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Abstract. Link streams model interactions over time in a wide range of
fields. Under this model, the challenge is to mine efficiently both tempo-
ral and topological structures. Community detection and change point
detection are one of the most powerful tools to analyze such evolving
interactions. In this paper, we build on both to detect stable community
structures by identifying change points within meaningful communities.
Unlike existing dynamic community detection algorithms, the proposed
method is able to discover stable communities efficiently at multiple tem-
poral scales. We test the effectiveness of our method on synthetic net-
works, and on high-resolution time-varying networks of contacts drawn
from real social networks.

1 Introduction

In recent years, studying interactions over time has witnessed a growing interest
in a wide range of fields, such as sociology, biology, physics, etc. Such dynamic
interactions are often represented using the snapshot model: the network is
divided into a sequence of static networks, i.e., snapshots, aggregating all con-
tacts occurring in a given time window. The main drawback of this model is
that it often requires to choose arbitrarily a temporal scale of analysis. The link
stream model [9] is a more effective way for representing interactions over time,
that can fully capture the underling temporal information.

Real world networks evolve frequently at many different time scales. Fluc-
tuations in such networks can be observed at yearly, monthly, daily, hourly, or
even smaller scales. For instance, if one were to look at interactions among work-
ers in a company or laboratory, one could expect to discover clusters of people
corresponding to meetings and/or coffee breaks, interacting at high frequency
(e.g., every few seconds) for short periods (e.g., few minutes), project members
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interacting at medium frequency (e.g., once a day) for medium periods (e.g.,
a few months), coordination groups interacting at low frequency (e.g., once a
month) for longer periods (e.g., a few years), etc.

An analysis of communities found at an arbitrary chosen scale would neces-
sarily miss some of these communities: low latency ones are invisible using short
aggregation windows, while high frequency ones are lost in the noise for long
aggregation windows. A multiple temporal scale analysis of communities seems
therefore the right solution to study networks of interactions represented as link
streams.

To the best of our knowledge, no such method exists in the literature. In this
article, we propose a method having roots both in the literature on change point
detection and in dynamic community detection. It detects what we call stable
communities, i.e., groups of nodes forming a coherent community throughout
a period of time, at a given temporal scale.

The remainder of this paper is organized as follows. In Sect. 2, we present a
brief review of related works. Then, we describe the proposed framework in detail
in Sect. 3. We experimentally evaluate the proposed method on both synthetic
and real-world networks in Sect. 4.

2 Related Work

Our contribution relates to two active body of research: (i) dynamic community
detection and (ii) change point detection. The aim of the former is to discover
groups of nodes that persist over time, while the objective of the latter is to
detect changes in the overall structure of a dynamic network. In this section, we
present existing work in both categories, and how our proposed method relates
to them.

2.1 Dynamic Community Detection

The problem of detecting communities in dynamic networks has attracted a lot
of attention in recent years, with various approaches tackling different aspects of
the problem, see [16] for a recent survey. Most of these methods consider that the
studied dynamic networks are represented as sequences of snapshots, with each
snapshot being a well formed graph with meaningful community structure, see
for instance [5,12]. Some other methods work with interval graphs, and update
the community structure at each network change, e.g., [3,17]. However, all those
methods are not adapted to deal with link streams, for which the network is
usually not well formed at any given time. Using them on such a network would
require to first aggregate the links of the stream by choosing an arbitrarily
temporal scale (aggregation window).

2.2 Change Point Detection

Our work is also related to research conducted on change point detection con-
sidering community structures. In these approaches, given a sequence of snap-
shots, one wants to detect the periods during which the network organization
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and/or the community structure remains stable. In [15], the authors proposed
the first change-point detection method for evolving networks that uses genera-
tive network models and statistical hypothesis testing. Wang et al. [19] proposed
a hierarchical change point detection method to detect both inter-community
(local change) and intra-community (global change) evolution. A recent work by
Masuda et al. [11] used graph distance measures and hierarchical clustering to
identify sequences of system state dynamics.

From those methods, our proposal keeps the principle of stable periods delim-
ited by change points, and the idea of detecting changes at local and global scales.
But our method differs in two directions: (i) we are searching for stable individ-
ual communities instead of stable graph periods, and (ii) we search for stable
structures at multiple levels of temporal granularity.

