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Preface

The European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML PKDD) is the premier European machine
learning and data mining conference. In 2019, ECML PKDD was held in Würzburg,
Germany, during September 16–20.

During the first and last day of the conference, the workshop program allowed a
number of specialized and/or new topics to take the fore-front.

A record 46 workshop and tutorial topics were submitted to the 2019 conference.
The selection and merging process resulted in 25 workshops taking place over the two
days, of which 3 were combined with a tutorial.

The workshop program included the following workshops:

1. The 12th International Workshop on Machine Learning and Music (MML 2019)
2. Workshop on Multiple-aspect analysis of semantic trajectories (MASTER 2019)
3. The 4th Workshop on MIning DAta for financial applicationS (MIDAS 2019)
4. The Second International Workshop on Knowledge Discovery and User Modelling

for Smart Cities (UMCit 2019)
5. New Frontiers in Mining Complex Patterns (NFMCP 2019)
6. New Trends in Representation Learning with Knowledge Graphs
7. The Second International Workshop on Energy Efficient Scalable Data Mining and

Machine Learning (Green Data Mining)
8. Workshop on Deep Continuous-Discrete Machine Learning (DeCoDeML 2019)
9. Decentralised Machine Learning at the Edge (DMLE 2019)

10. Applications of Topological Data Analysis (ATDA 2019)
11. GEM: Graph Embedding and Mining
12. Interactive Adaptive Learning (AIL 2019)
13. IoT Stream for Data Driven Predictive Maintenance (IoT Steam 2019)
14. Machine Learning for Cybersecurity (MLCS 2019)
15. BioASQ: Large-scale biomedical semantic indexing and question answering
16. The 6th Workshop on Sports Analytics: Machine Learning and Data Mining for

Sports Analytics (MLSA 2019)
17. The 4th Workshop on Advanced Analytics and Learning on Temporal Data

(AALTD 2019)
18. MACLEAN: MAChine Learning for EArth ObservatioN
19. Automating Data Science
20. The 4th Workshop on Data Science for Social Good (DSSG 2019)
21. The Third Workshop on Advances in managing and mining Large Evolving

Graphs (LEG 2019)
22. Data and Machine Learning Advances with Multiple Views (DAMVL 2019)
23. Workshop on Data Integration and Applications (DINA 2019)
24. XKDD Tutorial and XKDD-AIMLAI Workshop
25. The First Workshop SocIaL Media And Harassment (SIMAH 2019)



Of these 25 workshops, 17 workshops decided to select and publish their best papers
with Springer. Two workshops were large enough to publish their own proceedings:
(i) MIDAS – the 4th Workshop on MIning DAta for financial applicationS and
(ii) AALTD – the 4th workshop on Advanced Analytics and Learning on Temporal
Data. The 15 other workshops received a total of 200 submitted papers, out of which 70
long and 46 short papers were selected for publication after the conference. These
papers are spread over two proceedings volumes.

This two-volume set contains the papers from the following workshops:

1. Automating Data Science
2. XKDD Tutorial and XKDD-AIMLAI Workshop
3. Decentralised Machine Learning at the Edge (DMLE 2019)
4. The Third Workshop on Advances in managing and mining Large Evolving

Graphs (LEG 2019)
5. Data and Machine Learning Advances with Multiple Views (DAMVL 2019)
6. New Trends in Representation Learning with Knowledge Graphs
7. The 4th Workshop on Data Science for Social Good (DSSG 2019)
8. The Second International Workshop on Knowledge Discovery and User Modelling

for Smart Cities (UMCit 2019)
9. Workshop on Data Integration and Applications (DINA 2019)

10. Machine Learning for Cybersecurity (MLCS 2019)
11. The 6th Workshop on Sports Analytics: Machine Learning and Data Mining for

Sports Analytics (MLSA 2019)
12. The First Workshop on SocIaL Media And Harassment (SIMAH 2019)
13. IoT Stream for Data Driven Predictive Maintenance (IoT Stream 2019)
14. The 12th International Workshop on Machine Learning and Music (MML 2019)
15. BioASQ: Large-scale biomedical semantic indexing and question answering

We would like to thank all participants and invited speakers, the workshop orga-
nizers and the reviewers, as well as the local organizers for making the workshop
program of ECML PKDD 2019 the success that it was. Sincere thanks also goes to
Springer for their help in publishing the proceedings.

January 2020 Peggy Cellier
Kurt Driessens

vi Preface



Organization

ECML Workshop Chairs/Editors

Peggy Celier INSA Rennes, France
Kurt Driessens Maastricht University, The Netherlands

Individual Workshop Chairs/Editors

Tijl De Bie UGent, Belgium
Luc De Raedt KU Leuven, Belgium
Jose Hernandez-Orallo Universitat Politecnica de Valencia, Spain
Adrien Bibal University of Namur, Belgium
Tassadit Bouadi University of Rennes/IRISA, France
Benoît Frénay University of Namur, Belgium
Luis Galárraga Inria/IRISA, France
Stefan Kramer Universität Mainz, Germany
Ruggero G. Pensa University of Turin, Italy
Michael Kamp University of Bonn, Germany
Yamuna Krishnamurthy Rolay Holloway University of London, England
Daniel Paurat Fraunhofer IAIS, Germany
Sabeur Aridhi University of Lorraine, France
José Antonio de Macedo Universidade Federal do Ceará, Brazil
Engelbert Mephu Nguifo University Clermont Auvergne, France
Karine Zeitouni Université de Versailles Saint-Quentin, France
Stéphane Ayache Aix-Marseille University, France
Cécile Capponi Aix-Marseille University, France
Rémi Emonet Jean-Monnet University, France
Usabelle Guyon Orsay University, France
Volker Tresp Ludwig-Maximilians University and Siemens,

Germany
Jens Lehmann Bonn University and Fraunhofer IAIS, Germany
Aditya Mogadala Saarland University, Germany
Achim Rettinger Trier University, Germany
Afshin Sadeghi Fraunhofer IAIS, Germany
Mehdi Ali Bonn University and Fraunhofer IAIS, Germany
Ricard Gavalda UPC BarcelonaTech, Spain
Irena Koprinska University of Sydney, Australia
Joao Gama University of Porto, Portugal
Rabeah Alzaidy King Abdullah University of Science and Technology,

Saudi Arabia
Marcelo G. Armentano ISISTAN, CONICET-UNICEN, Argentina
Antonela Tommasel ISISTAN, CONICET-UNICEN, Argentina



Ludovico Boratto Eurecat, Barcelona, Spain
Clyde L. Giles College of Information Sciences and Technology,

Pennsylvania State University
Luiza Antonie University of Guelph, Canada
Peter Christen The Australian National University, Australia
Erhard Rahm University of Leipzig, Germany
Osmar Zaïane University of Alberta, Canada
Annalisa Appice Università degli Studi di Bari, Italy
Battista Biggio Università degli Studi di Cagliari, Italy
Donato Malerba Università degli Studi di Bari, Italy
Fabio Roli Università degli Studi di Cagliari, Italy
Ibéria Medeiros Universidade de Lisboa, Portugal
Pedro Ferreira Universidade de Lisboa, Portugal
Michael Kamp University of Bonn, Germany
Jesse Davis KU Leuven, Belgium
Ulf Brefeld Leuphana University, Germany
Jan Van Haaren SciSports, The Netherlands
Albrecht Zimmermann University of Caen, France
Rita Ribeiro University of Porto, Porto
Albert Bifet Telecom-ParisTech, France
João Gama University of Porto, Porto, Portugal
Anders Holst RISE SICS, Sweden
Sepideh Pashami Halmstad University, Sweden
Sima Sharifirad Dalhousie University, Canada
Stan Matwin Dalhousie University, Canada
Rafael Ramirez Universitat Pompeu Fabra, Spain
Darrell Conklin Universidad del País Vasco, Spain
José Manuel Iñesta Alicante University, Spain
George Paliouras University of Houston, USA
Anastasia Krithara NCSR “Demokritos”, Greece
Anastasios Nentidis Aristotle University of Thessaloniki, Greece

viii Organization



Contents – Part I

Automating Data Science

The ABC of Data: A Classifying Framework for Data Readiness . . . . . . . . . 3
Laurens A. Castelijns, Yuri Maas, and Joaquin Vanschoren

Automating Common Data Science Matrix Transformations . . . . . . . . . . . . . 17
Lidia Contreras-Ochando, Cèsar Ferri, and José Hernández-Orallo

DeepNotebooks: Deep Probabilistic Models Construct Python Notebooks
for Reporting Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Claas Völcker, Alejandro Molina, Johannes Neumann,
Dirk Westermann, and Kristian Kersting

HyperUCB: Hyperparameter Optimization Using Contextual Bandits . . . . . . . 44
Maryam Tavakol, Sebastian Mair, and Katharina Morik

Learning Parsers for Technical Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Dries Van Daele, Nicholas Decleyre, Herman Dubois,
and Wannes Meert

Meta-learning of Textual Representations . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Jorge G. Madrid, Hugo Jair Escalante, and Eduardo Morales

ReinBo: Machine Learning Pipeline Conditional Hierarchy Search
and Configuration with Bayesian Optimization Embedded
Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Xudong Sun, Jiali Lin, and Bernd Bischl

Supervised Human-Guided Data Exploration . . . . . . . . . . . . . . . . . . . . . . . 85
Emilia Oikarinen, Kai Puolamäki, Samaneh Khoshrou,
and Mykola Pechenizkiy

SynthLog: A Language for Synthesising Inductive Data Models
(Extended Abstract) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Yann Dauxais, Clément Gautrais, Anton Dries, Arcchit Jain,
Samuel Kolb, Mohit Kumar, Stefano Teso, Elia Van Wolputte,
Gust Verbruggen, and Luc De Raedt

The autofeat Python Library for Automated Feature Engineering
and Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Franziska Horn, Robert Pack, and Michael Rieger



The Extended Dawid-Skene Model: Fusing Information
from Multiple Data Schemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Michael P. J. Camilleri and Christopher K. I. Williams

Towards Automated Configuration of Stream Clustering Algorithms . . . . . . . 137
Matthias Carnein, Heike Trautmann, Albert Bifet,
and Bernhard Pfahringer

Advances in Interpretable Machine Learning and Artificial
Intelligence & eXplainable Knowledge Discovery
in Data Mining (AIMLAI-XKDD)

Effect of Superpixel Aggregation on Explanations in LIME – A Case
Study with Biological Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Ludwig Schallner, Johannes Rabold, Oliver Scholz, and Ute Schmid

Global Explanations with Local Scoring. . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Mattia Setzu, Riccardo Guidotti, Anna Monreale, and Franco Turini

Adversarial Robustness Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Christina Göpfert, Jan Philip Göpfert, and Barbara Hammer

Enriching Visual with Verbal Explanations for Relational
Concepts – Combining LIME with Aleph . . . . . . . . . . . . . . . . . . . . . . . . . 180

Johannes Rabold, Hannah Deininger, Michael Siebers, and Ute Schmid

Quantifying Model Complexity via Functional Decomposition
for Better Post-hoc Interpretability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Christoph Molnar, Giuseppe Casalicchio, and Bernd Bischl

Sampling, Intervention, Prediction, Aggregation: A Generalized
Framework for Model-Agnostic Interpretations . . . . . . . . . . . . . . . . . . . . . . 205

Christian A. Scholbeck, Christoph Molnar, Christian Heumann,
Bernd Bischl, and Giuseppe Casalicchio

Learning and Interpreting Potentials for Classical Hamiltonian Systems . . . . . 217
Harish S. Bhat

Finding Interpretable Concept Spaces in Node Embeddings Using
Knowledge Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Maximilian Idahl, Megha Khosla, and Avishek Anand

Local Interpretation Methods to Machine Learning Using the Domain
of the Feature Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Tiago Botari, Rafael Izbicki, and Andre C. P. L. F. de Carvalho

Measuring Unfairness Through Game-Theoretic Interpretability . . . . . . . . . . 253
Juliana Cesaro and Fabio Gagliardi Cozman

x Contents – Part I



LioNets: Local Interpretation of Neural Networks Through Penultimate
Layer Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Ioannis Mollas, Nikolaos Bassiliades, and Grigorios Tsoumakas

Decentralized Machine Learning at the Edge

Distributed Generative Modelling with Sub-linear
Communication Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

Nico Piatkowski

Distributed Learning of Neural Networks with One Round
of Communication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

Mike Izbicki and Christian R. Shelton

Decentralized Learning with Budgeted Network Load Using Gaussian
Copulas and Classifier Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

John Klein, Mahmoud Albardan, Benjamin Guedj, and Olivier Colot

Decentralized Recommendation Based on Matrix Factorization:
A Comparison of Gossip and Federated Learning . . . . . . . . . . . . . . . . . . . . 317

István Hegedűs, Gábor Danner, and Márk Jelasity

Ring-Star: A Sparse Topology for Faster Model Averaging in Decentralized
Parallel SGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

Mohsan Jameel, Josif Grabocka, Mofassir ul Islam Arif,
and Lars Schmidt-Thieme

Hardware Acceleration of Machine Learning Beyond Linear Algebra . . . . . . 342
Sascha Mücke, Nico Piatkowski, and Katharina Morik

Advances in Managing and Mining Large Evolving
Graphs - 3rd Edition (LEG)

Detecting Stable Communities in Link Streams at Multiple
Temporal Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

Souâad Boudebza, Rémy Cazabet, Omar Nouali, and Faiçal Azouaou

A Comparative Study of Community Detection Techniques
for Large Evolving Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

Lauranne Coppens, Jonathan De Venter, Sandra Mitrović,
and Jochen De Weerdt

Dynamic Joint Variational Graph Autoencoders . . . . . . . . . . . . . . . . . . . . . 385
Sedigheh Mahdavi, Shima Khoshraftar, and Aijun An

Contents – Part I xi



Evolution Analysis of Large Graphs with Gradoop . . . . . . . . . . . . . . . . . . . 402
Christopher Rost, Andreas Thor, Philip Fritzsche, Kevin Gomez,
and Erhard Rahm

MHDNE: Network Embedding Based on Multivariate Hawkes Process . . . . . 409
Ying Yin, Jianpeng Zhang, Yulong Pei, Xiaotao Cheng, and Lixin Ji

Data and Machine Learning Advances with Multiple Views

Multimodal Deep Networks for Text and Image-Based
Document Classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

Nicolas Audebert, Catherine Herold, Kuider Slimani, and Cédric Vidal

Manifold Mixing for Stacked Regularization. . . . . . . . . . . . . . . . . . . . . . . . 444
João Pereira, Erik S. G. Stroes, Albert K. Groen, Aeilko H. Zwinderman,
and Evgeni Levin

A Wide and Deep Neural Network for Survival Analysis
from Anatomical Shape and Tabular Clinical Data . . . . . . . . . . . . . . . . . . . 453

Sebastian Pölsterl, Ignacio Sarasua, Benjamín Gutiérrez-Becker,
and Christian Wachinger

Deep Generative Multi-view Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
Mahdi Karami

New Trends in Representation Learning with Knowledge
Graphs (KGRL)

SDE-KG: A Stochastic Dynamic Environment for Knowledge Graphs . . . . . . 483
Varun Ranganathan and Natarajan Subramanyam

Iterative Representation Learning for Entity Alignment Leveraging
Textual Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

Weixin Zeng, Jiuyang Tang, and Xiang Zhao

Fourth Workshop on Data Science for Social Good (SoGood 2019)

#MeTooMaastricht: Building a Chatbot to Assist Survivors
of Sexual Harassment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

Tobias Bauer, Emre Devrim, Misha Glazunov, William Lopez Jaramillo,
Balaganesh Mohan, and Gerasimos Spanakis

Analysis of Vocational Education and Training and the Labour
Market in Catalonia. A Data-Driven Approach . . . . . . . . . . . . . . . . . . . . . . 522

José Mena, Marc Torrent-Moreno, Daniel González, Laura Portell,
Oriol Pujol, and Jordi Vitrià

xii Contents – Part I



SOS-EW: System for Overdose Spike Early Warning Using Drug Mover’s
Distance-Based Hawkes Processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538

Wen-Hao Chiang, Baichuan Yuan, Hao Li, Bao Wang, Andrea Bertozzi,
Jeremy Carter, Brad Ray, and George Mohler

Improving GP-UCB Algorithm by Harnessing Decomposed Feedback . . . . . . 555
Kai Wang, Bryan Wilder, Sze-chuan Suen, Bistra Dilkina,
and Milind Tambe

Optimizing Waste Collection: A Data Mining Approach . . . . . . . . . . . . . . . 570
Guilherme Londres, Nuno Filipe, and João Gama

Mobile Game Theory with Street Gangs . . . . . . . . . . . . . . . . . . . . . . . . . . 579
Sarah Cooney, Wendy Gomez, Kai Wang, Jorja Leap,
P. Jeffrey Brantingham, and Milind Tambe

Paired-Consistency: An Example-Based Model-Agnostic Approach
to Fairness Regularization in Machine Learning . . . . . . . . . . . . . . . . . . . . . 590

Yair Horesh, Noa Haas, Elhanan Mishraky, Yehezkel S. Resheff,
and Shir Meir Lador

Transferring Clinical Prediction Models Across Hospitals and Electronic
Health Record Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605

Alicia Curth, Patrick Thoral, Wilco van den Wildenberg, Peter Bijlstra,
Daan de Bruin, Paul Elbers, and Mattia Fornasa

Linking Physicians to Medical Research Results via Knowledge
Graph Embeddings and Twitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622

Afshin Sadeghi and Jens Lehmann

Prediction of Frequent Out-Of-Hours’ Medical Use . . . . . . . . . . . . . . . . . . . 631
Duncan Wallace and Tahar Kechadi

Forecast of Study Success in the STEM Disciplines Based Solely
on Academic Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647

Lukas Pensel and Stefan Kramer

Improving Access to Science for Social Good . . . . . . . . . . . . . . . . . . . . . . 658
Mehdi Ali, Sahar Vahdati, Shruti Singh, Sourish Dasgupta,
and Jens Lehmann

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675

Contents – Part I xiii



Contents – Part II

Second International Workshop on Knowledge Discovery
and User Modeling for Smart Cities (UMCit)

District Heating Substation Behaviour Modelling for Annotating
the Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Shahrooz Abghari, Veselka Boeva, Jens Brage, and Christian Johansson

Modeling Evolving User Behavior via Sequential Clustering . . . . . . . . . . . . 12
Veselka Boeva and Christian Nordahl

Recognizing User’s Activity and Transport Mode Detection:
Maintaining Low-Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Fitore Muharemi, Egzon Syka, and Doina Logofatu

Can Twitter Help to Predict Outcome of 2019 Indian General Election:
A Deep Learning Based Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Amit Agarwal, Durga Toshniwal, and Jatin Bedi

Towards Sensing and Sharing Auditory Context Information Using
Wearable Device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Akio Sashima and Mitsuru Kawamoto

Workshop on Data Integration and Applications (DINA)

Noise Reduction in Distant Supervision for Relation Extraction Using
Probabilistic Soft Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Birgit Kirsch, Zamira Niyazova, Michael Mock, and Stefan Rüping

Privacy-Preserving Record Linkage to Identify Fragmented Electronic
Medical Records in the All of Us Research Program . . . . . . . . . . . . . . . . . . 79

Abel N. Kho, Jingzhi Yu, Molly Scannell Bryan, Charon Gladfelter,
Howard S. Gordon, Shaun Grannis, Margaret Madden,
Eneida Mendonca, Vesna Mitrovic, Raj Shah, Umberto Tachinardi,
and Bradley Taylor

Data Integration for the Development of a Seismic Loss Prediction Model
for Residential Buildings in New Zealand . . . . . . . . . . . . . . . . . . . . . . . . . 88

Samuel Roeslin, Quincy Ma, Joerg Wicker, and Liam Wotherspoon

Linking IT Product Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Katsiaryna Mirylenka, Paolo Scotton, Christoph Miksovic,
and Salah-Eddine Bariol Alaoui



Pharos: Query-Driven Schema Inference for the Semantic Web. . . . . . . . . . . 112
David Haller and Richard Lenz

Informativeness-Based Active Learning for Entity Resolution . . . . . . . . . . . . 125
Victor Christen, Peter Christen, and Erhard Rahm

Encoding Hierarchical Classification Codes for Privacy-Preserving Record
Linkage Using Bloom Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Rainer Schnell and Christian Borgs

Machine Learning for Cybersecurity (MLCS)

Are Network Attacks Outliers? A Study of Space Representations
and Unsupervised Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Félix Iglesias, Alexander Hartl, Tanja Zseby, and Arthur Zimek

Auto Semi-supervised Outlier Detection for Malicious
Authentication Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Georgios Kaiafas, Christian Hammerschmidt, Sofiane Lagraa,
and Radu State

Defense-VAE: A Fast and Accurate Defense Against Adversarial Attacks . . . 191
Xiang Li and Shihao Ji

Analyzing and Storing Network Intrusion Detection Data Using Bayesian
Coresets: A Preliminary Study in Offline and Streaming Settings . . . . . . . . . 208

Fabio Massimo Zennaro

6th Workshop on Sports Analytics: Machine Learning
and Data Mining for Sports Analytics (MLSA)

Analyzing Soccer Players’ Skill Ratings Over Time Using
Tensor-Based Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Kenneth Verstraete, Tom Decroos, Bruno Coussement,
Nick Vannieuwenhoven, and Jesse Davis

Exploring Successful Team Tactics in Soccer Tracking Data . . . . . . . . . . . . 235
L. A. Meerhoff, F. R. Goes, A-.W. De Leeuw, and A. Knobbe

Soccer Team Vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Robert Müller, Stefan Langer, Fabian Ritz, Christoph Roch,
Steffen Illium, and Claudia Linnhoff-Popien

Tactical Analyses in Professional Tennis . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Arie-Willem de Leeuw, Aldo Hoekstra, Laurentius Meerhoff,
and Arno Knobbe

xvi Contents – Part II



Difficulty Classification of Mountainbike Downhill Trails Utilizing Deep
Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

Stefan Langer, Robert Müller, Kyrill Schmid,
and Claudia Linnhoff-Popien

First Workshop on Categorizing Different Types of Online
Harassment Languages in Social Media

Categorizing Online Harassment on Twitter . . . . . . . . . . . . . . . . . . . . . . . . 283
Mozhgan Saeidi, Samuel Bruno da S. Sousa, Evangelos Milios,
Norbert Zeh, and Lilian Berton

Learning to Detect Online Harassment on Twitter with the Transformer. . . . . 298
Margarita Bugueño and Marcelo Mendoza

Detection of Harassment on Twitter with Deep Learning Techniques. . . . . . . 307
Ignacio Espinoza and Fernanda Weiss

Gradient Boosting Machine and LSTM Network for Online Harassment
Detection and Categorization in Social Media . . . . . . . . . . . . . . . . . . . . . . . 314

Fabíola S. F. Pereira, Thiago Andrade,
and André C. P. L. F. de Carvalho

Attention-Based Method for Categorizing Different Types of Online
Harassment Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

Christos Karatsalos and Yannis Panagiotakis

IoT Stream for Data Driven Predictive Maintenance

SPICE: Streaming PCA Fault Identification and Classification Engine
in Predictive Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

Cristian Axenie, Radu Tudoran, Stefano Bortoli,
Mohamad Al Hajj Hassan, Alexander Wieder, and Goetz Brasche

Event-Based Predictive Maintenance on Top of Sensor Data
in a Real Industry 4.0 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

Athanasios Naskos, Georgia Kougka, Theodoros Toliopoulos,
Anastasios Gounaris, Cosmas Vamvalis, and Daniel Caljouw

Forecasting of Product Quality Through Anomaly Detection. . . . . . . . . . . . . 357
Mehmet Dinç, Şeyda Ertekin, Hadi Özkan, Can Meydanlı,
and Volkan Atalay

Data Preprocessing and Dynamic Ensemble Selection for Imbalanced Data
Stream Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

Paweł Zyblewski, Robert Sabourin, and Michał Woźniak

Contents – Part II xvii



A Study on Imbalanced Data Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
Ehsan Aminian, Rita P. Ribeiro, and João Gama

Mining Human Mobility Data to Discover Locations and Habits . . . . . . . . . . 390
Thiago Andrade, Brais Cancela, and João Gama

Imbalanced Data Stream Classification Using Hybrid Data Preprocessing. . . . 402
Barbara Bobowska, Jakub Klikowski, and Michał Woźniak

A Machine Learning-Based Approach for Predicting Tool Wear
in Industrial Milling Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

Mathias Van Herreweghe, Mathias Verbeke, Wannes Meert,
and Tom Jacobs

12th International Workshop on Machine Learning and Music
(MML 2019)

Cross-version Singing Voice Detection in Opera Recordings: Challenges
for Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

Stylianos I. Mimilakis, Christof Weiss, Vlora Arifi-Müller, Jakob Abeßer,
and Meinard Müller

Neural Symbolic Music Genre Transfer Insights . . . . . . . . . . . . . . . . . . . . . 437
Gino Brunner, Mazda Moayeri, Oliver Richter, Roger Wattenhofer,
and Chi Zhang

Familiar Feelings: Listener-Rated Familiarity in Music
Emotion Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446

Lloyd May and Michael Casey

Rhythm, Chord and Melody Generation for Lead Sheets Using Recurrent
Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454

Cedric De Boom, Stephanie Van Laere, Tim Verbelen, and Bart Dhoedt

Bacher than Bach? On Musicologically Informed AI-Based Bach
Chorale Harmonization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462

Alexander Leemhuis, Simon Waloschek, and Aristotelis Hadjakos

Adaptively Learning to Recognize Symbols in Handwritten Early Music . . . . 470
Luisa Micó, Jose Oncina, and José M. Iñesta

Feature-Based Classification of Electric Guitar Types . . . . . . . . . . . . . . . . . 478
Renato de Castro Rabelo Profeta and Gerald Schuller

RECURSIA-RRT: Recursive Translatable Point-Set Pattern Discovery
with Removal of Redundant Translators. . . . . . . . . . . . . . . . . . . . . . . . . . . 485

David Meredith

xviii Contents – Part II



Bow Gesture Classification to Identify Three Different Expertise Levels:
A Machine Learning Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494

David Dalmazzo and Rafael Ramírez

Symbolic Music Classification Based on Multiple Sequential Patterns . . . . . . 502
Kerstin Neubarth and Darrell Conklin

OPTISIA: An Evolutionary Approach to Parameter Optimisation
in a Family of Point-Set Pattern-Discovery Algorithms . . . . . . . . . . . . . . . . 509

Viktor Schmuck and David Meredith

Predicting Dynamics in Violin Pieces with Features from Melodic Motifs . . . 517
Fábio Jose Muneratti Ortega, Alfonso Perez-Carrillo,
and Rafael Ramírez

Sequence Generation Using Unwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
Darrell Conklin

A Machine Learning Approach to Study Expressive Performance
Deviations in Classical Guitar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531

Sergio Giraldo, Alberto Nasarre, Isabelle Heroux, and Rafael Ramirez

Enhanced De-Essing via Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 537
Simon Hestermann and Niklas Deffner

Representation, Exploration and Recommendation of Playlists . . . . . . . . . . . 543
Piyush Papreja, Hemanth Venkateswara,
and Sethuraman Panchanathan

Large-Scale Biomedical Semantic Indexing and Question
Answering (BioASQ)

Results of the Seventh Edition of the BioASQ Challenge . . . . . . . . . . . . . . . 553
Anastasios Nentidis, Konstantinos Bougiatiotis, Anastasia Krithara,
and Georgios Paliouras

Selected Approaches Ranking Contextual Term for the BioASQ Multi-label
Classification (Task6a and 7a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569

Bernd Müller and Dietrich Rebholz-Schuhmann

Convolutional Neural Network for Automatic MeSH Indexing . . . . . . . . . . . 581
Alastair R. Rae, James G. Mork, and Dina Demner-Fushman

A Mixed Information Source Approach for Biomedical Question
Answering: MindLab at BioASQ 7B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595

Mónica Pineda-Vargas, Andrés Rosso-Mateus, Fabio A. González,
and Manuel Montes-y-Gómez

Contents – Part II xix



AUEB at BioASQ 7: Document and Snippet Retrieval . . . . . . . . . . . . . . . . 607
Dimitris Pappas, Ryan McDonald, Georgios-Ioannis Brokos,
and Ion Androutsopoulos

Classification Betters Regression in Query-Based Multi-document
Summarisation Techniques for Question Answering: Macquarie University
at BioASQ7b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624

Diego Mollá and Christopher Jones

Structured Summarization of Academic Publications . . . . . . . . . . . . . . . . . . 636
Alexios Gidiotis and Grigorios Tsoumakas

How to Pre-train Your Model? Comparison of Different Pre-training
Models for Biomedical Question Answering . . . . . . . . . . . . . . . . . . . . . . . . 646

Sanjay Kamath, Brigitte Grau, and Yue Ma

Yes/No Question Answering in BioASQ 2019 . . . . . . . . . . . . . . . . . . . . . . 661
Dimitris Dimitriadis and Grigorios Tsoumakas

Semantically Corroborating Neural Attention for Biomedical
Question Answering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670

Marilena Oita, K. Vani, and Fatma Oezdemir-Zaech

Measuring Domain Portability and Error Propagation in Biomedical QA . . . . 686
Stefan Hosein, Daniel Andor, and Ryan McDonald

UNCC Biomedical Semantic Question Answering Systems. BioASQ:
Task-7B, Phase-B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695

Sai Krishna Telukuntla, Aditya Kapri, and Wlodek Zadrozny

Transformer Models for Question Answering at BioASQ 2019 . . . . . . . . . . . 711
Michele Resta, Daniele Arioli, Alessandro Fagnani,
and Giuseppe Attardi

Pre-trained Language Model for Biomedical Question Answering . . . . . . . . . 727
Wonjin Yoon, Jinhyuk Lee, Donghyeon Kim, Minbyul Jeong,
and Jaewoo Kang

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741

xx Contents – Part II



Automating Data Science



The ABC of Data: A Classifying
Framework for Data Readiness

Laurens A. Castelijns1,2,3, Yuri Maas1,2,3, and Joaquin Vanschoren1(B)

1 Faculty of Mathematics and Computer Science, Eindhoven University
of Technology, Eindhoven, The Netherlands

j.vanschoren@tue.nl
2 School of Law, Tilburg University, Tilburg, The Netherlands

3 Jheronimus Academy of Data Science, ‘s-Hertogenbosch, The Netherlands

Abstract. In order to (semi)automate data cleaning and preprocess-
ing, we need a clear and measurable definition of data quality. Data
readiness levels have been proposed to fit this need, but they require a
more detailed and measurable definition than is given in prior works. We
present a practical framework focused on machine learning that encap-
sulates data cleaning and (pre)processing procedures. In our framework,
datasets are classified within bands, and each band introduces more fine-
grained terminology and processing steps. Scores are assigned to each
step, resulting in a data quality score. This allows teams of people, as
well as automated processes, to track and reason about the cleaning
process, and communicate the current status and deficiencies in a more
structured, well-documented manner.

Keywords: Data quality · Data readiness levels · Data cleaning ·
Preprocessing · Automated data science

1 Introduction

“Data is the new oil. It is valuable, but if unrefined it cannot really be used. It
has to be changed into gas, plastic, chemicals, etc to create a valuable entity that
drives profitable activity; so must data be broken down, analyzed for it to have
value”.

The popular metaphor between data and oil is credited to the British mathe-
matician Clive Humby in 2006. There are many ways in which his analogy might
be broken down but Dr. Humby here points out an incontestable truth: Data
needs processing.

We pose that data (pre)processing aims to increase data quality, and present a
practical framework that encapsulates a range of data processing steps to achieve
this. Inspired by the concepts introduced by Lawrence in his position paper on
Data Readiness Levels [13], it examines and structures the technical challenges
that, when solved, increase data quality. The resulting framework is used as the
theoretical foundation of the software package PyWash [3], a collection of tools
used to clean and process datasets to increase their quality.
c© Springer Nature Switzerland AG 2020
P. Cellier and K. Driessens (Eds.): ECML PKDD 2019 Workshops, CCIS 1167, pp. 3–16, 2020.
https://doi.org/10.1007/978-3-030-43823-4_1
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Raw data usually suffers from a wide range of issues, such as duplicated
records, missing values, outliers, typo’s, and many other issues that weaken the
quality of the data and hinder advanced analysis. This results in machine learn-
ing systems learning the wrong things, decreasing their accuracy and making
them unreliable at best and plain wrong at worst. Data cleaning is, therefore,
an essential task. Data cleaning is often an iterative process that is tailored to
the needs and wants of a specific analysis task. Krishnan et al. (2015) conducted
a survey that expresses the need for a streamlined data cleaning framework.
The question “How do you determine whether the data is sufficiently clean to
trust the analysis?” made clear that most of the respondents had no rigorous
validation of their data cleaning. In response to this survey the same authors cre-
ated ActiveClean [12], which describes an iterative cleaning process that selects
and cleans some records. After this cleaning, it measures the performance of
the dataset on the main analysis to then select and evaluate if more cleaning
is necessary. The iterative nature of data cleaning paired with the absence of
an evaluation methodology is alarming. Alternating between cleaning data and
analyzing data, and using these analysis results to guide the subsequent data
cleaning procedures can result in overfitting. Data cleaning procedures are gen-
erally under-reported because it is such a ‘dirty’ process. Often there is no log
maintained of data cleaning operations executed whilst these operations can
introduce bias into the dataset [11].

Since then, some attempts have been made to set up a data quality frame-
work. “InfoQ” breaks down data analysis into 4 distinct components: analysis
goal, available data, utility measure, and data analysis method. The information
quality is then assessed using eight dimensions, such as data structure (explained
as the type of data and data characteristics) and temporal relevance. The quality
of each of these eight dimensions is then assessed separately, often using a rat-
ing on a Likert scale. There are multiple approaches to then compute an overall
InfoQ score by properly combining this set of eight assessments [7]. For example,
Ron Kenett and Marco Reis applied InfoQ to the Chemical Processing Industry
and proposed an assessment strategy in which each dimension is weighted to
reflect the distinct focal points in different analysis goals [16]. A limitation of
InfoQ is that a Likert scale abstracts away from the actual operations that have
to be performed to increase data quality. If you were told that a dataset obtained
an InfoQ score of 77% it is not clear what kind of deficiencies are present. After
sharing the individual Likert scale scores for each dimension it is still unknown
what exactly can be done to improve the score (and in what order). Lawrence
(2017) recognized the overall lack of terminology in discussions about data qual-
ity and proposed an initial set of descriptors for data readiness. The proposal
is to split data readiness into three distinct bands. The bands are represented
by the letters: A, B, and C. Each band contains sub levels: A1 is data of the
highest quality and C4 would be data of the worst quality [13]. However, the
author refrains from elaborating the bands in greater detail and therefore the
bands remain vague. In this paper, we propose one way to further extend, detail
and quantify these bands.
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2 The Framework

We introduce a framework which streamlines and describes the data cleaning
process. The framework splits the cleaning process into multiple distinct cate-
gories we likewise call bands and it analyzes the dataset to determine in which
band it currently is. Datasets that are in a certain band may possess one or more
deficiencies which are specified for that band and will negatively influence any
analysis, such as machine learning, performed on the dataset. Thus, in order for
a dataset to be classified as a higher tier band and be deemed cleaner, the issues
from the current band have to be resolved.

The bands introduce steps and terminology in the cleaning process that are
easy to follow for most practitioners. Teams will be able to communicate, argue
and customize the cleaning process to better fit their needs in a structured,
potentially well-documented process.

This new way of thinking about data cleaning as a step-by-step process and
a standalone part of the whole data process will hopefully save people from
rushing through data cleaning, and provide them with useful data quality metrics
rather than purely optimizing a final model quality score (e.g. model accuracy).
Moreover, it will also help to increasingly automate the process while alleviating
overfitting.

2.1 Data Bands

The framework consists of the following bands: C, B, A, AA, and AAA. These
represent the different stages of usability that datasets can be in during the
process.

Band C (Conceive) refers to the stage that the data is still being ingested.
If there is information about the dataset, it comes from the data collection
phase and how the data was collected. The data has not yet been introduced
to a programming environment or tool in a way that allows operations to be
performed on the dataset. The possible analyses to be performed on the dataset
in order to gain value from the data possibly haven’t been conceived yet, as this
can often only be determined after inspecting the data itself.

Band B (Believe) refers to the stage in which the data is loaded into
an environment that allows cleaning operations. However, the correctness of
the data is not fully assessed yet, and there may be errors or deficiencies that
would invalidate further analysis. Therefore, analyses performed in this stage
are often more cursory and exploratory, such as a exploratory data analysis with
visualization methods to ascertain the correctness of the data. Skipping these
checks might lead to errors or ‘wrong’ results and conclusions.

In band A (Analyze), the data is ready for deeper analysis. However, even
if there are no more factual errors in the data, the quality of an analysis or
machine learning model is greatly influenced by how the data is represented.
For instance, operations such as feature selection and normalization can greatly
increase the accuracy of machine learning models. Hence, these operations need
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to be performed before arriving at accurate and adequate machine learning mod-
els or analyses. In many cases, these operations can already be automated to a
significant degree.

In band AA (Allow Analysis), we consider the context in which the
dataset is allowed to be used. Operations in this band detect, quantify, and poten-
tially address any legal, moral or social issues with the dataset, since the conse-
quences of using illegal, immoral or biased datasets can be enormous. Hence, this
band is about verifying whether analysis can be applied without (legal) penalties
or negative social impact. One may argue that legal and moral implications are
not part of data cleaning, but rather distinct parts of the data process. However,
we argue that readiness is about learning the ins and outs of your dataset and
detecting and solving any potential problems that may occur when analyzing
and using a dataset.

