -module on
the PD-scheme (T,JT , γT ), we mean a filtered module on (TZar, (OT ,JT , γT ))

(Definition 15 (2)). Let f : (T ′,JT ′ , γT ′) → (T,JT , γT ) be a morphism of PD-
schemes. It induces a morphism of PD-ringed topos fZar : (T ′

Zar, (OT ′ ,JT ′ , γT ′)) →
(TZar, (OT ,JT , γT )). For a filtered OT -module (M,Fil•M) on (T,JT , γT ), we
define the pull-back f ∗(M,Fil•M) by f to be that of (M,Fil•M) by this mor-
phism of PD-ringed topos (Definition 15 (3)).

Let (S,JS, γS) be a PD-scheme on which p is locally nilpotent, and let Z be an
S-scheme such that the PD-structure γS extends to Z . Let CRYS(Z/(S,JS, γS))

(resp. (Z/(S,JS, γS))CRYS) be the big crystalline site (resp. topos) of Z over
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(S,JS, γS), which is equipped with a PD-ring (OZ/S,JZ/S). We abbreviate
Z/(S,JS, γS) to Z/S if there is no risk of confusion.

Similarly to the case of OZ/S-modules on CRYS(Z/S) ([4, III 4.1.2]), we see,
by using Lemma 14, that the category of filtered modules on the PD-ringed topos
(Z/S)CRYS is canonically equivalent to the category of data (FT , τu) consisting of a
filteredmoduleFT on T for each object T of CRYS(Z/S) and amorphism of filtered
modules τu : u∗(FT ) → FT ′ on T ′ for each morphism u : T ′ → T of CRYS(Z/S)

satisfying τid = id and the cocycle condition for compositions of u’s, and being an
isomorphism when u is an open immersion and the PD-ideal of T ′ is the pull-back
of that of T . We say that a filtered module F on CRYS(Z/S) is a filtered crystal if,
for the corresponding data (FT , τu) as above, τu : u∗(FT ) → FT ′ is an isomorphism
of filtered modules on T ′ for every u.

Suppose that we are given a closed immersion ι of Z into a smooth scheme Y over
S. Let Y (r) (r ∈ N) be the fiber product of r + 1 copies of Y over S, and let D(r) be
the PD-envelope compatible with γS of the immersion Z → Y (r) induced by ι. Put
D := D(0). Let pi : D(1) → D (i ∈ {1, 2}) (resp. qi : D(2) → D (i ∈ {1, 2, 3}))
be the PD-morphism induced by the i th projection Y (1) → Y (resp. Y (2) → Y ).
Let Δ : D → D(1) (resp. pi j : D(2) → D(1) ((i, j) ∈ {(1, 2), (2, 3), (1, 3)})) be
the PD-morphism induced by the diagonal morphism Y → Y (1) (resp. the mor-
phism Y (2) → Y (1) defined by the i th and j th projections). The closed immersion
Z → D(r) is a nilimmersion because p is locally nilpotent on S. Hence we may
regard a Zariski sheaf on D(r) as a Zariski sheaf on Z , and then also on Y . We have
a canonical derivation ∇ : OD → OD ⊗OY ΩY/S which is compatible with the uni-
versal derivation d : OY → ΩY/S , and is an integrable connection onOD regarded as
anOY -module ([4, IV Sect. 1.3]). We have ∇(FilrOD) ⊂ Filr−1OD ⊗OY ΩY/S . The
connection ∇ induces morphisms ∇q : OD ⊗OY Ω

q
Y/S → OD ⊗OY Ω

q+1
Y/S (q ∈ N)

defined by a ⊗ ω �→ ∇(a) ∧ ω + a ⊗ dω, and the integrability of ∇ means ∇q+1 ◦
∇q = 0 (q ∈ N). We also have ∇q+q ′

(ω ∧ η) = ∇q(ω) ∧ η + (−1)qω ∧ ∇q ′
(η) for

ω ∈ OD ⊗OY Ω
q
Y/S and η ∈ OD ⊗OY Ω

q ′
Y/S .

We have the following interpretation of a filtered crystal in terms of a filtered
module on D with an HPD-stratification, and a filtered module on D with a quasi-
nilpotent integrable connection satisfying the Griffiths transversality. See [5, 6.6
Theorem] for the corresponding theorem for crystals on the small crystalline site
Crys(Z/(S,JS, γS)). First let us introduce objects appearing in the interpretation.

Definition 16 (i) We define CF(Z/(S,JS, γS)) (or CF(Z/S) for short) to be the
category of filtered crystals on CRYS(Z/(S,JS, γS)).

(ii) We define the category StratF(D(•)) as follows. An object is a filtered module

M on the PD-scheme D equipped with an isomorphism εM : p∗
2(M)

∼=−→ p∗
1(M) of

filtered modules on D(1) satisfying the following conditions.

(ii-a) The morphism M ∼= Δ∗ p∗
2(M)

∼=−−−−→
Δ∗(εM)

Δ∗ p∗
1(M) ∼= M is the identity

morphism.
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(ii-b) The following diagram is commutative.

p∗
23 p

∗
2M

∼

∼=
p∗
23(εM)

q∗
3M

∼
p∗
13 p

∗
2M

∼=
p∗
13(εM)

p∗
13 p

∗
1M

∼
q∗
1M

∼
p∗
12 p

∗
1M

p∗
23 p

∗
1M

∼ q∗
2M

∼ p∗
12 p

∗
2M

∼=
p∗
12(εM)

A morphism is a morphism of underlying filtered OD-modules compatible with
εM’s.

(iii) We define the category MF∇(Z ↪→ Y/S) as follows. An object is a fil-
tered module M on the PD-scheme D with a quasi-nilpotent integrable connec-
tion∇ : M → M ⊗OY ΩY/S such that∇(ax) = a∇(x) + x ⊗ ∇(a) fora ∈ OD and
x ∈ M, and ∇(FilrM) ⊂ Filr−1M ⊗OY ΩY/S for r ∈ Z (Griffiths transversality).
A morphism is a morphism of underlying filtered OD-modules compatible with ∇.

Theorem 17 The three categories CF(Z/(S,JS, γS)), StratF(D(•)), and
MF∇(Z ↪→ Y/S) are naturally equivalent.

Proof The construction of the equivalence between CF(Z/S) and StratF(D(•))

is completely parallel to the case without filtrations: For a filtered crystal F on
CRYS(Z/S), the filtered module M := FD on D with the composition of p∗

2M =
p∗
2FD

∼=−→
τp2

FD(1)
∼=−→

τ−1
p1

p∗
1FD = p∗

1M is an object of StratF(D(•)), and this construc-

tion is functorial in F . The quasi-inverse of this functor is constructed as follows.
Suppose that we are given an object (M, εM) of StratF(D(•)). Let T = (U ↪→
T, z : U → Z) be an object of CRYS(Z/S) such that T is affine. Since U → T is
a nilimmersion and Y → S is smooth, there exists a PD-morphism g : T → D over
S compatible with the morphism z : U → Z . The pull-back of the filtered module
M on D by g is independent of the choice of g up to canonical isomorphism as fol-
lows. For two PD-morphisms gi : T → D (i ∈ {1, 2}) over S compatible with z, their
compositions with pY : D → Y induce a morphism (pY ◦ g1, pY ◦ g2) : T → Y (1)
and hence a PD-morphism g12 : T → D(1) over S, which satisfies pi ◦ g12 = gi .

The filtered isomorphism εM induces an isomorphism g∗
2M ∼= g∗

12 p
∗
2M

∼=−−−−→
g∗
12(εM)

g∗
12 p

∗
1M ∼= g∗

1M of filtered modules on T . This is the identity morphism if g1 = g2
by the condition (ii-a) on εM in Definition 16 because g12 is the composition of
g1 = g2 and Δ : D → D(1). For three PD-morphisms gi : T → D (i ∈ {1, 2, 3}),
the composition of the isomorphisms g∗

3M
∼=−→ g∗

2M and g∗
2M

∼=−→ g∗
1M associated

to the pair (g2, g3) and (g1, g2) coincides with the isomorphism associated to the
pair (g1, g3) by the condition (ii-b) on εM in Definition 16. Note that the morphism
(pY ◦ g1, pY ◦ g2, pY ◦ g3) : T → Y (2) induces a PD-morphism g123 : T → D(2),
and we have pi j ◦ g123 = gi j for (i, j) ∈ {(1, 2), (2, 3), (1, 3)}. Here gi j : T → D(1)
is defined in the same way as g12 using gi and g j . For each object T of CRYS(Z/S),
we can glue the above pull-backs on all affine open subschemes T and obtain
a filtered module FT on T . By construction, we have a canonical isomorphism
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τu : u∗(FT )
∼=−→ FT ′ of filtered modules on T ′ for each morphism u : T ′ → T in

CRYS(Z/S). It is straightforward to verify that the data (FT , τu) is functorial inM
and gives the desired quasi-inverse.

Next let us prove the equivalence between StratF(D(•)) and MF∇(Z ↪→ Y/S).
Let (M,Fil•M) be a filtered module on D. By [5, 6.6 Theorem], we know
that there is a canonical bijection between the set of OD(1)-linear isomorphisms

ε : p∗
2M

∼=−→ p∗
1M satisfying the conditions (ii-a) and (ii-b) in Definition 16, and

the set of quasi-nilpotent integrable connections ∇ : M → M ⊗OY ΩY/S on M
satisfying ∇(ax) = a∇(x) + x ⊗ ∇(a) (a ∈ OD, x ∈ M). Suppose that ε and ∇
correspond to each other. It suffices to verify that ε is a filtered isomorphism if and
only if ∇ satisfies the Griffiths transversality. First note that the former is equiv-
alent to ε(Filr (p∗

2M)) ⊂ Filr (p∗
1M) for r ∈ Z because the inverse of ε is given

by p∗
1M ∼= ι∗ p∗

2M
∼=−−→

ι∗(ε)
ι∗ p∗

1M ∼= p∗
2M, where ι is the automorphism of D(1)

induced by the automorphism of Y (1) = Y ×S Y exchanging the two components.
(See the proof of the independence of g∗M in the first paragraph.) Since the ques-
tion is Zariski local on Y , we may assume that there exist t1, . . . , td ∈ Γ (Y,OY )

such that dtν (ν ∈ N ∩ [1, d]) form a basis of ΩY/S . Put τν := p∗
2,Y (tν) − p∗

1,Y (tν)

for ν ∈ N ∩ [1, d], where pi,Y denotes the composition D(1)
pi−→ D → Y . Then

we have an isomorphism of algebras OD〈T1, . . . , Td〉 ∼=−→ OD(1) sending a ∈ OD

to p∗
1(a) and T [n]

ν to τ [n]
ν for n ∈ N>0. For n = (nν) ∈ N

d , put |n| = ∑d
ν=1 nν ,

T [n] = ∏d
ν=1 T

[nν ]
ν , and τ [n] = ∏d

ν=1 τ [nν ]
ν . Then the above isomorphism induces an

isomorphism ⊕n∈NdFilr−|n|OD · T [n] ∼=−→ FilrOD(1) for r ∈ Z. Hence we have an iso-
morphism

⊕

n∈Nd

Filr−|n|M
∼=−→ Filr (p∗

1M) = Filr (M ⊗OD OD(1))

sending (xn)n∈Nd to
∑

n∈Nd xn ⊗ τ [n]. (The image is obviously contained in

Filr (p∗
1M). The opposite inclusion follows from Filr−s−|n|ODτ [n] · FilsM ⊂ τ [n]

Filr−|n|M in M ⊗OD OD(1).) On the other hand, the OD(1)-linear isomorphism

ε : p∗
2M = OD(1) ⊗OD M

∼=−→ p∗
1M = M ⊗OD OD(1) is described in terms of ∇

as

ε(1 ⊗ x) =
∑

n=(nν )∈Nd

d
∏

ν=1

(∇ν)
nν (x) ⊗ τ [n], x ∈ M, (10)

where ∇ν (ν ∈ N ∩ [1, d]) are the endomorphisms of M defined by ∇(y) =
∑d

ν=1 ∇ν(y) ⊗ dtν (y ∈ M). Since the Griffiths transversality is equivalent to
∇ν(FilrM) ⊂ Filr−1M (ν ∈ N ∩ [1, d]), the above observations imply that∇ satis-
fies the Griffiths transversality if and only if ε(p−1

2 (FilrM))) ⊂ Filr (p∗
1M), where

p−1
2 denotes the morphism M → p∗

2M = OD(1) ⊗OD M; x �→ 1 ⊗ x . The latter
condition is equivalent to ε(Filr (p∗

2M)) ⊂ Filr (p∗
1M) by the definition of the filtra-
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tion on p∗
2M. (We may also apply Lemma 14 to (M,Fil•M), p∗

1(M,Fil•M), and
p2 : D(1) → D.) This completes the proof. �

Remark 18 Let (M,∇) be an object of MF∇(Z ↪→ Y/S), and let (M, ε) be the
object of StratF(D(•)) associated to (M,∇) by the equivalence of categories in
Theorem 17. Suppose that there exist t1, . . . , td ∈ Γ (Y,OY ) such that dtν form
a basis of ΩY/S , and define the endomorphisms ∇ν (ν ∈ N ∩ [1, d]) of M by
∇(x) = ∑

ν ∇ν(x) ⊗ dtν . Let (U ↪→ T, z : U → Z) be an object of CRYS(Z/S),
and suppose that we are given two PD-morphisms g1, g2 : T → D compatible with
z. Then, by using (10), we see that the filtered isomorphism

g∗
12(ε) : g∗

2M = z−1(M) ⊗z−1(OD),g∗
2
OT

∼=−→ z−1(M) ⊗z−1(OD),g∗
1
OT = g∗

1M

considered in the first paragraph of the proof of Theorem 17 is given by

x ⊗ 1 �→
∑

n=(nν )∈Nd

∏

1≤ν≤d

∇nν
ν (x) ⊗

∏

1≤ν≤d

(g∗
2(tν) − g∗

1(tν))
[nν ]. (11)

Note that the differences g∗
2(tν) − g∗

1(tν) are contained in the PD-ideal of OT . We
will also use the following logarithmic variant of the above formula. Suppose that
tν ∈ Γ (Y,O×

Y ). Then we can define the endomorphisms ∇ log
ν (ν ∈ N ∩ [1, d]) ofM

by ∇(x) = ∑

ν ∇ log
ν (x) ⊗ d log tν , where d log tν = t−1

ν dtν . We have ∇ log
ν = tν∇ν ,

and see tnν ∇n
ν = ∏n−1

j=0(∇ log
ν − j) (n ∈ N) by induction on n. Hence (11) is rewritten

as

x ⊗ 1 �→
∑

n=(nν )∈Nd

∏

1≤ν≤d

nν−1
∏

j=0

(∇ log
ν − j)(x) ⊗

∏

1≤ν≤d

(g∗
2(tν)g

∗
1(tν)

−1 − 1)[nν ]. (12)

Remark 19 Let (S,JS, γS) be a PD-scheme on which p is locally nilpotent, let
X be a smooth scheme over S, and let Crys(X/S) be the small crystalline site of
X over (S,JS, γS). We can define filtered crystals on Crys(X/S) in the same way
as those on the big crystalline site, and prove an analogue of Theorem 17. In [17,
3.1.2 Theorem], an interpretation of a filtration Griffiths transversal to an integrable
connection in terms of crystals is given. We see that these two claims coincide, i.e.
a filtered crystal = a crystal with a filtration G-transversal to (JX/S, γ), as follows.
Let E be a crystal of OX/S-modules endowed with a decreasing filtration A•E by
OX/S-submodules. If the filtration A•E satisfy the condition 1 in [17, 3.1.1 Lemma],
then (E, A•E) is a filtered crystal in our sense. (Note that the condition for f = idT
implies J [r ]

T Ak ET ⊂ Ak+r ET for r > 0.) Therefore, by the last claim in [17, 3.1.1
Lemma], the G-transversality of A• to (JX/S, γ) implies that (E, A•E) is a filtered
crystal in our sense. We can prove that the converse is also true as follows. Suppose
that (E, A•E) is a filtered crystal in our sense. By the definition of a filtered crystal,
the filtration A•ET on ET is saturated with respect to (JT , γ) ([17, 2.1.2 Definition])
for each object T of Crys(X/S). For any objectU ↪→ T in Crys(X/S), there exists,
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Zariski locally on T , a morphism (U ↪→ T ) → (id : U → U ) in Crys(X/S) because
X → S is smooth. This gives a splittingOT = OU ⊕ JT , which induces ET

∼= EU ⊕
(EU ⊗OU JT ). Since Ak ET is the sumof the images of Ak−r EU ⊗OU J [r ]

T (r ∈ N), we
see that AkET is the direct sum of AkEU and the sum of the images of Ak−r EU ⊗OU

J [r ]
T in EU ⊗OU JT for r ∈ N>0. Hence AkET ∩ JT ET = AkET ∩ (EU ⊗OU JT ) is

contained in
∑

r∈N>0
J [r ]
T Ak−r ET , i.e., AT is G ′-transversal to (JT , γ) ([17, 2.1.2

Definition]). Thus we see that (E, A•E) isG-transversal to (JX/S, γ). This argument
does not work for the big crystalline site, because the source of an object of the big
crystalline site CRYS(X/(S,JS, γS)) is not an open subscheme of X in general.

We obtain the following lemma from Lemma 13 (1) and the Proof of Theorem 17.

Lemma 20 Let (M,∇) be an object of MF∇(Z ↪→ Y/S), and let F be the fil-
tered crystal on CRYS(Z/(S,JS, γS)) associated to (M,∇) by the equivalence of
categories in Theorem 17. Suppose that the filteredOD-moduleM is isomorphic to
⊕ν∈N∩[1,N ]OD(rν) for N ∈ N and rν ∈ Z (ν ∈ N ∩ [1, N ]) (Definition 10 (2)). Then,
for any object (U ↪→ T,U → Z) of CRYS(Z/(S,JS, γS)) such that T is affine, the
filtered OT -module FT is isomorphic to ⊕ν∈N∩[1,N ]OT (rν).

Definition 21 We define the categories C(Z/(S,JS, γS)), Strat(D(•)),
and M∇(Z ↪→ Y/S) by replacing filtered modules with modules in Definition 16
(i), (ii), and (iii), respectively.

By simply forgetting filtrations in the proof of Theorem 17, we obtain the follow-
ing.

Theorem 22 The three categories C(Z/(S,JS, γS)), Strat(D(•)), and
M∇(Z ↪→ Y/S) are naturally equivalent.

We discuss the functoriality of the equivalences of categories given in Theorems
17 and 22.

Let k : (S′,JS′ , γS′) → (S,JS, γS) be a PD-morphism of PD-schemes on which
p is locally nilpotent. Let f : Z → S and f ′ : Z ′ → S′ be morphisms of schemes
such that γS and γS′ extend to Z and Z ′, respectively, and let g : Z ′ → Z be a
morphism of schemes such that f ◦ g = k ◦ f ′. Then g induces a morphism of PD-
ringed topos gCRYS : ((Z ′/S′)CRYS,OZ ′/S′) → ((Z/S)CRYS,OZ/S) ([4, III (4.2.2)]).
The inverse image functor of the underlying morphism of topos is simply given by
(g∗

CRYS(F))(iT ′ : T
′
↪→ T ′, zT ′ : T

′ → Z ′) = F(iT ′ : T
′
↪→ T ′, g ◦ zT ′ : T

′ → Z).
By applying Definition 15 (3) to gCRYS, we obtain a functor

g∗
CRYS : CF(Z/(S,JS, γS)) −→ CF(Z ′/(S′,JS′ , γS′)). (13)
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Suppose that we are given a commutative diagram of schemes

Z ′

g

i ′
Y ′ h′

S′

k

Z
i

Y
h

S,

where i and i ′ are closed immersions, h and h′ are smooth, f = h ◦ i , and f ′ = h′ ◦ i ′.
We define Y (r), D(r) (r ∈ N), and D as before Definition 16 by using Z

i−→ Y
h−→ S

and (JS, γS), and construct Y ′(r), D′(r), and D′ similarly from Z ′ i ′−→ Y ′ h′−→ S′ and
(JS′ , γS′). Let iD , iD(r), iD′ and iD′(r) denote the canonical closed immersions Z → D,
Z → D(r), Z ′ → D′, and Z ′ → D′(r).

We further assume that we are given a morphism

� : D′ −→ Y

over the morphism k : S′ → S such that � ◦ iD′ = i ◦ g. (Note that we do not assume
that � is induced by a morphism Y ′ → Y .) If Y ′ is affine, then D′ is affine. Hence,
in this case, a morphism � as above always exists because iD′ is a nilimmersion and
h : Y → S is smooth. For r ∈ N, let �(r) : D′(r) → Y (r) be the unique morphism
over k such that the composition with the νth projection Y (r) → Y coincides with
that of the νth projection D′(r) → D′ and � for every ν ∈ N ∩ [1, r + 1]. We have
�(r) ◦ iD′(r) = iY (r) ◦ g, where iY (r) is the immersion Z → Y (r) induced by i , and
the morphisms �(r) define a morphism of simplicial schemes D′(•) → Y (•). Hence
�(r) (r ∈ N) induce a morphism of simplicial PD-schemes �D(•) : D′(•) → D(•).
We write �D for �D(0).

Let (M, εM) be an object of StratF(D(•)). Let M′ be the filtered OD′ -module
M′ := �∗

D(M). Then, by taking the pull-back of εM by the morphism �D(1) :
D′(1) → D(1),weobtain an isomorphismoffilteredOD′(1)-modules εM′ : p′∗

2 M′ ∼=−→
p′∗
1 M′, where p′

1 and p′
2 denote the first and second projections D′(1) → D′. By

using the fact that �D(•) is a morphism of simplicial PD-schemes, we see that the pair
(M′, εM′) is an object of StratF(D′(•)). This construction is obviously functorial in
(M, εM), and we obtain a functor

�∗
D(•) : StratF(D(•)) −→ StratF(D′(•)). (14)

Next we will construct a functor

�∗ : MF∇(Z ↪→ Y/S) −→ MF∇(Z ′ ↪→ Y ′/S′) (15)

Let Δ1 : D → D(1)1 and Δ′1 : D′ → D′(1)1 be the closed immersions defined by
PD-squares of the ideal defining the diagonal maps D → D(1) and D′ → D′(1).
Then the morphism �D(1)1 : D′(1)1 → D(1)1 induced by �D(1) gives a morphism
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�∗
D : �−1

D (OD ⊗OY ΩY/S) ∼= �−1
D (Ker(Δ1∗ : OD(1)1 → OD))

�∗
D(1)1−−−→ Ker(Δ′1∗ : OD′(1)1 → OD′) ∼= OD′ ⊗OY ′ ΩY ′/S′ , (16)

and the following diagram is commutative.

�−1
D (OD)

�−1
D (∇)

�∗
D

�−1
D (OD ⊗OY ΩY/S)

�∗
D

OD′
∇ OD′ ⊗OY ′ ΩY ′/S′

(17)

Note that the derivations ∇ onOD andOD′ are defined as the differences of the pull-
backs by the two projections D(1)1 ⇒ D and D′(1)1 ⇒ D′, and that the projections
are compatible with �D(1)1 and �D .

Let (M,∇) be an object of MF∇(Z ↪→ Y/S). Let M′ be the filtered OD′ -
module �∗

D(M), and let �
∗q
D,M (q ∈ N) be the morphism �−1

D (M ⊗OY Ω
q
Y/S) →

M′ ⊗OY ′ Ω
q
Y ′/S′ induced by �−1

D (M) → M′ = OD′ ⊗�−1
D (OD) �−1

D (M); a �→ 1 ⊗ a

and (16). The morphism OD′ × �−1
D (M) → M′ ⊗OY ′ ΩY ′/S′ defined by (a, x) �→

a�∗1
D,M(�−1

D (∇)(x)) + x ⊗ ∇(a) is �−1
D (OD)-bilinear and induces a connection

∇′ : M′ → M′ ⊗OD′ ΩY ′/S′ satisfying∇′(ax) = a∇′(x) + x ⊗ ∇(a) (a ∈ OD′ , x ∈
M′). We see that ∇′ satisfies the Griffiths transversality by using ∇(FilrOD′) ⊂
Filr−1OD′ ⊗OY ′ ΩY ′/S′ . As for the integrability of ∇′, we have a commutative dia-
gram

M′ ∇′
M′ ⊗OY ′ Ω1

Y ′/S′
∇′1

M′ ⊗OY ′ Ω2
Y ′/S′

�−1
D (M)

�−1
D (∇)

�∗0
D,M

�−1
D (M ⊗OY Ω1

Y/S)
�−1
D (∇1)

�∗1
D,M

�−1
D (M ⊗OY Ω2

Y/S),

�∗2
D,M

where∇1 is definedby∇1(x ⊗ ω) = ∇(x) ∧ ω + x ⊗ ∇1(ω) (x ∈ M,ω ∈ OD ⊗OY

Ω1
Y/S), and ∇′1 is defined similarly. The composition of the lower horizontal mor-

phisms is 0, and that of the upper one is OD′-linear as ∇1 ◦ ∇ = 0 on OD′ . Hence
∇′1 ◦ ∇′ = 0, i.e., ∇′ is integral.

Proposition 23 Under the notation above, let (M, ε) denote the object of
StratF(D(•)) corresponding to (M,∇) by Theorem 17, let (M′, ε′) be �∗

D(•)(M, ε)

(14), and let (M′,∇′′) be the object ofMF∇(Z ′ ↪→ Y ′/S′) corresponding to (M′, ε′)
by Theorem 17. Then we have ∇′ = ∇′′. In particular, ∇′ is quasi-nilpotent.

Proof We define D(1)1, D′(1)1, and �D(1)1 as before (16). Let ε1 (resp. ε′1) be
the pull-back of ε (resp. ε′) by the morphism D(1)1 → D(1) (resp. D′(1)1 →
D′(1)). Then the homomorphisms �−1

D (OD(1)1 ⊗OD M) → OD′(1)1 ⊗OD′ M′ and
�−1
D (M ⊗OD OD(1)1) → M′ ⊗OD′ OD′(1)1 induced by �D(1)1 are compatible with

�−1
D (ε1) and ε′1 by the definition of ε′. Hence the diagram
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�−1
D (M)

�−1
D (∇)

�∗0
D,M

�−1
D (M ⊗OY ΩY/S)

�∗1
D,M

M′ ∇′′
M′ ⊗OY ′ ΩY ′/S′

is commutative because ∇ on M is given by ε1|M minus the inclusion map M ↪→
M ⊗OD OD(1)1 and similarly for ∇′′ onM′. This implies the claim. �

By Proposition 23, (M′,∇′) is an object of MF∇(Z ′ ↪→ Y ′/S′) and obtain the
desired functor (15).

Proposition 24 The following diagram is commutative up to canonical isomor-
phisms, where the horizontal arrows are the equivalences of categories constructed
in the proof of Theorem 17.

CF(Z/(S,JS, γS))

g∗
CRYS(13)

StratF(D(•))

�∗
D(•)(14)

MF∇(Z ↪→ Y/S)

�∗(15)

CF(Z ′/(S′,JS′ , γS′)) StratF(D′(•)) MF∇(Z ′ ↪→ Y ′/S′)

Proof Proposition 23 means that the right diagram is commutative. The commuta-
tivity of the left diagram follows from the construction of the functor �∗

D(•) and the
explicit description of g∗

CRYS recalled above. �

By forgetting filtrations on underlying modules in the proof of Proposition 24, we
obtain the following.

Proposition 25 The following diagram is commutative up to canonical isomor-
phisms, where the horizontal arrows are the equivalences of categories constructed
in the proof of Theorem 22, and the three vertical functors are defined by forgetting
filtrations in the construction of (13), (14), and (15).

C(Z/(S,JS, γS))

g∗
CRYS

Strat(D(•))

�∗
D(•)

M∇(Z ↪→ Y/S)

�∗

C(Z ′/(S′,JS′ , γS′)) Strat(D′(•)) M∇(Z ′ ↪→ Y ′/S′)

Finally we discuss the quasi-coherence of filtered crystals and crystals. Note that,
for a PD-scheme (T,JT , γT ), FilrOT (r ∈ Z) are quasi-coherent ideals of OT .

Definition 26 (1) We say that a filtered OT -module (M,Fil•M) on a PD-scheme
T is quasi-coherent ifM and FilrM (r ∈ Z) are quasi-coherent OT -modules.

(2) We say that a crystal F (resp. a filtered crystal (F ,Fil•F)) on CRYS(Z/S)

is quasi-coherent if FT (resp. (FT ,Fil•FT )) is quasi-coherent for every objet
T of CRYS(Z/S). We write Cqc(Z/(S,JS, γS)) (resp. CFqc(Z/(S,JS, γS))) for
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the category of quasi-coherent crystals (resp. quasi-coherent filtered crystals) on
CRYS(Z/S).

(3) We say that an object of M∇(Z ↪→ Y/S) (resp. MF∇(Z ↪→ Y/S)) is quasi-
coherent if its underlying OD-module (resp. filtered OD-module) is quasi-coherent.
We write M∇

qc(Z ↪→ Y/S) (resp. MF∇
qc(Z ↪→ Y/S)) for the full subcategory consist-

ing of quasi-coherent objects.

Lemma 27 (1) Let T be a PD-scheme whose underlying scheme is affine. Then
the functor Γ (T,−) induces an equivalence of categories between the cate-
gory of quasi-coherent filtered OT -modules and that of filtered modules over
(Γ (T,OT ), Γ (T,Fil•OT )).

(2) Let f : T ′ → T be a morphism of PD-schemes. Then the pull-back of quasi-
coherent filtered OT -modules by f is a quasi-coherent filtered OT ′-modules.

(3) Let f : T ′ → T be a morphism of PD-schemes whose underlying schemes are
affine. Then the equivalence of categories in (1) for T and T ′ are compatible with
the pull-back by f and the scalar extension by f ∗ : Γ (T,OT ) → Γ (T ′,O′

T ).

Proof (1)Let (M,Fil•M)be aquasi-coherentmodulewith a decreasingfiltrationby
quasi-coherentOT -submodules. Then, as FilrOT is a quasi-coherent ideal ofOT , we
see that FilrOT · FilsM ⊂ Filr+sM if and only if Γ (T,FilrOT ) · Γ (T,FilsM) ⊂
Γ (T,Filr+sM).

(2), (3) Let (M,Fil•M) be a quasi-coherent filtered OT -module, and put
M = Γ (T,M) and Filr M = Γ (T,FilrM) (r ∈ Z). Then, as FilsOT ′ is a quasi-
coherent ideal ofOT ′ , the image of FilsOT ′ ⊗OT ′ f ∗(Filr−sM) → f ∗(M) is quasi-
coherent. If T and T ′ are affine, then Γ (T ′,−) of the image coincides with
the image of Fils RT ′ ⊗RT ′ (Filr−sM ⊗RT RT ′) → M ⊗RT RT ′ , where RT = OT (T ),
RT ′ = OT ′(T ′), and Filr RT ′ = FilrOT ′(T ′). These imply the claims. �

We immediately obtain the following corollary from Lemma 27 (2).

Corollary 28 The functors gCRYS and �∗ appearing in Propositions 24 and 25 pre-
serve quasi-coherent objects.

By the proof of Theorem 17, we also obtain the following from Lemma 27 (2).

Theorem 29 (1) The equivalence of categories in Theorem 17 induces that of
CFqc(Z/(S,JS, γS)) and MF∇

qc(Z ↪→ Y/S).
(2) The equivalence of categories in Theorem 22 induces that ofCqc(Z/(S,JS, γS))

and M∇
qc(Z ↪→ Y/S).

Assume that Z and Y satisfy the following conditions.

The schemes Z and Y are affine (18)

There exist t1, . . . , td ∈ Γ (Y,OY ) such that dti (1 ≤ i ≤ d) form

a basis of theOY -moduleΩY/S.
(19)

The condition (18) implies that D is also affine. Put RD := Γ (D,OD), Filr RD :=
Γ (D,FilrOD), B := Γ (Y,OY ), and ΩB := Γ (Y,ΩY/S). Let ∇RD be the derivation
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RD → RD ⊗B ΩB induced by ∇ : OD → OD ⊗OY ΩY/S . Choose and fix t1, . . . , td
satisfying (19).

Definition 30 We define the category MF∇(RD,∇RD ) as follows. An object is a fil-
tered module M over (RD,Fil•RD) with an integrable connection ∇ : M → M ⊗B

ΩB satisfying ∇(ax) = a∇(x) + x ⊗ ∇RD (a) (a ∈ RD, x ∈ M), ∇(Filr M) ⊂
Filr−1M ⊗B ΩB for r ∈ Z (Griffiths transversality), and the following nilpotence:
For any x ∈ M , there exists N ∈ N such that

∏

1≤ν≤d ∇nν
ν (x) = 0 for all (nν) ∈ N

d

with
∑

ν nν ≥ N , where the endomorphisms∇ν (ν ∈ N ∩ [1, d]) ofM are defined by
∇(x) = ∑

ν ∇ν(x) ⊗ dtν . A morphism is a homomorphism of filtered RD-modules
compatible with ∇.

We define the categoryM∇(RD,∇RD ) by replacing filteredmodules withmodules
and removing Griffiths transversality.

Proposition 31 Under the conditions (18) and (19), we have the following equiva-
lences of categories defined by taking the global sections Γ (D,−).

MF∇
qc(Z ↪→ Y/S)

∼=−→ MF∇(RD,∇RD ), (20)

M∇
qc(Z ↪→ Y/S)

∼=−→ M∇(RD,∇RD ). (21)

Proof Let (M,∇) be an object of M∇
qc(Z ↪→ Y/S). Then the quasi-nilpotence

of ∇ implies the nilpotence of Γ (D,∇) in Definition 30 because Z is quasi-
compact. We also see that ∇ is determined by Γ (D,∇) because the OD-module
M is generated by Γ (D,M). Therefore we obtain fully faithful functors by tak-
ing the global sections on D. Let (M,Fil•M,∇) be an object of MF∇(RD,∇RD ).
By Lemma 27 (1), we have a quasi-coherent filtered module (M,Fil•M) on D
whose global sections are (M,Fil•M). For any affine open subscheme Spec(R′)
of D, the map M × R′ → M ⊗R R′ ⊗B ΩB; (x, a) �→ a∇(x) + x ⊗ ∇R′(a) is R-
bilinear and induces M ⊗R R′ → M ⊗R R′ ⊗B ΩB . Here ∇R′ : R′ → R′ ⊗B ΩB is
the sections of ∇ : OD → OD ⊗OY ΩY/S on Spec(R′). These are compatible with
restrictions and define amorphism∇ : M → M ⊗OY ΩY/S . By using∇(FilrOD) ⊂
Filr−1OD ⊗OY ΩY/S , and the integrability and quasi-nilpotence of the connection ∇
on OD , we see that (M,Fil•M,∇) is an object of MF∇(Z ↪→ Y/S), whose global
sections are (M,Fil•M,∇) by construction. The same argument applies to an object
of M∇(RD,∇RD ). Thus we see that the two functors in the proposition are equiva-
lences of categories. �

Let notation and assumption be the same as before Proposition 24, and assume
that Z → Y → S and Z ′ → Y ′ → S′ satisfy the conditions (18) and (19). We define
the categories ′MF∇(RD′ ,∇RD′ ) and ′M∇(RD′ ,∇RD′ ) by removing the nilpotence
condition on ∇ in the definition of MF∇(RD′,∇RD′ ) and M∇(RD′ ,∇RD′ ) (Defini-
tion 30), respectively. Then one can construct functors �∗

RD
: MF∇(RD,∇RD ) →

′MF∇(RD′ ,∇RD′ ) and �∗
RD

: M∇(RD,∇RD ) → ′M∇(RD′ ,∇RD′ ) similarly to the con-
struction of (15), and obtain the following.
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Proposition 32 The functor �∗
RD

for MF∇(−) is compatible with �∗ (15) via the
equivalence of categories (20) for Z → Y → S and Z ′ → Y ′ → S′. The same claim
forM∇(−) holds with respect to (21) and �∗ appearing in Proposition 25. In partic-
ular, the functors �∗

RD
factor through MF∇(RD′ ,∇RD′ ) and M∇(RD′ ,∇RD′ ).

4 The Relative Fontaine–Laffaille Theory by Faltings

We define MF∇
[0,p−2],free(A, Φ) to be the full subcategory of the abelian category

MF∇
[0,p−2](A) introduced by Faltings [10, II (d)] consisting of (M,Filr M,∇, Φ)

such that grrFil(M) (r ∈ Z) are free A-modules. Let ΩA be the inverse limit of
Ω(A/pn A)/(OK /pnOK ) (n ∈ N>0), and let d : A → ΩA be the inverse limit of the uni-
versal derivations d : A/pn A → Ω(A/pn A)/(OK /pnOK ) (n ∈ N>0). Then an object of
MF∇

[0,p−2],free(A, Φ) is given by the following quadruple (M,Filr M,∇, Φ):

(i) A free A-module of finite type M .
(ii) An integrable connection ∇ : M → M ⊗A ΩA such that (∇ mod pn) is

quasi-nilpotent for every n ∈ N>0, i.e., for any x ∈ M ,
∏

1≤i≤d ∇ni
i (x), (ni ) ∈ N

d

converges to 0 as
∑

i ni → ∞with respect to the p-adic topology. Here∇i (i ∈ N ∩
[1, d]) denotes the endomorphism of M defined by ∇(x) = ∑

1≤i≤d ∇i (x) ⊗ dti .
(iii) A decreasing filtration Filr M (r ∈ Z) of M by A-submodules satisfying the

following conditions:
(iii-1) Fil0M = M and Filp−1M = 0.
(iii-2) grrFilM is a free A-module of finite type for every r ∈ Z.
(iii-3) (Griffiths transversality) ∇(Filr M) ⊂ Filr−1M ⊗A ΩA (r ∈ Z).

For m ∈ N>0, we define Filrp(M/pmM) (r ∈ Z) to be the sum of the images of
p[s]Filr−sM (s ∈ N), and∇m onM/pm to be (∇ mod pm). Put Xm = Spec(A/pm A)

and Σm = Spec(OK /pmOK ) for m ∈ N>0. Then, by (ii) and (iii-3), we see that
(M/pmM,Fil•p(M/pmM),∇m) defines an object of MF∇

qc(X1 ↪→ Xm/Σm) (Defini-
tion 26 (3), (20)). Let ϕ : A → A be a lifting of the absolute Frobenius of A/pA
compatible with σ of OK . Then, by applying Propositions 24 and 32 to the abso-
lute Frobenius of X1 and its lifting to Xm defined by ϕ for each m ∈ N>0, we see
that the pull-back (ϕ∗(M),ϕ∗(∇)) of (M,∇) by ϕ with the decreasing filtration
Filrp(ϕ

∗(M)) := ∑

s∈N p[s]ϕ∗(Filr−sM) (r ∈ Z) is independent of the choice of ϕ
up to canonical isomorphisms (see Remark 33 below). Let F∗(M) denote the filtered
A-module with the integrable connection thus obtained.

(iv) AnA-linear homomorphism Φ : F∗(M) → M satisfying the following con-
ditions:

(iv-1) Φ is compatible with the connections.
(iv-2) Φ(Filrp(F

∗(M))) ⊂ pr F∗(M) for r ∈ N ∩ [0, p − 2].
(iv-3)

∑

r∈N∩[0,p−2] p−rΦ(Filrp(F
∗(M))) = M .
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Remark 33 Let ϕ and ϕ′ be two liftings of the absolute Frobenius of A/pA
to A compatible with σ of OK . Then, by using (11), we see that the canoni-

cal A-linear isomorphism ϕ∗M = M ⊗A,ϕ A
∼=−→ ϕ′∗M = M ⊗A,ϕ′ A is given by

x ⊗ 1 �→ ∑

n=(ni )∈Nd

∏d
i=1 ∇ni

i (x) ⊗ ∏

1≤i≤d(ϕ(ti ) − ϕ′(ti ))[ni ], where ∇i (i ∈ N ∩
[1, d]) are defined by ∇(x) = ∑

1≤i≤d ∇i (x) ⊗ dti , x ∈ M . Note ϕ(ti ) − ϕ′(ti ) ∈
pA.

Choose and fix a lifting of the absolute Frobenius ϕA : A → A compatible with
σ of OK , and define ϕ of Acrys(A) as in Sect. 2. For an object (M,Filr M,∇, Φ) of
MF∇

[0,p−2],free(A, Φ), let T ∗
crys(M) be the Zp-module HomA-lin,Fil,ϕ,∇(M,Acrys(A))

of A-linear maps from M to Acrys(A) compatible with the filtrations, ϕ, and ∇,

where ϕ of M is defined to be the composition of M → ϕ∗
A(M) = F∗(M)

Φ−→ M .
Then T ∗

crys(M) is a free Zp-module whose rank is the same as the A-module M
(Proposition 66), and the natural action of GA on T ∗

crys(M) is continuous because

the action of GA on Acrys(A) is continuous and Acrys(A)/Filr (r ∈ Z) is p-torsion
free by (5). Thus we obtain a contravariant Zp-linear functor

T ∗
crys : MF∇

[0,p−2],free(A, Φ) −→ Repfree(GA,Zp),

where Repfree(GA,Zp) denotes the category of free Zp-modules of finite type with
continuous action ofGA. Furthermore the functor T ∗

crys is fully faithful (see Theorem
77), and is independent of the choice of ϕA up to canonical isomorphisms (see
Remark 38).

5 Acrys-Representations with ϕ and Fil

In this section, we introduce a free Acrys(A)-module T Acrys(M) of finite type with
an action of GA, a filtration and a Frobenius endomorphism associated to an object
M of MF∇

[0,p−2],free(A, Φ) ([10, II (e)]).
For m ∈ N>0, put Σm := Spec(OK /pm), Am := A/pm , and Xm := Spec(Am),

and let γ denote the canonical PD-structure on p(OK /pm). To simplify the notation,
we write CRYS(Xm/Σm) and (Xm/Σm)CRYS (resp. CRYS(X1/Σm) and
(X1/Σm)CRYS) for the big crystalline site and topos of Xm (resp. X1) over Σm with
the PD-ideal (p(OK /pm), γ). Let FΣm : Σm → Σm be the lifting of the absolute
Frobenius of Σ1 defined by σ : OK → OK , It is a PD-morphism with respect to γ.
The absolute Frobenius FX1 of X1 and FΣm define a morphism of PD-ringed topos
FX1/Σm ,CRYS : (X1/Σm)CRYS → (X1/Σm)CRYS.

Let (M,Fil•M,∇, Φ) be an object of MF∇
[0,p−2],free(A, Φ). For m ∈ N>0, let

(Mm,Fil•Mm,∇, Φ) denote the reduction mod pm of (M,Fil•M,∇, Φ). Then

(Mm,Fil•Mm,∇) defines an object of MF∇
qc(Xm

id
↪→ Xm/Σm) (Definition 26 (3)) by

(20). By Theorems 17 and 29, this object gives a quasi-coherent filtered



188 T. Tsuji

crystal (Fm,Fil•Fm) on CRYS(Xm/Σm). Since (M,Fil•M) is finite filtered free of
level [0, p − 2] (Definition 10 (3)), so is (Γ (T,Fm), Γ (T,Fil•Fm)) for any object
(U ↪→ T,U → Xm) of CRYS(Xm/Σm) with T affine, by Lemma 20. The pair
(Mm,∇) defines an object of M∇

qc(X1 ↪→ Xm/Σm) (Definition 26 (3), (21)), which
gives a quasi-coherent crystal Gm on CRYS(X1/Σm) by Theorems 22 and 29. The
reduction mod pm of Φ : F∗M → M equip Gm with a morphism ΦGm : F∗

X1/Σm ,CRYS
(Gm) → Gm . By Propositions 25 and 32, we have

i∗m,CRYS(Fm) = Gm (22)

for the morphism of ringed topos im,CRYS : (X1/Σm)CRYS → (Xm/Σm)CRYS induced
by the closed immersion im : X1 → Xm over idΣm . By Propositions 24 (resp. 25)
and 32, the pull-back of (Fm+1,Fil•Fm+1) (resp. (Gm+1, ΦGm+1)) by the morphism of
ringed topos induced by Xm → Xm+1 (resp. idX1 ) and Σm → Σm+1 is canonically
identifiedwith (Fm,Fil•Fm) (resp. (Gm, ΦGm )). This identification is compatiblewith
i∗m,CRYS(Fm) = Gm (22) in the obvious sense.

For m ∈ N>0, put Dm := Spec(Acrys,m(A)) and Xm := Spec(Am), and let FDm
:

Dm → Dm be the lifting of the absolute Frobenius of D1 defined byϕ of Acrys,m(A).
The closed immersion Xm ↪→ Dm (resp. X1 ↪→ Dm) is naturally regarded as an
object of CRYS(Xm/Σm) (resp. CRYS(X1/Σm)) endowed with a right action of
GA. We define an Acrys,m(A)-module T Acrys,m(M) by

T Acrys,m(M) := Γ (Xm ↪→ Dm,Fm)
∼=−−→

(22)
Γ (X1 ↪→ Dm,Gm). (23)

For the second isomorphism, note that Fm is a crystal on CRYS(Xm/Σm). The right
action of GA on Dm induces its left action on T Acrys,m(M). The filtration on Fm

gives a filtration Filr (r ∈ Z) by Acrys,m(A)-submodules on T Acrys,m(M), which
is stable under the GA-action. The Acrys,m(A)-module T Acrys,m(M) with Fil• is a
filtered module over the filtered ring Acrys,m(A) which is finite filtered free of level
[0, p − 2]. The Frobenius ΦGm of Gm and the lifting of Frobenius FDm

on Dm define
a semilinear GA-equivariant endomorphism of Γ (X1 ↪→ Dm,Gm) and hence that
of T Acrys,m(M) as

Γ (X1 ↪→ Dm,Gm) −→ Γ (X1 ↪→ Dm, F∗
X1,CRYS(Gm))

ΦGm−−→ Γ (X1 ↪→ Dm,Gm).

Here the first homomorphism is induced by FX1
and FDm

.
Let γ denote the PD-structure on the ideal pAcrys,m(A) + Fil1Acrys,m(A) of

Acrys,m(A). We write CRYS(Xm/Dm) and (Xm/Dm)CRYS (resp. CRYS(X1/Dm)

and (X1/Dm)CRYS) for the big crystalline site and topos of Xm (resp. X1) over
Dm with the PD-ideal (pAcrys,m(A) + Fil1Acrys,m(A), γ). By taking the pull-back of
(Fm,Fil•Fm) (resp. (Gm, ΦGm )) under themorphismof ringed topos (Xm/Dm)CRYS →
(Xm/Σm)CRYS (resp. (X1/Dm)CRYS → (X1/Σm)CRYS), we obtain a quasi-coherent
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filtered crystal (Fm,Fil•Fm) (resp. a quasi-coherent crystal Gm with a morphism
ΦGm

: F∗
X1/Dm ,CRYS

(Gm) → Gm) endowed with an action of GA equivariant with

respect to its action on Xm (resp. X1) and Dm . Here FX1/Dm ,CRYS denotes the

morphism of ringed topos (X1/Dm)CRYS → (X1/Dm)CRYS defined by the absolute
Frobenius of X1 and FDm

. Note that FDm
is a PD-morphism with respect to γ.

Since Xm ↪→ Dm (resp. X1 ↪→ Dm) is a final object of CRYS(Xm/Dm)

(resp. CRYS(X1/Dm)), we have canonical Acrys,m(A)-linear isomorphisms

T Acrys,m(M) ∼= Γ ((Xm/Dm)CRYS,Fm) ∼= Γ ((X1/Dm)CRYS,Gm). (24)

The filtration (resp. the Frobenius endomorphism) and the action ofGA on themiddle
(resp. the right) term induced by the corresponding structures on Fm (resp. Gm) are
compatible with those structures on T Acrys,m(M) defined after (23).

Let B → A, ϕB, OK ,m Am , Bm , ΩBm , ϕBm , and (Pm,Fil•Pm,∇Pm ,ϕPm ) be as
in Sect. 2. For m ∈ N>0, let Ym be Spec(Bm), and let FYm be Spec(ϕBm ) : Ym → Ym .
We give a description of T Acrys,m(M) in terms of Acrys,B,m(A) and the sections of
Fm and Gm on X1, Xm ↪→ Spec(Pm) (29). The latter sections coincide with Mm

when A = B. We use the description for a general B in Sects. 16 and 20. We first
introduce some notation concerning the sections on Spec(Pm). Let (MPm ,Fil•MPm )

be the sections of (Fm,Fil•Fm) on the object (Xm ↪→ Spec(Pm)) ofCRYS(Xm/Σm),
which is a filtered module over (Pm,Fil•Pm) finite filtered free of level [0, p − 2].
Since Ym → Σm is smooth, the proof of Theorem 17 shows that (Mm,Fil•MPm ) is
equippedwith an integrable connection∇ : MPm → MPm ⊗Bm ΩBm compatiblewith
∇Pm and satisfying ∇(Filr MPm ) ⊂ Filr−1MPm ⊗Bm ΩBm . By (22) and the fact that
Fm is a crystal, thePm-moduleMPm is canonically isomorphic to the sections ofGm on
the object (X1 ↪→ Spec(Pm)) of CRYS(X1/Σm). By applying Propositions 25 and
32 to X1 ↪→ Xm and idYm over idΣm , we see that the connection on MPm associated to
Gm by Theorem 17 coincides with∇ above associated toFm . Therefore Propositions
25 and 32 applied to FX1 and FYm over FΣm imply thatΦGm induces a ϕPm -semilinear
endomorphism ϕ : MPm → MPm compatible with ∇, i.e. (ϕ ⊗ ϕB) ◦ ∇ = ∇ ◦ ϕ on
MPm .

We give a slightly different construction of Acrys,B,m(A). Let YDm
be Ym ×Σm

Dm , and let Em be the PD-envelope compatible with γ of the closed immer-
sion Xm → YDm

defined by the morphisms Xm ↪→ Dm and Xm → Xm ↪→ Ym .
The right action of GA on Dm induces its right action on Em . By Lemma 6
(1), (2), the lifting FYm ×FΣm

FDm
: YDm

→ YDm
of the absolute Frobenius of YD1

induces a lifting FEm
: Em → Em of the absolute Frobenius of Em ×Σm Σ1. We also

have an Acrys,m(A)-linear derivation ∇ : Γ (Em,OEm
) → Γ (Em,OEm

) ⊗Bm ΩBm

([4, IV Sect. 1.3]). The morphism YDm
→ Ym induces a homomorphism of PD-

algebras Pm → Γ (Em,OEm
) stable under the GA-action and compatible with

Fil•, ∇ and ϕ. Here the filtration (resp. ϕ) of the right-hand side is defined by
Γ (Em,FilrOEm

) (resp. Γ (Em, FEm
)). By using the fact that Dm is the PD-envelope

of Spec(OK /pm) ↪→ Spec(Ainf(OK )/pm) compatible with the PD-structure γ on
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pOK , we can verify that the PD-thickening Xm = Spec(Am) ↪→ Spec(Acrys,B,m(A))

over Dm with γ satisfies the universal property of the PD-envelope Xm → Em . This
implies that idXm

, the morphism YDm
→ Spec(B ⊗OK Ainf(OK )/pm), and the PD-

morphism (Dm, γ) → (Σm, γ) induce a PD-isomorphism

Acrys,B,m(A) ∼= Γ (Em,OEm
) (25)

compatible with the GA-actions, Fil•, ∇, ϕ, and the homomorphisms from Pm and
Acrys,m(A).

By (25), the sections of (Fm,Fil•Fm) on the object Xm ↪→ Em of the crys-
talline site CRYS(Xm/Dm) give a filtered module (Γ (Em,Fm), Γ (Em,Fil•Fm))

over the filtered ring (Acrys,B,m(A),Fil•Acrys,B,m(A)), which is finite filtered free of
level [0, p − 2] and is naturally endowed with an action of GA. By Theorem 29,
(20), and Proposition 32, it is equipped with a GA-equivariant integrable connection
∇ : Γ (Em,Fm) → Γ (Em,Fm) ⊗Bm ΩBm compatible with ∇ on Acrys,B,m(A) and
satisfying ∇(Γ (Em,FilrFm)) ⊂ Γ (Em,Filr−1Fm) ⊗Bm ΩBm (r ∈ Z). By Proposi-
tions 25 and 32 applied to X1 ↪→ Xm and idYDm

over idDm
, theAcrys,B,m(A)-module

Γ (Em,Fm) with the GA-action and ∇ is canonically isomorphic to the sections
Γ (Em,Gm) of Gm on the object X1 ↪→ Em of CRYS(X1/Dm) equipped with the
action of GA and ∇ defined similarly to Γ (Em,Fm). The Frobenius ΦGm

of Gm

and FEm
induce a GA-equivariant endomorphism ϕ of Γ (Em,Gm) semilinear with

respect to ϕ of Acrys,B,m(A). By applying Propositions 25 and 32 to FX1
and FYDm

over FDm
, we see that it is compatible with ∇.

By (24) and the description of global sections of a crystal in terms of horizontal
sections of the corresponding module with an integrable connection on the PD-
envelope of an embedding into a smooth scheme ([4, Proposition 4.1.4], [5, 7.1
Theorem]), we obtain a canonical Acrys,m(A)-linear GA-equivariant isomorphisms

T Acrys,m(M) ∼= Γ (Em,Fm)∇=0 ∼= Γ (Em,Gm)∇=0. (26)

The filtration (resp. the Frobenius endomorphism) on the middle (resp. right)
term is compatible with that on T Acrys,m(M). Since Xm ↪→ Dm and X1 ↪→ Dm

are final objects of CRYS(Xm/Dm) and CRYS(X1/Dm), respectively, we see,
by using Lemma 27 (3), that the isomorphisms (26) induce Acrys,B,m(A)-linear
GA-equivariant isomorphisms

T Acrys,m(M) ⊗Acrys,m (A) Acrys,B,m(A)
∼=−→ Γ (Em,Fm) ∼= Γ (Em,Gm) (27)

compatible with ∇, Fil• and ϕ. Here, on the left-hand side, the filtration and ϕ are
defined by the tensor products of those on T Acrys,m(M) and Acrys,B,m(A), and the
connection is defined by id ⊗ ∇. For the compatibility with ∇, we use Propositions
24, 25, and 32 applied to idXn

(n = 1,m), idDm
, and YDm

→ Dm .
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Let ιm be the canonical PD-homomorphism Pm → Acrys,B,m(A). We endow
MPm ⊗Pm ,ιm Acrys,B,m(A) with the tensor products of the filtrations, integrable con-
nections and ϕ’s on MPm and Acrys,B,m(A), and also with the GA-action via
Acrys,B,m(A). By Propositions 24 (resp. Proposition 25) and 32 applied to Xm → Xm

(resp. X1 → X1), Dm → Σm , and YDm
→ Ym , we can compute the sections of Fm

(resp. Gm) on Xm ↪→ Em (resp. X1 ↪→ Em) by pulling back (MPm ,Fil•MPm ,∇)

(resp. (MPm ,ϕPm )) under the PD-morphism Em → Spec(Pm) induced by YDm
→

Ym , and obtain Acrys,B,m(A)-linear isomorphisms

MPm ⊗Pm ,ιm Acrys,B,m(A) ∼= Γ (Em,Fm) ∼= Γ (Em,Gm) (28)

such that the filtration (resp. the Frobenius endomorphism), the integrable connec-
tion, and the action of GA on the middle (resp. the right) term are compatible with
those on the left term. Combining with (26), we obtain the followingGA-equivariant
Acrys,m(A)-linear filtered isomorphisms compatible with ϕ.

T Acrys,m(M) ∼= (MPm ⊗Pm ,ιm Acrys,B,m(A))∇=0 (29)

By (27), the isomorphism (29) induces an Acrys,B,m(A)-linear GA-equivariant fil-
tered isomorphism

T Acrys,m(M) ⊗Acrys,m (A) Acrys,B,m(A)
∼=−→ MPm ⊗Pm ,ιm Acrys,B,m(A) (30)

compatible with ∇ and ϕ.
We give another description of T Acrys,m(M) as a filtered module over Acrys(A)

with ϕ (see (32)), which depends on the choice of the coordinates s1, . . . , se of B×

over OK and a compatible system of pnth roots si,n ∈ A×
(n ∈ N) of the image of

si in A× (used in the definition of ui ∈ Acrys,B(A) in Sect. 2).
For any ideal a of Ainf(OK ) satisfying (p, [p])n ⊂ a ⊂ (p, [p]) for some n ∈

N>0, we have a commutative square of OK -algebras

B
β(0)
a

A/pA

OK [S1, . . . , Se] Si �→[si ]

Si �→si

Ainf(A)/a,

(31)

where the right vertical homomorphism is induced by θ and the upper horizontal
one is the composition B → A → A/p. Since the homomorphism of OK -algebras
OK ,m[S1, . . . , Se] → Bm; Si �→ si is étale for m ∈ N>0, we see that there exists a
unique homomorphism of OK -algebras β(0)

a : B → Ainf(A)/a such that the two

triangles in (31) are commutative. Since θ([si ]) ∈ ̂A× is the image of si under

B → A → ̂A, the homomorphism β(0)
(pm ,ξ) is the composition of B → A → A/pm .
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We define β(0) : B → Ainf(A) to be the inverse limit of β(0)
a over a. By the above

description of β(0)
(pm ,ξ), the reduction mod pm of β(0) induces a PD-homomorphism

βm : Pm → Acrys,m(A). Let β : P → Acrys(A) be the inverse limit of βm (m ∈ N>0).

By definition, the composition of β with Acrys(A) → Acrys(A)/Fil1 ∼= ̂A is the com-

position of P → A ↪→ ̂A.

Lemma 34 (1) The homomorphism β coincides with the composition of the PD-
homomorphism P → Acrys,B(A) and the PD-homomorphism Acrys,B(A) →
Acrys(A) over Acrys(A) defined by u[n]

i �→ 0 (i ∈ N ∩ [1, e], n ∈ N>0).
(2) If ϕB(si ) = s pi for all i ∈ N ∩ [1, e], then β(0) and β are compatible with ϕ,

i.e. ϕ ◦ β(0) = β(0) ◦ ϕB and ϕ ◦ β = β ◦ ϕP .

Proof (1) Let m ∈ N>0. By the universal property of PD-envelopes, it suffices to
prove that the reduction mod pm of B → P → Acrys(A) → Acrys(A) coincides

with that of B β(0)−→ Ainf(A) → Acrys(A). Since OK ,m[S1, . . . , Se] → Bm; Si �→ si
is étale, we see that both of the above homomorphisms are the unique homomor-
phism of OK -algebras Bm → Acrys,m(A) sending si to [si ] such that the composition
with Acrys,m(A) → Acrys,1(A)/Fil1 ∼= A/p coincides with Bm → Am → A/p.

(2) By the definition ofϕP : P → P andϕ of Acrys(A), the claim for β is reduced
to that for β(0). By ϕ([si ]) = [si ]p and the compatibility of ϕ of Ainf(A) with the
absolute Frobenius of A/p and σ : OK → OK , the commutative square (31) for
a = (p, [p])n is compatible with ϕB, ϕ of Ainf(A)/a, the absolute Frobenius of

A/p, and the endomorphism of OK [S1, . . . , Se] defined by σ and Si �→ Sp
i . This

implies ϕ ◦ β(0) = β(0) ◦ ϕB. �

Let m ∈ N>0. The homomorphism βm induces morphisms (Xm ↪→ Dm) →
(Xm ↪→ Spec(Pm)) and (X1 ↪→ Dm) → (X1 ↪→ Spec(Pm)) inCRYS(Xm/Σm) and
CRYS(X1/Σm), respectively. Hence, we may compute T Acrys,m(M) by taking the
pull-back of MPm via the above morphisms (Lemma 27 (3)) and obtain the following
Acrys,m(A)-linear filtered isomorphism

T Acrys,m(M) ∼= MPm ⊗Pm ,βm Acrys,m(A). (32)

This is compatible with ϕ if ϕB(si ) = s pi for all i ∈ N ∩ [1, e] by Lemma 34 (2).
Note that this isomorphism is not GA-equivariant because β is not compatible with
the action of GA.

The two descriptions (29) and (32) of T Acrys,m(M) are related with each other as
follows. By combining (30) and (32), we obtain a filteredAcrys,m(A)-linear isomor-
phism

MPm ⊗Pm ,βm Acrys,B,m(A)
∼=−→ MPm ⊗Pm ,ιm Acrys,B,m(A) (33)

compatible with the integrable connections, and also withϕ ifϕB(si ) = s pi for all i ∈
N ∩ [1, e]. On the left-hand side, the filtration andϕ are defined by the tensor products
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of those on MPm and Acrys,B,m(A), and the connection is defined by id ⊗ ∇. By
tracing the construction of (30) and (32),we see that the isomorphism (33) is obtained
by taking Γ (En,−) of the canonical isomorphism between the two descriptions
of (Fm)Xm ↪→Em

(or (Gm)X1↪→Em
) as the pull-backs of MPm by the PD-morphisms

Em → Dm
Spec(βm )−−−−→ Spec(Pm) and Em → Spec(Pm) (induced by YDm

→ Ym). By
(12) and β(si ) = [si ], the isomorphism (33) and its inverse are explicitly given by

x ⊗ 1 �→
∑

n=(ni )∈Ne

∇ log
n (x) ⊗

∏

i

u[ni ]
i,m , (34)

∑

n=(ni )∈Ne

∇ log
n (x) ⊗

∏

i

(u′
i,m)[ni ] ← x ⊗ 1 (35)

for x ∈ MPm , where u′
i,m =(the image of [si ]−1 ⊗ si − 1 in Acrys,B,m(A))=(1 +

ui,m)−1 − 1, ∇ log
i (i ∈ N ∩ [1, e]) denotes the endomorphism of MPm defined by

∇(x) = ∑

1≤i≤e ∇ log
i (x) ⊗ d log si , and ∇ log

n = ∏

1≤i≤e

∏

0≤ j≤ni−1(∇ log
i − j).

