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Preface

The European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML PKDD) is the premier European machine
learning and data mining conference. In 2019, ECML PKDD was held in Wiirzburg,
Germany, during September 16-20.

During the first and last day of the conference, the workshop program allowed a
number of specialized and/or new topics to take the fore-front.

A record 46 workshop and tutorial topics were submitted to the 2019 conference.
The selection and merging process resulted in 25 workshops taking place over the two
days, of which 3 were combined with a tutorial.

The workshop program included the following workshops:

The 12th International Workshop on Machine Learning and Music (MML 2019)
Workshop on Multiple-aspect analysis of semantic trajectories (MASTER 2019)
The 4th Workshop on MIning DAta for financial applicationS (MIDAS 2019)
The Second International Workshop on Knowledge Discovery and User Modelling
for Smart Cities (UMCit 2019)
New Frontiers in Mining Complex Patterns (NFMCP 2019)
New Trends in Representation Learning with Knowledge Graphs
7. The Second International Workshop on Energy Efficient Scalable Data Mining and
Machine Learning (Green Data Mining)
8. Workshop on Deep Continuous-Discrete Machine Learning (DeCoDeML 2019)
9. Decentralised Machine Learning at the Edge (DMLE 2019)
10. Applications of Topological Data Analysis (ATDA 2019)
11. GEM: Graph Embedding and Mining
12. Interactive Adaptive Learning (AIL 2019)
13. IoT Stream for Data Driven Predictive Maintenance (IoT Steam 2019)
14. Machine Learning for Cybersecurity (MLCS 2019)
15. BioASQ: Large-scale biomedical semantic indexing and question answering
16. The 6th Workshop on Sports Analytics: Machine Learning and Data Mining for
Sports Analytics (MLSA 2019)
17. The 4th Workshop on Advanced Analytics and Learning on Temporal Data
(AALTD 2019)
18. MACLEAN: MAChine Learning for EArth ObservatioN
19. Automating Data Science
20. The 4th Workshop on Data Science for Social Good (DSSG 2019)
21. The Third Workshop on Advances in managing and mining Large Evolving
Graphs (LEG 2019)
22. Data and Machine Learning Advances with Multiple Views (DAMVL 2019)
23. Workshop on Data Integration and Applications (DINA 2019)
24. XKDD Tutorial and XKDD-AIMLAI Workshop
25. The First Workshop Soclal. Media And Harassment (SIMAH 2019)
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vi Preface

Of these 25 workshops, 17 workshops decided to select and publish their best papers
with Springer. Two workshops were large enough to publish their own proceedings:
(i) MIDAS - the 4th Workshop on MIning DAta for financial applicationS and
(ii) AALTD - the 4th workshop on Advanced Analytics and Learning on Temporal
Data. The 15 other workshops received a total of 200 submitted papers, out of which 70
long and 46 short papers were selected for publication after the conference. These
papers are spread over two proceedings volumes.

This two-volume set contains the papers from the following workshops:

Automating Data Science

XKDD Tutorial and XKDD-AIMLAI Workshop

Decentralised Machine Learning at the Edge (DMLE 2019)

The Third Workshop on Advances in managing and mining Large Evolving

Graphs (LEG 2019)

Data and Machine Learning Advances with Multiple Views (DAMVL 2019)

New Trends in Representation Learning with Knowledge Graphs

The 4th Workshop on Data Science for Social Good (DSSG 2019)

The Second International Workshop on Knowledge Discovery and User Modelling

for Smart Cities (UMCit 2019)

9. Workshop on Data Integration and Applications (DINA 2019)

10. Machine Learning for Cybersecurity (MLCS 2019)

11. The 6th Workshop on Sports Analytics: Machine Learning and Data Mining for
Sports Analytics (MLSA 2019)

12. The First Workshop on Soclal. Media And Harassment (SIMAH 2019)

13. IoT Stream for Data Driven Predictive Maintenance (IoT Stream 2019)

14. The 12th International Workshop on Machine Learning and Music (MML 2019)

15. BioASQ: Large-scale biomedical semantic indexing and question answering

el e

e Y

We would like to thank all participants and invited speakers, the workshop orga-
nizers and the reviewers, as well as the local organizers for making the workshop
program of ECML PKDD 2019 the success that it was. Sincere thanks also goes to
Springer for their help in publishing the proceedings.

January 2020 Peggy Cellier
Kurt Driessens
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Abstract. In order to (semi)automate data cleaning and preprocess-
ing, we need a clear and measurable definition of data quality. Data
readiness levels have been proposed to fit this need, but they require a
more detailed and measurable definition than is given in prior works. We
present a practical framework focused on machine learning that encap-
sulates data cleaning and (pre)processing procedures. In our framework,
datasets are classified within bands, and each band introduces more fine-
grained terminology and processing steps. Scores are assigned to each
step, resulting in a data quality score. This allows teams of people, as
well as automated processes, to track and reason about the cleaning
process, and communicate the current status and deficiencies in a more
structured, well-documented manner.

Keywords: Data quality - Data readiness levels - Data cleaning -
Preprocessing + Automated data science

1 Introduction

“Data is the new oil. It is valuable, but if unrefined it cannot really be used. It
has to be changed into gas, plastic, chemicals, etc to create a valuable entity that
drives profitable activity; so must data be broken down, analyzed for it to have
value”.

The popular metaphor between data and oil is credited to the British mathe-
matician Clive Humby in 2006. There are many ways in which his analogy might
be broken down but Dr. Humby here points out an incontestable truth: Data
needs processing.

We pose that data (pre)processing aims to increase data quality, and present a
practical framework that encapsulates a range of data processing steps to achieve
this. Inspired by the concepts introduced by Lawrence in his position paper on
Data Readiness Levels [13], it examines and structures the technical challenges
that, when solved, increase data quality. The resulting framework is used as the
theoretical foundation of the software package PyWash [3], a collection of tools
used to clean and process datasets to increase their quality.
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Raw data usually suffers from a wide range of issues, such as duplicated
records, missing values, outliers, typo’s, and many other issues that weaken the
quality of the data and hinder advanced analysis. This results in machine learn-
ing systems learning the wrong things, decreasing their accuracy and making
them unreliable at best and plain wrong at worst. Data cleaning is, therefore,
an essential task. Data cleaning is often an iterative process that is tailored to
the needs and wants of a specific analysis task. Krishnan et al. (2015) conducted
a survey that expresses the need for a streamlined data cleaning framework.
The question “How do you determine whether the data is sufficiently clean to
trust the analysis?” made clear that most of the respondents had no rigorous
validation of their data cleaning. In response to this survey the same authors cre-
ated ActiveClean [12], which describes an iterative cleaning process that selects
and cleans some records. After this cleaning, it measures the performance of
the dataset on the main analysis to then select and evaluate if more cleaning
is necessary. The iterative nature of data cleaning paired with the absence of
an evaluation methodology is alarming. Alternating between cleaning data and
analyzing data, and using these analysis results to guide the subsequent data
cleaning procedures can result in overfitting. Data cleaning procedures are gen-
erally under-reported because it is such a ‘dirty’ process. Often there is no log
maintained of data cleaning operations executed whilst these operations can
introduce bias into the dataset [11].

Since then, some attempts have been made to set up a data quality frame-
work. “InfoQ” breaks down data analysis into 4 distinct components: analysis
goal, available data, utility measure, and data analysis method. The information
quality is then assessed using eight dimensions, such as data structure (explained
as the type of data and data characteristics) and temporal relevance. The quality
of each of these eight dimensions is then assessed separately, often using a rat-
ing on a Likert scale. There are multiple approaches to then compute an overall
InfoQ score by properly combining this set of eight assessments [7]. For example,
Ron Kenett and Marco Reis applied InfoQ to the Chemical Processing Industry
and proposed an assessment strategy in which each dimension is weighted to
reflect the distinct focal points in different analysis goals [16]. A limitation of
InfoQ is that a Likert scale abstracts away from the actual operations that have
to be performed to increase data quality. If you were told that a dataset obtained
an InfoQ score of 77% it is not clear what kind of deficiencies are present. After
sharing the individual Likert scale scores for each dimension it is still unknown
what exactly can be done to improve the score (and in what order). Lawrence
(2017) recognized the overall lack of terminology in discussions about data qual-
ity and proposed an initial set of descriptors for data readiness. The proposal
is to split data readiness into three distinct bands. The bands are represented
by the letters: A, B, and C. Each band contains sub levels: Al is data of the
highest quality and C4 would be data of the worst quality [13]. However, the
author refrains from elaborating the bands in greater detail and therefore the
bands remain vague. In this paper, we propose one way to further extend, detail
and quantify these bands.
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2 The Framework

We introduce a framework which streamlines and describes the data cleaning
process. The framework splits the cleaning process into multiple distinct cate-
gories we likewise call bands and it analyzes the dataset to determine in which
band it currently is. Datasets that are in a certain band may possess one or more
deficiencies which are specified for that band and will negatively influence any
analysis, such as machine learning, performed on the dataset. Thus, in order for
a dataset to be classified as a higher tier band and be deemed cleaner, the issues
from the current band have to be resolved.

The bands introduce steps and terminology in the cleaning process that are
easy to follow for most practitioners. Teams will be able to communicate, argue
and customize the cleaning process to better fit their needs in a structured,
potentially well-documented process.

This new way of thinking about data cleaning as a step-by-step process and
a standalone part of the whole data process will hopefully save people from
rushing through data cleaning, and provide them with useful data quality metrics
rather than purely optimizing a final model quality score (e.g. model accuracy).
Moreover, it will also help to increasingly automate the process while alleviating
overfitting.

2.1 Data Bands

The framework consists of the following bands: C, B, A, AA, and AAA. These
represent the different stages of usability that datasets can be in during the
process.

Band C (Conceive) refers to the stage that the data is still being ingested.
If there is information about the dataset, it comes from the data collection
phase and how the data was collected. The data has not yet been introduced
to a programming environment or tool in a way that allows operations to be
performed on the dataset. The possible analyses to be performed on the dataset
in order to gain value from the data possibly haven’t been conceived yet, as this
can often only be determined after inspecting the data itself.

Band B (Believe) refers to the stage in which the data is loaded into
an environment that allows cleaning operations. However, the correctness of
the data is not fully assessed yet, and there may be errors or deficiencies that
would invalidate further analysis. Therefore, analyses performed in this stage
are often more cursory and exploratory, such as a exploratory data analysis with
visualization methods to ascertain the correctness of the data. Skipping these
checks might lead to errors or ‘wrong’ results and conclusions.

In band A (Analyze), the data is ready for deeper analysis. However, even
if there are no more factual errors in the data, the quality of an analysis or
machine learning model is greatly influenced by how the data is represented.
For instance, operations such as feature selection and normalization can greatly
increase the accuracy of machine learning models. Hence, these operations need
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to be performed before arriving at accurate and adequate machine learning mod-
els or analyses. In many cases, these operations can already be automated to a
significant degree.

In band AA (Allow Analysis), we consider the context in which the
dataset is allowed to be used. Operations in this band detect, quantify, and poten-
tially address any legal, moral or social issues with the dataset, since the conse-
quences of using illegal, immoral or biased datasets can be enormous. Hence, this
band is about verifying whether analysis can be applied without (legal) penalties
or negative social impact. One may argue that legal and moral implications are
not part of data cleaning, but rather distinct parts of the data process. However,
we argue that readiness is about learning the ins and outs of your dataset and
detecting and solving any potential problems that may occur when analyzing
and using a dataset.

Band AAA is the terminus of our framework. Getting into AAA would
mean that the dataset is clean. The data is self-contained and no further input
is needed from the people that collected or created the data.

2.2 Quality Scores

A dataset has a score between 0 and 1 for each band of our framework, so a
dataset can have score 0.9 for band C, 0.8 for band B, 0.10 for A, 0.20 for
AA and possibly 0 for band AAA. Datasets start with initial band score values
of 0 for every band, as we generally do not know (for certain) which issues
the dataset is suffering from that could potentially jeopardize machine learning
methods. The dataset is classified in band C at this stage. We then proceed to
check and solve all issues from band C. Each band deficiency that is solved or
non-existent contributes to the band score of the dataset. Partially checked or
solved deficiencies can grant partial weight scores. A dataset will move to the
next band only when it has surpassed a certain threshold score. This also means
that a dataset cannot get a band label of A or above when it has a B.60 score,
even if the dataset fulfills all band A requirements.

The threshold scores can be determined by the framework users to determine
how thoroughly the dataset has to be cleaned before it is able to proceed to
further bands. We have set the default threshold for all bands on 0.85 to allow
a dataset to advance while it’s not totally perfect, since striving for a perfect
dataset may not be achievable or cost-effective in general. The dataset might not
be entirely clean when the thresholds are less than 1, as a dataset could advance
to the next band (including band AAA) while not every issue has been checked
or fixed yet. That said, the thresholds cannot be set too low (e.g., <0.65) as
datasets wouldn’t be checked properly, which could seriously impact machine
learning methods and dataset usability, causing errors and false predictions or
estimates.

This terminology makes it easier to track and communicate the cleaning
progress to others. This is because others will be able to understand what has
to be done when a dataset is currently in band B, but might not know what to
do next when only given a list of completed cleaning methods.



The ABC of Data 7

3 The Different Levels of Data Readiness

A dataset will be ready for certain operations to be performed on it depending on
its band. The bands consist of several weighted dataset deficiencies which reflect
what are currently the most important deficiencies that need to be addressed
in the current band. An overview of the bands and their deficiencies can be
found in Table 1. A description of the bands, the functionality they unlock and
their deficiencies are given below. The weights that we have given in Table 1 are
advisory weights for a generic dataset without a specific target analysis. In some
scenarios, people may decide to use a different weighting. For example, medical
applications may prioritize outlier detection, since detecting and investigating
anomalies may have greater importance compared to other fields.

Table 1. The framework bands with weights and deficiencies

20 Column Types
30 Missing Values

B 20 | Inconsistent Data Entries
10 Duplicated Records
20 Meaningful Values
20 Interpretable Values

20 Feature Scaling
A 20 Outlier Detection
30 Feature Selection

10 | Coverage gap detection

3.1 Band C: Conceive

Band C, and so too the framework, starts with having access to files or databases
with the actual data. Data access has many problems of its own: datasets may
be stored in a remote system with limited access or hidden in a large corpo-
rate ecosystem where few know the exact location of the desired dataset, thus
human interaction may be required before programmatic access is possible. Hav-
ing access to the data is a prerequisite to even begin assessing its quality, hence
the dataset’s score will be 0 until access has been obtained. Such hearsay data
[13] is therefore outside the scope of our framework.
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That said, when we do have access, the data enters band C and tests have to
be performed to see if the dataset is compatible with a programming environment
or tool. Indeed, data files cannot provide value as is. Some procedures have to
be followed before even basic analysis can be done. The aim in band C is to test
for, and fix if necessary, the data deficiencies that are described below.

Parseability

There are many different file formats to store a dataset for long-term storage
and transport, such as CSV, JSON and plain text. These formats specify how
data can be loaded into a programming environment or analysis tool to perform
operations. Therefore, making sure that a dataset can be loaded without errors
receives a high weight in band C. This also includes the requirement of data
access. You may know that a dataset exists, but technical or legal barriers might
make it impossible to actually load and use the files.

Data Storage

The dataset needs to be stored in an effective and efficient manner relative to
the operations that will have to be performed on the dataset. Getting the data
in such a shape is often called data wrangling. The storage method does not have
to be optimal, so there is no set limit to the runtime of the operations set by
this paper. However, all operations of the subsequent bands must be executable.
These operations aren’t possible when the dataset isn’t able to be stored in a
way that allows these operations, thus checking how the data is stored is part of
band C.

Decoding
The data has to be recognizable as data. This means that the data formatter
should be able to use encoding styles that are known and understood by the
environment that processes the dataset. The largest problem is that there are
many different character encodings, and datasets can use any one of them. Com-
mon character encoding formats include ASCII [15], ISO 8859 and UTF-8 [18].
Luckily, automatic encoding detection has long been available [14].
Nevertheless, a system won’t be able to use and find meaning in the data
if the system is not able to distinguish or relate characters to each other. Thus
datasets containing unknown formats cannot reliably be used to perform mean-

ingful operations on. Which is why we classify any such datasets as being in
band C.

Data Formats

Datasets are not always stored cleanly in a particular format. Human or tech-
nical problems can occur which might result in writing errors during the data
collection phase. There are several different ways a data format may break. CSV
files could change their separator halfway through the file, a JSON file misplaces
a bracket or an ARFF file misses a categorical value. Mistakes happen and when
they do, the parsing of data becomes difficult and could lead to unexpected
outcomes. Therefore, a system has to check if a dataset has a consistent format
and, even though it’s not easy, should be able to fix most potential issues. This
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is different from being able to load the dataset since an incorrect format may
not raise an error, but will change the structure of the dataset.

Disjoint Datasets

Datasets can be divided up into multiple tables over several different files. Since
they essentially are just one spread out dataset, any analysis should be performed
on the entire dataset, rather than just one subset of it. Performing analysis on
partial data can invite bias, and multiple analyses on the different dataset parts
may introduce false positive errors and increase result variance.

3.2 Band B: Believe

In band B are datasets that are loaded into memory but still defective in some
ways, which means that the data cannot be trusted at this moment. The data
must be checked for trustworthiness and correctness of the data itself. After
checking for these deficiencies and rectifying them, basic analytics can be used
to explore the dataset.

Known and Correct Data Types

Columns should have the correct data type (boolean, integer, float, date, cate-
gorical, ordinal, and string). A counterexample would be that a column is labeled
as ‘integer’ while it is effectively a non-ordinal encoding of categorical values (e.g.
1=blue, 2=green, 3=red) [17].

Missing Values Are Identified and Appropriately Dealt with

Missing values are encoded as a variety of characters such as “null”, “N/A”,
“na”, “?” and “—1”. The data points or features with missing data should be
either removed or repaired (e.g. imputed) [1]. However, in some cases it does no

harm to keep the missing values as long as they are properly identified.

Redundancy
We need to assess the degree to which there are duplicate records and columns.

Typos and Inconsistent Data Entries
Imagine a column with colors which has ‘red’” but also ‘read’. These values should
be fixed or removed if the true value is unclear [9].

Meaningful Values

If possible, variables should be expressed in a unit that is most suitable for
machine learning. As a counterexample: a column with the height of people is
expressed as a combination of feet and inches and encoded as a string. This
can be useless for some machine learning models since no distance metric can
be computed. This is also the point where clearly faulty data points -such as a
name in a postcode field- should be removed [9].

3.3 Band A: Analyze

In band A are operations that further optimize and clean the data. The data is
modified such that it is in a format that is properly suited for machine learning.
Data that is not needed is filtered out to reduce overhead and increase accuracy.
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Interpretable Values

In is important that we know exactly what each feature (variable) in the data
means. Maintaining a codebook [2] with a semantic description as possibly a
unit for each feature is a good practice. For instance, if a column is named price
but has no currency attached to it, it cannot be clearly interpreted. Knowing
the right semantics also enables algorithmic transformation to a more convenient
unit if needed [9]. Moreover, this also includes mappings for categorical values
when they are encoded numerically, so that it is known what the numeric codes
represent.

Feature Scaling

In feature scaling, you transform the data such that it is within a specific range.
Some scaling methods such as normalization and standardization also change
the distribution of the data. For some machine learning models, it is beneficial
to scale the data. Neural networks, for example, are known to converge more
quickly on normalized data.

Outlier Detection

As we have cleaned obvious faulty data points in band B, we are now able to
search for naturally occurring data points that differ significantly from other
observations. Outliers must be dealt with appropriately because not every
machine learning model is robust to outliers [10].

Feature Selection

Some features may be redundant, for instance, a column may portray the same
information as the column next to it. Removing the column will decrease training
time and lower the risk of overfitting [6]. Dimensionality reduction techniques
may also be used to represent high-dimensional data in fewer dimensions that
facilitate modelling (but decrease interpretability).

Coverage Gap Detection

Data may have gaps such as spatial or temporal coverage gaps, For instance:
sensor data was collected for 2 years, but because of a defect in the measurement
equipment a part of the data is absent [9].

3.4 Band AA: Allow Analysis

We check the context in which the data is to be used in band AA. Data often
originates from real people and is used to make decisions for real people. Thus
the information of a dataset has to be placed in context to make sure that any
analysis performed on the dataset will be permissible, usable and allowed. This
is often not easily measurable, as this requires a lot of metadata from the dataset
and from the context of possible analyses and how their results may be used.
However, in most cases manual checks should be possible and should be done to
ensure a dataset is allowed to be used in the real world.

Legal Violations
Laws and regulations can prevent the allowed usage of a dataset for analysis,
even if the dataset was legally collected. This can happen when the data contains



The ABC of Data 11

wrong values about the data subjects, or when the dataset is used outside the
original scope. Information stored in datasets can also be harmful to the data
subjects, even if the contents of the dataset are not leaked or stolen. That’s why
datasets that violate the GDPR [5] or other privacy regulations can result in
large fines being imposed on the company or institution that is creating or using
those datasets.

We deem these violations to be very important, both for any data processor
and for all subjects within the data. That’s why we propose to put a high weight
on checking and solving any problems relating to this topic. Note that in many
contexts, legal restrictions could inhibit anyone from even loading the data. In
that case they would fall in band C (or pre-C).

Security Risks

Data security is a must when performing analyses on sensitive data such as
personal data. Datasets containing sensitive information should be secure by
design and security systems should already exist at the data collection stage.
Consequently, the data should already be secure when entering the data clean-
ing phase. However, when this is not the case, the data cleaning phase should
prioritize the security of the data and transform and/or protect the data in such
a way that any insecurities are prevented, either by encrypting the data or by
securing the network the data is stored in. This also includes technical security
procedures to work with the data [4].

A dataset is often secure because of the security systems around the dataset
(e.g. firewalls), not because of the dataset itself. But it is essential that a dataset
is protected, that’s why we assigned such a high weight for checking the security
of a dataset.

Bias Detection
Bias can occur when the data collection samples neglect a portion of the entire
population or when it over-samples on a specific portion. Analysis performed
on datasets often separates the instances of the dataset into several groups to
generalize them and suggest different actions for the different groups. This can
become unethical (and illegal) when the groups are created based on discrimina-
tory attributes (either directly or indirectly due to data collection bias). This is
especially unethical when the results of the main analysis are used in decision-
based applications, since such applications can and will discriminate. Therefore,
datasets should be checked before any analysis, and any resulting models should
only make predictions on cases that are sufficiently covered by their training
data.

Techniques and frameworks exist to detect and eliminate dataset bias dur-
ing training, and these should be an integral part of the cleaning process [§].
However, it is hard to eliminate unknown biases during the cleaning process.

3.5 Band AAA: A Clean Dataset

If a dataset has passed all bands, then it is considered as properly cleaned based
on how the thresholds and weights were chosen. As mentioned before, dataset
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can advance to the next band while not every single issue has been completely
solved. Thus a dataset might not be perfectly clean when in band AAA, but it
is clean enough such that we can use it in most applications.

Band AAA does not contain any issues and doesn’t add any functionality. It
is rather an indicator that a dataset has completed the cleaning process and is
ready to be effectively used in the determined main analysis.

4 Deployment

As mentioned in the introduction, this framework is used as the theoretical
foundation of the practical tool PyWash [3]. PyWash is a python package that
combines the described framework with a set of (semi)automatic data clean-
ing and preprocessing methods. The package will analyze datasets, assign band
scores, and guide the user to the appropriate tools to import, clean, and export
the dataset.

In addition, we built a user interface on top of the python package in the
form of a web application to guide the user through the cleaning process. The

Titanic Add New Dataset

Current Data Quality:
Cc1

A0
Rows: 418 Columns: 11

Band C Band B Band A Visualization

Data types
Age Cabin Embarked Fare Parch PassengerId Pclass Sex SibSp Ticket

floatss object category floats4 category int64 category category category object

Missing values
Status: Missing data detected! 414 empty cells

x NA| x|NA [x| 2 -
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FIX MISSING VALUES!

Titanic
Age Cabin Embarked Fare Parch PassengerId Pclass Sex SibSp Ticket
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34 B45 Q 7.8292 e 892 3 male ] 330911
47 E31 = 7 e 893 3 female d 363272
62 B57 B59 B63 B66 Q 9.6875 ] 894 2 male ] 249276

27 B36 s 8.6625 e 895 3 male ] 315154

Fig. 1. The PyWash web interface.
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interface, shown in Fig.1, groups the operations for each band into separate
color-coded tabs. Loading datasets happens in the tab called ‘Band C’, which
will initially be the only band that is accessible. Band C includes interactions
(e.g. forms) to import datasets and merged them together if applicable. Once a
dataset is successfully parsed, it will receive a tab at the top of the screen with
its name and the other bands will be unlocked. The interface supports multiple
datasets being loaded at the same time, with every loaded dataset in a unique
tab. When a dataset is selected, a description is shown which includes the data
quality score. Below this description, there is a row of buttons which are used
to switch between the bands from the framework. Selecting different bands will
show the various operations available to fix or investigate the deficiencies that
are part of that band. Band B is selected in Fig. 1. Data types are automatically
inferred and shown to the user, who can leave them as is, or correct them through
a dropdown menu. In the missing value section, an indicator shows whether
missing values are detected. Users can also check the data in the shown table
add extra characters that indicate a missing value. Missing values can optionally
be imputed or removed. At the moment, the user still has to choose between one
of four techniques (based on whether the data is missing at random or not), but
we hope to automate this further in future work.

Underneath the operations from the selected band, a data table is shown
so that the effect of the operations is immediately visible. This table supports

anomaly_score Annual Income (k$) Spending Score (1-100) Age Gender

96.58331382363339m 137

0.05

-0.05

-86.61652070234848m 15 1 18
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3e 137 Male 83 ©.08973938934859016 e
64 19 Male 3 0.08481876579198053 ]
45 126 Female 28  ©.98274928973733436 e

28 16 Female 6 ©.06875584617998964 ]

Fig. 2. Visualization of outliers in PyWash, color-coded by anomaly score.
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row/column deletion, filtering, sorting, and editing. The exporting options will
store return the data ‘as is’, thus including any modifications made in the table
(filtering, sorting, etc.). In future work, we also plan to export a log of all cleaning
operations with the data export.

The rightmost tab contains a visualization section to help the user with deci-
sion making and perform instant exploratory analysis. Figure 2 is an example of a
parallel coordinates graph color-coded by an anomaly score computed by an Iso-
lation Forest in band A. The outlier detection adds the columns ‘anomaly_score’
to the plot and a ‘prediction’ column to the table indicating which rows are
predicted to be outliers. The first row is marked as an outlier and highlighted.
Since these columns are added as part of the dataset, we can export them for
further analysis with other tools and visualizations.

Our data quality framework, the PyWash package, and the web interface are
all open source and we warmly welcome and encourage anyone to help fine-tune
the framework and improve the libraries and interfaces.

5 Discussion

The goal of this paper is to streamline the data cleaning process by creating
a vocabulary and a framework for automatic data cleaning, such that the data
cleaning process becomes an explicit, accountable, reported process. This will
help in communicating and describing the quality of your data to others and
acting on it adequately.

Although there are many challenges still to be resolved, we hope that this
work contributes to more standardized and automated cleaning processes. Most
of the deficiencies in band C can already be automated to a large extend. Auto-
mated decoding, parsing and storing of datasets can be done reliably, while data
formats and disjoint datasets can be detected when enough data is available.
Band B can also be automated to some degree since data types, missing values,
and duplicated records can be detected and issues can be (partially) resolved, as
long as the user specifies how to solve it.

Unfortunately, not all deficiencies can be automatically detected and fixed.
In some cases, domain expertise and common sense reasoning are essential. Bias
detection tools do exist, but most band A A deficiencies will have to be checked by
humans since detecting the context of a dataset is often impossible or unreliable.
Therefore, we have taken a human-in-the-loop approach that provides as much
guidance and automation as possible, yet leaves many decisions at the discretion
of the user.

From a usage perspective, an open challenge is that we have no objective
method to determine the weights and thresholds of each band. We have supplied
default values, but these will not suffice for everyone since not every dataset and
analysis has to meet the same requirements. Also, the framework does not yet
encompass every aspect of data preprocessing. For instance, feature construction
would be a valuable addition to band A, but much more work is needed to codify
it and guide the user in applying it.
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However, we do already provide an extensible software framework in which
new techniques that automate data cleaning and preprocessing can be imple-
mented and made easily available to anyone. As such, we hope that it will become
a test bed for automated data science research in general.

Acknowledgements. The authors would like to thank Neil D. Lawrence for con-
tributing many original ideas and his valuable feedback on the ideas in this paper. We
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Abstract. Programming languages such as R or Python are common-
place in data science projects. However, transforming data is usually
tricky and the composition of the right primitives (using the appropri-
ate libraries) to get the most elegant code transformation is not always
easy. In this paper, we present the first system that is able to automat-
ically synthesise program snippets in R given an input data matrix and
an output matrix, partially filled by the user representing the required
transformation. We use the type information given by the dimensions
of the matrix primitives (and other constraints) to reduce the combina-
torial explosion of primitive compositions. We test the performance of
our approach with a set of artificial data and real examples from Stack
Overflow questions.

Keywords: Data science automation - Matrix transformation -
Inductive programming + R programming language

1 Introduction

Many data scientists use programming languages, such as R or Python, that
allow them to manipulate data for analysis. Programming requires multiple skills
and the learning process of these languages can be long and frustrating for those
people without programming knowledge [8].

Matrices (or data frames) are a very common way of working with datal.
Matrix algebra can be applied to transform the data or extract a variety of
useful information. However, it is quite common that a data scientist knows
what kind of transformation she wants to do with a matrix, by just applying it
by hand to a few cells of the input and the output matrices, but struggles to find
a simple combination (or just a working combination) of operators that produces
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the desired matrix transformation. On other occasions, the data scientist sees
an example of the transformation and would like to write a concise piece of code
copying that transformation to apply to her own data. Finally, it is also quite
common that the data scientist has some code in the same or different language
(e.g., using loops) that she wants to transform into a more elegant algebraic
matrix transformation.

For instance, consider a data matrix as shown in Fig. la and a data scientist
who wants to extract the positions of the non-empty values. The data scientist
has an idea of what she wants as a result of the transformation (represented in
Fig. 1b), but she does not find the right combination or function to do this.

NA 0.30 0.50 NA NA NA NA 12
NA NA NA 0.90 NA NA 0.40 13
NA NA NA NA NANA NA 24
NA NA NA NA 0.60 NA NA 45
NA NA NA NA NA NA NA 27
(a) Matrix A with empty values. (b) Position (row, column) of non-empty
values of A.

Fig. 1. Example of data transformation using matrices. Can you code it?

A data scientist will try with a loop (or a nested loop) or will check Stack
Overflow, or will struggle to find a single function that makes the transforma-
tion. In the end, she can get the right code for this transformation, but what
if the process could be automated with a system that by taking Fig.1la and b
as inputs, could generate an elegant code snippet such as which(!is.na(A),
arr.ind=TRUE)? Note that in this example there is no similarity whatsoever
between input and output. The input is full of real numbers and NAs, and the
output only has integer numbers, none of them in common with the input. Also,
the dimension of the input matrix is 5 X 7, while the output matrix has dimen-
sion 5 x 2, where the same number of rows is just a coincidence. Is this problem
solvable at all? And what if we only give some of the rows (or even a few cells)
of the solution?

In this paper, we present a system that is able to induce R programs from:
(1) an input data matrix and (2) a partial output matrix filled by the user
representing the desired transformation. The system is able to automatically
find the operation or set of operations that can be applied to the input to obtain
the complete output. Because of the combinatorics of primitives and operations
for generating possible transformations, we need to use the characteristics of
the input and output matrices, and the primitives themselves, in the form of
constraints (dimensions, non-zero values, etc.) in order to reduce the search
space. Our system checks that the sequence of compositions is consistent with
the dimensions, and completes the output matrix, automatically producing the
R code, ready to be inserted in the data science pipeline.
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The following section contains an overview of relevant work in programming
by example and related areas, and how much this has impacted on languages for
data science and the automation of data science in general. Section 3 defines the
new problem that we address in this paper, and Sect. 4 presents an enumeration
algorithm that is constrained by the matrix dimensions. Section 5 presents some
experiments with artificial and real data. Finally, Sect.6 closes the paper with
the applicability of the system and the future work.

2 Related Work

Programming by example (PbE) is a kind of program synthesis or inductive pro-
gramming [5] in which the system automatically produces programs that match
the examples that are provided by a user. Generally, in order to make many
PbE applications effective, only a few examples should be sufficient to induce
the right solution even when the examples are incomplete. Data transformation
using string manipulation domain-specific languages is one of the applications
where PbE has been shown very successful (see [1,2,4,7,14,18]): the training
data is generated by the user, and we only need a small number of examples.
In [6] the authors present a tool for automating the generation of scripts for
file manipulation based on string transformations. One of the most recent appli-
cations is live programming by example. In this approach and usually via a
graphical user interface, programmers receive real-time feedback when writing
code. The goal is to use live programming to provide a new way for novice
programmers to interact and understand programming, as well as a useful tool
for more advanced programmers to develop. In [16] a plug-in for Javascript live
coding is presented. The authors use CVC4’s Syntax-guided synthesis (SyGuS)
algorithm [15].

Most of these systems are focused on string transformations. TaCLe [13] on
the other hand, is a system able to reconstruct the formulae used in a data
spreadsheet based on a comma-separated file by using the number of cells and
constraints to check. However, a tool that is more focused on automatic code
generation for data science problems has not been developed yet, covering the
different data structures that are common in data science projects and languages,
such as matrices, vectors or lists. Two of the most used languages for data science
are R? and Python® [17]. The automation of small but convoluted snippets in
these languages could represent an important reduction of the time needed in
many data science projects. In this paper we use program synthesis techniques
to automatically generate matrix transformation snippets in R, which can be
re-used for data preprocessing and postprocessing.

3 Problem Definition

In our approach we assume that there is a set of operations that the user knows
and can apply manually to a matrix A in order to obtain a result S. However, the

2 https://www.r-project.org/.
3 https://www.python.org/.
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operations should be coded in some specific language (in our case, R) and the
human needs some assistance to generate the code automatically from a single
example. This is the setting that serves as problem formulation:

1. There is an input matrix A, a finite real matrix of size m x n (m,n > 0).

2. There is also a partially filled matrix B, a finite real matrix of size m’ x n’
(m/,n’ > 0) where only some elements are filled and the rest are empty
(represented by ‘).

3. We look for a function f such that f (A) = S, where S is a finite real matrix
of size m’ x n’, such that for every non-empty b;; € B there is s;; € S such
that bij = Sij-

4. The function f is expressed as a composition of matrix operations in a given
programming language.

As additional criteria we will consider that the representation of f in the pro-
gramming language should be as short as possible, and we will also allow for
some precision error € (so that we relax item 3 above with |b;; — s;;| < €, instead
of bj; = s;;). We use the notation f(A) . B to represent this, and say that it
covers B.

As a basic example, consider the following matrices A and B:

135
A= l426

387
B=[813]

where A is the input matrix and B the partially-filled output. We try to find
f(A) ¢ B. In this case the function colsum in R, which adds the values
columnwise, gives the following matrix .S that covers B.

S =[81318]

Note that we look for a system that: (1) works with an input matrix and a
partially-filled output matrix, and nothing more, (2) automatically synthesise
the composition of primitives in the base programming language that solves the
above problem, and (3) export both the complete transformed matrix and the
code in R.

As far as we know from the related work seen in the previous section, no
other approach is able to solve this problem. This is what we try to do next.

4 Method

The nature of the main criterion used for finding f, namely the minimisation
of the number of primitives involved in the solution, suggests that the problem
can be addressed with an enumeration approach. Enumeration is a common
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approach in other inductive programming scenarios [9-12] but it must always be
coupled with some constraints (e.g., types, schemas, etc.) or strong heuristics.
In our case, we will use the dimensions of the matrices as the main constraint
for reducing the combinatorial explosion.

The number of primitives taken into account for the search is known as the
breadth (b) of the problem, while the minimum number of such primitives that
have to be combined in one solution is known as depth (d). Clearly, both depth
and breadth highly influence the hardness of the problem, in a way that is usually
exponential, O(b?) [3] affecting the time and resources needed to find the right
solution. As said above, for each matrix primitive g we take into account the size
of the input and output at any point of the composition, and also some other
constraints about minimum size (for instance, calculating correlations requires
at least two rows, i.e., m > 1).

More formally, for each primitive g we define a tuple (m,in, Nmin,y) Where
Mopin and Ny, are the minimum number of rows and columns (respectively)
for the input (by default m,,;, = 1 and Ny, = 1), and v : R? — R? is a type
function, which maps the dimensions of the input matrix to the dimensions of
the output matrix. For instance, for ¢ = colSums, y(m,n) = (1,n), because g
takes a matrix of size m x n and returns a matrix of size 1 x n. Here, m;, = 1
and N, = 1. Similarly, for g = cor, v(m,n) = (n,n), because g takes a matrix
of size m x n and returns a matrix of size n x n. Here, M., = 2 and nyipn = 1,
as we need at least two rows to calculate a correlation.

The whole procedure works as follows (see Algorithm 1):

1. The system can be configured to use a set of primitive functions (G), including
for each of them: the minimum values for the size of the input (mmin, Mmin)
and the type function ~.

2. For each particular problem to solve, we take the input matrix A and the
partially filled matrix B.

3. Being d;q; the maximum number of operations that can be composed for
the transformation, we run the algorithm from d = 1 to d = d;ne, building

on each iteration all the possible combinations Cy of the form {¢1,...,94}
where each g; is a function in G.
4. For each combination {¢1,..., g4} in Cy, we take the size of A and we verify if

g1(A) is feasible by its constraints and, in that case, we calculate the output
size after g; (using its type function 7;1) so producing the input size for the
next function g, in the combination, and so on for all the primitives. Only if we
reach the final g4 and the dimensions of the output matches the dimensions of
B, then we really apply the combination {g1,...,g4} to A and check whether
the result covers S, as defined in the previous section. In the positive case,
we build f as the composition of {g1,..., g4} and we stop.

5. We repeat this procedure increasing d in each iteration and until d = dpaq
(or the first f is found).

As mentioned in the problem formulation we allow for some small precision error
€ between the cells in S (generated by f) and the cells that are present in B
(and are generated by f).
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Algorithm 1
Selecting matrix operations by example

Require: {A[m X n] (Input matriz)}
Require: {B[m’ x n'] (Output matriz partially filled)}
Require: {BK (Dataset of matriz functions including in each row the tuple (g, Mmin, Wmin,Y))}
Require: {dyqz (Maz functions in each solution)}
Ensure: Find a matrix S =~ B
d—1
found < False
while !found and d < dymqz do
C — permutation(BK, d) {All possible combinations of d functions in BK}
for all c € C do
for i — 1,d do
valid < True
(Gy Mmin, Mmin,Y) < clt] { We extract the primitive and its corresponding type function}
if i =1 then
Minput <~ M
Ninput < N
else
Minput <~ Moutput
Ninput < Noutput
end if
if Minput < Mmin OF Ninput < Mmin then
valid < False
break
end if
(moutput7 noutput> — ’Y("lin,putv "input) {Apply the type function vy to Minput, nﬂinput}
end for
if valid and moutput = m’ and Noutput = n’ then
S «— apply(c, A) {Ezecutes all the functions included in ¢ over the matriz A}
if S~ B then
found «— True
break
end if
end if
end for
d—d+1
end while
return ¢, S

5 Experiments

We have implemented our system for R, a language and environment for sta-
tistical computing and graphics. R operates on named data structures (vectors,
matrices, data frames, etc.). In our case, we work with those functions such that
input and output are data-related structures (matrices, vectors, etc.). We also
take as functions some characteristics that we can extract from the structures
(number of rows, number of columns, element on the 4 position, etc.).

More specifically, we take 45 R functions related to matrices from the base*
and stats® packages included on R, such as colMeans(A), which computes the

* https://stat.ethz.ch/R-manual/R-devel /library /base/html/00Index.html.
5 https:/ /stat.ethz.ch/R-manual /R-devel /library /stats /html/00Index.html.
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Table 1. Example of functions included in the BK.

Function Mmin | Nmin | Description

rowSums(A) Form row sums for numeric values
colSums(A) Form column sums for numeric values
nrow(A) Return the number of rows present in A
ncol(A) Return the number of columns present in A
cor(A) 2 Compute the correlation of A

det(A) Calculates the determinant of A

is.ma(A) Indicates which elements of A are missing
lis.na(A) Indicates which elements of A are not missing
which(A) Give the TRUE indices of a logical object
apply(4,1,rev) Provides a reversed version of A

mean of the columns, or cor(A), which generates the correlation matrix of A.
Table 1 shows some of the functions included.

Note that in this preliminary version of the system some functions used (for
instance: !, apply...) and some arguments (for instance: 1...) are already added
to the functions lists manually for testing. This will be generated dynamically
on execution time in future versions.

In order to evaluate the algorithm, we first generate problems and sets of
synthetic matrices A for those problems. Next, we test the system with real
problems published on Stack Overflow®.

For replicability and encouraging future research, all the matrices used
and the code (also in R) are published on: https://github.com/liconoc/
ProgramSynthesis- Matrix.

5.1 Results with Artificial Data

We first have tested the system with synthetic data. For this, we have generated
10 random real matrices of different dimensions m x n where m,n € (2,10).
These matrices are filled with numeric values following a uniform distribution
between 0 and 100. For each matrix A we have derived 50 random matrices S,
generated by combining d random operations to make the true transformation
f, where d = 1..5 (10 matrices for each d). From every matrix S we generate
a matrix B where we replace between 60%..80% of the cells by empty values.
In total we have 500 pairs of matrices A, B to test the algorithm with different
numbers of operations.

Table 2 shows the accuracy results (percentage of cases where the correct
transformation is found). For each value of d (number of operations applied) we
can see the correct results, with an overall 95.2% of accuracy.

5 https:/ /stackoverflow.com/.
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5.2 Results with Real Examples

To test our system with real problems, we have used questions and answers from
Stack Overflow that are tagged with the r tag and contain matrix transforma-
tions. For this, we have used the dataset “R Questions from Stack Overflow”
from Kaggle”, filtering the questions by the title.

Table 2. Number of correct results for matrix transformations using program synthesis
with R. d is the number of functions applied to the matrix A.

Correct
96
98
94
95
93
Ace. W

U‘H;OJMH‘Q‘

For instance, one simple question asks to “replace 0’s with 1’s and vice versa
for a diagonal matrix in R”. In Fig.2a and b we can see the original matrix A
and the partially filled matrix B used to infer the operation needed to obtain
the matrix in Fig. 2c, the expected solution to the problem. The system is able
to solve this problem with d = 1: f =1—A.

1.00 0.00 0.00 0.00 0.00

0'09 1'09 1'09 1'09 1'09 0.00 1.00 1.00 1.00 1.00

0.00 1.00 0.00 0.00 0.00 1.00 0.00 1.00 1.00 1.00
0.00 0.00 1.00 0.00 0.00 o 1.00 1.00 0.00 1.00 1.00
0.00 0.00 0.00 1.00 0.00 o 1.00 1.00 1.00 0.00 1.00
0.00 0.00 0.00 0.00 1.00 S 1.00 1.00 1.00 1.00 0.00

(a) Matrix A. (c) Matrix S.

(b) Matrix B.
Fig. 2. Matrices A, B and S from the first example of Stack Overflow. In matrix S the
0s have been replaced by 1 and the other way round. For matrix B only the first row
is provided.

Our system can also deal with operations related to non-numeric matrices
and vectors. For example, another question asks about the “positions of non-
NA cells”, where one matrix filled with characters can be used as input (see
Fig.3a) and the result is a vector of positions for those values that are not NA.
With just two filled values, the system is able to solve the problem with d = 2:

f =which(!is.na(A)).

" https://www.kaggle.com /stackoverflow /rquestions.
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abNA cNA

de f g h 12...... 123467810

(a) Matrix A. (b) Matrix B. (c) Matrix S.

Fig. 3. Matrices A,B and S from the example “positions of non-NA cells” from Stack
Overflow. Values of matrix A are characters or NA. Matrix S is a vector of positions.
In matrix B only two values are provided.

A more difficult question asks to “Extract sub-diagonal”. Figure4a shows
the A matrix for this example, where S is again a vector of values S = [2,6],
and B only provides a value. In this case, the system produces the function f =
diag(A[-1,-ncol(A)]).

147

258 ER 75

369
(a) Matrix A.

(b) Matrix B. (c) Matrix S.

Fig. 4. Matrices A, B and S from the third example “Extract sub-diagonal” from Stack
Overflow. Matrix S is a vector with the values of the sub-diagonal of A. In matrix B
only one value is provided.

Some examples, however, are not correct. This is because in some cases the
cells that are generated are compatible with B but not entirely with S. In these
cases more cells filled in B would be needed in order to generate the correct
solution.

In total we have tested 15 examples from the dataset and 13 give the correct
matrix (see Table 3).

Table 3. Number of correct results for matrix transformations for the examples of
Stack Overflow. d is the number of functions applied to the matrix A.

‘d | Correct
1 6
2 5
3 2
Ace. W

6 Conclusions and Future Work

The process of generating code automatically can help data scientists when deal-
ing with matrices (or data frames), the most common representation of infor-
mation in data science projects. When the data scientist is a non-expert in
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programming (or is obfuscated by some complex transformations), she can now
have the resource of producing an example of the input matrix and a few cells
of the output matrix, and the system will generate the code for her. This can
be used when coding a transformation from scratch, when trying to imitate a
transformation seen on a website or a report (or in a different language) or when
optimising code (e.g., the data scientist finds a solution using a loop but wonders
if there is a more elegant solution in an algebraic form).

In this paper we have presented a new system that is able to generate code
in R according to this novel scenario. The system is based on an enumeration
approach guided by the number of primitives and pruned by the consistency of
the types given by the dimensions of the matrices and the intermediate results.

We have tested our preliminary approach with a synthetic set of 500 matrices
and 45 different transformations in R. The results show that the system is able to
give the correct result in 95.2% of the cases. We have also tried the system with
real examples of problems published on Stack Overflow. In this case, the system
achieves 86.7% accuracy. Note that the system could be used interactively, and
with some more values, some of these examples could be solved by the system
as it is.

As future work we plan to add new characteristics (constraints) over the
types (e.g., m = n as input), or over the values (positive values only). We would
like to include more primitives from several other packages from R and new data
structures apart from matrices. We can also explore more efficient algorithms
in such a way we can add constants (arguments for the functions) or multiple
pairs of input-output matrices. Of course, the approach can be replicated to
synthesise functions from other languages such as Python. Finally, we plan to
create a visual interface or an R package to test the system with real users.
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Abstract. Machine learning is taking an increasingly relevant role in
science, business, entertainment, and other fields. However, the most
advanced techniques are still in the hands of well-educated and -funded
experts only. To help to democratize machine learning, we propose Deep-
Notebooks as a novel way to empower a broad spectrum of users, which
are not machine learning experts, but might have some basic program-
ming skills and are interested data science. Within the DeepNotebook
framework, users feed a cleaned tabular datasets to the system. The
system then automatically estimates a deep but tractable probabilistic
model and compiles an interactive Python notebook out of it that already
contains a preliminary yet comprehensive analysis of the dataset at hand.
If the users want to change the parameters of the interactive report or
make different queries to the underlying model, they can quickly do that
within the DeepNotebook. This flexibility allows the users to interact
with the framework in a feedback loop—they can discover patterns and
dig deeper into the data using targeted questions, even if they are not
experts in machine learning.

1 Introduction

Data science has enjoyed considerable successes in recent years, both in creat-
ing more powerful models and broadening the range of potential applications.
However, behind all these exceptional success stories, there are troves of human
experts, including machine learning and domain experts, statisticians, and com-
puter scientists, among others. These experts focus on different aspects aspect
of the data analysis pipeline, from data acquisition and feature engineering to
modeling selection, training, and evaluation. As the complexity of each of these
tasks increases, even experts can lose track of all the details and nuances of each
part of the pipeline. As for non-experts, they might not be aware of best prac-
tices nor have a chance to keep track of the rapidly evolving state-of-the-art.
© Springer Nature Switzerland AG 2020
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These difficulties have given rise to a new area of research focused on building
off-the-shelf machine learning methods that can easily be used by non-experts —
automatic machine learning (AutoML).

Indeed, several different approaches to AutoML do already exist, ranging
from automatic building blocks for feature engineering [1-3] and model learning
[4,5], to automatic reporting as in the Automatic Statistician [6-8] and interac-
tive machine learning notebooks!. There is also work on interpreting the compu-
tations of modern machine learning models [9-11] as this is of crucial importance
to non-experts. However, to the best of our knowledge, there is no framework
yet that incorporates modeling, learning, reporting, explainability and interac-
tivity at the same time. The question whether such an exploratory automatic
statistician, which is not limited to only investigating a single target variable, is
possible, was the seed that grew into the present paper.

Specifically, triggered by the recent successes of deep and tractable proba-
bilistic models, we introduce DeepNotebooks?—an interactive system that auto-
matically constructs data reports in the form of Python notebooks using mixed
sum-product networks (MSPNs) [12,13]. Similar approaches for modelling het-
erogeneous data have been explored before [14], leading to the BayesDB system
for exploring databases [15]. Instead of exploring a method for approximate
inference in databases, DeepNotebooks are built on models for tractable, exact
inference for single table data. In addition, they are not only a framework for
user interaction with data, but also reporting tool, which performs a preliminary
array of common statistical tests. Python notebooks provide an interactive com-
putational environment, in which you can combine code execution, rich text,
mathematics, plots, and rich media. A DeepNotebook is therefore not just a
data report as it allows non-experts to interactively answer complex queries
using tractable inference within the underlying MSPN.

We proceed as follows: We start off by briefly reviewing MSPNs. We then
introduce DeepNotebooks. Before concluding, we illustrate them on several
datasets, including one on myocardial infarction diagnosis.

2 Automatic Statisticians via Deep Probabilistic Models

The vision of an automatic statistician [6-8] is to build statistical models with
minimal input from experts in statistics and machine learning. Probabilistic
graphical models (PGMs) [16] are arguably a promising tool for realizing this
vision. They can solve many ML tasks by estimating a distribution and then
answering probabilistic queries. Consider, e.g. predictive modeling. One may
train a PGM and use inference to obtain probabilistic answers to queries; for
multi-class classification answering the query argmax, P(Class = c|data) gives
us the most likely class according to our model. Alternatively, we can ask which is

! www.h20.ai/h20-old /h20-flow/.

2 Code available at https://github.com/cvoelcker/DeepNotebooks, an example of
a generated DeepNotebooks at https://cvoelcker.github.io/DeepNotebooks/demo/
deepnotebook.html.
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Fig. 1. An example of a valid SPN. Here, =1, x2 and x3 are random variables modelled
by histograms. The structure represents the joint distribution P(z1,z2,z3).

the most likely value of any feature: arg max,, P(X = z|evidence). Unfortunately,
inference in unrestricted PGMs is intractable.

2.1 Deep and Tractable Probabilistic Models

Motivated by the importance of efficient inference for large-scale applications, a
substantial amount of work has been devoted to learning probabilistic models for
which inference is guaranteed to be tractable. Examples of these model classes
include sum-product networks (SPNs) [17] and in particular mixed sum-product
networks (MSPNs) [12], hinge-loss Markov random fields [18], and tractable
higher-order potentials [19]. In this work, we have focused on SPNs.

Being instances of Arithmetic Circuits (ACs) [20], SPNs are a deep archi-
tecture that can represent high-treewidth models [21] and facilitate fast, exact
inference for a range of queries in time linear in the network size [17]. They
inherit universal approximation properties from mixture models — a mixture
model is simply a “shallow” SPN with a single sum node. Consequently, SPNs
can represent any prediction function, very much like deep neural networks.
However, having exact probabilistic inference at hand offers an advantage not
present in other PGMs and deep neural networks. One can compare the probabil-
ities computed by different models and not only solve classification or regression
problems, but also do anomaly detection at the same time while taking into
account the statistical nature of the data. Also, instead of e.g. classical deep
neural networks, SPNs are not only trained to predict the probability of a single
target variable. This makes them especially useful in a data exploration context,
where the true target of the investigation might not be known prior. Further-
more, any measures based on probabilities such as entropy, mutual information,
and information gain can be computed efficiently. In the present paper, we will
also show this for Shapley values [10].

2.2 Mixed Sum-Product Networks (MSPNs)

DeepNotebooks resort to MSPNs, as they are currently the only model able to
build an SPN structure in a likelihood-agnostic way — using piecewise polyno-
mials to encode the leaf distributions — therefore being suitable for our hetero-
geneous setting. MSPN learning is also able to deal with missing or unknown
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values out of the box, by implicit marginalization over the missing features. This
makes them applicable in contexts where common imputation methods might
not be able to easily fill in a lot of the data.

Representation of MSPNs: Formally, an MSPN is a rooted directed acyclic
graph, comprising sum, product, and leaf nodes as seen in Fig. 1. The scope of an
MSPN is the set of random variables appearing on the network. More precisely,
an MSPN can be defined recursively as follows:

1. a tractable univariate distribution is an MSPN.
2. a product of MSPNs defined over different scopes is an MSPN, and
3. a convex combination of MSPNs over the same scope is an MSPN.

Here, a product node encodes a factorization over independent distributions
defined over different random variables, while a sum node stands for a mixture of
distributions defined over the same variables. From this definition, it follows that
the joint distribution modeled by an MSPN is a valid probability distribution,
i.e. each complete and partial evidence inference query produces a consistent
probability value [17,22]. This also implies that we can construct multivariate
distributions from simpler univariate ones. To build the structure in a likelihood-
agnostic way, we make a piecewise approximation to the leaf distributions. In
their purest form, piecewise constant functions are often adopted in the form of
histograms or staircase functions. More expressive approximations are comprised
of mixtures of truncated polynomials and exponentials.

Tractable Inference in MSPNs. To answer probabilistic queries in an MSPN,
we evaluate the nodes starting at the leaves. Given some evidence, the probabil-
ity output of querying leaf distributions is propagated bottom up. For product
nodes, the values of the child nodes are multiplied and propagated to their par-
ents. For sum nodes, instead, we sum the weighted values of the child nodes.
The value at the root indicates the probability of the asked query.

To compute marginals, i.e., the probability of partial configurations, we set
the probability at the leaves for those variables to 1 and then proceed as before.
All these operations traverse the tree at most twice and therefore can be achieved
in linear time w.r.t. the size of the MSPN.

Learning MSPNs. Existing SPN learning works focus on learning the SPN
parameters given a structure [23-25] or jointly learn both the structure and
the parameters [26-28]. A particular prominent approach is LearnSPN [29,30],
which recursively partitions a data matrix using hierarchical co-clustering. In
particular, LearnSPN alternates between partitioning features into independent
groups, inducing a product node, and clustering the data instances, inducing a
sum node. As the base step, univariate likelihood models for single features are
induced. To learn MSPNs, the LearnSPN algorithm is adapted to deal with the
lack of parametric forms by performing a partitioning over mixed continuous
and discrete data by exploiting a randomized approximation of the Hirschfeld-
Gebelein-Rényi Maximum Correlation Coefficient (RDC) [31]. Thus, MSPNs
maintain their expressiveness while representing a wide range of statistical data
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Fig. 2. Tllustration of DeepNotebooks. A user feeds data into the system, and an MSPN
is trained. The MSPN along with analysis information computed from the MSPN are
then embedded into a Jupyter Python notebook, producing an interactive data report
that uses the MSPN as “virtual statistical machine”.

types, which can even be estimated automatically from data [13], resulting in an
automatic exploratory density estimation approach.

3 DeepNotebooks — Constructing Data Reports
in the Form of Python Notebooks Based on MSPNs

Generally, the idea behind DeepNotebooks can be defined as follows: A Deep-
Noteboook for a dataset D is a Jupyter notebook [32] with an embedded (deep)
probabilistic model encoding the distribution of D. The model is used used to
precompute the cells of the notebook describing the dataset D.

The workflow of DeepNotebooks is depicted in Fig. 2: A user loads a dataset
into the system, which automatically creates a probabilistic model that encodes
the distribution of the data, in our case an MSPN. Using the MSPN, the sys-
tem proceeds without user interaction and performs statistical analysis based on
the model. Both the model and the analysis are then stored in a Jupyter note-
book, the DeepNotebook. The user then opens the DeepNotebook where they
can see the automatically generated report, as well as interact with the model.
Changing the parameters of the reports is easy, as well as doing further analysis
or even evaluating other datasets with the given model. All those options and
more are available to the user from within the DeepNotebook. Each generated
DeepNotebook contains three major sections, cf. Fig. 2:

Section 1: a general report on descriptive statistics and feature marginals,
Section 2: an analysis of the clusters encoded by the SPN structure
Section 3: report of the impact of features on conditional probabilities,
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Exploring the iris dataset

This report describes the dataset iris and contains
general statistical information and an analysis on the
influence different features and subgroups of the data
have on each other. The first part of the report contains
general statistical information about the dataset and an
analysis of the variables and probability distributions.
The second part focusses on a subgroup analysis of the
data. Different clusters identified by the network are analyzed and compared to give an insight into the
structure of the data. Finally the influence different variables have on the predictive capabiliies of the
model are analyzes

TECHNISCHE
3 UNIVERSITAT
° DARMSTADT

Report framework created @ TU Darmstadt

The whole report is generated by fitting a sum product network to the data and extracting all information
from this model

Fig. 3. Textual introduction to the DeepNotebook automatically written for Iris.

which are wrapped into natural text produced by templates and by a prob-
abilistic grammar making the report more user-friendly, cf. Fig.3. Normally,
the notebook reports the top 5 results (variables with the highest correlation,
variables with the most impact on a prediction), but the user can also provide
thresholds for reporting or specify which variables they are specifically interested
in. We will now describe each section of a DeepNotebook in more detail.

DeepNotebook Section 1 - General Report. The general report provides a
description of the data at hand. It includes descriptive statistics like correlations,
dependencies, and mutual information among the random variables. Since the
network represents the full joint probability density function of all variables, it
allows efficient computation of these common statistical measures. Each calcula-
tion only requires one full bottom-up evaluation of the MSPN. The expectations
of each variable can be computed by propagating expectations from the leaves
to the root and treating each sum node as a weighted sum of expectations. The
variable correlations can be computed similarly by recursively evaluating the
covariance of the variables at each node. Covariance and correlation are only
defined for ordered attributes in the data. Therefore, these measures cannot be
computed for all variable combinations when the dataset contains categorical
features. For the coupling between a categorical and a continuous variable, the
notebook reports the coeflicient of variation. For categorical variables without
an ordering, normalized mutual information (MI) is reported.

Due to the efficient inference, it is possible to present partial dependency
plots [33] for categorical and continuous variables. By default, a DeepNotebook
selects all those features, which show a linkage (either due to covariance or
MI) above a certain threshold. This can be adapted dynamically by the users
according to their specific needs. Similar to the other sections, the notebook
also contains a written explanation of the visualization, constructed from the
probabilistic grammar shown in Fig. 4.

DeepNotebook Section 2 - Cluster Analysis. The MSPN structure contains
an implicit hierarchical clustering due to the sum nodes. A DeepNotebook uses
this to explain sub-clusters of the data and to provide descriptions for them.
Furthermore, the distribution of variance for each variable between the clusters
is calculated and presented. This allows users to understand the different parts of
the underlying model better. Intuitively, if a particular cluster explains a large
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<start> ::= <fullClause> | ... omitted for brevity

<fullClause> ::= <subject_feature> <object_dependency> |

«— <subject_dependency> <object_feature>

<subject_dependency> ::= There is a {strength} {neg_pos} <dependency> | The model
—  shows a {strength} {direction} <dependency>

<object_feature> ::= <conjunctionFor> <features?> "{x}" and "{y}"
<subject_feature> ::= <features?> "{x}" and "{y}" have

<object_dependency> ::= a {strength} {neg_pos} <dependency>

<conjunctionFor> ::= between | for

<dependency> ::= <linear?> dependency | <linear?> relation | <linear?>

< relationship
<features> ::= the features

<conjunctionWhile> , while | , but | . on the other hand

Fig. 4. Parts of the grammar used for producing correlation descriptions. Variables
with a “?” at the end are randomly included/omitted for variation. Variables in curly
brackets are replaced with the computed values from the MSPN.

part of the variance of an interesting feature, this cluster and its constituent
nodes are important for a more in-depth analysis.

DeepNotebook Section 3 - Feature Impact. Finally, a DeepNotebook com-
putes different conditional probabilities for important variables and analyzes the
influence of the features on predictions. To do this, each categorical variable is
treated as a target variable separately, and the SPN is used as a predictive model.
These predictions are then analyzed using the methods proposed by Robnik-
Sikonja and Kononenko [34], Bachrens et al. [35] and Strumbelj and Kononenko
[36]. These explanation approaches allow the users to understand how differ-
ent variables change the conditional probability of others and to estimate the
importance of a feature for classification. They require only the computation
of marginals, or gradients on the network. Due to the graph structure of the
MSPN, gradients can be computed by a simple backward pass through the net-
work using automatic differentiation. Marginalization of features is also easy in
MSPNs [17]. For more details about the computations, we refer to Sect. 4.

The information is aggregated and normalized to provide an easy overview.
Using Baehrens et al. [35]’s approach, the gradients are computed for each point
in the original dataset and then normalized. This normalization is important,
as the piecewise linear structure of the MSPN can result in very sharp edges
with correspondingly large gradients. The normalized gradients represent rela-
tive importance for each feature and datapoint. These are then aggregated into
one plot per feature and prediction, which describes the relative importance
for the prediction. With significant computational resources, users can also use
Shapley values [37] to estimate feature importance, which generalize the gradient
approach but requires a Monte Carlo sampling step. Overall feature importance
for each possible prediction attribute is then summarized using the mean squared
distance of each gradient component to zero. This assures that features which
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never have any local impact on the classification are also assumed to not con-
tribute to the impact globally. Finally, the Shapley values are visualized.

Since DeepNotebooks are Jupyter notebooks, the users can add more cells,
access the model and the data, and add arbitrary Python code for further queries
and analysis. A DeepNotebook therefore serves as an easy and accessible intro-
duction to a dataset and enables a user to employ the reported results in their
own data analytics pipeline later on. The data science loop does not start with
an empty but with a pre-filled Python notebook, “programmed” by the machine.

4 Computing Statistical Measures Using MSPNs

Each section of a DeepNotebook provides a different view on the data at hand
and is based on statistical measures computed form MSPNs as underlying “vir-
tual statistical machine”. Showing how to compute them is one of our main
technical contributions.

Computing Covariance Using MSPNs. Calculating the covariance of two
variables in a distribution can be decomposed into computing the joint expec-
tation and the marginal expectation of each variable. The graph structure of
an SPN allows an algorithm to calculate the moments of a probability function
directly from the network, in one bottom-up pass. At a sum node, the moment
of the distribution can be calculated as follows: my = E[z*] = Y. p;E[z*] =
> pimf;€ . At a product node, the moments of independent variables are also
independent, and therefore the moment of the child nodes can just be combined
in a vector. At a leaf node, the moments need to be calculated according to
the distributions. In the case of MSPNs, all leaves are piecewise linear density
approximations, therefore it is very easy to calculate the required integral for
the estimation, since all moments are polynomial functions of the base points.
Using the moments as computational blocks, it is possible to compute the corre-
lation matrix in closed form from the covariance matrix of the whole probability
density function.

The joint expectation can also be calculated efficiently in a similar manner:
First, the means of all leaf nodes are calculated independently. These are then
combined at the sum and product nodes in a bottom-up-pass. At a product node,
due to the assumption of independence, the joint expectation is equal to the
product of the expectation: E[zy] = E[z] - E[y]. At a sum node, the expectations
are multiplied by the weights and summed together. Finally, the correlation
can be obtained by normalizing the covariance matrix by the variances of the
features.

Dependencies Among Variables Using the Law of Total Variance. When
dealing with general tabular data, it is necessary to deal with categorical vari-
ables. In this case, the covariance is not defined, and therefore we use the coeffi-
cient of determination as a measure for categorical-continuous variables and the
mutual information for categorical-categorical dependence. Both are normalized
between 0 and 1 and serve a similar purpose of estimating variable dependency as
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the correlation. The coefficient of determination between a categorical variable
X and a continuous variable Y can be calculated as follows. If the categorical
variable is assumed to correspond to clusters in the continuous one, the coef-
ficient shows that the total variance of Y results from adding the intra- and
inter-cluster variance:

Elo*(p(Y|X))] N a*(E[p(Y|X)])
a?(p(Y)) a?(p(Y))

The first term approaches zero as the clusters become smaller and more and more
separated, while the second term approaches zero if the conditional means of the
clusters do not vary significantly. To compute them, we extended the algorithm
for computing mean and variance to conditional probabilities in MSPNs.

Compiling Conditional MSPNs from MSPNSs. Calculating moments as
presented above, marginalizes the MSPNs over and over. We can optimize that by
compiling a network that computes the conditional probability function p(z|y).
At a product node, the probability of p(z) and p(y) are independent of each
other and therefore the conditional probability p(z|y) equals the marginal p(z).
The leaf node representing p;(y) is omitted from the graph. At a sum node, the
conditional probability function reads as

plaly) =p(y) 7' Y cipi(e,y) = ami)p(y)'p() -

The probability p;(y) for each child serves as an update on the weights of the
sum node. This assumes that the probabilities of x and y are independent for
each child of the sum node, which is guaranteed if the algorithm is run bottom-
up on the network as p(y) has already been removed for all children. After
extracting the conditional MSPN, the algorithm detailed above can be run to
get the conditional means and variances of the continuous variable. Likewise,
one can compute the mutual information:

Mie.y) = —L@Y)  _ Xa 3, o 9)osp(,y)) — losp(@)pv))
VT VHEGHG) 5, p(e) loa(p() 2, p() los(p(y)

Indeed, mutual information has been used in the context of evaluating (M)SPNs
[38], to visualize the connection between two variables. But evaluating the equa-
tion above using a numeric method by repeatedly calculating the needed proba-
bilities for continuous features is potentially slow since the probability functions
represented by MSPNs can be non-smooth. This is the reason this framework
uses correlation for the dependency between continuous variables since approxi-
mating the mutual information becomes practically intractable for more complex
marginal distributions, which would incur a runtime overhead not feasible in
data exploration settings. For categorical variables, where the possible states are
finite, and often few, the mutual information can be calculated precisely using
the equation above.
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Estimating Shapley Explanation Values from MSPNs. SHAP values
[10,36] estimate the impact of a feature on a single classification using the
game-theoretic concept of Shapley values. These values represent the contri-
bution each feature brings to the outcome of the classification by looking at
subsets of features. In general, a complete calculation of these values for a clas-
sifier is intractable, because the number of possible subsets of features grows
exponentially, but they can be estimated using Monte Carlo sampling [36]. Since
MSPNs have a natural way of marginalizing over missing features, this can be
done efficiently without using interpolation or summation over missing values.

5 Illustrations of DeepNotebooks

To investigate DeepNotbooks empirically, we implemented the system in Python
using the SPFlow library [39] for learning the MSPN. Then we generated Deep-
Notebooks for four well known UCI datasets [40]. We used the Iris dataset to
develop and test all algorithms and descriptions. We then generated DeepNote-
books on the Titanic, Boston Housing and Adult datasets. As a final validation,
we generated a DeepNotebook for a real-world medical dataset comprised of
information on heart infarct patients, which has not been studied in the context
of machine learning or exploratory data analysis before.

Experimental Protocol. The Iris and Boston Housing datasets were used
as provided by the sklearn library [41], while the Titanic and Adult datasets
were cleaned and preprocessed. Finally, the medical dataset considers diagnosis
of myocardial infarction using high-sensitivity troponin 1 1-h [42]. The dataset
contains a large number of variables and a lot of missing values since not all
patients are subject to all test procedures. We filtered this dataset by estimating
the 20 most relevant attributes for diagnosis by using gradient tree boosting.
We then generated a DeepNotebook to further investigate the relationship of
these features to each other and the final diagnosis. For each dataset, we inves-
tigated three questions to assess the usability of the report for exploratory data
analysis: Does the report reflect patterns in the data as expected from prior
knowledge?, are there unexpected results?, and do these reflect genuine infor-
mation discernible from the data?. Together, these questions aim at deducing
whether the generated report provides reasonable insight into the data. Since
the datasets are originally intended for classification or regression, we focused
on understanding the relationship between the features and the label.

Correlation and Statistical Measures. For all datasets, we found that an
overview of the marginal distributions can help the user to assess the general
shape of the data quickly. The histograms calculated from the MSPN correspond
to empirical histograms of the data, albeit smoothed by the training process.
Figure5 shows the correlation and determination coefficients for the UCI
datasets. For the Boston housing data, the correlation already captures many
important relationships within the data. This is to be expected, as the Boston
housing data is specifically intended to showcase simple regression models and
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(a) Adult (b) Boston housing (c) Titanic (d) Iris

Fig. 5. MSPN Correlations reported in the DeepNotebooks on four UCI datasets.

(a) Education (b) Marital relation (c) Gender

Fig. 6. Relative impact of the features with the widest spread on classifying high
income in the Adult dataset as reported in the DeepNotebook.

linear correlations. Similarly, the Iris dataset contains a lot of well known depen-
dencies. On the Titanic and Adult dataset, the descriptive statistics are non-
informative, since the MSPN finds nearly no correlations within the data. The
only significant finding in the Adult data results from two redundant attributes,
the “education level” and a numeric representation thereof.

For the medical dataset, the mutual information (not shown here) indicates
a clear dependence between the diagnosis and the troponin levels of a patient,
which is a well known medical indicator for cardiovascular disease. The troponin
levels of a patient at different test times were also clearly correlated with each
other and less strongly with most other features, indicating their medical rel-
evance among the tests. Other weaker dependencies do not warrant a closer
inspection on the first pass, but might be interesting for a second, more thor-
ough, investigation. Since all features were already selected as being predictive
for the diagnosis, this was counter-intuitive, but mutual information and corre-
lation consider only pairwise interactions. This highlights the importance of non
traditional statistical tests, like feature importance analysis for prediction.

Explaining Predictions. We found that explaining predictions can highlight
variable interactions, which are not directly evident from correlation measures
alone. On the Adult dataset, the variable most commonly chosen as the target
for classification analysis is the variable “income”, which has two possible val-
ues, representing a yearly income below or above USD 50, 000 respectively. The
predictive precision of DeepNotebook for this target was 76.28%. To assess the
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Fig. 7. Shapley impact values for the diagnosis prediction on the medical dataset. Grey
dots visualize values for other class predictions. (Color figure online)

usefulness of the feature importance and impact measures, this classification was
investigated in more detail.
Figure 6 shows that the normalized gradient strengths for these features com-

puted by the DeepNotebook. One can clearly see that “education level”, “sex”,

9

and “marital status” are informative features for the prediction with a clear
impact. Also, by inspecting the visual explanations automatically created in a
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DeepNotebook, a user is able to assess that the values “bachelors” and “masters”
for the variable “education” have a pronounced, and opposed impact on the con-
ditional probability. The histogram is clearly separated, with the value “masters”
generally increasing the probability of a person earning more than USD 50,000,
and “bachelors” decreasing this probability. Another feature which results in a
relatively strong difference in probability is gender. Males are more likely to earn
more than females. Both of these results are not unexpected from the domain of
the data and conform with prior expectations and as well as inspection of the
underlying data. Another, less intuitive result of the DeepNotebook is that the
“marital status” has a recognizable effect on the probability of the income. A fur-
ther investigation of this phenomenon shows that this pattern is also reflected in
the data. This shows that it is indeed possible to quickly glean facts and avenues
for further investigation from the automated analysis that might not have been
expected a priori.

For the medical dataset we show the Shapley values computed by the Deep-
Notebook. As one can see in Fig.7, different features are important for the
separate classifications. This is a distinct case when compared to the Adult
example, since in a multi-class prediction, the Shapley values and explanation
vectors will not be symmetrical. Overall, the troponin levels (features Ib_mmy)
are the most important predictive features, which aligns with the strong mutual
information coupling to the diagnosis and the medical background knowledge.
The next important features contain information about symptoms, admission to
the ICU, and ECG patterns detected. This conforms clearly to the expectation,
for example in cases where the symptoms leading to ICU admission are long
passed (feature qu-sym001 with high values) the chances of an acute infarction
are far lower, while a specific ECG signal (low values for feature pe_ecg0041) are
indicative of a STEMI type myocardial infarction (this signal is very typical for
STEMI infarctions). The signal for the strong indicator troponin is only relevant
for excluding heart attacks, STEMI and NSTEMI type occurrences both lead to
high levels, although very high levels seem mostly indicative of a STEMI type
infarction. For differentiating between different types of infarction, looking for
example at the ECG result can help. This is a good starting point for a more
in depth analysis of the detailed differences between the different heart attack
types. Overall, DeepNotebooks can yield several findings that were not obvious
to non-medics but conformed to medical knowledge.

6 Conclusions

We have presented DeepNotebooks—a novel way of interacting with data using a
deep probabilistic model in the background. The generated reports automatically
capture several insights from the data presented in a natural, comprehensible
way. The automatic evaluation presented in written and graphical form enables
domain experts that are not machine learning experts to get feedback instantly
and to explore their data at their own pace. Changing the parameters of the
generated report allows a user to choose between an in-depth analysis and a
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quick overview of the most important patterns. Also, since the data reports
are Jupyter notebooks, the results reported are highly interactive and flexible.
Overall, the example DeepNotebooks show that they allow one to find patterns
in the data, which conform to prior expectation, but also result in novel findings.
Given these insights, the user can directly investigate the model and data further
using standard Python.

Nevertheless, DeepNotebooks are only a starting point and many things are
left to be done. One should extend DeepNotebooks to include other statistical
measures. Currently, DeepNotebooks are also specifically focused on analyzing
categorical datasets. They should be extended to analyzing regression and time
series data. Extending SPNs to provide better or even counterfactual explana-
tions of the underlying model is another interesting avenue. Incorporating other
model agnostic or developing similar measures specifically for SPNs could pro-
vide additional insight into the predictive capabilities of the network. Likewise,
extracting Bayesian and Markov networks from SPNs would also lead to addi-
tional insights into the underlying data. Finally, there are many SPN learning
algorithms with different properties. A thorough investigation of these, espe-
cially concerning how easy they are to use and tune for a non-expert user, would
greatly improve the usability of the method for a wide audience.
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Abstract. Setting the optimal hyperparameters of a learning algorithm
is a crucial task. Common approaches such as a grid search over the
hyperparameter space or randomly sampling hyperparameters require
many configurations to be evaluated in order to perform well. Hence,
they either yield suboptimal hyperparameter configurations or are expen-
sive in terms of computational resources. As a remedy, Hyperband, an
exploratory bandit-based algorithm, introduces an early-stopping strat-
egy to quickly provide competitive configurations given a resource bud-
get which often outperforms Bayesian optimization approaches. However,
Hyperband keeps sampling iid configurations for assessment without tak-
ing previous evaluations into account. We propose HyperUCB, a UCB
extension of Hyperband which assesses the sampled configurations and
only evaluates promising samples. We compare our approach on MNIST
data against Hyperband and show that we perform better in most cases.

Keywords: Hyperparameter optimization - Multi-armed bandits

1 Introduction

The performance of machine learning models highly depends on the choice of
the hyperparameters. For many years, grid search was the standard approach
for tuning the underlying models. However, with the emergence of more sophis-
ticated models such as in deep learning, grid search is no longer practical due
to the large hyperparameter space, and thus simpler approaches such as random
search became more desirable and showed to be more effective [2].

Over the last few years, the problem of hyperparameter optimization has been
successfully presented as metalearning using Bayesian optimization methods
[3,5,10]. Nevertheless, bandit-based approaches exhibit superb performance in
many scenarios [8,9]. Li et al. [8] propose a method, called Hyperband (HB), for
hyperparameter selection which, in their settings, outperforms Bayesian methods
while providing a significant speed-up compared to those competitors. Hyper-
band is based on the successive halving approach [11] for improving random
search by an adaptive allocation of available resources to different configura-
tions.
© Springer Nature Switzerland AG 2020
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Algorithm 1. Hyperband
input : R, n

1 initialization: s,az = Llog77 R] and B = (Smaz + 1)R ;

(M)

for s € {smaz, Smaz — 1,...,0} do
B 07
R s+1 1
As =get_hyperparameter_configuration(n);
for i € {0,...,s} do
ni=nn"t, =’
L(As) = {run_then_return_val loss(\, ;) | A € As};
As = topk(As, L(As), | =2 ]);

n

S

n= r=Rn""

© 0N e W

end
10 end
output: configuration A with lowest validation loss seen so far

However, Hyperband is an amended version of random search in which there
is no learning to guide the search. In addition, despite the fact that Hyperband
is highly efficient for finding a good configuration, it does not find an optimum
fast enough. Hence, modeling the hyperparameter optimization as a learning
problem is more reliable than a search algorithm. Therefore, instead of only
sampling iid configurations of hyperparameters as Hyperband does, we propose
to leverage the information of previous batches in order to pre-evaluate sampled
configurations and to discard unpromising ones. This is done by a UCB bandit
strategy in a contextual setting.

In this paper, we introduce HyperUCB, a model-based bandit framework, to
accommodate exploitation into the purely exploratory algorithm of Hyperband.
In HyperUCB, the arm selection is carried out by incorporating an Upper Con-
fidence Bound (UCB) strategy [1] to guide the search within the iterations in
order to balance exploration vs. exploitation. We further model the arms in a
contextual setting which generalizes the model for unseen arms (i.e., configura-
tions). Therefore, we employ a modified version of LinUCB [7] in our approach to
achieve a model-based Hyperband for the task of hyperparameter optimization.
Empirically, we show that our proposed approach either outperforms Hyperband
or performs on par on optimizing the hyperparameters of a deep learning model.

2 Background

2.1 Problem Setting

Let D = (X,Y) be a data set and M be a learning algorithm. The data is
usually split into a training set for optimizing the parameters of the model, a
validation set for optimizing the hyperparameters and a test set for evaluating
the overall performance of the model. Assume that H is the set of all possible
hyperparameter configurations, we denote by £(A) the loss of M using A € H
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on the validation set. The goal is to find the best hyperparameter configuration
A* = argminy £(A), which minimizes the validation loss for a given budget.

2.2 Hyperband

Hyperband (HB) is an anytime search algorithm based on multi-armed ban-
dits to find the best configuration for a machine learning approach given lim-
ited resources. The method performs several iterations based on the available
resources, and in each iteration repeatedly calls the SuccessiveHalving method
[6] for choosing the best ones. Let R be the maximum budget available for train-
ing various instances of a model, then Hyperband conducts S, = Llog,7 R]
iterations for exploration, where 7 is the ratio of sampling the best arms.

Hyperband is outlined in Algorithm 1. Note that the evaluation of the hyper-
parameters A € A in line 7 can be done in parallel. Within the algorithm,
three methods are used. The method get_hyperparameter_configuration(n)
returns a set A; of n € N hyperparameter configurations {\,..., A, } sampled
iid from a given hyperparameter space H of feasible configurations. Furthermore,
by calling run_then _return val_loss(\,r), we obtain the validation loss £(\)
of configuration A and resource allocation r. Finally, top_k (A, £(Ay), k) returns
a subset of A, of size k with the k lowest validation losses given in £(Aj).

2.3 Contextual Bandits

The multi-armed bandits in contextual settings benefit from the available infor-
mation (context) to make a better decision at the time of action (arm) selection.
That means, before making a decision, some context is shown to the bandits, and
depending on the situation the decision might be different. The context could
include the information about the current state, the attributes of the arms, or
any other available data. A contextual bandit aims at finding a mapping between
the contexts and their corresponding outcomes in order to minimize the total
regret. Li et al. [7] propose LinUCB in which the outcome of every arm is mod-
eled as a linear function of the context. In the next section, we present a modified
form of LinUCB to design contextual Hyperband.

3 Contextual HyperUCB

In this section, we present our approach to upgrade Hyperband to a contextual
bandit method using a UCB strategy. Let H be the space of all possible hyper-
parameter configurations for a machine learning approach. We are interested in
finding \* € H that gives the best performance y* in terms of the validation loss
L of the model

A* = arg min L(\). (1)

A

We assume that a hyperparameter configuration can be represented by a d-
dimensional vector A and model the contextual bandit as a linear function of



HyperUCB: Hyperparameter Optimization Using Contextual Bandits 47

Algorithm 2. HyperUCB
input : R, n, a, v
initialization (HB): simas = [log, R| and B = (smax + 1R;
initialization (UCB): 8 = 04x1, X < Qoxa, A — vIlaxa, no = n°™*;

for s € {Smaausmam - 17~ . 70} do

1
2
3
4 compute n and r as in HB;

5 As = top-ucb(get_hyperparameter_configuration(nog), 8, A, n);
6 append A to X VA € A, and initialize y, = 0;

7 for i € {0,...,s} do

8

9

compute n; and r; as in HB;
for A € As do
10 A=A+ AM\T;
11 yx = —run_then_return_val loss(\, 7;);
12 end
13 0=(X"X+~4)"'XTy;
14 As = top-ucb(4s,0, A, [ ]);
15 end

16 end
17 top_ucb (As,0,A,n):

18 | pa=0"A4+aVATA-IN VA€ A
19 return top k(As,p,n)

the configurations. After learning the parameters 6 of the linear model, a new
configuration A can be evaluated as § = 6T \. The optimization problem in
Eq. (1) suggests a lower confidence bound strategy since we aim to minimize L.
However, by considering negative loss values —y, we can retain the usual upper
confidence bound (UCB) strategy since maximizing the negative validation loss
—L is equivalent to minimizing £. The UCB approach trades off exploration and
exploitation as it also considers the uncertainty for a specific hyperparameter
configuration. The score py is thus obtained from @TA + avVAT A1), where
A = XTX 4 71 is the regularized design matrix of the configurations with
~v > 0 which have been evaluated so far and « > 0 is a trade-off parameter.
Algorithm 2 summarizes our approach for HyperUCB. In this algorithm, the
bandit model is learned in line 13, and together with the covariance matrix it
computes the upper confidence values in two sampling steps. At every iteration,
a number of ny configurations are randomly sampled as in HB, and from those,
the bandit model selects the n most promising ones. The next sampling step is
at line 14, where top_ucb is performed on the values of py) rather than y,. Note
that the matrix A is updated every time a configuration is chosen, even within
an iteration, which leads to a tighter confidence interval for those configurations.
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Table 1. Hyperparameters of the multi-layer perceptron.

