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Abstract. Classification of document images is a critical step for accel-
erating archival of old manuscripts, online subscription and administra-
tive procedures. Computer vision and deep learning have been suggested
as a first solution to classify documents based on their visual appearance.
However, achieving the fine-grained classification that is required in real-
world setting cannot be achieved by visual analysis alone. Often, the rele-
vant information is in the actual text content of the document, although
this text is not available in digital form. In this work, we introduce a
novel pipeline based on off-the-shelf architectures to deal with document
classification by taking into account both text and visual information. We
design a multimodal neural network that is able to learn both the image
and from word embeddings, computed on noisy text extracted by OCR.
We show that this approach allows us to improve single-modality classi-
fication accuracy by several points on the small Tobacco3482 and large
RVL-CDIP datasets, even without clean text information. We release
a post-OCR text classification (https://github.com/Quicksign/ocrized-
text-dataset) that complements the Tobacco3482 and RVL-CDIP ones to
encourage researchers to look into multi-modal text/image classification.

Keywords: Document classification · Text classification · Multimodal
learning

1 Introduction

The ubiquity of computers and smartphones has incentivized governments and
companies alike to digitize most of their processes. Onboarding new clients, pay-
ing taxes and proving one’s identity is more and more done through a computer,
as the rise of online banking has shown in the last few years. Industrial and pub-
lic archives are also ongoing serious efforts to digitize their content in an effort
for preservation, e.g. for old manuscripts, maps and documents with a historical
value. This means that previously physical records, such as forms and iden-
tity documents, are now digitized and transferred electronically. In some cases,
those records are produced and consumed by fully automated systems that rely
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Fig. 1. Multimodal classifier for hybrid text/image classification. Training is performed
end-to-end on both textual and visual features.

on machine-readable formats, such as XML or PDF with text layers. However,
most of these digital copies are generated by end-users using whatever mean
they have access to, i.e. scanners and cameras, especially from smartphones.
For this reason, human operators have remained needed to proofread the doc-
uments, extract selected fields, check the records’ consistency and ensure that
the appropriate files have been submitted. Automation through expert systems
and machine learning can help accelerate this process to assist and alleviate the
burden of this fastidious work for human workers.

A common task involved in data filing processes is document recognition, on
which depends the class-specific rules that command each file. For example, a
user might be asked to upload several documents such as a filled subscription
form, an ID and a proof-of-residence. In this work, we tackle the document
classification task to check that all required files have been sent so that they are
filed accordingly.

Yet, if discriminating between broad classes of documents can be achieved
based on their appearance only (e.g. separating passports from banking infor-
mation), fine-grained recognition often depends on the textual content of the
documents. For example, different tax forms might share their layout, logos and
templates while the content in itself vastly differs. Computer vision has been
interested for some time in optical character recognition (OCR) to extract text
from images. However, dealing with both the textual and visual contents remains
an open problem. In the past years, deep learning has been established as the
new state-of-the-art for image classification and natural language processing. For
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(a) Questionnaire (b) Memo (c) Email (d) Presentation

Fig. 2. Document samples from the RVL-CDIP [11] dataset with corresponding text
extracted by Tesseract OCR.

fine-grained document recognition, we expect the model to leverage both image
and text information.

This work introduces a multimodal deep network that learns from both a
document image and its textual content automatically extracted by OCR to
perform its classification. We design a pragmatic pipeline for end-to-end hetero-
geneous feature extraction and fusion under time and cost constraints. We show
that taking both the text and the document appearance into account improves
both single modality baselines by several percents on two datasets from the doc-
ument recognition literature. We detail some limitations of the current academic
datasets and give leads for an application in an industrial setting with unclean
data, such as photographed documents.

2 Related Work

Analyzing digitized documents is an old task in computer vision that was boosted
by the dissemination of computers in offices and then of digital cameras and
smartphones in everyday life. To allow for textual search and easy indexing, the
critical part of digitization is extracting text content from documents that have
been scanned or photographed. Indeed, either when scanning or taking a picture
of the document, its actual text is lost, although it is implicitly embedded in the
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pixel values of the image. Numerous optical character recognition (OCR) algo-
rithms have been designed to transform images into strings of characters [17,37].
Despite those efforts perfectly reading any type of document remains challeng-
ing due to the wide variety of fonts and languages. Layout analysis is a way to
preprocess the data to detect text areas and find the text orientation in order
to enforce a better local and global consistency [15,20].