We take the inverse limit lim←−m
of what we have constructed. First we define the

Acrys(A)-module T Acrys(M) by

T Acrys(M) := lim←−
m

T Acrys,m(M). (36)

The semilinear action of GA on T Acrys,m(M) defines its action on T Acrys(M).
We define the decreasing filtration Filr T Acrys(M) (r ∈ Z) to be the inverse limit
lim←−m

Filr T Acrys,m(M), which is stable under the action of GA. The pair
(T Acrys(M),Fil•T Acrys(M)) is obviously a filtered module over the filtered ring
(Acrys(A),Fil•Acrys(A)). The Frobenius endomorphism ϕ on each T Acrys,m(M)

defines a semilinear GA-equivariant endomorphism ϕ of T Acrys(M).
We define the P-module MP and its decreasing filtration Filr MP (r ∈ Z) to be

the inverse limits of MPm and Filr MPm (m ∈ N>0). The pair (MP ,Fil•MP) is a
filtered module over the filtered ring (P,Fil•P). We define ∇ : MP → MP ⊗B ΩB
to be the inverse limit of∇ on MPm (m ∈ N>0), which is an integrable connection on
MP compatible with ∇P on P and satisfies ∇(Filr MP) ⊂ Filr−1MP ⊗B ΩB (r ∈
Z). The Frobenius endomorphism ϕ of MPm for m ∈ N>0 induces a ϕP -semilinear
endomorphism ϕ of MP compatible with ∇, i.e. (ϕ ⊗ ϕB) ◦ ∇ = ∇ ◦ ϕ.

Lemma 35 The filtered module MP over (P,Fil•P) is finite filtered free of level
[0, p − 2] (Definition 10 (3)). Moreover the natural homomorphisms MP/pm →
MPm and Filr MP/pm → Filr MPm (r ∈ Z) are isomorphisms for m ∈ N>0.

Proof Let t1, . . . , td ∈ A× be coordinates of A over OK . Then the homomorphisms
fm : OK ,m[T1, . . . , Td ] → Am; Ti �→ ti of OK ,m-algebras have liftings
gm : OK ,m[T1, . . . , Td ] → Pm such that (gm+1 mod p) = gm (m ∈ N>0) because
Fil1Pm+1 = Ker(Pm+1 → Am+1) → Fil1Pm = Ker(Pm → Am) (m ∈ N>0) are sur-
jective. Since fm is étale, gm extends uniquely to a homomorphism of OK ,m-algebras
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hm : Am → Pm such that the composition with Pm → Am is the identity map, and
the uniqueness implies that (hm+1 mod p) = hm (m ∈ N>0). By Lemma 27 (3), the

morphism (Xm ↪→ Spec(Pm)) → (Xm
idXm−−→ Xm) in CRYS(Xm/Σm) defined by hm

induces aPm-linear filtered isomorphisms Mm ⊗Am ,hm Pm
∼=−→ MPm compatible with

m. We obtain the claims by taking the inverse limit over m and using the fact that M
is finite filtered free of level [0, p − 2]. �

By Lemma 35 and Lemma 13 (2), the scalar extension MP ⊗P,β Acrys(A) of
the filtered module MP by β is finite filtered free of level [0, p − 2], and the nat-
ural homomorphisms (MP ⊗P,β Acrys(A))/pm → MPm ⊗P,βm Acrys,m(A) are fil-
tered isomorphisms for m ∈ N>0. By Lemma 34 (2), we can define ϕ on MP ⊗P,β

Acrys(A) by ϕ ⊗ ϕ if ϕB(si ) = s pi for all i ∈ N ∩ [1, e]. By taking the inverse limit
of (32) over m, we obtain an Acrys(A)-linear filtered isomorphism

T Acrys(M) ∼= MP ⊗P,β Acrys(A), (37)

which is also compatible with ϕ if ϕB(si ) = s pi (i ∈ N ∩ [1, e]). This implies the
following.

Lemma 36 The filtered module T Acrys(M) over (Acrys(A),Fil•Acrys(A)) is
finite filtered free of level [0, p − 2]. Moreover, for every m ∈ N>0, the natural
homomorphisms T Acrys(M)/pm → T Acrys,m(M) and Filr T Acrys(M)/pm →
Filr T Acrys,m(M) (r ∈ Z) are isomorphisms.

Let ι denote the canonical homomorphismP → Acrys,B(A). We endowMP ⊗P,ι

Acrys,B(A) (resp. T Acrys(M) ⊗Acrys(A) Acrys,B(A)) with the tensor products of ∇,
Fil•, and ϕ (resp. Fil•, ϕ, and the GA-action), and with the action of GA (resp. ∇)

via Acrys,B(A). Then, by Lemmas 35, 36, and 13 (2), MP ⊗P,ι Acrys,B(A) and
T Acrys(M) ⊗Acrys(A) Acrys,B(A) are finite filtered free of level [0, p − 2] over

Acrys,B(A), and (MP ⊗P,ι Acrys,B(A))/pm → MPm ⊗Pm ,ιm Acrys,B,m(A) and
(T Acrys(M) ⊗Acrys(A) Acrys,B(A))/pm → T Acrys,m(M) ⊗Acrys,m (A) Acrys,B,m(A) are
filtered isomorphisms. Hence, by taking the inverse limits of (29) and (30), we
obtain a GA-equivariant Acrys(A)-linear filtered isomorphism compatible with ϕ

T Acrys(M) ∼= (MP ⊗P,ι Acrys,B(A))∇=0, (38)

and see that it induces aGA-equivariantAcrys,B(A)-linear filtered isomorphism com-
patible with ∇ and ϕ

T Acrys(M) ⊗Acrys(A) Acrys,B(A)
∼=−→ MP ⊗P,ι Acrys,B(A). (39)

By combining (37) and (39), we obtain anAcrys,B(A)-linear filtered isomorphism

MP ⊗P,β Acrys,B(A)
∼=−→ MP ⊗P,ι Acrys,B(A) (40)
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compatible with∇, and also withϕ ifϕ(si ) = s pi (i ∈ N ∩ [1, e]), where Fil•,ϕ, and
∇ on the left-hand side are defined to be the pull-back filtration of Fil•MP , ϕ ⊗ ϕ
and id ⊗ ∇. As this is obviously obtained from the isomorphisms (33) by taking the
inverse limit over m, (34) and (35) imply that (40) and its inverse are given by

x ⊗ 1 �→
∑

n=(ni )∈Ne

∇ log
n (x) ⊗

∏

i

u[ni ]
i , (41)

∑

n=(ni )∈Ne

∇ log
n (x) ⊗

∏

i

(u′
i )

[ni ] ← x ⊗ 1 (42)

for x ∈ MP , where u′
i = (1 + ui )−1 − 1 and the endomorphisms ∇ log

i (i ∈ N ∩
[1, e]) and ∇ log

n (n ∈ N
e) of MP are defined in the same way as after (35).

Lemma 37 We have a canonical GA-equivariant isomorphism

T ∗
crys(M) ∼= HomAcrys(A)-lin,Fil≤p−2,ϕ(T Acrys(M), Acrys(A))

functorial in M. Here HomAcrys(A)-lin,Fil≤p−2,ϕ denotes the Zp-module consisting of

Acrys(A)-linear homomorphisms sending Filr into Filr for r ∈ N ∩ [0, p − 2] and
compatible with ϕ. (See Sect.4 for the definition of T ∗

crys(M).)

Proof By the definition of T ∗
crys(M), we have a functorial GA-equivariant isomor-

phism

T ∗
crys(M) ∼= HomA crys(A)-lin,Fil≤p−2,ϕ,∇(M ⊗A,ι Acrys(A),Acrys(A)). (43)

By (39) for B = A andAcrys(A)∇=0 = Acrys(A) (9), we see that the right-hand side
of (43) is isomorphic to that of the isomorphism in the claim. �

Remark 38 Since (39) does not depend on the choice of ϕB, the proof of Lemma
37 shows that T ∗

crys(M) regarded as a submodule of HomA-lin,∇(M,Acrys(A)) does
not dependent on the choice of the lifting of Frobenius ϕA of A.

6 Filtered ϕ-Modules

In this and the next sections, we give a general formulation (Proposition 44) derived
from an idea of the theorem of Wach [20, Theorem 3] relating the theory of (ϕ, Γ )-
modules and the Fontaine–Laffaille theory for Zp-representations of GK . We treat
only p-torsion free modules. We apply the formulation to Ainf(Λ), Acrys(Λ) and
their variants in Sects. 8, 13, 17, and 18. See Proposition 59, 94, 164, and 172 for the
precise statements.
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Let a be a non-negative integer. Let R be a commutative ring, let q be an element
of R, let ϕR be an endomorphism of the ring R, and let Filr R (r ∈ N ∩ [0, a]) be a
decreasing filtration of R by ideals such that the following condition is satisfied.

Condition 39 (i) q is not a zero divisor in R.
(ii) Fil0R = R, and Filr R · Fils R ⊂ Filr+s R for every r, s ∈ N such that

r + s ≤ a.
(iii) ϕR(Filr R) ⊂ qr R for every r ∈ N ∩ [0, a].

For a negative integer r , we define Filr R to be R. Then we have Filr R · Fils R ⊂
Filr+s R for r, s ∈ Z such that r, s, r + s ≤ a.

Definition 40 We define the category MFq
[0,a],free(R,ϕ) as follows. An object is a

triplet (M,Filr M,ϕM) consisting of the following:
(i) A free R-module M of finite type.
(ii) A decreasing filtration Filr M (r ∈ N ∩ [0, a]) of M satisfying the following

condition:
(ii-1) There exist a basis eν (N ∈ N, ν ∈ N ∩ [1, N ]) of M and rν ∈ N ∩ [0, a]

for each ν ∈ N ∩ [1, N ] such that Filr M = ⊕ν∈N∩[1,N ]Filr−rν Reν for r ∈ N ∩ [0, a].
(iii) A ϕR-semilinear endomorphism ϕM : M → M satisfying the following con-

ditions:
(iii-1) ϕM(Filr M) ⊂ qr M for r ∈ N ∩ [0, a].
(iii-2) M = ∑

r∈N∩[0,a] R · q−rϕM(Filr M).
A morphism is an R-linear homomorphism preserving the filtrations and compat-

ible with ϕM ’s in the obvious sense.

Lemma 41 Let M, Filr M, eν and rν be as in Definition 40 (i), (ii). Then a ϕR-
semilinear endomorphism ϕM : M → M satisfies the conditions in Definition 40
(iii) if and only if ϕM(eν) ∈ qrν M for all ν ∈ N ∩ [1, N ] and q−rν ϕM(eν) (ν ∈ N ∩
[1, N ]) form a basis of M.

Proof Assume that ϕM satisfies the conditions (iii-1) and (iii-2) in Definition 40.
Since eν ∈ Filrν M , (iii-1) implies ϕM(eν) ∈ qrν M . For r ∈ N ∩ [0, a], we have
ϕM(Filr−rν Reν) = qrν ϕR(Filr−rν R) · q−rν ϕM(eν), and qrν ϕR(Filr−rν R) ⊂ qr R
because ϕR(Fils R) ⊂ qs R (s ∈ N ∩ [0, a]). Therefore the condition (iii-2) implies
that q−rν ϕM(eν) (ν ∈ N ∩ [1, N ]) generate the R-module M . Since M is a free R-
module of rank N , we see that they form a basis of M . As for the sufficiency, (iii-1)
follows from the above computation of ϕM(Filr−rν Reν), and then (iii-2) is obvious
because the right-hand side of the equality contains q−rν ϕM(eν). �

Lemma 42 Let (M,Filr M,ϕM) and (M ′,Filr M ′,ϕM ′) be objects of the category
MFq

[0,a],free(R,ϕ). Choose a basis eν (N ∈ N, ν ∈ N ∩ [1, N ]) of M and rν ∈ N ∩
[0, a] (ν ∈ N ∩ [1, N ]) as in Definition 40 (ii-1). Put I := N ∩ [1, N ]. By Lemma
41, there exists A = (aνμ) ∈ GLN (R) such that ϕM(eμ) = qrμ

∑

ν∈I aνμeν for all
μ ∈ I . Choose N ′, e′

ν , r
′
ν , and A′ = (a′

νμ) similarly for (M ′,Filr M ′,ϕM ′), and put
I ′ := N ∩ [1, N ′]. Let f : M → M ′ be an R-linear homomorphism, and define B =
(bνμ) ∈ MN ′N (R) by f (eμ) = ∑

ν∈I ′ bνμe′
ν for all μ ∈ I .
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(1) We have f (Filr M) ⊂ Filr M ′ for all r ∈ N ∩ [0, a] if and only if bνμ ∈ Filrμ−r ′
ν R

for all (ν,μ) ∈ I ′ × I .
(2) We have f ◦ ϕM = ϕM ′ ◦ f if and only if B Adiag(qrν ; ν ∈ I ) is equal to

A′diag(qr ′
ν ; ν ∈ I ′)ϕR(B).

Proof (1) We can show the necessity by looking at the image of eμ ∈ FilrμM
under f ; for each μ ∈ I , f (eμ)= ∑

ν∈I ′ bνμe′
ν ∈ f (FilrμM) ⊂ FilrμM ′ implies bνμ ∈

Filrμ−r ′
ν R for everyμ ∈ I ′.We canverify the sufficiency as f (Filr−rμ Reμ) = Filr−rμ R

∑

ν∈I ′ bνμe′
ν ⊂ ∑

ν∈I ′ Filr−rμ R · Filrμ−r ′
ν Re′

ν ⊂ ∑

ν∈I ′ Filr−r ′
ν Re′

ν = Filr M ′ for r ∈
N ∩ [0, a] and μ ∈ I .

(2) The claim follows from the following computation.

f ◦ ϕM(e1, . . . , eN ) = f ((e1, . . . , eN )Adiag(qrν )) = (e′
1, . . . , e

′
N ′)BAdiag(qrν ),

ϕM ◦ f (e1, . . . , eN ) = ϕM((e′
1, . . . , e

′
N ′)B) = (e′

1, . . . , e
′
N ′)A′diag(qr

′
ν )ϕR(B).

�

Let (R′, q ′,ϕR′ ,Filr R′) be another quadruplet satisfying Condition 39, and let
κ : R → R′ be a ring homomorphism such that κ(q)R′ = q ′R′, ϕR′ ◦ κ = κ ◦ ϕR

and κ(Filr R) ⊂ Filr R′ (r ∈ N ∩ [0, a]). For (M,Filr M,ϕM) ∈ MFq
[0,a],free(R,ϕ),

put M ′ := R′ ⊗R M , let ϕM ′ be the ϕR′-semilinear endomorphism ϕR′ ⊗ ϕM of M ′,
and put

Filr M ′ :=
∑

s∈N∩[0,r ]
(the image of Fils R′ ⊗R Filr−sM)

for r ∈ N ∩ [0, a]. Choose a basis eν (N ∈ N, ν ∈ N ∩ [1, N ]) of M and rν ∈ N ∩
[0, a] (ν ∈ N ∩ [1, N ]) as in Definition 40 (ii-1). Then M ′ is a free R′-module with
a basis e′

ν := 1 ⊗ eν (ν ∈ N ∩ [1, N ]). For ν ∈ N ∩ [1, N ] and r ∈ N ∩ [0, a], we
have

∑

s∈N∩[0,r ] Fil
s R′ · Filr−s−rν Re′

ν = Filr−rν R′e′
ν ; the inclusion ⊂ is obvious and

we obtain the equality by looking at the term for s = max{0, r − rν} in the left-
hand side. This implies Filr M ′ = ⊕ν∈N∩[1,N ]Filr−rν R′e′

ν for r ∈ N ∩ [0, a]. Hence,
by using Lemma 41 and κ(q)R′ = q ′R′, we see that (M ′,Filr M ′,ϕM ′) is an object
of MFq ′

[0,a],free(R′,ϕ′). This construction is obviously functorial in M , and we obtain
a functor

κ∗ : MFq
[0,a],free(R,ϕ) −→ MFq ′

[0,a],free(R
′,ϕ). (44)

Let us consider a surjective ring homomorphism α : R → R satisfying the fol-
lowing condition. Let J be the kernel of R.

Condition 43 (i) The ideal J is contained in the Jacobson radical of R.
(ii) α(q) is not a zero divisor in R.
(iii) ϕR(J ) ⊂ J . (iv) J ⊂ Fila R. (v) ϕR(J ) ⊂ qa+1R.
(vi) There exists a decreasing sequence of ideals Jn (n ∈ N) of R contained in J

such that qϕR(q) · · · ϕn
R(q)J ⊂ Jn , q−(a+1)ϕR(Jn) ⊂ Jn , and J → lim←−n

J/Jn is an
isomorphism.
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Note that the conditions (ii), (iii) and (v) in Condition 43 imply

ϕR(J ) ⊂ J ∩ qa+1R = qa+1 J. (45)

Put q = α(q) and Filr R := α(Filr R) (r ∈ N ∩ [0, a]). By Condition 43 (iii), ϕR

induces an endomorphism ϕR of the ring R. Then the quadruplet (R, q,ϕR,Filr R)

satisfies Condition 39.

Proposition 44 The functorα∗ : MFq
[0,a],free(R,ϕ) → MFq

[0,a],free(R,ϕ) is an equiv-
alence of categories.

Proof The essential surjectivity is verified as follows. Let (M,Filr M,ϕM) be an
object of MFq

[0,a],free(R,ϕ), and choose a basis eν (N ∈ N, ν ∈ N ∩ [1, N ]) of the
R-moduleM and rν ∈ N ∩ [0, a] (ν ∈ N ∩ [1, N ]) such that Filr M = ⊕νFilr−rν Reν

for r ∈ N ∩ [0, a]. Then, by Lemma 41, we have ϕM(eμ) = qrμ
∑

ν aνμeν for an
invertible matrix (aνμ) ∈ GLN (R). Choose a lifting (aνμ) ∈ MN (R) of (aνμ), which
is invertible by Condition 43 (i). Then the freemoduleM := ⊕νReν withϕM defined
by ϕM(eμ) = qrμ

∑

ν aνμeν and Filr M = ⊕νFilr−rν Reν (r ∈ N ∩ [0, a]) gives the
desired lifting of M in MFq

[0,a],free(R,ϕ) by Lemma 41.
Let us prove that the functor α∗ is fully faithful. Let (M,Filr M,ϕM) and

(M ′,Filr M ′,ϕM ′) be objects of MFq
[0,a],free(R,ϕ), and let (M,Filr M,ϕM) and

(M
′
,Filr M

′
,ϕM

′) be their images in MFq
[0,a],free(R,ϕ) under the functor α∗ in ques-

tion. Let f : M → M
′
be a morphism inMFq

[0,a],free(R,ϕ). We show that there exists
a unique lifting f : M → M ′ in MFq

[0,a],free(R,ϕ). Choose a basis eν (N ∈ N, ν ∈
N ∩ [1, N ]) of M , rν ∈ N ∩ [0, a] (ν ∈ N ∩ [1, N ]) and (aνμ) ∈ GLN (R) such that
Filr M = ⊕ν∈IFilr−rν Reν and ϕM(eμ) = qrμ

∑

ν∈I aνμeν , where I = N ∩ [1, N ].
Choose N ′, e′

ν , r
′
ν and A′ = (a′

νμ) for M ′ similarly, and put I ′ := N ∩ [1, N ′].
Let eν be the image of eν in M , and let e′

ν be the image of e′
ν in M

′
. We

define (bνμ) ∈ MN ′N (R) by f (eμ) = ∑

ν∈I ′ bνμe
′
ν (μ ∈ I ), and choose its lifting

B = (bνμ) ∈ MN ′N (R). By Lemma 42 (1) applied to f and Condition 43 (iv), we
have bνμ ∈ Filrμ−r ′

ν R. By Lemma 42 (2) applied to f , we see that

C := BAdiag(qrν ; ν ∈ I ) − A′diag(qr
′
ν ; ν ∈ I ′)ϕR(B)

is contained in J · MN ′N (R). For the second term in the right-hand side, we have
qr

′
ν ϕR(bνμ) ∈ qr

′
ν ϕR(Filrμ−r ′

ν R) ⊂ qrμ R by Condition 39 (iii). Hence the matrix C
is written in the form C ′diag(qrν ; ν ∈ I ), C ′ ∈ MN ′N (R), and we further see that
C ′ ∈ J · MN ′N (R) because R = R/J is q-torsion free. By applying Lemma 42 to
R-linear homomorphisms from M to M ′ and noting J ⊂ Fila R (Condition 43 (iv)),
we are reduced to showing that there exists a unique D ∈ J · MN ′N (R) such that

DAdiag(qrν ; ν ∈ I ) − A′diag(qr
′
ν ; ν ∈ I ′)ϕR(D) = C ′diag(qrν ; ν ∈ I ).
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By (45), this equality is rewritten as D − qF(D) = C ′A−1, where F denotes the
ϕR-semilinear endomorphism of J · MN ′N (R) defined by

F(X) = A′diag(qr
′
ν ; ν ∈ I ′)q−(a+1)ϕR(X)diag(qa−rν ; ν ∈ I )A−1.

For Jn (n ∈ N) as in Condition 43 (vi), we have (qF)n+1(J · MN ′N (R)) ⊂
qϕR(q) · · · ϕn

R(q)J · MN ′N (R) ⊂ Jn · MN ′N (R), and Jn · MN ′N (R) is stable under
F . Hence 1 − qF induces an automorphism of J · MN ′N (R)/Jn · MN ′N (R). By tak-

ing the inverse limit over n ∈ N and using J
∼=−→ lim←−n

J/Jn (Condition 43 (vi)), we
see that 1 − qF is an automorphism of J · MN ′N (R). This completes the proof. �

Definition 45 We define the categoryMq
[0,a],free(R,ϕ) as follows. An object is a pair

(M,ϕM) consisting of the following:
(i) A free R-module M of finite type.
(ii) A ϕR-semilinear endomorphism ϕM : M → M satisfying the following con-

dition:
(ii-1) There exist a basis eν (N ∈ N, ν ∈ N ∩ [1, N ]) of M and rν ∈ N ∩ [0, a]

for each ν ∈ N ∩ [1, N ] such that ϕM(eν) ∈ qrν M for every ν ∈ N ∩ [1, N ] and
q−rν ϕM(eν) (ν ∈ N ∩ [1, N ]) form a basis of M .

By Lemma 41, we have a forgetful functor MFq
[0,a],free(R,ϕ) → Mq

[0,a],free(R,ϕ).

Lemma 46 Assume that Filr R is the inverse image of qr R under ϕR for every
r ∈ N ∩ [0, a].
(1) Foranobject (M,Filr M,ϕM)ofMFq

[0,a],free(R,ϕ), wehaveFilr M = ϕ−1
M (qr M)

for every r ∈ N ∩ [0, a].
(2) The forgetful functorMFq

[0,a],free(R,ϕ) → Mq
[0,a],free(R,ϕ) is an equivalence of

categories.

Proof (1) Choose eν and rν (ν ∈ N ∩ [1, N ]) as in Definition 40 (ii-1). For x =
∑

ν aνeν ∈ M (aν ∈ R), we have ϕM(x) = ∑

ν q
rν ϕR(aν)q−rν ϕM(eν). Hence, by

Lemma 41, we have ϕM(x) ∈ qr M if and only if qrν ϕR(aν) ∈ qr R for every ν ∈
N ∩ [1, N ]. The latter condition is equivalent to aν ∈ Filr−rν R by assumption, i.e.,
to x ∈ Filr M .

(2) The functor is fully faithful by (1), and it remains to show the essen-
tial surjectivity. Let (M,ϕM) be an object of Mq

[0,a],free(R,ϕ), and choose eν and
rν (ν ∈ N ∩ [1, N ]) as in Definition 45 (ii-1). Then the R-module M with ϕM

and Filr M := ⊕νFilr−rν Reν (r ∈ N ∩ [0, a]) is an object of MFq
[0,a],free(R,ϕ) by

Lemma 41. �

Remark 47 Let S be a commutative ring, let t be an element of S which is not a zero
divisor, letϕS be an endomorphism of S, and let Filr S (r ∈ N ∩ [0, a]) be the inverse
image of tr S under ϕS . Then the quadruplet (S, t,ϕS,Filr S) satisfies Condition 39,
and therefore we can apply Lemma 46 to (S, t,ϕS,Filr S).
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7 Filtered (ϕ,G)-Modules

Let a ∈ N and (R, q,ϕR,Filr R) be the same as in the beginning of Sect. 6. Assume
that we are further given an action ρR : G → Aut(R) of a group G on the ring R
such that ρR(g)(q)R = qR, ρR(g) ◦ ϕR = ϕR ◦ ρR(g), and ρR(g)(Filr R) = Filr R
(r ∈ N ∩ [0, a]) for every g ∈ G. We often abbreviate ρR(g)(λ) to g(λ) for λ ∈ R
and g ∈ G in the following.

Definition 48 We define the category MFq
[0,a],free(R,ϕ,G) as follows. An object is

an object (M,Filr M,ϕM) ofMFq
[0,a],free(R,ϕ) (Definition 40) endowedwith a semi-

linear action ρM : G → Aut(M) ofG on the R-moduleM such that ρM(g)(Filr M) =
Filr M (r ∈ N ∩ [0, a]) and ρM(g) ◦ ϕM = ϕM ◦ ρM(g) for every g ∈ G. We often
abbreviate ρM(g)(x) to g(x) for x ∈ M and g ∈ G in the following. A morphism
is a morphism in MFq

[0,a],free(R,ϕ) whose underlying morphism of R-modules is
G-equivariant.

Let (R′, q ′,ϕR′ ,Filr R′) be another quadruplet endowed with an action ρR′ of
a group G ′, let κ : R → R′ be a ring homomorphism, and let λ : G ′ → G be
a group homomorphism such that κ(q)R′ = q ′R′, ϕR′ ◦ κ = κ ◦ ϕR , κ(Filr R) ⊂
Filr R′ (r ∈ N ∩ [0, a]) and κ ◦ ρR(λ(g)) = ρR′(g) ◦ κ for every g ∈ G ′. For an
object (M,Filr M,ϕM , ρM) of MFq

[0,a],free(R,ϕ,G), the image (M ′,Filr M ′,ϕM ′) of
(M,Filr M,ϕM) under the functor (44) endowed with a semilinear action ρM ′ of G ′
on the R′-module M ′ = R′ ⊗R M defined by ρM ′(g) = ρR′(g) ⊗ ρM(λ(g)) (g ∈ G ′)
is an object of MFq ′

[0,a],free(R′,ϕ,G ′). This construction is obviously functorial, and
we obtain a functor

(κ,λ)∗ : MFq
[0,a],free(R,ϕ,G) −→ MFq ′

[0,a],free(R
′,ϕ,G ′). (46)

Let α : R → R be a surjective ring homomorphism, whose kernel is denoted
by J , satisfying Condition 43 and ρR(g)(J ) = J for every g ∈ G. We define
(R, q,Filr R,ϕR) as after Condition 43, and let ρR denote the action of G on R
induced by ρR . Then we see that (R, q,ϕR,Filr R, ρR) satisfies the same conditions
as (R, q,ϕR,Filr R, ρR).

Proposition 49 The functor

(α, idG)∗ : MFq
[0,a],free(R,ϕ,G) → MFq

[0,a],free(R,ϕ,G)

is an equivalence of categories.

Proposition 50 Let M and M ′ be objects ofMFq
[0,a],free(R,ϕ), and let M and M

′
be

the images of M and M ′ under the functorα∗ : MFq
[0,a],free(R,ϕ) → MFq

[0,a],free(R,ϕ).

Let g ∈ G, and let f be a homomorphism of modules M → M
′
such that f (λx) =

g(λ) f (x) (x ∈ M,λ ∈ R), f ◦ ϕM = ϕM
′ ◦ f and f (Filr M) ⊂ Filr M

′
for r ∈ N ∩

[0, a]. Then there exists uniquely a homomorphism of modules f : M → M ′ such
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that f (λx) = g(λ) f (x) (x ∈ M,λ ∈ R), f ◦ ϕM = ϕM ′ ◦ f , f (Filr M) ⊂ Filr M ′
(r ∈ N ∩ [0, a]), and ( f mod J ) coincides with f .

Proof First note that ρR(g) and ρR(g) satisfy the condition on κ given before (44).
Giving a morphism f as in the proposition is equivalent to giving a morphism
F : ρR(g)∗(M) → M

′
inMFq

[0,a],free(R,ϕ). Then, giving a lifting f of f is equivalent
to giving amorphism F : ρR(g)∗M → M ′ inMFq

[0,a],free(R,ϕ) such thatα∗(F) coin-
cides with F via the canonical isomorphism ρR(g)∗α∗(M) ∼= α∗ρR(g)∗(M). Hence
the claim follows from Proposition 44. �

Proof of Proposition 49 Let CG , CG , C and C denote MFq
[0,a],free(R,ϕ,G),

MFq
[0,a],free(R,ϕ,G), MFq

[0,a],free(R,ϕ), and MFq
[0,a],free(R,ϕ), respectively. Let ΞG

and Ξ denote the functor (α, idG)∗ : CG → CG and α∗ : C → C, respectively. By
Proposition 44, the functorΞG is faithful. Let us prove that it is full. Let M and M ′ be
objects of CG , and letM andM

′
denote their images underΞG . Let f : M → M

′
be a

morphism in CG . By Proposition 44, there exists a unique morphism f : M → M ′ in
C whose image underΞ is f . For any g ∈ G, the composition ofM

f−→ M ′ ρM ′ (g)−−−→ M ′

and that of M
ρM (g)−−−→ M

f−→ M ′ are ρR(g)-semilinear maps compatible with ϕ and
Filr . They become equal after the reduction modulo J . Therefore the two composi-
tions are equal by Proposition 50. This means that f is a morphism in CG . It remains
to show that ΞG is essentially surjective. Let M be an object of CG . By Proposition
44, there exists a lifting M in C of the object of C underlying M . By Proposition 50,
the action of g ∈ G on M has a unique ρR(g)-semilinear lifting compatible with ϕ
and Filr . The uniqueness implies that these liftings define a semilinear action of G,
with which M becomes an object of CG whose image under ΞG is isomorphic to M .

�

Definition 51 We define the categoryMq
[0,a],free(R,ϕ,G) as follows. An object is an

object (M,ϕM) ofMq
[0,a],free(R,ϕ) (Definition 45) endowed with a semilinear action

ρM : G → Aut(M) of G on the R-module M such that ρM(g) ◦ ϕM = ϕM ◦ ρM(g)

for every g ∈ G. We often abbreviate ρM(g)(x) to g(x) for x ∈ M and g ∈ G in
the following. A morphism is a morphism in Mq

[0,a],free(R,ϕ) whose underlying
morphism of R-modules is G-equivariant.

Lemma 52 Assume that Filr R is the inverse image of qr R under ϕR for every r ∈
N ∩ [0, a]. Then the forgetful functorMFq

[0,a],free(R,ϕ,G) → Mq
[0,a],free(R,ϕ,G) is

an equivalence of categories.

Proof For two objects (Mi ,Filr Mi ,ϕMi , ρMi ) (i ∈ {1, 2}) of MFq
[0,a],free(R,ϕ,G),

any morphism (M1,ϕM1 , ρM1) → (M2,ϕM2 , ρM2) in Mq
[0,a],free(R,ϕ,G) preserves

the filtrations by Lemma 46 (1). Hence the forgetful functor is fully faithful. Let us
prove the essential surjectivity. Let (M,ϕM , ρM) be an object of Mq

[0,a],free(R,ϕ,G).
Then, by Lemma 46 (2), there exists a decreasing filtration Filr M (r ∈ N ∩ [0, a]) of
M with which (M,ϕM) is an object of MFq

[0,a],free(R,ϕ). We have ρM(g)(Filr M) =
Filr M (r ∈ N ∩ [0, a], g ∈ G) by Lemma 46 (1) and g(q)R = qR. Therefore
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(M,Filr M,ϕM , ρM) is an object of MFq
[0,a],free(R,ϕ,G). This completes the proof.

�

In the rest of this section, we assume that R is a topological ring,G is a topological
group, and the action of G on R is continuous. For a free R-module of finite rank M ,

choosing an isomorphism R⊕r
∼=−→ M of R-modules, we endow M with the topology

induced by the product topology of R⊕r via the isomorphism. Note that this topology
is independent of the choice of the isomorphism because an R-linear map between
free R-modules of finite rank is continuous with respect to the product topology.

Definition 53 We define MFq,cont
[0,a],free(R,ϕ,G) to be the full subcategory of

MFq
[0,a],free(R,ϕ,G) consisting of M such that the action ρM of G on M is con-

tinuous, i.e., the map μM : G × M → M; (g,m) �→ ρM(g)m is continuous.

Let M be a free R-module of finite rank endowed with a semilinear action
ρM : G → Aut(M) of G. Choose a basis eν (N ∈ N, ν ∈ N ∩ [1, N ]) of M , and let
c : G → GLN (R) be the 1-cocycle defined by ρM(g)(e1, . . . , eN ) = (e1, . . . , eN )

c(g) for g ∈ G. Then the action ρM is continuous if and only if c : G → MN (R) is
continuous; the sufficiency is obvious by the continuity of the map MN (R) × RN →
RN ; (A, v) �→ Av, and the necessity follows from c(g)νμ = pν ◦ μM ◦ (idG × iμ)
(g, 1) (g ∈ G, ν,μ ∈ N ∩ [1, N ]), where iμ (resp. pν) denotes the continuous map
R → M; a �→ aeμ (resp. M → R;∑

λ bλeλ �→ bν). The continuity of c is also
equivalent to the following: for any open neighborhood U of 1 in MN (R), there
exists an open neighborhood V of 1 in G such that c(V ) ⊂ U . The necessity is
clear. As for the sufficiency, suppose that we are given g ∈ G and an open neighbor-
hood U of c(g) in MN (R). Then the set U ′ := g−1(c(g)−1U ) is an open neighbor-
hood of 1 in MN (R), and therefore there exists an open neighborhood V of 1 in G
such that c(V ) ⊂ U ′. The set gV is an open neighborhood of g in G and we have
c(gV ) = c(g)g(c(V )) ⊂ c(g)g(U ′) = U .

Let κ and λ be as before (46), and assume that R′ is a topological algebra, G ′ is a
topological group, the action of G ′ on R′ is continuous, and the homomorphisms κ
and λ are continuous. Then, by using the observation on 1-cocycles in the paragraph
above, we see that the functor (κ,λ)∗ (46) induces a functor

(κ,λ)∗ : MFq,cont
[0,a],free(R,ϕ,G) −→ MFq ′,cont

[0,a],free(R
′,ϕ,G ′). (47)

Let α : R → R be a surjective ring homomorphism, let J be the kernel of α, and
assume the following condition.

Condition 54 (a) The conditions (i-v) in Condition 43 are satisfied.
(b) ρR(g)(J ) = J for every g ∈ G.
(c) J is closed in R.
(d) There exists a decreasing sequence of ideals In (n ∈ N) of R satisfying the

following properties.
(d-1) The ideals In (n ∈ N) form a fundamental system of open neighborhoods of

0 in R.
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(d-2) The homomorphism R → lim←−n
R/In is an isomorphism.

(d-3) q−(a+1)ϕR(In ∩ J ) ⊂ In ∩ J for every n ∈ N.
(e) The sequence

∏n
m=0 ϕm

R (q) (n ∈ N) in R converges to 0.
(f) For every r ∈ N ∩ [0, a], the homomorphism q−rϕR : Filr R → R is continu-

ous.
(g) The map G → R; g �→ g(q)q−1 is continuous.

Remark 55 (1) The conditions (f) and (g) in Condition 54 are satisfied if the
homomorphism ϕR : R → R is continuous and the multiplication by q induces a
homeomorphism from R to qR endowed with the topology induced by that of R.
Note that the multiplication by qr induces a homeomorphism R → qr R for every
r ∈ N because the homeomorphism R → qR; x �→ qx induces homeomorphisms
qs R → qs+1R (s ∈ N).

(2) Condition 54 implies Condition 43 (vi) as follows. By (c), (d-1), and (d-2), we
have J = lim←−n

J/(J ∩ In). By (d-1) and (e), there exists a map ν : N → N such that
∏n

m=0 ϕm
R(q) ∈ Iν(n) and ν(n + 1) ≥ ν(n) for every n ∈ N, and limn→∞ ν(n) = ∞.

By (d-3), we see that Jn := J ∩ Iν(n) (n ∈ N) satisfy Condition 43 (vi).

We define (R, q,ϕR,Filr R, ρR) as before Proposition 49, and endow R with the
quotient topology of R. Then the action ρR of G on R is continuous.

Proposition 56 Under the notation and assumption as above, the functor

(α, idG)∗ : MFq,cont
[0,a],free(R,ϕ,G) → MFq,cont

[0,a],free(R,ϕ,G)

is an equivalence of categories.

Proof Let M be an object of MFq
[0,a],free(R,ϕ,G), and put M := (α, idG)∗(M). By

Proposition 49, it suffices to prove that the action ρM of G on M is continuous if
the action ρM of G on M is continuous. Assume that ρM is continuous. Choose a
basis eν (N ∈ N, ν ∈ N ∩ [1, N ]) of M , rν ∈ N ∩ [0, a] (ν ∈ N ∩ [1, N ]) and A =
(aνμ) ∈ GLN (R) such that Filr M = ⊕νFilr−rν Reν (r ∈ N ∩ [0, a]) and ϕM(eμ) =
qrμ

∑

ν aνμeν . Let c be the 1-cocycleG → GLN (R)definedbyρM (g)(e1, . . . , eN ) =
(e1, . . . , eN )c(g), and let c denote the composition of c with GLN (R) → GLN (R).
It suffices to prove that, for any n ∈ N, there exists an open neighborhood V of 1 in
G such that c(V ) ⊂ 1 + InMN (R). (See the remark after Definition 53.)

By Condition 54 (f), there exists n′ ∈ N such that n′ ≥ n and q−rϕR(Filr R ∩
In′) ⊂ In for every r ∈ N ∩ [0, a]. By Condition 54 (g) and the continuity of the
actions of G on R and M , there exists an open neighborhood V of 1 in G such that
c(V ) ⊂ 1 + In′ MN (R), g(A) ≡ Amod InMN (R) (g ∈ V ), and g(q)q−1 ≡ 1mod In
(g ∈ V ). We show c(V ) ⊂ 1 + InMN (R). Let g ∈ V . Since ρR(g)(Filr M) = Filr M
(r ∈ N ∩ [0, a]), we see that c(g) is of the form 1 + B, B = (bνμ) ∈ In′ MN (R),
bνμ ∈ Filrμ−rν R by the same argument as the proof of Lemma 42 (1). Since J ⊂
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Fila R, this implies that c(g) is of the form 1 + B + B ′, B = (bνμ) ∈ In′ MN (R),
B ′ = (b′

νμ) ∈ JMN (R), bνμ ∈ Filrμ−rν R. Put D := diag(qrμ;μ ∈ N ∩ [1, N ]). Then
we have

ϕM ◦ ρM(g)(e1, . . . , eN ) = (e1, . . . , eN )AD(1 + ϕR(B) + ϕR(B ′))
ρM(g) ◦ ϕM(e1, . . . , eN ) = (e1, . . . , eN )(1 + B + B ′)g(AD).

Hence the equality ϕM ◦ ρM(g) = ρM(g) ◦ ϕM gives

1 + B + B ′ = ADg(AD)−1 + ADϕR(B)g(AD)−1 + ADϕR(B ′)g(AD)−1

⇐⇒ B ′ − ADϕR(B ′)g(D)−1g(A)−1

= A{Dg(D)−1 − A−1g(A) + DϕR(B)g(D)−1}g(A)−1 − B.

We derive B ′ ∈ InMN (R) from the last equality. We have Dg(D)−1 − 1 =
diag((qg(q)−1)rμ) − 1 ∈ InMN (R)becauseg(q)q−1 ∈ 1 + In . The (ν,μ)-component
of DϕR(B)g(D)−1 is qrν g(q)−rμϕR(bνμ), which is contained in In because bνμ ∈
Filrμ−rν R ∩ In′ . Finally we have B ∈ In′ MN (R) ⊂ InMN (R) and A−1g(A) − 1 ∈
InMN (R). Thus we obtain

B ′ − ADϕR(B ′)g(D)−1g(A)−1 ∈ InMN (R).

By (45) and qag(D)−1 ∈ MN (R), we can define a ϕR-semilinear endomorphism F
of JMN (R) by

F(X) = ADq−a−1ϕR(X)qag(D)−1g(A)−1, X ∈ JMN (R),

and then we have (1 − qF)(B ′) ∈ (In ∩ J )MN (R). By Condition 54 (d-3), we
see that (In ∩ J )MN (R) is stable under F . Hence, by applying

∑m
l=0(qF)l to

(1 − qF)(B ′), we obtain (1 − (qF)m+1)(B ′) ∈ (In ∩ J )MN (R) for m ∈ N. We
have (qF)m+1(B ′) = ∏m

l=0 ϕl
R(q)Fm+1(B ′) and Fm+1(B ′) ∈ JMN (R). By Condi-

tion 54 (d-1) and (e), there exists m ∈ N such that
∏m

l=0 ϕl
R(q) ∈ In , for which

we have (qF)m+1(B ′) ∈ In J MN (R) ⊂ (In ∩ J )MN (R), and therefore B ′ ∈ (In ∩
J )MN (R). �

Definition 57 We define Mq,cont
[0,a],free(R,ϕ,G) to be the full subcategory of

Mq
[0,a],free(R,ϕ,G) consisting of M such that the action ρM ofG onM is continuous.

Lemma 58 Assume that Filr R is the inverse image of qr R under ϕR for every r ∈
N ∩ [0, a]. Then the forgetful functorMFq,cont

[0,a],free(R,ϕ,G) → Mq,cont
[0,a],free(R,ϕ,G) is

an equivalence of categories.

Proof This immediately follows from Lemma 52. �
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8 Ainf -Representations with ϕ

As in Sect. 2, letΛ be a normal domain containing OK and integral over a noetherian
normal subring (see (1)) such that Λ/pΛ 	= 0 and the absolute Frobenius of Λ/pΛ
is surjective, and let Λ0 be a subring of Λ such that Λ is integral over Λ0 and
Frac(Λ)/Frac(Λ0) is a Galois extension. Let G(Λ/Λ0) denote its Galois group.

Put Ainf(Λ) := Ainf(Λ)/I p−1Ainf(Λ) and Acrys(Λ) := Acrys(Λ)/I p−1Acrys(Λ).
We define Filr Ainf(Λ) (resp. Filr Acrys(Λ)) (r ∈ Z) to be the image of Filr Ainf(Λ)

(resp. Filr Acrys(Λ)) in Ainf(Λ) (resp. Acrys(Λ)). Then, by (2), we have an iso-

morphism Ainf(Λ)
∼=−→ Acrys(Λ), and it induces an isomorphism Filr Ainf(Λ)

∼=−→
Filr Acrys(Λ) for r ∈ N ∩ [0, p − 1]. For r ∈ N ∩ [0, p − 1], Ainf(Λ)/Filr Ainf(Λ) ∼=
Acrys(Λ)/Filr Acrys(Λ) is isomorphic to Ainf(Λ)/Filr Ainf(Λ), which is p-torsion free
and p-adically complete and separated (Lemma 1 (3)).

We apply the results in Sects. 6 and 7 to Ainf(Λ), Acrys(Λ) and Ainf(Λ). The
quadruplets

(Acrys(Λ), p,ϕ, (Filr Acrys(Λ))r∈N∩[0,p−2]),
(Ainf(Λ), q,ϕ, (Filr Ainf(Λ))r∈N∩[0,p−2]), (48)

(Ainf(Λ), p,ϕ, (Filr Ainf(Λ))r∈N∩[0,p−2])

satisfy Condition 39 for a = p − 2. (See before Lemma 9 for the definition of q ∈
Ainf(Λ).) For the secondone,wehaveFilr Ainf(Λ) = (q ′)r Ainf(Λ) = ϕ−1(qr Ainf(Λ))

(r ∈ N). Hence we may apply Lemma 46 and obtain an equivalence of categories

Mq
[0,p−2],free(Ainf(Λ),ϕ)

∼−→ MFq
[0,p−2],free(Ainf(Λ),ϕ), (49)

(M,ϕM) �→ (M,ϕM , (ϕ−1
M (qr M))r∈N∩[0,p−2]).

For the three quadruplets (48), the homomorphisms Acrys(Λ) → Acrys(Λ) ∼= Ainf(Λ),
Ainf(Λ) → Ainf(Λ), and Ainf(Λ) → Acrys(Λ) satisfy the three conditions on κ
assumed before (44). For the second and third homomorphisms, note that we have
q = p(1 + p−1π0) and 1 + p−1π0 ∈ Acrys(OK )× because p−1π0 ∈ Fil1Acrys(OK )

(Lemma 9 (2)) and x p = p!x [p] ∈ pAcrys(OK ) for all x ∈ Fil1Acrys(OK ). Therefore
we obtain three functors

MFp
[0,p−2],free(Acrys(Λ),ϕ) −→ MFp

[0,p−2],free(Ainf(Λ),ϕ), (50)

Mq
[0,p−2],free(Ainf(Λ),ϕ) −→ MFp

[0,p−2],free(Ainf(Λ),ϕ), (51)

Mq
[0,p−2],free(Ainf(Λ),ϕ) −→ MFp

[0,p−2],free(Acrys(Λ),ϕ). (52)

The composition of (52) and (50) is canonically isomorphic to (51).
The three quadruplets (48) with the actions of G(Λ/Λ0) on the underlying

algebras satisfy the conditions before Definition 48. See before Lemma 9 for the
second quadruplet. We endow Acrys(Λ) (resp. Ainf(Λ), resp. Ainf(Λ)) with the p
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(resp. (p, [p]), resp. p)-adic topology. Then the actions of G(Λ/Λ0) on these rings
are continuous (see Lemma 5 and the construction of Acrys(Λ) in Sect. 2). Hence
we may apply Definition 53 to these three quadruplets with G(Λ/Λ0)-actions. By
applying Lemma 58 to the second quadruplet of (48), we obtain an equivalence of
categories

Mq,cont
[0,p−2],free(Ainf(Λ),ϕ,G(Λ/Λ0))

∼−→ MFq,cont
[0,p−2],free(Ainf(Λ),ϕ,G(Λ/Λ0)),

(53)

(M,ϕM , ρM) �→ (M,ϕM , (ϕ−1
M (qr M))r∈N∩[0,p−2], ρM).

The homomorphisms Acrys(Λ) → Ainf(Λ), Ainf(Λ) → Ainf(Λ) and Ainf(Λ) →
Acrys(Λ) are G(Λ/Λ0)-equivariant, and also continuous because the topology of
Ainf(Λ) coincides with the (p,π p−1)-adic topology (Lemma 1 (1)) and [p]p =
(−ξ + p)p ∈ pAcrys(OK ).Hence by applying the construction of (47) to these homo-
morphisms and taking the compositions with (53) for the latter two, we obtain the
following three functors, where G = G(Λ/Λ0).

MFp,cont
[0,p−2],free(Acrys(Λ),ϕ,G) −→ MFp,cont

[0,p−2],free(Ainf(Λ),ϕ,G) (54)

Mq,cont
[0,p−2],free(Ainf(Λ),ϕ,G) −→ MFp,cont

[0,p−2],free(Ainf(Λ),ϕ,G) (55)

Mq,cont
[0,p−2],free(Ainf(Λ),ϕ,G) −→ MFp,cont

[0,p−2],free(Acrys(Λ),ϕ,G) (56)

The composition of (56) and (54) is canonically isomorphic to (55).

Proposition 59 The functors (50)–(52) and (54)–(56) are equivalences of cate-
gories.

Proof To simplify the notation, we abbreviate Acrys(Λ), Ainf(Λ), and Ainf(Λ) to
Acrys, Ainf , and Ainf . By Propositions 44, 56, and Remark 55 (2), it suffices to prove
that the homomorphisms Acrys → Ainf and Ainf → Ainf satisfy Condition 54 for a =
p − 2. Note that the kernels of these homomorphisms are I p−1Acrys and I p−1Ainf ,
respectively, and that the topology of Ainf coincides with the quotient of that of
either of Ainf and Acrys. The condition (a) (ii-v) are verified as follows: Ainf(Λ) is
p-torsion free as mentioned after (2); we see ϕ(I p−1) ⊂ I p−1 and I p−1 ⊂ Filp−2 by
the definition of I p−1Ainf and I p−1Acrys, and we have ϕ(I p−1Ainf) ⊂ q p−1Ainf by
(3), and ϕ(I p−1Acrys) ⊂ pp−1Acrys as recalled before (2). The condition (a) (i) for
Ainf (resp. Acrys) follows from the fact that I p−1Ainf ⊂ πAinf and Ainf is π-adically
complete and separated (Lemma 1 (4)) (resp. I p−1Acrys ⊂ Fil1Acrys + pAcrys, Acrys

is p-adically complete and separated, and Fil1Acrys/p is a nilideal of Acrys/p). The
condition (b) is obvious.

We first verify the remaining conditions (c-g) for Acrys. Since Acrys/I p−1Acrys

is p-torsion free, we have pn Acrys ∩ I p−1Acrys = pn I p−1Acrys. This implies (c) and
(d) for In = pn Acrys because Acrys and I p−1Acrys are p-adically complete and sep-
arated as mentioned after (2). The condition (e) and the sufficient condition for (f)
and (g) given in Remark 55 (1) are obviously satisfied. Let us prove the conditions
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(c-g) for Ainf . We have (pn Ainf + πn+p−1Ainf) ∩ I p−1Ainf = pn I p−1Ainf + πn I p−1

Ainf because Ainf/I p−1Ainf is p-torsion free. Since I p−1Ainf is a free Ainf -module of
rank 1 and ϕ(π)π−1 ∈ Ainf , the conditions (c) and (d) for In = pn Ainf + πn+p−1Ainf

follow from Lemma 1 (1) and (2). The condition (e) follows from ϕm(q) =
ϕm+1(q ′) ∈ ϕm+1(Fil1Ainf) ⊂ ϕm+1(pAinf + [p]Ainf) ⊂ pAinf + [p]Ainf (m ∈ N).
It remains to verify the sufficient condition for (f) and (g) given in Remark 55 (1). The
equality ϕ([p]) = [p]p implies that ϕ of Ainf is continuous. The quotient Ainf/q Ainf

is p-torsion free by Lemma 1 (3). Hence we have (pn Ainf + qn+1Ainf) ∩ q Ainf =
pn(q Ainf) + qn(q Ainf). By Lemma 1 (1), this shows that Ainf → q Ainf ; x �→ qx is
a homeomorphism. �

Let M be an object of MF∇
[0,p−2],free(A, Φ) (Sect. 4). We apply the above results

to T Acrys(M) introduced in Sect. 5. Note that Λ = A and Λ0 = A satisfy the con-
ditions in the beginning of this section as observed after (3). Let t1, . . . , td ∈ A×
be coordinates of A over OK , i.e. OK [T1, . . . , Td ] → A; Ti �→ ti is étale. Let ϕA
be the unique lifting A → A of the absolute Frobenius of A/p compatible with
σ : OK → OK and satisfying ϕA(ti ) = t pi for all i ∈ N ∩ [1, d].
Proposition 60 The free Acrys(A)-module of finite type T Acrys(M) with Filr (r ∈
N ∩ [0, p − 2]), ϕ and GA-action is an object of MFp,cont

[0,p−2],free(Acrys(A),ϕ,GA).

Proof By (37) for (B, s1, . . . , se) = (A, t1, . . . , td), and ϕB = ϕA, we see that
T Acrys(M) with Fil• and ϕ is an object of MFp

[0,p−2],free(Acrys(A),ϕ). By Lemma

36, we have T Acrys(M)/pm
∼=−→ T Acrys,m(M) for m ∈ N>0. Hence the action of GA

on T Acrys(M)/pm is continuous by (29) because the action of GA on Acrys,B,m(A)

is continuous (Sect. 2). �

Proposition 61 The following functor is fully faithful.

T Acrys : MF∇
[0,p−2],free(A, Φ) → MFp,cont

[0,p−2],free(Acrys(A),ϕ,GA)

Proof By taking the GA-invariant part of (39) for B = A, si = ti , and ϕB = ϕA,
and using Proposition 62 below, we obtain an A-linear filtered isomorphism

(T Acrys(M) ⊗Acrys(A) Acrys(A))GA ∼= M

compatible with ϕ and the integrable connections, and functorial in M . �

Proposition 62 We have A
∼=−→ Acrys(A)GA and Fil1Acrys(A)GA = 0.

Proof We can show gr0(Acrys(A))[ 1p ]GA = A[ 1p ] and grr (Acrys(A))[ 1p ]GA = 0
(r ∈ N>0) in the same way as [19, Proposition 2.12]. Since the filtration Filr of

Acrys(A) is separated by (5) andLemma 153,we obtainA[ 1p ]
∼=−→ Acrys(A)[ 1p ]GA and

Fil1Acrys(A)GA = 0.Wecan remove 1
p because the restriction of the canonical homo-

morphism Acrys(A) → ̂A to A is the inclusion map and ̂A ∩ A[ 1p ] = A in ̂A[ 1p ].
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For the last equality, note that A/pn ∼= ̂A/pn (Lemma 7) and A/pn → A/pn is
injective since A is a normal domain and A is integral over A. �

We define T Ainf(M) (resp. T Ainf(M)) to be the image of T Acrys(M) under a
quasi-inverse of the functor (56) (cf. Proposition 59) (resp. under the functor (54)).

Theorem 63 (1) The following functor is fully faithful.

T Ainf : MF∇
[0,p−2],free(A, Φ) → Mq,cont

[0,p−2],free(Ainf(A),ϕ,GA)

(2) For an object M of MF∇
[0,p−2],free(A, Φ), we have the following canonical GA-

equivariant isomorphisms functorial in M.

T ∗
crys(M) ∼= HomMFp

[0,p−2],free(Ainf (A),ϕ)(T Ainf(M), Ainf(A))

∼= HomMq
[0,p−2],free(Ainf (A),ϕ)(T Ainf(M), Ainf(A))

Proof The first claim is an immediate consequence of Propositions 61 and 59. The
second one follows from Lemma 37 and Proposition 59 for (50) and (52). �

We see that the action of GA on the underlying Ainf(A)-module of an object in
the essential image of the functor T Ainf is “trivial” modulo I 1Ainf(A) as follows.
Let

α : A → Acrys(A)/I 1Acrys(A) ∼=
(2)

Ainf(A)/I 1Ainf(A) (57)

be the homomorphism induced by β : A → Acrys(A) (defined before Lemma 34) for
(B, s1, . . . , se) = (A, t1, . . . , td).

Lemma 64 (1) The homomorphism α is GA-equivariant.
(2) Let M be an object of MF∇

[0,p−2],free(A, Φ). Then the isomorphism

M ⊗A,α Ainf(A)/I 1Ainf(A) ∼= T Ainf(M) ⊗Ainf (A) Ainf(A)/I 1Ainf(A)

induced by (37) for (B, s1, . . . , se) = (A, t1, . . . , td) is GA-equivariant.

Proof For g ∈ GA, choose ni (g) ∈ Zp such that g(t i ) = t iε
ni (g) in RA, where εb =

(εbn mod p)n∈N for b ∈ Zp. We have g(vi ) = vi [εni (g)] + [εni (g)] − 1 and [εni (g)] −
1 ∈ I 1Ainf(A). Hence the composition δ of the Acrys(A)-algebra homomorphism
Acrys(A) → Acrys(A); vi �→ 0 with Acrys(A) → Acrys(A)/I 1Acrys(A) ∼=
Ainf(A)/I 1Ainf(A) is GA-equivariant. This implies the claim (1) by Lemma 34
(1). By (41), the scalar extension of (40) for (B, s1, . . . , se) = (A, t1, . . . , td) by δ is
the identity map. Hence the claim (2) follows from the GA-equivariance of (39) for
B = A. �
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9 Duality for Ainf/π
p−1-Representations with ϕ

We keep the notation in Sect. 8. In this section, we prove a duality (Proposition
68) for the Zp-module T ∗

inf(M) (59) associated to an object M of the category
MFp

[0,p−2],free(Ainf(A),ϕ), under a certain condition on M, by the same argument
as the proof of [10, Theorem 2.6∗].

We define the category ˜MF[0,p−2](Ainf(A),ϕ) as follows. Let ϕAinf (A) denote the

Frobenius ϕ of Ainf(A). An object is a triplet (M,FilrM,ϕr ) consisting of the
following data:

(i) An Ainf(A)-module M.
(ii) A decreasing filtration FilrM (r ∈ N ∩ [0, p − 2]) by Ainf(A)-submodules

such that Fil0M = M and Filr Ainf(A) · FilsM ⊂ Filr+sM for every r, s ∈ N ∩
[0, p − 2] with r + s ≤ p − 2.

(iii) ϕAinf (A)-semilinear endomorphisms ϕr : FilrM → M (r ∈ N ∩ [0, p − 2])
such that ϕr |Filr+1M = pϕr+1 for every r ∈ N ∩ [0, p − 3].

A morphism is an Ainf(A)-linear homomorphism compatible with Filr and ϕr

(r ∈ N ∩ [0, p − 2]) in the obvious sense. We write HomFil,ϕ(M,M′) for the set of
morphisms M → M′ in ˜MF[0,p−2](Ainf(A),ϕ) to simplify the notation.

Let M = (M,FilrM,ϕ) be an object of MFp
[0,p−2],free(Ainf(A),ϕ). For m ∈

N>0, the Ainf(A)-moduleM/pm endowedwith the filtration defined by the images of
the injective homomorphisms FilrM/pmFilrM ↪→ M/pmM (r ∈ N ∩ [0, p − 2])
and the reduction mod pm of p−rϕFilrM : FilrM → M for r ∈ N ∩ [0, p − 2], is
an object of ˜MF[0,p−2](Ainf(A),ϕ). In particular, we may regard Ainf(A)/pm as an
object of ˜MF[0,p−2](Ainf(A),ϕ).

Proposition 65 Let M be an object of MFp
[0,p−2],free(Ainf(A),ϕ). Then the Zp-

moduleHomFil,ϕ(M, Ainf(A)) is free with the same rank as the Ainf(A)-moduleM,
and the following natural homomorphism is an isomorphism.

HomFil,ϕ(M, Ainf(A))/p → HomFil,ϕ(M/p, Ainf(A)/p)

By combining Propositions 63 (2) and 65, we obtain the following.

Proposition 66 For an object M of MF∇
[0,p−2],free(A, Φ), T ∗

crys(M) is a free Zp-
module with the same rank as the A-module M.

Lemma 67 Let α be an element of OK such that αpOK = pOK , and let n ∈ N>0.
Let (βμν) ∈ GLn(A), γμ ∈ A (μ ∈ N ∩ [1, n]), and rμ ∈ N ∩ [0, p − 2] (μ ∈ N ∩
[1, n]). Put I := N ∩ [1, n]. We consider the following equations

x p
ν = αprν

⎛

⎝γν +
∑

μ∈I
βμνxμ

⎞

⎠ (ν ∈ I ), xν ∈ αrνA (ν ∈ I ). (58)
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For m ∈ N, the solutions of the equations (58) modulo αp(rν+1)+m are determined
modulo αp+m, and each such solution considered modulo αp+m has a unique lifting
to the solution of (58). Furthermore the equations (58) have pn solutions.

Proof (cf. [10, Proof of Theorem 2.4]) For r ∈ N ∩ [0, p − 2], m ∈ N, a ∈ A, and
b ∈ A, we have

(αr a + αp+mb)p ≡ αpra p mod αp(r+1)+m+1A.

This implies the first claim. Let us prove the second claim. LetA′ be a normalization
of A in a finite normal AK -subalgebra of AK such that α, γν,βμν ∈ A′. Since A is
a union of such A′, A′ is p-adically complete and separated, and A′/αr → A/αr

(r ∈ N>0) is injective, it suffices to prove that a solution xν = aν ∈ A′/αp+m (ν ∈ I )
of (58) modulo αp(rν+1)+m has a unique lifting to a solution in A′/αp+m+1 of (58)
modulo αp(rν+1)+m+1. Choose a lifting aν ∈ A′ of aν . Let cν ∈ A′ (ν ∈ I ). By using
the above congruence, we see that xν = aν + αp+mcν (ν ∈ I ) is a solution of (58)
modulo αp(rν+1)+m+1 if and only if

αprν+p+m
∑

μ∈I
βμνcμ ≡ a p

ν − αprν (γν +
∑

μ∈I
βμνaμ) mod αp(rν+1)+m+1A′.

Since the right-hand side is contained in αp(rν+1)+mA′ and (βμν) is invertible, these
equations for cν have a unique solution modulo α.