3 Method

The goal of our proposed method is (i) to detect stable communities (ii) at
multiple scales without redundancy and (éi7) to do so efficiently. We adopt an
iterative approach, searching communities from the coarser to the more detailed
temporal scales. At each temporal scale, we use a three step process:

1. Seed Discovery, to find relevant community seeds at this temporal scale.

2. Seed Pruning, to remove seeds which are redundant with communities found
at higher scales.

3. Seed Expansion, expanding seeds in time to discover stable communities.

We start by presenting each of these three steps, and then we describe the
method used to iterate through the different scales in Sect. 3.4.

Our work aims to provide a general framework that could serve as baseline
for further work in this field. We define three generic functions that can be set
according to the user needs:

— CD(g), a static community detection algorithm on a graph g.

- QC(N, g), a function to assess the quality of a community defined by the set
of nodes N on a graph g.

— CSS(N1,N,), a function to assess the similarity of two sets of nodes Ny and
No.

See Sect. 3.5 on how to choose proper functions for those tasks.

We define a stable dynamic community ¢ as a triplet ¢ = (N,p,v), with
c.N the list of nodes in the community, c.p its period of existence defined as an
interval, e.g., c.p = [t1,t2]" means that the community ¢ exists from t; to to, and
c.y the temporal granularity at which ¢ has been discovered.

We denote the set of all stable dynamic communities D.

! We use right open intervals such as a community starting at ¢, and another one
ending at the same t, have an empty intersection, which is necessary to have coherent
results when handling discrete time steps.
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3.1 Seed Discovery

For each temporal scale, we first search for interesting seeds. A temporal scale
is defined by a granularity -y, expressed as a period of time (e.g.; 20min, 1h,
2 weeks, etc.). We use this granularity as a window size, and, starting from a time
to — by default, the date of the first observed interaction — we create a cumulative
graph (snapshot) for every period [to, to+7[, [to+7, to+27], [to +27, to+37], ete.,
until all interactions belong to a cumulative graph. This process yields a sequence
of static graphs, such as Gy,  is a cumulated snapshot of link stream G for the
period starting at to and of duration «. G, is the list of all such graphs.

Given a static community detection algorithm C'D yielding a set of commu-
nities, and a function to assess the quality of communities QC, we apply C'D on
each snapshot and filter promising seeds, i.e., high quality communities, using
QC. The set of valid seeds S is therefore defined as:

S§={Vg € G,,¥s € CD(g9),QC(s,g) > b4} (1)

With 6, a threshold of community quality.
Since community detection at each step is independent, we can run it in
parallel on all steps, this is an important aspect for scalability.

3.2 Seed Pruning

The seed pruning step has a twofold objective: (i) reducing redundancy and
(7i) speed up the multi-scale community detection process. Given a measure of
structural similarity C'S\S, we prune the less interesting seeds, such as the set of
filtered seeds FS is defined as:

FS ={Vs € 8,Vee D, (CSS(s.N,c.N)>0,)V (spnep={0}) (2)

Where D is the set of stable communities discovered at coarser (or similar, see
next section) scales, s.p is the interval corresponding to the snapshot at which
this seed has been discovered, and 65 is a threshold of similarity.

Said otherwise, we keep as interesting seeds those that are not redundant
topologically (in term of nodes/edges), OR not redundant temporally. A seed is
kept if it corresponds to a situation never seen before.

3.3 Seed Expansion

The aim of this step is to assess whether a seed corresponds to a stable dynamic
community. The instability problem has been identified since the early stages of
the dynamic community detection field [1]. It means that the same algorithm
ran twice on the same network after introducing minor random modifications
might yield very different results. As a consequence, one cannot know if the
differences observed between the community structure found at ¢ and at ¢t + 1
are due to structural changes or to the instability of the algorithm. This problem
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is usually solved by introducing smoothing techniques [16]. Our method use a
similar approach, but instead of comparing communities found at step ¢ and
t — 1, we check whether a community found at ¢ is still relevant in previous and
following steps, recursively.

More formally, for each seed s € F'S found on the graph G; ,, we iteratively
expand the duration of the seed s.d = [t, ¢ + [ (where t is the time start of this
duration) at each step ¢; in both temporal directions (t; € (...[t — 2v,t — [, [t —
vt [t + vt + 29, [t + 2v,t + 37]...)) as long as the quality QC(s.N, Gy, ) of
the community defined by the nodes s.IN on the graph at Gy, , is good enough.
Here, we use the same similarity threshold 6, as in the seed pruning step. If the
final duration period |s.p| of the expanded seed is higher than a duration 6,7y,
with 6, a threshold of stability, the expanded seed is added to the list of stable
communities, otherwise, it is discarded. This step is formalized in Algorithm 1.