Document image analysis is also one of the first topic where modern deep
learning has been applied. The first convolutional neural network (CNN) [21] was
originally designed for classification of digits and letters. The computer vision
community deployed consequent efforts to achieve image-based document classi-
fication without text, as shown by a 2007 survey [7] which focuses on document
image classification without OCR results. As an example, [19] introduced SURF
visual features with a bag-of-words scheme to perform document image classi-
fication and retrieval. In 2015, [11] introduced a large labeled image document
dataset which sparked interest and generated several studies of deep CNN on this
topic [1,9,36], inspired by the success of these networks on ImageNet and tuning
data augmentation policies, transfer learning strategies and domain adaptation
for document classification. In the same idea, [35] also investigated such deep
architectures to classify identity documents. [2] goes even further by trying to
segment the full layout of a document image into paragraphs, titles, ornaments,
images etc. These models focus on extracting strong visual features from the
images to classify the documents based on their layout, geometry, colors and
shape.

On the other hand, text-based document classification has also long been
investigated. In 1963, [6] introduced an algorithmic approach to classify scien-
tific abstracts. More recently, [23] experimented with one-class SVM for docu-
ment classification based on various text features, such as TF-IDF. [33] used
Latent Dirichlet Allocation to perform topic modeling and used it as a genera-
tive approach to document classification. The recent appearance of learned word
embeddings approaches such as word2vec [24] or ELMo [30] paved to way to
a large body of works related to recurrent and attention mechanisms for text
classification. For example, [39] proposed a bidirectional recurrent network with
a hierarchical attention mechanism that learns both at the word and sentence
levels to improve document classification.

Some works tried to reconcile the text-based and image-based approaches
to exploit both information sources. [26] performs OCR to detect keywords in
images which are then encoded as colored boxes before passing the image through
a CNN. While a clever trick, this does not leverage the representation power of
word embeddings. Closer to our approach, [38] goes further by generating text
feature maps that are combined with visual feature maps in a fully convolutional
network. However, the considered documents are synthetic and the network is
trained using perfectly clean texts and images, which is unrealistic for practical
uses. More similar to us, [4] learns to combine bag of words and bag of visual
words features for industrial document images using a statistical model combin-
ing outputs of two single-modality classifiers. While using shallow features, they
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show that using both information allows for a better accuracy when the OCR is
unreliable, which is often the case in an industrial setting.

(a) Residual block (b) Inverted residual block

Fig. 3. MobileNetV2 uses inverted residual blocks to reduce the number of channels
that are forwarded in subsequent layers. Figure from [34].

In this paper, we go further in this direction and propose a new baseline
with a hybrid deep model. In order to classify OCRized document images, we
present a pragmatic pipeline perform visual and textual feature extraction using
off-the-shelf architectures. To leverage the complementary information present
in both modalities, we design an efficient end-to-end network that jointly learn
from text and image while keeping computation cost at its minimum. We build
on existing deep models (MobileNet and FastText) and demonstrate significant
improvements using our fusion strategy on two document images dataset.

3 Learning on Text and Image

3.1 Visual Features

There is a large literature both in general image recognition and in image doc-
ument classification. Recent works have established deep convolutional neural
networks as the de facto state of the art on many competitions in object recog-
nition, detection and segmentation, e.g. ImageNet. Deep features, extracted by
pretrained or fine-tuned deep CNNs, constitute a strong baseline for visual recog-
nition tasks [32]. Based on this, we choose to fine-tune a CNN pretrained on
ImageNet in order to extract visual features on our images, as suggested in sev-
eral recent document classification publications [1,11,36]. As we aim to perform
inference on a large volume of data with time and cost constraints, we focus on a
lightweight architecture with competitive classification performance, in our case
the MobileNet v2 model [34].