Let us prove the last claim. Put fν = X p
ν − αprν (γν + ∑

μ∈I βμνXμ) for ν ∈
I . Choose an A-subalgebra A′ of A as above, and let B be the finite algebra
A′[X1, . . . , Xn]/( fν, ν ∈ I ), which is free of rank pn as an A′-module, and let
Xν be the image of Xν in B. Since X

p
ν ∈ αprν B and A′ is p-adically complete and

separated, we see that the matrix

(

∂ fν
∂Xμ

(X1, . . . , Xn)

)

μν

= (pα−prν X
p−1
ν δμν − βμν)μν · (αprν δμν)μν

is invertible in BK = B ⊗OK K . Hence BK is a finite étaleA′
K -algebra, and BK ⊗A′

K

AK is isomorphic to the product of pn-copies of AK by the definition of A. Hence
the equations (58) have pn solutions in AK . Since B is finite over A′, each solution
aν ∈ AK is contained in A and therefore aν ∈ αrνA by the equations (58). �

Proof of Proposition 65 (cf. [10, Proof of Theorem 2.4]). For m ∈ N>0, let Tm
be HomFil,ϕ(M/pm, Ainf(A)/pm). Then we have an exact sequence 0 → T1 →
Tm+1

πm−→ Tm because Ainf(A) and Ainf(A)/Filr ∼= Ainf(A)/Filr (r ∈ N ∩ [0, p −
2]) are p-torsion free. Hence it suffices to prove (i) dimFp T1 = rankAinf (A)M, and
(ii) the homomorphism πm above is surjective for every m.
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Put n := rankAinf (A)M and I := N ∩ [1, n]. Choose eν ∈ M, rν ∈ N ∩ [0, p − 2]
(ν ∈ I ) and (aμν) ∈ GLn(Ainf(A)) such that FilrM = ⊕ν∈IFilr−rν Ainf(A)eν and
ϕ(eν) = prν

∑

μ∈I aμνeμ. Since (ε − 1)p−1 ∈ ppR×
OK

, we have isomorphisms

Ainf(A)/pAinf(A) ∼= RA/(ε − 1)p−1RA
∼=−→ A/pA,

where the second isomorphism is given by the projection to the second component
RA → A/pA. Let ι denote the composition of the isomorphisms above, and let
α ∈ OK be a lifting of ι(q ′) = ∑

a∈Fp
ε[a]
2 ∈ OK /pOK . Then we have αpOK =

pOK as vp(
∑

a∈Fp
ε[a]
2 ) = p−1 ([18, Example A2.7]), and ι induces an isomorphism

Filr Ainf(A)/p
∼=−→ αrA/pA for r ∈ N ∩ [p − 2]. Recall thatwehaveϕ(q ′) = q = p

in Ainf(A) (Lemma 9 (2)) and Filr Ainf(A) = q ′r Ainf(A) (r ∈ N ∩ [p − 2]). This
implies

ϕr (a(q ′)r ) = ϕ(a) (a ∈ Ainf(A), r ∈ N ∩ [0, p − 1]). (∗)

Proof of (i): Let f be an Ainf(A)/p-linear map M/p → Ainf(A)/p. Then f is
contained in T1 if and only if f (eν) ∈ (q ′)rν Ainf(A)/p (ν ∈ I ) and ϕrν ( f (eν)) =
∑

μ∈I aμν f (eμ). If we put xν = ι ◦ f (eν) (ν ∈ I ), then by (∗), this is equivalent

to xν ∈ αrνA/pA and x̃ p
ν = αprν

∑

μ∈I ι(aμν)xμ in A/αp(rν+1)A for every ν ∈ I ,

where x̃ν is a lifting of xν in A. By applying Lemma 67 to γμ = 0 and a lifting
(βμν) ∈ GLn(A) of (ι(aμν)), we see that the above equations have pn solutions.

Proof of (ii): Let f be an element of Tm , and let ˜f be an Ainf(A)-linear homo-
morphism M/pm+1 → Ainf(A)/pm+1 whose reduction mod pm is f and ˜f (eν) ∈
Filrν Ainf(A)/pm+1. Let [pm] denote the injective homomorphism Ainf(A)/p →
Ainf(A)/pm+1 induced by the multiplication by pm on Ainf(A). Then we have
ϕrν (

˜f (eν)) − ∑

μ∈I aμν
˜f (eμ) ∈ [pm](Ainf(A)/p). Let γν ∈ A/pA be its image

under ι ◦ [pm]−1. Let xν ∈ A/pA and define the Ainf(A)-linear homomorphism
˜f ′ : M/pm+1 → Ainf(A)/pm+1 by ˜f ′(eν) = ˜f (eν) − [pm] ◦ ι−1(xν). Since
Ainf(A)/Filr Ainf(A) is p-torsion free, ˜f ′(eν) ∈ Filrν Ainf(A)/pm+1 if and only if
ι−1(xμ) ∈ Filrν Ainf(A)/p, which is equivalent to xν ∈ αrνA/pA. If xν = αrν · (yν

mod p) (yν ∈ A), thenwehaveϕrν (
˜f ′(eν)) = ϕrν (

˜f (eν)) − [pm] ◦ ι−1(y p
ν mod p)

by (∗). Since
∑

μ∈I aμν
˜f ′(eμ) = ∑

μ∈I aμν
˜f (eμ) − [pm] ◦ ι−1(

∑

μ∈I ι(aμν)xμ), we

see that ˜f ′ belongs to Tm+1 if and only if xν ∈ αrνA/pA and x̃ p
ν = αprν (γν +

∑

μ∈I ι(aμν)xμ) in A/αp(rν+1)A for every ν ∈ I , where x̃ν is a lifting of xν in A.

By applying Lemma 67 to a lifting γν ∈ A of γν and a lifting (βμν) ∈ GLn(A) of
(ι(aμν)), we see that the above equations have pn solutions. �

For an object M of MFp
[0,p−2],free(Ainf(A),ϕ), we define T ∗

inf(M) by

T ∗
inf(M) := HomFil,ϕ(M, Ainf(A)). (59)
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For an object M = (M,FilrM,ϕM) of MFp
[0,p−2],free(Ainf(A),ϕ), we define

an object M∗ = (M∗,FilrM∗,ϕM∗) of MFp
[0,p−2],free(Ainf(A),ϕ) as follows. The

underlying Ainf(A)-module is HomAinf (A)(M, Ainf(A)). The decreasing filtration is
defined by

FilrM∗ = { f ∈ M∗ | f (Fil(p−2)−r+sM) ⊂ Fils Ainf(A) for all s ∈ N ∩ [0, p − 2]}

for r ∈ N ∩ [0, p − 2],whereFilrM = Filr−(p−2)Ainf(A) · Filp−2M for r ∈ N≥p−2.
By taking the dual of the Ainf(A)-linearization ΦM : ϕ∗(M) → M of ϕM, we
obtain an Ainf(A)-linear homomorphism ΨM∗ : M∗ → ϕ∗(M∗). Since ΦM is
injective and its cokernel is annihilated by pp−2, the same holds for ΨM∗ . Hence
there exists a unique Ainf(A)-linear homomorphism ΦM∗ : ϕ∗(M∗) → M such
that ΦM∗ ◦ ΨM∗ = pp−2 · id and ΨM∗ ◦ ΦM∗ = pp−2 · id. We can verify that M∗
with FilrM∗ and the ϕAinf (A)-semilinear endomorphism ϕM∗ induced by ΦM∗ is an

object of MFp
[0,p−2],free(Ainf(A),ϕ) as follows: Choose eν ∈ M (ν ∈ N ∩ [1, N ]),

rν ∈ N ∩ [0, p − 2] (ν ∈ N ∩ [1, N ]) and P = (pνμ) ∈ GLN (Ainf(A)) such that
FilrM = ⊕νFilr−rν Ainf(A)eν (r ∈ N ∩ [0, p − 2]) and ϕ(eμ) = prμ

∑

ν pνμeν . Let
e∗
ν ∈ M∗ be the dual basis of eν . Put P∗ = (p∗

νμ) = (t P)−1 and r∗
ν = p − 2 − rν .

Let us determine FilrM∗. We have FilrM = ⊕ν∈N∩[1,N ]Filr−rν Ainf(A)eν for all
r ∈ N. For f ∈ M∗ and r ∈ N ∩ [0, p − 2], we assert the following: The image
of Fil(p−2)−r+s−rν Ainf(A)eν under f is contained in Fils Ainf(A) for every s ∈ N ∩
[0, p − 2] if and only if f (eν) ∈ Filr−r∗

ν Ainf(A). The sufficiency follows from {(p −
2) − r + s − rν} + (r − r∗

ν ) = s. The necessity is trivial if r − r∗
ν ≤ 0. If r − r∗

ν > 0,
it follows from the condition for s = r − r∗

ν ∈ N ∩ [0, p − 2], for which (p − 2) −
r + s − rν = 0. Thus we obtain

FilrM∗ = ⊕ν∈N∩[1,N ]Filr−r∗
ν Ainf(A)e∗

ν . (60)

Next let us give an explicit description of ϕ of M∗. The homomorphism ψM∗

is represented by the matrix t (prμ pνμ)νμ = (prν pμν)νμ with respect to the bases
(ϕ∗(e∗

ν))ν and (e∗
ν)ν of ϕ∗(M∗) and M∗, and we have (prν pμν)νμ · (pr

∗
μ p∗

νμ)νμ =
diag(prν+r∗

ν ) = pp−2 · 1N . Hence we have

ϕM∗(e∗
μ) = pr

∗
μ

∑

ν∈N∩[1,N ]
p∗

νμe
∗
ν . (61)

We define the object Ainf(A)(p − 2) of MFp
[0,p−2],free(Ainf(A),ϕ) to be Ainf(A)

with Filr Ainf(A) = Ainf(A) (r ∈ N ∩ [0, p − 2]) and ϕAinf (A)(p−2) = pp−2ϕAinf (A).
We see that the image of e = ∑

ν eν ⊗ e∗
ν ∈ M ⊗Ainf (A) M∗ under ϕM ⊗ ϕM∗ is

pp−2e by using the above description of ϕM and ϕM∗ . Hence, for f ∈ T ∗
inf(M) and

g ∈ T ∗
inf(M∗), the compositionof Ainf(A)

−·idM−−−→ HomAinf (A)(M,M) ∼= M ⊗Ainf (A)
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M∗ f ⊗g−−→ Ainf(A) belongs to T ∗
inf(Ainf(A)(p − 2)). Therefore this construction

defines a Zp-bilinear map

T ∗
inf(M) × T ∗

inf(M∗) −→ T ∗
inf(Ainf(A)(p − 2)). (62)

We define t1, . . . , td ∈ A× and ϕA : A → A as before Proposition 60. Let
α : A → Ainf(A) be the homomorphism β(0) (defined before Lemma 34) for
(B, s1, . . . , se) = (A, t1, . . . , td). Then the composition of α with the homomor-
phism Ainf(A) → Ainf(A)/I 1Ainf(A) coincides with α (57). We have ϕ ◦ α =
α ◦ ϕA by Lemma 34 (2).

Proposition 68 (cf. [10, Proof of Theorem 2.6∗]) Let M be an object of
MFp

[0,p−2],free(Ainf(A),ϕ) isomorphic to M ⊗A,α Ainf(A) for some object M of
MFp

[0,p−2],free(A,ϕ). Then the paring (62) is perfect.

As mentioned in the proof of [10, Theorem 2.6∗], we can prove Proposition 68 by
reducing it to the case of complete discrete valuation ring with algebraically closed
residue field. Let p be the prime ideal pA ofA. For each i ∈ N ∩ [1, d], we choose a
compatible system of pnth roots ti,n ∈ A×

of ti : t
p
i,n+1 = ti,n (n ∈ N), ti,0 = ti . Then

Ap,∞ := Ap[t1,n, . . . , td,n; n ∈ N](⊂ Kur) is a discrete valuation ring with perfect
residue field. Let A′ be the p-adic completion of the maximal unramified extension
of the p-adic completion of Ap,∞. Put K′ := A′[ 1p ], let K

′
be an algebraic closure

of K′, and let A′
be the integral closure of A′ in K′

. Choose an extension Kur → K′

ofA∞ := A[t1,n, . . . , td,n; n ∈ N] ⊂ Ap,∞. This induces homomorphismsA → A′

and Ainf(A) → Ainf(A
′
). SinceA′ is canonically isomorphic to the Witt rings of its

residue field, there is a canonical homomorphismα′ : A′ ∼= W (A′/p) → Ainf(A
′
) =

W (RA′) induced byA′/p → RA′ ; x �→ (x p−n
)n∈N, andA′ has a canonical lifting of

the absolute Frobenius ϕA′ . The homomorphism α′ is compatible with ϕ’s.

Lemma 69 (1) The homomorphisms α′ and α : A → Ainf(A) is compatible with
A → A′ and Ainf(A) → Ainf(A

′
).

(2) The homomorphism A → A′ is compatible with ϕA and ϕA′ .

Proof We define t i ∈ RA to be (ti,n mod p)n∈N for i ∈ N ∩ [1, d]. Let k ′ be
the residue field A′/pA′ of A′. Then the isomorphism W (k ′) ∼= A′ sends [ti ] to
limn→∞(ti,n)p

n = ti . Hence we have α′(ti ) = [t i ] and ϕA′(ti ) = t pi .
(1) The above observation implies that the following diagram of OK -algebras

is commutative for both A/pm → A′/pm α′−→ Ainf(A
′
)/(pm, [p]m) and A/pm

α−→
Ainf(A)/pm → Ainf(A

′
)/(pm, [p]m).

A/pm A′
/pm

OK [T1, . . . , Td ]/pm
Ti �→ti

Ti �→[t i ]
Ainf(A

′
)/(pm, [p]m)



214 T. Tsuji

This implies the claim because the left vertical homomorphism is étale and Ainf(A
′
)

is (p, [p])-adically complete and separated (Lemma 1 (2)).

(2) The following diagram is commutative for bothA/pm
ϕA−→ A/pm → A′/pm

and A/pm → A′/pm
ϕA′−−→ A′/pm , where the top (resp. bottom) horizontal map is

defined by the composition ofA/pm
pr−→ A/p → A′/p with the absolute Frobenius

of A′/p (resp. Ti �→ t pi and σ : OK → OK ).

A/pm A′/p

OK [T1, . . . , Td ]/pm
Ti �→ti

A′/pm
pr

Since the left vertical homomorphism is étale, the two maps are the same. �

Proof of Proposition 68 One can construct a pairing

HomFil,ϕ(M/p, Ainf(A)/p) × HomFil,ϕ(M∗/p, Ainf(A)/p)

−→ HomFil,ϕ(Ainf(A)(p − 2)/p, Ainf(A)/p) (63)

in the same way as (62), i.e., by sending ( f, g) to the composition of

Ainf(A)(p − 2)/p
−·idM/p−−−−→ EndAinf (A)/p(M/p) ∼= M/p ⊗Ainf (A)/p M∗/p

f ⊗g−−→ Ainf(A)/p.

We can verify that the composition belongs to HomFil,ϕ by using f (eν) ∈
Filrν Ainf(A)/p, g(e∗

ν) ∈ Filr
∗
ν Ainf(A)/p and ϕp−2(( f ⊗ g)(eν ⊗ e∗

ν)) =
( f ⊗ g)(ϕrν (eν) ⊗ ϕr∗

ν
(e∗

ν)), where we choose eν and e∗
ν as before (60) and set

eν = (eν mod p) and e∗
ν = (e∗

ν mod p). The pairing (63) is obviously compati-
ble with (62). By Proposition 65, it suffices to prove that the pairing (63) is perfect.

For an object N of MFp
[0,p−2],free(Ainf(A),ϕ) and the object N ′ = N ⊗Ainf (A)

Ainf(A
′
) of MFp

[0,p−2],free(Ainf(A
′
),ϕ), the homomorphism

HomFil,ϕ(N /p, Ainf(A)/p) −→ HomFil,ϕ(N ′/p, Ainf(A
′
)/p) (64)

is an isomorphism by the description of elements of the source (resp. target) in
terms of sections of a finite étale AK (resp. A′

K )-algebra given by the proofs of
Proposition 65 and Lemma 67.

LetM′ be the object Ainf(A
′
) ⊗Ainf (A) M ofMFp

[0,p−2],free(Ainf(A
′
),ϕ). Then, by

using (60) and (61), we see that the canonical Ainf(A
′
)-linear isomorphism (M′)∗ ∼=

Ainf(A
′
) ⊗Ainf (A) M∗ gives an isomorphism in MFp

[0,p−2],free(Ainf(A
′
),ϕ), and the

paring (63) forM is compatible with that forM′ via the isomorphisms (64) forM
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and M∗. By Lemma 69 (2), M ′ := M ⊗A A′ has a natural structure as an object
of MFp

[0,p−2],free(A′,ϕ), and by Lemma 69 (1), we have an isomorphism M ′ ⊗A′,α′

Ainf(A
′
) ∼= M′ in MFp

[0,p−2],free(Ainf(A
′
),ϕ). Hence, by replacing OK → A, M,

and M with A′ id−→ A′, M′ and M ′, we may assume that OK = A = A and the
residue field k of OK is algebraically closed.

Let ˜MF[0,p−2](k,ϕ) be the category defined by replacing (Ainf(A),Fil•Ainf(A))

and ϕAinf (A) with (k, 0) and the absolute Frobenius of k in the definition of
˜MF[0,p−2](Ainf(A),ϕ) given in the beginning of Sect. 9, and let MF[0,p−2](k,ϕ)

be its full subcategory consisting of objects N satisfying dimk N < ∞ and N =
∑

r∈N∩[0,p−2] ϕr (Filr N ). It is known that the category MF[0,p−2](k,ϕ) is an artinian
abelian category ([13, 1.8 Proposition]). Let N be an object of the category
MF[0,p−2](k,ϕ). Then one can prove that HomFil,ϕ(N , Ainf(OK )/p) is an Fp-vector
space of dimension equal to the dimension of N over k in the same way as the proof
of Proposition 65 (see [20, 2.2.3.1 Examples (b), 2.3.1.2.3 (b) Proposition 1]). This
together with the left exactness of Homk(−, Ainf(OK )/p) implies that the functor
HomFil,ϕ(−, Ainf(OK )/p) defined on MF[0,p−2](k,ϕ) is exact.

For an object N of MF[0,p−2](k,ϕ), we define an object N ∗ of MF[0,p−2](k,ϕ)

as follows. The underlying k-vector space is N ∗ = Homk(N , k) and the filtration is
defined by Filr N ∗ = { f ∈ N ∗| f (Filp−1−r N ) = 0} (r ∈ Z). Then we have a canoni-
cal isomorphismgrrFilN

∗ ∼= Homk(gr
p−2−r
Fil N , k) (r ∈ N ∩ [0, p − 2]), andwedefine

the frobenius ϕr : Filr N ∗ → N ∗ (r ∈ N ∩ [p − 2]) by the inverse of the dual of the
isomorphism Φ : ⊕s∈N∩[0,p−2] ϕ∗(grsFilN )

∼=−→ N induced by ϕr of N , i.e., the com-
position of

Filr N ∗ →ϕ∗(grrFilN
∗) ↪→

⊕

s∈N∩[0,p−2]
ϕ∗(grsFilN

∗) ∼=
⊕

s∈N∩[0,p−2]
(ϕ∗(gr p−2−s

Fil N ))∗
∼=−−−→

(Φ∗)−1
N ∗.

Let k(p − 2) be the object of MF[0,p−2](k,ϕ) defined by k with Filp−2k = k and
ϕp−2(1) = 1. Then one can define the following pairing similarly to (63).

HomFil,ϕ(N , Ainf(OK )/p)×HomFil,ϕ(N ∗, Ainf(OK )/p)

−→ HomFil,ϕ(k(p − 2), Ainf(OK )/p) (65)

We define an object M/p of MF[0,p−2](k,ϕ) to be the k-vector space M/p
equipped with the filtration Filr M/p (r ∈ N ∩ [0, p − 2]) and the reduction mod
p of p−rϕ : Filr M → M for r ∈ N ∩ [0, p − 2]. We have a natural isomorphism
HomFil,ϕ(L , Ainf(OK )/p) ∼= HomFil,ϕ(L, Ainf(OK )/p) for (L ,L) = (M/p,M/p),
((M/p)∗,M∗/p), (k(p − 2), Ainf(A)(p − 2)/p). They are compatiblewith the par-
ing (63) and the pairing (65) for N = M/p. Hence it suffices to prove that the pairing
(65) for an object N of MF[0,p−2](k,ϕ) is perfect. Since N �→
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HomFil,ϕ(N , Ainf(OK )/p) is exact as observed above and the paring (65) is functorial
in N , it suffices to prove the claim when N is a simple object.

By [13, 4.4 Proposition (ii)], there existsn ∈ N>0, eν ∈ N and rν ∈ N ∩ [0, p − 2]
(ν ∈ Z/nZ) such that N = ⊕ν∈Z/nZkeν , Filr N = ⊕ν∈Z/nZ,rν≥r keν and ϕrν (eν) =
eν+1. Let e∗

ν (ν ∈ Z/nZ) be the dual basis of N ∗, and put r∗
ν := p − 2 − rν .

Then we have Filr N ∗ = ⊕ν∈Z/nZ,r∗
ν ≥r ke∗

ν and ϕr∗
ν
(e∗

ν) = e∗
ν+1. As in the proof of

Proposition 65, let ι be the composition of Ainf(OK )/p ∼= ROK
/(ε − 1)p−1

∼=−→
OK /p, and let α ∈ OK be a lifting of ι(q ′). Then by the same argument as
in the proof of Proposition 65 and Lemma 67, an element f (resp. g) of
HomFil,ϕ(N , Ainf(OK )/p) (resp. HomFil,ϕ(N ∗, Ainf(OK )/p)) is given by f (eν) =
ι−1(xν mod p) (resp. g(e∗

ν) = ι−1(yν mod p)), where (xν) (resp. (yν)) is a solu-
tion of the equations x p

ν = αprν xν+1, xν ∈ αrν OK (resp. y p
ν = αpr∗

ν yν+1, yν ∈
αr∗

ν OK ). The pairing h ∈ HomFil,ϕ(k(p − 2), Ainf(OK )/p) of f and g is given by
h(1) = ι−1(

∑

ν∈Z/nZ xν yν) ∈ Ainf(OK )/p. Let αn ∈ OK be a (pn − 1)th root of

α. Then the solutions of the above equations are given by xν = α
∑n−1

s=0 pn−srν+s
n ζ pν

,

ζ ∈ μpn−1(OK ) ∪ {0} (resp. yν = α
∑n−1

s=0 pn−sr∗
ν+s

n η pν
, η ∈ μpn−1(OK ) ∪ {0}). The pair-

ing h above is given by ι(h(1)) = α
p(p−2)
1

∑n−1
ν=0(ζη)p

ν
, where α1 is the (p − 1)th

root (αn)
(pn−1)(p−1)−1

of α. Since Fpn/Fp is a finite separable extension, the trace
map TrFpn /Fp : Fpn → Fp does not vanish. Hence for each ζ 	= 0, there exists η 	= 0

such that
∑n−1

ν=0(ζη)p
ν ∈ O×

K
. This completes the proof because α

p(p−2)
1 /∈ pOK . �

10 Period Map

Let M be an object of MF∇
[0,p−2],free(A, Φ). We define Tcrys(M) to be the dual

HomZp (T
∗
crys(M),Zp) of T ∗

crys(M), which is a free Zp-module whose rank is equal
to rkAM (Proposition 66). By Theorem 63 (2), we have a GA-equivariant Zp-linear
injective homomorphism T ∗

crys(M) → HomAinf (A)(T Ainf(M), Ainf(A)). By taking

the dual of its Ainf(A)-linearization, we obtain an Ainf(A)-linear GA-equivariant
homomorphism compatible with ϕ, where ϕ of the target is defined by id ⊗ ϕAinf (A).

T Ainf(M) −→ Tcrys(M) ⊗Zp Ainf(A) (66)

In this section, we prove the following theorem.

Theorem 70 The homomorphism (66) is injective and its cokernel is annihilated by
π p−2.

For an object M of Mq
[0,p−2],free(Ainf(A),ϕ), we define T ∗

inf(M) by

T ∗
inf(M) := HomMq

[0,p−2],free(Ainf (A),ϕ)(M, Ainf(A)). (67)
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Proposition 71 For an objectM ofMq
[0,p−2],free(Ainf(A),ϕ), T ∗

inf(M) is a free Zp-

module whose rank is the same as the free Ainf(A)-module underlying M.

Proof The claim immediately follows from Propositions 59 and 65. �

For an object M = (M,ϕM) of Mq
[0,p−2],free(Ainf(A),ϕ), we define an object

M∗ = (M∗,ϕM∗) of Mq
[0,p−2](Ainf(A),ϕ) as follows. The underlying Ainf(A)-

module is HomAinf (A)(M, Ainf(A)). Let ΨM∗ : M∗ → ϕ∗(M∗) be the dual of the
Ainf(A)-linearizationΦM : ϕ∗(M) → M ofϕM. SinceΦM is injective and its cok-
ernel is annihilated by q p−2, the same holds for ΨM∗ . Hence there exists a unique
Ainf(A)-linear homomorphism ΦM∗ : ϕ∗(M∗) → M∗ such that ΦM∗ ◦ ΨM∗ =
q p−2 · id and ΨM∗ ◦ ΦM∗ = q p−2 · id. We can verify that M∗ with the ϕAinf (A)-

semilinear endomorphismϕM∗ induced byΦM∗ is an object ofMq
[0,p−2](Ainf(A),ϕ)

as follows: Choose eν ∈ M (N ∈ N, ν ∈ N ∩ [1, N ]), rν ∈ N ∩ [0, p − 2] (ν ∈ N ∩
[1, N ]) and P = (pνμ) ∈ GLN (Ainf(A)) such that M = ⊕ν Ainf(A)eν and
ϕM(eμ) = qrμ

∑

ν pνμeν . Let e∗
ν ∈ M∗ be the dual basis of eν . Put P∗ = (p∗

νμ) :=
(t P)−1 and r∗

ν = p − 2 − rν . Then, by the same argument as before (61), we obtain

ϕM∗(e∗
μ) = qr

∗
μ

∑

ν∈N∩[1,N ]
p∗

νμe
∗
ν . (68)

We define the object Ainf(A)(p − 2) of Mq
[0,p−2],free(Ainf(A),ϕ) to be Ainf(A)

endowed with the Frobenius defined by ϕ(1) = q p−2. We see that the image of
e = ∑

ν eν ⊗ e∗
ν ∈ M ⊗Ainf (A) M∗ under ϕM ⊗ ϕM∗ is q p−2e by using the above

description ofϕM andϕM∗ . Hence, for f ∈ T ∗
inf(M) and g ∈ T ∗

inf(M∗), the compo-

sition of Ainf(A)
−·idM−−−→ HomAinf (A)(M,M) ∼= M ⊗Ainf (A) M∗ f ⊗g−−→ Ainf(A)

belongs to T ∗
inf(Ainf(A)(p − 2)). This construction defines a Zp-bilinear map

T ∗
inf(M) × T ∗

inf(M∗) → T ∗
inf(Ainf(A)(p − 2)). (69)

We define ϕA : A → A and α : A → Ainf(A) as before Proposition 60 and
Lemma 64.

Proposition 72 LetM be an object ofMq
[0,p−2],free(Ainf(A),ϕ). Suppose that there

exist M ∈ MFp
[0,p−2],free(A,ϕ) and an isomorphism M ⊗A,α Ainf(A) ∼= M ⊗Ainf (A)

Ainf(A) inMFp
[0,p−2],free(Ainf(A),ϕ). Then the paring (69) is perfect.

Proof Let M be the image of M under (51). Then the image of Ainf(A)(p − 2)
(resp. M∗) under (51) is canonically isomorphic to Ainf(A)(p − 2) (resp. M∗)
defined before Proposition 68, the homomorphisms T ∗

inf(N ) → T ∗
inf(N ) for

(N ,N ) = (M,M), (M∗,M∗), (Ainf(A)(p − 2), Ainf(A)(p − 2)) are isomor-
phisms by Proposition 59, and these isomorphisms are compatible with the parings
(62) and (69). Hence the claim follows from Proposition 68. �
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For an objectM of Mq
[0,p−2],free(Ainf(A),ϕ), the inclusion map T ∗

inf(M) ↪→ M∗

induces an Ainf(A)-linear map

Ainf(A) ⊗Zp T
∗
inf(M) −→ M∗. (70)

Lemma 73 The image of the homomorphism (70)

Ainf(A) ⊗Zp T
∗
inf(Ainf(A)(p − 2)) −→ Ainf(A)(p − 2)∗ = Ainf(A)

forM = Ainf(A)(p − 2) is I p−2Ainf(A) = π p−2Ainf(A).

Proof Let J be an Ainf(A)-submodule of Ainf(A), and let J be the image of
J in Ainf(A). Then we have J ⊂ I p−2Ainf(A) if and only if J ⊂ I p−2Ainf(A)

because the inverse image of I p−2Ainf(A) by Ainf(A) → Ainf(A) is I p−2Ainf(A).
Suppose that this holds. Then, since I p−2Ainf(A) = Ainf(A)π p−2, the homo-
morphism I p−2Ainf(A) ⊗Ainf (A) Ainf(A)/I 1Ainf(A) → I p−2Ainf(A) is an isomor-

phism, and I 1Ainf(A) is contained in the Jacobson radical of Ainf(A), we see
that J = I p−2Ainf(A) if and only if J = I p−2Ainf(A) by Nakayama’s lemma.
As the homomorphism T ∗

inf(Ainf(A)(p − 2)) → T ∗
inf(Ainf(A)(p − 2)) is an iso-

morphism by Proposition 59, it suffice to prove the corresponding claim for
Ainf(A)(p − 2). We have ϕ(π)π−1 = 1 + [ε] + · · · + [ε]p−1 ≡ p mod πAinf(A),
which implies ϕ(π p−2) ≡ pp−2π p−2 mod I p−1Ainf(A). Since Ainf(A)/π p−2 =
Ainf(A)/I p−2Ainf(A) is p-torsion free, we see that the free Zp-module of
rank 1 T ∗

inf(Ainf(A)(p − 2)) is generated by the Ainf(A)-linear map Ainf(A) →
Ainf(A); 1 �→ π p−2. This completes the proof. �

Proof of Theorem 70 Put M := T Ainf(M). We assert that the following diagram
is commutative, where we abbreviate Ainf(A) to Ainf .

(Ainf ⊗Zp T
∗
inf(M)) × (Ainf ⊗Zp T

∗
inf(M∗))

(69)

(70)

Ainf ⊗Zp T
∗
inf(Ainf(p − 2))

(70)

M∗ × M∗∗ (Ainf(p − 2))∗ = Ainf .

Since the twopairings are Ainf -bilinear and the verticalmaps are Ainf -linear, it suffices
to prove that the images of ( f, g) ∈ T ∗

inf(M) × T ∗
inf(M∗) under the two composi-

tions coincide. The image of ( f, g) under (69) sends 1 ∈ Ainf(p − 2) to the image

of idM under HomAinf (M,M)
f ◦−−−→ M∗ g−→ Ainf , which coincides with the image

g( f ) of ( f, g) ∈ M∗ × M∗∗ under the lower paring. By Proposition 72 and (37)
for (B, s1, . . . , se) = (A, t1, . . . , td), the upper pairing is perfect. Hence Lemma 73
and Proposition 71 imply that (70) forM is injective and its cokernel is annihilated
by π p−2. We obtain the claim by taking the dual and using T ∗

crys(M) ∼= T ∗
inf(M)

(Theorem 63 (2)). �
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11 Fully Faithfulness of Tcrys and Ainf -Representations
with ϕ

We derive the fully faithfulness of the functor Tcrys from Theorem 70, Lemma 64 (2)
and Theorem 63.

Lemma 74 We have (Ainf(A)/I 1Ainf(A))(r)GA = 0 for every non-zero integer r .

Proof Let χcyc be the cyclotomic character GA → Z
×
p . Let a ∈ Ainf(A) such that

χr
cyc(g)g(a) − a ∈ I 1Ainf(A) for every g ∈ GA. By taking ϕm (m ∈ N), we

obtain χr
cyc(g)g(ϕm(a)) − ϕm(a) ∈ ϕm(I 1Ainf(A)) ⊂ Fil1Ainf(A). Since Ainf(A)/

Fil1Ainf(A) ∼= ̂A and ̂A(r)GA = 0 (see [19, Proposition 2.12] for example), we have
ϕm(a) ∈ Fil1Ainf(A). Hence a ∈ I 1Ainf(A). �
Lemma 75 For r ∈ Z, themultiplication byπ−r induces aGA-equivariant Ainf(A)-

linear isomorphism Ainf(A)(−r)
∼=−→ π−r Ainf(A)/π−r+1Ainf(A).

Proof The claim follows from the following equalities for g ∈ GA (Lemma 9 (1)).

g(π) =
∞

∑

n=1

(

χcyc(g)

n

)

πn = χcyc(g)π(1 + πag), ag ∈ Ainf(OK ).

Note that 1 + πAinf(OK ) ⊂ Ainf(OK )× since Ainf(OK ) is π-adically complete and
separated (Lemma 1 (4)). �
Proposition 76 (1) Let M be a free Ainf(A)-module of finite rank endowed with a
semilinear action of GA. (We do not assume the continuity of the action of GA). Then
there exists at most one GA-stable free Ainf(A)-submodule M′ of M[ 1

π
] satisfying

the following properties.
(a) The homomorphism M′[ 1

π
] → M[ 1

π
] is an isomorphism.

(b) There exists an Ainf(A)-linear GA-equivariant isomorphism M′ ⊗Ainf (A)

Ainf(A)/I 1Ainf(A) ∼= (Ainf(A)/I 1Ainf(A))⊕n for some n ∈ N.
(2) Let M1 and M2 be free Ainf(A)-modules of finite rank endowed with semi-

linear action of GA satisfying the condition (b) in (1). Then any GA-equivariant
Ainf(A)[ 1

π
]-linear homomorphism f : M1[ 1π ] → M2[ 1π ] satisfies f (M1) ⊂ M2.

Proof We obtain (1) from (2) by applying (2) to the identity map of M[ 1
π
]. Let

us prove (2). Suppose that f (M1) 	⊂ M2. Then there exists r ∈ N>0 such that
f (M1) ⊂ π−rM2 and f (M1) 	⊂ π−r+1M2. Then, by Lemma 75, the homomor-
phism f induces a non-zero GA-equivariant Ainf(A)-linear homomorphism

f : M1 ⊗Ainf (A) Ainf(A)/I 1Ainf(A) −→ M2 ⊗Ainf (A) Ainf(A)/I 1Ainf(A)(−r).

By the assumption on M1, the source is generated by GA-invariant elements as an
Ainf(A)-module. However the GA-invariant part of the target is 0 by the assumption
onM2 and Lemma 74. This contradicts f 	= 0. �
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Now one can derive the following theorem of Faltings from the fully faithfulness
of the functor T Ainf (Theorem 63 (1)).

Theorem 77 The functor Tcrys is fully faithful.

Proof For an object M of MF∇
[0,p−2],free(A, Φ), we have an Ainf(A)[ 1

π
]-linear GA-

equivariant isomorphism

cM : T Ainf(M)[ 1
π
] ∼=−→ Tcrys(M) ⊗Zp Ainf(A)[ 1

π
]

functorial in M by Theorem 70. By Theorem 63 (1), this implies that the func-
tor Tcrys is faithful. Let M1 and M2 be objects of MF∇

[0,p−2],free(A, Φ), and let
f : Tcrys(M1) → Tcrys(M2) be a GA-equivariant Zp-linear homomorphism. Then,
by Proposition 76 and Lemma 64 (2), the GA-equivariant Ainf(A)-linear homo-
morphism f ⊗ id : Tcrys(M1) ⊗Zp Ainf(A) → Tcrys(M2) ⊗Zp Ainf(A) induces aGA-
equivariant Ainf(A)-linear homomorphism f ′ : T Ainf(M1) → T Ainf(M2) via cM1

and cM2 . Since the homomorphism (66) is compatible with ϕ, we see that f ′ is
compatible with ϕ. By Theorem 63 (1), there exists a morphism g : M1 → M2 in
MF∇

[0,p−2],free(A, Φ) such that T Ainf(g) = f ′. Now the functoriality of cM implies
f = Tcrys(g). �

12 Period Rings Associated to a Framing

We recall the period rings associated to the framing � : OK [T±1
1 , . . . , T±1

d ] →
A; Ti �→ ti introduced in [7, Sect. 9], and then summarize their basic properties.

Let GK denote the Galois group Gal(K/K ). Since Spec(A/pA) → Spec(k) is
geometrically connected (Sect. 1), A ⊗OK OK is a normal domain, the homomor-
phismA ⊗OK OK → A is injective and the homomorphismGA → GK is surjective.
Let 1A denoteA ⊗OK OK in the following. LetK∞ be the extension ofKK obtained
by adjoining all pnth roots of ti in K for all i ∈ N ∩ [1, d], and let ˜ΓA denote the
Galois group Gal(K∞/K). We have K∞ ⊂ Kur because ti ∈ A× for i ∈ N ∩ [1, d].
We define A∞ to be the integral closureA ∩ K∞ of A in K∞. Choose a compatible
system of pnth roots of ti : ti,n ∈ A∞ (n ∈ N), t pi,n+1 = ti,n , ti,0 = ti , and define the
1-cocycleχi : ˜ΓA → Zp(1) := lim←−n

μpn (OK ) byχi (g) = (ζn)n , g(ti,n) = ti,nζn , and

let χ
i
denote the composition of χi with Zp(1) ↪→ R×

OK
; (ζn) �→ (ζn mod p).

Lemma 78 The following 1A-homomorphism defined by 1 ⊗ T p−n

i �→ ti,n is an iso-
morphism

A ⊗OK [T1,...,Td ] OK [T p−∞
1 , . . . , T p−∞

d ] −→ A∞.

Proof Let L be a finite extension of K contained in K , let OL be the inte-
gral closure of OK in L , let mL be the maximal ideal of OL , and let kL
be the residue field OL/mL of OL . Let n be a positive integer. Then the
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OL [T p−n

1 , . . . , T p−n

d ]-algebra B := A ⊗OK [T1,...,Td ] OL [T p−n

1 , . . . , T p−n

d ] is étale and
its reduction modmL is a regular domain because Spec(A/pA ⊗k kL) is a connected
scheme étale over Spec(kL [T1, . . . , Td ]) and hence Frac(A/p ⊗k kL) ⊗kL (T1,...,Td )

kL(T
p−n

1 , . . . , T p−n

d ) is a purely inseparable extension of Frac(A/p ⊗k kL). This

implies that the p-adic completion ̂B ∼= A ⊗OK [T1,...,Td ] OL [T p−n

1 , . . . , T p−n

d ] of B
is a regular domain finite over A, and therefore the A ⊗OK OL -homomorphism

A ⊗OK [T1,...,Td ] OL [T p−n

1 , . . . , T p−n

d ] → K∞ defined by 1 ⊗ T p−n

i �→ ti,n is injective,
and its image is the integral closure ofA in KL(t1,n, . . . , td,n). Varying L and n, we
obtain the claim. �

By Lemma 78, the absolute Frobenius of A∞/p is surjective. Hence the OK -
algebraA∞ and its subalgebraA satisfy the conditions onΛ andΛ0 in Sect. 2, which
are summarized in the beginning of Sect. 8. By applying §2 to (Λ,Λ0) = (A∞,A),
we obtain Acrys(A∞) and Ainf(A∞) with Filr , ϕ and ˜ΓA-action. We can apply the
results on Acrys(Λ) and Ainf(Λ) in Sect. 8 to Acrys(A∞) and Ainf(A∞).

LetSinf (resp.Scrys) denote the set of ideals a of Ainf(OK ) (resp. Acrys(OK )) with
(p, [p])n ⊂ a ⊂ pAinf(OK ) + Fil1Ainf(OK ) = (p, ξ) = (p, [p]) (resp. (pn) ⊂ a ⊂
pAcrys(OK ) + Fil1Acrys(OK )) for some n ∈ N>0. Let a ∈ Ainf(OK )\pAinf(OK ). If
the image of a under Ainf(OK ) → Ainf(OK )/p ∼= ROK

is contained in pROK
, then

{(p, a)n | n ∈ N>0} is a cofinal subset of Sinf by Lemma 1 (1). It is trivial that
{pn Acrys(OK ); n ∈ N>0} is a cofinal subset ofScrys. For • ∈ {inf, crys}, a ∈ S• and
Λ as in the beginning of Sect. 2, we define A•,a(Λ) to be A•(Λ)/aA•(Λ).We identify
A•,(pm ,Fil1)(Λ) with Λ/pm via the isomorphism induced by θ : A•(Λ) → ̂Λ.

Let • ∈ {inf, crys} and let a ∈ S•. Let A•,a(OK )[U±1] denote the A•,a(OK )-
algebra A•,a(OK )[U±1

1 ,U±1
2 , . . . ,U±1

d ]. For g ∈ ˜ΓA, we define the isomorphism

ρa(g) : A•,a(OK )[U±1] ∼=−→ A•,g(a)(OK )[U±1] compatible with the action of g on
A•(OK ) by ρa(g)(Ui ) = Ui [χi

(g)]. Then we have ρa(1) = id and ρh(a)(g)ρa(h) =
ρa(gh). We define the homomorphism ϕa : A•,a(OK )[U±1] → A•,ϕ(a)(OK )[U±1]
compatible with ϕ of A•(OK ) by ϕ(Ui ) = U p

i . We have ϕg(a) ◦ ρa(g) = ρϕ(a)(g) ◦
ϕa for g ∈ ˜ΓA. For a, b ∈ S• with b ⊂ a, the projection A•,b(OK )[U±1] →
A•,a(OK )[U±1] is compatible with these structures. For a positive integer m, let
OK /pm[T±1] denote the OK -algebra OK /pm[T±1

1 , . . . , T±1
d ] endowed with the

action of ˜ΓA defined by the action on OK /pm via GK and the trivial action on
OK /pm[T±1

1 , . . . , T±1
d ]. Then we identify A•,(pm ,Fil1)(OK )[U±1]with OK /pm[T±1]

via the isomorphism defined byUi �→ Ti , which is compatible with the action of ˜ΓA
because [εa] − 1 ∈ Fil1Acrys(OK ) for a ∈ Zp.

For a ∈ S•, we define A•,a(OK )[U±1] → A�•,a(A) to be the unique étale lifting
of the étale homomorphism of OK -algebras A•,(p,Fil1)(OK )[U±1] = OK /p[T±1] →
1A/p; Ti �→ ti . Note that the kernel of A•,a(OK ) → A•,(p,Fil1)(OK ) is nilpotent. For
a, b ∈ S• with b ⊂ a, we have an isomorphism

A�
•,b(A) ⊗A•,b(OK ) A•,a(OK )

∼=−→ A�
•,a(A) (71)
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compatible with the composition for a, b, c ∈ S• with c ⊂ b ⊂ a. For a ∈ S• and
g ∈ ˜ΓA, ρa(g) and the action of g on 1A/p and OK /p[T±1] induce an automor-

phism ρ�
a (g) : A�•,a(A)

∼=−→ A�
•,g(a)(A). We have ρ�

a (1) = id and ρ�
h(a)(g) ◦ ρ�

a (h) =
ρ�
a (gh). Similarly ϕa and the absolute Frobenius of 1A/p and OK /p[U±1] induce

an endomorphismϕ�
a : A�•,a(A) → A�

•,ϕ(a)(A). We haveϕ�
g(a) ◦ ρ�

a (g) = ρ�
ϕ(a)(g) ◦

ϕ�
a for g ∈ ˜ΓA. We identify the étale lifting A•,(pm ,Fil1)(OK )[U±1] → A�

•,(pm ,Fil1)
(A)

with the étale lifting OK /pm[T±1] → 1A/pm via the unique isomorphism, which is
compatible with the action of ˜ΓA.

We define A�• (A) to be the inverse limit of A�•,a(A) (a ∈ S•) endowed with
the inverse limit topology of the discrete topology of A�•,a(A). The homomor-
phisms ρ�

a (g) and ϕ�
a are obviously compatible with the isomorphisms (71), and

{ϕ(a); a ∈ S•} is cofinal in S• because ϕ([p]) = [p]p for • = inf. Hence ρ�
a (g)

and ϕ�
a induce the action ρ� of ˜ΓA on A�• (A) and the endomorphism ϕ of A�• (A).

The endomorphism ϕ of A�• (A) is ˜ΓA-equivariant.

Lemma 79 (1) A�
inf(A) and A�

crys(A) are p-torsion free and we have the following
isomorphisms.

A�
inf(A)/pm

∼=−→ lim←−
a∈S inf , pm∈a

A�
inf,a(A), A�

crys(A)/pm
∼=−→ A�

crys,(pm )(A).

In particular, A�
inf(A) and A�

crys(A) are p-adically complete and separated.

(2) For • ∈ {inf, crys} and a ∈ S•, the homomorphism A�• (A)/aA�• (A)→A�•,a(A)

is an isomorphism.

Proof Put a := [p]. We abbreviate A�
inf(A), A�

inf,a(A), etc. to A�
inf , A

�
inf,a, etc.

(1) Since Acrys(OK ) and Ainf(OK )/am (m ∈ N) are p-torsion free (see Lemma 1
(3) for the latter) and A�•,a is flat over A•,a(OK ) for • ∈ {inf, crys} and a ∈ S•, we
obtain the following exact sequences by using (71).

0 −→ A�
inf,(pl ,al )

pm−→ A�
inf,(pl+m ,al ) −→ A�

inf,(pm ,al ) −→ 0,

0 −→ A�
crys,(pl )

pm−→ A�
crys,(pl+m ) −→ A�

crys,(pm ) −→ 0.

We obtain the claims by taking the inverse limits over l.
(2) The claim for • = crys follows from the claim (1) and (71) because {(pm) |m ∈

N>0} ⊂ Scrys is cofinal. In the case • = inf, the claim is reduced to the case a =
(pm, an) (m, n ∈ N>0) by the same argument. Since Ainf(OK )/pm is a-torsion free
by Lemma 1 (4), we have exact sequences

0 −→ A�
inf,(pm ,al )

an−→ A�
inf,(pm ,al+n) −→ A�

inf,(pm ,an) −→ 0.

We obtain the desired claim by taking the inverse limit over l and using (1). �
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For a ∈ Sinf such that p ∈ a, we have ϕ(a) ⊂ a and the composition of ϕ�
a with

the projection map A�
•,ϕ(a)(A) → A�•,a(A) is the absolute Frobenius of A�

inf,a(A)

by its construction. Therefore the first isomorphism in Lemma 79 (1) for m = 1
implies that ϕ of A�

inf(A) is a lifting of the absolute Frobenius of A�
inf(A)/pA�

inf(A).
Similarly, since ϕ�

(p) of A
�
crys,(p)(A) is the absolute Frobenius by its construction, the

second isomorphism in Lemma 79 (1) shows that ϕ of A�
crys(A) is a lifting of the

absolute Frobenius of A�
crys(A)/pA�

crys(A).

Lemma 80 Let a be an element of Ainf(OK ), and assume that its image a in
Ainf(OK )/pAinf(OK ) ∼= ROK

is neither zero nor invertible.

(1) The topology of A�
inf(A) coincides with the (p, a)-adic topology.

(2) A�
inf(A) is (p, a)-adically complete and separated.

(3) A�
inf(A)/aA�

inf(A) is p-torsion free, and p-adically complete and separated.
(4) A�

inf(A) and A�
inf(A)/pn (n ∈ N>0) are a-torsion free, and a-adically complete

and separated.
(5) We have an isomorphism A�

inf(A)/aA�
inf(A) ∼= lim←−m∈N>0

A�
inf,(pm ,a)(A).

Proof By Lemma 79 (2), the topology of A�
inf(A) coincides with the (p, [p])-

adic topology. Hence the claim (1) follows from Lemma 1 (1). The claim (5) fol-
lows from (3) and Lemma 79 (2). It remains to prove the claims (2), (3), and
(4). By Lemma 2 and Lemma 79 (1), it suffices to prove that A�

inf(A)/p is a-
torsion free, and a-adically complete and separated. By replacing a with a suit-
able power of a if necessary, we may assume a ∈ pROK

. Then {(pm, an) |m, n ∈
N>0} is a cofinal subset of Sinf . Hence, from Lemma 79, we obtain A�

inf(A)/p ∼=
lim←−n

A�
inf,(p,an)(A) ∼= lim←−n

(A�
inf(A)/p)/an . Since Ainf(OK )/p is a-torsion free by

Lemma 1 (4), and A�
inf,a(A) is flat over Ainf,a(OK ) for a ∈ Sinf , the multiplication

by a on A�
inf,(p,al+1)

(A) (l ∈ N>0) together with (71) induces an injective homomor-

phism A�
inf,(p,al )(A) → A�

inf,(p,al+1)
(A). By taking the inverse limit over l and using

Lemma 79 (1), we see that a is regular on A�
inf(A)/p. �

Powers of ξ and π satisfy the assumption on a in Lemma 80. We define the filtra-
tions Filr A�

inf(A) and I r A�
inf(A) (r ∈ Z) by ξr A�

inf(A) and πr A�
inf(A), respectively,

if r ≥ 0, and A�
inf(A) if r < 0. By Lemma 80 (5), we have

A�
inf(A)/Fil1A�

inf(A) ∼= lim←−
m∈N>0

A�
inf,(pm ,ξ)(A) = lim←−

m∈N>0

1A/pm = 1 ̂A. (72)

For an ideal J of Acrys(OK ), we define the ideal J A�
crys(A) of A�

crys(A) to be

the topological closure of J A�
crys(A) in A�

crys(A), which is the inverse limit of

J (A�
crys(A)/pm A�

crys(A)) (m ∈ N>0) by Lemma 79 (1).
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Lemma 81 Let J be an ideal of Acrys(OK ) contained in Fil1Acrys(OK ) such that
Acrys(OK )/J is p-torsion free. Then A�

crys(A)/J A�
crys(A) is p-torsion free and, p-

adically complete and separated. Moreover the natural homomorphism
(A�

crys(A)/J A�
crys(A))/pm → A�

crys,(pm ,J )(A) is an isomorphism for m ∈ N>0.

Proof By Lemma 79 (1) and (71), we have exact sequences

0 −→ J (A�
crys(A)/pm) −→ A�

crys(A)/pm −→ A�
crys,(pm ,J )(A) −→ 0.

By taking lim←−m
,weobtain A�

crys(A)/J A�
crys(A)

∼=−→ lim←−m
A�
crys,(pm ,J )(A). Let A�

crys,J (A)

denote the target algebra. Since Acrys(OK )/J is p-torsion free and Acrys,a(OK ) →
A�
crys,a(A) is flat for a ∈ Scrys, we have exact sequences

0 −→ A�
crys,(pl ,J )(A)

pm−→ A�
crys,(pl+m ,J )(A) −→ A�

crys,(pm ,J )(A) −→ 0.

By taking lim←−l
, we see that A�

crys,J (A) is p-torsion free, and A�
crys,J (A)/pm →

A�
crys,(pm ,J )(A) is an isomorphism. This completes the proof. �

For r ∈ N>0, Filr Acrys(OK ) and I r Acrys(OK ) satisfy the assumption on J in
Lemma 81. We define Filr A�

crys(A) and I r A�
crys(A) to be the topological closure

of Filr Acrys(OK )A�
crys(A) and I r Acrys(OK )A�

crys(A) in A�
crys(A), respectively. For

r ∈ Z, r ≤ 0, we define them to be A�
crys(A). By Lemma 81, we have isomorphisms

A�
crys(A)/Fil1A�

crys(A) ∼= lim←−
m

(A�
crys(A)/Fil1A�

crys(A))/pm

∼= lim←−
m

A�
crys,(pm ,Fil1)(A) = lim←−

m
1A/pm1A ∼= 1 ̂A. (73)

Let us compare A�
inf(A) and A�

crys(A). Let a ∈ Sinf and a′ := aAcrys(OK ) ∈
Scrys. Since the isomorphisms A•,(p,Fil1)(OK ) ∼= OK /p (• ∈ {inf, crys}) are compat-
ible with the canonical homomorphism Ainf(OK ) → Acrys(OK ), the homomorphism
κa : Ainf,a(OK )[U±1] → Acrys,a′(OK )[U±1]definedby Ainf(OK ) → Acrys(OK ) and
Ui �→ Ui induces a homomorphism κ�

a : A�
inf,a(A) → A�

crys,a′(A), which gives an
isomorphism

A�
inf,a(A) ⊗Ainf,a(OK ) Acrys,a′(OK )

∼=−→ A�
crys,a′(A). (74)

The homomorphisms κ�
a (a ∈ Sinf) are compatible with the action of ˜ΓA, the

homomorphisms ϕ, and (71). The set {a′ | a ∈ Sinf} is cofinal in Scrys because
ξ p = p!ξ[p] ∈ pAcrys(OK ). Hence they induce a homomorphism

κ : A�
inf(A) −→ A�

crys(A) (75)

compatible with the action of ˜ΓA and ϕ.
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Lemma 82 The homomorphism κ induces isomorphisms

Filr A�
inf(A)/I s A�

inf(A)
∼=−→ Filr A�

crys(A)/I s A�
crys(A) (r, s ∈ N, r ≤ s ≤ p − 1).

Proof It suffices to prove that A�
inf(A)/I r → A�

crys(A)/I r and A�
inf(A)/Filr →

A�
crys(A)/Filr (r ∈ N ∩ [0, p − 1]) are isomorphisms. These algebras are p-adically

complete and separated by Lemmas 80 (3) and 81. Hence, by using Lemmas 79 (2)

and81,weare reduced to showing A�
inf,ainf

(A)
∼=−→ A�

crys,acrys
(A) fora• = pm A•(OK ) +

I r A•(OK ) and a• = pm A•(OK ) + Filr A•(OK ) (m ∈ N>0). By (74), this follows

from Ainf,ainf (OK )
∼=−→ Acrys,acrys(OK ), which is an immediate consequence of (2). �

Lemma 83 For m ∈ N>0, (κ mod pm) : A�
inf(A)/pm → A�

crys(A)/pm is canoni-

cally isomorphic to the PD-envelope of A�
inf(A)/pm with respect to the kernel of

A�
inf(A)/pm → 1A/pm compatible with the PD-structure on pOK . Furthermore

Filr Acrys(OK )(A�
crys(A)/pm) (used in the definition of Filr A�

crys(A)) for r ∈ N>0

corresponds to the rth divided power of the divided power ideal of the PD-envelope.

Proof Let Dm be the PD-envelope considered in the lemma. By Lemma 79 (2), we
have A�

inf(A)/(pm, ξ) ∼= A�
inf,(pm ,ξ)(A) ∼= 1A/pm . Put am := pm Ainf(OK ) +

ξ pm Ainf(OK ). The image of ξ pm in Dm is zero because the image of ξ in Dm

is contained in the PD-ideal of Dm and pmDm = 0. Hence Dm is isomorphic to
the PD-envelope of A�

inf(A)/am A�
inf(A) ∼= A�

inf,am
(A) with respect to ξA�

inf,am
(A)

compatible with the PD-structure γ on pOK ([5, 3.20 Remarks (7)]). Similarly
Acrys(OK )/pm ∼= Acrys,m(OK ) is isomorphic to the PD-envelope of Ainf,am (OK )with
respect to
ξAinf,am (OK ) compatible with γ. Since Ainf,am (OK ) → A�

inf,am
(A) is flat, we obtain

a PD-isomorphism Dm
∼= A�

inf,am
(A) ⊗Ainf,am (OK ) Acrys(OK )/pm ([5, 3.21 Proposi-

tion]), whose right-hand side is isomorphic to A�
crys,(pm )(A) ∼= A�

crys(A)/pm by (74)
and Lemma 79 (1). �

Next we compare A�• (A) with A•(A∞). Let t i be the element (ti,n mod p)n∈N
of RA∞ . For a ∈ S•, let ιa,∞ : A•,a(OK )[U±1] → A•,a(A∞) be the homomorphism
induced by A•(OK ) → A•(A∞) and Ui �→ [t i ]. Then the square of the diagram
below is commutative because θ([t i ]) = limn→∞ t p

n

i,n = ti in ̂A∞, and there exists a
unique homomorphism ι�a,∞ : A�•,a(A) → A•,a(A∞) which makes the two triangles
commutative.

A•,a(A∞) A∞/p

A•,a(OK )[U±1]
ιa,∞

A�•,a(A)

ι�a,∞

(76)
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Here the right vertical homomorphism is the composition of A�•,a(A) → 1A/p →
A∞/p. For g ∈ ˜ΓA, the squares of the diagrams (76) for a and g(a) are compatible
with the action of g because g([t i ]) = [χ

i
(g)][t i ] by the definition of χ

i
(g). Hence

ι�a,∞ and ι�g(a),∞ are also compatible with the action of g. Similarly the diagrams

(76) for a and ϕ(a) are compatible with ϕ’s because ϕ([t i ]) = [t i ]p. Therefore ι�a,∞
and ι�ϕ(a),∞ are compatible with ϕ’s. For m ∈ N>0, ι�

(pm ,Fil1),∞ coincides with the
homomorphism 1A/pm → A∞/pm induced by the inclusion 1A ⊂ A∞. Since ιa,∞
(a ∈ S•) define a morphism of inverse systems of algebras indexed by S•, we see
that ι�a,∞ (a ∈ S•) define a morphism of inverse systems, whose inverse limit gives
an A•(OK )-algebra homomorphism

ι�∞ : A�
• (A) −→ A•(A∞) (77)

compatible with the action of ˜ΓA, Filr andϕ; the compatibility with Filr follows from
the fact that Filr is generated by ξr (resp. topologically generated by Filr Acrys(OK ))
if • = inf (resp. crys). Composing with the homomorphism A•(A∞) → A•(A)

induced by the inclusion map A∞ → A, we obtain a homomorphism

ι� : A�
• (A) −→ A•(A) (78)

compatible with the action of GA, Filr , and ϕ.
For r = ap−n ∈ Z[ 1p ] (a ∈ Z, n ∈ N), we define tri to be tai,n , which depends

only on r . For r = (r1, . . . , rd) ∈ Z[ 1p ]d , let tr denote the element (
∏

1≤i≤d t
p−nri
i

mod p)n∈N of RA∞ .

Lemma 84 For a ∈ Sinf , Ainf,a(A∞) is a free A�
inf,a(A)-module with a basis [tr ]

(r ∈ (Z[ 1p ] ∩ [0, 1[)d).

Proof Recall that we have A�
inf,a(A) = A�

inf(A)/aA�
inf(A) by Lemma 79 (2).

It suffices to prove the claim for a = (pm, ξn) (m, n ∈ N>0). If n = 1, we
have Ainf,a(A∞) ∼= A∞/pm and A�

inf,a(A) ∼= 1A/pm . Hence the claim follows
from Lemma 78. By Lemmas 80 (4) and 1 (4), ξ is regular on Ainf(A∞)/pm

and A�
inf(A)/pm . Hence we have exact sequences 0 → Ainf(A∞)/(pm, ξn)

ξ−→
Ainf(A∞)/(pm, ξn+1) → Ainf(A∞)/(pm, ξ) → 0 and 0 → A�

inf(A)/(pm, ξn)
ξ−→

A�
inf(A)/(pm, ξn+1) → A�

inf(A)/(pm, ξ) → 0. Therefore the claim for a general n
follows from that in the case n = 1 by induction on n. �

Corollary 85 (1) Let a ∈ Ainf(OK ) be the same as in Lemma 80, and let m ∈
N>0. Let a be one of the ideals (pm, a), (a), (pm), and (0) of Ainf(OK ). Then
the homomorphism A�

inf(A)/a → Ainf(A∞)/a induced by ι�∞ is injective. In
particular, ι�∞ : A�

inf(A) → Ainf(A∞) is strictly compatible with the filtrations
Filr and I r .
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(2) Let m, r ∈ N>0, and let a (resp. a′) be one of the ideals (pm), Filr , (pm,Filr ),
and (0) of A�

crys(A) (resp. Acrys(A∞)). Then the homomorphism A�
crys(A)/a →

Acrys(A∞)/a′ induced by ι�∞ is injective.

Proof (1) The claim for a = (pm, a) follows from Lemmas 84 and 79 (2) because
(pm, an) ∈ Sinf for n ∈ N>0 such that (a mod p)n ∈ pROK

. Then we obtain the

injectivity for a = (a) (resp. (pm), resp. (0)) from the fact that A�
inf(A)/a and

Ainf(A∞)/a are p (resp. a, resp. (p, a))-adically complete and separated by Lemmas
80 and 1.

(2) Since Acrys(A∞), Acrys(A∞)/Filr , A�
crys(A), and A�

crys(A)/Filr are p-torsion
free, and p-adically complete and separated (see Lemmas 79 (1) and 81 for the latter
two), it suffices to prove the claim for (p) and (p,Filr ). By the proof of Lemma
8, Acrys(A∞)/p (resp. (Acrys(A∞)/Filr )/p) is isomorphic to the scalar extension of
Ainf(A∞)/(p, ξ p)by Ainf(OK )/(p, ξ p) → Acrys(OK )/p (resp. (Acrys(OK )/Filr )/p).
An obvious analogue for A�

crys(A) and A�
inf(A) holds by (74), Lemmas 79, and 81.

Hence the claim follows from Lemma 84 for a = pAinf(OK ) + ξ p Ainf(OK ). �

Corollary 86 The actions of ˜ΓA on A�
inf(A) and A�

crys(A) are continuous.

Proof The claim immediately follows from Corollary 85 because the actions of ˜ΓA
on Ainf(A∞) and Acrys(A∞) are continuous (see Lemma 5 and the construction of
Acrys(Λ) in Sect. 2). �

In the following, we write [t i ] also for the image of Ui in A�
inf(A) and A�

crys(A).