Hyperparameter | Range Type
Learning rate [0.0001, 1] Float

# hidden layers |{1,2,3,4,5} Integer

# neurons {16,32,...,512} Integer
Activation {relu, tanh, sigmoid} | Categorical

4 Empirical Study

In this section, we evaluate the performance of the HyperUCB strategy compared
to Hyperband [8]. The experiments are conducted on the MNIST data which
consists of 60,000 training and 10,000 test instances. As a model, we use a simple
multi-layer perceptron (MLP) which learns to classify images of handwritten
digits. We use the categorical cross entropy as a loss function and the RMSprop
optimizer. The validation loss is computed on the hold-out data. Within the
MLP we use four hyperparameters which are outlined in Table 1. We determine
a minimum budget of one unit of resource which corresponds to 100 mini-batches
of size 100. The maximum budget consists of R units of resources, hence 100R
mini-batches. We use the default value of = 3 as specified in Hyperband.
Our approach contains two additional parameters: the exploration-exploitation
trade-off & and a regularization-weight v in ridge regression. We select the values
of @ = 0.4 as it gives best performance in [7] and the regularization is set to
v =0.1.

1.0
0.14 —— HyperUCB —— HyperUCB
s ’ —— Hyperband —— Hyperband
o 0.8
o012 g
- o
8 506
5010 g
3 S04
o o
>0.08 >
) <
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0.0
10 20 30 40 50 102 103 104
Max. budget wall clock time [s]
Fig. 1. Performance w.r.t. the budget. Fig. 2. Performance w.r.t. the time.

Figure 1 shows the validation loss averaged over five independent runs for var-
ious maximum budgets including standard errors. With a max. budget higher
than 19, HyperUCB outperforms Hyperband as it consistently yields lower val-
idation errors. We credit this finding to the fact that using a higher budget,
more rounds are conducted on which the bandit model can learn to discriminate
promising from unpromising hyperparameter configurations. This can be hardly
done with lower max. budgets due to the lack of training data.
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Figure 2 depicts the average validation loss in dependence of computational
time, measured in seconds, for a budget of 45. It can be seen that HyperUCB
performs on par with Hyperband, meaning it is as fast or faster than Hyperband.

5 Conclusion and Future Work

In this paper, we presented HyperUCB, a contextual extension using a UCB
strategy for Hyperband, which is a bandit-based method for hyperparameter
optimization. The idea was as follows: Instead of sampling n iid hyperparameter
configurations in each round for evaluation, we sampled more configurations,
assessed them using a multi-armed bandit with a UCB strategy and only eval-
uated the n best configurations. This way, we guided the sampling procedure
towards more promising configurations and avoided evaluating hyperparameters
which are already assumed to yield a high validation error. An experiment on the
MNIST data showed that it outperforms the Hyperband baseline for moderate
budgets at optimizing several hyperparameters of a multi-layer perceptron.
Further work will utilize the ideas from Tavakol and Brefeld [12], in which
the parameters of the bandit model can be learned using kernel methods in the
dual space to capture non-linearity. We also plan on extending the experimental
setup by adding more baselines, e.g., BO-HB [4] as well as considering multiple
hyperparameter optimization scenarios on various data sets and models.
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Abstract. From a set of technical drawings, we learn a parser program
to interpret the tabular data contained in such a drawing. This enables
automatic reasoning and learning on top of a database of technical draw-
ings. For example to help designers find or complete designs more easily.

Keywords: Inductive Logic Programming - Technical drawings

1 Introduction

Technical drawings are the main method in engineering to (visually) communi-
cate how a new machine or component functions or is constructed. They are the
result of a design process starting from a set of specifications that the final prod-
uct needs to comply with. This design process follows a number of strict and soft
rules (e.g., material choice as a function of temperature). Figure 1 shows a typical
example containing both a 2D and 3D visualisation of the object, and a mate-
rial list in tabular form specifying its parts and properties. They are carefully
crafted documents that act as key deliverables at the end of a design process.
As such, they contain a wealth of information. Furthermore, information is laid
out according to generally applied conventions.

e = — == == Engineering companies have a
large database of previous designs,
potentially going back decades. They
are often underutilized because pre-
vious designs can only be search for
by title or by a limited set of tex-
tual annotations. Ideally, however, this
database can also be used to: (1) given
a technical drawing, finding other rel-
evant drawings in a large database of
previous designs; (2) given a partial
description, finding designs that would
complete the partial design. In this
work we present an approach that can
extract the knowledge in a technical

tabular
data

Fig.1. A technical drawing with high-
lighted tabular data
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drawing and thus improve the search capabilities significantly to achieve the
aforementioned tasks.

To be able to use the data encapsulated in technical drawings, we need to
parse the information contained in them, and translate this to a representation
that can be handled by automated systems. Furthermore, such a system should
be able to deal with both recent digital drawings and historical analog drawings.
The latter is important because a great amount of information is captured in
legacy drawings. Ideally, extracting the information can be done using a parser,
thus a small computer program. The main challenge is that writing and main-
taining such a parser is a time-consuming and expensive task. Furthermore, it
is error prone since this requires an expert to explain subtle rules to an analyst
or a programmer. The approach we present here will learn such parsers directly
from expert feedback on the original drawing and allow its output to be used in
automated tasks such as searching relevant designs.

We apply Inductive Logic Programming (ILP) to extract structured infor-
mation from technical drawings, and propose a bootstrapping approach that
boosts performance during multitask learning. The feedback used for learning
takes the form of annotated technical drawings. Providing such annotations is
a trivial task for domain experts. The required number of drawings that need
to be annotated is mainly dependent on the number of variations or templates
that need to be recognized. Fortunately, since all technical drawings within an
organisation are expected to be (loosely) based on a limited set of templates,
the number of drawings that need to be annotated is also limited.

In this work we introduce two contributions. First, we introduce the use of
ILP to learn parsers from data and expert knowledge to interpret a technical
drawing and produce a formal representation. Second, we introduce a novel boot-
strapping learning strategy for ILP. The efficacy of this method is demonstrated
in experiments on a real-world data set.

2 Identifying Technical Drawing Elements

Archived technical drawings are digitized to varying degrees. Because of this, we
consider as a baseline the case where the technical drawing is represented as a
bitmap image. A first step involves partitioning the image into its main segments
using DBSCAN [2]. The resulting segments are identified using a CNN classifier.
Segments identified as tables are further processed using a contour detection
algorithm [4]. This enables the extraction of all individual cells. These cells are
further processed by a parser that is learned from examples (see Sect. 3).

3 Inductive Logic Programs for Parsing

The data contained in a technical drawing is laid out in a manner that facilitates
human interpretation. Tabular data in particular tends to have its data organised
both spatially and through explicit annotation. Common examples of spatial
structuring involve assigning related cells to common rows or columns, while
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assigning unrelated cells to different subtables or distant cells. Particularly useful
are cells that contain unambiguous keywords such as attribute names. These are
helpful to gain insight in the structure of a table. They serve as anchors to cells
that are less distinctive on their own but can be described relatively to anchored
cells.

The application at hand does not only require us to parse a table, but also
demands that we learn how to interpret its spatial organisation. A small com-
puter program is required to parse these custom drawings. Programming a parser
for each type of drawing is not only an expensive and time consuming task to
build and maintain, but also prone to errors. Various errors are potentially intro-
duced while programming a parser. First, the structure of such technical draw-
ings needs to be explained to a non-expert, i.e. a programmer, who interprets
the instructions. Second, the tables are typically not simple rectangular tables.
They thus require a non-trivial parser that is difficult to understand. Third, a
design can change over time requiring periodic maintenance and lead to soft-
ware erosion. Ideally, these parsers would thus be programmed automatically
based on the expert’s knowledge. This is possible by means of machine learning
techniques that learn programs from examples. The examples in this setting are
obtained by annotating technical drawings, a task that is trivial for a domain
expert.

The highly relational nature of tabular data and the ease with which tables
can sensibly be navigated by visiting adjacent cells suggests the use of Inductive
Logic Programming. ILP systems are particularly suitable for learning small
programs from complex input data. Two advantages of learning programs using
ILP we benefit from in this work are the ability to learn recursive definitions
(e.g., row n is defined by row n+ 1) and to reuse learned target labels (e.g., first
learning what a header row is helps to define what a content row is).

3.1 Standard ILP

An inductive logic programming system learns from relational data a set of defi-
nite clauses. Given background knowledge B, positive examples E* and negative
examples F~, it attempts to construct a program H consisting of definite clauses
such that B A H entail all, or as many as possible, examples in ET, and none,
or as few as possible, of those in E~.

We thus need to supply three types of inputs. First, a set of training data,
examples F/, that contains the properties to describe a cell in a technical drawing.
An example can be:

— Cell text: The textual contents of each cell. Tesseract 4.0 is used to recognize
cell contents [3].

— Cell location: The cell’s bounding box information (i.e. (x, y) coordinates and
cell width and height).

Second, a label for each cell (e.g., author, bill of materials, quantity). A cell
can be annotated with multiple labels (e.g., a cell can be a quantity in the bill
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of materials). Depending on which target label we want to learn, we split the set
of examples E in a tuple (E*, E~) where ET contains the examples associated
with a cell that has the target label and F~ those examples that do not. For
standard ILP, the learning task is defined for one target label, so we repeat the
standard ILP task for each label in the set of labels.

Third, we can provide background knowledge B that contains generally appli-
cable knowledge for the problem at hand and remains unchanged across exam-
ples. In this case we provide:

— Relative cell positions. Relations capturing which cells are adjacent to each
other, and in which direction (horizontally or vertically) based on their bound-
ing boxes.

— Numerical order. The successor relationship. Although not essential, it is
useful for learning concise, recursive rules.

The output of ILP, the program H, is a set of definite clauses of the form
‘author (A) :- cell_contains(A, drawn)’ which can be read as the rule ‘Cell
A contains the author if it contains the word ‘drawn”.

3.2 ILP with Bootstrapping

It is expected that learning programs to properly parse the target labels in P
will prove simple for some targets and more challenging for others. We propose
a bootstrapping extension that supports the construction of sophisticated pro-
grams by allowing them to employ the simpler ones in their definition. This is
loosely inspired by the ideas raised in [1], but applied to the ILP setting.

This corresponds to a variation of the previously discussed ILP set-up where
a dependency graph G is used. The nodes in this directed acyclic graph each
represent a possible target label and the edges represent dependencies between
those labels. A dependency indicates that one target label might have a natural
description in function of another. Although we allow for this dependency graph
to be specified manually, our method defaults to a fully automated approach
where standard ILP is first applied to learn programs for each target. Then tar-
gets are ranked according to the ascending F; score of their programs on the
training data. Each target in the list then has all subsequent targets as its depen-
dencies. Finally, ILP with bootstrapping learns targets in the order specified by a
correct evaluation order of G, and extends the background knowledge B for each
target with the programs constructed to parse its dependent target labels. When
learning program H using bootstrapping to capture a particular target label 1,
we define its extended background knowledge B" = B A (A;cgescendants(c,ry Hi)s
where H; is the program trained for target label i.

4 Experiments

4.1 Learning Set-Up

The ILP system Aleph is used to learn possibly recursive programs that parse
the chosen targets from the tabular data, ranging from the document’s author
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(b) header/1 covers any cell located directly above a cell containing the word ‘LIST’.
materials/2 parses the indexed parts of the materials table. Its first argument is the
index and its second argument represents the cell. materials/2 consists of two clauses.
The first clause anchors the table by considering row 0 to consist of the cells above
the header. It employs header/1 in its definition. The second, recursive clause indicates
that the index is incremented for each row located above another.

Fig. 2. Figure a provides an illustration of the materials table and its header. Listing
b shows the associated program learned using bootstrapping.

and its approval date to the attributes covered in the materials table and its
indexed components.

Training data consists of a set of fully labeled technical drawings. A cus-
tom data labeling tool with a web-based graphical interface was constructed to
support domain experts in labeling drawings.

Using this tool, 30 technical drawings with on average 50 cells were labeled
with 14 different labels. For each target label, examples that contain that label
form its positive example set, while negative examples are automatically derived
by taking the complement of all possible examples for that target with its positive
example set.

The labeled data is split in a training set consisting of 10 drawings, and a test
set containing the remaining 20. Since the choice of training data can heavily
affect the capability for finding rules that properly generalize, experiments are
repeated 5 times on random samples of the training data. Because the order in
which training examples are presented can also affect the rules identified by the
coverage-based algorithm employed by Aleph, repeat experiments are performed
even when all training data is available for learning, as a sample then corresponds
to a different order in which the examples are presented to the learner.
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4.2 Results

Figure3 visualizes the performance
with which cell labels and their appro-
priate index are correctly identified.
This shows that only a few anno-
tated designs are required for the
bootstrapping method to learn per-
fect parsers for all labels whereas
standard ILP fails to learn a perfect
parser. Furthermore, it highlights how Loy S P =
ILP with bootstrapping compared to B
Standard ILP is less sensitive to over- umber of training dravings

fitting when presented with additional
training data. This robustness of ILP
with bootstrapping lends itself well

F) score

Fig. 3. The performance measured using
the F score of programs learning materi-
. . als/2. Min/max shading is included to indi-
to lncrement'al le?,rn.mg. _BOth sub- cate the range of performance between the
tle and drastic variations in template 1ot and worst-performing program over 5
design can be handled by providing repetitions.

the learner with a representative sam-

ple as training data. Learning perfect parsers for simple labels such as author or
approval date can be achieved by both standard ILP and the bootstrap method
with only a few training examples. More interesting is to look at the most compli-
cated label, the indexed components (materials in Fig. 2a). The best performing
program constructed using standard ILP consists of 14 clauses and yields 17 false
negatives. Bootstrap learning, however, succeeds at learning a completely accu-
rate, concise program (see Fig. 2b) whenever more than three technical drawings
are provided in the training set. The poor performance when using only a few
drawings is due to poor generalization. More specific, in these drawings the
materials tables provided for training each consisted only of a single component
and there was no pressure on the inductive learner to learn the recursive rule
necessary to capture the rows of larger tables.
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Abstract. Recent progress in AutoML has lead to state-of-the-art
methods (e.g., AutoSKLearn) that can be readily used by non-experts to
approach any supervised learning problem. Whereas these methods are
quite effective, they are still limited in the sense that they work for tabu-
lar (matrix formatted) data only. This paper describes one step forward
in trying to automate the design of supervised learning methods in the
context of text mining. We introduce a meta learning methodology for
automatically obtaining a representation for text mining tasks starting
from raw text. We report experiments considering 60 different textual
representations and more than 80 text mining datasets associated to a
wide variety of tasks. Experimental results show the proposed method-
ology is a promising solution to obtain highly effective off the shell text
classification pipelines.

Keywords: Text mining - Meta-features - Text classification

1 Introduction

Nowadays, the success of machine learning systems relies on the knowledge of
human-experts that according to their experience design and test multiple mod-
els extensively to select the best modeling option. Although effective, this strat-
egy is not only time consuming but also impractical since an expert is not always
available. This has motivated the increasing demand for easy-to-use automated
machine learning solutions. In this context, AutoML is the field of research aim-
ing to generate machine learning models without any human supervision. Recent
progress in AutoML has lead to quite effective and competitive solutions when
dealing with tabular (matrix formatted) data, see e.g., [5,7,16]. However, these
techniques are still limited in the sense that they require the user to transform
raw data into a tabular representation. This step relies heavily on the expertise
of users.

Text classification is one of the most studied tasks in Natural Language
Processing (NLP), this is because of the number of applications that can be
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approached as text classification problems (e.g. sentiment analysis, topic label-
ing, spam detection, and author profiling among others). Many techniques for
pre-processing, feature extraction, feature selection and document representa-
tion have been developed over the last decades. Despite all this progress by the
NLP community, it is still an expert who designs the pipeline for text classifica-
tion systems that includes one or many of such techniques, each of which usually
requiring the fine-tuning of hyperparameters.

In this work we take a step towards the automated generation of the classi-
fication pipelines for text classification by focusing on the representation. Thus,
our goal is to automate the process of determining the best representation to
approach a text classification task starting from raw text. Unlike other data
types, language/text provides an unstructured and rich source of information,
hence selecting the adequate representation for text will have a direct impact on
the performance of text mining solutions. In fact, representing texts has been
one of the most studied venues in NLP. We propose a meta-learning solution
to automatically determine the best representation given a dataset of raw text.
This is a first step towards the full automation of the generation of text clas-
sification pipelines. We propose a number of meta features some of which are
extracted directly from raw text, and most of them not used before for meta-
learning. We report experimental results considering 60 textual representations
and more than 80 text mining tasks. Our results show that the proposed meta
features successfully characterize text mining tasks and that an AutoML solution
for text mining (AutoText) is feasible. Our work is among the first to approach
text classification via meta-learning from raw data and it is by far the largest
study on meta learning in the context of text mining.

2 Related Work

In the context of text mining, few works have explored the automated selection of
different parts of classification pipelines. With experiments in the Reuters-21578
corpus, Lam and Lai [11] proposed to characterize documents with 9 (meta)
features and to predict the classification error of different models using data from
a previous phase, thus recommending a classification model. More recently, [19]
searched for text representations with Bayesian Representation [15]. Their search
space was limited to only word n-grams and experiments were performed in 8
datasets: 4 sentiment analysis tasks and 4 topic classification tasks. Nevertheless,
they outperformed every linear classifier reported until their publication date.
Despite their limited scope, given the lack of data and computational resources
of the time, this work represents one of the first meta-learning approaches for
text classification.

Other works have explored different meta-learning approaches for text classi-
fication in small-scale, for example, Gomez et al. [9] addressed the problem with
evolutionary computation methods and using 11 meta-features. In a broader app-
roach Ferreira and Brazdil [6] recommend pipelines with Active Testing Method,
in their work they also present statistical analysis of 48 preprocessing methods
and 8 classifiers.
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Another related work is that by [14] where a set of features derived from
the text was proposed for characterizing short-text corpora in the context of
clustering. Although the goal of such reference was to characterize the harness
of text corpora and not AutoML, such work is relevant because their features
inspired some of the meta-features considered in this paper. In Sect. 3 we describe
how we combined this set of features with other proposed ones for characterizing
text collections in the context of automatic text mining.

Meta-learning has been studied for a while in the broad machine learning
context [1-3,17,18]. However, it is only recently that it has become a main-
stream topic, this mainly because of its successes in several tasks. For instance,
Feurer et al. [8] successfully used a set of meta-features to warm-start a hyper-
parameter optimization technique in the popular state-of-the-art AutoML solu-
tion Autosklearn. Likewise, the success of deep learning together with the diffi-
culty in defining appropriate architectures and hyperparameters for users, has
motivated a boom on neural architecture search, where meta-learning is becom-
ing common [4].

In this paper we propose a novel approach to meta-learning of text repre-
sentations. We propose a novel set of meta-features, comprising standard meta-
features from the machine learning literature, features that have been used for
other problems than meta-learning and novel meta-features that have not been
used previously. Some of which are derived directly from raw text and aim at cap-
turing complex language patterns. We approach the problem of recommending
textual representations. Whereas this problem has been addressed in previous
work, such references have considered only a few representations and a very
limited number of meta-features (up to 11).

To the best of our knowledge this is the largest scale study on meta-learning
in the context of text mining. Whereas results are promising, please note that
this is only a first step towards the ultimate goal of automating the text mining
process.

3 Recommending Textual Representations

We introduce a meta-learning method that takes as input the labeled raw text
from a corpus associated to a text classification task and automatically selects
a representation. The method recommends vector representations for text clas-
sification tasks based on which one worked best for similar tasks. In order to
do so we define a set of meta-features and perform extensive experiments on
81 different text classification tasks. Although this approach is common within
meta-learning [17], it has not been widely explored for text classification. In fact,
previous work (see Sect. 2) has considered small subsets of generic meta-features.

Tablel sums up the feature extraction methods that with some pre-
processing processes or hyper-parameters gives a total of 60 representations,
while not exhaustive, our work is the first to consider representations not only
based on simple features, but also those based on topic modeling, embeddings,
and semantic analysis, we also included a representation based on the word per-
centage of categories from LIWC2007 dictionary. Furthermore, the output of
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our method can be useful for both human experts designing text classification
pipelines and for complementing other optimization methods for AutoML (e.g. it
can be used for warm-starting Bayesian Optimization [8] for a wider search space
of text representations or easily combined with existing AutoML solutions).

Table 1. Representations considered

Features |Hyper-parameters

N-grams |[words, char], stop-words[None, ‘English’], range[1, 3], weight[bi, tf, tfidf]
LDA stop_words[None, ‘English’]

LSA stop-words[None, ‘English’], weight[tf, tfidf]

LIWC [13]| categories[64]

W2V [12] |pre_trained|[True, False], vector[mean, sum], dimension[300]

The proposed method comprises 2 stages, an offline phase where it learns
how to learn and a predicting phase where it uses the data collected in phase 1
to recommend a text representation for classifying.

A human-expert uses knowledge acquired in the past when a new task is pre-
sented, equivalently, meta-learning imitates this reasoning. Our method applies
meta-learning to learn from the performance of different representations on a
number of corpora. Namely, we defined 72 meta-features to characterize 81 text
corpora and performed an exhaustive search for the performance of 60 repre-
sentations. A knowledge base is built associating the performance of each rep-
resentation with a task, described by the vector of meta-features. Traditionally,
meta-features extract meta-data from a dataset such as statistics of its distri-
bution or simple characteristics like the number of classes and attributes, in our
proposed set we contemplate this type of features as well as other attributes
extracted directly from the raw text. The proposed meta-features are described
below. For clarity we have divided them in groups.

— General meta-features. The number of documents and the number of cat-
€qgorTies.

— Corpus hardness. Most of these originally used in [14] to determine the
hardness of short text-corpora.
Domain broadness. Measures related to the thematic broadness/narrowness of
words in documents. We included measures based on the vocabulary length
and overlap: Supervised Vocabulary Based (SVB), Unsupervised Vocabulary
Based (UVD) and Macro-averaged Relative Hardness (MRH).
Class imbalance. Class Imbalance (CI) ratio.
Stylometry. Stylometric Evaluation Measure (SEM)
Shortness. Vocabulary Length (VL), Vocabulary Document Ratio (VDR) and
average word length.

— Statistical and information theoretic. We derive meta-features from a
document-term matrix representation of the corpus.
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min, maz, average, standard deviation, skewness, kurtosis, ratio average-
standard deviation, and entropy of: vocabulary distribution, documents-per-
category and words-per-document:

Landmarking. 70% of the documents are used to train 4 simple classifiers and
their performance on the remaining 30% was used based on the intuition that
some aspects of the dataset can be inferred: data sparsity - 1NN, data sep-
arability - Decision Tree, linear separability - Linear Discriminant Analysis,
feature independence Naive Bayes. The percentage of zeros in the matrix was
also added as a measure for sparsity.

Principal Components (PC) statistics. Statistics derived from a PC anal-
ysis: peac from [9]; for the first 100 components, the same statistics from
documents per category and their singular values sum, explained ratio and
explained variance, and for the first component its explained variance.

— Lexical features. We incorporated the distribution of parts of speech tags.
We intuitively believe that the frequency of some lexical items will be higher
depending on the task associated to a corpus, for instance a corpus for senti-
ment analysis may have more adjectives while a news corpus may have less.
We tagged the words in the document and computed the average number of
adjectives, adpositions, adverbs, conjunctions, articles, nouns, numerals, par-
ticles, pronouns, verbs, punctuation marks and untagged words in the corpus.

— Corpus readability. Statistics from text that determine readability, com-
plexity and grade from textstat library': Flesch Reading Ease, SMOG grade,
Flesch-Kincaid grade level, Coleman-Liau index, automated readability indez,
Dale-Chall readability score, the number of difficult words, Linsear Write for-
mula, Fog scale, and estimated school level to understand the text.

Apart from general, statistical and PC based, the rest of the listed features
have not been used in a meta-learning context. After the offline phase takes
place, for a new task the same meta-features are extracted and compared with
the prior knowledge, to recommend a representation. We considered 4 strategies
that leverage learned experiences and make predictions for a new task, these are
described below

(1) Using directly the representation with best performance of the nearest cor-
pus. This strategy directly follows the idea of finding the most similar task
in order to know what model will work best. The euclidean distance is used
to determine the similarity between the new task and those in the knowl-
edge base. This approach can also be seen as classifying unseen tasks with
a Nearest Neighbors algorithms using only 1 neighbor, in which case each
of the 60 representations constitutes a class.

(2) Predicting the representation as a classification problem, where each repre-
sentation is a class and every prior task is a sample represented by its 72
meta-features. In this case every sample was labeled with the representation
with best performance as its class, thus, the problem is to select the correct
class finding patterns among the tasks and using 81 samples for training.

! https://github.com /shivam5992 /textstat.
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Since the dimensionality of this problem is big given the number of samples
available this isn’t an easy task, so we tested different classification models.
In the end, a Random Forest was selected as the classifier for this strategy.
Hyper-parameters of this RF model are listed in Table 2.

Predicting the performance for every representation and selecting the one
with the smallest error. In this strategy 60 different regression models are
needed, one for each representation, they are trained using the performance
of each representation for the different tasks, the objective is to correctly
predict the performance for each representation given a new task (described
by the same 72 meta-features). As for (2) several models were trained and
compared, finally, a Random Forest Regressor was found to work best.
Predicting the rank of each representation and selecting the one with best
predicted rank. 60 regression models are trained with performances in 81
different tasks. Given a new task the 60 trained models predict the expected
rank for each representation, the results are ordered and the representation
with lowest rank is recommended. Like before we compared various regres-
sion models and again regression with Random Forest was selected (see
Table 3).

Table 2. Hyper-parameter for the Random Forest Classifier used in strategy (2).

Hyper-parameter | Value

Estimators 200
Quality criteria | Gini

Max depth Unlimited
Min features 2

Max features V| features|

Table 3. Hyper-parameter for the Random Forest Regressor used in strategies (3)
and (4).

Hyper-parameter | Value

Estimators 200

Quality criteria | Mean absolute error
Max depth Unlimited

Min features 2

Max features

features|

For strategies 2—4 different classification and regression models were tested, a

Random Forest classifier was selected for strategy 2 and Random Forest regressor
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for both strategies 3 and 4. Once the representation is chosen, an SVM classifier
with linear kernel is used in every case to train and make predictions with the
new corpus.

4 Experiments and Results

For the experimental evaluation we collected 81 publicly available text corpora,
each associated with a different classification task, most of which can be cate-
gorized as one of 6 common NLP tasks: authorship attribution, author profil-
ing, topic/thematic classification, irony and deception detection. Some of these
datasets are commonly used for benchmarks in text classification (e.g. Amazon,
Dbpedia, 20NGs) while others have been used in competitions. After processing
each corpus to share the same format and codification we extracted the 72 meta-
features for each of the 81 collections. To accelerate the meta-feature extraction
process we limited the number of documents to 90,000 per category. The resul-
tant matrix of size 81 x 72 comprises our knowledge base characterizing multiple
corpora.

In an offline phase, for each classification task every representation was used
for training and testing a classification model, the performance of each represen-
tation was calculated with 3-fold Cross validation, they were also ranked from
best (1) to worst (60).

We evaluated the 4 meta-learning strategies with unseen tasks following a
leave-one-out setting, using the results from 60 representations in the rest of the
tasks as knowledge to decide which representation to recommend. The objective
for the strategies, then, is to select what in exhaustive search was found to be
the best representation. We compared the average performance achieved by our
strategies in 5 runs against the best solution found and the average performance
of all of the considered representations. Table4 shows the average performance
for each strategy after 5 runs in terms of the average accuracy and average rank.
Figure 1 depicts the performance of our method and the baselines in 9 corpora
(we selected these representative corpora to cover a wide variety of tasks and
because they are well known benchmarks).

Table 4. Average accuracy [0, 1] and average rank [60, 1] of different strategies in
81 corpus, the last row indicates the number of times the best representation was
predicted. (1) Nearest corpus, (2) classification, (3) performance regression, (4) rank
prediction.

Method |Best (1) (2) (3) (4) Random
Avg accu |77.06 £0|73.75+£0|75.25 +0.12|73.34 £ 0.34| 75.20 £ 0.07 | 68.45+0
Avg rank| 1.00+0/14.20£0| 8.714+0.46 |14.30£1.31| 8.51+0.34|30.30+0
# of 1s |81.00£0/17.00+025.80+0.45| 4.204+0.84| 14.80£0.84 | 0.00£0
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Fig. 1. Accuracy of (2) in 9 selected corpora.

The 4 strategies clearly outperform selecting a random representation (we
illustrate this by averaging the results of all the representations). While in terms
of average ranking they could be closer to the optimal, the average accuracy
of (2) and (4) strategies was only 2% behind the best. (2) also found the best
representation 35% of the time. Results show strong evidence that our meta-
learning approach finds relations between corpora and pipeline performances
that exploits prior knowledge for the autonomous classification of texts (Table 5).

From the 72 proposed meta-features we tested different subsets according to
their Gini importance from the Random Forest used in strategy (2). A subset of
38 meta-features improved our results relatively by 8% with (2) and 38% with
(1) in terms of average ranking. We also compared this subset against a subset
comprised of 19 traditional meta-features used in related work. Using strategy (2)
our subset outperformed the traditional one by almost 0.8% in average accuracy
and 3 places in average rank. The results also showed a significant difference
between both subsets (p < .001 Student’s t-test). The subset of 38 meta-features
is detailed in Table 6.

Table 5. Results after meta-feature selection

Method | (1) (2) (3) (4)
Avg accu| 751640 75.39+0.13 | 73.57+£0.14 | 75.16 £ 0.05
Avg rank 8.68+0| 8.00+£0.47 |14.424+0.53| 9.05£0.25
# of 1s 27.00+0 |26.44+0.56 6.40+1.34|16.00£+0.87

In addition, we compared our strategies with commonly used representations
such as pre-trained Word2Vec and Bag-of-Words outperforming them in average
by 9% and 3% respectively, Fig. 2 depicts this comparison (between strategy (4)
and W2V) in the 9 corpora we selected. Despite the robustness of such common
representations their performance can usually be improved by fine tuning some
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Table 6. 38 Meta-features selected by Gini importance

Meta-feature selection

average word length
document per category:
min
max
average
standard deviation
average/stdev
entropy
word per document:
average
skewness
entropy
Imalance Degree
SEM
UVB
SVB
MRH_J
VDR
max vocabulary
average vocabulary
sd vocabulary
skweness vocabulary
avg/stdev vocabulary
pca:
singular values sum
explained ratio
explained variance
explained variance (1)
pca max
pca skewness
pca kurtosis
data sparsity
data separability
linear separability
% of zeros
% of adpositions
% of adverbs
% of conjunctions
% of nouns
% of numbers
% of untagged words
difficult words

65
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of their hyper-parameters or they are largely outperformed by another, as shown
in the results the strategies are able to find these improvements.

0.96

0.86
§ 0.76
5 —— Classification (2)
o 066
e —%—Rank (4)

056 ¥ W2V(mean)

0.467 - -

Classic Ag news Sentiment140  Sogou news
20 Ngs Hate tweets Amazon-B Yelp-B Dbpedia
Corpus

Fig. 2. Accuracy comparison between (2), (4) and Word2Vec in 9 corpora.

5 Conclusion and Future Work

We introduced a meta-learning method that takes as input a corpus and without
human intervention builds a model to solve a text classification task focusing
on the selection of a vector-based representation. The results show empirically
that this approach is able to characterize tasks and approximate an optimal
representation. Our work can not only recommend a single representation but
also the best n representations using one of the strategies proposed to rank them,
these can later be used to warm-start an optimization technique allowing us to
expand the search space and, like in similar works on different fields [10], ideally
finding pipelines that perform better than those designed by humans. Our also
work comprises a first step towards the automated recommendation of full text
classification pipelines. The source code of our method is available under an open
source license at: https://github.com/jorgegus/autotext.
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Abstract. Machine learning pipeline potentially consists of several
stages of operations like data preprocessing, feature engineering and
machine learning model training. Each operation has a set of hyper-
parameters, which can become irrelevant for the pipeline when the
operation is not selected. This gives rise to a hierarchical conditional
hyper-parameter space. To optimize this mixed continuous and discrete
conditional hierarchical hyper-parameter space, we propose an efficient
pipeline search and configuration algorithm which combines the power
of Reinforcement Learning and Bayesian Optimization. Empirical results
show that our method performs favorably compared to state of the art
methods like Auto-sklearn, TPOT, Tree Parzen Window, and Random
Search.

Keywords: Bayesian Optimization + Reinforcement Learning -
Conditional hierarchy search - AutoML

1 Introduction

Over the past years, Machine Learning (ML) has achieved remarkable success
in a wide range of application areas, which has greatly increased the demand
for machine learning systems. However, an efficient machine learning algorithm
crucially depends on a human expert, who has to carefully design the pipeline of
the machine learning system, potentially consisting of data preprocessing, feature
filtering, machine learning algorithm selection, as well as identifying a good set
of hyper-parameters. As there are a large number of possible alternatives of
models as well as hyper-parameters, the need for automated machine learning
(AutoML) has been growing, which is supposed to automatically generate a data
analysis pipeline with machine learning methods and parameter settings that
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are optimized for a given data set, in order to make machine learning methods
available for non-expert users.

Since hyper-parameters of a machine learning model have a large influence
on the performance of the model, hyper-parameter optimization becomes a crit-
ical part of an AutoML system. Popular hyper-parameter optimization methods
include Sequential Bayesian Optimization, which iterates between fitting surro-
gate models that predict model performance, and using them to make choices
about which configurations to investigate.

However, the composition of the machine learning pipelines also plays a vital
role in the performance of AutoML systems. Choosing different data prepro-
cessing or feature engineering techniques as well as choosing different machine
learning models for a specific dataset could potentially result in considerable
performance differences. The joint optimization of the pipeline search and its
associated hyper-parameters configuration could essentially reside under the
umbrella of Combined Algorithm Selection and Hyperparameter optimization
(CASH) problem [31], where Algorithm corresponds to the pipeline and Config-
uration corresponds to the hyper-parameters associated with the pipeline. The
pipelines and hyper-parameters reside in a conditional hierarchical space, where
some hyper-parameters only become valid when the corresponding pipeline is
present. For example, Fig. 1 illustrates such a situation when the data prepro-
cessing and feature engineering operations are selected, which correspond to an
incomplete pipeline, one out of three machine learning algorithms need to be
chosen (indicated by dashed edges) to complete the pipeline, the corresponding
hyper-parameters (indicated by solid edges) of an algorithm only become valid
when the algorithm is selected.

[Data Preprocessing and Feature Engineering Operations selected]

Fig. 1. Example of conditional hierarchical space

To optimize the conditional hyper-parameters space jointly with the pipeline
it is attached to, we embed Bayesian Optimization in the Reinforcement Learning
process, and dub the method ReinBo, which means Machine Learning Pipeline
search and configuration with Reinforcement Learning and Bayesian Optimiza-
tion. Note that ReinBo can solve not only CASH problems, but also any mixed
discrete and continuous conditional hierarchical space optimization, which is left
for future work.
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Our major contributions are:

— Inspired by Hierarchical Reinforcement Learning [14], we transform the con-
ditional hierarchical hyper-parameter optimization problem into subtasks of
pipeline selection and hyper-parameter optimization, which circumvents the
conditional constraint and reduces the search dimension.

— To our best knowledge, we are the first to embed Bayesian Optimization (BO)
into Reinforcement learning, specifically Q Learning [32] for collaborative
joint search of pipelines and hyper-parameters, which is different from using
BO for policy optimization [12], and also different from using BO for hyper-
parameter fine tuning after an optimal pipeline is selected by a reinforcement
learning based AutoML framework [33].

— We provide an open source light weight R language implementation with
benchmark codes! for the R Machine Learning community which could run
efficiently on a personal computer, and takes much less resources (10, disk
space for example) compared to other AutoML softwares.

In the following section, we review related works and discuss the differences
to our method. In Sect.3, we explain our method in detail and also shed light
to connections with Hyperband [22]. In Sect.4, we benchmark our method by
comparing it with several state of the art methods.

2 Related Work

In this section, we try to classify the current popular AutoML solutions into a
taxonomy and discuss the differences of each individual work with ours.

Sequential Model Based Optimization Family. Auto-sklearn [16] and
Auto-Weka [31] both use Sequential Model-based Algorithm Configuration
(SMAC) [18] to solve the Combined Algorithm Selection and Hyperparameter
optimization (CASH) problem. SMAC [18] transforms the conditional hierarchi-
cal hyper-parameter space into a flat structure by instantiating inactive condi-
tional parameters to default values, which allows the random forest to focus on
active hyper-parameters [18]. A potential drawback for this method is that the
surrogate model needs to learn in a high dimensional hyper-parameter space,
which might need a large sample of observations to be sufficiently trained, while
in practice, running machine learning algorithm is usually very expensive. Tree
Parzen Window (TPE) [7], however, tackles the conditional hierarchical hyper-
parameter space using a tree like Parzen Window to construct two density esti-
mators on top of a tree like hyper-parameter set. Expected improvement induced
from lower and upper quantile density estimators is used to select new candidate
proposals from points generated by Ancestral Sampling.

! https://github.com/compstat-lmu/paper_2019_ReinBo.
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Tree-Based Genetic Programming. TPOT [25] automatically designs and
optimizes machine learning pipelines with a genetic programming [3] algorithm.
The machine learning operators are used as genetic programming primitives,
which will be combined by tree-based pipelines and the Genetic Programming
algorithm is used to evolve tree-based pipelines until the best pipeline is found.
Similar methods also include Recipe [27]. However, this family of methods does
not scale well [24]. In this paper, we aim for an AutoML system that could give
a valuable configured pipeline within limited time.

Monte Carlo Tree Search Alike. ML-Plan [24] is an AutoML system, built
upon a Hierarchical Task Network, which uses a Monte Carlo Tree Search like
algorithm to search for pipelines and also configure the pipeline with hyper-
parameters. Task is expanded based on best-first search, where the score is esti-
mated by a randomized depth first search by randomly trying different subtree
possibilities on a Hierarchical Task Network. To ensure exploration, ML-Plan
gives equal possibility to the starting node in a Hierarchical Task Network and
then uses a best-first strategy for searching at the lower part of the network.
Potential drawback for this method is that the hyper-parameter space is dis-
cretized, which might essentially lose good candidates in continuous spaces since
large continuous hyper-parameter spaces would be essentially hard to discretize.

Reinforcement Learning Based Neural Network Architecture Search.
This family of methods are usually not termed as AutoML systems but rather
Neural Architecture Search. For instance, MetaQNN [2] uses Q-learning to search
convolutional neural network architectures. The learning agent is trained to
sequentially choose CNN layers using Q-learning with an e-greedy exploration
strategy and the goal is to maximize the cross-validation accuracy. In [35], instead
of using Q-learning, the authors use Recurrent Neural Networks as the rein-
forcement learning policy approximator to generate variable strings to represent
various neural architecture forms. The reward-function is designed to be the
validation performance of the constructed network. The reinforcement learning
policy is trained with gradient descent algorithm, specifically REINFORCE. The
architecture elements being searched are very similar to MetaQNN. Inspired from
[35], we also assume the machine learning pipeline to be optimized could be rep-
resented by a variable length string, but our work is different from [35] in that we
use both Deep Q-learning and Tabular Q-learning. More importantly, compared
with both [2] and [35], which optimize the neural architecture, the elements of the
architecture are mostly factor variables like layer type or discretized elements like
filter size, while in this paper, we deal heavily with continuous hyper-parameters
(The C and o for a rbf kernel Support Vector Machine). To jointly optimize the
discrete pipeline choice and associated continuous hyper-parameters, we embed
Bayesian Optimization inside our reinforcement learning agent.

Other Reinforcement Learning Based Methods. In [33], the authors also
combine pipeline search and hyper-parameter optimization in a reinforcement
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learning process based on the PEORL [34] framework, however, the hyper-
parameter is randomly sampled during the reinforcement learning process, an
extra stage is needed to sweep the hyper-parameters using hyper-parameter
optimization techniques, while in our work, hyper-parameter optimization is
embedded in the reinforcement learning process. Alpha3M [15] combined MCTS
and recurrent neural network in a self play [28] fashion, however, it seems that
Alpha3M does not perform better than the state of the art AutoML systems.
For example, out of all the 6 OpenML datasets they have used to compare with
state of the art AutoML systems, Alpha3M only shows a clear improvement on
1 dataset (spectf) against Auto-sklearn [16] and TPOT [25], according to Fig. 4
in [15]. Furthermore, it is not clear to us how the hyper-parameters are set and if
Bayesian Optimization is used. The implementation of Alpha3M takes advantage
of the GPUs [15] for the fast performance while our method has a light weight
implementation which efficiently runs with CPU and does not necessarily need
Neural Networks.

3 Method

3.1 Towards ReinBo

s1:DataProcess [ Imputation ] [ NA ]
Data Process
HyperPars
s2:FeatureEngeering [ PCA ] [ Anova ]
FeatureEngineering
HyperPar percentage
s3:Learner [ SVM ] [ Random Forest ]

Fig. 2. Tllustrative example of selected pipeline and associated hyper-parameters (Color
figure online)

As shown in Fig. 2, we assume that a machine learning pipeline potentially con-
sists of 3 stages (sl through s3 in the figure), which include data preprocessing
(imputations, NA and more), feature engineering (Principal Component Anal-
ysis for feature transform, Anova for feature filtering and more), and machine
learning model selection (learner like SVM, Random Forest). Specifically, we
use operation “NA” to indicate that no operation would be done in the stage
in question. Figure2 just serves as a toy but working example for ReinBo, in
practice, there are a lot more operations available. A particular operation has
associated hyper-parameters (for instance the percentage of selected features
in Anova feature filtering). In Fig. 2, dark color filled cells (NA, Anova, SVM)
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represent selected operations and their associated active hyper-parameters (per-
centage, sigma, C), while hyper-parameters for inactive operations are not drawn
in the figure.

Observing from Fig. 2, along with Fig. 1, we could think of the pipeline selec-
tion and configuration problem as a two-phase process. During the first phase,
a planning algorithm guides the agent to choose a path which corresponds to an
unconfigured pipeline. This is similar to a multi-armed bandit problem, where
each path corresponds to one arm, while difference lies in that the agent can not
directly pull a discrete arm but have to pull across several consecutive discrete
arm groups (each arm group corresponds to a stage in Fig. 2) and the agent only
gets reward after choosing one of arms from the last group. The second phase
is similar to contextual bandit with continuous action space (corresponding to
hyper-parameters), where the context is which path from the first phase has
been selected.

We model the first phase as a reinforcement learning episode, where a par-
ticular operation in stage ¢ is treated as action a;, taken upon corresponding
state s;. State s; could be represented by actions taken up to the current stage
for example. The pipeline search problem is then to find an optimal policy 7 to
decide which operation (action) to take at a particular state. The action value
function Q(s,a) at each state tells us how favorable a particular operation is.
We use A, to denote the space of legal actions at state s;. Suppose a roll-out of
states trajectory for one composition (episode) is s1,..., Sk, the corresponding
space of pipeline could be denoted by Hfil As,, where K is the total number of
stages and we use [] to denote the Cartesian Product. For a more general nota-
tion, we use A(S;, ®,,) to denote the space of actions, together with configurable
hyper-parameters when the state is S; at stage ¢.

We search for potentially better hyper-parameters in the second phase with
Bayesian Optimization. Aside from the pipeline itself, each concrete operation
(action a;) at stage 7 is configurable by a set of hyper-parameters ®,,. ®,, can
be hyper-parameters set for a preprocessor like the ratio of variance to keep in
PCA or hyper-parameters set for a machine learning model like the C' and o
hyper-parameter for SVM. Thus a configured pipeline search space would be
Hfil A(S;;®,;) where we use ®,, to denote the conditional hyper-parameter
space at stage 1.

The connection point between reinforcement learning and Bayesian Opti-
mization lies in the reward function design in the reinforcement learning part.
During the composition process, there is no signal available to judge how good
a current uncompleted pipeline is until the final learner (classifier) is configured
with hyper-parameters and trained on the data. At the starting point, different
pipelines are tried out randomly, which corresponds to an untrained exploration
policy m. A completed pipeline with a joint non-conditional hyper-parameter
search space is optimized with Bayesian Optimization for a few steps. The best
negative loss is then used as a reward at the end of an episode to guide the rein-
forcement learning agent towards a better policy. The environment uncertainty
only comes with the stochastic reward, while the transition from current state
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to next state through action is deterministic. We choose to use Q-learning [32]
to optimize the policy where we have tried the Tabular Q-learning and Deep Q-
learning [23]. We find out that the Tabular Q-learning works better than Deep
Q-learning. For space constraint, the latter is not discussed in detail in this work.

We need Bayesian Optimization to optimize the hyper-parameters in a fine
grained level with limited budget, but also want to give budget preference to
those promising pipelines. To circumvent the complexity of conditional and
hierarchical relationship between hyper-parameters and pipeline, we use rein-
forcement learning to choose a pipeline and let Bayesian Optimization tune
the hyper-parameters. We model the variation of the same pipeline with dif-
ferent hyper-parameters as the environment uncertainty. By using separate sur-
rogate model for each pipeline, we circumvent the risk of mistakenly modeling
improper dependent structure between different hyper-parameters, at a minor
cost of maintaining those searched pipelines surrogate model as dictionary in
memory.

3.2 Connections to Hyperband

The idea of only using a few steps of Bayesian Optimization is inspired by
Hyperband [22], where the trade-off between aggressively exploring more config-
urations and giving each configuration more resources to be validated is solved
by grid searching. Instead, in this paper, we do not need the grid search, promis-
ing pipelines will get a higher probability to be selected by our reinforcement
learning agent which means these pipelines get more chances to be evaluated
by the Bayesian Optimization process. The trade-off between exploitation and
exploration is naturally resolved by an e-greedy policy, and by annealing € from
a large value to a small value, we encourage more exploration at the beginning.
Compared to Hyperband, our method selects the budgets allocated for a partic-
ular pipeline automatically, the effectiveness of our strategy could then rely on
the recent success of reinforcement learning in different areas.

3.3 Connection and Extension to Hierarchical Reinforcement
Learning

Hierarchical Reinforcement Learning (hrl) [4] is proposed to tackle the curse of
dimensionality in Reinforcement Learning [20]. Although the Option approach
[4] is more popular, our method has a close connection to the MAXQ subtask
approach [14], which divides a task recursively into subtasks and decompose
the value function accordingly. The current version of ReinBo can be treated as
a special case of the MAXQ task decomposition, where we have two tasks of
pipeline selection and hyper-parameter configuration. However, in the current
version, most states are not shared between these two tasks, so there is no
need to use MAXQ hrl algorithm to solve the problem. But our method can
be naturally extended to a hrl version when our design space of pipeline allow
shared state between the two subtasks. We leave it as future work to optimize
such complicated pipelines using Hierarchical Reinforcement Learning.
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3.4 Procedures of ReinBo

As shown in Algorithm 1, we first initialize a policy 7 for the agent which can
be represented by neural network or a Q-table initialized with certain strat-
egy, coupled with an exploration mechanism like the e-greedy strategy. During
the roll-out, initial populations of pipelines get sampled, with the corresponding
hyper-parameter space A([[a;) = [[; 4, to be optimized by Bayesian Opti-
mization for several steps, where A means extracting the hyper-parameter set
from a pipeline. The corresponding surrogate model is stored in the dictionary
R for future episode if the same pipeline gets rolled out again. The performance
of the pipeline on validation data will be used to serve as feedback signal or
reward to the reinforcement learning agent to conduct policy iteration.

Algorithm 1. ML ReinBo

Require: dataset D, pipeline operators and hyper-parameters candidates
Initialize Policy 7
Initialize Surrogate Dictionary R « () with pipeline as key
while Budget not reached do
Roll-out an unconfigured pipeline [] a; according to policy
Extract hyper-parameters set for the ground pipeline A([]a:) =[], ®a,
Reward R — BO_PROBE(]] a:, A, R)
Update Policy m with reinforcement learning algorithm with reward R
end while

Once an unconfigured pipeline is constructed at the end of the episode, run-
ning Bayesian Optimization could be beneficial in searching for a more favorable
hyper-parameter setting. However, Bayesian Hyperparameter Optimization with
large budgets could be rather expensive. Instead, we optimize hyper-parameters
for an unconfigured pipeline only for several iterations. For example, we take the
number of iterations to be 2 or 3 times the dimension of hyper-parameter space,
which means that hyper-parameter spaces with higher dimension will get more
sampling budgets. After each episode, the current best configuration’s perfor-
mance for this pipeline in question is used as reward. The next time the same
pipeline is sampled, the surrogate model could be retrieved from the dictionary
R to facilitate further search using Bayesian Optimization. We dub the hyper-
parameter search process as BO_PROBE, with details shown in Algorithm 2.2
If an unconfigured pipeline is not sampled yet, an initial design is generated to
facilitate an initial surrogate model.

2 To save budgets, when an unconfigured pipeline does not improve after a number of
trials of BO_PROBE, it can also be suspended for future evaluation.
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Algorithm 2. BO_.PROBE([]a;, A, R)

Require: Surrogate Dictionary R with pipeline as key
if R{[[,; ai} =0 then
generate initial design of size n'™** hyper-parameter configurations {@; };.,ini¢ for
surrogate model with corresponding hyper-parameters set A(J] a:).
for j in 1:n"" do
evaluate the pipeline with ¢; to get predicative accuracy y;
end for
initialize surrogate model R{[], a;} by fitting {(¢;,1 — y;) }1.ninie
end if
for k in 1 : n?"°% do
propose new configuration ¢ according to surrogate model R{[]a:}
evaluate new configuration to get accuracy yx to update model R{[]a:}
end for
return y* < best accuracy until now

4 Experiments

4.1 Implementation, Comparison Methods and Setups

Our initial implementation for ReinBo is based on R machine learning packages
mlr [10], mlrCPO [8] for pipeline construction and mirMBO [11] for Bayesian
Optimization. The R package paraboz® is implemented for this project to spec-
ify conditional hierarchical hyper-parameter space and provides the conditional
ancestral sampling (random search in conditional hyper-parameter space). The
R package rlR* is implemented for reinforcement learning where the user could
implement a custom environment as input. All python packages are invoked with
the R-Python interface reticulate [1].

To evaluate the performance of our proposed method, we compare the per-
formance of ReinBo with several state of the art AutoML systems, as well as
several conditional hyper-parameter space tuning methods running on top of
our R implementation, in order to reduce implementation and search space con-
founding factors. We compare against Auto-sklearn [16] and TPOT [25] (TPOT
with two search spaces to reduce confounding®), both based on scikit-learn [26].
ML-Plan [24] is not included due to lack of detailed documentation and exam-
ples online when experiment is conducted. Additionally, we compare against
hyper-parameter optimization techniques which preserve the hierarchical con-
ditional structure, including Tree-structured Parzen Estimator (TPE) [7] used
in Hyperopt [6], and Random Search with conditional Ancestral Sampling (self
implemented in R package paraboz). Random Search remains a very strong base-
line in a lot of machine learning hyper-parameter optimization scenarios [5].

3 https://github.com /smilesun/parabox.

* https://github.com /smilesun/rIR.

5 We also selected a matching search space of Autosklearn according to Table 1 but
still get worse results than Reinbo.
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Evaluation Criteria. As warned in [24], many state of the art AutoML systems
seem to have missed to deal with the risk of overfitting. Therefore, in the exper-
iment part, we focus on evaluating the generalization capability of the selected
pipeline empirically. To avoid any potential confusion from synonyms, we use
D°Pt to represent the part of a dataset fed into a given AutoML system and
use D't to represent the locked out part [29] of the same dataset used to test
the generalization capacity. The split of D°P* and D%*%! is done by Cross Vali-
dation, which means for a dataset D, D = D°Pt|J D!t and D°Pt (| D5t = ().
To create the D°Pt and D't split, we use 5-fold cross-validation (CV5), which
corresponds to the outer loop of Nested Cross Validation (NCV') [13]. We take
the aggregated mmce (mean miss-classification error) across the 5-fold iterations
over each D! as ultimate performance measure.

As of optimization on D°P!, instead of using running time as budget, we use
the number of configuration evaluations as the unit of budget, to circumvent
effects of hardware and network load variations, etc. For each D°P*, we assign
a budget of 1000 times of CV5 equivalents (5000 times model training) to each
AutoML algorithm, which corresponds to the inner loop of NCV [13].

Other Setups. To account for different AutoML systems data input format
incompatibility problem, we conduct dummy encoding to categorical features
beforehand. Aiming for a light weight implementation, in the experiment, we
limit our choice of pipeline components for ReinBo. We compose a pipeline
in 3 stages, with potential operations/actions at each stage listed in Table 1.
Associated hyper-parameters with an unconfigured pipeline are listed in Table 2.
We call the components and associated hyper-parameters the pipeline pool. The
same pipeline pool is used for ReinBo, TPE and Random Search.

For Auto-sklearn, Meta-learning and ensemble are disabled, the resampling
strategy is set to be CV3, stop criteria is changed to budget instead of time
and all other configurations are kept default. We have contacted the author of
Autosklearn through Github for the right use of the API to ensure the above
configuration is satisfied. For TPOT (version 0.9), the default configuration space
contains a lot of operators while the light version provides only fast models and
pre-processors. The light TPOT is therefore less time-consuming but it could
probably lead to lower accuracy in consequence. For this reason, we compare
ReinBo with both TPOT with the default configuration and TPOT with light
configuration, and we call them TPOT and TPOT-light respectively. TPOT is
configured to allow equal amount of budgets with all methods being compared
and other configurations are left to be default.

Datasets. We experimented on a set of standard benchmarking datasets of high
quality collected from OpenML-CC18° [9] and Auto-Weka [30], which are rather
well-curated from many thousands and have diverse numbers of classes, features,
observations, as well as various ratios of the minority and majority class size.
Summary of these datasets is listed in Table 3.

5 https://www.openml.org/s/99.
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Table 1. List of pipeline operations. An operation of “NA” here is used to indicate
that no operation would be taken in the corresponding stage. Please refer to mirCPO
documentation for the detailed meaning of these operators.

Stage Operation/action
1|DataPreprocess|Scale(default)|Scale(center=FALSE)|Scale(scale=FALSE)|SpatialSign NA
2|Feature Pca FilterKruskal Filter Anova FilterUnivariate NA

engineering

3|Classifier kknn ksvm ranger xgboost naiveBayes

1)

Table 2. List of hyper-parameters to the operations in Table1. “p” in the column
“Range” indicates the number of features of the original dataset. We invite the user
to refer to the R packages mirCPO and mlr documentations for the exact meaning of
operation, hyper-parameters, etc.

Operation Parameter Type Range
Anonva, Kruskal, Univariate | perc numeric | (0.1, 1)
Pca rank integer | (p/10, p)
kknn k integer | (1, 20)
ksvm C numeric | (2715, 215)
ksvm sigma numeric | (2717, 219)
ranger mtry integer | (p/10, p/1.5)
ranger sample.fraction | numeric | (0.1, 1)
xgboost eta numeric | (0.001, 0.3)
xgboost max_depth integer | (1, 15)
xgboost subsample numeric | (0.5, 1)
xgboost colsample_bytree | numeric | (0.5, 1)
xgboost min_child_weight | numeric | (0, 50)
naiveBayes laplace numeric | (0.01, 100)

4.2 Experiment Results

In Fig. 3, we compare the mmce (1-Accuracy) of each method with boxplot over
the datasets listed in Table 3 across 10 statistical replications. Additionally, we
list numerical results in Table 4 with statistical test, where each numerical value
represents the aggregated mean mmece over the statistical replications. Underline
in each row indicates the smallest mean value over the corresponding dataset. The
bold-faced values indicate that the corresponding algorithm does not perform sig-
nificantly worse than the underlined algorithm on the corresponding dataset based
on Mann-Whitney U test. As shown in Table 4, ML-ReinBo has boldfaces for 8 of
10 datasets followed by much less boldfaces from other methods.

In Table 5, we compare win (significantly better), lose and tie (neither signifi-
cantly better nor worse) relationships according to the test. As shown in Table 5,
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Table 3. List of OpenML datasets for experiment. Columns are the OpenML task_id
and name, the number of classes (nClass), features (nFeat) and observations (nObs),
as well as the ratio of the minority and majority class sizes (rMinMaj).

task_id | Name nClass | nFeat | nObs | rMinMaj
14 | mfeat-fourier 10 7 2000 | 1.00

23 | cmc 10 1473 10.53
37 | diabetes 9 768 | 0.54
53 | vehicle 19 846 |0.91
3917 | kel 22 2109 | 0.18
9946 | wdbc 31 569 |0.59

6 5404 | 0.42
73 2534 |0.07
28 1941 |0.08

6 4839 | 0.06

9952 | phoneme

9978 | ozone-level-8hr
146817 | steel-plates-fault
146820 | wilt

N 1N NN NN W

ReinBo has won TPOT on 5 datasets and performed worse than TPOT for only
one dataset. And not surprisingly, TPOT has performed considerably better than
TPOT-light in the empirical experiments since TPOT-light has smaller search
space with only fast models and preprocessors. ReinBo also performs much bet-
ter than Random Search and TPE, where ReinBo has significantly won them
on 5 and 6 tasks respectively and lost only on 1 task. Compared to ReinBo,
Auto-sklearn has won only once and behaved worse than ReinBo on 3 of 10
datasets.

Table 4. Average performance (mmce) of algorithms across 10 statistical replications
with different seeds. In each run the aggregated mmce based over the outer loop of
NCV is taken as performance measure for each algorithm. Each value in this table
is the mean value of the aggregated mmece values across 10 replications and the best
mean value for each dataset is underlined. The bold-faced values indicate that the
algorithm does not perform significantly worse than the underlined algorithm on the
corresponding dataset based on Mann-Whitney U test.

Dataset Auto-sklearn TPE |TPOT |TPOT-light Random ReinBo|Underlined algorithm
mfeat-fourier 0.1412 0.1542 |0.1451 |0.1489 0.1580 |0.1278|ReinBo
cme 0.4470 0.4485|0.4457|0.4506 0.4500 |0.4485|TPOT
diabetes 0.2483 0.2436/0.2452 |0.2413 0.2455 |0.2395 |ReinBo
vehicle 0.1679 0.2117 |0.1784 |0.2057 0.2020 |0.1621 |ReinBo

kel 0.1421 0.1351/0.1380(0.1438 0.1353 |0.1387 |TPE

wdbc 0.0299 0.0348 |0.0353 |0.0264 0.0341 |0.0271|TPOT-light
phoneme 0.0902 0.0920/0.0893|0.1016 0.0912 |0.0905|TPOT
ozone-level-8hr |0.0588 0.0601 |0.0577/0.0603 0.0598 |0.0578 | TPOT
steel-plates-fault|0.2041 0.2330 |0.1985|0.2601 0.2146 |0.2141 |"TPOT

wilt 0.0132 0.0159 |0.0141 [0.0164 0.0161 |0.0123|ReinBo
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Fig. 3. Boxplots showing the distribution of aggregated mmece achieved by each algo-
rithm within 10 statistical replications.

Meanwhile, ReinBo has comparatively short box ranges in most cases as
shown in Fig.3. Hence, we would conclude that ReinBo performed better and
more stably than other algorithms in our empirical experiments. Besides compar-
ing the final performance, it is also interesting to look into the machine learning
pipelines suggested by an AutoML system. The frequencies of the operators in
the pipelines suggested by ReinBo are listed in Table 6.

Running Time. Figure4 shows the average running time each algorithm takes
to complete one experiment, which corresponds to a Nested Cross Validation
(NCV) process. It can be seen that Auto-sklearn is the most time-consuming

Table 5. Win-Lose-Tie comparison between ReinBo and other algorithms on bench-
marking datasets based on Mann-Whitney U test (significance level ov = 0.05).

Random_search | TPE | Auto-sklearn | TPOT-light | TPOT
ReinBo | Win | 5 6 3 7 5
Tie |4 3 6 3 4
Lose | 1 1 0 1
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Table 6. Frequency of operators suggested by ReinBo. During empirical experiments
there are 500 pipelines in total suggested by ReinBo at the end of optimization process.
The frequency (Freq.) and relative frequency (Relative freq.) of each operator selected
in best pipelines are shown here.

Preprocess Freq.Relative freq.[Feature Freq.Relative freq.Classifier [Freq.Relative freq.
engineering

Scale(default) 259 51.8% FilterAnova 210 42.0% ksvm 276 |55.2%

Scale(scale=FALSE) (106 [21.2% FilterKruskal 139 [27.8% ranger 201 140.2%

Scale(center=FALSE)| 67 [13.4% PCA 63 [12.6% kknn 12 | 2.4%

NA 36 | 7.2% Univariate 46 9.2% xgboost 10 | 2.0%

SpatialSign 32 | 6.4% NA 42 8.4% naiveBayes| 1 | 0.2%

algorithm in our empirical experiments. Although TPOT-light is the fastest algo-
rithm, it resulted in worse performance because it contains only fast operators.
Our proposed ReinBo algorithm spent less time than Random Search and state
of the art AutoML systems TPOT and Auto-sklearn in average.

time per data set with NCV (hours)

Fig. 4. Comparison of average running time of each algorithm per data set with NC'V

5 Summary and Future Work

We present a new AutoML algorithm ReinBo by embedding Bayesian Opti-
mization into Reinforcement Learning. The Reinforcement Learning takes care
of pipeline composition, and Bayesian Optimization takes care of configuring the
hyper-parameters associated with the composed pipeline. ReinBo is inspired by
Hyperband and previous efforts in AutoML by considering the trade-off of assign-
ing resources to a particular configuration and exploring more configurations as
a reinforcement learning problem, where the learned policy solves the trade-off
automatically. Experiments show our method has a considerable improvement
compared to other state of the art systems and methods. For future work, it
would be interesting to include meta learning into our system, which does not
only learn how to construct a pipeline and configure it for a dataset in ques-
tion, but also how to generalize the learned policy to a wide range of datasets
by learning jointly on the meta features. Additionally, it would be nice to see
how ReinBo performs on jointly optimizing neural architecture and continuous
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hyper-parameters like learning rate and momentum, as well as applications like
Computer Vision [19] and semantic web based Recommendation Systems [21]
where pipeline might play a role. Multi-Objective Bayesian Optimization [17]
for hyper-parameter tuning would also be future direction.

Acknowledgement. Janek Thomas gave us many helpful suggestions, Martin Binder
and Florian Pfisterer helped us with mlrCPO and auto-sklearn setup.
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Abstract. An exploratory data analysis system should be aware of
what a user already knows and what the user wants to know of the
data. Otherwise it is impossible to provide the user with truly infor-
mative and useful views of the data. In our recently introduced frame-
work for human-guided data exploration (Puolaméki et al. [20]), both
the user’s knowledge and objectives are modelled as distributions over
data, parametrised by tile constraints. This makes it possible to show
the users the most informative views given their current knowledge and
objectives. Often the data, however, comes with a class label and the user
is interested only of the features informative related to the class. In non-
interactive settings there exist dimensionality reduction methods, such as
supervised PCA (Barshan et al. [1]), to make such visualisations, but no
such method takes the user’s knowledge or objectives into account. Here,
we formulate an information criterion for supervised human-guided data
exploration to find the most informative views about the class structure of
the data by taking both the user’s current knowledge and objectives into
account. We study experimentally the scalability of our method for inter-
active use, and stability with respect to the size of the class of interest.
We show that our method gives understandable and useful results when
analysing real-world datasets, and a comparison to SPCA demonstrates
the effect of the user’s background knowledge. The implementation will
be released as an open source software library.

1 Introduction and Related Work

Exploratory data analysis (EDA) is a long studied topic [24]. More often than
not, the data is so high-dimensional that it is not possible for a user to view it at
once. This problem can be solved, e.g., by various dimensionality reduction (DR)
methods that attempt to embed the data in a lower-dimensional manifold so that
a chosen metrics is preserved as accurately as possible [15]. The main drawback
in almost all DR methods is that the criteria by which dimensionality is reduced
are often fixed, or at least it is not clear how to take into account what the
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user already knows and what are the objectives of the user when computing the
embedding; see [23] for a survey of recent work on interactive DR. EDA systems
also incorporate visual and interactive components, and visual interactive EDA
has applications in different contexts, e.g., in item-set mining and subgroup
discovery [3,8,16], information retrieval [22], and network analysis [4].

One approach to incorporate the user’s knowledge to EDA is to model this as
a distribution over datasets—background distribution—and then show the user
an embedding that gives the user as much information as possible that the user
did not already know. One of the original works in modelling the background
distribution using randomisation was [11], and in [6] maximum entropy distri-
butions were used. In both of these works the users can encode their knowledge
as constraints. Later, these ideas have been realised as parts of working EDA
systems with DR methods able to show the user what the user does not already
know and able to absorb the relations the user has learned from the data, see,
e.g., [5,12,13,18,19,21,25]. The drawback in all of these works is, however, that
the EDA process is unguided: the user is shown something she or he does not
know and what is therefore by definition always a surprise. Recently, we solved
this problem in [20] by allowing the user to formulate also her or his objectives
in terms of the relations of attributes the user is interested in. This allows the
user to guide the exploration to patterns of interest.

Often, however, the user is not interested in all possible features of the data,
but only in features that are informative, e.g., of a given class label. Supervised
DR methods try to find an embedding that shows only the features of the data
that are informative in such cases. Typical examples of supervised DR, such as
Fisher’s discriminant analysis [9], metric learning [26], sufficient dimensionality
reduction [10], and supervised PCA [1]| are however all based on a fixed embed-
ding criteria. User interaction in guiding data exploration has been considered
in the context of database management systems, e.g., in 7], where the user tells
the system which samples are relevant and which are not, allowing the system
to incrementally lead the user to explore towards interesting data areas. How-
ever, to the best of our knowledge there are no earlier approaches that take
into account both the human’s subjective background knowledge and allow for
supervised dimensionality reduction.

Contributions. The objective of this work is to propose a method of supervised
DR for interactive EDA systems that take both the user’s background knowledge
and the user’s objectives into account. Our contributions are as follows: (i) An
information criterion for supervised human-guided data exploration, where we can
find the most informative views about the class structure of the data. (ii) An
experimental study of scalability for interactive use, and stability with respect to
the size of the class of interest. (iii) A demonstration showing that our method
gives understandable and useful results when analysing real-world datasets.

Organisation. We provide a recap of the necessary concepts of the human-guided
data exploration framework proposed in [20] in Sect. 2. In Sect. 3 we extend and
modify the framework from [20] into a supervised setting. In Sect. 4 we evaluate
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Fig. 1. Samples drawn from the distribution of datasets where each attribute has the
same marginal distribution as the toy data Zi.y, see Examples 1 and 2 for details. Class
attribute Yioy shown with colour: class ‘1’ in red and class ‘—1’ in black. A sample of
1000 data points plotted for illustration. Here Zi,, is permuted using (a) a vector of
identity permutations (i.e., the plot shows Z;oy) (b) a vector of random permutations
(i.e., the plot shows an unconstrained permutation of Zioy) (c) a vector of permutations
allowed by tile ¢ from Example 2. (Color figure online)

the scalability of our method for interactive use using crafted datasets. We also
provide real-life data use cases demonstrating the utility of our method. We
present our conclusions and directions for further work in Sect. 5.

2 Background

We start by introducing our notation and providing a brief recap to human-
guided data exploration (HGDE) framework proposed in [20]. For now, we assume
that X is a real-valued n x m data matrix (dataset) and Y € L™ a vector of
class labels in L. Here X (7, j) (resp. Y (4)) denotes the ith element (in column j).
Each column X (-,5), j € [m], is an attribute in the dataset, where we used the
shorthand [m] = {1,...,m}. Let Z = (X|Y') denote the n xm’ where m’ = m+1
data matrix obtained by augmenting X with Y.
A permutation of matrix Z is defined as follows.

Definition 1 (Permutation). Let P denote the set of permutation functions
of length n such that 7 : [n] — [n] is a bijection for all @ € P, and denote by
(M1, ) € P the vector of column-specific permutations. A permutation
Z of the data matriz Z is then given as Z(i,j) = Z(m;(4),7)-

When permutation functions are sampled uniformly at random, we obtain a
uniform sample from the distribution of datasets where each of the attributes
has the same marginal distribution as the original data.

Ezxample 1. We will use a running example throughout the paper to illustrate the
main concepts. Our artificial toy data Z;,, consists of a three dimensional matrix
Xioy € R™3 and a binary class attribute Y;,, € {—1,1}", where n = 4000,
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shown in Fig. 1a. The matrix X,, is centred and scaled to unit variance. There
are 2000 data points in class ‘—1’ of Yi,, (coloured black in Fig.1la) and they
are clustered in the first two dimensions of X;,,. There are also 2000 data points
in class ‘1’ of Y, (coloured red in Fig.1a), but the points separate into two
clusters (consisting of 500 points and 1500 points) in the first two dimensions of
Xtoy- The third dimension of X,, is random noise for both classes.

We can produce a uniform sample from the distribution of datasets where
each of the attributes has the same marginal distribution as our toy data, by
sampling a vector of permutations (71, ...,74) and permuting the toy data, see
Fig. 1b for an example of such a sample. This sample represents user’s knowledge
of the data if the user knows only the marginal distributions of the data but is
unaware of any relations between the class and the attributes.

We will next parametrise this distribution with tiles preserving the relations!
in the data matrix Z for a subset of rows and columns: a tile is a tuple t = (R, C),
where R C [n] and C C [m/]. In an unconstrained case, there are (n!)™ allowed
vectors of permutations. The tiles constrain the allowed permutations as follows.

Definition 2 (Tile constraint). Given a tile t = (R,C), the vector of per-
mutations (71, ..., Tmr) € P™ s allowed by t iff the following condition is true
for alli € [n], j € [m'], and j € [m/]:

1€ RA {],]/} Q C = ﬂj(i) S R/\ﬂ'J(Z) = Wj/(i).
Given a set of tiles T, (71, ..., Tm) is allowed iff it is allowed by allt € T.

A tile defines a subset of rows and columns, and the rows in this subset are
permuted by the same permutation function in each column in the tile. In other
words, the relations between the attributes inside the tile are preserved (such
as correlations etc.). Notice that the identity permutation is always an allowed
permutation. Now, the sampling problem can be formulated as follows.

Problem 1 (Sampling problem). Given a set of tiles T, draw samples uniformly
at random from vectors of permutations in P™ allowed by T

The sampling problem is trivial when the tiles are non-overlapping. In the case
of overlapping tiles, one can always merge tiles to obtain an equivalent set of
non-overlapping tiles (i.e., a tiling) as shown in [20].

Ezample 2. Let us consider again the toy data Z,, and define a tile constraint
t = (R, () as follows. Let R be the set of points from class ‘1’ that are separated
from the points in class ‘—1" along the second attribute in X;,,, i.e., the larger
of the two red clusters, and let C = {1,2,4}, i.e., the first two attributes of
Xioy and the class attribute Y;,,. Now, if we permute Z;,, using a vector of
permutations allowed by ¢, we obtain a sample data in which the relations inside
the tile are preserved. An example of such a data sample is shown in Fig. lc.
This distributions models the case where the user is aware that the points in the
tile are in class ‘1’ and that they form a cluster in attributes X1 vs. X2.

1 We use the general term relation for any structure in data that can be controlled
using the constrained permutation scheme, e.g., correlation or cluster structure.
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Focusing Ezxploration Using Hypotheses. The tile constraints can also be used to
specify the relations in which the user is interested [20]. The so-called hypothesis
tilings define the items R and attributes C of interest, and the relations between
the attributes that the user is interested in through a partition of C. To simplify
the presentation here, we will make the assumption that the user is interested
in all relations between all the attributes. This restricted setting reduces to
unguided data exploration, where the user is interested in all unknown inter-
attribute relations in the data. Notice that the HGDE framework allows the
user to define more general hypotheses in a flexible way (see [20] for details) and
our current approach is compatible with the more general hypothesis as well.
The intuition is that we model two distributions over data sets: (i) the one
which models what the user can learn of the interesting relations in the data
(formalised by HYPOTHESIS 1), and (ii) the other which models what the user
already knows of the interesting relations in the data (formalised by HYPOTHE-
s1s 2). The dimensionality reduction problem is then to find a direction v € R™
in which the two distributions differ the most, using a suitable objective function.
In [20], e.g., the objective in DR was essentially to find the direction maximising
variance, which will by definition give a user a view (projection) that is the most
informative. More formally, let us thus consider the following hypotheses:

— HYPOTHESIS 1: there are relations in data between all the attributes, and
— HYPOTHESIS 2: there are no relations in data between any of the attributes.

Now, a distribution p; conforming to HYPOTHESIS 1 can be characterised using
the tile t; = ([n], [m']), which restricts the set of allowed vectors of permutations
so that every column (attribute) has to be permuted using the same permuta-
tion. On the other hand, a distribution ps conforming to HYPOTHESIS 2 can be
characterised using the set of tiles {([n],{j}) | 7 € [m']}, which places no restric-
tions on the set of allowed vectors of permutations, i.e., every column (attribute)
is permuted independently.

The knowledge of the user concerning relations in the data is described by
tiles defined by the user during exploration process (user tiles), which are merged
into the both of the hypothesis tilings. The process is iterative in the sense that
after the user adds more constraints, a new direction v is sought. While the
permutation-based randomisation scheme is general to all data types, the pro-
jection pursuit in [20] is restricted to real-valued data, and reduces to principal
component analysis (PCA) when the user has initially no background knowledge
and the hypotheses cover all the data.

Ezample 3. In Fig.2a the projection of the real-valued part Xy, to the first
two principal components is shown, which corresponds to the most informative
projection in the HGDE framework when the user has no background knowledge
and the hypotheses cover all the data. While this projection provides the view to
data maximising variance, it is not very useful in case if the user was interested
in, e.g., the class ‘1°.
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Fig. 2. Toy data Z,y, projected into first two principal components using PCA (a) and
SPCA (b). Colors as in Fig. 1. (Color figure online)

3 Supervised Exploration

Example 3 shows that the most informative projection in the HGDE framework
does not take into account the class information, which is by no means surprising,
since only the real-valued part of the data was used. We now extend the HGDE
framework to a supervised setting, i.e., instead of looking for directions in which
the distributions corresponding to hypotheses differ the most in general, we are
interested in finding directions which give most information about a class.

Ezxample 4. Let us assume that a user is interested in class ‘1’ in our toy data
Zioy- One alternative could be to use supervised PCA (SPCA) [1]. In Fig. 2b we
provide a projection obtained performing SPCA on X;,, with delta-kernel for
Yioy. Clearly, the z-axis separates the data with respect to Y;,,. However, if we
assume that the user already has some background knowledge about the data,
e.g., the user knows the relations formulated in terms of tile ¢ from Example 2,
this projection becomes less informative and there is no direct way to incorporate
the user’s knowledge into SPCA.

As a further observation, we note that when there is only a single target attribute
(as it is the case with our present work), the resulting optimisation problem in
SPCA involves a rank-1 matrix, and thus only the first component contains
meaningful information.

We formulate now our main problem, i.e., how to find the direction v € R™
that is the most informative with respect to a particular class ¢ € L. We will use
two hypotheses, HYPOTHESIS 1 and HYPOTHESIS 2, formulated as described in
Sect. 2. Furthermore, we assume that the tile constraints used to represent the
background knowledge of a user are merged into both hypotheses, and when we
refer to HYPOTHESIS 1 and HYPOTHESIS 2, we always assume that the current
user tiles are merged into both.
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Problem 2 (Main problem). Given distribution p; conforming to HYPOTHESIS 1
and py conforming to HYPOTHESIS 2 together with a class ¢ € L, find the direc-
tion v € R™ providing the most information about the class ¢, i.e., the direction
v in which p; and po differ the most in terms of c.

Let Xy_. denote the restriction of the real-valued part X of Z = (X|Y)
to those rows i for which Y (i) = ¢. Our problem can then be formalised as
finding a direction v in which Xy—. and X{,__ differ most by some suitable
measure, where Z = (X[|Y) and Z' = (X'|Y’) have been sampled from p; and
P2, respectively. Thus, to solve Problem 2, we need a function that measures how
well the class c is separated in p; and ps in a direction v.

We want to choose a measure that will separate the distributions as much
as possible visually. To illustrate what we mean by this, consider, e.g., a case
where distributions pY, ¢ € {1,2}, are defined by a uniform distribution plus
a narrow peak? at z;(v) € [—1,1] to direction v. We would want to find a
measure that is largest when the distance between the peaks |z1(v) — z2(v)]
is maximised. From information-theoretic view an obvious alternative would be
Kullback-Leibler divergence between distributions py, but, in fact, it is insensitive
to the distance between peaks. Thus, we choose to use the numerically more
stable L1-norm between cumulative distributions. For example, in the case of py
and p5 this measure is maximised for v for which the distance between the peaks
is the largest.

Definition 3. Given distributions p1 and ps and a class of interest ¢ € L, the
difference between p1 and py with respect to ¢ in direction v € R™ is computed
using the L1-distance between the empirical cumulative distribution functions for
the real-valued parts of samples Z = (X|Y) and Z' = (X'|Y") from p; and po,
respectively, restricted to ¢ and projected to v:

HZ,Z' c,v) =||F(Xy=cv) = F(Xy:_.0)|h, (1)

where F(x) : R™ — [0,1] is the empirical cumulative distribution function for
the set of values in vector x.

Now, given a sample Z from the distribution p; conforming to HYPOTHESIS 1
and a sample Z’ from the distribution ps conforming to HYPOTHESIS 2, we obtain
the solution to Problem 2 by finding the direction v maximising f(Z, Z’, ¢, v):

rU* = arg maXUER""f(Za Z/a ¢, U)' (2)

In visualisations where we use two-dimensional scatterplots, we find the second
dimension of the scatterplot by optimising the same objective while requiring
the direction to be orthogonal to the first dimension. We will solve the optimi-
sation problem above in practice using the standard quasi-Newton solver in R
with random initialisation and default settings (i.e., the general-purpose optim

2 More formally defined by p¥ (t) = U1y, (t)/2+ Uy (t —xi(v)) /2, where Uy, (t) = 1/(2a)
if —a <t < aand U,(t) = 0 otherwise, at the limit of small o or ¢ — 0.
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Fig. 3. The most informative projection about class ‘1’ for the toy data Z;,, without
background knowledge (a) and using the tile ¢ constraint from Example 2 as background
knowledge (b). Colors as in Fig. 1. (Color figure online)

function in R with method="BFGS"). This approach proved to be sufficiently effi-
cient for the data sizes typical for visual exploratory data analysis (in the order
of thousands data points), as demonstrated in the experimental evaluation.

Ezxample 5. We now apply Definition 3 to find the most informative view to the
user with respect to class ‘1’. Assuming no initial background knowledge, the
datasets shown in Fig. 1a, b are examples of data samples from the distributions
p1 and po, respectively. By solving Eq. (2) we obtain the projection in Fig. 3a.
The difference between the distributions is maximised along the z-axis, and
we observe that the class ‘1’ consists of two group of points. We can now add
this observation to the background knowledge®, e.g., by using the tile ¢ from
Example 2. Because the tile is added to both HYPOTHESIS 1 and HYPOTHESIS
2, the information we have learned is reflected in both distributions, and any
samples conforming to the updated hypotheses will not differ in terms of the
relations constrained by ¢. The most informative projection for Z;,, with the
background knowledge (tile ¢) is shown in Fig.3b. This projection is different
to Fig. 3a, and we see that the most informative direction (z-axis) separates the
data items in class ‘1’ for which we did not yet add background knowledge from
the rest of the data.

4 Experimental Evaluation

In this section we first consider the scalability (in terms of the dimensions of
the data) and stability (in case the class contains only a few samples) of the
method presented in this paper. After this, we present use cases of exploration
of relations in data relevant for a class. The experiments were performed with a

3 In an interactive setting, the selection of data items would be easy from the scatter-
plot. For the selection of attributes, one can use, e.g., the method from [20, Sec. 2.4].
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single-threaded R 3.5.0 implementation on a MacBook Pro laptop with a 3.1 GHz
Intel Core i5 processor.*

Datasets. In the experiments, we utilise the following datasets. We scale the
real-valued variables to zero mean and unit variance.