Band AAA is the terminus of our framework. Getting into AAA would
mean that the dataset is clean. The data is self-contained and no further input
is needed from the people that collected or created the data.

2.2 Quality Scores

A dataset has a score between 0 and 1 for each band of our framework, so a
dataset can have score 0.9 for band C, 0.8 for band B, 0.10 for A, 0.20 for
AA and possibly 0 for band AAA. Datasets start with initial band score values
of 0 for every band, as we generally do not know (for certain) which issues
the dataset is suffering from that could potentially jeopardize machine learning
methods. The dataset is classified in band C at this stage. We then proceed to
check and solve all issues from band C. Each band deficiency that is solved or
non-existent contributes to the band score of the dataset. Partially checked or
solved deficiencies can grant partial weight scores. A dataset will move to the
next band only when it has surpassed a certain threshold score. This also means
that a dataset cannot get a band label of A or above when it has a B.60 score,
even if the dataset fulfills all band A requirements.

The threshold scores can be determined by the framework users to determine
how thoroughly the dataset has to be cleaned before it is able to proceed to
further bands. We have set the default threshold for all bands on 0.85 to allow
a dataset to advance while it’s not totally perfect, since striving for a perfect
dataset may not be achievable or cost-effective in general. The dataset might not
be entirely clean when the thresholds are less than 1, as a dataset could advance
to the next band (including band AAA) while not every issue has been checked
or fixed yet. That said, the thresholds cannot be set too low (e.g., <0.65) as
datasets wouldn’t be checked properly, which could seriously impact machine
learning methods and dataset usability, causing errors and false predictions or
estimates.

This terminology makes it easier to track and communicate the cleaning
progress to others. This is because others will be able to understand what has
to be done when a dataset is currently in band B, but might not know what to
do next when only given a list of completed cleaning methods.
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3 The Different Levels of Data Readiness

A dataset will be ready for certain operations to be performed on it depending on
its band. The bands consist of several weighted dataset deficiencies which reflect
what are currently the most important deficiencies that need to be addressed
in the current band. An overview of the bands and their deficiencies can be
found in Table 1. A description of the bands, the functionality they unlock and
their deficiencies are given below. The weights that we have given in Table 1 are
advisory weights for a generic dataset without a specific target analysis. In some
scenarios, people may decide to use a different weighting. For example, medical
applications may prioritize outlier detection, since detecting and investigating
anomalies may have greater importance compared to other fields.

Table 1. The framework bands with weights and deficiencies

3.1 Band C: Conceive

Band C, and so too the framework, starts with having access to files or databases
with the actual data. Data access has many problems of its own: datasets may
be stored in a remote system with limited access or hidden in a large corpo-
rate ecosystem where few know the exact location of the desired dataset, thus
human interaction may be required before programmatic access is possible. Hav-
ing access to the data is a prerequisite to even begin assessing its quality, hence
the dataset’s score will be 0 until access has been obtained. Such hearsay data
[13] is therefore outside the scope of our framework.
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That said, when we do have access, the data enters band C and tests have to
be performed to see if the dataset is compatible with a programming environment
or tool. Indeed, data files cannot provide value as is. Some procedures have to
be followed before even basic analysis can be done. The aim in band C is to test
for, and fix if necessary, the data deficiencies that are described below.

Parseability
There are many different file formats to store a dataset for long-term storage
and transport, such as CSV, JSON and plain text. These formats specify how
data can be loaded into a programming environment or analysis tool to perform
operations. Therefore, making sure that a dataset can be loaded without errors
receives a high weight in band C. This also includes the requirement of data
access. You may know that a dataset exists, but technical or legal barriers might
make it impossible to actually load and use the files.

Data Storage
The dataset needs to be stored in an effective and efficient manner relative to
the operations that will have to be performed on the dataset. Getting the data
in such a shape is often called data wrangling. The storage method does not have
to be optimal, so there is no set limit to the runtime of the operations set by
this paper. However, all operations of the subsequent bands must be executable.
These operations aren’t possible when the dataset isn’t able to be stored in a
way that allows these operations, thus checking how the data is stored is part of
band C.

Decoding
The data has to be recognizable as data. This means that the data formatter
should be able to use encoding styles that are known and understood by the
environment that processes the dataset. The largest problem is that there are
many different character encodings, and datasets can use any one of them. Com-
mon character encoding formats include ASCII [15], ISO 8859 and UTF-8 [18].
Luckily, automatic encoding detection has long been available [14].

Nevertheless, a system won’t be able to use and find meaning in the data
if the system is not able to distinguish or relate characters to each other. Thus
datasets containing unknown formats cannot reliably be used to perform mean-
ingful operations on. Which is why we classify any such datasets as being in
band C.

Data Formats
Datasets are not always stored cleanly in a particular format. Human or tech-
nical problems can occur which might result in writing errors during the data
collection phase. There are several different ways a data format may break. CSV
files could change their separator halfway through the file, a JSON file misplaces
a bracket or an ARFF file misses a categorical value. Mistakes happen and when
they do, the parsing of data becomes difficult and could lead to unexpected
outcomes. Therefore, a system has to check if a dataset has a consistent format
and, even though it’s not easy, should be able to fix most potential issues. This
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is different from being able to load the dataset since an incorrect format may
not raise an error, but will change the structure of the dataset.

Disjoint Datasets
Datasets can be divided up into multiple tables over several different files. Since
they essentially are just one spread out dataset, any analysis should be performed
on the entire dataset, rather than just one subset of it. Performing analysis on
partial data can invite bias, and multiple analyses on the different dataset parts
may introduce false positive errors and increase result variance.

3.2 Band B: Believe

In band B are datasets that are loaded into memory but still defective in some
ways, which means that the data cannot be trusted at this moment. The data
must be checked for trustworthiness and correctness of the data itself. After
checking for these deficiencies and rectifying them, basic analytics can be used
to explore the dataset.

Known and Correct Data Types
Columns should have the correct data type (boolean, integer, float, date, cate-
gorical, ordinal, and string). A counterexample would be that a column is labeled
as ‘integer’ while it is effectively a non-ordinal encoding of categorical values (e.g.
1 = blue, 2 = green, 3 = red) [17].

Missing Values Are Identified and Appropriately Dealt with
Missing values are encoded as a variety of characters such as “null”, “N/A”,
“na”, “?”, and “−1”. The data points or features with missing data should be
either removed or repaired (e.g. imputed) [1]. However, in some cases it does no
harm to keep the missing values as long as they are properly identified.

Redundancy
We need to assess the degree to which there are duplicate records and columns.

Typos and Inconsistent Data Entries
Imagine a column with colors which has ‘red’ but also ‘read’. These values should
be fixed or removed if the true value is unclear [9].

Meaningful Values
If possible, variables should be expressed in a unit that is most suitable for
machine learning. As a counterexample: a column with the height of people is
expressed as a combination of feet and inches and encoded as a string. This
can be useless for some machine learning models since no distance metric can
be computed. This is also the point where clearly faulty data points -such as a
name in a postcode field- should be removed [9].

3.3 Band A: Analyze

In band A are operations that further optimize and clean the data. The data is
modified such that it is in a format that is properly suited for machine learning.
Data that is not needed is filtered out to reduce overhead and increase accuracy.
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Interpretable Values
In is important that we know exactly what each feature (variable) in the data
means. Maintaining a codebook [2] with a semantic description as possibly a
unit for each feature is a good practice. For instance, if a column is named price
but has no currency attached to it, it cannot be clearly interpreted. Knowing
the right semantics also enables algorithmic transformation to a more convenient
unit if needed [9]. Moreover, this also includes mappings for categorical values
when they are encoded numerically, so that it is known what the numeric codes
represent.

Feature Scaling
In feature scaling, you transform the data such that it is within a specific range.
Some scaling methods such as normalization and standardization also change
the distribution of the data. For some machine learning models, it is beneficial
to scale the data. Neural networks, for example, are known to converge more
quickly on normalized data.

Outlier Detection
As we have cleaned obvious faulty data points in band B, we are now able to
search for naturally occurring data points that differ significantly from other
observations. Outliers must be dealt with appropriately because not every
machine learning model is robust to outliers [10].

Feature Selection
Some features may be redundant, for instance, a column may portray the same
information as the column next to it. Removing the column will decrease training
time and lower the risk of overfitting [6]. Dimensionality reduction techniques
may also be used to represent high-dimensional data in fewer dimensions that
facilitate modelling (but decrease interpretability).

Coverage Gap Detection
Data may have gaps such as spatial or temporal coverage gaps, For instance:
sensor data was collected for 2 years, but because of a defect in the measurement
equipment a part of the data is absent [9].

3.4 Band AA: Allow Analysis

We check the context in which the data is to be used in band AA. Data often
originates from real people and is used to make decisions for real people. Thus
the information of a dataset has to be placed in context to make sure that any
analysis performed on the dataset will be permissible, usable and allowed. This
is often not easily measurable, as this requires a lot of metadata from the dataset
and from the context of possible analyses and how their results may be used.
However, in most cases manual checks should be possible and should be done to
ensure a dataset is allowed to be used in the real world.

Legal Violations
Laws and regulations can prevent the allowed usage of a dataset for analysis,
even if the dataset was legally collected. This can happen when the data contains
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wrong values about the data subjects, or when the dataset is used outside the
original scope. Information stored in datasets can also be harmful to the data
subjects, even if the contents of the dataset are not leaked or stolen. That’s why
datasets that violate the GDPR [5] or other privacy regulations can result in
large fines being imposed on the company or institution that is creating or using
those datasets.

We deem these violations to be very important, both for any data processor
and for all subjects within the data. That’s why we propose to put a high weight
on checking and solving any problems relating to this topic. Note that in many
contexts, legal restrictions could inhibit anyone from even loading the data. In
that case they would fall in band C (or pre-C).

Security Risks
Data security is a must when performing analyses on sensitive data such as
personal data. Datasets containing sensitive information should be secure by
design and security systems should already exist at the data collection stage.
Consequently, the data should already be secure when entering the data clean-
ing phase. However, when this is not the case, the data cleaning phase should
prioritize the security of the data and transform and/or protect the data in such
a way that any insecurities are prevented, either by encrypting the data or by
securing the network the data is stored in. This also includes technical security
procedures to work with the data [4].

A dataset is often secure because of the security systems around the dataset
(e.g. firewalls), not because of the dataset itself. But it is essential that a dataset
is protected, that’s why we assigned such a high weight for checking the security
of a dataset.

Bias Detection
Bias can occur when the data collection samples neglect a portion of the entire
population or when it over-samples on a specific portion. Analysis performed
on datasets often separates the instances of the dataset into several groups to
generalize them and suggest different actions for the different groups. This can
become unethical (and illegal) when the groups are created based on discrimina-
tory attributes (either directly or indirectly due to data collection bias). This is
especially unethical when the results of the main analysis are used in decision-
based applications, since such applications can and will discriminate. Therefore,
datasets should be checked before any analysis, and any resulting models should
only make predictions on cases that are sufficiently covered by their training
data.

Techniques and frameworks exist to detect and eliminate dataset bias dur-
ing training, and these should be an integral part of the cleaning process [8].
However, it is hard to eliminate unknown biases during the cleaning process.

3.5 Band AAA: A Clean Dataset

If a dataset has passed all bands, then it is considered as properly cleaned based
on how the thresholds and weights were chosen. As mentioned before, dataset
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can advance to the next band while not every single issue has been completely
solved. Thus a dataset might not be perfectly clean when in band AAA, but it
is clean enough such that we can use it in most applications.

Band AAA does not contain any issues and doesn’t add any functionality. It
is rather an indicator that a dataset has completed the cleaning process and is
ready to be effectively used in the determined main analysis.

4 Deployment

As mentioned in the introduction, this framework is used as the theoretical
foundation of the practical tool PyWash [3]. PyWash is a python package that
combines the described framework with a set of (semi)automatic data clean-
ing and preprocessing methods. The package will analyze datasets, assign band
scores, and guide the user to the appropriate tools to import, clean, and export
the dataset.

In addition, we built a user interface on top of the python package in the
form of a web application to guide the user through the cleaning process. The

Fig. 1. The PyWash web interface.

http://www.github.com/pywash/pywash
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interface, shown in Fig. 1, groups the operations for each band into separate
color-coded tabs. Loading datasets happens in the tab called ‘Band C’, which
will initially be the only band that is accessible. Band C includes interactions
(e.g. forms) to import datasets and merged them together if applicable. Once a
dataset is successfully parsed, it will receive a tab at the top of the screen with
its name and the other bands will be unlocked. The interface supports multiple
datasets being loaded at the same time, with every loaded dataset in a unique
tab. When a dataset is selected, a description is shown which includes the data
quality score. Below this description, there is a row of buttons which are used
to switch between the bands from the framework. Selecting different bands will
show the various operations available to fix or investigate the deficiencies that
are part of that band. Band B is selected in Fig. 1. Data types are automatically
inferred and shown to the user, who can leave them as is, or correct them through
a dropdown menu. In the missing value section, an indicator shows whether
missing values are detected. Users can also check the data in the shown table
add extra characters that indicate a missing value. Missing values can optionally
be imputed or removed. At the moment, the user still has to choose between one
of four techniques (based on whether the data is missing at random or not), but
we hope to automate this further in future work.

Underneath the operations from the selected band, a data table is shown
so that the effect of the operations is immediately visible. This table supports

Fig. 2. Visualization of outliers in PyWash, color-coded by anomaly score.
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row/column deletion, filtering, sorting, and editing. The exporting options will
store return the data ‘as is’, thus including any modifications made in the table
(filtering, sorting, etc.). In future work, we also plan to export a log of all cleaning
operations with the data export.

The rightmost tab contains a visualization section to help the user with deci-
sion making and perform instant exploratory analysis. Figure 2 is an example of a
parallel coordinates graph color-coded by an anomaly score computed by an Iso-
lation Forest in band A. The outlier detection adds the columns ‘anomaly score’
to the plot and a ‘prediction’ column to the table indicating which rows are
predicted to be outliers. The first row is marked as an outlier and highlighted.
Since these columns are added as part of the dataset, we can export them for
further analysis with other tools and visualizations.

Our data quality framework, the PyWash package, and the web interface are
all open source and we warmly welcome and encourage anyone to help fine-tune
the framework and improve the libraries and interfaces.

5 Discussion

The goal of this paper is to streamline the data cleaning process by creating
a vocabulary and a framework for automatic data cleaning, such that the data
cleaning process becomes an explicit, accountable, reported process. This will
help in communicating and describing the quality of your data to others and
acting on it adequately.

Although there are many challenges still to be resolved, we hope that this
work contributes to more standardized and automated cleaning processes. Most
of the deficiencies in band C can already be automated to a large extend. Auto-
mated decoding, parsing and storing of datasets can be done reliably, while data
formats and disjoint datasets can be detected when enough data is available.
Band B can also be automated to some degree since data types, missing values,
and duplicated records can be detected and issues can be (partially) resolved, as
long as the user specifies how to solve it.

Unfortunately, not all deficiencies can be automatically detected and fixed.
In some cases, domain expertise and common sense reasoning are essential. Bias
detection tools do exist, but most band AA deficiencies will have to be checked by
humans since detecting the context of a dataset is often impossible or unreliable.
Therefore, we have taken a human-in-the-loop approach that provides as much
guidance and automation as possible, yet leaves many decisions at the discretion
of the user.

From a usage perspective, an open challenge is that we have no objective
method to determine the weights and thresholds of each band. We have supplied
default values, but these will not suffice for everyone since not every dataset and
analysis has to meet the same requirements. Also, the framework does not yet
encompass every aspect of data preprocessing. For instance, feature construction
would be a valuable addition to band A, but much more work is needed to codify
it and guide the user in applying it.
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However, we do already provide an extensible software framework in which
new techniques that automate data cleaning and preprocessing can be imple-
mented and made easily available to anyone. As such, we hope that it will become
a test bed for automated data science research in general.

Acknowledgements. The authors would like to thank Neil D. Lawrence for con-
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Valencian Research Institute for Artificial Intelligence (vrAIn),
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Abstract. Programming languages such as R or Python are common-
place in data science projects. However, transforming data is usually
tricky and the composition of the right primitives (using the appropri-
ate libraries) to get the most elegant code transformation is not always
easy. In this paper, we present the first system that is able to automat-
ically synthesise program snippets in R given an input data matrix and
an output matrix, partially filled by the user representing the required
transformation. We use the type information given by the dimensions
of the matrix primitives (and other constraints) to reduce the combina-
torial explosion of primitive compositions. We test the performance of
our approach with a set of artificial data and real examples from Stack
Overflow questions.

Keywords: Data science automation · Matrix transformation ·
Inductive programming · R programming language

1 Introduction

Many data scientists use programming languages, such as R or Python, that
allow them to manipulate data for analysis. Programming requires multiple skills
and the learning process of these languages can be long and frustrating for those
people without programming knowledge [8].

Matrices (or data frames) are a very common way of working with data1.
Matrix algebra can be applied to transform the data or extract a variety of
useful information. However, it is quite common that a data scientist knows
what kind of transformation she wants to do with a matrix, by just applying it
by hand to a few cells of the input and the output matrices, but struggles to find
a simple combination (or just a working combination) of operators that produces

1 https://medium.com/@rathi.ankit/linear-algebra-for-data-science-a9648b9daee0.
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the desired matrix transformation. On other occasions, the data scientist sees
an example of the transformation and would like to write a concise piece of code
copying that transformation to apply to her own data. Finally, it is also quite
common that the data scientist has some code in the same or different language
(e.g., using loops) that she wants to transform into a more elegant algebraic
matrix transformation.

For instance, consider a data matrix as shown in Fig. 1a and a data scientist
who wants to extract the positions of the non-empty values. The data scientist
has an idea of what she wants as a result of the transformation (represented in
Fig. 1b), but she does not find the right combination or function to do this.

NA 0.30 0.50 NA NA NA NA
NA NA NA 0.90 NA NA 0.40
NA NA NA NA NA NA NA
NA NA NA NA 0.60 NA NA
NA NA NA NA NA NA NA

(a) Matrix A with empty values.

1 2
1 3
2 4
4 5
2 7

(b) Position (row, column) of non-empty
values of A.

Fig. 1. Example of data transformation using matrices. Can you code it?

A data scientist will try with a loop (or a nested loop) or will check Stack
Overflow, or will struggle to find a single function that makes the transforma-
tion. In the end, she can get the right code for this transformation, but what
if the process could be automated with a system that by taking Fig. 1a and b
as inputs, could generate an elegant code snippet such as which(!is.na(A),
arr.ind=TRUE)? Note that in this example there is no similarity whatsoever
between input and output. The input is full of real numbers and NAs, and the
output only has integer numbers, none of them in common with the input. Also,
the dimension of the input matrix is 5 × 7, while the output matrix has dimen-
sion 5 × 2, where the same number of rows is just a coincidence. Is this problem
solvable at all? And what if we only give some of the rows (or even a few cells)
of the solution?

In this paper, we present a system that is able to induce R programs from:
(1) an input data matrix and (2) a partial output matrix filled by the user
representing the desired transformation. The system is able to automatically
find the operation or set of operations that can be applied to the input to obtain
the complete output. Because of the combinatorics of primitives and operations
for generating possible transformations, we need to use the characteristics of
the input and output matrices, and the primitives themselves, in the form of
constraints (dimensions, non-zero values, etc.) in order to reduce the search
space. Our system checks that the sequence of compositions is consistent with
the dimensions, and completes the output matrix, automatically producing the
R code, ready to be inserted in the data science pipeline.
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The following section contains an overview of relevant work in programming
by example and related areas, and how much this has impacted on languages for
data science and the automation of data science in general. Section 3 defines the
new problem that we address in this paper, and Sect. 4 presents an enumeration
algorithm that is constrained by the matrix dimensions. Section 5 presents some
experiments with artificial and real data. Finally, Sect. 6 closes the paper with
the applicability of the system and the future work.

2 Related Work

Programming by example (PbE) is a kind of program synthesis or inductive pro-
gramming [5] in which the system automatically produces programs that match
the examples that are provided by a user. Generally, in order to make many
PbE applications effective, only a few examples should be sufficient to induce
the right solution even when the examples are incomplete. Data transformation
using string manipulation domain-specific languages is one of the applications
where PbE has been shown very successful (see [1,2,4,7,14,18]): the training
data is generated by the user, and we only need a small number of examples.
In [6] the authors present a tool for automating the generation of scripts for
file manipulation based on string transformations. One of the most recent appli-
cations is live programming by example. In this approach and usually via a
graphical user interface, programmers receive real-time feedback when writing
code. The goal is to use live programming to provide a new way for novice
programmers to interact and understand programming, as well as a useful tool
for more advanced programmers to develop. In [16] a plug-in for Javascript live
coding is presented. The authors use CVC4’s Syntax-guided synthesis (SyGuS)
algorithm [15].

Most of these systems are focused on string transformations. TaCLe [13] on
the other hand, is a system able to reconstruct the formulae used in a data
spreadsheet based on a comma-separated file by using the number of cells and
constraints to check. However, a tool that is more focused on automatic code
generation for data science problems has not been developed yet, covering the
different data structures that are common in data science projects and languages,
such as matrices, vectors or lists. Two of the most used languages for data science
are R2 and Python3 [17]. The automation of small but convoluted snippets in
these languages could represent an important reduction of the time needed in
many data science projects. In this paper we use program synthesis techniques
to automatically generate matrix transformation snippets in R, which can be
re-used for data preprocessing and postprocessing.

3 Problem Definition

In our approach we assume that there is a set of operations that the user knows
and can apply manually to a matrix A in order to obtain a result S. However, the
2 https://www.r-project.org/.
3 https://www.python.org/.

https://www.r-project.org/
https://www.python.org/
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operations should be coded in some specific language (in our case, R) and the
human needs some assistance to generate the code automatically from a single
example. This is the setting that serves as problem formulation:

1. There is an input matrix A, a finite real matrix of size m × n (m,n > 0).
2. There is also a partially filled matrix B, a finite real matrix of size m′ × n′

(m′, n′ > 0) where only some elements are filled and the rest are empty
(represented by ‘·’).

3. We look for a function f̂ such that f̂(A) = S, where S is a finite real matrix
of size m′ × n′, such that for every non-empty bij ∈ B there is sij ∈ S such
that bij = sij .

4. The function f̂ is expressed as a composition of matrix operations in a given
programming language.

As additional criteria we will consider that the representation of f̂ in the pro-
gramming language should be as short as possible, and we will also allow for
some precision error ε (so that we relax item 3 above with |bij − sij | ≤ ε, instead
of bij = sij). We use the notation f̂(A) |=ε B to represent this, and say that it
covers B.

As a basic example, consider the following matrices A and B:

A =

⎡
⎣

1 3 5
4 2 6
3 8 7

⎤
⎦

B =
[
8 13 ·]

where A is the input matrix and B the partially-filled output. We try to find
f̂(A) |=ε B. In this case the function colsum in R, which adds the values
columnwise, gives the following matrix S that covers B.

S =
[
8 13 18

]

Note that we look for a system that: (1) works with an input matrix and a
partially-filled output matrix, and nothing more, (2) automatically synthesise
the composition of primitives in the base programming language that solves the
above problem, and (3) export both the complete transformed matrix and the
code in R.

As far as we know from the related work seen in the previous section, no
other approach is able to solve this problem. This is what we try to do next.

4 Method

The nature of the main criterion used for finding f̂ , namely the minimisation
of the number of primitives involved in the solution, suggests that the problem
can be addressed with an enumeration approach. Enumeration is a common
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approach in other inductive programming scenarios [9–12] but it must always be
coupled with some constraints (e.g., types, schemas, etc.) or strong heuristics.
In our case, we will use the dimensions of the matrices as the main constraint
for reducing the combinatorial explosion.

The number of primitives taken into account for the search is known as the
breadth (b) of the problem, while the minimum number of such primitives that
have to be combined in one solution is known as depth (d). Clearly, both depth
and breadth highly influence the hardness of the problem, in a way that is usually
exponential, O(bd) [3] affecting the time and resources needed to find the right
solution. As said above, for each matrix primitive g we take into account the size
of the input and output at any point of the composition, and also some other
constraints about minimum size (for instance, calculating correlations requires
at least two rows, i.e., m > 1).

More formally, for each primitive g we define a tuple 〈mmin, nmin, γ〉 where
mmin and nmin are the minimum number of rows and columns (respectively)
for the input (by default mmin = 1 and nmin = 1), and γ : R2 → R

2 is a type
function, which maps the dimensions of the input matrix to the dimensions of
the output matrix. For instance, for g = colSums, γ(m,n) = (1, n), because g
takes a matrix of size m × n and returns a matrix of size 1 × n. Here, mmin = 1
and nmin = 1. Similarly, for g = cor, γ(m,n) = (n, n), because g takes a matrix
of size m × n and returns a matrix of size n × n. Here, mmin = 2 and nmin = 1,
as we need at least two rows to calculate a correlation.

The whole procedure works as follows (see Algorithm 1):

1. The system can be configured to use a set of primitive functions (G), including
for each of them: the minimum values for the size of the input (mmin, nmin)
and the type function γ.

2. For each particular problem to solve, we take the input matrix A and the
partially filled matrix B.

3. Being dmax the maximum number of operations that can be composed for
the transformation, we run the algorithm from d = 1 to d = dmax building
on each iteration all the possible combinations Cd of the form {g1, . . . , gd}
where each gi is a function in G.

4. For each combination {g1, . . . , gd} in Cd, we take the size of A and we verify if
g1(A) is feasible by its constraints and, in that case, we calculate the output
size after g1 (using its type function γ1) so producing the input size for the
next function g2 in the combination, and so on for all the primitives. Only if we
reach the final gd and the dimensions of the output matches the dimensions of
B, then we really apply the combination {g1, . . . , gd} to A and check whether
the result covers S, as defined in the previous section. In the positive case,
we build f̂ as the composition of {g1, . . . , gd} and we stop.

5. We repeat this procedure increasing d in each iteration and until d = dmax

(or the first f̂ is found).

As mentioned in the problem formulation we allow for some small precision error
ε between the cells in S (generated by f̂) and the cells that are present in B

(and are generated by f̂).
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Algorithm 1
Selecting matrix operations by example
Require: {A[m × n] (Input matrix)}
Require: {B[m′ × n′] (Output matrix partially filled)}
Require: {BK (Dataset of matrix functions including in each row the tuple 〈g, mmin, nmin, γ〉)}
Require: {dmax (Max functions in each solution)}
Ensure: Find a matrix S ≈ B

d ← 1
found ← False
while !found and d � dmax do

C ← permutation(BK, d) {All possible combinations of d functions in BK}
for all c ∈ C do

for i ← 1, d do
valid ← True
〈g, mmin, nmin, γ〉 ← c[i] {We extract the primitive and its corresponding type function}
if i = 1 then

minput ← m
ninput ← n

else
minput ← moutput

ninput ← noutput

end if
if minput < mmin or ninput < nmin then

valid ← False
break

end if
〈moutput, noutput〉 ← γ(minput, ninput) {Apply the type function γ to minput, ninput}

end for
if valid and moutput = m′ and noutput = n′ then

S ← apply(c, A) {Executes all the functions included in c over the matrix A}
if S ≈ B then

found ← True
break

end if
end if

end for
d ← d + 1

end while
return c, S

5 Experiments

We have implemented our system for R, a language and environment for sta-
tistical computing and graphics. R operates on named data structures (vectors,
matrices, data frames, etc.). In our case, we work with those functions such that
input and output are data-related structures (matrices, vectors, etc.). We also
take as functions some characteristics that we can extract from the structures
(number of rows, number of columns, element on the i position, etc.).

More specifically, we take 45 R functions related to matrices from the base4

and stats5 packages included on R, such as colMeans(A), which computes the

4 https://stat.ethz.ch/R-manual/R-devel/library/base/html/00Index.html.
5 https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html.

https://stat.ethz.ch/R-manual/R-devel/library/base/html/00Index.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html
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Table 1. Example of functions included in the BK.

Function mmin nmin Description

rowSums(A) Form row sums for numeric values

colSums(A) Form column sums for numeric values

nrow(A) Return the number of rows present in A

ncol(A) Return the number of columns present in A

cor(A) 2 Compute the correlation of A

det(A) Calculates the determinant of A

is.na(A) Indicates which elements of Á are missing

!is.na(A) Indicates which elements of Á are not missing

which(A) Give the TRUE indices of a logical object

apply(A,1,rev) Provides a reversed version of A

mean of the columns, or cor(A), which generates the correlation matrix of A.
Table 1 shows some of the functions included.

Note that in this preliminary version of the system some functions used (for
instance: !, apply...) and some arguments (for instance: 1...) are already added
to the functions lists manually for testing. This will be generated dynamically
on execution time in future versions.

In order to evaluate the algorithm, we first generate problems and sets of
synthetic matrices A for those problems. Next, we test the system with real
problems published on Stack Overflow6.

For replicability and encouraging future research, all the matrices used
and the code (also in R) are published on: https://github.com/liconoc/
ProgramSynthesis-Matrix.

5.1 Results with Artificial Data

We first have tested the system with synthetic data. For this, we have generated
10 random real matrices of different dimensions m × n where m,n ∈ (2, 10).
These matrices are filled with numeric values following a uniform distribution
between 0 and 100. For each matrix A we have derived 50 random matrices S,
generated by combining d random operations to make the true transformation
f , where d = 1..5 (10 matrices for each d). From every matrix S we generate
a matrix B where we replace between 60%..80% of the cells by empty values.
In total we have 500 pairs of matrices A,B to test the algorithm with different
numbers of operations.

Table 2 shows the accuracy results (percentage of cases where the correct
transformation is found). For each value of d (number of operations applied) we
can see the correct results, with an overall 95.2% of accuracy.
6 https://stackoverflow.com/.

https://github.com/liconoc/ProgramSynthesis-Matrix
https://github.com/liconoc/ProgramSynthesis-Matrix
https://stackoverflow.com/
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5.2 Results with Real Examples

To test our system with real problems, we have used questions and answers from
Stack Overflow that are tagged with the r tag and contain matrix transforma-
tions. For this, we have used the dataset “R Questions from Stack Overflow”
from Kaggle7, filtering the questions by the title.

Table 2. Number of correct results for matrix transformations using program synthesis
with R. d is the number of functions applied to the matrix A.

d Correct

1 96

2 98

3 94

4 95

5 93

Acc. 95.2%

For instance, one simple question asks to “replace 0’s with 1’s and vice versa
for a diagonal matrix in R”. In Fig. 2a and b we can see the original matrix A
and the partially filled matrix B used to infer the operation needed to obtain
the matrix in Fig. 2c, the expected solution to the problem. The system is able
to solve this problem with d = 1: f̂ = 1− A.

1.00 0.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00 0.00
0.00 0.00 1.00 0.00 0.00
0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 1.00

(a) Matrix A.

0.00 1.00 1.00 1.00 1.00
· · · · ·
· · · · ·
· · · · ·
· · · · ·
· · · · ·
(b) Matrix B.

0.00 1.00 1.00 1.00 1.00
1.00 0.00 1.00 1.00 1.00
1.00 1.00 0.00 1.00 1.00
1.00 1.00 1.00 0.00 1.00
1.00 1.00 1.00 1.00 0.00

(c) Matrix S.

Fig. 2. Matrices A, B and S from the first example of Stack Overflow. In matrix S the
0s have been replaced by 1 and the other way round. For matrix B only the first row
is provided.

Our system can also deal with operations related to non-numeric matrices
and vectors. For example, another question asks about the “positions of non-
NA cells”, where one matrix filled with characters can be used as input (see
Fig. 3a) and the result is a vector of positions for those values that are not NA.
With just two filled values, the system is able to solve the problem with d = 2:
f̂ = which(!is.na(A)).
7 https://www.kaggle.com/stackoverflow/rquestions.

https://www.kaggle.com/stackoverflow/rquestions
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a b NA c NA
d e f g h

(a) Matrix A.

1 2 · · · · · ·
(b) Matrix B.

1 2 3 4 6 7 8 10

(c) Matrix S.

Fig. 3. Matrices A,B and S from the example “positions of non-NA cells” from Stack
Overflow. Values of matrix A are characters or NA. Matrix S is a vector of positions.
In matrix B only two values are provided.

A more difficult question asks to “Extract sub-diagonal”. Figure 4a shows
the A matrix for this example, where S is again a vector of values S = [2, 6],
and B only provides a value. In this case, the system produces the function f̂ =
diag(A[-1,-ncol(A)]).

1 4 7
2 5 8
3 6 9

(a) Matrix A.

2 ·
(b) Matrix B.

2 6

(c) Matrix S.

Fig. 4. Matrices A, B and S from the third example “Extract sub-diagonal” from Stack
Overflow. Matrix S is a vector with the values of the sub-diagonal of A. In matrix B
only one value is provided.

Some examples, however, are not correct. This is because in some cases the
cells that are generated are compatible with B but not entirely with S. In these
cases more cells filled in B would be needed in order to generate the correct
solution.

In total we have tested 15 examples from the dataset and 13 give the correct
matrix (see Table 3).

Table 3. Number of correct results for matrix transformations for the examples of
Stack Overflow. d is the number of functions applied to the matrix A.

d Correct

1 6

2 5

3 2

Acc. 86.67%

6 Conclusions and Future Work

The process of generating code automatically can help data scientists when deal-
ing with matrices (or data frames), the most common representation of infor-
mation in data science projects. When the data scientist is a non-expert in
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programming (or is obfuscated by some complex transformations), she can now
have the resource of producing an example of the input matrix and a few cells
of the output matrix, and the system will generate the code for her. This can
be used when coding a transformation from scratch, when trying to imitate a
transformation seen on a website or a report (or in a different language) or when
optimising code (e.g., the data scientist finds a solution using a loop but wonders
if there is a more elegant solution in an algebraic form).

In this paper we have presented a new system that is able to generate code
in R according to this novel scenario. The system is based on an enumeration
approach guided by the number of primitives and pruned by the consistency of
the types given by the dimensions of the matrices and the intermediate results.

We have tested our preliminary approach with a synthetic set of 500 matrices
and 45 different transformations in R. The results show that the system is able to
give the correct result in 95.2% of the cases. We have also tried the system with
real examples of problems published on Stack Overflow. In this case, the system
achieves 86.7% accuracy. Note that the system could be used interactively, and
with some more values, some of these examples could be solved by the system
as it is.

As future work we plan to add new characteristics (constraints) over the
types (e.g., m = n as input), or over the values (positive values only). We would
like to include more primitives from several other packages from R and new data
structures apart from matrices. We can also explore more efficient algorithms
in such a way we can add constants (arguments for the functions) or multiple
pairs of input-output matrices. Of course, the approach can be replicated to
synthesise functions from other languages such as Python. Finally, we plan to
create a visual interface or an R package to test the system with real users.
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Abstract. Machine learning is taking an increasingly relevant role in
science, business, entertainment, and other fields. However, the most
advanced techniques are still in the hands of well-educated and -funded
experts only. To help to democratize machine learning, we propose Deep-
Notebooks as a novel way to empower a broad spectrum of users, which
are not machine learning experts, but might have some basic program-
ming skills and are interested data science. Within the DeepNotebook
framework, users feed a cleaned tabular datasets to the system. The
system then automatically estimates a deep but tractable probabilistic
model and compiles an interactive Python notebook out of it that already
contains a preliminary yet comprehensive analysis of the dataset at hand.
If the users want to change the parameters of the interactive report or
make different queries to the underlying model, they can quickly do that
within the DeepNotebook. This flexibility allows the users to interact
with the framework in a feedback loop—they can discover patterns and
dig deeper into the data using targeted questions, even if they are not
experts in machine learning.

1 Introduction

Data science has enjoyed considerable successes in recent years, both in creat-
ing more powerful models and broadening the range of potential applications.
However, behind all these exceptional success stories, there are troves of human
experts, including machine learning and domain experts, statisticians, and com-
puter scientists, among others. These experts focus on different aspects aspect
of the data analysis pipeline, from data acquisition and feature engineering to
modeling selection, training, and evaluation. As the complexity of each of these
tasks increases, even experts can lose track of all the details and nuances of each
part of the pipeline. As for non-experts, they might not be aware of best prac-
tices nor have a chance to keep track of the rapidly evolving state-of-the-art.

c© Springer Nature Switzerland AG 2020
P. Cellier and K. Driessens (Eds.): ECML PKDD 2019 Workshops, CCIS 1167, pp. 28–43, 2020.
https://doi.org/10.1007/978-3-030-43823-4_3
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These difficulties have given rise to a new area of research focused on building
off-the-shelf machine learning methods that can easily be used by non-experts –
automatic machine learning (AutoML).

Indeed, several different approaches to AutoML do already exist, ranging
from automatic building blocks for feature engineering [1–3] and model learning
[4,5], to automatic reporting as in the Automatic Statistician [6–8] and interac-
tive machine learning notebooks1. There is also work on interpreting the compu-
tations of modern machine learning models [9–11] as this is of crucial importance
to non-experts. However, to the best of our knowledge, there is no framework
yet that incorporates modeling, learning, reporting, explainability and interac-
tivity at the same time. The question whether such an exploratory automatic
statistician, which is not limited to only investigating a single target variable, is
possible, was the seed that grew into the present paper.