If we forget the action of ˜ΓA, we have the following description of A�
inf,a(A)

(a ∈ Sinf). We have a commutative square of OK -algebras

A
αa

1A/p

OK [T±1]
Ti �→[t i ]

Ti �→ti

A�
inf,a(A).

(79)

Since the homomorphisms OK /pm[T±1] → A/pm (m ∈ N>0) are étale and the ker-
nel of the right vertical surjective homomorphism is nilpotent, there exists a unique
homomorphism of OK -algebras αa : A → A�

inf,a(A) such that the two triangles in
(79) are commutative. Since the image of [t i ] ∈ A�

inf(A) in A�
inf,(pm ,ξ)(A) = 1A/pm

is ti , the homomorphism α(pm ,ξ) is the canonical homomorphism A → 1A/pm . Let

α : A −→ A�
inf(A) (80)

be the inverse limit of αa (a ∈ Sinf).

Lemma 87 (1) Let ϕA : A → A be the unique lifting of the absolute Frobenius of
A/p compatiblewithσ : OK → OK such thatϕA(ti ) = t pi for all i ∈ N ∩ [1, d].
Then we have ϕ ◦ α = α ◦ ϕA.
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(2) For a ∈ Sinf , the homomorphism αa induces the following isomorphism of
Ainf,a(OK )-algebras.

A ⊗OK Ainf,a(OK )
∼=−→ A�

inf,a(A)

Proof (1) For a ∈ Sinf , the squares (79) for a and ϕ(a) are compatible with ϕA, the
absolute Frobenius of 1A/p,ϕ�

a : A�
inf,a(A) → A�

inf,ϕ(a)(A), and the endomorphism

of OK [T±1] defined by σ and Ti �→ T p
i . This implies ϕ�

a ◦ αa = αϕ(a) ◦ ϕA. We
obtain ϕ ◦ α = α ◦ ϕA by taking the inverse limit over a ∈ Sinf .

(2) The homomorphism in the claim is the unique homomorphism between two
étale liftings of OK /p[T±1] → 1A/p over Ainf,a(OK )[U±1]. Hence it is an isomor-
phism. �

By definition, A�
crys(A)/pm ∼= A�

crys,(pm )(A) (Lemma 79 (1)) is a smooth ring over
Acrys(OK )/pm with coordinates [t i ] (i ∈ N ∩ [1, d]). We define ΩA�

crys(A) to be the

inverse limit of Ω(A�
crys(A)/pm )/(Acrys(OK )/pm ) (m ∈ N), which is a free A�

crys(A)-module
with a basis d log[t i ] (i ∈ N ∩ [1, d]). By taking the inverse limit of the canoni-
cal derivation d : A�

crys(A)/pm → Ω(A�
crys(A)/pm )/(Acrys(OK )/pm ), we obtain a derivation

d : A�
crys(A) → ΩA�

crys(A). Let

α : A −→ A�
crys(A) (81)

denote the composition of α : A → A�
inf(A) (80) with κ : A�

inf(A) → A�
crys(A) (75).

By Lemma 87 and (74), we have isomorphisms of Acrys(OK )-algebras compatible
with ϕ

Acrys(OK )̂⊗OKA := lim←−
m

(Acrys(OK ) ⊗OK A)/pm (82)

∼= lim←−
m

Acrys,(pm )(OK ) ⊗Ainf,am (OK ) (Ainf,am (OK ) ⊗OK A)

∼= lim←−
m

Acrys,(pm )(OK ) ⊗Ainf,am (OK ) A
�
inf,am

(A)
∼=−→ A�

crys(A),

where am denotes the ideal of Ainf(OK ) generated by pm and [p]pm . The homo-
morphism α∗ : ΩA → ΩA�

crys(A) induced by (α mod pm) (m ∈ N) sends d log ti to
d log[t i ], and the following diagram is commutative.

A�
crys(A)

d
ΩA�

crys(A)

Acrys(OK )̂⊗OKA
id̂⊗d

(82) ∼=

Acrys(OK )̂⊗OKA ⊗A ΩA

(id⊗α∗)◦((82)⊗id)∼=

(83)
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We define derivations d log
i : A�

crys(A) → A�
crys(A) (i ∈ N ∩ [1, d]) by d(x) =

∑

1≤i≤d d
log
i (x) ⊗ d log[t i ] (x ∈ A�

crys(A)). We give a certain relation between the

derivation d log
i and the action of ΓA on A�

crys(A) (Proposition 91).

Lemma 88 The actions of ΓA on A�
inf(A)/π and on A�

crys(A)/π are trivial.

Proof Let g ∈ ΓA. We have [χ
i
(g)] ≡ 1 mod πAinf(OK ) for i ∈ N ∩ [1, d],

and the action of g on OK is trivial. Hence the actions of g on 1A/p,
OK /p[T±1] and Ainf,(pm ,π)(OK )[U±1] (m ∈ N) are trivial. This implies that
the action of g on A�

inf,(pm ,π)(A) is also trivial. By taking the inverse
limit over m ∈ N and using Lemma 80 (5), we see that the action of
g on A�

inf(A)/π is trivial. Let Fg,inf be the Ainf(OK )-linear endomorphism
π−1(g − 1) of A�

inf(A). Since A�
crys(A) ∼= lim←−m

Acrys,(pm )(OK ) ⊗Ainf,(pm ,[p]pm )(OK )

A�
inf,(pm ,[p]pm )(A) ∼= lim←−m

Acrys(OK )/pm ⊗Ainf (OK ) A�
inf(A) by (74) and Lemma 79

(2), Fg,inf induces an Acrys(OK )-linear endomorphism Fg,crys of A�
crys(A) satisfying

πFg,crys = g − 1. This completes the proof. �

Lemma 89 Let R be the subring Zp[T, T p−1

p , 1
p (

T p−1

p )p] of the polynomial ring

Qp[T ], and let ̂R be the p-adic completion lim←−n
R/pn R of R. We equip R and

̂R with the p-adic topology.

(1) We have (n!)−1T n−1 ∈ R for n ∈ N>0, and it converges to 0 as n → ∞.
(2) log(1 + T ) = ∑

n∈N>0
(−1)n−1n−1T n converges in ̂R and is contained in T ̂R.

(3) We have (1 + T )l = exp(l log(1 + T )) := ∑

n∈N(n!)−1ln(log(1 + T ))n in ̂R for
l ∈ N.

(4) We have log(1 + T ) ∈ T · ̂R×.
(5) We have p−n{(1 + T )p

n − 1} ∈ R (n ∈ N) and limn→∞ p−n{(1 + T )p
n − 1} =

log(1 + T ) in ̂R.

Proof (1) Put n − 1 = (p − 1)a + b (a, b ∈ N, b ∈ N ∩ [0, p − 2]). Then the claim
follows from (pa)−1T n−1 = (p−1T p−1)aT b ∈ Zp[T, T p−1

p ], vp(n!) ≤ n−1
p−1 , and

(p−1T p−1)n → 0 in ̂R as n → ∞.
(2) This immediately follows from (1).
(3) By (1) and (2), each term of the power series is contained in ̂R and the

sum converges in ̂R. For m ∈ N>0, let fm be the composition of the inclusion map
R ↪→ Qp[T ]with the projectionmapQp[T ] → Qp[T ]/(Tm). Then the image of fm
is a finitely generatedZp-module, which is p-adically complete and separated.Hence
it induces a homomorphism ̂fm : ̂R → Qp[T ]/(Tm). By taking the inverse limit over
m, we obtain an injective homomorphism ̂f : ̂R → Qp[[T ]]. Since the image of each
termof the power series

∑

n>0(−1)n−1n−1T n and
∑

n>0(n!)−1ln(log(1 + T ))n under
̂fm is 0 for n ≥ m, it suffices to prove the claim inQp[[T ]]with respect to the T -adic
topology, which is well-known.

(4) We have log(1 + T ) ∈ T ̂R by (2), and then the claim (1) implies that
∑

n>0(n!)−1(log(1 + T ))n−1 converges to an element of ̂R. By (3), we obtain T =
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exp(log(1 + T )) − 1 ∈ log(1 + T ) · ̂R. Hence log(1 + T ) ∈ T ̂R× because ̂R is an
integral domain.

(5) By (3), we have

p−m{(1 + T )p
m − 1} = log(1 + T ) + pm

∑

n≥2

pm(n−2)(n!)−1(log(1 + T ))n,

and, by (1) and (4), the infinite sum
∑

n≥2 in the right-hand side converges to an
element of ̂R. This implies the claim. �

Let ε = (εn)n∈N ∈ Zp(1)(OK ) and ε ∈ ROK
be as in the definition of π after (1),

and let t be the element log[ε] of Acrys(OK ).

Lemma 90 (1) For l ∈ Z, we have p−n([εpnl ] − 1) ∈ Acrys(OK ) (n ∈ N), and it
converges to l · t in Acrys(OK ) as n → ∞.

(2) We have π ∈ t · Acrys(OK )×.

Proof Let ̂R be as in Lemma 89. We have p−1([εl] − 1)p−1, (p!)−1(p−1([εl] −
1)p−1)p ∈ Acrys(OK ) because [εl] − 1 ∈ πAinf(OK ) and p−1π p−1 ∈ Fil1Acrys(OK )

([18, Lemma A3.1]). Hence we can define a continuous homomorphism κl : ̂R →
Acrys(OK ) by T �→ [εl ] − 1, and Lemma 89 (5) implies the claim (1). We obtain the
claim (2) from Lemma 89 (4) by using κ1. �

For i ∈ N ∩ [1, d], let γi be the element of ΓA characterized by γi (t j,n) = t j,n (if
j 	= i), εnti,n (if j = i) for all n ∈ N and j ∈ N ∩ [1, d]; the existence of γi follows
from Lemma 78.

Proposition 91 (1) For γ ∈ ΓA and x ∈ A�
crys(A), we have p−n(γ pn − 1)(x) ∈

A�
crys(A) and ∇γ(x) := limn→∞ p−n(γ pn − 1)(x) converges.

(2) We have ∇γi = td log
i for i ∈ N ∩ [1, d].

(3) For x ∈ A�
crys(A) and i ∈ N ∩ [1, d], we have (n!)−1(td log

i )n(x) ∈ A�
crys(A), and

exp(td log
i )(x) = ∑

n∈N(n!)−1(td log
i )n(x) converges to γi (x).

Proof Let R and ̂R be as in Lemma 89. By p−1π p−1, p−1(p−1π p−1)p ∈ Acrys(OK )

(see the proof of Lemma 90) and Lemma 88, we can define an action of R on A�
crys(A)

by T x = (γ − 1)(x). Since A�
crys(A) is p-adically complete and separated (Lemma

79 (1)), this action extends to an action of ̂R on A�
crys(A). Hence, by Lemma 89 (5),

the claim (1) holds and ∇γ coincides with the action of log(1 + T ). Then the first
(resp. second) claim in (3) follows from the claim (2) and Lemma 89 (1) and (4)
(resp. (3)).

It remains to prove (2). We see that ∇γ is an Acrys(OK )-linear derivation by
taking the limitm → ∞ of p−m(γ pm − 1)(x · y) = p−m(γ pm − 1)(x) · γ pm (y) + x ·
p−m(γ pm − 1)(y) for x, y ∈ A�

crys(A) and m ∈ N. Hence, by the universal property

of the canonical derivation of A�
crys(A)/pm over Acrys(OK )/pm for m ∈ N>0, there

exists a unique A�
crys(A)-linear homomorphism fγ : ΩA�

crys(A) → A�
crys(A) such that
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fγ ◦ d = ∇γ . When γ = γi , we have fγi (d[t j ]) = ∇γi ([t j ]) = 0 if j 	= i because
γi ([t j ]) = [t j ], and fγi (d[t i ]) = limn→∞ p−n([εpn ] − 1)[t i ] = t[t i ] by Lemma 90

(1). Hence ∇γi = td log
i . �

We can construct a period ring A �
crys(A) in the same way as Acrys(A) defined in

Sect. 2 using A�
crys(A) instead of Acrys(A) as follows. Let γ be the divided power

structure of the ideal pOK of OK . For m ∈ N>0, we define A �
crys,m(A) to be the

divided power envelope compatible with γ of (A�
inf(A) ⊗OK A)/pm with respect

to the kernel of the homomorphism to 1A/pm . Then one can define the action
of ˜ΓA on A �

crys,m(A) using its action on A�
crys(A), and the ˜ΓA-stable filtration

FilrA �
crys,m(A) (m ∈ N) using the divided power ideal of A �

crys,m(A) in the same

way as those for Acrys,m(A). We also have a natural ˜ΓA-equivariant derivation
∇ : A �

crys,m(A) → A �
crys,m(A) ⊗A ΩA compatible with the derivation d : A → ΩA.

It is integrable as a connection with respect to (A/pm)/(OK /pm) and satisfies
∇(FilrA �

crys,m(A)) ⊂ Filr−1A �
crys,m(A) ⊗A ΩA. The lifting of the absolute Frobe-

nius ϕA of A characterized by ϕA(ti ) = t pi and ϕ of A�
inf(A) induce a lifting of

the absolute Frobenius ϕ of A �
crys,m(A), which is compatible with ∇ and the ˜ΓA-

action and satisfies ϕ(FilrA �
crys,m(A)) ⊂ prA �

crys,m(A) for r ∈ N ∩ [0, p − 1]. Let
vi,m denote the image of [t i ] ⊗ t−1

i − 1 in Fil1A �
crys,m(A). Then, by Lemma 83, we

have an isomorphism of PD-algebras over A�
crys(A)/pm (cf. (4), (5))

A�
crys(A)/pm〈V1, V2, . . . Vd〉 ∼=−→ A �

crys,m(A) (84)

sending Vi to vi,m , via which FilrA �
crys,m(A) is isomorphic to the direct sum of

Filr−|n|A�
crys(A)/pm

∏

1≤i≤d V
[ni ]
i (n = (ni ) ∈ N

d ). Combining with Corollary 86,

we see that the action of ˜ΓA on A �
crys,m(A) is continuous. We define A �

crys(A) to

be the inverse limit of A �
crys,m(A) (m ∈ N>0), which is naturally endowed with a

continuous action of ˜ΓA, a decreasing filtration FilrA �
crys(A) (r ∈ Z), and a lifting of

the absolute Frobenius ϕ. Let vi denote the image of [t i ] ⊗ t−1
i − 1 in Fil1A �

crys(A).
We have the following analogue of Lemma 34 (1).

Lemma 92 The homomorphism α : A → A�
crys(A) (81) coincides with the compo-

sition α′ of the canonical homomorphism A → A �
crys(A) with the homomorphism

A �
crys(A) → A�

crys(A) over A�
crys(A) defined by v

[n]
i �→ 0 (i ∈ N ∩ [1, d], n ∈ N>0).

Proof For m ∈ N>0, we have a commutative square of OK /pm-algebras

A/pm 1A/p

OK /pm[T±1]
Ti �→[t i ]

Ti �→ti

A�
crys,(pm )(A).
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Since OK /pm[T±1] → A/pm is étale and the kernel of the right vertical surjective
homomorphism is a nilideal, there exists a unique dotted homomorphism making
the two triangles commutative. The reductions mod pm of α and α′ both satisfy the
condition and hence coincide. By taking lim←−m

, we obtain α = α′. �

The homomorphism ι� (78) for • = inf induces an A-PD-homomorphism
A �

crys,m(A) → Acrys,m(A) which is compatible with ι� for • = crys, Filr , ϕ, ∇, and
the actions of the Galois groups via GA → ˜ΓA. It is injective by (4), (84), Corollary
85 (2) and Lemma 8. By taking the inverse limit overm ∈ N>0, we obtain an injective
homomorphism

A �
crys(A) ↪→ Acrys(A) (85)

compatible with all structures. We obtain the following proposition from Proposition
62.

Proposition 93 We have A
∼=−→ A �

crys(A)
˜ΓA and Fil1A �

crys(A)
˜ΓA = 0.

13 A�
crys-Representations with ϕ and Fil

We keep the notation and the assumption in Sect. 12. As one can easily guess, one
can apply all the arguments in Sect. 5 with (B, s1, . . . , se) = (A, t1, . . . , td) and in
Sect. 8 toA �

crys(A), A�
crys(A) and A�

inf(A) except for those related to T ∗
crys as follows.

Let (M,Fil•M,∇, Φ) be an object of MF∇
[0,p−2],free(A, Φ) (Sect. 4). We fol-

low the notation introduced in the second and third paragraphs in Sect. 5. For m ∈
N>0, put D�

m := Spec(A�
crys(A)/pm) and 1Xm := Spec(1A/pm). By Lemma 83, the

closed immersions 1Xm ↪→ D�
m and 1X1 ↪→ D�

m are naturally regarded as objects of
CRYS(Xm/Σm) and CRYS(X1/Σm), respectively. By the proof of Lemma 83, the
PD-structure on Ker(A�

crys(A)/pm → 1A/p) is induced by that of Ker(Acrys(OK )/

pm → OK /p). Hence the endomorphismϕ of A�
crys(A)/pm is a PD-homomorphism

with respect to the PD-structure. Similarly to T Acrys,m(M) (23), we can define an
A�
crys(A)/pm-moduleT A�

crys,m(M)with a semilinear ˜ΓA-action, a ˜ΓA-equivariant fil-
tration Fil•, and a ˜ΓA-equivariant semilinear endomorphism ϕ by evaluatingFm and
Gm on the objects 1Xm ↪→ D�

m and 1X1 ↪→ D�
m of CRYS(Xm/Σm) and

CRYS(X1/Σm) as follows.

T A�
crys,m(M) := Γ (1Xm ↪→ D�

m ,Fm) ∼= Γ (1X1 ↪→ D�
m ,Gm) (86)

Let γ� be the PD-structure on the ideal p(A�
crys(A)/pm) + Fil1A�

crys(A)/pm of

A�
crys(A)/pm compatible with the PD-structures on pOK and Fil1A�

crys(A)/pm . Let

ιm denote the canonical homomorphismAm → A �
crys,m(A). Then, by using 1X1 ↪→

1Xm ↪→ D�
m , γ�, Xm ×Σm D�

m , and A �
crys,m(A) instead of X1 ↪→ Xm ↪→ Dm , γ,
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Ym ×Σm Dm , andAcrys,B,m(A), we obtain the following analogues of (29) and (30):
a ˜ΓA-equivariant A�

crys(A)/pm-linear filtered isomorphism compatible with ϕ

T A�
crys,m(M) ∼= (Mm ⊗Am ,ιm A �

crys,m(A))∇=0, (87)

and a ˜ΓA-equivariantA �
crys,m(A)-linear filtered isomorphism compatible with∇ and

ϕ

T A�
crys,m(M) ⊗A�

crys(A)/pm A �
crys,m(A)

∼=−→ Mm ⊗Am ,ιm A �
crys,m(A). (88)

Let αm be the reduction mod pm of the homomorphism α : A → A�
crys(A) (81),

which is compatible with ϕ by Lemma 87 (1). Then, by using αm instead of βm ,
we obtain the following analogues of (32) and (33): an A�

crys(A)/pm-linear filtered
isomorphism compatible with ϕ

T A�
crys,m(M) ∼= Mm ⊗Am ,αm A�

crys(A)/pm (89)

and an A �
crys,m(A)-linear filtered isomorphism compatible with ∇ and ϕ

c�
Mm

: Mm ⊗Am ,αm A �
crys,m(A)

∼=−→ Mm ⊗Am ,ιm A �
crys,m(A), (90)

which is obtained by combining (89) with (88), and is explicitly given by

c�
Mm

(x ⊗ 1) =
∑

n∈Nd

∇ log
n (x) ⊗ v[n]

m , (c�
Mm

)−1(x ⊗ 1) =
∑

n∈Nd

∇ log
n (x) ⊗ v′[n]

m (91)

for x ∈ Mm , where v′
i,m = [t i ]−1 ⊗ ti − 1 = (1 + vi,m)−1 − 1 ∈ A �

crys,m(A),

∇(x) = ∑

1≤i≤d ∇ log
i (x) ⊗ d log ti , ∇ log

n (x) = ∏

1≤i≤d

∏

0≤ j≤ni−1(∇ log
i − j), v[n]

m =
∏

1≤i≤d v
[ni ]
i,m , and v

′[n]
m = ∏

1≤i≤d v
′[ni ]
i,m for n = (ni )1≤i≤d ∈ N

d .
We define the A�

crys(A)-module T A�
crys(M) by

T A�
crys(M) := lim←−

m

T A�
crys,m(M),

which is naturally endowed with a semilinear action of ˜ΓA, a ˜ΓA-stable decreasing
filtration Filr (r ∈ Z) compatible with that of A�

crys(A), and a ˜ΓA-equivariant endo-
morphism ϕ compatible with ϕ of A�

crys(A). By taking the inverse limit of (89), we

obtain an A�
crys(A)-linear isomorphism compatible with ϕ

T A�
crys(M) ∼= M ⊗A,α A�

crys(A). (92)

Since M is finite filtered free of level [0, p − 2] (Definition 10 (3)), we see that the
product filtration on the right-hand side of (92) is the inverse limit of the product
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filtration on Mm ⊗Am ,αm A�
crys(A)/pm (m ∈ N>0), and therefore gives the filtration

on T A�
crys(M) via the isomorphism (92). This shows that T A�

crys(M) is a finite filtered

free module of level [0, p − 2] over the filtered ring A�
crys(A). Let ι denote the

canonical homomorphism A → A �
crys(A). By taking the inverse limit of (87) and

(88), we obtain a ˜ΓA-equivariant A�
crys(A)-linear filtered isomorphism compatible

with ϕ
T A�

crys(M) ∼= (M ⊗A,ι A
�
crys(A))∇=0, (93)

and see that it induces a ˜ΓA-equivariant A �
crys(A)-linear filtered isomorphism com-

patible with ∇ and ϕ

T A�
crys(M) ⊗A�

crys(A) A
�
crys(A)

∼=−→ M ⊗A,ι A
�
crys(A). (94)

By taking the inverse limit of (90),we see that (92) and (94) induce anA �
crys(A)-linear

filtered isomorphism compatible with ∇ and ϕ

c�
M : M ⊗A,α A �

crys(A)
∼=−→ M ⊗A,ι A

�
crys(A), (95)

which is explicitly given by

c�
M(x ⊗ 1) =

∑

n∈Nd

∇ log
n (x) ⊗ v[n], (c�

M)−1(x ⊗ 1) =
∑

n∈Nd

∇ log
n (x) ⊗ v′[n] (96)

for x ∈ M , where v′
i = (1 + vi )

−1 − 1 ∈ A �
crys(A), v[n] = ∏

1≤i≤d v
[ni ]
i , v′[n] =

∏

1≤i≤d v
′[ni ]
i , and the endomorphisms ∇ log

i and ∇ log
n of M are defined in the same

way as after (91).
Put A�

inf(A) := A�
inf(A)/I p−1A�

inf(A) ∼= A�
crys(A)/I p−1A�

crys(A) (Lemma 82).

The Frobenius endomorphism ϕ of A�
inf(A) induces an endomorphism of A�

inf(A),
which is also denoted by ϕ. It is compatible with ϕ of A�

crys(A) because so is the

homomorphism κ (75). For r ∈ Z with r ≤ p − 1, we define Filr A�
inf(A) to be the

image of Filr A�
inf(A) in A�

inf(A), which coincides with that of Filr A�
crys(A) (Lemma

82). The three quadruplets

(A�
crys(A), p,ϕ, (Filr A�

crys(A))r∈N∩[0,p−2]),

(A�
inf(A), q,ϕ, (Filr A�

inf(A))r∈N∩[0,p−2]), (97)

(A�
inf(A), p,ϕ, (Filr A�

inf(A))r∈N∩[0,p−2])

satisfy Condition 39 for a = p − 2 by Lemmas 79 (1), 80, the definition of Filr

on A�
inf(A) and A�

crys(A), ϕ(Filr Acrys(OK )) ⊂ pr Acrys(OK ) (r ∈ N ∩ [0, p − 2])
and Fil1Ainf(OK ) = q ′Ainf(OK ). We have ϕ−1(qr A�

inf(A)) = Filr A�
inf(A) (r ∈ N)

because the homomorphisms A�
inf(A)/qr → Ainf(A∞)/qr and A�

inf(A)/(q ′)r →
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Ainf(A∞)/(q ′)r are injective for r ∈ N by Corollary 85 (1). Hence we may apply
Lemma 46 to the second quadruplet and obtain an equivalence of categories

Mq
[0,p−2],free(A

�
inf(A),ϕ)

∼−→ MFq
[0,p−2],free(A

�
inf(A),ϕ), (98)

(M,ϕM) �→ (M,ϕM , (ϕ−1
M (qr M))r∈N∩[0,p−2]).

For the quadruplets (97), the homomorphisms A�
crys(A) → A�

inf(A), A�
inf(A) →

A�
inf(A) and A�

inf(A) → A�
crys(A) satisfy the conditions on κ assumed before (44) by

the definition of I p−1 for A�
crys(A) and A�

inf(A) and q = p(1 + π0
p ) ∈ p · Acrys(OK )×

as mentioned before (50)–(52). By applying the construction of (44) to these homo-
morphisms and taking the composition with (98), we obtain three functors

MFp
[0,p−2],free(A

�
crys(A),ϕ) −→ MFp

[0,p−2],free(A
�
inf(A),ϕ), (99)

Mq
[0,p−2],free(A

�
inf(A),ϕ) −→ MFp

[0,p−2],free(A
�
inf(A),ϕ), (100)

Mq
[0,p−2],free(A

�
inf(A),ϕ) −→ MFp

[0,p−2],free(A
�
crys(A),ϕ). (101)

The quadruplets (97) with the action of ˜ΓA on the underlying algebras satisfy the
conditions before Definition 48. We endow A�

crys(A), A�
inf(A) and A�

inf(A) with the
p (resp. (p, [p]), resp. p)-adic topology. Then the action of ˜ΓA on these rings are
continuous (Corollary 86), and we can apply Definition 53 to the quadruplets (97).
By applying Lemma 58 to the second one, we obtain an equivalence of categories

Mq,cont
[0,p−2],free(A

�
inf(A),ϕ, ˜ΓA)

∼−→ MFq,cont
[0,p−2],free(A

�
inf(A),ϕ, ˜ΓA), (102)

(M,ϕM , ρM) �→ (M,ϕM , (ϕ−1
M (qr M))r∈N∩[0,p−2], ρM).

The homomorphisms A�
crys(A) → A�

inf(A), A�
inf(A) → A�

inf(A) and A�
inf(A) →

A�
crys(A) are ˜ΓA-equivariant, and also continuous because the topology of A�

inf(A)

coincides with the (p,π p−1)-adic topology (Lemma 1 (1)) and [p]p = (−ξ + p)p ∈
pA�

crys(A). Hence by applying the construction of (47) to these homomorphisms and
taking the compositions with (102), we obtain the following three functors.

MFp,cont
[0,p−2],free(A

�
crys(A),ϕ, ˜ΓA) −→ MFp,cont

[0,p−2],free(A
�
inf(A),ϕ, ˜ΓA) (103)

Mq,cont
[0,p−2],free(A

�
inf(A),ϕ, ˜ΓA) −→ MFp,cont

[0,p−2],free(A
�
inf(A),ϕ, ˜ΓA) (104)

Mq,cont
[0,p−2],free(A

�
inf(A),ϕ, ˜ΓA) −→ MFp,cont

[0,p−2],free(A
�
crys(A),ϕ, ˜ΓA) (105)

Proposition 94 The functors (99)–(101) and (103)–(105) are equivalences of cate-
gories.
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Proof By Propositions 44, 56, and Remark 55 (2), it suffices to prove that the homo-
morphisms A�

crys(A) → A�
inf(A) and A�

inf(A) → A�
inf(A) satisfy Condition 54 for

a = p − 2. Note that the topology of A�
inf(A) coincides with the quotient of that

of either of A�
inf(A) and A�

crys(A). The conditions (ii-v) in (a) and (b) follow from
the definition of the filtrations I r and Filr and some fundamental properties already
mentioned; for the condition (v), we use ϕ(I p−1Acrys(OK )) ⊂ pp−1Acrys(OK ) and
ϕ(I p−1Ainf(OK )) ⊂ q p−1Ainf(OK ). We first verify the remaining conditions for
A�
crys(A). The condition (a)(i) follows from the following observation: A�

crys(A) is p-

adically complete and separated by Lemma 79 (1), and Fil1Acrys(OK ) · A�
crys(A)/p

is a nilideal of A�
crys(A)/p because the PD-ideal Fil1Acrys(OK )/p ∼= Fil1Acrys,1(OK )

of Acrys(OK )/p ∼= Acrys,1(OK ) is a nilideal. For the conditions (c-g), we are reduced
to showing that I p−1A�

crys(A) is p-adically complete and separated by the same argu-
ment as the proof of Proposition 59. By Lemma 3 (2), this follows from the fact that
A�
crys(A) and A�

crys(A)/I p−1A�
crys(A) are p-torsion free, and p-adically complete

and separated (Lemmas 79 (1) and 81). Let us verify the conditions (a)(i) and (c-g)
for A�

inf(A). By Lemma 80 (4), A�
inf(A) is π-adically complete and separated. This

implies the condition (a)(i). We can verify the conditions (c-g) in the same way as
the proof of Proposition 59 by using Lemma 80 instead of Lemma 1. �

We have T A�
crys(M)/pm

∼=−→ T A�
crys,m(M) by (89) and (92). By (87) and the same

argument as the proof of Proposition 60, we see that T A�
crys(M) is an object of

MFp,cont
[0,p−2],free(A�

crys(A),ϕ, ˜ΓA). Furthermore, combining (94) with Proposition 93,
we obtain the following proposition in the same way as the proof of Proposition 61.

Proposition 95 The following functor is fully faithful.

T A�
crys : MF∇

[0,p−2],free(A, Φ) −→ MFp,cont
[0,p−2],free(A

�
crys(A),ϕ, ˜ΓA)

By comparing (94) with (39) for B = A via the homomorphism (85) and using
Acrys(A)∇=0 = Acrys(A) (9), we obtain the following canonical isomorphism in
MFp,cont

[0,p−2],free(Acrys(A),ϕ,GA) functorial in M .

T A�
crys(M) ⊗A�

crys(A),ι� Acrys(A)
∼=−→ T Acrys(M) (106)

We define the functor

T A�
inf : MF∇

[0,p−2],free(A, Φ) −→ Mq,cont
[0,p−2],free(A

�
inf(A),ϕ, ˜ΓA)

to be the composition of T A�
crys, and a quasi-inverse of (105) (see Proposition 94).

By Proposition 95, we obtain the following.
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Theorem 96 The functor T A�
inf is fully faithful.

We also obtain the canonical isomorphism

T A�
inf(M) ⊗A�

inf (A) Ainf(A)
∼=−→ T Ainf(M) (107)

in the category Mq,cont
[0,p−2],free(Ainf(A),ϕ,GA) functorial in M .

One can show the following analogue of Lemma 64 by the same argument using
Lemma 92.

Lemma 97 (1) Thehomomorphismα : A → A�
inf(A)/I 1A�

inf(A) inducedbyα (80)
is ˜ΓA-equivariant.

(2) The following isomorphism induced by (92) is ˜ΓA-equivariant.

M ⊗A,α A�
inf(A)/I 1A�

inf(A) ∼= T A�
inf(M) ⊗A�

inf (A) A
�
inf(A)/I 1A�

inf(A)

Lemma 98 The actions of ΓA on T A�
inf(M)/π and T A�

crys(M)/π are trivial.

Proof This follows from Lemmas 88 and 97 (2). �

14 Preliminaries on Décalage Functor and Continuous
Group Cohomology

In this section, we summarize basic facts on a slightmodification Lη+
I of the décalage

functor LηI introduced in [7, Sect. 6] and an interpretation of continuous group
cohomology of semilinear representations into the language of topos. Every complex
towhichwe apply the functor Lη+

I in later sections has the same image under LηI and
Lη+

I by the I-torsion freeness of H 0 and the vanishing of Hq (q < 0). Therefore this
modification is not crucial for our discussions. We introduce Lη+

I simply because
it admits a natural functor Lη+

I → Lη+
I ′ when I ⊂ I ′ (cf. Lemma 102) and it is

convenient for dealing with Frobenius structures. In the rest of this paper, we choose
and fix a universe U such that the underlying set of the field K is a U-set, and a topos
means a U-topos. Note that the underlying sets of the groups GK and GA are U-sets.

Let f : (E ′,O′) → (E,O) be a morphism of ringed topos. Then the direct image
functor f∗ : Mod(E ′,O′) → Mod(E,O) and the inverse image functor
f ∗ : Mod(E,O) → Mod(E ′,O′) have a right derived functor R f∗ : D(E ′,O′) →
D(E,O) and a left derived functor L f ∗ : D(E,O) → D(E ′,O′), respectively, and
L f ∗ is canonically regarded as a left adjoint of R f∗ (cf. [1, Tag07A5]). Following
[7, Sect. 6.1], we say that a complex F• of O-modules on a ringed topos (E,O) is
strongly K-flat if Fq is a flat O-module for every q ∈ Z and for every acyclic com-
plex of O-modules G•, the total complex Tot(F• ⊗O G•) is acyclic. For a strongly
K -flat complex of O-modules F•, we have an isomorphism L f ∗(F•)

∼=−→ f ∗(F•).
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For a complex of O-modules F•, there exists a quasi-isomorphism G• → F• such
that f ∗(G•) is strongly K -flat for every f as above.

Let (E,O) be a ringed topos, let I be an ideal ofO, and suppose that there exists
a conservative family P of points of E such that for every p ∈ P , p−1(I) is gener-
ated by a regular element of p−1(O). For a complex of O-modules F•, we define

a subcomplex η+
IF• of F• by η+

IFq = Fq (q < 0) and η+
IFq = Ker(IqFq

dqF•−−→
Fq+1/Iq+1Fq) (q≥0). This constructiondefines a functorη+

I : K (E,O)→K (E,O);
a homotopy between two morphisms of complexes of O-modules gives a homo-
topy after taking η+

I . The inclusion morphism η+
IF• ↪→ F• induces Hq(η+

IF•) =
Hq(F•) forq ≤ 0. For an integerq ≥ 1, the equality Zq(IqF•) = Zq(η+

IF•) induces
a surjective homomorphism

Hq(IqF•) −→ Hq(η+
IF•) (108)

because IqFq−1 ⊂ (η+
IF)q−1.

Lemma 99 ([7, Lemma 6.4])

(1) Let F• be a complex of O-modules, let q be a positive integer and assume that
the morphism I ⊗O Fq → Fq is a monomorphism. Then the homomorphism
(108) induces an isomorphism

Hq(IqF•)/(Hq(IqF•)[I]) ∼=−→ Hq(η+
IF•).

(2) Let f : F•
1 → F•

2 be a quasi-isomorphism of complexes of O-modules. If the
morphisms I ⊗O Fq

ν → Fq
ν (ν ∈ {1, 2}, q ∈ N ∩ [1,∞[) are injective, then the

morphism η+
I f is also a quasi-isomorphism.

Proof By taking the inverse image by each point p ∈ P , we are reduced to the case
E is the topos of U-sets and I is an ideal of a ringO generated by a regular element.
Then it is straightforward to verify the claims. �

Let L be a full subcategory of K (E,O) consisting of strongly K -flat complexes.
Then L forms a triangulated subcategory of K (E,O) (cf. [1, Tag06YL]). Since every
complex of O-modules F• has a quasi-isomorphism G• → F• from a strongly K -
flat complex, the functor LQis → D(E,O) is an equivalence between triangulated
categories, where Qis denotes the set of quasi-isomorphisms in L . LetU be a quasi-
inverse. By Lemma 99 (2), the functor η+

I induces a functor η+
I : LQis → D(E,O).

We define the functor
Lη+

I : D(E,O) → D(E,O) (109)

to be the composition η+
I ◦U .

Lemma 100 (1) There exists a canonical morphism of functors

ξ : Lη+
I ◦ Q → Q ◦ η+

I
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such that ξ(F•) is an isomorphism for every objectF• of L. Here Q denotes the
canonical functor K (E,O) → D(E,O). Furthermore the pair (Lη+

I , ξ) with
the above property is unique up to unique isomorphisms.

(2) For a complex ofO-modules F• such that I ⊗O Fq → Fq is a monomorphism
for every positive integer q, the morphism ξ(F•) is an isomorphism.

Proof (1) LetF• ∈ K (E,O), and define G• ∈ L byUQ(F•) = G•. Then we have
a canonical isomorphism Q(F•)

∼=−→ Q(G•) in D(E,O). Choose its presentation
F• ∼←− H• ∼−→ G•,H• ∈ L in K (E,O). Then by Lemma 99 (2), we obtain mor-

phisms Lη+
I Q(F•) = η+

IG• = Qη+
I (G•)

∼=←− Qη+
I (H•) → Qη+

I (F•). We also
see that the last morphism is an isomorphism ifF• belongs to L . One can verify
that the composition of the above morphisms is independent of the choice of the
presentation, and functorial in F•. The last claim on the uniqueness of (Lη+

I , ξ)

immediately follows from the equivalence LQis
∼−→ D(E,O).

(2) This is an immediate consequence of Lemma 99 (2). �

Let F• ∈ D(E,O). For q ∈ N, the exact sequence 0 → Iq+1/Iq+2 →
Iq/Iq+2 → Iq/Iq+1 → 0 induces a distinguished triangle Iq+1/Iq+2 ⊗L

O F• →
Iq/Iq+2 ⊗L

O F• → Iq/Iq+1 ⊗L
O F• +1−→ in D(E,O), and then a morphism

Bockq : Hq(Iq/Iq+1 ⊗L
O F•) → Hq+1(Iq+1/Iq+2 ⊗L

O F•). We have Bockq+1 ◦
Bockq = 0 for q ∈ N. We define the complex of O-modules Bock+(F•) con-
centrated in degree ≥ 0 by Bock+(F)q = Hq(Iq/Iq+1 ⊗L

O F•) and dq
Bock+(F)

=
Bockq for q ∈ N. This construction is functorial in F• and gives a functor
Bock+ : D(E,O) → C(E,O/I).

Proposition 101 (1) Let F• be a complex of O-modules. If I ⊗O Fq → Fq is
injective for every integer q ≥ −1, themorphisms η+

IFq → Zq(IqF•/Iq+1F•)
(q ∈ N) defined by η+

IFq ⊂ IqFq induce a quasi-isomorphism of complexes of
O-modules

τ≥0(O/I ⊗O η+
I K

•) ∼−→ Bock+(F•).

(2) We have the following canonical isomorphism of functors from D(E,O) to
D(E,O/I).

τ≥0(O/I ⊗L
O Lη+

I (−))
∼=−→ Bock+(−)

(3) For F• ∈ D(E,O) such that H 0(F•) is I-torsion free and Hq(F•) = 0 for
every integerq < 0, the canonicalmorphismO/I ⊗L

O Lη+
I (F) → τ≥0(O/I ⊗L

O
Lη+

I (F)) is a quasi-isomorphism.

Proof (1) It is obvious that we obtain a morphism of sheaves O/I ⊗O (η+
IF)q →

Hq(Iq/Iq+1 ⊗O F•) for each q ∈ N. To show that it induces the desired quasi-
isomorphism, we may take the stalk at each p ∈ P , and assume that E is the topos
of U-sets and I is generated by a regular element a. By [7, Proposition 6.12], we
obtain a morphism of complexes which is a quasi-isomorphism in degree ≥ 1. For
q ∈ N, we have
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O/I ⊗O (η+
IF)q ∼= {aqFq ∩ d−1(aq+1Fq+1)}/{aq+1Fq ∩ d−1(aq+2Fq+1)},

Hq(Iq/Iq+1 ⊗O F•) ∼= {aqFq ∩ d−1(aq+1Fq+1)}/{aq+1Fq + d(aqFq−1)}.

Using this description, we obtain

H 0(O/I ⊗O η+
IF•) ∼= {d−1(a2F1)}/{(aF0 ∩ d−1(a2F1)) + d(F−1)},

Ker(Bock0) ∼= {aF0 + d−1(a2F1)}/{aF0 + d(F−1)}.

This shows the quasi-isomorphism in degree 0 because d(F−1) ⊂ d−1(a2F1).
(2) Let F• ∈ D(E,O). By choosing a quasi-isomorphism G• → F• from a

strongly K -flat complex, we obtain quasi-isomorphisms τ≥0(O/I ⊗L Lη+
IF•) ∼←−

τ≥0(O/I ⊗L Lη+
IG•) ∼−→ τ≥0(O/I ⊗O η+

I G•) ∼−→ Bock+(G•) ∼−→ Bock+(F•). It is
straightforward to verify that the composition of them is independent of the choice
of G• → F•, and functorial in F•.

(3) Put G• := Lη+
IF•. Then we have Hq(G•) = Hq(F•) and Hq(I ⊗L

O G•) ∼=
I ⊗O Hq(G•) for q ≤ 0. Hence we see that Hq(O/I ⊗L

O G•) = 0 for q < 0 by

using the distinguished triangle I ⊗L
O G• → G• → O/I ⊗L

O G• +→. �

Lemma 102 Let f : (E ′,O′) → (E,O) be a morphism of ringed topos, and let I ′
be an ideal of O′ such that the image of f −1(I) → O′ is contained in I ′ and that
the pair (O′, I ′) satisfies the same condition as (O, I).

(1) There exists a morphism of functors

α : L f ∗ ◦ Lη+
I → Lη+

I ′ ◦ L f ∗

determined by the following property: For every strongly K -flat complex F•
of O-modules such that f ∗(F•) is also a strongly K -flat complex, α(F•)
coincides with the composition of L f ∗Lη+

IF• → f ∗η+
IF• → η+

I ′ f ∗(F•)
∼=←−

Lη+
I ′L f ∗(F•), where themiddlemorphism is inducedby themorphism f ∗η+

IF• →
f ∗F•. If f is flat and I ′ is generated by the image of f −1(I)

→ O′, then the morphism α is an isomorphism.
(2) Assume that the functor f∗ : Mod(E ′,O′) → Mod(E,O) is exact. Then there

exists a morphism of functors

β : Lη+
I ◦ f∗ → f∗ ◦ Lη+

I ′

determined by the following property: For every strongly K -flat complex of O′-
modulesF•, β(F•) coincides with the composition of Lη+

I f∗F• → η+
I f∗F• →

f∗η+
I ′F• ∼=←− f∗Lη+

I ′F•. If E = E ′, the morphism of topos underlying f is the
identity functor, and I ′ = IO′, then the morphism β is an isomorphism.

Proof (1) Let L (resp. L ′) be the full subcategory of K (E,O) (resp. K (E ′,O′)) con-
sisting of strongly K -flat complexes F• with f ∗(F•) also strongly K -flat
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(resp. strongly K -flat complexes). Let f ∗
L ,L ′ , η+

I,L , and η+
I ′,L ′ denote the functors L →

L ′, L → K (E,O), and L ′ → K (E ′,O′) induced by the functors f ∗, η+
I and η+

I ′ for
complexes. Then we are reduced to constructing a morphism f ∗η+

I,L → η+
I ′,L ′ f ∗

L ,L ′ .
For F• ∈ L , we see that the morphism f −1(F•) → f ∗F• induces a morphism
between subcomplexes f −1(η+

IF•) → η+
I ′ f ∗F•, and then f ∗η+

IF• → η+
I ′ f ∗F• in

C+(E ′,O′). We further see that this is an isomorphism under the assumption in the
last claim.

(2) Let L ′ be the full subcategory of K (E ′,O′) consisting of K -flat complexes.
By Lemma 100, it suffices to construct a morphism γ from the composition of

L ′ f∗−→ K (E,O)
η+
I−→ K (E,O) to the composition of L ′ η+

I′−→ K (E ′,O′)
f∗−→ K (E,O)

and show that γ is an isomorphism under the assumption in the last claim. Note that
I ⊗O f∗F• → f∗F• (F• ∈ L ′) is injective under the assumption in the last claim.
For F• ∈ L ′, we have Iq f∗Fq ⊂ f∗(I ′qFq) in f∗Fq for each q, and it implies
η+
I f∗F• ⊂ f∗η+

I ′F• in f∗F•. The two subcomplexes coincide under the assumption
in the last claim. �

Next we discuss continuous group cohomology of semilinear representations. For
an ordered setΛ and a categoryC , letCΛ denote the category Func(Λ,C) of functors
from Λ to C , where we regard Λ as a category whose object is an element of Λ and
�HomΛ(a, b) = 1 if b ≥ a and 0 otherwise. For example, CN

◦
is the category of

inverse systems of objects of C indexed by N, and CN is the category of inductive
systems of objects of C indexed by N. For a topos E , we have a morphism of topos

l←−: EN
◦ → E

defined by l←−∗((Fn)n∈N) = lim←−n∈N Fn and l←−∗(G) = (G id←− G id←− G id←− · · · ), and a
morphism of topos

l−→: E → EN

defined by l−→∗(F) = (F id−→ F id−→ F id−→ · · · ) and l−→∗((Gn)n∈N) = lim−→n
Gn .

For a profinite group (resp. group) G whose underlying set is a U-set, let G-Sets
be the category of U-sets with discrete topology endowed with a continuous action
of G (resp. U-sets with an action of G). Then the category G-Sets is a U-topos.
For a closed normal subgroup (resp. a normal subgroup) N of G and the quotient
H = G/N , we have a morphism of topos

invN : G-Sets → H -Sets

defined by invN∗(F) = F N := {x ∈ F | g(x) = x for all g ∈ N } and inv∗
N (G) =

(G with the action of G via G → H ).
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For a profinite groupG, letG denote the underlying abstract group. Then we have
a morphism of topos

ι : G-Sets → G-Sets

defined by ι∗F = F cont and ι∗G = G, whereF cont denotes the subset ofF consisting
of elements invariant by an open subgroup of G.

LetG be a profinite group, let N be a closed normal subgroup ofG, and let H be the
quotient G/N . Let R, S, and S be commutative ring objects of G-SetsN

◦
, H -SetsN

◦

and H -Sets. For example, R = (Rn)n∈N is an inverse system of commutative rings
Rn with continuous action of G indexed by n ∈ N. Assume that we are given the
following extensions of themorphisms of topos invN

◦
N and l←− to those of ringed topos.

invN
◦

N : (G-SetsN
◦
, R) → (H -SetsN

◦
, S), l←−: (H -SetsN

◦
, S) → (H -Sets, S),

i.e. H -equivariant ring homomorphisms (Sn)n∈N → (RN
n )n∈N and S → lim←−n

Sn .
Under this setting, we define the functor

RΓ (N ,−) : D(G-SetsN
◦
, R) −→ D(H -Sets, S) (110)

to be the composition of

D(G-SetsN
◦
, R)

R invN
◦

N∗−−−−→ D(H -SetsN
◦
, S)

ιN
◦∗−−→ D(H -SetsN

◦
, S)

R l←−∗−−→ D(H -Sets, S). (111)

One can compute the underlying complex of the image of a complex bounded below
under RΓ (N ,−) by first restricting the action ofG to N and then taking RΓ (N ,−),
as follows, and similarly for the composition of RΓ (N ,−) with a décalage functor.

Lemma 103 (1) The following diagram is commutative up to canonical isomor-
phisms, where the left vertical functor is induced by the functor restricting the
action of G to N, the remaining three vertical functors are induced by the functors
forgetting the action of H, and we abbreviate Sets to S.

D+(G-SN
◦
, R)

R invN
◦

N∗

F

D+(H-SN
◦
, S)

ιN
◦∗

F

D+(H-SN
◦
, S)

R l←−∗

F

D+(H-S, S)

F

D+(N-SN
◦
, R)

R invN
◦

N∗
D+(SN

◦
, S) D+(SN

◦
, S)

R l←−∗
D+(S, S)

(2) Let I be an ideal of S generated by a regular element after forgetting the action of
H. Then the following diagram is commutative up to a canonical isomorphism.
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D(H-Sets, S)

F

Lη+
I D(H-Sets, S)

F

D(Sets, S)
Lη+

I
D(Sets, S)

Proof (1) By the universal property of derived functors, we obtain a morphism
F ◦ RinvN

◦
N∗ → RinvN

◦
N∗ ◦ F . By [3, Vbis Corollaire (1.13.12)], the nth component of

RinvN
◦

N∗ is given by RinvN∗ for Sn and Rn . Hence the proof for the left-square is
reduced to the case without N◦, where the claim is well-known (e.g. [2, Proposition
V.11.5]). The claim for the middle square is obvious. For the right square, it suf-
fices to prove that, for every injective object F of Mod(H -Sets, S), the transition
morphisms Fn+1 → Fn (n ∈ N) are split surjective. Let n ∈ N. Let G (resp.H) be
the object of Mod(H -Sets, S) obtained from F by replacing Fm (m > n) with 0
(resp. Fm (m > n + 1) and Fn+1 with 0 and Fn). We define the transition morphism
Hn+1 → Hn to be the identity. Then we have monomorphisms i : G → H and
j : G → F defined by the identity morphisms and 0 maps. Since F is injective,
there exists a morphism k : H → F such that k ◦ i = j , and then we see that the
composition of kn+1 : Hn+1 = Fn → Fn+1 and the transitionmorphismFn+1 → Fn

is the identity.
(2) The forgetful functor H -Sets → Sets is exact and has the right adjoint send-

ing X to Map(H , X) with the left H -action defined by (h f )(−) = f (−h) ( f ∈
Map(H , X), h ∈ H). Hence the claim follows from Lemma 102 (1). �

Corollary 104 LetF•
 be a complex of R-modules bounded belowonG-SetsN

◦
such

that the transition map Fq
n+1 → Fq

n is surjective for every n ∈ N and q ∈ Z. Then
the image of RΓ (N ,F•

 ) under the forgetful functor F : D+(H-Sets) → D+(Sets)
is canonically isomorphic to Tot(C•

cont(N ,F•)), where C•
cont(N ,−) denotes the con-

tinuous inhomogeneous cochain complex and F• denotes the inverse limit of F•
n

(n ∈ N) equipped with the inverse limit of the discrete topologies.

Assume that we have the following commutative diagrams of ringed topos such
that the underlyingmorphisms of topos of the vertical arrows are the identity functors
and the morphism g is induced by g.

(G-SetsN
◦
, R′

)
invN

◦
N

f

(H -SetsN
◦
, S′

)

g

(G-SetsN
◦
, R)

invN
◦

N
(H -SetsN

◦
, S),

(H -SetsN
◦
, S′

)
l←−

g

(H -Sets, S′)

h

(H -SetsN
◦
, S)

l←−
(H -Sets, S)

(112)
Then we have the following three morphisms of functors denoted by ⇒ in the

diagram; the middle one is the base change morphism; we abbreviate Sets to S.
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D(G-SN
◦
, R′

)
R invN

◦
N∗

f∗

D(H -SN
◦
, S′

)
ιN

◦∗

g∗

D(H -SN
◦
, S′

)
R l←−∗

g∗

D(H -S, S′)

h∗

D(G-SN
◦
, R)

R invN
◦

N∗

∼

D(H -SN
◦
, S)

ιN
◦∗

D(H -SN
◦
, S)

R l←−∗

∼

D(H -S, S)

By composing the three morphisms, we obtain the following morphism of functors
from D(G-SetsN

◦
, R′

) to D(H -Sets, S).

RΓ (N ,−) ◦ f∗ −→ h∗ ◦ RΓ (N ,−) (113)

Assume further that we are given ideals I ⊂ S and I ′ ⊂ S′ each of which is generated
by a regular element if we forget the action of H , such that I S′ ⊂ I ′. Then by
combining (113) with Lemma 102 (2), we obtain the followingmorphism of functors
from D(G-SetsN

◦
, R′

) to D(H -Sets, S).

Lη+
I ◦ RΓ (N ,−) ◦ f∗ −→ h∗ ◦ Lη+

I ′ ◦ RΓ (N ,−) (114)

Similarly we have the following three morphisms of functors denoted by ⇒ in
the diagram; the left and right ones are the base change morphisms.

D(G-SN
◦
, R)

R invN
◦

N∗

L f ∗

D(H -SN
◦
, S)

ιN
◦∗

Lg∗

D(H -SN
◦
, S)

R l←−∗

Lg∗∼
D(H -S, S)

Lh∗

D(G-SN
◦
, R′

)
R invN

◦
N∗

D(H -SN
◦
, S′

)
ιN

◦∗
D(H -SN

◦
, S′

)
R l←−∗

D(H -S, S′)

Composing these three morphisms and then using Lemma 102 (1), we obtain the
following morphism of functors from D(G-SetsN

◦
, R) to D(H -Sets, S′).

Lh∗ ◦ Lη+
I ◦ RΓ (N ,−) −→ Lη+

I ′ ◦ RΓ (N ,−) ◦ L f ∗ (115)

Lemma 105 Suppose that we are given a compatible system of morphisms of ringed
toposϕ from the diagram (112) to itself whose underlying morphisms of topos are the
identity functors, and ideals ˜I ⊂ S and ˜I ′ ⊂ S′ satisfying the same conditions as I
and I ′ such that the images of I and I ′ under S → ϕ∗S and S′ → ϕ∗S′ are contained
in ϕ∗˜I and ϕ∗˜I ′, respectively. Then the base change morphisms L f ∗ ◦ ϕ∗ → ϕ∗ ◦
L f ∗ and Lh∗ ◦ ϕ∗ → ϕ∗ ◦ Lh∗ are compatible with (115) for f and h, and (114)
for ϕ’s, i.e., the following diagram is commutative up to a canonical isomorphism.
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Lh∗ ◦ Lη+
I ◦ RΓ (N ,−) ◦ ϕ∗ Lη+

I ′ ◦ RΓ (N ,−) ◦ L f ∗ ◦ ϕ∗

Lh∗ ◦ ϕ∗ ◦ Lη+
˜I

◦ RΓ (N ,−) Lη+
I ′ ◦ RΓ (N ,−) ◦ ϕ∗ ◦ L f ∗

ϕ∗ ◦ Lh∗ ◦ Lη+
˜I

◦ RΓ (N ,−) ϕ∗ ◦ Lη+
˜I ′ ◦ RΓ (N ,−) ◦ L f ∗

Proof The compatibility with RΓ (N ,−) follows from the compatibility of base
change morphisms for commutative squares of ringed topos with compositions of
direct image functors and with those of inverse image functors. The compatibility
with Lη+

J (J = I, I ′, ˜I , ˜I ′) is reduced to the same claim concerning the correspond-
ing functors for sheaves because the morphism ϕ∗ ◦ Lη+

˜I ′ ◦ Lh∗K • → ϕ∗ ◦ η+
˜I ′ ◦

h∗K • is a quasi-isomorphism for a strongly K -flat complex on D(H -Sets, S). �

15 Galois Cohomology of Ainf -Representations
and de Rham Complexes

Let ΔA denote Gal(Kur/KK), and let M be an object of MF∇
[0,p−2],free(A, Φ).

In this section, we study the relation between the twisted Galois cohomology
Lη+

π RΓ (ΔA, T Ainf(M)) and the de Rham complex of M by using the almost purity
theorem by Faltings. We choose and fix a framing � : OK [T±1

1 , . . . , T±1
d ] → A.

The computation of the twisted Galois cohomology in this section is done via the
twisted Galois cohomology of T A�

inf(M) (Sect. 13) (following the idea in [7, Sects.
9, 12.1]), and therefore, the construction of the comparison isomorphisms (125) and
(126) with de Rham complexes given in this section heavily depends on the choice
of the framing �. In later sections, we will give alternative ways to construct the
comparison maps by using the period rings Acrys,B(A); the construction is different
from [7, Sect. 12.2].

For an object M• of K (GK -Sets, Ainf(OK )) or K (Ainf(OK )-Mod)
(resp. D(GK -Sets, Ainf(OK )) or D(Ainf(OK )-Mod)), we write η+

π M•

(resp. Lη+
π M•) for η+

πAinf (OK )M• (resp. Lη+
πAinf (OK )M•) (Sect. 14) in the following.

Let Sinf,G be the subset of Sinf (Sect. 12) consisting of GK -invariant ideals,
which is cofinal in Sinf . For a ∈ Sinf,G, put Ainf,a(A) := Ainf(A)/a (Sect. 12) and
T Ainf,a(M) := T Ainf(M)/a, each of which has a natural action of GA, and also a
Frobenius endomorphism ϕ if ϕ(a) ⊂ a. Let (an)n∈N be a decreasing sequence in
Sinf,G which forms a fundamental system of open neighborhoods of 0 in Ainf(OK ).
Then we obtain a ring object Ainf,a

(A) on GA-SetsN
◦
and an Ainf,a

(A)-module
T Ainf,a

(M) on GA-SetsN
◦
. We define the object RΓ (ΔA, T Ainf(M)) of

D(GK -Sets, Ainf(OK )) to be the image of T Ainf,a
(M) under the functor (Sect. 14)

RΓ (ΔA,−) : D(GA-SetsN
◦
, Ainf,a

(A)) −→ D(GK -Sets, Ainf(OK )).
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By Corollary 104, we have a canonical isomorphism

RΓ (ΔA, T Ainf(M)) ∼= C•
cont(ΔA, T Ainf(M))

in D(Ainf(OK )-Mod). This implies that the definition of RΓ (ΔA, T Ainf(M)) above
is independent of the choice of (an)n∈N. Choose (an)n∈N such that ϕ(an) ⊂ an
for every n ∈ N (e.g. an = (p, [p])n+1). Then ϕ on Ainf,an (A) (n ∈ N) defines a

morphism of ringed topos ϕ : (GA-SetsN
◦
, Ainf,a

(A)) → (GA-SetsN
◦
, Ainf,a

(A)),
and ϕ of T Ainf,an (M) for each n ∈ N gives a morphism of Ainf,a

(A)-modules
T Ainf,a

(M) → ϕ∗(T Ainf,a
(M))onGA-SetsN

◦
.Using (113),weobtain amorphism

in D(GK -Sets, Ainf(OK ))

ϕ : RΓ (ΔA, T Ainf(M)) −→ ϕ∗RΓ (ΔA, T Ainf(M)),

where the morphism of ringed topos ϕ from (GK -Sets, Ainf(OK )) to itself is defined
by ϕ of Ainf(OK ). We define RΓ (ΔA, Tcrys(M) ⊗Zp Ainf(A)) with ϕ in the same
way. Then we immediately obtain the following claim from Theorem 70.

Theorem 106 We have a canonical isomorphism in D(GK -Sets, Ainf(OK )[ 1
π
])

(Lπη
+RΓ (ΔA, T Ainf(M)))[ 1

π
] ∼=−→ RΓ (ΔA, Tcrys(M) ⊗Zp Ainf(A))[ 1

π
]

which is functorial in M, where [ 1
π
] means ⊗L

Ainf (OK )Ainf(OK )[ 1
π
].

Let 1A, K∞, ti,n , ˜ΓA, χi , χ
i
and A∞ be as in the beginning of Sect. 12, and let

ΓA beGal(K∞/KK). By Lemma 78, we have an isomorphismΓA
∼=−→ ∏

1≤i≤d Zp(1)
defined by γ �→ (χi (γ))i . Recall that we have a ˜ΓA-equivariant homomorphism (77)
ι�∞ : A�

inf(A) → Ainf(A∞) compatible with ϕ and Filr .
WedefineT ˜A�

inf(M) to beT A�
inf(M) ⊗A�

inf (A) Ainf(A∞),which is a free Ainf(A∞)-

module of finite type naturally endowed with a semilinear action of ˜ΓA and a semi-
linear ˜ΓA-equivariant endomorphism ϕ. The action of ˜ΓA is continuous with respect
to the (p, [p])-adic topology of T ˜A�

inf(M) by Lemma 5 for (Λ,Λ0) = (A∞,A). By

(107), we have a canonical Ainf(A)-linear GA-equivariant isomorphism compatible
with ϕ

T ˜A�
inf(M) ⊗Ainf (A∞) Ainf(A)

∼=−→ T Ainf(M). (116)

We define RΓ (ΓA, T ˜A�
inf(M)) and RΓ (ΓA, T A�

inf(M)) with ϕ in the same way
as RΓ (ΔA, T Ainf(M)). In the rest of this section, we forget the action of GK on
these cohomology groups and study them as an object of D(Ainf(OK )-Mod).

We obtain the following proposition from Faltings’ almost purity theorem.
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Proposition 107 Let I be the ideal of Ainf(OK ) generated by [pp−l ] (l ∈ N). Then,
for m, n ∈ N>0, the cohomology of the cone of the following natural morphism is
annihilated by I.

RΓ (ΓA, T ˜A�
inf(M)/(pm, [p]n)) −→ RΓ (ΔA, T Ainf(M)/(pm, [p]n))

Proof Note I2 = I. Let Λ be one of A∞ and A. Since Ainf(Λ)/[p]n is p-torsion
free and Ainf(Λ)/p is [p]-torsion free by Lemma 1 (3) and (4), the claim is reduced to

the case m = n = 1. Put HA = Gal(Kur/K∞), T = T Ainf(M)/(p, [p]), and ˜T
� =

T ˜A�
inf(M)/(p, [p]). Since Ainf(Λ)/(p, [p]) ∼= RΛ/p

∼=−→ Λ/p; (an)n∈N �→ a0 and

˜T
� ⊗A∞/p A/p

∼=−→ T by (116), the almost purity theorem by Faltings ([11, 2b,
2c], [9, 2.4. Theorem (ii)], [2, Proposition V.12.8]) implies that I · Hq(HA, T ) = 0

(q ∈ N>0) and the kernel and the cokernel of ˜T
� → H 0(HA, T ) are annihilated

by I. Hence the Hochschild-Serre spectral sequence for HA ⊂ GA and T gives the
desired claim. �

Let mK be the maximal ideal of OK , and let k be the residue filed OK /mK
of OK . Then the homomorphism ROK

→ k; (an)n∈N �→ (a0 mod mK ) induces a
homomorphism Ainf(OK ) = W (ROK

) → W (k).