MobileNetV2 [34] consists in a stack of bottleneck blocks. Based on the resid-
ual learning principle [13], each bottleneck block transforms a feature map first
by expanding it by increasing its number of channels with a 1 × 1 convolu-
tional layer with identity activation. Then, a 3 × 3 depthwise convolution is
performed, followed by a ReLU and a final 1 × 1 convolution with ReLU. For
efficiency issues, this block inverts the traditional residual block since the expan-
sion is performed inside the block, whereas residual blocks compress and then
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reexpand the information, as illustrated in Fig. 3. The final MobileNetV2 con-
tains 19 residual bottleneck layers. Compared to other state of the art CNNs,
MobileNetV2’s accuracy is on-par with VGG-16 while being significantly faster.

3.2 Textual Features

Since our use case focuses on document images in which the text has not been
transcribed, we need to perform an OCR step. To this end, we use the Tesseract
OCR engine [17] in its 4.0 version which is based on an LSTM network. Tesseract
is configured in English to use full page segmentation and the LSTM engine. In
practice, this means that Tesseract will try to detect the text orientation in
the image and perform the needed affine transformation and rotation if any.
Tesseract also deals with the image binarization using Otsu’s thresholding to
identify black text on white background [27]. This will suffice on the datasets
described in Sect. 4.1, although we found Tesseract challenging to apply on real-
world images, especially pictures which are not flat and grayscale scans.

(a) Document distribution w.r.t of
non-dictionary words % in the
Tobacco3482-Tesseract corpus. (b) Word embeddings similarity for misspelled words.

Fig. 4. Tesseract OCR outputs noisy text that does not entirely overlap with the
assumptions usually held when training word embeddings for NLP.

Recent literature in NLP suggests that pretrained word embeddings offer
a strong baseline which surpasses traditional shallow learning approaches.
Many word embeddings have been designed following the initial success of
word2vec [24], such as GloVe [29] or more recently the contextualized word
embeddings from ELMo [30].

However, those word embeddings assume a good tokenization of the words,
i.e. most embeddings remove digits, ignore punctuation and do not deal with
out-of-vocabulary (OOV) words. Since these embeddings are learned on clean
corpus (e.g. Wikipedia or novels), tokenization is fairly straightforward. OOV
words are either assigned a random embedding or mapped to the closest in-
vocabulary word based on the Levenshtein distance.

Unfortunately, outputs of the Tesseract OCR are noisy and not as clean
as the training data from these embeddings. Even in grayscale, well-oriented
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documents, OCR might have trouble dealing with diacritics, exotic fonts or
curved text, as illustrated by the extracts from Fig. 2. Moreover, specific user
domains (e.g. banking or medieval manuscripts) might use rare words, codes,
abbreviations or overall jargon that is absent from general-purpose word embed-
dings. Since we face many possible misspellings in the extracted text, we can-
not use the previous workarounds for OOV embeddings since it would inject a
lot of non-discriminant features in our text representation In average, on the
Tobacco3482 corpus, a document processed by Tesseract OCR contains 136
words with 4 characters or more. Of those, only 118 in average are in the GloVe
embeddings [29]1 and only 114 are in Enchant’s spellchecker US English dictio-
nary. Overall, approximately 26% of the corpus is absent from the US English
dictionary and 23% from the GloVe embeddings. The document distribution
with respect to the proportion of out-of-vocabulary words is shown in Fig. 4a.
Although most of the documents are concentrated around 10% of OOVs, there
is a significant long tail including several dozens of documents that contain only
words outside of the English language.

Therefore, we turn to character-based word embeddings that are able to deal
with OOV words by assigning them plausible word vectors that preserve both
a semantic and a spelling similarity. One possibility was to use the mimicking
networks from [31] that learn to infer word embeddings such as GloVe, but based
only on subword information. More complex embeddings such as FastText [5,16]
and ELMo [30], which produce vectors using respectively n-grams and subword
information, can also address this problem. Finally, the Magnitude library [28]
uses two alternative strategies to deal with OOV words:

– Assigning a deterministic random vector. These vectors do not capture
semantic sense, however similar words based on the Levenshtein-Damerau
distance will have similar vectors. Misspellings will therefore not be close to
the original word, but similar lingo words will be close.

– Using character n-grams inspired by [5] and interpolation with in-vocabulary
words, Magnitude can generate vectors for OOV words which are sensible
based on existing learned embedding.