The GERMAN socio-economic dataset [3,12] contains records from 412 admin-
istrative districts in Germany. Each district is represented by 46 attributes
describing socio-economic and political aspects in addition to the type of
the district (rural/urban), area name/code, state, region (East, West, North,
South) and the geographic coordinates of each district centre. The socio-ecologic
attributes include, e.g., population density, age and education structure, eco-
nomic indicators, and the proportion of the workforce in different sectors. The
political attributes include election results of the five major political parties
(CDU/CSU, SPD, FDP, Green, and Left) in the German federal elections in
2005 and 2009, as well as the voter turnout. We exclude the election results
from 2005, the area code and coordinates of the districts, and all non-numeric
variables except those for region and type. This results in 32 real-valued attributes
and two class variables (region and type) used in our experiments.

The British National Corpus (BNC) [2] is one of the largest annotated text
corpora freely available in full-text format. The texts are annotated with infor-
mation such as author gender, age, and target audience, and all texts have been
classified into genres [14]. We use a preprocessed data from [21] in which the
vector-space model (word counts) is computed using the first 2000 words from
each text belonging to one the four main genres in the corpus (‘prose fiction’,
‘transcribed conversations’, ‘broadsheet newspaper’, ‘academic prose’) as done
in [17]. The BNC dataset has word counts for 1335 texts and the attributes are

Table 1. Median wall clock running time for the synthetic data with varying number
of rows (n) and columns (m). We give the time to generate the hypothesis tilings,
add three random tiles, and generate the data samples conforming to the hypotheses
(tmode1) and the time to find the most informative view (tview), i-€., to solve Eq. (2).

n M | tmodel (8) |tview (8) n M | tmodel (8) |tview (8)
500 16 0.01 0.97 2000 16 0.03 2.03
32 0.01 2.26 32 0.05 7.57
64 0.02 8.15 64 0.07 32.38
128 0.03 66.15 128 0.12 114.76
1000 16 0.02 1.23 4000 16 0.09 4.54
32 0.02 3.97 32 0.11 12.78
64 0.04 18.91 64 0.16 45.05
128 0.06 92.83 128 0.26 140.35

* Code and data available at https://github.com/edahelsinki/shgde.
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the 100 words with highest counts. The class attribute contains classification of
each text into one of the 4 main genres.

The Kaggle Telco customer CHURN dataset® contains information of 7043 cus-
tomers with 21 attributes (18 categorial and 3 real-valued) including information
about services of the customer, customer account, and demographic information.
The task is to predict the value of binary class attribute ‘churn’ (whether the cus-
tomer has left within the last month). We transform all the categorical attributes
(except ‘churn’) using one-hot encoding, which creates a column for every label
of every attribute and the presence (or absence) of a label is indicated by 1 (or
0). Note that variables with many labels are implicitly given more weight in the
one-hot encoding. To overcome this effect, we scale the binary data in groups,
that is, all columns that originate from the same attribute are scaled to have a
total variance of 1. Finally, we drop 11 rows containing ‘NA’ for attribute ‘total
charges’, and end up with 7032 rows and 46 columns.

4.1 Scalability

We started by evaluating the scalability of our method on synthetic data with
m € {16, 32,64, 128} dimensions and n € {500, 1000, 2000, 5000} data points. We
generated the datasets similarly to [18]. The data points are scattered around 10
randomly drawn cluster centroids. We used the clusters to form a binary class
attribute (by assigning the cluster centres closest to each other into same class).
We added k = 3 random tiles as background knowledge: for each tile the rows
were selected by taking the data points from one of the 10 clusters, and for the
columns we randomly selected [2..m] columns.

We report in Table1 the median wall clock running times. We can observe
that the time t,04e1 to generate the hypothesis tilings, add three random tiles,
and generate the data samples conforming to the hypotheses is negligible, i.e.,
we can update our hypotheses and obtain new samples very fast. The time
tyiew to find the most informative direction, i.e., to solve Eq. (2) scales roughly
as O(nm?3). Even with our unoptimised R implementation the running times

Table 2. Stability experiment. In columns avg(f), sd(f), and sd(f)/avg(f) we report
the average of each of these over the six different classes used.

cmin | k| avg(f) sd(f) sd(f)/ave(f)
1000 | 2.03 0.070 | 0.042
311.79 0.068 | 0.045
5000 |2.01 0.036 | 0.028
311.80 0.034 | 0.028
1000 | 0 | 2.00 0.023 | 0.022
3|1.78 0.026 | 0.023

5 Available at https://www.kaggle.com /blastchar/telco-customer-churn.
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Fig. 4. Supervised exploration of the GERMAN data w.r.t. a class consisting of the
districts in regions ‘West’, ‘South’, and ‘North’. (a) The most informative projection
with no background knowledge. (b) The most informative projection with tile ¢{ as
background knowledge. (¢) The most informative projection with tiles ¢ and ¢§ as
background knowledge. See Sect. 4.3 for details of selections shown in red. (Color figure
online)

are at the order of 10s for reasonably sized datasets. We note that for visual
exploration the size of the data n should be reasonable and, it should be down-
sampled as needed. Hence, the time complexity will be asymptotically constant
with respect to n. The time complexity with respect the dimensionality m could
be controlled by first reducing the dimensionality of the data, e.g., by PCA or
by random projections, or by relaxing the convergence criteria of the numerical
optimisation.

4.2  Stability

When the class of interest has only a few items, the effect of a particular sam-
ple from the distribution conforming to HYPOTHESIS 2 to the direction that is
optimal for Eq. (2) is potentially large. This potential instability caused by the
sampling can be controlled by taking several samples from the distributions and
concatenating them, thus making the sample used to solve Eq. (2) large enough.
To study this effect, we used the GERMAN dataset, taking the districts from each
region and of each type as classes (6 cases in total, the class sizes varying between
64 and 290) and added k € {0, 3} random clusters as the background knowledge.
Then, we computed mean value and the standard deviation of Eq. (1) in the opti-
mal direction for 10 samples for each ¢, € {100,500,1000}. Here, the number
of samples needed s was computed as § = [emin/|{7 | Y (¢) = ¢}|]. Looking at the
ration of standard deviation and the mean in Table 2, we observe that setting
Cmin > 500 suffices for practical purposes. For the remaining experiments we use
this value.
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4.3 Supervised Exploration of GERMAN Data

The separation in the socio-economic and political factors between districts in
region ‘East’ and the districts in other regions is the most dominant factor in
the GERMAN dataset, see e.g., [3,12,20]. We assume now that we are interested
in exploring other factors in the data, in particular those representative for the
non-Eastern regions. Thus, we choose a class consisting of districts in regions
‘West’, ‘South’, and ‘North’ for our first use case.

Figure 4a shows the most informative view with respect to our class (solid
circles are used for districts in the class, circles without a fill are used for districts
not in the class) without any background knowledge. The projection shown sep-
arates the districts in the class into two parts along x-axis. We define a tile ¢{
to add this observation into the background knowledge. We select the districts
coloured red in Fig. 4a for the rows, and all attributes for the columns.® Look-
ing at the distribution of region (North =46, South =108, West = 78) and type
(Urban =7, Rural = 225) attributes for this selection we observe that we have
defined a tile constraint for a set of mainly rural districts.

Figure 4b shows the most informative view the class given ¢{ as background
knowledge. We obtain a different projection and observe the districts coloured
red in Fig.4b have higher values along z-axis than the rest of the districts.
From the distribution of region (North=4, South=15, West=11) and ¢ype
(Urban =25, Rural =5) attributes for this selection we observe that these are
mainly urban districts from the class. We add this observation into the back-
ground knowledge by defining a tile 3. The rows in t3 are those coloured red in
Fig. 4b, and for columns we include all attributes. Figure 4c then shows the most
informative view with respect to the class given both t{ and ¢3 as background
knowledge, demonstrating the division between the Eastern districts and the
rest.

To understand the utility of the views shown, we compute values of
the measure f in Eq. (1) using samples from the distributions conforming

Table 3. The GERMAN data use case. The value of f from Eq. (1) for different projection
vectors v and cases of background knowledge.

GERMAN | No background | Tile ¢{ | Tiles ¢7, ¢J
V0 1.627 0.148 10.073
U1 1.079 0.901 | 0.641
V2 1.115 0.880 |0.656
Vspea 1.306 0.739 |0.555
Upca 1.336 0.417 |0.322

5 For simplicity, we use the set of all attributes as the columns in the tiles in explo-
rations of the GERMAN and BNC datasets. In [20, Sec. 2.4] we provide a principled
way for selecting a subset of columns most relevant for a selection of rows, which
could be used in a more subtle exploration.
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Fig. 5. Supervised exploration of the BNC data w.r.t. a class consisting of the texts
from the genres ‘broadsheet newspaper’ and ‘academic prose’. (a) The most informative
projection with no background knowledge. (b) The most informative projection when
tile t}"¢ is added to the background knowledge. (c) The most informative projection
when tiles t5¢ and t5"¢ are added to the background knowledge. See Sect. 4.4 for details
of selections coloured red. (Color figure online)

to HYPOTHESIS 1 and HYPOTHESIS 2 given the background knowledge. We
have three cases: no background knowledge (0 tiles), background knowledge
represented using tile ¢J (1 tile), and background knowledge represented
using tiles ¢§ and ¢ (2 tiles). For each case we compute the direction
in optimising the measure f, i.e., a solution to Eq. (2), denoting these by
v; where i corresponds to the number of tiles in the background knowl-
edge. For comparison, we also compute the first PCA and SPCA projec-
tion vectors, denoted by vpca and vspea, respectively. Then, we calculate
the value for f in different cases. The results are presented in Table3.
We notice that the value of the measure f indeed is always the high-
est, when the projection vector matches the background knowledge (high-
lighted in the table), as expected. This shows that the views presented are
indeed the most informative ones given the current background knowledge.
We also notice that PCA and SPCA projection vectors are less informative
in terms of the measure f.

Table 4. The BNC data use case. The value of f from Eq. (1) for different projection
vectors v and cases of background knowledge.

BNC | No background | tile t57¢ | tiles 4™, t5"°

Vo 3.571 0.589 0.247
V1 1.708 1.651 |1.103
v2 1.513 1.480 1.253
Uspea | 3.561 0.572 0.241

Upca | 3.488 0.520 0.206
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4.4 Supervised Exploration of BNC Data

As our second use case we consider the BNC dataset by exploring the high-
level structure of the corpus. The exploration of the same data in [21] already
reveals us that the genres ‘prose fiction’ and ‘transcribed conversations’ form
rather clearly visible clusters in the PCA projection of the data, while the gen-
res ‘broadsheet newspaper’ and ‘academic prose’ are not very distinct from each
other. Thus, we focus our interest to a class containing texts from the gen-
res ‘broadsheet newspaper’ and ‘academic prose’ to see whether our supervised
method allows us to find projections which would provide us new information
about these genres.

Figure 5a shows the most informative view with respect to the class (solid
circles are used for texts belonging to the class, circles without a fill are used
for the texts not in the class). The projection shown clearly separates the texts
with respect to our class. We define a tile constraint t"¢, by selecting the points
with z-axis value greater than zero (coloured red in Fig.5a) for the rows, and
all attributes for the columns. The selection contains 144 texts from genre ‘tran-
scribed conversations’, 413 from ‘prose fiction’, and 12 texts from genre ‘broad-
sheet newspaper’. Thus, we add a tile constraint covering mostly texts outside
the class, making this way explicit to the system that we already know the main
features of the texts not in our class. Figure 5b shows the most informative view
after t"¢ has been added to the background knowledge. We observe that the
texts in the class seem to separate in the direction along y-axis. By selecting
the points with higher values in y-axis (coloured red in Fig.5b) in our class,
we observe that these are mainly texts from genre ‘broadsheet newspaper’ (211
texts), the remaining 10 texts are from genre ‘academic prose’. Thus, this view
shows us how the two genres in our class are separated. If we now add a tile
constraint ¢57¢ for this selection (taking again all attributes as the columns), we
obtain the view shown in Fig.5c, in which some outliers could be potentially
studied further.

Similarly to the GERMAN data use case, we provide the value of the measure
f for each projection vector in Table4, and compare these to the first PCA and
SPCA projection vectors. Here we observe, that both PCA and SPCA provide a
direction with a very similar interestingness value to our method when there is
no background knowledge. However, with background knowledge, the situation
changes and our approach provides clearly more interesting views given the class.

4.5 Identification of Churners

Finally, we explore the CHURN data. The problem of identifying possible churn-
ers, i.e., customers likely to cancel a subscription to a service, has become a
popular use case in business domain, because retaining one customer costs much
less than gaining a new one. Churn prediction problem is typically addressed with
off-the-shelf machine learning and statistical approaches which usually do not
use any domain expert knowledge. In this example, our goal is to demonstrate
how our method can help to put the domain-specific knowledge into better use.
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We can use our framework to find the most informative direction with respect
to the class containing customers who churn.

Now, let us assume that the domain experts have already identified from
their previous experiences that ‘monthly charge’ and ‘total charges’ are the most
salient features that cause customer to churn. We will use this background knowl-
edge in the exploration, i.e., we add a tile t.p, covering attributes ‘monthly
charge’, ‘total charges’, and ‘churn’ and all the rows in the data to the back-
ground distribution. The most informative direction in this case has the highest
(absolute) weights for the attributes ‘tech support =no’, ‘online security =no’,
and ‘internet service = fiber optic’.

We can compare this set of five features (i.e., ‘total charges’, ‘monthly
charges’, ‘tech support’, and ‘online security’ and ‘internet service’) identified by
the user to the whole set of features in the data, when classifying churners using
the non-preprocessed dataset. Here we use fitted binary classification decision tree
with 10-fold cross validation for the classification, and measure the performance
with misclassification error (ME) and false positives (FP) rate. We observe, that
using the user identified 5-feature set (ME =0.263, FP =0.127) the performance
that is at least as good as using the full 20-feature set (ME=0.264, 0.133),
and even marginally better in terms of false positives rate. This demonstrates
the potential human-guided exploration approach for a real-world dataset, in
particular in a scenario in which a high false positive rate is a major concern.

5 Conclusions

In this paper we proposed a method for supervised dimensionality reduction
for interactive EDA systems that take the user’s background knowledge and
objectives into account. We defined an information criterion, which allows us to
find the most informative views about the class structure of data by taking the
user’s current knowledge and objectives into account. In the experimental evalu-
ation we demonstrated that our method gives understandable and useful results
when analysing real-world datasets. Taking the user’s background knowledge
into account matters, as the use of the updating background knowledge allows
an EDA system to show the user currently unknown and relevant projection to
the data.

For potential future directions we note that our method could potentially
be used for human-guided classification by using an updating class of interest,
instead a fixed one. Initially, all items would belong to the class of interest, and
the user is shown the most informative projection. The user could then identify
set(s) of data items and classify them, and a new projection could be shown
for an updated class of interest containing the data items unclassified so far.
Moreover, the knowledge of the user of the found sets of data items could be
added into the background knowledge. We also plan to implement our method
in an interactive data analysis tool, and study how the optimisation problem in
Eq. (2) can be solved more efficiently in practice. For a better interpretability of
the views, we could consider, e.g., sparse projection vectors.
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Abstract. We introduce SynthlLog, an extension of the probabilis-
tic logic programming language ProbLog, for synthesising inductive
data models. Inductive data models integrate data with predictive and
descriptive models, in a way that is reminiscent of inductive databases.
SynthLog provides primitives for learning and manipulating inductive
data models, it supports data wrangling, learning predictive models and
constraints, and probabilistic and constraint reasoning. It is used as the
back-end of the automated data scientist approach that is being devel-
oped in the SYNTH project. An overview of the SynthLog philosophy
and language as well as a non trivial example of its use, is given in this
paper.

Keywords: Automated data science - Inductive databases -
Probabilistic programming

1 Introduction

Automated data science has received a lot of attention in the last decade [2], and
has been recognized as an important challenge and solutions promise to democ-
ratize data science and make it available to non-expert end-users. Most current
approaches tackle the problem of automatically constructing the best predic-
tion pipeline [6,7]. These approaches typically target expert end-users, that can
understand most of the steps in the pipeline. In contrast, the SYNTH framework
wants to democratize data science and make it available to the naive end-user.
The central setting in SYNTH is that of autocompletion in spreadsheets [4].
Spreadsheets are used ubiquitously and the autocompletion task consists of pre-
dicting the next cell and value that the user wants to fill out, of course, under the
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assumption that there are sufficient regularities in the data to enable meaningful
predictions.

The autocompletion task constitutes the front-end of the SYNTH framework,
and it is easy to see how this can be included in spreadsheet software such as
Excel. The back-end, however, consists of the SynthLog language that should
support the underlying data science processes and components. This includes
tools to automate various steps in data science, from data wrangling to predic-
tive modeling and constraint learning. But rather than viewing this as a data
science workflow or pipeline, SYNTH has the SynthLog language that allows the
knowledgeable user to define and steer the data science process in a declarative
manner. It is this language that we briefly introduce and illustrate in the present
note. SynthLog builds on the inductive database idea [8] in that we are looking
for a small and non-trivial set of primitives that supports data science processes.
Rather than building on top of databases [9], however, SynthLog extends the
probabilistic programming language ProbLog that already supports deductive
and probabilistic inference, learning and (a limited form of) constraint process-
ing, which are all important for data science.

The idea that SynthLog borrows from inductive databases is that it should
treat models (such as predictors or constraints) as first class citizens, that is,
SynthLog should support manipulating, constructing, using, and learning such
models. Indeed, SynthLog should not only allow to handle the inputs and outputs
of the data science components, but also to reason about which models should
be learned, used or combined for a particular dataset or task. The models will
be represented as SynthLog theories, which are essentially ProbLog programs,
consisting of a set of probabilistic facts and clauses. Combining data science com-
ponents then corresponds to performing operations on theories: adding/deleting
facts, adding/deleting clauses, and combining theories.

In Sect. 2, we introduce the main contribution of this paper: the SynthLog
language. Then, in Sect. 3, we present a case-study illustrating how SynthLog
can be used to bridge many components of data science: from data wrangling to
constraints.

2 Introduction to SynthLog

SynthLog is a language for supporting automated data science processes. It
allows to construct and manipulate inductive data models. An Inductive Data
Model (IDM) consists of (1) a set of data models (DM) that specifies an adequate
data structure for the dataset (like a database), and (2) a set of inductive models
(IMs), that is, a set of patterns and machine learning models (like classifiers)
that have been discovered in the data. While the DM can be used to retrieve
information about the dataset and to answer questions about specific data points,
the IMs can be used to make predictions, find inconsistencies and redundancies,
etc. IDMs integrate data and inductive models in a SynthLog theory.

SynthLog is built on top of the ProbLog probabilistic programming language.
It essentially assumes that both the data models and the inductive models are
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ProbLog programs, and allows to refer to and manipulate such models by means
of a new ProbLog operator. As SynthLog manipulates both data and inductive
models, it borrows ideas from inductive databases that also consider both data
and inductive models as first class citizens. For example, SynthLog follows the
mantra of inductive databases that requires the closure property to be satisfied
[3,8]. In the SynthLog context this means that the result of any operation must
be a theory, and thus must be a ProbLog program. At the same time, as each
theory is a ProbLog program, SynthLog supports deductive and probabilistic
reasoning, a form of answer set programming (through DTProbLog [1]) and
machine learning. We first introduce ProbLog on a simple example, and then
introduce the notion of a theory.

2.1 ProbLog by Example

ProbLog [5] is a probabilistic logic programming language, that extends Prolog
by adding probabilistic primitives and inference. Let us take the example (from
[5]) of a small social network, where smoking behavior depends on friendship
among people.

0.4::asthma(X) :— smokes(X).
0.3::smokes (X).
0.2::smokes(X) :— friend(X,Y), smokes(Y).

friend (1,2). friend(2,1). friend(2,4). friend (3,2). friend (4,2).
query (asthma (2)).

T W N =

For example, the first rule states that somebody that smokes has a probability
of 40% to have asthma. Likewise, the second rule states that any person has a
30% chance of smoking. The query corresponds to the answer we want to get: we
want to know the probability that person 2 has asthma. In this case, the result
is 0.15.

As SynthLog extends ProbLog, which extends Prolog, a basic knowledge of
Prolog and ProbLog is assumed in the remainder of this paper. For the interested
reader, a more detailed presentation of ProbLog is available!.

2.2 SynthLog Theories

We now extend ProbLog with the notion of a theory. Each theory will consist
of a ProbLog program and it will be possible to define theories through the
scope operator ’:’/2. For example, the fact theory(a) :knowledge (1) states
that the theory or ProbLog program identified by theory(a) contains the fact
knowledge(1).

The following SynthLog listing defines various theories:

1 constraints:(a:—b).

2 data:b.

3 global :X :— constraints:X; data:X.
4

query (global:_).

! https://dtai.cs.kuleuven.be/problog/index.html.
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In this case, the clause a:-b is defined in the theory constraints and is
interpreted as constraints:a :- constraints:b. Beyond the syntactic sugar
allowing to factorize the theory name in each terms in a clause, such represen-
tation allows to share constraints between theories and automatically interpret
them. In this example, the global theory is the union of the constraints and
data theories. global contains the fact b and the clause a:-b. Thus, global:a
can be inferred. To support the inductive database aspect of SynthLog, and to
allow for further manipulating inductive models, theories can be loaded from or
stored in a database or file.

2.3 A Language for Data Science

To facilitate the use of SynthLog as a language dedicated to data science, sev-
eral predicates are introduced to infer properties of relational datasets, build
classifiers and learn or apply constraints on theories. SynthLog supports the def-
inition of custom predicates, that take a theory (i.e. an inductive data model)
as input and returns a theory as output. Many tasks fit within that framework:
learners typically take data as input to output a model, data wrangling takes
data as input and outputs data, applying a predictor requires data and model
as input and outputs data. Some of these custom predicates are detailed in the
next section.

3 Case Study: Auto-Completion

Table 1. Data representing the historical sales of an ice-cream factory.

Type Country | June | July | August | Total | Profit
Vanilla BE 610 |190 | 670 1470 |1
Banana | BE 170 1690 |520 1380 |1
Chocolate | BE 560 | 320 | 140 1020 |1
Banana |DE 610 |640 | 320 1570 |0
Speculaas | BE 300 |270 |290 860 |0
Chocolate | FR 430 | 350 | 300 1080 |1

Table 2. Data representing the sales of an ice-cream factory, with missing profit.

Type Country | June | July | August | Total | Profit
Banana |DE 250 | 650 | 630 1530
Chocolate | NL 210 | 280 | 270 760
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In this Section, we show how SynthlLog can tackle a classic challenge in data
science: automatically filling missing values in a spreadsheet. More precisely,
these missing values are predicted with inductive models. The auto-completion
task has been identified as a simple, yet challenging task, that illustrates the
core of the SYNTH framework [4].

This case study shows that SynthLog successfully use both predictors, such as
logistic regression; and probabilistic rules to infer the most likely missing values.
We can therefore build on the large literature of the automation of predictor
learning [7], while also providing an easy way to add user knowledge in the
inference process. We also illustrate how inductive database ideas are used to
store and query models depending on the task at hand. We use a toy dataset
emulating sales of an ice-cream factory. The data is shown in Tables1 and 2,
with missing profit for the two rows in Table 2. It will be inferred using logistic
regression combined with user defined constraints. The code performing the auto-
completion is presented below:

1 magic_cells:X :— load_csv (‘magic_ice_cream.csv’, X).

2 missing_data_cells:X :— load_csv (‘magic_testl.csv’, X).

3

4 magic_tables:X :— detect_tables(magic_cells , X).

5 missing_data:X :— detect_tables(missing_data_cells, X).

6

7 magic.models:X :—sklearn_predictor (magic_tables ,

8 ‘linear_model . LogisticRegression ’,

9 [column (‘T1’,3), column(‘T1’,4)], [column(‘T1’,6)], X).
10

11 magic_predict:X :— magic_models: predictor (Y),

12 magic-models:source (Y, column(‘T1’, 3)),

13 magic.models:source (Y, column(‘T1’, 4)),

14 predict (missing_data ,Y,[column(‘T1’,3),column(‘T1’ ,4)],X).
15

16 final_pred:table_cell (‘T1’, X, 7, V) :—

17 magic_predict:cell_pred (X, Y, V, _).

18

19 magic_constraints:

20 (0.7::table_cell (T,X,7,0): — table_cell (T,X,5,V), V<300).
21 magic_constraints:table_cell (‘T1’, X, Y, V) :—

22 missing_data:table_cell (‘T1’, X, Y, V).

23

24 combined_pred:table_cell (T,X,Y,V) :—

25 magic_constraints: table_cell (T,X,Y,V);

26 final_pred:table_cell (T,X,Y,V).

27

28 query(combined_pred:_).

In Line 1, we create the theory magic_cells from a csv file containing the data
in Table 1, by using the custom predicate load_csv/2. Details about the cus-
tom predicates and their exact behavior are presented in Appendix A. Likewise,
Line 2 creates the theory missing_data_cells by loading the data represented in
Table 2.
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The rest of the program manipulates these 2 theories using SynthLog prim-
itives and custom predicates to perform wrangling, prediction and inference.
For example, Lines 4 and 5 perform wrangling, by using the custom predicate
detect_tables/2. More precisely, in Line 4, detect_tables/2 transforms the
theory magic_cells to output the theory magic_tables. The new theory magic_tables
contains the same data as the theory magic_cells (i.e. the data from Table 1), but
uses a different data model. Indeed, detect_tables/2 takes a cell based data
model and transforms it into a table based data model. Details of this transforma-
tion are given in Appendix A. In this simple example, wrangling is straightforward,
as the data is already nicely formatted. However, detect_tables/2 still provides
information about cell types and detects headers.

From the theory magic_tables, the custom predicate sklearn_predictor/5
learns an inductive model (Lines 7 to 9). More precisely, it learns a logistic
regression model® that predicts column 6 of Table T1 (the Table depicted in
Table 1) from columns 3 and 4 of Table T1. The theory magic_predict contains
this newly learned inductive model. The theory magic_predict also contains addi-
tional information about the learned inductive model: on which theory was it
learned, using which columns and what type of inductive model it is. Keeping
track of all these information allows us to easily query any model, hence treating
them as first class citizens.

Lines 11 to 13 query an inductive model by manipulating the theory
magic_predict. To retrieve an inductive model, we simply specify its properties:
it is a predictor and was trained on columns 3 and 4 from Table T1. If sev-
eral inductive models in magic_predict satisfy these requirements, they are all
used. SynthLog therefore handles models following the inductive database idea
of treating them as first class citizens. Then, Line 14 applies the queried induc-
tive model on the theory missing_data to create the new theory magic_predict,
using the custom predicate predict/4. The theory magic_predict contains prob-
abilistic facts representing the predictions of the logistic regression.

Lines 16 and 17 create the theory final_pred by selecting a sub-part of
the theory magic_predict, using a simple ProbLog rule. Lines 19 and 20
create a new inductive model, by storing a user-defined rule in the theory
magic_constraints. This rule states that if column 5 of Table T in row X has
a value below 300, then column 7 (profit) of Table T in row X has a value of 0
with probability 0.7. In this simple case, this rule could be specified by a user.
However, SynthLog supports learning such rules through the use of custom pred-
icates. Lines 21 and 22 add a sub-part of theory missing_data to the theory
magic_constraints. Since the theory magic_constraints now contains table_cell
predicates, the rule defined in Line 20 will automatically trigger, hence creating
the probabilistic fact 0.7::table_cell(T,X,7,0) when applicable.

Finally, Lines 24 to 26 create the theory combined_pred by performing the
union of sub-parts from the theories magic_constraints and final_pred through
the ’;°/2 operator of ProbLog. As SynthLog combines probabilistic facts from
final_pred with the probabilistic rule from magic_constraints to create final_pred,

2 We use the scikit-learn library: https://scikit-learn.org/stable/index.html.
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probabilistic inference has to be performed. Because SynthLog extends ProbLog,
it relies on its probabilistic inference mechanism to soundly combine both theo-
ries. As in ProbLog, the query of Line 28 determines what probabilistic facts
the program should infer. In this case, we query for the theory final_pred to infer
the cell values of Table2, by combining the logistic regression predictions with
the user defined rule. The result is shown in Table 3.

Overall we have seen that SynthLog manipulates theories by using either cus-
tom predicates or native ProbLog operators. This simple way of manipulating
theories is nonetheless powerful, as the resulting program is performing com-
plex inference, taking into account predictive models and rules, while remaining
simple to read.

Table 3. Data (from Table2) with filled profit values and probability on predictions

Type Country | June | July | August | Total | Profit | Probability
Banana |DE 250 | 650 | 630 1530 |0 0.04
Banana |DE 250 | 650 |630 1530 |1 0.96
Chocolate | NL 210 |280 |270 760 |0 0.46
Chocolate | NL 210 | 280 |270 760 |1 0.54

4 Conclusion

We have introduced SynthLog, a declarative language for synthesising Inductive
Data Models (IDM). IDMs integrate data and inductive models in a SynthLog
theory. Theories can also be seen as ProbLog programs, consisting of proba-
bilistic facts and clauses. Assembling data science components corresponds to
manipulating theories, hence making SynthLog a language suitable for automat-
ing data science. As SynthLog is an extension of ProbLog, it natively supports
probabilistic reasoning and we have illustrated through a use case how SynthLog
can use probabilistic inference to effortlessly combine results from different type
of models (predictors and constraints).

Having a language to assemble data science components, based on proba-
bilistic logic, opens new possibilities. First, the inherent uncertainty of data and
inductive models can be leveraged to perform probabilistic inference and pro-
vide predictions that reflect our confidence in our data and inductive models.
Second, SynthLog handles different types of inductive models. More specifically,
it handles rules or constraints along with other machine learning models. Hence,
SynthLog provides a great opportunity to bridge user interaction and model
learning through a unique language.

In the SYNTH framework, SynthLog is also first step towards the automa-
tion of data science. Indeed, with a single language combining all data science
components, we can tackle the more challenging task of learning to learn, that is
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learning which SynthLog programs are suitable to automatically solve the data
science task at hand.

Finally, the further development of SynthLog will likely require the develop-
ment of new implementation techniques to support fast inference and learning.
This will allow smoother user interaction and the analysis of larger datasets.

Acknowledgements. This work has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No. [694980] SYNTH: Synthesising Inductive Data Models).

Appendix A: SynthLog Custom Predicates Documentation

— load_csv/2: loads the content of a csv file in a theory
e Input
* csv file
e Output: Theory with predicates:
* cell/3: row id, column id and value of each cell
— detect_tables/2: calls a data wrangler [10] to detect tables in the spread-
sheet
e Input
* Theory with cell/3 predicates
e Output: Theory with predicates:
* table/5: table id, top left row, top left column, height, width
* table_cell/4: table id, row id, column id and value of each cell
* table_cell_type/4: table id, row id, column id and type of each cell
* table_header/5: table id, column id, name, type, list of unique values
— sklearn_predictor/5 learns a scikit-learn predictor
e Input
* Theory with table_cell/4 predicates
* Inductive model type (from scikit-learn models)
* List of columns to use as features
* List of columns to predict
e Output: Theory with predicates:
* sklearn_predictor/1: inductive model
* target/2: inductive model, predicted column
* source/2: inductive model, feature column
— predict/5 makes prediction using a previously trained model
e Input
* Theory with table_cell/4 predicates
* Inductive model
* List of columns to use as features
* List of columns to predict
e Output: Theory with predicates:
* cell_pred/4: table id, row id, column id and value of each cell
* predictor/1: inductive model
* source/2: inductive model, feature column
* confidence/2: inductive model, confidence score
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Abstract. This paper describes the autofeat Python library, which
provides a scikit-learn style linear regression model with auto-
mated feature engineering and selection capabilities. Complex non-linear
machine learning models such as neural networks are in practice often
difficult to train and even harder to explain to non-statisticians, who
require transparent analysis results as a basis for important business
decisions. While linear models are efficient and intuitive, they generally
provide lower prediction accuracies. Our library provides a multi-step
feature engineering and selection process, where first a large pool of non-
linear features is generated, from which then a small and robust set of
meaningful features is selected, which improve the prediction accuracy
of a linear model while retaining its interpretability.

Keywords: AutoML - Feature engineering + Feature selection *
Explainable ML

1 Introduction

More and more companies aim to improve production processes with data science
and machine learning (ML) methods, for example, by using a ML model to
better understand which factors contribute to higher quality products or greater
production yield. While advanced ML models such as neural networks (NN)
might, theoretically, in many cases provide the most accurate predictions, they
have several drawbacks in practice. First of all, with many hyperparameters
to set, these model can be difficult and time consuming to fit, which is only
aggravated by the current shortage of ML specialists in industry. Second, in
many cases there is not enough data available in the first place to train a low
bias/high variance model like a NN, for example, because comprehensive data
collection pipelines are not yet fully implemented or because obtaining individual
data points is expensive, e.g., when it takes several days to produce a single
product. Last but not least, the insights generated by a ML analysis need to

© Springer Nature Switzerland AG 2020
P. Cellier and K. Driessens (Eds.): ECML PKDD 2019 Workshops, CCIS 1167, pp. 111-120, 2020.
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be communicated to others in the company, who want to use these results as
a basis for important business decisions [30]. While great progress has been
made to improve the interpretability of NNs, e.g., by using layer-wise relevance
propagation (LRP) to reveal which of the input features contributed most to a
neural net’s prediction [1,2,25], this is in practice still not sufficient to convince
those with only a limited understanding of statistics. Especially when dealing
with data collected from physical systems, using a plausible model might even
be more important than getting small prediction errors [22].

To avoid these shortcomings of NNs and other non-linear ML models, in
practice we find it necessary to rely mostly on linear prediction models, which
are intuitive to understand and can be trained easily and efficiently even on
very small datasets. Of course, employing linear models generally comes at the
cost of a lower prediction accuracy. Therefore, inspired by the SISSO algorithm
[28], we propose a framework to automatically generate several tens of thou-
sands of non-linear features from the original inputs and then carefully select
the most informative of them as additional input features for a linear model. We
have found that this approach leads to sufficiently accurate predictions on real
world data while providing a transparent model that has a high acceptance rate
amongst non-statisticians in the company and therefore provides the possibility
to positively contribute to important business decisions.

To make this framework more accessible to other data scientists, our imple-
mentation is publicly available on GitHub.! The rest of the paper is structured
as follows: After introducing some related work in the area of automated feature
engineering and selection, we describe our approach and the autofeat Python
library in detail (Sect. 2). We then report experimental results on several datasets
(Sect. 3) before concluding the paper with a brief discussion (Sect.4).

1.1 Related Work

Feature construction frameworks generally include both a feature engineering, as
well as a feature selection component [21]. One of the main differences between
feature construction approaches is whether they first generate an exhaustive fea-
ture pool and then perform feature selection on the whole feature set (which is
also the strategy autofeat follows), or if the set of features is expanded iter-
atively, by evaluating at each step whether the inclusion of the new features
would improve the prediction accuracy. Both approaches have their drawbacks:
The first approach is very memory intensive, especially when starting off with
a large initial feature set from which the additional features are constructed via
various transformations. With the second approach, important features might
be missed if some variables are eliminated too early in the feature engineering
process and can therefore not serve to construct more complex, possibly helpful
features. Furthermore, depending on the strategy for including additional fea-
tures, the whole process might either be very time intensive, if at each step a
model is trained and evaluated on the feature subset, or can fail to include (only)

! https://github.com/cod3licious/autofeat.
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the relevant features, if a simple heuristic is used for the feature evaluation and
selection.

Most existing feature construction frameworks follow the second, iterative
feature engineering approach: The FICUS algorithm [21] uses a beam search
to expand the feature space based on a simple heuristic, while the FEADIS
algorithm [9] and Cognito [18] use more complex selection strategies. A more
recent trend is to use meta-learning, i.e., algorithms trained on other datasets, to
decide whether to apply specific transformation to the features or not [16,17,26].
While theoretically promising, we could not find an easy to use open source
library for any of these approaches, which makes them essentially irrelevant for
practical data science use cases.

The well-known scikit-learn Python library [29] provides a function
to generate polynomial features (e.g. x?), including feature interactions (e.g.
x1 - T9, 27 - 23). Polynomial features are a subset of the features generated by
autofeat, yet, while they might be helpful for many datasets, in our experience
with autofeat, a lot of times the ratios of two features or feature combina-
tions turn out to be informative additional features, which can not be generated
with the scikit-learn method. The scikit-learn library also contains sev-
eral options for feature selection, such as univariate feature scoring, recursive
feature elimination, and other model-based feature selection approaches [13,19].
Univariate feature selection methods consider each feature individually, which
can lead to the inclusion of many correlated features, like those contained in
the feature pool generated by autofeat. The more sophisticated feature selec-
tion techniques rely on the use of an external prediction model that provides
coefficients indicating the importance of each feature. However, algorithms such
as linear regression get numerically unstable if the number of features is larger
than the number of samples, which makes these approaches impractical for fea-
ture pools as large as those generated by autofeat.

One popular Python library for automated feature engineering is
featuretools, which generates a large feature set using “deep feature synthe-
sis” [15]. This library is targeted towards relational data, where features can be
created through aggregations (e.g. given some customers (data table 1) and their
associated loans (in table 2), a new feature could be the sum of each customer’s
loans), or transformations (e.g. time since the last loan payment). A similar
approach is also implemented by the “one button machine” [20]. The strategy
followed by autofeat is somewhat orthogonal to that of featuretools: It is
not meant for relational data, found in many business application areas, but
was rather built with scientific use cases in mind, where e.g. experimental mea-
surements would instead be stored in a single table. For this reason, autofeat
also makes it possible to specify the units of the input variables to prevent the
creation of physically nonsensical features.

Another Python library worth mentioning is tsfresh [6,7], which provides
feature engineering methods for time series, together with a univariate fea-
ture selection strategy. However, while autofeat can be applied to a variety
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of datasets, the features generated by tsfresh only make sense for time series
data, as they are constructed, e.g., using rolling windows.

To the best of our knowledge, there does not exist a general purpose open
source library for automated feature engineering and selection, which is why we
felt compelled to share our work.

2 Automated Feature Engineering and Selection with
autofeat

The autofeat library provides the AutoFeatRegression model, which automat-
ically generates and selects additional non-linear input features given the original
data and then trains a linear regression model with these features. The model
provides a familiar scikit-learn [29] style interface, as demonstrated by a sim-
ple usage example, where X corresponds to a n x d feature matrix and y to an
n-dimensional target vector (both NumPy arrays [27] and Pandas DataFrames
[23] are supported as inputs):

# instantiate the model

model = AutoFeatRegression/()

# fit the model and get a pandas DataFrame with the original,
# as well as the additional non-linear features

df = model.fit_transform(X, vy)

# predict the target for new test data points

yv.pred = model.predict(X_test)

# compute the additional features for new test data points

# (e.g. as input for a different model)

df_test = model.transform(X_test)

In the following, we describe the feature engineering and selec-
tion steps happening during a call to AutoFeatRegression.fit() or
AutoFeatRegression.fit_transform() in more detail. The autofeat library
requires Python 3 and is pip-installable.

2.1 Construction of Non-linear Features

Additional non-linear features are generated in an alternating multi-step pro-
cess by applying user selectable non-linear transformations to the features (e.g.
log(z), vz, 1/z, 22, 23, |z|, exp(x), 2%, sin(z), cos(x)) and combining pairs
of features with different operators (4, —,). This results in an exponentially
growing feature space, e.g., with only three original features, the first feature
engineering step (applying non-linear transformation) results in about 20 new
features, the second step (combining features), results in about 350 new features,
and after a third step (again applying transformations), the feature space has
grown to include over 7000 features. As this may require a fair amount of RAM
depending on the number of original input features, the data points can be sub-
sampled before computing the new features. In practice, performing only two or
three feature engineering steps is usually sufficient.
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The new features are computed using the SymPy Python library [24], which
automatically simplifies the generated mathematical expressions and thereby
makes it possible to exclude redundant features. If the original features are pro-
vided with physical units, only ‘legal’ new features are retained, e.g., a feature
representing a temperature would not be subtracted from a feature representing
a volume of something. This is implemented using the Pint Python library,?
which is additionally used to compute several dimensionless quantities from the
original features using the Buckingham w-theorem [5]. If categorical features are
included in the original features, these are transformed into one-hot encoded
vectors using the corresponding scikit-learn model and not considered for
the main feature engineering procedure.

2.2 Feature Selection

After having generated several thousands of features (often more than data
points in the original dataset), it is now indispensable to carefully select only
those features that contribute meaningful information when used as input to
a linear model. To this end, we employ a multi-step feature selection approach
(Fig.1). In addition to the AutoFeatRegression model, the library also provides
only this feature selection part alone in the FeatureSelector class, which again
provides a scikit-learn style interface.

Individual features can provide redundant information or they might seem
uninformative by themselves yet proof useful in combination with others. There-
fore, instead of ranking the features independently by some criterion, it is advan-
tageous to use a wrapper method that considers multiple features at once to
select a promising subset [13]. For this we use the Lasso LARS regression model
[3,10,12] provided in the scikit-learn library, which yields sparse weights
based on which the features can be filtered. However, with more features than
data points, a linear regression model is numerically unstable. Therefore, the
features are first ranked based on their absolute correlation with the target
residual [11] and the model is only trained on the highest ranked features. Then,
to include further features capturing the not yet explained parts of the target
variable, these steps are repeated multiple times, where in each iteration the
regression model is used to compute a new target residual.

To identify a more robust set of features, this feature selection process can
be repeated multiple times using subsamples of the data. The resulting set of
features is then filtered by imposing a significance threshold: For this, a Lasso
LARS regression model is trained on the selected features, as well as a random
permutation of all features. The final set of features is then determined by choos-
ing only those of the real features with a regression coefficient larger than the
largest coefficient of the random noise features. After this multi-step selection
process, typically only a few dozen of the several thousand engineered features
are retained and used to train the final model. For new test data points, the
AutoFeatRegression model can then either generate predictions directly, or a

2 https:/ /pint.readthedocs.io/en/latest /.
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Input:

feature matrix (mean=0, std=1): X €& R7xd
residual to be explained: 7 =y € R<1
candidate features: H = {1, ..., log(xs + x3)}
good features: G = {}

Do until convergence of GG
correlation of features
with target residual 'j
c=|r"X|
select promising features
G = G U H[max(c)]
= |G| =n/2
train Lasso regression model
with good features
& update residual
r=y—w' X|[G]

filter good features

G = Gllw| > 0]

Fig. 1. The heart of our feature selection algorithm. Given the feature matrix X with
all candidate features H, the aim is to select a few informative features (G) that
explain the target variable y. The set of good features G is adapted until a stable
set of features is reached. First, promising features are identified by computing the
correlation between the features and the target residual, and G is extended by those
features with the largest absolute correlation until G' contains up to n/2 features (to
guarantee numerical stability in the following regression step). Next, the currently
selected good features are used to train a Lasso LARS regression model, based on
which the target residual is updated and the good features are filtered by retaining
only those with a non-zero regression weight.

DataFrame with the new features can be computed for all data points and used
to train other models.

By examining the coefficients of the regression model (possibly normalized
by the standard deviation of the corresponding features, in case these are not
of comparable magnitudes), the most prominent influencing factors related to
higher or lower values of the target variable can be identified.

3 Experimental Results

To give an indication of the performance of the AutoFeatRegression model
in practice, compared to other non-linear ML algorithms, we test our approach
on five regression datasets (Tablel), provided in the scikit-learn package
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(diabetes and boston) or obtainable from the UCI Machine Learning Repository.
For further details on the experiments, including the hyperparameter selection
of the other models, please refer to the corresponding Jupyter notebook in the
GitHub repository.

Table 1. Overview of datasets, including the number of samples n and number of
original input features d.

Dataset n d | Prediction task

diabetes [10] 442 | 10 | Disease progression one year after baseline

boston [14] 506 | 13 | Median housing values in suburbs of Boston
concrete [31] 1030 | 8| Compressive strengths of concrete mixtures

atirfoil [4] 1503 | 5| Sound pressure levels of airfoils in a wind tunnel
wine quality [8] | 6497 | 12 | Red & white wine quality from physiochemical tests

While on most datasets, the AutoFeatRegression model does not quite reach
the state-of-the-art performance of a random forest regression model (Table 2),
it clearly outperforms standard linear ridge regression, while retaining its inter-
pretability. Across all datasets, with one feature engineering step, autofeat gen-
erated between 0 and 4 additional features, while with two and three steps, it
produced on average 22 additional features (Table3). Most of the selected fea-
tures are ratios or products of (transformed) features (Table4).

Table 2. R? scores on the training and test folds of different datasets for ridge regres-
sion (RR), support vector regression (SVR), random forests (RF), and the autofeat
regression model with one, two, or three feature engineering steps (AFR1-3). Best
results per column are in boldface.

Diabetes Boston Concrete Airfoil Wine quality
Train | Test |Train |Test |Train |Test |Train | Test |Train | Test
RR 0.541 |0.383 |0.736 | 0.748 1 0.625 |0.564 |0.517 | 0.508 | 0.293 |0.310
SVR ]0.580 |0.320 | 0.959 | 0.882|0.933 |0.881 |0.884 |0.851 |0.572 |0.411
RF 0.598 | 0.354 | 0.983 | 0.870 | 0.985  0.892  0.991 | 0.934 0.931|0.558
AFR1/0.556 |0.396 |0.829 | 0.802 |0.800 |0.732 |0.544 |0.532 |0.296 |0.310
AFR2/0.539 |0.402|0.886 | 0.818 |0.903 | 0.859 |0.879 |0.866 |0.348 |0.365
AFR3|0.597 [0.395 [0.929 |0.035 |0.898 |0.858 |0.876 |0.855 |0.346 |0.348

With only a single feature engineering step, the AutoFeatRegression model
often only performs slightly better than ridge regression on the original features.

3 http://archive.ics.uci.edu/ml/index.php.
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Table 3. Number of engineered (eng) and selected (sel) additional features for each
dataset from an autofeat regression model with one, two, or three feature engineering
steps (AFR1-3).

Diabetes | Boston Concrete | Airfoil | Wine quality

eng |sel eng |sel|eng |sel|eng |sel eng | sel
AFR1 |50 3 64| 4 34| 2 22| 3 63| 0
AFR2 1781 |6 2945 |13 873130 | 333 39| 279719
AFR3 33661 |7 |52513|23 | 12360 |25 | 2239 | 35 | 53684 | 20

Table 4. Most frequently selected features across all datasets for one, two, or three
feature engineering steps (AFR1-3). Only the non-linear transformations log(z), v/,
1/z, 2%, 2®, |z|, and exp(x) were applied during the feature engineering steps.

AFR1 | 1/z, 2*, 22, exp(x)

AFR2 | /71 /22, 1/(v172), ®1/22, T3 /22, 2} /72, exp(z1)exp(z2), exp(z1)/x2,
VZ14/22, \/ﬂx§7 z1 log(z2), log(z1)/x2, zixs, wdxy, 3 log(z2), ...
AFR3 x?/x%, exp(y/Z1 — 1/Z2), 1/(m?m§), VEize, 1/(x1 + 22), xl/xg,
1/(v/z1 = log(22)), |v/z1 — log(a2)|, exp(log(z1)/2), log(x1)?/23,
[log(z1) + log(z2)], ...

With three feature engineering steps, on the other hand, the model can overfit on
the training data (as indicated by the discrepancy between the training and test
R? scores), because the complex features do not only explain the signal, but also
the noise contained in the data. However, the only dataset where this is a serious
problem here is the boston dataset, where over 50k features were generated in
the feature engineering process, while less than 500 data points were available
for feature selection and model fitting, which means overfitting is somewhat to
be expected.

4 Conclusion

In this paper, we have introduced the autofeat Python library, which includes
an automated feature engineering and selection procedure to improve the pre-
diction accuracy of a linear regression model by using additional non-linear fea-
tures. The regression model itself is based on the Lasso LARS regression from
scikit-learn and provides a familiar interface. During the model fit, a vast
number of non-linear features is generated from the original features and a few of
these are selected in an elaborate iterative process to optimally explain the target
variable. By combining a linear model with complex non-linear features, a high
prediction accuracy can be achieved, while retaining a transparent model that
yields traceable results as a basis for business decisions made by non-statisticians.
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The autofeat library was developed with scientific use cases in mind and
is especially useful for heterogeneous datasets, e.g., containing sensor measure-
ments with different physical units. It should not be seen as a competitor for the
existing feature engineering libraries featuretools or tsfresh, which would be
the first choice when dealing with relational business data or time series respec-
tively.

We have demonstrated on several datasets that the AutoFeatRegression
model significantly improves upon the performance of a linear regression model
and sometimes even outperforms other non-linear ML models. While the model
can be used for predictions directly, it might also be beneficial to use the gen-
erated features as input to train other ML models. By adapting the kinds of
transformations applied in the feature engineering process, as well as the num-
ber of feature engineering steps, further insights can be gained with respect to
how which of the input features influences the target variable, as well as the
complexity of the system as a whole.
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Abstract. While label fusion from multiple noisy annotations is a well
understood concept in data wrangling (tackled for example by the Dawid-
Skene (DS) model), we consider the extended problem of carrying out
learning when the labels themselves are not consistently annotated with
the same schema. We show that even if annotators use disparate, albeit
related, label-sets, we can still draw inferences for the underlying full
label-set. We propose the Inter-Schema AdapteR (ISAR) to translate the
fully-specified label-set to the one used by each annotator, enabling learn-
ing under such heterogeneous schemas, without the need to re-annotate
the data. We apply our method to a mouse behavioural dataset, achiev-
ing significant gains (compared with DS) in out-of-sample log-likelihood
(—3.40 to —2.39) and F1-score (0.785 to 0.864).

Keywords: Multi-schema learning - Crowdsourcing -+ Annotations -
Behavioural characterisation - Probabilistic modelling - Data wrangling

1 Introduction

Machine learning is based on learning from examples [2]. This often requires
human annotations, e.g. class labels for image classes in ImageNet [12]. However,
human labelling is error prone and consequently, methods such as the Dawid-
Skene (DS) model [5] have been developed to estimate individual error rates and
draw inferences on the true label from multiple annotators, see e.g. [11,20].

In this paper, we are interested in the extended problem of carrying out such
learning when the annotations have been carried out under different schemas,
and in so doing, help to automate the data wrangling and cleaning portion of
data science. Given a ‘complete’ set of possible labels, we consider the scenario
where the annotations for different samples are performed using different subsets
(schemas) of this ‘complete’ label-set. A schema can be obtained, for example,
by aggregating labels together to produce fewer, coarser labels, or by singling out
one label to annotate and lumping all the others together (i.e. ‘One-vs-Rest’).
This is a common data wrangling problem in scientific analysis where the actual
nature of the research question is being formulated: for example, in labelling
animal behaviour, scientists may realise half-way through data collection that
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a certain activity is rich enough that it warrants splitting into multiple labels.
Alternatively, due to the expertise of certain annotators, they may be directed
to focus on specific subsets of activity, and clumping all others.

The challenge we address here is how to draw inferences about the underlying
complete label-set, despite being provided with annotations which make use of
different labelling schemas. Normally, this would not be possible without re-
annotating the entire data-set (which is often expensive) or simply discarding
older data (which is wasteful in limited data scenarios). Our contribution is
to show that with the appropriate formulation, learning from all the data can
indeed be achieved by adding an Inter-Schema AdapteR (ISAR) which allows us
to translate the full label-set to the one used by a given annotator. Furthermore,
we demonstrate the applicability and effectiveness of our method for behavioural
annotation, using both simulated and actual data.

The rest of our paper is structured as follows. In Sect.2 we define the data
wrangling problem we tackle and propose our solution, and then compare our
approach to related work (Sect. 3). Subsequently we describe a concrete problem
which motivated our model in Sect. 4, and in Sect. 5 report experimental results
under various scenarios. We conclude with a discussion of the merits of the model
and proposed future extensions.

2 Problem and Model Definition

We start by defining a ‘complete’ set of labels L = {1,...,|L|} encompassing
all possible classes/feature values, which we will refer to as the ‘full label-set’.
However, we consider the case where the observations are drawn from a reduced
sub-set of L. That is, given |S| different label-sets/schemas, denoted L for s €
{1,...,|S]}, different samples are labelled according to different schemas. Each
L may contain labels from L and/or groupings thereof, as illustrated in Fig. 1.

To motivate our problem consider the task of documenting the behaviour of
an individual according to a discrete set of labels. A number of annotators are

12 3 A6 B EF 8 910
5 ----S--- 55

Fig. 1. An example scenario with ten labels, and three schemas (colour-coded), showing
how super-labels (enumerated A through F) are constructed from the full label-set.
Note that while the above super-labels encompass contiguous labels, this is only for
clarity and need not be the case.
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tasked to do this, but their annotations are not restricted to a single schema (for
the reasons enumerated above). Our aim is to collate their labels so that we get
a posterior belief over the true behavioural state, and to do so while constructing
a global rather than a single model per-schema, thus sharing statistical strength
across the entire data-set. This helps to automate the data wrangling process,
as opposed to re-annotating the data using a consistent schema. In what follows,
we first describe the DS model, which can be used to solve the problem under
the constraint of a single schema, and then show how using ISAR we can achieve
an Extended DS model for dealing with multiple schemas.

2.1 Model Definition

The standard DS model appears in Fig. 2a. The categorical variable Z represents
the true behaviour of the individual, and is parametrised by the prior m over
the full label-set (indexed by z). Uy is the observed annotation provided by
each annotator k, and models the observer error-rate through a Conditional
Probability Table (CPT) (|JU| = |Z]| = |L|):

¢k,u,z = P(Uk = U|Z = Z) ) (1)

where the subscripts indicate indexing in the respective dimension.

( 3]

. /N

. J

N

. J

(a) Dawid-Skene (b) Extended Dawid-Skene

Fig. 2. Multi-annotator label fusion with the (a) DS and (b) Extended DS (using ISAR
adapter) models.

In our setup (Fig.2b), however, Uy is ‘corrupted’ by the schema: i.e. we
only observe Y; whose domain is conditioned by the schema Si. Y} is another
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discrete variable representing the annotator’s assigned label contingent on which
schema S,(;”) is currently active: i.e. \Yk(n)| = |Lgwm |- Consider for example that
k

each annotator is an expert in only a handful of behaviours: thus we opt to
ask the annotator to only label observations of the activity that they know
about. For each annotator k, Y;, spans only those behaviours plus a special Not
In Schema (NIS) label, which groups together the remaining behaviours. We
assume knowledge of S ,(C") (i.e. which schema is used), a valid assumption in our
application domain. The mapping from U to Y (conditioned on S) is modelled
by the Inter-Schema AdapteR (ISAR) CPT w:

Wyus =P Y =ylU=u,5=5s). (2)

For our purposes, w is fized and deterministic: i.e. all entries are either 1 or 0,
and encode expert knowledge about which labels in L map to the same L,. This
gives a very intuitive way to construct the mapping, as governed by:

3)

1 if u is one of the states captured by y under s,
w _
Yoo 0 otherwise.

If we assume a one-hot-encoding of the variables (such that a particular man-
ifestation is indicated by indexing the respective variable dimension), we can
represent our model by the following joint distribution:

Z(n)
N L] K |L]| ORI

P(2,0,Y18;0,w) = [T IT {7 IT IT {wu-0al? (k,u)}U’“” ()

n=1z=1 k=1u=1

where © = {m, 1} are model-parameters, and we have defined the ISAR message:

S(“)
S| [y oo
Y,

MM (k,u) = H H Wy % . (5)
s=1 y=1

Despite the dependence of Yk(") on S ,g"), we can standardise the annotator labels
using a super-space Y which encapsulates all the labels in the full label-set as
well as any valid groupings thereof, as indicated by Lemma1 (see Appendix).

The proposed architecture allows @ to model the data-generating process,
while the inter-schema differences are captured by the emission probabilities w.
In doing so, we incorporate knowledge about the schema mapping, specifically
as to which labels will map to which super-labels without effecting estimation
of reliability metrics. It is important to note that w is annotator-independent,
which reduces the model dimensionality and forces all inter-annotator variability
to be incorporated in . Due to the ISAR adapter, the Extended DS model is
able to infer more accurate statistics about the distribution of the full label-set,
even in cases where the signal is very sparse (such as one vs rest schemas, see 5.4
below). Despite being deterministic, w does not preclude multiple latent states
mapping to any super-label, and hence, the model is rich enough to capture the
inherent uncertainty over the latent state.
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2.2 Training the Model

Training the model involves learning the parameters m and ¢ (w is fixed). We add
a Log Prior to the log of the joint likelihood (Eq.4), and compute Maximum-A-
Posteriori (MAP) rather than Maximum-Likelihood (MLE) estimates for 7 and
1, thus reducing the risk of overfitting. We use conjugate Dirichlet priors:

12 U]

) x 1 a™—1 af w,z
DZT(ﬂ'|Oé ) Emnﬂ'zz , DZT(W z|akz = H¢k];z
z=1 k,z

We derive an Expectation Maximisation (EM) algorithm [8] to infer the
parameters. During the E-step, we need to compute two expectations:

> M (2)

¥ = <Z§”> = ©)
> m MY ()
z'=1
and " .
*(n «(n
p(n) = <Z(n)U(n)> .My (K, u, Z)Mw (k, 2) -
kyu,z k 7z o ,
WZ’M n Z/
zgl ( ¥ ( )>

where MU is as defined before (Eq. 5), with messages:

M:(")(k,u,z) = YruM (k u), (8)
K IU\
M) = IS MW 2), (9)
kE'=1u'=1
MV ()

M (k, 2) = (10)

SIS (ke 2)

The M-Step involves maximising the expected complete data log-likelihood with
respect to each of the unknown parameters = and :

g EnN17§n)+O‘W_1
N+ am 2]

(11)

and N Ny
n
&k _ Zn 1pku,z+ k:uzil
- U U :
Zn:l ZL’l 1p1(€”11 2 + ZL/l 1aqlfu z ‘U|
The full derivations are available in [3].
As regards computational complexity, we note that the ISAR adapter acts as
a message function in graphical modelling terms, and given that w is fixed and
both Y and S are observed, M, can be computed once and used throughout

(12)
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the optimisation: moreover, being a merely indexing operation, it is linear in
the number of samples. As regards estimation of the other parameters, each EM
step scales linearly in the number of samples and annotators, and quadratically
in the size of the super-schema.

3 Related Work

Our approach towards automating information fusion and thus streamlining the
data-wrangling process is concerned with probabilistic inference from incom-
pletely specified data. In this respect, ISAR is related to the general Transfer
Learning (TL) field, specifically in learning across feature-spaces. Our solution
is novel in that it is applied to an ‘unsupervised’ learning scenario, and rather
than focusing on learning the mapping between feature spaces — refer to [10]
for a review — we take the problem one step further through our interpretation
of the different schemas (using domain knowledge about the specific problem),
which allows us to collate information across label-spaces in an efficient manner.

Another perspective comes from Multi-Task Learning (MTL) [19]. To relate
to this literature we can view each label schema as a “task”, but the analogy is
not perfect. In multi-task learning one aims to improve the learning of a model
for each task by using knowledge contained in all or some of the tasks, while
in our case, we typically consider a single task but the feature-space is only
partially observed (by way of the schema). We do share a similar goal of sharing
statistical strength across schemas (rather than across tasks): by using ISAR we
seek to fuse the information from all annotators (who may be using different
schemas) in order to draw inferences for the ‘complete’ label-set (rather than
one ‘task’ at a time), and hence is a step beyond the standard MTL setting.

Our schema mapping can be viewed as “data coarsening” as discussed in
[6]: however, our problem setup is different and applied to categorical rather
than continuous data. Cour et al. [4] have addressed a similar problem, using a
discriminative rather than generative method, but only applied for supervised
learning.

One may be inclined to cast our problem into the hierarchical classification
framework [13], particularly Hierarchical Multi-label Classification (HMIC) [17]
due to the apparent ‘multi-label’ aspect of the mapping together with the two-
level nature. While hierarchical classification seeks to structure the space of
labels hierarchically according to a fixed taxonomy, we stress that contrary to
multi-label classification, in our setting, there is a single valid label, but there
is uncertainty on which one it is (due to the coarse labelling imposed by the
schema). Moreover, while we seek mandatory leaf-node predictions [13], we do
not require specification of the full label hierarchy for each sample which to our
knowledge has not been tackled before. Finally, our model focuses on handling
multiple annotators and their uncertainty.
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4 Description of the Data

We tested our Extended DS on a social behaviour-phenotyping data-set for caged
mice, obtained from the Medical Research Council, Harwell Institute, Oxford-
shire (MRC Harwell) as documented in [1]. This consists of 27.5h of annotated
behaviour of various mice kept in cages of three. Each 30-min segment was indi-
vidually labelled by two or three annotators from a pool of eleven individuals,
with responsibility for annotating changing between segments.

Labelling involves specifying the start/end-times of exhibited behaviours,
which periods are then aligned to 1-s boundaries. The data contains periods for
which no label is given (‘unlabelled samples’): this is because the annotators were
explicitly instructed not to annotate observations if they cannot be coerced to
any of the available behaviours or if they were unsure about it. The annotations
follow one of four schemas (denoted I, II, IIT and IV), containing the labels
shown in Fig. 3. The schemas are consistent within a segment (i.e. all annotators
use the same schema) but change between segments. The goal of the study is to
infer the ‘true’ latent behaviour of the mice given the observations, which can
then be used for example in the analyse of phenotype differences between strains
(although in this paper, all wild-type strains were used). In this scenario, the
need for a holistic model is even more significant since some labels are missing
entirely from some schemas, and hence a model trained solely on data from a
particular schema would miss potentially significant behaviour.

1 13
1 15
11 17
v 10
Label| Grm |AGrm| Nst | Snif \UMve FedG|FedH| Drnk| Rest| Loco|Cimb| Rear|Aggr|

Fig. 3. The behavioural annotation schemas used in this project, with black cells indi-
cating which labels (numerical representation, top row) are present in which schema
(first column). The last row, marked (Label) is our short-hand notation for referring
to the labels while the last column indicates the number of segments in our data-set
corresponding to each schema.

Since the schemas used did not have an explicit label to indicate a behaviour
not in the label-set (NIS), we had to infer this from the unlabelled data. We
distinguish between two cases of such samples:

1. Informative Unlabelling, which arises from the observed behaviour not being
in the schema (translating to NIS), and

2. Missing Data, i.e. where the annotator was unsure about how to label a
behaviour.

We assign NIS only to those time-points where all responsible annotators do
not give a label, treating all other unlabelled samples as Missing at Random
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(MAR) [7]. This is based on the assumption that in our laboratory setting, the
annotators are adequately trained, and hence, the probability of all responsible
annotators not providing a label is close to insignificant. This was indeed verified
by recording the fraction of time-points with no labelling by schemas, and saw
that this is correlated with the schema (dropping to =0 for Schemas I and III).

5 Experimental Analysis

We now document the empirical results which serve to illustrate the validity of
the ISAR method. Specifically we seek to answer two questions: (a) can such a
model be learnt under the condition of disparate schemas, and, if so, (b) is there
merit to using ISAR over just discarding incompatibly annotated data? To this
end, we report two main experiments. Lacking any ground truth in the real data,
we first evaluate the observed-data log-likelihood under both our Extended DS
and individual DS models trained on each schema in Sect.5.2. Next we analyse
the ability of our model to learn the true data-generating process by evaluating
the predictive performance on synthetic data for which ground-truth is available
(Sect. 5.3). We also provide results on parameter recovery (Sect.5.4) as well as
an information-theoretic analysis of the schema adapter (Sect.5.5). In all our
tests (except for the parameter recover), we train on a portion of the data and
report measures on ‘unseen’ data using cross-validation.

All experiments were carried out on a desktop running Ubuntu Linux (18.04),
with an Intel Xeon E3-1245 processor (4-cores, 3.5 GHz), and 32 Gb of mem-
ory. The longest experiment (latent-state synthetic inference with 10-fold cross-
validation, repeated 20 times) took about 6 h. The code is available at: https://
github.com/michael-camilleri/ISAR-Inter_Schema_AdapteR.

5.1 Experimental Setup

We explored training the models from multiple random restarts. However, exten-
sive testing indicated that starting from a diagonally-biased emission matrix (1))
provided consistently better validation-set likelihoods: paired t-test with 164
DoF yielded a t-statistic of 2.90 (p = 0.004) when compared to the best of 30-
random restarts. We hence initialised ) as a strongly diagonal matrix by adding
a uniform matrix of 0.01 entries to the Identity matrix, and then normalising
across u to produce valid probabilities. This encodes our belief that most anno-
tators are consistent in their labelling (i.e. most of the probability mass is on the
diagonal). It also provides the added benefit that the latent-states are ‘naturally’
identifiable, avoiding the ‘label-switching’ issue [14] in the latent space since it
biases the search in the vicinity of the identity permutation. The prior 7= was
initialised to the uniform distribution (i.e. all states equally likely). In all cases,
we used symmetric Dirichlet priors (o = 2) on the parameters 7 and .


https://github.com/michael-camilleri/ISAR-Inter_Schema_AdapteR
https://github.com/michael-camilleri/ISAR-Inter_Schema_AdapteR
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5.2 Likelihood-Based Evaluation on Real Data

We evaluate our architecture on the task of inferring latent mouse-behaviour
from noisy annotations, and compare it to the DS baseline trained independently
per schema. Lacking ground-truths, we score the models using the log-likelihood
on out-of-sample data, with 11-fold cross-validation! (training on ten and evalu-
ating metrics on the remaining one). When training the DS model, the individual
schemas were augmented with the NIS label, to provide an equivalent observed
sample-space, and allow for a like-with-like likelihood comparison between the
two models. The folds were engineered to be as uniform in size as possible while
separating different mice in different folds to achieve more generalisable perfor-
mance measures. We: (a) use fixed-folds, to provide a fair comparison between
models, and (b) report/compare measures on a per-segment basis, since the DS
architecture can only be trained on a single schema at a time.

Table 1 reports schema-averages (across segments) for the per-sample log-
likelihood (where the log-likelihood is divided by the number of samples), and
the global average (computed across all segments). All likelihoods are higher
(better) in the ISAR case, indicating the ability of the model to share statistical
strength across the schemas, including learning about annotators which would
otherwise not be observed in some schemas. Specifically, a paired t-test with 54
DoF (55 segments) indicated a significant increase in validation-set log-likelihood
for the ISAR model as compared to the DS model: the result yielded a t-statistic
of 5.78 (p = 3.89 x 1077).

Table 1. Validation average log-likelihoods (higher is better)

Schema Mean | Std
I 11 IIT v
DS —3.27 | -3.23 | —2.65 | —5.07 | —3.40 | 1.20
ISAR | —2.68|—2.29 | —2.48 | —2.01 | —2.39 | 0.82

5.3 Latent State Inference in Synthetic Data

While the real data lacks ground-truth of the latent mouse behaviour, we can
simulate data using the parameters learnt above (to be as realistic as possible)
and evaluate the MAP ‘predictive’ performance on it. Note that in this scenario,
we cannot compare ISAR to the DS model trained individually per-schema, since
in every schema, DS does not have knowledge of the entire label-set. In effect,
the DS model cannot be used in such a scenario to give true predictions. A naive
alternative is to clump together all the samples as if they come from the same
schema, and treat NIS as missing data. This is based on the clearly incorrect
assumption that the missing data is MAR and can thus be ignored, which will in
general lead to inferior results. It does however provide a baseline comparison.

! The 11 is due to the natural groupings of segments in the available data.
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In order to test the merits of ISAR under a number of statistical conditions,
we performed a study in which we simulated different data generation conditions.
The full details of the experimental procedure as well as the results are given in
Appendix B: below we report the case on the statistics which most closely match
our dataset. We ran the experiment 20 times, with 10-fold cross-validation in each
run and report the macro-averaged Fl-score (computing Fl-score for each class
independently and then averaging [9, p. 185]) and predictive log-likelihood (log-
likelihood assigned to the true label) in Table 2. We prefer the macro-averaged F1
score over accuracy, as we have high class imbalance, but care about each label
equally. Note how in both metrics ISAR shows consistently and (statistically)
significantly better performance.

Table 2. Macro F1 and predictive log-likelihood for the ISAR and DS models applied
to synthetic data.

Log-likelihood Macro F1
Mean | Std | p-value Mean | Std | p-value
D —0.61 | 0. . .02

S 0.61 | 0.09 6.1 x 10-16 0.785 0.0
ISAR |-0.35|0.04 0.864 | 0.02

3.2x 10726

5.4 Parameter Recovery from Synthetic Data

Another indicator of performance is the ability of our architecture to learn the
‘true’ parameters which generate the data. We again generated synthetic data
from known fixed values for © = {m, v} (obtained from the parameters trained
on the real-data), and trained our model on it. While space precludes us from a
full treatment of these results here, we observed convergence towards the same
7 identified by using the full schema (up to 2.3% error) even in extreme one-
vs-rest schemas where the annotator only provides the presence/absence of a
single label: 1) was estimated to within 11.3% of the true values under the MRC
Harwell schemas. More details are provided in Appendix C.

5.5 Analysis of Mutual Information

We sought to explain the relative performance of the ISAR architecture in terms
of the Mutual Information (MI) I(Z;Y) between the latent state Z and sets
of observations Y from different schemas on the model fitted from the real
data. When using more than one schema we can also compute the Redundancy
R(Z;Y) [15] between Z and Y, where:

El
R(Z;Y) =Y 1(Z;Y.,) —1(Z;Y1,....Y]g)) (13)
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Table 3. Mutual Information I and Redundancy R between the observations and the
latent behaviour, under the effect of the different schemas. The statistics are reported
across annotators.

1(Z;Y) R(Z;Y)
Mean | Min | Max | Mean | Min | Max
Y=U 1.48 |1.391.56

I 1.48 |1.39|1.56
1T 0.87 10.73]0.93
IIT 1.47 |1.38|1.56
v 0.95 10.90|0.99

I4-111 1.73 |1.67|1.78 |1.22 |1.09|1.34
II+1v 1.10 |1.06|1.15 |0.72 |0.60 |0.80
I+III+IV | 1.78 | 1.711.82 |1 2.12 |1.932.29
All 1.79 |1.72]1.82 |2.98 |2.73|3.21

The resulting measures are shown in Table3. We consider first the MI for
individual schemas in Table 3 (top). Note how schema I yields the same MI as if
we had access to the full label-set: this is because in I there is only one missing
label, and hence the model correctly identifies NIS with that label. Looking at
the individual schemas, we see that those with a smaller number of labels coded
as NIS have a higher mutual information.

We next consider combinations of the schemas, a subset of which appear in
Table 3. That is we potentially have observations from up to four schemas for
the same underlying latent state. The table shows that (as expected) increasing
the number of schemas yields higher mutual information, up to the maximum
from using all four schemas. We can also measure the redundancy of the different
schemas. This shows that the schemas are redundant (rather than synergistic),
which makes sense given the way the model is constructed.

6 Conclusions

In this paper we have presented a novel and effective solution to inferring latent
variables from observations across different but related label-spaces (schemas).
We developed an inter-schema adapter (ISAR), that allows us to build a holistic
model and share statistical strength across disparately-labelled portions of the
data-set. We validated our model under both simulated and real-world condi-
tions, for a behaviour annotation task. The ISAR model improved on the baseline
DS in terms of log-likelihood with an increase from —3.40 to —2.39. In simulated
data, ISAR achieved a 10% increase in macro Fl-score.

While above we assume that the samples are independent and identically
distributed (IID), we can easily extend the unsupervised model to the temporal
modelling domain: indeed, we investigated such an extension in [3]. We have
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constructed the schema adapter from knowledge of the schemas and how labels
are mapped; however, it could be interesting to consider learning the adapter if
this information were not known.

Our model focused on the problem of inter-annotator variability under incon-
sistent schemas. However, due to the ‘plugin’ nature of our adapter, the model is
amenable to extensions which take into account for example task difficulty [18]
or shared latent-structure across the annotators [16].
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A  Extended Proofs

Lemma 1. Let Y,;(n) be a 1-Hot encoded wariable, where the sample-space is
denoted Lgn): i.e. this may vary between samples/annotators. This is equivalent

to representing Yk(n) by a fized sample-space, where the probability of emitting
Y™ for some y ¢ Lgwm = 0.

Proof.
(n) (n)
s I ] Isl o Lo
M (kyu) = T [T wslis| = Wyl wylils| . (14)
s=1 |y=1 s=1 | yey () ygY (m)

However, for the second set of products, Yk(z) = 0 by definition, since it is never
observed. Hence,

S(") S("')
|S] ks 15| ks

(n) (n)
MU(J”) (k,u) = H H w;/fdfg x 1 = H w;ﬁf{s . (15)

s=1 | yey () s=1 | yey(n)

Note that while we do not require that wy s =0 Vy ¢ L), this is enforced to
avoid the model expending probability mass on impossible combinations.
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B Additional Comparisons between ISAR and DS

We evaluated the Extended and baseline DS models through the macro F1-
score, raw accuracy and predictive log-likelihood in synthetic experiments. While
the F1 and likelihood scores provide the best comparison, the accuracy is also
reported as a more challenging baseline to beat (since it is generally easy to
achieve high accuracy using poor models on very unbalanced datasets such as
ours). In each experiment, we simulated 20 independent runs, and evaluated
the metrics on a hold-out set using 10-fold cross validation. For most of the
experiments, we used a reduced data-set size of 60 segments of 100 samples each,
allowing us to test various conditions quickly (we show that this alone does not
significantly impact our results, see first and second rows of Table4). We tested
the effect of a uniform distribution over latent-states, IT sampled (once) from a
Dirichlet prior with o = 10 as well as schema distributions Biased towards the
less informative ones (in the ratio 1:10:1:10). Note that in this latter case, the
number of segments was increased to 80 (since otherwise certain schemas do not
appear in some folds). p-Values corresponding to paired t-tests with 19-Degrees
of Freedom (DoF) (20 independent runs) are reported in all cases.

Table 4. Predictive log-likelihood, F1 and accuracy for the ISAR and DS models
under different conditions. In the interest of avoiding clutter, we omit p-Values for the
accuracy, but in all cases, it was less than 1x10716,

Log-likelihood Macro F1 Accuracy (%)

Mean | Std | p-value Mean | Std | p-value Mean | Std

Realistic DS -0.61 | 0.09 _16 | 0.785 ]0.02 _og | 82.5 2.13
6.1x10 3.2x 10

ISAR | —0.35 | 0.04 0.864 | 0.02 84.5 | 1.95

Reduced DS -0.60 | 0.09 _14 | 0.757 | 0.02 _14 | 82.6 2.05
1.0x 10 2.5 x 10

ISAR | —0.37 | 0.04 0.803 | 0.02 84.3 | 1.84

Uniform DS |-0.92 |0.08 54 | 0.726 | 0.02 o | 738 |1.99
8.0 x 10 1.9x 10

ISAR | —0.38 | 0.04 0.840 | 0.02 83.4 | 1.89

Dirichlet DS |-0.94 |0.07 54 0.727 | 0.02 55 738 | 1.83
1.6 x 10 2.2 x 10

ISAR | —0.36 | 0.04 0.835 | 0.02 84.8 | 1.75

Biased DS -1.83 | 0.21 _19 | 0.533 | 0.02 o4 | 357 232
3.6 x 10 1.6 x 10

ISAR | —0.82 | 0.15 0.667 | 0.01 69.3 | 1.21

Biased & Uniform | DS -1.60 | 0.11 _10 | 0.585 | 0.02 _19 | 62.5 1.05
9.1 x 10 5.5 x 10

ISAR | —0.82 | 0.37 0.709 | 0.02 71.9 |1.34

C Parameter Recovery Curves

We carried out simulation experiments of the ability of the model to recover the
‘true’ parameters, under a number of scenarios. In each case, datasets were gener-
ated according to the parameters as learnt from the MRC Harwell data, and sub-
sequently we retrained the model from scratch, using successively larger portions
of the dataset. Each experiment was repeated 20 times, with noisy perturbation
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(~Unif[0,0.05]) in the underlying prior/emission probabilities. We evaluated the
quality of the estimate with the Relative Absolute Deviation (RAD) between
the true © and learnt © parameters, using the mean magnitude of individual
probabilities as the normaliser:

|6 — 6| x 100%

RAD = mean(O)

We prefer this over the KL-Divergence as it is more readily interpretable.

In the first case (Fig. 4) we experimented with an extreme scenario where
each schema indicates only the presence/absence of a single label (i.e. a One-vs-
Rest schema). To reduce the complexity of the problem, we generated data using
the first six of the original 11 annotators, seven of the original 13 labels, and
with maximum sample sizes of 500 segments of 100 time-points each. Annotators
and schemas were drawn from uniform distributions. We investigated scenarios
where (a) all responsible annotators use the same schema within a sample, and
(b) annotators may use different schemas even within the same sample.

140 140

—+— M (SAR) —— M (SAR)

120 -4-+ 1 (Full) 120 -4+ N (Full)

—— W (ISAR) —— W (ISAR)

100 h -4-+ W (Full) 100 —{=- W (Full)
2 80 Q 80

o 4
R 60 R 60
40 40
20 20
0 0
10? 103 10%
Data-Set Size Data-Set Size
(a) Same Schema per Annotator (b) Potentially Different Schema

Fig. 4. RAD as a function of data-set size for the One-vs-Rest schemas. The error-bars
indicate one standard deviation across runs. The initial increase in error in (b) is due
to the interplay between the ‘prior’ counts becoming insignificant, but there not being
enough data to get a true estimate of the probabilities (due to label imbalance).

In the second case we used the same setup as in the real data, i.e. the four
schemas in the MRC Harwell dataset, the full annotator/label-set and the full
data-set size. This is shown in Fig. 5.
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Fig. 5. RAD for simulation runs based on actual data parameters.
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Abstract. Clustering is an important technique in data analysis which
can reveal hidden patterns and unknown relationships in the data. A
common problem in clustering is the proper choice of parameter set-
tings. To tackle this, automated algorithm configuration is available
which can automatically find the best parameter settings. In practice,
however, many of our today’s data sources are data streams due to
the widespread deployment of sensors, the internet-of-things or (social)
media. Stream clustering aims to tackle this challenge by identifying,
tracking and updating clusters over time. Unfortunately, none of the
existing approaches for automated algorithm configuration are directly
applicable to the streaming scenario. In this paper, we explore the pos-
sibility of automated algorithm configuration for stream clustering algo-
rithms using an ensemble of different configurations. In first experiments,
we demonstrate that our approach is able to automatically find superior
configurations and refine them over time.

Keywords: Stream clustering - Automated algorithm configuration -
Algorithm selection - Ensemble techniques

1 Introduction

One of the hardest challenges for data scientists is to find a suitable algorithm as
well as appropriate parameter settings to solve a given problem. This is even more
challenging when working with data streams which do not allow re-evaluations
and a posteriori optimisation. In addition, data streams can change over time
and parameters need to be adapted accordingly. These problems considerably
prevent the widespread adoption of stream mining algorithms in the real-world.
A popular tool in stream mining are stream clustering algorithms which aim
to identify and track clusters, i.e. groups of similar objects in a stream [5]. In
this paper we propose an innovative, ensemble-based approach that allows to
automatically find and adapt optimal parameters for data stream clustering
algorithms. In each iteration, promising configurations are used to sample new
© Springer Nature Switzerland AG 2020
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ones that can replace inferior configurations. In first experiments, we demon-
strate that our approach can considerably improve clustering results. To the
best of our knowledge, this is the first attempt to apply automated algorithm
configuration to data streams as well as stream clustering.

2 Automated Algorithm Configuration

Automated algorithm configuration aims at automatically determining the best
parameter settings for a given scenario [8,9]. Popular approaches for this are
SMAC [7] or irace [10]. Unfortunately, none of these approaches is directly appli-
cable to the streaming scenario. These algorithms are mostly set-based and do
not focus on single instances. In addition, they require multiple evaluations of
the data and usually require static and stationary data without concept drift.
This would require to apply the parameter configuration a posteriori [4] or on
an initial sample of the stream which is both undesirable.

In this paper, we transfer the idea of automated algorithm configuration
to stream clustering. Similar challenges and prior work can be found in the
algorithm selection and stream classification literature. In [12], for example,
the authors create an ensemble of different stream classification algorithms. All
algorithms are trained simultaneously on the same data stream. The stream
is divided into windows of specified size and for every window, meta-features
such as standard deviation or entropy are computed. Based on these features
and the performance of the classifiers, a meta-classifier is trained to predict
which classifier is most suited to classify the next window. In [11,13], the BLAST
algorithm is introduced which uses the same ensemble strategy and inspired
this work conceptually. However, instead of using a meta-classifier it always
selects the classifier which performed best on the last window to predict the
next window.

3 Automated Configuration of Stream Clustering
Algorithms

In this section we propose confStream, an ensemble-based approach for auto-
mated algorithm configuration in stream clustering, focusing on the online phase
of the algorithm, i.e. optimising the micro-cluster representation. In particular,
our aim is to maintain, adapt and improve an ensemble of different configurations
over time. For this, our algorithm requires a given starting configuration as well
as predefined parameter ranges. The main idea of confStream is summarised in
Fig. 1. In order to apply the ensemble strategy, we process the stream in windows
of fixed size h. Observations within a window are processed one by one and used
to train all algorithms in the ensemble simultaneously. At the end of the window,
the clustering performance of every configuration is evaluated (Step 1). For exam-
ple, the Silhouette Width measures for an observation i, the average similarity
to observations in its own cluster a(i) and compares it to the average similarity
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to its closest clusters b(4). It is defined as: s(i) = (b(¢) — a(4))/(max{a(i), b(i)}).
While the Silhouette Width is state-of-the-art, there are also other evaluation
measures which are equally applicable here. In order to evaluate our ensemble, we
compute the average Silhouette Width for all observations of the last window
for the different configurations. The clustering algorithm that performed best
becomes the active clusterer or incumbent for the next iteration. The incum-
bent represents the current clustering result of the ensemble and will be used
throughout the next window.