Lemma 108 For any x ∈ Ker(Ainf(OK ) → W (k)) and n ∈ N>0, there existsm ∈ N

such that x ∈ [pp−m ]Ainf(OK ) + pn Ainf(OK ).

Proof Since the kernel of ROK
→ k is generated by pp−r

(r ∈ N), there exist l ∈ N

and x1, . . . , xn−1 ∈ ROK
such that x ≡ (pp−l

x1, pp−l
x2, . . . , pp−l

xn−1) = ∑n−1
ν=0 p

ν

[pp−l−ν ][x p−ν

ν ] modulo pn Ainf(OK ). Hence the claim holds for m = l + n − 1. �

Lemma 109 Let (Km)m∈N be a complex bounded below of inverse systems of
Ainf(OK )/pm-modules. Assume [pp−l ] · Hq(Km) = 0 for anym ∈ N, q ∈ Z, and l ∈
N. Then, for any y ∈ Ker(Ainf(OK ) → W (k)), the multiplication by y on R lim←−m

Km

is zero in the derived category of Ainf(OK )-modules.

Proof Put J := Ker(Ainf(OK ) → W (k)). Then J/pm → Ainf(OK )/pm is injec-
tive and its image is generated by [pp−n ] (n ∈ N) by Lemma 108. Since [p] is

regular in Ainf(OK )/pm = Wm(ROK
), J/pm J = lim−→n

[pp−n ](Ainf(OK )/pm) is flat
over Ainf(OK )/pm , and Hq(J/pm ⊗Ainf (OK )/pm Km) = J/pm ⊗Ainf (OK )/pm Hq(Km)

(q ∈ Z). By using (J/pm) · (J/pm) = J/pm and J/pm · Hq(Km) = 0 (q ∈ Z),
we see that the right-hand sides of the above isomorphisms vanish, and therefore
R lim←−m

(J/pm ⊗Ainf (OK )/pm Km) = 0. This implies the claim because, for any y ∈ J ,
the multiplication by y on (Km)m∈N factors through (J/pm ⊗Ainf (OK )/pm Km)m∈N.�

Corollary 110 The cone of the natural morphism

RΓ (ΓA, T ˜A�
inf(M)) −→ RΓ (ΔA, T Ainf(M))
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is annihilated by any element of Ker(Ainf(OK ) → W (k)) in the derived category of
Ainf(OK )-modules.

Proof By Proposition 107, we can apply Lemma 109 to the cone of

(Ccont(ΓA, T ˜A�
inf(M)/am))m∈N −→ (C•

cont(ΔA, T Ainf(M)/am))m∈N,

where am = pm Ainf(OK ) + [p]m Ainf(OK ). �

Lemma 111 (cf. [16, the proof of Lemma 18], [6, Lemma 5.14]) Let R be a com-
mutative ring, and let I be an ideal of R generated by a regular element.

(1) Let C be a complex of I -torsion free R-modules. If H 0(C) is I -torsion free and
Hq(C) = 0 for every integer q < 0, then the inclusion map η+

I C → ηI C is a
quasi-isomorphism, where ηI is defined as in [7, Sect. 6].

(2) Let J be an ideal of R containing I . Let f : C1 → C2 be amorphismof complexes
of I -torsion free R-modules, and letC3 be themapping cone of f . Suppose that (i)
J · Hq(C3) = 0 and (ii) Hq(C1/aC1)[J 2] = 0 for all q ∈ Z. Then themorphism
ηI C1 → ηI C2 is a quasi-isomorphism.

Proof (1) This immediately follows from Hq(ηI C) ∼= I q ⊗R (Hq(C)/Hq(C)[I ])
and Hq(η+

I C) ∼= Hq(C) (if q ≤ 0), Hq(ηI C) (if q > 0).
(2) Let a be a generator of I . The homomorphism f [ 1a ] : C1[ 1a ] → C2[ 1a ] is a

quasi-isomorphism by the assumption (i). SinceCi [ 1a ]/ηI Ci = lim−→n
(a−nηI Ci )/ηI Ci

and the multiplication by a−n on ηI Ci induces an isomorphism ηI Ci/aηI Ci
∼=−→

a−nηI Ci/a−n+1ηI Ci for every n ∈ N>0, it suffices to prove that the morphism
ηI C1/aηI C1 → ηI C2/aηI C2 induced by f is a quasi-isomorphism.

Set Ci := Ci/aCi (i ∈ {1, 2, 3}), let g be the morphism C2 → C3, and let f
be the morphism C1 → C2 induced by f . We may identify C3 with the mapping
cone of f . Let Bockqi denote the boundary map Hq(Ci ) → Hq+1(Ci ) associated

to the short exact sequence 0 → Ci
a−→ Ci/a2Ci → Ci → 0, which is compatible

with the morphisms induced by f and g. Recall that we have quasi-isomorphisms
(ηI Ci )/a → (H •(Ci ),Bock•

i ) ([7, Proposition 6.12]), which are compatiblewith the
morphisms induced by f and g.Wehave Hq(ηI C3) = Hq(C3)/(Hq(C3)[a]) = 0 for
all q ∈ Z by the assumption (i). Therefore the complex (H •(C3),Bock•

3) is acyclic.
We have a long exact sequence

· · · → Hq−1(C3) → Hq(C1) → Hq(C2) → Hq(C3) → · · · .

The exact sequence 0 → Hr (C3)/a → Hr (C3) → Hr+1(C3)[a] → 0 and the
assumption (i) imply J 2 · Hr (C3) = 0. Hence, by the assumption (ii), the above
exact sequence splits into short exact sequences

0 → Hq(C1) → Hq(C2) → Hq(C3) → 0.
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Hence themorphism (H •(C1),Bock•
1) → (H •(C2),Bock•

2) induced by f is a quasi-
isomorphism. This completes the proof. �

Proposition 112 The following morphism is an isomorphism

Lη+
π RΓ (ΓA, T ˜A�

inf(M)) → Lη+
π RΓ (ΔA, T Ainf(M)).

Proof Put T := T ˜A�
inf(M). By Lemma 1 (4), T/pmT (m ∈ N>0) are π-torsion free.

Hence we have an exact sequence

0 −→ C•
cont(ΓA, (T/pm)/πm)

π−→ C•
cont(ΓA, (T/pm)/πm+1)

−→ C•
cont(ΓA, (T/pm)/π) −→ 0.

Since the inverse system {C•
cont(ΓA, (T/πm)/pm)}m∈N satisfies the Mittag-Leffler

condition and T/πT is p-adically complete and separated by Lemma 1 (3), we

obtain an isomorphismC•
cont(ΓA, T )/π

∼=−→ C•
cont(ΓA, T/π) by taking lim←−m

. Let I be
as in Proposition 107. By Lemma 111 for R = Ainf(OK ), I = πR and J = I + I ,
Corollary 110, and the π-torsion freeness of T ˜A�

inf(M) and T Ainf(M) (Lemma 1
(4)), it suffices to show Hq(ΓA, T ˜A�

inf(M)/π))[I] = 0. Note that I2 = I. We prove
this in Lemma 115 below. �

Let us compute RΓ (ΓA, T ˜A�
inf(M)/π) and RΓ (ΓA, T ˜A�

inf(M)).

Lemma 113 (1) Let r and s be integers prime to p, and let μ and ν be integers
such that μ ≥ ν. Then we have [εrp−ν ] − 1 ∈ ([εsp−μ ] − 1)Ainf(OK ).

(2) Let I be the ideal of Ainf(OK ) defined in Proposition 107. For ν ∈ Z and m ∈
N>0, (A�

inf(A)/([εp−ν ] − 1)A�
inf(A))/pm has no non-trivial I-torsion element.

Proof (1) By applying ϕμ, we are reduced to the case μ = 0 and ν ≤ 0. Since εsn is a
primitive pnth root of 1, [εs] − 1 generates I 1Ainf(OK ). Therefore we may assume
s = 1 and then the claim is obvious.

(2) Since the homomorphism A�
inf(A)/([εp−ν ] − 1, pm) → Ainf(A∞)/([εp−ν ] −

1, pm) induced by ι�∞ is injective by Corollary 85 (1), it suffices to prove that its
target is I-torsion free. By applying ϕν , we are reduced to the case ν = 0. Since
Ainf(A∞)/([ε] − 1) is p-torsion free by Lemma 1 (3), it is enough to show that
Ainf(A∞)/([ε] − 1, p) = RA∞/(ε − 1) is I-torsion free. This follows from the iso-
morphism RA∞/(ε − 1) ∼= A∞/(ε1 − 1) induced by the projection to the second
component, and Lemma 114 below. �

Lemma 114 (cf. [18, Lemma A3.14]) Let Λ be a normal domain containing OK ,
and assume that Λ/pΛ 	= 0 and Λ is integral over a noetherian normal subalgebra
Λ0. Then Λ/aΛ has no non-trivial mK -torsion for any a ∈ mK .

Proof Wemay assume that a is an N th root of p for some N ∈ N>0. For an extension
E of FracΛ0 contained in FracΛ, letΛE be the integral closure ofΛ0 in E . If a ∈ ΛE ,
the homomorphism ΛE/a → Λ/a is injective because Λ is integral over ΛE and
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ΛE is integrally closed in ΛE [ 1a ]. If E is a finite extension of FracΛ0, ΛE is a
noetherian normal domain finite over Λ0 because E is a separable extension of
FracΛ0 and Λ0 is a noetherian normal domain. Let x be an element of Λ such
that mK x ⊂ aΛ. Put L = Frac(Λ0[a, x]) and Ln = L(εn) (n ∈ N≥0), which are
finite extensions of FracΛ0. It suffices to prove vp(x) ≥ vp(a) for every prime ideal
p of ΛL of height 1. Choose such a p. For each n ∈ N>0, there exists a prime
ideal pn of ΛLn of height 1 lying above p. As (εn − 1)x ∈ aΛLn by assumption,
we have vpn (x) + 1

pn−1(p−1) vpn (p) ≥ vpn (a). This implies vp(x) + 1
pn−1(p−1) vp(p) ≥

vp(a). By taking limn→∞, we obtain vp(x) ≥ vp(a). �

For c ∈ N>0 and a module T with endomorphisms δi (i ∈ N ∩ [1, c]) commuting
with each other, we define the complex K (T ; δ1, . . . , δc) as follows: Let E be Z

c

and let e1, . . . , ec denote the standard basis of E . We define the degree q-part of
the complex to be T ⊗Z ∧q

Z
E and define the differential dq : T ⊗Z ∧q

Z
E → T ⊗Z

∧q+1
Z

E by x ⊗ y �→ ∑

1≤ν≤c δν(x) ⊗ (eν ∧ y).
Let ε = (εn) be as in the definition of π given after (1). For i ∈ N ∩ [1, d], let γi be

the unique element of ΓA satisfying χ j (γi ) = 0 (if j 	= i), ε (if j = i). For a Z/pm-
module T with an action of ΓA continuous with respect to the discrete topology of
T , we have the following canonical isomorphism functorial in T .

RΓ (ΓA, T ) ∼= K (T ; γ1 − 1, . . . , γd − 1)

Lemma 115 Let I be the ideal of Ainf(OK ) defined as in Proposition 107. Then we
have Hq(ΓA, T ˜A�

inf(M)/π)[I] = 0 for every q ∈ N.

Proof Set T := T A�
inf(M)/π to simplify the notation. Note that the action of ΓA on

T is trivial by Lemma 98. By Lemmas 84 and 79 (2), we have

(T ˜A�
inf(M)/π)/pm =

⊕

r∈(Z[ 1
p ]∩[0,1[)d

T/pm[tr ].

For r = 0, we have Hq(ΓA, T/pm) ∼= T/pm ⊗Z ∧q E and the homomorphism
Hq(ΓA, T/pm+1) → Hq(ΓA, T/pm) is surjective. For r 	= 0, choose ν ∈ N>0 such
that r ∈ (Zp−ν)d\(Zp−ν+1)d . Then, by [7, Lemma 7.10], Lemmas 113 (1), and 80
(4), Hq(ΓA, T/pm[tr ]) ∼= Hq(K (T/pm[tr ]; γ1 − 1, . . . , γd − 1)) is isomorphic to
the direct sum of

(d−1
q−1

)

copies of (T/pm)/ϕ−ν(π) and
(d−1

q

)

copies of

(T/pm)[ϕ−ν(π)] = (πϕ−ν(π)−1) · (T/pm), and the map Hq(ΓA, T/pm+1[tr ]) →
Hq(ΓA, T/pm[tr ]) is surjective. By taking the sum over r , we see that the homomor-
phism Hq(ΓA, (T ˜A�

inf(M)/π)/pm+1) → Hq(ΓA, (T ˜A�
inf(M)/π)/pm) is surjective,

and by Lemma 113 (2), Hq(ΓA, (T ˜A�
inf(M)/π)/pm)[I] = 0. This completes the

proof. �
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Proposition 116 The morphism RΓ (ΓA, T A�
inf(M)) → RΓ (ΓA, T ˜A�

inf(M))

induces an isomorphism

Lη+
π RΓ (ΓA, T A�

inf(M))
∼=−→ Lη+

π RΓ (ΓA, T ˜A�
inf(M)).

Proof For r ∈ (Z[ 1p ] ∩ [0, 1[)d , let T ˜A�
inf(M)r be the ˜ΓA-stable A�

inf(A)-submodule

[tr ] · T A�
inf(M) of T ˜A�

inf(M), which is a free A�
inf(A)-module of rank 1 by Lemma

84. For x ∈ T A�
inf(M) and i ∈ N ∩ [1, d] such that ri 	= 0, we have

(γi − 1)([tr ]x) = [tr ]([εri ]γi (x) − x)

=[tr ](([εri ] − 1)x + [εri ](γi (x) − x)) = [tr ]([εri ] − 1)(x + [εri ]ηri · π−1(γi − 1)(x)),

where ηri = π([εri ] − 1)−1 ∈ Ainf(OK ) andπ−1(γi − 1)(x) ∈ T A�
inf(M) by Lemma

98. Since A�
inf(A) is (p, ηri )-adically complete (Lemma 80 (2)), the Ainf(OK )-

linear ΓA-equivariant endomorphism gr ,i of T A�
inf(M) defined by gr ,i (x) = x +

[εri ]ηri π−1(γi − 1)(x) is an isomorphism. The endomorphism hr ,i of T ˜A�
inf(M)r

defined by hr ,i ([tr ]x) = [tr ]ηri g−1
r ,i (x) is Ainf(OK )-linear, commutes with the action

of γ j ( j 	= i), and satisfies (γi − 1) ◦ hr ,i = hr ,i ◦ (γi − 1) = π · id.
For r = (ri )1≤i≤d ∈ (Z[ 1p ] ∩ [0, 1[)d with r 	= 0, let i(r) be the smallest i ∈ N ∩

[1, d] such that ri 	= 0. For i ∈ N ∩ [1, d] and a ∈ Sinf,G, we define T ˜A�
inf,a(M)i

to be the direct sum of T ˜A�
inf(M)r/a over r 	= 0 with i(r) = i , and T ˜A�

inf(M)i to
be its inverse limit over a ∈ Sinf,G. By Lemma 84, we have an A�

inf(A)-linear ˜ΓA-
equivariant isomorphism T ˜A�

inf(M) ∼= T A�
inf(M) ⊕ (⊕1≤i≤dT ˜A�

inf(M)i ). Therefore
it suffices to prove π · Hq(ΓA, T ˜A�

inf(M)i ) = 0 for i ∈ N ∩ [1, d]. Note that this
implies H 0(ΓA, T ˜A�

inf(M)i ) = 0 as Ainf(A∞) is π-torsion free (Lemma 1 (4)).
Let i ∈ N ∩ [1, d] and choose a permutation ( j1, j2, . . . , jd) of (1, 2, . . . , d) such

that j1 = i . Put an := (pn, [p]n) ∈ Sinf,G for n ∈ N>0. Then we have an isomor-
phism

RΓ (ΓA, T ˜A�
inf(M)i ) ∼= R lim←−

n

(

K (T ˜A�
inf,an

(M)i ; γ j1 − 1, . . . , γ jd − 1)
)

∼= K (T ˜A�
inf(M)i ; γ j1 − 1, . . . , γ jd − 1)

∼= Cone(−(γi − 1) : Ki → Ki )[−1],

where Ki = K (T ˜A�
inf(M)i ; γ j2 − 1, . . . , γ jd − 1). By taking the inverse limit over

a ∈ Sinf,G of the direct sum of (hr ,i mod a) for r 	= 0 with i(r) = i , we obtain
an endomorphism hi of T ˜A�

inf(M)i such that (γi − 1) ◦ hi = hi ◦ (γi − 1) = π · id
and hi ◦ γ j = γ j ◦ hi ( j 	= i). Therefore γi − 1 on Ki is injective and the cone
of −(γi − 1) : Ki → Ki is quasi-isomorphic to its cokernel, which is annihilated
by π. �
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Lemma 117 There exists a canonical isomorphism

RΓ (ΓA, T A�
inf(M))) ∼= K (T A�

inf(M); γ1 − 1, . . . , γd − 1)

compatible with ϕ and functorial in M.

Proof Let an = (pn, [p]n) ∈ Sinf,G for n ∈ N>0. Then we have the following iso-
morphism compatible with ϕ. Note ϕ(an) ⊂ an for n ∈ N>0.

RΓ (ΓA, T A�
inf(M)) ∼= R lim←−

n

(

K (T A�
inf(M)/an; γ1 − 1, . . . , γd − 1)

)

∼= K (T A�
inf(M); γ1 − 1, . . . , γd − 1). �

By combining Propositions 112, 116, and Lemma 117, we obtain the following.

Proposition 118 There exists a canonical isomorphism

η+
π K (T A�

inf(M); γ1 − 1, . . . , γd − 1)
∼=−→ Lη+

π RΓ (ΔA, T Ainf(M)) (117)

in D+(Ainf(OK )-Mod) compatible ϕ and functorial in M.

We will show that the source of (117) becomes isomorphic to the de Rham
complex of Acrys(OK )̂⊗OK M := lim←−m

(Acrys(OK ) ⊗OK M)/pm after taking R lim←−m
((Acrys(OK )/pm) ⊗L

Ainf (OK ) −).

Lemma 119 We have π[n]π−1 ∈ Zp[π, π p−1

p ] ⊂ Acrys(OK ) for n ∈ N>0, and it con-
verges to 0 as n → ∞ with respect to the p-adic topology of Acrys(OK ).

Proof This follows from p−1π p−1, p−1(p−1π p−1) ∈ Acrys(OK ) (see the proof of
Lemma 90) and Lemma 89 (1). �

Put t := log[ε] ∈ Acrys(OK ) as before Lemma 90.

Proposition 120 (1) For γ ∈ ΓA and x ∈ T A�
crys(M), we have p−n(γ pn − 1)(x) ∈

T A�
crys(M), and ∇γ(x) := limn→∞ p−n(γ pn − 1)(x) converges to an element of

t · T A�
crys(M) with respect to the p-adic topology of T A�

crys(M). The endomor-

phism ∇γ (γ ∈ ΓA) of T A�
crys(M) is Acrys(OK )-linear, is ΓA-equivariant, and

commutes with ϕ. Moreover we have ∇γ ◦ ∇γ′ = ∇γ′ ◦ ∇γ for γ, γ′ ∈ ΓA.
(2) The homomorphism∇ : T A�

crys(M) → T A�
crys(M) ⊗A�

crys(A) ΩA�
crys(A) defined by

∇(x) := ∑

1≤i≤d t
−1∇γi (x) ⊗ d log[t i ] is an integrable connection with respect

to d : A�
crys(A) → ΩA�

crys(A), isΓA-equivariant, and commutes withϕ: (ϕ ⊗ ϕ) ◦
∇ = ∇ ◦ ϕ.

(3) For γ ∈ ΓA and x ∈ T A�
crys(M), we have (n!)−1(∇γ)

n(x) ∈ T A�
crys(M) and

exp(∇γ)(x) := ∑

n∈N(n!)−1(∇γ)
n(x) converges to γ(x).
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(4) For γ ∈ ΓA and x ∈ T A�
inf(M), we have t−1∇γ(x) ≡ π−1(γ − 1)(x)

mod I 1A�
crys(A) · T A�

crys(M).

Proof (1), (3) Let ̂R be as in Lemma 89. By Lemma 98, γ(π) = π, and p−1π p−1,

p−1(p−1π p−1)p ∈ Acrys(OK ) (proof of Lemma 90), we can define a continuous
action of ̂R on T A�

crys(M) by T x = (γ − 1)(x). By Lemma 89 (5), we see that

p−n(γ pn − 1)(x) ∈ T A�
crys(M) and it converges to log(1 + T ) · x as n → ∞. By

Lemmas 89 (4), 98, and 90 (2), we obtain ∇γ(x) ∈ (γ − 1)(T A�
crys(M))

⊂ π · T A�
crys(M) = t · T A�

crys(M). Since the action of γ on T A�
crys(M) is Acrys(OK )-

linear, is ΓA-equivariant, and commutes with ϕ, so does the endomorphism ∇γ and
we have ∇γ ◦ ∇γ′ = ∇γ′ ◦ ∇γ for any γ′ ∈ ΓA. The first (resp. second) claim in (3)
follows from Lemma 89 (1) and (4) (resp. (3)).

(2) For a ∈ A�
crys(A) and x ∈ T A�

crys(M), ∇γi (ax) is equal to

lim
n→∞{p−n(γ

pn

i − 1)(a) · γ
pn

i (x) + a · p−n(γ
pn

i − 1)(x)} = td log
i (a)x + a∇γi (x)

by Proposition 91 (2). Hence the claim follows from ∇γi ◦ ∇γ j = ∇γ j ◦ ∇γi , γ ◦
∇γi = ∇γi ◦ γ (γ ∈ ΓA), and ϕ ◦ ∇γi = ∇γi ◦ ϕ proven in (1). Note that the action
of ΓA on t and d log[t i ] is trivial, and that we have ϕ(t) = pt and ϕ(d log[t i ]) =
pd log[t i ].

(4) By Lemmas 90 (2) and 119, we have (n!)−1πn−1, (n!)−1tn−1 ∈
Acrys(OK ) for n ∈ N>0, and they converge to 0 as n → ∞. By the claim (3), we have
(γ − 1)(x) = t{(t−1∇γ(x) + ∑∞

n=2
tn−1

n! (t−1∇γ)
n(x)} and t = π(1 + ∑∞

n=2(−1)n−1

1
nπ

n−1), and the two series
∑∞

n=2 converge to elements of I 1A�
crys(A) · T A�

crys(M)

and I 1A�
crys(A) as I 1A�

crys(A) is closed in A�
crys(A) by definition. �

By (82), the isomorphism (92) induces an isomorphism compatible with ϕ

Acrys(OK )̂⊗OK M := lim←−
m

(Acrys(OK ) ⊗OK M)/pm
∼=−→ T A�

crys(M). (118)

Proposition 121 The following diagram is commutative.

Acrys(OK )̂⊗OK M
id̂⊗∇

∼=(118)

(Acrys(OK )̂⊗OK M) ⊗A ΩA
∼= (id⊗α∗)◦((118)⊗id)

T A�
crys(M)

∇ T A�
crys(M) ⊗A�

crys(A) ΩA�
crys(A).

Proof It suffices to prove the claim for the restriction on M . Let x ∈ M , let y be
its image in T A�

crys(M) under (118), and let zi (i ∈ N ∩ [1, d]) (resp. z) ∈ M ⊗A,ι

A �
crys(A) be the image of ∇γi (y) (resp. y) under the isomorphism (94). We have

z = c�
M(x ⊗ 1) (see (95)). Hence, by (96), we have
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zi = lim
m→∞ p−m(1 ⊗ γ

pm

i − 1)(z) = lim
m→∞ p−m(1 ⊗ γ

pm

i − 1)(
∑

n∈Nd

∇ log
n (x) ⊗ v[n]).

For m, n ∈ N, we have

(γ
pm

i − 1)(v[n]
i ) = ([εpm ]vi + ([εpm ] − 1))[n] − v

[n]
i

= ([εpmn] − 1)v[n]
i +

n
∑

l=1

([εpm ]vi )[n−l]([εpm ] − 1)[l],

and γi (v j ) = v j ( j 	= i). By Lemma 90 (1), we obtain

lim
m→∞ p−m(γ

pm

i − 1)(v[n]
i ) = t (nv

[n]
i + v

[n−1]
i ) (if n > 0), 0 (if n = 0).

Hence we have

zi = t
∑

n∈Nd ,n≥1i

∇ log
n (x) ⊗ v[n−ni1i ](niv[ni ]

i + v
[ni−1]
i )

= t
∑

n∈Nd

(ni∇ log
n + ∇ log

n+1i
)(x) ⊗ v[n]

= t
∑

n∈Nd

∇ log
n (∇ log

i (x)) ⊗ v[n] = c�
M(∇ log

i (x) ⊗ t).

This implies that ∇γi (y) is the image of t ⊗ ∇ log
i (x) under (118). �

Put Ω
q
A := ∧q

AΩA and Ω
q
A�
crys(A)

:= ∧q
A�
crys(A)

ΩA�
crys(A) (q ∈ N). By Proposition

121, the isomorphism (118) induces an isomorphism of de Rham complexes com-
patible with ϕ

(Acrys(OK )̂⊗OK M) ⊗A Ω•
A ∼= T A�

crys(M) ⊗A�
crys(A) Ω•

A�
crys(A)

. (119)

Put ∇ log
i := t−1∇γi (i ∈ N ∩ [1, d]) on T A�

crys(M). By Lemmas 119 and 90 (2),

we can define an Acrys(OK )-linear endomorphism Fi of T A�
crys(M) by

Fi (x) =
∑

n∈N>0

t−1t [n](∇ log
i )n−1(x). (120)

Lemma 122 (1) Fi is an automorphism congruent to id modulo I 1A�
crys(A).

(2) We have t · Fi ◦ ∇ log
i = γi − 1 on T A�

crys(M) for i ∈ N ∩ [1, d].
(3) For i, j ∈ N ∩ [1, d], we have Fi Fj = Fj Fi , Fi∇ log

j = ∇ log
j Fi and Fiγ j = γ j Fi .

(4) We have ϕ ◦ Fi = Fi ◦ ϕ for i ∈ N ∩ [1, d].
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Proof (1) Since Acrys(OK ) is p-adically complete and separated, and the elements π
and p−1π p−1 of Fil1Acrys(OK ) are nilpotent in Acrys(OK )/p, it suffices to prove that
Fi becomes the identity map modulo (p,π, p−1π p−1) and also modulo I 1A�

crys(A).

This follows from Lemmas 119 and 90 (2). For the second case, note that I 1A�
crys(A)

is closed in A�
crys(A) by definition.

(2) This follows from Proposition 120 (3) and ∇γi = t∇ log
i .

(3)One canverify thefirst two equalities by explicit computation using∇ log
i ∇ log

j =
∇ log

j ∇ log
i . The last one follows from ∇γi ◦ γ j = γ j ◦ ∇γi (Proposition 120 (1)).

(4) The claim follows from ϕ ◦ ∇γi = ∇γi ◦ ϕ (Proposition 120 (1)). �

For I = {i1 < · · · < iq} ⊂ N ∩ [1, d], we define d log[t I ] ∈ Ω
q
A�
crys(A)

and eI ∈
∧q E , where E = Z

d , to be d log[t i1] ∧ . . . ∧ d log[t iq ] and ei1 ∧ . . . ∧ eiq . Let FI

denote the composition Fiq ◦ Fiq−1 ◦ · · · ◦ Fi1 , which is an Acrys(OK )-linear auto-
morphism of T A�

crys(M). We define the isomorphism Fq : T A�
crys(M) ⊗A�

crys(A)

Ω
q
A�
crys(A)

∼=−→ T A�
crys(M) ⊗Z ∧q E by Fq(x ⊗ d log[t I ]) = FI (x) ⊗ eI for x ∈

T A�
crys(M) and I ⊂ N ∩ [1, d] with �I = q.

Proposition 123 The isomorphisms

Gq := tq Fq : T A�
crys(M) ⊗A�

crys(A) Ω
q
A�
crys(A)

∼=−→ tq Kq (T A�
crys(M); γ1 − 1, . . . , γd − 1)

for q ∈ N induce an isomorphism of complexes compatible with ϕ

G : T A�
crys(M) ⊗A�

crys(A) Ω•
A�
crys(A)

∼=−→ η+
π K (T A�

crys(M); γ1 − 1, . . . , γd − 1).

Proof By Lemmas 98 and 90 (2), the degree q-part of the complex
η+

π K (T A�
crys(M); γ1 − 1, . . . , γd − 1) is given by tqT A�

crys(M) ⊗Z ∧q E . For x ∈
T A�

crys(M) and I ⊂ N ∩ [1, d], we have

Gq+1 ◦ ∇q(xd log[t I ]) = Gq+1(
∑

i∈I c ∇ log
i (x)d log[t i ] ∧ d log[t I ])

= tq+1 ∑

i∈I c FI∪{i} ◦ ∇ log
i (x) ⊗ ei ∧ eI

dq ◦ Gq(xd log[t I ]) = dq(tq FI (x) ⊗ eI ) = tq
∑

i∈I c(γi − 1) ◦ FI (x) ⊗ ei ∧ eI ,

where I c = (N ∩ [1, d])\I and q = �I . Lemma 122 (2) and (3) imply that these
two elements coincide. The compatibility with ϕ follows from Lemma 122 (4),
ϕ(d log[t i ]) = pd log[t i ], and ϕ(t) = pt . �

Proposition 124 Wehave the following canonical isomorphisms, which are compat-
ible with ϕ except the third one. We abbreviate Acrys(OK ), Ainf(OK ), and the Koszul
complex K (T A�

inf(M); γ1 − 1, . . . , γd − 1) to Acrys, Ainf , and Kγ(T A�
inf(M)), respec-

tively, and we regard OC as an Ainf -algebra via θ.
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R lim←−
m

(Acrys/p
m ⊗L

Ainf
η+

π Kγ(T A�
inf(M)))

∼=−→ Acryŝ⊗OK M ⊗A Ω•
A (121)

Ainf/π ⊗L
Ainf

η+
π Kγ(T A�

inf(M))
∼=−→ lim←−

m

((Ainf/π)/pm ⊗OK M ⊗A Ω•
A) (122)

OC ⊗L
Ainf

η+
π Kγ(T A�

inf(M))
∼=−→ lim←−

m

(OC/pm ⊗OK M ⊗A Ω•
A) (123)

R lim←−
m

(Wm(k) ⊗L
Ainf

η+
π Kγ(T A�

inf(M)))
∼=−→ lim←−

m

(Wm(k) ⊗OK M ⊗A Ω•
A) (124)

Proof We have η+
π Kγ(T A�

crys(M)) ∼= Acryŝ⊗OK M ⊗A Ω•
A compatible with ϕ by

(119) and Proposition 123. By Lemma 98, we have (η+
π Kγ(T A�

inf(M)))q =
πq Kγ(T A�

inf(M))q and (η+
π Kγ(T A�

crys(M)))q = πq Kγ(T A�
crys(M))q for q ∈ N. In

particular, they are free of finite type over A�
inf(A) and A�

crys(A), respectively, and
the latter is the scalar extension of the former.

Let S be one of Acrys/pm , Ainf/π, OC , andWm(k). Then we have an isomorphism

S ⊗L
Ainf

η+
π Kγ(T A�

inf(M))
∼=−→ S ⊗Ainf η+

π Kγ(T A�
inf(M))

by Lemma 125 below and the fact that π and ξ are regular on Ainf and A�
inf(A)

(Lemmas 1 (4), 80 (4)). Since A�
inf(A)/π and A�

inf(A)/ξ are p-adically complete
and separated by Lemma 80 (3), the target of the above isomorphism is p-adically
complete and separated if S = Ainf/π or OC .

Let S be one of Acrys, Ainf/π, OC , and W (k), and put Sm := S/pm (m ∈ N).
Then the homomorphism Ainf → S naturally factors through Acrys; in the case S =
W (k), note that the image of Ker(θ) = ξAinf in W (k) is pW (k). Hence we have

Sm ⊗Ainf A
�
inf(A)

∼=−→ Sm ⊗Acrys A
�
crys(A) by Lemma 79 (2) and (74). Thus we see

that the source of the morphism in question relevant to S is isomorphic to

lim←−
m

(Sm ⊗Acrys η+
π Kγ(T A�

crys(M))) ∼= lim←−
m

(Sm ⊗Acrys (Acryŝ⊗AM) ⊗A Ω•
A)

∼= lim←−
m

(Sm ⊗OK M ⊗A Ω•
A).

�

Lemma 125 (1) For m ∈ N>0, we have an isomorphism

Acrys(OK )/pm ⊗L
Ainf (OK ) A

�
inf(A) ∼= Acrys(OK )/pm ⊗Ainf (OK ) A

�
inf(A).

(2) For m ∈ N>0, we have an isomorphism

Wm(k) ⊗L
Ainf (OK ) A

�
inf(A) ∼= Wm(k) ⊗Ainf (OK ) A

�
inf(A).
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Proof Since the images of pm and π pm in Acrys(OK )/pm andWm(k) vanish, and pm ,
π pm form a regular sequence on Ainf(OK ) and A�

inf(A) (Lemmas 1 (4), 79 (1), 80

(4)), we have Ainf(OK )/(pm,π pm) ⊗L
Ainf (OK ) A

�
inf(A)

∼=−→ A�
inf(A)/(pm,π pm). Hence

we may replace Ainf(OK ) and A�
inf(A) with Ainf(OK )/(pm,π pm) = Ainf,am (OK )

and A�
inf(A)/(pm,π pm) ∼= A�

inf,am
(A) (Lemma 79 (2)), where am = pm Ainf(OK ) +

π pm Ainf(OK ) ∈ Sinf . Then the claim follows from the smoothness of Ainf,a(OK ) →
A�
inf,a(A) (a ∈ Sinf). �

Put Ainf(OK )/π̂⊗OK M := lim←−m
(Ainf(OK )/π)/pm ⊗OK M . By combiningPropo-

sitions 118 and 124, we obtain the following isomorphisms in
D+(Ainf(OK )/π-Mod) andD+(Acrys(OK )-Mod) compatiblewithϕ,whereweabbre-
viate Ainf(OK ) and Acrys(OK ) to Ainf and Acrys, respectively.

(Ainf/π̂⊗OK M) ⊗A Ω•
A

∼=→ Ainf/π ⊗L
Ainf

Lη+
π RΓ (ΔA, T Ainf(M)) (125)

(Acryŝ⊗OK M) ⊗A Ω•
A

∼=→ R lim←−
m

(Acrys/p
m ⊗L

Ainf
Lη+

π RΓ (ΔA, T Ainf(M))) (126)

In the following sections, we give an alternative construction of these morphisms
without forgetting GK -action, i.e., in D+(GK -Sets, Ainf(OK )/π) and
D+(GK -Sets, Acrys(OK )).

16 Comparison Theorem with de Rham Complex over
Ainf/π

In this section, we show that the morphism (125) is independent of the choice of
the framing � and is defined in the derived category D+(GK -Sets, Ainf(OK )/π) by
giving another construction of the morphism when p ≥ 5 (Theorems 136 and 139).
This independence can also be derived from the corresponding claim for (126), which
is proved in later sections for any p but in a much more complicated way.

We define the filtration I r (r ∈ Z) on T Ainf(M) by I r Ainf(A) · T Ainf(M). For
q ∈ N, let BockqI : Hq(ΔA, grqI T Ainf(M)) → Hq+1(ΔA, grq+1

I T Ainf(M)) be the
boundarymapassociated to the exact sequence0 → grq+1

I T Ainf(M) → I qT Ainf(M)/

I q+2T Ainf(M) → grqI T Ainf(M) → 0. By the same argument as the proof of Propo-

sition 112, we obtain an isomorphism C•
cont(ΔA, T Ainf(M))/πn

∼=−→ C•
cont(ΔA,

T Ainf(M)/πn). By Corollary 104, we obtain an isomorphism

RΓ (ΔA, T Ainf(M)) ⊗L
Ainf (OK ) Ainf(OK )/πn ∼=−→ RΓ (ΔA, T Ainf(M)/πn)

in D+(GK -Sets, Ainf(OK )/πn). Therefore we have a canonical isomorphism
(Proposition 101)
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Lη+
π RΓ (ΔA, T Ainf(M))⊗L

Ainf (OK )Ainf(OK )/π

∼=−→ (H •(ΔA, gr•I T Ainf(M)),Bock•
I ) (127)

in the derived category D+(GK -Sets, Ainf(OK )/π) of Ainf(OK )/π-modules with
GK -action. We give an alternative construction of (125) via the target of (127).

Let B be a flat OK -algebra p-adically complete and separated such that the
homomorphisms OK /pm → B/pm (m ∈ N>0) are smooth, and suppose that we are
given a surjective OK -homomorphismB → A and s1, . . . , se ∈ B× such that d log si
(i ∈ N ∩ [1, e]) form a basis ofΩ(B/pm )/(OK /pm ) for everym ∈ N>0. Let ϕB : B → B
be the unique lifting of the absolute Frobenius of B/p compatible with σ of OK such
that ϕB(si ) = s pi . We will compare the two framings defined by t1, . . . , td ∈ A× and
by t ′1, . . . , t ′d ∈ A× via B := lim←−n

(A ⊗OK A)/pn with the product homomorphism
B → A and ti ⊗ 1, 1 ⊗ t ′i ∈ B× (i ∈ N ∩ [1, d]).

Put OK ,m := OK /pm , Am := A/pm , Bm := B/pm , ΩBm := ΩBm/OK ,m , ΩB :=
lim←−m

ΩBm , and ϕBm := ϕB ⊗Zp Z/pm as in Sect. 2. We define Pm with Filr , ∇Pm

and ϕPm , and Acrys,B,m(A) with GA-action, Filr , ∇ and ϕ as in Sect. 2 by using
B → A and ϕB. We define ui,m ∈ Acrys,B,m(A) as before the explicit description

(4) of Acrys,B,m(A) by using si and a compatible system of pnth roots si,n ∈ A×

(n ∈ N) of the image of si in A× for i ∈ N ∩ [1, e]. By the choice of ϕB, we have
ϕ(ui ) = (ui + 1)p − 1 for i ∈ N ∩ [1, e].

We define the decreasing filtration I rAcrys,B,m(A) (r ∈ Z) of Acrys,B,m(A) by

I rAcrys,B,m(A) :=
⊕

n=(ni )∈Ne

I r−|n|Acrys,m(A)
∏

i

u[ni ]
i,m , (128)

where |n| = ∑

i ni , and I s Acrys,m(A) (s ∈ Z) denotes the image of I s Acrys(A) in
Acrys,m(A). Note that this definition depends on the choice of si and si,n .

Lemma 126 (1) The filtration I rAcrys,B,m(A) (r ∈ Z) depends only on si .
(2) I rAcrys,B,m(A) (r ∈ Z) are ideals of Acrys,B,m(A). For r, r ′ ∈ Z, we have

I rAcrys,B,m(A) · I r ′
Acrys,B,m(A) ⊂ I r+r ′

Acrys,B,m(A).
(3) The filtration I rAcrys,B,m(A) (r ∈ Z) is stable under the action of GA and ϕ.

We have also ∇(I rAcrys,B,m(A)) ⊂ I r−1Acrys,B,m(A) ⊗B ΩB for r ∈ Z.

Proof For i ∈ N ∩ [1, e], if we choose another system s ′
i,n ∈ A×

(n ∈ N), then the

corresponding element u′
i,m of Acrys,B,m(A) is [εa](ui,m + 1) − 1, where a ∈ Zp is

defined by s ′
i,n = si,nεan (n ∈ N). This implies the claim (1) because ([εa] − 1)[n] ∈

I n Acrys(OK ) (n ∈ N). The claim (2) is obvious, and the claim (3) follows from the
formulae (6)–(8). Note that ϕB(si ) = s pi . �



Crystalline Zp-Representations and Ainf -Representations with Frobenius 259

Set Ω
q
B = ∧q

BΩB (q ∈ N). We define the decreasing filtration I r (r ∈ Z) on
Acrys,B,m(A) ⊗B Ω

q
B to be I r−qAcrys,B,m(A) ⊗B Ω

q
B. Then by Lemma 126 (3), we

obtain the following complex of Acrys,m(A)-modules filtered by I r (r ∈ Z) and
endowed with an action of GA and an endomorphism ϕ.

Acrys,m(A) −→ Acrys,B,m(A) ⊗B Ω•
B (129)

The following lemma is the key to another construction of the comparison map.

Lemma 127 There is an Acrys,m(A)-linear homotopy compatible with the filtration
I • and with m between the identity map and the zero map of the complex (129).

Proof Set ωi := ∇(ui,m) = −(1 + ui,m) ⊗ d log si . Then one can define the desired
Acrys,m(A)-linear filtered homotopy k0 : Acrys,B,m(A) → Acrys,m(A) and kq :
Acrys,B,m(A) ⊗B Ω

q
B → Acrys,B,m(A) ⊗B Ω

q−1
B (q ∈ N>0) by the following formu-

lae for n = (ni ) ∈ N
e and 1 ≤ i1 < · · · < iq ≤ e.

k0(
∏

i

u[ni ]
i ) = 1 (if n = 0), 0 (otherwise),

kq(
∏

i

u[ni ]
i ωi1 ∧ · · · ∧ ωiq )

=
∏

i

u
[ni+δi i1 ]
i ωi2 ∧ · · · ∧ ωiq (if ni = 0 (1 ≤ i < i1)), 0 (otherwise).

�

Let M be an object of MF∇
[0,p−2],free(A, Φ) (Sect. 4). We define MPm with Filr ,

∇, and ϕ as in Sect. 5. We define the filtration I r (r ∈ Z) on T Acrys,m(M) (23) by
I r Acrys(A) · T Acrys,m(M). Similarly we define the filtration I r (r ∈ Z) on the de
Rham complex MPm ⊗Pm Acrys,B,m(A) ⊗B Ω•

B by MPm ⊗Pm I r−qAcrys,B,m(A) ⊗B
Ω

q
B. The filtration thus defined on each degree is compatible with the differential

maps by Lemma 126 (3). By taking the tensor product of T Acrys,m(M) and (129)
over Acrys,m(A) and using Lemma 127 and (30), we obtain a filtered resolution

T Acrys,m(M) → MPm ⊗Bm Acrys,B,m(A) ⊗B Ω•
B (130)

compatible with the action of GA and ϕ. By taking grqI (q ∈ N) of (130), we obtain
a resolution

grqI (T Acrys,m(M)) → grqI (MPm ⊗Pm Acrys,B,m(A) ⊗B Ω•
B) (131)

compatible with the action of GA and ϕ.
Set PAinf ,m := Pm ⊗OK Ainf(OK )/π and PAinf := lim←−PAinf ,m . Let PAinf ,-Mod

denote the category of inverse systems of PAinf ,m-modules for m ∈ N>0. We regard
(Ainf(A)/π)/pm as an PAinf ,m-algebra by the GA-equivariant homomorphism
PAinf ,m → Acrys,B,m(A)/I 1 ∼= Ainf(A)/(pm,π), which depends on the choice of
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coordinates si and coincides with the morphism naturally induced by βm : Pm →
Acrys,m(A) (Lemma 34 (1)). Then we have a GK -equivariant morphism

⊕

0≤r≤q

(MP
⊗OK grq−r

I Acrys(OK )) ⊗B Ωr
B[−r ]

−→ Γ (ΔA, grqI (MP
⊗P

Acrys,B,(A) ⊗B Ω•
B)) (132)

of complexes of inverse systems of PAinf ,m-modules compatible with ϕ. Using (131)
and (132), we obtain a morphism

⊕

0≤r≤q

lim←−
m

(MPm ⊗OK grq−r
I Acrys(OK )) ⊗B Ωr

B[−r ] → RΓ (ΔA, grqI T Acrys(M))

(133)
in D+(GK -Sets,PAinf ) compatible with ϕ. In particular, we obtain a PAinf -linear
GK -equivariant homomorphism compatible with ϕ

MP,Ainf ⊗B Ω
q
B → Hq(ΔA, grqI T Acrys(M)), (134)

where
MP,Ainf = lim←−

m

(MPm ⊗OK Ainf(OK )/π). (135)

Lemma 128 (1) If M is the constant object A, i.e. A equipped with the filtration
Fil0A = A, Fil1A = 0 and the given ϕ and ∇, then the morphism (134) is
compatible with the natural product structures.

(2) The followingdiagram is commutative forq, q ′ ∈ N, where T denotes T Acrys(M).

(PAinf ⊗B Ω
q
B) ⊗PAinf

(MP,Ainf ⊗B Ω
q ′
B )

(134)

∧
MP,Ainf ⊗B Ω

q+q ′
B

(134)

Hq(ΔA, grqI Acrys(A)) ⊗PAinf
Hq ′

(ΔA, grq
′
I T )

∪
Hq+q ′

(ΔA, grq+q ′
I T ).

Proof The claim (1) is the special case M = A of the claim (2), which follows
from the following commutative diagram. Here we write DRA crys,m(B, M) (resp.
DRAinf ,m(B, M)) for the de Rham complex MPm ⊗Pm Acrys,B,m(A) ⊗B Ω•

B (resp.
(MPm ⊗OK Ainf(OK )) ⊗B Ω•

B). The middle and lower horizontal maps are defined
by the wedge products.
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grqI Acrys,m(A) ⊗PAinf ,m
grq

′
I T Acrys,m(M)

(131)

grq+q ′
I T Acrys,m(M)

(131)

grqI (Acrys,B,m(A) ⊗B Ω•
B)

⊗PAinf ,m
grq

′
I DRA crys,m(B, M)

grq+q ′
I DRA crys,m(B, M)

grqI ((Pm ⊗OK Ainf(OK )) ⊗B Ω•
B)

⊗PAinf ,m
grq

′
I DRAinf ,m(B, M)

(132)

grq+q ′
I DRAinf ,m(B, M)

(132)

�

For q ∈ N, let BockqI : Hq(ΔA, grqI T Acrys(M)) → Hq+1(ΔA, grq+1
I T Acrys(M))

be the boundary map associated to the exact sequence 0 → grq+1
I T Acrys(M) →

I qT Acrys(M)/I q+2T Acrys(M) → grqI T Acrys(M) → 0.

Lemma 129 For q ∈ N, the following diagram is commutative.

MP,Ainf ⊗B Ω
q
B

(134)

∇q

Hq(ΔA, grqI (T Acrys(M)))

BockqI

MP,Ainf ⊗B Ω
q+1
B

(134)
Hq+1(ΔA, grq+1

I (T Acrys(M))).

Proof Tosimplify thenotation,wewriteTm ,DRA crys,m , andDRAinf ,m forT Acrys,m(M),
MPm ⊗Pm Acrys,B,m(A) ⊗B Ω•

B, and (MPm ⊗OK Ainf(OK )) ⊗B Ω•
B, respectively.Then

we have the following commutative diagram whose three horizontal lines are exact.

0 grq+1
I Tm

(131)

I q Tm
I q+2Tm

(130)

grqI Tm

(131)

0

0 grq+1
I (DRA crys,m)

I qDRA crys ,m

I q+2DRA crys ,m
grqI (DRA crys,m) 0

0 grq+1
I (DRAinf ,m)

(132)

I qDRAinf ,m

I q+2DRAinf ,m
grqI (DRAinf ,m)

(132)

0.

Set T = T Acrys(M) and DRAinf := lim←−m
DRAinf ,m . Then the above diagram induces

a morphism of distinguished triangles

RΓ (ΔA, grq+1
I T ) RΓ (ΔA, I q T

I q+2T ) RΓ (ΔA, grqI T )

grq+1
I (DRAinf )

(133)

I q (DRAinf )

I q+2(DRAinf )
grqI (DRAinf )

(133)
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in D+(GK -Sets, lim←−m
Pm ⊗OK Ainf(OK )/π2)). The differentialmaps of the complex

grrI (DRAinf ) are 0, and it is straightforward to verify that the boundary map of the
bottom distinguished triangle

MP,Ainf ⊗B Ω
q
B = grqI (DRAinf )

q −→ grq+1
I (DRAinf )

q+1 = MP,Ainf ⊗B Ω
q+1
B

is given by the differential map ∇ induced by the connection on MPm . �

By (2) with (r, s) = (0, p − 1), and the definition of T Ainf(M) before Theorem
63,we have aGA-equivariant isomorphism compatiblewith the filtrations I r (r ∈ Z)

and ϕ

T Ainf(M)/I p−1T Ainf(M)
∼=−→ T Acrys(M)/I p−1T Acrys(M),

which induces isomorphisms

Hq(ΔA, grqI T Ainf(M))
∼=−→ Hq(ΔA, grqI T Acrys(M)) (q ∈ N ∩ [0, p − 2])

(136)
compatible with BockqI (q ∈ N ∩ [0, p − 3]) and ϕ. Hence (134) induces GK -
equivariant PAinf -linear homomorphisms compatible with ϕ

MP,Ainf ⊗B Ω
q
B −→ Hq(ΔA, grqI T Ainf(M)) (q ∈ N ∩ [0, p − 2]), (137)

which are also compatible with ∇ and BockqI by Lemma 129. We extend this to all
degrees when p ≥ 5.

Remark 130 Let r ∈ Z, and let q(r) be the largest integer such that r(p − 1)−1 ≥
q(r). Then grrI Ainf(A) (resp. grrI Acrys(A)) is a free Ainf(A)/π-modulewith a basisπr

(resp. 1
q(r)!pq(r) π

r ) (see [12, 5.3.1 Proposition], [18, Proposition A3.20], and Lemma
90 (2)). Hence the construction of T Ainf(M) implies that we have the following
GA-equivariant canonical isomorphism compatible with the product structures and
ϕ.

1

q(r)!pq(r)
Zp ⊗Zp gr

r
I T Ainf(M)

∼=−→ grrI T Acrys(M)

We assume that p ≥ 5 in the following. For q ∈ N, the homomorphism
gr1I Ainf(A)

⊗PAinf
q → grqI Ainf(A) induces a GK -equivariant PAinf -linear homomor-

phism compatible with ϕ

∧q
PAinf

H 1(ΔA, gr1I Ainf(A)) −→ Hq(ΔA, grqI Ainf(A)).

Composing this with the qth exterior product of (137) for M = A and q = 1(≤
p − 2), we obtain a GK -equivariant PAinf -linear homomorphism compatible with ϕ

PAinf ⊗B Ω
q
B −→ Hq(ΔA, grqI Ainf(A)). (138)
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By taking the cup product of (138) with (137) for q = 0, we obtain aGK -equivariant
PAinf -linear homomorphism compatible with ϕ

MP,Ainf ⊗B Ω
q
B −→ Hq(ΔA, grqI T Ainf(M)), (139)

which coincides with (137) if q ≤ p − 2 by Lemma 128.

Proposition 131 For all q ∈ N, the homomorphisms (139) are compatible with ∇q

and BockqI .

Proof Since p − 2 ≥ 2, Lemma 129 implies that the homomorphisms (138) and
(139) are compatible with∇q and BockqI for q ∈ {0, 1}. By the construction of (138)
and (139), we see that the following diagram is commutative for q, q ′ ∈ N.

(PAinf ⊗B Ω
q ′
B ) ⊗PAinf

(MP,Ainf ⊗B Ω
q
B)

∧

(138)⊗(139)

MP,Ainf ⊗B Ω
q ′+q
B

(139)

Hq ′
(ΔA, grq

′
I Ainf(A))

⊗PAinf
Hq(ΔA, grqI T Ainf(M))

∪ Hq ′+q(ΔA, grq
′+q
I T Ainf(M))

One can prove the proposition for a general q by induction on q by using the above
commutative diagram for q ′ = 1, 2 and Lemma 132 below applied to R = Ainf(OK )

and

C•
cont(ΔA, Ainf(A)) ⊗Ainf (OK ) C

•
cont(ΔA, T Ainf(M))

∪−→ C•
cont(ΔA, T Ainf(M)).

�

Lemma 132 Let R be a commutative ring, let a be a regular element of R, and let R
denote R/aR. Let Ci (i ∈ {1, 2, 3}) be complexes of a-torsion free R-modules, and
define the decreasing filtration Fq of the complex Ci [ 1a ] by FqCi = aqCi for each
i ∈ {1, 2, 3}. Let Bockqi (q ∈ Z, i ∈ {1, 2, 3}) be the boundary map Hq(grqFCi ) →
Hq+1(grq+1

F Ci ) induced by the short exact sequence 0 → grq+1
F Ci → FqCi/

Fq+2Ci → grqFCi → 0. Suppose that we are given a morphism of complexes of
R-modules C1 ⊗R C2 → C3, which induces a morphism of complexes grqFC1 ⊗R

grq
′
FC2 → grq+q ′

F C3 and an R-linear map − ∪ −: Hq(grqFC1) ⊗R Hq ′
(grq

′
FC2) →

Hq+q ′
(grq+q ′

F C3) for q, q ′ ∈ Z. Then we have

Bockq+q ′
3 (x ∪ y) = Bockq1(x) ∪ y + (−1)q x ∪ Bockq

′
2 (y)

for q, q ′ ∈ Z, x ∈ Hq(grqFC1) and y ∈ Hq ′
(grq

′
FC2).

Proof Straightforward computation. �
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By Proposition 131, (139) and (127) induce a morphism

MP,Ainf ⊗B Ω•
B −→ Lη+

π RΓ (ΔA, T Ainf(M)) ⊗L
Ainf (OK ) Ainf(OK )/π (140)

in D+(GK -Sets, Ainf(OK )/π) compatible with ϕ.
Next we show that (140) coincides with (125) in the derived category of

Ainf(OK )/π-modules when B = A and t1, . . . , td ∈ A× are the coordinates defined
by a framing �. Since A�

inf(A)/π is p-adically complete and separated and
(A�

inf(A)/π)/pm ∼= A�
inf,(pm ,π)(A) by Lemmas 80 (3) and 79 (2), we obtain the fol-

lowing isomorphism from the reduction mod I 1A�
crys(A) of (92) by using Lemma

82 with (r, s) = (0, 1) and Lemma 87 (2).

T A�
inf(M)/π ∼= lim←−

m

(M/pmM ⊗OK Ainf(OK )/π) = MA,Ainf (141)

We write MAinf for MA,Ainf to simplify the notation. We define γi ∈ ΓA as before
Lemma 115. Then, by Lemma 98 and (141), we have isomorphisms

Hq(ΓA,T A�
inf(M)/π) ∼= Hq(K (T A�

inf(M)/π; γ1 − 1 . . . , γd − 1)) (142)

∼= T A�
inf(M)/π ⊗Z ∧q

Z
d ∼= T A�

inf(M)/π ⊗A Ω
q
A ∼= MAinf ⊗A Ω

q
A

for q ∈ N; the third isomorphism is defined by x ⊗ ei1 ∧ · · · ∧ eiq �→ x ⊗ d log ti1 ∧
· · · ∧ d log tiq for x ∈ T A�

inf(M)/π and 1 ≤ i1 < · · · < iq ≤ d, where ei (1 ≤ i ≤ d)

denotes the standard basis of Zd .

Proposition 133 The following diagram is commutative for q ∈ N.

MAinf ⊗A Ω
q
A

∼=
πq ·(142)

(139)

Hq(ΓA, grqI T A�
inf(M))

Hq(ΔA, grqI T Ainf(M))

Proof If M is the constant object A, then the morphisms (142) are compatible with
the natural product structures.We also see that the following diagram is commutative.

(AAinf ⊗A Ω
q
A) ⊗ MAinf

∧

(142)

MAinf ⊗A Ω
q
A

(142)

Hq(ΓA, A�
inf(A)/π) ⊗ H 0(ΓA, T A�

inf(M)/π)
∪

Hq(ΓA, T A�
inf(M)/π)

By the construction of the morphism (139), it suffices to prove the claim in the case
q = 0 and in the case q = 1 and M = A.
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The morphism (139) for q = 0 is defined by the composition of

MAinf −→ M ⊗A,α Ainf (A)/π ∼= gr0I (M ⊗A Acrys(A) ⊗A Ω•
A)

∼=−−−−−→
(131)−1

gr0I T Ainf (M)

See (57) and Lemma 34 (1) for α. The composition of the middle and right iso-
morphisms coincides with the isomorphism considered in Lemma 64 (2) by its
proof. Therefore the composition of the three homomorphisms above is the same as
the composition of (141) with T A�

inf(M)/π = gr0I T A�
inf(M) → gr0I T Ainf(M). Note

that (37) for (B, si ) = (A, ti ) is the scalar extension of (92) by the homomorphism
ι� : A�

crys(A) → Acrys(A) (78) because the composition of α : A → A�
inf(A) (80)

and ι� : A�
inf(A) → Ainf(A) coincides with β(0) for (B, si ) = (A, ti ) defined before

Lemma 34. (For the last fact, we compare (31) for (B, si ) = (A, ti ) and (79) using
the fact that the homomorphism ι� sends [t i ] to [t i ] (i ∈ N ∩ [1, d]) by definition.)
Thus we obtain the claim for q = 0.

Suppose that q = 1 and M = A. Since the homomorphisms in the diagram is
AAinf -linear, it suffices to compute the images of 1 ⊗ d log ti . The element 1 ⊗
d log ti of gr1I (Acrys(A) ⊗A Ω1

A) ∼= (gr0I Acrys(A)) ⊗A Ω1
A is the image of the ele-

ment −1 ⊗ vi of gr1IAcrys(A) = gr1I Acrys(A) ⊕ (⊕1≤i≤dgr0I Acrys(A)vi ) under the
differential map of the target complex of lim←−m

(131). For γ ∈ ΓA, we have the

following equality in gr1IAcrys(A) by (6): (γ − 1)(vi ) = (1 + vi )[εηi (γ)] − 1 − vi =
[εηi (γ)] − 1 = ηi (γ)π. See Lemma 9 (1) for the last equality. Hence the image of
1 ⊗ d log ti under (139) is given by the 1-cocycle γ �→ ηi (γ)π. This coincides with
the image of 1 ⊗ d log ti under the map via (142) by Lemma 134 below. �
Lemma 134 Let M be a p-adically complete and separated module endowed with
a trivial action of ΓA. Let ei (i ∈ N ∩ [1, d]) be the standard basis of Zd . Then, for
x ∈ M, the image of x ⊗ ei under the isomorphism below is given by the 1-cocycle
γ �→ ηi (γ)x.

M ⊗Z Z
d ∼= H 1(K (M; γ1 − 1, . . . , γd − 1)) ∼= H 1(ΓA, M)

Proof Let us recall the construction of the isomorphism. Let M be the module
Mapcont(ΓA, M) consisting of continuous maps ΓA → M endowed with the con-
tinuous action of ΓA defined by (γ f )(δ) = f (δγ). We have Hq(ΓA,M) = 0 for
q ∈ N>0. We have another action of ΓA on M defined by [γ] f (δ) = γ f (γ−1δ),
which commutes with the above action. The Koszul complex with respect to [γi ] − 1
gives a ΓA-equivariant resolution M → K (M; [γ1] − 1, . . . , [γd ] − 1). We have an

obvious isomorphismM
∼=−→ MΓA sending x to the constant function cx : γ �→ x . For

γ ∈ ΓA, we have cγx = [γ]cx . Hence theΓA-invariant part of the above Koszul com-
plex ofM is isomorphic to the complex K (M; γ1 − 1, . . . , γd − 1), and this gives the
isomorphism in the claim. The element cx ⊗ ei of K 1(M; [γ1] − 1, . . . , [γd ] − 1) =
M ⊗Z Z

d is the image of the element f of K 0(M; [γ1] − 1, . . . , [γd ] − 1) = M
defined by f (γr1

1 · · · γrd
d ) = −ri x for (r1, . . . , rd) ∈ Z

d
p. Hence the claim follows

from (−(γ j − 1) f )(γr1
1 · · · γrd

d ) = x (if j = i), 0 (otherwise). �
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Lemma 135 (1) For q ∈ N, the following diagram is commutative.

MAinf ⊗A Ω
q
A πq ·(142)

∼=

∇q

Hq(ΓA, grqI T A�
inf(M))

BockqI

MAinf ⊗A Ω
q+1
A πq+1·(142)

∼=
Hq+1(ΓA, grq+1

I T A�
inf(M))

(2) The composition of the isomorphisms

MAinf ⊗A Ω•
A

∼=−→
(1)

(H •(ΓA, gr•I T A�
inf(M)),Bock•

I )

∼=←−−−−
Prop.101

(Lη+
π RΓ (ΓA, T A�

inf(M))) ⊗L
Ainf (OK ) Ainf(OK )/π

coincides with the isomorphism obtained from (122) and Lemma 117. Here we
obtain the second isomorphism in the same way as (127).

Proof (1) Put K • := K (T A�
inf(M); γ1 − 1, . . . , γd − 1) and I r K • := πr K •. Then

BockqI is inducedby the exact sequence0 → grq+1
I K • → I q K •/I q+2K •→grqI K

•→
0. Therefore, for x ∈ T A�

inf(M), the image of (πq x mod πq+1) ⊗ ei1 ∧ · · · ∧ eiq ∈
grqI K

q = Hq(grqI K
•) under BockqI is given by

∑

1≤i≤d

(πq+1(π−1(γi − 1)(x)) mod πq+2) ⊗ ei ∧ ei1 ∧ · · · ∧ eiq

∈ grq+1
I K q+1 = Hq+1(grq+1

I K •).