Algorithm 1: Forward seed expansion. Forward temporal expansion
of a seed s found at time t of granularity . The reciprocal algorithm is
used for backward expansion: t 4+ 1 becomes ¢t — 1.

Input: s,7,6,,6;
11— tStart|S.p — [tstart’tend[ :
g — Gt,’y§
p[tt+;
while QC(s.N,g) > 05 do
s.p«— s.pUp;
t—t+;
P [t,t +1;
g — Gt,'y?

© O N O 0k W N

end
10 if |s.p| > 6,7 then
11 | D—DU{s}

12 end

(=]

In order to select the most relevant stable communities, we consider seeds
in descending order of their QC' score, i.e., the seeds of higher quality scores
are considered first. Due to the pruning strategy, a community of lowest quality
might be pruned by a community of highest quality at the same granularity ~.

3.4 Multi-scale Iterative Process

Until then, we have seen how communities are found for a particular time scale.
In order to detect communities at multiple scales, we first define the ordered list
of studied scales I'. The largest scale is defined as ™ = |G.d|/6,, with |G.d|
the total duration of the dynamic graph. Since we need to observe at least 8,
successive steps to consider the community stable, 7" is the largest scale at
which communities can be found.

We then define I" as the ordered list:

I = [,yrrLtzav7,ymagc/217 ,ymaz/22’ ,)/mam/ziﬁ7 . ,ymam/Qk] (3)
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With k such as y™m2 /2% > 0, >= ymaz /2k+1 ¢ heing a parameter corre-
sponding to the finest temporal granularity to evaluate, which is necessarily
data-dependant (if time is represented as a continuous property, this value can
be fixed at least at the sampling rate of data collection).

This exponential reduction in the studied scale guarantees a limited number
of scales to study.

The process to find seeds and extend them into communities is then summa-
rized in Algorithm 2.

Algorithm 2: Multi-temporal-scale stable communities finding.
Summary of the proposed method. See corresponding sections for the
details of each step. G is the link streams to analyze, 04, 0,,0,, 8., are thresh-
old parameters.
Input: G,04,0,,0,,0,
D — {0}
I' «studied_scales(G, 6.,) ;
for y € I' do

S «— Seed_Discovery(y,CD, QC, 0,);

FS —Seed_Pruning(S,CSS, 0;);

for s € FS do

‘ Seed_Expansion(s,, 8p, 05);
end

© O N O 0k W N

end

3.5 Choosing Functions and Parameters

The proposed method is a general framework that can be implemented using
different functions for CD,QC and CSS. This section provides explicit guid-
ance for selecting each function, and introduces the choices we make for the
experimental section.

Community Detection - CD. Any algorithm for community detection
could be used, including overlapping methods, since each community is con-
sidered as an independant seed. Following literature consensus, we use the
Louvain method [2], which yields non-overlapping communities using a greedy
modularity-maximization method. The louvain method performs well on static
networks, it is in particular among the fastest and most efficient methods. Note
that it would be meaningful to adopt an algorithm yielding communities of good
quality according to the chosen QC, which is not the case in our experiments, as
we wanted to use the most standard algorithms and quality functions in order
to show the genericity of our approach.

Quality of Communities - QC. The QC quality function must express the
quality of a set of nodes w.r.t a given network, unlike functions such as the
modularity, which express the quality of a whole partition w.r.t a given network.
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Many such functions exist, like Link Density or Scaled Density [7], but the
most studied one is probably the Conductance [10]. Conductance is defined as
the ratio of (i) the number of edges between nodes inside the community and
nodes outside the community, and (i) the sum of degrees of nodes inside the
community (or outside, if this value is larger). More formally, the conductance
¢ of a community C is:

 YiccgecAig
) = i A(C). AC))

Where A is the adjacency matrix of the network, A(C) =37, > ey 4i; and
C is the complement of C. Its value ranges from 0 (Best, all edges starting
from nodes of the community are internal) to 1 (Worst, no edges between this
community and the rest of the network). Since our generic framework expects
good communities to have QC scores higher than the threshold 6,, we adopt the
definition QQC = 1-conductance.