Preliminary data exploration shows that subword-aware embeddings perform
better at preserving similarity despite misspellings, as illustrated in Fig. 4b. We
therefore focus our interest on the FastText embedding, which is faster than
ELMo since the latter requires passing the context through a bidirectionnal
LSTM during inference. It is worth noting that this raises concern for characters
that have not been seen by FastText. We found experimentally that Tesseract
OCR generated no character that was OOV for FastText on the documents we
considered.

Finally, it is necessary to convert those word embeddings into a document
embedding. We consider two approaches:

– The simple baseline for sentence embedding suggested in [3], which consists
in a weighted average of word embeddings altered by PCA.

1 Based on the Wikipedia 2014 + Gigaword 5 datasets.
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– Using variable-length document embeddings consisting in a sequence of word
embeddings.

The first approach is suitable as generic feature while the second requires a
statistical model able to deal with sequences, such as recurrent or convolutional
neural networks. For both methods, we use the SpaCy small English model [14] to
perform the tokenization and punctuation removal. Individual word embeddings
are then inferred using FastText [5] pretrained on the Common Crawl dataset.

3.3 Multimodal Features

Once text and image features have been extracted, we feed them to a multi-layer
perceptron following [10]. To do so, we need to combine both feature vectors into
one. Two approaches can be envisioned:

– Adaptive averaging of both feature vectors. This aligns both feature spaces
so that scalars at the same index become compatible by summation, i.e. that
each dimension of the vectors have a similar semantic meaning.

– Concatenating both vectors. This does not imply that both feature spaces
can be aligned and delegates to the fusion MLP the task of combining the
two domains.

Both fusion strategies are differentiable, therefore the whole network can
be trained in an end-to-end fashion. Moreover, the model is modular and each
feature extractor can be swapped for another model, e.g. MobileNet can be
exchanged with any other popular CNN and FastText could be replaced by
subword-level NLP models, even differentiable ones that could allow fine-tuning
the embeddings. In this work, we try to keep things simple and build on robust
base networks in order to clearly understand how the data fusion impacts model
performance. Preliminary experiments showed that the summation fusion signif-
icantly underperformed compared to pure image baseline. We suggest that this is
provoked by the impossibility of aligning the text and image feature spaces with-
out breaking their discriminating power, resulting in suboptimal space. There-
fore, we move on with the concatenation strategy for the rest of this paper. The
complete pipeline is illustrated in Fig. 1.

4 Experimental Setup

4.1 Datasets

Tobacco3482. The Tobacco3482 dataset [19] contains 3482 black and white
documents, a subset from the Truth Tobacco Industry Documents2 archives of
legal proceedings against large American tobacco companies. There are annota-
tions for 10 classes of documents (e.g. email, letter, memo. . . ). Following common
practices, we perform k-fold cross-validation using 800 documents for training
and the rest for testing. Results are averaged over 3 runs.
2 https://www.industrydocuments.ucsf.edu/tobacco/.

https://www.industrydocuments.ucsf.edu/tobacco/
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Table 1. Preliminary tuning of the single-modality baselines on Tobacco3482.

(a) Preliminary experiments on Tobacco3482 for
the text baseline.

Model OA F1

MLP (document) 70.8% 0.69
CNN 1D (word sequence) 73.9% 0.71

OA = overall accuracy,F1 = class-balancedF1 score.

(b) Preliminary experiments on Tobacco3482 for
the image baseline.

Model OA F1

MobileNetV2 84.5% 0.82
MobileNetV2 (w/ DA) 83.9% 0.82

OA = overall accuracy,F1 = class-balancedF1 score, DA = data augmentation.

RVL-CDIP. The RVL-CDIP dataset [11] is comprised of 400 000 grayscale
digitized documents from the Truth Tobacco Industry Documents. There are
annotations for 16 classes of documents (e.g. email, letter, invoice, scientific
report. . . ), each containing 25 000 samples. We use the standard train/val/test
split from [11] with 320 000 documents for training, 40 000 for validation and
40 000 for testing.

Text Generation. The Tobacco3482 and RVL-CDIP are image-based datasets.
In order to evaluate our multi-modal networks, we wish to learn from both visual
and textual content. Therefore we use the Tesseract OCR library3 to extract
text from the grayscales images. We perform this operation on both datasets.
We release the OCR text dataset openly4 to encourage other researchers to
replicate our work or test their own model for post-OCR text classification or
multi-modal text/image classification.