This implies the claim by Propositions 121 and 120 (4).
(2) The claim follows from the commutative diagram below, where we abbrevi-

ate T A�
crys(M), T A�

inf(M), K (−; γ1 − 1, . . . , γd − 1), and η+
I 1Ainf (OK )

to Tcrys, Tinf ,

Kγ(−), and η+
I ; the lower left triangle is commutative by Lemma 122 (1) and

t − π ∈ I 2Acrys(OK ).

Tinf⊗Z∧q
Z
d

π(Tinf⊗Z∧qZd )

∼=

∼= πq ·−

Hq(Kγ(Tinf/π))
∼=

πq ·− Hq(Kγ(gr
q
I Tinf))

Tcrys⊗Z∧q
Z
d

I 1A�
crys(A)·(Tcrys⊗Z∧qZd )

∼=
tq Fq

(η+
I Kγ(Tcrys))q

I 1A�
crys(A)·(η+

I Kγ(Tcrys))q
(η+

I Kγ(Tinf ))q

π(η+
I Kγ(Tinf ))q∼=

Prop. 101 (1)

�

Combining Proposition 133 and Lemma 135, we obtain the following theorem.

Theorem 136 Let � : Spec(A) → Spec(OK [T±1
1 , . . . , T±1

d ]) be a framing, and let
ti denote the image of Ti in A. Then the morphism (140) associated to B = A and
ti ∈ A× coincides with the isomorphism (125) defined by using the framing �.
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Proof By Lemma 135 (2), we have the following commutative diagram, where
we write Bq

I , −/π, T , and T� for BockqI , − ⊗L
Ainf (OK ) Ainf(OK )/π, T Ainf(M), and

T A�
inf(M), respectively.

η+
π Kγ(T�)/π

∼=(122)

∼=
Lem.117

Lη+
π RΓ (ΓA, T�)/π

∼=
Props. 116, 112

∼=

Lη+
π RΓ (ΔA, T )/π

∼=(127)

MAinf ⊗A Ω•
A

π•(142)
(H •(ΓA, gr•I T�),B•

I ) (H •(ΔA, gr•I T ),B•
I )

The composition of the bottom horizontal homomorphisms coincides with (139) by
Proposition 133. This implies the claim. �

In the rest of this section, we prove a functoriality of the morphism (140) in
(B, s1, . . . , se) and show that the morphism (140) is a quasi-isomorphism and does
not depend on the choice of s1, . . . , se.

Let B′ be a B-algebra p-adically complete and separated such that the homomor-
phismsB/pm → B′/pm (m ∈ N>0) are smooth, and suppose that we are given a sur-
jective homomorphism B′ → A compatible with the homomorphism B → A, and
s ′
1, . . . , s

′
e′ ∈ B′× such that d log s ′

j ( j ∈ N ∩ [1, e′]) form a basis of Ω(B′/pm )/(B/pm )

for m ∈ N>0. Set ΩB′ := lim←−m
Ω(B′/pm )/(OK /pm ) and Ω

q
B′ := ∧q

B′ΩB′ for q ∈ N. By
applying the construction of Pm ,P , MPm and MP for B → A to B′ → A, we define
P ′
m , P ′, MP ′

m
, and MP ′ . We define the filtration I r (r ∈ Z) on Acrys,B′,m(A) by

using s ′
j and the image of si in B′×. The OK -homomorphism B → B′ induces

PD-homomorphisms Pm → P ′
m and P → P ′ compatible with ϕ and ∇. It also

induces homomorphisms of Acrys(A)-algebras Acrys,B,m(A) → Acrys,B′,m(A) and
Acrys,B(A) → Acrys,B′(A) compatiblewith thehomomorphismsPm → P ′

m andP →
P ′ above, the GA-action, ϕ, ∇, and the filtrations I r (r ∈ Z). We have the following
canonical P ′-linear isomorphism compatible with ϕ and ∇.

MP ′
m

∼= MPm ⊗Pm P ′
m (m ∈ N>0), MP ′ ∼= MP ⊗P P ′ (143)

Following the notation MP,Ainf , we write MP ′,Ainf for the inverse limit
lim←−m

MP ′
m

⊗OK Ainf(OK )/π. By using the morphism Y ′
Dm

:= Spec(B′/pm ⊗OK /pm

Acrys(A)/pm) → YDm
= Spec(B/pm ⊗OK /pm Acrys(A)/pm) compatible with the

embeddings of Xm = Spec(A/pm), we see that (30), (130)–(134), (137)–(139) for
B and B′ are all compatible with the natural morphisms from the modules for B to
those for B′. Thus we obtain the following functoriality.

Lemma 137 Under thenotationand theassumptionas above, the followingdiagram
is commutative, where the right vertical morphism is induced by (143).
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MP,Ainf ⊗B Ω•
B

(140)
Lη+

π RΓ (ΔA, T Ainf(M)) ⊗L
Ainf (OK ) Ainf(OK )/π

MP ′,Ainf ⊗B′ Ω•
B′ (140)

Lemma 138 Under the notation and the assumption as above, the morphism
MP,Ainf ⊗B Ω•

B → MP ′,Ainf ⊗B′ Ω•
B′ induced by (143) is a quasi-isomorphism.

Proof For each m ∈ N>0, the morphism MPm ⊗B Ω•
B → MP ′

m
⊗B′ Ω•

B′ is a quasi-
isomorphism because both sides compute RΓ ((X1/Σm)crys,Fm) ([5, 7.1 Theorem]).
See before (22) for the definition of Fm . We obtain the desired quasi-isomorphism
by taking ⊗OK Ainf(OK )/π and then R lim←−m

. �

Theorem 139 The morphism (140)

MP,Ainf ⊗B Ω•
B → Lη+

π RΓ (ΔA, T Ainf(M)) ⊗L
Ainf (OK ) Ainf(OK )/π

associated to B and si ∈ B× is a quasi-isomorphism and does not depend on the
choice of si .

Proof By applying Lemma 137 to A,B → lim←−n
(A ⊗OK B)/pm and using Lemma

138, the first claim is reduced to Theorem 136. Let s ′
1, . . . , s

′
e be another set of

coordinates ofB over OK . PutB′ := lim←−m
(B ⊗OK B)/pm . Then, by Lemma 137, the

morphism (140) associated to B → A and si (resp. s ′
i ) factors through the morphism

(140) associated to the product map B′ → A and si ⊗ 1, 1 ⊗ s ′
i via the morphism

λ (resp. λ′) MP,Ainf ⊗B Ω•
B → MP ′,Ainf ⊗B′ Ω•

B′ induced by B → B′; a �→ a ⊗ 1
(resp. 1 ⊗ a). The product map B′ → B induces a GK -equivariant Ainf(OK )/π-
linear morphism μ : MP ′,Ainf ⊗B′ Ω•

B′ → MP,Ainf ⊗B Ω•
B such that μ ◦ λ and μ ◦ λ′

are both the identity map. Since λ and λ′ are quasi-isomorphisms by Lemma 138,
this implies that λ and λ′ coincide in the derived category of Ainf(OK )/π-modules
with semilinear GK -action. �

17 Period Rings with Truncated Divided Powers

In this section, we introduce and study period rings with truncated divided powers,
which are used to give a description of the scalar extension of the modified Galois
cohomology Lη+

π RΓ (ΔA, T Ainf(M)) by Ainf(OK ) → Acrys(OK ) in Sect. 20. See
the remark after Proposition 156 and the proof of Proposition 192 for the reason why
we need such period rings.

As in the beginning of Sect. 8, let Λ be a normal domain containing OK , and
assume that Λ/pΛ 	= 0, the absolute Frobenius of Λ/pΛ is surjective, and Λ is
integral over a noetherian normal subring. Let RΛ, Ainf(Λ) = W (RΛ), θ : Ainf(Λ) →
̂Λ, p ∈ RΛ and ξ ∈ Ainf(Λ) be as in the second and third paragraphs of Sect. 2. Let
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ε = (εn)n∈N ∈ Zp(1)(OK ), ε ∈ RΛ, and π ∈ Ainf(Λ) be as after (1). The quotient
η := π(ϕ−1(π))−1 ∈ Ainf(Λ) generates Ker(θ), i.e. η ∈ ξ · Ainf(Λ)× ([12, 5.1.2],
[18, Example A 2.6]).

Let N be a positive integer. We define the ring W PD,(N )(RΛ) to be the W (RΛ)-
subalgebra of W (RΛ)[p−1] generated by 1

pl !ξ
pl (l ∈ N ∩ [0, N ]). We have W PD,(N )

(RΛ) ⊂ W PD,(N ′)(RΛ) for positive integers N ′ ≥ N . The ring W PD,(N )(RΛ) is func-
torial with respect to Zp-algebra homomorphisms between Λ’s.

For L ∈ N and n ∈ N, we define {n}(L) ∈ N to be vp(r !) + qvp((pL)!), where
n = qpL + r (q ∈ N, r ∈ N ∩ [0, pL − 1]). For l ∈ N, we have

{pl}(L) =
{

vp(pl !) = pl−1
p−1 if l ≤ L ,

pl−Lvp(pL !) = pl−pl−L

p−1 <
pl−1
p−1 = vp(pl !) if l > L .

(144)

For an element x of a Qp-algebra and n ∈ N, we define x [n](L) to be p−{n}(L)xn , and
x [n] to be (n!)−1xn . For n ∈ N, recall that the p-adic valuation of n! is given by

vp(n!) =
∑

l≥0

alvp(p
l !) (n =

∑

l≥0

al p
l , al ∈ N ∩ [0, p − 1]). (145)

Lemma 140 (1) For n, n′ ∈ N, we have {n + n′}(L) ≥ {n}(L) + {n′}(L).
(2) For n ∈ N, define a ∈ N and al ∈ N ∩ [0, p − 1] for l ∈ N by n =

apL + ∑

l∈N∩[0,L−1] al pl = ∑

l∈N al pl . Then we have

{n}(L) = a{pL}(L) +
∑

l∈N∩[0,L−1]
al{pl}(L) =

∑

l∈N
al{pl}(L). (146)

(3) For n ∈ N, we have {n}(L) = vp(n!) if n ≤ pL+1 − 1, and {n}(L) < vp(n!) if
n ≥ pL+1.

(4) For n ∈ N, we have {n}(L) = {n}(L+1) if n ≤ pL+1 − 1, and {n}(L) < {n}(L+1) if
n ≥ pL+1.

(5) For n ∈ N, we have 0 ≤ {n + 1}(L) − {n}(L) ≤ L.

Proof The claim is trivial when L = 0 because {n}(0) = 0 for every n ∈ N. We
assume L > 0. Forn, n′ ∈ N, putn = qpL + r andn′ = q ′ pL + r ′ (q, q ′ ∈ N, r, r ′ ∈
N ∩ [0, pL − 1]). Then we have n + n′ = (q + q ′)pL + (r + r ′), vp((r + r ′)!) ≥
vp(r !) + vp(r ′!), and, by (145), vp((r + r ′)!) = vp(pL !) + vp(r ′′!) when r + r ′ =
pL + r ′′ with r ′′ ∈ N ∩ [0, pL − 1]. This implies the claim (1). The claim (2) fol-
lows from the definition of {n}(L), (145), and (144).We obtain the claim (3) (resp. (4))
by comparing (146) and (145) (resp. (146) for L and L + 1) and using (144). For
r = qpL + r (q ∈ N, r ∈ N ∩ [0, pL − 1]), we have {n + 1}(L) − {n}(L) = vp((r +
1)!) − vp(r !) = vp(r + 1). This implies the claim (4). �

Let Zp〈T 〉(N ) be the Zp[T ]-subalgebra of Qp[T ] generated by T [pl ] (l ∈ N ∩
[0, N ]).
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Corollary 141 (1) The Zp-algebra Zp〈T 〉(N ) is a free Zp-module with a basis
T [n](N ) (n ∈ N).

(2) We have T [n] ∈ Zp〈T 〉(N ) for n ∈ N ∩ [0, pN+1 − 1].
(3) We have an isomorphism of Fp-algebras

Fp[T0, T1, . . . , TN−1, TN ]/(T p
0 , . . . , T p

N−1)
∼=−→ Zp〈T 〉(N )/p; Ti �→ (T [pi ] mod p).

Proof WehaveT [n](N ) ∈ Zp〈T 〉(N ) byLemma140 (2) andT [n](N )T [n′](N )∈ZpT [n+n′](N )

by Lemma 140 (1). This implies (1). We obtain (2) from (1) and Lemma 140 (3).
The homomorphism in (3) is well-defined by (T [pi ])p ∈ Z

×
p pT

[pi+1] for i ∈ N ∩
[0, N − 1]. By (1) and Lemma 140 (2), Zp〈T 〉(N ) is a free Zp-module with a basis
(T [pN ])a

∏

0≤i≤N−1(T
[pi ])ai (ai ∈ N ∩ [0, p − 1], a ∈ N). This implies the claim (3).

�

Corollary 142 The W (RΛ)-algebra W PD,(N )(RΛ) coincides with the
W (RΛ)-subalgebra of W (RΛ)[p−1] generated by [p][pl ] (l ∈ N ∩ [0, N ]).
Proof By Corollary 141 (2), W PD,(N )(RΛ) (resp. the second W (RΛ)-algebra in the
claim) contains ξ[n] (resp. [p][n]) for n ∈ N ∩ [0, pN+1 − 1]. Hence the claim follows

from ξ[pl ] = ∑

0≤ν≤pl p
[ν](−[p])[pl−ν] and [p][pl ] = ∑

0≤ν≤pl p
[ν](−ξ)[pl−ν] for l ∈

N ∩ [0, N ]. �

Corollary 142 implies that W PD,(N )(RΛ) is stable under the Frobenius automor-
phism of W (RΛ)[p−1] (induced by that of W (RΛ)). Let ϕ also denote the induced
endomorphism of W PD,(N )(RΛ).

Proposition 143 We regard W (RΛ) as a Zp[T ]-algebra by the homomorphism
Zp[T ] → W (RΛ); T �→ ξ (resp. T �→ [p]).
(1) The homomorphism Z/pnZ[T ] → Wn(RΛ) is flat for every n ∈ N>0.

(2) The composition of W (RΛ) ⊗Zp[T ] Zp〈T 〉(N ) → W (RΛ) ⊗Zp[T ] Qp[T ] ∼=−→
W (RΛ)[p−1] induces an isomorphism

W (RΛ) ⊗Zp[T ] Zp〈T 〉(N )
∼=−→ W PD,(N )(RΛ).

Lemma 144 Let R be a flat Zp-algebra, and let a ∈ R such that R/pR is a-torsion
free. We regard R as a Zp[T ]-algebra by the homomorphism Zp[T ] → R; T �→ a.

(1) If R/pR is a-adically complete and separated, then R/pn R is a flat Z/pnZ[T ]-
algebra for every n ∈ N>0.

(2) Let M be aZp[T ]-module and suppose that, for every x ∈ M, there exists m ∈ N

such that pmx = 0 and Tmx = 0. Then Tor
Zp[T ]
r (M, R) = 0 for every r ≥ 1.

(3) Let S be a Zp[T ]-subalgebra of Qp[T ] such that T n0 ∈ pS for some n0 ∈ N.
Then the homomorphism R ⊗Zp[T ] S → R ⊗Zp[T ] Qp[T ] is injective.
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Proof (1) Since p is regular on R, the natural homomorphism R/pm R ⊗Z/pmZ[T ]
(pmZ[T ]/pm+1

Z[T ]) → pm R/pm+1R is an isomorphism for m ∈ N>0. Hence, by
the local criteria of flatness, it suffices to prove the claim forn = 1.By assumption, the
homomorphism Fp[T ] → R/pR extends to a homomorphism Fp[[T ]] → R/pR,
which is flat because a is regular on R/pR. SinceFp[T ] → Fp[[T ]] is flat,Fp[T ] →
R/pR is also flat.

(2)Wemayassume thatM is finitely generated sinceM is thefiltered direct limit of
its finitely generated Zp[T ]-submodules and Tor

Zp[T ]
r (−, R) commutes with filtered

direct limits. By considering the graded quotients of the filtration (T, p)r M (r ∈ N),
which is of finite length, we are reduced to the case M = Zp[T ]/(p, T ). By apply-

ing Tor
Zp[T ]
• (−, R) to the exact sequence 0 → Zp[T ] p−→ Zp[T ] → Fp[T ] → 0,

and using the p-torsion freeness of R, we obtain Tor
Zp[T ]
r (Fp[T ], R) = 0 (r > 0).

Then, by applying Tor
Zp[T ]
• (−, R) to the exact sequence 0 → Fp[T ] T−→ Fp[T ] →

Fp[T ]/(T ) → 0, and using the a-torsion freeness of R/pR, we obtain

Tor
Zp[T ]
r (Fp[T ]/(T ), R) = 0 (r > 0).
(3) The Zp[T ]-moduleQp[T ]/S is generated by (p−m mod S) (m ∈ N), and we

have pm · p−m ∈ S and Tmn0 · p−m = (p−1T n0)m ∈ S. Hence we have
Tor

Zp[T ]
1 (Qp[T ]/S, R) = 0 by (2). �

Proof of Proposition 143 By Lemma 1 (4), we can apply Lemma 144 (1) and (3)
to R = W (RΛ), a = ξ (resp. [p]), and S = Zp〈T 〉(N ), and obtain the claims, using
also Corollary 142 when a = [p]. �

We define the decreasing filtration Filr (W (RΛ)[p−1]) (r ∈ Z) of W (RΛ)[p−1]
by ideals to be (FilrW (RΛ))[ 1p ]. Since W (RΛ)/Filr = W (RΛ)/ξr is p-torsion free
(Lemma 1 (3)), we have

FilrW (RΛ) = W (RΛ) ∩ Filr (W (RΛ)[p−1]), r ∈ Z. (147)

We define FilrW PD,(N )(RΛ) (r ∈ Z) to be the filtration of W PD,(N )(RΛ) by ideals
induced by that of W (RΛ)[p−1], i.e., W PD,(N )(RΛ) ∩ Filr (W (RΛ)[p−1]).
Lemma 145 Let r ∈ N.

(1) FilrW PD,(N )(RΛ) is generatedby ξ[s](N ) (s ∈ N ∩ [r,∞))asaW (RΛ)-submodule
of W PD,(N )(RΛ).

(2) The image of the following injective homomorphism is the ̂Λ-module generated
by (ξ[r ](N )mod Filr+1).

grrW PD,(N )(RΛ) ↪→ grr (W (RΛ)[p−1]) ∼= ̂Λ[p−1] · (ξrmod Filr+1).

(3) The quotient W PD,(N )(RΛ)/Filr is p-torsion free and p-adically complete and
separated.
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Proof The claim (2) immediately follows from (1). By using Lemma 3 (2),
we obtain (3) from (2) by induction on r . Let us prove (1) by induction on
r . The claim for r = 0 holds by Corollary 141 (1). Let r ∈ N>0, and sup-
pose that the claim holds for r − 1. Then any element of FilrW PD,(N )(RΛ) is
written as

∑

n≥r−1 anξ
[n](N ) (an ∈ W (RΛ) (n ≥ r − 1), an = 0 (n � 0)). Since

ξ[n](N ) ∈ FilrW PD,(N )(RΛ) for n ≥ r , we have ar−1ξ
[r−1](N ) ∈ FilrW (RΛ)[ 1p ] =

ξrW (RΛ)[ 1p ], which implies ar−1 ∈ ξW (RΛ)[ 1p ] ∩ W (RΛ) = ξW (RΛ) (147), and

therefore ar−1ξ
[r−1](N ) ∈ W (RΛ)ξξ[r−1](N ) ⊂ W (RΛ)ξ[r ](N ) by Lemma 140 (5). �

Corollary 146 We have ϕ(FilrW PD,(N )(RΛ)) ⊂ prW PD,(N )(RΛ) for r ∈ N ∩
[0, p − 1].
Proof By Lemmas 145 (1) and 140 (2), the ideal FilrW PD,(N )(RΛ) of
W PD,(N )(RΛ) is generated by ξr and ξ[pl ] (l ∈ N ∩ [1, N ]). By Corollary
142, we have ϕ(ξ) = p(1 − p−1[p]p) ∈ pW PD,(N )(RΛ). Hence the claim fol-
lows from pl − vp(pl !) = pl − (p − 1)−1(pl − 1) = (p − 1)−1(pl(p − 2) + 1) ≥
(p − 1)−1(p(p − 2) + 1) = p − 1 for l ∈ N>0. �

Proposition 147 The ring W PD,(N )(RΛ) coincides with the W (RΛ)-subalgebra of
W (RΛ)[p−1] generated by (p−1π p−1)[pl ] (l ∈ N ∩ [0, N − 1]).
Proof Put π′ := ϕ−1(π) and η := π(π′)−1. We have η ∈ ξW (ROK

)× ([12, 5.1.2],
[18, Example A2.6]). By multiplying η = {(1 + π′)p − 1}(π′)−1 = (π′)p−1 +
∑

1≤i≤p−1

(p
i

)

(π′)p−1−i by η p−1 p−1, we obtain p−1η p = p−1π p−1 + ηa, a ∈
W (ROK

). This implies the claim for N = 1. We have (p−1η p)[n] ∈ Z
×
p η[pn] for

n ∈ N, and η[n] ∈ W PD,(N−1)(RΛ) for an integer N ≥ 2 and n ∈ N ∩ [0, pN − 1]
by Corollary 141 (2). Hence we have (p−1π p−1)[pN−1] = (p−1η p)[pN−1] + bN =
u · η[pN ] + bN , bN ∈ W PD,(N−1)(ROK

), u ∈ Z
×
p for an integer N ≥ 2, and obtain the

claim by induction on N . �

Let Zp[T ]〈 T p−1

p 〉(N−1) be the Zp[T ]-subalgebra of Qp[T ] generated by the ele-

ments ( T
p−1

p )[pl ] (l ∈ N ∩ [0, N − 1]).

Lemma 148 (1) TheZp-algebraZp[T ]〈 T p−1

p 〉(N−1) is a freeZp-module with a basis

T r ( T
p−1

p )[n](N−1) (n ∈ N, r ∈ N ∩ [0, p − 2]).
(2) We have ( T

p−1

p )[n] ∈ Zp[T ]〈 T p−1

p 〉(N−1) for n ∈ N ∩ [0, pN − 1].
Proof Put L = N − 1 to simplify the notation. By Lemma 140 (2), we
have T r ( T

p−1

p )[n](N−1) ∈ Zp[T ]〈 T p−1

p 〉(N−1) for n ∈ N and r ∈ N ∩ [0, p − 2].
By using Lemma 140 (1), we see that, for n, n′ ∈ N and r, r ′ ∈ N ∩
[0, p − 2], T r ( T

p−1

p )[n](N−1) · T r ′
( T

p−1

p )[n′](N−1) ∈ ZpT r+r ′
( T

p−1

p )[n+n′](N−1) , and if

r ′′ := r + r ′ ≥ p − 1, T r ′′
( T

p−1

p )[n+n′](N−1) = pT r ′′−(p−1) T p−1

p ( T
p−1

p )[n+n′](N−1) ∈
pZpT r ′′−(p−1)( T

p−1

p )[n+n′+1](N−1) . This implies (1). The claim (2) follows from (1)
and Lemma 140 (3). �
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Proposition 149 We regard W (RΛ) as a Zp[T ]-algebra by the homomorphism
Zp[T ] → W (RΛ); T �→ π.

(1) The homomorphism Z/pnZ[T ] → Wn(RΛ) is flat for every n ∈ N>0.
(2) The composition of W (RΛ) ⊗Zp[T ] Zp[T ]〈 T p−1

p 〉(N−1) → W (RΛ) ⊗Zp[T ]

Qp[T ] ∼=−→ W (RΛ)[p−1] induces an isomorphism

W (RΛ) ⊗Zp[T ] Zp[T ]〈 T p−1

p 〉(N−1) ∼=−→ W PD,(N )(RΛ).

Proof By Lemma 1 (4), W (RΛ)/p is π-torsion free, and π-adically complete and
separated. Since W (RΛ) is p-torsion free, we obtain the claim by applying Lemma
144 (1) and (3) to R = W (RΛ), a = π, and S = Zp[T ]〈 T p−1

p 〉(N−1), and using Propo-
sition 147. �

We define I r (W (RΛ)[p−1]) (r ∈ Z) to be the ideal of W (RΛ)[p−1]
consisting of elements x such that ϕn(x) ∈ Filr (W (RΛ)[p−1]) for all n ∈ N. By
(147), we have I r (W (RΛ)[p−1]) = (I r Ainf(Λ))[p−1] = πmax{r,0} · Ainf(Λ)[ 1p ] and

I r Ainf(Λ) = Ainf(Λ) ∩ I r (W (RΛ)[p−1]). (148)

Wedefine the ideal I rW PD,(N )(RΛ)ofW PD,(N )(RΛ) to beW PD,(N )(RΛ) ∩ I r (W (RΛ)[p−1]),
which coincides with the ideal consisting of elements x such that ϕn(x) ∈
FilrW PD,(N )(RΛ) for all n ∈ N.

Lemma 150 Let r ∈ N.

(1) I rW PD,(N )(RΛ) is the W (RΛ)-submodule of W PD,(N )(RΛ) generated by
πa( π p−1

p )[b](N−1) (a ∈ N ∩ [0, p − 2], b ∈ N, a + (p − 1)b ≥ r).
(2) Let s ∈ N ∩ [0, p − 2] and q ∈ N, and put r := s + (p − 1)q. Then the multi-

plication by πs( π p−1

p )[q](N−1) induces an isomorphism

W (RΛ)/I 1W (RΛ)
∼=−→ grrI W

PD,(N )(RΛ).

(3) The quotient W PD,(N )(RΛ)/I rW PD,(N )(RΛ) is p-torsion free, and p-adically
complete and separated.

Proof The claim (2) follows from the claim (1) and (148) for r = 1 because π is
not a zero divisor of W (RΛ)[ 1p ]. Since W (RΛ)/I 1W (RΛ) = W (RΛ)/π is p-torsion
free, and p-adically complete and separated by Lemma 1 (3), we obtain (3) from (2)
by induction on r by using Lemma 3 (2). One can prove the claim (1) in the same
way as the proof of Lemma 145 (1) by using Proposition 149 (2), Lemma 148 (1),
(148) for r = 1, and π · π p−2( π p−1

p )[n](N−1) ∈ Zp · ( π p−1

p )[n+1](N−1) . �

Definition 151 We define the period ring A(N )
crys(Λ) to be the inverse limit

lim←−m
W PD,(N )(RΛ)/pm . We define a decreasing filtration Filr A(N )

crys(Λ) (r ∈ Z) of
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A(N )
crys(Λ) by ideals to be lim←−m

FilrW PD,(N )(RΛ)/pm . Note that the homomorphism

FilrW PD,(N )(RΛ)/pn → W PD,(N )(RΛ)/pn is injective byLemma145 (3). TheFrobe-
nius endomorphism ϕ of W PD,(N )(RΛ) induces that of A(N )

crys(Λ), which is again
denoted by ϕ. We endow A(N )

crys(Λ) with the p-adic topology, which coincides with
the (p, [p])-adic topology because [p]p ∈ pA(N )

crys(Λ) by Corollary 142.

By Lemma 7, A(N )
crys(Λ) and Filr A(N )

crys(Λ) are p-torsion free and the natural
homomorphisms A(N )

crys(Λ)/pm → W PD,(N )(RΛ)/pm and Filr A(N )
crys(Λ)/pm →

FilrW PD,(N )(RΛ)/pm are isomorphisms.The latter implies that A(N )
crys(Λ) andFilr A(N )

crys(Λ)

are p-adically complete and separated.
The topological algebra A(N )

crys(Λ) with Filr and ϕ is obviously functorial with
respect to Zp-algebra homomorphisms of Λ’s. By Corollary 146, we have

ϕ(Filr A(N )
crys(Λ)) ⊂ prFilr A(N )

crys(Λ) (r ∈ N ∩ [0, p − 1]). (149)

As it is recalled in Sect. 2, the usual period ring Acrys(Λ) is canonically isomorphic
to the p-adic completion of the W (RΛ)-subalgebra W PD(RΛ) of W (RΛ)[p−1] gen-
erated by ξ[n] (n ∈ N). Therefore we have natural continuous ring homomorphisms
compatible with ϕ and functorial in Λ

Ainf(Λ) → A(1)
crys(Λ) →A(2)

crys(Λ) →
· · · → A(N )

crys(Λ) → A(N+1)
crys (Λ) → · · · → Acrys(Λ),

(150)

which induce isomorphisms

lim−→
N

A(N )
crys(Λ)/pm

∼=−→ Acrys(Λ)/pm (m ∈ N>0) (151)

because lim−→N
W PD,(N )(RΛ)

∼=−→ W PD(RΛ). As it is recalled in Sect. 2, the filtration

Filr Acrys(Λ) (r ∈ Z)of Acrys(Λ) is givenby the p-adic completionofFilrW PD(RΛ) =
W PD(RΛ) ∩ Filr (W (RΛ)[p−1]), and we have isomorphisms

W PD(RΛ)/FilrW PD(RΛ)
∼=−→ Acrys(Λ)/Filr Acrys(Λ) (r ∈ Z). (152)

Similarly, by taking lim←−m
(− ⊗Z Z/pm) of the exact sequence

0 −→ FilrW PD,(N )(RΛ) −→ W PD,(N )(RΛ) −→ W PD,(N )(RΛ)

FilrW PD,(N )(RΛ)
−→ 0

and using Lemma 145 (3), we obtain the following isomorphisms.

W PD,(N )(RΛ)/FilrW PD,(N )(RΛ)
∼=−→ A(N )

crys(Λ)/Filr A(N )
crys(Λ) (r ∈ Z). (153)
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From (152), (153), and (147), we obtain the following.

Lemma 152 The homomorphisms Ainf(Λ) → A(N )
crys(Λ) → Acrys(Λ) (150) are

strictly compatible with the filtrations Fil•.

Lemma 153 The filtrations Filr (r ∈ Z) on Ainf(Λ), A(N )
crys(Λ) and Acrys(Λ) are

separated.

Proof Since these algebras are p-adically separated and their quotients by Filr are
p-torsion free, it suffices to prove the claim for the images of Filr in the reduction
mod p of these algebras. The claim for Ainf(Λ)/p follows from Lemma 1 (4) for
a = ξ. For A(N )

crys(Λ)/p ∼= W PD,(N )(RΛ)/p and Acrys(Λ)/p ∼= Acrys,1(Λ), we obtain

the claim from the following isomorphisms sending Ti to (ξ[pi ] mod p).

RΛ/pp[T1, . . . , TN−1, TN ]/(T p
1 , . . . , T p

N−1)
∼=−→ A(N )

crys(Λ)/p, (154)

RΛ/pp[Ti ; i ∈ N>0]/(T p
i ; i ∈ N>0)

∼=−→ Acrys(Λ)/p = Acrys,1(Λ). (155)

The first one follows from Proposition 143 (2) and Corollary 141 (3). The second one
follows from the flatness of k[T ] → Ainf(Λ)/p; T �→ (ξ mod p) (Proposition 143

(1)), [5, 3.21 Proposition], andFp[Ti ; i ∈ N]/(T p
i , i ∈ N)

∼=−→ Fp〈T 〉/p; Ti �→ T [pi ].
�

Corollary 154 The homomorphisms Ainf(Λ) → A(N )
crys(Λ) → Acrys(Λ) are injec-

tive.

Proof This is an immediate consequence of Lemmas 152 and 153. �

Remark 155 (1) The ideal Fil1A(N )
crys(Λ)/pn of A(N )

crys(Λ)/pn is not a nilideal. The

claim is reduced to the case n = 1, and (ξ[pN ] mod p) is not nilpotent in
A(N )
crys(Λ)/p by (154).

(2) The reductionmod p ofϕ of A(N )
crys(Λ) does not coincide with the absolute Frobe-

nius. Indeed we have ϕ(ξ[pN ]) ∈ pA(N )
crys(Λ) by (149), but (ξ[pN ])p /∈ pA(N )

crys(Λ)

as observed in (1).

Proposition 156 (1) For s ∈ N, the element ϕ−s(π) is regular in A(N )
crys(Λ).

(2) For s ∈ N, the quotient A(N )
crys(Λ)/ϕ−s(π) is p-adically complete and separated,

and its p-primary torsion part is annihilated by pN .
(3) For s ∈ N, the quotients A(N )

crys(Λ)/ϕ−s(π) and (A(N )
crys(Λ)/ϕ−s(π))/pm (m ∈

N>0)donot haveanon-zero element annihilatedby the ideal
∑

l∈N[pp−l ]Ainf(OK )

of Ainf(OK ).

As it is mentioned before [7, Lemma 12.8], the property (2) in Proposition 156
does not hold for Acrys(Λ), and this is the main reason why we introduce A(N )

crys(Λ).

The same remark applies to A�
crys(A) (cf. Proposition 168 (2)).
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Proof (1), (2) For m ∈ N>0, let Km and Cm be the kernel and cokernel of the mul-
tiplication by T on (Zp[T ]〈 T p−1

p 〉(N−1))/pm . For n ∈ N, put α(n) = {n + 1}(N−1) −
{n}(N−1) + 1, which is contained inN ∩ [1, N ] by Lemma 140 (5). Then, by Lemma
148 (1), we have

Km = ⊕n∈N pm−α(n)
Z/pmZ · T p−2(p−1T p−1)[n](N−1) ,

Cm = Z/pm ⊕ (⊕n∈N Z/pα(n)(p−1T p−1)[n+1](N−1) )

form ∈ N andm ≥ N . This implies that the homomorphism Km+N → Km vanishes
for m ≥ N . By Proposition 149, we have an exact sequence

0 −→ Km ⊗Wm Wm(RΛ)/π −→ W PD,(N )(RΛ)/pm
π−→ W PD,(N )(RΛ)/pm

−→ Cm ⊗Wm Wm(RΛ)/π −→ 0.

By taking lim←−m
and using the fact that W (RΛ)/π is p-torsion free (Lemma 1 (3)),

we obtain the claims (1) and (2) for s = 0. We also obtain

(A(N )
crys(Λ)/π)/pm = (Ainf(Λ)/π)/pm ⊕ (⊕n∈N(Ainf(Λ)/π)/pα(n)( π p−1

p )[n+1](N−1) ).

For s ∈ N, we have π ∈ ϕ−s(π)Ainf(OK ). Hence the claim (1) for s = 0 implies
that ϕ−s(π) is regular in A(N )

crys(Λ) and the multiplication by πϕ−s(π)−1 induces an
injective homomorphism A(N )

crys(Λ)/ϕ−s(π) ↪→ A(N )
crys(Λ)/π . The latter shows that

the p-primary torsion part of A(N )
crys(Λ)/ϕ−s(π) is annihilated by pN . This together

with the regularity of ϕ−s(π) in A(N )
crys(Λ) and A(N )

crys(Λ) = lim←−m
A(N )
crys(Λ)/pm implies

A(N )
crys(Λ)/ϕ−s(π) = lim←−m

(A(N )
crys(Λ)/ϕ−s(π))/pm by Lemma 157 below.

(3) Let I be the ideal
∑

l∈N[pp−l ]Ainf(OK ). By (2), it suffices to prove the claim
for the reduction mod pm . By the description of (A(N )

crys(Λ)/π)/pm above and π ∈
ϕ−s(π)Ainf(OK ), we are reduced to proving (Ainf(Λ)/ϕ−s(π))/pm[I] = 0. Since
Ainf(Λ)/ϕ−s(π) is p-torsion free (Lemma 1 (3)), it is further reduced to the casem =
1. We have isomorphisms (Ainf(Λ)/ϕ−s(π))/p = RΛ/(εp−s − 1)

∼=−→ Λ/(εs+1 − 1)
induced by the projection to the second component, and the claim follows from
Lemma 114. �
Lemma 157 Let R be a commutative ring, and let a be an element of R.

(1) Let 0 → M1 → M2 → M3 → 0 be an exact sequence of R-modules. Let N be
a non-negative integer, and suppose M3[an] = M3[aN ] for every integer n ≥ N.
Then the following sequence is exact

0 −→ lim←−
n

M1/a
n −→ lim←−

n

M2/a
n −→ lim←−

n

M3/a
n −→ 0.

(2) Under the same notation and assumption as (1), if two of the three R-modules
Mi (i ∈ {1, 2, 3}) are a-adically complete and separated, so is the rest.
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Proof The claim (2) follows from (1) in the sameway as the proof ofLemma3 (2).By
applying the snake lemma to the multiplication by an and an+1 on the exact sequence
0 → M1 → M2 → M3 → 0, we obtain the following commutative diagram whose
two lines are exact.

M3[an+1]
a

M1/an+1

pr

M2/an+1

pr

M3/an+1

pr

0

M3[an] M1/an M2/an M3/an 0

Let Kn be the kernel of M1/an → M2/an for n ∈ N>0. Then, as M3[an+N ] aN−→
M3[an] vanishes for every n ∈ N>0 by assumption, we have lim←−n

Nn = 0 and

R1 lim←−n
Nn = 0. This implies the claim (1). �

We also introduce another completion of W PD,(N )(RΛ) to have Proposition 164.

Definition 158 We define the period ring A(N+)
crys (Λ) to be the inverse limit

lim←−n
W PD,(N )(RΛ)/I nW PD,(N )(RΛ). We define a decreasing filtration by ideals

Filr A(N+)
crys (Λ) (resp. I r A(N+)

crys (Λ)) (r ∈ Z) of A(N+)
crys (Λ) to be the inverse limit

of FilrW PD,(N )(RΛ)/I nW PD,(N )(RΛ) (resp. I rW PD,(N )(RΛ)/I nW PD,(N )(RΛ)) (n ∈
N ∩ [r,∞)). The Frobenius endomorphism ϕ of W PD,(N )(RΛ) induces that of
A(N+)
crys (Λ), which is again denoted by ϕ.

It is obvious that the homomorphismW PD,(N )(RΛ) → A(N+)
crys (Λ) induces the fol-

lowing isomorphisms.

W PD,(N )(RΛ)/FilrW PD,(N )(RΛ)
∼=−→ A(N+)

crys (Λ)/Filr A(N+)
crys (Λ) (r ∈ Z) (156)

W PD,(N )(RΛ)/I rW PD,(N )(RΛ)
∼=−→ A(N+)

crys (Λ)/I r A(N+)
crys (Λ) (r ∈ Z) (157)

Lemma 159 (1) For r ∈ Z, we have an isomorphism

Filr A(N+)
crys (Λ)

∼=−→ lim←−
m,n∈N,n≥r

FilrW PD,(N )(RΛ)/(I nW PD,(N )(RΛ) + pmFilrW PD,(N )(RΛ)).

(2) A(N+)
crys (Λ) is p-torsion free, and p-adically complete and separated. For m ∈

N>0, we have an isomorphism

A(N+)
crys (Λ)/pm

∼=−→ lim←−
n∈N

W PD,(N )(RΛ)/(I nW PD,(N )(RΛ) + pmW PD,(N )(RΛ)).

(3) For r ∈ Z, I r A(N+)
crys (Λ) coincides with the ideal of A(N+)

crys (Λ) consisting of ele-
ments x such that ϕn(x) ∈ Filr A(N+)

crys (Λ) for all n ∈ N.
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(4) For r, s ∈ Z such that s > r , I r A(N+)
crys (Λ) and I r A(N+)

crys (Λ)/I s A(N+)
crys (Λ) are p-

adically complete and separated.

Proof For r, n ∈ N with r ≥ n, the quotient FilrW PD,(N )(RΛ)/I nW PD,(N )(RΛ) is
p-adically complete and separated by Lemmas 145 (3), 150 (3), and 3 (2). This
implies the claim (1). We obtain the second claim of (2) and the p-torsion freeness
of A(N+)

crys (Λ) by taking the inverse limit of the exact sequence

0 → W PD,(N )(RΛ)

I nW PD,(N )(RΛ)

pm−→ W PD,(N )(RΛ)

I nW PD,(N )(RΛ)
→ W PD,(N )(RΛ)

I nW PD,(N )(RΛ)+pmW PD,(N )(RΛ)
→ 0.

Then the claim (1) implies the remaining claim of (2). The claim (3) immediately
follows from the definition of the filtrations I r and Filr on A(N+)

crys (Λ). We can derive
the claim (4) from the first claim of (2), Lemma 150 (3), and (157) by using Lemma
3 (2). �

We endow A(N+)
crys (Λ) with the topology induced by the inverse limit of the dis-

crete topology of W PD,(N )(RΛ)/(I nW PD,(N )(RΛ) + pmW PD,(N )(RΛ)) via the iso-
morphism in Lemma 159 (1).

Lemma 160 (1) The identity map of W PD,(N )(RΛ) induces a continuous injective
homomorphism A(N )

crys(Λ) → A(N+)
crys (Λ) compatible with ϕ and strictly compat-

ible with the filtrations Filr .
(2) The inclusion map W PD,(N )(RΛ) → W PD,(N+1)(RΛ) induces a continuous injec-

tive homomorphism A(N+)
crys (Λ) → A(N+1)

crys (Λ) compatible with ϕ and strictly
compatible with the filtrations Filr .

Proof (1) By Lemma 159 (1) and the definition of the topology of A(N+)
crys (Λ) above,

we have a continuous homomorphism A(N )
crys(Λ) → A(N+)

crys (Λ) compatible withϕ and
the filtrations. We see that it is strictly compatible with the filtrations by (156) and
(153), and then it is injective by Lemma 153.

(2) For b = aN pN + aN−1 pN−1 + · · · + a1 p + a0 (aN ∈ N, a1, . . . , aN−1 ∈ N ∩
[0, p − 1]), we have {b}(N ) − {b}(N−1) = aN (

pN−1
p−1 − p pN−1−1

p−1 ) = aN by Lemma

140 (2). Hence, for m ∈ N, we have {b}(N ) − {b}(N−1) ≥ m if b ≥ mpN . By Lemma
150 (1), this implies I mpN (p−1)W PD,(N )(RΛ) ⊂ pmW PD,(N+1)(RΛ). Hence we have
a continuous map compatible with ϕ and the filtrations as in the claim. It is strictly
compatible with the filtrations Filr by (156) and (153). Then, by Lemma 159 (3),
the kernel is contained in the intersection of I r A(N+)

crys (Λ) (r ∈ N), which is 0 by the
definition of A(N+)

crys (Λ) and the filtration I r A(N+)
crys (Λ) (r ∈ N). �

Lemma 161 The topologyof A(N+)
crys (Λ) is inducedby the p-adic topologyof Acrys(Λ)

via the injective homomorphism A(N+)
crys (Λ) → Acrys(Λ) (Lemma 160 (2) and Corol-

lary 154).

Proof By the isomorphism W PD(RΛ)/pm
∼=−→ Acrys(Λ)/pm , it suffices to prove that

the topology of W PD,(N )(RΛ) induced by the p-adic topology of W PD(RΛ) is the



Crystalline Zp-Representations and Ainf -Representations with Frobenius 279

same as that defined by pnW PD,(N )(RΛ) + I lW PD,(N )(RΛ) (n, l ∈ N>0). By the
proof of Lemma 160 (2), the kernel of W PD,(N )(RΛ) → W PD(RΛ)/pm contains
pmW PD,(N )(RΛ) + I mpN (p−1)W PD,(N )(RΛ).

Put I rW PD(RΛ) := I r (W (RΛ)[p−1]) ∩ W PD(RΛ) (r ∈ Z). Letm ∈ N>0, and put
l = m(p − 1)2. Since W PD(RΛ) is the union of W PD,(N )(RΛ) (N ∈ N>0), Lemma
150 (1) shows that W PD(RΛ)/I l is generated by πa( π p−1

p )[b] as an W (RΛ)-module
for a ∈ N ∩ [0, p − 2] and b ∈ N such that a + (p − 1)b ≤ l − 1. Since vp(b!) ≤
b

p−1 ≤ m for b as above, we obtain pm(W PD(RΛ)/I l) ⊂ W PD,(N )(RΛ)/I l . Hence the

multiplicationby pm onW PD(RΛ)/I l induces ahomomorphism fm : W PD(RΛ)/I l →
W PD,(N )(RΛ)/I l , whose composition with the homomorphism W PD,(N )(RΛ)/I l ↪→
W PD(RΛ)/I l is the multiplication by pm . The kernel of W PD,(N )(RΛ) →
W PD(RΛ)/p2m is contained in the kernel of the composition of

W PD,(N )(RΛ) → (W PD(RΛ)/I l)/p2m
fm−→ (W PD,(N )(RΛ)/I l)/p2m,

which is equal to the composition of

W PD,(N )(RΛ) → (W PD,(N )(RΛ)/I l)/p2m
pm−→ (W PD,(N )(RΛ)/I l)/p2m .

The latter kernel is I lW PD,(N )(RΛ) + pmW PD,(N )(RΛ) because W PD,(N )(RΛ)/I l is
p-torsion free. This completes the proof. �

LetΛ0 be a subring ofΛ such thatΛ is integral overΛ0 and Frac(Λ)/Frac(Λ0) is
a Galois extension. LetG(Λ/Λ0) denote the Galois group of Frac(Λ) over Frac(Λ0).
Then Λ is a G(Λ/Λ0)-stable subalgebra of Frac(Λ). Therefore the group G(Λ/Λ0)

naturally acts on A(N )
crys(Λ) and A(N+)

crys (Λ) with ϕ and Filr .

Proposition 162 The actions of G(Λ/Λ0) on A(N )
crys(Λ) and on A(N+)

crys (Λ) are con-
tinuous.

Proof It suffices to prove that the action of G(Λ/Λ0) on W PD,(N )(RΛ)/pm with
the discrete topology is continuous. By Corollary 142, W PD,(N )(RΛ)/pm is a
W (RΛ)/(pm, [p]pm)-algebra generated by the image of [p][pl ] (l ∈ N ∩ [1, N ]).
Hence the proposition follows from Lemmas 5 and 163 below. �

Lemma 163 For any n ∈ N and a ∈ pnZp, we have [εa] − 1 ∈ pnW PD,(1)(RΛ).

Proof Put b := p−na ∈ Zp and x := [εb] − 1 ∈ Fil1W (RΛ). Then we have [εpb] −
1 = ∑p−1

ν=1

(p
ν

)

xν + p!x [p] ∈ pW PD,(1)(RΛ). We obtain [εpnb] − 1 ∈ pnW PD,(1)(RΛ)

by induction on n. �

Since W PD,(N )(RΛ)/I m (m ∈ N) are p-torsion free, we have pr A(N+)
inf (Λ) ∼=

lim←−m
pr (W PD,(N )(RΛ)/I m) for r ∈ N. Hence by Corollary 146, we have

ϕ(Filr A(N+)
crys (Λ)) ⊂ pr A(N+)

crys (Λ) (r ∈ N ∩ [0, p − 1]). (158)
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Hence the quadruplet (A(N+)
crys (Λ), p,ϕ,Filr A(N+)

crys (Λ)) satisfies Condition 39 for
a = p − 2, and the action of G(Λ/Λ0) on it satisfies the conditions before Defi-
nitions 48 and 53 by Proposition 162. Therefore we may apply Definitions 40 and
53 to this quadruplet with G(Λ/Λ0)-action. We have q = p(1 + π0

p ) and ( π0
p )n ∈

I n(p−1)W PD,(1)(RΛ) (n ∈ N) by Lemma 9 (2). This implies 1 + π0
p ∈ A(N+)

crys (Λ)×.
Therefore, by applying the construction of (44) and (47) to the two continuous homo-
morphisms Ainf(Λ) → A(N+)

crys (Λ) and A(N+)
crys (Λ) → Acrys(Λ) (Lemma 160, (150))

and composing with the isomorphism (49) (resp. (53)) for the first (resp. third) one,
we obtain the following four functors, where G = G(Λ/Λ0).

Mq
[0,p−2],free(Ainf(Λ),ϕ) −→ MFp

[0,p−2],free(A
(N+)
crys (Λ),ϕ), (159)

MFp
[0,p−2],free(A

(N+)
crys (Λ),ϕ) −→ MFp

[0,p−2],free(Acrys(Λ),ϕ), (160)

Mq,cont
[0,p−2],free(Ainf(Λ),ϕ,G) −→ MFp,cont

[0,p−2],free(A
(N+)
crys (Λ),ϕ,G), (161)

MFp,cont
[0,p−2],free(A

(N+)
crys (Λ),ϕ,G) −→ MFp,cont

[0,p−2],free(Acrys(Λ),ϕ,G). (162)

We need the following proposition in the proof of Proposition 181.

Proposition 164 The functors (159)–(162) are equivalences of categories.

Proof Let A(N+)
crys (Λ) be A(N+)

crys (Λ)/I p−1A(N+)
crys (Λ)withϕ, Filr andG(Λ/Λ0)-action

induced by those of A(N+)
crys (Λ). We endow A(N+)

crys (Λ) with the quotient topology,
which coincides with the p-adic topology. Then we have the following commutative
diagram of topological rings with ϕ, Filr and continuous G(Λ/Λ0)-action.

Ainf(Λ) A(N+)
crys (Λ) Acrys(Λ)

Ainf(Λ) A(N+)
crys (Λ) Acrys(Λ)

The bottom left (resp. right) homomorphism is well-defined and injective by (157)
and (148) (resp. Lemmas 159 (3), 160 (2), and 152). Since the composition of them
is a filtered isomorphism by (2), each of them is also a filtered isomorphism. Hence,
by Propositions 59, 44, and 56 together with Remark 55 (2), it suffices to show that
the homomorphism A(N+)

crys (Λ) → A(N+)
crys (Λ) satisfies Condition 54 for a = p − 2.

We abbreviate A(N+)
crys (Λ) to A(N+)

crys in the following. The conditions (a) (iii) and
(a) (iv) are obviously satisfied, and the conditions (a) (ii) and (a) (v) follow from
(157) and (158) with r = p − 1, respectively. The condition (a) (i) holds because
A(N+)
crys

∼= lim←−n
A(N+)
crys /I n A(N+)

crys by (157) and I n · I m ⊂ I n+m on A(N+)
crys . The condi-

tions (b) and (e) are obvious. The ideals In := pn A(N+)
crys + I n+(p−1)A(N+)

crys (n ∈ N)

satisfy (d-1) and (d-2). We have In ∩ I p−1A(N+)
crys = pn I p−1A(N+)

crys + I n+(p−1)A(N+)
crys

and ϕ(I n+(p−1)A(N+)
crys ) ⊂ pp−1(I n+(p−1)A(N+)

crys ) because A(N+)
crys /I p−1A(N+)

crys and
A(N+)
crys /I n+(p−1)A(N+)

crys are p-torsion free. Therefore the ideals In also satisfy (d-3).
By Lemma 159 (4), we also obtain
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lim←−
n

(I p−1A(N+)
crys /(In ∩ I p−1A(N+)

crys ))

∼= lim←−
m,n

(I p−1A(N+)
crys /(pm I p−1A(N+)

crys + I n+(p−1)A(N+)
crys ))

∼= lim←−
n

I p−1A(N+)
crys /I n+(p−1)A(N+)

crys
∼= I p−1A(N+)

crys .

Thus the condition (c) holds. The sufficient condition for (f) and (g) given in Remark
55 (1) holds because pA(N+)

crys ∩ (pm+1A(N+)
crys + I n A(N+)

crys ) = p(pm A(N+)
crys + I n A(N+)

crys )

for n,m ∈ N. �

18 Period Rings with Truncated Divided Powers Associated
to a Framing

We follow the notation in Sects. 12 and 17. We introduce and study period rings
with truncated divided powers associated to a framing �. Recall that we have intro-
duced a compatible system of étale homomorphisms Ainf,a(OK )[U±1] → A�

inf,a(A)

(a ∈ Sinf) with ϕ and an action of ˜ΓA. Let S (N )
crys denote the set of ideals a of

A(N )
crys(OK ) satisfying pn ∈ a ⊂ pA(N )

crys(OK ) + Fil1A(N )
crys(OK ) for some n ∈ N>0. For

a ∈ S (N )
crys , we define A(N )

crys,a(Λ) to be the quotient A(N )
crys(Λ)/a, and A�,(N )

crys,a (A) to be

A�
inf(A) ⊗Ainf (OK ) A

(N )
crys,a(OK ). For g ∈ ˜ΓA and a ∈ S (N )

crys , the isomorphism

ρ�(g) : A�
inf(A)

∼=−→ A�
inf(A) and the action of g on A(N )

crys(OK ) induce an isomorphism

ρ�
a (g) : A�,(N )

crys,a (A)
∼=−→ A�,(N )

crys,g(a)(A) satisfying ρ�
a (1) = id and ρ�

h(a)(g) ◦ ρ�
a (h) =

ρ�
a (gh). For a ∈ S (N )

crys , the endomorphisms ϕ of A�
inf(A) and A(N )

crys(OK ) induce a

homomorphism ϕ�
a : A�,(N )

crys,a (A) → A�,(N )

crys,ϕ(a)(A) satisfying ϕ�
g(a) ◦ ρ�

a (g) =
ρ�

ϕ(a)(g) ◦ ϕ�
a for g ∈ ˜ΓA. For a, b ∈ S (N )

crys with b ⊂ a, we have a canonical iso-
morphism

A�,(N )

crys,b (A) ⊗A(N )

crys,b(OK )
A(N )
crys,a(OK )

∼=−→ A�,(N )
crys,a (A) (163)

compatible with ϕ�
 and the action of ˜ΓA in the obvious sense. It is also compatible

with the composition for a, b, c ∈ S (N )
crys with c ⊂ b ⊂ a. Let a ∈ S (N )

crys , and let n be
a positive integer such that pn ∈ a. Then, since [p]pn ∈ pn A(N )

crys(OK ) by Corollary
142, we obtain the following canonical isomorphism from Lemma 79 (2).

A�
inf,(pn ,[p]pn)(A) ⊗Ainf,(pn ,[p]pn )(OK ) A

(N )
crys,a(OK )

∼=−→ A�,(N )
crys,a (A) (164)

In particular, this implies that A�,(N )
crys,a (A) is smooth over A(N )

crys,a(OK ).
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We define A�,(N )
crys (A) to be the inverse limit of A�,(N )

crys,a (A) (a ∈ S (N )
crys ) endowed

with the inverse limit topology of the discrete topology of A�,(N )
crys,a (A). The isomor-

phisms ρ�
a (g) and the homomorphisms ϕ�

a induce the action of ˜ΓA on A�,(N )
crys (A)

and the endomorphism ϕ of A�,(N )
crys (A).

Lemma 165 The action of ˜ΓA on A�,(N )
crys (A) is continuous.

Proof This follows from (164), Lemma 86, and Proposition 162. �

Lemma 166 (1) A�,(N )
crys (A) is p-torsion free, and p-adically complete and sepa-

rated.
(2) For a ∈ S (N )

crys , the homomorphism A�,(N )
crys (A)/a → A�,(N )

crys,a (A) is an isomor-
phism.

Proof Since A(N )
crys(OK ) is p-torsion free, and A(N )

crys,a(A) (a ∈ S (N )
crys ) are flat over

A(N )
crys,a(OK ), we obtain exact sequences 0 → A�,(N )

crys,(pl )(A)
pm−→ A�,(N )

crys,(pm+l )
(A) →

A�,(N )

crys,(pm )(A) → 0 for m, l ∈ N>0 by using (163). By taking the inverse limit over

l, we obtain exact sequences 0 → A�,(N )
crys (A)

pm−→ A�,(N )
crys (A) → A�,(N )

crys,(pm )(A) → 0

for m ∈ N>0. This completes the proof because A�,(N )
crys (A) is the inverse limit of

A�,(N )

crys,(pm )(A) (m ∈ N>0) by definition and, for any a ∈ S (N )
crys , there exists m ∈ N>0

such that pm ∈ a. �

Remark 167 Lemma 166 (2) implies that the topology of A�,(N )
crys (A) coincides with

the p-adic topology.

Proposition 168 (1) For s ∈ N, the Ainf(OK )-algebra A�,(N )
crys (A) isϕ−s(π)-torsion

free.
(2) For s ∈ N, the quotient A�,(N )

crys (A)/ϕ−s(π)A�,(N )
crys (A) is p-adically complete

and separated, and its p-primary torsion part is annihilated by pN .
(3) The action of ΓA on A�,(N )

crys (A)/πA�,(N )
crys (A) is trivial.

Proof By Lemmas 79 (1) and 80 (4), A�
inf(A) is p-torsion free, and A�

inf(A)/p is
π-torsion free and π-adically complete and separated. Hence the homomorphism
Z/pm[T ] → A�

inf(A)/pm; T �→ π is flat by Lemma 144 (1). On the other hand, by
Lemma 166 (2) and Proposition 149 (2), we have an isomorphism

A�
inf(A)/pm ⊗Zp[T ]/pm (Zp[T ]〈 T p−1

p 〉(N−1))/pm
∼=−→ A�,(N )

crys (A)/pm .

Therefore one can prove the claims (1) and (2) by the same argument as the proof of
Proposition 156 (1) and (2). Note that A�,(N )

crys (A) ∼= lim←−m
A�,(N )
crys (A)/pm by Lemma

166 (1) and A�
inf(A)/π is p-torsion free by Lemma 80 (3). By Lemma 88 and the

above description of A�,(N )
crys (A)/pm , we see that the action ofΓA on A�,(N )

crys (A)/π =
lim←−m

(A�,(N )
crys (A)/π)/pm is trivial. �
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For an ideal J of A(N )
crys(OK ), we define the ideal J A�,(N )

crys (A) of A�,(N )
crys (A) to be

the topological closure of J A�,(N )
crys (A) in A�,(N )

crys (A), which is the inverse limit of

J (A�,(N )
crys (A)/pm) (m ∈ N>0) by Lemma 166.

Lemma 169 Let J be an ideal of A(N )
crys(OK ) such that A(N )

crys(OK )/J is p-

torsion free and J ⊂ Fil1A(N )
crys(OK ). Then A�,(N )

crys (A)/J A�,(N )
crys (A) is p-torsion

free, and p-adically complete and separated. Moreover the natural homomorphism
(A�,(N )

crys (A)/J A�,(N )
crys (A))/pm → A�,(N )

crys,(pm ,J )(A) is an isomorphism for m ∈ N>0.

Proof We can prove the lemma in the same way as Lemma 81 by using Lemma 166,
(163), and the flatness of A(N )

crys,a(OK ) → A�,(N )
crys,a (A) (a ∈ S (N )

crys ). �

For r ∈ N>0, Filr A(N )
crys(OK ) satisfies the assumption on J in Lemma 169

by Lemma 145 (3) and (153). We define Filr A�,(N )
crys (A) to be the closure of

Filr A(N )
crys(OK )A�,(N )

crys (A) in A�,(N )
crys (A). We put Filr A�,(N )

crys (A) = A�,(N )
crys (A) for

r ∈ Z, r ≤ 0.
We have natural homomorphisms

A�
inf(A) → A�,(1)

crys (A) → A�,(2)
crys (A) → · · · A�,(N )

crys (A) → A�,(N+1)
crys (A) → · · ·

(165)
compatible with with the filtrations, ϕ and the actions of ˜ΓA. The natural homo-
morphism A(N )

crys(OK ) → Acrys(OK ) (150) and the isomorphisms (164) and (74)

induce homomorphisms A�,(N )
crys,a (A) → A�

crys,a′(A) (a ∈ S (N )
crys , a

′ = aAcrys(OK ) ∈
Scrys) compatible with ϕ and the actions of ˜ΓA. By taking the inverse limit over
a ∈ S (N )

crys , we obtain a homomorphism

A�,(N )
crys (A) −→ A�

crys(A) (166)

compatible with the filtrations Fil•, ϕ, the actions of ˜ΓA and the homomorphisms
(165) and (75).

The homomorphism ι�∞ : A�
inf(A) → Ainf(A∞) (77) and the homomorphisms

A(N )
crys,a(OK ) → A(N )

crys,a(A∞) (a ∈ S (N )
crys ) induce an inverse system of homomor-

phisms ι�,(N )
a,∞ : A�,(N )

crys,a (A) → A(N )
crys,a(A∞) (a ∈ S (N )

crys ) and then a homomorphism

ι�,(N )∞ : A�,(N )
crys (A) → A(N )

crys(A∞), which is compatible with ϕ, the filtrations Fil•,
and the actions of ˜ΓA.Wealso see that the homomorphism ι�,(N )∞ and ι�∞ : A�

crys(A) →
Acrys(A∞) (77) are compatible with (166) and A(N )

crys(A∞) → Acrys(A∞) (150).

Proposition 170 (1) The homomorphism ι�,(N )
a,∞ : A�,(N )

crys,a (A) → A(N )
crys,a(A∞) is

injective for any a ∈ S (N )
crys .

(2) The homomorphism A�,(N )
crys (A)/Filr → A(N )

crys(A∞)/Filr and its reduction mod
pm (m ∈ N>0) are injective.