3) sample
0.01 M\ 1) evaluate 0.01 08 \4 parent
0.05 .~ 0005 A~ 0.5
o
002 DT 002 09

6) replace

i" 0.02 ~ 09
: / 4) create

0.018 . 0.95 5) predict 0.018 "\ offspring

Fig. 1. The performance of algorithms in the ensemble is evaluated and used to train
a regression model. Afterwards, one algorithm is sampled to create an offspring. If its
predicted performance is high enough, it replaces one of the algorithms in the ensemble.

In a next step, the configurations of the algorithms and their performances
are used to train a regression model (Step 2). The regression model is supposed
to learn how well certain configurations perform. This is later used in order
to determine whether a new configuration is promising and should be incorpo-
rated into the ensemble. In our case, we use an Adaptive Random Forest (ARF)
regression as proposed in [6]. The ARF is a natural choice, since it is a streaming
algorithm which can be trained over time. In order to generate new configura-
tions, one configuration is sampled from the ensemble as a parent (Step 3). The
sampling is performed proportionally to the performance of the algorithms such
that better performing configurations are more likely to be selected.

The selected configuration is then used as a parent in order to derive a new
configuration from it (Step 4). For this, we use a similar strategy as irace [10].
In particular, every parameter ¢ of every configuration has an associated trun-
cated normal distribution N (u;, ;) with expectation u; and standard deviation
o;. In order to sample a new parameter value, we place the expectation of the
distribution at the position of the parent. The distribution has an upper bound
U and a lower bound L which are set to the boundaries of the parameter range.
The standard deviation o; is initialised with (U — L)/2 for every parameter and
slowly reduced over time. For this, we use a fading strategy which exponentially
decreases the standard deviation over time: 0,11 = oy - 2> The underlying idea
is that the configuration will converge to the optimum over time and the smaller
standard deviation allows to explore this area better. To account for concept
drift, we occasionally explore the full parameter range by resetting the standard
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deviation to its initial value with a probability p. While we only consider continu-
ous parameters here, the approach could be extended to categorical parameters,
e.g. by drawing a new value from a list of probabilities where the probability of
the winning category is increased [10].

Next, the performance of the new configuration is predicted based on the
regression model (Step 5). If the size of the ensemble is smaller than eg,e the
new configuration is added directly to the ensemble. If the ensemble is full but
the predicted performance is better than a performance in the ensemble, the
new configuration can be incorporated into the ensemble (Step 6). For this,
we use proportional sampling again, where bad solutions are more likely to be
replaced. This is supposed to maintain a higher diversity in the ensemble than
removing the worst solutions first. As two special cases, we never remove the
incumbent and always remove solutions first which did not yield a valid clustering
solution in the last window. We consider solutions invalid when the solution
contains only a single cluster or the algorithm failed. The generation of new
configurations can be repeated until a user-chosen number of configurations ey ey
has been generated. Afterwards, the next window of the stream is processed. In
summary, our approach has 5 main parameters itself: the window size h, the
fading parameter A, the ensemble size eg e, the number of new configurations
enew and the exploration probability p. We note that our ensemble approach
is slower than running individual algorithms. Nevertheless, in our experiments
the algorithm was fast enough to work in real-time since the algorithms can be
trained in parallel.

4 Evaluation

In order to evaluate our approach we implemented a proof-of-concept in Javal as
a clustering algorithm for the MOA framework [2]. For our analysis, we consider
a simple configuration scenario for the DenStream [3] algorithm, one of the most
popular stream clustering algorithms [5]. First, we evaluate the performance of
DenStream’s default configuration e = 0.02, 8 = 0.2, u = 1. We then compare
this with our ensemble approach, where we start with the same configuration but
optimise the distance threshold € in its full value range [0, 1]. We set the ensemble
size emax = 25, fading A = 0.05, reset probability p = 0.001 and evaluate the
solutions every h = 1000 data points. After each window, we create ene = 10
new configurations. In order to evaluate the quality of the clustering algorithms,
we use the Silhouette Width. Since we want to evaluate cluster quality over time,
we evaluate the quality for windows of 1000 observations in our experiments. We
evaluate both algorithms, i.e. the default parametrisation of DenStream vs. the
configured version confStream, using a Random Radial Basis Function (RBF)
stream [1], sensor stream?, and covertype data set®. All data sets are popular
choices in the (stream) clustering literature.

! Implementation available at: https://www.matthias-carnein.de/confStream.
2 Dataset available at: http://db.csail.mit.edu/labdata/labdata.html.
3 Dataset available at: http://archive.ics.uci.edu/ml/datasets/Covertype.
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Fig. 2. Development of Silhouette Width and e parameter for the Random RBF stream

Figure2 shows the Silhouette Width for every window of the Random RBF
stream. The boxplot on the right summarises the range of values. It is obvi-
ous, that our ensemble approach quickly improves the default configuration and
remains superior for the vast majority of the stream. When observing the devel-
opment of the € parameter in our ensemble, it becomes obvious how confStream
first explores a large range of values. Over time, the algorithm reduces the stan-
dard deviation of the distributions in order to explore promising regions further
before settling on roughly € = 0.005. Note that this is similar to the initial con-
figuration of ¢ = 0.02. Nevertheless, the performance is vastly improved which
also highlights how sensitive stream clustering algorithms are to different con-
figurations.
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Fig. 3. Silhouette Width for the sensor stream

For the other data sets, we observe similar trends. Figure 3 shows the results
for the sensor data stream. Again, confStream quickly improves upon the initial
configuration and yields better results with a near-perfect median silhouette
width of 0.98. While the default configuration also yields a good results, it is
stronger affected by concept drift in the data stream. In particular, the sensor
data set exhibits a periodic pattern of day and night. confStrean is less affected
by this since it adapts to the changing scenarios. For the covertype data set
the difference is most obvious. Using the default configuration, DenStream is not
able to produce a single valid solution with at least two clusters throughout the
entire stream. While confStream starts with the same initial configuration, it
quickly adapts and is able to produce very high quality (Fig.4). This also shows
in the development of the parameter value which quickly changes from the initial
value € = 0.02 and explores more suitable values between ¢ = 0.1 and € = 0.2.
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Fig. 4. Development of Silhouette Width and e parameter for the covertype data set

Overall, these initial results show that our ensemble strategy produces vastly
better clustering solutions than the default configuration. In particular, changes
and improvements are made over time which allow for adapting to stream char-
acteristics and/or unsuitable starting configurations.

5 Outlook and Conclusion

In this paper we explored the possibility of automated algorithm configuration
for stream clustering. By training an ensemble of algorithms in parallel and
deriving new configurations from promising solutions, we are able to efficiently
adapt the configuration over time. Results for a configuration problem with
one parameter have shown to improve the overall clustering result considerably
in comparison to its default configuration. In future work, we will extend our
approach and evaluation beyond a single algorithm and parameter. In particular,
we will optimise multiple parameters simultaneously, which can be of different
types, such as categorical or integer. Ultimately, we also aim to include different
kinds of stream clustering algorithms into the ensemble approach resulting in
per-instance algorithm selection and configuration on streaming data.
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Abstract. End-to-end learning with deep neural networks, such as con-
volutional neural networks (CNNs), has been demonstrated to be very
successful for different tasks of image classification. To make decisions
of black-box approaches transparent, different solutions have been pro-
posed. LIME is an approach to explainable AI relying on segmenting
images into superpixels based on the Quick-Shift algorithm. In this paper,
we present an explorative study of how different superpixel methods,
namely Felzenszwalb, SLIC and Compact-Watershed, impact the gener-
ated visual explanations. We compare the resulting relevance areas with
the image parts marked by a human reference. Results show that image
parts selected as relevant strongly vary depending on the applied method.
Quick-Shift resulted in the least and Compact-Watershed in the highest
correspondence with the reference relevance areas.

Keywords: Explainable AI - Superpixel - LIME

1 Introduction

Especially in visual domains, deep Convolutional Neural Networks (CNNs) have
shown their superior capabilities for object classification tasks such as semantic
segmentation [7]. For CNNs, as well as for other deep learning architectures, cru-
cial requirements for real-world applications are that the learned classifiers (a)
make accurate predictions and (b) that the systems’ decision making is transpar-
ent and comprehensible to humans [10,15]. Explanations of a system’s decision
making process can help machine learning experts to uncover unwanted biases.
Additionally, for domain experts without a background in machine learning,
explanations are crucial for being able to understand and trust the propositions
of a classifier [10]. Applications in the medical or pharmaceutical fields particu-
larly require the trust of the end user, since a physician will not trust the decision
of a black-box unless this decision is comprehensible.

In the context of image classifications, many approaches for visual expla-
nations have been proposed [22], such as LRP (Layer-wise Relevance Propaga-
tion, [2]) or LIME (Local Interpretable Model-Agnostic Explanations, [15]). For

© Springer Nature Switzerland AG 2020
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explaining image classifications, LIME relies on segmentation of the image into
superpixels, that is on similarity based grouping of pixels into larger structures
based on local features [4]. LIME by default applies the specific superpixel algo-
rithm Quick-Shift. The segmentation of an image into superpixels is crucial for
the generation of the explanation in LIME since perturbation of superpixels is
used to identify which of the image areas has been relevant for a specific class
decision. Therefore, we were interested in exploring whether different superpixel
approaches have a significant impact on the kind of visual explanations gener-
ated by LIME. Furthermore — in the case of differences between the superpixel
approaches — it is also of interest how similar these results are to reference assess-
ments generated by a humans based on relevance.

As an application domain we focus on biological data which come in a huge
variety of image types — from fine grained microscopic images to holistic images
of plants and animals. Our two case studies focused on applications from the
medical and biological field, namely the detection of malaria parasites in thin
blood smear images [13] and the detection of stress in tobacco plants used for
pharmaceutical purposes [17].

In the following, we will first recapitulate the basic concepts of LIME. After-
wards, we will introduce a variety of superpixel approaches which are well known
in computer vision. Furthermore, we present the malaria domain and evaluation
results — showing differences of LIME’s relevance explanation for the considered
superpixel approaches and similarity to the relevance selection. Additionally,
we shortly present and discuss the tobacco domain. We conclude with a short
discussion and further work to be done.

2 Visual Explainability with LIME

LIME [15] is an explanation framework for the decision of any machine learning
classifier. In the original implementation it is capable of processing classifiers
that either have text, images or tabular data as input. In this work we focus on
the explanation of decisions for classifiers that process image data. The output
of LIME therefore is a set of connected pixel patches along with a weighting for
each patch. These weights indicate how strong a patch is correlated with the
classifier decision.

Given a classifier f and an image instance z, LIME outputs the weights w
for all pixel patches ' of the image x. w can be seen as coefficients for a linear
model that acts as a surrogate for the possibly complex decision boundary of f.
This linear model g should approximate the decision boundary in the locality of
x. To achieve this, first a pool Z with size N (user defined constant) of perturbed
versions (in the following named z’) of 2’ is generated. For images, this is achieved
by randomly removing patches from the image and replacing them with the mean
color of the patch or with some chosen color (default is grey). Every instance
of Z consists of the triples (2}, f(z;), 7 (2:)) with f(z;) being the classification
result of f for the perturbed version z; in the image space and m,(z;) being a
proximity measure that indicates how different the perturbed version is from the
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original instance. This measure is used to enforce locality for the linear model g.
The weights w are ultimately found through K-Lasso, a procedure that is based
on the regression method Lasso [18]. The input is the pool Z and a user defined
feature limit K which is the number of patches the user wants in its explanation.

3 Superpixel Methods

Pixels, which are used to represent images in grid form, do not represent a natural
representation of the depicted scene. If a single image pixel is viewed, neither its
origin in the original image nor its semantic meaning can be determined. This
results from the process of creating digital images. Pixels are artefacts that are
created by the process of taking and creating the digital image [14].

In comparison, the origin and semantic meaning of a superpixel can be deter-
mined. A superpixel is a local grouping or combination of pixels based on com-
mon properties, such as the color value (See Fig.1). The advantages of super-
pixels can be summarized as follows [14]:

— Lower complexity: Although the superpixel algorithm must be applied first to
enable the name-giving groupings of pixels, this process reduces the complex-
ity of the image due to the small number of entities. In addition, subsequent
steps based on these superpixels require significantly less processing power.

— Significant entities: Individual pixels are not very meaningful. However, pixels
in a superpixel group share properties such as texture or color distribution.
Through this embedding, superpixels gain an expressiveness.

— Marginal information loss: superpixel approaches tend to oversegmentation.
Thus, important areas are differentiated, but also insignificant ones. However,
this apparent disadvantage basically has the positive aspect of only a minor
loss of information.

3.1 Felzenszwalb

The algorithm of Felzenszwalb and Huttenloch (FSZ) [3] is to be categorized as
a graph-based approach and can be described as an edge-oriented method. The
approach has a complexity of O(M log M).

First, the algorithm calculates a gradient between two adjacent pixels. This
is weighted according to the characteristic properties of the pixels, for example
based on the color and brightness of the individual pixels. Subsequently, indi-
vidual segments - the seed for future superpixels - are formed per pixel. The
aim of this process is to make the differences between the gradients within the
segment as small as possible but make the differences as large as possible for
adjacent segments. The resulting superpixels should neither be too small or too
large. However, this algorithm lacks a direct influence on the size and number of
superpixels. This usually results in a very irregular size and shape distribution

[3].
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(d) Compact-Watershed

Fig. 1. Superpixel approaches in comparison. Source: original photo by Baptist Stan-
daert on Unsplash

3.2  Quick-Shift

Quick-Shift (QS) is an algorithm LIME uses by default, it is described in detail
in [20]. Its uses a so-called mode-seeking segmentation scheme to generate super-
pixels. This approach moves each point x; to the next point which are higher
density (P), which causes an increase in the density. QS does not have the pos-
sibility of controlling neither the number nor the size of the superpixels.

3.3 SLIC

As the name Simple Linear Iterative Clustering (SLIC) [1] suggests, this super-
pixel algorithm belongs to the group of cluster-based algorithms. SLIC uses the
well-known K-Means algorithm [8] as a basis, but there are essential differences:

— The search space (25 x 25) is limited proportional to the size of the superpixel
(S x S). This significantly reduces the number of distance calculations.
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— In addition, the complexity is independent of the number of superpixels k,
whereby SLIC has a complexity of O(N).

— Furthermore, a weighted distance measure (see Eq.1) combines the spatial
(ds) and color (d.) proximity.

— In addition, the control of compactness and size of the superpixels is ensured

by a parameter (m).
/ ds

With the parameters k the desired number of superpixels is defined. The cluster
process starts with the initialization of k cluster centers (mathematically: Cy =
(I, @k, b, T1, yk]T), which are scanned by a regular grid with a distance of S
pixels. By S = /N/k approximately even superpixels are guaranteed. Next, the
centers are shifted in the direction of the position of the smallest gradient within
a 3 x 3 range. This is done, among other things, to avoid placing a superpixel at
an edge.

Then each pixel 7 is assigned to the nearest cluster center whose search area
(25 x 2S) overlaps with the position of the superpixel (S x S). The nearest
cluster center is determined by the distance measure D (see Eq. 1).

Then the average [l a b x y]T vector of the pixels belonging to each cluster
center is calculated by an update step for each cluster center and adopted as
the new cluster center. Finally, a residual error E between the new and the
old cluster center is determined. The assignment and calculation step can be
repeated until the residual error reaches a threshold value (E < Threshold).
Finally, all unconnected pixels are added to a nearby superpixel.

3.4 Compact-Watershed

The Compact-Watershed (CW) [11] algorithm is an optimized — respectively a
more compact — version of the superpixel algorithm Watershed [9]. As input a
gradient image is used. Because the grey-tone of each pixel is considered as an
altitude, the input can be seen as a topographical surface. Then this surface gets
continuously flooded, resulting in watershed with catchment basins. During this
process over-segmentation may occur. For prevention, so called markers are used

[9]:

1. The set of markers (for each one a different label) where the flooding should
begin has to be chosen.

2. A priority queue will be created and collects the neighboring pixels of each
marked area. Each pixel is graded a priority level which corresponds with the
gradient magnitude of the pixel.

3. The pixel with the highest level of priority, gets pulled out of the priority
queue. This pixel gets labeled with the same label as its neighbors if all of its
neighbors are already labeled. The neighbor pixels who are not yet marked
and are not contained in the priority queue are pushed into this queue.
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4. Repeat the previous step (3) until the priority queue is empty.

Those pixel who are still not labeled after the priority queue is empty are the
watershed lines.

Compact-Watershed is derived from the original Watershed algorithm result-
ing in more compact superpixels in terms of size and extension. This is achieved
by using a weighted distance measure between Euclidean distance of a pixel from
the superpixel’s seed point and the difference of the pixel’s grey value compared
to the seed pixel’s grey value.

4 Case Studies

4.1 Malaria

Malaria is a parasitic infectious disease. It is predominantly transmitted by
anopheles mosquitoes, but can also be transmitted from person to person. This
happens for example by blood transfusion, organ transplantation or by sharing
injection needles [12,21]. Malaria killed 435,000 people in 2017. Of these 266,000
were children under 5 years of age [21].

A network trained for the detection of malaria in cells and whose results are
comprehensible by LIME thus has a great benefit in the application in the field
of diagnosis of malaria. For this purpose a ResNet50 [6] was trained (see Table 4
for the hyperparameters), the results are shown in Table 1.

The malaria data set [13] consists of blood smear images of the most used
diagnostic tool Rapid Diagnostic Tests (RDT) [21]. The data are divided into two
classes: positive and negative malaria labeled cells. In particular, the relatively
large number and equally distributed (50%-50%) of training examples (26,758
total) promise a good basis for a meaningful network to assess whether a cell is
infected with malaria or not (Fig. 2).

Table 1. Model results for the malaria model

Metric Value
Training accuracy 97.8182%
Training loss (cross entropy) | 0.0573
Validation accuracy 96.5167%
Validation loss (cross entropy) | 0.0970
Test accuracy 96.3715%

Test loss (cross entropy) 0.1069
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Fig. 2. Examples of the malaria dataset

Experiments. To enable an objective comparison of the superpixel approaches,
the Jaccard-Coefficient [5] was calculated, which indicates the similarity of two
sets. The similarity measure is determined between the results of the different
superpixel approaches and the respective average relevant area of the decision.
The relevant area per image is selected manually selects the indicator, which is
most relevant to the decision making process (Fig. 3).

(a) Original (b) Average
selection

Fig. 3. Original blood smear image from the malaria data set, as well as the corre-
sponding average selection

For the comparability of the results, 100 images of infected cells were selected
from the test data set of the malaria blood smear images. To make it easier
to select, only images with a single malaria indicator were selected. Of these
100 images, 85 were classified by the network as infected (true positive). The
remaining 15 were classified as not-infected (false negative). Table 2 shows the
result of the Jaccard-Coefficient for the respective superpixel approach with the
true positive classified explanations, where only the most important feature for
the network’s decision (see Fig. 4) is displayed. All of the superpixel methods were
optimized to the given case to maximize the average Jaccard-Coefficient, hence
the optimized Quick-Shift version. This was done so that all of the superpixel
approaches would be compared on a fair level.

4.2 Tobacco Plants

Tobacco is a significant plant used in biopharmaceutical production using genet-
ically modified (GM) plants. Two important reasons are its ability to produce
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biomass quickly and minimum risk of food chain contamination because of the
fact that tobacco is not a food crop [19]. It is able to produce proteins which
can be used for treatment or diagnosis of various diseases. However, if plants are
used to produce medicine for human use, strict regulations present in the field
of pharmaceutical production must be observed. In this context it is desirable
to monitor the health state of each plant to ensure only healthy plants are used
for drug production, however different parts of world regulate pharmaceutical
production of GM plants differently [16].

Table 2. Jaccard coefficient of the different superpixel methods

Superpixel method Mean value | Variance Standard deviation
Felzenszwalb 0.85603243 | 0.03330687 | 0.18250170
Quick-Shift 0.52272303 | 0.04613085 |0.21478094
Quick-Shift optimized | 0.88820585 |0.00307818 | 0.05548137

SLIC 0.96437629 | 0.00014387 | 0.01199452
Compact-Watershed |0.97850773 | 0.00003847 | 0.00620228

A&

(a) Original (b) Felzen-  (c¢) Quick- (d) Quick- (e) SLIC  (f) Compact-
szwalb Shift Shift opt. Watershed

Fig. 4. LIME results for true positive predicted malaria infected cells

(a) Original (b) Felzen-  (c) Quick- (d) Quick- (e) SLIC  (f) Compact-
szwalb Shift Shift opt. Watershed

Fig. 5. LIME results for false positive predicted malaria infected cells

Stocker et al. have investigated various methods to classify stress in tobacco
plants using non neuronal AI approaches [17]. Figure 6 shows sample images of
healthy and stressed tobacco plants. We use the same tobacco data set as a
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(a) Healthy Tobacco (b) Stressed Tobacco
plant plant

Fig. 6. Examples of the tobacco plant dataset

case study to assess the suitability of CNNs for stress classification again using
LIME to provide insights into the classification process. For the training the
same ResNet50 as for the malaria dataset was used. The only difference was
that, to prevent overfitting, the last layers were unfrozen during the training
of the tobacco trainingsset. The tobacco data set consists of 700 images total
divided into two classes, healthy and stressed. Only 81 images of stressed plants
are contained in the data set, so expectations of a good classification result were
limited.

Table 3 shows the trained model results on the tobacco plant data set. These
clearly already show that the results should not be trusted to begin with, so we
decided to discontinue work on this case study for the time being.

Table 3. Model results for tobacco plants

Metric Value
Training accuracy | 91.2577%
Training loss 0.4459
Test accuracy 50%

Test loss 0.7524

Table 4. Hyperparameter for the training of both models

Hyperparameter | Value
Epochs 50
Batch size 32
SGD learning rate | 0,0001
SGD momentum | 0,90
SGD nesterov Ja
Dropout 0,50
L2-regulation 0,0001
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5 Discussion

In the following, the experiments with LIME from the previous chapter, their
results and the possible improvement of the visual explainability are discussed
(see Table2). Although FSZ is an older algorithm compared to the other
approaches considered, still good results were achieved. Surprisingly, @S, the
standard algorithm of LIME, is surpassed by about 33.33%. Since FSZ itself
does not have any parameter, which could limit the size of a superpixel, it seems
that LIME can act pretty much freely and can generate the superpixels purely
based on relevance regarding explainability. A good example for such a case is
the explanation from LIME for the false positive classification shown in Fig. 5.
In contrast to the other superpixel methods explored though FSZ’s decision for
not infected is more comprehensible. However the variance and standard devia-
tion for the true positive examples, indicates the similarity vary significantly and
with FSZ the results are not stable and may sometimes show regions as relevant
for the decision which are actually not important. This for example is the case
for the first result from LIME while using FSZ (see Fig. 4).

The optimized version of QS, remarkably achieved an improvement of 36.55%
compared to the standard version of LIME. Additionally it performs slightly
better than FSZ - with an improvement of 3.22% - and the variance and standard
deviation are also lower, which indicates the results are more stable than with
FSZ and the unoptimized QS version.

SLIC makes it possible to influence the actual size of the superpixels through
a parameter. Consequently, the higher similarity measure with over 44.17% com-
pared to QS and over 7.62% compared to the optimized version of QS, is not
surprising. Additionally, a lower variance and standard deviation was achieved.
These results show that SLIC has advantages over QS due to showing a better
correspondence between superpixels and relevant areas.

The last superpixel approach compared with QS was CW. Like SLIC it sup-
ports influencing the compactness of the resulting superpixels. In comparison
to all other superpixel approaches CW yielded the best results. This approach
achieved an improvement of 45.58% over the standard QS and an improvement
of 9.03% over the optimized QS version. It also significantly reduces the variance
and standard deviation. This indicates there is a very correspondence over all
the 85 images.

6 Conclusion

Our results suggest that tailoring of the superpixel approach - whether by an
optimized version of QS or by FSZ, SLIC or CW - to the task will improve
the visual explainability of LIME. Therefore a selecting a suitable algorithm for
LIME can be beneficial and should be considered. With the exception of QS the
remaining approaches segment fewer irrelevant areas of an image (see Fig.4). It
was also observed that CW achieved the best results.

In applications where large area and uneven features are to be emphasized,
an approach like CW would possibly do worse because it divides the input into
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very small, evenly sized superpixels. FSZ, which generates superpixels in signifi-
cantly different sizes, may even achieve the best results in such application areas.
Consequently, the finding that CW does give the best results in malaria is not
universally valid and the superpixel approaches should be evaluated by experts
in different application areas. Another conclusion is that superpixel methods
other than QS are more suitable for LIME.

Since the area of pharmaceutical and agricultural applications is an emerging
research area for applying machine learning to digital plant phenotyping tasks,
we plan to continue pursuing the ideas begun in the tobacco case study. We
suspect that an objective assessment of plant health will yield better results if
based on 3D data, because the habitus of a plant should then be represented
more realistically than in a purely texture based 2D analysis as in the tobacco
case study. Furthermore, the number of training images in said case study was
insufficient, so the goal will be to generate a greater data set containing 3D scans
of plants to continue research on this subject.
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Abstract. Artificial Intelligence systems often adopt machine learning
models encoding complex algorithms with potentially unknown behav-
ior. As the application of these “black box” models grows, it is our
responsibility to understand their inner working and formulate them
in human-understandable explanations. To this end, we propose a rule-
based model-agnostic explanation method that follows a local-to-global
schema: it generalizes a global explanation summarizing the decision logic
of a black box starting from the local explanations of single predicted
instances. We define a scoring system based on a rule relevance score to
extract global explanations from a set of local explanations in the form
of decision rules. Experiments on several datasets and black boxes show
the stability, and low complexity of the global explanations provided by
the proposed solution in comparison with baselines and state-of-the-art
global explainers.

Keywords: Explainable AI - Rule-based explainer - Decision system

1 Introduction

The adoption of machine learning models in Artificial Intelligence (AI) has found
application in increasingly sensitive and diverse areas such as speech recognition,
image classification, biology, and medicine. When approaching a machine learn-
ing classifier, one has to take into consideration several potential issues such
as overfitting, fragility to adversarial attacks, and over-parameterization. These
well-known weaknesses highlight the underlying complexity of the generalization
problem and have been addressed by several scholars in the field which leverage
other learning tools, such as distillation and dataset enriching [7,11].

A recent prominent research area is that of Explainable AI, which instead of
addressing the model complexity in a ante-hoc fashion, subsumes it in human-
understandable explanations. In this setting the objective is to explain the deci-
sions of “black box” machine learning classifiers [6]. Explanations are a powerful
tool which enables model inspection [22], validation [5], and human-in-the-loop
systems [14]. Explainability also gained attention from institutional bodies which
recently put into law the General Data Protection Regulation (GDPR). Besides
© Springer Nature Switzerland AG 2020
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giving people control over their personal data, the GDPR provides restrictions for
automated decision-making processes. It introduces a right to meaningful’ expla-
nation: an individual has the right to obtain “meaningful information about the
logic involved” when automated decision making takes place [17,19,24].

In spite of the common interest and effort in the explainability field, the
formal definition of what an explanation is remains an open question [18]. How-
ever, the research community is converging towards a small set of families of
explanations (Sect.2). With respect to tabular data, that is the focus of our
work, explanations can take the form of: prototypes [3,13], that is samples rep-
resentative of some cluster of interest; sets of relevant features [1,12]; or decision
rules [23,27]. In our work, we focus on rule-based explanations. Single-instance
explanations, also known as local explanations, have shown promising results in
approximating the behavior and motivating the decisions of black box models,
and seldom they are able to outperform global interpretable-by-design models.

In light of these results we introduce the local-to-global problem (Sect.3),
a generalization problem which aims to relax the locality constraints of single-
instance explanations [19]. It is based on the idea of deriving a global explanation
by subsuming local logical rules. We propose to address this problem with a scor-
ing system which subsumes a given set of local interpretable decision rules into
a smaller set, then it is used to perform predictions and to describe the overall
logic of the black box model (Sect.4). In particular, we aim to derive explana-
tions with a good trade-off among the following properties. Conciseness, which
describes the succinctness of an explainable model: a concise model is composed
of a small number of rules. Completeness which identifies the validity boundaries
of explanations: complete models provide the user with explanations for a large
number of instances. Finally, complexity which measures the inherent complexity
of an explanation. We attempt to take into account these properties in the scor-
ing system by defining a local Rule Relevance Score (RRS). We empirically show
the effectiveness of the proposed explanation method explaining the decisions of
two different black box models on four datasets in which each entry represents
a human (Sect.5). The local-to-global scoring system using the RRS, thanks to
the aforementioned properties, is able to compete with and outperforms a set of
baselines and explainable-by-design models.

2 Related Work

We report in this section some of the most relevant explainability techniques
with a focus on our area of application, tabular dataset. Our scope is rule-based
classifiers and rule generation/selection algorithms.

There are two main actors in an explainability problem: an opaque clas-
sifier, also called black boxr whose behavior must be explained, and a dataset
to train the explainable model [6]. Explanation algorithms and models can be
split into two branches of local and global explanation method [10]. The for-
mer provides explanations on the model behavior on a single prediction while
the latter provides explanations on the whole model behavior. In this setting,
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local explainability problems operate on an available dataset comprised of a
single instance. Local explanation algorithms tend to focus either on a neighbor-
hood or on a candidate approach. Given a black box, a distance measure, and
a record x, neighborhood approaches generate a synthetic neighborhood of =z,
then exploits an interpretable algorithm (such as a decision tree or a rule-based
classifier) to extract a local explanation from it. LIME [22] and LORE [9] tackle
the neighborhood generation through input perturbation and genetic algorithms,
respectively. Candidate approaches instead focus on greedily exploring the prob-
lem space. ANCHORS [23] generates a starting one-premise rule, then iteratively
adds relevant premises by leveraging multi-bandit algorithms. Global explana-
tion algorithms instead leverage the whole dataset and try to explain the overall
logic of the black box classifier with explainable-by-design models. TREPAN [4]
for instance, is a revised decision tree, and tries to jointly optimize gain ratio
and fidelity to the given black box. This feature allows to reduce erroneous splits
and dampen overfitting in the deeper levels of the tree.

While the methods previously discussed try to approximate either the local
or global behavior of a black box, interpretable classifiers are explainable by
design [8,10] and are meant to substitute it in the classification task. However, at
the cost of their interpretability comes a generally lower performance than those
of black boxes. Decision trees like C4.5 [20] are probably the most notorious
family of interpretable models. Another large family is the one of rule-based
classifiers like FOIL [21] and CPAR [27] that operate by iteratively generating
detailed rulesets. Restricting ourselves to rule-based algorithms, there are several
recent proposals in the literature. Decision sets [15] and MUSE [16] optimize
an objective function balancing accuracy and complexity of the output ruleset,
thus yielding a set of sorted and mutually exclusive rules. In [26] the authors
introduce the Scalable Bayesian Rule Lists (SBRL), i.e., a Bayesian model to filter
a given ruleset. The authors set up a prior distribution over the output ruleset
bounded in number of premises per rule and size of the ruleset. The posterior
is then addressed with a probabilistic scheme. A Bayesian formulation is also
applied by the Falling Rule Lists [25], where the ruleset is updated with random
operations such as premise swapping, replacement, addition and removal. Finally,
CORELS [2] introduces an algorithmically bounded ruleset construction procedure
with a strong emphasis on optimality.

The explanation methods reviewed above operate by either generating local
(LORE, ANCHORS) or global rules (CPAR, FOIL, CORELS, SBRL, etc.). The problem
we address is instead that of subsuming a set of local rules to a set of global
ones guaranteeing high affordability with the black box and a low complexity
in the explanation for a better understanding. Note that the problem we deal
with extracts explanations from other explanation, rather than directly from
the data, as it is the case for the above global models. As a consequence, to the
best of the our knowledge, our proposal is conceptually different from all those
existing in the literature. However, in the experiment section we try to exploit
existing methods as a replacement of the proposed one.
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3 Problem Formulation

We first recall basic notations on classification and explanation. Afterwards, we
define the local-to-global explanation problem for which we propose a solution.
We name black box b a not interpretable classification model, such as a neural
network or a random forest. It is defined as a function b : X(™ — ) which maps
records x from a feature space X" with m input features to a decision y in a
target space! ). We write b(z) = y to denote the decision y predicted by b, and
b(X) =Y as a shorthand for {b(z) | z € X} =Y. An instance = consists of a
set of m attribute-value pairs (a;,v;), where a; is a feature (or attribute) and
v; is a value from the domain of a;. We assume that b can be queried at will.
Given b and an instance x for which the outcome b(z) = y has to be explained,
we model a local explanation e of such decision as a decision rule r = p — v,
where each premise p; € p is associated to a feature a; and a range [v(l) v(")].

[

We can now formalize the local-to-global explanation problem as follows:

Definition 1 (Local-to-Global Explanation). Letb be a black box classifier,
X ={x1,...,x,} a set of instances and R = {ry,...,r,} a set of the rule-based
local explanations of b for all the instances in X. The local-to-global explana-
tion problem consists in deriving from R an interpretable rule-based classifier
approzimating the global behavior of b.

Therefore, starting from a set of local explanations, our objective is to find a
global interpretable classifier from which is possible to understand the overall
logic followed by the black box for taking its decision.

4 Scoring Methods and Rule Relevance Score

In this section, we describe a scoring system for solving the local-to-global expla-
nation problem. The proposed approach can be summarized as follows. Given a
set of rules R as local explanation of a black box classifier b, the scoring system
calculates a score for each rule r; € R. Then, it prunes out the rules with a score
lower than a given threshold. The resulting set of rules R* C R is the global
explanation approximating the behavior of the black box b.

In particular, our target is to select a small set of rules sufficiently large
and precise to approximate the black box b, i.e., to extract from R a subset R*
rewarding the following properties. Firstly, generality: we wish for rules to be
general, and hence applicable to large subsets of the dataset. The more general a
rule set is, the larger the probability that a record in the dataset can be explained
by it. Secondly, high accuracy: naturally, we wish for the predictions of the rule
set to be accurate. Lastly, “outliers accuracy”. The results in [27] suggest that, in
the solution space, accuracy and coverage are involved in a trade-off relationship.
We wish to reward rules which capture rule-outliers, i.e., rules able to explain

! Without loss of generality, in our study we restrict to binary decisions, but the
problem can also be faced for multi-class decisions.
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records matched by few other rules, as they are outliers in the solution space
of explanations. Moreover, rewarding such rules allows us to reduce the overlap
between rules and to discard a large chunk of the most “obvious” rules. Measures
embedding these properties can act as a proxy for model completeness, as highly
general rule sets lower the probability of occurring in non-explainable records.
As a side-effect, fixed the rule set, general models tend to be simpler, since the
more complex and detailed an explanation is, the lower its generality. Therefore,
the effectiveness of the scoring system lies in the definition of a scoring function
implementing the above properties.

In this proposal, we define the Rule Relevance Score (RRS). The proposed
scoring formulation accounts for the required generality and accuracy constraints
by weighting them in a tunable linear sum:

RRSRx =Q1-C+az-S+as-a+as-c+as-a (1)

where c¢ is a coverage score, s is a sparsity score, a is an association score, ¢ is a
prediction coverage score, a is a prediction association score, and s, ..., a5 are
tunable weights2. Coverage and sparsity act as a proxy for model complexity:
the longer a rule is, the lower its coverage. It also follows that high-coverage
rulesets yield highly complete models: the larger the ruleset coverage, the more
records can be explained. Score vectors are computed on a given ruleset R and
validation set X. Next, we detail each component of RRS defined in Eq. 1.

4.1 Coverage

Given a rule r = p — y and a dataset X, we define the coverage of the rule r on
X as the set of records z € X that satisfy the premise of the rule, i.e.,

I'(r,X)={x € X |Va; €p, (a;,v;) € z. vEl) <w; < vEu)}. (2)

In addition, we call the inverse of the coverage function of a record the associated
ruleset of a record, that is the set of rules satisfied by the record. Moreover, we
extend the notion of coverage to that of perfect coverage of a rule r with target
y, that is the subset of records covered and correctly predicted by r:

I'rX)={zeX|zel'(r,X)ANb(x)=uy}. (3)

The definition of perfect associated ruleset of a record is analogous to the non-
perfect version and replaces the coverage function with its perfect extension.

We turn the above sets into the scores of the RRS formula as follows. Given
a ruleset R, the coverage matrizx Cgr x of R over X is a binary matrix such
that Cr x[i,j] = 1 if and only if the i-th rule in R covers the record j, ie., if
Zj € F(R7 {xj})

2 We adopt default unitary weights of c;; = 0.2 to balance the score vectors in a linear
non-weighted sum.
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It is then straightforward to define both the coverage score vector cgr x and
association score vector cl_%lX as the ratio of covered records and the ratio of the
covering ruleset, respectively:

CR,X:1/|X“CR,X']1; Cg}X:].”R"]lT'CR,X (4)

where 1 is a column vector of appropriate size and 1 entries. The coverage score
vector accounts for the normalized coverage of the records, while the association
score vector accounts for the coverage of the rules.

4.2 Associated Rule Coverage

In order to accommodate also “outlier coverage”, i.e., the coverage of rare
-1 . .

records, we apply product between the cg,x and cp i, resulting in the asso-

ciated rule-coverage score vector ap x:

arx = Crx(cgx) ™" (5)

This score captures, for each rule, the average associated rule set cardinality
of its covered records. Hence, rules covering less-covered records will tend to have
a large associated rule-coverage. _ B

We define the perfect coverage matrix C'r, x using the I" operator, and in line
with Egs.4 and 5 we name cg x and ar x the perfect coverage score and perfect
associated rule-coverage of the RRS formula.

4.3 Sparsity

Coverage is not necessarily the unique measure to account for the coverage of
a ruleset. We also account for the distance among the records covered by a
rule with an average pairwise distance of the covered records. Let Dx be the
pairwise symmetric distance matrix in which element (7, ) holds the distance
between record ¢ and record j, we define sparsity as:

SR,X:]-/DX‘CR,X'DX~ (6)

4.4 Model Explanation and Prediction

The model explanation is comprised of two phases: a pruning phase, which
extracts a global set of rules from a set of local ones, and a prediction phase,
which employs the global set of rules to classify a given instance.

Pruning. Given a set R of local rules, and a validation set X, we calculate the
RRS vector. Then, we extract a subset of rules R* from R by pruning out the
rules having a RRS lower than a threshold. As a threshold, we adopt a percentile
of the values in the RRS vector. Formally, given 8 we prune R to R* by removing
all » € R with score lower than the 3" percentile. The ruleset R* represents the
global interpretation of the black box b explained by the scoring system RRS.
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Prediction. Given a set of relevant rules R* and a record x, we adopt the Lapla-
cian schema introduced in [27]. Given a record x, the set of relevant rules R*
and a validation set X, the prediction of R* on z is the prediction of the rule
with the highest Laplacian accuracy in the associated ruleset of x.

5 Experiments

In this section we present an array of experiments showing the validity of the
proposed solution®. In particular, we show the effectiveness of the scoring system
using RRS in subsuming an optimal set of rules with respect to baseline scores
and to state-of-the-art rule-based explainable by design methods.

Table 1. Dataset cardinality and encoded dimensionality.

Dataset | Training | #Local explanations | Dimensionality
adult |39,072 |9,768 109
churn 3,332 2,333 79
compas | 7,213 |1,544 19
german 999 299 60

5.1 Experimental Setting

We selected a set of standard binary classification tasks with datasets pre-
processed in a one-hot format?*: adult is a dataset on future income prediction®;
churn is a Kaggle dataset on telephone plan subscription prediction®; compas is
a dataset on recidivism prediction”; german is a dataset on creditor prediction®.
We split each dataset in a stratified fashion: 80% is used for training the black
box classifiers, and we explain the remaining 20%, namely X. Table1 reports
basic information about the datasets”. As black box classifiers, we report exper-
iments'? explaining a Neural Network (NN) and a Random Forest (RF). As
initial set of local rules R we adopt the explanation rules extracted using the
local-explanation method LORE [9] on the dataset X . As validation set, we adopt
the test set X from which we extract the local explanations.

In order to evaluate the requirements reported in the previous section, we
validate the explanation methods using the following measures.

3 Code available at github.com/msetzu/rule-relevance-score.
4 Missing values were replaced by mean and mode according to the feature type.
5 https://archive.ics.uci.edu/ml/datasets/adult.
5 https://www.kaggle.com/becksddf/churn-in-telecoms-dataset.
" https://github.com /propublica/compas-analysis.
8 https://archive.ics.uci.edu/ml/datasets/statlog+(german+-credit+data).
9 The reported dimensionality refers to the one-hot encoding applied.
10 RF trained with scikit-learn, three-layer NN trained with keras.io.
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— fidelity(X, R,b) € [0,1], the fidelity of the interpretable model with respect
to a given black box b on a dataset X. It indicates how well the interpretable
model mimics the black box.

— coverage(X,R) € [0,1] the normalized coverage of the interpretable model
R on the given dataset X, i.e., cr,x. It indicates how many records the
interpretable model is able to deal with.

— hmean(X, R,b) € [0,1] the harmonic score, that is the harmonic mean of
fidelity and coverage, striking a balance between the two.

— size(R) € [0,400), the conciseness of the interpretable model in terms of
cardinality of the ruleset R, i.e., |R].

— len(R) € [0,+0), the complexity of the interpretable model in terms of
average number of conditions in the premises of the rules in R.

As baselines, we compare the proposed RRS, with a trivial fidelity-based scor-
ing schema Fs, and with a coverage-based scoring schema Cs. In practice, we
replace the RRS adopted in the pruning phase of the proposed scoring system
with Fs or ¢S. Moreover, we compare the RRS scoring schema against global rule-
based state-of-the-art!! explainable-by-design classifiers: CPAR [27], CORELS [2]
and SBRL [26]. In addition, we prove that the global rules, extracted by these
classifiers and provided as input to the RRS scoring system, do not guarantee the
same performance of the local rules.

5.2 Rule Relevance Score vs. Fidelity and Coverage Scores

In this section, we show the importance of using a compound score like RRS in
the pruning phase of the scoring system instead of trivial scores like FS or Cs.

Figure 1 shows how fidelity, coverage and harmonic score varies when varying
the pruning percentile threshold § for the various datasets using the NN black
box classifier. Results using the RF as black box are close to those obtained
using the NN and are not reported due to lack of space.

Regardless of the score RRS, FS or €S, most datasets show increasingly higher
fidelity on higher pruning factors. We attribute this behavior to a large number of
poorly performing rules which sway the ensemble towards the wrong prediction.
FS shows the highest and the most stable fidelity across pruning factors. This
pattern is probably due to the low usage of each rule. RRS and ¢S show almost
no difference in terms of fidelity with a slight increase, indicating that (i) the
fidelity score does not play a crucial role in the pruning, (ii) the coverage may
hinder the prediction performance on lower pruning factors.

The differences between FS, RRS and CS grow significantly when coverage,
and hence harmonic score, is measured. While both RRS and cs display a stable
trend, Fs dips in coverage between the 50 and 80" percentile, regardless of the
dataset. As suggested in the fidelity analysis, coverage does not seem to correlate
with fidelity. We notice that the decrease in coverage in FS does not correlate
with a decrease in fidelity. This suggests that most of the rules in R and therefore

1 For cPAR, CORELS and SBRL we adopt the default hyperparameter setting.
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Fig. 1. Fidelity, coverage and harmonic score for RRS, FS and CS on local explanations
extracted from a NN, for the different datasets varying the pruning percentile threshold
(. The highest score is highlighted by a double marker.

in R* are not useful in prediction, and thus, that the fidelity measure strongly
relies on the default rule with majority target label.

5.3 Local vs Global Rules

In this section we compare the RRS scoring schema against the global rule-based
classifiers: CPAR, CORELS and SBRL. Tables2 and 3 report the harmonic score,
and ruleset size as a proxy of conciseness (the lower the better) and average
rule length as a proxy for complexity (the lower the better) of the interpretable
models for the NN and RF explanations, respectively. On the one hand, we
have the scoring system with RRS subsuming the best local rules; on the other
hand, we have the global rules from the explainable by design algorithms. RRS
shows the highest harmonic score at the cost of a not very low complexity and
conciseness. On the NN rules, CPAR has an overall lower harmonic score, and
higher complexity and conciseness than RRS. On the RF rules, instead, there
is not a clear winner. Viceversa, CORELS, and SBRL provide a low-complexity
highly concise model at the cost of the harmonic score. Finally, it is worth to
underline that RRS displays consistent and stable performance across all the
metrics independently from the dataset or the black box.
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Table 2. Harmonic score, conciseness and complexity (in terms of ruleset size and
average rule length, respectively) for RRs with 8 = 75, and for the global interpretable
models CPAR, CORELS and SBRL explaining the NN black box.

Method | RRS CPAR CORELS SBRL

Dataset | hmean | size |len |hmean|size |len |hmean|size|len|hmean|size|len
adult [0.93 331 2.7410.90 29914.15/0.00 1 1.0/0.84 24 1.0
compas | 0.99 51/1.90/0.83 94/2.37/0.91 |3 1.0/0.99 6 |1.0
churn |0.81 58 12.62/0.77 12247/3.08/0.53 |1 1.0 0.08 7 1.0
german |0.92 21 /1.80/0.75 26/2.19|— - |—= 1]0.00 2 1.0

Table 3. Harmonic score, conciseness and complexity (in terms of ruleset size and
average rule length, respectively) for RRs with 8 = 75, and for the global interpretable
models CPAR, CORELS and SBRL explaining the RF black box.

Method | RRS CPAR CORELS SBRL

Dataset | hmean | size | len | hmean | size | len | hmean | size | len | hmean | size | len
adult |0.92 361 |5.20.92 85 2.3 0.00 1 1.0 | 0.29 26 1.0
compas |0.92 56 11.9/0.84 130 | 2.8 |0.92 1 1.0 10.24 6 [1.0
churn [0.91 82 2.8 10.83 44 12.710.36 2 1.0 | 0.55 5 1.0
german | (0.82 30 /2.0/0.83 18 |2.3 |- - - 1047 6 | 1.0

In Fig. 2 we show that if we replace the local rules in the RRS scoring system
with the global rules extracted by CPAR, CORELS and SBRL there is a clear drop
in the performance with respect to RRS. Analyzing the fidelity and coverage we
observe that several methods show sub-par fidelity regardless of the rule filtering,
and in some cases, they fail in generating output rules (CORELS on german), with
CPAR being the best method after the scoring system with RRS. We attribute
the poor performance of CORELS and SBRL to the low number of rules generated
(see Tables2 and 3 for § = 0).

5.4 Qualitative Evaluation

In this section, we explore the rules employed by the RRS scoring system, CPAR,
CORELS and SBRL to explain the decision of a sample of instances. In particular,
we consider two instances 7 adn zo from the compas dataset for which using
the RF as black box we have b(x1) = High and b(z2) = Low.

z1 = {age = 25, priors count = 0, days before arrest = 1, is recidive,
is violent recidive, not 2-years recidive, length of stay = 1,
age € [25, 45], sex = Male, race = african, charge = gravel}
xzo = {age = 47, priors count = 23, days before arrest = 1, is recidive,
is not violent recidive, not 2-years recidive, length of stay = 403,

age € [25, 45], sex = Male, race = african, charge = not grave}
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Fig. 2. Fidelity, coverage and harmonic score for RRS on local explanations and global
methods for NN, for the different datasets varying the pruning percentile threshold .
The highest score is highlighted by a double marker.

We report in the following the rules selected to explain the black box decision.

1 - RRS {priors count € [0, 4], is recidive, age < 25} — High
- CPAR {priors count € [0, 4], is recidive} — High
- coreLs {age < 45, priors count ¢ [18, 34]}" — High
- SBRL {is violent recid} — High

Ta - RRS {age > 45} — Low

- CPAR {priors count > 15} — Low

- coreLs {age > 45} — Low

- SBRL {is recid} — Low
We notice that while all methods are able to capture significant features (age,
priors count, past recidivism), RRS leverages longer and more detailed rules than
CPAR. This behavior is also empirically supported by the data shown in Tables 2
and 3 and is due to the local input rules, which are longer than the global ones.
We leave the study of the effect of input length on RRS and human-subject
experiments for future study.

6 Conclusion

In this paper, we have proposed a scoring system for explaining the global behav-
ior of a black box classifier starting from a set of local explanations in the form
of rules. To guarantee high performance and to account for important properties
when selecting the most relevant rules, we have defined the rule relevance score
(RRS). We have compared RRS to baseline scores finding comparable fidelity and
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significantly better performances in terms of coverage. We have also found that
coverage does not correlate with fidelity. In addition, we have compared the RRS
scoring system with state-of-the-art global explainers, observing that RRS has
comparable performance but is much more stable across different datasets and
black box models, both in terms of accountability and complexity. As future
work, we indicate the definition of more fine-grained filtering scores to further
reduce the output size. Moreover, we would like to experiment with different
local explanations. Finally, a case study involving real users would be helpful to
better asses the goodness of the global explanation derived with our approach.
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Abstract. The existence of adversarial examples has led to considerable
uncertainty regarding the trust one can justifiably put in predictions
produced by automated systems. This uncertainty has, in turn, lead to
considerable research effort in understanding adversarial robustness. In
this work, we take first steps towards separating robustness analysis from
the choice of robustness threshold and norm. We propose robustness
curves as a more general view of the robustness behavior of a model and
investigate under which circumstances they can qualitatively depend on
the chosen norm.

1 Introduction

Robustness of machine learning models has recently attracted massive research
interest. This interest is particularly pronounced in the context of deep learning.
On the one hand, this is due to the massive success and widespread deployment
of deep learning. On the other hand, it is due to the intriguing properties that can
be demonstrated for deep learning (although these are not unique to this setting):
the circumstance that deep learning can produce models that achieve or surpass
human-level performance in a wide variety of tasks, but completely disagree
with human judgment after application of imperceptible perturbations [13]. The
ability of a classifier to maintain its performance under such changes to the input
data is commonly referred to as robustness to adversarial perturbations.

In order to better understand adversarial robustness, recent years have seen
the development of a host of methods that produce adversarial examples, in
the white box and black box settings, with specific or arbitrary target labels,
and varying additional constraints [3,7,8,11,12]. There has also been a push
towards training regimes that produce adversarially robust networks, such as
data augmentation with adversarial examples or distillation [1,4,6,10]. The dif-
ficulty faced by such approaches is that robustness is difficult to measure and
quantify: even if a model is shown to be robust against current state of the art
attacks, this does not exclude the possibility that newly devised attacks may
be successful [2]. The complexity of deep learning models and counter-intuitive
nature of some phenomena surrounding adversarial examples further make it
challenging to understand the impact of robust training or the properties that
determine whether a model is robust or non-robust. Recent work has highlighted
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settings where no model can be simultaneously accurate and robust [14], or where
finding a model that is simultaneously robust and accurate requires optimizing
over a different hypothesis class than finding one that is simply accurate [9].
These examples rely on linear models, as they are easy for humans to under-
stand. They analyze robustness properties for a fixed choice of norm and, typi-
cally, a fixed disadvantageous perturbation size (dependent on the model). This
raises the question: “How do the presented results depend on the choice of norm,
choice of perturbation size, and choice of linear classifier as a hypothesis class?”
In this contribution, we:

— propose robustness curves as a way of better representing adversarial robust-
ness in place of “point-wise” measures,

— show that linear classifiers are not sufficient to illustrate all interesting robust-
ness phenomena, and

— investigate how robustness curves may depend on the choice of norm.

2 Definitions

In the following, we assume data (z,y) € X x Y, X C R? are generated i.i.d.
according to distribution P with marginal Px. Let f : X — Y denote some
classifier and let € X. The standard loss of f on P is

L(f) == P({(z,y) : f(2) #y}). (1)
Let n: X — RT be some norm, let € > 0 and let

Bp(z,e) :={a' :n(x — ') <e}. (2)
Following [14], we define the e-adversarial loss of f regarding P and n as

Lue(f) = P({(z,y) : 32’ € Bu(z,e) : f(a’) # y}). 3)

=:An

€

We have L, o(f) = L(f). Alternatively, we can exclude from this definition
any points that are initially misclassified by the model, and instead consider
as adversarial examples all points where the model changes its behavior under
small perturbations. Then the e-margin loss is defined as

Ly, (f) = Px({z : 32" € Bn(x,€) : f(2') # f(2)}). (4)
L/

n.e is the weight of all points within an e-margin of a decision boundary. We
have L, o(f) = 0.

There are two somewhat arbitrary choices in the definition in Egs. (3) and
(4): the choice of € and the choice of the norm n. The aim of this contribution
is to investigate how € and n impact the adversarial robustness.
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3 Robustness Curves

As a first step towards understanding robustness globally, instead of for an iso-
lated perturbation size €, we propose to view robustness as a function of . This
yields an easy-to-understand visual representation of adversarial robustness in
the form of a robustness curve.

Definition 1. The robustness curve of a classifier f, given a normn and under-
lying distribution P, is the curve defined by

Tfn,P: [0700) - [07 1] (5)
g Ly (f). (6)

The margin curve of f given n and P is the curve defined by
T},n,P : [0700) - [07 1] (7)
e Ly, (f). (8)

Commonly chosen norms for the investigation of adversarial robustness are the
¢1 norm (denoted by || - ||1), the ¢3 norm (denoted by || - ||2), and the £, norm
(denoted by || - ||so). In the following, we will investigate robustness curves for
these three choices of n.

[14] propose a distribution P; where y "~ " {—1,+1} and

1 w. op. i i d.
T = b-P T2, Tdt1 4 N(ny, 1). )
-1 w.p.(1-p)

For this distribution, they show that the linear classifier favg(z) = sign(w’z)
with w = (0,1/d,...,1/d) has high accuracy, but low e-robustness in £, norm
for £ > 27, while the classifier f.op(z) = sign(w?’z) with w = (1,0,...,0) has
high e-robustness for e < 1, but low accuracy. [9] proposes a distribution Py

a. r.

where y & " {—1,41} and

v = Y w. p.0.51 (10)
—y w.p.0.49

where the linear classifier f,(z) = sign(w”z) with w = 14 has high accuracy,
but low e-robustness in /., norm for ¢ > % Figure 1 shows margin curves and
robustness curves for Py and favg, P1 and fiop and Py and fs.

4 The Impact of n

The curves shown in Fig. 1 seem to behave similarly for each norm. Is this always
the case? Indeed, if f is a linear classifier parameterized by normal vector w and
offset b, denote by

dp((w,b),z) = min{n(v) : Ip: x = p+v, (w,p) + b = 0} (11)
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1.0
0.8

a) 06
0.4 —r
0.2 — 2
0.0 L

1.0 —

15

0.8

0.4

0.2 ‘
0.0

0.00 0.25 050 0.75 1.00 0.00 0.25 050 0.75 1.00

1.0

o8 =
c) 0.6

0.4

0.2

0.0

00 25 50 75 10.0 125 . . . 7.5 10.0 125

Fig. 1. Margin curves and robustness curves for several examples of distributions and
linear models from the literature. Row (a) shows curves for classifier fave and distri-
bution Pi. Row (b) shows curves for classifier fiob and distribution P;. In this case, all
three curves are identical and thus appear as one. Row (c) shows curves for classifier
fs and distribution Ps.

the shortest distance between (w,b) and z in norm n. Then a series of algebraic
manipulations yield

dj.j, (w,b), z) = % .
dj., (w,b), 2) = W .
dy . ((w, b), z) = LD "

w1
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In particular, there exist constants ¢ and ¢’ depending on (w, b) such that for all
reX,
dy., (w, b), 2) = edy, ((w, b), 2) = ¢'djy ((w, b), ) (15)

This implies the following Theorem:
Theorem 1. For any linear classifier f, there exist constants ¢, > 0 such that
for any e > 0,

Ly () = Lyt e /e(f) = Liffloc e/er (f)- (16)

As a consequence, for linear classifiers, dependence of robustness curves on the
choice of norm is purely a matter of compression and elongation.

What can we say about classifiers with more complex decision boundaries?
For all x, we have

lzlloo < llzll2 < llz]ly < Vdlallz < dflz|s (17)

These inequalities are tight, i.e. there for each inequality there exists some x
such that equality holds. It follows that, for any € > 0,

lIloo [I-12 (R lI-1I2 Il
As/d QAE/\/EQAE C A= C Al (18)
and so
Ly e (f) 2 Ly e (f) = Ly () (19)
> L|‘.”275/\/E(f) > LH-Ill,s/d(f)‘ (20)

In particular, the robustness curve for the ¢.,-norm is always an upper bound
for the robustness curve for any other ¢,-norm (since ||z||, < ||z|| for all 2 and
p > 1). Thus, for linear classifiers as well as classifiers with more complicated
decision boundaries, in order to show that a model is adversarially robust for
any fixed norm, it is sufficient to show that it exhibits the desired robustness
behavior for the ¢,-norm. On the other hand, in order to show that a model is
not adversarially robust, showing this for the £, norm does not necessarily imply
the same qualities in another norm, as the robustness curves may be strongly
separated in high-dimensional spaces, both for linear and non-linear models.
Contrary to linear models, for more complicated decision boundaries, robust-
ness curves may also exhibit qualitatively different behavior. This is illustrated
in Fig. 2. The decision boundary in each case is given by a quadratic model in
2-dimensional space: f(x) = sign(z? — x5). In the first example, we construct a
finite set of points, all at ¢5-distance 1 from the decision boundary, but at various
{1 and /. distances. For any distribution concentrated on a set of such points,
the ¢5-robustness curve jumps from zero to one at a single threshold value, while
the ¢1- and ¢, -robustness curves are step functions with the height of the steps
determined by the distribution across the points and the width determined by
the variation in £; or /., distances from the decision boundary. The robustness
curves in this example also exhibit, at some points, the maximal possible sep-
aration by a factor of v/d (note that d = 2) while touching in other points.
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In the second example, we show a continuous version of the same phenomenon,
with points inside and outside the parabola distributed at constant ¢5-distance
from the decision boundary, but with varying ¢; and £, distances. As a result,
the robustness curves for different norms are qualitatively different. The third
example, on the other hand, shows a setting where the robustness curves for the
three norms are both quantitatively and qualitatively similar.

Distribution Margin Curve Robustness Curve
1.0 1.0
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.0 0.0
1.0 1.5 1.0 1.5
1.0 1.0
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.0 0.0
1.0 1.5 1.0 1.5
1.0 1.0
0.8 0.8
0.6 0.6
0.4 0.4 sup
0.2 0.2 — 12
— [
0.0 0.0
00 25 5.0 00 25 5.0

Fig. 2. Margin curves and robustness curves for f(x) = sign(z? — x2) and three differ-
ent underlying distributions, illustrating varying behavior of the robustness curves for
different norms. In rows (a) and (b), the robustness curves are qualitatively different,
while they are almost identical in row (c). Note that in these examples, robustness
curves and margin curves are nearly identical, as the standard loss of f is zero or close
to zero in all cases.
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These examples drive home two points:

— The robustness properties of a classifier may depend both quantitatively and
qualitatively on the norm chosen to measure said robustness. When investi-
gating robustness, it is therefore imperative to consider which norm, or, more
broadly, which concept of closeness best represents the type of perturbation
to guard against.

— Linear classifiers are not a sufficient tool for understanding adversarial robust-
ness in general, as they in effect neutralize a degree of freedom given by the
choice of norm.

5 Discussion

We have proposed robustness curves as a more general perspective on the robust-
ness properties of a classifier and have discussed how these curves can or cannot
be affected by the choice of norm. Robustness curves are a tool for a more princi-
pled investigation of adversarial robustness, while their dependence on a chosen
norm underscores the necessity of basing robustness analyses on a clear problem
definition that specifies what kind of perturbations a model should be robust to.
We note that the use of ¢, norms in current research is frequently meant only
as an approximation of a “human perception distance” [5]. A human’s ability
to detect a perturbation depends on the point the perturbation is applied to,
meaning that human perception distance is not a homogeneous metric, and thus
not induced by a norm. In this sense, where adversarial robustness is meant
to describe how faithful the behavior of a model matches that of a human,
the adversarial loss in Eq. (3) can only be seen as a starting point of analysis.
Nonetheless, since perturbations with small £,-norm are frequently impercepti-
ble to humans, adversarial robustness regarding some £,-norm is a reasonable
lower bound for adversarial robustness in human perception distance. In future
work, we would like to investigate how robustness curves can be estimated for
deep networks and extend the definition to robustness against targeted attacks.
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Abstract. With the increasing number of deep learning applications,
there is a growing demand for explanations. Visual explanations provide
information about which parts of an image are relevant for a classifier’s
decision. However, highlighting of image parts (e.g., an eye) cannot cap-
ture the relevance of a specific feature value for a class (e.g., that the
eye is wide open). Furthermore, highlighting cannot convey whether the
classification depends on the mere presence of parts or on a specific spa-
tial relation between them. Consequently, we present an approach that is
capable of explaining a classifier’s decision in terms of logic rules obtained
by the Inductive Logic Programming system Aleph. The examples and
the background knowledge needed for Aleph are based on the explanation
generation method LIME. We demonstrate our approach with images of
a blocksworld domain. First, we show that our approach is capable of
identifying a single relation as important explanatory construct. After-
wards, we present the more complex relational concept of towers. Finally,
we show how the generated relational rules can be explicitly related with
the input image, resulting in richer explanations.

Keywords: XAI - Deep learning + Inductive Logic Programming

1 Introduction

Explainable Artificial Intelligence (XAI) mostly refers to visual highlighting of
information which is relevant for the classification decision of a given instance
[9,19]. In general, the mode of an explanation can be visual, but also verbal or
example-based [13]. Visual explanations have been introduced to make black-
box classifiers such as (deep) neural networks more transparent [9,18,19]. In
the context of white-box machine learning approaches, such as decision trees
or Inductive Logic Programming (ILP) [16], it is argued that these models are
already transparent and interpretable by humans [16]. In the context of ILP it
has been shown that a local verbal explanation can easily be generated from
symbolic rules with a template-based approach [20].

For image classification tasks, it is rather obvious that visual explanations
are helpful for technical as well as for domain experts: Information about what
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pixels or patches of pixels most strongly contribute to a class decision can help
to detect model errors which might have been caused by non-representative
sampling. Highlighting can also support domain experts to assess the validity of
a learned model [18]. In general, an explanation can be characterized as useful, if
it meets the principles of cooperative conversations [13]. These pragmatic aspects
of communication are described in the Gricean maximes [8] which encompass the
following four categories: (1) quality — explanations should be based on truth
or empirical evidence; (2) quantity — be as informative as required; (3) relation
— explanations should communicate only relevant information; (4) manner —
avoidance of obscurity and ambiguity. We argue that visual explanations can in
general not avoid obscurity and ambiguity since they cannot or only partially
capture the following kinds of information:

— Feature values: Visual highlighting can explain that a specific aspect of an entity
is informative for a specific class — e.g., that an emotion is expressed near the eye.
However, the relevant information is whether the eye is wide open or the lid is
tightened [21].

— Negation: While approaches like LRP [19] allow to visualize which pixels have
a negative contribution to the classification, it is not generally possible to inform
that the absence of a feature or object is relevant. E.g., it might be relevant to
explain that a person is not classified as a terrorist because he or she does not hold
a weapon (but a flower).

— Relations: If two parts of an image are highlighted, it is not possible to discrim-
inate whether the conjunction (e.g., there is a green block and a blue block) or a
more specific relation (e.g., the green block is on the blue block) is relevant.

ILP approaches [14] can capture all three kinds of information because
the models are expressed as first-order Horn clauses. Relational concepts such
as grandparent(X, Y) [15] or mutagenicity of chemical structures [23] can be
induced. Furthermore, classes involving relations, such as the Michalski Train
Domain [15], can be learned. Here, the decision whether a train is east- or west-
bound depends on relational information of arbitrary complexity, e.g., that a
waggon with six wheels needs to be followed by a waggon with an open top.

Recently, there have been proposed several deep learning approaches to tackle
relational concepts, such as the differentiable neural computer [7], RelNNs [10],
or RelNet [2]. In contrast to ILP, these approaches depend on very large sets of
training examples and the resulting models are black-box. A helpful explanation
interface should be able to take into account visual/image-based domains as well
as abstract/graph-based domains. The model agnostic approach of LIME [18]
provides linear explanations based on sets of super-pixels or words. This is not
sufficient when more expressive relational explanations are necessary. Current
focus of our work is to provide relational explanations for black-box, end-to-end
classifiers for image-based domains. We believe that for image-based domains, a
combination of visual and verbal explanations is most informative with respect to
the Gricean maximes. Psychological experiments also give evidence that humans
strongly profit from a combination of visual and verbal explanations [12].

In a previous study [17], we could show that relational symbolic explana-
tions (Prolog rules) can be generated by combining the ILP approach Aleph
[22] with LIME [18]. However, simple visual concepts have been pre-defined and
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(a) A house, because three windows left (b) A tower, because three windows on
of each other. top of each other.

Fig. 1. Combining visual and symbolic explanations for house in contrast to tower.
Photo of house by Pixasquare, photo of lighthouse by Joshua Hibbert, both on Unsplash

used as input to Aleph and not extracted automatically. In the following, we
present an extension of [17] covering end-to-end image classification with a con-
volutional neural network (CNN) [11], partitioning images into sub-structures,
as well as automatic extraction of visual attributes and spatial relations. Local
symbolic explanations are learned with Aleph, providing logical descriptions of
original and perturbed images. Finally, local symbolic explanations are related
to visual highlighting of informative parts of the image to provide a combined
visual-symbolic explanation. The symbolic explanation can be transformed in a
verbal one with a template-based approach as demonstrated in [20]. An illus-
trative example is given in Fig. 1. Here the concept of house is explained by the
fact that three windows are next to each other. This information is given by
identifying three relevant parts of the image, naming them (A, B, C), labeling
them as windows (which might be done by another automatic image classifica-
tion or by the user) and stating the spatial relation between the objects using
the left_of relation. This example also demonstrates an important aspect of
symbolic explanations: Which attributes and relations are useful to explain why
some object belongs to some class depends on the contrasting class [5].

In the next section, we introduce the core concepts for our approach. Then
we present a significantly extended version of the LIME-Aleph algorithm [17].
We demonstrate the approach on images of a blocksworld domain. In a first
experiment we show that LIME-Aleph is capable of identifying a single rela-
tion (left_of (blockl, block2)) as relevant for the learned concept. In a sec-
ond experiment, we demonstrate that more complex relational concepts such as
tower can be explained. Finally we show how the fusion of visual and symbolic
explanations might be realized.
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2 Explaining Relational Concepts with LIME-Aleph

2.1 Core Concepts

The ILP System Aleph. To find symbolic explanations for relational concepts
we use Aleph [22]. Aleph infers a logic theory T given a set of positive (ET)
and negative (E~) examples. An example is represented by the target predicate
(e.g. stack(el). or not stack(e2).) together with additional predicates (e.g.
contains(bl, el).) as background knowledge (BK). Predicates in BK are used
to build the preconditions for the target rules. Aleph is based on specific-to-
general refinement search. It finds rules covering as many positive examples
as possible, avoiding covering negative ones. Search is guided by modes which
impose a language bias. The general algorithm is [22]:

1. As long as positive exist, select one. Otherwise halt.

2. Construct the most-specific clause that entails the selected example and is within
the language constraints

. Find a more-general clause which is a subset of the current literals in the clause.

. Remove covered by the current clause.

5. Repeat from step 1.

=W

An example of a rule from T in Prolog is stack(Stack) :- contains(Blockl,
Stack), contains(Block2, Stack), on(Block2, Blockl).
Denoting that a stack is defined by one block on top of another.

LIME’s Identification of Informative Super-Pixels. LIME (Local
Interpretable Model-Agnostic Explanations) is an approach to explain the deci-
sion result of any learned model [18]. Explanations state the parts of an instance
that are positively or negatively correlated to the class. It works by creating a
simpler, local surrogate model around the instance to be explained. In case of
an image, the explanation is a set of connected pixel patches called super-pizels.

Let  be an image and z’ be the binary vector that states whether super-
pixels z; € 2’ are switched on or off (see below). LIME finds a sparse linear model
g(2") that locally approximates the unknown decision function f(z) represented
by a black-box classifier. It effectively finds the coefficients w for the super-
pixel representations being variables in a simplified linear model. This is done
by generating a pool of perturbed examples z’ by taking the original super-pixel
representation =’ and randomly selecting elements in a uniformly distributed
fashion. That way, images z are obtained with some super-pixels still original
and some altered according to a transform function h effectively removing the
information they contained (Switching them off). Each sample z’ (The binary
vector indicating if super-pixels are switched off in this sample) is stored in a
sample pool Z along with the classifier result f(z) and a distance measure 7, (2)
that expresses the distance of the perturbed example z to the original image
z. For images this can be the Mean Squared Error. The distance is needed for
the linear model to be locally faithful to the original function f(z) and thus has
to be minimized. The “un-faithfulness” of the model g to the black-box model



184

J. Rabold et al.

6/6/6)
0/0].10]-/6/6
QSIS0
ERCICICICIR

(a) All positions in
the image, where a

EEEEEER
(b) for the rela-

tions on and under,

block has to be lo- illustrated with
cated in order to be on(b,a), on(c,d),
left, right, top, or resp. under (a,b)

bottom of block a.

and under(d,c).

Fig. 2. Diagrams to show the different concepts of the relations used. (Color figure
online)

f with respect to the distance measure 7, (2) is expressed with the following
formula [18]:

Lfgm) =, m(2) () — ()™

The goal is to find the coefficients w for g that minimize this un-faithfulness L.
The coefficients ultimately translate back to weights for the super-pixels. LIME
uses K-Lasso to find the weights [3].

The original LIME uses the algorithm Quick Shift [25] to find super-pixel. It
imposes an irregular pixel mask over the input image that segments it in terms
of pixel similarity. The segmentation is performed in a 5D space consisting of the
image space and the color space. Quick Shift is only one of several segmentation
algorithms that are available for LIME. They all share the attribute of impos-
ing an irregular mask over an image. In many domains, this irregularity is not
wanted. For the domain used in this paper it is preferable to use a segmentation
algorithm that divides an image into a regular grid with square cells.

2.2 Extraction of Image Parts and Their Relations

Based on image segmentation into a grid of super-pixels ¢ with domain-specific
cell size, a set of attributes A; for cells and spatial relations between cells can be
automatically extracted. Attributes A; are taken from a pool of attributes A. An
example for an attribute in A is the mean color of ¢ in the RGB color space. To
find a human-comprehensible name, the nearest color according to the Euclidean
distance in a pool of commonly known color names is assigned. Other extractable
attributes are the size or the general location in the image. The coordinates of
the center point of i are stored for spatial reasoning. Extracted attributes are
converted into predicates for BK. The attribute that a given super-pixel SP is
blue is represented as has_color (SP, blue).
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Spatial relations can be defined between pairs of super-pixels. To restrict the
number of pairs, we need a pre-selection S of super-pixels that might be relevant
for the concept. LIME’s w describe the magnitude of relevance for either the
true classification (positive weight) or the counter-class (negative weight). By
introducing a user-defined constant k, we restrict how many super-pixels the
selection S should contain, taking the k super-pixels with the highest values in
w. Spatial relations r : S x S are drawn from a pre-defined pool R. For this
work, we use the relations left_of, right_of, top_of, bottom_of as well as
relations that represent an immediate adjacency in the regular grid mentioned
earlier, namely on and under. Relations are defined with respect to the center
coordinates of the super-pixels in S. Figure 2 sketches the underlying semantics
of these relations. It is possible to include additional relations as long as they are
automatically extractable and their inverses are defined in the image space. In
domains with super-pixels that differ in size, a larger relation between super-
pixels could be defined. Also, a not_equal relation can be considered.

2.3 Learning Rules for Relational Concepts via Aleph

To generate symbolic relational explanations for visual domains, we combine
LIME’s super-pixel weighting with Aleph’s theory generation. The input into
LIME-Aleph is an image x and a model f returning class probability estima-
tions for . Currently our approach is only applicable for explaining one class in
contrast to all other classes, effectively re-framing the original classification as a
concept learning problem. The output of LIME-Aleph is a theory T of logic rules
describing the relations between the super-pixels that lead to the class decision.

LIME’s explanation relies on that linear surrogate model which contains the
set of super-pixels with the highest positive weights for the true class. When
dealing with the question which relations contribute most to the classification,
identifying the most informative super-pixels has to be replaced by identify-
ing the most informative pairs of super-pixels. Instead of turning super-pixels
on and off, LIME-Aleph inverts extracted relations between super-pixels and
observes the effects on the classification. Algorithm 1 shows our approach. Given
the selection S of super-pixels together with the extracted attributes, our app-
roach first finds all relations R C R that hold between them. For every relation
r(i,7) € R, a new perturbed example z from the image space is created by flip-
ping the super-pixels ¢ and j in the image space. To generate a new example
for Aleph, the resulting perturbed image is first put through the classifier f. If
the estimator f(z) exceeds a threshold @ for the class we want to explain, a new
positive example is declared. Otherwise, the example is declared negative. All
relations holding for the perturbed image are written in the BK characterizing
this example. The initial positive example for Aleph is always generated for the
unaltered constellation.
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Algorithm 1. Explanation Generation with LIME-Aleph.
1: Require: Instance z € X

2: Require: Classifier f, Selection size k, Threshold 6

3: Require: Attribute pool A, Relation pool R

4: S — LIME(f,z,k) > Selection of k most important super-pixels.
5: A « extract_attribute_values(S,.A) > Find all attribute values A; for all 4 € S.
6: R« extract_relations(S, R) > Find all relations r : S x S between all ¢ € S.
7. Et — {(AR)
8 ET —{}
9: for each r(i,j) € R do
10: z < flip-in_image(z, i, j) > Flip the super-pixels in the image space.
11: r’—r(j,1) > Obtain new predicate for the BK by flipping parameters.
12: R — R\ {r}u{r'} > All relations in the BK; also the altered one.
13: R’ « calculate_side_ef fects(R',r") > Re-calculate relations that are affected
by the flipped relation.
14: ' — f(z) > Obtain new estimator for the perturbed image.
15: if ¢ >0 do > If estimator reaches threshold, add new positive example.
16: Et — ETU{(AR)}
17: else > Else, add negative example.
18: E~ — E-U{(A,R)}
19:  end for
20: T « Aleph(E*T,E™) > Obtain theory T with Aleph.
21: return T’

3 Experiments and Results

We investigate the applicability of LIME-Aleph in a blocksworld domain consist-
ing of differently colored squares that can be placed in a regular-grid world. For
a first investigation, we decided to focus on artificially generated images rather
that real world domains.

3.1 An Artificial Dataset for Relational Concepts

We implemented a generator to create a huge variety of positive and negative
example images for different blocksworld concepts. All generated images are
of size 32 x 32 pixels consisting of a single-colored red background, containing
constellations of colored squares of dimension 4 x 4 pixels. The squares are single-
colored (excluding red) with color-channel values either being set to 0.0 or 0.8.
The squares are placed into the image according to an 8 x 8 uniform grid. Positive
examples are generated by first randomly placing a reference square. Then, the
other squares are placed randomly following the relation conventions shown in
Fig.2. For the experiments we restricted A = {color} with attribute values
in {cyan, green, blue} and R = {left_of, right of, top_of, bottom_of,
on, under}.
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3.2 Training a Black-Box Model

To obtain a black-box model for image classification, we used a small convolu-
tional neural network [11] which we trained from scratch with commonly known
best-practice hyper-parameters. The network consists of two convolution layers
with kernel size 2 x 2 and ReLU activations. Each layer learns 16 filters to be
able to robustly recognize the colored squares. After flattening the output, the
convolution layers are followed by 2 fully connected layers each with a ReLU
activation. The first layer consists of 256 neurons, the second one of 128 neu-
rons. A small amount of dropout is applied past each layer to cope with potential
overfitting [24]. The network does not contain a pooling layer. That way, fewer
location information is lost in aggregation during the learning process which
we believe is crucial for preserving spatial relationships (see [6] p. 331). For the
experiments, we generated perfectly balanced datasets with 7.000 training-, 2000
validation- and 1000 test-images for both the concept and the counter-examples.
We trained the networks for a maximum of 10 epochs with early stopping if the
validation loss did not decrease after 5 epochs.

3.3 Experiment 1: Single Relation Concept

The concept for the first experiment can be described by the single relation that
a green square is left of a blue square in an image z. Figure 3 shows two posi-
tive examples (a, b) and one negative example (c). After the full 10 epochs, the
accuracy on the validation set reached 93.47%. For Fig. 3a the classifier gave the
estimator for the concept to be 89.83%. For Fig. 3b the estimator was 94.187.
The estimator output for belonging to the concept for Fig. 3c was 0.28% showing
that the network is able to discriminate the positive and negative examples. To
generate explanations for these three images, each image is separately fed into
LIME. The number of kept super-pixels k is set to 3. We choose this value for k
because we were aware that there are 2 squares in the image that are distinguish-
able from the background. One additional super-pixel was taken to generate a
richer pool for selection S containing also some background. In general, for many
domains it is not that easy to estimate good values for k. So in most of the cases
it is preferable to over-estimate the value to not lose information for the expla-
nation.

(a) (b) (¢)

Fig. 3. Positive (a, b) and negative (c) for the first experiment. (Color figure online)



188 J. Rabold et al.

(a) (b) (c)

Fig. 4. Positive (a) and negative (b, ¢) for the tower experiment. (Color figure online)

Finally, a symbolic explanation is generated with LIME-Aleph. We describe
the procedure for the positive example Fig. 3a. First, Algorithm 1 extracts the
colors of the selected super-pixels and the relations between them. Then, all the
relations get flipped one after the other to produce the example set and BK for
Aleph. The original example Fig.3a is used as the seed for a set of perturbed
versions of the image. Threshold # indicates whether the perturbed example
is classified positive or negative. Based on the final validation accuracy of the
trained f and from the estimator for the original Fig. 3a, it was set to 8 = 0.8.
For example Fig. 3a 3 positive and 4 negative examples were created. From these
7 examples, Aleph induced a theory T' consisting of a single rule with accuracy
of 100%:

concept(A) :- contains(B,A), has_color(B,green), contains(C,A),
has_color(C,blue), left_of(B,C).

The learned rule accurately resembles the construction regulation of the wanted
concept; a green square has to be left of a blue square in an example A. Also,
this explanation matches the input image.

For Fig.3b we used the same hyper-parameters (kK = 3,0 = 0.8). Again,
Aleph came up with an accuracy of 100% and a rule structurally different, but
conveying the same concept as the first rule:

concept (A) :- contains(B,A), has_color(B, blue), contains(C,A),
has_color(C, green), left_of(C,B).

3.4 Experiment 2: Tower Concept

In the second experiment, we investigated a specific concept of towers. Positive
examples consist of three differently colored blocks with a given restriction on
their stacking order. An example belongs to the concept tower, if a blue square
is present as a foundation. Directly on the foundation (one grid cell above) there
has to be a square of either cyan or green color. Directly on that square has
to be the remaining square (green or cyan). Figure4 gives a positive and two
negative examples.

We again trained the CNN for 10 epochs. The final validation accuracy was
98.70%. The original estimator for example Fig. 4a gave f(a) = 94.88%. We first
set k = 3 being the smallest selection of which we know can contain a tower.
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Again setting 8 = 0.8, LIME-Aleph came up with 5 positive and 6 negative
examples (accuracy 81.82Y%) and the following rule:

concept(A) :- contains(B,A), has_color(B,cyan), contains(C,A),
on(B,C).

This rule expresses the fact, that the cyan square can not be the foundation.
When setting the selection size k = 4, we let an additional background super-
pixel be part of S. The resulting rule is:

concept (A) :- contains(B,A), has_color(B,cyan), contains(C,A),
has_color(C,blue), top_of(B,C).

This rule captures the fact, that a cyan block has to be above a blue one. The
generated explanations are only partial representations of the intended concept.
The symbolic explanations capture relevant aspects, but are too general.

concept(A) :- contains(B,A), has_color(B,cyan),
contains(C,A), on(B,C).

Fig. 5. An example for the combination of visual and verbal explanations. Here it is
explained, why and where this particular image shows evidence for belonging to the
concept tower.

4 Bringing Together Visual and Symbolic Explanations

The generated rules give explanations in symbolic form which can be re-written
into verbal statements. We postulate that helpful explanations for images should
relate highlighting of relevant parts of the image with explicit symbolic informa-
tion of attributes and relations. In this section we give an example on how this
fusion might look like. Let us take the tower example from Sect.3.4. In Fig. 5,
the output of standard LIME is given with the 3 most important super-pixels
matching the expected region in the image. Additionally, the relation from the
instantiated rule from the experiment for k = 3 is given. Since cyan is the only
square that is mentioned in the rule, we take it as a reference. The relation on
links the cyan square to another unknown square below. This relation is shown
explicitly in the image by connecting the two squares and writing the instanti-
ated relation.
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5 Conclusion and Further Work

We proposed an approach to extract symbolic rules from images which can be
used to explain classifier decisions in a more expressive way than visual high-
lighting alone. For a simple artificial domain we gave a proof of concept for
our approach LIME-Aleph. The work presented here significantly extends [17]
by providing a method of automated extraction of visual attributes and spatial
relations from images. As a next step we want to also let the explanative power
be evaluated by humans. Also we plan to cover real world image datasets like
explaining differences between towers and houses as shown in Fig. 1. The chal-
lenge here is to come up with arbitrarily placeable segmentations that are easily
interchangeable. While our algorithm relies on a regular grid, in an image “in
the wild”, the semantic borders of sub-objects can be irregular in shape and not
easily be flipped in order to test for different relations. One idea to cope with
this problems is to use relevance information from inner layers in a CNN (e.g.,
with LRP, [19]) to first pinpoint small important regions and sub-objects, then
super-imposing a standardized selection shape (square, circle, etc.) over the pixel
values to find interchangeable super-pixels for filling selection S.