Community Seed Similarity - CSS. This function takes as input two sets
of nodes, and returns their similarity. Such a function is often used in dynamic
community detection to assess the similarity between communities found in dif-
ferent time steps. Following [5], we choose as a reference function the Jaccard

Index. Given two sets A and B, it is defined as: J(A, B) = :fxgg}

3.6 Parameters

The algorithm has four parameters, 6,,0,,0s,0,, defining different thresholds.
We explicit them and provide the values used in the experiments.

1. 0, is data-dependant. It corresponds to the smallest temporal scale that will
be studied, and should be set at least at the collection rate. For synthetic
networks, it is set at 1 (the smallest temporal unit needed to generate a new
stream), while, for SocioPatterns dataset, it is set to 20's (the minimum length
of time required to capture a contact).

2. 04 determines the minimal quality a seed must have to be preserved and
expanded. The higher this value, the more strict we are on the quality of
communities. We set §, = 0.7 in all experiments. It is dependent on the
choice of the QC' function.

3. 05 determines the threshold above which two communities are considered
redundant. The higher this value, the more communities will be obtained.
We set 6, = 0.3 in all experiments. It is dependent on the choice of the C'S.S
function.

4. 6, is the minimum number of consecutive periods a seed must be expanded in
order to be considered as stable community. We set §, = 3 in all experiments.
The value should not be lower in order to avoid spurious detections due to
pure chance. Higher values could be used to limit the number of results.
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(b) Stable communities discovered by the proposed method.

Fig. 1. Visual comparison between planted and discovered communities. Time steps on
the horizontal axis, nodes on the vertical axis. Colors correspond to communities and
are randomly assigned. We can observe that most communities are correctly discovered,
both in terms of nodes and of duration. (Color figure online)

4 Experiments and Results

The validation of our method encompasses three main aspects: (i) the validity of
communities found, and (i) the multi-scale aspect of our method, (i) its scal-
ability. We conduct two kinds of experiments: on synthetic data, on which we
use planted ground-truth to quantitatively compare our results, and on real net-
works, on which we use both qualitative and quantitative evaluation to validate
our method.

4.1 Validation on Synthetic Data

To the best of our knowledge, no existing network generator allows to generate
dynamic communities at multiple temporal scale. We therefore introduce a sim-
ple solution to do so. Let us consider a dynamic network composed of T steps
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and N different nodes. We start by adding some random noise: at each step,
an Erdos-Renyi random graph [4] is generated, with a probability of edge pres-
ence equal to p. We then add a number SC' of random stable communities. For
each community, we attribute randomly a set of n € [4, N/4] nodes, a duration
d € [10,T/4] and a starting date s € [0,7 — d]. n and d are chosen using a log-
arithmic probability, in order to increase variability. The temporal scale of the
community is determined by the probability of observing an edge between any
two of its nodes during the period of its existence, set as 10/d. As a consequence,
a community of duration 10 will have edges between all of its nodes at every
step of its existence, while a community of length 100 will have an edge between
any two of its nodes only every 10 steps in average.

Since no algorithm exists to detect communities at multiple temporal scales,
we compare our solution to a baseline: communities found by a static algorithm
on each window, for different window sizes. It corresponds to detect & match
methods for dynamic community detection such as [5]. We then compare the
results by computing the overlapping NMI as defined in [8], at each step. For
those experiments, we set 7' = 5000, N = 100,p = 10/N. We vary the number
of communities SC.

Table 1. Comparison of the average NMI scores (over 10 runs) obtained for the pro-
posed method (Proposed) and for each of the temporal scales (y € I') used by the
proposed method, taken independently.

t_scale (y) | 5 10 |20 |30 |40 |50
Proposed |0.91]0.780.69 | 0.69 0.62|0.54

1666 0.41 {0.32 {0.24 |0.23 | 0.15 | 0.19
833 0.36 [0.30 [0.29 |0.27 |0.23 |0.25
416 0.39 [0.40 [0.36 |0.34 |0.32 |0.33
208 0.46 | 0.45 [ 0.40 |0.42 0.41 |0.37
104 0.47 10.48 [0.44 |0.46 |0.45 |0.42

52 0.45 |0.47 [0.45 |0.47 |0.47 |0.45
26 0.35 [0.35 10.38 |0.42 | 0.42 | 0.41
13 0.28 10.26 10.30 |0.31 |0.32 |0.31