4.2 Models

This subsection describes the implementation details of our deep networks. All
models are implemented in TensorFlow 1.12 using the Keras API and trained
using a NVIDIA Titan X GPU. Hyperparameters were manually selected on a
subset of Tobacco3482 and fixed for all experiments.

Text Baseline. Seeing that our representation of textual data can be either a
document embedding or a sequence of word embeddings, we compare two models
for our text baseline.

The first model is an improved Multi-Layer Perceptron (MLP) with ReLU
activations, Dropout and Batch Normalization (BN) after each layer. The net-
work has a fixed width of 2048 neurons for all layers except the last one, which
produces a 128 feature vector, classified by a softmax layer. Weights are randomly
initialized using He’s initialization [12]. The averaged document embedding [3]
is used as an input for this classifier.
3 https://github.com/tesseract-ocr/tesseract/.
4 The QS-OCR dataset is available at: https://github.com/Quicksign/ocrized-text-

dataset.

https://github.com/tesseract-ocr/tesseract/
https://github.com/Quicksign/ocrized-text-dataset
https://github.com/Quicksign/ocrized-text-dataset
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The second model is a one-dimensional convolutional neural network designed
inspired by previous work for sentence classification [18]. The CNN is 4-layers
deep and interlaces 1D convolutions with a window of size 12 with maxpooling
with a stride of 2. Each layer consists in 512 channels with ReLU activation.
The final feature map is processed by a max-pooling-through-time layer that
extracts maximal features on the sequence on top of which we apply Dropout
for regularization. A fully connected layer then maps the features to the softmax
classifier. The input word sequence is zero-padded up to 500 words for documents
with less 500 words.

We experiment on the Tobacco3482 dataset in order to evaluate which text
model to choose. Results are reported in Table 1a. Without surprise, the CNN
1D outperforms significantly the MLP classifier. The pattern recognition abilities
of the convolutional network makes it possible to interpret the word sequences
by leveraging contextual information. Since only some part of the text might be
relevant, averaging over all word embeddings dilute the discriminating informa-
tion. Moreover, noisy embeddings due to garbage output from Tesseract (e.g.
incoherent strings where OCR has failed) are included in the final document
embedding. However, when dealing with word sequences, convolutional layers
and temporal max-pooling help extracting only the relevant information. There-
fore, we choose to include the 1D CNN as the text component in our multimodal
architecture.

This model is denoted Text in the rest of the paper. It is optimized using
Stochastic Gradient Descent with momentum for 100 epochs, with a learning
rate of 0.01, a momentum of 0.9 and a batch size of 405.

Image Baseline. We investigate as our base CNN the lightweight MobileNetV2
[34]which focuses on computing efficiency, albeit at the cost of a slightly lower top-1
accuracy on ImageNet compared to other state of the art CNN. We train the CNN
ongrayscale document images resized at 384 × 384. Although thiswarps the aspect
ratio, [36] reports better accuracy than when using padding at the same resolution.
As the model is designed for RGB images, the grayscale channel is duplicated three
times. This allows us to initialize the network by loading its pretrained weights on
ImageNet, which accelerates convergence and slightly improves accuracy through
transfer learning.

This model is denoted Image in the rest of the paper. It is optimized using
Stochastic Gradient Descent with momentum for 200 epochs, with a learning
rate of 0.01, a momentum of 0.9 and a batch size of 40.

As reported in Table 1b, preliminary experiments on the Tobacco3482 with
random JPEG artifacts, saturation and contrast alterations did not significantly
alter the classifier’s accuracy compared to no augmentation. This is explained
by the low variability between the grayscale document images. All images are
grayscale with dark text on white background with horizontal text lines, there-
fore color and geometric augmentation are not necessary. However, [36] report
some success using shear transform, which we did not consider in this work. It is
5 Hyperparameters are manually tuned on a small validation set.
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worth noting that compared with previous literature on the RVL-CDIP dataset,
e.g. [1,11,36], we do not average predictions over multiple crops at inference time
for speed concerns. This might explain why our visual baseline underperforms
the current state of the art in this state (although this does not question the
gains due to the multi-modal network).