In general, it might be useful to consider a variety of explanation formats to
accommodate specific personal preferences and situational contexts. For exam-
ple, visual highlighting is a quick way to communicate what is important while
verbal explanations convey more details. Likewise, examples which prototypically
represent a class and near-miss counter-examples could be used to make system
decisions more transparent [1]. Explanations might also not be a one-way street.
In many domains, it is an illusion that the labeling of the training is really a
ground truth. For example, in medical diagnosis, there are many cases where not
even experts agree. Therefore, for many practical applications, learning should be
interactive [4]. To constrain model adaption, the user could mark-up that parts
of an explanation which are irrelevant or wrong. Such a cooperative approach
might improve the joint performance of the human-machine-partnership.
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Abstract. Post-hoc model-agnostic interpretation methods such as par-
tial dependence plots can be employed to interpret complex machine
learning models. While these interpretation methods can be applied
regardless of model complexity, they can produce misleading and verbose
results if the model is too complex, especially w.r.t. feature interactions.
To quantify the complexity of arbitrary machine learning models, we
propose model-agnostic complexity measures based on functional decom-
position: number of features used, interaction strength and main effect
complexity. We show that post-hoc interpretation of models that mini-
mize the three measures is more reliable and compact. Furthermore, we
demonstrate the application of these measures in a multi-objective opti-
mization approach which simultaneously minimizes loss and complexity.

Keywords: Model complexity - Interpretable machine learning -
Explainable AI - Accumulated Local Effects -+ Multi-objective
optimization

1 Introduction

Machine learning models are optimized for predictive performance, but it is often
required to understand models, e.g., to debug them, gain trust in the predic-
tions, or satisfy regulatory requirements. Many post-hoc interpretation methods
either quantify effects of features on predictions, compute feature importances,
or explain individual predictions, see [17,24] for more comprehensive overviews.
While model-agnostic post-hoc interpretation methods can be applied regard-
less of model complexity [30], their reliability and compactness deteriorates when
models use a high number of features, have strong feature interactions and com-
plex feature main effects. Therefore, model complexity and interpretability are
deeply intertwined and reducing complexity can help to make model interpreta-
tion more reliable and compact. Model-agnostic complexity measures are needed
to strike a balance between interpretability and predictive performance [4,31].

Contributions. We propose and implement three model-agnostic measures of
machine learning model complexity which are related to post-hoc interpretabil-
ity. To our best knowledge, these are the first model-agnostic measures that
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describe the global interaction strength, complexity of main effects and number
of features. We apply the measures to different datasets and machine learning
models. We argue that minimizing these three measures improves the reliability
and compactness of post-hoc interpretation methods. Finally, we illustrate the
use of our proposed measures in multi-objective optimization.

2 Related Work and Background

In this section, we introduce the notation, review related work, and describe the
functional decomposition on which we base the proposed complexity measures.

Notation: We consider machine learning prediction functions f : R? — R,
where f(z) is a prediction (e.g., regression output or a classification score). For
the decomposition of f, we write fg : RISl — R, S C {1,...,p}, to denote a
function that maps a vector zg € RISl with a subset of features to a marginal
prediction. If subset S contains a single feature j, we write f;. We refer to the
training data of the machine learning model with the tuples D = {(x(*),y®)}1_,

and refer to the value of the j-th feature from the i-th instance as xéi). We write
X to refer to the j-th feature as a random variable.

Complexity and Interpretability Measures: In the literature, model com-
plexity and (lack of) model interpretability are often equated. Many complexity
measures are model-specific, i.e., only models of the same class can be compared
(e.g., decision trees). Model size is often used as a measure for interpretabil-
ity (e.g., number of decision rules, tree depth, number of non-zero coefficients)
[3,16,20,22,31-34]. Akaikes Information Criterion (AIC) and the Bayesian Infor-
mation Criterion (BIC) are more widely applicable measures for the trade-off
between goodness of fit and degrees of freedom. In [26], the authors propose
model-agnostic measures of model stability. In [27], the authors propose expla-
nation fidelity and stability of local explanation models. Further approaches mea-
sure interpretability based on experimental studies with humans, e.g., whether
humans can predict the outcome of the model [8,13,20,28,35].

Functional Decomposition: Any high-dimensional prediction function can be
decomposed into a sum of components with increasing dimensionality:

1st order effects 2nd order effects
Intercept — —— p-th order effect
A P p
f@y= "fo + D fi@) +Y firlmnm) o+ fp(@.mp) (1)
j=1 i<k

This decomposition is only unique with additional constraints regarding the
components. Accumulated Local Effects (ALE) were proposed in [1] as a tool
for visualizing feature effects (e.g., Fig. 1) and as unique decomposition of the
prediction function with components fg¢ = fs arr. The ALE decomposition is
unique under an orthogonality-like property described in [1].
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The ALE main effect f; arg of a feature z;,j € {1,...,p} for a prediction
function f is defined as

fiave(zj) = / ‘B X;= Zj:| dzj —¢; (2)

20,5

{8f(X1, LX)
0X;

Here, 2 ; is a lower bound of X; (usually the minimum of z;) and the expectation
E is computed conditional on the value for ; and over the marginal distribution
of all other features. The constant ¢; is chosen so that the mean of f; arr(z;)
with respect to the marginal distribution of X is zero, so that the ALE compo-
nents sum to the full prediction function. By integrating the expected derivative
of f with respect to X; the effect of x; on the prediction function f is isolated
from the effects of all other features. ALE main effects are estimated with finite
differences, i.e., access to the gradient of a prediction function is not required
(see [1]). We base our proposed measures on the ALE decomposition, because
ALE are computationally cheap (worst case O(n) per main effect), they can be
computed sequentially instead of simultaneously, they do not require knowledge
of the joint distribution, and several software implementations exist [2,25].

3 Functional Complexity

In this section, we motivate complexity measures based on functional decomposi-
tion. Based on Eq. 1, we decompose the prediction function into a constant (esti-
mated as fo = 2 37" | f(2()), main effects (estimated by ALE), and a remain-
der term containing interactions (i.e., the difference between the full model and
constant + main effects).

» MEC: How complex? IAS: Interaction strength?

—_— —~ =
f@)=fo+> fiacelz;) + TA(z) (3)

Jj=1

NF: How many features were used?

This arrangement of components emphasizes a decomposition of the prediction
function into a main effect model and an interaction remainder. We can analyze
how well the main effect model itself approximates f by looking at the magni-
tude of the interaction measure TAS. The average main effect complexity (MEC)
captures how many parameters are needed to describe the one-dimensional main
effects on average. The number of features used (NF) describes how many fea-
tures were used in the full prediction function.

3.1 Number of Features (NF)

We propose an approach based on feature permutation to determine how many
features are used by a model. We regard features as “used” when changing a
feature changes the prediction. If available, the model-specific number of features
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is preferable. The model-agnostic version is useful when the prediction function
is only accessible via API or when the machine learning pipeline is complex.

The proposed procedure is formally described in Algorithm 1. To estimate
whether the j-th feature was used, we sample instances from data D, replace
their j-th feature values with random values from the distribution of X; (e.g., by
sampling z; from other instances from D), and observe whether the predictions
change. If the prediction of any sample changes, the feature was used.

Algorithm 1. Number of Features Used (NF)
Input: Number of samples M, data D

1 NF=0

2 forjel,...;pdo

3 Draw M instances {z(™}2_, from dataset D

4 Create {z(™*}M_, as a copy of {z(™}M_,

5 formel,...,M do

6 Sample x;new) from {a:;”}?:l with the constraint that atj"ew) # x;m)
7 Set mg-m)* = m§-"ew)

8 if f(z(™*) # f(z™) for anym € {1,...,M} then NF = NF + 1.

9 return NF

We tested the NF heuristic with the Boston Housing data. We trained
decision trees (CART) with maximum depths € {1,2,10} leading to 1, 2
and 4 features used and an Ll-regularized linear model with penalty A €
{10,5,2,1,0.1,0.001} leading to 0, 2, 3, 4, 11 and 13 features used. For each
model, we estimated NF with sample sizes M € {10,50,500} and repeated
each estimation 100 times. For the elastic net models, NF was always equal
to the number of non-zero weights. For CART, the mean absolute differences
between NF and number of features used in the trees were 0.300 (M = 10),
0.020 (M = 50) and 0.000 (M = 500).

3.2 Interaction Strength (IAS)

Interactions between features mean that the prediction cannot be expressed as a
sum of independent feature effects, but the effect of a feature depends on values
of other features [24]. We propose to measure interaction strength as the scaled
approximation error between the ALE main effect model and the prediction
function f. Based on the ALE decomposition, the ALE main effect model is
defined as the sum of first order ALE effects:

farmist(x) = fo+ frane(x) + ...+ fpare(zp)

We define interaction strength as the approximation error measured with loss L:

E(L(f, fargist)) o 0 (4)

AS="%1im) -
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Here, fy is the mean of the predictions and can be interpreted as the functional
decomposition where all feature effects are set to zero. IAS with the L2 loss
equals 1 minus the R-squared measure, where the true targets y; are replaced
with f(z®).

S (f@D) = fapprs(a))?
i (f(2®) = fo)?

If ITAS =0, then L(f, farr1st) = 0, which means that the first order ALE model
perfectly approximates f and the model has no interactions.

TAS = =1-R?

3.3 Main Effect Complexity (MEC)

To determine the average shape complexity of ALE main effects f; are, we
propose the main effect complexity (MEC) measure. For a single ALE main
effect, we define MEC; as the number of parameters needed to approximate the
curve with piece-wise linear models. For the entire model, MEC is the average
MEC; over all main effects, weighted with their variance. Figure 1 shows an ALE
plot (=main effect) and its approximation with two linear segments.

Fig. 1. ALE curve (solid line) approximated by two linear segments (dotted line).

We use piece-wise linear regression to approximate the ALE curve. Within the
segments, linear models are estimated with ordinary least squares. The break-
points that define the segments are found by greedy and exhaustive search along
the interval boundaries of the ALE curve. Greedy here means that we first opti-
mize the first breakpoint, then the second breakpoint with the first breakpoint
fixed and so on. We measure the degrees of freedom as the number of non-zero
coefficients for intercepts and slopes of the linear models. The approximation
allows some error, e.g., an almost linear main effect may have MEC; = 1, even
if dozens of parameters would be needed to describe it perfectly. The approx-
imation quality is measured with R-squared (R?), i.e., the proportion of vari-
ance of f; arg that is explained by the approximation with linear segments. An
approximation has to reach an R? > 1 — ¢, where € is the user defined maximum
approximation error. We also introduced parameter max g4, the maximum num-
ber of segments. In the case that an approximation cannot reach an R? > 1 — ¢
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with a given mazg.qy, MEC; is computed with the maximum number of seg-
ments. The selected maximum approximation error € should be small, but not
too small. We found € between 0.01 and 0.1 visually meaningful (i.e. a subjec-
tively good approximation) and used € = 0.05 throughout the paper. We apply
a post-processing step that greedily sets slopes of the linear segments to zero,
as long as R? € {1 —¢, 1}. The post-processing potentially decreases the MEC;,
especially for models with constant segments like decision trees. MEC; is aver-
aged over all features to obtain the global main effect complexity. Each MEC; is
weighted with the variance of the corresponding ALE main effect to give more
weight to features that contribute more to the prediction. Algorithm 2 describes
the MEC computation in detail.

Algorithm 2. Main Effect Complexity (MEC).

Input: Model f, approximation error €, max. segments mazsecq, data D
Define R*(g;, f.are) i= Y0y (9: (@) = frace @)/ S0 (fiace ()’
for j € {1,...,p} do

3 Estimate fj are

// Approximate ALE with linear model

N =

Fit g;j(x;) = Bo + Piz; predicting fj,ALE(ac;i)) from x§i), iel,...,n

5 Set K =1

// Increase nr. of segments until approximation is good enough

6 while K < mazseg AND R*(gj, fj,arr) < (1 —¢€) do

// Find intervals Z through exhaustive search along ALE
curve breakpoints

// For categorical feature, set slopes [i,; to zero

7 9i(25) = 3521 Lnsez, - (Bok + Brn)

8 Set K =K+1

9 Greedily set slopes to zero while R > 1 — ¢

// Sum of non-zero coefficients minus first intercept
10 MEC; :K—FZ,CK:l]Iﬁka)—l

1 | V=230 (face(®)?

12 return MEC = ﬁ > Vi MEC;

4 Application of Complexity Measures

In the following experiment, we train various machine learning models on dif-
ferent prediction tasks and compute the model complexities. The goal is to ana-
lyze how the complexity measures behave across different datasets and mod-
els. The dataset are: Bike Rentals [10] (n=731; 3 numerical, 6 categorical fea-
tures), Boston Housing (n=>506; 12 numerical, 1 categorical features), (down-
sampled) Superconductivity [18] (n=2000; 81 numerical, 0 categorical features)
and Abalone [9] (n=4177; 7 numerical, 1 categorical features).
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Table 1. Model performance and complexity on 4 regression tasks for various learners:
linear models (Im), cross-validated regularized linear models (cvglmnet), kernel support
vector machine (ksvm), random forest (rf), gradient boosted generalized additive model
(gamboost), decision tree (cart) and decision tree with depth 2 (cart2).

Learner |Bike Boston housing Superconductivity |Abalone
MSE MEC|IAS |[NF MSE MEC|IAS |[NF MSE |[MEC|IAS |[NF MSE|MEC|IAS |[NF

cart 905974/1.2 |0.07|6 |26.6 1.9 [0.12| 4 [329.0/1.0 [0.27| 8 [5.9 [2.8 |0.09|3
cart2 1307619(1.0 |0.01|2 |34.6 |1.7 |0.02| 2 |431.4/1.0 |0.27| 3 |6.6 |3.0 |0.02|1
cvglmnet | 686320(1.2 |0.00/9 |27.7 {1.0 |0.00| 9 |349.3|1.0 |0.00/45 |5.2 |1.0 |0.00|7
gamboost| 531245/1.6 |0.00/8 |16.5 (2.5 |0.00/10 |362.1|2.1 |0.00/17 |5.3 |1.1 |0.00|4
ksvm 403762/1.6 |0.04|8 |16.4 |1.7 0.09|13 |268.5/2.2 |0.22/81 |4.6 [1.0 |0.11|8
Im 636956/1.5 |0.00/9 |23.0 [1.0 [0.00|13 [330.2|/1.0 |0.00/81 [4.9 [1.0 |0.00|8
rf 460362/1.8 |0.06/9 |12.0 |2.4 0.11|13 |180.8/2.9 |0.21|81 |4.6 |1.7 |0.29|8

Table 1 shows performance and complexity of the models. As desired, the
main effect complexity for linear models is 1 (except when categorical features
with 24 categories are present as in the bike data), and higher for more flexible
methods like random forests. The interaction strength (IAS) is zero for additive
models (boosted GAM, (regularized) linear models). Across datasets we observe
that the underlying complexity measured as the range of MEC and IAS across
the models varies. The bike dataset seems to be adequately described by only
additive effects, since even random forests, which often model strong interactions
show low interaction strength here. In contrast, the superconductivity dataset
is better explained by models with more interactions. For the abalone dataset
there are two models with low MSE: the support vector machine and the random
forest. We might prefer the SVM, since main effects can be described with single
numbers (M EC = 1) and interaction strength is low.

5 Improving Post-hoc Interpretation

Minimizing the number of features (NF), the interaction strength (IAS), and
the main effect complexity (MEC) improves reliability and compactness of post-
hoc interpretation methods such as partial dependence plots, ALE plots, feature
importance, interaction effects and local surrogate models.

Fewer Features, More Compact Interpretations. Minimizing the number
of features improves the readability of post-hoc analysis results. The computa-
tional complexity and output size of most interpretation methods scales with
O(NF), like feature effect plots [1,14] or feature importance [6,11]. As demon-
strated in Table 2, a model with fewer features has a more compact representa-
tion. If additionally TAS = 0, the ALE main effects fully characterize the pre-
diction function. Interpretation methods that analyze 2-way feature interactions
scale with O(NF?). A complete functional decomposition requires to estimate

fc\f:Fl (]\LF ) components which has a computational complexity of O(2VF).



200 C. Molnar et al.

Less Interaction, More Reliable Feature Effects. Feature effect plots such
as partial dependence plots and ALE plots visualize the marginal relationship
between a feature and the prediction. The estimated effects are averages across
instances. The effects can vary greatly for individual instances and even have
opposite directions when the model includes feature interactions.

In the following simulation, we trained three models with different capabilities
of modeling interactions between features: a linear regression model, a support
vector machine (radial basis kernel, C=0.05), and gradient boosted trees. We
simulated 500 data points with 4 features and a continuous target based on
[15]. Figure2 shows an increasing interaction strength depending on the model
used. More interaction means that the feature effect curves become a less reliable
summary of the model behavior.

Linear Model SVM gbt

=0)

10001 ||AS = 0.00 10001 {JAS = 0.13 1000

500 500

o
o

Prediction (centered at x
[&)]
3

0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
x2 x2 x2

Fig. 2. The higher the interaction strength in a model (IAS increases from left to
right), the less representative the partial dependence plot (light thick line) becomes
for individual instances represented by their individual conditional expectation curves
(dark thin lines).

The Less Complex the Main Effects, the Better Summarizable. In linear
models, a feature effect can be expressed by a single number, the regression
coefficient. If effects are non-linear the method of choice is visualization [1,14].
Summarizing the effects with a single number (e.g., using average marginal effects
[23]) can be misleading, e.g., the average effect might be zero for U-shaped
feature effects. As a by-product of MEC, there is a third option: Instead of
reporting a single number, the coefficients of the segmented linear model can be
reported. Minimizing MEC means preferring models with main effects that can
be described with fewer coefficients, offering a more compact model description.

6 Application: Multi-objective Optimization

We demonstrate model selection for performance and complexity in a multi-
objective optimization approach. For this example, we predict wine quality (scale
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from 0 to 10) [7] from the wines physical-chemical properties such as alcohol and
residual sugar of 4870 white wines. It is difficult to know the desired compromise
between model complexity and performance before modeling the data. A solution
is multi-objective optimization [12]. We suggest searching over a wide spectrum
of model classes and hyperparameter settings, which allows to select a suitable
compromise between model complexity and performance.

We used the mlrMBO model-based optimization framework [19] with
ParEGO [21] (500 iterations) to find the best models based on four objec-
tives: number of features used (NF), main effect complexity (MEC), interaction
strength (IAS) and cross-validated mean absolute error (MAE) (5-fold cross-
validated). We optimized over the space of following model classes (and hyperpa-
rameters): CART (maximum tree-depth and complexity parameter cp), support
vector machine (cost C and inverse kernel width sigma), elastic net regression
(regularization alpha and penalization lambda), gradient boosted trees (maxi-
mum depth, number of iterations), gradient boosted generalized additive model
(number of iterations nrounds) and random forest (number of split features
mtry).

Results. The multi-objective optimization resulted in 27 models. The measures
had the following ranges: MAE 0.41-0.63, number of features 1-11, mean effect
complexity 1-9 and interaction strength 0-0.71. For a more informative visual-
ization, we propose to visualize the main effects together with the measures in
Table 2. The selected models show different trade-offs between the measures.

Table 2. A selection of four models from the Pareto optimal set, along with their ALE
main effect curves. From left to right, the columns show models with (1) lowest MAE,
(2) lowest MAE when MEC = 1, (3) lowest MAE when IAS =< 0.2, and (4) lowest
MAE with NF < 7.

gbt (maxdepth:8, svm (C:23.6979, gbt (maxdepth:3, CART
nrounds:269) sigma:0.0003) nrounds:98) (maxdepth:14,
cp:0.0074)
MAE 0.41 0.58 0.52 0.59
MEC 4.2 1 4.5 2
IAS 0.64 0 0.2 0.2
NF 11 11 11 4
fixed.acidity /\ / _‘A‘\
volatile.acidity \ \ \-\ _“—\_
citric.acid /ﬁ\ —\ /I‘Y\
residual.sugar f«\ / ,J'\
chlorides l\/\ \ ’\‘/\
free.sulfur.dioxide /\ / /\ |
total.sulfur.dioxide /\*’\ \ \'—\
density \_ \ -“ﬁ—‘ _|
pH — — S
sulphates \JW / \,JY‘/
alcohol __/“"'I_ / /“"-H_ _r,J_
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7 Discussion

We proposed three measures for machine learning model complexity based on
functional decomposition: number of features used, interaction strength and
main effect complexity. Due to their model-agnostic nature, the measures allow
model selection and comparison across different types of models and they can be
used as objectives in automated machine learning frameworks. This also includes
“white-box” models: For example, the interaction strength of interaction terms
in a linear model or the complexity of smooth effects in generalized additive mod-
els can be quantified and compared across models. We argued that minimizing
these measures for a machine learning model improves its post-hoc interpreta-
tion. We demonstrated that the measures can be optimized directly with multi-
objective optimization to make the trade-off between performance and post-hoc
interpretability explicit.

Limitations. The proposed decomposition of the prediction function and defi-
nition of the complexity measures will not be appropriate in every situation. For
example, all higher order effects are combined into a single interaction strength
measure that does not distinguish between two-way interactions and higher order
interactions. However, the framework of accumulated local effect decomposition
allows to estimate higher order effects and to construct different interaction mea-
sures. The main effect complexity measure only considers linear segments but
not, e.g., seasonal components or other structures. Furthermore, the complexity
measures quantify machine learning models from a functional point of view and
ignore the structure of the model (e.g., whether it can be represented by a tree).
For example, main effect complexity and interaction strength measures can be
large for short decision trees (e.g. in Table1).

Implementation. The code for this paper is available at https://github.com/
compstat-lmu/paper_2019_iml_measures. For the examples and experiments we
relied on the mlr package [5] in R [29)].
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Abstract. Model-agnostic interpretation techniques allow us to explain
the behavior of any predictive model. Due to different notations and ter-
minology, it is difficult to see how they are related. A unified view on
these methods has been missing. We present the generalized SIPA (sam-
pling, intervention, prediction, aggregation) framework of work stages for
model-agnostic interpretations and demonstrate how several prominent
methods for feature effects can be embedded into the proposed frame-
work. Furthermore, we extend the framework to feature importance com-
putations by pointing out how variance-based and performance-based
importance measures are based on the same work stages. The SIPA
framework reduces the diverse set of model-agnostic techniques to a sin-
gle methodology and establishes a common terminology to discuss them
in future work.

Keywords: Interpretable Machine Learning - Explainable Al - Feature
Effect - Feature Importance -+ Model-Agnostic - Partial Dependence

1 Introduction and Related Work

There has been an ongoing debate about the lacking interpretability of machine
learning (ML) models. As a result, researchers have put in great efforts devel-
oping techniques to create insights into the workings of predictive black box
models. Interpretable machine learning [15] serves as an umbrella term for all
interpretation methods in ML. We make the following distinctions:

(i) Feature effects or feature importance: Feature effects indicate the direction
and magnitude of change in predicted outcome due to changes in feature
values. Prominent methods include the individual conditional expectation
(ICE) [9] and partial dependence (PD) [8], accumulated local effects (ALE)
[1], Shapley values [19] and local interpretable model-agnostic explanations
(LIME) [17]. The feature importance measures the importance of a feature
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to the model behavior. This includes variance-based measures like the fea-
ture importance ranking measure (FIRM) [10,20] and performance-based
measures like the permutation feature importance (PFI) [7], individual con-
ditional importance (ICI) and partial importance (PI) curves [4], as well
as the Shapley feature importance (SFIMP) [4]. Input gradients were pro-
posed by [11] as a model-agnostic tool for both effects and importance that
essentially equals marginal effects (ME) [12], which have a long tradition
in statistics. They also define an average input gradient which corresponds
to the average marginal effect (AME).

(ii) Intrinsic or post-hoc interpretability: Linear models (LM), generalized lin-
ear models (GLM), classification and regression trees (CART) or rule
lists [18] are examples for intrinsically interpretable models, while random
forests (RF), support vector machines (SVM), neural networks (NN) or
gradient boosting (GB) models can only be interpreted post-hoc. Here, the
interpretation process is detached from and takes place after the model
fitting process, e.g., with the ICE, PD or ALEs.

(iii) Model-specific or model-agnostic interpretations: Interpreting model coef-
ficients of GLMs or deriving a decision rule from a classification tree is
a model-specific interpretation. Model-agnostic methods such as the ICE,
PD or ALEs can be applied to any model.

(iv) Local or global explanations: Local explanations like the ICE evaluate the
model behavior when predicting for one specific observation. Global expla-
nations like the PD interpret the model for the entire input space. Further-
more, it is possible to explain model predictions for a group of observations,
e.g., on intervals. In a lot of cases, local and global explanations can be
transformed into one another via (dis-)aggregation, e.g., the ICE and PD.

Motivation: Research in model-agnostic interpretation methods is complicated
by the variety of different notations and terminology. It turns out that decon-
structing model-agnostic techniques into sequential work stages reveals strik-
ing similarities. In [14] the authors propose a unified framework for model-
agnostic interpretations called SHapley Additive exPlanations (SHAP). How-
ever, the SHAP framework only considers Shapley values or variations thereof
(KernelSHAP and TreeSHAP). The motivation for this research paper is to pro-
vide a more extensive survey on model-agnostic interpretation methods, to reveal
similarities in their computation and to establish a framework with common ter-
minology that is applicable to all model-agnostic techniques.

Contributions: In Sect.4 we present the generalized SIPA (sampling, interven-
tion, prediction, aggregation) framework of work stages for model-agnostic tech-
niques. We proceed to demonstrate how several methods to estimate feature
effects (MEs, ICE and PD, ALEs, Shapley values and LIME) can be embed-
ded into the proposed framework. Furthermore, in Sects.5 and 6 we extend the
framework to feature importance computations by pointing out how variance-
based (FIRM) and performance-based (ICI and PI, PFI and SFIMP) importance
measures are based on the same work stages. By using a unified notation, we
also reveal how the methods are related.
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2 Notation and Preliminaries

Consider a p-dimensional feature space Xp = A} x --- x A}, with the feature
index set P = {1,...,p} and a target space ). We assume an unknown func-
tional relationship f between Xp and ). A supervised learning model f attempts
to learn this relationship from an i.i.d. training sample that was drawn from the
unknown probability distribution F with the sample space Xp x ). The random
variables generated from the feature space are denoted by X = (Xy,...,X,).
The random variable generated from the target space is denoted by Y. We
draw an i.i.d. sample of test data D with n observations from F. The vector

20 = (:rgi)7 . ,xz(,i)) € Xp corresponds to the feature values of the i-th obser-
vation that are associated with the observed target value y* € ). The vector
xj = (xg-l), e zgn))T represents the realizations of X;. The generalization error

GE(f,F) corresponds to the expectation of the loss function £ on unseen test
data from F and is estimated by the average loss on D.

GE(f,F) = [L(f(X1,.... X,), )]
GE(F.D) = 2 Y- £(7a.....a). )
, —niZI 12y )y
A variety of model-agnostic techniques is used to interpret the prediction
function f(xl, ..., xp) with the sample of test data D. We estimate the effects
and importance of a subset of features with index set S (S C P). A vector of
feature values z € X'p can be partitioned into two vectors xg and x\g so that
r = (x5, 1\ g). The corresponding random variables are denoted by Xs and X\ g.
Given a model-agnostic technique where S only contains a single element, the
corresponding notations are X, X\; and z;, x\ ;.
The partial derivative of the trained model f (w;,2\;) with respect to x; is
numerically approximated with a symmetric difference quotient [12].

i flaj +h,wyy) = fzg,m) N Fla; + hoang) = fla; = h,ay)

h—0 h 2h ’ h>0

A term of the form f(x] + h,xy\;) — flx; — h, x\;) is called a finite difference
(FD) of predictions with respect to z;.

FD; (xj,2\;) = f(z; + h,ayg) = f(z; — h,a;)
3 Feature Effects

Partial Dependence (PD) and Individual Conditional Expectation (ICE): First
suggested by [8], the PD is defined as the dependence of the prediction function
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on g after all remaining features X\ ¢ have been marginalized out [9]. The PD
is estimated via Monte Carlo integration.

PD; g(xs) = Ex s [f(ws,X\s) = /f(l’s,X\s) dP(X\s) (1)
PDfS LL‘S %Z xs, (Z)

The PD is a useful feature effect measure when features are not interacting
[8]. Otherwise it can obfuscate the relationships in the data [4]. In that case,
the individual conditional expectation (ICE) can be used instead [9]. The i-th
ICE corresponds to the expected value of the target for the i-th observation as

a function of zg, conditional on x@

(i) R i
ICEj g(xs) = f(xs,2(3)

The ICE disaggregates the global effect estimates of the PD to local effect esti-
mates for single observations. Given |S| = 1, the ICE and PD are also referred to
as ICE and PD curves. The ICE and PD suffer from extrapolation when features
are correlated, because the permutations used to predict are located in regions
without any training data [1].

Accumulated Local Effects (ALE): In [1] ALEs are presented as a feature effect
measure for correlated features that does not extrapolate. The idea of ALEs is
to take the integral with respect to X; of the first derivative of the prediction
function with respect to X;. This creates an accumulated partial effect of X
on the target variable while simultaneously removing additively linked effects of
other features. The main advantage of not extrapolating stems from integrating
with respect to the conditional distribution of X\ ; on X; instead of the marginal
distribution of X\; [1]. Let 2o ; denote the minimum value of ;. The first order
ALE of the j-th feature at point = is defined as:

laf(Xj»X\j)

ALEf,j(x) :/ [EX\j|Xj 0X;

20,4

/m
20,5

sJ

X; = zj] dz; — constant

l / 0f (1, X5) aP( X\J|zj)] dzj — constant (2)
0z;

A constant is subtracted in order to center the plot. We estimate the first order
ALE in three steps. First, we divide the value range of x; into a set of intervals
and compute a finite difference (FD) for each observation. For each i-th observa-
tion, 2\ is substituted by the corresponding right and left interval boundaries.
Then the predictions with both substituted values are subtracted in order to
receive an observation-wise FD. Second, we estimate local effects by averaging
the FDs inside each interval. This replaces the inner integral in Eq. (2). Third,
the accumulation of all local effects up to the point of interest replaces the outer
integral in Eq. (2), i.e., the interval-wise average FDs are summed up.
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The second order ALE is the bivariate extension of the first order ALE. It is
important to note that first order effect estimates are subtracted from the second

order estimates. In [1] the authors further lay out the computations necessary
for higher order ALEs.

Marginal Effects (ME): MEs are an established technique in statistics and often
used to interpret non-linear functions of coefficients in GLMs like logistic regres-
sion. The ME corresponds to the first derivative of the prediction function with
respect to a feature at specified values of the input space. It is estimated by
computing an observation-wise FD. The average marginal effect (AME) is the
average of all MEs that were estimated with observed feature values [2]. Although
there is extensive literature on MEs, this concept was suggested by [11] as a novel
method for ML and referred to as the input gradient. Derivatives are also often
utilized as a feature importance metric.

Shapley Value: Originating in coalitional game theory [19], the Shapley value
is a local feature effect measure that is based on a set of desirable axioms. In
coalitional games, a set of p players, denoted by P, play games and join coalitions.
They are rewarded with a payout. The characteristic function v : 2P — R maps
all player coalitions to their respective payouts [4]. The Shapley value is a player’s
average contribution to the payout, i.e., the marginal increase in payout for the
coalition of players, averaged over all possible coalitions. For Shapley values
as feature effects, predicting the target for a single observation corresponds to
the game and a coalition of features represents the players. Shapley regression
values were first developed for linear models with multicollinear features [13]. A
model-agnostic Shapley value was first introduced in [19].

Consider the expected prediction for a single vector of feature values x, con-
ditional on only knowing the values of features with indices in K (K C P), i.e
the features X\ g are marginalized out. This essentially equals a point (or a line,
surface etc. depending on the power of K) on the PD from Eq. (1).

Ex o [Flar X)) = [ Flowe Xoe) dP(X0) = PDy or) ()
Equation (3) is shifted by the mean prediction and used as a payout function
vpp(Tk), so that an empty set of features (K = @) results in a payout of zero
[4].

UPD(-Z'K) = [EX\K {f(xKaX\K)} - [EXKU(P\K) [f(XK’X\K)}
:ﬁfK(xK)—FbA (r)

~ D lj f,o

3

The marginal contribution A;(z k) of a feature value z; joining the coalition of
feature values g is:

Aj(xK) = UPD(xKu{j}) — UPD(QSK) = PDf,Ku{j}(xKU{j}) — PDf,K(aSK)
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The exact Shapley value of the j-th feature for a single vector of feature values
x corresponds to:

Tale K|\(|P| - |K| - 1)!
Shapleyf’j = Z |4 ||p‘|| | —1) Ay(wx)
K CP\{j}
- |K\(|P| = [K|=1)! (57 e
= Z P! [PDﬁKu{j}(mKU{j}) —PDﬁK(mK)}
K CP\{5}

Shapley values are computationally expensive because the PD function has
a complexity of O(N?). Computations can be sped up by Monte Carlo sampling
[19]. Furthermore, in [14] the authors propose a distinct variant to compute
Shapley values called SHapley Additive exPlanations (SHAP).

Local Interpretable Model-Agnostic Explanations (LIME): In contrast to all pre-
vious techniques which are based on interpreting a single model, LIME [17]
locally approximates the black box model with an intrinsically interpretable
surrogate model. Given a single vector of feature values x, we first perturb x;
around a sufficiently close neighborhood while z\; is kept constant. Then we
predict with the perturbed feature values. The predictions are weighted by the
proximity of the corresponding perturbed values to the original feature value.
Finally, an intrinsically interpretable model is trained on the weighted predic-
tions and interpreted instead.

4 (Generalized Framework

Although the techniques presented in Sect.3 are seemingly unrelated, they all
work according to the exact same principle. Instead of trying to inspect the
inner workings of a non-linear black box model, we evaluate its predictions when
changing inputs. We can deconstruct model-agnostic techniques into a framework
of four work stages: sampling, intervention, prediction, aggregation (SIPA). The
software package iml [16] was inspired by the SIPA framework.

We first sample a subset (sampling stage) to reduce computational costs,
e.g., we select a random set of available observations to evaluate as ICEs. In
order to change the predictions made by the black box model, the data has to
be manipulated. Feature values can be set to values from the observed marginal
distributions (ICEs and PD or Shapley values), or to unobserved values (FD
based methods such as MEs and ALEs). This crucial step is called the interven-
tion stage. During the prediction stage, we predict on previously intervened
data. This requires an already trained model, which is why model-agnostic tech-
niques are always post-hoc. The predictions are further aggregated during the
aggregation stage. Often, the predictions resulting from the prediction stage
are local effect estimates, and the ones resulting from the aggregation stage are
global effect estimates.

In Fig. 1, we demonstrate how all presented techniques for feature effects are
based on the SIPA framework. Although LIME is a special case as it is based
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Fig. 1. We demonstrate how all presented model-agnostic methods for feature effects
are based on the SIPA framework. For every method, we assign each computational
step to the corresponding generalized SIPA work stage. Contrary to all other methods,
LIME is based on training an intrinsically interpretable model during the aggregation
stage. We consider training a model to be an aggregation, because it corresponds to an
optimization problem where the training data is aggregated to a function. For reasons
of simplicity, we do not differentiate between the actual functions or values and their
estimates.
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on training a local surrogate model, we argue that it is also based on the SIPA
framework as training a surrogate model can be considered an aggregation of
the training data to a function.

5 Feature Importance

We categorize model-agnostic importance measures into two groups: variance-
based and performance-based.

Variance-Based: A mostly flat trajectory of a single ICE curve implies that in
the underlying predictive model, varying x; does not affect the prediction for
this specific observation. If all ICE curves are shaped similarly, the PD can be
used instead. In [10] the authors propose a measure for the curvature of the PD
as a feature importance metric. Let the average value of the estimated PD of
the j-th feature be denoted by ]Sbf’j(xj) =15, Igl\)f’j (xg»l)). The estimated
importance IMP . of the j-th feature corresponds to the standard deviation of
the feature’s estlmated PD function. The flatter the PD, the smaller its standard
deviation and therefore the importance metric. For categorlal features, the range

of the PD is divided by 4. This is supposed to represent an approximation to
the estimate of the standard deviation for small to medium sized samples [10].

IMP

PD,j —

2
\/nil > [PD (z (Z)) PDfJ(IJ)} x; continuous
= i=1

1 [max {PDfﬁj(xj)} — min {ﬁl\)fj(xj)” x; categorial

In [20] the authors propose the feature importance ranking measure (FIRM).
They define a conditional expected score (CES) function for the j-th feature.

CESfaj(U) = [EX\j {f(xj’X\j) | T = v} (5)

It turns out that Eq. (5) is equivalent to the PD from Eq. (1), conditional on
Tj="7.

CES; ,(v) = Ex,, |f(v.X)]
=PDj;v)
The FIRM corresponds to the standard deviation of the CES function with all
values of x; used as conditional values. This in turn is equivalent to the standard

deviation of the PD. The FIRM is therefore equivalent to the feature importance
metric in Eq. (4).

FIRM ; ;= \/Var(CES; ,(2;)) = \/Var(PD; ,(x,)) = MP
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Performance-Based: The permutation feature importance (PFI), originally
developed by [3] as a model-specific tool for random forests, was described as a
model-agnostic one by [6]. If feature values are shuffled in isolation, the relation-
ship between the feature and the target is broken up. If the feature is important
for the predictive performance, the shuffling should result in an increased loss
[4]. Permuting z; corresponds to drawing from a new random variable X; that is
distributed like X; but independent of X\ ; [4]. The model-agnostic PFI measures
the difference between the generalization error (GE) on data with permuted and
non-permuted values.

PFI;; = E[L(f(X;,X,).Y)] ~ E [£((X;, X)), 7))

Let the permutation of x; be denoted by Z;. Consider the sample of test data
D; where x; has been permuted, and the non-permuted sample D. The PFI
estimate is given by the difference between GE estimates with permuted and
non-permuted values.

P/)Fﬁf’j = @(f7pj) - éE'(f,D)

1 fo () (G i 1< 2 () (G i
=~ L@ ey ) - -3 L@ 201y (6)
3 i=1

In [4] the authors propose individual conditional importance (ICT) and partial
importance (PI) curves as visualization techniques that disaggregate the global
PFI estimate. They are based on the same principle as the ICE and PD. The
ICI visualizes the influence of a feature on the predictive performance for a
single observation, while the PI visualizes the average influence of a feature for
all observations Consider the prediction for the i-th observation with observed
values f (a:y), x Z]) and the prediction f ( 2! )) where xg»l)

value zgl) from the marginal distribution of observed values z;. The change in

loss is given by:

was replaced by a

ALO @) = £(f(,2()) = £(f (@, 2())

The ICI curve of the i-th observation plots the value pairs ( J E(z)( )) for
all [ values of ;. The PI curve is the pomtwme average of all ICI curves at all {

values of z;. It plots the value pairs ( 5 ), LS AL ( )) for all [ values of
x;. Substituting values of x; essentially resembles shufﬂlng them. The authors
demonstrate how averaging the values of the PI curve results in an estimation
of the global PFI.

Furthermore, a feature importance measure called Shapley feature impor-
tance (SFIMP) was proposed in [4]. Shapley importance values based on model
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Fig. 2. We demonstrate how importance computations are based on the same work
stages as effect computations. In the same way as in Fig. 1, we assign the computational
steps of all techniques to the corresponding generalized SIPA work stages. Variance-
based importance measures such as FIRM measure the variance of a feature effect,
i.e., we add a variance computation during the aggregation stage. Performance-based
importance measures such as ICI, PI, PFI and SFIMP are based on computing changes
in loss after the intervention stage. For reasons of simplicity, we do not differentiate
between the actual functions or values and their estimates.
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refits with distinct sets of features were first introduced by [5] for feature selec-
tion. This changes the behavior of the learning algorithm and is not helpful to
evaluate a single model, as noted by [4]. The SFIMP is based on the same com-
putations as the Shapley value but replaces the payout function with one that is
sensitive to the model performance. The authors define a new payout veg(z;)
that substitutes the estimated PD with the estimated GE. This is equivalent to
the estimated PFI from Eq. (6).

ver(z;) = GE(f,D;) - GE(f,D) = PFI; , = vppr(z))

We can therefore refer to vgr(z;) as vprr(z;) and regard the SFIMP as an
extension to the PFT [4].

6 Extending the Framework to Importance Computations

Variance-based importance methods measure the variance of feature effect esti-
mates, which we already demonstrated to be based on the SIPA framework.
Therefore, we simply add a variance computation during the aggregation stage.
Performance-based techniques measure changes in loss, i.e., there are two possi-
ble modifications. First, we predict on non-intervened or intervened data (pre-
diction stage). Second, we aggregate predictions to the loss (aggregation stage).
In Fig. 2, we demonstrate how feature importance computations are based on
the same work stages as feature effect computations.

7 Conclusion

In recent years, various model-agnostic interpretation methods have been devel-
oped. Due to different notations and terminology it is difficult to see how they
are related. By deconstructing them into sequential work stages, one discov-
ers striking similarities in their methodologies. We first provided a survey on
model-agnostic interpretation methods and then presented the generalized STPA
framework of sequential work stages. First, there is a sampling stage to reduce
computational costs. Second, we intervene in the data in order to change the
predictions made by the black box model. Third, we predict on intervened or
non-intervened data. Fourth, we aggregate the predictions. We embedded mul-
tiple methods to estimate the effect (ICE and PD, ALEs, MEs, Shapley values
and LIME) and importance (FIRM, PFI, ICI and PI and the SFIMP) of fea-
tures into the framework. By pointing out how all demonstrated techniques are
based on a single methodology, we hope to work towards a more unified view
on model-agnostic interpretations and to establish a common ground to discuss
them in future work.

Acknowledgments. This work is supported by the Bavarian State Ministry of Science
and the Arts as part of the Centre Digitisation.Bavaria (ZD.B) and by the German
Federal Ministry of Education and Research (BMBF) under Grant No. 01IS18036A.
The authors of this work take full responsibilities for its content.



216

C. A. Scholbeck et al.

References

1.

10.

11.

12.
13.
14.

15.

16.

17.

18.

19.

20.

Apley, D.W.: Visualizing the effects of predictor variables in black box supervised
learning models. arXiv e-prints arXiv:1612.08468, December 2016

Bartus, T.: Estimation of marginal effects using margeff. Stata J. 5(3), 309-329
(2005)

Breiman, L.: Random forests. Mach. Learn. 45(1), 5-32 (2001)

Casalicchio, G., Molnar, C., Bischl, B.: Visualizing the feature importance for black
box models. In: Berlingerio, M., Bonchi, F., Gértner, T., Hurley, N., Ifrim, G.
(eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11051, pp. 655-670. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-10925-7_40

Cohen, S., Dror, G., Ruppin, E.: Feature selection via coalitional game theory.
Neural Comput. 19(7), 1939-1961 (2007)

Fisher, A., Rudin, C., Dominici, F.: Model class reliance: variable importance mea-
sures for any machine learning model class, from the “Rashomon” perspective.
arXiv e-prints arXiv:1801.01489, January 2018

Fisher, A., Rudin, C., Dominici, F.: All models are wrong but many are useful:
variable importance for black-box, proprietary, or misspecified prediction models,
using model class reliance. arXiv e-prints arXiv:1801.01489, January 2018
Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.
Stat. 29(5), 1189-1232 (2001)

Goldstein, A., Kapelner, A., Bleich, J., Pitkin, E.: Peeking inside the black box:
visualizing statistical learning with plots of individual conditional expectation. J.
Comput. Graph. Stat. 24, 44-65 (2013)

Greenwell, B.M., Boehmke, B.C., McCarthy, A.J.: A simple and effective model-
based variable importance measure. arXiv e-prints arXiv:1805.04755, May 2018
Hechtlinger, Y.: Interpretation of prediction models using the input gradient. arXiv
e-prints arXiv:1611.07634, November 2016

Leeper, T.J.: Margins: marginal effects for model objects (2018)

Lipovetsky, S., Conklin, M.: Analysis of regression in game theory approach. Appl.
Stoch. Models Bus. Ind. 17(4), 319-330 (2001)

Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
In: Guyon, I, et al. (eds.) Advances in Neural Information Processing Systems,
vol. 30, pp. 4765-4774. Curran Associates, Inc., New York (2017)

Molnar, C.: Interpretable Machine Learning (2019). https://christophm.github.io/
interpretable-ml-book/

Molnar, C., Bischl, B., Casalicchio, G.: iml: an R package for interpretable machine
learning. JOSS 3(26), 786 (2018)

Ribeiro, M.T., Singh, S., Guestrin, C.: Why should I trust you?: explaining the
predictions of any classifier. In: Knowledge Discovery and Data Mining (KDD)
(2016)

Rudin, C., Ertekin, S.: Learning customized and optimized lists of rules with math-
ematical programming. Math. Program. Comput. 10(4), 659-702 (2018). https://
doi.org/10.1007/s12532-018-0143-8

Strumbelj, E., Kononenko, I.: Explaining prediction models and individual predic-
tions with feature contributions. Knowl. Inf. Syst. 41(3), 647-665 (2013). https://
doi.org/10.1007/s10115-013-0679-x

Zien, A., Kramer, N., Sonnenburg, S., Ratsch, G.: The feature importance ranking
measure. In: Buntine, W., Grobelnik, M., Mladenié¢, D., Shawe-Taylor, J. (eds.)
ECML PKDD 2009. LNCS (LNAI), vol. 5782, pp. 694-709. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04174-7_45


http://arxiv.org/abs/1612.08468
https://doi.org/10.1007/978-3-030-10925-7_40
http://arxiv.org/abs/1801.01489
http://arxiv.org/abs/1801.01489
http://arxiv.org/abs/1805.04755
http://arxiv.org/abs/1611.07634
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://doi.org/10.1007/s12532-018-0143-8
https://doi.org/10.1007/s12532-018-0143-8
https://doi.org/10.1007/s10115-013-0679-x
https://doi.org/10.1007/s10115-013-0679-x
https://doi.org/10.1007/978-3-642-04174-7_45

®

Check for
updates

Learning and Interpreting Potentials
for Classical Hamiltonian Systems

Harish S. Bhat(®)

Applied Mathematics Unit, University of California, Merced, USA
hbhatQucmerced.edu

Abstract. We consider the problem of learning an interpretable poten-
tial energy function from a Hamiltonian system’s trajectories. We address
this problem for classical, separable Hamiltonian systems. Our approach
first constructs a neural network model of the potential and then applies
an equation discovery technique to extract from the neural potential a
closed-form algebraic expression. We demonstrate this approach for sev-
eral systems, including oscillators, a central force problem, and a problem
of two charged particles in a classical Coulomb potential. Through these
test problems, we show close agreement between learned neural poten-
tials, the interpreted potentials we obtain after training, and the ground
truth. In particular, for the central force problem, we show that our app-
roach learns the correct effective potential, a reduced-order model of the
system.

Keywords: Neural networks - Equation discovery - Hamiltonian
systems

1 Introduction

As a cornerstone of classical physics, Hamiltonian systems arise in numerous
settings in engineering and the physical sciences. Common examples include
coupled oscillators, systems of particles/masses subject to classical electrostatic
or gravitational forces, and rigid bodies. For integer d > 1, let q(t) € R? and
p(t) € R? denote, respectively, the position and momentum of the system at
time . Let T and V' denote kinetic and potential energy, respectively. Our focus
here is on classical, separable systems that arise from the Hamiltonian

H(p,q) =T(p) + V(q). (1)

In this paper, we consider the problem of learning or identifying the potential
energy V' from data (q(t), p(t)) measured at a discrete set of times. We assume
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T is known. To motivate this problem, consider the setting of m interacting
particles in three-dimensional space; here d = 3m. Suppose that we are truly
interested in a reduced set of variables, e.g., the position and momentum of
one of the m particles. Let us denote the reduced-order quantities of interest
by (q(t),p(t)) € R?4. The direct approach is to integrate numerically the 6m-
dimensional system of differential equations for the full Hamiltonian (1) and then
use the full solution (q(t), p(t)) to compute (q(t), p(t)). While such an approach
yields numerical answers, typically, it does not explain how the reduced-order
system evolves dynamically in time. If we suspect that (q(t),p(t)) itself satis-

fies a Hamiltonian system, we can search for a potential V(q) that yields an
accurate, reduced-order model for (§(t), p(t)). If V is interpretable, we can use
it to explain the reduced system’s dynamics—here we mean interpretability in
the sense of traditional models in the physical sciences, which are written as
algebraic expressions, not as numerical algorithms. We can also use the reduced-
order model to simulate (q(¢),p(t)) directly, with computational savings that
depend on d/d.

There is a rapidly growing literature on machine learning of potential energies
in computational/physical chemistry, e.g., [1-3,9,10]. As in these studies, the
present work uses neural networks to parameterize the unknown potential. A key
difference is that, in the present work, we apply additional methods to interpret
the learned neural potential. There exists a burgeoning, recent literature on
learning interpretable dynamical systems from time series, e.g., [4-6,8,12], to
cite but a few. We repurpose one such method—SINDy (sparse identification of
nonlinear dynamics)—to convert the learned neural potential into a closed-form
algebraic expression that is as interpretable as classical models. We apply only
one such method for accomplishing this conversion into an algebraic expression;
we hope that the results described here lead to further investigation in this area.

2 Approach

Assume T'(p) = Z?Zl M;;'p? where M is a diagonal mass matrix. Then, from
(1), we can write Hamilton’s equations:

a=M""p (2a)
p=-VV(q). (2b)

Let the training data consist of a set of R trajectories; the j-th such trajectory is
{al,p!}Y,. Here (q,p]) denotes a measurement of (q(t), p(t)) at time ¢t = ih
for fixed h > 0. We choose this equispaced temporal grid for simplicity; this
choice is not essential. Because we treat the kinetic energy T as known, we
assume that the training data consists of (possibly noisy) measurements of a
system that satisfies (2a). We now posit a model for V' that depends on a set of
parameters 8. For instance, if we model V' using a neural network, 6 stands for
the collection of all network weights and biases. Then we use (2b) to form an
empirical risk loss
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N-1

1
:RWZ

j=1 =0

p’“ L V() (3)

Let 7 = Nh denote the final time in our grid. Note that (3) approximates
[ 1/7) f o TIP(t) + VQV(Q(t);H)szt}, the expected mean-squared error of

a random trajectory (Q(t), P(t)) assumed to satisfy (2a).

We model V' using a dense, feedforward neural network with L > 2 layers.
Because we train with multiple trajectories, the input layer takes data in the
form of two tensors—one for q and one for p—with dimensions N x R x d. The
network then transposes and flattens the data to be of dimension NR x d. Thus
begins the potential energy function part of the network (referred to in what
follows as the neural potential), which takes a d-dimensional vector as input and
produces a scalar as output. Between the neural potential’s d-unit input layer
and l-unit output layer, we have a number of hidden layers. In this model, we
typically choose hidden layers to all have v units where 1 < v < d. As these
architectural details differ by example, we give them below.

Note that the loss (3) involves the gradient of V' with respect to the input
q. We use automatic differentiation to compute this gradient. More specifically,
in our IPython/Jupyter notebooks (linked below), we use the batch_jacobian
method in TensorFlow. This is easy to implement, fast, and accurate up to
machine precision. R
_ The trained network gives us a neural potential V' : R? — R. To interpret
V, we apply the SINDy method [5]. We now offer a capsule summary of this

technique. Suppose we have a grld {xF}E iw—q of points in R?. We use the notation

xF = (2%,...,2%). We evaluate V on the grid, resulting in a vector of values

that we denote by V. We also evaluate on the grid a library of J candidate
functions 57 ‘RYE S Rforl < j < J; each such evaluation results in a vector
Z7 that we take to be the j- th column of a matrix Z. In d = 1, examples of
candidate functions are {1,x,22,.. .} or {l,z= 1,272, ...}. In d = 2, an example
is {1, 1, xa, :z:%, T1T9,73,.. .} Each candidate functlon is simply a scalar valued
function on RY.
Equipped with the K x 1 vector V and the K x J matrix =, we solve the
regression problem
V=EB+c¢ (4)

for the J x 1 vector B using an iteratively thresholded least-squares algorithm.
The algorithm has one constant hyperparameter, A > 0. The algorithm is then
succinctly described as follows: (i) estimate B using ordinary least squares, and
then (ii) reset to zero all components of 3 that are less than the threshold .
Once components of 3 are reset to zero, they stay frozen at zero. We then repeat
steps (i) and (ii) until 3 stabilizes to its converged value.

As shown recently [13], this algorithm converges in a finite number of steps
to an approximate minimizer of |V — Z3||? + A?||B||o. Here ||3]|o denotes the
number of nonzero entries of 3. Hence, increasing the parameter A leads to a
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more sparse set of coefficients 3. Once we have fit the regression model in this
way, we obtain an interpretable model of V', specifically:

J
V(x) = Z 3,69 (x) + €. (5)

If B is highly sparse, most of the coefficients 3; will be zero. Suppose that the
candidate functions &7 are well-known functions such as positive or negative
powers of the coordinates x; of the input x. In this case, the right-hand side
will be a relatively short algebraic expression that is as interpretable as most
potential energy functions routinely encountered in classical physics. The norm
of € here captures the error in this sparse approximation of V. In general, one
chooses A to balance the sparsity of 3 with the quality of the approximation ||e||.

3 Tests

We now describe a series of increasingly complex tests that demonstrate the
proposed method. For each such model, we use either exact solutions or fine-scale
numerical integration to create a corpus of time series measurements. Using the
time series, we train a neural potential energy model, which we then interpret
using SINDy. We use NumPy/SciPy or Mathematica for all data generation,
TensorFlow for all neural network model development /training, and the sindyr
package [7] in R to interpret the neural potential. In what follows, the mass
matrix M in (2) is the identity unless specified otherwise. In all cases, we train
the neural network using gradient descent. We are committed to releasing all
code/data at https://github.com/hbhat4000/learningpotentials.

3.1 Simple Harmonic Oscillator

The first model we consider is the simple harmonic oscillator (d = 1) with
Hamiltonian
s 6
H ==+ =
(@.9) =5 + 5 (6)

Exact trajectories consists of circles centered at the origin in (g,p) space. For
training data, we use R = 10 such circles; for 1 < ¢ < 10, the i-th circle passes
through an initial condition (g(0),p(0)) = (0,i). We include N = 1000 steps
of each trajectory, recorded with a time step of 0.01, in the training set. Here
our goal is to check how closely the neural potential V(¢) can track the true
potential V(q) = ¢%/2. We take the neural potential model to have two hidden
layers, each with 16 units and tanh activations. We train for 50000 steps at a
learning rate of 0.01. R

In Fig. 1, we plot both the trained neural potential V' (in red) and the true
potential V(q) = ¢2/2 (in black). When plotting V, we have subtracted a con-
stant bias (the minimum obtained value of ‘A/) so that the curve reaches a min-
imum value of zero. Note that this constant bias is completely unimportant for
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Fig. 1. For the simple harmonic oscillator (6), after adjusting a constant bias, the

neural potential V(q) closely matches the true potential V(q) = ¢>/2. (Color figure
online)

physics, as only VV appears in Hamilton’s equations (2) and the loss (3). How-
ever, the constant bias does lead us to include an intercept in the regression
model (4), i.e., to include 1 in the set of candidate functions for SINDy. We
follow this practice in all uses of SINDy below.

We apply SINDy to the learned potential V(gq) with candidate functions
{1,9,4%,¢}. In the following test, and in fact throughout this paper, we start
with A = 1 and tune A downward until the error ||¢||—between the neural network
potential V(¢) and the SINDy-computed approximation—drops below 10710, We
find that with A = 0.04, the estimated system is

V(g) = Bo + Bag? (7)

with Gy &~ —49.18 and [y =~ 0.4978. We see that 1% closely tracks the true
potential V(q) = ¢?/2 up to the constant bias term, which can be ignored.

3.2 Double Well

Let us consider a particle in a double well potential (d = 1)
Vig) =2*(x —2)" — (z - 1)*. (8)

We take the kinetic energy to be T'(p) = p?/2. We now use explicit Runge-Kutta
integration in Mathematica to form three training sets:

— Training set 77 includes R = 10 trajectories with random initial conditions
(q(0),p(0)) chosen uniformly on [—1,1]?, one of which has sufficiently high
energy to visit both wells.

— Training set 75 consists of R = 2 trajectories, each of which starts and stays in
an opposing well. The first trajectory has initial condition (¢(0),p(0)) = (3,0)
while the second has initial condition (¢(0),p(0)) = (—1,0). These ¢(0) values
are symmetric across ¢ = 1, the symmetry axis of V(q).

— Training set 73 has only R = 2 trajectories that stay in the left well only.
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6 ® neural (train)
® neural (extrap)

— truth

Fig. 2. For the double well potential (8), the neural potential V/(g) trained on 73 closely
matches the true potential V' (q). This training set includes one high-energy trajectory
that visits both wells. In red, we plot V(q) for ¢ € 7Ti; in green, we plot V(q) for
g € [-1,3]\ 71. Potentials were adjusted by a constant bias so that they both have
minimum values equal to zero. (Color figure online)

For each trajectory, we record 5001 points at a time step of 0.001. We take the
neural potential model to have two hidden layers, each with 16 units and tanh
activations. For each training set 7,,,, we train for 50000 steps at a learning rate
of 0.01.

We seek to understand how the choice of training set 7,, affects the ability
of the neural potential V to track the true potential (8). We plot and discuss
the results in Figs.2 and 3. Overall, the neural potentials trained using 7; and
7> match V(q) closely—both on the training set and extrapolated to the rest
of the interval —1 < ¢ < 3. Clearly, the neural potential trained using 73 only
captures one well and does not extrapolate correctly to the rest of the domain.

Let V™ (q) denote the neural potential trained on 7,,,. We now apply SINDy
to the output of each ym only on its respective training set 7,,, with candidate
functions {1,q,q?, >, q* ¢° ¢%}. For reference, the ground truth V(q) can be
written as V(q) = —1 4 2q + 3¢*> — 4¢> + ¢*. Adjusting A downward as described
above, we find with A = 0.5 the following algebraic expressions:

V'(q) ~ —8.138 + 2.0008¢ + 3.0009¢ — 4.0009¢> + 1.0001¢*

V2(q) ~ —6.061 + 2.0032¢ + 3.0054¢> — 4.0148¢> + 0.9748¢*

V3(q) ~ —6.165 + 1.9909¢ + 2.9991¢> — 3.9886¢> + 0.9955¢*
Noting that the constant terms are irrelevant, we note here that all three models
agree closely with the ground truth. The agreement between V' and the alge-
braic forms of V! and V2 was expected. We find it somewhat surprising that

SINDy, when applied to the output of V3 on its training set 73, yields a quartic
polynomial with two wells.
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Fig. 3. For the double well potential (8), we train neural potentials ‘7(q) using, in
turn, the training sets 72 (left) and 75 (right). We plot in red V() only for the values
of g covered by the respective training sets; in green, we extrapolate ‘A/(q) to values
of g that are not in the respective training sets. Since 73 includes two trajectories,
one from each well, the neural potential captures and extrapolates well to both wells.
Conversely, because 73 only includes trajectories that stay in one well, the neural
potential completely misses one well. Potentials were adjusted by a constant bias so
that they all have minimum values equal to zero. (Color figure online)

3.3 Central Force Problem

We consider a central force problem for one particle (d = 3) with Hamiltonian

_lpl?

H(q,p) 5

+llall ="+ (10— flal) (9)
The norm here is the standard Euclidean norm. Using explicit Runge-Kutta
integration in Mathematica, we generate R = 1 trajectory with random initial
condition (q(0),p(0)) chosen uniformly on [—1,1]%. Using this trajectory, we
compute r(t) = ||q(t)|| as well as 7*(t) = dr/dt. We save the (r(t), 7(t)) trajectories
at N = 20001 points with a time step of 0.001. We then search for a reduced-
order (d = 1) model with Hamiltonian
72~

H(?“, T) = 5 + V(T), (10)
where XN/(T) is a neural potential. We take the neural potential model to
have two hidden layers, each with 16 units. We train for 500000 steps at a
learning rate of 1073, first using exponential linear unit activations ¢ (z) =

exp(z) —1 =z <0.
weights/biases and retrain using softplus activations ¢(z) = log(1 4 exp(z))—
this activation was chosen to enable series expansions of YA/(T), as described in
greater detail below. Prior to retraining, we also change the network by adding

T x>0
{ ~ . We then initialize the neural network using the learned
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Fig. 4. For the central force problem (10), after adjusting a constant bias, the neural
potential V (r) closely matches the effective potential Veg(r). (Color figure online)

an exponential function to the output layer—we incorporate this function to
better model the steep gradients in the potential near r = 0 and r = 10. When
we retrain, we take 500000 steps at a learning rate of 1073. We carry out the
training in two stages because training directly with softplus activations and
exponential output failed.

For this problem, classical physics gives us an effective potential

Veg(r) =7~ 4+ (10 — r) 1+ £2/(2r%). (11)

where £ is a conserved quantity determined from the initial condition. In Fig. 4,
we plot both the trained neural potential V' (in red) and the effective poten-
tial Veg(r) (in black). After adjusting for the constant bias term, we find close
agreement.

We then exported the weight and bias matrices to Mathematica, forming the
neural potential model

V(r) = Wsd(Wad(Wir + by) + bs) + bs. (12)

Unlike %, the softplus activation ¢ is amenable to series expansion via symbolic
computation. In particular, since we can see that the effective potential Veg(r) is
a rational function, we explored Padé expansions of ‘7(7") These attempts were
unsuccessful in the sense that we did not obtain models of ‘A/(r) that are any
more interpretable than the compositional form of (12).

Turning to SINDy, we formed a library of candidate functions

{Lr= 5 r 27, (10— )" (10— r) "%, (10 — ) *}.

Adjusting A in the same manner described above, we find that with A = 0.15,
the estimated model is

V(r) ~ Bo+ Bir~ " + Bor 2 + B4(10 — r) 7! (13)

Here By ~ —0.2384, 31 =~ 1.005, 82 =~ 0.4461, and B4 ~ 0.9723. We see from the
form of Vg (r) given above that 8, and (34 are both close to the ground truth
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values of 1. Note that for the trajectory on which the system was trained, we
have £ /2 ~ 0.4655. Hence (35 has an error of less than 4.2%. This demonstrates
a successful application of SINDy to interpret the neural potential as a rational
function; this interpretation of V' is itself close to Veg.

3.4 Charged Particles in Coulomb Potential

We now consider two oppositely charged particles (d = 6) subject to the
classical Coulomb electrostatic potential. We take the mass matrix to be
M = diag(1,1/2). The kinetic energy is T(p) = p? M ~'p/2. If we partition
q = (q1,q2) where q; is the position of the i-th particle, then the potential is

1 1

Vig=-————
@ =~ o=l

(14)

Here we apply the Stormer-Verlet algorithm, a symplectic method, to generate
R = 1000 trajectories, each with NV = 10001 points recorded at a time step of
0.001. Each trajectory starts with random initial conditions (q(0), p(0)) chosen
from a standard normal. For this problem, our goal is to use the data to recover
V. We train two different neural potential models with increasing levels of prior
domain knowledge:

1. We first set up the neural network’s input layer to compute from q the differ-
ence q; —qz € R?; the neural potential then transforms this three-dimensional
input into a scalar output. The neural network here has 8 hidden layers, each
with 16 units and tanh activations. Using only 800 of the R = 1000 trajecto-
ries, we first train using the first 100 points from each of the 800 trajectories,
taking 500000 steps at a learning rate of 0.01. Again restricting ourselves to
the 800 training trajectories, we then use the next 100 points, followed by
the next 100 points, etc., each time taking 500000 steps at a learning rate of
0.01. As the training loss was observed to be sufficiently small (~ 0.006021),
we halted training.

In Fig.5, we plot both training (left) and test (right) results. The training
results are plotted with the first 1000 points of the 800 trajectories used for
training, while the test results are plotted with the first 1000 points of the 200
held out trajectories. For both plots, we subtracted the maximum computed
value of V' (on each respective data set). In each plot, we plot V' (on all points
q in the training and test sets) versus r = ||q; — q2||.

Overall, we see reasonable agreement between the neural potential and the
ground truth. Note that the neural network is essentially tasked with discov-
ering that it should compute the inverse of the norm of q; — q2. We suspect
that this function of q; — q2 may be somewhat difficult to represent using
a composition of activation functions and linear transformations as in (12).
Despite training for a large number of steps, there is noticeable variation in
neural potential values for large .
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Fig. 5. Here we plot both training (left) and test (right) results for the Coulomb
problem (14). For both plots, we have subtracted a constant bias, the maximum value
of the neural potential on the data set in question. These results are for a neural
potential V that is a function of the difference q1—q2 between the two charged particles’
positions; for each q in the training and test sets, we plot V(q1 — q2) versus r =
llar — qz||. We also plot the true potential (14) versus r. Both training and test plots
show reasonable agreement between the neural potential and the ground truth.

We now apply SINDy to 1% (on the training set) using candidate functions
{1,771, 772,773}, Adjusting X as described above, we find with A\ = 0.04, the
approximation R

V() ~ fo + B! (15)

with By ~ 0.7602 and B; ~ —0.06911. For comparison, the ground truth
coefficient of =1 is —(47r)~! ~ —0.07958.

2. We then rearchitect the network to include a layer that takes the input q and
computes the norm of the difference ||q; —qz||; the rest of the neural potential
is then a scalar function of this scalar input. Here the neural network has 8
hidden layers, each with 8 units and tanh activations. We train for 50000 steps
with learning rate of 0.05. Note that here, for training, we use N = 5001 time
steps of only 100 trajectories.

In Fig.6, we plot both training (left) and test (right) results. The training
results are plotted with the first 5001 points of the 100 trajectories used for
training, while the test results are plotted with a completely different set
of 100 trajectories, each of length 5001 For both plots, we subtracted the
minimum computed value of V' (on each respective data set). In each plot, we
compute V on all points q in the training and test sets, and then plot these
V values versus r = ||q; — q2||.

To generate an interpretable version of 1% (on the training set), we apply
SINDy with candidate functions {1,7~%, =2 773}, Adjusting A as described
above, we find with A = 0.05, the approximation

V(r)~ o+ Bir ™ (16)
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Fig. 6. Here we plot both training (left) and test (right) results for the Coulomb
problem (14). For both plots, we have subtracted a constant bias, the maximum value
of the neural potential on the data set in question. These results are for a neural
potential V that is a function of the distance r = ||q1 — qa|| between the two charged
particles; for each q in the training and test sets, we plot ‘7(7') versus r = ||q1 —qz||. We
also plot the true potential (14) versus r. Both training and test plots show excellent
agreement between the neural potential and the ground truth.

with Gy &~ 2.267 and (6 ~ —0.07792. This computed value of ; is less than
2.1% away from the ground truth value of —(47)~1; the error for the earlier
approximation (15) was just over 13.1%.

Incorporating prior knowledge that the potential should depend only on r
dramatically improves the quality of the learned potential. Essentially, we
have eliminated the need for the neural network to learn the norm function.
We outperform the results from Fig. 5 using a less complex network, trained
for fewer steps and a larger learning rate. Comparing with Fig. 5, we see that
Fig. 6 features reduced variation in V(r) for large r, and improved test set
results as well.

4 Conclusion

We conclude that, for the examples we have explored, our approach does lead
to accurate potentials that can themselves be approximated closely by inter-
pretable, closed-form algebraic expressions. In ongoing/future work, we plan
to apply the techniques described here to high-dimensional systems for which
reduced-order (i.e., effective) potentials are unknown. We also seek to extend our
method to quantum Hamiltonian systems. While we have focused here on clean
data from known models, we are also interested in learning potentials from noisy
time series. We expect that by adapting the method of [11], we will be able to
simultaneously filter the data and estimate an interpretable neural potential.
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Abstract. In this paper we propose and study the novel problem of
explaining node embeddings by finding embedded human interpretable
subspaces in already trained unsupervised node representation embed-
dings. We use an external knowledge base that is organized as a taxon-
omy of human-understandable concepts over entities as a guide to iden-
tify subspaces in node embeddings learned from an entity graph derived
from Wikipedia. We propose a method that given a concept finds a lin-
ear transformation to a subspace where the structure of the concept is
retained. Our initial experiments show that we obtain low error in finding
fine-grained concepts.

Keywords: Interpretability - Node embeddings - Conceptual spaces

1 Introduction

Representations of nodes in a graph or node embeddings have proven useful in
many applications such as question answering [1], dialog systems [14], recom-
mender [21] systems and knowledge-base completion [15]. The core idea behind
node representation learning (NRL) [4,10,22] approaches is to distill the high-
dimensional discrete representation of nodes into a dense vector embedding using
dimensionality reduction methods, which optionally not only incorporate the
graph structure, but also features attached to nodes. These representations can
be seen as features extracted from only the topology or from both the topology
and the available node attributes. The dense representations thereby learnt form
a latent feature space where the basis or dimensions are non-interpretable.
Consequently, in spite of their success, there is a lack of an understanding of
what the latent dimensions encode in terms of existing human knowledge. This
is problematic for downstream tasks requiring interpretability, since using such
embeddings results in the input already being non-interpretable. For aiding inter-
pretability and utility of these embeddings in downstream application scenarios
we initiate an inquiry into presence of interpretable or human understandable
subspaces in the learnt feature representation space of these graph embeddings.
We ask the fundamental question: What do node embeddings encode in terms of
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human world knowledge? Recent works in interpretability for learning on struc-
tured data either focus on generating interpretable embeddings or explaining
the predictions made by a classifier to which embeddings form the input [26].
But none of these methods provide insights into the embedding itself, a problem
which we propose and study in this work.

We take an alternate view on interpretability of node embeddings in that
we want to find sub-spaces in the embedding space corresponding to human-
understandable concepts. Our main contribution is in finding interpretable sub-
spaces in the latent feature representation space and thus characterizing the
behavior of node representations when projected into these interpretable spaces.
This has two distinct advantages — first we do not compromise on the effective-
ness of these embeddings as we post-hoc analyze the presence of interpretable
spaces in the already learned representation space. Secondly, we ground the
interpretable space to existing world knowledge in the form of knowledge bases.

To this extent, in this work, we use external knowledge bases (KB) to learn
conceptual spaces for corresponding characteristics that can be attributed to a
given node. In particular, we assume that we have an input graph of labelled or
named nodes. As a use case we focus on a hyperlink graph of named entities. We
observe that KBs like YAGO [7] encode human understandable concepts orga-
nized in a taxonomy which can be used as the source of world knowledge assum-
ing that the nodes/entities in the input graph are also present in the taxonomy.
In principle one can use any input graph and KB as long as the input graph node
names are grounded in the KB. Having extracted the possible concepts from the
taxonomy, we then propose methods to explain a node embedding in terms of
the applicability of various concepts. For example, a node named Albert Einstein
could be explained by concepts like Theoretical physicists, Scientists etc.

We propose two simple algorithms, SAS and CSD, to explain node embed-
dings in terms of concepts and provide promising first results for pre-trained
embeddings corresponding to two unsupervised random walk based node embed-
ding methods, namely, DeepWalk [22] and LINE [24]. We show that our second
approach CSD that projects a node embedding to a common learnt concept
space distinguishes the applicable and non applicable concepts better than our
first approach which operates in the original embedding space.

2 Related Work

Supervised learning approaches are either interpretable by design [3,13,25]
or explanations can be generated in a post-hoc manner after the model is
trained [12,19,23]. Post-hoc methods for interpretability either operate intro-
spectively (full access to the model parameters) [12,19] or are model agnos-
tic [23]. We operate in the model introspective interpretable regime where we
assume full access to the model parameters. For other notions of interpretability
and a more comprehensive description of the approaches we point the readers
to [5].

Methods focussing on building interpretable representations include MEm-
bER [8] which learns entity embeddings using max-margin constraints to encode
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the desideratum that (salient) properties of entities should have a simple geomet-
ric representation in the entity embedding. Jameel and Schockaert [9] propose
a method which learns a vector-space embedding of entities from Wikipedia
and constrains this embedding such that entities of the same semantic type are
located in some lower-dimensional subspace. Minervini et al. [18] leverage equiv-
alence and inversion axioms during the learning of knowledge graph embeddings,
by imposing a set of model dependent soft constraints on the predicate embed-
dings. Post-hoc methods include GNN-Explainer [26] which provides interpre-
tations for GNN predictions on link prediction, node classification and graph
classification tasks. The interpretations are tied to specific tasks. We, on the
other hand, propose to understand the node representations directly in terms of
user provided conceptual categories.

Unlike the above works we focus on explaining the node vector representation
itself which might have been obtained using an arbitrary embedding method.

3 Preliminaries

In this section we give a brief overview of YAGO and node embedding methods
used in this work.

3.1 Knowledge Graphs

As a source of concepts or human understandable world knowledge we use the
YAGO [7] knowledge base (KB), which was automatically constructed from
Wikipedia. Typically, each article in Wikipedia becomes an entity in the knowl-
edge base (e.g., since Albert Einstein has an article in Wikipedia, Albert Einstein
is an entity in YAGO). Each entity is organized into a taxonomy of classes. In
addition, every entity is an instance of one or multiple classes and every class
(except the root class) is a subclass of one or multiple classes. therefore yielding
a hierarchy of classes — the YAGO tazonomy.

Each class name is of the form <wordnet_XXX_YYY> or <wikicat XXX_YYY>,
where XXX is the name of the concept (e.g., singer), and YYY is the WordNet
3.0 synset id of the concept (e.g., 110599806). For example, the class of singers is
<wordnet_singer_110599806>. Additionally, each class is connected to its more
general class by the rdfs:subclass0f relationship.

Not all Wikipedia categories correspond to classes in YAGO. The lowest
layer of the taxonomy is the layer of instances. Instances comprise individual
entities such as rivers, people, or movies. For example, the lowest layer contains
<Elvis_Presley>. Each instance is connected to one or multiple classes of the
higher layers by the relationship rdf:type. For example, for entity Albert_Einstein
we have:

<Albert_Einstein> rdf:type <wikicat_Nuclear_physicist>.

One can therefore walk from the instance up to its class by rdf:type, and
then further up by rdfs:subclassOf. In Sect.4 we will provide details about
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how the concepts derived from the taxonomy are used as explanations for node
embeddings.

3.2 Node Embeddings

Node representations or node embeddings can be understood as the set of fea-
tures extracted from the graph topology and (if given) node attributes. The
present set of techniques for node representation learning generally fall into one
of these categories: (1) random walk based [4,10,22,24], (2) matrix factorization
based [2,20] or (3) deep learning or Graph Neural Network (GNN) based [6,11].
In this section we describe briefly the two random walk based approaches which
we employ in this work. In future we will investigate our methods using a general
set of unsupervised and semi-supervised embedding approaches.

The basic idea behind random walk based embedding techniques is to trans-
form the graph into a collection of node sequences, in which, the occurrence fre-
quency of a node-context pair measures the structural distance between them.
DeepWalk [22] was the first method to exploit random walk techniques to build
sentence like structures from graphs to train a SkipGram model [17]. It employs
truncated random walks to create vertex sequences, which are later used in a
word2vec fashion to learn vertex embeddings given its context. For a graph G,
it samples uniformly a random vertex v as the root of the random walk W,. A
walk samples uniformly from the neighbors of the last vertex visited until the
maximum length ¢ is reached. For each v; € W,, and for each ux, € W[j—c: j+¢]
(c is the window size), (vj, uy) forms a vertex-context training pair (similar to
word -context pair in word embeddings). The objective is then to maximize the
probability of observing uy given the representation of v;. LINE [24] optimizes
first order proximity (i.e. embeds nodes sharing a link closer) and second order
proximities (embeds nodes closer if they have similar neighborhoods) using an
SGNS (Skip-gram with negative sampling) objective function [16]. Similar to
DeepWalk, it can be understood as sampling random walks of length 1 and uses
vertices sharing an edge as training pairs.

4 Research Questions and Our Approach

We propose a general approach for post-hoc interpretability of node represen-
tation learned by an unsupervised or semi-supervised method. We bring in a
completely new perspective of interpretability of extracted features of nodes by
using external knowledge to determine the concepts that a given representation
encodes. More precisely, we use Wikipedia entity graph, G = (V, E), as the
input graph, where the nodes are Wikipedia pages and the edges correspond
to the hyperlinks between them. We employ DeepWalk and LINE to generate
embeddings for all v € V. We ignore the edge direction to learn the embed-
dings. We also recall that the present topic of this work is to define and validate
interpretability on node embeddings and the choice of embeddings methods is
therefore arbitrary. Let ®, represent the embedding vector corresponding to v.
We ponder over the following question:
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RQ 1 What concepts do these embeddings encode?

As the embeddings are usually generated only considering the structure of
the graph or/and node attributes, an embedding vector ®, encodes the con-
cepts which it shares with its neighborhood (neighborhood here depends on the
employed embedding method). Consider, for example, an entity Barack Obama,
which could be understood as sharing characteristics with other Presidents and
Nobel Prize winners. Presidents and Nobel Prize winners here are the human
understandable world knowledge or concepts. Rather than characterizing nodes
in terms of their neighbors, we in this work use these implicit human under-
standable concepts to characterize an embedding vector. In particular, for a
given embedding vector ®, and a concept ¢, we assign a score S(®,,c) € R
which quantifies the characteristic ¢ of the embedding ®,. Roughly speaking,
the score measures the amount of the characteristic that an embedding vector
possesses.

The challenge here is that often only the graph structure or sometimes the
node attributes are also available but there are no explicit concepts provided.
We therefore ask the following question:

RQ 2 How can explicit concepts be constructed given an input graph with named
vertices?

In order to generate possible concepts related to an entity, we propose the
use of external knowledge base like YAGO (see also Sect.3.1), which provides
a hierarchy of concepts related to any given node, say v in the graph. These
concepts form the characteristics of v. The user can then query the encoding of
possible concepts in the trained node embedding. For example, a user may ask
how much the embedding vector corresponding to Barack Obama encodes Amer-
ican Presidents and Scientists. One might assume that the Obama’s embedding
vector should not have anything to do with the concept Scientists, which might
not be true as the underlying graph might put Obama in close proximity with
other Nobel Prize winners who are also Scientists. Having defined or collected
concepts from external knowledge bases, the next natural question is:

RQ 3 For a given embedding vector, ®, and a concept ¢, how can we score the
applicability of ¢ to @, ¢

To quantify the applicability of concept corresponding to an embedding or to
explain an embedding in terms of the applicable and not applicable concepts, we
propose two algorithms: Simple Aggregation Strategy (SAS) and Concept Space
Discovery (CSD).

4.1 Simple Aggregation Strategy

The first approach uses a simple aggregation strategy to build concept represen-
tations from the representations of the nodes (from the training set) to which
the concept is applicable (test nodes are held out). In particular, we first com-
pute a vector representing the given concept by taking the element-wise mean of
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all the embedding vectors corresponding to nodes to which the concept applies,
excluding the query nodes. This vector defines the concept center. To score a
query node, we compute the L2 distance between its embedding vector and the
concept center.

Input Graph

Node Embedding space

Albert_
Einstein

Richard_Feynmann

s
Knowledge Base g
O scientist S ~_
Physicists S Theoretical Physicists ch
o = ®
O Biologists Theoretical ~_ OQ'Q
Physicists ~ (’0(\

Nuclear_Phy.

Albert_Einstein  Richard_Feynmann

Fig. 1. Extracting concept spaces

4.2 Concept Space Discovery (CSD)

The second algorithm is more involved and explicit, in the sense that for each
concept c¢ it learns a linear transformation, which is used to project the node
vectors into a more restricted space for ¢, that we call concept space. The original
embedding vectors are projected into this new space to extract their effective
representations which best encode the given concept (refer Fig. 1). We learn the
parameters for this transformation on triplets of entities, using triplet loss. Let
a be the entity node (also called anchor node) which is a direct descendant of
concept ¢, p be some sibling of a in the taxonomy and n be the negative example,
i.e., an entity which is not a sibling of a in the taxonomy. For any node v, let
®,, represent the corresponding embedding vector. The triplet loss L(a,p,n) is
then defined as follows.

E(a,p, n) = ma’x{d(q)a, q)p) - d((I)av (Dn) +m, O} (1)

where d(®,, ®,) = ||z — y||2 and m is a margin specific to the negative entity in
a triplet. We set this margin to be the distance from the target concept to the
lowest common ancestor concept shared by the positive and the negative entity,
i.e. negative entities that are conceptually close to the positive entity have lower
margins and ones that are conceptually far away have higher margins. We refer to
negative entities with low margins as soft negatives and to negative entities with
high margins as hard negatives. An illustrative example for computing margin
is provided in Fig. 2.
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Fig. 2. Margin for triplet loss is determined by the similarity in the taxonomy graph.
The margin between Albert Einstein and Donald Knuth is 2, where as the margin
between Albert Einstein and Alfred Nobel is 1.