Specifically, triggered by the recent successes of deep and tractable proba-
bilistic models, we introduce DeepNotebooks2—an interactive system that auto-
matically constructs data reports in the form of Python notebooks using mixed
sum-product networks (MSPNs) [12,13]. Similar approaches for modelling het-
erogeneous data have been explored before [14], leading to the BayesDB system
for exploring databases [15]. Instead of exploring a method for approximate
inference in databases, DeepNotebooks are built on models for tractable, exact
inference for single table data. In addition, they are not only a framework for
user interaction with data, but also reporting tool, which performs a preliminary
array of common statistical tests. Python notebooks provide an interactive com-
putational environment, in which you can combine code execution, rich text,
mathematics, plots, and rich media. A DeepNotebook is therefore not just a
data report as it allows non-experts to interactively answer complex queries
using tractable inference within the underlying MSPN.

We proceed as follows: We start off by briefly reviewing MSPNs. We then
introduce DeepNotebooks. Before concluding, we illustrate them on several
datasets, including one on myocardial infarction diagnosis.

2 Automatic Statisticians via Deep Probabilistic Models

The vision of an automatic statistician [6–8] is to build statistical models with
minimal input from experts in statistics and machine learning. Probabilistic
graphical models (PGMs) [16] are arguably a promising tool for realizing this
vision. They can solve many ML tasks by estimating a distribution and then
answering probabilistic queries. Consider, e.g. predictive modeling. One may
train a PGM and use inference to obtain probabilistic answers to queries; for
multi-class classification answering the query arg maxc P (Class = c|data) gives
us the most likely class according to our model. Alternatively, we can ask which is
1 www.h2o.ai/h2o-old/h2o-flow/.
2 Code available at https://github.com/cvoelcker/DeepNotebooks, an example of

a generated DeepNotebooks at https://cvoelcker.github.io/DeepNotebooks/demo/
deepnotebook.html.

www.h2o.ai/h2o-old/h2o-flow/
https://github.com/cvoelcker/DeepNotebooks
https://cvoelcker.github.io/DeepNotebooks/demo/deepnotebook.html
https://cvoelcker.github.io/DeepNotebooks/demo/deepnotebook.html
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Fig. 1. An example of a valid SPN. Here, x1, x2 and x3 are random variables modelled
by histograms. The structure represents the joint distribution P (x1, x2, x3).

the most likely value of any feature: arg maxx P (X = x|evidence). Unfortunately,
inference in unrestricted PGMs is intractable.

2.1 Deep and Tractable Probabilistic Models

Motivated by the importance of efficient inference for large-scale applications, a
substantial amount of work has been devoted to learning probabilistic models for
which inference is guaranteed to be tractable. Examples of these model classes
include sum-product networks (SPNs) [17] and in particular mixed sum-product
networks (MSPNs) [12], hinge-loss Markov random fields [18], and tractable
higher-order potentials [19]. In this work, we have focused on SPNs.

Being instances of Arithmetic Circuits (ACs) [20], SPNs are a deep archi-
tecture that can represent high-treewidth models [21] and facilitate fast, exact
inference for a range of queries in time linear in the network size [17]. They
inherit universal approximation properties from mixture models – a mixture
model is simply a “shallow” SPN with a single sum node. Consequently, SPNs
can represent any prediction function, very much like deep neural networks.
However, having exact probabilistic inference at hand offers an advantage not
present in other PGMs and deep neural networks. One can compare the probabil-
ities computed by different models and not only solve classification or regression
problems, but also do anomaly detection at the same time while taking into
account the statistical nature of the data. Also, instead of e.g. classical deep
neural networks, SPNs are not only trained to predict the probability of a single
target variable. This makes them especially useful in a data exploration context,
where the true target of the investigation might not be known prior. Further-
more, any measures based on probabilities such as entropy, mutual information,
and information gain can be computed efficiently. In the present paper, we will
also show this for Shapley values [10].

2.2 Mixed Sum-Product Networks (MSPNs)

DeepNotebooks resort to MSPNs, as they are currently the only model able to
build an SPN structure in a likelihood-agnostic way – using piecewise polyno-
mials to encode the leaf distributions – therefore being suitable for our hetero-
geneous setting. MSPN learning is also able to deal with missing or unknown
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values out of the box, by implicit marginalization over the missing features. This
makes them applicable in contexts where common imputation methods might
not be able to easily fill in a lot of the data.

Representation of MSPNs: Formally, an MSPN is a rooted directed acyclic
graph, comprising sum, product, and leaf nodes as seen in Fig. 1. The scope of an
MSPN is the set of random variables appearing on the network. More precisely,
an MSPN can be defined recursively as follows:

1. a tractable univariate distribution is an MSPN.
2. a product of MSPNs defined over different scopes is an MSPN, and
3. a convex combination of MSPNs over the same scope is an MSPN.

Here, a product node encodes a factorization over independent distributions
defined over different random variables, while a sum node stands for a mixture of
distributions defined over the same variables. From this definition, it follows that
the joint distribution modeled by an MSPN is a valid probability distribution,
i.e. each complete and partial evidence inference query produces a consistent
probability value [17,22]. This also implies that we can construct multivariate
distributions from simpler univariate ones. To build the structure in a likelihood-
agnostic way, we make a piecewise approximation to the leaf distributions. In
their purest form, piecewise constant functions are often adopted in the form of
histograms or staircase functions. More expressive approximations are comprised
of mixtures of truncated polynomials and exponentials.

Tractable Inference in MSPNs. To answer probabilistic queries in an MSPN,
we evaluate the nodes starting at the leaves. Given some evidence, the probabil-
ity output of querying leaf distributions is propagated bottom up. For product
nodes, the values of the child nodes are multiplied and propagated to their par-
ents. For sum nodes, instead, we sum the weighted values of the child nodes.
The value at the root indicates the probability of the asked query.

To compute marginals, i.e., the probability of partial configurations, we set
the probability at the leaves for those variables to 1 and then proceed as before.
All these operations traverse the tree at most twice and therefore can be achieved
in linear time w.r.t. the size of the MSPN.

Learning MSPNs. Existing SPN learning works focus on learning the SPN
parameters given a structure [23–25] or jointly learn both the structure and
the parameters [26–28]. A particular prominent approach is LearnSPN [29,30],
which recursively partitions a data matrix using hierarchical co-clustering. In
particular, LearnSPN alternates between partitioning features into independent
groups, inducing a product node, and clustering the data instances, inducing a
sum node. As the base step, univariate likelihood models for single features are
induced. To learn MSPNs, the LearnSPN algorithm is adapted to deal with the
lack of parametric forms by performing a partitioning over mixed continuous
and discrete data by exploiting a randomized approximation of the Hirschfeld-
Gebelein-Rényi Maximum Correlation Coefficient (RDC) [31]. Thus, MSPNs
maintain their expressiveness while representing a wide range of statistical data
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Fig. 2. Illustration of DeepNotebooks. A user feeds data into the system, and an MSPN
is trained. The MSPN along with analysis information computed from the MSPN are
then embedded into a Jupyter Python notebook, producing an interactive data report
that uses the MSPN as “virtual statistical machine”.

types, which can even be estimated automatically from data [13], resulting in an
automatic exploratory density estimation approach.

3 DeepNotebooks – Constructing Data Reports
in the Form of Python Notebooks Based on MSPNs

Generally, the idea behind DeepNotebooks can be defined as follows: A Deep-
Noteboook for a dataset D is a Jupyter notebook [32] with an embedded (deep)
probabilistic model encoding the distribution of D. The model is used used to
precompute the cells of the notebook describing the dataset D.

The workflow of DeepNotebooks is depicted in Fig. 2: A user loads a dataset
into the system, which automatically creates a probabilistic model that encodes
the distribution of the data, in our case an MSPN. Using the MSPN, the sys-
tem proceeds without user interaction and performs statistical analysis based on
the model. Both the model and the analysis are then stored in a Jupyter note-
book, the DeepNotebook. The user then opens the DeepNotebook where they
can see the automatically generated report, as well as interact with the model.
Changing the parameters of the reports is easy, as well as doing further analysis
or even evaluating other datasets with the given model. All those options and
more are available to the user from within the DeepNotebook. Each generated
DeepNotebook contains three major sections, cf. Fig. 2:

Section 1: a general report on descriptive statistics and feature marginals,
Section 2: an analysis of the clusters encoded by the SPN structure
Section 3: report of the impact of features on conditional probabilities,
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Fig. 3. Textual introduction to the DeepNotebook automatically written for Iris.

which are wrapped into natural text produced by templates and by a prob-
abilistic grammar making the report more user-friendly, cf. Fig. 3. Normally,
the notebook reports the top 5 results (variables with the highest correlation,
variables with the most impact on a prediction), but the user can also provide
thresholds for reporting or specify which variables they are specifically interested
in. We will now describe each section of a DeepNotebook in more detail.

DeepNotebook Section 1 - General Report. The general report provides a
description of the data at hand. It includes descriptive statistics like correlations,
dependencies, and mutual information among the random variables. Since the
network represents the full joint probability density function of all variables, it
allows efficient computation of these common statistical measures. Each calcula-
tion only requires one full bottom-up evaluation of the MSPN. The expectations
of each variable can be computed by propagating expectations from the leaves
to the root and treating each sum node as a weighted sum of expectations. The
variable correlations can be computed similarly by recursively evaluating the
covariance of the variables at each node. Covariance and correlation are only
defined for ordered attributes in the data. Therefore, these measures cannot be
computed for all variable combinations when the dataset contains categorical
features. For the coupling between a categorical and a continuous variable, the
notebook reports the coefficient of variation. For categorical variables without
an ordering, normalized mutual information (MI) is reported.

Due to the efficient inference, it is possible to present partial dependency
plots [33] for categorical and continuous variables. By default, a DeepNotebook
selects all those features, which show a linkage (either due to covariance or
MI) above a certain threshold. This can be adapted dynamically by the users
according to their specific needs. Similar to the other sections, the notebook
also contains a written explanation of the visualization, constructed from the
probabilistic grammar shown in Fig. 4.

DeepNotebook Section 2 - Cluster Analysis. The MSPN structure contains
an implicit hierarchical clustering due to the sum nodes. A DeepNotebook uses
this to explain sub-clusters of the data and to provide descriptions for them.
Furthermore, the distribution of variance for each variable between the clusters
is calculated and presented. This allows users to understand the different parts of
the underlying model better. Intuitively, if a particular cluster explains a large
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<start> ::= <fullClause> | ... omitted for brevity

<fullClause> ::= <subject_feature> <object_dependency> |

<subject_dependency> <object_feature>↪→
<subject_dependency> ::= There is a {strength} {neg_pos} <dependency> | The model

shows a {strength} {direction} <dependency>↪→
<object_feature> ::= <conjunctionFor> <features?> "{x}" and "{y}"

<subject_feature> ::= <features?> "{x}" and "{y}" have

<object_dependency> ::= a {strength} {neg_pos} <dependency>

<conjunctionFor> ::= between | for

<dependency> ::= <linear?> dependency | <linear?> relation | <linear?>

relationship↪→
<features> ::= the features

<conjunctionWhile> ::= , while | , but | . on the other hand

Fig. 4. Parts of the grammar used for producing correlation descriptions. Variables
with a “?” at the end are randomly included/omitted for variation. Variables in curly
brackets are replaced with the computed values from the MSPN.

part of the variance of an interesting feature, this cluster and its constituent
nodes are important for a more in-depth analysis.

DeepNotebook Section 3 - Feature Impact. Finally, a DeepNotebook com-
putes different conditional probabilities for important variables and analyzes the
influence of the features on predictions. To do this, each categorical variable is
treated as a target variable separately, and the SPN is used as a predictive model.
These predictions are then analyzed using the methods proposed by Robnik-
Šikonja and Kononenko [34], Baehrens et al. [35] and Štrumbelj and Kononenko
[36]. These explanation approaches allow the users to understand how differ-
ent variables change the conditional probability of others and to estimate the
importance of a feature for classification. They require only the computation
of marginals, or gradients on the network. Due to the graph structure of the
MSPN, gradients can be computed by a simple backward pass through the net-
work using automatic differentiation. Marginalization of features is also easy in
MSPNs [17]. For more details about the computations, we refer to Sect. 4.

The information is aggregated and normalized to provide an easy overview.
Using Baehrens et al. [35]’s approach, the gradients are computed for each point
in the original dataset and then normalized. This normalization is important,
as the piecewise linear structure of the MSPN can result in very sharp edges
with correspondingly large gradients. The normalized gradients represent rela-
tive importance for each feature and datapoint. These are then aggregated into
one plot per feature and prediction, which describes the relative importance
for the prediction. With significant computational resources, users can also use
Shapley values [37] to estimate feature importance, which generalize the gradient
approach but requires a Monte Carlo sampling step. Overall feature importance
for each possible prediction attribute is then summarized using the mean squared
distance of each gradient component to zero. This assures that features which
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never have any local impact on the classification are also assumed to not con-
tribute to the impact globally. Finally, the Shapley values are visualized.

Since DeepNotebooks are Jupyter notebooks, the users can add more cells,
access the model and the data, and add arbitrary Python code for further queries
and analysis. A DeepNotebook therefore serves as an easy and accessible intro-
duction to a dataset and enables a user to employ the reported results in their
own data analytics pipeline later on. The data science loop does not start with
an empty but with a pre-filled Python notebook, “programmed” by the machine.

4 Computing Statistical Measures Using MSPNs

Each section of a DeepNotebook provides a different view on the data at hand
and is based on statistical measures computed form MSPNs as underlying “vir-
tual statistical machine”. Showing how to compute them is one of our main
technical contributions.

Computing Covariance Using MSPNs. Calculating the covariance of two
variables in a distribution can be decomposed into computing the joint expec-
tation and the marginal expectation of each variable. The graph structure of
an SPN allows an algorithm to calculate the moments of a probability function
directly from the network, in one bottom-up pass. At a sum node, the moment
of the distribution can be calculated as follows: mk = E[xk] =

∑
piE[xk] =∑

pim
k
i . At a product node, the moments of independent variables are also

independent, and therefore the moment of the child nodes can just be combined
in a vector. At a leaf node, the moments need to be calculated according to
the distributions. In the case of MSPNs, all leaves are piecewise linear density
approximations, therefore it is very easy to calculate the required integral for
the estimation, since all moments are polynomial functions of the base points.
Using the moments as computational blocks, it is possible to compute the corre-
lation matrix in closed form from the covariance matrix of the whole probability
density function.

The joint expectation can also be calculated efficiently in a similar manner:
First, the means of all leaf nodes are calculated independently. These are then
combined at the sum and product nodes in a bottom-up-pass. At a product node,
due to the assumption of independence, the joint expectation is equal to the
product of the expectation: E[xy] = E[x] ·E[y]. At a sum node, the expectations
are multiplied by the weights and summed together. Finally, the correlation
can be obtained by normalizing the covariance matrix by the variances of the
features.

Dependencies Among Variables Using the Law of Total Variance. When
dealing with general tabular data, it is necessary to deal with categorical vari-
ables. In this case, the covariance is not defined, and therefore we use the coeffi-
cient of determination as a measure for categorical-continuous variables and the
mutual information for categorical-categorical dependence. Both are normalized
between 0 and 1 and serve a similar purpose of estimating variable dependency as
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the correlation. The coefficient of determination between a categorical variable
X and a continuous variable Y can be calculated as follows. If the categorical
variable is assumed to correspond to clusters in the continuous one, the coef-
ficient shows that the total variance of Y results from adding the intra- and
inter-cluster variance:

1 =
E[σ2(p(Y |X))]

σ2(p(Y ))
+

σ2(E[p(Y |X)])
σ2(p(Y ))

.

The first term approaches zero as the clusters become smaller and more and more
separated, while the second term approaches zero if the conditional means of the
clusters do not vary significantly. To compute them, we extended the algorithm
for computing mean and variance to conditional probabilities in MSPNs.

Compiling Conditional MSPNs from MSPNs. Calculating moments as
presented above, marginalizes the MSPNs over and over. We can optimize that by
compiling a network that computes the conditional probability function p(x|y).
At a product node, the probability of p(x) and p(y) are independent of each
other and therefore the conditional probability p(x|y) equals the marginal p(x).
The leaf node representing pi(y) is omitted from the graph. At a sum node, the
conditional probability function reads as

p(x|y) = p(y)−1
∑

i
αipi(x, y) =

∑

i
αipi(y)p(y)−1p(x) .

The probability pi(y) for each child serves as an update on the weights of the
sum node. This assumes that the probabilities of x and y are independent for
each child of the sum node, which is guaranteed if the algorithm is run bottom-
up on the network as p(y) has already been removed for all children. After
extracting the conditional MSPN, the algorithm detailed above can be run to
get the conditional means and variances of the continuous variable. Likewise,
one can compute the mutual information:

MI(x, y) =
I(x, y)

√
H(x)H(y)

=

∑
x

∑
y p(x, y)(log(p(x, y)) − log(p(x)p(y)))

√∑
x p(x) log(p(x))

∑
y p(y) log(p(y))

.

Indeed, mutual information has been used in the context of evaluating (M)SPNs
[38], to visualize the connection between two variables. But evaluating the equa-
tion above using a numeric method by repeatedly calculating the needed proba-
bilities for continuous features is potentially slow since the probability functions
represented by MSPNs can be non-smooth. This is the reason this framework
uses correlation for the dependency between continuous variables since approxi-
mating the mutual information becomes practically intractable for more complex
marginal distributions, which would incur a runtime overhead not feasible in
data exploration settings. For categorical variables, where the possible states are
finite, and often few, the mutual information can be calculated precisely using
the equation above.
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Estimating Shapley Explanation Values from MSPNs. SHAP values
[10,36] estimate the impact of a feature on a single classification using the
game-theoretic concept of Shapley values. These values represent the contri-
bution each feature brings to the outcome of the classification by looking at
subsets of features. In general, a complete calculation of these values for a clas-
sifier is intractable, because the number of possible subsets of features grows
exponentially, but they can be estimated using Monte Carlo sampling [36]. Since
MSPNs have a natural way of marginalizing over missing features, this can be
done efficiently without using interpolation or summation over missing values.

5 Illustrations of DeepNotebooks

To investigate DeepNotbooks empirically, we implemented the system in Python
using the SPFlow library [39] for learning the MSPN. Then we generated Deep-
Notebooks for four well known UCI datasets [40]. We used the Iris dataset to
develop and test all algorithms and descriptions. We then generated DeepNote-
books on the Titanic, Boston Housing and Adult datasets. As a final validation,
we generated a DeepNotebook for a real-world medical dataset comprised of
information on heart infarct patients, which has not been studied in the context
of machine learning or exploratory data analysis before.

Experimental Protocol. The Iris and Boston Housing datasets were used
as provided by the sklearn library [41], while the Titanic and Adult datasets
were cleaned and preprocessed. Finally, the medical dataset considers diagnosis
of myocardial infarction using high-sensitivity troponin l 1-h [42]. The dataset
contains a large number of variables and a lot of missing values since not all
patients are subject to all test procedures. We filtered this dataset by estimating
the 20 most relevant attributes for diagnosis by using gradient tree boosting.
We then generated a DeepNotebook to further investigate the relationship of
these features to each other and the final diagnosis. For each dataset, we inves-
tigated three questions to assess the usability of the report for exploratory data
analysis: Does the report reflect patterns in the data as expected from prior
knowledge?, are there unexpected results?, and do these reflect genuine infor-
mation discernible from the data?. Together, these questions aim at deducing
whether the generated report provides reasonable insight into the data. Since
the datasets are originally intended for classification or regression, we focused
on understanding the relationship between the features and the label.

Correlation and Statistical Measures. For all datasets, we found that an
overview of the marginal distributions can help the user to assess the general
shape of the data quickly. The histograms calculated from the MSPN correspond
to empirical histograms of the data, albeit smoothed by the training process.

Figure 5 shows the correlation and determination coefficients for the UCI
datasets. For the Boston housing data, the correlation already captures many
important relationships within the data. This is to be expected, as the Boston
housing data is specifically intended to showcase simple regression models and
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Fig. 5. MSPN Correlations reported in the DeepNotebooks on four UCI datasets.
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Fig. 6. Relative impact of the features with the widest spread on classifying high
income in the Adult dataset as reported in the DeepNotebook.

linear correlations. Similarly, the Iris dataset contains a lot of well known depen-
dencies. On the Titanic and Adult dataset, the descriptive statistics are non-
informative, since the MSPN finds nearly no correlations within the data. The
only significant finding in the Adult data results from two redundant attributes,
the “education level” and a numeric representation thereof.

For the medical dataset, the mutual information (not shown here) indicates
a clear dependence between the diagnosis and the troponin levels of a patient,
which is a well known medical indicator for cardiovascular disease. The troponin
levels of a patient at different test times were also clearly correlated with each
other and less strongly with most other features, indicating their medical rel-
evance among the tests. Other weaker dependencies do not warrant a closer
inspection on the first pass, but might be interesting for a second, more thor-
ough, investigation. Since all features were already selected as being predictive
for the diagnosis, this was counter-intuitive, but mutual information and corre-
lation consider only pairwise interactions. This highlights the importance of non
traditional statistical tests, like feature importance analysis for prediction.

Explaining Predictions. We found that explaining predictions can highlight
variable interactions, which are not directly evident from correlation measures
alone. On the Adult dataset, the variable most commonly chosen as the target
for classification analysis is the variable “income”, which has two possible val-
ues, representing a yearly income below or above USD 50, 000 respectively. The
predictive precision of DeepNotebook for this target was 76.28%. To assess the
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(a) Importance per class (b) Importance for predicting “no issues”

(c) Importance for predicting “STEMI” (d) Importance for predicting “NSTEMI”

Fig. 7. Shapley impact values for the diagnosis prediction on the medical dataset. Grey
dots visualize values for other class predictions. (Color figure online)

usefulness of the feature importance and impact measures, this classification was
investigated in more detail.

Figure 6 shows that the normalized gradient strengths for these features com-
puted by the DeepNotebook. One can clearly see that “education level”, “sex”,
and “marital status” are informative features for the prediction with a clear
impact. Also, by inspecting the visual explanations automatically created in a
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DeepNotebook, a user is able to assess that the values “bachelors” and “masters”
for the variable “education” have a pronounced, and opposed impact on the con-
ditional probability. The histogram is clearly separated, with the value “masters”
generally increasing the probability of a person earning more than USD 50,000,
and “bachelors” decreasing this probability. Another feature which results in a
relatively strong difference in probability is gender. Males are more likely to earn
more than females. Both of these results are not unexpected from the domain of
the data and conform with prior expectations and as well as inspection of the
underlying data. Another, less intuitive result of the DeepNotebook is that the
“marital status” has a recognizable effect on the probability of the income. A fur-
ther investigation of this phenomenon shows that this pattern is also reflected in
the data. This shows that it is indeed possible to quickly glean facts and avenues
for further investigation from the automated analysis that might not have been
expected a priori.

For the medical dataset we show the Shapley values computed by the Deep-
Notebook. As one can see in Fig. 7, different features are important for the
separate classifications. This is a distinct case when compared to the Adult
example, since in a multi-class prediction, the Shapley values and explanation
vectors will not be symmetrical. Overall, the troponin levels (features lb mmy)
are the most important predictive features, which aligns with the strong mutual
information coupling to the diagnosis and the medical background knowledge.
The next important features contain information about symptoms, admission to
the ICU, and ECG patterns detected. This conforms clearly to the expectation,
for example in cases where the symptoms leading to ICU admission are long
passed (feature qu sym001 with high values) the chances of an acute infarction
are far lower, while a specific ECG signal (low values for feature pe ecg0041) are
indicative of a STEMI type myocardial infarction (this signal is very typical for
STEMI infarctions). The signal for the strong indicator troponin is only relevant
for excluding heart attacks, STEMI and NSTEMI type occurrences both lead to
high levels, although very high levels seem mostly indicative of a STEMI type
infarction. For differentiating between different types of infarction, looking for
example at the ECG result can help. This is a good starting point for a more
in depth analysis of the detailed differences between the different heart attack
types. Overall, DeepNotebooks can yield several findings that were not obvious
to non-medics but conformed to medical knowledge.

6 Conclusions

We have presented DeepNotebooks—a novel way of interacting with data using a
deep probabilistic model in the background. The generated reports automatically
capture several insights from the data presented in a natural, comprehensible
way. The automatic evaluation presented in written and graphical form enables
domain experts that are not machine learning experts to get feedback instantly
and to explore their data at their own pace. Changing the parameters of the
generated report allows a user to choose between an in-depth analysis and a
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quick overview of the most important patterns. Also, since the data reports
are Jupyter notebooks, the results reported are highly interactive and flexible.
Overall, the example DeepNotebooks show that they allow one to find patterns
in the data, which conform to prior expectation, but also result in novel findings.
Given these insights, the user can directly investigate the model and data further
using standard Python.

Nevertheless, DeepNotebooks are only a starting point and many things are
left to be done. One should extend DeepNotebooks to include other statistical
measures. Currently, DeepNotebooks are also specifically focused on analyzing
categorical datasets. They should be extended to analyzing regression and time
series data. Extending SPNs to provide better or even counterfactual explana-
tions of the underlying model is another interesting avenue. Incorporating other
model agnostic or developing similar measures specifically for SPNs could pro-
vide additional insight into the predictive capabilities of the network. Likewise,
extracting Bayesian and Markov networks from SPNs would also lead to addi-
tional insights into the underlying data. Finally, there are many SPN learning
algorithms with different properties. A thorough investigation of these, espe-
cially concerning how easy they are to use and tune for a non-expert user, would
greatly improve the usability of the method for a wide audience.
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36. Štrumbelj, E., Kononenko, I.: Explaining prediction models and individual predic-
tions with feature contributions. Knowl. Inf. Syst. 41(3), 647–665 (2013). https://
doi.org/10.1007/s10115-013-0679-x

37. Lundberg, S.M., et al.: Explainable machine-learning predictions for the prevention
of hypoxaemia during surgery. Nat. Biomed. Eng. 2(10), 749 (2018)

38. Molina, A., et al.: Mixed sum-product networks: a deep architecture for hybrid
domains. In: AAAI (2018)

39. Molina, A., et al.: SPFlow: an easy and extensible library for deep probabilistic
learning using sum-product networks (2019). eprint: arXiv:1901.03704

40. Dheeru, D., Taniskidou, E.K.: UCI machine learning repository. Technical report
University of California, Irvine, School of Information and Computer Sciences
(2017)

41. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

42. Neumann, J.T., et al.: Diagnosis of myocardial infarction using a high-sensitivity
troponin I 1-hour algorithm. JAMA Cardiol. 1(4), 397–404 (2016)

43. Völcker, C.: DeepNotebooks - interactive data analysis using sum- product net-
works. B.Sc. thesis. TU Darmstadt (2018)

https://doi.org/10.1007/978-3-319-23525-7_21
https://doi.org/10.1007/978-3-319-23525-7_21
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://doi.org/10.1007/s10115-013-0679-x
https://doi.org/10.1007/s10115-013-0679-x
http://arxiv.org/abs/1901.03704


HyperUCB: Hyperparameter
Optimization Using Contextual Bandits

Maryam Tavakol1(B), Sebastian Mair2, and Katharina Morik1

1 Technical University of Dortmund, Dortmund, Germany
{maryam.tavakol,katharina.morik}@tu-dortmund.de

2 Leuphana University of Lüneburg, Lüneburg, Germany
mair@leuphana.de

Abstract. Setting the optimal hyperparameters of a learning algorithm
is a crucial task. Common approaches such as a grid search over the
hyperparameter space or randomly sampling hyperparameters require
many configurations to be evaluated in order to perform well. Hence,
they either yield suboptimal hyperparameter configurations or are expen-
sive in terms of computational resources. As a remedy, Hyperband, an
exploratory bandit-based algorithm, introduces an early-stopping strat-
egy to quickly provide competitive configurations given a resource bud-
get which often outperforms Bayesian optimization approaches. However,
Hyperband keeps sampling iid configurations for assessment without tak-
ing previous evaluations into account. We propose HyperUCB, a UCB
extension of Hyperband which assesses the sampled configurations and
only evaluates promising samples. We compare our approach on MNIST
data against Hyperband and show that we perform better in most cases.

Keywords: Hyperparameter optimization · Multi-armed bandits

1 Introduction

The performance of machine learning models highly depends on the choice of
the hyperparameters. For many years, grid search was the standard approach
for tuning the underlying models. However, with the emergence of more sophis-
ticated models such as in deep learning, grid search is no longer practical due
to the large hyperparameter space, and thus simpler approaches such as random
search became more desirable and showed to be more effective [2].

Over the last few years, the problem of hyperparameter optimization has been
successfully presented as metalearning using Bayesian optimization methods
[3,5,10]. Nevertheless, bandit-based approaches exhibit superb performance in
many scenarios [8,9]. Li et al. [8] propose a method, called Hyperband (HB), for
hyperparameter selection which, in their settings, outperforms Bayesian methods
while providing a significant speed-up compared to those competitors. Hyper-
band is based on the successive halving approach [11] for improving random
search by an adaptive allocation of available resources to different configura-
tions.
c© Springer Nature Switzerland AG 2020
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Algorithm 1. Hyperband
input : R, η

1 initialization: smax = �logη R� and B = (smax + 1)R ;

2 for s ∈ {smax, smax − 1, . . . , 0} do

3 n = �B
R

ηs

s+1
�, r = Rη−s;

4 Λs =get hyperparameter configuration(n);
5 for i ∈ {0, . . . , s} do
6 ni = �nη−i� , ri = rηi;
7 L(Λs) = {run then return val loss(λ, ri) | λ ∈ Λs};
8 Λs = top k(Λs, L(Λs), �ni

η
�);

9 end

10 end
output: configuration λ with lowest validation loss seen so far

However, Hyperband is an amended version of random search in which there
is no learning to guide the search. In addition, despite the fact that Hyperband
is highly efficient for finding a good configuration, it does not find an optimum
fast enough. Hence, modeling the hyperparameter optimization as a learning
problem is more reliable than a search algorithm. Therefore, instead of only
sampling iid configurations of hyperparameters as Hyperband does, we propose
to leverage the information of previous batches in order to pre-evaluate sampled
configurations and to discard unpromising ones. This is done by a UCB bandit
strategy in a contextual setting.

In this paper, we introduce HyperUCB, a model-based bandit framework, to
accommodate exploitation into the purely exploratory algorithm of Hyperband.
In HyperUCB, the arm selection is carried out by incorporating an Upper Con-
fidence Bound (UCB) strategy [1] to guide the search within the iterations in
order to balance exploration vs. exploitation. We further model the arms in a
contextual setting which generalizes the model for unseen arms (i.e., configura-
tions). Therefore, we employ a modified version of LinUCB [7] in our approach to
achieve a model-based Hyperband for the task of hyperparameter optimization.
Empirically, we show that our proposed approach either outperforms Hyperband
or performs on par on optimizing the hyperparameters of a deep learning model.

2 Background

2.1 Problem Setting

Let D = (X ,Y) be a data set and M be a learning algorithm. The data is
usually split into a training set for optimizing the parameters of the model, a
validation set for optimizing the hyperparameters and a test set for evaluating
the overall performance of the model. Assume that H is the set of all possible
hyperparameter configurations, we denote by L(λ) the loss of M using λ ∈ H
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on the validation set. The goal is to find the best hyperparameter configuration
λ� = arg minλL(λ), which minimizes the validation loss for a given budget.

2.2 Hyperband

Hyperband (HB) is an anytime search algorithm based on multi-armed ban-
dits to find the best configuration for a machine learning approach given lim-
ited resources. The method performs several iterations based on the available
resources, and in each iteration repeatedly calls the SuccessiveHalving method
[6] for choosing the best ones. Let R be the maximum budget available for train-
ing various instances of a model, then Hyperband conducts smax = �logη R�
iterations for exploration, where η is the ratio of sampling the best arms.

Hyperband is outlined in Algorithm1. Note that the evaluation of the hyper-
parameters λ ∈ Λs in line 7 can be done in parallel. Within the algorithm,
three methods are used. The method get hyperparameter configuration(n)
returns a set Λs of n ∈ N hyperparameter configurations {λ1, . . . , λn} sampled
iid from a given hyperparameter space H of feasible configurations. Furthermore,
by calling run then return val loss(λ, r), we obtain the validation loss L(λ)
of configuration λ and resource allocation r. Finally, top k(Λs,L(Λs), k) returns
a subset of Λs of size k with the k lowest validation losses given in L(Λs).

2.3 Contextual Bandits

The multi-armed bandits in contextual settings benefit from the available infor-
mation (context) to make a better decision at the time of action (arm) selection.
That means, before making a decision, some context is shown to the bandits, and
depending on the situation the decision might be different. The context could
include the information about the current state, the attributes of the arms, or
any other available data. A contextual bandit aims at finding a mapping between
the contexts and their corresponding outcomes in order to minimize the total
regret. Li et al. [7] propose LinUCB in which the outcome of every arm is mod-
eled as a linear function of the context. In the next section, we present a modified
form of LinUCB to design contextual Hyperband.

3 Contextual HyperUCB

In this section, we present our approach to upgrade Hyperband to a contextual
bandit method using a UCB strategy. Let H be the space of all possible hyper-
parameter configurations for a machine learning approach. We are interested in
finding λ� ∈ H that gives the best performance y� in terms of the validation loss
L of the model

λ� = arg min
λ

L(λ). (1)

We assume that a hyperparameter configuration can be represented by a d-
dimensional vector λ and model the contextual bandit as a linear function of
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Algorithm 2. HyperUCB
input : R, η, α, γ

1 initialization (HB): smax = �logη R� and B = (smax + 1)R;

2 initialization (UCB): θ = 0d×1, X ← ∅0×d, A ← γId×d, n0 = ηsmax ;

3 for s ∈ {smax, smax − 1, . . . , 0} do

4 compute n and r as in HB;
5 Λs = top ucb(get hyperparameter configuration(n0), θ, A, n);
6 append λ to X ∀λ ∈ Λs and initialize yλ = 0;
7 for i ∈ {0, . . . , s} do
8 compute ni and ri as in HB;
9 for λ ∈ Λs do

10 A = A + λλ�;
11 yλ = −run then return val loss(λ, ri);

12 end

13 θ = (X�X + γI)−1X�y ;
14 Λs = top ucb(Λs, θ, A, �ni

η
�);

15 end

16 end

17 top ucb (Λs, θ, A, n):

18 pλ = θ�λ + α
√

λ�A−1λ ∀λ ∈ Λs;
19 return top k(Λs, p, n)

the configurations. After learning the parameters θ of the linear model, a new
configuration λ can be evaluated as ŷ = θ�λ. The optimization problem in
Eq. (1) suggests a lower confidence bound strategy since we aim to minimize L.
However, by considering negative loss values −y, we can retain the usual upper
confidence bound (UCB) strategy since maximizing the negative validation loss
−L is equivalent to minimizing L. The UCB approach trades off exploration and
exploitation as it also considers the uncertainty for a specific hyperparameter
configuration. The score pλ is thus obtained from θ�λ + α

√
λ�A−1λ, where

A = X�X + γI is the regularized design matrix of the configurations with
γ ≥ 0 which have been evaluated so far and α > 0 is a trade-off parameter.

Algorithm 2 summarizes our approach for HyperUCB. In this algorithm, the
bandit model is learned in line 13, and together with the covariance matrix it
computes the upper confidence values in two sampling steps. At every iteration,
a number of n0 configurations are randomly sampled as in HB, and from those,
the bandit model selects the n most promising ones. The next sampling step is
at line 14, where top ucb is performed on the values of pλ rather than yλ. Note
that the matrix A is updated every time a configuration is chosen, even within
an iteration, which leads to a tighter confidence interval for those configurations.
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Table 1. Hyperparameters of the multi-layer perceptron.

Hyperparameter Range Type

Learning rate [0.0001, 1] Float

# hidden layers {1, 2, 3, 4, 5} Integer

# neurons {16, 32, . . . , 512} Integer

Activation {relu, tanh, sigmoid} Categorical

4 Empirical Study

In this section, we evaluate the performance of the HyperUCB strategy compared
to Hyperband [8]. The experiments are conducted on the MNIST data which
consists of 60,000 training and 10,000 test instances. As a model, we use a simple
multi-layer perceptron (MLP) which learns to classify images of handwritten
digits. We use the categorical cross entropy as a loss function and the RMSprop
optimizer. The validation loss is computed on the hold-out data. Within the
MLP we use four hyperparameters which are outlined in Table 1. We determine
a minimum budget of one unit of resource which corresponds to 100 mini-batches
of size 100. The maximum budget consists of R units of resources, hence 100R
mini-batches. We use the default value of η = 3 as specified in Hyperband.
Our approach contains two additional parameters: the exploration-exploitation
trade-off α and a regularization-weight γ in ridge regression. We select the values
of α = 0.4 as it gives best performance in [7] and the regularization is set to
γ = 0.1.

Fig. 1. Performance w.r.t. the budget. Fig. 2. Performance w.r.t. the time.

Figure 1 shows the validation loss averaged over five independent runs for var-
ious maximum budgets including standard errors. With a max. budget higher
than 19, HyperUCB outperforms Hyperband as it consistently yields lower val-
idation errors. We credit this finding to the fact that using a higher budget,
more rounds are conducted on which the bandit model can learn to discriminate
promising from unpromising hyperparameter configurations. This can be hardly
done with lower max. budgets due to the lack of training data.
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Figure 2 depicts the average validation loss in dependence of computational
time, measured in seconds, for a budget of 45. It can be seen that HyperUCB
performs on par with Hyperband, meaning it is as fast or faster than Hyperband.