(3) With the notation introduced before Lemma 84, A(N )
crys,a(A∞) is a free A�,(N )

crys,a (A)-
module with a basis [tr ] (r ∈ (Z[ 1p ] ∩ [0, 1[)d) for every a ∈ S (N )

crys .
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Proof The claim (1) is an immediate consequence of (3). The claim (3) follows

from (164), Ainf(A∞) ⊗Ainf (OK ) A
(N )
crys,a(OK )

∼=−→ A(N )
crys,a(A∞) (Proposition 143 (2)),

and Lemma 84. Let us prove (2). The quotients A�,(N )
crys (A)/Filr and A(N )

crys(A∞)/Filr

are p-torsion free and p-adically complete and separated by Lemma 169, (153),
and Lemma 145 (3). Their reduction mod pm are isomorphic to A�,(N )

crys,(pm ,Filr )(A)

and A(N )

crys,(pm ,Filr )(A∞), respectively, by Lemmas 169 and 145 (1). Hence the claim
follows from (1). �

Corollary 171 For s ∈ N, A�,(N )
crys (A)/ϕ−s(π) and A�,(N )

crys (A)/(pm,ϕ−s(π)) (m ∈
N>0) do not have a non-zero element annihilated by the ideal

∑

l∈N[pp−l ]Ainf(OK )

of Ainf(OK ).

Proof By Proposition 168 (2), it suffices to prove the claim for the reduc-
tion mod pm . Since (ϕ−s(π), pm) ⊃ (π, pm) ∈ S (N )

crys , Lemma 166 (2) and

Proposition 170 (3) imply that the homomorphism A�,(N )
crys (A)/(ϕ−s(π), pm) →

A(N )
crys(A∞)/(ϕ−s(π), pm) induced by ι�,(N )∞ is injective. Thus the claim is reduced

to Proposition 156 (3). �

We also introduce A�,(N+)
crys (A) and prove an analogue of Proposition 164 for fil-

tered ϕ-modules. For m, n ∈ N>0, let A(N )

crys,(I n ,pm )(OK ) denote the quotient

A(N+)
crys (OK )/(I n A(N+)

crys (OK ) + pm A(N+)
crys (OK )), and let A�,(N )

crys,(I n ,pm )(A) denote

A�
inf(A) ⊗Ainf (OK ) A

(N )

crys,(I n ,pm )(OK ). By Lemma 79 (2), A�,(N )

crys,(I n ,pm )(A) is isomorphic

to A�
inf,(πn ,pm )(A) ⊗Ainf,(πn ,pm )(OK ) A

(N )

crys,(I n ,pm )(OK ). We define the ring A�,(N+)
crys (A) to

be the inverse limit of A�,(N )

crys,(I n ,pm )(A) (m, n ∈ N>0) endowedwith the inverse limit of

the discrete topologies. The algebra A�,(N+)
crys (A) is naturally endowed with an action

of ˜ΓA, continuous by Corollary 86 and Proposition 162 for (Λ,Λ0) = (OK , OK ),
and an endomorphism ϕ. The homomorphisms A(N )

crys(OK )/pm → A(N )

crys,(I n ,pm )(OK )

and A(N )

crys,(I mpN (p−1),pm )
(OK ) → A(N+1)

crys (OK )/pm (see the proof of Lemma 160 (2))

induce continuous homomorphisms

A�,(N )
crys (A) −→ A�,(N+)

crys (A) −→ A�,(N+1)
crys (A) (167)

compatible with the action of ˜ΓA and ϕ. We define the filtrations Filr A�,(N+)
crys (A)

and I r A�,(N+)
crys (A) to be the inverse limits of Filr A(N+)

crys (OK )A�,(N )

crys,(I n ,pm )(A) and

I r A(N+)
crys (OK )A�,(N )

crys,(I n ,pm )(A), which are ˜ΓA-stable and satisfy Filr · Fils ⊂ Filr+s

and I r · I s ⊂ I r+s . The homomorphisms (167) are compatible with the filtrations
Fil• by definition.

Since A(N+)
crys (OK )/I n A(N+)

crys (OK ) is p-torsion free, we have an exact sequence

0 −→ A�,(N )

crys,(I n ,pm )(A)
pl−→ A�,(N )

crys,(I n ,pm+l )
(A) −→ A�,(N )

crys,(I n ,pl )(A) −→ 0.
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By taking the inverse limit over m and n, we obtain an exact sequence

0 −→ A�,(N+)
crys (A)

pl−→ A�,(N+)
crys (A) −→ lim←−

n

A�,(N )

crys,(I n ,pl )(A) −→ 0. (168)

This exact sequence (168) for l = r and Corollary 146 for Λ = OK imply

ϕ(Filr A�,(N+)
crys (A)) ⊂ pr A�,(N+)

crys (A) (r ∈ N ∩ [0, p − 1]). (169)

We can apply Definition 40 to (A�,(N+)
crys (A), p,ϕ,Filr A(N+)

crys (A)) and a = p − 2,

and obtain the category MFp
[0,p−2],free(A�,(N+)

crys (A),ϕ). Since q ∈ p · A(N+)
crys (OK )×

as observed before Proposition 164,we obtain the following two functors by applying
the construction of (44) to A�

inf(A) → A�,(N+)
crys (A) → A�

crys(A) and composingwith
(98) for the first one.

Mq
[0,p−2],free(A

�
inf(A),ϕ) −→ MFp

[0,p−2],free(A
�,(N+)
crys (A),ϕ), (170)

MFp
[0,p−2],free(A

�,(N+)
crys (A),ϕ) −→ MFp

[0,p−2],free(A
�
crys(A),ϕ). (171)

Proposition 172 The functors (170) and (171) are equivalences of categories.

Proof We omit (A) appearing in the notation A�,(N+)
crys (A), A�

crys(A), A�
inf(A) etc. to

simplify the notation.Wefirst show thatwe have a filtered isomorphism A�
inf/I

p−1
∼=−→

A�,(N+)
crys /I p−1. By Lemmas 159 (3), 160 (2), and 152, the homomorphism

A(N+)
crys (OK ) → Acrys(OK ) is compatible with the filtrations I •. This implies that the

homomorphism A�,(N+)
crys → A�

crys is also compatible with I •. We have an isomor-

phism A�
inf,(π p−1,pm )

∼=−→ A�,(N )

crys,(I p−1,pm )
because Ainf(OK )/I p−1

∼=−→ A(N+)
crys (OK )/I p−1

byLemma150 (1), (148), and (157).By taking the inverse limit of the exact sequences

0 → I p−1A(N+)
crys (OK )A�,(N )

crys,(I m ,pm ) → A�,(N )

crys,(I m ,pm ) → A�,(N )

crys,(I p−1,pm )
→ 0

form ≥ p − 1, we obtain an isomorphism A�,(N+)
crys /I p−1

∼=−→ lim←−m
A�,(N )

crys,(I p−1,pm )
. On

the other hand, we have an isomorphism A�
inf/I

p−1
∼=−→ lim←−m

A�
inf,(π p−1,pm )

by Lemma

80 (5). Hence we have A�
inf/I

p−1
∼=−→ A�,(N+)

crys /I p−1, which is a filtered isomorphism

because so is its composition with A�,(N+)
crys /I p−1 → A�

crys/I
p−1 by Lemma 82.

By Propositions 94 and 44, it remains to prove that the ideal I p−1A�,(N+)
crys of

A�,(N+)
crys satisfies Condition 43 with a = p − 2 and q = p. The conditions (iii) and

(iv) are obvious by the definition of I • and Fil•. The condition (v) follows from
(169) and I p−1 ⊂ Filp−1. The condition (ii) holds because A�

inf/I
p−1 is p-torsion free

(Lemma 80 (3)). The kernel of A�,(N+)
crys → A�,(N )

crys,(I,p) is contained in the Jacobson

radical because the kernel of A�,(N )

crys,(I n ,pm ) → A�,(N )

crys,(I,p) is nilpotent. Hence the con-
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dition (i) is satisfied. By (168), we see that A�,(N+)
crys is p-torsion free and p-adically

complete and separated. ByLemma 80 (3), A�
inf/I

p−1A�
inf is also p-adically complete

and separated. This implies that I p−1A�,(N+)
crys is p-adically complete and separated

by Lemma 3 (2). Therefore the condition (vi) holds for Jn = pn+1 I p−1A�,(N+)
crys . �

Lemma 173 The ring A�,(N+)
crys (A) is isomorphic to the inverse limit of the images

of A�,(N+)
crys (A) in A�

crys(A)/pm (m ∈ N).

Proof We have A�
crys(A)/pm = A�

crys,(pm )(A) (Lemma 79 (1)). Let am be the kernel
of A(N+)

crys (OK ) → Acrys(OK )/pm . Then, by the proof of Lemma 161, for any m ∈
N>0, there exists m ′ ∈ N>0 such that we have the following maps of quotients of
A(N+)
crys (OK ).

A(N+)
crys (OK )/am ′ → A(N+)

crys,(I m ,pm )(OK ), A(N+)

crys,(I m′
,pm′

)
(OK ) → A(N+)

crys (OK )/am .

This implies the claim because Ainf,a(OK ) → A�
inf,a(A) (a ∈ Sinf) is flat. �

19 de Rham Complexes with Truncated Divided Powers

Let B → A and ϕB be as in the settings for the definition of Acrys,B,m(A) and
Acrys,B(A) in Sect. 2. Let OK ,m , Am , Bm , ΩBm , ΩB, ϕBm , (Pm,FilrPm,∇Pm ,ϕPm )

(m ∈ N>0), and (P,FilrP,∇P ,ϕP) be the same as in Sect. 2. In this section, we
construct “filtered de Rham complexes with truncated divided powers” associated to
the “evaluation” of an object M of MF∇

[0,p−2],free(A, Φ) on a certain subring of P ,
and study its relation with T Ainf(M).

Let J and Jm (m ∈ N>0) be the kernel of B → A and Bm → Am , respec-
tively. Let N be a positive integer. We define P (N )

m to be the Bm-subalgebra
of Pm generated by the elements x [pl ] (x ∈ Jm, l ∈ N ∩ [1, N ]). Recall that
pPm + Fil1Pm has a unique PD-structure compatible with the PD-structures
on Fil1Pm and on pZp. For x ∈ pPm + Fil1Pm , we write x [n] (n ∈ N) for the
nth divided power of x with respect to the PD-structure. For x ∈ pBm + Jm

and n ∈ N ∩ [0, pN+1 − 1], we have x [n] ∈ P (N )
m by Lemma 140 (2), (3), and

p[m] ∈ Zp (m ∈ N). This implies that P (N )
m is stable under ϕPm (resp. ∇Pm )

because ϕBm (pBm + Jm) ⊂ pBm + Jm and ϕPm is a PD-homomorphism with
respect to the PD-ideal pPm + Fil1Pm (resp. ∇Pm (x [n]) = x [n−1] ⊗ d(x) for
x ∈ Jm and n ∈ N, and ∇Pm is a derivation). For n ∈ N and x ∈ Jm , we define
x [n](N ) to be (x [pN ])pax [b], where n = pN+1a + b (a ∈ N, b ∈ N ∩ [0, pN+1 − 1]).
Then we have x [n](N ) · x [n′](N ) ⊂ Zpx [n+n′](N ) by Lemma 140 (1), and it implies
∇Pm (x [n](N ) ) ⊂ Zpx [n−1](N ) ⊗ d(x) by the definition of x [n](N ) and x [m] = x [m](N )

for m ∈ N ∩ [0, pN+1 − 1]. We define FilrP (N )
m (r ∈ N>0) to be the ideal of

P (N )
m generated by

∏

1≤i≤c x
[ni ](N )

i (c ∈ N>0, xi ∈ Jm, ni ∈ N,
∑

1≤i≤c ni ≥ r).
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Put FilrP (N )
m = P (N )

m if r ≤ 0. Then we have FilrP (N )
m Filr

′P (N )
m ⊂ Filr+r ′P (N )

m , and
∇Pm (FilrP (N )

m ) ⊂ Filr−1P (N )
m ⊗Bm ΩBm for r, r

′ ∈ Z.We also haveϕPm (FilrP (N )
m ) ⊂

prP (N )
m for r ∈ N ∩ [0, p − 1] because ϕPm (x [pl ]) = (x p + py)[pl ] =

p[pl ]((p − 1)!x [p] + y)p ∈ pp−1P (N )
m and ϕPm (xn) = pn((p − 1)!x [p] + y)n ∈

pnP (N )
m for x ∈ Jm , l ∈ N ∩ [1, N ] and n ∈ N ∩ [0, p − 1]. Here y ∈ Bm is defined

by ϕBm (x) = x p + py. We obviously have P (N )
m ⊂ P (N+1)

m , FilrP (N )
m ⊂ FilrP (N+1)

m
and FilrP (N )

m ⊂ FilrPm . The surjective homomorphism Pm+1 → Pm induces
surjective homomorphisms P (N )

m+1 → P (N )
m and FilrP (N )

m+1 → FilrP (N )
m (r ∈ Z).

We define P (N ) to be lim←−m
P (N )
m regarded as a B-subalgebra of P , and FilrP (N )

to be lim←−m
FilrP (N )

m . Then (P (N ),Fil•P (N )) is a filtered ring (Definition 10 (1)),

P (N ) ⊂ P is stable under ∇P and ϕP , and we have ∇(FilrP (N )) ⊂ Filr−1P (N ) ⊗B
ΩB (r ∈ Z). The multiplication by pr on Pm+r uniquely decomposes as Pm+r →
Pm

∼=−→ prPm+r ↪→ Pm+r ([14, I Lemma (1.3) (2)]), and it induces a decomposition

P (N )
m+r → P (N )

m

∼=−→ prP (N )
m+r ↪→ P (N )

m+r of the multiplication by pr on P (N )
m+r . By taking

the inverse limit with respect to m, we obtain isomorphisms prP
∼=−→ lim←−m

prPm

and prP (N )
∼=−→ lim←−m

prP (N )
m . In particular, this implies ϕP(FilrP (N )) ⊂ prP (N ) for

r ∈ N ∩ [0, p − 1].
We use the following proposition in the construction of the comparison morphism

(182) in Sect. 20. See (179) and (192).

Proposition 174 For N ,m ∈ N>0, the homomorphism lim−→m
P (N )/pmP (N ) → Pm

is an isomorphism.

Lemma 175 For N ,m ∈ N>0, we have P (N )
m ∩ pPm = P (N )

m ∩ pP (N+1)
m .

Proof By definition, the PD-scheme Dm = Spec(Pm) is the PD-envelope of the
closed immersion Xm = Spec(Am) → Ym = Spec(Bm) compatible with the PD-
structure on pOK . Let Dm be the direct image of ODm under Dm → Ym . For N ∈
N>0, let D(N )

m be the OYm -subalgebra of Dm generated by local sections x [pl ] (x ∈
Ker(OYm → OXm ), l ∈ N ∩ [0, N ])). By using Lemma 140 (2), (3), we see that, if
the ideal Jm = Ker(Bm → Am) is generated by x1, . . . , xr , then D(N )

m is generated

by x [pl ]
i (i ∈ N ∩ [1, r ], l ∈ N ∩ [0, N ]) overOYm . This implies thatD(N )

m is a quasi-
coherentOYm -subalgebra ofDm , andwe haveP (N )

m = Γ (Ym,D(N )
m ). Hence it suffices

to prove the claim with Pm and P (•)
m replaced by Dm and D(•)

m .
Since this question is Zariski local on Xm , as in the proof of [14, I Lemma

(1.3)], we may assume that Jm is generated by elements f1, . . . , fs such that the
OK ,m-homomorphism Rm := OK ,m[T1, . . . , Ts] → Bm; Ti �→ fi is flat. Then we
have Pm = Bm ⊗Rm RPD

m , where RPD
m denotes the PD-polynomial ring

OK ,m〈T1, . . . , Ts〉 ([5, 3.21 Proposition]). For N ∈ N>0, let RPD,(N )
m be the Rm-

subalgebra of RPD
m generated by T [pl ]

i (i ∈ N ∩ [1, s], l ∈ N ∩ [0, N ]). Then we have
P (N )
m = Bm ⊗Rm RPD,(N )

m . Thus we are further reduced to proving the claim with Pm

and P (•)
m replaced by RPD

m and RPD,(•)
m .

For n ∈ N and i ∈ N ∩ [1, s], let T [n](N )

i ∈ RPD
m be the image of p−{n}(N )T n

i ∈
OK 〈T1, . . . , Ts〉. Then, by the same argument as the proof of Corollary 141 (1),
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we see that RPD,(N )
m is generated by T [n](N ) = ∏

1≤i≤s T
[ni ](N )

i (n = (ni ) ∈ N
s) as an

OK ,m-module. This implies that RPD,(N )
m ∩ pRPD

m (resp. RPD,(N )
m ∩ pRPD,(N+1)

m ) is the
OK ,m-module generated by pεn T [n](N ) (n ∈ N

s), where εn = 1 if {ni }(N ) = vp(ni !)
(resp. {ni }(N ) = {ni }(N+1)) for all i ∈ N ∩ [1, s], and εn = 0 otherwise. Now the
claim follows from {n}(N ) < vp(n!) ⇔ n ≥ pN+1 ⇔ {n}(N ) < {n}(N+1) for n ∈ N

(Lemma 140 (3), (4)). �

Proof of Proposition 174 Since Pm = ∪N∈N>0P (N )
m and P (N ) → P (N )

m is surjec-
tive, the homomorphism in question is surjective. Let us prove that it is also
injective. By taking the inverse limit of the equality in Lemma 175, we obtain
P (N ) ∩ pP = P (N ) ∩ pP (N+1). This implies P (N ) ∩ pmP ⊂ pP (N+1) ∩ pmP =
p(P (N+1) ∩ pm−1P) for m ∈ N>0. Hence we obtain P (N ) ∩ pmP ⊂ pmP (N+m)

(m ∈ N) by induction on m. Let K(N )
m be the kernel of P (N )/pm → Pm = P/pm .

Then the last claim means that the homomorphism K(N )
m → K(N+m)

m vanishes, and
therefore we have lim−→N

K(N )
m = 0. This completes the proof. �

Let M be an object of MF∇
[0,p−2],free(A, Φ), and put Mm := M/pmM and

Filr Mm := Filr M/pm ⊂ Mm . We define a free Pm-module MPm of finite type with
an integrable connection ∇ : MPm → MPm ⊗Bm ΩBm compatible with ∇Pm and a
ϕPm -semilinear endomorphism ϕ : MPm → MPm compatible with ∇ as after (24).
It is also naturally endowed with a filtration Filr MPm (r ∈ Z) such that FilrPm ·
FilsMPm ⊂ Filr+sMPm (r, s ∈ Z),∇(Filr MPm ) ⊂ Filr−1MPm ⊗Bm ΩBm (r ∈ Z). Let
δ be a homomorphismAm → Pm over OK /pm whose composition with Pm → Am

is the identity map. There exists such δ since Spec(Am) → Spec(OK ,m) is smooth
and Spec(Am) → Spec(Pm) is a nilimmersion. By the definition of MPm , the proof
of Theorem 17, Theorem 29, Proposition 31, and Lemma 27 (3), we have a canonical
isomorphism

MPm
∼= Mm ⊗Am ,δ Pm (172)

of filtered modules over (Pm,Fil•Pm), where the target is the scalar extension of
(Mm,Fil•Mm) under themorphism of filtered rings δ : (A, 0) → (Pm,Fil•Pm) (Def-
inition 10 (4)). If we choose another δ′ : Am → Pm , then, by Remark 18, the com-
position of

Mm ⊗Am ,δ′ Pm
∼= MPm

∼= Mm ⊗Am ,δ Pm (173)

is given by

x ⊗ 1 �→
∑

n∈Nd

∏

1≤i≤d

∇ni
i (x) ⊗

∏

1≤i≤d

(δ′(ti ) − δ(ti ))
[ni ], x ∈ Mm, (174)

where the endomorphism ∇i of Mm is defined by ∇(y) = ∑

1≤i≤d ∇i (y) ⊗ dti .
We will define a canonical freeP (1)

m -submodule MP (1)
m
of MPm such thatPm ⊗P (1)

m

MP (1)
m

∼= MPm .

Proposition 176 We have ∇ p(p−1)
i (M) ⊂ pM for each i ∈ N ∩ [1, d].
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Lemma 177 We have ∇ p
i (A) ⊂ pA for each i ∈ N ∩ [1, d].

Proof This is well-known and proved as follows. Since the relative Frobenius of the
étale homomorphism k[T1, . . . , Td ] → A1; Ti �→ ti is an isomorphism, A1 is a free
(A1)

p-module with a basis
∏

1≤i≤d t
ni
i , (ni ) ∈ (N ∩ [0, p − 1])d . Since ∇i on A1 is

(A1)
p-linear, this implies ∇ p

i (A1) = 0. �

Proof of Proposition 176 Choose a lifting ϕ : A → A of the absolute Frobenius of
A1 compatible with σ of OK . Noting ϕ(ΩA) ⊂ pΩA, we define ϕ1 : ΩA → ΩA
to be p−1ϕ. We define a ϕ-semilinear homomorphism ϕr : Filr M → M (r ∈ Z ∩
(−∞, p − 2]) to be p−rϕ|Filr M . Then we have (ϕr−1 ⊗ ϕ1) ◦ ∇ = ∇ ◦ ϕr on Filr M .
Let ∇r : grrFilM → grr−1

Fil M ⊗A ΩA (r ∈ N ∩ [0, p − 2]) be the A-linear homo-
morphism induced by ∇ on M . Put grM := ⊕0≤r≤p−2grrFilM , and let ∇ : grM →
grM ⊗A ΩA be the A-linear homomorphism defined by the sum of ∇r

. Then ϕr

induces an A1-linear isomorphism

Φ : (grM)/p ⊗A1,ϕ A1
∼=−→ M1,

and the above compatibility between ∇ and ϕr implies that the following diagram is
commutative.

(grM)/p

∇ mod p

ϕ
M1

∇
(grM)/p ⊗A ΩA

ϕ⊗ϕ1
M1 ⊗A ΩA

(175)

Hereϕ denotes the restriction ofΦ on (grM)/p. For r ∈ N ∩ [0, p − 2], letGr (M1)

denote the image of (⊕0≤s≤rgrsFilM)/p ⊗A1,ϕ A1 underΦ. PutG−1(M1) = 0. Then,
by the above commutative diagram, we see that Gr (M1) is stable under ∇ and the

isomorphism (grr M)/p ⊗A1,ϕ A1
∼=−→ grGr (M1) (r ∈ N ∩ [0, p − 2]) induced by Φ

is compatible with the connection on grGr (M1) and the connection id ⊗ ∇ on the
source. By Lemma 177, we have ∇ p

i = 0 on grGr (M1) for r ∈ N ∩ [0, p − 2]. This
implies ∇ p(p−1)

i = 0 on M1. �

Since the ideal Jm of Bm is finitely generated, and the PD-ideal of Pm is a
nilideal, the homomorphism Bm → Pm factors through Bm/J f

m for a sufficiently
large f ∈ N. Choose such an f and then a homomorphism δ : Am → Bm/J f

m over
OK ,m whose composition with Bm/J f

m → Am is the identity map. Such a δ exists
because OK ,m → Am is smooth. We define δ to be the composition of δ with the
homomorphism Bm/J f

m → P (1)
m , and define the P (1)

m -submodule

MP (1)
m

⊂ MPm (176)

to be the image of Mm ⊗Am ,δ P (1)
m under the isomorphism (172).We define Filr MP (1)

m

(r ∈ Z) to be the image of the filtration on the scalar extension of (Mm,Fil•Mm)under
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the morphism of filtered rings δ : (A, 0) → (P (1)
m ,Fil•P (1)

m ) (Definition 10 (4)). We
have FilrP (1)

m · FilsMP (1)
m

⊂ Filr+sMP (1)
m

(r, s ∈ Z).

Proposition 178 TheP (1)
m -submodules MP (1)

m
and Filr MP (1)

m
(r ∈ Z) of MPm defined

above are independent of the choice of f and δ.

Proof Let f ′ and δ
′
be another choice, and let δ′ be the composition of δ

′
and

Bm/J f ′
m → P (1)

m . By replacing f and f ′ with min{ f, f ′}, we may assume f =
f ′. Then the image of Filr Mm (r ∈ N ∩ [0, p − 2]) under the composition of the
isomorphisms (173) is contained in Filr (Mm ⊗Am ,δ P (1)

m ) because δ′(ti ) − δ(ti ) is
contained in the image ofJm ,∇n

i (M) ⊂ p� n
p(p−1) �M byProposition 176, and vp(n!) =

� n
p � + vp(� n

p �!) ≤ � n
p � + � n

p(p−1)� for n ∈ N>0. Here �x� denotes the largest integer
≤ x for x ∈ R. By exchanging δ and δ

′
and applying the same argument, we obtain

the claim. �
Proposition 179 (1) We have the inclusions ∇(MP (1)

m
) ⊂ MP (1)

m
⊗Bm ΩBm and

∇(Filr MP (1)
m

) ⊂ Filr−1MP (1)
m

⊗Bm ΩBm for r ∈ Z.
(2) We have ϕ(MP (1)

m
) ⊂ MP (1)

m
.

(3) The Pm-linear homomorphism Pm ⊗P (1)
m

MP (1)
m

→ MPm is an isomorphism of
filtered modules over (Pm,Fil•Pm), where the source is the scalar extension of
(MP (1)

m
,Fil•MP (1)

m
) under (P (1)

m ,Fil•P (1)
m ) → (Pm,Fil•Pm) (Definition 10 (4)).

(4) The homomorphism MPm+1 → MPm induces an isomorphism P (1)
m ⊗P (1)

m+1

MP (1)
m+1

∼=−→ MP (1)
m

of filtered modules over (P (1)
m ,Fil•P (1)

m ), where the source is
the scalar extension of (MP (1)

m+1
,Fil•MP (1)

m+1
) under the homomorphism of filtered

rings (P (1)
m+1,Fil

•P (1)
m+1) → (P (1)

m ,Fil•P (1)
m ).

(5) There exist N ∈ N, rν ∈ N ∩ [0, p − 2] (ν ∈ N ∩ [1, N ]), a basis eν,m ∈ MP (1)
m

(ν ∈ N ∩ [1, N ]) of MP (1)
m

and (aνμ,m)νμ ∈ GLN (P (1)
m ) for each m ∈ N>0 such

that the images of eν,m+1 and aνμ,m+1 in MP (1)
m

and P (1)
m are eν,m and aνμ,m,

Filr MP (1)
m

(r ∈ Z) is the direct sum of Filr−rνP (1)
m eν,m (ν ∈ N ∩ [1, N ]), and

ϕ(eμ,m) = prμ
∑

1≤ν≤N aνμ,meν,m.

Proof The claims (2) and (4) follow from (5) and Lemma 13 (1), and the claim (3)
is obvious by the definition of (MP (1)

m
,Fil•MP (1)

m
). Let us prove (1) and (5). Choose

f and δ, and define δ as in the definition of MP (1)
m
.

(1) By applying the construction of (16) to Spec(δ) : Spec(Pm) → Spec(Am),
we obtain a homomorphism δ1 : ΩAm → Pm ⊗Bm ΩBm compatible with d : Am →
ΩAm and ∇Pm : Pm → Pm ⊗Bm ΩBm (17). By Proposition 32, the connection on
MPm is given by ∇(x ⊗ y) = δ1(∇(x)) ⊗ y + x ⊗ ∇Pm (y) (x ∈ Mm, y ∈ Pm) via
the isomorphism (172). Since ΩAm is generated by d(Am) as an Am-module and
δ(Am) ⊂ Pm is contained in the image of Bm , the image of the homomorphism
δ1 : ΩAm → Pm ⊗Bm ΩBm is contained in the image ofΩBm . Hence the claim follows
from ∇Pm (FilrP (1)

m ) ⊂ Filr−1P (1)
m ⊗Bm ΩBm .

(5) Put J ′
m := pBm + Jm . Choose an increasing sequence of positive integers

fm (m ∈ N>0) such that the homomorphism Bm → Pm factors through Bm/(J ′
m) fm .
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Choose liftings t̃1, . . . , t̃d ∈ B of t1, . . . , td ∈ A. Then, for eachm ∈ N>0, there exists
a unique homomorphism δm : Am → Bm/(J ′

m) fm of OK ,m-algebras such that the
composition with Bm/(J ′

m) fm → Am is the identity map and δm(ti ) = t̃i (i ∈ N ∩
[1, d]). Theuniqueness implies that the compositionAm+1

δm+1−−→ Bm+1/(J ′
m+1)

fm+1
pr−→

Bm/(J ′
m) fm coincides with Am+1

pr−→ Am
δm−→ Bm/(J ′

m) fm . Let δm denote the com-
position of δm and Bm/(J ′

m) fm → P (1)
m . Then we can define MP (1)

m
and the filtra-

tion on it by using δm . Choose a basis eν (N ∈ N, ν ∈ N ∩ [1, N ]) of M and rν ∈
N ∩ [0, p − 2] (ν ∈ N ∩ [1, N ]) such that Filr M = ⊕rν≥rAeν (r ∈ Z). Let eν,m be

the image of (eν mod pm) ⊗ 1 under the isomorphismMm ⊗Am ,δm Pm
∼=−→ MPm (172)

associated to δm . Then eν,m (ν ∈ N ∩ [1, N ]) is a basis of theP (1)
m -moduleMP (1)

m
, and,

by Lemma 13 (1), we have Filr MP (1)
m

= ⊕ν∈N∩[1,N ]Filr−rνP (1)
m eν,m (r ∈ Z). For each

ν ∈ N ∩ [1, N ], the elements eν,m (m ∈ N>0) obviously form a compatible system
with respect to the homomorphisms MP (1)

m+1
→ MP (1)

m
by the choice of δm (m ∈ N>0).

Choose and fix a lifting ϕ : A → A of the absolute Frobenius of A1 compat-
ible with σ : OK → OK . Then Φ on M induces a ϕ-semilinear endomorphism

ϕ : M → ϕ∗(M) = F∗(M)
Φ−→ M . By applying Remark 18 to the pull-backs of

(Mm,∇) by Spec(δm ◦ ϕ) and Spec(ϕPm ◦ δm) : Spec(Pm) → Spec(Am), we see
that the Frobenius endomorphism ϕ of MPm is given by the composition of Pm-
linear maps

(Mm ⊗Am ,δm Pm) ⊗Pm ,ϕPm
Pm

∼=−→
κm

(Mm ⊗Am ,ϕ Am) ⊗Am ,δm Pm

Φ⊗idPm−−−−→ Mm ⊗Am ,δm Pm,

where the image of x ∈ Mm under κm (resp. κ−1
m ) is

∑

n∈Nd

∏

i ∇ni
i (x) ⊗ ∏

i (ϕ

δm(ti ) − δmϕ(ti ))[ni ] (resp.
∑

n∈Nd

∏

i ∇ni
i (x) ⊗ ∏

i (δmϕ(ti ) − ϕδm(ti ))[ni ]). The ele-
mentϕδm(ti ) − δmϕ(ti ) is contained in the image of pBm becauseϕB induces a lifting
of Frobenius of Bm/(J ′

m) fm compatible with ϕPm . Therefore the above morphisms
induce P (1)

m -linear maps

(Mm ⊗Am ,δm P (1)
m ) ⊗P (1)

m ,ϕPm
P (1)
m

∼=−→
κ(1)
m

(Mm ⊗Am ,ϕ Am) ⊗Am ,δm P (1)
m

Φ⊗idP(1)
m−−−−−→ Mm ⊗Am ,δm P (1)

m .

Let (M,Fil
•
M) be the scalar extension of (M,Fil•M) by the homomorphism of

filtered rings (A, 0) → (A, p[•]A) (Definition10 (4)).WehaveFil
r
M = ∑

s≤r p
[r−s]

FilsM = ⊕ν p[max{r−rν ,0}]Aeν (r ∈ Z), ∇i (Fil
r
M) ⊂ Fil

r−1
M , and p[r ]FilsM ⊂

Fil
r+s

M . Therefore, for each r ∈ Z, the above description of κm and κ−1
m implies

that κ(1)
m induces an isomorphism between the P (1)

m -submodules generated by the
image of Fil

r
M . By taking the inverse limit of the above morphisms over m, we
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obtain P (1)-linear maps

(M ⊗A,δ P (1)) ⊗P (1),ϕP P (1) ∼=−→
κ(1)

(M ⊗A,ϕ A) ⊗A,δ P (1) Φ⊗idP(1)−−−−−→ M ⊗A,δ P (1),

where δ : A → P (1) denotes the inverse limit of δm : Am → P (1)
m . Since prP (1) =

lim←−m
prP (1)

m (r ∈ N), we see that lim←−m
of theP (1)

m -submodule ofMm ⊗Am ,ϕPm ◦δm P (1)
m

(resp. Mm ⊗Am ,δm◦ϕ P (1)
m ) generated by the image of Fil

r
M coincides with the P (1)-

submodule Fil
r
(M ⊗A,ϕP◦δ P (1)) (resp. Fil

r
(M ⊗A,δ◦ϕ P (1))) of M ⊗A,ϕP◦δ P (1)

(resp. M ⊗A,δ◦ϕ P (1)) generated by the image of Fil
r
M . Therefore κ(1) induces an

isomorphisms between theP (1)-submodules generated by the images of Fil
r
M . Since

ϕ(Fil
r
M) ⊂ pr M (r ∈ N ∩ [0, p − 2]) and p−rϕ(Fil

r
M) (r ∈ N ∩ [0, p − 2]) gen-

erate M , we see that M ⊗A,δ P (1) is generated by p−r (Φ ⊗ idP (1) )(Fil
r
(M ⊗A,ϕ◦δ

P (1))) = p−r (Φ ⊗ idP (1) ) ◦ κ(1)(Fil
r
(M ⊗A,ϕP◦δ P (1))) for r ∈ N ∩ [0, p − 2]. By

the explicit descriptionofFil
r
M in termsof eν above, this implies that e′

ν := p−rν (Φ ⊗
idP (1) ) ◦ κ(1)(eν ⊗ 1 ⊗ 1) (ν ∈ N ∩ [1, N ]) generate M ⊗A,δ P (1). Since M ⊗A,δ

P (1) is free of rank N , e′
ν form its basis and there exists (aνμ) ∈ GLN (P (1)) such that

e′
μ = ∑

ν aνμ(eν ⊗ 1). The images aνμ,m of aνμ in P (1)
m satisfy the desired condition.

�

As before (37), we define the P-module MP and its decreasing filtration Filr MP
(r ∈ Z) by P-submodules to be the inverse limits of MPm and Filr MPm . We have
FilrP · FilsMP ⊂ Filr+sMP for r, s ∈ Z, i.e., (MP ,Fil•MP) is a filteredmodule over
(P,Fil•P) (Definition 10 (2)). We define ∇ : MP → MP ⊗B ΩB to be the inverse
limit of ∇ on MPm , which is an integrable connection on MP compatible with ∇ on
P and satisfies ∇(Filr MP) ⊂ Filr−1MP ⊗B ΩB. The Frobenius endomorphism ϕ
of MPm for m ∈ N>0 induces a ϕP -semilinear endomorphism ϕ of MP compatible
with ∇.

The inverse limits of MP (1)
m

and Filr MP (1)
m

(r ∈ Z) give P (1)-submodules MP (1)

and Filr MP (1) of MP and Filr MP . The P (1)-module MP (1) equipped with Fil•MP (1)

is a filtered module over (P (1),Fil•P (1)) (Definition 10 (2)). Let N be a positive
integer. We define MP (N ) to be the P (N )-submodule of MP generated by MP (1) ,
and its P (N )-submodule Filr MP (N ) (r ∈ Z) to be the sum of Filr−sP (N )FilsMP (1)

(s ∈ N ∩ [0, r ]) if r ≥ 0 andMP (N ) if r < 0. TheP (N )-module MP (N ) with Fil•MP (N )

is a filtered module over (P (N ),Fil•P (N )) (Definition 10 (2)). By Proposition 179 (1)
and (2), we have ∇(MP (N ) ) ⊂ MP (N ) ⊗B ΩB, ∇(Filr MP (N ) ) ⊂ Filr−1MP (N ) ⊗B ΩB
for r ∈ Z, and ϕ(MP (N ) ) ⊂ MP (N ) . By Proposition 179 (3) and (5), there exist eν ∈
MP (1) (n ∈ N, ν ∈ N ∩ [1, n]), rν ∈ N ∩ [0, p − 2] (ν ∈ N ∩ [1, n]), and (aνμ) ∈
GLn(P (1)) such that MP (N ) (resp. MP) is a free P (N ) (resp. P)-module with a basis
eν (ν ∈ N ∩ [1, n]),

Filr MP =
⊕

ν∈N∩[1,n]
Filr−rνPeν, Filr MP (N ) =

⊕

ν∈N∩[1,n]
Filr−rνP (N )eν (177)
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for r ∈ Z, and
ϕ(eμ) = prμ

∑

ν∈N∩[1,n]
aνμeν, μ ∈ N ∩ [1, n]. (178)

Put Ω
q
B := ∧qΩB (q ∈ N). The integrable connection ∇ on MP defines a com-

plex MP ⊗B Ω•
B with a Frobenius endomorphism ϕ and a decreasing filtration Filr

(r ∈ Z) defined by Filr (MP ⊗B Ω
q
B) = Filr−qMP ⊗B Ω

q
B. The P (N )-submodule

MP (N ) of MP with Filr MP (N ) gives a subcomplex MP (N ) ⊗B Ω•
B stable under ϕ and

endowed with a decreasing filtration Filr (r ∈ Z) defined by Filr (MP (N ) ⊗B Ω
q
B) =

Filr−qMP (N ) ⊗B Ω
q
B. By Proposition 174, we have an isomorphism

lim−→
N

((MP (N ) ⊗B Ω•
B) ⊗Zp Z/pm)

∼=−→ MPm ⊗B Ω•
B. (179)

For a positive integer N , we define the object T A(N+)
crys (M) of the category

MFp,cont
[0,p−2],free(A(N+)

crys (A),ϕ,GA) to be the image of T Ainf(M) under the functor

(161) forΛ = A andΛ0 = A. By thedefinitionofT Ainf(M), the imageofT A(N+)
crys (M)

under the functor (162) for Λ = A and Λ0 = A is canonically isomorphic to
T Acrys(M). We study the relation between MP (N ) and T A(N+)

crys (M).
We choose and fix coordinates s1, . . . , se ∈ B× ofB over OK , and letϕB : B → B

be the unique lifting of the absolute Frobenius of B1 compatible with σ : OK →
OK such that ϕB(si ) = s pi for every i ∈ N ∩ [1, e]. We further choose a compatible

system of pnth roots si,n ∈ A×
of the image of si in A× for each i ∈ N ∩ [1, e],

and define the homomorphisms β(0) : B → Ainf(A) and β : P → Acrys(A) as before
Lemma 34.

Lemma 180 The homomorphism β induces a homomorphism β(N ) : P (N ) →
A(N+)
crys (A) for N ∈ N>0. Moreover β(N ) is compatible with the filtrations.

Proof Since the image of Ker(Bm → Am) under the reduction mod pm of β(0)

is contained in Ker(Ainf(A)/pm → ̂A/pm) = ξ(Ainf(A)/pm), the image of P (N )
m

under βm : Pm → Acrys,m(A) is contained in the image of A(N+)
crys (A). By Lemma

161, this implies β(P (N )) ⊂ A(N+)
crys (A). The last claim of the lemma follows from

FilrP (N ) ⊂ FilrP and the fact that A(N+)
crys (A) → Acrys(A) is strictly compatible with

the filtrations (Lemmas 160 (2) and 152). �
We can apply Definition 40 with a = p − 2 to (P (N ), p,ϕP (N ) ,Fil•P (N )) because

ϕ(FilrP (N ) ⊂ prP (N ) (r ∈ N ∩ [0, p − 2]), and then (44) to the homomorphism
β(N ) : P (N ) → A(N+)

crys (A). By (177) and (178), theP (N )-moduleMP (N ) withFilr MP (N )

(r ∈ N ∩ [0, p − 2]) and ϕ is an object of MFp
[0,p−2],free(P (N ),ϕ).

Proposition 181 The isomorphism (37) induces an isomorphism

T A(N+)
crys (M) ∼= MP (N ) ⊗P (N ),β(N ) A(N+)

crys (A)

in the category MFp
[0,p−2],free(A(N+)

crys (A),ϕ).
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Proof We have isomorphisms

T A(N+)
crys (M) ⊗A(N+)

crys (A)
Acrys(A)

∼=−→ T Acrys(M),

(MP (N ) ⊗P (N ),β(N ) A(N+)
crys (A)) ⊗A(N+)

crys (A)
Acrys(A)

∼=−→ MP ⊗P,β Acrys(A)

in the categoryMFp
[0,p−2],free(Acrys(A),ϕ). Hence the claim follows fromProposition

164 for (160). �

We define ui ∈ Acrys,B(A) (i ∈ N ∩ [1, e]) as in Sect. 2 by using si and si,n cho-
sen before Lemma 180. For a positive integer N , we define the subring A (N+)

crys,B(A)

of Acrys,B(A) to be the inverse limit of the image of ⊕n∈Ne A(N+)
crys (A)

∏

1≤i≤e u
[ni ]
i

in Acrys,B,m(A) for m ∈ N>0. By Lemma 161, A (N+)

crys,B(A) is isomorphic to the

inverse limit of⊕n∈Ne A(N+)
crys (A)/(I r A(N+)

crys (A) + pm A(N+)
crys (A))

∏

1≤i≤e u
[ni ]
i (r,m ∈

N>0). We define the ideal FilrA (N+)

crys,B(A) (r ∈ Z) of A (N+)

crys,B(A) to be the inverse

limit of the image of ⊕n∈NeFilr−|n|A(N+)
crys (A)

∏

1≤i≤e u
[ni ]
i in Acrys,B,m(A). We have

FilrA (N+)

crys,B(A) · FilsA (N+)

crys,B(A) ⊂ Filr+sA (N+)

crys,B(A) for r, s ∈ Z.

Lemma 182 We have π−1([εa] − 1)[n] ∈ I n−1W PD,(1)(ROK
) for a ∈ Zp and n ∈

N>0.

Proof As [εa] − 1 ∈ I 1Ainf(OK ) = πAinf(OK ), it suffices to prove the claim fora =
1. We have (n!)−1T n−1 ∈ Zp[T, T p−1

p ] for n ∈ N>0 because vp(n!) ≤ n−1
p−1 . Hence

we obtain the claim from Proposition 147 and I rW PD,(1)(ROK
) = W PD,(1)(ROK

) ∩
πr · W (ROK

)[ 1p ]. �

Lemma 183 Let N be a positive integer.

(1) A (N+)

crys,B(A) and FilrA (N+)

crys,B(A) (r ∈ Z) do not depend on the choice of si,n (i ∈
N ∩ [1, e], n ∈ N>0).

(2) A (N+)

crys,B(A) is stable under the action of GA, ∇ and ϕ. The filtration

Fil•A (N+)

crys,B(A)ofA (N+)

crys,B(A) is alsoGA-stable, andwehave∇(FilrA (N+)

crys,B(A)) ⊂
Filr−1A (N+)

crys,B(A) ⊗B ΩB (r ∈ Z).

Proof We have ([εa] − 1)[n] ∈ I nW PD,(1)(ROK
) for a ∈ Zp and n ∈ N by Lemma

182. Therefore one can verify the claims in the same way as the proof of Lemma
126 (1) and (3). Note ϕB(si ) = s pi (i ∈ N ∩ [1, e]). �

Lemma 184 The canonical homomorphism ι : P → Acrys,B(A) of filtered rings
induces a homomorphism ι(N ) : P (N ) → A (N+)

crys,B(A) of filtered rings for any posi-
tive integer N.

Proof By (42) applied to M = A, we see that the image of x ∈ P (N ) under ι is given
by

∑

n∈Ne β(N )(∇ log
n (x))

∏

1≤i≤e(u
′
i )

[ni ], which is contained inA (N+)

crys,B(A) because the
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image of the infinite sum in Acrys,B,m(A) is a finite sum for every m ∈ N, and the
image (

∑

l≥1(−1)l l!u[l]
i,m)[n] of (u′

i )
[n] inAcrys,B,m(A) is contained in⊕s≥nZ/pmu[s]

i,m .

The compatibility with the filtrations follows from ∇ log
n (FilrP (N )) ⊂ Filr−|n|P (N )

(n ∈ N
e) and β(N )(FilrP (N )) ⊂ Filr A(N+)

crys (A) (Lemma 180). �

Proposition 185 For any positive integer N, the isomorphism (39) induces an iso-
morphism

T A(N+)
crys (M) ⊗A(N+)

crys (A)
A (N+)

crys,B(A)
∼=−→ MP (N ) ⊗P (N ),ι(N ) A (N+)

crys,B(A). (180)

Proof By Proposition 181, it suffices to prove that the isomorphism (40) induces an
isomorphism

MP (N ) ⊗P (N ),β(N ) A (N+)

crys,B(A)
∼=−→ MP (N ) ⊗P (N ),ι(N ) A (N+)

crys,B(A).

The images in (MP ⊗P,β Acrys,B(A))/pm and (MP ⊗P,ι Acrys,B(A))/pm of the infi-
nite sums appearing in (41) and (42) becomefinite sums.Note that the image of (u′

i )
[n]

(n ∈ N) inAcrys,B,m(A) is contained in ⊕s≥nZ/pmu[s]
i,m as mentioned in the proof of

Lemma 184. This implies that the reduction mod pm of (40) induces an isomorphism
between the images of MP (N ) ⊗P (N ),β(N ) A (N+)

crys,B(A) and MP (N ) ⊗P (N ),ι(N ) A (N+)

crys,B(A).
We obtain the claim by taking the inverse limit. �

Let t1, . . . , td ∈ A× be coordinates of A over OK , and let ϕA : A → A be the
unique lifting of the absolute Frobenius of A/p compatible with σ : OK → OK

such that ϕA(ti ) = t pi for all i ∈ N ∩ [1, d]. We prove an analogue of Proposition
185 for T A�

inf(M) (Sect. 13).
We define T A�,(N+)

crys (M) to be T A�
inf(M) ⊗A�

inf (A) A
�,(N+)
crys (A) endowed with

semilinear extensions of ϕ and ˜ΓA-action, and with the product filtrations.
Recall that we have defined a homomorphism α : A → A�

inf(A) (80).

Proposition 186 The isomorphism (92) induces the following isomorphism in the
category MFp

[0,p−2],free(A�,(N+)
crys (A),ϕ).

T A�,(N+)
crys (M) ∼= M ⊗A,α A�,(N+)

crys (A)

Proof The same as the proof of Proposition 181 using Proposition 172. �

We define the subring A �,(N+)
crys (A) of A �

crys(A) (Sect. 12) to be the inverse limit

of the images of⊕n∈Nd A�,(N+)
crys (A)

∏

1≤i≤d v
[ni ]
i inA �

crys,m(A). It is isomorphic to the

inverse limit of ⊕n∈Nd A�,(N+)

crys,(I n ,pm )(A)
∏

1≤i≤d v
[ni ]
i over m, n ∈ N by Lemma 173.

Lemma 187 (1) A �,(N+)
crys (A) does not depend on the choice of the pnth roots ti,n

of ti (i ∈ N ∩ [1, d], n ∈ N>0) used in the definition of vi .
(2) A �,(N+)

crys (A) is stable under the action of ˜ΓA, ∇ and ϕ.
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Proof The same as Lemma 183. �

Lemma 188 The canonical homomorphism ι : A → A �
crys(A) factors through

A �,(N+)
crys (A).

Proof The same as Lemma 184 by using (96) for M = A. �

Proposition 189 The isomorphism (94) induces an isomorphism

T A�,(N+)
crys (M) ⊗

A�,(N+)
crys (A)

A �,(N+)
crys (A)

∼=−→ M ⊗A,ι A
�,(N+)
crys (A). (181)

Proof The same as Proposition 185 using Proposition 186 and (96). �

20 Comparison Morphism from de Rham Complex over
Acrys

We follow the notation in Sects. 14, 15, 17, and 18.
Let B → A, s1, . . . , se ∈ B×, ΩB, ϕB, Pm , P , Acrys,B,m(A), Acrys,B(A), ui,m ∈

Acrys,B,m(A), and ui ∈ Acrys,B(A) be as in Sect. 2. We assume that ϕB is the unique
lifting of Frobenius satisfying ϕB(si ) = s pi for all i ∈ N ∩ [1, e]. Let M be an object
of MF∇

[0,p−2],free(A, Φ), and define MPm and MP associated to M as in Sect. 5.
Let Acrys(OK )̂⊗OK MP be the p-adic completion of Acrys(OK ) ⊗OK MP , which is
naturally endowed with an action of GK , ϕ, and an integrable connection ∇ with
respect to B/OK . Put Ω

q
B := ∧q

BΩB (q ∈ N).
In this section, we will construct a morphism

Acrys(OK )̂⊗OK MP ⊗B Ω•
B −→ Acrys(OK )̂⊗L

Ainf (OK )Lη+
π RΓ (ΔA, T Ainf(M))

(182)
compatible with ϕ in the derived category D(GK -Sets, Acrys(OK )) (see Sect. 14) of
Acrys(OK )-modules with semilinear action of GK . The construction a priori depends
on the choice of s1, . . . , se ∈ B×. We will show certain functoriality of (182) in
(B, s1, . . . , se) (Proposition 201) and, as its consequence, prove that (182) does not
depend on the choice of s1, . . . , se (Theorem 203). We will prove that (182) is a
quasi-isomorphism in Sect. 21 (Theorem 204).

For N ∈ N>0, we define T A(N )
crys(M) to be A(N )

crys(A) ⊗Ainf (A) T Ainf(M), which is

a free A(N )
crys(A)-module of finite type naturally endowed with a semilinear action

of GA and a semilinear GA-equivariant endomorphism ϕ. The action of GA
is continuous by Proposition 162. We define an object RΓ (ΔA, T A(N )

crys(M)) of
D(GK -Sets, A(N )

crys(OK )) in the same way as RΓ (ΔA, T Ainf(M)) defined in Sect. 15
by using the sequence (pm A(N )

crys(OK ))m∈N inS (N )
crys . To construct themorphism (182),

we first prove the following description of the target with Acrys(OK ) replaced by
A(N )
crys(OK ) in terms of the cohomology of T A(N )

crys(M) (cf. [7, Sect. 12]).
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Proposition 190 For each N ∈ N>0, the following canonical morphisms in the
derived category D(GK -Sets, A(N )

crys(OK )) of A(N )
crys(OK )-modules with semilinear

action of Gk are isomorphisms.

A(N )
crys(OK )̂⊗L

Ainf (OK )Lη+
π RΓ (ΔA, T Ainf(M))

→ R lim←−
m

(Lη+
π RΓ (ΔA, T A(N )

crys(M)) ⊗L
Zp

Z/pmZ) ← Lη+
π RΓ (ΔA, T A(N )

crys(M)).

Let � be the framing considered in Sects. 12 and 18. For N ∈ N>0, we
define T A�,(N )

crys (M) and T ˜A�,(N )
crys (M) to be A�,(N )

crys (A) ⊗A�
inf (A) T A�

inf(M) and

A(N )
crys(A∞) ⊗A�

inf (A) T A�
inf(M), respectively, which are naturally endowed with semi-

linear actions of ˜ΓA and ˜ΓA-equivariant semilinear endomorphisms ϕ. The actions
of ˜ΓA are continuous by Proposition 162 and Lemma 165. We define the coho-
mology RΓ (ΓA, T A�,(N )

crys (M)) and RΓ (ΓA, T ˜A�,(N )
crys (M)) in the same way as

RΓ (ΔA, T A(N )
crys(M)) above. We prove Proposition 190 by reducing it to a corre-

sponding claim for T A�
inf(M) and T A�,(N )

crys (M).

Proposition 191 (cf. Corollary 110) For each N ∈ N>0, the cohomology of the
mapping cone of

RΓ (ΓA, T ˜A�,(N )
crys (M)) −→ RΓ (ΔA, T A(N )

crys(M))

is annihilated by the kernel of Ainf(OK ) → W (k).

Proof By Lemma 109, it suffices to prove that the cohomology of the cone of

RΓ (ΓA, T ˜A�,(N )
crys (M)/pm) → RΓ (ΔA, T A(N )

crys(M)/pm)

is annihilated by [p−l] for all l ∈ N, and it is reduced to the case m = 1. For Λ =
A, A∞, the homomorphism Ainf(Λ) → A(N )

crys(Λ)/p factors through the quotient

Ainf(Λ)/(p, [p]p) ∼= RΛ/pp
∼=−→ Λ/p; (an)n∈N �→ a1 of Ainf(Λ). By using Proposi-

tion 143 (2), we obtain a GA-equivariant isomorphism A(N )
crys(A)/p ∼=

A(N )
crys(A∞)/p ⊗A∞/p A/p. By (107), we have a GA-equivariant isomorphism

T A(N )
crys(M)/p ∼= T ˜A�,(N )

crys (M)/p ⊗A∞/p A/p. Hence the claim follows from the
almost purity theorem by Faltings ([11, 2b, 2c], [9, 2.4. Theorem (ii)], [2, Proposition
V.12.8]) in the same way as the proof of Proposition 107. �

Proposition 192 (cf. Lemma 115) For each N ∈ N>0, the cohomology of

Ainf(OK )/πAinf(OK ) ⊗L
Ainf (OK ) RΓ (ΓA, T ˜A�,(N )

crys (M))

has no non-zero element annihilated by the ideal
∑

l∈Z[pp−l ]Ainf(OK ) of Ainf(OK ).
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Proof Put I := ∑

l∈Z[pp−l ]Ainf(OK ). We abbreviate K (−; γ1 − 1, . . . , γd − 1) to

Kγ(−). We obtain RΓ (ΓA, T ˜A�,(N )
crys (M)) ∼= Kγ(T ˜A�,(N )

crys (M)) by the same argu-
ment as the proof of Lemma 117. Since A(N )

crys(A∞) is π-torsion free (Proposi-
tion 156 (1)), the complex considered in the proposition is quasi-isomorphic to
Kγ(T ˜A�,(N )

crys (M)/π). PutT := T A�,(N )
crys (M)/π and˜T := T ˜A�,(N )

crys (M)/π. The action
of ΓA on T is trivial by Proposition 168 (3) and Lemma 98. Recall that A(N )

crys(A∞)/π

and A�,(N )
crys (A)/π are p-adically complete and separated by Propositions 156 (2)

and 168 (2). By Proposition 170 (3) and Lemma 166 (2), ˜T /pm is the direct sum

of [tr ]T/pm (r ∈ (Z[ 1p ] ∩ [0, 1[)d), and we have T/pm
∼=−→ [tr ]T/pm; x �→ [tr ]x .

For a non-zero r = (ri )1≤i≤d ∈ (Z[ 1p ] ∩ [0, 1[)d , let ν(r) be the positive integer

defined by r ∈ p−ν(r)
Z
d\p−ν(r)+1

Z
d . For i ∈ N ∩ [1, d], let Λi be the subset of

(Z[ 1p ] ∩ [0, 1[)d consisting of r 	= 0 such that i is the smallest integer ∈ [1, d] sat-
isfying ri /∈ p−ν(r)+1

Z. For i ∈ N ∩ [1, d], we define ˜Ti to be the inverse limit of the
direct sum of [tr ]T/pm (r ∈ Λi ) with respect to m. Then ˜T is the direct sum of T
and ˜Ti (i ∈ N ∩ [1, d]), ˜Ti is ˜ΓA-stable, and an element of ˜Ti is uniquely written as
∑

r∈Λi
[tr ]xr (xr ∈ T , xr → 0 p-adically as ν(r) → ∞).

We have Hq(Kγ(T )) ∼= T ⊗Z ∧q
Z
d , and T [I] = 0 by Corollary 171. Put πr =

[εr ] − 1 for r ∈ Z[ 1p ]. For i, j ∈ N ∩ [1, d], j 	= i , we define the endomorphism

g
( j)
i of ˜Ti by g

( j)
i (

∑

r∈Λi
[tr ]xr ) = ∑

r∈Λi
[tr ]πr j π

−1
ri xr ) (Lemma 113 (1)). Then, for

each i , the Ainf(OK )-linear endomorphisms g
( j)
i ( j 	= i) and γi of ˜Ti commute

with each other, and satisfy γ j − 1 = (γi − 1) ◦ g
( j)
i ( j 	= i). By [7, Lemma 7.10],

Hq(Kγ(˜Ti )) is isomorphic to the direct sum of
(d−1

q

)

copies of ˜T γi=1
i and

(d−1
q−1

)

copies

of ˜Ti/(γi − 1)˜Ti as Ainf(OK )-modules. We have ˜T γi=1
i [I] = 0 by Corollary 171.

It remains to prove ˜Ti/(γi − 1)˜Ti [I] = 0. Suppose that the image of an element
x = ∑

r∈Λi
[tr ]xr (xr ∈ T ) of ˜Ti in ˜Ti/(γi − 1)˜Ti is annihilated by I. Then the image

of xr in T/πri T is annihilated by I. By Lemma 113 (1), we have πri Ainf(OK ) =
ϕ−ν(r)(π)Ainf(OK ). Therefore we have xr ∈ πri T by Corollary 171. Choose μ(r) ∈
N for each r ∈ Λi such that xr ∈ pμ(r)T and μ(r) → ∞ as ν(r) → ∞. Put yr :=
p−μ(r)xr ∈ T . Then we have pN yr ∈ πri T for r ∈ Λi with μ(r) > N by Proposi-
tion 168 (2). For r ∈ Λi with μ(r) ≤ N (resp. μ(r) > N ), choose zr (resp. wr ) ∈ T
such that xr = πri zr (resp. p

N yr = πri wr ). Then
∑

r∈Λi ,μ(r)≤N [tr ]zr + ∑

r∈Λiμ(r)>N

[tr ]pμ(r)−Nwr converges to an element z of ˜Ti , and we have x = (γi − 1)(z). �

Corollary 193 For each N ∈ N>0, the following morphism in the derived category
D(GK -Sets, A(N )

crys(OK )) (Sect. 14) of A(N )
crys(OK )-modules with semilinear GK -action

is an isomorphism.

Lη+
π RΓ (ΓA, T ˜A�,(N )

crys (M)) −→ Lη+
π RΓ (ΔA, T A(N )

crys(M))

Proof Wemay forget the action ofGK by Lemma 103. By Propositions 191 and 192,
we can apply Lemma 111 (2) for R = Ainf(OK ), I = πR, and J = ∑

l∈N[pp−l ]R +
πR to RΓ (ΓA, T ˜A�,(N )

crys (M)) → RΓ (ΔA, T A(N )
crys(M)). Then we obtain the claim
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from Lemma 111 (1) because A(N )
crys(A∞) and A(N )

crys(A) are π-torsion free by Lemma
156 (1). �

Proposition 194 For each N ∈ N>0, the followingmorphism in the derived category
D(GK -Sets, A(N )

crys(OK )) (Sect. 14) of A(N )
crys(OK )-modules with semilinear Gk-action

is an isomorphism.

Lη+
π RΓ (ΓA, T A�,(N )

crys (M)) −→ Lη+
π RΓ (ΓA, T ˜A�,(N )

crys (M))

Proof We can prove the claim in the same way as Proposition 116 by using
pm A(N )

crys(OK ) ∈ S (N )
crys instead of a, an ∈ Sinf,G, and the following facts. The rings

A(N )
crys(A∞) and A�,(N )

crys (A) are p-torsion free and p-adically complete and separated

(Lemma 166 (1)). The action ofΓA on T A�,(N )
crys (M)/π is trivial (Proposition 168 (3),

Lemma 98). The element π is regular in A�,(N )
crys (A) (Proposition 168 (1)). The ele-

ment (π([εr ] − 1)−1)p is contained in pA(N )
crys(OK ) for r∈Z[ 1p ]\Z because π([εr ] −

1)−1∈ξAinf(OK ).WehaveT ˜A�,(N )
crys (M)/pm = ⊕r∈(Z[ 1

p ]∩[0,1[)d [tr ]T/pm andT/pm
∼=−→

[tr ]T/pm; x �→ [tr ]x , where T denotes T A�,(N )
crys (M) (Lemma 166 (2), Proposition

170 (3)). �

Proof of Proposition 190 By Propositions 112, 116, Corollary 193, and Proposition
194, it suffices to prove the claimwithΔA, T Ainf , and T A(N )

crys replaced byΓA, T A�
inf ,

and T A�,(N )
crys . By Lemma 98, Proposition 168 (3), and the same argument as the proof

of Lemma 117, we obtain isomorphisms

Lη+
π RΓ (ΓA, T ) ∼= η+

π K (T ; γ1 − 1, . . . , γd − 1) ∼= π•K •(T ; γ1 − 1, . . . , γd − 1)

for T = T A�
inf(M) (resp. T A�,(N )

crys (M)) in the derived category of Ainf(OK ) (resp.

A(N )
crys(OK ))-modules.Therefore it suffices to prove the isomorphism A�

inf (A) ⊗L
Ainf (OK )

A(N )
crys(OK )/pm

∼=−→ A�
inf(A) ⊗Ainf (OK ) A(N )

crys(OK )/pm, which is verified in the same
way as the proof of Lemma 125. �

Let N be a positive integer. We define A (N )

crys,B(A) to be the p-adic completion of

⊕n∈Ne A(N )
crys(A)

∏

i u
[ni ]
i regarded as a subring of Acrys,B(A).

Lemma 195 (1) A (N )

crys,B(A) does not depend on the choice of the compatible system
of pnth roots si,n of the image of si in A used in the construction of ui,m and ui .

(2) A (N )

crys,B(A) is stable under the action of GA, ∇ and ϕ.