0.17 1 0.16 |0.19 |0.19 |0.20 | 0.19
0.12 1 0.09 |0.11 |0.10 |0.12 |0.11
0.05 | 0.03 |0.04 |0.03 |0.05 |0.04

Figure 1 represents the synthetic communities to find for SC' = 10, and the
communities discovered by the proposed method. We can observe a good match,
with communities discovered throughout multiple scales (short-lasting and long-
lasting ones). We report the results of the comparison with baselines in Table 1.
We can observe that the proposed method outperforms the baseline at every
scale in all cases in term of average NMI.
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The important implication is that the problem of dynamic community detec-
tion is not only a question of choosing the right scale through a window size, but
that if the network contains communities at multiple temporal scale, one needs
to use an adapted method to discover them.

4.2 Validation on Real Datasets

We validate our approach by applying it to two real datasets. Because no ground
truth data exists to compare our results with, we validate our method by using
both quantitative and qualitative evaluation. We use the quantitative approach
to analyze the scalability of the method and the characteristics of communities
discovered compared with other existing algorithms. We use the qualitative app-
roach to show that the communities found are meaningful and could allow an
analyst to uncover interesting patterns in a dynamic datasets.
The datasets used are the following:

— SocioPatterns primary school data [18], face-to-face interactions between
children in a school (323 nodes, 125 773 interaction).

— Math overflow stack exchange interaction dataset [14], a larger network to
evaluate scalability (24 818 nodes, 506 550 interactions).

Qualitative Evaluation. For the qualitative evaluation, we used the pri-
mary school data [18] collected by the SocioPatterns collaboration? using RFID
devices. They capture face-to-face proximity of individuals wearing them, at a
rate of one capture every 20s. The dataset contains face-to-face interactions
between 323 children and 10 teachers collected over two consecutive days in
October 2009. This school has 5 levels, each level is divided into 2 classes (A and
B), for a total of 10 classes.

No community ground truth data exists to validate quantitatively our find-
ings. We therefore focus on the descriptive information highlighted on the
SocioPatterns study [18], and we show how the results yielded by our method
match the course of the day as recorded by the authors in this study.

In order to make an accurate analysis of our results, the visualization have
been reduced to one day (the second day), and we limited ourselves to 4 classes
(1B, 2B, 3B, 5B)3. 120 communities are discovered in total on this dataset. We
created three different figures, corresponding to communities of length respec-
tively (i) less than half an hour, (ii) between half an hour and 2h, (iii) more
than 2 h. Figure 2 depicts the results. Nodes affiliations are ordered by class, as
marked on the right side of the figure. The following observations can be made:

— Communities having the longest period of existence clearly correspond to the
class structure. Similar communities had been found by the authors of the
original study using aggregated networks per day.

2 www.sociopatterns.org.
3 Note that full results can be explored online using the provided notebook (see con-
clusion section).


www.sociopatterns.org

Detecting Stable Communities in Link Streams at Multiple Temporal Scales 363

5B
B = - 3B
j —
L 28
£
::- E 'i
= ‘ = 1B
e - B

t
18h

T T t T
6 8h 10h 12h 14n

(a) Second day, length<30min. Grey vertical areas corre-
spond to most likely break periods.

e 5B
] 3B
S ey
— ==
2B
=—— ]
—_— — 1B
= |

t t
h 12n 14n 16h 18h

(b) Second day, 30min<length<2hours. Grey vertical area
corresponds to the lunch break

5B

oh 8h 10h 12h 14h 16h 18h

(c) Second day, length>2hours

Fig. 2. Stable communities of different lengths on the SocioPatterns Primary School
Dataset. Time on the horizontal axis, children on the vertical axis. Colors are attributed
randomly. (Color figure online)
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— Most communities of the shorter duration are detected during what are prob-
ably breaks between classes. In the original study, it had been noted that
break periods are marked by the highest interaction rates. We know from
data description that classes have 20/30min breaks, and that those breaks
are not necessarily synchronized between classes. This is compatible with
observation, in particular with communities found between 10:00 and 10:30
in the morning, and between 4:00 and 4:30 in the afternoon.

— Most communities of medium duration occur during the lunch break. We
can also observe that the most communities are separated into two intervals,
12:00-13:00 and 13:00-14:00. This can be explained by the fact that children
have a common canteen, and a shared playground. As the playground and
the canteen do not have enough capacity to host all the students at the same
time, only two or three classes have breaks at the same time, and lunches
are taken in two consecutive turns of one hour. Some children do not belong
to any communities during the lunch period, which matches the information
that about half of the children come back home for lunch [18].