5 Conclusion and Future Work

In this paper, we presented HyperUCB, a contextual extension using a UCB
strategy for Hyperband, which is a bandit-based method for hyperparameter
optimization. The idea was as follows: Instead of sampling n iid hyperparameter
configurations in each round for evaluation, we sampled more configurations,
assessed them using a multi-armed bandit with a UCB strategy and only eval-
uated the n best configurations. This way, we guided the sampling procedure
towards more promising configurations and avoided evaluating hyperparameters
which are already assumed to yield a high validation error. An experiment on the
MNIST data showed that it outperforms the Hyperband baseline for moderate
budgets at optimizing several hyperparameters of a multi-layer perceptron.

Further work will utilize the ideas from Tavakol and Brefeld [12], in which
the parameters of the bandit model can be learned using kernel methods in the
dual space to capture non-linearity. We also plan on extending the experimental
setup by adding more baselines, e.g., BO-HB [4] as well as considering multiple
hyperparameter optimization scenarios on various data sets and models.
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Abstract. From a set of technical drawings, we learn a parser program
to interpret the tabular data contained in such a drawing. This enables
automatic reasoning and learning on top of a database of technical draw-
ings. For example to help designers find or complete designs more easily.

Keywords: Inductive Logic Programming · Technical drawings

1 Introduction

Technical drawings are the main method in engineering to (visually) communi-
cate how a new machine or component functions or is constructed. They are the
result of a design process starting from a set of specifications that the final prod-
uct needs to comply with. This design process follows a number of strict and soft
rules (e.g., material choice as a function of temperature). Figure 1 shows a typical
example containing both a 2D and 3D visualisation of the object, and a mate-
rial list in tabular form specifying its parts and properties. They are carefully
crafted documents that act as key deliverables at the end of a design process.
As such, they contain a wealth of information. Furthermore, information is laid
out according to generally applied conventions.

Fig. 1. A technical drawing with high-
lighted tabular data

Engineering companies have a
large database of previous designs,
potentially going back decades. They
are often underutilized because pre-
vious designs can only be search for
by title or by a limited set of tex-
tual annotations. Ideally, however, this
database can also be used to: (1) given
a technical drawing, finding other rel-
evant drawings in a large database of
previous designs; (2) given a partial
description, finding designs that would
complete the partial design. In this
work we present an approach that can
extract the knowledge in a technical
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P. Cellier and K. Driessens (Eds.): ECML PKDD 2019 Workshops, CCIS 1167, pp. 51–56, 2020.
https://doi.org/10.1007/978-3-030-43823-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43823-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-43823-4_5


52 D. Van Daele et al.

drawing and thus improve the search capabilities significantly to achieve the
aforementioned tasks.

To be able to use the data encapsulated in technical drawings, we need to
parse the information contained in them, and translate this to a representation
that can be handled by automated systems. Furthermore, such a system should
be able to deal with both recent digital drawings and historical analog drawings.
The latter is important because a great amount of information is captured in
legacy drawings. Ideally, extracting the information can be done using a parser,
thus a small computer program. The main challenge is that writing and main-
taining such a parser is a time-consuming and expensive task. Furthermore, it
is error prone since this requires an expert to explain subtle rules to an analyst
or a programmer. The approach we present here will learn such parsers directly
from expert feedback on the original drawing and allow its output to be used in
automated tasks such as searching relevant designs.

We apply Inductive Logic Programming (ILP) to extract structured infor-
mation from technical drawings, and propose a bootstrapping approach that
boosts performance during multitask learning. The feedback used for learning
takes the form of annotated technical drawings. Providing such annotations is
a trivial task for domain experts. The required number of drawings that need
to be annotated is mainly dependent on the number of variations or templates
that need to be recognized. Fortunately, since all technical drawings within an
organisation are expected to be (loosely) based on a limited set of templates,
the number of drawings that need to be annotated is also limited.

In this work we introduce two contributions. First, we introduce the use of
ILP to learn parsers from data and expert knowledge to interpret a technical
drawing and produce a formal representation. Second, we introduce a novel boot-
strapping learning strategy for ILP. The efficacy of this method is demonstrated
in experiments on a real-world data set.

2 Identifying Technical Drawing Elements

Archived technical drawings are digitized to varying degrees. Because of this, we
consider as a baseline the case where the technical drawing is represented as a
bitmap image. A first step involves partitioning the image into its main segments
using DBSCAN [2]. The resulting segments are identified using a CNN classifier.
Segments identified as tables are further processed using a contour detection
algorithm [4]. This enables the extraction of all individual cells. These cells are
further processed by a parser that is learned from examples (see Sect. 3).

3 Inductive Logic Programs for Parsing

The data contained in a technical drawing is laid out in a manner that facilitates
human interpretation. Tabular data in particular tends to have its data organised
both spatially and through explicit annotation. Common examples of spatial
structuring involve assigning related cells to common rows or columns, while
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assigning unrelated cells to different subtables or distant cells. Particularly useful
are cells that contain unambiguous keywords such as attribute names. These are
helpful to gain insight in the structure of a table. They serve as anchors to cells
that are less distinctive on their own but can be described relatively to anchored
cells.

The application at hand does not only require us to parse a table, but also
demands that we learn how to interpret its spatial organisation. A small com-
puter program is required to parse these custom drawings. Programming a parser
for each type of drawing is not only an expensive and time consuming task to
build and maintain, but also prone to errors. Various errors are potentially intro-
duced while programming a parser. First, the structure of such technical draw-
ings needs to be explained to a non-expert, i.e. a programmer, who interprets
the instructions. Second, the tables are typically not simple rectangular tables.
They thus require a non-trivial parser that is difficult to understand. Third, a
design can change over time requiring periodic maintenance and lead to soft-
ware erosion. Ideally, these parsers would thus be programmed automatically
based on the expert’s knowledge. This is possible by means of machine learning
techniques that learn programs from examples. The examples in this setting are
obtained by annotating technical drawings, a task that is trivial for a domain
expert.

The highly relational nature of tabular data and the ease with which tables
can sensibly be navigated by visiting adjacent cells suggests the use of Inductive
Logic Programming. ILP systems are particularly suitable for learning small
programs from complex input data. Two advantages of learning programs using
ILP we benefit from in this work are the ability to learn recursive definitions
(e.g., row n is defined by row n+1) and to reuse learned target labels (e.g., first
learning what a header row is helps to define what a content row is).

3.1 Standard ILP

An inductive logic programming system learns from relational data a set of defi-
nite clauses. Given background knowledge B, positive examples E+ and negative
examples E−, it attempts to construct a program H consisting of definite clauses
such that B ∧ H entail all, or as many as possible, examples in E+, and none,
or as few as possible, of those in E−.

We thus need to supply three types of inputs. First, a set of training data,
examples E, that contains the properties to describe a cell in a technical drawing.
An example can be:

– Cell text: The textual contents of each cell. Tesseract 4.0 is used to recognize
cell contents [3].

– Cell location: The cell’s bounding box information (i.e. (x, y) coordinates and
cell width and height).

Second, a label for each cell (e.g., author, bill of materials, quantity). A cell
can be annotated with multiple labels (e.g., a cell can be a quantity in the bill
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of materials). Depending on which target label we want to learn, we split the set
of examples E in a tuple (E+, E−) where E+ contains the examples associated
with a cell that has the target label and E− those examples that do not. For
standard ILP, the learning task is defined for one target label, so we repeat the
standard ILP task for each label in the set of labels.

Third, we can provide background knowledge B that contains generally appli-
cable knowledge for the problem at hand and remains unchanged across exam-
ples. In this case we provide:

– Relative cell positions. Relations capturing which cells are adjacent to each
other, and in which direction (horizontally or vertically) based on their bound-
ing boxes.

– Numerical order. The successor relationship. Although not essential, it is
useful for learning concise, recursive rules.

The output of ILP, the program H, is a set of definite clauses of the form
‘author(A) :- cell contains(A, drawn)’ which can be read as the rule ‘Cell
A contains the author if it contains the word ‘drawn”.

3.2 ILP with Bootstrapping

It is expected that learning programs to properly parse the target labels in P
will prove simple for some targets and more challenging for others. We propose
a bootstrapping extension that supports the construction of sophisticated pro-
grams by allowing them to employ the simpler ones in their definition. This is
loosely inspired by the ideas raised in [1], but applied to the ILP setting.

This corresponds to a variation of the previously discussed ILP set-up where
a dependency graph G is used. The nodes in this directed acyclic graph each
represent a possible target label and the edges represent dependencies between
those labels. A dependency indicates that one target label might have a natural
description in function of another. Although we allow for this dependency graph
to be specified manually, our method defaults to a fully automated approach
where standard ILP is first applied to learn programs for each target. Then tar-
gets are ranked according to the ascending F1 score of their programs on the
training data. Each target in the list then has all subsequent targets as its depen-
dencies. Finally, ILP with bootstrapping learns targets in the order specified by a
correct evaluation order of G, and extends the background knowledge B for each
target with the programs constructed to parse its dependent target labels. When
learning program H using bootstrapping to capture a particular target label l,
we define its extended background knowledge B′ = B ∧ (

∧
i∈descendants(G,l) Hi),

where Hi is the program trained for target label i.

4 Experiments

4.1 Learning Set-Up

The ILP system Aleph is used to learn possibly recursive programs that parse
the chosen targets from the tabular data, ranging from the document’s author
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(a) A table excerpt from a technical drawing. Its header and materials are highlighted.

% Mater ia l s hypothes i s
mate r i a l s (A,B) :−

zero (A) ,
above below (B,C) ,
header (C) .

mate r i a l s (A,B) :−
succ (C,A) ,
above below (B,D) ,
mate r i a l s (C,D) .

% Header hypothes i s
header (A) :−

above below (A,B) ,
c e l l c o n t a i n s (B, ‘LIST ’ ) .

(b) header/1 covers any cell located directly above a cell containing the word ‘LIST’.
materials/2 parses the indexed parts of the materials table. Its first argument is the
index and its second argument represents the cell. materials/2 consists of two clauses.
The first clause anchors the table by considering row 0 to consist of the cells above
the header. It employs header/1 in its definition. The second, recursive clause indicates
that the index is incremented for each row located above another.

Fig. 2. Figure a provides an illustration of the materials table and its header. Listing
b shows the associated program learned using bootstrapping.

and its approval date to the attributes covered in the materials table and its
indexed components.

Training data consists of a set of fully labeled technical drawings. A cus-
tom data labeling tool with a web-based graphical interface was constructed to
support domain experts in labeling drawings.

Using this tool, 30 technical drawings with on average 50 cells were labeled
with 14 different labels. For each target label, examples that contain that label
form its positive example set, while negative examples are automatically derived
by taking the complement of all possible examples for that target with its positive
example set.

The labeled data is split in a training set consisting of 10 drawings, and a test
set containing the remaining 20. Since the choice of training data can heavily
affect the capability for finding rules that properly generalize, experiments are
repeated 5 times on random samples of the training data. Because the order in
which training examples are presented can also affect the rules identified by the
coverage-based algorithm employed by Aleph, repeat experiments are performed
even when all training data is available for learning, as a sample then corresponds
to a different order in which the examples are presented to the learner.
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4.2 Results

Fig. 3. The performance measured using
the F1 score of programs learning materi-
als/2. Min/max shading is included to indi-
cate the range of performance between the
best and worst-performing program over 5
repetitions.

Figure 3 visualizes the performance
with which cell labels and their appro-
priate index are correctly identified.
This shows that only a few anno-
tated designs are required for the
bootstrapping method to learn per-
fect parsers for all labels whereas
standard ILP fails to learn a perfect
parser. Furthermore, it highlights how
ILP with bootstrapping compared to
Standard ILP is less sensitive to over-
fitting when presented with additional
training data. This robustness of ILP
with bootstrapping lends itself well
to incremental learning. Both sub-
tle and drastic variations in template
design can be handled by providing
the learner with a representative sam-
ple as training data. Learning perfect parsers for simple labels such as author or
approval date can be achieved by both standard ILP and the bootstrap method
with only a few training examples. More interesting is to look at the most compli-
cated label, the indexed components (materials in Fig. 2a). The best performing
program constructed using standard ILP consists of 14 clauses and yields 17 false
negatives. Bootstrap learning, however, succeeds at learning a completely accu-
rate, concise program (see Fig. 2b) whenever more than three technical drawings
are provided in the training set. The poor performance when using only a few
drawings is due to poor generalization. More specific, in these drawings the
materials tables provided for training each consisted only of a single component
and there was no pressure on the inductive learner to learn the recursive rule
necessary to capture the rows of larger tables.
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Abstract. Recent progress in AutoML has lead to state-of-the-art
methods (e.g., AutoSKLearn) that can be readily used by non-experts to
approach any supervised learning problem. Whereas these methods are
quite effective, they are still limited in the sense that they work for tabu-
lar (matrix formatted) data only. This paper describes one step forward
in trying to automate the design of supervised learning methods in the
context of text mining. We introduce a meta learning methodology for
automatically obtaining a representation for text mining tasks starting
from raw text. We report experiments considering 60 different textual
representations and more than 80 text mining datasets associated to a
wide variety of tasks. Experimental results show the proposed method-
ology is a promising solution to obtain highly effective off the shell text
classification pipelines.

Keywords: Text mining · Meta-features · Text classification

1 Introduction

Nowadays, the success of machine learning systems relies on the knowledge of
human-experts that according to their experience design and test multiple mod-
els extensively to select the best modeling option. Although effective, this strat-
egy is not only time consuming but also impractical since an expert is not always
available. This has motivated the increasing demand for easy-to-use automated
machine learning solutions. In this context, AutoML is the field of research aim-
ing to generate machine learning models without any human supervision. Recent
progress in AutoML has lead to quite effective and competitive solutions when
dealing with tabular (matrix formatted) data, see e.g., [5,7,16]. However, these
techniques are still limited in the sense that they require the user to transform
raw data into a tabular representation. This step relies heavily on the expertise
of users.

Text classification is one of the most studied tasks in Natural Language
Processing (NLP), this is because of the number of applications that can be
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approached as text classification problems (e.g. sentiment analysis, topic label-
ing, spam detection, and author profiling among others). Many techniques for
pre-processing, feature extraction, feature selection and document representa-
tion have been developed over the last decades. Despite all this progress by the
NLP community, it is still an expert who designs the pipeline for text classifica-
tion systems that includes one or many of such techniques, each of which usually
requiring the fine-tuning of hyperparameters.

In this work we take a step towards the automated generation of the classi-
fication pipelines for text classification by focusing on the representation. Thus,
our goal is to automate the process of determining the best representation to
approach a text classification task starting from raw text. Unlike other data
types, language/text provides an unstructured and rich source of information,
hence selecting the adequate representation for text will have a direct impact on
the performance of text mining solutions. In fact, representing texts has been
one of the most studied venues in NLP. We propose a meta-learning solution
to automatically determine the best representation given a dataset of raw text.
This is a first step towards the full automation of the generation of text clas-
sification pipelines. We propose a number of meta features some of which are
extracted directly from raw text, and most of them not used before for meta-
learning. We report experimental results considering 60 textual representations
and more than 80 text mining tasks. Our results show that the proposed meta
features successfully characterize text mining tasks and that an AutoML solution
for text mining (AutoText) is feasible. Our work is among the first to approach
text classification via meta-learning from raw data and it is by far the largest
study on meta learning in the context of text mining.

2 Related Work

In the context of text mining, few works have explored the automated selection of
different parts of classification pipelines. With experiments in the Reuters-21578
corpus, Lam and Lai [11] proposed to characterize documents with 9 (meta)
features and to predict the classification error of different models using data from
a previous phase, thus recommending a classification model. More recently, [19]
searched for text representations with Bayesian Representation [15]. Their search
space was limited to only word n-grams and experiments were performed in 8
datasets: 4 sentiment analysis tasks and 4 topic classification tasks. Nevertheless,
they outperformed every linear classifier reported until their publication date.
Despite their limited scope, given the lack of data and computational resources
of the time, this work represents one of the first meta-learning approaches for
text classification.

Other works have explored different meta-learning approaches for text classi-
fication in small-scale, for example, Gomez et al. [9] addressed the problem with
evolutionary computation methods and using 11 meta-features. In a broader app-
roach Ferreira and Brazdil [6] recommend pipelines with Active Testing Method,
in their work they also present statistical analysis of 48 preprocessing methods
and 8 classifiers.
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Another related work is that by [14] where a set of features derived from
the text was proposed for characterizing short-text corpora in the context of
clustering. Although the goal of such reference was to characterize the harness
of text corpora and not AutoML, such work is relevant because their features
inspired some of the meta-features considered in this paper. In Sect. 3 we describe
how we combined this set of features with other proposed ones for characterizing
text collections in the context of automatic text mining.

Meta-learning has been studied for a while in the broad machine learning
context [1–3,17,18]. However, it is only recently that it has become a main-
stream topic, this mainly because of its successes in several tasks. For instance,
Feurer et al. [8] successfully used a set of meta-features to warm-start a hyper-
parameter optimization technique in the popular state-of-the-art AutoML solu-
tion Autosklearn. Likewise, the success of deep learning together with the diffi-
culty in defining appropriate architectures and hyperparameters for users, has
motivated a boom on neural architecture search, where meta-learning is becom-
ing common [4].

In this paper we propose a novel approach to meta-learning of text repre-
sentations. We propose a novel set of meta-features, comprising standard meta-
features from the machine learning literature, features that have been used for
other problems than meta-learning and novel meta-features that have not been
used previously. Some of which are derived directly from raw text and aim at cap-
turing complex language patterns. We approach the problem of recommending
textual representations. Whereas this problem has been addressed in previous
work, such references have considered only a few representations and a very
limited number of meta-features (up to 11).

To the best of our knowledge this is the largest scale study on meta-learning
in the context of text mining. Whereas results are promising, please note that
this is only a first step towards the ultimate goal of automating the text mining
process.

3 Recommending Textual Representations

We introduce a meta-learning method that takes as input the labeled raw text
from a corpus associated to a text classification task and automatically selects
a representation. The method recommends vector representations for text clas-
sification tasks based on which one worked best for similar tasks. In order to
do so we define a set of meta-features and perform extensive experiments on
81 different text classification tasks. Although this approach is common within
meta-learning [17], it has not been widely explored for text classification. In fact,
previous work (see Sect. 2) has considered small subsets of generic meta-features.

Table 1 sums up the feature extraction methods that with some pre-
processing processes or hyper-parameters gives a total of 60 representations,
while not exhaustive, our work is the first to consider representations not only
based on simple features, but also those based on topic modeling, embeddings,
and semantic analysis, we also included a representation based on the word per-
centage of categories from LIWC2007 dictionary. Furthermore, the output of
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our method can be useful for both human experts designing text classification
pipelines and for complementing other optimization methods for AutoML (e.g. it
can be used for warm-starting Bayesian Optimization [8] for a wider search space
of text representations or easily combined with existing AutoML solutions).

Table 1. Representations considered

Features Hyper-parameters

N-grams [words, char], stop words[None, ‘English’], range[1, 3], weight[bi, tf, tfidf]

LDA stop words[None, ‘English’]

LSA stop words[None, ‘English’], weight[tf, tfidf]

LIWC [13] categories[64]

W2V [12] pre trained[True, False], vector[mean, sum], dimension[300]

The proposed method comprises 2 stages, an offline phase where it learns
how to learn and a predicting phase where it uses the data collected in phase 1
to recommend a text representation for classifying.

A human-expert uses knowledge acquired in the past when a new task is pre-
sented, equivalently, meta-learning imitates this reasoning. Our method applies
meta-learning to learn from the performance of different representations on a
number of corpora. Namely, we defined 72 meta-features to characterize 81 text
corpora and performed an exhaustive search for the performance of 60 repre-
sentations. A knowledge base is built associating the performance of each rep-
resentation with a task, described by the vector of meta-features. Traditionally,
meta-features extract meta-data from a dataset such as statistics of its distri-
bution or simple characteristics like the number of classes and attributes, in our
proposed set we contemplate this type of features as well as other attributes
extracted directly from the raw text. The proposed meta-features are described
below. For clarity we have divided them in groups.

– General meta-features. The number of documents and the number of cat-
egories.

– Corpus hardness. Most of these originally used in [14] to determine the
hardness of short text-corpora.
Domain broadness. Measures related to the thematic broadness/narrowness of
words in documents. We included measures based on the vocabulary length
and overlap: Supervised Vocabulary Based (SVB), Unsupervised Vocabulary
Based (UVD) and Macro-averaged Relative Hardness (MRH).
Class imbalance. Class Imbalance (CI) ratio.
Stylometry. Stylometric Evaluation Measure (SEM)
Shortness. Vocabulary Length (VL), Vocabulary Document Ratio (VDR) and
average word length.

– Statistical and information theoretic. We derive meta-features from a
document-term matrix representation of the corpus.



Meta-learning of Textual Representations 61

min, max, average, standard deviation, skewness, kurtosis, ratio average-
standard deviation, and entropy of: vocabulary distribution, documents-per-
category and words-per-document:
Landmarking. 70% of the documents are used to train 4 simple classifiers and
their performance on the remaining 30% was used based on the intuition that
some aspects of the dataset can be inferred: data sparsity - 1NN, data sep-
arability - Decision Tree, linear separability - Linear Discriminant Analysis,
feature independence Näıve Bayes. The percentage of zeros in the matrix was
also added as a measure for sparsity.
Principal Components (PC) statistics. Statistics derived from a PC anal-
ysis: pcac from [9]; for the first 100 components, the same statistics from
documents per category and their singular values sum, explained ratio and
explained variance, and for the first component its explained variance.

– Lexical features. We incorporated the distribution of parts of speech tags.
We intuitively believe that the frequency of some lexical items will be higher
depending on the task associated to a corpus, for instance a corpus for senti-
ment analysis may have more adjectives while a news corpus may have less.
We tagged the words in the document and computed the average number of
adjectives, adpositions, adverbs, conjunctions, articles, nouns, numerals, par-
ticles, pronouns, verbs, punctuation marks and untagged words in the corpus.

– Corpus readability. Statistics from text that determine readability, com-
plexity and grade from textstat library1: Flesch Reading Ease, SMOG grade,
Flesch-Kincaid grade level, Coleman-Liau index, automated readability index,
Dale-Chall readability score, the number of difficult words, Linsear Write for-
mula, Fog scale, and estimated school level to understand the text.

Apart from general, statistical and PC based, the rest of the listed features
have not been used in a meta-learning context. After the offline phase takes
place, for a new task the same meta-features are extracted and compared with
the prior knowledge, to recommend a representation. We considered 4 strategies
that leverage learned experiences and make predictions for a new task, these are
described below

(1) Using directly the representation with best performance of the nearest cor-
pus. This strategy directly follows the idea of finding the most similar task
in order to know what model will work best. The euclidean distance is used
to determine the similarity between the new task and those in the knowl-
edge base. This approach can also be seen as classifying unseen tasks with
a Nearest Neighbors algorithms using only 1 neighbor, in which case each
of the 60 representations constitutes a class.

(2) Predicting the representation as a classification problem, where each repre-
sentation is a class and every prior task is a sample represented by its 72
meta-features. In this case every sample was labeled with the representation
with best performance as its class, thus, the problem is to select the correct
class finding patterns among the tasks and using 81 samples for training.

1 https://github.com/shivam5992/textstat.

https://github.com/shivam5992/textstat
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Since the dimensionality of this problem is big given the number of samples
available this isn’t an easy task, so we tested different classification models.
In the end, a Random Forest was selected as the classifier for this strategy.
Hyper-parameters of this RF model are listed in Table 2.

(3) Predicting the performance for every representation and selecting the one
with the smallest error. In this strategy 60 different regression models are
needed, one for each representation, they are trained using the performance
of each representation for the different tasks, the objective is to correctly
predict the performance for each representation given a new task (described
by the same 72 meta-features). As for (2) several models were trained and
compared, finally, a Random Forest Regressor was found to work best.

(4) Predicting the rank of each representation and selecting the one with best
predicted rank. 60 regression models are trained with performances in 81
different tasks. Given a new task the 60 trained models predict the expected
rank for each representation, the results are ordered and the representation
with lowest rank is recommended. Like before we compared various regres-
sion models and again regression with Random Forest was selected (see
Table 3).

Table 2. Hyper-parameter for the Random Forest Classifier used in strategy (2).

Hyper-parameter Value

Estimators 200

Quality criteria Gini

Max depth Unlimited

Min features 2

Max features
√|features|

Table 3. Hyper-parameter for the Random Forest Regressor used in strategies (3)
and (4).

Hyper-parameter Value

Estimators 200

Quality criteria Mean absolute error

Max depth Unlimited

Min features 2

Max features |features|

For strategies 2–4 different classification and regression models were tested, a
Random Forest classifier was selected for strategy 2 and Random Forest regressor
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for both strategies 3 and 4. Once the representation is chosen, an SVM classifier
with linear kernel is used in every case to train and make predictions with the
new corpus.

4 Experiments and Results

For the experimental evaluation we collected 81 publicly available text corpora,
each associated with a different classification task, most of which can be cate-
gorized as one of 6 common NLP tasks: authorship attribution, author profil-
ing, topic/thematic classification, irony and deception detection. Some of these
datasets are commonly used for benchmarks in text classification (e.g. Amazon,
Dbpedia, 20NGs) while others have been used in competitions. After processing
each corpus to share the same format and codification we extracted the 72 meta-
features for each of the 81 collections. To accelerate the meta-feature extraction
process we limited the number of documents to 90,000 per category. The resul-
tant matrix of size 81× 72 comprises our knowledge base characterizing multiple
corpora.

In an offline phase, for each classification task every representation was used
for training and testing a classification model, the performance of each represen-
tation was calculated with 3-fold Cross validation, they were also ranked from
best (1) to worst (60).

We evaluated the 4 meta-learning strategies with unseen tasks following a
leave-one-out setting, using the results from 60 representations in the rest of the
tasks as knowledge to decide which representation to recommend. The objective
for the strategies, then, is to select what in exhaustive search was found to be
the best representation. We compared the average performance achieved by our
strategies in 5 runs against the best solution found and the average performance
of all of the considered representations. Table 4 shows the average performance
for each strategy after 5 runs in terms of the average accuracy and average rank.
Figure 1 depicts the performance of our method and the baselines in 9 corpora
(we selected these representative corpora to cover a wide variety of tasks and
because they are well known benchmarks).

Table 4. Average accuracy [0, 1] and average rank [60, 1] of different strategies in
81 corpus, the last row indicates the number of times the best representation was
predicted. (1) Nearest corpus, (2) classification, (3) performance regression, (4) rank
prediction.

Method Best (1) (2) (3) (4) Random

Avg accu 77.06± 0 73.75± 0 75.25± 0.12 73.34± 0.34 75.20± 0.07 68.45± 0

Avg rank 1.00± 0 14.20± 0 8.71± 0.46 14.30± 1.31 8.51± 0.34 30.30± 0

# of 1s 81.00± 0 17.00± 0 25.80± 0.45 4.20± 0.84 14.80± 0.84 0.00± 0
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Fig. 1. Accuracy of (2) in 9 selected corpora.

The 4 strategies clearly outperform selecting a random representation (we
illustrate this by averaging the results of all the representations). While in terms
of average ranking they could be closer to the optimal, the average accuracy
of (2) and (4) strategies was only 2% behind the best. (2) also found the best
representation 35% of the time. Results show strong evidence that our meta-
learning approach finds relations between corpora and pipeline performances
that exploits prior knowledge for the autonomous classification of texts (Table 5).

From the 72 proposed meta-features we tested different subsets according to
their Gini importance from the Random Forest used in strategy (2). A subset of
38 meta-features improved our results relatively by 8% with (2) and 38% with
(1) in terms of average ranking. We also compared this subset against a subset
comprised of 19 traditional meta-features used in related work. Using strategy (2)
our subset outperformed the traditional one by almost 0.8% in average accuracy
and 3 places in average rank. The results also showed a significant difference
between both subsets (p< .001 Student’s t-test). The subset of 38 meta-features
is detailed in Table 6.

Table 5. Results after meta-feature selection

Method (1) (2) (3) (4)

Avg accu 75.16± 0 75.39±0.13 73.57± 0.14 75.16± 0.05

Avg rank 8.68± 0 8.00±0.47 14.42± 0.53 9.05± 0.25

# of 1s 27.00±0 26.44±0.56 6.40± 1.34 16.00± 0.87

In addition, we compared our strategies with commonly used representations
such as pre-trained Word2Vec and Bag-of-Words outperforming them in average
by 9% and 3% respectively, Fig. 2 depicts this comparison (between strategy (4)
and W2V) in the 9 corpora we selected. Despite the robustness of such common
representations their performance can usually be improved by fine tuning some
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Table 6. 38 Meta-features selected by Gini importance

Meta-feature selection

average word length

document per category:

min

max

average

standard deviation

average/stdev

entropy

word per document:

average

skewness

entropy

Imalance Degree

SEM

UVB

SVB

MRH J

VDR

max vocabulary

average vocabulary

sd vocabulary

skweness vocabulary

avg/stdev vocabulary

pca:

singular values sum

explained ratio

explained variance

explained variance (1)

pca max

pca skewness

pca kurtosis

data sparsity

data separability

linear separability

% of zeros

% of adpositions

% of adverbs

% of conjunctions

% of nouns

% of numbers

% of untagged words

difficult words
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of their hyper-parameters or they are largely outperformed by another, as shown
in the results the strategies are able to find these improvements.

Fig. 2. Accuracy comparison between (2), (4) and Word2Vec in 9 corpora.

5 Conclusion and Future Work

We introduced a meta-learning method that takes as input a corpus and without
human intervention builds a model to solve a text classification task focusing
on the selection of a vector-based representation. The results show empirically
that this approach is able to characterize tasks and approximate an optimal
representation. Our work can not only recommend a single representation but
also the best n representations using one of the strategies proposed to rank them,
these can later be used to warm-start an optimization technique allowing us to
expand the search space and, like in similar works on different fields [10], ideally
finding pipelines that perform better than those designed by humans. Our also
work comprises a first step towards the automated recommendation of full text
classification pipelines. The source code of our method is available under an open
source license at: https://github.com/jorgegus/autotext.
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Abstract. Machine learning pipeline potentially consists of several
stages of operations like data preprocessing, feature engineering and
machine learning model training. Each operation has a set of hyper-
parameters, which can become irrelevant for the pipeline when the
operation is not selected. This gives rise to a hierarchical conditional
hyper-parameter space. To optimize this mixed continuous and discrete
conditional hierarchical hyper-parameter space, we propose an efficient
pipeline search and configuration algorithm which combines the power
of Reinforcement Learning and Bayesian Optimization. Empirical results
show that our method performs favorably compared to state of the art
methods like Auto-sklearn, TPOT, Tree Parzen Window, and Random
Search.

Keywords: Bayesian Optimization · Reinforcement Learning ·
Conditional hierarchy search · AutoML

1 Introduction

Over the past years, Machine Learning (ML) has achieved remarkable success
in a wide range of application areas, which has greatly increased the demand
for machine learning systems. However, an efficient machine learning algorithm
crucially depends on a human expert, who has to carefully design the pipeline of
the machine learning system, potentially consisting of data preprocessing, feature
filtering, machine learning algorithm selection, as well as identifying a good set
of hyper-parameters. As there are a large number of possible alternatives of
models as well as hyper-parameters, the need for automated machine learning
(AutoML) has been growing, which is supposed to automatically generate a data
analysis pipeline with machine learning methods and parameter settings that
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are optimized for a given data set, in order to make machine learning methods
available for non-expert users.

Since hyper-parameters of a machine learning model have a large influence
on the performance of the model, hyper-parameter optimization becomes a crit-
ical part of an AutoML system. Popular hyper-parameter optimization methods
include Sequential Bayesian Optimization, which iterates between fitting surro-
gate models that predict model performance, and using them to make choices
about which configurations to investigate.

However, the composition of the machine learning pipelines also plays a vital
role in the performance of AutoML systems. Choosing different data prepro-
cessing or feature engineering techniques as well as choosing different machine
learning models for a specific dataset could potentially result in considerable
performance differences. The joint optimization of the pipeline search and its
associated hyper-parameters configuration could essentially reside under the
umbrella of Combined Algorithm Selection and Hyperparameter optimization
(CASH) problem [31], where Algorithm corresponds to the pipeline and Config-
uration corresponds to the hyper-parameters associated with the pipeline. The
pipelines and hyper-parameters reside in a conditional hierarchical space, where
some hyper-parameters only become valid when the corresponding pipeline is
present. For example, Fig. 1 illustrates such a situation when the data prepro-
cessing and feature engineering operations are selected, which correspond to an
incomplete pipeline, one out of three machine learning algorithms need to be
chosen (indicated by dashed edges) to complete the pipeline, the corresponding
hyper-parameters (indicated by solid edges) of an algorithm only become valid
when the algorithm is selected.

Fig. 1. Example of conditional hierarchical space

To optimize the conditional hyper-parameters space jointly with the pipeline
it is attached to, we embed Bayesian Optimization in the Reinforcement Learning
process, and dub the method ReinBo, which means Machine Learning Pipeline
search and configuration with Reinforcement Learning and Bayesian Optimiza-
tion. Note that ReinBo can solve not only CASH problems, but also any mixed
discrete and continuous conditional hierarchical space optimization, which is left
for future work.
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Our major contributions are:

– Inspired by Hierarchical Reinforcement Learning [14], we transform the con-
ditional hierarchical hyper-parameter optimization problem into subtasks of
pipeline selection and hyper-parameter optimization, which circumvents the
conditional constraint and reduces the search dimension.

– To our best knowledge, we are the first to embed Bayesian Optimization (BO)
into Reinforcement learning, specifically Q Learning [32] for collaborative
joint search of pipelines and hyper-parameters, which is different from using
BO for policy optimization [12], and also different from using BO for hyper-
parameter fine tuning after an optimal pipeline is selected by a reinforcement
learning based AutoML framework [33].

– We provide an open source light weight R language implementation with
benchmark codes1 for the R Machine Learning community which could run
efficiently on a personal computer, and takes much less resources (IO, disk
space for example) compared to other AutoML softwares.

In the following section, we review related works and discuss the differences
to our method. In Sect. 3, we explain our method in detail and also shed light
to connections with Hyperband [22]. In Sect. 4, we benchmark our method by
comparing it with several state of the art methods.

2 Related Work

In this section, we try to classify the current popular AutoML solutions into a
taxonomy and discuss the differences of each individual work with ours.

Sequential Model Based Optimization Family. Auto-sklearn [16] and
Auto-Weka [31] both use Sequential Model-based Algorithm Configuration
(SMAC) [18] to solve the Combined Algorithm Selection and Hyperparameter
optimization (CASH) problem. SMAC [18] transforms the conditional hierarchi-
cal hyper-parameter space into a flat structure by instantiating inactive condi-
tional parameters to default values, which allows the random forest to focus on
active hyper-parameters [18]. A potential drawback for this method is that the
surrogate model needs to learn in a high dimensional hyper-parameter space,
which might need a large sample of observations to be sufficiently trained, while
in practice, running machine learning algorithm is usually very expensive. Tree
Parzen Window (TPE) [7], however, tackles the conditional hierarchical hyper-
parameter space using a tree like Parzen Window to construct two density esti-
mators on top of a tree like hyper-parameter set. Expected improvement induced
from lower and upper quantile density estimators is used to select new candidate
proposals from points generated by Ancestral Sampling.

1 https://github.com/compstat-lmu/paper 2019 ReinBo.

https://github.com/compstat-lmu/paper_2019_ReinBo
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Tree-Based Genetic Programming. TPOT [25] automatically designs and
optimizes machine learning pipelines with a genetic programming [3] algorithm.
The machine learning operators are used as genetic programming primitives,
which will be combined by tree-based pipelines and the Genetic Programming
algorithm is used to evolve tree-based pipelines until the best pipeline is found.
Similar methods also include Recipe [27]. However, this family of methods does
not scale well [24]. In this paper, we aim for an AutoML system that could give
a valuable configured pipeline within limited time.

Monte Carlo Tree Search Alike. ML-Plan [24] is an AutoML system, built
upon a Hierarchical Task Network, which uses a Monte Carlo Tree Search like
algorithm to search for pipelines and also configure the pipeline with hyper-
parameters. Task is expanded based on best-first search, where the score is esti-
mated by a randomized depth first search by randomly trying different subtree
possibilities on a Hierarchical Task Network. To ensure exploration, ML-Plan
gives equal possibility to the starting node in a Hierarchical Task Network and
then uses a best-first strategy for searching at the lower part of the network.
Potential drawback for this method is that the hyper-parameter space is dis-
cretized, which might essentially lose good candidates in continuous spaces since
large continuous hyper-parameter spaces would be essentially hard to discretize.

Reinforcement Learning Based Neural Network Architecture Search.
This family of methods are usually not termed as AutoML systems but rather
Neural Architecture Search. For instance, MetaQNN [2] uses Q-learning to search
convolutional neural network architectures. The learning agent is trained to
sequentially choose CNN layers using Q-learning with an ε-greedy exploration
strategy and the goal is to maximize the cross-validation accuracy. In [35], instead
of using Q-learning, the authors use Recurrent Neural Networks as the rein-
forcement learning policy approximator to generate variable strings to represent
various neural architecture forms. The reward-function is designed to be the
validation performance of the constructed network. The reinforcement learning
policy is trained with gradient descent algorithm, specifically REINFORCE. The
architecture elements being searched are very similar to MetaQNN. Inspired from
[35], we also assume the machine learning pipeline to be optimized could be rep-
resented by a variable length string, but our work is different from [35] in that we
use both Deep Q-learning and Tabular Q-learning. More importantly, compared
with both [2] and [35], which optimize the neural architecture, the elements of the
architecture are mostly factor variables like layer type or discretized elements like
filter size, while in this paper, we deal heavily with continuous hyper-parameters
(The C and σ for a rbf kernel Support Vector Machine). To jointly optimize the
discrete pipeline choice and associated continuous hyper-parameters, we embed
Bayesian Optimization inside our reinforcement learning agent.