Proof We have ([εa] − 1)[n] ∈ W PD,(1)(ROK
) (a ∈ Zp, n ∈ N) by Lemma 182, and

one can verify the claims in the same way as the proof of Lemma 126 (1) and (3).
Note ϕB(si ) = s pi (i ∈ N ∩ [1, e]). �



300 T. Tsuji

By Corollary 154, the natural homomorphismA (N )

crys,B(A) → Acrys,B(A) is injec-
tive. Let N be an integer ≥ 2. Then the homomorphism W PD,(N−1)(RA) →
W PD,(N )(RA)/pm factors through W PD,(N−1)(RA)/(I mpN−1(p−1), pm) (see the proof
of Lemma 160 (2)), and therefore induces a homomorphism

A ((N−1)+)

crys,B (A) −→ A (N )

crys,B(A) (183)

compatible with the action of GA, ∇, ϕ, and A((N−1)+)
crys (A) → A(N )

crys(A) (Lemma
160 (2)). The homomorphism (183) is injective by Lemma 160 (2). By taking the
scalar extension of (180) (with N replaced by N − 1) under (183), we obtain the
following.

Proposition 196 For an integer N ≥ 2, the isomorphism (39) induces an isomor-
phism

T A(N )
crys(M) ⊗A(N )

crys(A)
A (N )

crys,B(A)
∼=−→ MP (N−1) ⊗P (N−1) A (N )

crys,B(A). (184)

Let λ be one of π and ϕ−1(π). In order to construct the morphism (182)
and show its compatibility with ϕ, we introduce a subcomplex A (N )

crys,λΩ
•
B(A)

of λ−eAcrys,B(A) ⊗B Ω•
B giving a resolution of A(N )

crys(A) such that the complex

A (N )

crys,B(A) ⊗B Ω•
B is contained in η+

λ (A (N )

crys,λΩ
•
B(A)).

For i ∈ N ∩ [1, e], we define A i,1,(N )

crys,B,λ(A) (resp. A i,0,(N )

crys,B,λ(A)) to be the p-adic

completion of ⊕n∈Nλ−1A(N )
crys(A)u[n]

i (resp. A(N )
crys(A) ⊕ (⊕n∈N>0λ

−1A(N )
crys(A)u[n]

i ))

regarded as an A(N )
crys(A)-submodule of λ−1Acrys,B(A). Put ωi := ∇(ui ) = −(ui +

1)d log si ∈ Acrys,B(A) ⊗B ΩB. The subcomplex A i,0,(N )

crys,B,λ(A)
∇−→ A i,1,(N )

crys,B,λ(A)ωi

of λ−1Acrys,B(A) ⊗B Ω•
B gives a resolution of A(N )

crys(A). We defineA (N )

crys,λΩ
•
B(A) to

be the p-adic completion of the tensor product of the above complexes for i ∈ N ∩
[1, e] over A(N )

crys(A), which may be regarded as a subcomplex of λ−eAcrys,B(A) ⊗B
Ω•

B. We define A J,(N )

crys,B,λ(A) ⊂ λ−eAcrys,B(A) for J ⊂ N ∩ [1, e] to be the p-adic
completion of

⊕

n∈Ne

λ−�((Supp n)∪J )A(N )
crys(A)

∏

i

u[ni ]
i ,

where Supp n denotes the subset of N ∩ [1, e] consisting of i with ni > 0. Then we
have

A (N )

crys,λΩ
q
B(A) =

⊕

J⊂N∩[1,e],�J=q

A J,(N )

crys,B,λ(A) ⊗ ωJ ,

where ωJ = ω j1 ∧ · · · ∧ ω jq for a subset J = { j1 < · · · < jq} of N ∩ [1, e].
Lemma 197 Let a be an element of Ainf(OK ), and assume that its image in
Ainf(OK )/p ∼= ROK

is neither zero nor invertible and that aAinf(OK ) is GK -stable.
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Then the action of GK on a−1Ainf(OK ) is continuouswith respect to the (p, [p])-adic
topology. (Note that the element a is regular by Lemma 1 (4)).

Proof For x ∈ Ainf(OK ) and g ∈ GK , we have g(a−1x) − a−1x = g(a)−1(1 −
a−1g(a))g(x) + a−1(g(x) − x). By Lemma 5, it suffices to prove the follow-
ing: For any m ∈ N>0, there exists an open subgroup Hm of G such that
a−1g(a) − 1 ∈ (p, [p])m for every g ∈ Hm . By Lemma 5 again, it suffices to
prove that the multiplication by a induces a homeomorphism from Ainf(OK ) to
aAinf(OK ) endowed with the topology induced by that of Ainf(OK ). By Lemma
1 (3), we have (pm Ainf(OK ) + am Ainf(OK )) ∩ aAinf(OK ) = a(pm Ainf(OK ) +
am−1Ainf(OK )) for m ∈ N>0. Hence the claim follows from Lemma 1 (1). �

Lemma 198 Let λ be one of π and ϕ−1(π).

(1) A (N )

crys,λΩ
q
B(A) is the A (N )

crys,B(A)-submodule of λ−eAcrys,B(A) ⊗B Ω
q
B.

(2) A (N )

crys,λΩ
q
B(A) does not depend on the choice of the compatible system of pnth

roots si,n of the image of si in A used in the construction of ui,m and ui .
(3) A (N )

crys,λΩ
q
B(A) is stable under the action of GA, and the action of GA is contin-

uous with respect to the p-adic topology of A (N )

crys,λΩ
q
B(A).

(4) The inclusion homomorphism A(N )
crys(A) → A (N )

crys,λΩ
0
B(A) gives a resolution

A(N )
crys(A)/pm → A (N )

crys,λΩ
•
B(A)/pm for every m ∈ N>0.

(5) We have A (N )

crys,B(A) ⊗B Ω•
B ⊂ η+

λ (A (N )

crys,λΩ
•
B(A)).

(6) We have A (N )

crys,ϕ−1(π)
Ω

q
B(A) ⊂ A (N )

crys,πΩ
q
B(A) and ϕ(A (N )

crys,ϕ−1(π)
Ω

q
B(A)) ⊂

A (N )
crys,πΩ

q
B(A) for q ∈ N.

Proof The claim (1) follows from �((Supp n) ∪ J ) ≤ �((Supp n + m) ∪ J ) for
n,m ∈ N

e and J ⊂ N ∩ [1, e]. By Lemma 182 and π ∈ ϕ−1(π)Ainf(OK ), we have
λ−1([εa] − 1)[m] ∈ A(N )

crys(OK ) for a ∈ Zp andm ∈ N>0. Hence λ−1([εa]ui + [εa] −
1)[n] is contained in A i,0,(N )

crys,λ (A) (⊂ A i,1,(N )

crys,λ (A)) for n ∈ N>0. By (6) and the

description of u′
i,m in the proof of Lemma 126, we see that A i,0,(N )

crys,B,λ(A) and

A i,1,(N )

crys,B,λ(A)ωi do not depend on the choice of si,n and are GA-stable, and then
the claim (2) and the GA-stability in (3) hold. For a ∈ Zp, we have [εa] ∈
1 + πA(N )

crys(OK ) and π p ∈ pπA(N )
crys(OK ) (Proposition 147), from which we obtain

[εa]pn ∈ 1 + pnπA(N )
crys(OK ) ⇔ π−1([εpna] − 1) ∈ pn A(N )

crys(OK ) (n ∈ N) by induc-

tion on n. This together with Lemma 197, the continuity of Ainf(OK ) → A(N )
crys(A),

and Proposition 162 for (Λ,Λ0) = (A,A) implies that the actions of GA on
A i,0,(N )

crys,B,λ(A), A i,1,(N )

crys,B,λ(A)ωi , and hence on A (N )

crys,λΩ
q
B(A) are continuous. For the

claim (4), we can construct an A(N )
crys(A)/pm-linear homotopy between the identity

map and the zero map in the same way as Lemma 127 because (Supp n) ∪ J =
(Supp(n + 1i )) ∪ (J\{i}) for n ∈ N

e, J ⊂ N ∩ [1, e], and i ∈ J . The claim (5) and
the first inclusion in (6) are obvious by definition. The second inclusion in (6) follows
from ϕ(ui ) = ui (

∑p
ν=1

(p
ν

)

uν−1
i ), ϕ(ωi ) = −p(ui + 1)p−1ωi , and the claim (1). �
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Remark 199 Let B′ be lim←−m
(B ⊗A B)/pm , and let A (N )

crys,λΩ
•
B′(A) be the complex

associated to the product map B′ → A and si ⊗ 1, 1 ⊗ si . Then the two homomor-
phisms B ⇒ B′; a �→ a ⊗ 1, 1 ⊗ a induce isomorphisms

A (N )

crys,λΩ
•
B(A)/pm ⊗A(N )

crys(A)/pm A (N )

crys,λΩ
•
B(A)/pm

∼=−→ A (N )

crys,λΩ
•
B′(A)/pm

form ∈ N>0. It seems that this will allow us to study the compatibility of (192) with
products.

To construct the morphism (182), we first need to put the isomorphisms in Propo-
sition 190 together in the derived category of inductive systems with respect to N .
For Λ = A, OK , we define A(N )

crys,m(Λ) (m ∈ N) to be A(N )
crys(Λ)/pm , and A(N )

crys,•(Λ)

to be the inverse system (A(N )
crys,m(Λ))m∈N. Let A(•)

crys,•(A) denote the ring object

(A(2)
crys,•(A) → A(3)

crys,•(A) → · · · → A(N )
crys,•(A) → · · · ) of (GA-SetsN

◦
)N. The index

N starts with N = 2 because of (189). We define the ring object A(•)
crys,•(OK ) of

(GK -SetsN
◦
)N in the same way. Let A(•)

crys(OK ) denote the ring object of GK -SetsN

defined by the inductive system (A(2)
crys(OK ) → A(3)

crys(OK ) → · · · → A(N )
crys(OK ) →

· · · ).
Then we have the following functors (cf. (111)).

D+((GA-SetsN
◦
)N, A(•)

crys,•(A))
R(invN

◦
ΔA )N∗−−−−−−→ D+((GK -SetsN

◦
)N, A(•)

crys,•(OK ))

(ιN
◦
)N∗−−−→ D+((GK -SetsN

◦
)N, A(•)

crys,•(OK ))
R l←−

N∗−−−→ D+(GK -SetsN, A(•)
crys(OK ))

Lη+
π−−→ D+(GK -SetsN, A(•)

crys(OK )). (185)

By [3, Vbis Corollaire (1.3.12)] (resp. Lemma 102 (1) and [3, Vbis Proposition
(1.2.9)]), the evaluation of the first three functors (resp. the last functor) at the N -
component of inductive systems is given by the corresponding functors appearing
in the definition of RΓ (ΔA,−) (110) on D+(GA-SetsN

◦
, A(N )

crys,•(A)) (resp. η+
π on

D+(GK -Sets, A(N )
crys(OK ))).

Let T A(•)
crys,•(M) denote the A(•)

crys,•(A)-module

(T A(2)
crys,•(M) → T A(3)

crys,•(M) → T A(4)
crys,•(M) → · · · → T A(N )

crys,•(M) → · · · )

on (GA-SetsN
◦
)N, where T A(N )

crys,m(M) = T A(N )
crys(M)/pm form ∈ N. Then the image

of T A(•)
crys,•(M) under the composition of the functors (185) may be regarded as the

“inductive system” consisting of Lη+
π RΓ (ΔA, T A(N )

crys(M)) (N ∈ N, N ≥ 2) and is
denoted by (Lη+

π RΓ (ΔA, T A(N )
crys(M)))N in the following.

One can define the constant inductive system (Lη+
π RΓ (ΔA, T Ainf(M)))N by

taking the image of the constant inductive system (T Ainf,•(M))N under the functor
D+((GA-SetsN

◦
)N, (Ainf,•(A))N ) → D+(GK -SetsN, (Ainf(OK ))N )defined similarly
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as above. Here Ainf,m(A) = Ainf(A)/(pm, [p]pm) and T Ainf,m(M) =
T Ainf(M) ⊗Ainf (A) Ainf,m(A) for m ∈ N.

We have an obvious variant of (115) for inductive systems, and it gives us a
morphism

(A(N )
crys(OK ))N⊗L

(Ainf (OK ))N
(Lη+

π RΓ (ΔA, T Ainf(M)))N

−→ (Lη+
π RΓ (ΔA, T A(N )

crys(M)))N . (186)

in D+(GK -SetsN, A(•)
crys(OK )). By taking R l←−N∗ ◦ L l←−N∗ with respect to the mor-

phism of topos l←−N : ((GK -SetsN
◦
)N, A(•)

crys,•(OK )) → (GK -SetsN, A(•)
crys(OK ))

(Sect. 14), we obtain isomorphisms in D+(GK -SetsN, A(•)
crys(OK ))

(A(N )
crys(OK ))N̂⊗L

(Ainf (OK ))N
(Lη+

π RΓ (ΔA, T Ainf(M)))N (187)
∼=−→(A(N )

crys(OK ))N̂⊗L
(A(N )

crys(OK ))N
(Lη+

π RΓ (ΔA, T A(N )
crys(M)))N

∼=←−(Lη+
π RΓ (ΔA, T A(N )

crys(M)))N ,

where (A(N )
crys(OK ))N̂⊗L

(A(N )
crys(OK ))N

(resp. (A(N )
crys(OK ))N̂⊗L

(Ainf (OK ))N
) denotes the func-

tor R l←−N∗ ◦ L l←−N∗ (resp. R l←−N∗ ◦ L l←−N∗ ◦ [(A(N )
crys(OK ))N ⊗L

(Ainf (OK ))N
−]); we see

that these are isomorphisms by looking at the evaluation on each N -component and
using Proposition 190.

By Lemma 198 (3) and (4), we have a resolution

T A(•)
crys,•(M) −→ T A(•)

crys,•(M) ⊗A(•)
crys(A)

A (•)
crys,πΩ

•
B(A)

in Mod((GA-SetsN
◦
)N, A(•)

crys,•(A)). By applying (185) to this resolution, and using
Lemmas 100 (2) and 198 (5), we obtain a morphism

(Γ (ΔA, T A(N )
crys(M) ⊗A(N )

crys(A)
A (N )

crys,B(A) ⊗B Ω•
B))N

−→ (Lη+
π RΓ (ΔA, T A(N )

crys(M)))N (188)

in D+(GK -SetsN, A(•)
crys(OK )). On the other hand, we have a morphism

(A(N )
crys(OK )̂⊗OK MP (N−1) ⊗B Ω•

B)N

−→ (Γ (ΔA, T A(N )
crys(M) ⊗A(N )

crys(A)
A (N )

crys,B(A) ⊗B Ω•
B))N (189)

in C+(GK -SetsN, A(•)
crys(OK )) by Proposition 196.
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We take the image of the composition

(A(N )
crys(OK )̂⊗OK MP (N−1) ⊗B Ω•

B)N

−→ (A(N )
crys(OK ))N̂⊗L

(Ainf (OK ))N
(Lη+

π RΓ (ΔA, T Ainf(M)))N (190)

of (187), (188), and (189) under the functors

D+(GK -SetsN, A(•)
crys(OK ))

L l←−
N∗

−−−→ D+(GK -SetsN
◦×N, A(•)

crys,•(OK ))

L l−→
N

◦∗

−−−→ D+(GK -SetsN
◦
, Acrys,•(OK ))

R l←−∗−−→ D+(GK -Sets, Acrys(OK )). (191)

By the commutativity of the right square in Lemmas 103 (1) and 7, we see that
L l←−N∗(adj) : L l←−N∗ → L l←−N∗R l←−N∗ L l←−N∗ is an isomorphism. Hence we obtain
the desired morphism (182) as follows.

Acrys(OK )̂⊗OK MP ⊗B Ω•
B (192)

∼=←− lim←−
m

lim−→
N

(A(N )
crys,m(OK ) ⊗OK MP (N−1) ⊗B Ω•

B)

−→R lim←−
m

lim−→
N

((A(N )
crys,m(OK ))m,N ⊗L

(Ainf (OK ))N
(Lη+

π RΓ (ΔA, T Ainf(M)))N )

∼=−→Acrys(OK )̂⊗L
Ainf (OK )Lη+

π RΓ (ΔA, T Ainf(M))

Here we use (179) and lim−→N
A(N )
crys,m(OK ) ∼= Acrys,m(OK ) for the first isomorphism.

Let us prove that (192) is compatible with the Frobenius ϕ. First note that
we have an obvious variant of Lemma 105 for inductive systems. By applying
it to the morphisms of ringed topos ϕ defined by the endomorphisms ϕ of the
ring objects A(•)

crys,•(A), (Ainf,•(A))N , A(•)
crys,•(OK ) etc. and the morphisms f , g, g,

and h of ringed topos defined by the morphisms of ring objects (Ainf,•(A))N →
A(•)
crys,•(A), (Ainf,•(OK ))N → A(•)

crys,•(OK ) etc., we see that the morphism (186) is
compatible with ϕ. Then, by Lemma 200 below applied to ϕ∗ and the adjunction
morphism for the morphism of ringed topos l←−N : ((GK -SetsN

◦
)N, A(•)

crys,•(OK )) →
(GK -SetsN, A(•)

crys(OK )), we obtain the compatibility of (187) with ϕ.

Lemma 200 For a commutative diagram of ringed topos

(E ′, A′) h

f ′

(E, A)

f

(F ′, B ′)
g

(F, B),

the following diagram of functors from D(F ′, B ′) to D(F, B) is commutative, where
the bottom horizontal arrow is the base change morphism.
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Rg∗
Rg∗(adj)

adj◦Rg∗

Rg∗R f ′∗L f ′∗

∼=
R f∗L f ∗Rg∗ R f∗Rh∗L f ′∗

Proof Straightforward. �

Next let us verify the compatibility of (188) with ϕ. To simplify the notation, we
put T := T A(•)

crys,•(M), π′ := ϕ−1(π), DRλ := T A(•)
crys,•(M) ⊗A(•)

crys(A)
A (•)

crys,λΩ
•
B(A)

(λ = π,π′), and DR := T A(•)
crys(M) ⊗A(•)

crys(A)
A (•)

crys,B(A) ⊗B Ω•
B. Then, by Lemma

198 (6), we have commutative diagrams

T
ϕ

q.i.

ϕ∗T
q.i.

DRπ′
ϕ

ϕ∗DRπ,

T
q.i.

T
q.i.

DRπ′ DRπ

(193)

in C+((GA-Sets)N
◦×N, A(•)

crys,•(A)), where q.i. means quasi-isomorphism. Let
RΓ N(ΔA,−) denote the composition of the first three functors in (185). By using
Lemmas 198 (5), 102 (2), and an analogue of (113) for inductive systems indexed by
N, we see that the left commutative diagram in (193) induces the following commu-
tative diagram in D(GK -SetsN, A(•)

crys(OK )); we use Lemma 198 (5) (resp. Lemma
102 (2) and the analogue of (113)) for the morphisms (A) (resp. (B)).

Lη+
π′ RΓ N(ΔA, T )

ϕ

∼=
Lη+

π′ RΓ N(ΔA,ϕ∗T )
(B)

∼=
ϕ∗Lη+

π RΓ N(ΔA, T )

∼=
Lη+

π′ RΓ N(ΔA,DRπ′)
ϕ

Lη+
π′ RΓ N(ΔA,ϕ∗DRπ)

(B)
ϕ∗Lη+

π RΓ N(ΔA,DRπ)

Γ (ΔA,DR)
ϕ

(A)

ϕ∗Γ (ΔA,DR)

(A)

(194)
The composition of the right vertical morphism in (194) is ϕ∗(188). From the right
commutative diagram of (193), we obtain a commutative diagram

Lη+
π RΓ N(ΔA, T )

∼=
Lη+

π′ RΓ N(ΔA, T )

∼=
∼=

Lη+
π RΓ N(ΔA,DRπ) Lη+

π′ RΓ N(ΔA,DRπ) Lη+
π′ RΓ (ΔA,DRπ′)

∼=

Γ (ΔA,DR)

(195)
in D(GK -SetsN, A(•)

crys(OK )). This implies that the composition of the left verti-
cal morphisms in (194) coincides with the composition of (188) with the nat-
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ural morphism Lη+
π RΓ N(ΔA, T ) → Lη+

π′ RΓ N(ΔA, T ). Thus we see that (188)
is compatible with ϕ. The morphism (189) is obviously compatible with ϕ. By
using Lemma 200 for ϕ∗ and the adjunction morphism for the morphism of ringed
topos l←−N : ((GK -SetsN

◦
)N, A(•)

crys,•(OK )) → (GK -SetsN, A(•)
crys(OK )) again, we see

that (192) is compatible with ϕ.
In the rest of this section, we show a functoriality of (192) in (B, s1, . . . , se) and

prove that the morphism (192) does not depend on the choice of si .
Let B → B′ → A, s ′

1, . . . , s
′
e′ ∈ B′×, ΩB′ , Ω

q
B′ , P ′

m , P ′, MP ′
m
, and MP ′ be the

same as after Theorem 136. Recall that we have PD-homomorphisms Pm → P ′
m

and P → P ′ compatible with B → B′, ϕ, and ∇. We also have homomorphisms
of Acrys(A)-algebras Acrys,B,m(A) → Acrys,B′,m(A) and Acrys,B(A) → Acrys,B′(A)

compatible with the homomorphisms Pm → P ′
m and P → P ′, the GA-action, ϕ,

and ∇.

Proposition 201 Under the notation and the assumption as above, the following
diagram is commutative, where the left vertical morphism is induced by (143).

Acrys(OK )̂⊗OK MP ⊗B Ω•
B

(192)
Acrys(OK )̂⊗L

Ainf (OK )Lη+
π RΓ (ΔA, T Ainf(M))

Acrys(OK )̂⊗OK MP ′ ⊗B′ Ω•
B′

(192)

Proof We define A (N )

crys,B′(A) and A (N )
crys,πΩ

q
B′(A) for N ∈ N>0 and q ∈ N associ-

ated to (B′, s1, . . . , se, s ′
1, . . . , s

′
e′) in the same way as those for (B, s1, . . . , se). Let

DR(N )

A crys
(C) (C = B, B′) denote the complex A (N )

crys,C(A) ⊗C Ω•
C , and let T (N ) denote

T A(N )
crys(M). We see that the homomorphismAcrys,B(A) → Acrys,B′(A) induces GA-

equivariantmorphismsof complexesDR(N )

A crys
(B) → DR(N )

A crys
(B′) andA (N )

crys,πΩ
•
B(A) →

A (N )
crys,πΩ

•
B′(A) compatible with the morphisms from the former to the latter. Hence

we have the following commutative diagram.

(Γ (ΔA, T (N ) ⊗A(N )
crys(A)

DR(N )

A crys
(B))N

(188)
(Lη+

π RΓ (ΔA, T A(N )
crys(M))N

(Γ (ΔA, T (N ) ⊗A(N )
crys(A)

DR(N )

A crys
(B′))N

(188)

We define P ′(N ) ⊂ P ′ and MP ′(N ) ⊂ MP ′ in the same way as P (N ) and MP (N ) by
using B′ → A. Then we can verify that the homomorphisms P → P ′ and MP →
MP ′ (143) induce P (N ) → P ′(N ) and MP (N ) → MP ′(N ) for N ∈ N>0. For the for-
mer, we simply note that the image of Jm = Ker(Bm → Am) under Bm → B′

m
is contained in J ′

m = Ker(B′
m → Am). For the latter, we choose f ∈ N>0 satisfy-

ing J f
m Pm = 0 and (J ′

m) fP ′
m = 0, and then δ : Am → Bm/J f

m as before (176). By

defining MP (1)
m

⊂ MPm and MP ′(1)
m

⊂ MP ′
m
by using δ and the composition Am

δ−→
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Bm/J f
m → B′

m/(J ′
m) f , we see that the image of MP (1)

m
under MPm → MP ′

m
is con-

tained in MP ′(1)
m
.

Since the isomorphisms (39) for B and B′ are compatible with MP → MP ′ and
Acrys,B(A) → Acrys,B′(A), we see that the isomorphisms (180) for B and B′ are
compatible with MP (N ) → MP (N ′) and A (N+)

crys,B(A) → A (N+)

crys,B′(A). Hence we have
the following commutative diagram.

(A(N )
crys(OK ) ⊗OK MP (N−1) ⊗B Ω•

B)N
(189)

(Γ (ΔA, T (N ) ⊗A(N )
crys(A)

DR(N )

A crys
(B))N

(A(N )
crys(OK ) ⊗OK MP ′(N−1) ⊗B′ Ω•

B′)N
(189)

(Γ (ΔA, T (N ) ⊗A(N )
crys(A)

DR(N )

A crys
(B′))N

Combining the above diagrams and (187), and applying the functors (191), we obtain
the desired commutative diagram. �

Lemma 202 Under the notation and the assumption as above, the morphism

Acrys(OK )̂⊗OK MP ⊗B Ω•
B → Acrys(OK )̂⊗OK MP ′ ⊗B′ Ω•

B′

induced by (143) is a quasi-isomorphism.

Proof For each m ∈ N>0 the morphism MPm ⊗B Ω•
B → MP ′

m
⊗B′ Ω•

B′ is a quasi-
isomorphism because both sides compute RΓ ((Xm/(Σm, γ))crys,Fm). (See Sect. 5
for the definition of Fm .) We obtain the desired quasi-isomorphism by taking
Acrys(OK )⊗OK and then R lim←−m

. �

Theorem 203 The morphism (192)

Acrys(OK )̂⊗OK MP ⊗B Ω•
B −→ Acrys(OK )̂⊗Ainf (OK )Lη+

π RΓ (ΔA, T Ainf(M))

associated to B → A and si ∈ B× does not depend on the choice of si .

Proof Let s ′
1, . . . , s

′
e be another system of coordinates of B over OK . Put B′ :=

lim←−m
(B ⊗OK B)/pm . Then, by Proposition 201, the morphism (192) associated to

B → A and si (resp. s ′
i ) factors through themorphism (192) associated to the product

mapB′ → A and si ⊗ 1, 1 ⊗ s ′
i via themorphismλ (resp.λ′) Acrys(OK )̂⊗OK MP ⊗B

Ω•
B → Acrys(OK )̂⊗OK MP ′ ⊗B′ Ω•

B′ induced by B → B′; a �→ a ⊗ 1 (resp. 1 ⊗ a).
The product map B′ → B induces a GK -equivariant Acrys(OK )-linear morphism
μ : Acrys(OK )̂⊗Ainf (OK )MP ′ ⊗B′ Ω•

B′ → Acrys(OK )̂⊗Ainf (OK )MP ⊗B Ω•
B such that

μ ◦ λ and μ ◦ λ′ are both the identity map. Since λ and λ′ are quasi-isomorphisms
by Lemma 202, this implies that λ and λ′ coincide with each other in D(GK -Sets,
Acrys(OK )). �
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21 Comparison Theorem with de Rham Complex over
Acrys

Theorem 204 Let M be an object ofMF∇
[0,p−2],free(A, Φ). Then the morphism (192)

Acrys(OK )̂⊗OK MP ⊗B Ω•
B −→ Acrys(OK )̂⊗L

Ainf (OK )Lη+
π RΓ (ΔA, T Ainf(M))

is an isomorphism in D(GK -Sets, Acrys(OK )).

By applying Proposition 201 to A,B → lim←−m
(A ⊗OK B)/pm and using Lemma

202, Theorem 204 is immediately reduced to the special case B = A. In this case,
the image of (A(N )

crys(OK )̂⊗OK M ⊗A Ω•
A)N under the functor (191) is isomorphic

to Acrys(OK )̂⊗OK M ⊗A Ω•
A because A(N )

crys(OK )̂⊗OK M ⊗A Ω•
A are p-torsion free.

Hence, by the construction of (192), it suffices to prove that the N -component of the
composition of (188) and (189) for A and t1, . . . , td

A(N )
crys(OK )̂⊗OK M ⊗A Ω•

A −→ Lη+
π RΓ (ΔA, T A(N )

crys(M)) (196)

is an isomorphism in D+(GK -Sets, A(N )
crys(OK )) for every integer N ≥ 2.Wewill con-

struct a morphism (196) with ΔA and T A(N )
crys(M) replaced by ΓA and T A�,(N )

crys (M)

by using A �
crys(A) and A�,(N )

crys (A) instead of Acrys(A) and A(N )
crys(A). Then we will

prove that it is an isomorphism by comparing it with variants of (119) and Propo-
sition 123 for A(N )

crys(OK ) and T A�,(N )
crys (M), and obtain the desired isomorphism by

using Corollary 193 and Proposition 194.
Similarly to A (N )

crys,B(A), we define A �,(N )
crys (A) to be the p-adic completion of

⊕n∈Nd A�,(N )
crys (A)

∏

1≤i≤d v
[ni ]
i regarded as a subring of A �

crys(A). Then the claims

corresponding to Lemma 195 hold for A �,(N )
crys (A). We define the subcomplex

A �,(N )
crys,π Ω•

A ⊂ π−dA �
crys(A) ⊗A Ω•

A in the same way as A (N )
crys,πΩ

•
A(A) by using

A�,(N )
crys (A), A �

crys(A), and vi instead of A(N )
crys(A), Acrys,B(A), and ui . Then the

claims corresponding to Lemma 198 (1)–(5) hold for A �,(N )
crys,π Ω•

A. The natural

homomorphism A �
crys(A) → Acrys(A) (85) induces A �,(N )

crys (A) → A (N )
crys (A) and

A �,(N )
crys,π Ω•

A → A (N )
crys,πΩ

•
A(A).

We define A�,(N )
crys,m (A) (m ∈ N) to be A�,(N )

crys (A)/pm , and let A�,(N )
crys,• (A) denote the

ring object (A�,(N )
crys,m (A))m∈N of (˜ΓA-Sets)N

◦
. Let T A�,(N )

crys,• (M) denote the A�,(N )
crys,• (A)-

module (T A�,(N )
crys (M)/pm)m∈N on (˜ΓA-Sets)N

◦
. Then we have a resolution

T A�,(N )
crys,• (M) −→ T A�,(N )

crys,• (M) ⊗
A�,(N )
crys (A)

A �,(N )
crys,π Ω•

A (197)

in Mod((˜ΓA-Sets)N
◦
, A�,(N )

crys,• (A)). Applying the functor (see (109) and (110))

Lη+
π RΓ (ΓA,−) : D+((˜ΓA-Sets)N

◦
, A�,(N )

crys,• (A)) −→ D+(GK -Sets, A(N )
crys(OK ))
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and using A �,(N )
crys (A) ⊗A Ω•

A ⊂ η+
π A

�,(N )
crys,π Ω•

A, we obtain a morphism

Γ (ΓA, T A�,(N )
crys (M) ⊗

A�,(N )
crys (A)

A �,(N )
crys (A) ⊗A Ω•

A)

−→ Lη+
π RΓ (ΓA, T A�,(N )

crys (M)) (198)

in D+(GK -Sets, A(N )
crys(OK )). Assume N ≥ 2. Then, by Proposition 189 and (167)

(cf. Proposition196), there is a naturalGK -equivariantmorphism from A(N )
crys(OK )̂⊗OK

M ⊗A Ω•
A to the source of (198). Thus we obtain a morphism

A(N )
crys(OK )̂⊗OK M ⊗A Ω•

A −→ Lη+
π RΓ (ΓA, T A�,(N )

crys (M)) (199)

in D+(GK -Sets, A(N )
crys(OK )). Since the isomorphism (180) for B = A and (181)

are compatible with the natural homomorphisms T A�,(N+)
crys (M) → T A(N+)

crys (M) and

A �,(N+)
crys (A) → A (N+)

crys (A), the following diagram is commutative.

A(N )
crys(OK )̂⊗OK M ⊗A Ω•

A
(196)

(196)

Lη+
π RΓ (ΔA, T A(N )

crys(M))

Lη+
π RΓ (ΓA, T A�,(N )

crys (M)).

(200)

The right vertical morphism is an isomorphism by Corollary 193 and Proposition
194, and therefore, it suffices to prove the following.

Proposition 205 For any integer N ≥ 2, the morphism (199) is an isomorphism.

By Lemma 103, we may forget the action of GK in the following. By the same
argument as the proof of Lemma 117, we obtain an isomorphism in the derived
category of A(N )

crys(OK )-modules

RΓ (ΓA, T A�,(N )
crys (M)) ∼= K (T A�,(N )

crys (M); γ1 − 1, . . . , γd − 1). (201)

Since (γi − 1)(T A�,(N )
crys (M)) ⊂ πT A�,(N )

crys (M) by Lemma 98 and Proposition

168 (3), the degree q-part of the complex η+
π K (T A�,(N )

crys (M); γ1 − 1, . . . , γd − 1)

is given by πqT A�,(N )
crys (M) ⊗Z ∧q E , where E = ⊕1≤i≤dZei . By multiplying the

degree q-part by π−q , we obtain an isomorphism

η+
π K (T A�,(N )

crys (M); γ1 − 1, . . . , γd − 1) ∼= K (T A�,(N )
crys (M); γ1 − 1

π
, . . . ,

γd − 1

π
).

(202)
We will prove that the right-hand side of (202) is isomorphic to the de Rham

complex A(N )
crys(OK )̂⊗OK M ⊗A Ω•

A by an explicit computation (Proposition 209,
(207)) similarly to Proposition 123, and then verify that the composition of it with
the isomorphisms Lη+

π (201) and (202) gives (199).
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Put τi := 1 ⊗ ti − [t i ] ⊗ 1 ∈ A �
crys(A) for i ∈ N ∩ [1, d]. Then the A�

crys(A)-

algebra A �
crys(A) is the p-adic completion of the PD-polynomial ring over A�

crys(A)

with d-variables τi . We have

∇(τ [n]
i ) = τ [n−1]

i ⊗ dti (n ∈ N>0), (203)

γi (τ j ) = τ j if j 	= i, τi − π[t i ] if j = i. (204)

We have (1 + vi )
−1 − 1 = [t i ]−1τi , which implies vi = ∑

n≥1(−1)n[t i ]−nτ n
i ,

τi = [t i ]
∑

n≥1(−1)nvn
i , ∇(vi ) = (

∑

n≥1(−1)nn[t i ]−nτ n−1
i )∇(τi ), and ∇(τi ) =

([t i ]
∑

n≥1(−1)nnvn−1
i )∇(vi ). Using these formulae, we see that we obtain the same

algebras if we replace vi and ∇(vi ) = −(vi + 1)d log ti by τi and ∇(τi ) = dti in the
construction of A �,(N )

crys (A) and A �,(N )
crys,π Ω•

A. We use this alternative construction in
the following.

By combining the isomorphisms in Propositions 186 and 189 with N replaced
by N − 1, and taking the scalar extension byA �,((N−1)+)

crys (A) → A �,(N )
crys (A) (167),

we obtain A �,(N )
crys (A)-linear isomorphisms

δM : M ⊗A,ι A
�,(N )
crys (A)

∼=−−−−→
Prop. 189

T A�,(N )
crys (M) ⊗

A�,(N )
crys (A)

A �,(N )
crys (A)

∼=−−−−→
Prop. 186

M ⊗A,α A �,(N )
crys (A). (205)

The first isomorphism in (205) is ˜ΓA-equivariant, and the second one in (205) is
compatible with id ⊗ ∇. We see that the composition δM is induced by the inverse
of (95) by its construction. Therefore, by (96) and Remark 18, we have

δM(x ⊗ 1) =
∑

n∈Nd

∇n(x) ⊗ τ [n], δ−1
M (x ⊗ 1) =

∑

n∈Nd

∇n(x) ⊗ (−τ )[n] (206)

for x ∈ M , where τ n = ∏

1≤i≤d τ [ni ]
i , (−τ )[n] = ∏

1≤i≤d(−τi )
[ni ], and ∇n(x) =

∏

1≤i≤d ∇ni
i (x) for n = (ni ) ∈ N

d and x ∈ M . The endomorphisms ∇i (i ∈ N ∩
[1, d]) on M are defined by ∇(x) = ∑

1≤i≤d ∇i (x) ⊗ dti .

By Lemma 87 (2) and (164), we have an isomorphism A(N )
crys(OK )̂⊗OKA

∼=−→
A�,(N )
crys (A). Hence by Proposition 186 and (167), we see that the second isomor-

phism in (205) induces the following isomorphism. Note N ≥ 2.

T A�,(N )
crys (M) ∼= A(N )

crys(OK )̂⊗OK M. (207)

We define the integrable connection ∇ on A(N )
crys(OK )̂⊗OK M by id ⊗ ∇, and the

endomorphisms∇i (i ∈ N ∩ [1, d])on A(N )
crys(OK )̂⊗OK M by∇(x) = ∑

1≤i≤d ∇i (x) ⊗
dti . We equip A(N )

crys(OK )̂⊗OK M with the action of ˜ΓA obtained from that on T A�,(N )
crys

(M) via (207).
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Lemma 206 (cf. Propositions 120 (3), 121)For i ∈ N ∩ [1, d]and x∈A(N )
crys(OK )̂⊗OK

M, we have γi (x) = ∑

n∈N π[n]tni ∇n
i (x).

Proof Since the action of ΓA on A(N )
crys(OK )̂⊗OK M is A(N )

crys(OK )-linear, it suffices to
prove the claim when x ∈ M . We can verify it by using (205) and (206) as follows.
We abbreviate δM (205) to δ.

δγiδ
−1(x ⊗ 1) =

∑

n∈Nd

δγi (∇n(x) ⊗ (−τ )[n])

=δ(
∑

n∈Nd

∇n(x) ⊗ (−τ )[n−ni1i ](−τi + π[t i ])[ni ])

=
∑

m∈Nd

τ [m] ∑

n∈Nd

∇m+n(x) ⊗ (−τ )[n−ni1i ](−τi + π[t i ])[ni ]

=
∑

n∈N
∇n
i (x) ⊗ (π[t i ])[n] =

∑

n∈N
tni ∇n

i (x) ⊗ π[n].

The fourth equality follows from
∑

l=m+n τ [m]
i (−τi + π[t i ])[n] = (π[t i ])[l] and

∑

l=m+n τ [m]
j (−τ j )

[n] = 0 ( j 	= i) for l ∈ N>0. �

Lemma 207 We have π[n]π−1 ∈ I n−1W PD,(1)(ROK
) for n ∈ N>0, and it converges

to 0 as n → ∞ with respect to the p-adic topology of A(2)
crys(OK ).

Proof This follows from π p−1

p ∈ W PD,(1)(ROK
), 1

p (
π p−1

p )p ∈ W PD,(2)(ROK
) (Proposi-

tion 147), vp(n!) ≤ n−1
p−1 , and I rW PD,(1)(ROK

) = W PD,(1)(ROK
) ∩ πr · W (ROK

)[ 1p ].
�

By Lemma 207, we can define A(N )
crys(OK )-linear endomorphisms Fi (i ∈ N ∩

[1, d]) of A(N )
crys(OK )̂⊗OK M by

Fi (x) =
∑

n∈N>0

π[n]π−1tni ∇n−1
i (x). (208)

Lemma 208 (cf. Lemma 122)

(1) Fi is an isomorphism.
(2) We have Fi ◦ ∇i = π−1(γi − 1) on A(N )

crys(OK )̂⊗OK M.
(3) For i, j ∈ N ∩ [1, d] such that i 	= j , we have Fi Fj = Fj Fi , Fi∇ j = ∇ j Fi and

Fiγ j = γ j Fi .

Proof (1) By the proof of Lemma 160 (2), I 1W PD,(1)(ROK
)A(N )

crys(OK )/p is a nilpo-
tent ideal of A(N )

crys(OK )/p. As A(N )
crys(OK ) is p-adically complete and separated, it suf-

fices to prove the claimafter taking the reductionmod pA(N )
crys(OK ) + I 1W PD,(1)(ROK

)·
A(N )
crys(OK ). Then Fi becomes the multiplication by ti , which is an isomorphism

because ti ∈ A×.
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(2) This follows from Lemma 206.
(3) One can verify the first two equalities by explicit computation using∇i ◦ ∇ j =

∇ j ◦ ∇i and∇i ◦ t j id = t j id ◦ ∇i (i 	= j). The last one follows from the first two and
(2). �

For I = {i1 < · · · < iq} ⊂ N ∩ [1, d], we define dtI ∈ Ω
q
A and eI ∈ ∧q E to be

dti1 ∧ . . . ∧ dtiq and ei1 ∧ . . . ∧ eiq . Let FI denote the composition Fiq ◦ Fiq−1 ◦ · · · ◦
Fi1 , which is an A(N )

crys(OK )-linear automorphism of A(N )
crys(OK )̂⊗OK M . We define

the isomorphism Fq : A(N )
crys(OK )̂⊗OK M ⊗A Ω

q
A

∼=−→ A(N )
crys(OK )̂⊗OK M ⊗Z ∧q E by

Fq(x ⊗ dtI ) = FI (x) ⊗ eI for x ∈ A(N )
crys(OK )̂⊗OK M and I ⊂ N ∩ [1, d]

with �I = q.

Proposition 209 The isomorphisms Fq (q ∈ N) define an isomorphism of com-
plexes between the de Rham complex of A(N )

crys(OK )̂⊗OK M and the Koszul complex
of A(N )

crys(OK )̂⊗OK M with respect to π−1(γi − 1):

F : A(N )
crys(OK )̂⊗OK M ⊗A Ω•

A
∼=−→ K (A(N )

crys(OK )̂⊗OK M; γ1 − 1

π
, . . . ,

γd − 1

π
).

(209)

Proof For x ∈ A(N )
crys(OK )̂⊗OK M and I ⊂ N ∩ [1, d], we have

F ◦ ∇(xdtI ) = F(
∑

i∈I c ∇i (x)dti ∧ dtI ) = ∑

i∈I c FI∪{i} ◦ ∇i (x) ⊗ ei ∧ eI
d ◦ F(xdtI ) = d(FI (x)eI ) = ∑

i∈I c π−1(γi − 1) ◦ FI (x) ⊗ ei ∧ eI ,

where I c = (N ∩ [1, d])\I . Lemma 208 implies that these two elements coincide.
�

Now it remains to prove the following proposition.

Proposition 210 The isomorphism

Lη+
π RΓ (ΓA, T A�,(N )

crys (M)) ∼= A(N )
crys(OK )̂⊗OK M ⊗A Ω•

A

obtained from (201), (202), (207), and (209) coincides with the morphism (199).

We prove Proposition 210 in the rest of this section.
For a ΓA-module T , let Kγ(T ) denote the Koszul complex K (T ; γ1 − 1, . . . γd −

1). If the action of ΓA on T/πT is trivial, we define Kπ−1γ(T ) to be the Koszul com-
plex K (T ;π−1(γ1 − 1), . . . ,π−1(γd − 1)). To simplify the notation, we abbreviate
A�,(N )
crys (A) and A �,(N )

crys (A) to A�,(N )
crys and A �,(N )

crys , and put M�,(N )
Acrys

:=
A(N )
crys(OK )̂⊗OK M ,

TA �,(N )
crys,π Ω•

A(M) := T A�,(N )
crys (M) ⊗

A�,(N )
crys

A �,(N )
crys,π Ω•

A,

TA �,(N )
crys Ω•

A(M) := T A�,(N )
crys (M) ⊗

A�,(N )
crys

A �,(N )
crys ⊗A Ω•

A.



Crystalline Zp-Representations and Ainf -Representations with Frobenius 313

We have
π−qTA �,(N )

crys Ω
q
A(M) ⊂ TA �,(N )

crys,π Ω
q
A(M). (210)

We identify T A�,(N )
crys (M) with M�,(N )

Acrys
via the isomorphism (207).

Let
G(0) : M�,(N )

Acrys
⊗A Ω•

A −→ η+
π Kγ(TA

�,(N )
crys,π Ω•

A(M))

be the composition of

A(N )
crys(OK )̂⊗OK M ⊗A Ω•

A −→ Γ (ΓA, (A �,(N )
crys ⊗A M) ⊗A Ω•

A)

∼=−→ Γ (ΓA, TA �,(N )
crys Ω•

A(M)) −→ η+
π Γ (ΓA, TA �,(N )

crys,π Ω•
A(M))

↪→ η+
π Kγ(TA

�,(N )
crys,π Ω•

A(M)). (211)

Here the first morphism is induced by the structure homomorphism A(N )
crys(OK ) →

A �,(N )
crys and idM , and the second one is induced by the first isomorphism in (205).

Let
G(d) : Kπ−1γ(M

�,(N )
Acrys

) −→ η+
π Kγ(TA

�,(N )
crys,π Ω•

A(M))

be the compositionof the inverse of the isomorphism (202)with thequasi-isomorphism
η+

π Kγ(T A�,(N )
crys (M)) → η+

π Kγ(TA �,(N )
crys,π Ω•

A(M)). It suffices to show that G(d) ◦ F
and G(0) are homotopic for the isomorphism F in Proposition 209.

By replacing ∇i with π−1(γi − 1) one by one, we construct a decomposition of

F into the composition F(d−1) ◦ · · · ◦ F(0) of d isomorphisms F(r) : C•
(r)

∼=−→ C•
(r+1)

(r ∈ N ∩ [0, d − 1]) of complexes. Then we construct morphisms of complexes
G(r) : C•

(r) → η+
π Kγ(TA �,(N )

crys,π Ω•
A(M)) (r ∈ N ∩ [0, d]) such that G(0) and G(d)

are as above, and show that G(r+1) ◦ F(r) and G(r) are homotopic for each r ∈
N ∩ [0, d − 1].
Lemma 211 For i, j ∈ N ∩ [1, d] with i 	= j , ∇i and π−1(γ j − 1) on M�,(N )

Acrys
are

commutative.

Proof This follows from Lemma 206, ∇i ◦ ∇ j = ∇ j ◦ ∇i and ∇i ◦ t j id = t j id ◦ ∇i .
�

Let r ∈ N ∩ [0, d]. We first construct the complex C•
(r). For i ∈ N ∩ [1, d], we

define the endomorphism ∂(r)
i of M�,(N )

Acrys
to be π−1(γi − 1) if i ∈ [1, r ] and ∇i if

i ∈ [r + 1, d]. For i ∈ N ∩ [1, d], we define ω(r)
i to be ei ∈ E if i ∈ [1, r ], and dti ∈

ΩA if i ∈ [r + 1, d]. Let E(r) be the free Z-module ⊕i∈N∩[1,d]Zω(r)
i . For I = {i1 <

· · · < iq} ⊂ N ∩ [1, d], let ω(r)
I denote the element ω(r)

i1
∧ . . . ∧ ω(r)

iq
of ∧q E(r).

We put Cq
(r) := M�,(N )

Acrys
⊗Z ∧q E(r) (q ∈ N) and define the homomorphism

dq
(r) : Cq

(r) → Cq+1
(r) by dq

(r)(x ⊗ ωI ) = ∑

1≤i≤d ∂(r)
i (x) ⊗ ω(r)

i ∧ ω(r)
I for x ∈ M�,(N )

Acrys

and I ⊂ N ∩ [1, d] with �I = q. By Lemma 211, ∂(r)
i (i ∈ N ∩ [1, d]) are mutually
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commutative, and therefore dq+1
(r) ◦ dq

(r) = 0 for every q ∈ N. The complex C•
(0) is

identifiedwithM�,(N )
Acrys

⊗A Ω•
A via the canonical isomorphismsΩ

q
A ∼= A ⊗Z ∧q E (0)

(q ∈ N), and we have C•
(d) = Kπ−1γ(M

�,(N )
Acrys

).

Let r ∈ N ∩ [0, d − 1]. For q ∈ N, we define the isomorphism Fq
(r) : Cq

(r)

∼=−→ Cq+1
(r)

by Fq
(r)(x ⊗ ω(r)

I ) = x ⊗ ω(r+1)
I if r + 1 /∈ I , Fr+1(x) ⊗ ω(r+1)

I if r + 1 ∈ I for x ∈
M�,(N )

Acrys
and I ⊂ N ∩ [1, d] with �I = q. See (208) for the definition of Fr+1. We

have Fr+1 ◦ ∂(r)
i = ∂(r+1)

i ◦ Fr+1 for i 	= r + 1 and ∂(r+1)
r+1 = Fr+1 ◦ ∂(r)

r+1 by Lemma
208 (2) and (3). This shows that Fq

(r) (q ∈ N) define an isomorphism of complexes

F(r) : C•
(r)

∼=−→ C•
(r+1). It is obvious that the composition F(d−1) ◦ · · · ◦ F(0) coincides

with the isomorphism F : C•
(0)

∼=−→ C•
(d) (209).

Let r ∈ N ∩ [0, d]. Let us construct a morphism of complexes G(r) : C•
(r) →

η+
π Kγ(TA �,(N )

crys,π Ω•
A(M)). We first define an A(N )

crys(OK )-linear homomorphism

Gr : M�,(N )
Acrys

−→ A �,(N )
crys ⊗

A�,(N )
crys

M�,(N )
Acrys

= A �,(N )
crys ⊗

A�,(N )
crys

T A�,(N )
crys (M)

by
Gr (x) =

∑

n∈{0}r×Nd−r

τ [n] ⊗ ∇n(x), x ∈ M�,(N )
Acrys

.

Lemma 212 (1) For i ∈ N ∩ [1, r ], we have (γi − 1) ◦ Gr = Gr ◦ (γi − 1).
(2) For i ∈ N ∩ [r + 1, d], we have (∇i ⊗ id) ◦ Gr = Gr ◦ ∇i .
(3) For j ∈ N ∩ [r + 1, d], we have (γ j − 1) ◦ Gr = 0.
(4) For j ∈ N ∩ [1, r ], we have (∇ j ⊗ id) ◦ Gr = 0.

Proof We can verify the claim by using Lemma 206, (203), (204), and the equalities
∇i ◦ ∇ j = ∇i ◦ ∇i and ∇i ◦ t j id = t j id ◦ ∇i (i 	= j) on M�,(N )

Acrys
as follows. Let Λr

denote {0}r × N
d−r . The last equality for γ j ◦ Gr (x) follows from

∑

l=n+m(τ j −
π[t j ])[n](π[t j ])[m] = τ [l]

j for l ∈ N.

γi ◦ Gr (x) =
∑

n∈Λr

τ [n] ⊗
(

∑

n∈N
π[n]tni ∇n

i (∇n(x))

)

=
∑

n∈Λr

τ [n] ⊗ ∇n

(

∑

n∈N
π[n]tni ∇n

i (x)

)

= Gr ◦ γi (x),

(∇i ⊗ id) ◦ Gr (x) =
∑

n∈Λr ,n≥1i

τ [n−1i ] ⊗ ∇n(x)

=
∑

n∈Λr

τ [n] ⊗ ∇n(∇i (x)) = Gr ◦ ∇i (x),
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γ j ◦ Gr (x) =
∑

n∈Λr

τ [n−n j1](τ j − π[t j ])[n j ] ⊗
(

∑

m∈N
π[m]tmj ∇m

j (∇n(x)

)

=
∑

n∈Λr

∑

m∈N
τ [n−n j1](τ j − π[t j ])[n j ](π[t j ])[m] ⊗ (∇n j+m

j (∇n−n j1(x))

=
∑

n∈Λr

τ [n] ⊗ ∇n(x) = Gr (x),

(∇ j ⊗ id) ◦ Gr (x) = (∇ j ⊗ id)

⎛

⎝

∑

n∈Λr

τ [n] ⊗ ∇n(x)

⎞

⎠ = 0.
�

We define the homomorphism Gq
(r) : Cq

(r) → Kq
γ (TA �,(N )

crys,π Ω•
A(M)) by

Gq
(r)(x ⊗ ω(r)

I ) = π�(I∩[1,r ])Gr (x) ⊗ ω(r)
I

for x ∈ M�,(N )
Acrys

and I ⊂ N ∩ [1, d] with �I = q. By using Lemma 212, we see that
this defines a morphism of complexes

G(r) : C•
(r) −→ Kγ(TA

�,(N )
crys,π Ω•

A(M)). (212)

For x and I as above, the image of x ⊗ ω(r)
I under the homomorphism Gq

(r) is

contained πq2TA �,(N )
crys Ω

q1
A (M) ⊗Z ∧q2E ⊂ πqTA �,(N )

crys,π Ω
q1
A (M) ⊗Z ∧q2E, where

q1 = �(I ∩ [r + 1, d]) and q2 = �(I ∩ [1, r ]). Hence the morphism of complexes
G(r) (212) factors through the subcomplex η+

π Kγ(TA �,(N )
crys,π Ω•

A(M)). By the con-
struction of (207) and (202), and the description of δM in (206), we see that G(0) and
G(d) coincide with the homomorphisms defined before Lemma 211.

It remains to construct a homotopy between G(r+1) ◦ F(r) and G(r) for r ∈ N ∩
[0, d − 1]. We use the “integration homomorphism” with respect to the variable τr+1

defined as follows.

Ir+1 : A �,(N )
crys ⊗

A�,(N )
crys

T A�,(N )
crys (M) −→ A �,(N )

crys ⊗
A�,(N )
crys

T A�,(N )
crys (M),

∑

n∈Nd τ [n] ⊗ xn �−→ ∑

n∈Nd τ [n+1r+1] ⊗ xn.

Lemma 213 (1) We have Ir+1 ◦ Gr ◦ ∇r+1 = Gr − Gr+1.
(2) For i ∈ N ∩ [1, d], we have

(∇i ⊗ id) ◦ Ir+1 ◦ Gr =

⎧

⎪

⎨

⎪

⎩

0 if i ∈ [1, r ],
Gr if i = r + 1,

Ir+1 ◦ Gr ◦ ∇i if i ∈ [r + 2, d].

(3) For i ∈ N ∩ [1, d], we have
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(γi − 1) ◦ Ir+1 ◦ Gr =

⎧

⎪

⎨

⎪

⎩

Ir+1 ◦ Gr ◦ (γi − 1) if i ∈ [1, r ],
−πGr+1 ◦ Fr+1 if i = r + 1,

0 if i ∈ [r + 2, d].

Proof (1) For x ∈ M�,(N )
Acrys

, we have

Ir+1 ◦ Gr ◦ ∇r+1(x) =Ir+1

⎛

⎝

∑

n∈{0}r×Nd−r

τ [n] ⊗ ∇n+1r+1(x)

⎞

⎠

=
∑

m∈{0}r×Nd−r ,m≥1r+1

τ [m] ⊗ ∇m(x) = Gr (x) − Gr+1(x).

(2) For i ∈ N ∩ [1, d], we see that (∇i ⊗ id) ◦ Ir+1 = Ir+1 ◦ (∇i ⊗ id) if i 	= r +
1 and (∇i ⊗ id) ◦ Ir+1 = id if i = r + 1 by using (203). Hence the claim follows
from Lemma 212 (2) and (4).

(3) For i ∈ N ∩ [1, d] different from r + 1 and x = ∑

n∈Nd τ [n] ⊗ xn ∈
A �,(N )

crys ⊗
A�,(N )
crys

T A�,(N )
crys (M) (xn ∈ T A�,(N )

crys (M)), we have

Ir+1 ◦ γi (x) = γi ◦ Ir+1(x) =
∑

n∈Nd

τ [n+1r+1−ni1i ](τi − π[t i ])[ni ] ⊗ γi (xn)

by (204). Hence the equality for i 	= r + 1 follows from Lemma 212 (1) and (3). The
equality for i = r + 1 is verified as follows. Let x ∈ M�,(N )

Acrys
. For s ∈ {r, r + 1}, put

Λs := {0}s × N
d−s .

γr+1 ◦ Ir+1 ◦ Gr (x)

= γr+1

⎛

⎝

∑

n∈Λr

τ [n+1r+1] ⊗ ∇n(x)

⎞

⎠

=
∑

n∈Λr

τ [n−nr+11r+1](τr+1 − π[tr+1])[nr+1+1] ⊗
(

∑

n∈N
π[n]tnr+1∇n

r+1(∇n(x))

)

=
∑

l∈Λr+1

τ [l]
⎛

⎝

∑

(m,n)∈N2

(τr+1 − π[tr+1])[m+1](π[tr+1])[n] ⊗ ∇m+n
r+1 (∇l(x))

⎞

⎠

=
∑

l∈Λr+1

τ [l] ∑

l∈N
(τ [l+1]

r+1 − (π[tr+1])[l+1]) ⊗ ∇l
r+1(∇l(x))

= Ir+1 ◦ Gr (x) −
∑

l∈Λr+1

τ [l] ⊗ ∇l

(

∑

l∈N
π[l+1]t l+1

r+1∇l
r+1(x)

)
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=Ir+1 ◦ Gr (x) − πGr+1 ◦ Fr+1(x).
�

Wedefine the homomorphism kq(r) : Cq
(r) → Kq−1

γ (TA �,(N )
crys,π Ω•

A(M)) forq ∈ N>0

by

kq(r)(x ⊗ ω(r)
I ) =

{

0 if r + 1 /∈ I,

εI,r+1π
�(I∩[1,r ]) Ir+1 ◦ Gr (x) ⊗ ω(r)

I\{r+1} if r + 1 ∈ I,

where εI,r+1 ∈ {±1} is defined by ω(r)
I = εI,r+1dtr+1 ∧ ω(r)

I\{r+1}. We set k0(r) = 0.
The proof of Proposition 210 is completed by the following lemma.

Lemma 214 (1) For q ∈ N, we have dq−1 ◦ kq(r) + kq+1
(r) ◦ dq

(r) = Gq
(r) −

Gq
(r+1) ◦ Fq

(r).
(2) For q ∈ N>0, the image of kq(r) is contained in the degree (q − 1)-part of

η+
π Kγ(TA �,(N )

crys,π Ω•
A(M)).

Proof (1) We prove the equality for the images of x ⊗ ω(r)
I for x ∈ M�,(N )

Acrys
and

I ⊂ N ∩ [1, d] with �I = q. In the case r + 1 /∈ I , we have

(dq−1 ◦ kq(r) + kq+1
(r) ◦ dq

(r))(x ⊗ ω(r)
I ) = kq+1

(r)

⎛

⎝

∑

i∈N∩[1,d]
∂(r)
i (x) ⊗ ω(r)

i ∧ ω(r)
I

⎞

⎠

= π�(I∩[1,r ]) Ir+1 ◦ Gr ◦ ∇r+1(x) ⊗ ω(r)
I .

The last term equals to (Gq
(r) − Gq

(r+1) ◦ Fq
(r))(x ⊗ ω(r)

I ) by Lemma 213 (1). Suppose

that r + 1 ∈ I . Put J = \{r + 1} and y = εI,r+1x . Then we have x ⊗ ω(r)
I = y ⊗

(ω(r)
r+1 ∧ ω(r)

J ). Its image under kq(r) is π�(J∩[1,r ]) Ir+1 ◦ Gr (y) ⊗ ω(r)
J by definition. Put

J c = N ∩ [1, d]\J , J c
0 := J c ∪ (N ∩ [1, r ]), and J c

1 := J c ∪ (N ∩ [r + 1, d]). By
Lemma 213 (2) and (3), we obtain

dq−1 ◦ kq(r)(x ⊗ ω(r)
I )

= π�(J∩[1,r ])
{

∑

i∈J c0

(∇i ⊗ id) ◦ Ir+1 ◦ Gr (y) ⊗ (dti ∧ ω(r)
J )

+
∑

i∈J c1

(γi − 1) ◦ Ir+1 ◦ Gr (y) ⊗ (ei ∧ ω(r)
J )

}

= π�(J∩[1,r ])
{

Gr (y) ⊗ (dtr+1 ∧ ω(r)
J )

+
∑

i∈J c∩[r+2,d]
Ir+1 ◦ Gr ◦ ∇i (y) ⊗ (dti ∧ ω(r)

J )
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+ π
∑

i∈J c∩[1,r ]
Ir+1 ◦ Gr ◦ π−1(γi − 1)(y) ⊗ (ei ∧ ω(r)

J )

− πGr+1 ◦ Fr+1(y) ⊗ (er+1 ∧ ω(r)
J )

}

.

On the other hand, we have

kq+1
(r) ◦ dq

(r)(x ⊗ ω(r)
I )

= kq+1
(r)

⎛

⎝

∑

i∈J c\{r+1}
∂(r)
i (y) ⊗ (ω(r)

i ∧ ω(r)
r+1 ∧ ω(r)

J )

⎞

⎠

= −
∑

i∈J c∩[1,r ]
π�(J∩[1,r ])+1 Ir+1 ◦ Gr ◦ π−1(γi − 1)(y) ⊗ (ei ∧ ω(r)

J )

−
∑

i∈J c∩[r+2,d]
π�(J∩[1,r ]) Ir+1 ◦ Gr ◦ ∇i (y) ⊗ (dti ∧ ω(r)

J ).

By taking the sum of the two, we obtain

(dq−1 ◦ kq(r) + kq+1
(r) ◦ dq

(r))(x ⊗ ω(r)
I )

= π�(J∩[1,r ]){Gr (y) ⊗ (ω(r)
r+1 ∧ ω(r)

J ) − πGr+1 ◦ Fr+1(y) ⊗ (ω(r+1)
r+1 ∧ ω(r+1)

J )}
= Gq

(r)(y ⊗ (ω(r)
r+1 ∧ ω(r)

J )) − Gq
(r+1)(Fr+1(y) ⊗ (ω(r+1)

r+1 ∧ ω(r+1)
J ))

= (Gq
(r) − Gq

(r+1) ◦ Fq
(r))(x ⊗ ω(r)

I ).

(2) Let x ⊗ ω(r)
I be the same as above. If r + 1 /∈ I , we have kq(r)(x ⊗ ω(r)

I ) = 0.

Suppose that r + 1 ∈ I . Under the notation in the proof of (1), we have ω(r)
J ∈

Ω
�(J∩[r+1,d])
A ⊗Z ∧�(J∩[1,r ])E . By the computation of z := kq(r)(x ⊗ ω(r)

I ) and dq−1(z)

above and (210), we obtain z ∈ πq−1Kq−1
γ (TA �,(N )

crys,π Ω•
A(M)) and dq−1(z) ∈

πq K q
γ (TA �,(N )

crys,π Ω•
A(M)). �
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