— During lunch breaks and class breaks, some communities involve children
from different classes, see the community with dark-green colour during lunch
time (medium duration figure) or the pink community around 10:00 for short
communities, when classes 2B and 3B are probably in break at the same time.
This confirms that an analysis at coarser scales only can be misleading, as
it leads only to the detection of the stronger class structure, ignoring that
communities exist between classes too, during shorter periods.

Quantitative Evaluation. In this section, we compare our proposition with
other methods on two aspects: scalability, and aggregated properties of commu-
nities found. The methods we compare ourselves to are:

— An Identify and Match framework proposed by Greene et al. [5]. We imple-
ment it using the Louvain method for community detection, and the Jaccard
coefficient to match communities, with a minimal similarity threshold of 0.7.
We used a custom implementation, sharing the community detection phase
with our method.

— The multislice method introduced by Mucha et al. [12]. We used the authors
implementation, with interslice coupling w = 0.5.

— The dynamic clique percolation method (D-CPM) introduced by Palla et al.
[13]. We used a custom implementation, the detection in each snapshot is
done using the implementation in the networkx library [6].

For Identify and Match, D-CPM and our approach, the community detection
phase is performed in parallel for all snapshots. This is not possible for Mucha
et al., since the method is performed on all snapshots simultaneously. On the
other hand, D-CPM and Indentify and Match are methods with no dynamic
smoothing.

Figure3 presents the time taken by those methods and our proposition,
for each temporal granularity, on the Math Overflow network. The task
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Fig. 3. Speed of several dynamic community detection methods for several temporal
granularities, on the Math Overflow dataset. Missing points correspond to computation
time above 1000 s. Temporal scales correspond to window sizes and are divided by 2 at
every level, from 1 =67 681 200s (about 2years) to 10=132 189s (about 36 h). OUR
and OUR-MP corresponds to our method using or not multiprocessing (4 cores)

accomplished by our method is, of course, not comparable, since it must not
only discover communities, but also avoid redundancy between communities in
different temporal scales, while other methods yield redundant communities in
different levels. Nevertheless, we can observe that the method is scalable to net-
works with tens of thousands of nodes and hundreds of thousands of interactions.
It is slower than the Identify and Match (CD&Match) approach, but does not
suffer from the scalability problem as for the two other ones (D-CPM and Mucha
et al.). In particular, the clique percolation method is not scalable to large and
dense networks, a known problem due to the exponential growth in the number
of cliques to find. For the method by Mucha et al., the scalability issue is due to
the memory representation of a single modularity matrix for all snapshots.

Table 2. Average properties of communities found by each method (independently
of their temporal granularity). #Communities: number of communities found. Persis-
tence: number of consecutive snapshots. Size: number of nodes. Stability: average Jac-
card coeflicient between nodes of the same community in successive snapshots. Density:
average degree/size-1. Q: 1-Conductance (higher is better)

Method #Communities | Persistance | Size | Stability | Density | Q

OUR 179 3.44 10.89 | 1.00 0.50 0.91
CD& MATCH | 29846 1.21 5.50 1 0.97 0.42 0.96
CPM 3259 1.87 5.3710.51 0.01 0.53
MUCHA 1097 15.48 9.720.62 0.38 0.85
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In Table 2, we summarize the number of communities found by each method,
their persistence, size, stability, density and conductance. It is not possible to
formally rank those methods based on these values only, that correspond to
vastly different scenarios. What we can observe is that existing methods yield
much more communities than the method we propose, usually at the cost of lower
overall quality. When digging into the results, it is clear that other methods yield
many noisy communities, either found on a single snapshot for methods without
smoothing, unstable for the smoothed Mucha method, and often with low density

or Q.

5 Conclusion and Future Work

To conclude, this article only scratches the surface of the possibilities of multiple-
temporal-scale community detection. We have proposed a first method for the
detection of such structures, that we validated on both synthetic and real-world
networks, highlighting the interest of such an approach. The method is proposed
as a general, extensible framework, and its code is available*:® as an easy to use
library, for replications, applications and extensions.

As an exploratory work, further investigations and improvements are needed.
Heuristics or statistical selection procedures could be implemented to reduce the
computational complexity. Hierarchical organization of relations — both temporal
and structural-between communities could greatly simplify the interpretation of
results.
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