Other Reinforcement Learning Based Methods. In [33], the authors also
combine pipeline search and hyper-parameter optimization in a reinforcement
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learning process based on the PEORL [34] framework, however, the hyper-
parameter is randomly sampled during the reinforcement learning process, an
extra stage is needed to sweep the hyper-parameters using hyper-parameter
optimization techniques, while in our work, hyper-parameter optimization is
embedded in the reinforcement learning process. Alpha3M [15] combined MCTS
and recurrent neural network in a self play [28] fashion, however, it seems that
Alpha3M does not perform better than the state of the art AutoML systems.
For example, out of all the 6 OpenML datasets they have used to compare with
state of the art AutoML systems, Alpha3M only shows a clear improvement on
1 dataset (spectf) against Auto-sklearn [16] and TPOT [25], according to Fig. 4
in [15]. Furthermore, it is not clear to us how the hyper-parameters are set and if
Bayesian Optimization is used. The implementation of Alpha3M takes advantage
of the GPUs [15] for the fast performance while our method has a light weight
implementation which efficiently runs with CPU and does not necessarily need
Neural Networks.

3 Method

3.1 Towards ReinBo

Fig. 2. Illustrative example of selected pipeline and associated hyper-parameters (Color
figure online)

As shown in Fig. 2, we assume that a machine learning pipeline potentially con-
sists of 3 stages (s1 through s3 in the figure), which include data preprocessing
(imputations, NA and more), feature engineering (Principal Component Anal-
ysis for feature transform, Anova for feature filtering and more), and machine
learning model selection (learner like SVM, Random Forest). Specifically, we
use operation “NA” to indicate that no operation would be done in the stage
in question. Figure 2 just serves as a toy but working example for ReinBo, in
practice, there are a lot more operations available. A particular operation has
associated hyper-parameters (for instance the percentage of selected features
in Anova feature filtering). In Fig. 2, dark color filled cells (NA, Anova, SVM)
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represent selected operations and their associated active hyper-parameters (per-
centage, sigma, C), while hyper-parameters for inactive operations are not drawn
in the figure.

Observing from Fig. 2, along with Fig. 1, we could think of the pipeline selec-
tion and configuration problem as a two-phase process. During the first phase,
a planning algorithm guides the agent to choose a path which corresponds to an
unconfigured pipeline. This is similar to a multi-armed bandit problem, where
each path corresponds to one arm, while difference lies in that the agent can not
directly pull a discrete arm but have to pull across several consecutive discrete
arm groups (each arm group corresponds to a stage in Fig. 2) and the agent only
gets reward after choosing one of arms from the last group. The second phase
is similar to contextual bandit with continuous action space (corresponding to
hyper-parameters), where the context is which path from the first phase has
been selected.

We model the first phase as a reinforcement learning episode, where a par-
ticular operation in stage i is treated as action ai, taken upon corresponding
state si. State si could be represented by actions taken up to the current stage
for example. The pipeline search problem is then to find an optimal policy π to
decide which operation (action) to take at a particular state. The action value
function Q(s, a) at each state tells us how favorable a particular operation is.
We use Asi to denote the space of legal actions at state si. Suppose a roll-out of
states trajectory for one composition (episode) is s1, . . . , sK , the corresponding
space of pipeline could be denoted by

∏K
i=1 Asi , where K is the total number of

stages and we use
∏

to denote the Cartesian Product. For a more general nota-
tion, we use A(Si,Φai

) to denote the space of actions, together with configurable
hyper-parameters when the state is Si at stage i.

We search for potentially better hyper-parameters in the second phase with
Bayesian Optimization. Aside from the pipeline itself, each concrete operation
(action ai) at stage i is configurable by a set of hyper-parameters Φai

. Φai
can

be hyper-parameters set for a preprocessor like the ratio of variance to keep in
PCA or hyper-parameters set for a machine learning model like the C and σ
hyper-parameter for SVM. Thus a configured pipeline search space would be∏K

i=1 A(Si; Φai
) where we use Φai

to denote the conditional hyper-parameter
space at stage i.

The connection point between reinforcement learning and Bayesian Opti-
mization lies in the reward function design in the reinforcement learning part.
During the composition process, there is no signal available to judge how good
a current uncompleted pipeline is until the final learner (classifier) is configured
with hyper-parameters and trained on the data. At the starting point, different
pipelines are tried out randomly, which corresponds to an untrained exploration
policy π. A completed pipeline with a joint non-conditional hyper-parameter
search space is optimized with Bayesian Optimization for a few steps. The best
negative loss is then used as a reward at the end of an episode to guide the rein-
forcement learning agent towards a better policy. The environment uncertainty
only comes with the stochastic reward, while the transition from current state



74 X. Sun et al.

to next state through action is deterministic. We choose to use Q-learning [32]
to optimize the policy where we have tried the Tabular Q-learning and Deep Q-
learning [23]. We find out that the Tabular Q-learning works better than Deep
Q-learning. For space constraint, the latter is not discussed in detail in this work.

We need Bayesian Optimization to optimize the hyper-parameters in a fine
grained level with limited budget, but also want to give budget preference to
those promising pipelines. To circumvent the complexity of conditional and
hierarchical relationship between hyper-parameters and pipeline, we use rein-
forcement learning to choose a pipeline and let Bayesian Optimization tune
the hyper-parameters. We model the variation of the same pipeline with dif-
ferent hyper-parameters as the environment uncertainty. By using separate sur-
rogate model for each pipeline, we circumvent the risk of mistakenly modeling
improper dependent structure between different hyper-parameters, at a minor
cost of maintaining those searched pipelines surrogate model as dictionary in
memory.

3.2 Connections to Hyperband

The idea of only using a few steps of Bayesian Optimization is inspired by
Hyperband [22], where the trade-off between aggressively exploring more config-
urations and giving each configuration more resources to be validated is solved
by grid searching. Instead, in this paper, we do not need the grid search, promis-
ing pipelines will get a higher probability to be selected by our reinforcement
learning agent which means these pipelines get more chances to be evaluated
by the Bayesian Optimization process. The trade-off between exploitation and
exploration is naturally resolved by an ε-greedy policy, and by annealing ε from
a large value to a small value, we encourage more exploration at the beginning.
Compared to Hyperband, our method selects the budgets allocated for a partic-
ular pipeline automatically, the effectiveness of our strategy could then rely on
the recent success of reinforcement learning in different areas.

3.3 Connection and Extension to Hierarchical Reinforcement
Learning

Hierarchical Reinforcement Learning (hrl) [4] is proposed to tackle the curse of
dimensionality in Reinforcement Learning [20]. Although the Option approach
[4] is more popular, our method has a close connection to the MAXQ subtask
approach [14], which divides a task recursively into subtasks and decompose
the value function accordingly. The current version of ReinBo can be treated as
a special case of the MAXQ task decomposition, where we have two tasks of
pipeline selection and hyper-parameter configuration. However, in the current
version, most states are not shared between these two tasks, so there is no
need to use MAXQ hrl algorithm to solve the problem. But our method can
be naturally extended to a hrl version when our design space of pipeline allow
shared state between the two subtasks. We leave it as future work to optimize
such complicated pipelines using Hierarchical Reinforcement Learning.



ML ReinBo 75

3.4 Procedures of ReinBo

As shown in Algorithm 1, we first initialize a policy π for the agent which can
be represented by neural network or a Q-table initialized with certain strat-
egy, coupled with an exploration mechanism like the ε-greedy strategy. During
the roll-out, initial populations of pipelines get sampled, with the corresponding
hyper-parameter space Λ(

∏
ai) =

∏
i Φai

to be optimized by Bayesian Opti-
mization for several steps, where Λ means extracting the hyper-parameter set
from a pipeline. The corresponding surrogate model is stored in the dictionary
R for future episode if the same pipeline gets rolled out again. The performance
of the pipeline on validation data will be used to serve as feedback signal or
reward to the reinforcement learning agent to conduct policy iteration.

Algorithm 1. ML ReinBo
Require: dataset D, pipeline operators and hyper-parameters candidates

Initialize Policy π
Initialize Surrogate Dictionary R ← ∅ with pipeline as key
while Budget not reached do

Roll-out an unconfigured pipeline
∏

ai according to policy π
Extract hyper-parameters set for the ground pipeline Λ(

∏
ai) =

∏
i Φai

Reward R ← BO PROBE(
∏

ai, Λ, R)
Update Policy π with reinforcement learning algorithm with reward R

end while

Once an unconfigured pipeline is constructed at the end of the episode, run-
ning Bayesian Optimization could be beneficial in searching for a more favorable
hyper-parameter setting. However, Bayesian Hyperparameter Optimization with
large budgets could be rather expensive. Instead, we optimize hyper-parameters
for an unconfigured pipeline only for several iterations. For example, we take the
number of iterations to be 2 or 3 times the dimension of hyper-parameter space,
which means that hyper-parameter spaces with higher dimension will get more
sampling budgets. After each episode, the current best configuration’s perfor-
mance for this pipeline in question is used as reward. The next time the same
pipeline is sampled, the surrogate model could be retrieved from the dictionary
R to facilitate further search using Bayesian Optimization. We dub the hyper-
parameter search process as BO PROBE, with details shown in Algorithm2.2

If an unconfigured pipeline is not sampled yet, an initial design is generated to
facilitate an initial surrogate model.

2 To save budgets, when an unconfigured pipeline does not improve after a number of
trials of BO PROBE, it can also be suspended for future evaluation.
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Algorithm 2. BO PROBE(
∏

ai,Λ,R)
Require: Surrogate Dictionary R with pipeline as key

if R{∏
i ai} = ∅ then

generate initial design of size ninit hyper-parameter configurations {φj}1:ninit for
surrogate model with corresponding hyper-parameters set Λ(

∏
ai).

for j in 1 : ninit do
evaluate the pipeline with φj to get predicative accuracy yj

end for
initialize surrogate model R{∏

i ai} by fitting {(φj , 1 − yj)}1:ninit

end if
for k in 1 : nprobe do

propose new configuration φk according to surrogate model R{∏
ai}

evaluate new configuration to get accuracy yk to update model R{∏
ai}

end for
return y∗ ← best accuracy until now

4 Experiments

4.1 Implementation, Comparison Methods and Setups

Our initial implementation for ReinBo is based on R machine learning packages
mlr [10], mlrCPO [8] for pipeline construction and mlrMBO [11] for Bayesian
Optimization. The R package parabox 3 is implemented for this project to spec-
ify conditional hierarchical hyper-parameter space and provides the conditional
ancestral sampling (random search in conditional hyper-parameter space). The
R package rlR4 is implemented for reinforcement learning where the user could
implement a custom environment as input. All python packages are invoked with
the R-Python interface reticulate [1].

To evaluate the performance of our proposed method, we compare the per-
formance of ReinBo with several state of the art AutoML systems, as well as
several conditional hyper-parameter space tuning methods running on top of
our R implementation, in order to reduce implementation and search space con-
founding factors. We compare against Auto-sklearn [16] and TPOT [25] (TPOT
with two search spaces to reduce confounding5), both based on scikit-learn [26].
ML-Plan [24] is not included due to lack of detailed documentation and exam-
ples online when experiment is conducted. Additionally, we compare against
hyper-parameter optimization techniques which preserve the hierarchical con-
ditional structure, including Tree-structured Parzen Estimator (TPE) [7] used
in Hyperopt [6], and Random Search with conditional Ancestral Sampling (self
implemented in R package parabox ). Random Search remains a very strong base-
line in a lot of machine learning hyper-parameter optimization scenarios [5].

3 https://github.com/smilesun/parabox.
4 https://github.com/smilesun/rlR.
5 We also selected a matching search space of Autosklearn according to Table 1 but

still get worse results than Reinbo.

https://github.com/smilesun/parabox
https://github.com/smilesun/rlR
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Evaluation Criteria. As warned in [24], many state of the art AutoML systems
seem to have missed to deal with the risk of overfitting. Therefore, in the exper-
iment part, we focus on evaluating the generalization capability of the selected
pipeline empirically. To avoid any potential confusion from synonyms, we use
Dopt to represent the part of a dataset fed into a given AutoML system and
use Dtest to represent the locked out part [29] of the same dataset used to test
the generalization capacity. The split of Dopt and Dtest is done by Cross Vali-
dation, which means for a dataset D, D = Dopt

⋃
Dtest and Dopt

⋂
Dtest = ∅.

To create the Dopt and Dtest split, we use 5-fold cross-validation (CV5 ), which
corresponds to the outer loop of Nested Cross Validation (NCV ) [13]. We take
the aggregated mmce (mean miss-classification error) across the 5-fold iterations
over each Dtest as ultimate performance measure.

As of optimization on Dopt, instead of using running time as budget, we use
the number of configuration evaluations as the unit of budget, to circumvent
effects of hardware and network load variations, etc. For each Dopt, we assign
a budget of 1000 times of CV5 equivalents (5000 times model training) to each
AutoML algorithm, which corresponds to the inner loop of NCV [13].

Other Setups. To account for different AutoML systems data input format
incompatibility problem, we conduct dummy encoding to categorical features
beforehand. Aiming for a light weight implementation, in the experiment, we
limit our choice of pipeline components for ReinBo. We compose a pipeline
in 3 stages, with potential operations/actions at each stage listed in Table 1.
Associated hyper-parameters with an unconfigured pipeline are listed in Table 2.
We call the components and associated hyper-parameters the pipeline pool. The
same pipeline pool is used for ReinBo, TPE and Random Search.

For Auto-sklearn, Meta-learning and ensemble are disabled, the resampling
strategy is set to be CV5, stop criteria is changed to budget instead of time
and all other configurations are kept default. We have contacted the author of
Autosklearn through Github for the right use of the API to ensure the above
configuration is satisfied. For TPOT (version 0.9), the default configuration space
contains a lot of operators while the light version provides only fast models and
pre-processors. The light TPOT is therefore less time-consuming but it could
probably lead to lower accuracy in consequence. For this reason, we compare
ReinBo with both TPOT with the default configuration and TPOT with light
configuration, and we call them TPOT and TPOT-light respectively. TPOT is
configured to allow equal amount of budgets with all methods being compared
and other configurations are left to be default.

Datasets. We experimented on a set of standard benchmarking datasets of high
quality collected from OpenML-CC186 [9] and Auto-Weka [30], which are rather
well-curated from many thousands and have diverse numbers of classes, features,
observations, as well as various ratios of the minority and majority class size.
Summary of these datasets is listed in Table 3.
6 https://www.openml.org/s/99.

https://www.openml.org/s/99
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Table 1. List of pipeline operations. An operation of “NA” here is used to indicate
that no operation would be taken in the corresponding stage. Please refer to mlrCPO
documentation for the detailed meaning of these operators.

Stage Operation/action

1 DataPreprocess Scale(default) Scale(center=FALSE) Scale(scale=FALSE) SpatialSign NA

2 Feature

engineering

Pca FilterKruskal FilterAnova FilterUnivariate NA

3Classifier kknn ksvm ranger xgboost naiveBayes

Table 2. List of hyper-parameters to the operations in Table 1. “p” in the column
“Range” indicates the number of features of the original dataset. We invite the user
to refer to the R packages mlrCPO and mlr documentations for the exact meaning of
operation, hyper-parameters, etc.

Operation Parameter Type Range

Anonva, Kruskal, Univariate perc numeric (0.1, 1)

Pca rank integer (p/10, p)

kknn k integer (1, 20)

ksvm C numeric (2−15, 215)

ksvm sigma numeric (2−15, 215)

ranger mtry integer (p/10, p/1.5)

ranger sample.fraction numeric (0.1, 1)

xgboost eta numeric (0.001, 0.3)

xgboost max depth integer (1, 15)

xgboost subsample numeric (0.5, 1)

xgboost colsample bytree numeric (0.5, 1)

xgboost min child weight numeric (0, 50)

naiveBayes laplace numeric (0.01, 100)

4.2 Experiment Results

In Fig. 3, we compare the mmce (1-Accuracy) of each method with boxplot over
the datasets listed in Table 3 across 10 statistical replications. Additionally, we
list numerical results in Table 4 with statistical test, where each numerical value
represents the aggregated mean mmce over the statistical replications. Underline
in each row indicates the smallest mean value over the corresponding dataset. The
bold-faced values indicate that the corresponding algorithm does not perform sig-
nificantly worse than the underlined algorithm on the corresponding dataset based
on Mann-Whitney U test. As shown in Table 4, ML-ReinBo has boldfaces for 8 of
10 datasets followed by much less boldfaces from other methods.

In Table 5, we compare win (significantly better), lose and tie (neither signifi-
cantly better nor worse) relationships according to the test. As shown in Table 5,
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Table 3. List of OpenML datasets for experiment. Columns are the OpenML task id
and name, the number of classes (nClass), features (nFeat) and observations (nObs),
as well as the ratio of the minority and majority class sizes (rMinMaj).

task id Name nClass nFeat nObs rMinMaj

14 mfeat-fourier 10 77 2000 1.00

23 cmc 3 10 1473 0.53

37 diabetes 2 9 768 0.54

53 vehicle 4 19 846 0.91

3917 kc1 2 22 2109 0.18

9946 wdbc 2 31 569 0.59

9952 phoneme 2 6 5404 0.42

9978 ozone-level-8hr 2 73 2534 0.07

146817 steel-plates-fault 7 28 1941 0.08

146820 wilt 2 6 4839 0.06

ReinBo has won TPOT on 5 datasets and performed worse than TPOT for only
one dataset. And not surprisingly, TPOT has performed considerably better than
TPOT-light in the empirical experiments since TPOT-light has smaller search
space with only fast models and preprocessors. ReinBo also performs much bet-
ter than Random Search and TPE, where ReinBo has significantly won them
on 5 and 6 tasks respectively and lost only on 1 task. Compared to ReinBo,
Auto-sklearn has won only once and behaved worse than ReinBo on 3 of 10
datasets.

Table 4. Average performance (mmce) of algorithms across 10 statistical replications
with different seeds. In each run the aggregated mmce based over the outer loop of
NCV is taken as performance measure for each algorithm. Each value in this table
is the mean value of the aggregated mmce values across 10 replications and the best
mean value for each dataset is underlined. The bold-faced values indicate that the
algorithm does not perform significantly worse than the underlined algorithm on the
corresponding dataset based on Mann-Whitney U test.

Dataset Auto-sklearn TPE TPOT TPOT-light Random ReinBo Underlined algorithm

mfeat-fourier 0.1412 0.1542 0.1451 0.1489 0.1580 0.1278 ReinBo

cmc 0.4470 0.4485 0.4457 0.4506 0.4500 0.4485 TPOT

diabetes 0.2483 0.2436 0.2452 0.2413 0.2455 0.2395 ReinBo

vehicle 0.1679 0.2117 0.1784 0.2057 0.2020 0.1621 ReinBo

kc1 0.1421 0.1351 0.1380 0.1438 0.1353 0.1387 TPE

wdbc 0.0299 0.0348 0.0353 0.0264 0.0341 0.0271 TPOT-light

phoneme 0.0902 0.0920 0.0893 0.1016 0.0912 0.0905 TPOT

ozone-level-8hr 0.0588 0.0601 0.0577 0.0603 0.0598 0.0578 TPOT

steel-plates-fault 0.2041 0.2330 0.1985 0.2601 0.2146 0.2141 TPOT

wilt 0.0132 0.0159 0.0141 0.0164 0.0161 0.0123 ReinBo
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Fig. 3. Boxplots showing the distribution of aggregated mmce achieved by each algo-
rithm within 10 statistical replications.

Meanwhile, ReinBo has comparatively short box ranges in most cases as
shown in Fig. 3. Hence, we would conclude that ReinBo performed better and
more stably than other algorithms in our empirical experiments. Besides compar-
ing the final performance, it is also interesting to look into the machine learning
pipelines suggested by an AutoML system. The frequencies of the operators in
the pipelines suggested by ReinBo are listed in Table 6.

Running Time. Figure 4 shows the average running time each algorithm takes
to complete one experiment, which corresponds to a Nested Cross Validation
(NCV ) process. It can be seen that Auto-sklearn is the most time-consuming

Table 5. Win-Lose-Tie comparison between ReinBo and other algorithms on bench-
marking datasets based on Mann-Whitney U test (significance level α = 0.05).

Random search TPE Auto-sklearn TPOT-light TPOT

ReinBo Win 5 6 3 7 5

Tie 4 3 6 3 4

Lose 1 1 1 0 1
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Table 6. Frequency of operators suggested by ReinBo. During empirical experiments
there are 500 pipelines in total suggested by ReinBo at the end of optimization process.
The frequency (Freq.) and relative frequency (Relative freq.) of each operator selected
in best pipelines are shown here.

Preprocess Freq.Relative freq.Feature

engineering

Freq.Relative freq.Classifier Freq.Relative freq.

Scale(default) 259 51.8% FilterAnova 210 42.0% ksvm 276 55.2%

Scale(scale=FALSE) 106 21.2% FilterKruskal 139 27.8% ranger 201 40.2%

Scale(center=FALSE) 67 13.4% PCA 63 12.6% kknn 12 2.4%

NA 36 7.2% Univariate 46 9.2% xgboost 10 2.0%

SpatialSign 32 6.4% NA 42 8.4% naiveBayes 1 0.2%

algorithm in our empirical experiments. Although TPOT-light is the fastest algo-
rithm, it resulted in worse performance because it contains only fast operators.
Our proposed ReinBo algorithm spent less time than Random Search and state
of the art AutoML systems TPOT and Auto-sklearn in average.
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Fig. 4. Comparison of average running time of each algorithm per data set with NCV

5 Summary and Future Work

We present a new AutoML algorithm ReinBo by embedding Bayesian Opti-
mization into Reinforcement Learning. The Reinforcement Learning takes care
of pipeline composition, and Bayesian Optimization takes care of configuring the
hyper-parameters associated with the composed pipeline. ReinBo is inspired by
Hyperband and previous efforts in AutoML by considering the trade-off of assign-
ing resources to a particular configuration and exploring more configurations as
a reinforcement learning problem, where the learned policy solves the trade-off
automatically. Experiments show our method has a considerable improvement
compared to other state of the art systems and methods. For future work, it
would be interesting to include meta learning into our system, which does not
only learn how to construct a pipeline and configure it for a dataset in ques-
tion, but also how to generalize the learned policy to a wide range of datasets
by learning jointly on the meta features. Additionally, it would be nice to see
how ReinBo performs on jointly optimizing neural architecture and continuous
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hyper-parameters like learning rate and momentum, as well as applications like
Computer Vision [19] and semantic web based Recommendation Systems [21]
where pipeline might play a role. Multi-Objective Bayesian Optimization [17]
for hyper-parameter tuning would also be future direction.

Acknowledgement. Janek Thomas gave us many helpful suggestions, Martin Binder
and Florian Pfisterer helped us with mlrCPO and auto-sklearn setup.
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Abstract. An exploratory data analysis system should be aware of
what a user already knows and what the user wants to know of the
data. Otherwise it is impossible to provide the user with truly infor-
mative and useful views of the data. In our recently introduced frame-
work for human-guided data exploration (Puolamäki et al. [20]), both
the user’s knowledge and objectives are modelled as distributions over
data, parametrised by tile constraints. This makes it possible to show
the users the most informative views given their current knowledge and
objectives. Often the data, however, comes with a class label and the user
is interested only of the features informative related to the class. In non-
interactive settings there exist dimensionality reduction methods, such as
supervised PCA (Barshan et al. [1]), to make such visualisations, but no
such method takes the user’s knowledge or objectives into account. Here,
we formulate an information criterion for supervised human-guided data
exploration to find the most informative views about the class structure of
the data by taking both the user’s current knowledge and objectives into
account. We study experimentally the scalability of our method for inter-
active use, and stability with respect to the size of the class of interest.
We show that our method gives understandable and useful results when
analysing real-world datasets, and a comparison to SPCA demonstrates
the effect of the user’s background knowledge. The implementation will
be released as an open source software library.

1 Introduction and Related Work

Exploratory data analysis (EDA) is a long studied topic [24]. More often than
not, the data is so high-dimensional that it is not possible for a user to view it at
once. This problem can be solved, e.g., by various dimensionality reduction (DR)
methods that attempt to embed the data in a lower-dimensional manifold so that
a chosen metrics is preserved as accurately as possible [15]. The main drawback
in almost all DR methods is that the criteria by which dimensionality is reduced
are often fixed, or at least it is not clear how to take into account what the
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user already knows and what are the objectives of the user when computing the
embedding; see [23] for a survey of recent work on interactive DR. EDA systems
also incorporate visual and interactive components, and visual interactive EDA
has applications in different contexts, e.g., in item-set mining and subgroup
discovery [3,8,16], information retrieval [22], and network analysis [4].

One approach to incorporate the user’s knowledge to EDA is to model this as
a distribution over datasets—background distribution—and then show the user
an embedding that gives the user as much information as possible that the user
did not already know. One of the original works in modelling the background
distribution using randomisation was [11], and in [6] maximum entropy distri-
butions were used. In both of these works the users can encode their knowledge
as constraints. Later, these ideas have been realised as parts of working EDA
systems with DR methods able to show the user what the user does not already
know and able to absorb the relations the user has learned from the data, see,
e.g., [5,12,13,18,19,21,25]. The drawback in all of these works is, however, that
the EDA process is unguided: the user is shown something she or he does not
know and what is therefore by definition always a surprise. Recently, we solved
this problem in [20] by allowing the user to formulate also her or his objectives
in terms of the relations of attributes the user is interested in. This allows the
user to guide the exploration to patterns of interest.

Often, however, the user is not interested in all possible features of the data,
but only in features that are informative, e.g., of a given class label. Supervised
DR methods try to find an embedding that shows only the features of the data
that are informative in such cases. Typical examples of supervised DR, such as
Fisher’s discriminant analysis [9], metric learning [26], sufficient dimensionality
reduction [10], and supervised PCA [1] are however all based on a fixed embed-
ding criteria. User interaction in guiding data exploration has been considered
in the context of database management systems, e.g., in [7], where the user tells
the system which samples are relevant and which are not, allowing the system
to incrementally lead the user to explore towards interesting data areas. How-
ever, to the best of our knowledge there are no earlier approaches that take
into account both the human’s subjective background knowledge and allow for
supervised dimensionality reduction.

Contributions. The objective of this work is to propose a method of supervised
DR for interactive EDA systems that take both the user’s background knowledge
and the user’s objectives into account. Our contributions are as follows: (i) An
information criterion for supervised human-guided data exploration, where we can
find the most informative views about the class structure of the data. (ii) An
experimental study of scalability for interactive use, and stability with respect to
the size of the class of interest. (iii) A demonstration showing that our method
gives understandable and useful results when analysing real-world datasets.

Organisation. We provide a recap of the necessary concepts of the human-guided
data exploration framework proposed in [20] in Sect. 2. In Sect. 3 we extend and
modify the framework from [20] into a supervised setting. In Sect. 4 we evaluate
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Fig. 1. Samples drawn from the distribution of datasets where each attribute has the
same marginal distribution as the toy data Ztoy, see Examples 1 and 2 for details. Class
attribute Ytoy shown with colour: class ‘1’ in red and class ‘−1’ in black. A sample of
1000 data points plotted for illustration. Here Ztoy is permuted using (a) a vector of
identity permutations (i.e., the plot shows Ztoy) (b) a vector of random permutations
(i.e., the plot shows an unconstrained permutation of Ztoy) (c) a vector of permutations
allowed by tile t from Example 2. (Color figure online)

the scalability of our method for interactive use using crafted datasets. We also
provide real-life data use cases demonstrating the utility of our method. We
present our conclusions and directions for further work in Sect. 5.

2 Background

We start by introducing our notation and providing a brief recap to human-
guided data exploration (HGDE) framework proposed in [20]. For now, we assume
that X is a real-valued n × m data matrix (dataset) and Y ∈ Ln a vector of
class labels in L. Here X(i, j) (resp. Y (i)) denotes the ith element (in column j).
Each column X(·, j), j ∈ [m], is an attribute in the dataset, where we used the
shorthand [m] = {1, . . . , m}. Let Z = (X|Y ) denote the n×m′ where m′ = m+1
data matrix obtained by augmenting X with Y .

A permutation of matrix Z is defined as follows.

Definition 1 (Permutation). Let P denote the set of permutation functions
of length n such that π : [n] �→ [n] is a bijection for all π ∈ P, and denote by
(π1, . . . , πm′) ∈ Pm′

the vector of column-specific permutations. A permutation
̂Z of the data matrix Z is then given as ̂Z(i, j) = Z(πj(i), j).

When permutation functions are sampled uniformly at random, we obtain a
uniform sample from the distribution of datasets where each of the attributes
has the same marginal distribution as the original data.

Example 1. We will use a running example throughout the paper to illustrate the
main concepts. Our artificial toy data Ztoy consists of a three dimensional matrix
Xtoy ∈ R

n×3 and a binary class attribute Ytoy ∈ {−1, 1}n, where n = 4000,
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shown in Fig. 1a. The matrix Xtoy is centred and scaled to unit variance. There
are 2000 data points in class ‘−1’ of Ytoy (coloured black in Fig. 1a) and they
are clustered in the first two dimensions of Xtoy. There are also 2000 data points
in class ‘1’ of Ytoy (coloured red in Fig. 1a), but the points separate into two
clusters (consisting of 500 points and 1500 points) in the first two dimensions of
Xtoy. The third dimension of Xtoy is random noise for both classes.

We can produce a uniform sample from the distribution of datasets where
each of the attributes has the same marginal distribution as our toy data, by
sampling a vector of permutations (π1, . . . , π4) and permuting the toy data, see
Fig. 1b for an example of such a sample. This sample represents user’s knowledge
of the data if the user knows only the marginal distributions of the data but is
unaware of any relations between the class and the attributes.

We will next parametrise this distribution with tiles preserving the relations1
in the data matrix Z for a subset of rows and columns: a tile is a tuple t = (R,C),
where R ⊆ [n] and C ⊆ [m′]. In an unconstrained case, there are (n!)m

′
allowed

vectors of permutations. The tiles constrain the allowed permutations as follows.

Definition 2 (Tile constraint). Given a tile t = (R,C), the vector of per-
mutations (π1, . . . , πm′) ∈ Pm′

is allowed by t iff the following condition is true
for all i ∈ [n], j ∈ [m′], and j′ ∈ [m′]:

i ∈ R ∧ {j, j′} ⊆ C =⇒ πj(i) ∈ R ∧ πj(i) = πj′(i).

Given a set of tiles T , (π1, . . . , πm′) is allowed iff it is allowed by all t ∈ T .

A tile defines a subset of rows and columns, and the rows in this subset are
permuted by the same permutation function in each column in the tile. In other
words, the relations between the attributes inside the tile are preserved (such
as correlations etc.). Notice that the identity permutation is always an allowed
permutation. Now, the sampling problem can be formulated as follows.

Problem 1 (Sampling problem). Given a set of tiles T , draw samples uniformly
at random from vectors of permutations in Pm′

allowed by T .

The sampling problem is trivial when the tiles are non-overlapping. In the case
of overlapping tiles, one can always merge tiles to obtain an equivalent set of
non-overlapping tiles (i.e., a tiling) as shown in [20].

Example 2. Let us consider again the toy data Ztoy and define a tile constraint
t = (R,C) as follows. Let R be the set of points from class ‘1’ that are separated
from the points in class ‘−1’ along the second attribute in Xtoy, i.e., the larger
of the two red clusters, and let C = {1, 2, 4}, i.e., the first two attributes of
Xtoy and the class attribute Ytoy. Now, if we permute Ztoy using a vector of
permutations allowed by t, we obtain a sample data in which the relations inside
the tile are preserved. An example of such a data sample is shown in Fig. 1c.
This distributions models the case where the user is aware that the points in the
tile are in class ‘1’ and that they form a cluster in attributes X1 vs. X2.
1 We use the general term relation for any structure in data that can be controlled

using the constrained permutation scheme, e.g., correlation or cluster structure.
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Focusing Exploration Using Hypotheses. The tile constraints can also be used to
specify the relations in which the user is interested [20]. The so-called hypothesis
tilings define the items R and attributes C of interest, and the relations between
the attributes that the user is interested in through a partition of C. To simplify
the presentation here, we will make the assumption that the user is interested
in all relations between all the attributes. This restricted setting reduces to
unguided data exploration, where the user is interested in all unknown inter-
attribute relations in the data. Notice that the HGDE framework allows the
user to define more general hypotheses in a flexible way (see [20] for details) and
our current approach is compatible with the more general hypothesis as well.

The intuition is that we model two distributions over data sets: (i) the one
which models what the user can learn of the interesting relations in the data
(formalised by hypothesis 1), and (ii) the other which models what the user
already knows of the interesting relations in the data (formalised by hypothe-
sis 2). The dimensionality reduction problem is then to find a direction v ∈ R

m

in which the two distributions differ the most, using a suitable objective function.
In [20], e.g., the objective in DR was essentially to find the direction maximising
variance, which will by definition give a user a view (projection) that is the most
informative. More formally, let us thus consider the following hypotheses:

– hypothesis 1: there are relations in data between all the attributes, and
– hypothesis 2: there are no relations in data between any of the attributes.

Now, a distribution p1 conforming to hypothesis 1 can be characterised using
the tile t1 = ([n], [m′]), which restricts the set of allowed vectors of permutations
so that every column (attribute) has to be permuted using the same permuta-
tion. On the other hand, a distribution p2 conforming to hypothesis 2 can be
characterised using the set of tiles {([n], {j}) | j ∈ [m′]}, which places no restric-
tions on the set of allowed vectors of permutations, i.e., every column (attribute)
is permuted independently.

The knowledge of the user concerning relations in the data is described by
tiles defined by the user during exploration process (user tiles), which are merged
into the both of the hypothesis tilings. The process is iterative in the sense that
after the user adds more constraints, a new direction v is sought. While the
permutation-based randomisation scheme is general to all data types, the pro-
jection pursuit in [20] is restricted to real-valued data, and reduces to principal
component analysis (PCA) when the user has initially no background knowledge
and the hypotheses cover all the data.

Example 3. In Fig. 2a the projection of the real-valued part Xtoy to the first
two principal components is shown, which corresponds to the most informative
projection in the HGDE framework when the user has no background knowledge
and the hypotheses cover all the data. While this projection provides the view to
data maximising variance, it is not very useful in case if the user was interested
in, e.g., the class ‘1’.
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Fig. 2. Toy data Ztoy projected into first two principal components using PCA (a) and
SPCA (b). Colors as in Fig. 1. (Color figure online)

3 Supervised Exploration

Example 3 shows that the most informative projection in the HGDE framework
does not take into account the class information, which is by no means surprising,
since only the real-valued part of the data was used. We now extend the HGDE
framework to a supervised setting, i.e., instead of looking for directions in which
the distributions corresponding to hypotheses differ the most in general, we are
interested in finding directions which give most information about a class.

Example 4. Let us assume that a user is interested in class ‘1’ in our toy data
Ztoy. One alternative could be to use supervised PCA (SPCA) [1]. In Fig. 2b we
provide a projection obtained performing SPCA on Xtoy with delta-kernel for
Ytoy. Clearly, the x-axis separates the data with respect to Ytoy. However, if we
assume that the user already has some background knowledge about the data,
e.g., the user knows the relations formulated in terms of tile t from Example 2,
this projection becomes less informative and there is no direct way to incorporate
the user’s knowledge into SPCA.

As a further observation, we note that when there is only a single target attribute
(as it is the case with our present work), the resulting optimisation problem in
SPCA involves a rank-1 matrix, and thus only the first component contains
meaningful information.

We formulate now our main problem, i.e., how to find the direction v ∈ R
m

that is the most informative with respect to a particular class c ∈ L. We will use
two hypotheses, hypothesis 1 and hypothesis 2, formulated as described in
Sect. 2. Furthermore, we assume that the tile constraints used to represent the
background knowledge of a user are merged into both hypotheses, and when we
refer to hypothesis 1 and hypothesis 2, we always assume that the current
user tiles are merged into both.
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Problem 2 (Main problem). Given distribution p1 conforming to hypothesis 1
and p2 conforming to hypothesis 2 together with a class c ∈ L, find the direc-
tion v ∈ R

m providing the most information about the class c, i.e., the direction
v in which p1 and p2 differ the most in terms of c.

Let XY=c denote the restriction of the real-valued part X of Z = (X|Y )
to those rows i for which Y (i) = c. Our problem can then be formalised as
finding a direction v in which XY=c and X ′

Y ′=c differ most by some suitable
measure, where Z = (X|Y ) and Z ′ = (X ′|Y ′) have been sampled from p1 and
p2, respectively. Thus, to solve Problem 2, we need a function that measures how
well the class c is separated in p1 and p2 in a direction v.

We want to choose a measure that will separate the distributions as much
as possible visually. To illustrate what we mean by this, consider, e.g., a case
where distributions pvi , i ∈ {1, 2}, are defined by a uniform distribution plus
a narrow peak2 at xi(v) ∈ [−1, 1] to direction v. We would want to find a
measure that is largest when the distance between the peaks |x1(v) − x2(v)|
is maximised. From information-theoretic view an obvious alternative would be
Kullback-Leibler divergence between distributions pvi , but, in fact, it is insensitive
to the distance between peaks. Thus, we choose to use the numerically more
stable L1-norm between cumulative distributions. For example, in the case of pv1
and pv2 this measure is maximised for v for which the distance between the peaks
is the largest.