Score Computation. The scoring of how much a concept applies to a query
entity is analogous to the first approach, but of course operates in the concept
space. That is, for a given concept ¢ and the positive entities (the training set)
corresponding to the concept, we first compute their projections into common
concept space and then compute the mean of the resulting projected vectors
to represent the concept. Again for a given query node, we first compute its
projection into the concept space and the final score is then given by the L2
distance between the concept vector and the query projection. Lower the score,
better is the concept encoded by the query node. Note that both loss function
and scoring make use of the same distance metric, the L2 distance.

5 Experiments

5.1 Data Acquisition

We conduct our experiments on the Wikipedia entity graph, where the nodes are
Wikipedia pages and the edges correspond to the hyperlinks between them. In
addition, we use the type hierarchy of YAGO as the KB and consider all leaves
under a concept node as belonging to the concept, as described in Sect. 3.1.

5.2 Methodology

Given a query entity ¢ and a start concept csqrt We learn concept spaces for
Cstart and its sibling concepts in the taxonomy. Note that we limit the number of
concepts due to computation (Some concepts have a large number of siblings).
For each selected concept, we a learn a concept representation as described in
Sect. 4. Below we give more details about the training employed in our second
approach CSD.

For CSD where we use triplet loss function to learn the concept space we
choose positive and negative examples as follows. For each concept ¢, the set of
positive entities (examples) consists of all entities contained in ¢. Next, we rank
all ancestor concepts of ¢ by the margin, which is the distance of the concept to
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c. Following Fig. 2, if ¢ is Theoretical Physicists, then entities which belong to the
concept Physicists are negative entities with a margin of 1, entities belonging to
the concept Scientists are negative entities with a margin of 2, and so on. Note
that an entity is always assigned the lowest possible margin. In this example, all
physicists get assigned a margin of 1 and only all scientists that are not physicists
get assigned a margin of 2. We also exclude the query entity g from the sampling
process. We split the sets of positive and negative entities into a training and a
validation set, taking 20% of the entities for the validation set.

In order to generate a triplet, we select a positive entity uniformly from the
set of positive samples. An anchor entity is selected in the same way, with respect
to the anchor not being the same entity as the chosen positive one. Next, we
select a margin m uniformly from the available margins in the set of negative
entities. Then, we select a negative entity uniformly from the negative samples
corresponding to margin m. To train one concept space, we sample a total of
ten thousand triplets. We then train the linear transformation using Stochastic
Gradient Descent with Momentum for 100 epochs, with a mini batch size of 16
and a leaning rate of 0.001. We stop the training early if the validation loss does
not improve over 5 epochs. After training, we score the query entity as described
in Sect. 4 corresponding to our two approaches.

1.4- B DeepWalk
= LINE
1.2-
by
3 1.0-
508
S 0.6-
©
> 0.4-
n
0.0- ; ; ;
level 1 level 2 level 3

Fig. 3. Mean validation losses for training concept space projections for concepts of
different hierarchy levels. Level 1 includes concepts high up in the hierarchy, namely
person, organization and country. The second level includes scientist, educational insti-
tution and countries in Europe. Level 3 then covers the more fine-grained concepts
theoretical physicist, university or college in Germany and states of Germany.

6 Results

In Fig.3 we show the errors corresponding to each concept level for different
node embedding approaches (DeepWalk and LINE). Concepts at a higher level,
as expected, exhibit higher error but the error reduces to a small value for more
specific concepts. It is interesting to observe that it is easier to find interpretable
concept spaces in DeepWalk as opposed to LINE. In this regard DeepWalk can
be in some sense regarded as more interpretable than LINE.
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Fig. 5. Concept ranking for Donald Trump (Color figure online)

Figures4 and 5 show the scores of different concepts for the query entities
Albert Einstein and Donald Trump, respectively. We recall that lower the score
S(®,,¢), more is the applicability of ¢ towards the embedding vector @, or the
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entity v. Concepts under which the query entity is listed in YAGO are shown in
green, concepts under which it is not listed in red.

We note that for the query entity Albert Finstein, scoring concepts in both
of the original embedding spaces (Fig.4a, b) yields a correct ranking of the
concepts. Yet, there is not much difference between the scores of concepts which
apply to the query entity and the scores of non-applicable concepts. This is more
prominent the case for the embeddings generated by LINE, where differences in
the scores are barely noticeable.

We observe a similar behaviour with our second query entity Donald Trump.
An interesting observation here is that the best ranked concept in Fig. 5b, Leaders
of organizations which is not listed as applicable concept in the taxonomy, in fact
applies to the query entity Donald Trump. This is another finding, in the sense
that the embeddings encode knowledge not present in YAGO. Using concept
spaces to score the query entity increases the differences between scores. This
seems to work well for both query entities when using the embeddings generated
by DeepWalk. The concept spaces deliver scores where it is much clearer whether
a concept applies to the query entity or not, as there is a large gap between
applicable ones and non-applicable ones.

7 Conclusions and Future Work

In this work we proposed a method to find interpretable concept spaces for graph
embeddings. We hypothesize that latent feature spaces that embed named ver-
tices are not interpretable themselves but contain subspaces that do contain
human understandable concepts. We propose an algorithm that tries to find
subspaces in the feature representation space by exploiting similarity of enti-
ties in the KB using triplet loss. We anecdotally show the effectiveness of our
approach on a small subset of concepts chosen from the KB.

As future work there are plenty of avenues to investigate in detail. First, we
would want to improve our evaluation procedure to quantitatively establish the
effectiveness of our concept space discovery approach. This would require us to
not only experiment with a large set of concepts but increase our coverage to
multiple unsupervised and semi-supervised node representation learning meth-
ods. Secondly, we would want to find out that if there are non-linear sub spaces
that encode coarse-granularity concepts like scientists, politicians etc. Currently,
we see room for improvement in finding subspaces for coarser granularity topics
due to choice of linear subspaces.
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Abstract. As machine learning becomes an important part of many
real world applications affecting human lives, new requirements, besides
high predictive accuracy, become important. One important requirement
is transparency, which has been associated with model interpretability.
Many machine learning algorithms induce models difficult to interpret,
named black box. Black box models are difficult to validate. Moreover,
people have difficulty to trust models that cannot be explained. Explain-
able artificial intelligence is an active research area. In particular for
machine learning, many groups are investigating new methods able to
explain black box models. These methods usually look inside the black
models to explain their inner work. By doing so, they allow the interpre-
tation of the decision making process used by black box models. Among
the recently proposed model interpretation methods, there is a group,
named local estimators, which are designed to explain how the label of
particular instance is predicted. For such, they induce interpretable mod-
els on the neighborhood of the instance to be explained. Local estimators
have been successfully used to explain specific predictions. Although they
provide some degree of model interpretability, it is still not clear what
is the best way to implement and apply them. Open questions include:
how to best define the neighborhood of an instance? How to control
the trade-off between the accuracy of the interpretation method and its
interpretability? How to make the obtained solution robust to small vari-
ations on the instance to be explained? To answer these questions, we
propose and investigate two strategies: (i) using data instance properties
to provide improved explanations, and (ii) making sure that the neigh-
borhood of an instance is properly defined by taking the geometry of the
domain of the feature space into account. We evaluate these strategies in
a regression task and present experimental results that show that they
can improve local explanations.
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1 Introduction

Machine learning (ML) algorithms have shown high predictive capacity for model
inference in several application domains. This is mainly due to recent tech-
nological advances, increasing number and size of public dataset repositories,
and development of powerful frameworks for ML experiments [1-6]. Applica-
tion domains where ML algorithms have been successfully used include image
recognition [7], natural language processing [8] and speech recognition [9]. In
many of these applications, the safe use of machine learning models and the
users’ right to know how decisions affect their life [10] make the interpretability
of the models a very important issue. Many currently used machine learning
algorithms induce models difficult to interpret and understand how they make
decisions, named black boxes. This occurs because several algorithms produce
highly complex models in order to better describe the patterns in a dataset.

Most ML algorithms with high predictive performance induce black box mod-
els, leading to inexplicable decision making processes. Black box models reduce
the confidence of practitioners in the model predictions, which can be a obsta-
cle in many real world applications, such as medical diagnostics [11], science,
autonomous driving [12], and others sensitive domains. In these applications, it
is therefore important that predictive models are easy to interpret.

To overcome these problems, many methods that are able to improve model
interpretation have been recently proposed; see e.g. [13,14] for details. These
methods aim at providing further information regarding the predictions obtained
from predictive models. In these methods, interpretability can occur at different
levels: (i) on the dataset; (ii) after the model is induced; and (iii) before the model
is induced [15]. We will focus our discussion on methods for model interpretability
that can be applied after the induction of a predictive model by a ML algorithm;
these are known as agnostic methods.

Model-agnostic interpretation methods are a very promising approach to
solve the problem of trust and to uncover the full potential of ML algorithms.
These methods can be applied to explain predictions made by models induced
by any ML algorithm. Some well known model-agnostic interpretation methods
are described in [16-20]. Perhaps the most well known interpretation method
is LIME [18], which allows local explanations for classification and regression
models. LIME has been shown to present a very good capability to create local
explanations. As a result, LIME has been used to interpret models induced
by ML algorithms in different application domains. However, it it still not clear
how to make some decisions when implementing and applying LIME and related
methods. Some questions that arise are:

(i) How to best define the neighborhood of an instance?
(ii) How to control the trade-off between the accuracy of the interpretation
model and its interpretability?
(iii) How to make the obtained solution robust to small variations on the
instance to be explained?
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A good local explanation for a given instance x* needs to have high fidelity
to the model induced by a ML algorithm in the neighborhood of x*. Although
this neighborhood is typically defined in terms of Euclidean distances, ideally it
should be supported by the dataset. Thus, the sub-domain used to fit the local
explanation model (i.e., a model used to explain the black box model) should
reflect the domain where the black model model was induced from. For instance,
high-dimensional datasets often lie on a submanifold of R?, in which case defining
neighborhoods in terms of the Euclidean distance is not appropriate [21-24].
To deal with this deficiency, we address issue (i) by creating a technique that
samples training points for the explanation model along the submanifold where
the dataset lies (as opposed to Euclidean neighborhoods). We experimentally
show that this technique provides a solution to (iii).

In order to address (ii), we observe that a good local explanation is not nec-
essarily a direct map of the feature space. For some cases, the appropriate local
description of the explanation lies on specific properties of the instance. These
instance properties can be obtained through a transformation of the feature
space. Thus, we address issue (ii) by creating local explanations on a transformed
space of the feature space. This spectrum of questions should be elaborated by
the specialists of the specific application domain.

In this work, we focus on performing these modifications for regression tasks.
However, these modifications can be easily adapted for classification tasks. In
Sect. 2.1, we discuss the use of instance properties, how to deal with the trade-
off between explanation complexity and the importance of employing a robust
method as an explanatory model. In Sect. 2.2, we describe how to improve the
local explanation method using the estimation of the domain of feature space.
In Sect. 3, we apply our methodology to a toy example. Finally, Sect. 4 presents
the main conclusions from our work and describes possible future directions.

2 Model Interpretation Methods

2.1 Local Explanation Through Instance Properties

A crucial aspect for providing explanations to predictive models induced by ML
algorithms is the relevant information to the specific knowledge domain. In some
cases, a direct representation of the original set of features of an instance does
not reflect the best local behavior of a prediction process. Hence, other instance
properties can be used to create clear decision explanations. These properties
can be generated through a map of the original features space, i.e., a function of
the input x. Moreover, these instance properties can increase the local fidelity
of the explanation with the predictive model. This can be easily verified when
the original feature space is highly limited and providing poor information on
the neighborhood of a specific point. This case is illustrated by Fig. 1(a).

In order to provide a richer environment to obtain a good explanation, the
interpretable model should be flexible to possible questions that an user want to
instigate the ML model. Given that the possible explanations are mapped using
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Target
Feature 2

(a) Features (b) Feature 1

Fig. 1. (a) An example where a linear regression of the original features would provide
little information regarding the model prediction. The blue continuous line represents
the predictive model output as a function of the input, and the red circles represent
two critical points of the curve. A local linear regression of the original feature space
will produce a limited explanation in the neighborhood of the two critical points. (b)
Representation of a domain of a two-dimensional feature problem where the plane
defined by the two features is not fully covered. A local sampling can be used to
create explanations on the neighborhood of the instance (red circle) that belongs to
the correct task domain (blue region) (i.e., the intersection of the orange circle with
the blue region) rather than on the orange circle (Color figure online).

specific functions of the feature space, we can create an interpretable model using

N
9(x) = oo + Zaifi(x) (1)

where x represents the original vector of features, «; are the coefficients of the
linear regression that will be used as an explanation, and f;(.) are known func-
tions that map x to the properties (that is, questions) that have a meaningful
value for explaining a prediction, or that are necessary to obtain an accurate
explanation.

Once f;’s are created, the explainable method should choose which of these
functions better represent the predictions made by the original model locally.
This can be achieved by introducing an L1 regularization in the square error loss
function. More precisely, let h be a black-box model induced by a ML algorithm
and consider the task of explaining the prediction made by h at a new instance
x. Let x},...,x), be a sample generated on a neighborhood of x. The local
explanation can be found by minimizing (in «)

M N
L= Z(h(x%) —g(x}))* + Z Aol (2)
k=1 =1

where the first term is the standard square error between the induced model
and the explanatory model and the second term is the penalization over the
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explanatory terms. The value of A; can be set to control the trade-off among
the explanatory terms. For instance, if some explanatory terms (f;) are more
difficult to interpret, then a larger value can be assigned to \;.

In order to set the objective function (Eq. 2), one must be able to sample in a
neighborhood of x. To keep consistency over random sampling variations on the
neighborhood of x, we decided to use a linear robust method that implements
the L; regularization (see [25]). This robust linear regression solves some of the
problems of instability of local explanations [26].

Additionally, a relevant question is how to define a meaningful neighborhood
around x. In the next section we discuss how this question can be answered in

an effective way.
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Fig.2. A graphical bi-dimensional representation of the spiral toy model described
by Eq.3. (a) Original data where the colors represent the target value (y). (b) The
domain of feature space (manifold), the blue points represent the original data, the
pink polygon is the estimate of the manifold using a-shape (o = 1.0), the black crosses
represent the instances to be explained (Xeszp) (details in Sect.3.1 - x* = (0.0, 14.5),
x? = (10.0,10.0) and x® = (—16.0,0.0)), gray points represent a sample from a normal
distribution around the X¢zp, and the red points correspond to the sample that belong
to the estimated domain (Color figure online).

2.2 Defining Meaningful Neighborhoods

Feature Space. The training data used by a ML algorithm defines the domain
of the feature space. In order to obtain a more reliable explanation model, we can
use the estimated domain of the feature space for sampling the data needed to
obtain this model via Eq. 2, x], ..., x),. This approach improves the fidelity and
accuracy of the model when compared to standard Euclidean neighborhoods used
by other methods [18]. The estimation of the feature domain is closely related to
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the manifold estimation problem [27]. Here, we show how this strategy works by
using the a-shape technique [28,29] to estimate the domain of the feature space.

a-shape. The a-shape is a formal mathematical definition of the polytope con-
cept of a set of points on the Euclidean space. Given a set of points S C R? and a
real value a € [0, 00), it is possible to uniquely define this polytope that enclose
S. The « value defines an open hypersphere H of radius . For « — 0, H is a
point, while for &« — oo, H is an open half-space. Thus, an a-shape is defined
by all k-simplex, {k € Z|0 < k < d}, defined by a set of points s € S where
there exist an open hypersphere H that is empty, HNS = (), and 9H Ns = s.
In this way, the « value controls the polytope details. For o — 0, the a-shape
recovered is the set of points S itself, and for o — oo, the convex hull of the set
S is recovered [28,29]. We define the neighborhood of an instance x to be the
intersection of an Euclidean ball around x and the space defined by polytope
obtained from the a-shape. In practice, we obtain the instances used in Eq. 2
by sampling new points around x that belong to the space defined by polytope
obtained from the a-shape.
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Fig. 3. Comparison of prediction performed by the explanation model and the true
value of the spiral length using a data set not used during the induction of the model
by a ML algorithm. The explanation model was generated for point x* = (0.0, 14.5).
Figures (a) and (c) show the true label y versus the explanation model prediction.
The black line represents the perfect matching between the two values. Figures (b) and
(d) show the importance of the features obtained by the explanation model. Normal
sampling strategy ((a) and (b)): MSE = 1.18; R? = 0.72. Selected sampling ((c) and
(d)): MSE = 0.19; R* = 0.95.
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Fig. 4. Comparison of prediction performed by the explanation model and the true
value of the spiral length using a data set not used during training of the ML model.
The explanation model was generated for point x* = (10.0,10.0). Figures (a) and (c)
show the true label y versus the explanation model prediction. The black line represents
the perfect matching between the two values. Figures (b) and (d) show the importance
of the features obtained by the explanation model. Normal sampling strategy ((a) and
(b)): MSE = 0.70; R?> = 0.81. Selected sampling ((c) and (d)): MSE = 0.16; R* = 0.96.

3 Results for a Toy Model: Length of a Spiral

In this section, we present an application of our proposed methodology for a
toy model in which the data is generated along a spiral. For such, we use the
Cartesian coordinates of the spiral on the plane as features.

3.1 Definition

We explore the toy model described by
x1 = 6cos(f) + € xo = 0sin(f) + e (3)

y = % (071462 + sinh~ 6]

where 1 and zo are the values that form the feature vector x = (z1,x3), 0 is
a independent variable, €;, i € {1,2}, is a random noise, and the target value
is given by y, the length of the spiral. This toy model presents some interesting
features for our analysis, such as the feature domain over the spiral and the sub-
stantial variance of the target value when varying one of the features coordinate
while keeping the other one fixed.

Instances for Investigation. We investigate the explanation for 3 specific
instances of our toy model: x! = (0.0,14.5), x> = (10.0,10.0) and x® =



248 T. Botari et al.

(—16.0,0.0). For the first point, x*, we have that the target value (the length of
the spiral) will locally depend on the value of x; , and thus explanation methods
should indicate that the most important feature is 1. For the second value, x2,
the features x1 and zo have the same contribution for explaining such target.
Finally, for the third point, x3, the second feature should be the most important

feature to explain the target.

Data Generation: Using the model described in Eq. 3, we generated 80 thou-
sand data points. These data was generated according to 6 ~ Unif[0, 87], a uni-
form distribution. The values of random noise were selected from e; ~ A(0,0.4)
and ez ~ N(0,0.4), where N (u,0) is a normal distribution with mean p and
standard deviation o. The feature space and the target value are shown in Fig. 2
(a). The generated data was split into two sets in which 90% used for training
and 10% for testing. Additionally, we test the explanation methods by sampling
three sets of data in the neighborhoods of x*, x2, and x3.

Model Induction Using a ML Algorithm: We used a decision tree induction
algorithm (DT) in the experiments. We used the Classification and Regression
Trees (CART) algorithm implementation provided by the scikit-learn [5] library.
The model induced by this algorithm using the previously described dataset had
as predictive performance MSE = 24.00 and R? = 0.997.

Determining the a-shape of the Data: For this example, we applied the a-
shape technique using a = 1.0. The value of a can be optimized for the specific
dataset at hand; see [29] for details. The estimation of the domain using the
a-shape is illustrated by Fig. 2(b).

3.2 Local Explanation

The local explanation was generated though a linear regression fitted to a data
generated over the neighborhood of the point for which the explanation was
requested (Xexp). We use the linear robust method available on the scikit-learn
package [5].

Explanation for Instance x! = (0.0,14.5): The obtained explanation using
the standard sampling approach (hereafter normal sampling) presents low agree-
ment with true value of the spiral length (Fig.3(a)). We also noticed that this
explanation is unstable with respect to sampling variations (even though we use
a robust method to create the interpretation), and indicates that the best feature
to explain the ML algorithm locally is o (Fig.3(b)). This description is inac-
curate (see discussion in Section Instances for Investigation). On the other
hand, when the sampling strategy is performed over the correct domain of the
feature space (hereafter selected sampling), we obtain an explanation method
with high predictive accuracy (i.e., that accurately reproduces the true target
value - Fig. 3(c)). Moreover, the feature that best explains such prediction is x4
(Fig. 3(d)), which is in agreement with our expectation.
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Fig. 5. Comparison of prediction obtained by the explanation model and the true value
of the spiral length using a data set not used during training of the ML model. The
explanation model was generated for point x3 = (—16.0,0.0). Figures (a) and (c) show
the true label y versus the explanation model prediction. The black line represents the
perfect matching between the two values. Figures (b) and (d) show the importance of
the features obtained by the explanation model. Normal sampling strategy ((a) and
(b)): MSE = 0.45; R? = 0.91. Selected sampling ((c) and (d)): MSE = 0.17; R? = 0.97.

Explanation for Instances x? = (10.0,10.0) and x® = (—16.0,0.0): We also
analyzed the other two points to demonstrate the capability of the selected sam-
pling to capture the correct feature importance. For the instance x2, the features
importance is almost equally divided between the two features (Fig.4). For the
instance x3, the most important feature is x5, with importance of —1.0 (Fig. 5).
In the case of x3, the normal sampling strategy produced a good explanation
(Fig. 5(b)). However, we noticed that this result is unstable due to random vari-
ation in the sampling. All results presented here are in agreement with our
discussion in Section Instances for Investigation.

3.3 Robustness of Explanations

Good explanation models for x* should be stable to small perturbations around
xx. To illustrate the stability of our method, we generated explanations for
instances in the neighborhood of x': x'2 = (-2.0,14.5), x'® = (1.0,14.0) and
x1¢ = (0.5,13.7). Table 1 shows that the explanations created for these points
using selected sampling are compatible with those for x!. On the other hand,
the normal sampling strategy is unstable. These results demonstrate that using
the domain defined by the feature space can improve the robustness of a local
explanation of an instance.
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Table 1. Local explanations generated for instances around instance x: for normal
and selected sampling strategies. MSE and R? measured between true values and pre-
dictions performed by the local explanation model.

Point ‘ 1 ‘ T2 ‘ z1 Importance | zo Importance ‘ MSE ‘ R?

Normal sampling

x! 0.0/14.5| —0.92 2.46 1.18 |0.72
x'? | -2.0)14.5|-1.07 1.87 6.19 |0.64
x1P 1.0/14.0 | —0.89 3.91 8.99 | 0.46
xte 0.5/ 13.7| —0.95 1.47 1.09 |0.93
Selected sampling

x! 0.0/14.5| —0.96 0.33 0.19 |0.95
x'? | —2.0]14.5| —0.98 0.31 0.30 | 0.98
x1P 1.0|14.0 | —0.97 0.07 0.21 1 0.99
x1e 0.5]13.7| —0.96 0.39 0.39 1 0.99

4 Conclusion

In order to increase trust and confidence on black box models induced by ML
algorithms, explanation methods must be reliable, reproducible and flexible with
respect to the nature of the questions asked. Local agnostic-model explanations
methods have many advantages that are aligned with these points. Besides,
they can be applied to any ML algorithm. However, the standard of the existing
agnostic methods present problems in producing reproducible explanation, while
maintaining accuracy to the original model. To overcome these limitations, we
developed new strategies to overcome them. For such, the proposed strategies
address the following issues: (i) estimation of the domain of the feature space
in order to provide meaningful neighborhoods; (ii) use of different penalization
level on explanatory terms; and (iii) employment of robust techniques for fitting
the explanatory method.

The estimation of the domain of the features space should be performed
and used during the sampling step of local interpretation methods. This strat-
egy increases the accuracy of the local explanation. Additionally, using robust
regression methods to create the explainable models is beneficial to obtain stable
solutions. However, our experiments show that robust methods are not enough;
the data must be sampled taking the domain of the feature space into account,
otherwise the generated explanations can be meaningless.

Future work includes testing other methods for estimating manifolds such
as diffusion maps [30] and isomaps [31], extending these ideas to classification
problems, and investigating the performance of our approach on real datasets.
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Abstract. One often finds in the literature connections between mea-
sures of fairness and measures of feature importance employed to inter-
pret trained classifiers. However, there seems to be no study that com-
pares fairness measures and feature importance measures. In this paper
we propose ways to evaluate and compare such measures. We focus in
particular on SHAP, a game-theoretic measure of feature importance; we
present results for a number of unfairness-prone datasets.

Keywords: Group and individual fairness - Interpretability + Feature
importance + Shapley value

1 Introduction

Machine learning algorithms have been used in a range of applications, from
decisions about bank loans to criminal sentencing. Due to concerns about algo-
rithmic fairness [4,12], several metrics have been created to detect bias injustice
across groups [8,10] or individuals [7,9] or both [25]. It has been suggested that
measures of feature importance can identify failure of fairness [1,26,27] as fea-
ture importance can indicate that a feature has a larger effect that it should
have [19,21,24,30].

There seems to be no study that verifies whether feature importance measures
are indeed useful in assessing fairness. Moreover, no study about the (supposed)
connection between the two kinds of measures seems to be available. This paper
proposes a simple scheme to evaluate the relationship between feature impor-
tance and fairness measures, by comparing measures on a dataset with and
without bias removal technique.

The contributions of this paper are: (i) a framework to evaluate the merits
of feature importance in assessing fairness, based on comparing the variation
of results with and without application of reweighing; and (ii) a study across
four standard datasets, where the results obtained through feature importance
are compared with fairness measures. We focused on reweighing techniques to
remove bias [14] and SHAP to measure feature importance [20].
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In the next section we review various metrics concerning fairness and inter-
pretability; we introduce a few twists to emphasize their connection. Later we
describe our proposals and experiments.

2 Background

In this section we summarize definitions of fairness, techniques for bias removal,
and tools to measure feature importance that are related to interpretability.

2.1 Defining Fairness

Definitions of fairness can be divided into two major categories: group fairness
and individual fairness. These definitions quantify the relationship between an
“unprivileged” and a “privileged” group.

In this paper we assume that there is a unique sensitive feature A that
differentiates the privileged group from the unprivileged one. And we assume
that that value zero for this feature signals the unprivileged group, while value
one indicates the privileged group. The target output has values {0,1}, where 1
is the desirable class, such as good credit score, and 0 is the undesirable class.

Group fairness is obtained when the privileged and the unprivileged groups
are treated the same. One possible way to quantify group fairness is to use
disparate impact [8]:

disp_impact = P(Y =1|A=0)/P(Y =1|4 =1), (1)

where Y is the predicted outcome and A is the sensitive feature. Equation (1)
must be close to one to indicate fairness; other values indicate unequal treatment
through feature A.

Another measure of group fairness is based on predicted and actual outcomes
as captured by equality of opportunity [10]:

equal_opport = P(Y =1|A=0,Y =1) - P(Y =1]A=1,Y =1), (2

where Y is the actual outcome. Expression (2) should be close to zero; other
values indicate unequal treatment.

Approaches that aim at equalizing relationships between groups may increase
unfairness amongst individuals. Consider for instance a job application setting:
to equalize relationship between groups one may select less qualified candidates
from the unprivileged group. Individual-level fairness then makes sense.

Individual fairness requires similar individuals to receive similar classifi-
cation outcomes. For instance, consistency compares a model prediction of an
instance x to its k-nearest neighbors, kNN (x) [29]:

N
1 1
consistency =1 — N Z:l Un — p Z Uil - (3)
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Note that we here introduced a small change to the original formulation of con-
sistency: instead of calculating kNN for the input x, we use 2/, where the latter
refers to the input x with the removal of the sensitive feature. Expression (3)
must be close to one to indicate fairness.

In this paper we employ the three definitions presented above in our experi-
ments: disparate impact (1), equality of opportunity (2) and consistency (3).

2.2 Removing Bias

Techniques that attempt to remove bias from a model can be divided into three
categories: ones that preprocess data before a classifier is trained [8,13,29]; ones
that operate inprocessing, where the model is optimized at training time [15];
and ones that explores postprocessing of the model prediction [10]. In this paper
we adopt a preprocessing methodology called reweighing [14] that aims at
improving group fairness, as it is a well-known technique that requires no hyper-
parameters (thus allowing us to avoid lengthy digressions into parameter tuning).
In addition, reweighting does not change the features as other methods do [8,29].

Reweighing assigns weights to the points in the training dataset to reduce
bias. Every random unlabeled data object X is assigned a weight:

Pury(A = X(A) Y = X(Y)) W
Pups(A=X(A)AY =X(Y))’

where P, is the observed probability, Pe,, is the expected probability and A is
the sensitive feature. Lower weights are assigned to instances that the privileged

class favors. This approach is restricted to a single binary sensitive attribute and
a binary classification problem.

W(X) =

2.3 Feature Importance

We can divide techniques that explain the behavior of machine learning algo-
rithms in two main groups: global approaches that aim at understanding the
behavior of the model as a whole [18] and local approaches that interpret indi-
vidual predictions [19-21]. In this paper we choose a local approach called SHAP,
which has the advantage of ensuring three important properties: local accuracy,
missingness and consistency. We use a local approach because if the methodology
were used in practice, it is important that it be able to provide justification for
a certain generated result, which would allow to assess whether the prediction
was fair.

SHAP (SHapley Additive exPlanations) [20] produces a local explanation for
each prediction of a given classifier. Using insights from game theory, SHAP can
explain prediction of any machine learning model and unifies concepts of several
previous methods [2,5,17,21-23,30].

SHAP approximates locally the function to be explained, which we call f,
by a linear function g such that

M
fla) = g(a’) = do + Z Giy,
i=0
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where z’ is again the modified input and each weight ¢; is called a SHAP value,
given by

o=y BRI 506y - s 6
STV

where S is the set of non-zero entries in 2’ and N is the set of all input features.

SHAP values satisfy a few properties. Local accuracy requires the result of
the explanation model g for an input x to be equal to the prediction of the model
desired to explain f. Missingness requires features missing in the input to be
given no importance. Finally, recall that consistency states that if a change in the
model occurs so that a feature has larger impact on the result, the importance
of that feature should not decrease.

In this paper we mostly focus on a unique sensitive feature A in the model, but
with the graphical results provided by the SHAP framework one can understand
influences that go far beyond that. For instance, one can investigate how the
input of each feature impacts the output, analyze relations between variables,
and verify which variables exert a greater influence on the model result.

We selected two types of graphs that influences detected by SHAP: depen-
dence plots and summary plots [19].

Dependence plots represent the effect of a single feature in the model output.
To represent this relation the plot shows in the x-axis the value of the feature and
the y-axis shows the SHAP value of the same feature. SHAP dependence plots
also let one visualize the effect of the feature with the strongest interaction (cal-
culated by SHAP interaction values). These effects are shown by coloring from
low (blue) to high (red) each dot in the graph with the value of an interacting
feature. Examples of these graphs are shown later in Fig. 4.

Summary plot sorts features by global impact on the model, calculated as

1L
GjZNZ\¢§|~ (6)
=1

Each dot in the graph represents the SHAP value of that feature. Examples are
shown later in Fig. 5.

3 Proposal

In this section we propose techniques that will allow us to compare fairness
measures and results obtained through SHAP. It should be noted that simply
computing SHAP values will not help us doing it: SHAP values are computed by
datapoint, whereas fairness measures capture the whole behavior of a classifier.
Hence the need for novel ideas as proposed here.

To evaluate fairness we resort, first, to global impact of each feature (Expres-
sion (6)) as we focus on the ranking of the feature in a list of features ordered
by descending global values. Besides looking at global impact, we also employ
the following measure:
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1 1
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where k represents unprivileged group and [ privileged group, and each ¢ is a
SHAP value. A value of D; close to one indicates fairness, while a negative value
favors the privileged group and a positive value favors the unprivileged one.

-
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Fig. 1. Fairness through feature importance: the model in red was trained with a
fairness-sensitive dataset; the model in blue had bias removed. (Color figure online)

Figure 1 summarizes the steps in assessing fairness through feature impor-
tance. An initial step in the workflow is the encoding of categorical variables in
the dataset, followed by data split into 80% — 20% train-test sets and a stan-
dardization of features.

Then there are two possible paths: the red box indicates training directly
with the model, and the blue box indicates an additional step of de-biasing
before model training (through reweighting). Finally, results obtained from fea-
ture importance and fairness measures are compared.

More precisely, we compare the results by evaluating how fairness and feature
importance measures vary as bias varies. When bias is present, we expect discrim-
ination to appear in fairness measures (disparate impact and consistency smaller
than one, and equality of opportunity smaller than zero), while we expect fea-
ture importance measures to display a negative SHAP value difference between
privileged and unprivileged groups.

Note that reweighting focuses on group fairness; consequently, we can expect
three scenarios concerning group fairness, as we now analyze:

— Equality between groups: This scenario is characterized by disparate
impact close to one and equality of opportunity to zero. We hypothesize that
privileged and unprivileged groups get similar importance, which should be
reflected in their mean SHAP values getting closer and in some reduction in
feature importance with a global SHAP value close to zero.

— Favoring the privileged group: This scenario is characterized by increase
of disparate impact and equality of opportunity. However, disparate impact
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would remain smaller than one and equality of opportunity negative. We
hypothesize a decrease in SHAP value difference, but the value would remain
negative. We also hypothesize a decrease in importance of the sensitive fea-
ture.

— Favoring the unprivileged group: This scenario is characterized by inver-
sion of importance between groups, which would be perceived with disparate
impact result greater than one or equality of opportunity positive. We hypoth-
esize the SHAP values difference between groups to be positive. While we
expect an increase in the feature importance if the discrimination between
groups increases, which would be perceived for example with increase in mod-
ule of equality of opportunity, and we hypothesize a decrease in feature impor-
tance if the discrimination decreases.

Clearly the hypotheses just described must be validated through empirical
analyses. This is the goal of the remainder of this paper. Before we proceed,
a comment on individual fairness: as reweighting does not focus on individual
fairness, it is hard in principle to say how reweighting affects consistency (later
we show that the relationship between these techniques is significant and actually
somewhat surprising).

4 Experiments

To test our proposed scheme and the hypotheses outlined at the end of the
previous section, we applied Logistic Regression, Random Forests and Gradient
Boosting to four unfairness-prone datasets (using the scikit-learn library!). The
study was limited to one binary sensitive attribute and a binary classification
problem, due to limitations in reweighing and in some fairness measures. How-
ever, the methodology used to obtain feature importance could be applied to
any classifier, and the sensitive variable could be of any type.

All tests were done using the same hyperparameters. The AIF-360? library
was used to apply reweighing and to calculate disparate impact and equality of
opportunity metrics. We use the kNN implementation of sckit-learn to compute
the consistency metric.

All datasets and techniques are available in a github repository>.

4.1 Datasets

Four datasets often analyzed with respect to fairness were used: Adult, Ger-
man, Default and COMPAS datasets. Adult, German and Default datasets were
obtained from the UCI repository [6] and the COMPAS dataset from ProP-
ublica [12]. The Adult dataset [16] contains information from the 1994 census
database. The objective is to predict whether income is larger 50K dollars per

! http://scikit-learn.org.
2 https://aif360.mybluemix.net.
3 https://github.com/cesarojuliana/feature_importance_fairness.
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year. We consider gender as the sensitive attribute, following Ref. [15]. The Ger-
man dataset contains information about bank account holders, and the goal is
to classify each holder as good or bad credit risk. We use age as the sensitive
attribute as in Ref. [13]. The Default dataset [28] contains information from
credit card clients in Taiwan from April 2005 to September 2005. The objec-
tive is to predict default of their customers. We use the gender as the sensitive
attribute as in [3]. The COMPAS dataset [12] contains data from criminal defen-
dants in Broward County, Florida, which objective is to predict recidivism over
a two-year period. We use the same filter as in Ref. [11]. The sensitive attribute
is race, being selected Caucasian as the privileged group.

We remove the variable fnlwgt from Adult dataset, because this variable
does not aggregate information to the problem goal. In the Default dataset
we excluded id variable for the same reason. For the COMPAS dataset we
use only the following variables: race, age, c_charge_degree, v_score_text, sex,
priors_count, days_b_screening_arrest, v_decile_score, two_year_recid, is_recid.

4.2 Results and Discussion

In Fig.2, in the x-axis Ir means Logistic Regression, rf means Random Forest
and gbm means Gradient Boosting. The y-axis carries the names of fairness
and feature importance measures. The red line shows results without reweighing
and the blue line shows results with reweighing. The results were separated in
four columns according to the used dataset. In Fig.3 we can see the relation
between variation in fairness measures with feature importance measures in the
y-axis and the x-axis respectively. The unfilled markers represents results without
reweighing, and the filled markers results with reweighing. The markers in red
show results for Adult dataset, in green for COMPAS dataset, in blue for German
dataset, and in black for Default dataset. Legends indicate both the dataset and
abbreviation of the used model.

In this section we will classify the results according to the three scenarios
described previously: equality between groups, favoring the privileged group and
favoring the unprivileged group. This classification is made based on the fairness
results, and we hypothesized about what would be the feature importance result.
We will compare whether the assumptions made actually occurred.

From the results we see that when reweighing is applied, disparate impact,
equality of opportunity and difference in SHAP value between groups had a
variation greater than or equal to zero. Furthermore, in several cases equality
of opportunity and difference in SHAP value changed from negative to positive
value; there was no case where disparate impact changes to a value greater than
one with reweighing. With exception of the COMPAS results, in all other cases
there was an decrease in feature importance with reweighing.

In the COMPAS results we perceived the following peculiarity with reweigh-
ing: increased in consistency and in feature importance. In COMPAS we also
note the scenario of favoring the privileged group with Random Forest and with
Gradient Boosting. However, this case had the unexpected result of increasing
in feature importance probably due to variation in consistency.
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Fig. 2. Evaluation of fairness on test set for four datasets: Adult, COMPAS, German
and Default, for three types of models: Logistic Regression, Random Forest and Gra-
dient Boosting. Fairness is evaluated according to several definitions so as to capture
both group and individual fairness.
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Fig. 3. Comparison between fairness and feature importance measures, performed with
four datasets (Adult, COMPAS, German and Default) and with three types of models
(Logistic Regression, Random Forest and Gradient Boosting). The unfilled markers
represents results without reweighing, and the filled markers results with reweighing.
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The scenario of equality between groups can be seen in the Default datatset
and German dataset with Gradient Boosting. In all cases we see that equality of
opportunity was very close to zero, but disparate impact was not close to one. In
this situation, feature importance measures behaved as expected, SHAP values
difference and feature importance approached zero.

We find the scenario of favoring the privileged group in Adult dataset with
Logistic Regression and Random Forest, COMPAS with Logistic Regression and
German with Random Forest. Only with Adult dataset there is no variation in
consistency, and in this situation we see the expected scenario where equality of
opportunity ranged from a negative to a positive value.

Results demonstrate two important facts. First, there is a direct relation
between SHAP value difference and equality of opportunity, which is much more
significant than the relationship with disparate impact. This is most evident from
Fig. 3. Second, the relation of feature importance is inverse with consistency. In
the results where there was a decrease in consistency, we note that the impact
of consistency dominates feature importance (rather than the effect of increase
in equality of opportunity).

Thus we reach our main conclusion in this empirical study: feature impor-
tance measures are connected both with consistency and equality of opportunity.
Consequently we see that feature importance measures do quantify both group
and individual fairness.
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Fig. 4. SHAP dependence plot of a Logistic Regression trained with Adult dataset.
The sensitive feature is race, where value one refers to white and value zero to non
white. In y-axis is the SHAP value attributed to race. In (a) the model was trained
with the original data, and we can see that it associated higher SHAP values with the
white group, indicating discrimination in the dataset. In (b) reweighing was applied to
reduce unfairness caused by race; we note that the relationship was reversed and non
white became the group favored by the model according to SHAP values.

In the remainder of this section we present some additional remarks on the
graphs that are provided by graphs build with SHAP values and on the insights
that one may get from them. Basically, these graphs allow us to note implicit
relationships between variables. Furthermore, they display the overall effect of
any variable in the model by varying its input.
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Fig. 5. SHAP summary plots of Logistic Regression trained with Adult dataset not
applying (a) and applying (b) reweighing so as to reduce unfairness caused by race. We
can see that without reweighing the rank position of race was 17th. When reweighing is

applied the position decreases, and race is no longer among the twenty most important
features.

For example, Figs.4 and 5 show results obtained with Logistic Regression
in the Adult dataset, with and without reweighing. Figure4 shows dependence
plots, and Fig. 5 shows summary plots.

In the Adult dataset, race is the sensitive feature, and it was assigned value
zero for the unprivileged group and value one for the privileged group. Figure 4
depicts a partial dependency plot of Logistic Regression that displays unfairness
between privileged and unprivileged group when reweighing is not applied, but
the relation is inverted when reweighing is applied (greatly favoring the unpriv-
ileged group).

In Fig. 5 we can see that, besides the decrease in rank position of the sensitive
feature race, other variables changed in importance, such as the increase in Age
when reweighing is applied from the 6th to 4th position.

In Short: It is difficult to get real insights on relationships amongst variables
by examining SHAP values and related graphs. A possible future research topic
would be to extract such insights automatically.

5 Conclusion

We presented a framework that compares fairness definitions (group or individ-
ual) with results based on feature importance as quantified by SHAP. The basic
idea is to examine how fairness definitions vary by changing the effect of the
sensitive feature on the model (this was done here with reweighing). Experi-
ments show that feature importance measures can identify group and individual
fairness in the model. Certainly this is a preliminary effort that must be refined
and extended in a variety of ways, but we feel that it is a valuable contribution
due to the absence of similar analyses in the literature.
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In particular, further work is needed to remove some important restrictions.

We have focused on binary sensitive features and two-class classification prob-
lems. Such restrictions must be lifted. In future work we intend to study other
interpretability techniques that are based on feature importance. This would
allow us to determine whether some methodologies work better for some defini-
tions of fairness than others. Furthermore, we want to extend the tests to other
techniques that remove bias besides reweighting. Another promising extension of
this work would be to evaluate the visualization techniques that must be used to
present results. SHAP graphs speed up the perception of relationships between
variables, but additional insights would be welcome.
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Abstract. Technological breakthroughs on smart homes, self-driving
cars, health care and robotic assistants, in addition to reinforced law
regulations, have critically influenced academic research on explainable
machine learning. A sufficient number of researchers have implemented
ways to explain indifferently any black box model for classification tasks.
A drawback of building agnostic explanators is that the neighbourhood
generation process is universal and consequently does not guarantee
true adjacency between the generated neighbours and the instance. This
paper explores a methodology on providing explanations for a neural
network’s decisions, in a local scope, through a process that actively
takes into consideration the neural network’s architecture on creating an
instance’s neighbourhood, that assures the adjacency among the gener-
ated neighbours and the instance. The outcome of performing experi-
ments using this methodology reveals that there is a significant ability
in capturing delicate feature importance changes.

Keywords: Explainable - Interpretable - Machine learning - Neural
networks - Autoencoders

1 Introduction

Explainable artificial intelligence is a fast-rising area of computer science. Most
of the research in this area is currently focused on developing methodologies
and libraries for interpreting machine learning models for two main reasons:
(a) increased use of black box machine learning models, such as deep neural
networks, in safety-critical applications, such as self-driving cars, health care
and robotic assistants, and (b) radical law changes empowering ethics and human
rights, which introduced the right of users to an explanation of machine learning
models’ decisions that concern them.

Local Explanators are methods aiming to explain individual predictions of
a particular model. LIME [18] is a state-of-the-art methodology that first con-
structs a local neighbourhood around a given new unlabeled instance, by per-
turbing the instance’s features, and then trains a simpler transparent decision
model to extract the features’ importance. Subsequent model agnostic methods
like Anchors [19], X-SPELLS [12] and LORE [8] focused on generating better
neighbourhoods.

© Springer Nature Switzerland AG 2020
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This paper is concerned with generating better neighbourhoods too. How-
ever, it focuses on neural network models in particular, in contrast to the model
agnostic local explanators mentioned in the previous paragraph that can work
with any type of machine learning model. Our approach is inspired by the fol-
lowing observation: small changes at the input layer might lead to large changes
at the penultimate layer of a (deep) neural network, based on which the final
decision of the network is taken. We hypothesize that creating neighbourhoods
at the penultimate layer of the neural network instead, could lead to better
explanations.

To investigate this intuitive research hypothesis, we introduce our approach,
dubbed LioNets (Local Interpretation Of Neural nETworkS through penultimate
layer decoding). LioNets constructs a local neighbourhood at the penultimate
layer of the neural network and records the network’s decisions for this neigh-
bourhood. However, in order to build a transparent local explanator, we need to
have input representations at the original input space. To achieve this, LioNets
trains a decoder that learns to reconstruct the input examples from their repre-
sentations at the penultimate layer of the neural network. Taking together, the
neural network model and the decoder resemble an autoencoder.

For the evaluation of LioNets, a set of experiments have been conducted,
whose code is available at GitHub repository “LioNets”'. The results show that
LioNets can lead to more precise explanations than LIME.

2 Background and Related Work

In order to be able to present LioNets architecture, this section will provide a
sequence of definitions concerning the matter of explainable machine learning,
autoencoders and knowledge distillation.

2.1 Explainable Machine Learning

Explainable artificial intelligence is a broad and fast-rising field in computer
science. Recent works focus on ways to interpret machine learning models. Thus,
this paper will focus on explainable machine learning. An accurate definition is
the following;:

“An interpretable system is a system where a user cannot only see but also
study and understand how inputs are mathematically mapped to outputs.
This term is favoured over “explainable” in the ML context where it refers
to the capability of understanding the work logic in ML algorithms” [1].

There are several dimensions that can define an interpretable system accord-
ing to [9]. One interesting dimension is the scope of interpretability. There are
two different scopes. An interpretable system can provide global or/and local

! https://github.com /iamollas/LioNets.
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explanations for its predictions. Global explanations can present the structure
of the whole system, while local explanations are focused on particular instances.

In the same paper, they are also presenting the desired features of any inter-
pretable system. Those are:

— Interpretability: Interpretability measures how much comprehensible is an
explanation. In fact, there is not a formal metric because for every problem
we measure different attributes.

— Accuracy: The accuracy, and probably other metrics, of the original model
and the accuracy of the explanator.

— Fidelity: Fidelity describes the mimic ability of the explanator, namely the
ability of the explanator on providing the same results as the model it explains
for specific instances.

2.2 Autoencoders

Autoencoders is a growing area within deep learning [13]. An autoencoder is an
unsupervised learning architecture and can be expressed as a function

f: X-X. (1)

Autoencoder networks are widely used for reducing the dimensionality of the
input data. They initially encode the original data into some latent representa-
tion and subsequently reconstruct the original data by decoding this represen-
tation to the original dimensions. The most common varieties of autoencoders
are the three following:

— Vanilla: A three-layered neural network with one hidden layer.

— Multilayer: A deeper neural network with more than one hidden or recurrent
layers. For example Variational Autoencoders [11,17].

— Convolutional: Used for image or textual data. In practice, the hidden layers
are not fully connected, but convolutional layers.

2.3 Related Work

As already mentioned, LIME [18] is a state-of-the-art method for explaining
predictions. It follows a simple pipeline. It generates a neighbourhood of a specific
size for an instance by choosing randomly to put a zero value in one or more
features of every neighbour. Then the cosine similarity of each neighbour with the
original instance is measured and multiplied by one hundred. This constitutes
the weight on which the simple linear model will depend on for its training.
Thus, the most similar neighbours will have more impact on the training process
of the linear model. A disadvantage of LIME is in sparse data. Due to the
perturbation method that takes place on the original space, LIME can only
generate 2™ different neighbours, where n the number of non-zero values. For
example, in textual data, in a sentence of six words represented as a vector
of four thousand features, where each feature corresponds to a word from the
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vocabulary, the non-zero features are only six. Hence, only 2° = 64 different
neighbours can be generated. However, LIME will create a neighbourhood of five
thousand instances by randomly sampling through the 64 unique neighbours.

X-SPELLS [12] is a forthcoming solution providing model agnostic local
explanations to black boxes dealing with sentiment analysis problems. The
core idea of this work is to generate neighbourhoods for instances, which they
will contain semantically correct synthetic neighbours, using techniques similar
to paraphrasing. By creating such neighbourhoods, using variational autoen-
coders [11,17] to create new examples in the latent space, the goal is to present
some of these neighbours to the user as the explanation. To accomplish this,
they train a decision tree on the neighbourhood with labels assigned from the
black box and subsequently they are extracting the exemplars.

Another set of methodologies in explaining decision systems, and specifically
neural networks, are using Knowledge Distillation [7,10]. Those methods are
trying to explain globally the whole structure and the predictions of a deep
neural network, by distilling its knowledge to a transparent system. This idea
originates by the Dark Knowledge Distillation [20], which is trying to enhance
the performance of a shallow network (the student) through the knowledge of a
deeper and more complex network (the teacher).

3 LioNets

This section presents the full methodology and architecture of LioNets. LioNets
consist of four fundamental sub-architectures, which are visible in Fig. 1 at points
1, 2, 6 and 11. The main part of such system is the neural network, which will
work as the predictor. A decoder based on the predictor is the second part.
Finally, a neighbourhood generation process and a transparent predictor are the
last two mechanisms. Hence, the following process should be executed.

3.1 Neural Network Predictor

For a given dataset, a neural network with a suitable fine-tuned architecture is
being trained on this dataset. The output layer is by design in the same length
as the number of classes of the classification problem. This process is similar
to other supervised methodologies of building and training a neural network for
classification tasks, which defines a function f: X — Y.

3.2 Encoder and Decoder

When the training process of the neural network is over, a duplicate it is created.
Then removing the last layer of this copy model and labelling every other layer as
untrainable, the foundations for the autoencoder have been defined. Actually, these
foundations would be the encoder, the first half of the autoencoder, thus only the
decoder part is missing. By building successfully the decoder part and training it,
the first two stages for Lionets’ completion are achieved. Although, this is the most
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Fig. 1. LioNets’ architecture. In this flow chart, the four fundamental mechanisms of
LioNets are visible. In point 1 there is the predictor, while in point 2 the decoder. In
point 3 there is the neighbourhood generation process and in point 4 the transparent
model.

difficult stage to complete since it is not easy to successfully train autoencoders,
especially when the first half of the autoencoder is untrainable. Another approach
is to build the autoencoder firstly and afterwards to extract the layers in order to
create the encoder, decoder and predictor networks.

Mathematically those neural networks can be expressed via these functions:

Encoder: X — Z, (2)
Decoder: Z — X, (3)
Autoencoder: X — X | (4)
Predictor: X =Y. (5)

By keeping the encoder part untrainable with stable weights, it guarantees
that the generated neighbourhood is transforming from the reduced dimensions
to the original dimensions with a decoder, which was trained with the original
architecture of the neural network. That process will produce a more representa-
tive neighbourhood for the instance, without any semantic meaning to humans.

The academic community has extensively explored ways to create better
neighbourhoods for an instance, but every methodology was focused on generat-
ing new instances in the level of the input. In this work, the generation processes
take place to the latent representation of the encoded input.



270 1. Mollas et al.

3.3 Neighbourhood Generation Process

The neighbourhood generation process takes place after the training of the neural
network, the encoder and the decoder. This process could be a genetic algorithm,
like the proposed methods in LORE [8] or even another neural network, but
simpler solutions are preferred. In LioNets for an instance, that is desirable to
get explanations, after encoding it via the encoder neural network, extracting its
new representation form from the penultimate level of the neural network, the
neighbourhood generation process begins with input the instance with reduced
dimensions. By making small changes in the reduced space it could affect more
than one dimensions of the original space. Thus, the simple feature perturbation
methods on low dimensions will lead to a complex generated neighbour, which
most probably would have no semantic meaning for humans.

At that point in time, a specific number of neighbours is generated through
a selected generation process and that set of neighbours is given to the decoder,
in order to be reversed to the original dimensions.

3.4 Transparent Predictor

By the end of the neighbourhood generation stage, the neighbourhood dataset
is almost complete. The only missing part is the neighbours’ labels. Thus, the
neural network is predicting each instance of the neighbourhood dataset assign-
ing labels to every neighbour, in the form of probabilities. Afterwards, the final
dataset with the neighbours and their labels are given as training data to any
transparent regression model. The ultimate goal is to overfit that model to the
training data.

4 FEvaluation

The following section is presenting the setup for the experiments. The data pre-
processing methods for two different datasets are described, alongside with the
neural network models preparation and the neighbourhood generation process.
Finally, there is a discussion about the results of the experiments.

4.1 Setup

Our experiments involve two textual binary classification datasets. The first
one concerns the detection of hateful YouTube comments? [3] and contains 120
hate and 334 non-hate comments. The second dataset deals with the detection
of spam SMS messages [2] and contains 747 spam and 4.827 ham (non-spam)
messages. The pre-processing of these datasets consists of the following steps for
each document:

— Lowercasing,
— Stemming and Lemmatisation through WordNet lemmatizer [14] and Snow-
ball stemmer [15],

2 https://intelligence.csd.auth.gr /research /hate-speech-detection.
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— Phrases transformations (Table 1),
— Removal of punctuation marks,
— Once again, Stemming and Lemmatisation.

Table 1. Phrases and words transformations.

“what’s” to “what is”
“don’t”  to “do not”
“doesn’t” to “does not”
“that’s” to “that is”

“aren’t” to “are not”
g7 to “is”
“isn’t” to “is not”
“0%” to “percent”
“e-mail” to “email”
“’m” to “i am”
“he’s” to “he is”
“she’s” to “she is”
“it’s” to “it is”
“ye” to “have”
“re” to “are”
“d” to “would”
“117 to “will”

Then, for transforming the textual data to vectors a simple term frequency-
inverse document frequency [21] (TF-IDF) vectorization technique is taking
place.

Afterwards, the neural network predictor for these experiments consists of six
layers (Fig. 2a) and it has ‘binary_crossentropy’ as loss function. The encoder has
five layers, which we extract from the predictor and the decoder has four layers
as well (Fig.2b), which we train using ‘categorical _crossentropy’ loss function.
The autoencoder is the combination of the encoder and the decoder.

In this set of experiments, a simple generation process via features per-
turbation methods is applied. Specifically, the creation of neighbours for an
instance emerges by multiplying one feature value at a time with 0 and 27,
z € {—2,—1,1,2}. Concisely, the above process generates instances which are
different in only one dimension in their latent representation.

As soon as the neighbourhood is acquired, every neighbour is transformed
via the decoder to the original dimensions. Then, the transformed neighbour-
hood is given as input to the predictor to predict the class probabilities. Finally,
combining the output of the predictor with the transformed neighbourhood a
new oracle dataset has been created.
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Fig. 2. The predictor’s architecture (a) and the decoder’s architecture (b).

input: neighbourhood

output: X, y

transformed_neighbourhood = decoder.predict(neighbourhood)
class_probabilities = predictor.predict(transformed_neighbourhood)
X = transformed_neighbourhood, y = class_probabilities

Algorithm 1.1. Oracle dataset synthesis

The last step is to train a transparent model with this oracle dataset. It
might be useful to check the distribution of probabilities of this dataset and if
needed to transform it to have a normal distribution. In these experiments, the
transparent model chosen is a Ridge Regression model. By training this model,
the coefficients of the features are extracted and transformed into explanations,
presented as features’ weights in the x-axis of the following figures.

input: X, y, instance, feature_names
transparent_model = Ridge().fit(X,y)

coef = transparent_model.coef_
plot_explanation(coef*instance, feature_names)

Algorithm 1.2. Explaining an instance

4.2 Results on the Hate Speech Dataset

We take the following YouTube comment from the hate speech dataset as an
example: “aliens really, Mexicans are people too”. The true class of this comment
is mo hate. According to the neural network, the probability of the hate class is
approximately 0.00208.
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Fig. 3. Explanation plots of a hate speech instance via (a) LioNets and (b) LIME.

Figure3 visualizes the explanation of the neural network’s decision via
LioNets (Fig.3a) and LIME (Fig. 3b). At first sight, they appear similar. Their
main difference is that they assign the feature’s “are” contribution to different
classes. By removing this word from the instance the neural network predicts
0.00197, which is a lower probability. Thus, it is clear that the feature “are” it
was indeed contributing to the “Hate Speech” class for this specific instance as
LioNets explained.

Although to support LioNets explanations, the generated neighbourhoods’
distances from the original instance computed and presented in Table2. As it
seems the neighbours generated by LIME on original space, in this example,
when are encoded to the reduced space are further to the neighbours generated by
LioNets in the encoded space. However, when the LioNets’ generated neighbours
are transformed back to the original space, are more distant to the original
instance in comparison to LIME’s neighbours, but that is the assumption that
has been made through the beginning of these experiments. It is critical to
mention at this point, that these distances measured with neighbours generated
by changing only one feature at a time.

Table 2. Neighbourhood distances for instance of hate speech dataset.

Euclidean distance

LIME: generated on original space 0.3961
LIME: encoded 0.9444
LioNets: generated on encoded space | 0.2163
LioNets: decoded to original space 0.7635
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4.3 Results on SMS Spam Dataset

The second example which is going to be explained belongs to the SMS spam
dataset. The text of the preprocessed instance is the following: “Wife.how she
knew the time of murder exactly”. This instance has true class “ham”. The
classifier predicted truthfully 0.00014 probability to be “spam”.

Figure 4 presents two different explanations for the classifier’s prediction. As
before, Fig.4a shows the explanation provided by LioNets and Fig.4b shows
LIME’s explanation. The contribution of feature “wife” to the prediction is
assigned to different classes in each explanation. To prove the stability and
robustness of LioNets, this feature is removed and by auditing again the neural
network the new prediction is lower with a probability of 0.000095. Thus, it is
clear that feature “wife” was indeed contributing to the “spam” class as LioNets
explained and captured.
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Fig. 4. Explanation plots of SMS spam instance using LioNets (a) and LIME (b).

Like before, the neighbourhoods’ distances from the original instance are
computed and presented in Table3. As it seems the neighbours generated by
LIME on original space, by projecting them into the encoded space, are more dis-
tant to the encoded instance, compared to the neighbours generated by LioNets
directly in the encoded space.

Table 3. Neighbourhood distances for instance of SMS spam collection.

Euclidean distance

LIME: generated on original space 0.3184
LIME: encoded 0.8068
LioNets: generated on encoded space | 0.3459

LioNets: decoded to original space 0.7875
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5 Conclusion

In summary, the LioNets architecture provides valid explanations for the deci-
sions of a neural network that are comparable to other state-of-the-art tech-
niques, while at the same time it guarantees better adjacency between the gen-
erated neighbours of an instance because the generation of the neighbours is
performed on the penultimate layer of the network. In addition, LioNets can
create better, larger and more representative neighbourhoods, because the gen-
eration process takes place at the encoded space, where the instance has a dense
representation. These are the main points of creating and using LioNets on deci-
sion systems like neural networks.

One main disadvantage of LioNets is that it is focused only on explaining
neural networks, thus it is not a model agnostic method. Moreover, the overall
process of building LioNets is harder than training neural network predictors,
because they demand the training of a decoder, which is a difficult task.

Future work plans include testing the LioNets methodology on different vari-
ations of encoders and decoders and implementing more complex neighbour-
hood generation and neighbours selection processes. In addition, we would like
to explore different transparent models for explaining the instances, such as
rule-based models [5], decision tree models [4,16] and models based on abstract
argumentation [6]. Lastly, we plan to evaluate LioNets based on human subject
experiments.

Acknowledgment. This paper is supported by the European Union’s Horizon 2020
research and innovation programme under grant agreement No 825619. AI4EU Project
(https://www.aideu.eu).
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Decentralized Machine Learning
at the Edge



Decentralized Machine Learning at the Edge

Many of today’s parallel machine learning algorithms were developed for tightly
coupled systems like computing clusters or clouds. However, the volumes of data
generated from machine-to-machine interaction, by mobile phones or autonomous
vehicles, surpass the amount of data that can be realistically centralized. Thus, tradi-
tional cloud computing approaches are rendered infeasible. To scale parallel machine
learning to such volumes of data, computation needs to be pushed towards the edge,
that is, towards the data generating devices. By learning models directly on the data
sources—which often have computational power of their own, for example, mobile
phones, smart sensors, and vehicles-network communication can be reduced by orders
of magnitude. Moreover, it enables raining a central model without centralizing
privacy-sensitive data. This workshop aims to foster discussion, discovery, and dis-
semination of novel ideas and approaches for decentralized machine learning.

The second international workshop on Decentralized Machine Learning at the Edge
(DMLE’19) was held in Wiirzburg, Germany in conjunction with ECML PKDD. The
workshop included a keynote by Dr. Ingo Thon (Siemens AG) followed by technical
presentations, a hardware demo, and a poster session. The workshop was attended by
around 40 people.

The accepted papers presented interesting novel aspects of decentralized machine
learning, especially in the context of edge computing, including hardware aspects of
physically decentralized systems. We want to thank the authors for their valuable
contributions, great presentations, and lively and fruitful discussions. We would also
like to thank the DMLE’19 program committee, whose members made the workshop
possible with their rigorous and timely review process. Finally, we would like to thank
ECML PKDD for hosting the workshop and the workshop chairs, Peggy Cellier and
Kurt Driessens for their valuable support.
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with Sub-linear Communication Overhead
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Abstract. Pushing machine learning towards the edge, often implies the
restriction to ultra-low-power (ULP) devices with rather limited compute
capabilities. Generative models estimate the data generating probability
mass P* which can in turn be used for various tasks, including simula-
tion, prediction/forecasting, and novelty detection. Whenever the actual
learning task is unknown at learning time or the task is allowed to change
over time, learning a generative model is the only viable option. How-
ever, learning such models on resource constrained systems raises several
challenges. Recent advances in exponential family learning allow us to
estimate sophisticated models on highly resource-constrained systems.
Nevertheless, the setting in which the training data is distributed among
several devices in a network with presumably high communication costs
has not yet been investigated. We close this gap by deriving and exploit-
ing a new property of integer models. More precisely, we present a model
averaging scheme whose communication complexity is sub-linear w.r.t.
the parameter dimension d, and provide an upper bound on the global
loss. Experimental results on benchmark data show, that the aggregated
model is often on par with the non-distributed global model.

Keywords: Distributed learning - Undirected models - Integer
models - Model averaging

1 Introduction

When data is collected at various physical locations, we are faced with several
opportunities regarding the subsequent data processing. Data might be parti-
tioned in several different ways. Two prototypical scenarios are depicted in Fig. 1.
In the horizontal scenario, the full data is distributed instance-wise over multiple
devices. This happens due to storage or privacy restrictions. For vertically dis-
tributed data, different devices measure different features of the same instance.
This does not imply that those features are independent. An example are large
industrial processes, where measurement hardware itself is distributed. Here,
we consider case (a), i.e., the same data generating process can be observed at
multiple locations. Approaches for case (b) can be found in [14].
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The most obvious option to address horizontal data distribution is to send
the data to a central server. This comes of course with a huge communication
overhead and a loss of privacy. To address these issues, we may aggregate the
collected data to reduce the communication. Moreover, data points can be per-
turbed [4] to increase the privacy of the data source. However, we still have to
send a significant amount of data over the network. Instead of sending the raw,
aggregated, or perturbed data, an alternative is to learn the model directly at
the edge, i.e., where the data is actually generated. In this scenario, models are
updated whenever new data arrives at the device. If a convergence criterion is
met, e.g., based on distributed convex thresholding [16], the models of all devices
are collected and aggregated, to arrive at a global solution that can benefit from
the complete data. Such an aggregation can be carried out by Radon machines
[8]. However, we will resort to a simple averaging operation that is reminiscent
of Bayesian model averaging [5].

A huge set of machine learning techniques can potentially be applied in
this setting. Here, we restrict ourselves to generative probabilistic models for
discrete data, which can used for various tasks, including simulation, predic-
tion/forecasting, and novelty detection. Moreover, these models are statistically
sound, in the sense that they allow for consistent estimation of the data gener-
ating probability mass. This is especially interesting when the actual learning
task is unknown at learning time or the task is allowed to change over time.

Learning a model close to where the data is actually generated, often implies
the restriction to ultra-low-power (ULP) devices with rather limited compute
capabilities. Especially in the distributed or federated learning settings, edge
devices are subject to strong resource constraints. Communication efficiency [9]
and computational burden [2,13] must be reduced, in order to get along with
the available hardware. Here, we will resort to integer undirected models [11,13]
which provide a complete framework for learning and inference under heavy
resource constraints. Nevertheless, the setting in which the training data is dis-
tributed among several devices in a network with presumably high communi-
cation costs has not yet been investigated in the context of integer undirected
models. We close this gap by deriving and exploiting a new property of inte-
ger models. More precisely, we show that integer models have a high intrinsic
sparsity. Based on this observation, we present a model averaging scheme whose
communication complexity is sub-linear w.r.t. the parameter dimension d.

2 Notation and Background

Let us summarize the notation and background necessary for the subsequent
development. The Kullback-Leibler divergence between two probability mass
functions P and Q is defined by KL[Q|P] = >__ . » Q(z)(log Q(x) — log P(x)),
which is never negative and zero if and only if P = Q. The set N contains all
non-negative integers.
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Fig. 1. Two prototypical scenarios for data distribution of an exemplary data set with
n = 4 features (columns) and N = 4 data points (rows). Left: Horizontal distribution.
The data points are distributed among devices I and II. Right: Vertical distribution.
The features are distributed among devices III and IV.

2.1 Undirected Models

An undirected graph G = (V, E) consists of n = |V| vertices, connected via
edges (v,w) € E. A clique C is a fully-connected subset of vertices, i.e., Vv, w €
C : (v,w) € E. The set of all maximal cliques of G is denoted by C. Here, any
undirected graph represents the conditional independence structure of some n-
dimensional random variable X [15]. To this end, we identify each vertex v € V
with a random variable X, taking values in the state space AX,. The random
vector X = (X, : v € V), with probability mass function (pmf) P, represents
the random joint state of all vertices in some arbitrary but fixed order, taking
values x in the Cartesian product space X = @), o, X . If not stated otherwise,
X is a discrete set. Moreover, we allow to access these quantities for any proper
subset of variables S C V, i.e., Xg = (X, : v € S), &g, and Xg, respectively.
According to the Hammersley-Clifford theorem [6], the probability mass of X
factorizes over positive functions ¢ : X — R4, one for each maximal clique of
the underlying graph,

P(X =x) = % H Yo(zo) , (1)

cec

normalized via Z = Y, [[cce ¥o(xe). Due to positivity of ¢, it can be
written as an exponential, i.e., Yo(xco) = exp({Oc, dc(xc))) with sufficient
statistic ¢o : Xo — RI¥el. Here, we assume the use of overcomplete sufficient
statistic, i.e., for discrete data, ¢c(xc) is a |Xc|-dimensional “one-hot” vector,
where the single 1 entry indicates the specific state x¢ of the clique C. Thus,
Yo(ee) = exp((Oc, dc(xc))) = exp(Oc=z.). The full joint pmf can then be
written in the famous exponential family form P(X = &) = exp((0, ¢(x)) — A)
with @ = (8¢ : C € C), ¢p(x) = (¢c(xc) : C € C), and log-partition function
A=logZ = log ¥, exp((8, 6())).

The parameters of exponential family members are estimated by minimizing

the negative average log-likelihood £(8; D) = —(1/|D|) > cp log Pg(x) for some
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data set D via first-order numeric optimization methods. D contains samples
from X, and it can be shown that the estimated probability mass converges to
the data generating distribution P* as the size of D increases.

In the context of horizontally distributed data (Fig. 1la), we assume the exis-
tence of k data sets Dy, Ds, ..., Dy, each generated by P*, and collected by one
of k distributed devices.

2.2 Integer Undirected Models

Pushing machine learning towards the edge, i.e., towards the data generating
devices, often translates to pushing machine learning to devices with heavily
restricted resources. To facilitate the application of undirected models on such
devices, we consider an integer version of Yc(z¢c) [13]:

do(me) = 2(0edo@a) (2)

with @ € N?. Let us shortly recap the different layers of approximation that
are involved in integer undirected model: (1) The mere base change from exp
to 2 is not an approximation at all—the exponential family of densities can be
formulated equivalently with any arbitrary base. (2) The restriction to parameter
vectors in N? is indeed an approximation. However, it can be shown that the error
w.r.t. the model likelihood is bounded—the best integer model is not arbitrarily
far away from the best real-valued solution. (3) Probabilistic inference is per se
possible in the integer domain, e.g., via belief propagation [10] or Gibbs sampling.
To circumvent issues with numerical stability, we use an approximate message
passing scheme, called bit-length propagation [11]. In general, we assume that
the underlying conditional independence structure G is a tree. If not, we employ
the junction tree algorithm [15].

Using integer models has several convenient implications for ultra-low-power
systems. First of all, it can be shown that approximate maximum likelihood
estimation can be carried out without the need for floating point co-processing
units [11]. This reduces both, the required chip-size as well as the power con-
sumption of the underlying hardware: Evaluating (2) reduces to a mere bit-shift
instead of a rather costly (in terms of clock-cycles) evaluation of the transcen-
dental function exp. Indeed, having (6¢, pc(zc)) > w results in an overflow
during bit-shifting on systems with word-size w. However, it was shown in [11]
that overflows can be prevented by using specialized inference algorithms and
data structures. The actual parameter learning is carried out by an integer gra-
dient descent technique that is guaranteed to output a (locally) optimal integer
solution.

Second, empirical results show [11,13], that only a few (= 3) bits for each
model parameter suffice to achieve practical results in terms of prediction accu-
racy and approximate marginals probabilities. Technically, learning is carried
out over {0,1,...,2° — 1}? instead of the full N—a fact that is always true on
practical hardware—where b is a hyper-parameter. Hence, storing and commu-
nicating the learned model @ requires less than 10% of bits compared to an
ordinary model with 64 bit encoding.
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Third, it can be shown that the parameter vector of exponential family mod-
els with overcomplete sufficient statistic is never dense, i.e., at least |C| model
parameters are guaranteed to be zero. We exploit and improve this fact in the
sequel and use it to devise a distributed learning scheme with sub-linear com-
munication overhead.

3 Distributed Integer Undirected Models

We will now go through a series of theoretical insights which will eventually lead
to a new distributed learning scheme for integer undirected models. But before
we start, let us stress the meaning of “sub-linear” in the context of exponen-
tial family models. As said in the introduction, the easiest solution is to send
the raw data to a central server and perform learning there. Having observed
N, n-dimensional data points at device 4, this amounts to n/N;w transmitted
bits, assuming word-size w. In this extreme case, no computational resources
are required at the data source but at the cost of maximum communication
complexity. One could tend to say that communicating less than O(nN,w) is
“sub-linear”. However, in case of exponential family models, neither sending nor
storing the full amount of data is required at all—the model parameters can
be learned from an aggregated version of the data set. To see this, consider the
objective function of the integer model:

. _ —A3(0)
0(0;D) = D] ;Dlogz Py (x) = D] %logz
1
=—— Y Yo, —Ay(0)=A 3

Setting p = /|| cp #(x), we see that £(0;D) = Ax(0) — (0, u) = £(0; ),
i.e., @ can be learned from the average sufficient statistic p—access to the raw
data set D is not required. Assuming a process that generates new data points
in some fixed time intervals, it is straightforward to update g as a running
average. Thus, in case of exponential family models, transmitting g and |D| to
some central server is equivalent to transmitting the full data set. This implies
that sub-linearity requires a communication complexity that is strictly less than
d—the dimension of ¢(x) and 0. To achieve this, we first exploit a property of
the one-hot encoding that underlies ¢(x).

Theorem 1 (Overcomplete models are always sparse). Denote the num-
ber of non-zeros by ||0||o = 2?21 10;1° with 0° = 0, and let 8 € R? with ||0]|o = d
be the dense parameter vector of some exponential family member with overcom-
plete sufficient statistic ¢. Then, there is @' € R? such that Py = Py and

16"]l0 < [18]lo — IC] < [|6]lo = d
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Proof. Exponential family models with overcomplete sufficient statistics are
shift-invariant w.r.t. each clique parameter vector [11]. Recall that 6 is defined
as the concatenation of the parameter vectors of all cliques. Consider the d-
dimensional vector S¢(«) which is zero everywhere, except for the positions of
the parameters that belong to the clique C—at these positions, we put the value
«. For the proof, explicit knowledge about these positions it not required. The
only important fact is that some arbitrary subset of the d dimensions contains
the parameters for clique C. Now, consider the vector 8’ = 6 + Sc(a). We have

p(a)— PO 0@) epl(0.0@) to)

Yo exp((0,6(x"))) 3, exp((0, ¢(a")) + )

The equality in the middle holds because (S¢(«), d(x)) = « for all & € X. This
is, in fact, a direct implication of ¢’s overcompleteness. The above result is called
shift-invariance.

Let 8¢ 1 be the first parameter of each clique’s parameter vector. We con-
struct the vector 8’ = 0 + > cee Sc(—0c,1). Shift-invariance holds for each C,
and thus Py/(x) = Pg/(x). By assumption, € is dense, i.e., |8 = d. By con-
struction, @ must have at least |C| zero-values. ||0'||o < ||0]|o — |C| holds with
equality if all d dimensions of @ have a different value. a

The above theorem guarantees that any exponential family member with
overcomplete sufficient statistic has an optimal parameter with at least |C| zero-
entries. This result arises from overcompleteness and has not yet any specific
connection to our integer models. Based on this result, we provide the following
genuine new insight:

Theorem 2 (Integer models are sparser). Let 8 € {1,...,2" —1}% be the
dense parameter vector of some integer exponential family member with over-
complete sufficient statistic ¢. Let further |Xc,,.| be the smallest clique state
space. Then, if b is chosen such that 2° — 1 < |Xc,,.|, there exists @' such that
Py = Py: and

16°llo < [1Bllo — 2IC| < [[6]]0 = d

Proof. By assumption, there are less parameter values than clique states. Thus,
each clique parameter vector 8¢ must contain one parameter value z at least
twice. Again, we exploit shift-invariance to subtract z from each parameter in
0 which generates at least 2 zero values. This procedure is applied to all cliques
C € C to end up with a parameter vector @’ that contains at least 2|C| zeros. O

Thus the number of zero-parameters is increased by at least a factor of 2.
The same idea cannot be applied to ordinary (non-integer) exponential families—
there, all real-valued parameters will be different with probability 1.

Our new result tells us that integer models have not only computational
benefits but also non-trivial implications when the learned integer model has to
be transmitted. The final step is the aggregation of independent local models.
For simplicity, we restrict ourselves to plain model averaging. Assuming that
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the underlying network allows for broadcasts, this operation can be carried out
locally in each device. If no broadcast is available, we can send each model
to a designated central node that carries out the aggregation. Clearly, model
averaging involves some error, due to the non-linearity of the exponential family.
However, the following corollary raises some hope that the averaged model is not
too bad.

Lemma 1 (Upper bound on the loss). Let 8" € R? fori=1,2,... k be
the parameter vector of the model learned on the i-th device. Let further 0=
Zle a'0" with o; > 0 and Zle a’ = 1 be the corresponding model average.
Then, for any arbitrary data set D, we have

k
Z(é; D) < Z a,ﬁ(@i; D)
i=1

Proof. The negative log-likelihood is convex. The result is thus a direct corollary
of Jensen’s inequality. a

At a first glace, this result seems odd, since it suggests that the global model
average is better than the local models. It is important to understand that the
negative log-likelihoods on the right-hand-side are computed w.r.t. the (global)
data set D, and not w.r.t. the local sets D;. The local model’s loss can be
arbitrarily large on D which explains why this inequality holds. However, in the
joint limit of |D;| — oo for i =1,...,k, all local data sets are equivalent and the
inequality will turn into an equality. In practice, we want to explore the space “in
between”, where a finite amount of data has been observed at each device, but
the individual local models are still similar to each other. The pairwise distances
between local average sufficient statistics can be bounded by a function of the
available data.

Lemma 2 (Distance between expected statistics). Let X be a random
variable with state space X, D; and D; two pairwise independent data sets with
samples from X, and ¢ : X — R? some function. Denote the estimated expecta-
tion of ¢(X) w.r.t. D; by pu' = ﬁ ZmeDi #(x) and likewise for p’. Then,

- ; (c+1)logd
i ] o < 9,/ =%
" = 1o < D]
with probability of at least § = (1 — 2exp(—clogd))? for any ¢ > 0. D' is the
smaller of the two data sets D; and D;.

Proof. p' is unbiased due to E[u’] = ‘Dli‘ > wep, El¢(X)] = p*. According to

Hoeffding’s inequality [7],

P(lp', = E[u']i| > t) < 2exp(—2|D|t?)
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Algorithm 1: Distributed ULP-Learning of Generative Models

input k local data sets, one per device; desired (e, d)-pair; parameter width b
output Global model 8 = (1/k)YF_ 6° (Lemma 1)
1: for all devices i = 1,2, ...,k in parallel do
2:  if New data arrives then
Update(p?) (Eq. 3)
0" — argming gy, 20_13a UCHTS)
end if
if |D;| is large enough to satisfy (¢,d) (Lemma 2) then
Sparsify(8*) (Theorem 2)
Broadcast(0")
9: return
10:  end if
11: end for

for all ¢ > 0. Since this holds for any dimension [, we can apply the union bound
to get '
P(3l € [d] : |u', — u}| > t) < 2exp(—2|D|t* + logd) .

We set t = \/(c+ 1)logd/(2|D]). Thus ||’ — p*||ec < ,/(C';‘l)% with prob-

ability at least 1 — 2exp(—clogd). Indeed, the same holds for p’. Finally, we
apply the triangle inequality to derive [|p’ — p/|joo < [|p' — p*|loo + |87 — 1|00
Since both events are independent, the final inequality has probability of at least
§ = (1 —2exp(—clogd))?. O

Increasing ¢ makes the probability § larger, at the cost of an increased dis-
tance €. The lemma can help us to decide when local models are “good enough”:
Informally, 8° and 6 will approach each other when p? and p? are approaching
each other. We will make use of this intuition without providing a proof. How-
ever, the relation between @ and p can be made explicitly by proof techniques
provided in [1]. Here, we choose € and § to determine the number of samples that
is required at each device for all local models being similar with high probability.

The final distributed learning procedure is provided in Algorithm 1. There,
evaluating the stopping criterion requires knowledge about the amount of data
that has been collected by each device—this number could be transmitted in
a recurring manner. Here, for simplicity, we assume that data arrives syn-
chronously at the devices and that all devices are started at the same point
in time. Hence, all models will collect the same number of data points.

Note that the global model 0 is likely to be non-integer. The resulting model
average can be rounded to recover an integer solution. This, however, involves
an additional approximation error [11]. Instead, we scale local models by log 2,
which results in a base-change back to exp. The scaled output (log 2)8 is thus the
parameter of an ordinary (non-integer) exponential family member. Algorithm 1
can hence be re-interpreted as a method that recovers an ordinary exponential
family from a set of integer models.
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4 Experimental Demonstration
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We perform numerical experiments to assess the proposed method. More pre-
cisely, we to answer the following questions:
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Fig. 2. Experimental results on three benchmark data sets. Each point represents the
outcome of a single cross-validation fold. Top: Negative average log-likelihood £(0; D).
Mid: Classification accuracy. Bottom: Number of non-zero values for each learned
parameter vector 6, i.e., ||@|lo. All three plots share the same key. Best viewed in

color.
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(Q1) What is the improvement w.r.t. communication complexity on real data
sets?

(Q2) How does the averaged model perform, compared to the global model and
the individual local models?

All experiments are carried out with the PX framework!. For (Q1), we mea-
sure the number of bits that must be transmitted for each model. For (Q2), we
measure the negative log-likelihood of each model, as well as the classification
accuracy. We record these measurements for three different models:

(M1) Ordinary undirected model with access to the full training data.
(M2) k = 10 local integer undirected models with b = 3.
(M3) Scaled model average (log2)0 of all k = 10 local (M2) models.

All models are trained on three benchmark data sets from the UCI machine
learning repository, namely SUSY (n = 19, N = 5 x 10%), covertype (n = 55,
N = 581012), and DOTA2 (n = 117, N = 102944)—representing normal, small,
and tiny data sets, respectively. The conditional independence structure G is
approximated by the Chow-Liu algorithm [3], computed on a hold-out set of size
10%. Each numeric variable is discretized into its 10-quantiles. All results are 10-
fold cross-validated. For (M2), we split the training set of each cross-validation
fold further into k& = 10 separate data sets which are then used as local data
sets D1, Da, ..., Dg. In total, we have 10 global models, 100 local modes, and 10
averaged models, where each model averaging is performed over 10 local models.

The results are summarized in Fig. 2. Let us first investigate (Q1). The third
plot in Fig.2 shows the individual model sizes for each cross-validation run.
As asserted by Theorem 2, the local integer models exhibit a superior sparsity
while the global model (M1) and the averaged model (M3) are mostly dense.
Moreover, recall that we learned the integer models with b = 3, i.e., each model
parameter can be encoded with 3 bits. Combining the higher sparsity and the
lower representation complexity, we see that the number of bits required to
transmit each local model is reduced by a factor of almost 40 on SUSY compared
to a dense 64 bit floating point model.

Regarding (Q2), results for likelihood and accuracy are shown in the first
two plots of Fig. 2. Please note that the likelihood-value of the integer models
is an approximation, the likelihood-values of the other model types are exact.
We observe that the accuracy of all models on DOTA2 and covertype is qual-
itatively the same, where (M1) achieves the best accuracy, followed by (M2)
and (M3). This alone is interesting, since the amount of data available to each
local model is 10x lower compared to the global model. On SUSY, the accuracy
degrades dramatically on the integer models and hence also on the combined
model. Moreover, the local models exhibit a much larger variance compared to
the other model types. On all data sets, we see that various local models show a
much higher classification error than the global model. Indeed, the accuracy of

! http://randomfields.org/px.
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the aggregated model depends strongly on the local model’s quality. The classi-
fication results for the (M3) model on DOTA2 and covertype are almost indis-
tinguishable from the global (M1) model, while the accuracy on SUSY breaks
down. The results for the likelihood show similar effects. However, we see that
accuracy and likelihood are not strongly coupled. The likelihood of (M2) and
(M3) is much worse than those of (IM1) models, the corresponding classification
results are yet similar.