Table 2. Overall accuracy on the RVL-CDIP dataset.

Model Image Text Fusion CNNs [11] VGG-16 [1] AlexNet+SPP [36]

OA 89.1% 74.6% 90.6% 89.8% 90.97% 90.94%
OA = Overall Accuracy.

Fusion. For our multimodal network, we consider the same model as our base-
lines except that the final layers are cut-off. For the Text model, the last layer
produces an output vector of dimension 128 instead of the number of classes.
For the Image model, we aggregate the last convolutional features using global
average pooling on each channel, which produces a feature vector of dimension
1280. We then map this feature vector using a fully connected layer to a repre-
sentation space of dimension 128.

Table 3. Overall accuracy and F1 scores on the Tobacco3482 datasets.

Model OA F1 Adv. Email Form Letter Memo News Notes Report Res. Sci.

CNNs [11] 79.9 – –

Text 73.8 0.71 0.60 0.96 0.76 0.71 0.79 0.67 0.62 0.43 0.97 0.57
Image 84.5 0.82 0.94 0.96 0.85 0.83 0.90 0.89 0.83 0.61 0.80 0.62
Fusion 87.8 0.86 0.93 0.98 0.88 0.86 0.90 0.90 0.85 0.71 0.96 0.68
Oracle 92.1 0.91 0.94 0.99 0.94 0.92 0.93 0.93 0.89 0.81 0.97 0.79
Adv. = Advertisement, Res. = Resume, Sci. = Scientific.

This model is denoted Fusion in the rest of the paper. It is optimized using
Stochastic Gradient Descent with momentum for 200 epochs, with a learning
rate of 0.01, a momentum of 0.9 and a batch size of 40.

5 Discussion

5.1 Performances

Model performances scores on Tobacco3482 and RVL-CDIP are reported in
Tables 2 and 3. Behaviour of all models is consistent both on the smaller dataset
and on the very large one. In both cases, the Text baseline is significantly
underperforming the Image one. Indeed, as could be seen in Fig. 2, Tesseract
OCR outputs noisy text. This includes words that have been misspelled – which
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are correctly dealt with by the FastText embeddings – and new words that are
hallucinated due to poor binarization or salt-and-pepper noise in the image.
Moreover, layout and visual information tends to be more informative based
on how the classes were defined: scientific papers, news and emails follow sim-
ilar templates while advertisements present specific graphics. However, in both
cases, this simple document embedding is enough to classify more than 70% of
the documents, despite its roughness.

Using the Image model only, we reach accuracies competitive with the state
of the art. MobileNetV2 alone does on-par is with the holistic CNN ensem-
ble from [11] and is competitive with fine-tuned GoogLeNet and ResNet-50 [1]
(90.97%).

On both datasets, the fusion scheme is able to improve the overall accuracy
by �1.5% which demonstrates the relevance of our approach. While the docu-
ment embedding we chose is simple, it appears to be at least partially robust
to OCR noise and to preserve enough information about the document content
to boosts CNN accuracy on document image classification even further. We also
report the results from an oracle, which corresponds to the perfect fusion of the
Text and Image baselines, i.e. a model that would combine the predictions
from both single-modality networks and always choose the right one. The oracle
corresponds to the theoretical maximal accuracy boost that we could expect from
the Fusion model. On Tobacco3482, the oracle corresponds to a 7.6% absolute
improvement (9% relative). In our case, the Fusion model improves the best
single-source baseline by an absolute 3.3% (4% relative), which is significant
although still leaves the door open to further improvements. More importantly,
the gains are consistent on all classes of interest, almost never underperforming
one of the two base networks on any class. This confirm the proposed approach
as the two sources, image and text, give complementary information to classify
a document.

5.2 Processing Time

Although some applications of document image recognition can be performed
offline, most of the time users upload a document and expect near real-time
feedback. User experience engineering [25] indicates than less than 1 s is the
maximum latency the user can suffer before the interface feels sluggish, and 10 s
is the maximum delay before they start loosing their attention. On the RVL-
CDIP dataset, Tesseract processes a document image in �910ms in average on
an Intel Core i7-8550U CPU using 4 threads, including loading the image from
disk. This means that every additional latency induced by the network inference
time is critical since it will negatively affect the user experience.