Definition 3. Given distributions p1 and p2 and a class of interest c ∈ L, the
difference between p1 and p2 with respect to c in direction v ∈ R

m is computed
using the L1-distance between the empirical cumulative distribution functions for
the real-valued parts of samples Z = (X|Y ) and Z ′ = (X ′|Y ′) from p1 and p2,
respectively, restricted to c and projected to v:

f(Z,Z ′, c, v) = ||F (XY=cv) − F (X ′
Y ′=cv)||1, (1)

where F (x) : Rn �→ [0, 1] is the empirical cumulative distribution function for
the set of values in vector x.

Now, given a sample Z from the distribution p1 conforming to hypothesis 1
and a sample Z ′ from the distribution p2 conforming to hypothesis 2, we obtain
the solution to Problem 2 by finding the direction v maximising f(Z,Z ′, c, v):

v∗ = arg maxv∈Rmf(Z,Z ′, c, v). (2)

In visualisations where we use two-dimensional scatterplots, we find the second
dimension of the scatterplot by optimising the same objective while requiring
the direction to be orthogonal to the first dimension. We will solve the optimi-
sation problem above in practice using the standard quasi-Newton solver in R
with random initialisation and default settings (i.e., the general-purpose optim

2 More formally defined by pv
i (t) = U1+σ(t)/2+Uσ(t−xi(v))/2, where Ua(t) = 1/(2a)

if −a ≤ t ≤ a and Ua(t) = 0 otherwise, at the limit of small σ or σ → 0+.
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Fig. 3. The most informative projection about class ‘1’ for the toy data Ztoy without
background knowledge (a) and using the tile t constraint from Example 2 as background
knowledge (b). Colors as in Fig. 1. (Color figure online)

function in R with method="BFGS"). This approach proved to be sufficiently effi-
cient for the data sizes typical for visual exploratory data analysis (in the order
of thousands data points), as demonstrated in the experimental evaluation.

Example 5. We now apply Definition 3 to find the most informative view to the
user with respect to class ‘1’. Assuming no initial background knowledge, the
datasets shown in Fig. 1a, b are examples of data samples from the distributions
p1 and p2, respectively. By solving Eq. (2) we obtain the projection in Fig. 3a.
The difference between the distributions is maximised along the x-axis, and
we observe that the class ‘1’ consists of two group of points. We can now add
this observation to the background knowledge3, e.g., by using the tile t from
Example 2. Because the tile is added to both hypothesis 1 and hypothesis
2, the information we have learned is reflected in both distributions, and any
samples conforming to the updated hypotheses will not differ in terms of the
relations constrained by t. The most informative projection for Ztoy with the
background knowledge (tile t) is shown in Fig. 3b. This projection is different
to Fig. 3a, and we see that the most informative direction (x-axis) separates the
data items in class ‘1’ for which we did not yet add background knowledge from
the rest of the data.

4 Experimental Evaluation

In this section we first consider the scalability (in terms of the dimensions of
the data) and stability (in case the class contains only a few samples) of the
method presented in this paper. After this, we present use cases of exploration
of relations in data relevant for a class. The experiments were performed with a
3 In an interactive setting, the selection of data items would be easy from the scatter-

plot. For the selection of attributes, one can use, e.g., the method from [20, Sec. 2.4].
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single-threaded R 3.5.0 implementation on a MacBook Pro laptop with a 3.1GHz
Intel Core i5 processor.4

Datasets. In the experiments, we utilise the following datasets. We scale the
real-valued variables to zero mean and unit variance.

The german socio-economic dataset [3,12] contains records from 412 admin-
istrative districts in Germany. Each district is represented by 46 attributes
describing socio-economic and political aspects in addition to the type of
the district (rural/urban), area name/code, state, region (East, West, North,
South) and the geographic coordinates of each district centre. The socio-ecologic
attributes include, e.g., population density, age and education structure, eco-
nomic indicators, and the proportion of the workforce in different sectors. The
political attributes include election results of the five major political parties
(CDU/CSU, SPD, FDP, Green, and Left) in the German federal elections in
2005 and 2009, as well as the voter turnout. We exclude the election results
from 2005, the area code and coordinates of the districts, and all non-numeric
variables except those for region and type. This results in 32 real-valued attributes
and two class variables (region and type) used in our experiments.

The British National Corpus (bnc) [2] is one of the largest annotated text
corpora freely available in full-text format. The texts are annotated with infor-
mation such as author gender, age, and target audience, and all texts have been
classified into genres [14]. We use a preprocessed data from [21] in which the
vector-space model (word counts) is computed using the first 2000 words from
each text belonging to one the four main genres in the corpus (‘prose fiction’,
‘transcribed conversations’, ‘broadsheet newspaper’, ‘academic prose’) as done
in [17]. The bnc dataset has word counts for 1335 texts and the attributes are

Table 1. Median wall clock running time for the synthetic data with varying number
of rows (n) and columns (m). We give the time to generate the hypothesis tilings,
add three random tiles, and generate the data samples conforming to the hypotheses
(tmodel) and the time to find the most informative view (tview), i.e., to solve Eq. (2).

n m tmodel (s) tview (s)

500 16 0.01 0.97
32 0.01 2.26
64 0.02 8.15

128 0.03 66.15

1000 16 0.02 1.23
32 0.02 3.97
64 0.04 18.91

128 0.06 92.83

n m tmodel (s) tview (s)

2000 16 0.03 2.03
32 0.05 7.57
64 0.07 32.38

128 0.12 114.76

4000 16 0.09 4.54
32 0.11 12.78
64 0.16 45.05

128 0.26 140.35

4 Code and data available at https://github.com/edahelsinki/shgde.

https://github.com/edahelsinki/shgde
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the 100 words with highest counts. The class attribute contains classification of
each text into one of the 4 main genres.

The Kaggle Telco customer churn dataset5 contains information of 7043 cus-
tomers with 21 attributes (18 categorial and 3 real-valued) including information
about services of the customer, customer account, and demographic information.
The task is to predict the value of binary class attribute ‘churn’ (whether the cus-
tomer has left within the last month). We transform all the categorical attributes
(except ‘churn’) using one-hot encoding, which creates a column for every label
of every attribute and the presence (or absence) of a label is indicated by 1 (or
0). Note that variables with many labels are implicitly given more weight in the
one-hot encoding. To overcome this effect, we scale the binary data in groups,
that is, all columns that originate from the same attribute are scaled to have a
total variance of 1. Finally, we drop 11 rows containing ‘NA’ for attribute ‘total
charges’, and end up with 7032 rows and 46 columns.

4.1 Scalability

We started by evaluating the scalability of our method on synthetic data with
m ∈ {16, 32, 64, 128} dimensions and n ∈ {500, 1000, 2000, 5000} data points. We
generated the datasets similarly to [18]. The data points are scattered around 10
randomly drawn cluster centroids. We used the clusters to form a binary class
attribute (by assigning the cluster centres closest to each other into same class).
We added k = 3 random tiles as background knowledge: for each tile the rows
were selected by taking the data points from one of the 10 clusters, and for the
columns we randomly selected [2..m] columns.

We report in Table 1 the median wall clock running times. We can observe
that the time tmodel to generate the hypothesis tilings, add three random tiles,
and generate the data samples conforming to the hypotheses is negligible, i.e.,
we can update our hypotheses and obtain new samples very fast. The time
tview to find the most informative direction, i.e., to solve Eq. (2) scales roughly
as O(nm2..3). Even with our unoptimised R implementation the running times

Table 2. Stability experiment. In columns avg(f), sd(f), and sd(f)/avg(f) we report
the average of each of these over the six different classes used.

cmin k avg(f) sd(f) sd(f)/avg(f)

100 0 2.03 0.070 0.042
3 1.79 0.068 0.045

500 0 2.01 0.036 0.028
3 1.80 0.034 0.028

1000 0 2.00 0.023 0.022
3 1.78 0.026 0.023

5 Available at https://www.kaggle.com/blastchar/telco-customer-churn.

https://www.kaggle.com/blastchar/telco-customer-churn
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Fig. 4. Supervised exploration of the german data w.r.t. a class consisting of the
districts in regions ‘West’, ‘South’, and ‘North’. (a) The most informative projection
with no background knowledge. (b) The most informative projection with tile tg

1 as
background knowledge. (c) The most informative projection with tiles tg

1 and tg
2 as

background knowledge. See Sect. 4.3 for details of selections shown in red. (Color figure
online)

are at the order of 10 s for reasonably sized datasets. We note that for visual
exploration the size of the data n should be reasonable and, it should be down-
sampled as needed. Hence, the time complexity will be asymptotically constant
with respect to n. The time complexity with respect the dimensionality m could
be controlled by first reducing the dimensionality of the data, e.g., by PCA or
by random projections, or by relaxing the convergence criteria of the numerical
optimisation.

4.2 Stability

When the class of interest has only a few items, the effect of a particular sam-
ple from the distribution conforming to hypothesis 2 to the direction that is
optimal for Eq. (2) is potentially large. This potential instability caused by the
sampling can be controlled by taking several samples from the distributions and
concatenating them, thus making the sample used to solve Eq. (2) large enough.
To study this effect, we used the german dataset, taking the districts from each
region and of each type as classes (6 cases in total, the class sizes varying between
64 and 290) and added k ∈ {0, 3} random clusters as the background knowledge.
Then, we computed mean value and the standard deviation of Eq. (1) in the opti-
mal direction for 10 samples for each cmin ∈ {100, 500, 1000}. Here, the number
of samples needed s was computed as s = �cmin/|{i | Y (i) = c}|	. Looking at the
ration of standard deviation and the mean in Table 2, we observe that setting
cmin ≥ 500 suffices for practical purposes. For the remaining experiments we use
this value.
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4.3 Supervised Exploration of german Data

The separation in the socio-economic and political factors between districts in
region ‘East’ and the districts in other regions is the most dominant factor in
the german dataset, see e.g., [3,12,20]. We assume now that we are interested
in exploring other factors in the data, in particular those representative for the
non-Eastern regions. Thus, we choose a class consisting of districts in regions
‘West’, ‘South’, and ‘North’ for our first use case.

Figure 4a shows the most informative view with respect to our class (solid
circles are used for districts in the class, circles without a fill are used for districts
not in the class) without any background knowledge. The projection shown sep-
arates the districts in the class into two parts along x-axis. We define a tile tg1
to add this observation into the background knowledge. We select the districts
coloured red in Fig. 4a for the rows, and all attributes for the columns.6 Look-
ing at the distribution of region (North = 46, South = 108, West= 78) and type
(Urban = 7, Rural= 225) attributes for this selection we observe that we have
defined a tile constraint for a set of mainly rural districts.

Figure 4b shows the most informative view the class given tg1 as background
knowledge. We obtain a different projection and observe the districts coloured
red in Fig. 4b have higher values along x-axis than the rest of the districts.
From the distribution of region (North = 4, South = 15, West= 11) and type
(Urban = 25, Rural= 5) attributes for this selection we observe that these are
mainly urban districts from the class. We add this observation into the back-
ground knowledge by defining a tile tg2. The rows in tg2 are those coloured red in
Fig. 4b, and for columns we include all attributes. Figure 4c then shows the most
informative view with respect to the class given both tg1 and tg2 as background
knowledge, demonstrating the division between the Eastern districts and the
rest.

To understand the utility of the views shown, we compute values of
the measure f in Eq. (1) using samples from the distributions conforming

Table 3. The german data use case. The value of f from Eq. (1) for different projection
vectors v and cases of background knowledge.

german No background Tile tg
1 Tiles tg

1, t
g
2

v0 1.627 0.148 0.073
v1 1.079 0.901 0.641
v2 1.115 0.880 0.656
vspca 1.306 0.739 0.555
vpca 1.336 0.417 0.322

6 For simplicity, we use the set of all attributes as the columns in the tiles in explo-
rations of the german and bnc datasets. In [20, Sec. 2.4] we provide a principled
way for selecting a subset of columns most relevant for a selection of rows, which
could be used in a more subtle exploration.
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Fig. 5. Supervised exploration of the bnc data w.r.t. a class consisting of the texts
from the genres ‘broadsheet newspaper’ and ‘academic prose’. (a) The most informative
projection with no background knowledge. (b) The most informative projection when
tile tbnc

1 is added to the background knowledge. (c) The most informative projection
when tiles tbnc

1 and tbnc
2 are added to the background knowledge. See Sect. 4.4 for details

of selections coloured red. (Color figure online)

to hypothesis 1 and hypothesis 2 given the background knowledge. We
have three cases: no background knowledge (0 tiles), background knowledge
represented using tile tg1 (1 tile), and background knowledge represented
using tiles tg1 and tg2 (2 tiles). For each case we compute the direction
in optimising the measure f , i.e., a solution to Eq. (2), denoting these by
vi where i corresponds to the number of tiles in the background knowl-
edge. For comparison, we also compute the first PCA and SPCA projec-
tion vectors, denoted by vpca and vspca, respectively. Then, we calculate
the value for f in different cases. The results are presented in Table 3.
We notice that the value of the measure f indeed is always the high-
est, when the projection vector matches the background knowledge (high-
lighted in the table), as expected. This shows that the views presented are
indeed the most informative ones given the current background knowledge.
We also notice that PCA and SPCA projection vectors are less informative
in terms of the measure f .

Table 4. The bnc data use case. The value of f from Eq. (1) for different projection
vectors v and cases of background knowledge.

bnc No background tile tbnc
1 tiles tbnc

1 , tbnc
2

v0 3.571 0.589 0.247
v1 1.708 1.651 1.103
v2 1.513 1.480 1.253
vspca 3.561 0.572 0.241
vpca 3.488 0.520 0.206
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4.4 Supervised Exploration of Bnc Data

As our second use case we consider the bnc dataset by exploring the high-
level structure of the corpus. The exploration of the same data in [21] already
reveals us that the genres ‘prose fiction’ and ‘transcribed conversations’ form
rather clearly visible clusters in the PCA projection of the data, while the gen-
res ‘broadsheet newspaper’ and ‘academic prose’ are not very distinct from each
other. Thus, we focus our interest to a class containing texts from the gen-
res ‘broadsheet newspaper’ and ‘academic prose’ to see whether our supervised
method allows us to find projections which would provide us new information
about these genres.

Figure 5a shows the most informative view with respect to the class (solid
circles are used for texts belonging to the class, circles without a fill are used
for the texts not in the class). The projection shown clearly separates the texts
with respect to our class. We define a tile constraint tbnc1 , by selecting the points
with x-axis value greater than zero (coloured red in Fig. 5a) for the rows, and
all attributes for the columns. The selection contains 144 texts from genre ‘tran-
scribed conversations’, 413 from ‘prose fiction’, and 12 texts from genre ‘broad-
sheet newspaper’. Thus, we add a tile constraint covering mostly texts outside
the class, making this way explicit to the system that we already know the main
features of the texts not in our class. Figure 5b shows the most informative view
after tbnc1 has been added to the background knowledge. We observe that the
texts in the class seem to separate in the direction along y-axis. By selecting
the points with higher values in y-axis (coloured red in Fig. 5b) in our class,
we observe that these are mainly texts from genre ‘broadsheet newspaper’ (211
texts), the remaining 10 texts are from genre ‘academic prose’. Thus, this view
shows us how the two genres in our class are separated. If we now add a tile
constraint tbnc2 for this selection (taking again all attributes as the columns), we
obtain the view shown in Fig. 5c, in which some outliers could be potentially
studied further.

Similarly to the german data use case, we provide the value of the measure
f for each projection vector in Table 4, and compare these to the first PCA and
SPCA projection vectors. Here we observe, that both PCA and SPCA provide a
direction with a very similar interestingness value to our method when there is
no background knowledge. However, with background knowledge, the situation
changes and our approach provides clearly more interesting views given the class.

4.5 Identification of Churners

Finally, we explore the churn data. The problem of identifying possible churn-
ers, i.e., customers likely to cancel a subscription to a service, has become a
popular use case in business domain, because retaining one customer costs much
less than gaining a new one. Churn prediction problem is typically addressed with
off-the-shelf machine learning and statistical approaches which usually do not
use any domain expert knowledge. In this example, our goal is to demonstrate
how our method can help to put the domain-specific knowledge into better use.
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We can use our framework to find the most informative direction with respect
to the class containing customers who churn.

Now, let us assume that the domain experts have already identified from
their previous experiences that ‘monthly charge’ and ‘total charges’ are the most
salient features that cause customer to churn. We will use this background knowl-
edge in the exploration, i.e., we add a tile tchu covering attributes ‘monthly
charge’, ‘total charges’, and ‘churn’ and all the rows in the data to the back-
ground distribution. The most informative direction in this case has the highest
(absolute) weights for the attributes ‘tech support= no’, ‘online security = no’,
and ‘internet service = fiber optic’.

We can compare this set of five features (i.e., ‘total charges’, ‘monthly
charges’, ‘tech support’, and ‘online security’ and ‘internet service’) identified by
the user to the whole set of features in the data, when classifying churners using
the non-preprocessed dataset. Here we use fitted binary classification decision tree
with 10-fold cross validation for the classification, and measure the performance
with misclassification error (ME) and false positives (FP) rate. We observe, that
using the user identified 5-feature set (ME = 0.263, FP = 0.127) the performance
that is at least as good as using the full 20-feature set (ME = 0.264, 0.133),
and even marginally better in terms of false positives rate. This demonstrates
the potential human-guided exploration approach for a real-world dataset, in
particular in a scenario in which a high false positive rate is a major concern.

5 Conclusions

In this paper we proposed a method for supervised dimensionality reduction
for interactive EDA systems that take the user’s background knowledge and
objectives into account. We defined an information criterion, which allows us to
find the most informative views about the class structure of data by taking the
user’s current knowledge and objectives into account. In the experimental evalu-
ation we demonstrated that our method gives understandable and useful results
when analysing real-world datasets. Taking the user’s background knowledge
into account matters, as the use of the updating background knowledge allows
an EDA system to show the user currently unknown and relevant projection to
the data.

For potential future directions we note that our method could potentially
be used for human-guided classification by using an updating class of interest,
instead a fixed one. Initially, all items would belong to the class of interest, and
the user is shown the most informative projection. The user could then identify
set(s) of data items and classify them, and a new projection could be shown
for an updated class of interest containing the data items unclassified so far.
Moreover, the knowledge of the user of the found sets of data items could be
added into the background knowledge. We also plan to implement our method
in an interactive data analysis tool, and study how the optimisation problem in
Eq. (2) can be solved more efficiently in practice. For a better interpretability of
the views, we could consider, e.g., sparse projection vectors.
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Abstract. We introduce SynthLog, an extension of the probabilis-
tic logic programming language ProbLog, for synthesising inductive
data models. Inductive data models integrate data with predictive and
descriptive models, in a way that is reminiscent of inductive databases.
SynthLog provides primitives for learning and manipulating inductive
data models, it supports data wrangling, learning predictive models and
constraints, and probabilistic and constraint reasoning. It is used as the
back-end of the automated data scientist approach that is being devel-
oped in the SYNTH project. An overview of the SynthLog philosophy
and language as well as a non trivial example of its use, is given in this
paper.

Keywords: Automated data science · Inductive databases ·
Probabilistic programming

1 Introduction

Automated data science has received a lot of attention in the last decade [2], and
has been recognized as an important challenge and solutions promise to democ-
ratize data science and make it available to non-expert end-users. Most current
approaches tackle the problem of automatically constructing the best predic-
tion pipeline [6,7]. These approaches typically target expert end-users, that can
understand most of the steps in the pipeline. In contrast, the SYNTH framework
wants to democratize data science and make it available to the naive end-user.
The central setting in SYNTH is that of autocompletion in spreadsheets [4].
Spreadsheets are used ubiquitously and the autocompletion task consists of pre-
dicting the next cell and value that the user wants to fill out, of course, under the
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assumption that there are sufficient regularities in the data to enable meaningful
predictions.

The autocompletion task constitutes the front-end of the SYNTH framework,
and it is easy to see how this can be included in spreadsheet software such as
Excel. The back-end, however, consists of the SynthLog language that should
support the underlying data science processes and components. This includes
tools to automate various steps in data science, from data wrangling to predic-
tive modeling and constraint learning. But rather than viewing this as a data
science workflow or pipeline, SYNTH has the SynthLog language that allows the
knowledgeable user to define and steer the data science process in a declarative
manner. It is this language that we briefly introduce and illustrate in the present
note. SynthLog builds on the inductive database idea [8] in that we are looking
for a small and non-trivial set of primitives that supports data science processes.
Rather than building on top of databases [9], however, SynthLog extends the
probabilistic programming language ProbLog that already supports deductive
and probabilistic inference, learning and (a limited form of) constraint process-
ing, which are all important for data science.

The idea that SynthLog borrows from inductive databases is that it should
treat models (such as predictors or constraints) as first class citizens, that is,
SynthLog should support manipulating, constructing, using, and learning such
models. Indeed, SynthLog should not only allow to handle the inputs and outputs
of the data science components, but also to reason about which models should
be learned, used or combined for a particular dataset or task. The models will
be represented as SynthLog theories, which are essentially ProbLog programs,
consisting of a set of probabilistic facts and clauses. Combining data science com-
ponents then corresponds to performing operations on theories: adding/deleting
facts, adding/deleting clauses, and combining theories.

In Sect. 2, we introduce the main contribution of this paper: the SynthLog
language. Then, in Sect. 3, we present a case-study illustrating how SynthLog
can be used to bridge many components of data science: from data wrangling to
constraints.

2 Introduction to SynthLog

SynthLog is a language for supporting automated data science processes. It
allows to construct and manipulate inductive data models. An Inductive Data
Model (IDM) consists of (1) a set of data models (DM) that specifies an adequate
data structure for the dataset (like a database), and (2) a set of inductive models
(IMs), that is, a set of patterns and machine learning models (like classifiers)
that have been discovered in the data. While the DM can be used to retrieve
information about the dataset and to answer questions about specific data points,
the IMs can be used to make predictions, find inconsistencies and redundancies,
etc. IDMs integrate data and inductive models in a SynthLog theory.

SynthLog is built on top of the ProbLog probabilistic programming language.
It essentially assumes that both the data models and the inductive models are
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ProbLog programs, and allows to refer to and manipulate such models by means
of a new ProbLog operator. As SynthLog manipulates both data and inductive
models, it borrows ideas from inductive databases that also consider both data
and inductive models as first class citizens. For example, SynthLog follows the
mantra of inductive databases that requires the closure property to be satisfied
[3,8]. In the SynthLog context this means that the result of any operation must
be a theory, and thus must be a ProbLog program. At the same time, as each
theory is a ProbLog program, SynthLog supports deductive and probabilistic
reasoning, a form of answer set programming (through DTProbLog [1]) and
machine learning. We first introduce ProbLog on a simple example, and then
introduce the notion of a theory.

2.1 ProbLog by Example

ProbLog [5] is a probabilistic logic programming language, that extends Prolog
by adding probabilistic primitives and inference. Let us take the example (from
[5]) of a small social network, where smoking behavior depends on friendship
among people.

1 0 . 4 : : asthma (X) :− smokes (X) .
2 0 . 3 : : smokes (X) .
3 0 . 2 : : smokes (X) :− f r i e nd (X,Y) , smokes (Y) .
4 f r i e nd ( 1 , 2 ) . f r i e n d ( 2 , 1 ) . f r i e n d ( 2 , 4 ) . f r i e n d ( 3 , 2 ) . f r i e n d ( 4 , 2 ) .
5 query ( asthma ( 2 ) ) .

For example, the first rule states that somebody that smokes has a probability
of 40% to have asthma. Likewise, the second rule states that any person has a
30% chance of smoking. The query corresponds to the answer we want to get: we
want to know the probability that person 2 has asthma. In this case, the result
is 0.15.

As SynthLog extends ProbLog, which extends Prolog, a basic knowledge of
Prolog and ProbLog is assumed in the remainder of this paper. For the interested
reader, a more detailed presentation of ProbLog is available1.

2.2 SynthLog Theories

We now extend ProbLog with the notion of a theory. Each theory will consist
of a ProbLog program and it will be possible to define theories through the
scope operator ’:’/2. For example, the fact theory(a):knowledge(1) states
that the theory or ProbLog program identified by theory(a) contains the fact
knowledge(1).

The following SynthLog listing defines various theories:

1 c on s t r a i n t s : ( a:−b ) .
2 data : b .
3 g l oba l :X :− c on s t r a i n t s :X; data :X.
4 query ( g l oba l : ) .

1 https://dtai.cs.kuleuven.be/problog/index.html.

https://dtai.cs.kuleuven.be/problog/index.html
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In this case, the clause a:-b is defined in the theory constraints and is
interpreted as constraints:a :- constraints:b. Beyond the syntactic sugar
allowing to factorize the theory name in each terms in a clause, such represen-
tation allows to share constraints between theories and automatically interpret
them. In this example, the global theory is the union of the constraints and
data theories. global contains the fact b and the clause a:-b. Thus, global:a
can be inferred. To support the inductive database aspect of SynthLog, and to
allow for further manipulating inductive models, theories can be loaded from or
stored in a database or file.

2.3 A Language for Data Science

To facilitate the use of SynthLog as a language dedicated to data science, sev-
eral predicates are introduced to infer properties of relational datasets, build
classifiers and learn or apply constraints on theories. SynthLog supports the def-
inition of custom predicates, that take a theory (i.e. an inductive data model)
as input and returns a theory as output. Many tasks fit within that framework:
learners typically take data as input to output a model, data wrangling takes
data as input and outputs data, applying a predictor requires data and model
as input and outputs data. Some of these custom predicates are detailed in the
next section.

3 Case Study: Auto-Completion

Table 1. Data representing the historical sales of an ice-cream factory.

Type Country June July August Total Profit

Vanilla BE 610 190 670 1470 1

Banana BE 170 690 520 1380 1

Chocolate BE 560 320 140 1020 1

Banana DE 610 640 320 1570 0

Speculaas BE 300 270 290 860 0

Chocolate FR 430 350 300 1080 1

Table 2. Data representing the sales of an ice-cream factory, with missing profit.

Type Country June July August Total Profit

Banana DE 250 650 630 1530

Chocolate NL 210 280 270 760
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In this Section, we show how SynthLog can tackle a classic challenge in data
science: automatically filling missing values in a spreadsheet. More precisely,
these missing values are predicted with inductive models. The auto-completion
task has been identified as a simple, yet challenging task, that illustrates the
core of the SYNTH framework [4].

This case study shows that SynthLog successfully use both predictors, such as
logistic regression; and probabilistic rules to infer the most likely missing values.
We can therefore build on the large literature of the automation of predictor
learning [7], while also providing an easy way to add user knowledge in the
inference process. We also illustrate how inductive database ideas are used to
store and query models depending on the task at hand. We use a toy dataset
emulating sales of an ice-cream factory. The data is shown in Tables 1 and 2,
with missing profit for the two rows in Table 2. It will be inferred using logistic
regression combined with user defined constraints. The code performing the auto-
completion is presented below:

1 mag i c c e l l s :X :− l o ad c sv ( ‘ mag ic i ce cream . csv ’ , X) .
2 m i s s i n g d a t a c e l l s :X :− l o ad c sv ( ‘ mag i c t e s t1 . csv ’ , X) .
3
4 mag i c tab l e s :X :− d e t e c t t a b l e s ( mag i c c e l l s , X) .
5 mis s ing data :X :− d e t e c t t a b l e s ( m i s s i n g d a t a c e l l s , X) .
6
7 magic models :X :− s k l e a r n p r e d i c t o r ( mag ic tab le s ,
8 ‘ l i n ea r mode l . Log i s t i cReg r e s s i on ’ ,
9 [ column ( ‘T1 ’ , 3 ) , column ( ‘T1 ’ , 4 ) ] , [ column ( ‘T1 ’ , 6 ) ] , X) .

10
11 mag i c pred i c t :X :− magic models : p r ed i c t o r (Y) ,
12 magic models : source (Y, column ( ‘T1 ’ , 3 ) ) ,
13 magic models : source (Y, column ( ‘T1 ’ , 4 ) ) ,
14 p r ed i c t ( miss ing data ,Y, [ column ( ‘T1 ’ , 3 ) , column ( ‘T1 ’ , 4 ) ] ,X) .
15
16 f i n a l p r e d : t a b l e c e l l ( ‘T1 ’ , X, 7 , V) :−
17 mag i c pred i c t : c e l l p r e d (X, Y, V, ) .
18
19 mag i c con s t r a i n t s :
20 ( 0 . 7 : : t a b l e c e l l (T,X,7 ,0) : − t a b l e c e l l (T,X, 5 ,V) , V<300).
21 mag i c con s t r a i n t s : t a b l e c e l l ( ‘T1 ’ , X, Y, V) :−
22 mis s ing data : t a b l e c e l l ( ‘T1 ’ , X, Y, V) .
23
24 combined pred : t a b l e c e l l (T,X,Y,V) :−
25 mag i c con s t r a i n t s : t a b l e c e l l (T,X,Y,V) ;
26 f i n a l p r e d : t a b l e c e l l (T,X,Y,V) .
27
28 query ( combined pred : ) .

In Line 1, we create the theory magic cells from a csv file containing the data
in Table 1, by using the custom predicate load_csv/2. Details about the cus-
tom predicates and their exact behavior are presented in Appendix A. Likewise,
Line 2 creates the theory missing data cells by loading the data represented in
Table 2.
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The rest of the program manipulates these 2 theories using SynthLog prim-
itives and custom predicates to perform wrangling, prediction and inference.
For example, Lines 4 and 5 perform wrangling, by using the custom predicate
detect_tables/2. More precisely, in Line 4, detect_tables/2 transforms the
theorymagic cells to output the theorymagic tables. The new theorymagic tables
contains the same data as the theory magic cells (i.e. the data from Table 1), but
uses a different data model. Indeed, detect_tables/2 takes a cell based data
model and transforms it into a table based data model. Details of this transforma-
tion are given in Appendix A. In this simple example, wrangling is straightforward,
as the data is already nicely formatted. However, detect_tables/2 still provides
information about cell types and detects headers.

From the theory magic tables, the custom predicate sklearn_predictor/5
learns an inductive model (Lines 7 to 9). More precisely, it learns a logistic
regression model2 that predicts column 6 of Table T1 (the Table depicted in
Table 1) from columns 3 and 4 of Table T1. The theory magic predict contains
this newly learned inductive model. The theory magic predict also contains addi-
tional information about the learned inductive model: on which theory was it
learned, using which columns and what type of inductive model it is. Keeping
track of all these information allows us to easily query any model, hence treating
them as first class citizens.

Lines 11 to 13 query an inductive model by manipulating the theory
magic predict. To retrieve an inductive model, we simply specify its properties:
it is a predictor and was trained on columns 3 and 4 from Table T1. If sev-
eral inductive models in magic predict satisfy these requirements, they are all
used. SynthLog therefore handles models following the inductive database idea
of treating them as first class citizens. Then, Line 14 applies the queried induc-
tive model on the theory missing data to create the new theory magic predict,
using the custom predicate predict/4. The theory magic predict contains prob-
abilistic facts representing the predictions of the logistic regression.

Lines 16 and 17 create the theory final pred by selecting a sub-part of
the theory magic predict, using a simple ProbLog rule. Lines 19 and 20
create a new inductive model, by storing a user-defined rule in the theory
magic constraints. This rule states that if column 5 of Table T in row X has
a value below 300, then column 7 (profit) of Table T in row X has a value of 0
with probability 0.7. In this simple case, this rule could be specified by a user.
However, SynthLog supports learning such rules through the use of custom pred-
icates. Lines 21 and 22 add a sub-part of theory missing data to the theory
magic constraints. Since the theory magic constraints now contains table_cell
predicates, the rule defined in Line 20 will automatically trigger, hence creating
the probabilistic fact 0.7::table_cell(T,X,7,0) when applicable.

Finally, Lines 24 to 26 create the theory combined pred by performing the
union of sub-parts from the theories magic constraints and final pred through
the ’;’/2 operator of ProbLog. As SynthLog combines probabilistic facts from
final pred with the probabilistic rule from magic constraints to create final pred,

2 We use the scikit-learn library: https://scikit-learn.org/stable/index.html.

https://scikit-learn.org/stable/index.html
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probabilistic inference has to be performed. Because SynthLog extends ProbLog,
it relies on its probabilistic inference mechanism to soundly combine both theo-
ries. As in ProbLog, the query of Line 28 determines what probabilistic facts
the program should infer. In this case, we query for the theory final pred to infer
the cell values of Table 2, by combining the logistic regression predictions with
the user defined rule. The result is shown in Table 3.

Overall we have seen that SynthLog manipulates theories by using either cus-
tom predicates or native ProbLog operators. This simple way of manipulating
theories is nonetheless powerful, as the resulting program is performing com-
plex inference, taking into account predictive models and rules, while remaining
simple to read.

Table 3. Data (from Table 2) with filled profit values and probability on predictions

Type Country June July August Total Profit Probability

Banana DE 250 650 630 1530 0 0.04

Banana DE 250 650 630 1530 1 0.96

Chocolate NL 210 280 270 760 0 0.46

Chocolate NL 210 280 270 760 1 0.54

4 Conclusion

We have introduced SynthLog, a declarative language for synthesising Inductive
Data Models (IDM). IDMs integrate data and inductive models in a SynthLog
theory. Theories can also be seen as ProbLog programs, consisting of proba-
bilistic facts and clauses. Assembling data science components corresponds to
manipulating theories, hence making SynthLog a language suitable for automat-
ing data science. As SynthLog is an extension of ProbLog, it natively supports
probabilistic reasoning and we have illustrated through a use case how SynthLog
can use probabilistic inference to effortlessly combine results from different type
of models (predictors and constraints).

Having a language to assemble data science components, based on proba-
bilistic logic, opens new possibilities. First, the inherent uncertainty of data and
inductive models can be leveraged to perform probabilistic inference and pro-
vide predictions that reflect our confidence in our data and inductive models.
Second, SynthLog handles different types of inductive models. More specifically,
it handles rules or constraints along with other machine learning models. Hence,
SynthLog provides a great opportunity to bridge user interaction and model
learning through a unique language.

In the SYNTH framework, SynthLog is also first step towards the automa-
tion of data science. Indeed, with a single language combining all data science
components, we can tackle the more challenging task of learning to learn, that is
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learning which SynthLog programs are suitable to automatically solve the data
science task at hand.

Finally, the further development of SynthLog will likely require the develop-
ment of new implementation techniques to support fast inference and learning.
This will allow smoother user interaction and the analysis of larger datasets.

Acknowledgements. This work has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No. [694980] SYNTH: Synthesising Inductive Data Models).

Appendix A: SynthLog Custom Predicates Documentation

– load_csv/2: loads the content of a csv file in a theory
• Input

* csv file
• Output: Theory with predicates:

∗ cell/3: row id, column id and value of each cell
– detect_tables/2: calls a data wrangler [10] to detect tables in the spread-

sheet
• Input

* Theory with cell/3 predicates
• Output: Theory with predicates:

* table/5: table id, top left row, top left column, height, width
* table_cell/4: table id, row id, column id and value of each cell
* table_cell_type/4: table id, row id, column id and type of each cell
* table_header/5: table id, column id, name, type, list of unique values

– sklearn_predictor/5 learns a scikit-learn predictor
• Input

* Theory with table_cell/4 predicates
* Inductive model type (from scikit-learn models)
* List of columns to use as features
* List of columns to predict

• Output: Theory with predicates:
* sklearn_predictor/1: inductive model
* target/2: inductive model, predicted column
* source/2: inductive model, feature column

– predict/5 makes prediction using a previously trained model
• Input

* Theory with table_cell/4 predicates
* Inductive model
* List of columns to use as features
* List of columns to predict

• Output: Theory with predicates:
* cell_pred/4: table id, row id, column id and value of each cell
* predictor/1: inductive model
* source/2: inductive model, feature column
* confidence/2: inductive model, confidence score
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Abstract. This paper describes the autofeat Python library, which
provides a scikit-learn style linear regression model with auto-
mated feature engineering and selection capabilities. Complex non-linear
machine learning models such as neural networks are in practice often
difficult to train and even harder to explain to non-statisticians, who
require transparent analysis results as a basis for important business
decisions. While linear models are efficient and intuitive, they generally
provide lower prediction accuracies. Our library provides a multi-step
feature engineering and selection process, where first a large pool of non-
linear features is generated, from which then a small and robust set of
meaningful features is selected, which improve the prediction accuracy
of a linear model while retaining its interpretability.

Keywords: AutoML · Feature engineering · Feature selection ·
Explainable ML

1 Introduction

More and more companies aim to improve production processes with data science
and machine learning (ML) methods, for example, by using a ML model to
better understand which factors contribute to higher quality products or greater
production yield. While advanced ML models such as neural networks (NN)
might, theoretically, in many cases provide the most accurate predictions, they
have several drawbacks in practice. First of all, with many hyperparameters
to set, these model can be difficult and time consuming to fit, which is only
aggravated by the current shortage of ML specialists in industry. Second, in
many cases there is not enough data available in the first place to train a low
bias/high variance model like a NN, for example, because comprehensive data
collection pipelines are not yet fully implemented or because obtaining individual
data points is expensive, e.g., when it takes several days to produce a single
product. Last but not least, the insights generated by a ML analysis need to
c© Springer Nature Switzerland AG 2020
P. Cellier and K. Driessens (Eds.): ECML PKDD 2019 Workshops, CCIS 1167, pp. 111–120, 2020.
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be communicated to others in the company, who want to use these results as
a basis for important business decisions [30]. While great progress has been
made to improve the interpretability of NNs, e.g., by using layer-wise relevance
propagation (LRP) to reveal which of the input features contributed most to a
neural net’s prediction [1,2,25], this is in practice still not sufficient to convince
those with only a limited understanding of statistics. Especially when dealing
with data collected from physical systems, using a plausible model might even
be more important than getting small prediction errors [22].