5 Conclusion

Based on new theoretical findings about the sparsity of integer undirected mod-
els, we proposed a new scheme for the distributed learning of generative exponen-
tial family models. Theoretical and experimental results certify that our method
has a sub-linear communication complexity—a fraction of bits which are required
to transmit the dense models is sufficient to reconstruct a full-fledged exponen-
tial family model. In many cases, the reconstructed models exhibit a similar
classification performance as non-distributed (global) models. Our scheme can
thus serve as the basis for many practical distributed solutions.

Moreover, our results provide several new research opportunities: First, our
scheme can be easily combined with recent latent variable models [12] and hence,
opens the path for distributed probabilistic deep learning. Second, the stopping
criterion and the averaging scheme suggest some room for improvement. Our
Hoeffding-bound-based stopping criterion is very pessimistic and requires a very
large number of samples to guarantee that all local models are similar with
high probability. It shall be investigated if convex thresholding [16] delivers any
benefit over the stopping criterion that was derived from Lemma 2. Finally, the
results presented in [8] suggest, that the model aggregation based on Radon
points delivers a higher quality compared to plain model averaging. We should
hence employ radon machines instead of plain model averaging to aggregate the
local models.

Acknowledgments. This research has been funded by the Federal Ministry of Edu-
cation and Research of Germany as part of the competence center for machine learning
ML2R (01S18038A).

References

1. Bradley, J.K., Guestrin, C.: Sample complexity of composite likelihood. In: Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS), pp. 136-160
(2012). http://proceedings.mlr.press/v22/bradley12.html

2. Caldas, S., Konecny, J., McMahan, H.B., Talwalkar, A.: Expanding the reach of
federated learning by reducing client resource requirements. CoRR abs/1812.07210
(2018). http://arxiv.org/abs/1812.07210

3. Chow, C., Liu, C.: Approximating discrete probability distributions with depen-
dence trees. IEEE Trans. Inf. Theory 14(3), 462-467 (1968). https://doi.org/10.
1109/TIT.1968.1054142


http://proceedings.mlr.press/v22/bradley12.html
http://arxiv.org/abs/1812.07210
https://doi.org/10.1109/TIT.1968.1054142
https://doi.org/10.1109/TIT.1968.1054142

292

10.

11.

12.

13.

14.

15.

16.

N. Piatkowski

. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Privacy aware learning. J. ACM

61(6), 38:1-38:57 (2014). https://doi.org/10.1145/2666468

. Fragoso, T.M., Bertoli, W., Louzada, F.: Bayesian model averaging: a systematic

review and conceptual classification. Int. Stat. Rev. 86(1), 1-28 (2018). https://
doi.org/10.1111 /insr.12243

. Hammersley, J.M., Clifford, P.: Markov fields on finite graphs and lattices. Unpub-

lished manuscript (1971)

. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.

Am. Stat. Assoc. 58(301), 13-30 (1963)

. Kamp, M., Boley, M., Missura, O., Gartner, T.: Effective parallelisation for machine

learning. In: Advances in Neural Information Processing Systems (NIPS), pp.
6480-6491 (2017). http://papers.nips.cc/paper/7226-effective-parallelisation-for-
machine-learning

. Konecny, J., McMahan, H.B., Yu, F.X., Richtdrik, P., Suresh, A.T., Bacon,

D.: Federated learning: strategies for improving communication efficiency. CoRR
abs/1610.05492 (2016). http://arxiv.org/abs/1610.05492

Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers, Burlington (1988)

Piatkowski, N.: Exponential families on resource-constrained systems. Ph.D. thesis,
TU Dortmund, Germany (2018). http://hdl.handle.net/2003/36877

Piatkowski, N.: Hyper-parameter-free generative modelling with deep Boltzmann
trees. In: European Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases (ECMLPKDD) (2019)

Piatkowski, N., Lee, S., Morik, K.: Integer undirected graphical models for resource-
constrained systems. Neurocomputing 173, 9-23 (2016). https://doi.org/10.1016/
j-neucom.2015.01.091

Stolpe, M.: Distributed analysis of vertically partitioned sensor measurements
under communication constraints. Ph.D. thesis, TU Dortmund, Germany (2017).
http://hdl.handle.net/2003/35815

Wainwright, M.J., Jordan, M.I.: Graphical models, exponential families, and vari-
ational inference. Found. Trends Mach. Learn. 1(1-2), 1-305 (2008). https://doi.
org/10.1561,/2200000001

Wolff, R.: Distributed convex thresholding. In: Symposium on Principles of
Distributed Computing (PODC), pp. 325-334 (2015). https://doi.org/10.1145/
2767386.2767387


https://doi.org/10.1145/2666468
https://doi.org/10.1111/insr.12243
https://doi.org/10.1111/insr.12243
http://papers.nips.cc/paper/7226-effective-parallelisation-for-machine-learning
http://papers.nips.cc/paper/7226-effective-parallelisation-for-machine-learning
http://arxiv.org/abs/1610.05492
http://hdl.handle.net/2003/36877
https://doi.org/10.1016/j.neucom.2015.01.091
https://doi.org/10.1016/j.neucom.2015.01.091
http://hdl.handle.net/2003/35815
https://doi.org/10.1561/2200000001
https://doi.org/10.1561/2200000001
https://doi.org/10.1145/2767386.2767387
https://doi.org/10.1145/2767386.2767387

®

Check for
updates

Distributed Learning of Neural Networks
with One Round of Communication

Mike Izbicki!®) and Christian R. Shelton?

1 Claremont McKenna College, Claremont, CA, USA
mike@izbicki.me
2 UC Riverside, Riverside, CA, USA
cshelton@cs.ucr.edu

Abstract. The optimal weighted average (OWA) is an algorithm for
distributed learning of linear models. It achieves statistically optimal
theoretical guarantees with only a single round of communication [3].
This paper introduces the non-linear OWA (NOWA) algorithm, which
extends the linear OWA into the non-linear setting of neural networks.
Due to the difficulty of proving theoretical results in this more complex
setting, NOWA loses the theoretical guarantees of the OWA algorithm.
Nevertheless, we show that NOWA works well empirically. We follow an
evaluation procedure introduced by McMahan et. al. [16] for federated
learning and show significantly improved results on a simple MNIST
baseline task.

1 Introduction

Existing distributed learning algorithms fall into one of two categories:

Interactive algorithms require many rounds of communication between
machines. Representative examples include [4,7,11,13,18,22]. The appeal of
interactive algorithms is that they enjoy the same statistical performance as
standard sequential algorithms. But, interactive algorithms have three main dis-
advantages. First, these algorithms are slow when communication latency is the
bottleneck. An extreme example occurs in the federated learning environment
proposed by [16], which uses cell phones as the computational nodes. Recent
work in this setting has studied how to only communicate between nodes when
doing so would proveably decrease loss [7]. Second, these algorithms require spe-
cial implementations. They are not easy for non-experts to implement or use,
and in particular they do not work with off-the-shelf statistics libraries provided
by (for example) Python, R, and Matlab. Third, because of the many rounds of
communication, any sensitive information in the data is likely to leak between
machines.

Non-interactive algorithms require only a single round of communication.
Each machine independently solves the learning problem on a small subset of
data, then a master machine merges the solutions together. These algorithms
solve all the problems of interactive ones: they are fast when communication
© Springer Nature Switzerland AG 2020
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is the main bottleneck; they are easy to implement with off-the-shelf statistics
packages; and they are robust to privacy considerations. The downside is worse
statistical performance. A growing body of work analyzes the popular naive
averaging merging procedure under special conditions [14,17,19-21], and devel-
ops more robust merging procedures [1,5,6,10,12,23]. All of these estimators
are either statistically sub-optimal or have computationally intractable merge
procedures.

The optimal weighted average (OWA) [2,3] is a recently proposed non-
interactive estimator with statistically optimal guarantees. OWA’s merge pro-
cedure uses a second round of optimization over a tiny fraction of the data.
Because the fraction of data is small, it presents negligible computational bur-
den, but OWA is still able to achieve the optimal sequential statistical error rates
in the non-interactive setting. The downside of OWA is that it only works for
linear models. In this paper, we develop an algorithm called NOWA that extends
OWA into the nonlinear setting. The next section introduces OWA in the orig-
inal linear setting, and then Sect.3 describes the NOWA extension. Section 4
shows preliminary experiments with NOWA on the MNIST dataset. We see that
the standard naive averaging algorithm commonly used in federated learning
performs significantly worse in this simple task than NOWA.

2 Warmup: The Linear OWA

2.1 Problem Statement

Let I € R be the space of response variables, X C R¢ be the space of covariates,
and W C R? be the parameter space. We assume a linear model where the loss of
data point (x,y) € X x ) given the parameter W € W is denoted by £(y,x' W).
We define the true loss of parameter vector W to be £*(W) = El(y;x W),
and the optimal parameter vector W* = arg miny, ¢, L*(W). We do not require
that the model be correctly specified, nor do we require that ¢ be convex with
respect to W. Let Z C X x ) be a dataset of mn i.i.d. observations. Finally, let
r: W — R be a regularization function (typically the L1 or L2 norm) and A € R
be the regularization strength. Then the regularized empirical risk minimizer
(ERM) is

W™ = arg min Z Uy, x"W) 4+ Ar(W). (1)

wew (2,

Assume that the dataset Z has been partitioned onto m machines so that each
machine 7 has dataset Z; of size n, and all the Z; are disjoint. Then each machine
calculates the local ERM

WE™ = arg min Z Uy, x " W) + Ar(W). (2)
wew (x,9)€Z;

Notice that computing Wi”m requires no communication with other machines.
Our goal is to merge the W™™s into a single improved estimate.
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To motivate our OWA merge procedure, we briefly describe a baseline pro-
cedure called naive averaging:
1 m
Wave — — Wgrm. 3
Ly ®)
=1
Naive averaging is simple to compute but has only limited theoretical guarantees.
Recall that the quality of an estimator W can be measured by the estimation
error ||IW — W*||2, and we can use the triangle inequality to decompose this
error as

IW = W2 < [IW —EW |2 + [EW — W*2. (4)

We refer to || — EW ||, as the variance of the estimator and ||[EW — W* || as the
bias. McDonald et al. [14] show that the W ¢ estimator has lower variance than
the estimator Wf”" trained on a single machine, but the same bias. Zhang et al.
[20] extend this analysis to show that if Wf’"m is a “nearly unbiased estimator,”
then naive averaging is optimal. But Rosenblatt and Nadler [17] show that in
high dimensional regimes, all models are heavily biased, and so naive averaging is
suboptimal. All three results require £ to be convex in addition to other technical
assumptions. The OWA estimator relaxes these assumptions and achieves better
error bounds.

2.2 The Full OWA

To motivate the OWA estimator, we first present a less efficient estimator that
uses the full dataset for the second round of optimization. Define the matrix
W : R4™ t0 have its ith column equal to W¢™™. Now consider the estimator

Wowa,full _ WVowa,fuZZ (5)
where . A K
yowafull — aromin Z 14 (y, xTWV) + Ar(WV). (6)
VerRm ez

Notice that Wewaefull jg just the empirical risk minimizer when the parameter
space W is restricted to the subspace W% = span{Wierm}}il. In other words,
the Vowaful yector contains the optimal weights to apply to each Wfrm when
averaging. Figure 1 shows graphically that no other estimator in W°*% can have
lower regularized empirical loss than Wowafull,

2.3 The OWA Estimator

The OWA estimator uses fewer data points in the second round of optimization.
Recall that in a linear model, the amount of data needed is proportional to the
problem’s dimension. Since the dimension of the second round is a fraction m/d
smaller than the first round, only an m/d fraction of data is needed for the same
accuracy.
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Fig. 1. W»*/“ ig the estimator with best loss in W°“?, and W°“® is close with high
probability.

Formally, let Z°%® be a set of m?n/d additional data points sampled i.i.d.
from the original data distribution. Thus the total amount of data the OWA
estimator requires is mn +m?2n/d. Whenever m/d < 1, this expression simplifies
to O(mn), which is the same order of magnitude of data in the original problem.
The OWA estimator is then defined as

Wowa _ W‘A/owa’ (7)
where . . .
Vot —argmin Y ¢ (y xTWV) (W), 8)
VER™ | Foun

OWA’s merge procedure is more complicated than the naive averaging merge
procedure, but still very fast. Notice that the projected data points x W have
dimensionality m << d, and there are only m?n/d of them. Because the opti-
mization uses a smaller dimension and fewer data points, it takes a negligible
amount of time. Izbicki and Shelton [3] show an experiment where the first round
of optimizations takes about a day, and the second optimization takes about a
minute.

3 The Non-linear OWA (NOWA)

The intuition of the NOWA algorithm is that we apply the OWA algorithm
to each layer of a neural network independently. Unfortunately, the notation is
much messier in this scenario due to the need to keep track of many indices.

3.1 Problem Setting

We now extend our notation to include neural networks with multiple hidden
layers. In particular, we continue to use subscripts to denote different machines
(and let 7 range over the machines), but we also introduce superscripts to denote
different network layers (and let j range over the layers).

Formally, assume our network architecture has p layers. For each layer j €
{1,...,p}, there is an associated dimension d\/) € N, activation function o) :
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R — R4 and weight matrix W@ : R4 %4 The input to the network

is a vector x € R*” . The output of layer j is then recursively given by

O(x):RI =% 7=0 9
Fr) DWW D (x)) >0 ()
and f(®)(x) is the final output of the network. In supervised learning problems,
we are given a dataset Z C R?” x R with mn data points, and our goal is
to solve .
W™ = argmin £y, [P (x)) + Ar(W), (10)
(x,y)EZ
where ¢ is the loss function and r is the regularization function. We divide Z
into m disjoint smaller datasets {Z1, ..., Z,,} each with n points. Each dataset
Z; is transfered to processor ¢, which solves the local learning problem

W™ =argmin Uy, fP(x) + Ar(W). (11)
W xwezs

Each machine solves (11) without communicating with other machines using
any optimizer appropriate for the network architecture and data. Our goal is to
develop a merge procedure that combines the W, local parameter estimates into
a single global parameter estimate with small loss.

3.2 The Merge Procedures

In this non-linear setting, the naive averaging merge procedure for the jth layer
is given by

, 1 = . .
Wwave,(d) — — werm.G),. 12
—~ ; (12)

Google’s recent federated learning architecture uses naive averaging to merge
models together that have been independently trained on users’ cellphones [16].

We will define an improved merge procedure based on a weighted average of
the local parameter estimates. This requires some tensor notation for each layer
7 in the network, we define the 3rd-order tensor W““Cked(j) : R xR xR4T ,
where the (a, b, ¢)th component of wstackedd) ig defined to be the (b, ¢)th com-
ponent of Wwerm.(), In words, Wsmdml(j) is the 3rd-order tensor constructed by
stacking the local parameter estimates Werm, () o along a new axis. We also define
the function contract : (R™,R™ x R4 x Rd(jil)) — R¥ x R to be the
tensor contraction along the first dimension. That is, if V' : R™, then the (b, ¢)th
component of contract(V, WSt“ked(j)) is equal to S0, V(a)We ™), (b, ¢). In

particular, if each component of V' equals 1/m, then contract(V, WSt“CkEd(j)) =
1 S Werm.,(j) | = W ave,(d),
m 2aa—
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Fig. 2. The performance of the naive averaging estimator used in McMahan et al. [16]
is constant as we add more machines, but the performance of the NOWA estimator
increases.

In our non-linear optimal weighted average (NOWA) merge procedure, we
first construct the modified neural network

7n0d7(j) ) d(j) _ X ,7 = 0
f (x):R"" = {J(j)(Wmod,(j)fmod’(j1)(x)) ji>0 (13)

where ' , )
wmed(7) — contract(V(J), Ty stacked ). (14)

We then select a small subset of the data Z°%* (i.e. |Z°"% << |Z]) and train the
network f™°¢ over only the parameters V(7). That is, we solve the optimization
problem
V%% = arg min Z Uy, fmo0 P (x)) + A (V). (15)
v (x,y)eZowa

The parameter matrices W% = contract(Vowa’(j),W““ked(])) can then be
used in the original neural network. Intuitively, we need only a small number of
data points in the optimization of (15) because the number of parameters is sig-
nificantly smaller than in the original optimization (10). That is, the dimension
of V%% is much less than the dimension of W¢ ™. When the network contains
no hidden layers, then the NOWA procedure reduces to the OWA procedure
described above.

4 Experiments

McMahan et al. [16] evaluated the naive averaging merge procedure on the
MNIST dataset, and we perform a similar experiment here. We train the LeNet
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neural network [9] provided by TensorFlow’s standard tutorial using the Adam
optimizer and dropout. We performed no hyperparameter tuning and simply
used the default hyperparameters provided by TensorFlow.

We perform our experiment using a cluster of 128 machines. MNIST contains
a training set 55,000 data points, and each machine receives a subset of the
data containing either 429 or 430 data points. The 10 class labels are evenly
distributed throughout the original training set, but we made no effort to ensure
they were evenly distributed throughout the subsets. That means on average,
each machine has access to only 43 examples from each class, but most machines
will have significantly fewer examples for some classes. Under such an extreme
paucity of data, it is unlikely for a single machine to be achieve high classification
accuracy.

Figure 2 shows the classification accuracy as the number of machines used
varies from 2 to 128. (Each experiment is repeated 5 times, and the average
is shown.) Since the number of data points per machine is fixed, adding more
machines adds more data, so we should expect the classification accuracy to
increase for a good merge procedure. We see that the NOWA algorithm signifi-
cantly outperforms naive averaging. The NOWA algorithm does not perform as
well as the oracle network trained on all the data (which has > 0.99 accuracy).
This is because of the difficulty of the local learning problems, which average
only 42 instances of each class.

5 Discussion

The original papers on federated learning [8,15,16] perform several rounds of
naive averaging to improve performance. In each round, the average from the
previous round is used to initialize the optimization of each worker node. This
procedure can easily be extended to use the NOWA merge procedure instead of
naive averaging. Since NOWA'’s weighted averaging procedure performs better
than naive averaging in a single round, a multi-round version of NOWA will
likely perform better than a multi-round version of naive averaging. The second
round of optimization used in NOWA is particularly negligible in the federated
setting because this optimization can be performed in the data center on dedi-
cated machines. Therefore, using NOWA in a federated setup would provide no
additional burden to the node machines, which are typically severely computa-
tionally limited devices like cell phones.
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Abstract. We examine a network of learners which address the same
classification task but must learn from different data sets. The learn-
ers cannot share data but instead share their models. Models are
shared only one time so as to preserve the network load. We intro-
duce DELCO (standing for Decentralized Ensemble Learning with COp-
ulas), a new approach allowing to aggregate the predictions of the clas-
sifiers trained by each learner. The proposed method aggregates the
base classifiers using a probabilistic model relying on Gaussian cop-
ulas. Experiments on logistic regressor ensembles demonstrate com-
peting accuracy and increased robustness in case of dependent clas-
sifiers. A companion python implementation can be downloaded at
https://github.com/john-klein/DELCO.

Keywords: Decentralized learning - Classifier ensemble - Copulas

1 Introduction

Big data is both a challenge and an opportunity for supervised learning. It is
an opportunity in the sense that we can train much more sophisticated models
and automatize much more complex tasks. It is a challenge in the sense that
conventional learning algorithms do not scale well when either the number of
examples, the number of features or the number of class labels is large. On
more practical grounds, it becomes also infeasible to train a model using a single
machine for both memory and CPU issues.

Decentralized learning is a setting in which a network of interconnected
machines are meant to collaborate in order to learn a prediction function. Each
node in the network has access to a limited number of training examples. Local
training sets may or may not be disjoint and the cost of transferring all data to
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a single computation node is prohibitive. The cost of transfer should be under-
stood in a general sense. It can encompass the network traffic load or the risk to
violate data privacy terms. Decentralized learning is a framework which is well
suited for companies or public institutions that wish to collaborate but do not
want to share their data sets (partially of entirely).

There are several subfields in the decentralized learning paradigm that
depend on the network topology and the granted data transfer budget. When
any pairwise connection is allowed and when the budget is high, some well estab-
lished algorithms can be adapted with limited effort to the decentralized setting.
For instance, in deep neural networks [4], neural units can exchange gradient val-
ues to update their parameters as part of the backpropagation algorithm. This
implies that some nodes are used just for training some given neural units or
layers and do not have local training sets. The nodes that have training data
must train the first layer and share their parameters. In the end, the amount of
transferred data may in this case be greater than the entire training data transfer
to a single node. When each node is meant to train a model from its private data
set but nodes can only exchange symmetrically information with their one-hop
neighbors in the network, Giannakis et al. [10] explain that the global optimiza-
tion of the sum of losses over training data can be broken into several local
optimization problems on each node. Since many training algorithms rely essen-
tially on such an optimization problem, the method is rather generic. It also has
the advantage that no training data has to be shared and that the distributed
optimization can converge to the same parameter estimates as the global one.
On the downside, the algorithm is iterative and the amount of transferred data
cannot be anticipated. A similar decentralized learning problem is addressed in
[9] where an approximate Bayesian statistical solution is proposed.

In this article, we place ourselves in a context where the amount of transferred
data must be anticipated and no training examples can be shared. We assume a
fully connected topology allowing each node to share its trained base classifier
with every other node as well as with a central node which will aggregate models.
Local training phases do not have to be synchronized. Ensemble methods or
multiple classifier systems are good candidates to operate in such a form of
decentralized learning. Indeed, many such methods do not require that the base
learners, i.e. those trained on each local node, have to collaborate at training
time.

In the central node, we train a probabilistic model to aggregate the base clas-
sifiers. We investigate a model relying on conditional probabilities of classifier
outputs given the true class of an input (whose estimation can be decentralized
without difficulty). These distributions are used as building blocks to classify
unseen examples as those maximizing class probabilities given all classifiers out-
puts [3,13]. The originality of our approach consists in resorting to copula func-
tions to obtain a relatively simple model of joint conditional distributions of the
local base classifier outputs given the true class.

The next section presents the classifier aggregation problem and existing
approaches addressing this issue. Section 2 gives an outline of our new ensemble
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method. We first present this method in a centralized setting for simplicity. Its
deployment in a decentralized setting is explained in the final subsection of this
very section. Section 3 assesses the performances of this new ensemble method
on both synthetic and real challenging data sets as compared to prior arts.

1.1 Combining Classifiers

Let 2 denote a set of £ class labels 2 = {c1,...,c¢}, where each element c;
represents one label (or class). Let x denote an input (or example) with d entries.
Most of the time, x is a vector and lives in R¢ but sometimes some of its entries
are categorical data and x lives in an abstract space X which does not necessarily
have a vector space structure. For the sake of simplicity, we suppose in the
following of this article that x is a vector.

A classification task consists in determining a prediction function ¢ that maps
any input x with its actual class y € (2. This function is obtained from a training
set Dirain Which contains pairs (x(i), y(i)) where y(i) is the class label of example
x(D . The cardinality of the training set is denoted by mpain. We usually also
have a test set Dyesy Which is disjoint from Dy,ain to compute unbiased estimates
of the prediction performance of function ¢. The size of Diyain U Diest is denoted
by n.

Given m classifiers, the label y assigned by the k*® classifier to the input x is
denoted by é(x). In the usual supervised learning paradigm, each é is typically
obtained by minimizing a weighted sum of losses incurred by deciding ¢ (x(*)) as
compared to y(?) for each data point in the training set or by building a function
that predicts ¥ in the vicinity of x(*) up to some regularity conditions. Once we
have trained multiple classifiers, a second algorithmic stage is necessary to derive
an ensemble prediction function Cens from the set of classifiers {¢1,...,¢n}-

Early attempts to combine classifiers focused on deterministic methods rely-
ing on voting systems [27] and Borda counts [12]. In later approaches [14,15],
some authors started to formalize the classifier aggregation problem in proba-
bilistic terms when base classifier outputs are estimates of probabilities p (y|x). It
is also possible to probabilistically combine classifiers without assuming that base
classifiers rely themselves on probabilistic models. Indeed, we can picture the set
of classifier predictions as entries of some vector z (x) = [é1 (x),...,ém (x)]"
Regarding these vectors as new inputs, we resort to a decision-theoretic frame-
work. Under 0-1 loss, the optimal decision rule (in terms of expected loss) is

Cens (x) = argmax p (y[z (x)) . (1)

yen
Suppose we select ny, training examples from Dipai, to build a validation set
Dyar and let Df, ;. = Dirain \ Dval. We can train functions é; to é,, using D},

and compute predictions for each member of the validation set. So we can build
Nyal vectors z(9 and use their labels y(i) to infer the parameters of the conditional
distributions p (y|z). In the next subsection, we detail such inference methods.
Let alone probabilistic approaches, another possibility is to use the set of
pairs (z(i),y(i)) to train a second stage classifier. This approach is known as
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stacking [25] and has gained in popularity in the past decade as several machine
learning competitions were won by stacked classifiers [16]. There are many other
multiple classifier systems or ensemble methods in the literature but few of them
are applicable in a decentralized setting. In particular, boosting [7] requires each
ensemble component to see all data and bagging [2] consists in drawing bootstrap
samples of training data so they would both require greater amounts of data
transfer than simply sending all data to a single machine. To get a broader
picture of the landscape of classifier combination and ensemble methods, we
refer the reader to [26].

Stacking is also used in [20] along with correlation analysis in order to account
for correlation in classifier predictions. Taking into account these correlations is
the most important added value of the copula based probabilistic model that
we introduce in Sect.2. The approach in [20] corresponds to a discriminative
model while ours is a generative model of aggregation. It is not adapted to the
decentralized setting as it involves a singular value decomposition of a matrix
with n x m x £ entries which is prohibitive and propagates big data bottlenecks
on the aggregation side.

1.2 A Probabilistic Model of Aggregation

In this subsection, we present several approaches for inferring the parame-
ters of the multinomial conditional distributions p (y|é; (X)), ..., émn (x)). These
approaches are essentially due to Dawid and Skene [3] and were promoted and
further developed by Kim and Ghahramani [13] in the context of classifier com-
bination; see also [24] for a Bayesian committee algorithm tailored for Gaussian
processes. Inferring parameters of multinomial distributions may not seem chal-
lenging at first sight. The problem is that, we need to solve £ such inference
problems so the complexity of the problem does not scale well w.r.t. both ¢ and
m. Applying Bayes formula, we have

P (yler(x), .-, ém(x)) o< p(ér(x), -+, Em(X)]y) X p (y)- (2)

The estimation of class probabilities is easy but again, the estimation of condi-
tional joint distributions p (¢1(X), ..., én(x)|y) has the same complexity as the
estimation of the posterior.

Linear complexity can be achieved by making conditional independence
assumptions that allow each conditional joint distribution to factorize as the
product of its marginals, that is

m

PWlér(x),.. ém(x) o< p(y) x [ (@(x)ly). (3)

i=1

In this approach, the parameters of m + 1 multinomial distributions need
to be estimated which does not raise any particular difficulty. Unfortunately,
the independence assumption is obviously unrealistic: the classifier outputs are
likely to be highly correlated. Indeed, examples that are difficult to classify cor-
rectly for classifier ¢; are usually also difficult to classify correctly for any other
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classifier ¢;, j # i. The dependence between classifiers has its roots in several
causes, such as learning on shared examples, use of classifiers of the same type,
correlation between training examples. This accounts for the fact that misclas-
sifications for each ¢ occur most of the time with the same inputs. In spite of
this, we will see that this approach achieves nice classification accuracy on sev-
eral occasions. We believe this is explained by the same reason as the one behind
naive Bayes classifier! efficiency. This model is an efficient technique although
it also relies on unrealistic independence assumptions. Indeed, the inadequacy
of these assumptions is compensated by a dramatic reduction of the number of
parameters to learn making the technique less prone to overfitting.

Let us formalize the inference problem in a more statistical language to
present further developments allowing to infer parameters in (3). The classifica-
tion output é; of the k' classifier is a random variable and the conditional distri-

bution of ¢ given Y = y is multinomial: é|y ~ Mult (0;’“)) with 01(]“) a param-
(k)

T
- 9;]2 } . In other words, the success/failure

eter vector of size /: Bgc) = {9

probabilities of the k*" classifier are the parameters 9;’? = p(é =ily). The
random variable Y representing class labels has a multinomial distribution as
well: Y ~ Mult (y) and - is another vector of parameters of size £. Let Dygq
denote the data set whose elements are tuples (¢, (xV),..., &, (x¥),y™) for
(x(i),y(i)) € Dya- Under classifier independence assumptions, the likelihood

writes
MNval m
1 m k
b (Pucl0f? 00, 7) = T T2 @
i=1 k

=1

where 1, = ¢, (x(i)). Maximum likelihood estimates of v and each Hl(jk) are known
in closed form and can be easily computed. Kim and Ghahramani [13] propose
a Bayesian treatment consisting of using hierarchical conjugate priors on the
parameters of all conditional distributions p (¢x|y) as well as on the class distri-
bution p (y). The conjugate priors for 0;’“) and ~ are Dirichlet: 9;’“) ~ Dir <a1§k))

and v ~ Dir (8). A second level of priors is proposed for the parameters a?(,k).

The conjugate prior distribution of each a;k) is exponential. Gibbs and rejection
sampling are then used to infer these parameters.

Finally, Kim and Ghahramani [13] also extend this model in order to take
into account dependencies between classifiers. They propose to use a Markov
random field as a model of classifier output interactions. The main limitation
of this method is the high computational cost induced by MCMC and rejection
sampling. In the next section, we introduce a copula-based model that allows to
grasp classifier dependency without resorting to an MCMC step.

! This probabilistic approach can actually be regarded as a form of stacking in which
the second stage classifier is a naive Bayes classifier.
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2 Method Outline

In this section, we present a new ensemble method allowing to build the deci-
sion function éens from (2) without resorting to some conditional independence
assumption. We propose a Gaussian copula model for the conditional joint dis-
tributions p (¢1(X), ..., émn(Xx)|y). We start by giving elementary background on
copulas and later explain how they can be efficiently implemented in a decen-
tralized learning setting.

2.1 Copulas

An m-dimensional copula function Cop : [0;1]™ — [0;1] is a cumulative distri-
bution with uniform marginals. The growing popularity of these functions stems
from Sklar’s theorem which asserts that, for every random vector L ~ f, there
exist a copula Cop such that F' = Cop o G where F' is the cumulative version
of distribution f and G is a vector whose entries are the cumulative marginals
Gy (a) = F(00,...,00,a,00,...,00) for any a in the k-dimensional domain of f.

When F is continuous, the copula is unique. When we deal with discrete ran-
dom variables as in our classification problem, the non-uniqueness of the copula
raises some identifiability issues [6,8]. Without denying the importance of these
issues, we argue that, from a pattern recognition standpoint, what essentially
matters is to learn a model that generalizes well. For instance, there are also
identifiability issues for neural networks [23] which do not prevent deep nets to
achieve state-of-the-art performance in many applications.

In this article, we investigate parametric copula families to derive a model
for the conditional joint distributions p (¢1(X),...,¢n(X)|y) where X is the
random vector capturing input uncertainty. Parametric copulas with parame-
ters vector A are denoted by Cop,. A difficulty in the quest for an efficient
ensemble method is that we must avoid working with cumulative distributions
because the computational cost to navigate from cumulative to non-cumulative
distributions is prohibitive. We can compute Radon-Nikodym derivatives of
Cop, o G w.r.t. a reference measure but again since we work in a discrete set-
ting we will not retrieve closed form expression for f for an arbitrary large
number of classifiers. As a workaround, we propose to embed each discrete
variable ¢, (X)|y in the real interval [0;¢[. Let f, : R™ — R* be a proba-
bility density (w.r.t. Lebesgue) whose support is [0;£[™ and such that for any
z € 2™, we have fy(a) = p(é1 (X) =21,...,én (X) = 2, |y) for any vector a
in the unit volume V, = [21 —1;21[ X ... X [, — 1; 2, [. This means that f,
is piecewise constant and it can be understood as the density of some continu-
ous random vector whose quantized version is equal in distribution to the tuple
(e1 (X) |y, ..., Em (X)]y). Moreover, if fyy) is the i*" marginal density of f,, we

also have f?gi) (a) =p(é1 (X) =zly) for any a € [z — 1;z[ and any z € {1;...;(}.
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For any z € 2™, according to this continuous random vector vision of the prob-
lem, we can now thus write

p(e1 = 21,...,Cn = 2m|y) = cop, (u) x Hp(éz = zly), (5)
i=1

u= [FLZL/ (Zl) Yo Fm,y (Zm)] (6)

where cop, is the density of Cop, and Fj, is the cumulative distribution of
variable é; (X) |y. This construction is not dependent in the (arbitrary) way in
which the elements of {2 are indexed.

Among parametric copula families, the only one with a closed form density
for arbitrary large m is the Gaussian copula. The density of a Gaussian copula
[28] is given by

cop,, (u) = w11/2eXp (—;vT (R -T) ~v> , (7)

where R is a correlation matrix, I is the identity matrix and v is a vector with
m entries such that vy = @ (ux) where @ is the quantile function of a standard
normal distribution. The copula parameter in this case is the correlation matrix.
Estimating the entries of this matrix is not trivial. We will therefore choose a
simplified model and take R = A1 + (1 — A\)I where 1 is the all-one matrix.
In this model, each diagonal entry of R is 1 and each non-diagonal entry is A.

The dependency between classifier outputs is regulated by A which is a scalar
—1

— 1). We also make the assumption that correlation matrices are

living in (
tied across conditionings on Y = y. The m x ¢ cumulative distributions F; , are
evaluated using estimates of the vectors Oéi) =[p&=cily)...p (& = cdy)]”.
Observe that when A = 0, the copula density is constant one and the proposed
model boils down to the independent case (3). Since our model is a generalization
of (3), this latter is referred to as the independent copula-based ensemble in the

remainder of this article but it should be kept in mind that it is a prior art.

2.2 New Ensemble Method

Now that we have introduced all the ingredients to build our new ensemble
method, let us explain how it can be implemented efficiently in practice. The
only crucial remaining problem is to tune the parameter A of the parametric
copula. This parameter summarizes the dependency information between each
pair of random variables (¢ (X) |y; éx (X) |y).

Since we have only one parameter to set, we can use a grid search on the
interval (m_—_ll, 1) using the validation set and select \ as the value achieving
maximal accuracy on this validation set. In the experiments, we use an evenly
spaced grid (denoted grid,) containing 101 values. In the sequel, our approach
will be referred to as Decentralized Ensemble Learning with COpula (DELCO).
The pseudo-code for DELCO is given in Algorithm 1.
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Algorithm 1. DELCO (training)

Data: Dirain, Nval, grid, and {train-alg, };*
Select nya) data points from Dirain to build Dyar
,Dérain — Dtrain \Dval
for ke {1,...,m} do

L Run train-alg, on Df,.;, to learn &
for y € {1,...,¢} do

Mval

1+i§1 Hy(y(i))
LR e
for ke {1,...,m} do
for j € {1,...,¢} do

8 () (e ()
- Mval .
04 3 Iy (y“))
i=1

Fioy (j) — [1 = To (j)] X Fiy (j — 1) + 6

Y,J

(k)
ey,j -

for A € grid, do
Obtain éens by substituting (5) in (2) and then (2) in (1), and using
ey myy, 08,0005 and A

val

2, 1y (fens (1))

Mval

B Acc () «

A — argmax Acc (\)
AEgridy,
Obtain éens by substituting (5) in (2) and then (2) in (1), and using
é1,. .. ,ém,’y,ng, . 70?") and A
return Cens

In Algorithm 1, I, denotes the indicator function of the singleton {z}. The
vectors of parameters v and {0(11), ceey BEm)} are estimated using the Laplace

add-one smoothing which is the conditional expectation of the parameters given
the data in a Dirichlet-multinomial model. As opposed to maximum likelihood
estimates, it avoids zero counts which are numerically speaking problematic. It
is also recommended to maximize the log-version of (1) which is numerically
more stable.

Finally, one can optionally retrain the classifiers on Dy,.i, after \ is estimated.
Since Dirain is larger then Dy ., it allows training algorithms to converge to
possibly slightly better decision functions. Training them initially on Diyain is
however ill-advised as the parameter estimates would be biased. In the next
section, where we present numerical results, we use this optional step.

2.3 Dencentralized DELCO

In the previous paragraphs, we presented our new ensemble method in the cen-
tralized setting first for simplicity. It can be adapted to the decentralized setting
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described in the introduction with little efforts. To achieve decentralized learning
with DELCO, each local private data set needs to be separated in a local train-
ing set and a local validation set. After all locally trained models are exchanged
between all nodes, each node computes the confusion matrix of each base clas-
sifier using its local validation set. These matrices are sent to the central node
which just needs to average and normalize them to obtain the estimates of vec-
tors Bz(f). Similarly, vector v can be estimated by sending to the central node
the number of examples belonging to each class. Finally, grid search can also be
implemented in the same fashion. The central node can send the global estimates
of BS) and ~ to each node. Each node can then perform grid search using its
local validation set, compute accuracies and send them back to the central node
which will average them. Note that the number and the cost of transfers through
the network are known before starting to train.

3 Numerical Experiments

In this section, the performance of DELCO is assessed in terms of classification
accuracy and robustness. Situations in which aggregation performance discrep-
ancies are most visible usually occur when there is diversity [11,17] in the trained
base prediction functions é. Among other possibilities [1,18,19,21], one way to
induce diversity consists in distributing data points across the network of base
classifiers in a non-iid way, that is, each base classifiers only sees inputs that
belong to a given region of the feature space. This is a realistic situation as the
data stored in a network node might be dependent on the geographic location
of this node for instance.

Furthermore, we chose to combine base classifiers with limited capacity, i.e.
weak classifiers as in boosting [7], so that the aggregated model has a significantly
larger capacity allowing to discover better decision frontiers. We decided to use
logistic regression on each local data set as this algorithm yields a linear decision
frontier. Also, logistic regression has the advantage to have no hyperparameter
to tune making the conclusions from the experiments immune to this issue. This
is also the reason why we do not use a regularized version of this algorithm.

In each experiment, 10% of the data are used for validation, i.e. ny, = *4a=.
We compare DELCO to the following state-of-the-art or reference methods:

— classifier selection based on accuracies,

— best base classifier,

— weighted vote combination based on accuracies,

— stacking,

— centralized classifier trained on all data,

— the independent copula ensemble (equivalent to (3)).

Each method relying on base classifier accuracies uses estimates obtained
from the validation set. The validation set is also used as part of stacking to
generate inputs for the second stage training. We also use a logistic regres-
sion for this second stage and input entries are predicted classes from each
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Fig. 1. Synthetic data sets and their partitions into feature space regions (n = 400).

base classifier. Stacking is applicable if the validation set is shared across learn-
ers. The best base classifier and the centralized classifier are relevant references
to assess the quality of the aggregation. Concerning DELCO, we examine the
simplified Gaussian copula where the copula hyperparameter is estimated by
grid search from the validation set. In a reproducible research spirit, we pro-
vide a python implementation of DELCO and other benchmarked methods
(https://github.com/john-klein/DELCO).

3.1 Synthetic Data

Using synthetic data sets is advantageous in the sense that, in the test phase,
we can generate as many data as we want to obtain very reliable estimates of
classification accuracies. We examine three different data generation processes
from the sklearn library [22]: Moons, Blobs and Circles. Each of these processes
yields non-linearly separable data sets as illustrated in Fig. 1.

The Moons and Circles data sets are binary classification problems while
Blobs involves three classes. For each problem, the data set is partitioned into
disjoint regions of the input space as specified in Fig.1 and consequently we
combine two base classifiers for the Blobs data set and three base classifiers for
the others. Also, in each case, input vectors live in R2.

The Moons data set consists in two half-circles to which a Gaussian noise is
added. For each half-circle, one of its extremal point is the center of the other
half-circle. The covariance matrix of the noise in our experiment is 0.3 x I where I
is the identity matrix. Before adding this noise, we also randomized the position
of sample points on the half circle using a uniform distribution while the baseline
sklearn function samples such points with fixed angle step. The Blobs data set is
also obtained using a slightly different function than its sklearn version. It gen-
erates a data set from four 2D Gaussian distributions centered on each corner of
a centered square whose edge length is 4. Each distribution covariance matrix is
I. The examples generated by the distributions whose expectations are (—2; —2)
and (2;2) are assigned to class ¢g. Each remaining Gaussian distribution yields
examples for either class ¢; or co. Finally, the Circles data set consists in sam-
pling with fixed angle step two series of points from centered circles with radius
0.5 and 1. A Gaussian noise with covariance matrix 0.15 x I is added to these
points. The python code for the synthetic data set generation is also online.


https://github.com/john-klein/DELCO
http://scikit-learn.org/stable/
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Table 1. Classification accuracies for several synthetic data sets. (Ntrain = 200 in the
left table, nirain = 400 in the right table)

Method Moons Blobs Circles Method Moons Blobs Circles
CIf. selection |79.25% 72.34% 62.38% CIf. selection [79.67% 72.43% 62.50%
std. 3.51%|std. 0.37% |std. 0.32% std. 2.14%|std. 0.27% std. 0.05%
Best clf. 79.25% 72.34% 62.38% Best clf. 80.66% 72.45% 62.50%
std. 1.67%|std. 0.36% |std. 0.32% std. 1.08%|std. 0.22% std. 0.06%
Weighted vote |84.60% 82.43% 50.50% Weighted vote |87.83% 78.72% 50.50%
std. 2.20%|std. 11.02% std. 0.05% std. 1.19%|std. 9.96%|std. 0%
Stacking 81.07% 69.87% 70.20% Stacking 85.32% 71.70% 78.19%
std. 3.89%|std. 5.37% |std. 8.08% std. 4.08%|std. 2.61% std. 6.95%
Indep. copula |83.46% 91.14% 79.32% Indep. copula [86.43% 93.78% 84.54%
std. 2.91%|std. 7.27% |std. 6.70% std. 3.28%|std. 2.48% std. 4.45%
DELCO 80.57% 93.15% 84.49% DELCO 86.75% 94.39% 86.39%
Gauss. copula |std. 4.68% |std. 4.83% |std. 4.51%||Gauss. copula |[std. 3.07%|std. 0.96%|std. 1.11%
Centralized clf.|84.99% 88.49% 50.02% Centralized clf.|85.22% 88.72% 50.01%
std. 0.55%|std. 0.42% |std. 0.49% std. 0.45%|std. 0.42%|std. 0.50%
Optimal 91.50% 95.50% 94.50% Optimal 91.50% 95.50% 94.50%
std. 0% std. 0% std. 0% std. 0% std. 0% std. 0%

To evaluate the accuracy of a classifier or classifier ensemble trained on a
data set drawn from any of the above mentioned generating processes, we drew
test points from the same process until the Clopper-Pearson confidence interval
of the accuracy has length below 0.2% with confidence probability 0.95. For
each generating process, we repeated this procedure 3000 times to estimate the
expected accuracy across data set draws.

The estimated expected accuracies and the estimated accuracy standard devi-
ations are given for each classification method of the benchmark in Table 1 for
Nrain = 200 and ngain = 400. In these experiments, one of the copula-based
methods is the top 2 method for the Moons data set and is the top 1 for the
Blobs and Circles data sets. Most importantly, both copulas based method are
obviously more robust since they never perform poorly on any data set. While
the weighted vote method is the top 1 for Moons data set, it completely crashed
on the Circles data set and converges to a random classifier.

Another result which is surprising at first sight, is that the centralized classi-
fier is sometimes outperformed by some decentralized ensembles. This is actually
well explained by the deterministic way in which input spaces are partitioned.
Indeed, the partitions are cleverly chosen so that a combination of linear deci-
sion frontiers fits intuitively a lot better the data than a single linear separation
does. In other words, ensembles have a larger VC dimension and visit a larger
hypotheses set. One may wonder to which extent it would be possible to pur-
posely partition data sets in such a relevant way to reproduce such conditions in
more general situations. This is however beyond the scope of this article in which
we address decentralized learning, a setting where we take distributed data as is
and we cannot reorganize them.

There are three situations in which significant performance discrepancies are
observed between DELCO and the independent copula. The first one is the
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Table 2. Real data set specifications

Name Size n | Dim. d Nbr. of classes £| Data type Source

20newsgroup | 18846 | 100 (after red.) |20 Text Sklearn

MNIST 70000 | 784 10 Image Sklearn

Satellite 6435 |36 6 Image features UCI repo. (Statlog)

Wine 6497 |11 2 (binarized) Chemical features | UCI repo. (Wine
Quality)

Spam 4601 57 2 Text UCI repo. (Spam)

Avila 10430 |10 2 (binarized) Layout features | UCI repo. (Avila)

Drive 58509 |48 11 Current statistics | UCI repo. (Sensorless
Drive Diagnosis)

Particle 130064 | 50 2 Signal UCI repo.
(MiniBooNE particle
identification)

Moons data set when ngpaim = 200. We argue that DELCO fails to correctly
estimate the parameter A as performance levels are reversed when nqi, = 400
and the validation set has now 40 elements instead of 20.

The other situations are the Circles data set when either nypa;m = 200 or
Nirain = 400. In this case, we see that the independent copula-based ensemble
fails to keep up with DELCO regardless of how many points the validation set
contains. In conclusion, DELCO does offer increased robustness as compared to
the independent copula model provided that the validation set size allows to
tune correctly A. Remember that when A = 0, both models coincide, so if we
have enough data and if being independent is really what works best, then there
is no reason why we should not obtain A=0.

3.2 Real Data

To upraise the ability of the benchmarked methods to be deployed in a decen-
tralized learning setting, we also need to test them on sets of real data. Since
decentralized learning is essentially useful in a big data context, we chose eight
from moderate to large public data sets. The specifications of these data sets are
reported in Table 2.

Example entries from the 20newsgroup data set are word counts obtained
using the term frequency - inverse document frequency statistics. We reduced
the dimensionality of inputs using a latent semantic analysis [5] which is a stan-
dard practice for text data. We kept 100 dimensions. Also, as recommended,
we stripped out each text from headers, footers and quotes which lead to over-
fitting. Besides, for the Wine and Avila datasets, the number of class labels is
originally 10 and 12 respectively. We binarized these classification tasks because
some classes have very small cardinalities making it impossible for each node
to have access to at least one example of this class. Aggregating base classifiers
trained w.r.t different subsets of class labels goes behind the scope of this paper
and will be touched in future works. In the Wine data set, class labels are wine
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Table 3. Classification accuracies (with standard deviations) for several real data sets.
(m = 10 nodes)

Method 20newsgroup|MNIST Satellite |Wine Spam Avila Drive Particle
CIf. selection [37.35% 66.26% 77.83% 63.23% 85.26% 60.76% 58.58% 81.28%
std. 1.38% |std. 1.57%|std. 2.04%|std. 5.51%|std. 1.31%|std. 3.80%|std. 2.77%|std. 1.07%
Best clf. 38.25% 67.24% 79.10% 64.83% 86.60% 62.79% 58.77% 81.81%
std. 0.68% |std. 0.76%|std. 1.16%|std. 4.75%|std. 1.32%|std. 2.24%std. 2.60%|std. 0.32%
Weighted vote |50.17% 82.46% 81.99% 62.89% 89.61% 63.50% 70.42% 81.10%
std. 0.65% |std. 1.54%|std. 0.80%|std. 4.35%|std. 0.83%|std. 2.51%|std. 2.75%|std. 0.72%
Stacking 14.47% 41.47% 70.16% 66.44% 89.42% 65.06% 46.27% 81.95%
std. 1.13% |std. 2.90%|std. 3.35%|std. 3.20%|std. 1.16%|std. 4.97%|std. 3.30%|std. 0.52%
Indep. copula [49.19% 85.77% 83.21% 61.38% 89.70% 63.89% 85.45% 81.56%
std. 0.64% |std. 1.30%|std. 0.68%|std. 5.82%|std. 1.07%|std. 4.83%std. 1.31%|std. 2.88%
DELCO 49.06% 85.86% 82.99% 65.06% 89.35% 64.26% 85.45% 83.04%
Gauss. copula [std. 0.64% |std. 1.17%|std. 0.83%|std. 3.01%|std. 1.18%|4.25% std. 1.31%|std. 1.68%
Centralized clf.|58.19% 90.65% 83.16% 73.83% 92.26% 68.23% 74.95% 81.95%
std. 0.36% |std. 0.33%|std. 0.40%|std. 0.57%|std. 0.52%|std. 0.44%|std. 0.59%|std. 0.52%

quality scores. Two classes are obtained by comparing scores to a threshold of
5. In the avila dataset, class labels are middle age bible copyist identities. The
five first copyists are grouped in one class and the remaining ones in the other
class.

Unlike synthetic data sets, we need to separate the original data set into a
train set and a test set. To avoid a dependency of the reported performances
w.r.t train/test splits, we perform 2-fold cross validation (CV). Also, we shuffled
at random examples and repeated the training and test phases 100 times.

To comply with the diversity condition, we distributed the training data over
network nodes using the following procedure: for each data set, for each class,

1. apply principal component analysis to the corresponding data,

2. project this data on the dimension with highest eigenvalue,

3. sort the projected values and split them into m subsets of cardinality n;/m
where n; is the proportion of examples belonging to class c;.

Each such subset is sent to only one node (the node being chosen arbitrarily).
We argue that this way of splitting data is somehow adversarial because some
nodes may see data that are a lot easier to separate than it should and will
consequently not generalize very well. Average accuracies over random shuffles
and CV-folds are given in Table 3 for m = 10 nodes.

In most experiments, decentralized ensemble methods have difficulties to
compete with a centralized classifier. This is presumably because PCA-based
data splits do not allow to discover better decision frontiers. However, for the
Drive and Particle datasets, it is remarkable that the copula-based approaches
achieve higher accuracies than the centralized classifier.

Most importantly, we see that one of the copula-based method is always either
the top 1 decentralized method or the top 2 which is in line with the robustness
observed in the synthetic data set experiments. When the Gaussian copula is
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Table 4. Classification accuracies (with standard deviations) for several real data sets.
(m = 10 base classifiers. 6 of them are identical ones.)

Method 20newsgroup| MNIST Satellite |Wine Spam Avila Drive Particle
CIf. selection [45.90% 73.20% 79.60% 62.37% 86.91% 58.83% 64.18% 81.40%
std. 0.70% |std. 0.54%|std. 1.03%|std. 4.95%|std. 2.20%|std. 4.88% |std. 2.84%|std. 0.86%
Best clf. 46.11% 73.26% 80.23% 63.30% 87.42% 61.24% 64.31% 81.68%
std. 0.69% |std. 0.55% std. 0.75% |std. 4.32%|std. 1.89% |std. 2.98%|std. 2.83%|std. 0.33%
Weighted vote [47.07% 75.14% 79.79% 61.87% 86.94% 58.27% 65.80% 79.87%
std. 0.66% |std. 0.64%|std. 0.69%|std. 4.62%|std. 2.48%|std. 4.49%|std. 2.63%|std. 1.74%
Stacking 14.25% 36.69% 70.61% 64.91% 89.35% 61.29% 40.17% 80.43%
std. 1.08% |std. 2.13%|std. 3.05%|std. 2.79%|std. 1.47%|std. 4.89%|std. 4.60%|std. 1.43%
Indep. copula |47.49% 76.37%  |81.50%  |62.13%  |87.20%  |58.28%  |71.28%  |81.56%
std. 0.67% |std. 0.64% std. 0.87%|std. 4.90%|std. 2.41%|std. 4.50%|std. 2.52%|std. 0.74%
DELCO 47.04% 77.97% 82.00% 64.65% 89.43% 60.93% 72.10% 83.15%
Gauss. copula |[std. 0.89% |std. 0.62%|std. 0.84% std. 2.70%|std. 1.56%|std. 3.48%|std. 2.26%|std. 1.70%
Centralized clf.|59.41% 90.77% 83.15% 73.83% 92.26% 61.29% 74.94% 88.49%
std. 0.39% |std. 0.14%|std. 3.05%|std. 0.57%|std. 0.52%|std. 4.88%|std. 0.59% |std. 2.60%

outperformed by the independent copula, the maximal absolute accuracy dis-
crepancy is 0.37%. However, when the independent copula is outperformed by
the Gaussian one, the maximal absolute accuracy discrepancy is 3.68%.

To better upraise the added value brought by DELCO, we performed another
experiment in which six out of the ten base classifiers are replaced by six copies of
a majority vote ensemble relying on those six base classifiers. In this situation,
there is clearly a strong dependency among base classifiers. Since copulas are
meant to capture dependency information, a better fit should be achieved by
the Gaussian copula. This is indeed confirmed by the corresponding average
accuracies which are reported in Table 4.

In this second series of results, we see that performance discrepancies between
DELCO and the independent copula are much larger. Except for the 20news-
group data set, the Gaussian copula always achieves higher accuracies than the
independent copula. DELCO is the top one decentralized method for 5 datasets
and the top 2 for the remaining ones?. Classifier selection methods are immune to
the artificially added dependency because, by construction, they are idempotent
methods. They are nevertheless still outperformed by ensemble methods.

4 Conclusion

In this paper, we introduce a new ensemble method that relies on a probabilistic
model. Given a set of trained classifiers, we evaluate the probabilities of each
classifier output given the true class on a validation set. We use a Gaussian copula
to retrieve the joint conditional distributions of these latter which allow to build
an ensemble decision function that consists in maximizing the probability of the
true class given all classifier outputs.

2 We consider that DELCO and weighted vote have equal level of performances for
the 20newsgroup data set.
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We motivate this new approach by showing that it fits a decentralized learn-
ing setting which is a modern concern in a big data context. The approach is
validated through numerical experiments on both synthetic and real data sets.
We show that a Gaussian copula based ensemble achieves higher robustness than
other ensemble techniques and can compete or outperform a centralized learning
in some situations.

In future works, we plan to investigate other estimation techniques for the
copula parameter than grid search which is suboptimal. In particular, we would
like to set up a Bayesian approach to that end. This would also allow us to
observe if tying the correlation matrices is too restrictive or not. More complex
correlation matrix patterns will also be examined. Also, other copula models will
tested and the sensitivity of the method w.r.t the chosen copula family will be
studied.
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Abstract. Federated learning is a well-known machine learning app-
roach over edge devices with relatively limited resources, such as mobile
phones. A key feature of the approach is that no data is collected cen-
trally; instead, data remains private and only models are communicated
between a server and the devices. Gossip learning has a similar appli-
cation domain; it also assumes that all the data remains private, but it
requires no aggregation server or any central component. However—one
would assume—gossip learning must pay a price for the extra robust-
ness and lower maintenance cost it provides due to its fully decentral-
ized design. Here, we examine this natural assumption empirically. The
application we focus on is making recommendations based on private
logs of user activity, such as viewing or browsing history. We apply low
rank matrix decomposition to implement a common collaborative filter-
ing method. First, we present similar algorithms for both frameworks
to efficiently solve this problem without revealing any raw data or any
user-specific parts of the model. We then examine the aggregated cost in
both cases for several algorithm-variants in various simulation scenarios.
These scenarios include a real churn trace collected over mobile phones.
Perhaps surprisingly, gossip learning is comparable to federated learning
in all the scenarios and, especially in large networks, it can even outper-
form federated learning when the same subsampling-based compression
technique is applied in both frameworks.

1 Introduction

Mobile phones represent a key source of data and a very important platform not
only for running pre-trained models but also for learning [17]. This is because
collecting data centrally has become more and more problematic over the past
few years due to novel data protection rules 7] as well as the increasing public
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awareness to privacy issues. For this reason, there is an increasing interest in
methods that keep the raw data on the device and process it using distributed
algorithms.

Google introduced federated learning to answer this challenge [10,12]. Not
unlike the well-known parameter server architecture [6], a server maintains the
current model and regularly distributes it to the workers who in turn calcu-
late a gradient update and send it back to the server, where the updates are
aggregated. In federated learning, this framework is optimized so as to minimize
communication between the server and the workers. For this reason, the local
update calculation is more thorough, and compression techniques can be applied
when uploading the updates to the server. Gossip learning has also been pro-
posed to address the same challenge [9,14]. This approach is fully decentralized,
no parameter server is necessary. Nodes exchange and aggregate models directly.
Since no infrastructure is required, and there is no single point of failure, gos-
sip learning enjoys a significantly cheaper scalability and better robustness than
centralized approaches.

However, it is not clear whether gossip learning is competitive in terms of con-
vergence time and communication cost. To shed light on this question, we carry
out an empirical comparison of the two approaches. To do this, we implement a
recommender system in both paradigms, based on low-rank matrix decomposi-
tion. The gossip learning implementation is based on our previous work [9]. We
propose a federated learning implementation as well, following the same design,
but adapted to the centralized communication pattern. Also, inspired by [10],
we apply subsampling to reduce communication in both approaches.

The result of our comparison is that gossip learning is in general comparable
to the centrally coordinated federated learning approach, and in some scenarios
it actually outperforms federated learning. One should obviously not jump to
conclusions based on one empirical study, but our results suggest that fully
decentralized algorithms perhaps deserve more attention in the future.

To sum up our key original contributions in the present study: (1) we propose
an efficient collaborative filtering method for federated learning; (2) we improve
several details of our previous solution [9] as well including the introduction of
coordinate-based age parameters to manage aggregation and the application of
an optimized version of subsampling to gossip learning; and (3) we compare
the two methods empirically based on a realistic churn trace collected by the
application Stunner [2].

We are aware of only two (at the time of writing, unpublished) studies that
address the specific problem of recommender systems in federated learning. The
first is based on the idea of meta-learning [4]. Here, it is assumed that the devices
have enough data to learn a model based only on local data. Then, federated
learning is used to find the optimal hyperparameters for the algorithm, using the
devices to calculate gradients for the hyperparameters. We are interested in sce-
narios where there is not much local data, so meta-learning is not an option. The
second study is closer to our approach [1] in spirit. However the authors assume
a different setup with only implicit binary feedback as data (e.g., a movie was
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watched or not). Due to this, their input data is a dense matrix (there are no rat-
ings labeled as “unknown”) so compressed communication is more problematic.
We focus on modeling only the known ratings (a small minority of all ratings)
and make predictions based on these. Also, the optimization algorithm they
approximate is alternating least squares with a federated gradient optimization
step in the inner loop, while we use simple SGD which is more robust to failure
and asynchrony.

We note that both approaches offer mechanisms for explicit privacy protec-
tion, apart from the basic feature of not collecting data. In federated learning,
Bonawitz et al. [3] describe a secure aggregation protocol, whereas for gossip
learning one can apply the methods described in [5]. Here, we are concerned
only with the eflficiency of the different communication patterns and do not
compare security mechanisms.

The outline of the paper is as follows. In Sect. 2, we describe the low rank
matrix decomposition problem, formulated as a machine learning problem. Here,
we also present the key ideas to solve this problem in a decentralized setting.
In Sect. 3, we describe the basics of solving the problem with federated learning
while in Sect. 4 we present the gossip learning algorithm for the same problem. In
Sect. 5 we present the key details of the learning algorithm that are common to
both approaches. These include the details of the update rule, the subsampling
technique, and the initialization. Finally, in Sect.6, we present our empirical
results.

2 Rank-k Matrix Approximation

Here, we present the problem definition in the form of a model and a corre-
sponding loss function. We also describe our approach and main assumptions—
common to both federated learning and gossip learning—regarding the optimiza-
tion of the model.

2.1 Problem Definition

The problem of rank-k matrix approximation [11] is defined in the following way.
Let A € R™*™ be a matrix that contains our data (for example, user ratings
of items such as movies, songs, or locations). The goal is to find two matrices
X e R™* and Y € R"** that minimize the error function

m n

1 1 k
JXY) =5 |4 - XYT|3 = 5 2 D (ai = Y wayn)® (1)
=1

i=1 j=1

We consider the matrix XY an optimal rank-k approximation of A. Note that
the rank of X and Y7 (and therefore XY7) is at most k. Usually a k& much
smaller than m and n is chosen to significantly compress the data. X and Y7
can be interpreted as high level features (e.g. genres of movies and tastes of
users) that compactly represent the original data.
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Often in practice we have only partial information regarding A; that is, some
values in A might be unknown. As an important generalization of the problem
above, here we are looking for a rank-k decomposition that approximates only
the known values. A common approach is to minimize the error function

k

1 A 2 | A 2

J(X,)Y) = 3 Z (aij — inlyjl)Q + b) ||X||F + 9 ||Y||F7 (2)
(i.5)el =1

where I contains the indices of the known values of A. We can then use the
decomposition XY 7T to approximate the unknown values in A, since XY7 is
fully defined. Note the here we also included additional regularization terms and
the regularization parameter \. This helps stabilize the optimization process in
a machine learning context.

Another practical technique used is to add bias terms to the model. The bias
terms b € R™*! and ¢ € R are incorporated into the model via the loss
function

k

1 A A

JX.Y.be) =5 D7 (ay —bi—e; = Y wayp)® + 51X+ IV 15 (3)
(i,5)€l =1

For example, in a recommender system, the bias can represent the fact that some
users tend to give higher or lower scores than others, and some movies tend to get
higher or lower scores. Intuitively, the bias represents average scores, and X and
Y represent relative differences. This often enhances the prediction performance.
With bias, the approximation of A (both known and unknown values) is given
by XYT +b1,, + ¢'1,, where 1}, is a row vector of k ones.

2.2 Optimization Approach

Our targeted application environment consists of a potentially large set of per-
sonal devices holding private data. We follow the approach in our previous
paper [9] and we will adapt the same approach to federated learning. We shall
assume that each row in matrix A is stored on exactly one device. We shall also
assume that each device will host exactly one row. This setup covers applica-
tions where one row of the matrix belongs to one user and the devices belong to
exactly one user, as in the case of mobile phones. One matrix row can naturally
represent any kind of private user activity, such as watching movies. We should
add though that if more than one row is stored on a device, the algorithms are
still applicable.

The main idea is that matrix X will also be stored in a similar manner; that
is, every device will store the row of X that belongs to the row of A stored on
the device. This way, the matrix X that contains information about the users
is completely private, every device knows only its own row. However, the entire
matrix Y will be shared among all the devices. This is safe, because matrix Y
contains only user-independent information about all the items the users might
consume.
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Algorithm 1. Federated Learning Master
1: (t,Y,¢) < initY()

2: loop

3 (t,Y,) < (On,0n.x,0,)

4 for every node 7 in parallel do > non-blocking (in separate thread(s))
5: send (¢,Y,c) to i

6: receive (t',Y’,c') from ¢ > model gradient
7 GY,8) — (F+t Y +Y' ¢+

8: end for

9: wait(Ay) > the round length
10: for j —1...ndo

11: if £; # 0 then _

12: Y, — Y, + i /f;

13: Cj < Cj +’Cv]/,tv]

14: t; — t; + 1

15: end if

16: end for

17: end loop

The gradient of Y computed by a single user may leak private data. In
federated learning, Bonawitz et al. [3] describe a secure aggregation protocol
with additional measures to prevent this kind of information leakage. In gossip
learning, one can apply the secure distributed mini-batch methods described
in [5]. We do not include such additional techniques in our present study.

Using the loss function defined in Eq. (3), and assuming that every device
has a copy of Y, the gradient of both its own row of X and the global matrix Y
can be computed by each device locally, w.r.t. the local row of A. Devices can
use these gradients to update their own row of X locally. Therefore, all we need
to take care of is to somehow aggregate the gradients of Y over the devices and
then redistribute new versions of Y. Federated learning and gossip learning offer
two, rather different alternative solutions to this problem. (Note that the bias
vectors b and ¢ are handled similarly to X and Y, respectively.)

3 Federated Learning

Here, we present the well-known federated learning algorithm [10,12], adapted
to the problem of rank-k matrix decomposition.

In this framework, there is a master node that runs Algorithm 1, and several
worker nodes that execute Algorithm 2. The master first initializes the global
model (t,Y, ¢) that contains matrix Y, the bias vector ¢ and an age vector t. For
each row j, t; counts how many times Y; and c; have been updated. Having a
separate counter for each row is necessary because there can be a very different
number of examples for each item, and thus there can be a different number of
updates applied to each row (see below).

Similarly, each worker node initializes its private model (z;,b;) that contains
its own row of X, x;, and the corresponding bias b;. After initialization, in every
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Algorithm 2. Federated Learning Worker
1: (x4, b;) « initX()

2:

: procedure oNRECEIVEMODEL(Z, Y, )
((t,Y,¢), (w:,b:)) —update((£,Y, ), (zi, b)), a:) > a;: the local ratings
Y )= (t—4Y —-Y,c—0)
send (compress(t',Y’,c')) to master

end procedure

round, the master sends the global model to all the workers. The workers then
update the received global model and their own local user model using the local
ratings, and they then send the (potentially compressed) model gradient to the
master. In this message to the master, the vector ¢’ can contain only ones and
zeros, indicating which rows of Y (and elements of ¢) were updated. At the end of
each round, the server updates the global model with the average of the received
gradients.

Each row Y; (and value ¢;) will typically have different associated ﬂ values
depending on how many valid (non-missing) values are there in the matrix col-
umn A;, and also on which clients manage to send a message to the master in
the given round. We can think of t~J as the effective mini-batch size correspond-
ing to updating Y; and ¢;. Thus, by normalizing with %Vj, we effectively perform
parallel mini-batch updates on Y; and c;.

Note that in the federated learning framework it is typically assumed that the
workers are synchronized; that is, the master has to wait until all (or most of)
the nodes send a gradient in the given round and, most importantly, the workers
have to wait as well for the next globally aggregated model from the master
to process. Although asynchronous distributed learning is common, federated
learning also seeks to handle the non-uniform sampling of training data, which
is expected to make asynchronous implementations less stable.

The methods uppATE, comPRESS, INITX and INITY shall be explained in
detail in Sect. 5. Note that the same methods are used in gossip learning as well.

4 Gossip Learning

In gossip learning, there is no master node. All the participants are equivalent,
and form a P2P network [14]. All the nodes run Algorithm 3. The nodes first
initialize their own copy of the global model (¢,Y, ¢) as well as the private model
(z4,b;). Then, in each cycle, they send their (potentially compressed) copy of the
global model to a random online neighbor in the P2P network. Upon receiving a
model, the node merges it into its own, then updates both the resulting merged
new global model and the local model, using the local ratings.

As mentioned above, methods uppare, comprEss, INITX and INiTY shall be
explained in detail in Sect. 5. Note that the same methods are used by federated
learning as well.
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Algorithm 3. Gossip Learning
1: (¢,Y,c) « initY()
2: ($Z,b2) — ll’lltXO
3: loop
4: wait(Ay)

5: p < selectPeer()

6.

7

8

send (compress(t,Y,c)) to p
: end loop

9: procedure ONRECEIVEMODEL(Z, Y, )
10: (t,Y, C) Hmerge((m}c 0)7 (Ft: }775))
11: ((t,Y,¢), (zi,b;)) «<update((t,Y, ¢), (z:, b;:), a;)
12: end procedure

Algorithm 4. Various versions of the merge function

1: procedure MERGENONE((t,Y, ¢), (1,Y,?))
2: return (,Y,7?)
: end procedure

3

4 N
5: procedure MERGEAVERAGE((t, Y, ¢), (£,Y,2))
6: for j—1...ndo

7 if t; # 0 then

8

t]
R
9: t; « max(t;,t;)
10: Y — (1 — w)Y; + wY;
11: Cj (1 — w)c]- —+ ng

12: end if

13: end for

14: return (¢,Y,c)
15: end procedure

Method MERGE, however, is specific to gossip learning, and it is responsible
for aggregating the updates computed at the devices. Possible implementations
of this method are listed in Algorithm 4. The first option is not to perform any
aggregation, in which case different versions of the global model perform random
walks in the network independently. The other option is to take the average of
the two models row by row, weighted by the corresponding elements of the age
vectors so that the more converged copy has a larger effect.

An important effect of this weighted merging technique is that the freshly
initialized rows of the model of any newly joined node are ignored. This is because
if a row has never been updated, then the age is zero for the given row. The
new model will be assigned the maximum of the two merged ages. This is a
conservative heuristic that performed better in our preliminary experiments than
possible alternatives such as the sum of the two ages. Note that the age of the
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Algorithm 5. Model initialization

1: procedure INITX()
2: ford—1...k do

3: xq < rand() - \/(Rmax — Rmin)/k > rand() ~ U(0,1)
4: end for

5: b < Rmin/2

6: return (z,b)

7: end procedure

8:

9: procedure INITY ()

10: for j—1...ndo
11: tj «—0

12: (Y}, ¢;) «—initX()
13: end for

14: return (¢,Y,c)
15: end procedure

different rows can differ significantly because the number of known ratings for
different items typically has a large variance.

Since gossip learning uses a P2P network, we have to make our assumptions
about this network explicit. We assume that there is a membership service in
our system. This service provides unique identities to the participants that might
include public and private keys for public key cryptography that are tied to the
network address of the node. The membership service also offers peer sampling,
accessed through method seLecTPEER. That is, all the nodes are assumed to have
access to addresses of live nodes from the network. In practice, peer sampling
can have a decentralized implementation that can be dynamic [16] or it can be
based on a static network with random neighbors [15] that is able to handle
NAT devices as well. It can also be implemented as a centralized service. Ideally,
the neighbors returned by the peer sampling service should be uniform random
samples of the live nodes, but in practice it suffices if the network has good mixing
when, for example, the neighbors are sampled from a fixed overlay network graph.

5 Shared Methods

Here, we present those methods that are used by both federated learning and
gossip learning. Let us begin with the initialization methods in Algorithm 5.
Both X and Y are initialized with uniform random numbers from the range
[0, \/(RmaX — Ruin)/k], and the initial bias is set to Ruyin/2, where Rpax and
Rin are the largest and the smallest possible ratings, respectively. This ensures
that when a prediction a:inT +b; +¢; is made using initial values, the result falls
in the range [Rumin, Rmax]-

As for learning, both models use a stochastic gradient descent (SGD) update
rule with the fixed learning rate n (see Algorithm 6). The age vector ¢ is incre-
mented in positions corresponding to updated rows of Y (that is, for those items
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Algorithm 6. Model update rule

1: procedure UPDATE((¢, Y, ¢), (4, bi), a;:)
2: for all j where a;; is defined do

3 tj — tj +1

4 err «— a;; — a:iY]-T —bi—c¢j

5 (Y52) — (1= nA)Y; + - err @i, (1 — p\)as + - err - Y;)
6: cj < cj+mn-err

7: bi—bi+n-err
8

9
10:

end for
return ((¢,Y,¢), (zi,b;))
end procedure

Algorithm 7. Various versions of the compress function
1: procedure COMPRESSNONE(t, Y, ¢)
2: return (¢,Y,c)
: end procedure

3
4:
5: procedure COMPRESSSUBSAMPLING(t, Y, ¢)
6: U—{1,...,n}

7 D — {j € Ulay; is defined}

8: Jq < random subset of D of size min(s, |D|)

9: Ju < random subset of (U \ D) of size (s — |J4l|)

10: for all j € J;U J, do

11: t;- — 1

12: Y] <Y,

13: ¢ — ¢y

14: end for

15: return (¢, Y’ ) > we assume a sparse vector representation

16: end procedure

that the user rated). The update rule simply follows from the partial derivatives
of (3). Note that this version of the update rule uses a constant learning rate,
but other implementations might also use the age vector passed to the update
method.

Let us now turn to the compression methods. In this study, we focus on
subsampling as a simple compression technique. That is, only s rows of Y are
sent along with the corresponding elements of ¢ and ¢, where s is the compres-
sion parameter (see Algorithm 7). Subsampling is performed randomly without
replacement from the updated rows (that is, those rows where the corresponding
rating is known) and, if there is still room left, from the remaining, non-updated
rows. Note that sending non-updated rows in fact makes sense because in such
cases the given node might act as a forwarding agent. In other words, such rows
might be useful for the recipient nodes.
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6 Experiments

Here, we present our simulation experiments with gossip learning and federated
learning over the MovieLens database in several scenarios.

Table 1. The main properties of the MovieLens data sets and algorithm parameters

100K 1M 10M
# users (m) | 943 6,040 69,878
# movies (n) | 1,682 3,952 10,677
4 ratings 100,000 1,000,209 10,000,054
Density 6.3% 4.2% 1.3%

Training/Test | 90.57%/9.43% | 93.96%/6.04% | 93.01%/6.99%
Time period | 20.09.97-22.04.98 | 25.04.00-28.02.03 | 09.01.95-05.01.09
n/\k 107%2/1071/5 1072/1071/5 1072/107%/5
Message size | 0.6 Mbit 1.5 Mbit 4.1 Mbit

6.1 Datasets

The MovieLens data sets [8] were collected by the GroupLens Research Project
at the University of Minnesota. The data was collected through the MovieLens
website (movielens.org) over various periods of time, depending on the size of the
set. The main properties of the MovieLens data sets are shown in Table1 and
Fig. 1. Each data set is split into a training matrix and a test matrix in such a
way that for each user, there are either 0 or 10 defined values in the test matrix.
Each row of the training matrix (representing the ratings of a given user) was
assigned to a unique node in the simulation experiments.

6.2 System Model

In our simulations, fixed random 20-out graphs were used as the overlay network.
The number of nodes was equal to the number of users in the given data set. In
the churn-free scenario, every node stayed online for the whole experiment. A real
availability trace, gathered from smartphones, was used in the churn scenario.
A message was considered successfully delivered if and only if both the sender
and the receiver remained online during the transfer. Peer selection (method
SELECTPEER) returned online nodes only.

The nodes had the same upload and download bandwidths. The motivation
for this was that it is likely that in a real application there will be a low, uniform,
configured bandwidth cap. The server had infinite bandwidth (which favors fed-
erated learning, as gossip learning does not use a server). The transfer time of a
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Fig. 1. Visualization of the distribution of the number of rated items per user. Users
are sorted according to the number of their rated items for all three databases.

full model was assumed to be 1728 s (irrespective of the data set used) in the low
bandwidth scenario, and 172.8s in the high bandwidth scenario. This allowed
for around 100 and 1000 iterations over the course of 48 h, respectively.

The cycle length parameters A, and Ay were set so that the two approaches
fully utilized the available bandwidth. In our case this also means that the two
algorithms transfer the same amount of data overall in the network in the same
amount of time, making comparisons of convergence dynamics fair. The gossip
cycle length A, is exactly the transfer time of a model, which is proportionally
smaller when compression is used. The cycle length Ay of federated learning is
the round-trip time, that is, the sum of the upload and download times. In this
case, only the upstream transfer is compressed.

Note that we use rather low bandwidth settings because in the churn sce-
nario if the transfer is very fast, the network hardly changes during the learning
process, the models are learned over an effectively static subset of the nodes.
Slower transfer is more challenging, because more transfers fail, just like in the
case of very large machine learning models such as deep neural networks. (This
issue is completely irrelevant in the churn-free scenario, since the dynamics are
identical apart from the scale of time.)

6.3 Smartphone Traces

We used a trace collected by STUNner, a locally developed, openly available
smartphone application [2]. In short, the app monitors and collects information
about the battery level, charging status, bandwidth, and NAT type.

The trace contains time series spanning varying lengths of time, originating
from 1191 different users. Based on the UTC hour of day, we split the data into
2-day segments (with a one-day overlap), resulting in 40,658 segments altogether.
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Fig. 2. Online session length histogram (left) and device churn (right).

Using this, we can simulate a virtual 48-hour period by assigning a segment to
each simulated node.

To make our algorithm phone and user friendly, we consider a device to be
online (available) when it has been on a charger and connected to the Internet
(with a bandwidth of at least 1 Mbit/s) for at least a minute, therefore we do
not use battery power at all.

The main properties of the trace are shown in Fig. 2. The plot on the right
illustrates churn by showing what percentage of the nodes left, or joined the
network (at least once) in any given hour. Notice that at any given moment
about 20% of the nodes are online. The mean online session length is 81.368 min.

6.4 Hyperparameters

The learning rate 1 and regularization parameter A were optimized in the churn-
free, low-bandwidth, uncompressed scenario. The resulting values are n = 1072
and A = 107!, as shown in Table 1. We used rank-5 factorization.

6.5 Results

We used PeerSim [13] for the simulations. We measured performance with the
help of the root-mean-square deviation

1
RMSE = \/m Z (rij — xiyf)Qv

i,j€T

where R € IR™*" is the test matrix, and T is the set of indices defined in R. In
the case of gossip learning, the error is calculated using the models stored in the
currently online nodes and the corresponding rows of R. In the case of federated
learning, the aggregated global model is used instead of the local ones. Figure 3
contains our results without churn, and Fig. 4 shows the same experiments over
the smartphone trace. The evaluated algorithms are



Decentralized Recommendation Based on Matrix Factorization 329

MovieLens 100K MovieLens 100K
2.4 - " 24 " -
Gossip Learning — - - Gossip Learning — - -
22 \ Gossip Learning Merge == | 22 Gossip Learning Merge =
Gossip Learning 10% == == Gossip Learning 10% == ==
2 N Federated Learning 2 Federated Learning = = -
Federated Learning 10% Federated Learning 10% s s nui
1.8
a 2
S L6
z z
1.4
1.2 .
1
0.8
0 5 10 15 20 24
Hours Hours
MovieLens 1M MovieLens IM
2.4 T T — — 2.4 T T — —
Gossip Learning — - - Gossip Learning — - -
22 Gossip Learning Merge == 22 Gossip Learning Merge ==
\ Gossip Learning 10% == w Gossip Learning 10% == we
2 Federated Learning 2 Federated Learning = = -
Federated Learning 10% Federated Learning 10% s s nni
1.8
2 2
s 16 =
o~ o~
1.4
12 — .
1
0.8
0 5 10 15 20 24
Hours Hours
MovieLens 10M MovieLens 10M
2.4
Gossip Learning — - - Gossip Learning — - -
22 Gossip Learning Merge == Gossip Learning Merge =
Gossip Learning 10% == = Gossip Learning 10% == =
2 Federated Learning = = Federated Learning = = -
Federated Learning 10% s s nni Federated Learning 10% s s nni
1.8
a @
1.6 s
z Z
1.4
1.2
1 Rl T T ————
0.8 s s s s s s
0 5 10 15 20 24 15 20 24
Hours Hours

Fig. 3. Churn-free scenario with 1 epoch (left) and 10 epochs (right).

Gossip Learning: no merging and no subsampling. Here, the cycle length
equals the time needed for one full model transmission.

Gossip Learning Merge: with merging but no subsampling, so the cycle
length is still one full transmission.

Gossip Learning 10%: with merging and subsampling with s = n/10. Here,
the cycle length corresponds to 0.1 full transmissions.

Federated Learning: no subsampling, so the cycle length corresponds to two
full transmissions: upload and download.

Federated Learning 10%: the uploaded model is subsampled with s = n/10,
so the cycle length corresponds to 1.1 full transmissions.
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In Fig.3 we include results with 1 and 10 epochs of local learning in the
left and right columns, respectively. In the case of 10 epochs, the local gradi-
ent update step is iterated 10 times. Clearly, for both methods, increasing the
number of epochs improves convergence speed without any extra communica-
tion. The compressed variants consistently perform better. Federated learning
has an initial advantage, which disappears after a few hours. In fact, for the
largest problem, gossip learning is almost identical to federated learning, and
the difference between the two methods seems to decrease with increasing net-
work size. Interestingly, when only 1 epoch is performed, gossip learning actually
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Fig. 4. Churn trace scenario with low bandwidth (left) and 10 x higher bandwidth
(right).
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outperforms federated learning by a significant margin especially on the largest
network.

In Fig. 4 we ran one local epoch in each experiment, but the plots on the right
show the effect of speeding up communication. Faster communication results in
a dramatically better performance, simply because the convergence speed is able
to “beat” the speed of churn. Apart from this observation, the other conclusions
are similar, namely compression helps both methods and gossip learning per-
forms relatively better in larger networks. Overall, federated learning and gossip
learning have a very similar performance, despite the disadvantage of gossip
learning of not relying on a central server for aggregation and broadcast.

7 Conclusions

In this study, our main goal was to explore the differences between federated
learning and gossip learning over a collaborative filtering task. Since gossip learn-
ing does not rely on central servers, one might expect it to pay a performance
penalty in terms of convergence speed, when given the same communication
budget.

Our main conclusion based on our empirical study is that federated learning
does not seem to have a clear performance advantage. In fact, in certain sce-
narios gossip learning proved to be preferable. Obviously, the design space for
both protocols is very large, and there are many possibilities for improving the
communication efficiency in both paradigms. It is also a non-trivial question of
how one should model communication constraints and costs, since this depends
on many factors. However, it is interesting, and perhaps non-trivial, that gos-
sip learning is clearly comparable in performance. This might motivate further
research into fully decentralized methods that otherwise have clear benefits such
as a very low cost of entry that is not dependent of the network size, or the
robustness due to the lack of any critical components.
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Abstract. In decentralized distributed systems the data resides on the
compute devices, which are connected through a high latency network
that can adversely impact the communication cost. In such systems, it
is desirable to employ a training regime that is inherently decentralized,
where learning algorithms operate on local hosts using only the local data
partitions. To ensure their convergence to a joint model, the parameters
of the local models have to be regularly averaged. As each averaging
operation incurs network communication costs, the right balance has to
be found between either communication intensive dense averaging oper-
ations or sparse averaging operations which slows down the convergence.
We propose a hierarchical two-layer sparse communication topology, a
ring of fully-connected meshes of workers that communicate with each
other (Ring-Star). Ring-Star allows a principled trade-off between the
convergence speed and communication overhead and is well suited to
loosely coupled distributed systems. We demonstrate on an image clas-
sification task and a batch stochastic gradient descent learning (SGD)
algorithm that our proposed method shows similar convergence behavior
as Allreduce while having lower communication cost of Ring.