On the same CPU, the full inference using the Fusion model takes �360ms
including loading, resizing and normalizing the image. The complete process
including Tesseract OCR therefore takes less than �1300ms which is acceptable
in a system requiring user input. Of those, 130ms are spent in the 1D CNN
(including reading the file and performing FastText inference) and 230ms in
MobileNetV2 (including image preprocessing). The overhead added by the final
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fusion layer is negligible. We stress that this is using a standard TensorFlow
without any CPU-specific compilation flags, which could speed up the inference
further. On a NVIDIA Titan X GPU, the Fusion network runs in 110ms
(50ms for Text, 60ms for MobileNetV2), which brings the total just above the
1 s recommendation. In our case, using compute-efficient architectures allow us
to avoid running on an expensive and power-hungry GPU.

As a comparison basis, other architecture choices that we dismissed earlier
would have resulted in poorer performance and the network would not be usable
in a near real-time user application. For example, the Xception network [8] takes
630ms to run during inference with the same parameters and hardware. For the
text model, an LSTM-based RNN with a similar depth takes many seconds to
run.

Note that, although this does not reduced the perceived delay for one user,
the global throughput of the system can be improved by batching the images.
Two Tesseract processes can leverage the full eight cores from an Intel Core
i7-8550U CPU. In this setting, processing an image takes �660ms in average.
Thanks to the batch efficiency of neural networks, the average processing time
becomes ≤750ms on GPU and ≤1000ms on CPU. This is particularly helpful
when users have several documents to upload that can be processed concurrently.

5.3 Limitations

One of the main limitation of this work stems from the public document image
datasets available. Indeed, in a real-world application, document images can be
grayscale, RGB, scanned images and photographs with various rotations, bright-
ness, contrast and hue values. The Tobacco documents are all oriented in the
right way, which makes it easier for Tesseract to perform OCR. Moreover, docu-
ments have been scanned by professionals who tried to maximize their legibility
while user-generated often presents poor quality.

While it was not required here, data augmentation is definitely required for
practical applications to encompass the large variety of environmental conditions
in which documents are digitized. This is especially true for rotations, since
it is often not possible to ensure that users will capture the document with
the right orientation and Tesseract does not always correctly detects it. For
industrial-grade applications dealing with user-generated content, such a data
augmentation is necessary to alleviate overfitting and reduce the gap between
train and actual data. Preprocessing page segmentation and layout analysis tools,
such as dhSegment [2] can also bring significant improvements by renormalizing
image orientation and cropping the document before sending it to the classifier.

Moreover, as we have seen, the post-OCR word embeddings include lots of
noisy or completely wrong words that generate OOV errors. In practical appli-
cations, we found beneficial to perform a semantic tokenization and named
entity recognition using SpaCy. This allows us to perform a partial spellcheck-
ing, e.g. using symspell6 to correct words that have been misread by Tesser-

6 https://github.com/wolfgarbe/SymSpell.
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act, without affecting proper nouns or domain-specific abbreviations and codes.
If this can deal frequent mispellings of words, it might also suppress out-of-
vocabulary words such as alphanumeric codes. Therefore, learning domain spe-
cific, character-based or robust-to-OCR embeddings [22] is an interesting lead
for future research, as the current interest in the ICDAR2019 competition on
Post-OCR Text Correction shows7.

6 Conclusion

In this work, we tackled the problem of document classification using both image
and text contents. Based only on an image of a digitized document, we try
to perform a fine-grained classification using visual and textual features. To
do so, we first used Tesseract OCR to extract the text from the image. We
then compute character-based word embeddings using FastText on the noisy
Tesseract output and generate a document embedding which represents our text
features. Their counterpart visual features are learned using MobileNetv2, a
standard CNN from the state of the art. Using those pragmatic approaches, we
introduce an end-to-end learnable multimodal deep network that jointly learns
text and image features and perform the final classification based on a fused
heterogeneous representation of the document. We validated our approach on the
Tobacco3482 and RVL-CDIP datasets showing consistent gains both on small
and large datasets. This shows that there is a significant interest into hybrid
image/text approach even when clean text is not available for document image
classification and we aim to further investigate this topic in the future.
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