To avoid these shortcomings of NNs and other non-linear ML models, in
practice we find it necessary to rely mostly on linear prediction models, which
are intuitive to understand and can be trained easily and efficiently even on
very small datasets. Of course, employing linear models generally comes at the
cost of a lower prediction accuracy. Therefore, inspired by the SISSO algorithm
[28], we propose a framework to automatically generate several tens of thou-
sands of non-linear features from the original inputs and then carefully select
the most informative of them as additional input features for a linear model. We
have found that this approach leads to sufficiently accurate predictions on real
world data while providing a transparent model that has a high acceptance rate
amongst non-statisticians in the company and therefore provides the possibility
to positively contribute to important business decisions.

To make this framework more accessible to other data scientists, our imple-
mentation is publicly available on GitHub.1 The rest of the paper is structured
as follows: After introducing some related work in the area of automated feature
engineering and selection, we describe our approach and the autofeat Python
library in detail (Sect. 2). We then report experimental results on several datasets
(Sect. 3) before concluding the paper with a brief discussion (Sect. 4).

1.1 Related Work

Feature construction frameworks generally include both a feature engineering, as
well as a feature selection component [21]. One of the main differences between
feature construction approaches is whether they first generate an exhaustive fea-
ture pool and then perform feature selection on the whole feature set (which is
also the strategy autofeat follows), or if the set of features is expanded iter-
atively, by evaluating at each step whether the inclusion of the new features
would improve the prediction accuracy. Both approaches have their drawbacks:
The first approach is very memory intensive, especially when starting off with
a large initial feature set from which the additional features are constructed via
various transformations. With the second approach, important features might
be missed if some variables are eliminated too early in the feature engineering
process and can therefore not serve to construct more complex, possibly helpful
features. Furthermore, depending on the strategy for including additional fea-
tures, the whole process might either be very time intensive, if at each step a
model is trained and evaluated on the feature subset, or can fail to include (only)

1 https://github.com/cod3licious/autofeat.

https://github.com/cod3licious/autofeat
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the relevant features, if a simple heuristic is used for the feature evaluation and
selection.

Most existing feature construction frameworks follow the second, iterative
feature engineering approach: The FICUS algorithm [21] uses a beam search
to expand the feature space based on a simple heuristic, while the FEADIS
algorithm [9] and Cognito [18] use more complex selection strategies. A more
recent trend is to use meta-learning, i.e., algorithms trained on other datasets, to
decide whether to apply specific transformation to the features or not [16,17,26].
While theoretically promising, we could not find an easy to use open source
library for any of these approaches, which makes them essentially irrelevant for
practical data science use cases.

The well-known scikit-learn Python library [29] provides a function
to generate polynomial features (e.g. x2), including feature interactions (e.g.
x1 · x2, x

2
1 · x3

2). Polynomial features are a subset of the features generated by
autofeat, yet, while they might be helpful for many datasets, in our experience
with autofeat, a lot of times the ratios of two features or feature combina-
tions turn out to be informative additional features, which can not be generated
with the scikit-learn method. The scikit-learn library also contains sev-
eral options for feature selection, such as univariate feature scoring, recursive
feature elimination, and other model-based feature selection approaches [13,19].
Univariate feature selection methods consider each feature individually, which
can lead to the inclusion of many correlated features, like those contained in
the feature pool generated by autofeat. The more sophisticated feature selec-
tion techniques rely on the use of an external prediction model that provides
coefficients indicating the importance of each feature. However, algorithms such
as linear regression get numerically unstable if the number of features is larger
than the number of samples, which makes these approaches impractical for fea-
ture pools as large as those generated by autofeat.

One popular Python library for automated feature engineering is
featuretools, which generates a large feature set using “deep feature synthe-
sis” [15]. This library is targeted towards relational data, where features can be
created through aggregations (e.g. given some customers (data table 1) and their
associated loans (in table 2), a new feature could be the sum of each customer’s
loans), or transformations (e.g. time since the last loan payment). A similar
approach is also implemented by the “one button machine” [20]. The strategy
followed by autofeat is somewhat orthogonal to that of featuretools: It is
not meant for relational data, found in many business application areas, but
was rather built with scientific use cases in mind, where e.g. experimental mea-
surements would instead be stored in a single table. For this reason, autofeat
also makes it possible to specify the units of the input variables to prevent the
creation of physically nonsensical features.

Another Python library worth mentioning is tsfresh [6,7], which provides
feature engineering methods for time series, together with a univariate fea-
ture selection strategy. However, while autofeat can be applied to a variety
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of datasets, the features generated by tsfresh only make sense for time series
data, as they are constructed, e.g., using rolling windows.

To the best of our knowledge, there does not exist a general purpose open
source library for automated feature engineering and selection, which is why we
felt compelled to share our work.

2 Automated Feature Engineering and Selection with
autofeat

The autofeat library provides the AutoFeatRegression model, which automat-
ically generates and selects additional non-linear input features given the original
data and then trains a linear regression model with these features. The model
provides a familiar scikit-learn [29] style interface, as demonstrated by a sim-
ple usage example, where X corresponds to a n × d feature matrix and y to an
n-dimensional target vector (both NumPy arrays [27] and Pandas DataFrames
[23] are supported as inputs):

# instantiate the model
model = AutoFeatRegression()
# fit the model and get a pandas DataFrame with the original,
# as well as the additional non-linear features
df = model.fit transform(X, y)
# predict the target for new test data points
y pred = model.predict(X test)
# compute the additional features for new test data points
# (e.g. as input for a different model)
df test = model.transform(X test)

In the following, we describe the feature engineering and selec-
tion steps happening during a call to AutoFeatRegression.fit() or
AutoFeatRegression.fit transform() in more detail. The autofeat library
requires Python 3 and is pip-installable.

2.1 Construction of Non-linear Features

Additional non-linear features are generated in an alternating multi-step pro-
cess by applying user selectable non-linear transformations to the features (e.g.
log(x),

√
x, 1/x, x2, x3, |x|, exp(x), 2x, sin(x), cos(x)) and combining pairs

of features with different operators (+,−, ·). This results in an exponentially
growing feature space, e.g., with only three original features, the first feature
engineering step (applying non-linear transformation) results in about 20 new
features, the second step (combining features), results in about 350 new features,
and after a third step (again applying transformations), the feature space has
grown to include over 7000 features. As this may require a fair amount of RAM
depending on the number of original input features, the data points can be sub-
sampled before computing the new features. In practice, performing only two or
three feature engineering steps is usually sufficient.



The autofeat Python Library 115

The new features are computed using the SymPy Python library [24], which
automatically simplifies the generated mathematical expressions and thereby
makes it possible to exclude redundant features. If the original features are pro-
vided with physical units, only ‘legal’ new features are retained, e.g., a feature
representing a temperature would not be subtracted from a feature representing
a volume of something. This is implemented using the Pint Python library,2

which is additionally used to compute several dimensionless quantities from the
original features using the Buckingham π-theorem [5]. If categorical features are
included in the original features, these are transformed into one-hot encoded
vectors using the corresponding scikit-learn model and not considered for
the main feature engineering procedure.

2.2 Feature Selection

After having generated several thousands of features (often more than data
points in the original dataset), it is now indispensable to carefully select only
those features that contribute meaningful information when used as input to
a linear model. To this end, we employ a multi-step feature selection approach
(Fig. 1). In addition to the AutoFeatRegression model, the library also provides
only this feature selection part alone in the FeatureSelector class, which again
provides a scikit-learn style interface.

Individual features can provide redundant information or they might seem
uninformative by themselves yet proof useful in combination with others. There-
fore, instead of ranking the features independently by some criterion, it is advan-
tageous to use a wrapper method that considers multiple features at once to
select a promising subset [13]. For this we use the Lasso LARS regression model
[3,10,12] provided in the scikit-learn library, which yields sparse weights
based on which the features can be filtered. However, with more features than
data points, a linear regression model is numerically unstable. Therefore, the
features are first ranked based on their absolute correlation with the target
residual [11] and the model is only trained on the highest ranked features. Then,
to include further features capturing the not yet explained parts of the target
variable, these steps are repeated multiple times, where in each iteration the
regression model is used to compute a new target residual.

To identify a more robust set of features, this feature selection process can
be repeated multiple times using subsamples of the data. The resulting set of
features is then filtered by imposing a significance threshold: For this, a Lasso
LARS regression model is trained on the selected features, as well as a random
permutation of all features. The final set of features is then determined by choos-
ing only those of the real features with a regression coefficient larger than the
largest coefficient of the random noise features. After this multi-step selection
process, typically only a few dozen of the several thousand engineered features
are retained and used to train the final model. For new test data points, the
AutoFeatRegression model can then either generate predictions directly, or a

2 https://pint.readthedocs.io/en/latest/.

https://pint.readthedocs.io/en/latest/
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X ∈ R
n×d

r = y ∈ R
n×1

G = {}
H = {x1, ..., log(x2 + x3)}

c = |r X|

G = G ∪ H[max(c)]
⇒ |G| = n/2

r = y − w X[G]

G = G[|w| > 0]

G

Fig. 1. The heart of our feature selection algorithm. Given the feature matrix X with
all candidate features H, the aim is to select a few informative features (G) that
explain the target variable y. The set of good features G is adapted until a stable
set of features is reached. First, promising features are identified by computing the
correlation between the features and the target residual, and G is extended by those
features with the largest absolute correlation until G contains up to n/2 features (to
guarantee numerical stability in the following regression step). Next, the currently
selected good features are used to train a Lasso LARS regression model, based on
which the target residual is updated and the good features are filtered by retaining
only those with a non-zero regression weight.

DataFrame with the new features can be computed for all data points and used
to train other models.

By examining the coefficients of the regression model (possibly normalized
by the standard deviation of the corresponding features, in case these are not
of comparable magnitudes), the most prominent influencing factors related to
higher or lower values of the target variable can be identified.

3 Experimental Results

To give an indication of the performance of the AutoFeatRegression model
in practice, compared to other non-linear ML algorithms, we test our approach
on five regression datasets (Table 1), provided in the scikit-learn package
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(diabetes and boston) or obtainable from the UCI Machine Learning Repository.3

For further details on the experiments, including the hyperparameter selection
of the other models, please refer to the corresponding Jupyter notebook in the
GitHub repository.

Table 1. Overview of datasets, including the number of samples n and number of
original input features d.

Dataset n d Prediction task

diabetes [10] 442 10 Disease progression one year after baseline

boston [14] 506 13 Median housing values in suburbs of Boston

concrete [31] 1030 8 Compressive strengths of concrete mixtures

airfoil [4] 1503 5 Sound pressure levels of airfoils in a wind tunnel

wine quality [8] 6497 12 Red & white wine quality from physiochemical tests

While on most datasets, the AutoFeatRegression model does not quite reach
the state-of-the-art performance of a random forest regression model (Table 2),
it clearly outperforms standard linear ridge regression, while retaining its inter-
pretability. Across all datasets, with one feature engineering step, autofeat gen-
erated between 0 and 4 additional features, while with two and three steps, it
produced on average 22 additional features (Table 3). Most of the selected fea-
tures are ratios or products of (transformed) features (Table 4).

Table 2. R2 scores on the training and test folds of different datasets for ridge regres-
sion (RR), support vector regression (SVR), random forests (RF), and the autofeat

regression model with one, two, or three feature engineering steps (AFR1-3). Best
results per column are in boldface.

Diabetes Boston Concrete Airfoil Wine quality

Train Test Train Test Train Test Train Test Train Test

RR 0.541 0.383 0.736 0.748 0.625 0.564 0.517 0.508 0.293 0.310

SVR 0.580 0.320 0.959 0.882 0.933 0.881 0.884 0.851 0.572 0.411

RF 0.598 0.354 0.983 0.870 0.985 0.892 0.991 0.934 0.931 0.558

AFR1 0.556 0.396 0.829 0.802 0.800 0.732 0.544 0.532 0.296 0.310

AFR2 0.539 0.402 0.886 0.818 0.903 0.859 0.879 0.866 0.348 0.365

AFR3 0.597 0.395 0.929 0.035 0.898 0.858 0.876 0.855 0.346 0.348

With only a single feature engineering step, the AutoFeatRegression model
often only performs slightly better than ridge regression on the original features.
3 http://archive.ics.uci.edu/ml/index.php.

http://archive.ics.uci.edu/ml/index.php
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Table 3. Number of engineered (eng) and selected (sel) additional features for each
dataset from an autofeat regression model with one, two, or three feature engineering
steps (AFR1-3).

Diabetes Boston Concrete Airfoil Wine quality

eng sel eng sel eng sel eng sel eng sel

AFR1 50 3 64 4 34 2 22 3 63 0

AFR2 1781 6 2945 13 873 30 333 39 2797 19

AFR3 33661 7 52513 23 12360 25 2239 35 53684 20

Table 4. Most frequently selected features across all datasets for one, two, or three
feature engineering steps (AFR1-3). Only the non-linear transformations log(x),

√
x,

1/x, x2, x3, |x|, and exp(x) were applied during the feature engineering steps.

AFR1 1/x, x3, x2, exp(x)

AFR2
√
x1/x2, 1/(x1x2), x1/x2, x

3
1/x2, x

2
1/x2, exp(x1) exp(x2), exp(x1)/x2,√

x1
√
x2,

√
x1x

3
2, x1 log(x2), log(x1)/x2, x

3
1x

3
2, x

3
1x2, x

3
1 log(x2), ...

AFR3 x3
1/x

3
2, exp(

√
x1 − √

x2), 1/(x3
1x

3
2),

√
x1x2, 1/(x1 + x2), x1/x

2
2,

1/(
√
x1 − log(x2)), |√x1 − log(x2)|, exp(log(x1)/x2), log(x1)

2/x2
2,

| log(x1) + log(x2)|, ...

With three feature engineering steps, on the other hand, the model can overfit on
the training data (as indicated by the discrepancy between the training and test
R2 scores), because the complex features do not only explain the signal, but also
the noise contained in the data. However, the only dataset where this is a serious
problem here is the boston dataset, where over 50k features were generated in
the feature engineering process, while less than 500 data points were available
for feature selection and model fitting, which means overfitting is somewhat to
be expected.

4 Conclusion

In this paper, we have introduced the autofeat Python library, which includes
an automated feature engineering and selection procedure to improve the pre-
diction accuracy of a linear regression model by using additional non-linear fea-
tures. The regression model itself is based on the Lasso LARS regression from
scikit-learn and provides a familiar interface. During the model fit, a vast
number of non-linear features is generated from the original features and a few of
these are selected in an elaborate iterative process to optimally explain the target
variable. By combining a linear model with complex non-linear features, a high
prediction accuracy can be achieved, while retaining a transparent model that
yields traceable results as a basis for business decisions made by non-statisticians.
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The autofeat library was developed with scientific use cases in mind and
is especially useful for heterogeneous datasets, e.g., containing sensor measure-
ments with different physical units. It should not be seen as a competitor for the
existing feature engineering libraries featuretools or tsfresh, which would be
the first choice when dealing with relational business data or time series respec-
tively.

We have demonstrated on several datasets that the AutoFeatRegression
model significantly improves upon the performance of a linear regression model
and sometimes even outperforms other non-linear ML models. While the model
can be used for predictions directly, it might also be beneficial to use the gen-
erated features as input to train other ML models. By adapting the kinds of
transformations applied in the feature engineering process, as well as the num-
ber of feature engineering steps, further insights can be gained with respect to
how which of the input features influences the target variable, as well as the
complexity of the system as a whole.
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Abstract. While label fusion from multiple noisy annotations is a well
understood concept in data wrangling (tackled for example by the Dawid-
Skene (DS) model), we consider the extended problem of carrying out
learning when the labels themselves are not consistently annotated with
the same schema. We show that even if annotators use disparate, albeit
related, label-sets, we can still draw inferences for the underlying full
label-set. We propose the Inter-Schema AdapteR (ISAR) to translate the
fully-specified label-set to the one used by each annotator, enabling learn-
ing under such heterogeneous schemas, without the need to re-annotate
the data. We apply our method to a mouse behavioural dataset, achiev-
ing significant gains (compared with DS) in out-of-sample log-likelihood
(−3.40 to −2.39) and F1-score (0.785 to 0.864).

Keywords: Multi-schema learning · Crowdsourcing · Annotations ·
Behavioural characterisation · Probabilistic modelling · Data wrangling

1 Introduction

Machine learning is based on learning from examples [2]. This often requires
human annotations, e.g. class labels for image classes in ImageNet [12]. However,
human labelling is error prone and consequently, methods such as the Dawid-
Skene (DS) model [5] have been developed to estimate individual error rates and
draw inferences on the true label from multiple annotators, see e.g. [11,20].

In this paper, we are interested in the extended problem of carrying out such
learning when the annotations have been carried out under different schemas,
and in so doing, help to automate the data wrangling and cleaning portion of
data science. Given a ‘complete’ set of possible labels, we consider the scenario
where the annotations for different samples are performed using different subsets
(schemas) of this ‘complete’ label-set. A schema can be obtained, for example,
by aggregating labels together to produce fewer, coarser labels, or by singling out
one label to annotate and lumping all the others together (i.e. ‘One-vs-Rest’).
This is a common data wrangling problem in scientific analysis where the actual
nature of the research question is being formulated: for example, in labelling
animal behaviour, scientists may realise half-way through data collection that
c© Springer Nature Switzerland AG 2020
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a certain activity is rich enough that it warrants splitting into multiple labels.
Alternatively, due to the expertise of certain annotators, they may be directed
to focus on specific subsets of activity, and clumping all others.

The challenge we address here is how to draw inferences about the underlying
complete label-set, despite being provided with annotations which make use of
different labelling schemas. Normally, this would not be possible without re-
annotating the entire data-set (which is often expensive) or simply discarding
older data (which is wasteful in limited data scenarios). Our contribution is
to show that with the appropriate formulation, learning from all the data can
indeed be achieved by adding an Inter-Schema AdapteR (ISAR) which allows us
to translate the full label-set to the one used by a given annotator. Furthermore,
we demonstrate the applicability and effectiveness of our method for behavioural
annotation, using both simulated and actual data.

The rest of our paper is structured as follows. In Sect. 2 we define the data
wrangling problem we tackle and propose our solution, and then compare our
approach to related work (Sect. 3). Subsequently we describe a concrete problem
which motivated our model in Sect. 4, and in Sect. 5 report experimental results
under various scenarios. We conclude with a discussion of the merits of the model
and proposed future extensions.

2 Problem and Model Definition

We start by defining a ‘complete’ set of labels L = {1, ..., |L|} encompassing
all possible classes/feature values, which we will refer to as the ‘full label-set’.
However, we consider the case where the observations are drawn from a reduced
sub-set of L. That is, given |S| different label-sets/schemas, denoted Ls for s ∈
{1, ..., |S|}, different samples are labelled according to different schemas. Each
Ls may contain labels from L and/or groupings thereof, as illustrated in Fig. 1.

To motivate our problem consider the task of documenting the behaviour of
an individual according to a discrete set of labels. A number of annotators are

Fig. 1. An example scenario with ten labels, and three schemas (colour-coded), showing
how super-labels (enumerated A through F) are constructed from the full label-set.
Note that while the above super-labels encompass contiguous labels, this is only for
clarity and need not be the case.
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tasked to do this, but their annotations are not restricted to a single schema (for
the reasons enumerated above). Our aim is to collate their labels so that we get
a posterior belief over the true behavioural state, and to do so while constructing
a global rather than a single model per-schema, thus sharing statistical strength
across the entire data-set. This helps to automate the data wrangling process,
as opposed to re-annotating the data using a consistent schema. In what follows,
we first describe the DS model, which can be used to solve the problem under
the constraint of a single schema, and then show how using ISAR we can achieve
an Extended DS model for dealing with multiple schemas.

2.1 Model Definition

The standard DS model appears in Fig. 2a. The categorical variable Z represents
the true behaviour of the individual, and is parametrised by the prior π over
the full label-set (indexed by z). Uk is the observed annotation provided by
each annotator k, and models the observer error-rate through a Conditional
Probability Table (CPT) (|U | = |Z| = |L|):

ψk,u,z ≡ P (Uk = u|Z = z) , (1)

where the subscripts indicate indexing in the respective dimension.

Z(n)

U
(n)
k

π

ψ

K
N

(a) Dawid-Skene

Z(n)

U
(n)
k

Y
(n)
kS

(n)
k

π

ψ

ω

K
N

(b) Extended Dawid-Skene

Fig. 2. Multi-annotator label fusion with the (a) DS and (b) Extended DS (using ISAR
adapter) models.

In our setup (Fig. 2b), however, Uk is ‘corrupted’ by the schema: i.e. we
only observe Yk whose domain is conditioned by the schema Sk. Yk is another
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discrete variable representing the annotator’s assigned label contingent on which
schema S

(n)
k is currently active: i.e. |Y (n)

k | = |L
S

(n)
k

|. Consider for example that
each annotator is an expert in only a handful of behaviours: thus we opt to
ask the annotator to only label observations of the activity that they know
about. For each annotator k, Yk spans only those behaviours plus a special Not
In Schema (NIS) label, which groups together the remaining behaviours. We
assume knowledge of S

(n)
k (i.e. which schema is used), a valid assumption in our

application domain. The mapping from U to Y (conditioned on S) is modelled
by the Inter-Schema AdapteR (ISAR) CPT ω:

ωy,u,s = P (Y = y|U = u, S = s) . (2)

For our purposes, ω is fixed and deterministic: i.e. all entries are either 1 or 0,
and encode expert knowledge about which labels in L map to the same Ls. This
gives a very intuitive way to construct the mapping, as governed by:

ωy,u,s =

{
1 if u is one of the states captured by y under s,

0 otherwise.
(3)

If we assume a one-hot-encoding of the variables (such that a particular man-
ifestation is indicated by indexing the respective variable dimension), we can
represent our model by the following joint distribution:

P (Z,U, Y |S;Θ,ω) =
N∏

n=1

|L|∏
z=1

⎛
⎝πz

K∏
k=1

|L|∏
u=1

{
ψk,u,zM

(n)
ω (k, u)

}U
(n)
k,u

⎞
⎠

Z(n)
z

, (4)

where Θ = {π, ψ} are model-parameters, and we have defined the ISAR message:

M (n)
ω (k, u) ≡

|S|∏
s=1

⎡
⎣|Y (n)|∏

y=1

ω
Y

(n)
k,y

y,u,s

⎤
⎦

S
(n)
k,s

. (5)

Despite the dependence of Y
(n)
k on S

(n)
k , we can standardise the annotator labels

using a super-space Y which encapsulates all the labels in the full label-set as
well as any valid groupings thereof, as indicated by Lemma1 (see Appendix).

The proposed architecture allows Θ to model the data-generating process,
while the inter-schema differences are captured by the emission probabilities ω.
In doing so, we incorporate knowledge about the schema mapping, specifically
as to which labels will map to which super-labels without effecting estimation
of reliability metrics. It is important to note that ω is annotator-independent,
which reduces the model dimensionality and forces all inter-annotator variability
to be incorporated in ψ. Due to the ISAR adapter, the Extended DS model is
able to infer more accurate statistics about the distribution of the full label-set,
even in cases where the signal is very sparse (such as one vs rest schemas, see 5.4
below). Despite being deterministic, ω does not preclude multiple latent states
mapping to any super-label, and hence, the model is rich enough to capture the
inherent uncertainty over the latent state.



The Extended Dawid-Skene Model 125

2.2 Training the Model

Training the model involves learning the parameters π and ψ (ω is fixed). We add
a Log Prior to the log of the joint likelihood (Eq. 4), and compute Maximum-A-
Posteriori (MAP) rather than Maximum-Likelihood (MLE) estimates for π and
ψ, thus reducing the risk of overfitting. We use conjugate Dirichlet priors:

Dir(π|απ) ≡ 1
β(απ)

|Z|∏
z=1

π
απ

z −1
z , Dir(ψk,z|αψ

k,z) ≡ 1

β(αψ
k,z)

|U |∏
u=1

ψ
αψ

k,u,z−1

k,u,z .

We derive an Expectation Maximisation (EM) algorithm [8] to infer the
parameters. During the E-step, we need to compute two expectations:

γ(n)
z ≡

〈
Z(n)

z

〉
=

πzM
(n)
ψ (z)

|Z|∑
z′=1

πz′M
(n)
ψ (z′)

, (6)

and

ρ
(n)
k,u,z ≡

〈
Z(n)

z U
(n)
k,u

〉
=

πzM
∗(n)
ω (k, u, z)M∗(n)

ψ (k, z)
|Z|∑

z′=1

(
πz′M

(n)
ψ (z′)

) , (7)

where M
(n)
ω is as defined before (Eq. 5), with messages:

M∗(n)
ω (k, u, z) ≡ ψk,u,zM

(n)
ω (k, u), (8)

M
(n)
ψ (z) ≡

K∏
k′=1

|U |∑
u′=1

M∗(n)
ω (k′, u′, z), (9)

M
∗(n)
ψ (k, z) ≡ M

(n)
ψ (z)∑|U |

u=1 M
∗(n)
ω (k, u, z)

. (10)

The M-Step involves maximising the expected complete data log-likelihood with
respect to each of the unknown parameters π and ψ:

π̂z =
∑N

n=1 γ
(n)
z + απ

z − 1

N +
∑|Z|

z′=1 απ
z′ − |Z|

, (11)

and

ψ̂k,u,z =

∑N
n=1 ρ

(n)
k,u,z + αψ

k,u,z − 1∑N
n=1

∑|U |
u′=1 ρ

(n)
k,u′,z +

∑|U |
u′=1 αψ

k,u′,z − |U |
. (12)

The full derivations are available in [3].
As regards computational complexity, we note that the ISAR adapter acts as

a message function in graphical modelling terms, and given that ω is fixed and
both Y and S are observed, Mω can be computed once and used throughout
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the optimisation: moreover, being a merely indexing operation, it is linear in
the number of samples. As regards estimation of the other parameters, each EM
step scales linearly in the number of samples and annotators, and quadratically
in the size of the super-schema.

3 Related Work

Our approach towards automating information fusion and thus streamlining the
data-wrangling process is concerned with probabilistic inference from incom-
pletely specified data. In this respect, ISAR is related to the general Transfer
Learning (TL) field, specifically in learning across feature-spaces. Our solution
is novel in that it is applied to an ‘unsupervised’ learning scenario, and rather
than focusing on learning the mapping between feature spaces – refer to [10]
for a review – we take the problem one step further through our interpretation
of the different schemas (using domain knowledge about the specific problem),
which allows us to collate information across label-spaces in an efficient manner.

Another perspective comes from Multi-Task Learning (MTL) [19]. To relate
to this literature we can view each label schema as a “task”, but the analogy is
not perfect. In multi-task learning one aims to improve the learning of a model
for each task by using knowledge contained in all or some of the tasks, while
in our case, we typically consider a single task but the feature-space is only
partially observed (by way of the schema). We do share a similar goal of sharing
statistical strength across schemas (rather than across tasks): by using ISAR we
seek to fuse the information from all annotators (who may be using different
schemas) in order to draw inferences for the ‘complete’ label-set (rather than
one ‘task’ at a time), and hence is a step beyond the standard MTL setting.

Our schema mapping can be viewed as “data coarsening” as discussed in
[6]: however, our problem setup is different and applied to categorical rather
than continuous data. Cour et al. [4] have addressed a similar problem, using a
discriminative rather than generative method, but only applied for supervised
learning.

One may be inclined to cast our problem into the hierarchical classification
framework [13], particularly Hierarchical Multi-label Classification (HMlC) [17]
due to the apparent ‘multi-label’ aspect of the mapping together with the two-
level nature. While hierarchical classification seeks to structure the space of
labels hierarchically according to a fixed taxonomy, we stress that contrary to
multi-label classification, in our setting, there is a single valid label, but there
is uncertainty on which one it is (due to the coarse labelling imposed by the
schema). Moreover, while we seek mandatory leaf-node predictions [13], we do
not require specification of the full label hierarchy for each sample which to our
knowledge has not been tackled before. Finally, our model focuses on handling
multiple annotators and their uncertainty.
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4 Description of the Data

We tested our Extended DS on a social behaviour-phenotyping data-set for caged
mice, obtained from the Medical Research Council, Harwell Institute, Oxford-
shire (MRC Harwell) as documented in [1]. This consists of 27.5 h of annotated
behaviour of various mice kept in cages of three. Each 30-min segment was indi-
vidually labelled by two or three annotators from a pool of eleven individuals,
with responsibility for annotating changing between segments.

Labelling involves specifying the start/end-times of exhibited behaviours,
which periods are then aligned to 1-s boundaries. The data contains periods for
which no label is given (‘unlabelled samples’): this is because the annotators were
explicitly instructed not to annotate observations if they cannot be coerced to
any of the available behaviours or if they were unsure about it. The annotations
follow one of four schemas (denoted I, II, III and IV), containing the labels
shown in Fig. 3. The schemas are consistent within a segment (i.e. all annotators
use the same schema) but change between segments. The goal of the study is to
infer the ‘true’ latent behaviour of the mice given the observations, which can
then be used for example in the analyse of phenotype differences between strains
(although in this paper, all wild-type strains were used). In this scenario, the
need for a holistic model is even more significant since some labels are missing
entirely from some schemas, and hence a model trained solely on data from a
particular schema would miss potentially significant behaviour.

Fig. 3. The behavioural annotation schemas used in this project, with black cells indi-
cating which labels (numerical representation, top row) are present in which schema
(first column). The last row, marked (Label) is our short-hand notation for referring
to the labels while the last column indicates the number of segments in our data-set
corresponding to each schema.

Since the schemas used did not have an explicit label to indicate a behaviour
not in the label-set (NIS), we had to infer this from the unlabelled data. We
distinguish between two cases of such samples:

1. Informative Unlabelling, which arises from the observed behaviour not being
in the schema (translating to NIS), and

2. Missing Data, i.e. where the annotator was unsure about how to label a
behaviour.

We assign NIS only to those time-points where all responsible annotators do
not give a label, treating all other unlabelled samples as Missing at Random
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(MAR) [7]. This is based on the assumption that in our laboratory setting, the
annotators are adequately trained, and hence, the probability of all responsible
annotators not providing a label is close to insignificant. This was indeed verified
by recording the fraction of time-points with no labelling by schemas, and saw
that this is correlated with the schema (dropping to ≈0 for Schemas I and III).

5 Experimental Analysis

We now document the empirical results which serve to illustrate the validity of
the ISAR method. Specifically we seek to answer two questions: (a) can such a
model be learnt under the condition of disparate schemas, and, if so, (b) is there
merit to using ISAR over just discarding incompatibly annotated data? To this
end, we report two main experiments. Lacking any ground truth in the real data,
we first evaluate the observed-data log-likelihood under both our Extended DS
and individual DS models trained on each schema in Sect. 5.2. Next we analyse
the ability of our model to learn the true data-generating process by evaluating
the predictive performance on synthetic data for which ground-truth is available
(Sect. 5.3). We also provide results on parameter recovery (Sect. 5.4) as well as
an information-theoretic analysis of the schema adapter (Sect. 5.5). In all our
tests (except for the parameter recover), we train on a portion of the data and
report measures on ‘unseen’ data using cross-validation.

All experiments were carried out on a desktop running Ubuntu Linux (18.04),
with an Intel Xeon E3-1245 processor (4-cores, 3.5 GHz), and 32 Gb of mem-
ory. The longest experiment (latent-state synthetic inference with 10-fold cross-
validation, repeated 20 times) took about 6 h. The code is available at: https://
github.com/michael-camilleri/ISAR-Inter Schema AdapteR.

5.1 Experimental Setup

We explored training the models from multiple random restarts. However, exten-
sive testing indicated that starting from a diagonally-biased emission matrix (ψ)
provided consistently better validation-set likelihoods: paired t-test with 164
DoF yielded a t-statistic of 2.90 (p = 0.004) when compared to the best of 30-
random restarts. We hence initialised ψ as a strongly diagonal matrix by adding
a uniform matrix of 0.01 entries to the Identity matrix, and then normalising
across u to produce valid probabilities. This encodes our belief that most anno-
tators are consistent in their labelling (i.e. most of the probability mass is on the
diagonal). It also provides the added benefit that the latent-states are ‘naturally’
identifiable, avoiding the ‘label-switching’ issue [14] in the latent space since it
biases the search in the vicinity of the identity permutation. The prior π was
initialised to the uniform distribution (i.e. all states equally likely). In all cases,
we used symmetric Dirichlet priors (α = 2) on the parameters π and ψ.

https://github.com/michael-camilleri/ISAR-Inter_Schema_AdapteR
https://github.com/michael-camilleri/ISAR-Inter_Schema_AdapteR
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5.2 Likelihood-Based Evaluation on Real Data

We evaluate our architecture on the task of inferring latent mouse-behaviour
from noisy annotations, and compare it to the DS baseline trained independently
per schema. Lacking ground-truths, we score the models using the log-likelihood
on out-of-sample data, with 11-fold cross-validation1 (training on ten and evalu-
ating metrics on the remaining one). When training the DS model, the individual
schemas were augmented with the NIS label, to provide an equivalent observed
sample-space, and allow for a like-with-like likelihood comparison between the
two models. The folds were engineered to be as uniform in size as possible while
separating different mice in different folds to achieve more generalisable perfor-
mance measures. We: (a) use fixed-folds, to provide a fair comparison between
models, and (b) report/compare measures on a per-segment basis, since the DS
architecture can only be trained on a single schema at a time.

Table 1 reports schema-averages (across segments) for the per-sample log-
likelihood (where the log-likelihood is divided by the number of samples), and
the global average (computed across all segments). All likelihoods are higher
(better) in the ISAR case, indicating the ability of the model to share statistical
strength across the schemas, including learning about annotators which would
otherwise not be observed in some schemas. Specifically, a paired t-test with 54
DoF (55 segments) indicated a significant increase in validation-set log-likelihood
for the ISAR model as compared to the DS model: the result yielded a t-statistic
of 5.78 (p = 3.89 × 10−7).

Table 1. Validation average log-likelihoods (higher is better)

Schema Mean Std

I II III IV

DS −3.27 −3.23 −2.65 −5.07 −3.40 1.20

ISAR –2.68 –2.29 –2.48 –2.01 –2.39 0.82

5.3 Latent State Inference in Synthetic Data

While the real data lacks ground-truth of the latent mouse behaviour, we can
simulate data using the parameters learnt above (to be as realistic as possible)
and evaluate the MAP ‘predictive’ performance on it. Note that in this scenario,
we cannot compare ISAR to the DS model trained individually per-schema, since
in every schema, DS does not have knowledge of the entire label-set. In effect,
the DS model cannot be used in such a scenario to give true predictions. A naive
alternative is to clump together all the samples as if they come from the same
schema, and treat NIS as missing data. This is based on the clearly incorrect
assumption that the missing data is MAR and can thus be ignored, which will in
general lead to inferior results. It does however provide a baseline comparison.
1 The 11 is due to the natural groupings of segments in the available data.
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In order to test the merits of ISAR under a number of statistical conditions,
we performed a study in which we simulated different data generation conditions.
The full details of the experimental procedure as well as the results are given in
AppendixB: below we report the case on the statistics which most closely match
our dataset. We ran the experiment 20 times, with 10-fold cross-validation in each
run and report the macro-averaged F1-score (computing F1-score for each class
independently and then averaging [9, p. 185]) and predictive log-likelihood (log-
likelihood assigned to the true label) in Table 2. We prefer the macro-averaged F1
score over accuracy, as we have high class imbalance, but care about each label
equally. Note how in both metrics ISAR shows consistently and (statistically)
significantly better performance.

Table 2. Macro F1 and predictive log-likelihood for the ISAR and DS models applied
to synthetic data.

Log-likelihood Macro F1

Mean Std p-value Mean Std p-value

DS −0.61 0.09
6.1× 10−16 0.785 0.02

3.2× 10−26

ISAR –0.35 0.04 0.864 0.02

5.4 Parameter Recovery from Synthetic Data

Another indicator of performance is the ability of our architecture to learn the
‘true’ parameters which generate the data. We again generated synthetic data
from known fixed values for Θ = {π, ψ} (obtained from the parameters trained
on the real-data), and trained our model on it. While space precludes us from a
full treatment of these results here, we observed convergence towards the same
π identified by using the full schema (up to 2.3% error) even in extreme one-
vs-rest schemas where the annotator only provides the presence/absence of a
single label: ψ was estimated to within 11.3% of the true values under the MRC
Harwell schemas. More details are provided in AppendixC.

5.5 Analysis of Mutual Information

We sought to explain the relative performance of the ISAR architecture in terms
of the Mutual Information (MI) I (Z;Y ) between the latent state Z and sets
of observations Y from different schemas on the model fitted from the real
data. When using more than one schema we can also compute the Redundancy
R(Z;Y ) [15] between Z and Y , where:

R(Z;Y ) ≡
|S|∑
s=1

I (Z;Ys) − I
(
Z;Y1, ..., Y|S|

)
(13)
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Table 3. Mutual Information I and Redundancy R between the observations and the
latent behaviour, under the effect of the different schemas. The statistics are reported
across annotators.