Keywords: Decentralize sparse topology - Model averaging -
Distributed stochastic gradient descent - Deep learning

1 Introduction

Mini-batch Stochastic Gradient Descent is often employed for training deep
learning models in distributed settings, as each instance of data can be processed
in parallel, which is useful in speeding up the learning process. The most widely
used distributed learning approaches focus mainly on using centralized training
procedures [4,7], which are based on a parameter server (PS) framework. How-
ever, the centralized approaches are not suited for the computing environment,
where data cannot be centralized and the central server can become a bottleneck
due to the underlying network characteristics [8]. Decentralized training proce-
dures [8,9] are proposed to scale on loosely connected, high latency computing
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systems. In these procedures, workers are sparsely connected to each other form-
ing a Ring topology. For synchronization, each worker averages its model with
two neighboring workers. Decentralized approaches are motivated by control
systems and wireless sensor network research, which solve a global consensus
problem. These procedures show a significant reduction in the communication
overhead. However, sparse averaging increases the parameter variance between
workers, which is termed as “network error” in the literature [1,13]. The “net-
work error” or variance is large in the early stages of optimizing a non-convex
objective and frequent averaging helps to reduce the variance. Despite being
communication efficient, decentralized training procedures suffer from high net-
work error, which increases with an increasing number of workers. On the other
hand, a grand averaging step, like Allreduce [2], incurs zero network error but is
a communication inefficient operation, especially in a high latency network.

The competing objectives of reducing communication overhead, while keep-
ing the network error as small as possible is a challenging task, which requires
designing a topology that benefits from both worlds. In this paper we analyze
different characteristics of decentralized topologies and design a sparse topol-
ogy that balances trade-off between communication cost and network error.
The main contributions of this paper are (1) a new Ring-Star topology for a
decentralized parallel SGD that balances network error and communication over-
head, and (2) detailed analysis of different design choices for designing a sparse
topology. The empirical evaluations on an image classification task show, supe-
rior convergence behavior of Ring-Star as compared to communication efficient
Ring based topologies. As a result Ring-Star achieves better final test accuracy
than Ring and RingRandom in same wall clock time.

2 Decentralized Model Averaging

2.1 Problem Formulation

Decentralized distributed settings consist of a set of distributed workers V =
{1,---,V}, where each worker v € V holds a local model §(x;8,,), with model
parameters 6, € R and runs a mini-batch SGD to update its model parameters
by sampling a mini-batch B, C D, from the local shard of data D,,.

0,7 =4, Z VL(y, 4(x;6})) (1)

(x,y )EB,

where £(+,-) is a loss function. Typical loss functions include the cross entropy
loss, square loss, hinge loss etc. These workers periodically synchronize their
models by averaging over the models learned by other workers. Given a weight
matrix W € RV*V | the averaging step at worker v can be defined as:

= Z Wv,v/afﬂ (2)

v’ eV
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The weight matrix (or mixing matrix) W is symmetric and W1 = 1, where
1 denotes a vector of all ones. The weight matrix W defines the influence of
the averaging step in Eq.(2) at each worker. In a dense averaging scheme, such
as Allreduce [2], each worker gets the model average of all other workers at
each averaging step, whereas in a sparse scheme, such as Ring [8], each worker
averages over two neighboring workers. The weight matrices for Allreduce and
Ring schemes are given as:

1 1 1
L1 q9...0 1
1 1 ii 1 0...3
Vv S S RN
i i 0353 30
W Altreduce = R ’ WRing = e
Vv 11
A A
3003 3

2.2 Designing a Sparse Topology

To design a sparse topology that incurs a lower communication cost and at the
same time has lower network error, we define the average-age matrix and the
communication overhead as design characteristics of the topology. The average-
age matrix H holds the information about how old the contribution of a worker
u is to a worker v. Given the weight matrix W, the average-age matrix H can be
defined as the shortest path between the workers, which measures the number of
averaging steps required to average over the model from any other worker. The
second important characteristic of topology is the communication cost, which can
be defined, following [11], as Ya + 13, where 7 is the number of handshakes,
« is the latency, IT is the size of data transferred, and ( is the bandwidth. The
importance of latency in high latency networks cannot be understated as it can
cause a performance bottleneck.

Table 1. Comparison of characteristics of different topologies.

Topology Averaging step | Communication cost | Average age
Allreduce [2] Dense 2(V—-1)a+2Kg 0(1)

Ring [8] Sparse 200+ 2K o(V)

RingRandom 9] Sparse 200+ 2K O(log(V))
Ring-Star (proposed) | Sparse 2(L—1)+2)a+2K3|0(G) or O(log(@))

2.3 Existing Topologies

The Allreduce (AR) topology [2] is a dense averaging scheme used for training
deep learning models. In this scheme, every worker requires a single averaging
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step to get the contributions of all other workers, therefore the age matrix H has
one. A disadvantage, however, inherent to this topology is the high communica-
tion cost, which for the most optimized implementation still requires O(V') hand-
shakes. The total communication cost incurred by Allreduce is (V —1)a+ 2K (3,
which becomes more pronounced in high latency network as latency grows in V,
where V' is the number of workers.

The Ring (R) topology proposed in [8] has a sparse averaging scheme, where
at an averaging step each worker only averages with its two adjacent neighboring
workers. This sparse connectivity incurs a very low communication cost of 2a +
2K [ per communication round. However, due to a sparse averaging, a worker
on average has to take O(V') averaging steps before it gets the contribution from
its furthest neighbor, which causes high network error, requiring more iterations
for a model to converge.

The RingRandom (RR) topology proposed in [9], improves the averaging
steps by averaging randomly with a neighbor that is 2° 4+ 1 hops away, where i is
an integer between 0 and log(V) — 1. They also introduce a bipartite partitioning
of the workers, where workers in an active group initiate the communication,
whereas a passive group worker only responds to the request. These random
re-links connect any pair of workers in O(log(V')) steps. The communication
overhead is the same as the Ring topology, i.e. 2a + 2K /3 per communication
round.

2.4 Ring-Star: A Sparse Topology

The existing topologies discussed above either incur a high communication over-
head or suffer from a low averaging operation which results in a high network
error. Keeping in view these characteristics, we propose the Ring-Star topology
that aims to reduce their disadvantages. In our proposed Ring-Star (RS) topol-
ogy, distributed workers are divided into local groups and a worker from each
group is selected as a Delegate. The Delegate is responsible for averaging models
from the local group as well as exchange the group average with two neighboring
Delegates (similar to a Ring topology). After the averaging step, each worker in
the connected group gets the average of the two neighboring groups. Let the size
of the local group be L then the size of the Delegates Ring becomes G = V/L.
This significantly reduces the average age in H, as each worker requires O(G)*
averaging steps to get contribution from the furtherest worker, and speeds-up the
information propagation among workers. Ring-Star incurs ((2(L—1)+2)a+2K(
communication cost, where O(L) handshakes are required for local group averag-
ing and two more handshakes are required for averaging between two Delegates.
Ring-Star is a sparse topology, in which, after the averaging step each worker
gets the contribution of a subset of workers, and it has a significantly different
communication pattern from dense Allreduce [2,6], where after the averaging
step each worker gets the contribution from all other workers. The characteris-
tics of Ring-Star and other topologies are summarized in Table 1.

! replacing Ring for Delegates with RingRandom will give O(log(G)).
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Fig. 1. Analysis of different group configurations for Ring-Star.

The group configuration of Ring-Star, i.e. [G x L], controls the sparsity in W
and is a tunable parameter. We designed an experiment by training Resnet20 on
the CIFARI10 dataset using 64 workers to analyze the effect of choosing the
[G x L] on average age, communication cost and final test accuracy, and we
have used the “Relative Gain”? € Rt to compare Ring-Star and other topolo-
gies. Figurel shows that Ring-Star has better “Relative Gain” in average age
over Ring and RingRandom, whereas it has a lower communication cost as com-
pared to Allreduce. The test error of Ring-Star is also lower than Ring and
RingRandom across different group configurations. It is also shown that choosing
L =1 retrieves the Ring topology and L = V retrieves the Allreduce topology.

3 Experiments

In this section, we empirically investigate the effect of sparse topologies on the
decentralized training of deep convolution neural networks for an image clas-
sification task. We selected well-known CIFAR10 and CIFAR100 as evaluation
datasets for our experiments, which consists of 32 x 32 color images with 10 and
100 classes respectively and split into 50K train-set and 10K test-set. The deep
learning models and hyperparameters for our experiments are summarized in
Table 2. The models are implemented in PyTorch and the distributed framework
is implemented using mpidpy. The experimental setup consists of nodes on the
Google Cloud Platform (GCP), where each node is a “nl-standard-64” instance
with Intel Xeon E5 v3 (Haswell) 64 vCPUs, 240 GB of memory, 1000GB SSD
storage, and 4 Nvidia P100 GPUs. The nodes are connected through a 10Gbit/s
Ethernet interconnect.

3.1 Convergence Behavior of Difference Topologies with Respect
to Epochs

Experiments on CIFAR10: We looked at the convergence behaviors of dif-
ferent topologies on the CIFARIO dataset by varying the number of work-
ers. Figures2(a) and (b) summarize the results on the CIFAR10 datasets for

2 “Relative Gain” is a ratio between Ring-Star and other topologies, i.e. % > 1

indicates Ring-Star is better than Allreduce and % < 1 indicates otherwise.
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Table 2. Hyperparameters for experiments

Dataset |Model batch_size®|lr |lr_schedule Ir_decay | Size

CIFARIO |Resnet20 [3] 32 0.1/{81, 122} 0.1 1MB
VGGI16 [10] 64 0.1{25, 50, 75, 100}|0.5 60 MB

CIFARI100 DensNet-40-12 [5] 64 0.1/{150, 225} 0.1 1MB
WideResnet-28-10 [12] 64 0.1/{60, 120, 160} |0.2 146 MB

The warmup learning rate scaling technique as described in [2] is employed for
stabilizing the learning process for large batch sizes i.e Bgiobal = V X B.
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Fig. 2. Epoch-wise convergence behavior of different topologies on the CIFAR10 (a—b)
and CIFAR100 (c—d) training using 32 and 64 workers.

Resnet20 and VGG16 respectively. The Allreduce and Ring-Star consistently
show better performance across both the models. It can be seen that Ring-
Star learning curves follow closely the Allreduce learning curves. The impact
of fast averaging over all the workers becomes more pronounced as the num-
ber of workers is increased. The more sparsely connected workers in Ring and
RingRandom have more divergence among the local models, and they tend
to converge to the worst local optima. To overcome this issue, Lian et al. [9]
decreased the learning rate for Ring and RingRandom earlier than Allreduce in
their experiments for the number of workers >32 to stabilize the optimization.
The final test accuracies in Table 3 also show a similar trend, where Allreduce and
Ring-Star achieved the best test accuracy with minimum effect of increasing the
number of workers. EASGD [14] performs the worst among all methods.

Experiments on CIFAR100: In this section, we present results on the
CIFAR100 dataset. In these experiments, we choose complex workloads i.e.
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Table 3. Comparison of test accuracy for the CIFAR10 experiments.

Model Workers | Allreduce | Ring-Star | RingRandom | Ring | EASGD [14]
Resnet20 | 16 [4 x 4] |91.98% 91.93% 91.68% 91.59% | 90.76%

32 [8x4] |91.58% 91.42% 90.82% 90.70% | 86.68%

64 [16 x 4] | 90.90% 90.50% 89.44% 87.32% | 81.32%
VGG16 |16 [4x4] |91.89% 91.57% 91.61% 91.43% | 89.323%

32 [8x4] |91.77% 91.44% 90.19% 89.71% | 83.726%

64 [16 x 4] | 91.47% | 91.25% | 88.74% 86.04% | -
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Fig. 3. Time-wise convergence behavior of different topologies on the CIFAR10 (a—Db),
and CIFAR100 (c—d) training using 32 and 64 workers.

DensNet-40-12 and WideResnet-28-10. Figures2(c) and (d) summarize the
results on the CIFAR100 datasets for DensNet-40-12 and WideResnet-28-
10 respectively. The results show similar trends in the learning curves as for
the CIFARI10 dataset. The hybrid Ring-Star is shown to perform at par with
Allreduce in terms of final test accuracy (Table 4) as well as speed of convergence,
whereas Ring and RingRandom suffers from a slow averaging step, which leads
to slower learning.

3.2 Convergence Behavior of Difference Topologies with Respect
to Time

In the second set of experiments, we analyze the convergence speed with respect
to time. The comparisons of convergence with respect to time is presented in
Figs. 3(a) and (b) for Resnet20 and VGG16 trained on CIFAR10, and Figs. 3(c)
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Table 4. Comparison of test accuracy for the CIFAR100 experiments.

Model Workers | Allreduce | Ring-Star | RingRandom | Ring

DensNet-40-12 |16 [4x 4] |71.59% | 71.61% | 71.11% 71.09%
32 8x4] |71.31% | 71.24% 69.37% 67.91%
64 [16 x 4] | 71.25% | 71.19% 68.70% 66.01%

WideResnet-28-10 | 16 [4 x 4] | 78.86% | 78.73% 78.49% 78.10%
32 [8x4] |78.26% |78.31% 77.18% 76.37%
64 [16 x 4] | 78.15% | 78.20% 76.23% 74.77%

and (d) for DensNet-40-12 and WideResnet-28-10 trained on CIFAR100. The
effect of communication is clearly visible, as Allreduce requires more time to
converge due to high communication overhead. The communication efficient
Ring and RingRandom show better communication behavior and require less
amount of time to finish training. However, due to their slow averaging step,
they still need more epochs to converge to a similar loss as Allreduce. Ring-
Star on the other hand enjoys superior communication behavior and converges
to the lowest loss in less amount of time. Ring-Star shows similar communication
requirements as Ring and RingRandom, while achieving a similar solution as a
more accurate, but communication inefficient Allreduce.

4 Conclusion

In this paper we address the design choices for a sparse model averaging strategy
in a decentralized parallel SGD. The detailed analysis of different topologies show
the importance of averaging age, communication overhead and variance among
workers, and how it could effect the overall learning behavior of the deep learning
model. We propose a hierarchical two-layer sparse communication topology, a
ring of fully-connected meshes of workers that communicate with each other
(Ring-Star). Ring-Star allows a principled trade-off between convergence speed
and communication overhead and is well suited to loosely coupled distributed
systems. We demonstrate on an image classification task and a batch stochastic
gradient descent learning (SGD) algorithm that our proposed method shows
similar convergence behavior as Allreduce while having lower communication
cost of Ring.
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Hardware acceleration for machine learning usually refers to GPU implementa-
tions that can do fast linear algebra to enhance the speed of numerical compu-
tations. This, however, includes the implicit assumptions that (1) the learning
problem can actually benefit from fast linear algebra, i.e., the most complex
parts of learning and inference can be phrased in the language of matrix-vector
calculus. And (2), learning is carried out in an environment where energy supply,
size, and weight of the system are mostly unrestricted. The latter assumption is
indeed violated when learning has to be carried out at the edge, that is, on the
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Abstract. Specialized hardware for machine learning allows us to train
highly accurate models in hours which would otherwise take days or
months of computation time. The advent of recent deep learning tech-
niques can largely be explained by the fact that their training and infer-
ence rely heavily on fast matrix algebra that can be accelerated easily
via programmable graphics processing units (GPU). Thus, vendors praise
the GPU as the hardware for machine learning. However, those accelera-
tors have an energy consumption of several hundred Watts. In distributed
learning, each node has to meet resource constraints that exceed those
of an ordinary workstation—especially when learning is performed at
the edge, i.e., close to the data source. The energy consumption is typi-
cally highly restricted, and relying on high-end CPUs and GPUs is thus
not a viable option. In this work, we present our new quantum-inspired
machine learning hardware accelerator. More precisely, we explain how
our hardware approximates the solution to several NP-hard data mining
and machine learning problems, including k-means clustering, maximum-
a-posterior prediction, and binary support vector machine learning. Our
device has a worst-case energy consumption of about 1.5 W and is thus
especially well suited for distributed learning at the edge.

Keywords: Hardware acceleration - Machine learning - FPGA
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device that actually measures the data.
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Fig. 1. Power consumption of different hardware solutions for machine learning; CPU:
Intel Core i7-9700K, GPU: Nvidia GEFORCE RTX 2080 Ti, QA (Quantum Annealer):
D-Wave 2000Q, FPGA: Kintex-7 KC705

Especially in the distributed or federated learning settings, edge devices are
subject to strong resource constraints. Communication efficiency [6] and compu-
tational burden [3,7] must be reduced, in order to get along with the available
hardware. One way to address these issues are efficient decentralized learning
schemes [5]. However, the resource consumption of state-of-the-art hardware
accelerators are often out of reach for edge devices.

We thus present a novel hardware architecture that can be used as a solver
at the core of various data mining and machine learning techniques, some of
which we will explain in the following sections. Our work is inspired by the so-
called quantum annealer, a hardware architecture for solving discrete optimiza-
tion problems by exploiting quantum mechanical effects. In contrast to GPUs
and quantum annealers, our device has a highly reduced resource consumption.
The power consumption of four machine learning accelerators is shown in Fig. 1.
For the CPU and GPU, we provide the thermal design power (TDP), whereas
the FPGA’s value is the total on-chip power, calculated using the Vivado Design
Suite'. We see that the actual peak consumption of CPUs and GPUs exceeds
the energy consumption of our device by several orders of magnitude. Moreover,
we provide the estimated energy consumption of the D-Wave 2000Q quantum
annealer. The annealer optimizes the exact same objective function as our device,
but the cooling and magnetic shielding required for its operation leads to an enor-
mous energy consumption, which is very impractical for real applications at its
current stage. Hence, its low resource requirements and versatility makes our
device the ideal hardware accelerator for distributed learning at the edge.

! https://www.xilinx.com/products/design-tools/vivado.html.
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Fig. 2. Exemplary visualization of the demo setup; left: multiple FPGAs (Kintex-
7, Artix-7) with accompanying visualizations of board configuration and convergence
results; right: Kintex-7 KC705 Evaluation Kit

Our approach is different to GPU programming in that our hardware is
designed to solve a fixed class C of parametric optimization problems. “Program-
ming” our device is then realized by reducing a learning problem to a member
of C and transferring only the resulting coefficients 5. The optimization step,
e.g. model training, is performed entirely on the board, without any additional
communication cost.

In our demo setup (shown in Fig. 2) we will showcase several machine learning
tasks in a live setting on multiple devices, accompanied by live visualizations of
the learning progress and the results.

The underlying idea of using a non-universal compute-architecture for
machine learning is indeed not new: State-of-the-art quantum annealers rely on
the very same problem formulation. There, optimization problem are encoded
as potential energy between qubits — the global minimum of a loss function
can be interpreted as the quantum state of lowest energy [4]. The fundamen-
tally non-deterministic nature of quantum methods makes the daunting task of
traversing an exponentially large solution space feasible. However, their practical
implementation is a persisting challenge, and the development of actual quan-
tum hardware is still in its infancy. The latest flagship, the D-Wave 20000, can
handle problems with 64 fully connected bits?, which is by far not sufficient for
realistic problem sizes.

Nevertheless, the particular class of optimization problems that quantum
annealers can solve is well understood which motivates its use for hardware
accelerators outside of the quantum world.

2 Boolean Optimization

A pseudo-Boolean function (PBF) is any function f : B™ — R that assigns a
real value to a fixed-length binary vector. Every PBF on n binary variables can
be uniquely expressed as a polynomial of some degree d < n with real-valued
coefficients [2]. Quadratic Unconstrained Binary Optimization (QUBO) is the

2 https://www.dwavesys.com /sites/default /files/mwj_dwave_qubits2018.pdf.
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problem of finding an assignment x* of n binary variables that is minimal with
respect to a second degree Boolean polynomial:

n [
x* = arg min E E Bijxix;

zeBr T4 J=1

It has been shown that all higher-degree pseudo-Boolean optimization problems
can be reduced to quadratic problems [2]. For this reason a variety of well-
known optimization problems like (Max-)3SAT and prime factorization, but also
ML-related problems like clustering, maximum-a-posterior (MAP) estimation in
Markov Random Fields and binary constrained SVM learning can be reduced to
QUBO or its Ising-variant (where x € {—1,+1}"). In our demo, we will explain
the impact of different reductions in terms of runtime and quality of different
learning tasks.

3 Evolutionary QUBO Solver

If no specialized algorithm is known for a particular hard combinatorial optimiza-
tion problem, randomized search heuristics, like simulated annealing or evolu-
tionary algorithms (EA), provide a generic way to generate good solutions.

Inspired by biological evolution, EAs employ recombination and mutation on
a set of “parent” solutions to produce a set of “offspring” solutions. A loss func-
tion, also called fitness function in the EA-context, is used to select those solu-
tions which will constitute the next parent generation. This process is repeated
until convergence or a pre-specified time-budget is exhausted [8].

Motivated by the inherently parallel nature of digital circuits, we developed
a highly customizable (1 + A)-EA architecture on FPGA hardware implemented
using the VHDL language®. Here, “customizable” implies that different types
of FPGA hardware, from small to large, can be used. This is done by allowing
the end-user to customize the maximal problem dimension n, the number of
parent solutions p, the number of offspring solutions A and the number of bits
per coefficient §;;. In case of low-budget FPGA, this allows us to either allocate
more FPGA resources for parallel computation (u and \) or for the problem size
(n and 3). We will show how to generate and run chip designs for low-budget as
well as high-end devices in our demo.

4 Exemplary Learning Tasks

“Programming” our devices reduces to determining the corresponding coeffi-
cients 0 and uploading them to the FPGA via our Python interface. We will
explain how this is done for various machine learning tasks, two of which we will
explain below:

A prototypical data mining problem is k-means clustering which is already
NP-hard for & = 2. To derive 3 for a 2-means clustering problem, we use the

3 https://www.ics.uci.edu/~jmoorkan /vhdlref/Synario%20VHDL%20Manual.pdf.
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method devised in [1], where each bit indicates whether the corresponding data
point belongs to cluster 1 or cluster 2—the problem dimension is thus n = |D|.
The coefficients are then derived from the centered Gramian G over the mean
adjusted data. To keep as much precision as possible, we stretch the parameters
to use the full range of b bits before rounding, so the final formula is §;; =
|aGi; + 0.5] with o = (2! — 1)/ max; ;|G;;|. Exemplary results on the UCI
data sets Iris and Sonar are shown in Fig.3 (top).
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Fig. 3. QUBO loss value over time with different mutation rates, each averaged over 10
runs. Uncertainty indicated by transparent areas. Top-left: 2-means on Iris (n = 150,
d = 4). Top-right: 2-means on Sonar (n = 208, d = 61). Bottom-left: MRF-MAP with
edge encoding. Bottom-right: MRF-MAP with vertex encoding.

Another typical NP-hard ML problem is to determine the most likely config-
uration of variables in a Markov Random Field, known as the MAP prediction
problem [9]. Similar to efficiency differences between programs for classical uni-
versal computers, providing a different QUBO problem encoding has implications
for the efficiency of our device. To demonstrate this effect, we will perform a live
comparison of different encodings in terms of convergence behavior.

One possible solution for the MRF-MAP problem is to encode the assign-
ments of all X, as a concatenation of one-hot encodings

(Xy =2, Xp=a) — 0...010...0...0...010...0,
12| | X

where m = |V| and ac}c is the i-th value in A}. The weights —0,,—, are encoded
into the quadratic coefficients; if two different bits belong to the same variable
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encoding, a penalty weight is added between them to maintain a valid one-hot.
The negative sign is added to turn MAP into a minimization problem.

For a different possible solution, we may assign bits byy—zy to all non-zero
weights 0y,—.y between specific values z,y of two variables X, X,, indicating
that X, = =z and X,, = y. Again, to avoid multiple assignments of the same
variable we introduce penalty weights between pairs of edges. We can see in
Fig.3 (bottom) that both approaches lead to a different convergence behavior.

In addition to k-means and MRF-MAP, the demo will include binary SVM
learning, binary MRF parameter learning, and others.

A video demonstrating how to use our system by solving a clustering problem
can be found here: https://youtu.be/Xjsxx-eO1Mk.
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Workshop Description

The aim of the workshop “Managing and mining Large Evolving Graphs” (LEG) is to
bring together active scholars and practitioners of dynamic graphs. Graph models and
algorithms are ubiquitous of a large number of application domains, ranging from
transportation to social networks, semantic web, or data mining. However, many
applications require graph models that are time dependent. For example, applications
related to urban mobility analysis employ a graph structure of the underlying road
network where the traffic density and speed continuously change over time. Therefore,
the time a moving object takes to cross a path segment typically depends on the starting
instant of time. This dynamicity makes it more challenging to mine temporal and graph
patterns, yet this task is essential to study such structures. The same holds in other
contexts, such as social networks.

In this workshop, we aim to discuss the problem of mining large evolving graphs,
since many real world applications deal with large volumes of data. Managing and
analysing large evolving graphs is very challenging and requires sophisticated methods
and techniques for creating, storing, accessing, processing, and mining such large
evolving graphs. These techniques typically require a distributed environment, because
centralized approaches do not scale in a Big Data scenario. Contributions will clearly
point out answers to one of these challenges focusing on large-scale graphs.

Description of the Workshop’s Topic and its Goals

The workshop seeks papers with important new insights and experiences on knowledge
discovery aspects with dynamic and large-scale time-dependent graphs. The goal is to
shed light on the questions mentioned above, related to the knowledge discovery
process. Topics of interest include, but are not limited to, the following linked topics,
with regards to mining process:

Large scale graph analysis

Theoretical foundation of time-dependent and large scale graphs (LEG)
Construction and maintenance of LEG

Data quality in LEG

Data integration in LEG

Indexing techniques for LEG

Distributed algorithms & navigational query processing

LEG data mining: frequent pattern, similarity, cluster analysis, predictive learning
Trajectory mining in LEG



LEG - Advances in Managing and Mining Large Evolving Graphs (3rd Edition) 351

e Probabilistic LEG
e Applications related to LEG
e Algorithms on LEG

We have received eleven submissions and we have accepted six as full papers and
1 as short paper. Each paper received three reviews. Five full papers are published in
this proceedings. The workshop also included the invited talk “Efficient Structural
Embeddings in Large Time-varying Networks” from Danai Koutra, Computer Science
and Engineering University of Michigan.
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Abstract. Link streams model interactions over time in a wide range of
fields. Under this model, the challenge is to mine efficiently both tempo-
ral and topological structures. Community detection and change point
detection are one of the most powerful tools to analyze such evolving
interactions. In this paper, we build on both to detect stable community
structures by identifying change points within meaningful communities.
Unlike existing dynamic community detection algorithms, the proposed
method is able to discover stable communities efficiently at multiple tem-
poral scales. We test the effectiveness of our method on synthetic net-
works, and on high-resolution time-varying networks of contacts drawn
from real social networks.

1 Introduction

In recent years, studying interactions over time has witnessed a growing interest
in a wide range of fields, such as sociology, biology, physics, etc. Such dynamic
interactions are often represented using the snapshot model: the network is
divided into a sequence of static networks, i.e., snapshots, aggregating all con-
tacts occurring in a given time window. The main drawback of this model is
that it often requires to choose arbitrarily a temporal scale of analysis. The link
stream model [9] is a more effective way for representing interactions over time,
that can fully capture the underling temporal information.

Real world networks evolve frequently at many different time scales. Fluc-
tuations in such networks can be observed at yearly, monthly, daily, hourly, or
even smaller scales. For instance, if one were to look at interactions among work-
ers in a company or laboratory, one could expect to discover clusters of people
corresponding to meetings and/or coffee breaks, interacting at high frequency
(e.g., every few seconds) for short periods (e.g., few minutes), project members
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interacting at medium frequency (e.g., once a day) for medium periods (e.g.,
a few months), coordination groups interacting at low frequency (e.g., once a
month) for longer periods (e.g., a few years), etc.

An analysis of communities found at an arbitrary chosen scale would neces-
sarily miss some of these communities: low latency ones are invisible using short
aggregation windows, while high frequency ones are lost in the noise for long
aggregation windows. A multiple temporal scale analysis of communities seems
therefore the right solution to study networks of interactions represented as link
streams.

To the best of our knowledge, no such method exists in the literature. In this
article, we propose a method having roots both in the literature on change point
detection and in dynamic community detection. It detects what we call stable
communities, i.e., groups of nodes forming a coherent community throughout
a period of time, at a given temporal scale.

The remainder of this paper is organized as follows. In Sect. 2, we present a
brief review of related works. Then, we describe the proposed framework in detail
in Sect. 3. We experimentally evaluate the proposed method on both synthetic
and real-world networks in Sect. 4.

2 Related Work

Our contribution relates to two active body of research: (i) dynamic community
detection and (ii) change point detection. The aim of the former is to discover
groups of nodes that persist over time, while the objective of the latter is to
detect changes in the overall structure of a dynamic network. In this section, we
present existing work in both categories, and how our proposed method relates
to them.

2.1 Dynamic Community Detection

The problem of detecting communities in dynamic networks has attracted a lot
of attention in recent years, with various approaches tackling different aspects of
the problem, see [16] for a recent survey. Most of these methods consider that the
studied dynamic networks are represented as sequences of snapshots, with each
snapshot being a well formed graph with meaningful community structure, see
for instance [5,12]. Some other methods work with interval graphs, and update
the community structure at each network change, e.g., [3,17]. However, all those
methods are not adapted to deal with link streams, for which the network is
usually not well formed at any given time. Using them on such a network would
require to first aggregate the links of the stream by choosing an arbitrarily
temporal scale (aggregation window).

2.2 Change Point Detection

Our work is also related to research conducted on change point detection con-
sidering community structures. In these approaches, given a sequence of snap-
shots, one wants to detect the periods during which the network organization
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and/or the community structure remains stable. In [15], the authors proposed
the first change-point detection method for evolving networks that uses genera-
tive network models and statistical hypothesis testing. Wang et al. [19] proposed
a hierarchical change point detection method to detect both inter-community
(local change) and intra-community (global change) evolution. A recent work by
Masuda et al. [11] used graph distance measures and hierarchical clustering to
identify sequences of system state dynamics.

From those methods, our proposal keeps the principle of stable periods delim-
ited by change points, and the idea of detecting changes at local and global scales.
But our method differs in two directions: (i) we are searching for stable individ-
ual communities instead of stable graph periods, and (ii) we search for stable
structures at multiple levels of temporal granularity.

3 Method

The goal of our proposed method is (i) to detect stable communities (ii) at
multiple scales without redundancy and (éi7) to do so efficiently. We adopt an
iterative approach, searching communities from the coarser to the more detailed
temporal scales. At each temporal scale, we use a three step process:

1. Seed Discovery, to find relevant community seeds at this temporal scale.

2. Seed Pruning, to remove seeds which are redundant with communities found
at higher scales.

3. Seed Expansion, expanding seeds in time to discover stable communities.

We start by presenting each of these three steps, and then we describe the
method used to iterate through the different scales in Sect. 3.4.

Our work aims to provide a general framework that could serve as baseline
for further work in this field. We define three generic functions that can be set
according to the user needs:

— CD(g), a static community detection algorithm on a graph g.

- QC(N, g), a function to assess the quality of a community defined by the set
of nodes N on a graph g.

— CSS(N1,N,), a function to assess the similarity of two sets of nodes Ny and
No.

See Sect. 3.5 on how to choose proper functions for those tasks.

We define a stable dynamic community ¢ as a triplet ¢ = (N,p,v), with
c.N the list of nodes in the community, c.p its period of existence defined as an
interval, e.g., c.p = [t1,t2]" means that the community ¢ exists from t; to to, and
c.y the temporal granularity at which ¢ has been discovered.

We denote the set of all stable dynamic communities D.

! We use right open intervals such as a community starting at ¢, and another one
ending at the same t, have an empty intersection, which is necessary to have coherent
results when handling discrete time steps.
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3.1 Seed Discovery

For each temporal scale, we first search for interesting seeds. A temporal scale
is defined by a granularity -y, expressed as a period of time (e.g.; 20min, 1h,
2 weeks, etc.). We use this granularity as a window size, and, starting from a time
to — by default, the date of the first observed interaction — we create a cumulative
graph (snapshot) for every period [to, to+7[, [to+7, to+27], [to +27, to+37], ete.,
until all interactions belong to a cumulative graph. This process yields a sequence
of static graphs, such as Gy,  is a cumulated snapshot of link stream G for the
period starting at to and of duration «. G, is the list of all such graphs.

Given a static community detection algorithm C'D yielding a set of commu-
nities, and a function to assess the quality of communities QC, we apply C'D on
each snapshot and filter promising seeds, i.e., high quality communities, using
QC. The set of valid seeds S is therefore defined as:

S§={Vg € G,,¥s € CD(g9),QC(s,g) > b4} (1)

With 6, a threshold of community quality.
Since community detection at each step is independent, we can run it in
parallel on all steps, this is an important aspect for scalability.

3.2 Seed Pruning

The seed pruning step has a twofold objective: (i) reducing redundancy and
(7i) speed up the multi-scale community detection process. Given a measure of
structural similarity C'S\S, we prune the less interesting seeds, such as the set of
filtered seeds FS is defined as:

FS ={Vs € 8,Vee D, (CSS(s.N,c.N)>0,)V (spnep={0}) (2)

Where D is the set of stable communities discovered at coarser (or similar, see
next section) scales, s.p is the interval corresponding to the snapshot at which
this seed has been discovered, and 65 is a threshold of similarity.

Said otherwise, we keep as interesting seeds those that are not redundant
topologically (in term of nodes/edges), OR not redundant temporally. A seed is
kept if it corresponds to a situation never seen before.

3.3 Seed Expansion

The aim of this step is to assess whether a seed corresponds to a stable dynamic
community. The instability problem has been identified since the early stages of
the dynamic community detection field [1]. It means that the same algorithm
ran twice on the same network after introducing minor random modifications
might yield very different results. As a consequence, one cannot know if the
differences observed between the community structure found at ¢ and at ¢t + 1
are due to structural changes or to the instability of the algorithm. This problem
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is usually solved by introducing smoothing techniques [16]. Our method use a
similar approach, but instead of comparing communities found at step ¢ and
t — 1, we check whether a community found at ¢ is still relevant in previous and
following steps, recursively.

More formally, for each seed s € F'S found on the graph G; ,, we iteratively
expand the duration of the seed s.d = [t, ¢ + [ (where t is the time start of this
duration) at each step ¢; in both temporal directions (t; € (...[t — 2v,t — [, [t —
vt [t + vt + 29, [t + 2v,t + 37]...)) as long as the quality QC(s.N, Gy, ) of
the community defined by the nodes s.IN on the graph at Gy, , is good enough.
Here, we use the same similarity threshold 6, as in the seed pruning step. If the
final duration period |s.p| of the expanded seed is higher than a duration 6,7y,
with 6, a threshold of stability, the expanded seed is added to the list of stable
communities, otherwise, it is discarded. This step is formalized in Algorithm 1.

Algorithm 1: Forward seed expansion. Forward temporal expansion
of a seed s found at time t of granularity . The reciprocal algorithm is
used for backward expansion: t 4+ 1 becomes ¢t — 1.

Input: s,7,6,,6;
11— tStart|S.p — [tstart’tend[ :
g — Gt,’y§
p[tt+;
while QC(s.N,g) > 05 do
s.p«— s.pUp;
t—t+;
P [t,t +1;
g — Gt,'y?

© O N O 0k W N

end
10 if |s.p| > 6,7 then
11 | D—DU{s}

12 end

(=]

In order to select the most relevant stable communities, we consider seeds
in descending order of their QC' score, i.e., the seeds of higher quality scores
are considered first. Due to the pruning strategy, a community of lowest quality
might be pruned by a community of highest quality at the same granularity ~.

3.4 Multi-scale Iterative Process

Until then, we have seen how communities are found for a particular time scale.
In order to detect communities at multiple scales, we first define the ordered list
of studied scales I'. The largest scale is defined as ™ = |G.d|/6,, with |G.d|
the total duration of the dynamic graph. Since we need to observe at least 8,
successive steps to consider the community stable, 7" is the largest scale at
which communities can be found.

We then define I" as the ordered list:

I = [,yrrLtzav7,ymagc/217 ,ymaz/22’ ,)/mam/ziﬁ7 . ,ymam/Qk] (3)
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With k such as y™m2 /2% > 0, >= ymaz /2k+1 ¢ heing a parameter corre-
sponding to the finest temporal granularity to evaluate, which is necessarily
data-dependant (if time is represented as a continuous property, this value can
be fixed at least at the sampling rate of data collection).

This exponential reduction in the studied scale guarantees a limited number
of scales to study.

The process to find seeds and extend them into communities is then summa-
rized in Algorithm 2.

Algorithm 2: Multi-temporal-scale stable communities finding.
Summary of the proposed method. See corresponding sections for the
details of each step. G is the link streams to analyze, 04, 0,,0,, 8., are thresh-
old parameters.
Input: G,04,0,,0,,0,
D — {0}
I' «studied_scales(G, 6.,) ;
for y € I' do

S «— Seed_Discovery(y,CD, QC, 0,);

FS —Seed_Pruning(S,CSS, 0;);

for s € FS do

‘ Seed_Expansion(s,, 8p, 05);
end

© O N O 0k W N

end

3.5 Choosing Functions and Parameters

The proposed method is a general framework that can be implemented using
different functions for CD,QC and CSS. This section provides explicit guid-
ance for selecting each function, and introduces the choices we make for the
experimental section.

Community Detection - CD. Any algorithm for community detection
could be used, including overlapping methods, since each community is con-
sidered as an independant seed. Following literature consensus, we use the
Louvain method [2], which yields non-overlapping communities using a greedy
modularity-maximization method. The louvain method performs well on static
networks, it is in particular among the fastest and most efficient methods. Note
that it would be meaningful to adopt an algorithm yielding communities of good
quality according to the chosen QC, which is not the case in our experiments, as
we wanted to use the most standard algorithms and quality functions in order
to show the genericity of our approach.

Quality of Communities - QC. The QC quality function must express the
quality of a set of nodes w.r.t a given network, unlike functions such as the
modularity, which express the quality of a whole partition w.r.t a given network.
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Many such functions exist, like Link Density or Scaled Density [7], but the
most studied one is probably the Conductance [10]. Conductance is defined as
the ratio of (i) the number of edges between nodes inside the community and
nodes outside the community, and (i) the sum of degrees of nodes inside the
community (or outside, if this value is larger). More formally, the conductance
¢ of a community C is:

 YiccgecAig
) = i A(C). AC))

Where A is the adjacency matrix of the network, A(C) =37, > ey 4i; and
C is the complement of C. Its value ranges from 0 (Best, all edges starting
from nodes of the community are internal) to 1 (Worst, no edges between this
community and the rest of the network). Since our generic framework expects
good communities to have QC scores higher than the threshold 6,, we adopt the
definition QQC = 1-conductance.

Community Seed Similarity - CSS. This function takes as input two sets
of nodes, and returns their similarity. Such a function is often used in dynamic
community detection to assess the similarity between communities found in dif-
ferent time steps. Following [5], we choose as a reference function the Jaccard

Index. Given two sets A and B, it is defined as: J(A, B) = :fxgg}

3.6 Parameters

The algorithm has four parameters, 6,,0,,0s,0,, defining different thresholds.
We explicit them and provide the values used in the experiments.

1. 0, is data-dependant. It corresponds to the smallest temporal scale that will
be studied, and should be set at least at the collection rate. For synthetic
networks, it is set at 1 (the smallest temporal unit needed to generate a new
stream), while, for SocioPatterns dataset, it is set to 20's (the minimum length
of time required to capture a contact).

2. 04 determines the minimal quality a seed must have to be preserved and
expanded. The higher this value, the more strict we are on the quality of
communities. We set §, = 0.7 in all experiments. It is dependent on the
choice of the QC' function.

3. 05 determines the threshold above which two communities are considered
redundant. The higher this value, the more communities will be obtained.
We set 6, = 0.3 in all experiments. It is dependent on the choice of the C'S.S
function.

4. 6, is the minimum number of consecutive periods a seed must be expanded in
order to be considered as stable community. We set §, = 3 in all experiments.
The value should not be lower in order to avoid spurious detections due to
pure chance. Higher values could be used to limit the number of results.
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(b) Stable communities discovered by the proposed method.

Fig. 1. Visual comparison between planted and discovered communities. Time steps on
the horizontal axis, nodes on the vertical axis. Colors correspond to communities and
are randomly assigned. We can observe that most communities are correctly discovered,
both in terms of nodes and of duration. (Color figure online)

4 Experiments and Results

The validation of our method encompasses three main aspects: (i) the validity of
communities found, and (i) the multi-scale aspect of our method, (i) its scal-
ability. We conduct two kinds of experiments: on synthetic data, on which we
use planted ground-truth to quantitatively compare our results, and on real net-
works, on which we use both qualitative and quantitative evaluation to validate
our method.

4.1 Validation on Synthetic Data

To the best of our knowledge, no existing network generator allows to generate
dynamic communities at multiple temporal scale. We therefore introduce a sim-
ple solution to do so. Let us consider a dynamic network composed of T steps
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and N different nodes. We start by adding some random noise: at each step,
an Erdos-Renyi random graph [4] is generated, with a probability of edge pres-
ence equal to p. We then add a number SC' of random stable communities. For
each community, we attribute randomly a set of n € [4, N/4] nodes, a duration
d € [10,T/4] and a starting date s € [0,7 — d]. n and d are chosen using a log-
arithmic probability, in order to increase variability. The temporal scale of the
community is determined by the probability of observing an edge between any
two of its nodes during the period of its existence, set as 10/d. As a consequence,
a community of duration 10 will have edges between all of its nodes at every
step of its existence, while a community of length 100 will have an edge between
any two of its nodes only every 10 steps in average.

Since no algorithm exists to detect communities at multiple temporal scales,
we compare our solution to a baseline: communities found by a static algorithm
on each window, for different window sizes. It corresponds to detect & match
methods for dynamic community detection such as [5]. We then compare the
results by computing the overlapping NMI as defined in [8], at each step. For
those experiments, we set 7' = 5000, N = 100,p = 10/N. We vary the number
of communities SC.

Table 1. Comparison of the average NMI scores (over 10 runs) obtained for the pro-
posed method (Proposed) and for each of the temporal scales (y € I') used by the
proposed method, taken independently.

t_scale (y) | 5 10 |20 |30 |40 |50
Proposed |0.91]0.780.69 | 0.69 0.62|0.54

1666 0.41 {0.32 {0.24 |0.23 | 0.15 | 0.19
833 0.36 [0.30 [0.29 |0.27 |0.23 |0.25
416 0.39 [0.40 [0.36 |0.34 |0.32 |0.33
208 0.46 | 0.45 [ 0.40 |0.42 0.41 |0.37
104 0.47 10.48 [0.44 |0.46 |0.45 |0.42

52 0.45 |0.47 [0.45 |0.47 |0.47 |0.45
26 0.35 [0.35 10.38 |0.42 | 0.42 | 0.41
13 0.28 10.26 10.30 |0.31 |0.32 |0.31

0.17 1 0.16 |0.19 |0.19 |0.20 | 0.19
0.12 1 0.09 |0.11 |0.10 |0.12 |0.11
0.05 | 0.03 |0.04 |0.03 |0.05 |0.04

Figure 1 represents the synthetic communities to find for SC' = 10, and the
communities discovered by the proposed method. We can observe a good match,
with communities discovered throughout multiple scales (short-lasting and long-
lasting ones). We report the results of the comparison with baselines in Table 1.
We can observe that the proposed method outperforms the baseline at every
scale in all cases in term of average NMI.
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The important implication is that the problem of dynamic community detec-
tion is not only a question of choosing the right scale through a window size, but
that if the network contains communities at multiple temporal scale, one needs
to use an adapted method to discover them.

4.2 Validation on Real Datasets

We validate our approach by applying it to two real datasets. Because no ground
truth data exists to compare our results with, we validate our method by using
both quantitative and qualitative evaluation. We use the quantitative approach
to analyze the scalability of the method and the characteristics of communities
discovered compared with other existing algorithms. We use the qualitative app-
roach to show that the communities found are meaningful and could allow an
analyst to uncover interesting patterns in a dynamic datasets.
The datasets used are the following:

— SocioPatterns primary school data [18], face-to-face interactions between
children in a school (323 nodes, 125 773 interaction).

— Math overflow stack exchange interaction dataset [14], a larger network to
evaluate scalability (24 818 nodes, 506 550 interactions).

Qualitative Evaluation. For the qualitative evaluation, we used the pri-
mary school data [18] collected by the SocioPatterns collaboration? using RFID
devices. They capture face-to-face proximity of individuals wearing them, at a
rate of one capture every 20s. The dataset contains face-to-face interactions
between 323 children and 10 teachers collected over two consecutive days in
October 2009. This school has 5 levels, each level is divided into 2 classes (A and
B), for a total of 10 classes.

No community ground truth data exists to validate quantitatively our find-
ings. We therefore focus on the descriptive information highlighted on the
SocioPatterns study [18], and we show how the results yielded by our method
match the course of the day as recorded by the authors in this study.

In order to make an accurate analysis of our results, the visualization have
been reduced to one day (the second day), and we limited ourselves to 4 classes
(1B, 2B, 3B, 5B)3. 120 communities are discovered in total on this dataset. We
created three different figures, corresponding to communities of length respec-
tively (i) less than half an hour, (ii) between half an hour and 2h, (iii) more
than 2 h. Figure 2 depicts the results. Nodes affiliations are ordered by class, as
marked on the right side of the figure. The following observations can be made:

— Communities having the longest period of existence clearly correspond to the
class structure. Similar communities had been found by the authors of the
original study using aggregated networks per day.

2 www.sociopatterns.org.
3 Note that full results can be explored online using the provided notebook (see con-
clusion section).
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Fig. 2. Stable communities of different lengths on the SocioPatterns Primary School
Dataset. Time on the horizontal axis, children on the vertical axis. Colors are attributed
randomly. (Color figure online)
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— Most communities of the shorter duration are detected during what are prob-
ably breaks between classes. In the original study, it had been noted that
break periods are marked by the highest interaction rates. We know from
data description that classes have 20/30min breaks, and that those breaks
are not necessarily synchronized between classes. This is compatible with
observation, in particular with communities found between 10:00 and 10:30
in the morning, and between 4:00 and 4:30 in the afternoon.

— Most communities of medium duration occur during the lunch break. We
can also observe that the most communities are separated into two intervals,
12:00-13:00 and 13:00-14:00. This can be explained by the fact that children
have a common canteen, and a shared playground. As the playground and
the canteen do not have enough capacity to host all the students at the same
time, only two or three classes have breaks at the same time, and lunches
are taken in two consecutive turns of one hour. Some children do not belong
to any communities during the lunch period, which matches the information
that about half of the children come back home for lunch [18].

— During lunch breaks and class breaks, some communities involve children
from different classes, see the community with dark-green colour during lunch
time (medium duration figure) or the pink community around 10:00 for short
communities, when classes 2B and 3B are probably in break at the same time.
This confirms that an analysis at coarser scales only can be misleading, as
it leads only to the detection of the stronger class structure, ignoring that
communities exist between classes too, during shorter periods.

Quantitative Evaluation. In this section, we compare our proposition with
other methods on two aspects: scalability, and aggregated properties of commu-
nities found. The methods we compare ourselves to are:

— An Identify and Match framework proposed by Greene et al. [5]. We imple-
ment it using the Louvain method for community detection, and the Jaccard
coefficient to match communities, with a minimal similarity threshold of 0.7.
We used a custom implementation, sharing the community detection phase
with our method.

— The multislice method introduced by Mucha et al. [12]. We used the authors
implementation, with interslice coupling w = 0.5.

— The dynamic clique percolation method (D-CPM) introduced by Palla et al.
[13]. We used a custom implementation, the detection in each snapshot is
done using the implementation in the networkx library [6].

For Identify and Match, D-CPM and our approach, the community detection
phase is performed in parallel for all snapshots. This is not possible for Mucha
et al., since the method is performed on all snapshots simultaneously. On the
other hand, D-CPM and Indentify and Match are methods with no dynamic
smoothing.

Figure3 presents the time taken by those methods and our proposition,
for each temporal granularity, on the Math Overflow network. The task
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Fig. 3. Speed of several dynamic community detection methods for several temporal
granularities, on the Math Overflow dataset. Missing points correspond to computation
time above 1000 s. Temporal scales correspond to window sizes and are divided by 2 at
every level, from 1 =67 681 200s (about 2years) to 10=132 189s (about 36 h). OUR
and OUR-MP corresponds to our method using or not multiprocessing (4 cores)

accomplished by our method is, of course, not comparable, since it must not
only discover communities, but also avoid redundancy between communities in
different temporal scales, while other methods yield redundant communities in
different levels. Nevertheless, we can observe that the method is scalable to net-
works with tens of thousands of nodes and hundreds of thousands of interactions.
It is slower than the Identify and Match (CD&Match) approach, but does not
suffer from the scalability problem as for the two other ones (D-CPM and Mucha
et al.). In particular, the clique percolation method is not scalable to large and
dense networks, a known problem due to the exponential growth in the number
of cliques to find. For the method by Mucha et al., the scalability issue is due to
the memory representation of a single modularity matrix for all snapshots.

Table 2. Average properties of communities found by each method (independently
of their temporal granularity). #Communities: number of communities found. Persis-
tence: number of consecutive snapshots. Size: number of nodes. Stability: average Jac-
card coeflicient between nodes of the same community in successive snapshots. Density:
average degree/size-1. Q: 1-Conductance (higher is better)

Method #Communities | Persistance | Size | Stability | Density | Q

OUR 179 3.44 10.89 | 1.00 0.50 0.91
CD& MATCH | 29846 1.21 5.50 1 0.97 0.42 0.96
CPM 3259 1.87 5.3710.51 0.01 0.53
MUCHA 1097 15.48 9.720.62 0.38 0.85
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In Table 2, we summarize the number of communities found by each method,
their persistence, size, stability, density and conductance. It is not possible to
formally rank those methods based on these values only, that correspond to
vastly different scenarios. What we can observe is that existing methods yield
much more communities than the method we propose, usually at the cost of lower
overall quality. When digging into the results, it is clear that other methods yield
many noisy communities, either found on a single snapshot for methods without
smoothing, unstable for the smoothed Mucha method, and often with low density

or Q.

5 Conclusion and Future Work

To conclude, this article only scratches the surface of the possibilities of multiple-
temporal-scale community detection. We have proposed a first method for the
detection of such structures, that we validated on both synthetic and real-world
networks, highlighting the interest of such an approach. The method is proposed
as a general, extensible framework, and its code is available*:® as an easy to use
library, for replications, applications and extensions.

As an exploratory work, further investigations and improvements are needed.
Heuristics or statistical selection procedures could be implemented to reduce the
computational complexity. Hierarchical organization of relations — both temporal
and structural-between communities could greatly simplify the interpretation of
results.
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Abstract. Community detection has recently received increased atten-
tion due to its wide range of applications in many fields. While at first
most techniques were focused on discovering communities in static net-
works, lately the focus has shifted toward evolving networks because of
their high relevance in real-life problems. Given the increasing number of
the methods being proposed, this paper explores the current availability
of empirical comparative studies of dynamic methods and also provides
its own qualitative and quantitative comparison with the aim of gaining
more insight in the performance of available methods. The results show
that no single best performing community detection technique exists, but
rather, the choice of the method depends on the objective and dataset
characteristics.

Keywords: Dynamic community detection - Large evolving graphs -
RDyn

1 Introduction

Community detection techniques in complex networks are a well-covered topic
in academic literature nowadays as identifying meaningful substructures in com-
plex networks has numerous applications in a vast variety of fields ranging from
biology, mathematics, and computer science to finance, economics and sociol-
ogy. A majority of the literature covers static community detection algorithms,
i.e. algorithms used to uncover communities in static networks. However, real-
world networks often possess temporal properties as nodes and edges can appear
and disappear, potentially resulting in a changed community structure. Conse-
quently, researchers have recently taken a keen interest in community detection
algorithms that can tackle dynamic networks. Given the increasing number of the
methods being proposed, a systematic comparison of both their algorithmic and
performance differences is required so as to be able to select a suitable method for
a particular community discovery problem. Nonetheless, newly proposed com-
munity detection methods for dynamic graphs are typically compared with only
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very few methods in settings aiming to demonstrate superiority of the proposed
method. Consequently, the setup and results of these comparisons might contain
an unconscious bias towards one’s own algorithm. As such, a well-founded and
extensive comparative analysis of dynamic community detection (DCD) tech-
niques is missing in the current literature. This is not surprising given the many
different aspects which come into play when comparing DCD methods: different
underlying network models, different community definitions, different temporal
segments used for detecting communities, different community evolution events
tracked etc.

To bridge this literature gap, we perform a qualitative and quantitative com-
parison of DCD techniques. To this end, we adopt the classification system of
Cazabet and Rossetti [1] to provide a concise framework within which the com-
parison is framed. For our qualitative comparison, we focus on relevant commu-
nity detection characteristics like community definition used, ability to detect
different type of communities and community evolution events as well as compu-
tational complexity. For quantitative analysis we report computational time and
partition quality in terms of NF1 statistics, on 900 synthetic RDyn [7] and one
real-world DBLP dataset [25]. Results showcase that no single best performing
community technique exists. Instead, the choice of the method should adapt to
the dataset and the final objective.

2 Methodology for Unbiased Comparison of Dynamic
Community Detection Methods

In this section we provide details of our comparative study which basically con-
sists of three parts: first, shortlisting candidate algorithms to be compared,
second, analyzing their algorithmic characteristics and, third, performing the
empirical analysis.

2.1 Algorithm Selection

Given the soundness and completeness of Cazabet and Rossetti’s classification
framework [1], we opt for using this framework as a steering wheel in the process
of method selection. Within this framework, three large types of dynamic algo-
rithms for searching communities are distinguished: (1) those that only consider
the current state of the network (instant-optimal); (2) those that only consider
past and present clustering and past instances of the network topology (tempo-
ral trade-off); (3) those that consider the entire network evolution available in
the data, both past and future clustering (cross-time).

In an applied setting, neglecting previous states of the network oftentimes
leads to sub-optimal solutions. Additionally, it is realistic to assume that com-
munities will be updated using data that become available periodically. Conse-
quently, no future information will be available at time ¢. With this in mind,
we opt for focusing on temporal trade-off algorithms. Within Cazabet and Ros-
setti’s framework, these are further subdivided into four categories: Global Opti-
mization (denoted originally as 2.1), Rule-Based Updates (2.2), Multi-Objective
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Optimization (2.3) and Network Smoothing (2.4). For each subcategory, at least
one representative is chosen. Additionally, the list of compared algorithms is
complemented by more recently published techniques, which, in turn, are also
classified in the four previously mentioned categories.

Moreover, three characteristics are instrumental in the selection. Firstly, the
algorithm has to be able to detect communities in evolving graphs. Secondly, the
algorithm would preferably be able to detect overlapping communities to ensure
a realistic partitioning in social network problems. Thirdly, the capability of
extracting community evolution events is a desired trait with the goal of having
realistic partitions that incorporate as much available information as possible in
the partitioning process. Finally, some algorithms will be included as benchmark
algorithms in order to compare results with previously performed comparative
analyses.

2.2 Qualitative Analysis

The qualitative analysis is based on the comparison of algorithmic character-
istics. In particular, comparison is performed with respect to the following six
questions:

1. How does the method search for communities? In other words, which of the
categories within the framework of Cazabet and Rossetti does it fit in (if
any)?

2. What community definition is adopted (modularity, density, conductance...)?

3. How efficient the method is? That is, what is its computational complexity?

4. Which community evolution events can the method track (birth, death,
merge, split, growth, contraction, continuation, resurgence)?

5. Can the method find overlapping communities?

6. Can the method find hierarchical communities?

2.3 Empirical Analysis Setup

Given their different characteristics, to provide a fair comparison, selected DCD
methods are benchmarked based on both synthetic and real-life datasets. As syn-
thetic datasets, 9 different RDyn graphs [7] were created by varying the number
of nodes to 1000, 2000 and 4000 and the communities size distribution parameter
« to be 2.5, 3 and 3.5. Larger o makes the sizes of communities relatively larger,
more dispersed, while smaller makes the differences between community sizes
smaller, more uniform. The rate of node appearance and vanishing is fixed to
0.05 and 0.02 respectively. The appearance rate is slightly larger than the van-
ishing rate in an attempt to mimic a slowly growing graph which could resemble,
for instance, a customer base where customers enter, remain for a (long) while,
and churn. For each of the 9 different RDyn graphs, 100 RDyn instances are
created, yielding 900 graphs in total. The specific number 100 was arbitrarily
chosen but is used to account for variations in the results.
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As for the real-life dataset, the co-authorship graph from [25] was used. This
dataset was originally extracted from DBLP database and for purposes of this
analysis, was further limited to data from 1971 to 2002. Resulting dataset has
850 875 nodes, which represent 303 628 unique authors, and 1 656 873 edges.

To measure the relative performance of the different algorithms, two metrics
were chosen. On the one side, the quality of the partition is measured by Nor-
malized F1-statistics (NF1) and on the other side, the efficiency of the algorithm
is reported in terms of the computation time.

3 Results

In this section we provide results of each of the three phases of our comparative
analysis: algorithm selection, qualitative and quantitative analysis.

3.1 Algorithm Selection

For the broad selection, the initial list of 51 papers on DCD methods was
used [6,13-18,20-23,27-65]. It was obtained by supplementing 32 temporal
trade-off algorithms [6,13-15,17,21,22,24,27-50] from [1] with 19 algorithms
not included in the aforementioned survey [16,18,20,23,51-65] that nonethe-
less possess interesting characteristics with regards to community and evolution
extraction. Figurel illustrates the relevance of adding those 19 papers as it
ensures the inclusion of more recent methods.

After this list of algorithms was compiled, the three algorithm-specific char-
acteristics mentioned before were compared in order to select the approximately
ten most promising algorithms that will be compared qualitatively and empiri-
cally. Following the analysis mentioned above, 13 algorithms were selected to be
compared, as follows.

Partition Update by Global Optimization (2.1). This category contains algo-
rithms that incrementally update and find communities by globally optimizing
a metric such as modularity, density or other utility functions. Two methods
represent this category in the analysis. Firstly, D-GT is a game-theory based
algorithm proposed in [13] for dynamic social networks. The technique consid-
ers nodes as rational agents, maximizes a utility function and finds the optimal
structure when a Nash equilibrium is reached. Secondly, Updated BGL is a mod-
ularity based incremental algorithm designed by [14]. It is more time-efficient
than its modularity-based peers that do not rely on community updating. Both
D-GT and Updated BGL are capable of tracking community evolution events.
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Partition Update by Set of Rules (2.2). This category seems to be the most
promising in terms of efficiency and accuracy for algorithms that take into
account past information. The algorithms belonging to this category all consider
a list of historic network changes in order to update the network’s partitioning.
AFOCS is an algorithm designed for performing well in mobile networks, such
as online social networks, wireless sensor networks and Mobile Ad Hoc Networks
[15]. The technique is able to uncover overlapping communities in an efficient way
by incrementally updating the communities based on past information. It avoids
the recalculation of communities at each time step, by identifying community
evolution events based on four network changes, namely the appearance of a new
node or edge and the removal of an edge or node. The algorithm applies different
rules on how to update communities depending on which events occur. HOC-
Tracker is a technique designed to detect hierarchical and overlapping commu-
nities in online social networks [16]. The approach detects community evolution
by comparing significant evolutionary changes between consecutive time steps,
reducing the number of operations to be performed by the algorithm. The algo-
rithm identifies active nodes, which are nodes that (dis)appear or are linked to
an edge that (dis)appears, and compares those nodes’ neighborhoods with their
previous time step to reassign nodes to new communities if necessary. TILES, is
an online algorithm that identifies overlapping communities by iteratively recom-
puting a node’s community membership in case of a new interaction [17]. The
approach is capable of singling out community evolution events such as birth,
death, merge, split, growth and contraction. OLCPM is an online, determin-
istic and DCD method based on clique percolation and label propagation [18].
OLCPM, unlike CPM (Clique Percolation Method) [19], works by updating com-
munities by looking at some predefined events resulting in improved computation
times. OLCPM is able to detect overlapping communities in temporal networks.
Finally, DOCET [20] incrementally updates overlapping dynamic communities
after it finds an initial community structure. It can track community evolution
events.

Informed CD by Multi-objective Optimization (2.3). The two previous categories
updated partitions by looking at past communities. Informed community detec-
tion algorithms, on the other hand, calculate the communities from scratch in
each time step. The algorithm tries to balance partition quality and temporal
partition coherence or in other words, the current network structure and past
partitions. A disadvantage of these kinds of approaches is the computational
power necessary to execute the algorithm. An advantage is its temporal inde-
pendence, potentially resulting in more stable outcomes. In informed community
detection by multi-objective optimization, the partition at time t is detected
by optimizing a certain metric, e.g. modularity, density. Two algorithms will
represent this category in the evaluation. FacetNet was a pioneer in detecting
communities in an unified process, in contrast with a two-step approach, where
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evolution events can be uncovered together with the partitioning [6]. Conse-
quently, FacetNet is used as a benchmark approach in many papers introducing
algorithms with similar capabilities. The approach finds communities based on
non-negative matrix factorization and iteratively updates the network structure
to balance the current partitioning fit and historical cost function. A disadvan-
tage of the technique is that the number of communities is fixed and should be
determined by the user. DYNMOGA [21], unlike FacetNet, balances the current
partitioning fit and cost function simultaneously and, therefore, does not need a
preference parameter with regard to maximizing partition quality and minimiz-
ing the historical cost or clustering drift. It optimizes a multi-objective problem
and automatically determines the optimal trade-off between cluster accuracy
and clustering drift. Neither FacetNet or DYNMOGA are capable of detecting
overlapping communities.

O =2 NWHE OO N®©

®Rosseti and Cazabet [1] B Additional algorithms

Fig. 1. Analyzed papers by year.

Informed CD by Network Smoothing (2.4). ECSD proposed by [22] is a particle-
and-density based evolutionary clustering method that is capable of determining
the number of communities itself. The method detects the network’s structure
and evolutionary events by trading off historic quality and snapshot quality,
similar to the previous subcategory. The difference, however, is that ECSD finds
its clusters by temporally smoothing data instead of results.

Other Benchmarks. Within this final category of methods introduced for com-
parison purposes we consider two algorithms: DEMON and iLCD. DEMON
introduced in [23] (and extended in [26]) is a technique that is able to hierarchi-
cally detect overlapping communities but cannot, unlike all previous methods,
identify community evolution events. iLCD [24], in previous empirical compar-
isons, is repeatedly shown to perform worse in terms of partition quality and
computation speed with regards to other tested algorithms (e.g. FacetNet). It
will be interesting to evaluate or verify the relative performance of these meth-
ods.
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3.2 Qualitative Results

The first aspect that stands out is the larger presence of algorithms that update
communities by a set of rules (2.2) not only in our final selection, but, like-
wise, among the more recently proposed methods, such as AFOCS, HOCTracker,
OLCPM and DOCET which are also more focused on performing in dynamic
social environments.

The second aspect that attracted our attention was the fact that nearly none
of the analyzed algorithms focused in particular on the detection of hierarchi-
cal communities. Moreover, even though it was expected that hierarchy would
be a relevant factor, it was generally not even mentioned whether an algorithm
was capable of detecting hierarchical communities. On the other hand, detect-
ing overlapping communities in social networks was oftentimes considered as
necessity in current literature.

Thirdly, it is striking that all algorithms from the categories that optimize
an objective function use modularity as community definition. Algorithms that
do not optimize an objective function sometimes still utilize a metric as a guide
to search for communities, but operate by exploiting other characteristics of the
network topology, such as the frequency of node neighbors by labeling nodes,
done by label propagation [23].

An overview of previously discussed characteristics for selected methods can
be found in Tablel. In the last column of Tablel, time complexity per each
method, as provided by its introductory study, is presented. It can be seen that
the required resources needed for running Extended BGL, LabelRankT, ECSD
and iLCD grow linearly with the number edges, making these algorithms the
most efficient ones. Next, FacetNet’s computation time grows proportional with
its number of edges and communities, DYNMOGA scales log-linearly with the
number of nodes and DEMON is dependent on the number of nodes and the
maximum degree. Finally, TILES, AFOCS, HOCTracker and DOCET appear to
be the most complex algorithms as their computation time is expected to grow
quadratically with the number of nodes, which is particularly problematic for
large graphs. It cannot be derived whether the complexity is closely related to
the category the algorithm belongs to Category 2.2., however, seems to be most
complex.

In the context of social networks (and not only these), the knowledge of
what types of community evolution events occur at which moments in time can
be valuable information in order to understand what is happening with the net-
work structure over time. Currently, the literature recognizes eight community
evolution events, namely birth, death, merge, split, growth, contraction, con-
tinue and resurgence of a community, although, obviously, not every method is
able to detect all of them. Therefore, for each of the methods which do support
community evolution tracking (see column “Evolution” in Table1), it is worth
investigating further which in particular event(s) the tracking refers to. As can
be seen from Table 2, several remarks can be made along these lines.



A Comparative Study of Community Detection Techniques 375

Table 1. Comparison of dynamic methods based on observed characteristics and
their time complexity (last column). “CS Type” stands for category in Cazabet and
Rossetti’s framework. A “-” denotes that methods do not search communities by opti-
mizing a metric, but operate by exploiting characteristics of network topology. Notation
used for time complexity: n,m, ¢, g - number of nodes, edges, communities and gener-
ations respectively, K - maximum degree, o - degree distribution parameter, RQ¢; -
expected average size of interactions processed during interaction removal phase, |U| -
number of nodes to be updated.

CS Type | Method Definition | Overlap | Evolution | Hierarchy | Time complexity
2.1 D-GT Modularity | ? v ? -
Extended BGL | Modularity | 7 v ? O(m)

2.2 TILES v v ? O(In(cu + cv)| + RQeu|UI?)
AFOCS Density v v ? o(n?)
HOCTracker Density v v v O(n?)

OLCPM Modularity | v/ v ? -
DOCET v v ? O(n?)
LabelRankT - X v ? O(m)

2.3 FacetNet Modularity | X v 7 O(m - c)
DYNMOGA Modularity | X ' ? O(gn - log(n))

2.4 ECSD Modularity | X v 7 O(m)

Other Demon v X v O(nK3~)
iLCD v v ? O(m)

Firstly, it is remarkable that the event resurgence cannot be detected by any
of the selected algorithms, nor by any of the other algorithms that were analyzed,
even though the event has been included in the literature, among others by [1].
Similarly, the event continue is rarely mentioned explicitly. It might be the case
that continue is implied/detected when no event occurs and is therefore not
mentioned by the authors.

Secondly, the algorithms, such as OLCPM, HOCTracker and DOCET, that
were included in addition to the survey by [1] because they were more recent and
possessed good features for social network community detection, can detect most
of the events community evolution events. Only resurgence cannot be detected by
any of the methods which we assume is due to the fact that detecting resurgence
requires more than two timestamps which is not the case with methods from
category 2.2, in general.

Thirdly, some algorithms, such as Extended BGL, ECSD and iLLCD, only
track events that are linked with the emergence of nodes and not their disap-
pearance.

3.3 Quantitative Results

In this section we present the empirical results on synthetic dataset, RDyn, and
real-world dataset, DBLP, in terms of partition quality (NF1) and computation
times (secs).
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Synthetic Graph (RDyn)

Table 2. Tracking of community evolution events by selected algorithms. “CS Type”
stands for category in Cazabet and Rossetti framework. Question marks denote that
the algorithm is able to detect community evolution events, but the original papers do
not specify which ones explicitly.

CS Type | Method Birth | Death | Merge | Split | Growth | Contraction | Continue | Resurgence
2.1 D-GT v v X X v v v X
Extended BGL | v/ X v X ' X v X
2.2 TILES v v v v v ' X X
AFOCS ? ? ? ? ? e ? 7
HOCTracker ' v v v v ' X X
OLCPM ' v v v v ' ' X
DOCET ' v v v v ' X X
LabelRankT X v ' v X X X X
2.3 FacetNet ? ? ? ? ? ? ? ?
DYNMOGA v v v v v ' X X
2.4 ECSD v X v X v X X X
Other Demon X X X X X X X X
iLCD ' X v X v X X X

Partition Quality. The results of partition quality in terms of NF1 measure are
provided in Table 3. The best performing algorithm is HOCTracker followed by
iLCD and DEMON which only slightly differ from each other. Next, OLCPM
is the second worst performer followed by Tiles who ended up having very poor
results in terms of NF1. In general, the community size distribution parameter
and the number of nodes do not have a trend that influences the partition quality.
The impact of these variables differs algorithm to algorithm.

HOCTracker returns the highest NF1 values for o = 3 and the lowest for
o = 2.5. However, it also exhibits much higher standard deviations associated
with each group of RDyn instances, especially in comparison with iLCD and
OLCPM. Note that standard deviation in Table 3 is not the standard deviation
of the mean NF1 across every RDyn instance of one of the nine RDyn categories,
but represents the average standard deviation of all NF1 measures within one
RDyn instance. Even though the small standard deviation values in iLCD could
be interpreted as method consistency (thus in its advantage), closer investigation
revealed that oftentimes a lot of nodes where not assigned to a community
for a specific graph resulting in NF1 scores of 0 for those communities and
consequently for their graphs. If NF1 mean is 0 than the standard deviation is
either close to 0 or 0. This can be seen in Fig.2. OLCPM and iLLCD appear
to classify algorithms quite well once the algorithm succeeds at assigning the
majority of the nodes.

Scalability. As can be seen from Table4, the best performing algorithm on syn-
thetic dataset in terms of execution times is iLCD, followed by TILES, DEMON,
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OLCPM and lastly HOCTracker. Remarkably, the group with a =3 takes the
longest to execute across all sizes with the exception of OLCPM on the (1000,
3) graph where (1000, 2.5) requires the longest time. Although this observation
is very notable, there is no reasonable explanation why this occurs. It can be
concluded that specific characteristics can have a significant impact on the time
required to analyze a graph but we refrain from specifying a specific relation
between community size distribution and execution times.

Another interesting observation is that within each size group, the graphs
with relatively large differences in community sizes (a = 3.5) often require the
least time to analyze. If they are not the fastest their performance is rather
similar to the fastest.

According to literature, iLCD scales with the number of edges in a graph.
However, this is not reflected in the execution times. For OLCPM, it was
observed that the execution time is very variable. For the a = 2.5, the exe-
cution times for 1000 and 4000 are almost equal. For 2000 nodes it only takes
75% of the time used for the former. An anomaly can clearly be observed for
OLCPM, the average execution time for the (2000, 2.5) and (2000, 3.5)-instances
group takes less time than their (1000, 2.5) and (1000, 3.5) despite having dou-
ble the number of nodes and approximately edges. This observation cannot be
attributed to a specific aspect of the algorithm. As expected, DEMON was found
to scale with the number of nodes and the average degree distribution parameter
(kept constant on all instances of RDyn). At last, HOCTracker performed the
worst which was not unsurprising as it scales in a quadratic way.

Real-World Graph (DBLP). Three algorithms were run on the DBLP
dataset: DEMON, iLCD and TILES. HOCTracker returns an OutOfMemoryEx-
ception when trying to run it on the DBLP dataset, which demonstrates the
unsuitability of the algorithm for large graphs. OLCPM runs itself into a loop on
the DBLP dataset. We also suspect the method unsuitability for large datasets
as this phenomenon did not occur on the RDyn dataset and the test in its
introductory paper encompassed only small datasets (<10 000 nodes).

To analyze the performance of DEMON, iLCD and TILES each partitioning
is benchmarked with the resulting partitioning of each of the other algorithms as
ground truth. From the results, in Table 5, it can be observed that, on average,
TILES is the worst and DEMON the best performing algorithm. Even though
DEMON is the best performing algorithm, it needs significantly more computa-
tion time 3099.48 s on DBLP dataset as compared to TILES requiring 1436.71s
and iLCD which is the fastest with only 55.73s. Figure 3 shows the evolution
of mean NF1 scores of the three different methods for each year from 1971 to
2002. A general trend can be observed: as time progresses and more nodes and
edges are introduced, the NF1 values drop significantly, however, not at the same
pace for every algorithm. While TILES starts as the worst-performing algorithm
in the earlier timestamps and thus smaller graphs, it ends up being the most
performing one once the graph size exceeds 35 000 nodes (1991).
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4 Related Work

A plethora of studies focusing purely on comparing algorithms for static com-
munity detection methods can be found in the literature [3,8-12]. In contrast, to
the best of our knowledge, there are no studies that focus purely on the empiri-
cal comparison of DCD algorithms. Instead, in the studies which introduce new
DCD algorithms or new dynamic benchmark graphs, authors typically bench-
mark their own method with few others with the aim to showcase that their
technique performs better with regard to peers.

Table 3. Mean NF1 results and the associated standard deviations of benchmarked
algorithms on RDyn dataset. The highest scores per different number of nodes and
alpha are underlined while the best averages are boldfaced. “CS Type” stands for
category in Cazabet and Rossetti framework.

CS Type | Method Alpha | Nodes
1000 2000 4000 Avg.
Mean Std. Mean Std. Mean Std. Mean Std.
2.2 TILES Avg. 0.2002 | 0.2035 | 0.1961 | 0.1967 | 0.2087 | 0.1954 | 0.2017 | 0.1985
2.5 0.1951 | 0.2068 | 0.1969 | 0.1994 | 0.2188 | 0.2017 | 0.2036 | 0.2026
3 0.2033 | 0.2026 | 0.1882 | 0.1971 | 0.1953 | 0.1960 | 0.1954 | 0.1985
3.5 0.2022 | 0.2010 | 0.2043 | 0.1934 | 0.2131 0.1882 | 0.2066 | 0.1941
HOCTracker | Avg. 0.4600 | 0.2596 | 0.4236 | 0.2397 | 0.3852 | 0.2355 | 0.4236 | 0.2402
2.5 0.3839 | 0.2570 | 0.4095 | 0.2443 | 0.3605 | 0.2474 | 0.4070 | 0.2447
3 0.5346 | 0.2536 | 0.4493 | 0.2442 | 0.4352 | 0.2272 | 0.4515 | 0.2440
3.5 0.4469 | 0.2675 | 0.4096 | 0.2298 | 0.3714 | 0.2229 | 0.4101 | 0.2309
OLCPM Avg. 0.3132 | 0.0243 | 0.3118 | 0.0206 | 0.3257 | 0.0192 | 0.3169 | 0.0213
2.5 0.3006 | 0.0262 | 0.3173 | 0.0201 | 0.3274 | 0.0202 | 0.3151 | 0.0222
3 0.3222 | 0.0253 | 0.3043 | 0.0225 | 0.3227 | 0.0190 | 0.3163 | 0.0223
3.5 0.3171 | 0.0212 | 0.3143 | 0.0189 | 0.3270 | 0.0182 | 0.3196 | 0.0194
Other DEMON Avg. 0.4022 | 0.3059 | 0.3664 | 0.2962 | 0.3687 | 0.2970 | 0.3788 | 0.2996
2.5 0.3987 | 0.3135 | 0.3615 | 0.2974 | 0.3846 | 0.2956 | 0.3814 | 0.3021
3 0.3952 | 0.3001 | 0.3543 | 0.2898 | 0.3396 | 0.2996 | 0.3624 | 0.2964
3.5 0.4136 | 0.3041 | 0.3857 | 0.3021 | 0.3845 | 0.2957 | 0.3944 | 0.3006
iLCD Avg. 0.3961 | 0.0170 | 0.3797 | 0.0125 | 0.3968 | 0.0097 | 0.3908 | 0.0130
2.5 0.3838 | 0.0205 | 0.3826 | 0.0133 | 0.4018 | 0.0106 | 0.3894 | 0.0147
3 0.3999 | 0.0159 | 0.3677 | 0.0131 | 0.3826 | 0.0090 | 0.3829 | 0.0126
3.5 0.4054 | 0.0145 | 0.3908 | 0.0109 | 0.4071 | 0.0094 | 0.4012 | 0.0115

The situation is slightly better with respect to benchmark graphs, where a
vast body of literature is available. Although the most prominently used bench-
mark graphs Girvan-Newman (GN) [4] and Lancichinetti-Fortunato-Radicchi
(LFR) [2] are not suited for temporal community discovery, to this end, their
extensions in [6] and [5] respectively, were proposed. Next, RDyn, a framework
for generating dynamic networks along with time-dependent ground-truth par-
titions with tunable qualities, was introduced in [1].

To gain better insight in how the mentioned sporadic comparisons of DCD
algorithms and/or dynamic benchmark graphs have been performed, in the
context of this literature review, we considered a selection of 51 papers on
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Table 4. Average computation time (in sec) over 100 RDyn instances per each bench-
marked algorithm (the shortest boldfaced). “CS Type” stands for category in Cazabet

and Rossetti framework.

CS Type | Method Computation time (sec)
Alpha | Nodes
1000 |2000 |4000
2.2 TILES 2.5 3.43 | 5.45 7.47
3 3.53 | 6.05 8.42
3.5 3.45 | 5.48 7.73
HOCTracker | 2.5 46.12 | 77.77 | 152.00
3 49.6194.22 | 214.44
3.5 43.96 | 78.62 | 166.25
OLCPM 2.5 39.9230.69 | 41.74
3 37.48169.27 | 56.40
3.5 32.7929.37 | 45.55
Other DEMON 2.5 11.34|18.68 | 30.42
3 11.77120.8 35.02
3.5 10.38 | 16.81 | 28.98
iLCD 2.5 1.94 | 2.35 2.74
3 2 2.53| 3.08
3.5 1.98 | 2.37| 2.81
iLCD - std vs mean iLCD
- 06 40.0%
:é 04 o 30.0% I
202 .‘ i 20.0%
goo 05 1 15 1EE‘ZH::::!!!:

Fig. 2. NF1 mean vs. standard deviation for iCLD on synthetic data.

0,91 18

DCD methods. The first remarkable finding is that 12 out of 51 papers did
not include a single comparison with peer algorithms [28,33,35,40,41,44,45,48-
50,52,56], while 39 did. A closer investigation of these 39 papers revealed
57 algorithms out of 82 were only benchmarked once. On the other hand,
the most frequently referenced algorithm is FacetNet [6]. The second inter-
esting finding is that authors seem to use various datasets for comparison, as
they often include synthetic graphs and/or real-world graphs. In the assessed
papers, 1 made use of only synthetic graphs [32], 32 used only real graphs
[13,14,16,22,27,28,30,31,33,34,36-41,44,45,48-52,54-57,59-63] and 17 used
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Table 5. The mean NF'1 results and the associated standard deviations when running
DEMON, iLCD and TILES (rows) and using them as ground truth (columns) on DBLP
dataset.

Method | Ground truth

TILES DEMON iLCD Avg
Mean |Std. |Mean |Std. Mean | Std.
TILES |1.0000 | 0.0000 | 0.5840 | 0.3211 | 0.5941 | 0.3182 | 0.5891
DEMON | 0.5369 | 0.2612 | 1.0000 | 0.0000 | 0.7612 | 0.2817 | 0.6490
iLCD 0.5117 ] 0.2685 | 0.6619 | 0.3116 | 1.0000 | 0.0000 | 0.5868

Fig. 3. Mean NF1 results for 1971-2002.

both [6,15,17,18,20,21,23,24,29,42,43,46,47,53,58,64,65]. In the 49 papers
that used real graphs 47 different real graphs were introduced. A little over
half of the datasets are only used once. The most popular are graphs extracted
from the DBLP database. These occur as benchmark graphs in 19 of 51 papers.
Hence, similarly to the use of methods, the use of datasets is also fairly hetero-
geneous which contributes to the difficulty of assessing the relative performance
of techniques.

Due to the fact that the overlap in comparison is limited, it is hard to make
any deductions with regard to the relative performance of the algorithms. More-
over, as mentioned before, the setup and results of these comparisons might
contain an unconscious bias towards the proposed algorithm. This shows the
relevance of this study.

5 Conclusion

Dynamic community detection has numerous applications in different fields and
as such is extensively studied in the current literature. Nevertheless, a systematic
and unbiased comparison of these methods is still missing. Therefore, in this
paper we made steps towards scrutinizing algorithms and performing fairly both
qualitative and quantitative comparisons on synthetic as well as real-life evolving
graphs. The qualitative analysis included an overall set of characteristics relevant
for (social) community detection such as community definition used, the ability
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to track community life-cycle events, overlapping and hierarchical communities,
and the time complexity. For the empirical analysis, several limiting factors such
as unavailable/poorly documented source code and inability to run methods
on large graphs led to a narrower set of compared methods. Nevertheless, 900
synthetic, evolving graphs of various sizes and community size distributions and
the most frequently used real-world DBLP dataset were used for a thorough
analysis.

Undoubtedly, the field of community detection techniques that act on evolv-
ing graphs is characterized by its inherent heterogeneity in all its aspects. As
such, there is no single best performing community technique, but rather, the
choice and the performance depends on the objective and dataset characteristics.
For future work, we envision an even more extensive empirical evaluation.
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Abstract. Learning network representations is a fundamental task for
many graph applications such as link prediction, node classification,
graph clustering, and graph visualization. Many real-world network