I (Z; Y ) R(Z; Y )

Mean Min Max Mean Min Max

Y = U 1.48 1.39 1.56

I 1.48 1.39 1.56

II 0.87 0.73 0.93

III 1.47 1.38 1.56

IV 0.95 0.90 0.99

I+III 1.73 1.67 1.78 1.22 1.09 1.34

II+IV 1.10 1.06 1.15 0.72 0.60 0.80

I+III+IV 1.78 1.71 1.82 2.12 1.93 2.29

All 1.79 1.72 1.82 2.98 2.73 3.21

The resulting measures are shown in Table 3. We consider first the MI for
individual schemas in Table 3 (top). Note how schema I yields the same MI as if
we had access to the full label-set: this is because in I there is only one missing
label, and hence the model correctly identifies NIS with that label. Looking at
the individual schemas, we see that those with a smaller number of labels coded
as NIS have a higher mutual information.

We next consider combinations of the schemas, a subset of which appear in
Table 3. That is we potentially have observations from up to four schemas for
the same underlying latent state. The table shows that (as expected) increasing
the number of schemas yields higher mutual information, up to the maximum
from using all four schemas. We can also measure the redundancy of the different
schemas. This shows that the schemas are redundant (rather than synergistic),
which makes sense given the way the model is constructed.

6 Conclusions

In this paper we have presented a novel and effective solution to inferring latent
variables from observations across different but related label-spaces (schemas).
We developed an inter-schema adapter (ISAR), that allows us to build a holistic
model and share statistical strength across disparately-labelled portions of the
data-set. We validated our model under both simulated and real-world condi-
tions, for a behaviour annotation task. The ISAR model improved on the baseline
DS in terms of log-likelihood with an increase from −3.40 to −2.39. In simulated
data, ISAR achieved a 10% increase in macro F1-score.

While above we assume that the samples are independent and identically
distributed (IID), we can easily extend the unsupervised model to the temporal
modelling domain: indeed, we investigated such an extension in [3]. We have
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constructed the schema adapter from knowledge of the schemas and how labels
are mapped; however, it could be interesting to consider learning the adapter if
this information were not known.

Our model focused on the problem of inter-annotator variability under incon-
sistent schemas. However, due to the ‘plugin’ nature of our adapter, the model is
amenable to extensions which take into account for example task difficulty [18]
or shared latent-structure across the annotators [16].
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A Extended Proofs

Lemma 1. Let Y
′(n)
k be a 1-Hot encoded variable, where the sample-space is

denoted LS(n) : i.e. this may vary between samples/annotators. This is equivalent
to representing Y

(n)
k by a fixed sample-space, where the probability of emitting

Y
(n)
y for some y /∈ LS(n) = 0.

Proof.
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. (14)

However, for the second set of products, Y
(n)
k,y = 0 by definition, since it is never

observed. Hence,
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⎡
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y∈Y (n)
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⎦
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. (15)

Note that while we do not require that ωy,u,s = 0 ∀y /∈ LS(n) , this is enforced to
avoid the model expending probability mass on impossible combinations.
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B Additional Comparisons between ISAR and DS

We evaluated the Extended and baseline DS models through the macro F1-
score, raw accuracy and predictive log-likelihood in synthetic experiments. While
the F1 and likelihood scores provide the best comparison, the accuracy is also
reported as a more challenging baseline to beat (since it is generally easy to
achieve high accuracy using poor models on very unbalanced datasets such as
ours). In each experiment, we simulated 20 independent runs, and evaluated
the metrics on a hold-out set using 10-fold cross validation. For most of the
experiments, we used a reduced data-set size of 60 segments of 100 samples each,
allowing us to test various conditions quickly (we show that this alone does not
significantly impact our results, see first and second rows of Table 4). We tested
the effect of a uniform distribution over latent-states, Π sampled (once) from a
Dirichlet prior with α = 10 as well as schema distributions Biased towards the
less informative ones (in the ratio 1:10:1:10). Note that in this latter case, the
number of segments was increased to 80 (since otherwise certain schemas do not
appear in some folds). p-Values corresponding to paired t-tests with 19-Degrees
of Freedom (DoF) (20 independent runs) are reported in all cases.

Table 4. Predictive log-likelihood, F1 and accuracy for the ISAR and DS models
under different conditions. In the interest of avoiding clutter, we omit p-Values for the
accuracy, but in all cases, it was less than 1×10−16.

Log-likelihood Macro F1 Accuracy (%)

Mean Std p-value Mean Std p-value Mean Std

Realistic DS –0.61 0.09
6.1×10−16 0.785 0.02

3.2× 10−26 82.5 2.13

ISAR –0.35 0.04 0.864 0.02 84.5 1.95

Reduced DS –0.60 0.09
1.0× 10−14 0.757 0.02

2.5× 10−14 82.6 2.05

ISAR –0.37 0.04 0.803 0.02 84.3 1.84

Uniform DS –0.92 0.08
8.0× 10−24 0.726 0.02

1.9× 10−21 73.8 1.99

ISAR –0.38 0.04 0.840 0.02 83.4 1.89

Dirichlet DS –0.94 0.07
1.6× 10−24 0.727 0.02

2.2× 10−23 73.8 1.83

ISAR –0.36 0.04 0.835 0.02 84.8 1.75

Biased DS –1.83 0.21
3.6× 10−19 0.533 0.02

1.6× 10−24 35.7 2.32

ISAR –0.82 0.15 0.667 0.01 69.3 1.21

Biased & Uniform DS –1.60 0.11
9.1× 10−10 0.585 0.02

5.5× 10−19 62.5 1.05

ISAR –0.82 0.37 0.709 0.02 71.9 1.34

C Parameter Recovery Curves

We carried out simulation experiments of the ability of the model to recover the
‘true’ parameters, under a number of scenarios. In each case, datasets were gener-
ated according to the parameters as learnt from the MRC Harwell data, and sub-
sequently we retrained the model from scratch, using successively larger portions
of the dataset. Each experiment was repeated 20 times, with noisy perturbation
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(∼Unif[0, 0.05]) in the underlying prior/emission probabilities. We evaluated the
quality of the estimate with the Relative Absolute Deviation (RAD) between
the true Θ and learnt Θ̂ parameters, using the mean magnitude of individual
probabilities as the normaliser:

RAD =
|Θ̂ − Θ| × 100%

mean(Θ)
.

We prefer this over the KL-Divergence as it is more readily interpretable.
In the first case (Fig. 4) we experimented with an extreme scenario where

each schema indicates only the presence/absence of a single label (i.e. a One-vs-
Rest schema). To reduce the complexity of the problem, we generated data using
the first six of the original 11 annotators, seven of the original 13 labels, and
with maximum sample sizes of 500 segments of 100 time-points each. Annotators
and schemas were drawn from uniform distributions. We investigated scenarios
where (a) all responsible annotators use the same schema within a sample, and
(b) annotators may use different schemas even within the same sample.

(a) Same Schema per Annotator (b) Potentially Different Schema

Fig. 4. RAD as a function of data-set size for the One-vs-Rest schemas. The error-bars
indicate one standard deviation across runs. The initial increase in error in (b) is due
to the interplay between the ‘prior’ counts becoming insignificant, but there not being
enough data to get a true estimate of the probabilities (due to label imbalance).

In the second case we used the same setup as in the real data, i.e. the four
schemas in the MRC Harwell dataset, the full annotator/label-set and the full
data-set size. This is shown in Fig. 5.
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(a) RAD for π and ψ (b) RAD per ψk

Fig. 5. RAD for simulation runs based on actual data parameters.
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Abstract. Clustering is an important technique in data analysis which
can reveal hidden patterns and unknown relationships in the data. A
common problem in clustering is the proper choice of parameter set-
tings. To tackle this, automated algorithm configuration is available
which can automatically find the best parameter settings. In practice,
however, many of our today’s data sources are data streams due to
the widespread deployment of sensors, the internet-of-things or (social)
media. Stream clustering aims to tackle this challenge by identifying,
tracking and updating clusters over time. Unfortunately, none of the
existing approaches for automated algorithm configuration are directly
applicable to the streaming scenario. In this paper, we explore the pos-
sibility of automated algorithm configuration for stream clustering algo-
rithms using an ensemble of different configurations. In first experiments,
we demonstrate that our approach is able to automatically find superior
configurations and refine them over time.

Keywords: Stream clustering · Automated algorithm configuration ·
Algorithm selection · Ensemble techniques

1 Introduction

One of the hardest challenges for data scientists is to find a suitable algorithm as
well as appropriate parameter settings to solve a given problem. This is even more
challenging when working with data streams which do not allow re-evaluations
and a posteriori optimisation. In addition, data streams can change over time
and parameters need to be adapted accordingly. These problems considerably
prevent the widespread adoption of stream mining algorithms in the real-world.
A popular tool in stream mining are stream clustering algorithms which aim
to identify and track clusters, i.e. groups of similar objects in a stream [5]. In
this paper we propose an innovative, ensemble-based approach that allows to
automatically find and adapt optimal parameters for data stream clustering
algorithms. In each iteration, promising configurations are used to sample new
c© Springer Nature Switzerland AG 2020
P. Cellier and K. Driessens (Eds.): ECML PKDD 2019 Workshops, CCIS 1167, pp. 137–143, 2020.
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ones that can replace inferior configurations. In first experiments, we demon-
strate that our approach can considerably improve clustering results. To the
best of our knowledge, this is the first attempt to apply automated algorithm
configuration to data streams as well as stream clustering.

2 Automated Algorithm Configuration

Automated algorithm configuration aims at automatically determining the best
parameter settings for a given scenario [8,9]. Popular approaches for this are
SMAC [7] or irace [10]. Unfortunately, none of these approaches is directly appli-
cable to the streaming scenario. These algorithms are mostly set-based and do
not focus on single instances. In addition, they require multiple evaluations of
the data and usually require static and stationary data without concept drift.
This would require to apply the parameter configuration a posteriori [4] or on
an initial sample of the stream which is both undesirable.

In this paper, we transfer the idea of automated algorithm configuration
to stream clustering. Similar challenges and prior work can be found in the
algorithm selection and stream classification literature. In [12], for example,
the authors create an ensemble of different stream classification algorithms. All
algorithms are trained simultaneously on the same data stream. The stream
is divided into windows of specified size and for every window, meta-features
such as standard deviation or entropy are computed. Based on these features
and the performance of the classifiers, a meta-classifier is trained to predict
which classifier is most suited to classify the next window. In [11,13], the BLAST
algorithm is introduced which uses the same ensemble strategy and inspired
this work conceptually. However, instead of using a meta-classifier it always
selects the classifier which performed best on the last window to predict the
next window.

3 Automated Configuration of Stream Clustering
Algorithms

In this section we propose confStream, an ensemble-based approach for auto-
mated algorithm configuration in stream clustering, focusing on the online phase
of the algorithm, i.e. optimising the micro-cluster representation. In particular,
our aim is to maintain, adapt and improve an ensemble of different configurations
over time. For this, our algorithm requires a given starting configuration as well
as predefined parameter ranges. The main idea of confStream is summarised in
Fig. 1. In order to apply the ensemble strategy, we process the stream in windows
of fixed size h. Observations within a window are processed one by one and used
to train all algorithms in the ensemble simultaneously. At the end of the window,
the clustering performance of every configuration is evaluated (Step 1). For exam-
ple, the Silhouette Width measures for an observation i, the average similarity
to observations in its own cluster a(i) and compares it to the average similarity
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to its closest clusters b(i). It is defined as: s(i) = (b(i) − a(i))/(max{a(i), b(i)}).
While the Silhouette Width is state-of-the-art, there are also other evaluation
measures which are equally applicable here. In order to evaluate our ensemble, we
compute the average Silhouette Width for all observations of the last window
for the different configurations. The clustering algorithm that performed best
becomes the active clusterer or incumbent for the next iteration. The incum-
bent represents the current clustering result of the ensemble and will be used
throughout the next window.
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Fig. 1. The performance of algorithms in the ensemble is evaluated and used to train
a regression model. Afterwards, one algorithm is sampled to create an offspring. If its
predicted performance is high enough, it replaces one of the algorithms in the ensemble.

In a next step, the configurations of the algorithms and their performances
are used to train a regression model (Step 2). The regression model is supposed
to learn how well certain configurations perform. This is later used in order
to determine whether a new configuration is promising and should be incorpo-
rated into the ensemble. In our case, we use an Adaptive Random Forest (ARF)
regression as proposed in [6]. The ARF is a natural choice, since it is a streaming
algorithm which can be trained over time. In order to generate new configura-
tions, one configuration is sampled from the ensemble as a parent (Step 3). The
sampling is performed proportionally to the performance of the algorithms such
that better performing configurations are more likely to be selected.

The selected configuration is then used as a parent in order to derive a new
configuration from it (Step 4). For this, we use a similar strategy as irace [10].
In particular, every parameter i of every configuration has an associated trun-
cated normal distribution N (μi, σi) with expectation μi and standard deviation
σi. In order to sample a new parameter value, we place the expectation of the
distribution at the position of the parent. The distribution has an upper bound
U and a lower bound L which are set to the boundaries of the parameter range.
The standard deviation σi is initialised with (U −L)/2 for every parameter and
slowly reduced over time. For this, we use a fading strategy which exponentially
decreases the standard deviation over time: σt+1 = σt ·2−λ. The underlying idea
is that the configuration will converge to the optimum over time and the smaller
standard deviation allows to explore this area better. To account for concept
drift, we occasionally explore the full parameter range by resetting the standard
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deviation to its initial value with a probability p. While we only consider continu-
ous parameters here, the approach could be extended to categorical parameters,
e.g. by drawing a new value from a list of probabilities where the probability of
the winning category is increased [10].

Next, the performance of the new configuration is predicted based on the
regression model (Step 5). If the size of the ensemble is smaller than esize the
new configuration is added directly to the ensemble. If the ensemble is full but
the predicted performance is better than a performance in the ensemble, the
new configuration can be incorporated into the ensemble (Step 6). For this,
we use proportional sampling again, where bad solutions are more likely to be
replaced. This is supposed to maintain a higher diversity in the ensemble than
removing the worst solutions first. As two special cases, we never remove the
incumbent and always remove solutions first which did not yield a valid clustering
solution in the last window. We consider solutions invalid when the solution
contains only a single cluster or the algorithm failed. The generation of new
configurations can be repeated until a user-chosen number of configurations enew
has been generated. Afterwards, the next window of the stream is processed. In
summary, our approach has 5 main parameters itself: the window size h, the
fading parameter λ, the ensemble size esize, the number of new configurations
enew and the exploration probability p. We note that our ensemble approach
is slower than running individual algorithms. Nevertheless, in our experiments
the algorithm was fast enough to work in real-time since the algorithms can be
trained in parallel.

4 Evaluation

In order to evaluate our approach we implemented a proof-of-concept in Java1 as
a clustering algorithm for the MOA framework [2]. For our analysis, we consider
a simple configuration scenario for the DenStream [3] algorithm, one of the most
popular stream clustering algorithms [5]. First, we evaluate the performance of
DenStream’s default configuration ε = 0.02, β = 0.2, μ = 1. We then compare
this with our ensemble approach, where we start with the same configuration but
optimise the distance threshold ε in its full value range [0, 1]. We set the ensemble
size emax = 25, fading λ = 0.05, reset probability p = 0.001 and evaluate the
solutions every h = 1000 data points. After each window, we create enew = 10
new configurations. In order to evaluate the quality of the clustering algorithms,
we use the Silhouette Width. Since we want to evaluate cluster quality over time,
we evaluate the quality for windows of 1000 observations in our experiments. We
evaluate both algorithms, i.e. the default parametrisation of DenStream vs. the
configured version confStream, using a Random Radial Basis Function (RBF)
stream [1], sensor stream2, and covertype data set3. All data sets are popular
choices in the (stream) clustering literature.
1 Implementation available at: https://www.matthias-carnein.de/confStream.
2 Dataset available at: http://db.csail.mit.edu/labdata/labdata.html.
3 Dataset available at: http://archive.ics.uci.edu/ml/datasets/Covertype.

https://www.matthias-carnein.de/confStream
http://db.csail.mit.edu/labdata/labdata.html
http://archive.ics.uci.edu/ml/datasets/Covertype
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Fig. 2. Development of Silhouette Width and ε parameter for the Random RBF stream

Figure 2 shows the Silhouette Width for every window of the Random RBF
stream. The boxplot on the right summarises the range of values. It is obvi-
ous, that our ensemble approach quickly improves the default configuration and
remains superior for the vast majority of the stream. When observing the devel-
opment of the ε parameter in our ensemble, it becomes obvious how confStream
first explores a large range of values. Over time, the algorithm reduces the stan-
dard deviation of the distributions in order to explore promising regions further
before settling on roughly ε = 0.005. Note that this is similar to the initial con-
figuration of ε = 0.02. Nevertheless, the performance is vastly improved which
also highlights how sensitive stream clustering algorithms are to different con-
figurations.
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Fig. 3. Silhouette Width for the sensor stream

For the other data sets, we observe similar trends. Figure 3 shows the results
for the sensor data stream. Again, confStream quickly improves upon the initial
configuration and yields better results with a near-perfect median silhouette
width of 0.98. While the default configuration also yields a good results, it is
stronger affected by concept drift in the data stream. In particular, the sensor
data set exhibits a periodic pattern of day and night. confStream is less affected
by this since it adapts to the changing scenarios. For the covertype data set
the difference is most obvious. Using the default configuration, DenStream is not
able to produce a single valid solution with at least two clusters throughout the
entire stream. While confStream starts with the same initial configuration, it
quickly adapts and is able to produce very high quality (Fig. 4). This also shows
in the development of the parameter value which quickly changes from the initial
value ε = 0.02 and explores more suitable values between ε = 0.1 and ε = 0.2.
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Fig. 4. Development of Silhouette Width and ε parameter for the covertype data set

Overall, these initial results show that our ensemble strategy produces vastly
better clustering solutions than the default configuration. In particular, changes
and improvements are made over time which allow for adapting to stream char-
acteristics and/or unsuitable starting configurations.

5 Outlook and Conclusion

In this paper we explored the possibility of automated algorithm configuration
for stream clustering. By training an ensemble of algorithms in parallel and
deriving new configurations from promising solutions, we are able to efficiently
adapt the configuration over time. Results for a configuration problem with
one parameter have shown to improve the overall clustering result considerably
in comparison to its default configuration. In future work, we will extend our
approach and evaluation beyond a single algorithm and parameter. In particular,
we will optimise multiple parameters simultaneously, which can be of different
types, such as categorical or integer. Ultimately, we also aim to include different
kinds of stream clustering algorithms into the ensemble approach resulting in
per-instance algorithm selection and configuration on streaming data.
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Abstract. End-to-end learning with deep neural networks, such as con-
volutional neural networks (CNNs), has been demonstrated to be very
successful for different tasks of image classification. To make decisions
of black-box approaches transparent, different solutions have been pro-
posed. LIME is an approach to explainable AI relying on segmenting
images into superpixels based on the Quick-Shift algorithm. In this paper,
we present an explorative study of how different superpixel methods,
namely Felzenszwalb, SLIC and Compact-Watershed, impact the gener-
ated visual explanations. We compare the resulting relevance areas with
the image parts marked by a human reference. Results show that image
parts selected as relevant strongly vary depending on the applied method.
Quick-Shift resulted in the least and Compact-Watershed in the highest
correspondence with the reference relevance areas.

Keywords: Explainable AI · Superpixel · LIME

1 Introduction

Especially in visual domains, deep Convolutional Neural Networks (CNNs) have
shown their superior capabilities for object classification tasks such as semantic
segmentation [7]. For CNNs, as well as for other deep learning architectures, cru-
cial requirements for real-world applications are that the learned classifiers (a)
make accurate predictions and (b) that the systems’ decision making is transpar-
ent and comprehensible to humans [10,15]. Explanations of a system’s decision
making process can help machine learning experts to uncover unwanted biases.
Additionally, for domain experts without a background in machine learning,
explanations are crucial for being able to understand and trust the propositions
of a classifier [10]. Applications in the medical or pharmaceutical fields particu-
larly require the trust of the end user, since a physician will not trust the decision
of a black-box unless this decision is comprehensible.

In the context of image classifications, many approaches for visual expla-
nations have been proposed [22], such as LRP (Layer-wise Relevance Propaga-
tion, [2]) or LIME (Local Interpretable Model-Agnostic Explanations, [15]). For
c© Springer Nature Switzerland AG 2020
P. Cellier and K. Driessens (Eds.): ECML PKDD 2019 Workshops, CCIS 1167, pp. 147–158, 2020.
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explaining image classifications, LIME relies on segmentation of the image into
superpixels, that is on similarity based grouping of pixels into larger structures
based on local features [4]. LIME by default applies the specific superpixel algo-
rithm Quick-Shift. The segmentation of an image into superpixels is crucial for
the generation of the explanation in LIME since perturbation of superpixels is
used to identify which of the image areas has been relevant for a specific class
decision. Therefore, we were interested in exploring whether different superpixel
approaches have a significant impact on the kind of visual explanations gener-
ated by LIME. Furthermore – in the case of differences between the superpixel
approaches – it is also of interest how similar these results are to reference assess-
ments generated by a humans based on relevance.

As an application domain we focus on biological data which come in a huge
variety of image types – from fine grained microscopic images to holistic images
of plants and animals. Our two case studies focused on applications from the
medical and biological field, namely the detection of malaria parasites in thin
blood smear images [13] and the detection of stress in tobacco plants used for
pharmaceutical purposes [17].

In the following, we will first recapitulate the basic concepts of LIME. After-
wards, we will introduce a variety of superpixel approaches which are well known
in computer vision. Furthermore, we present the malaria domain and evaluation
results – showing differences of LIME’s relevance explanation for the considered
superpixel approaches and similarity to the relevance selection. Additionally,
we shortly present and discuss the tobacco domain. We conclude with a short
discussion and further work to be done.

2 Visual Explainability with LIME

LIME [15] is an explanation framework for the decision of any machine learning
classifier. In the original implementation it is capable of processing classifiers
that either have text, images or tabular data as input. In this work we focus on
the explanation of decisions for classifiers that process image data. The output
of LIME therefore is a set of connected pixel patches along with a weighting for
each patch. These weights indicate how strong a patch is correlated with the
classifier decision.

Given a classifier f and an image instance x, LIME outputs the weights w
for all pixel patches x′ of the image x. w can be seen as coefficients for a linear
model that acts as a surrogate for the possibly complex decision boundary of f .
This linear model g should approximate the decision boundary in the locality of
x. To achieve this, first a pool Z with size N (user defined constant) of perturbed
versions (in the following named z′) of x′ is generated. For images, this is achieved
by randomly removing patches from the image and replacing them with the mean
color of the patch or with some chosen color (default is grey). Every instance
of Z consists of the triples 〈z′

i, f(zi), πx(zi)〉 with f(zi) being the classification
result of f for the perturbed version z′

i in the image space and πx(zi) being a
proximity measure that indicates how different the perturbed version is from the
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original instance. This measure is used to enforce locality for the linear model g.
The weights w are ultimately found through K-Lasso, a procedure that is based
on the regression method Lasso [18]. The input is the pool Z and a user defined
feature limit K which is the number of patches the user wants in its explanation.

3 Superpixel Methods

Pixels, which are used to represent images in grid form, do not represent a natural
representation of the depicted scene. If a single image pixel is viewed, neither its
origin in the original image nor its semantic meaning can be determined. This
results from the process of creating digital images. Pixels are artefacts that are
created by the process of taking and creating the digital image [14].

In comparison, the origin and semantic meaning of a superpixel can be deter-
mined. A superpixel is a local grouping or combination of pixels based on com-
mon properties, such as the color value (See Fig. 1). The advantages of super-
pixels can be summarized as follows [14]:

– Lower complexity: Although the superpixel algorithm must be applied first to
enable the name-giving groupings of pixels, this process reduces the complex-
ity of the image due to the small number of entities. In addition, subsequent
steps based on these superpixels require significantly less processing power.

– Significant entities: Individual pixels are not very meaningful. However, pixels
in a superpixel group share properties such as texture or color distribution.
Through this embedding, superpixels gain an expressiveness.

– Marginal information loss: superpixel approaches tend to oversegmentation.
Thus, important areas are differentiated, but also insignificant ones. However,
this apparent disadvantage basically has the positive aspect of only a minor
loss of information.

3.1 Felzenszwalb

The algorithm of Felzenszwalb and Huttenloch (FSZ) [3] is to be categorized as
a graph-based approach and can be described as an edge-oriented method. The
approach has a complexity of O(M log M).

First, the algorithm calculates a gradient between two adjacent pixels. This
is weighted according to the characteristic properties of the pixels, for example
based on the color and brightness of the individual pixels. Subsequently, indi-
vidual segments - the seed for future superpixels - are formed per pixel. The
aim of this process is to make the differences between the gradients within the
segment as small as possible but make the differences as large as possible for
adjacent segments. The resulting superpixels should neither be too small or too
large. However, this algorithm lacks a direct influence on the size and number of
superpixels. This usually results in a very irregular size and shape distribution
[3].
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(a) Felzenszwalb (b) Quickshift

(c) SLIC (d) Compact-Watershed

Fig. 1. Superpixel approaches in comparison. Source: original photo by Baptist Stan-
daert on Unsplash

3.2 Quick-Shift

Quick-Shift (QS) is an algorithm LIME uses by default, it is described in detail
in [20]. Its uses a so-called mode-seeking segmentation scheme to generate super-
pixels. This approach moves each point xi to the next point which are higher
density (P ), which causes an increase in the density. QS does not have the pos-
sibility of controlling neither the number nor the size of the superpixels.

3.3 SLIC

As the name Simple Linear Iterative Clustering (SLIC) [1] suggests, this super-
pixel algorithm belongs to the group of cluster-based algorithms. SLIC uses the
well-known K-Means algorithm [8] as a basis, but there are essential differences:

– The search space (2S×2S) is limited proportional to the size of the superpixel
(S × S). This significantly reduces the number of distance calculations.
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– In addition, the complexity is independent of the number of superpixels k,
whereby SLIC has a complexity of O(N).

– Furthermore, a weighted distance measure (see Eq. 1) combines the spatial
(ds) and color (dc) proximity.

– In addition, the control of compactness and size of the superpixels is ensured
by a parameter (m).

D =

√
d2c + (

ds
S

)2m2 (1)

With the parameters k the desired number of superpixels is defined. The cluster
process starts with the initialization of k cluster centers (mathematically: Ck =
[lk, ak, bk, xk, yk]T ), which are scanned by a regular grid with a distance of S
pixels. By S =

√
N/k approximately even superpixels are guaranteed. Next, the

centers are shifted in the direction of the position of the smallest gradient within
a 3× 3 range. This is done, among other things, to avoid placing a superpixel at
an edge.

Then each pixel i is assigned to the nearest cluster center whose search area
(2S × 2S) overlaps with the position of the superpixel (S × S). The nearest
cluster center is determined by the distance measure D (see Eq. 1).

Then the average [l a b x y]T vector of the pixels belonging to each cluster
center is calculated by an update step for each cluster center and adopted as
the new cluster center. Finally, a residual error E between the new and the
old cluster center is determined. The assignment and calculation step can be
repeated until the residual error reaches a threshold value (E ≤ Threshold).
Finally, all unconnected pixels are added to a nearby superpixel.

3.4 Compact-Watershed

The Compact-Watershed (CW) [11] algorithm is an optimized – respectively a
more compact – version of the superpixel algorithm Watershed [9]. As input a
gradient image is used. Because the grey-tone of each pixel is considered as an
altitude, the input can be seen as a topographical surface. Then this surface gets
continuously flooded, resulting in watershed with catchment basins. During this
process over-segmentation may occur. For prevention, so called markers are used
[9]:

1. The set of markers (for each one a different label) where the flooding should
begin has to be chosen.

2. A priority queue will be created and collects the neighboring pixels of each
marked area. Each pixel is graded a priority level which corresponds with the
gradient magnitude of the pixel.

3. The pixel with the highest level of priority, gets pulled out of the priority
queue. This pixel gets labeled with the same label as its neighbors if all of its
neighbors are already labeled. The neighbor pixels who are not yet marked
and are not contained in the priority queue are pushed into this queue.
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4. Repeat the previous step (3) until the priority queue is empty.

Those pixel who are still not labeled after the priority queue is empty are the
watershed lines.

Compact-Watershed is derived from the original Watershed algorithm result-
ing in more compact superpixels in terms of size and extension. This is achieved
by using a weighted distance measure between Euclidean distance of a pixel from
the superpixel’s seed point and the difference of the pixel’s grey value compared
to the seed pixel’s grey value.

4 Case Studies

4.1 Malaria

Malaria is a parasitic infectious disease. It is predominantly transmitted by
anopheles mosquitoes, but can also be transmitted from person to person. This
happens for example by blood transfusion, organ transplantation or by sharing
injection needles [12,21]. Malaria killed 435,000 people in 2017. Of these 266,000
were children under 5 years of age [21].

A network trained for the detection of malaria in cells and whose results are
comprehensible by LIME thus has a great benefit in the application in the field
of diagnosis of malaria. For this purpose a ResNet50 [6] was trained (see Table 4
for the hyperparameters), the results are shown in Table 1.

The malaria data set [13] consists of blood smear images of the most used
diagnostic tool Rapid Diagnostic Tests (RDT) [21]. The data are divided into two
classes: positive and negative malaria labeled cells. In particular, the relatively
large number and equally distributed (50%–50%) of training examples (26,758
total) promise a good basis for a meaningful network to assess whether a cell is
infected with malaria or not (Fig. 2).

Table 1. Model results for the malaria model

Metric Value

Training accuracy 97.8182%

Training loss (cross entropy) 0.0573

Validation accuracy 96.5167%

Validation loss (cross entropy) 0.0970

Test accuracy 96.3715%

Test loss (cross entropy) 0.1069
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(a) non-
infected cell

(b) infected
cell

Fig. 2. Examples of the malaria dataset

Experiments. To enable an objective comparison of the superpixel approaches,
the Jaccard-Coefficient [5] was calculated, which indicates the similarity of two
sets. The similarity measure is determined between the results of the different
superpixel approaches and the respective average relevant area of the decision.
The relevant area per image is selected manually selects the indicator, which is
most relevant to the decision making process (Fig. 3).

(a) Original (b) Average
selection

Fig. 3. Original blood smear image from the malaria data set, as well as the corre-
sponding average selection

For the comparability of the results, 100 images of infected cells were selected
from the test data set of the malaria blood smear images. To make it easier
to select, only images with a single malaria indicator were selected. Of these
100 images, 85 were classified by the network as infected (true positive). The
remaining 15 were classified as not-infected (false negative). Table 2 shows the
result of the Jaccard-Coefficient for the respective superpixel approach with the
true positive classified explanations, where only the most important feature for
the network’s decision (see Fig. 4) is displayed. All of the superpixel methods were
optimized to the given case to maximize the average Jaccard-Coefficient, hence
the optimized Quick-Shift version. This was done so that all of the superpixel
approaches would be compared on a fair level.

4.2 Tobacco Plants

Tobacco is a significant plant used in biopharmaceutical production using genet-
ically modified (GM) plants. Two important reasons are its ability to produce
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biomass quickly and minimum risk of food chain contamination because of the
fact that tobacco is not a food crop [19]. It is able to produce proteins which
can be used for treatment or diagnosis of various diseases. However, if plants are
used to produce medicine for human use, strict regulations present in the field
of pharmaceutical production must be observed. In this context it is desirable
to monitor the health state of each plant to ensure only healthy plants are used
for drug production, however different parts of world regulate pharmaceutical
production of GM plants differently [16].

Table 2. Jaccard coefficient of the different superpixel methods

Superpixel method Mean value Variance Standard deviation

Felzenszwalb 0.85603243 0.03330687 0.18250170

Quick-Shift 0.52272303 0.04613085 0.21478094

Quick-Shift optimized 0.88820585 0.00307818 0.05548137

SLIC 0.96437629 0.00014387 0.01199452

Compact-Watershed 0.97850773 0.00003847 0.00620228

(a) Original (b) Felzen-
szwalb

(c) Quick-
Shift

(d) Quick-
Shift opt.

(e) SLIC (f) Compact-
Watershed

Fig. 4. LIME results for true positive predicted malaria infected cells

(a) Original (b) Felzen-
szwalb

(c) Quick-
Shift

(d) Quick-
Shift opt.

(e) SLIC (f) Compact-
Watershed

Fig. 5. LIME results for false positive predicted malaria infected cells

Stocker et al. have investigated various methods to classify stress in tobacco
plants using non neuronal AI approaches [17]. Figure 6 shows sample images of
healthy and stressed tobacco plants. We use the same tobacco data set as a
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(a) Healthy Tobacco
plant

(b) Stressed Tobacco
plant

Fig. 6. Examples of the tobacco plant dataset

case study to assess the suitability of CNNs for stress classification again using
LIME to provide insights into the classification process. For the training the
same ResNet50 as for the malaria dataset was used. The only difference was
that, to prevent overfitting, the last layers were unfrozen during the training
of the tobacco trainingsset. The tobacco data set consists of 700 images total
divided into two classes, healthy and stressed. Only 81 images of stressed plants
are contained in the data set, so expectations of a good classification result were
limited.

Table 3 shows the trained model results on the tobacco plant data set. These
clearly already show that the results should not be trusted to begin with, so we
decided to discontinue work on this case study for the time being.

Table 3. Model results for tobacco plants

Metric Value

Training accuracy 91.2577%

Training loss 0.4459

Test accuracy 50%

Test loss 0.7524

Table 4. Hyperparameter for the training of both models

Hyperparameter Value

Epochs 50

Batch size 32

SGD learning rate 0,0001

SGD momentum 0,90

SGD nesterov Ja

Dropout 0,50

L2-regulation 0,0001
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5 Discussion

In the following, the experiments with LIME from the previous chapter, their
results and the possible improvement of the visual explainability are discussed
(see Table 2). Although FSZ is an older algorithm compared to the other
approaches considered, still good results were achieved. Surprisingly, QS, the
standard algorithm of LIME, is surpassed by about 33.33%. Since FSZ itself
does not have any parameter, which could limit the size of a superpixel, it seems
that LIME can act pretty much freely and can generate the superpixels purely
based on relevance regarding explainability. A good example for such a case is
the explanation from LIME for the false positive classification shown in Fig. 5.
In contrast to the other superpixel methods explored though FSZ’s decision for
not infected is more comprehensible. However the variance and standard devia-
tion for the true positive examples, indicates the similarity vary significantly and
with FSZ the results are not stable and may sometimes show regions as relevant
for the decision which are actually not important. This for example is the case
for the first result from LIME while using FSZ (see Fig. 4).

The optimized version of QS, remarkably achieved an improvement of 36.55%
compared to the standard version of LIME. Additionally it performs slightly
better than FSZ - with an improvement of 3.22% - and the variance and standard
deviation are also lower, which indicates the results are more stable than with
FSZ and the unoptimized QS version.

SLIC makes it possible to influence the actual size of the superpixels through
a parameter. Consequently, the higher similarity measure with over 44.17% com-
pared to QS and over 7.62% compared to the optimized version of QS, is not
surprising. Additionally, a lower variance and standard deviation was achieved.
These results show that SLIC has advantages over QS due to showing a better
correspondence between superpixels and relevant areas.

The last superpixel approach compared with QS was CW. Like SLIC it sup-
ports influencing the compactness of the resulting superpixels. In comparison
to all other superpixel approaches CW yielded the best results. This approach
achieved an improvement of 45.58% over the standard QS and an improvement
of 9.03% over the optimized QS version. It also significantly reduces the variance
and standard deviation. This indicates there is a very correspondence over all
the 85 images.

6 Conclusion

Our results suggest that tailoring of the superpixel approach - whether by an
optimized version of QS or by FSZ, SLIC or CW - to the task will improve
the visual explainability of LIME. Therefore a selecting a suitable algorithm for
LIME can be beneficial and should be considered. With the exception of QS the
remaining approaches segment fewer irrelevant areas of an image (see Fig. 4). It
was also observed that CW achieved the best results.

In applications where large area and uneven features are to be emphasized,
an approach like CW would possibly do worse because it divides the input into
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very small, evenly sized superpixels. FSZ, which generates superpixels in signifi-
cantly different sizes, may even achieve the best results in such application areas.
Consequently, the finding that CW does give the best results in malaria is not
universally valid and the superpixel approaches should be evaluated by experts
in different application areas. Another conclusion is that superpixel methods
other than QS are more suitable for LIME.

Since the area of pharmaceutical and agricultural applications is an emerging
research area for applying machine learning to digital plant phenotyping tasks,
we plan to continue pursuing the ideas begun in the tobacco case study. We
suspect that an objective assessment of plant health will yield better results if
based on 3D data, because the habitus of a plant should then be represented
more realistically than in a purely texture based 2D analysis as in the tobacco
case study. Furthermore, the number of training images in said case study was
insufficient, so the goal will be to generate a greater data set containing 3D scans
of plants to continue research on this subject.
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Abstract. Artificial Intelligence systems often adopt machine learning
models encoding complex algorithms with potentially unknown behav-
ior. As the application of these “black box” models grows, it is our
responsibility to understand their inner working and formulate them
in human-understandable explanations. To this end, we propose a rule-
based model-agnostic explanation method that follows a local-to-global
schema: it generalizes a global explanation summarizing the decision logic
of a black box starting from the local explanations of single predicted
instances. We define a scoring system based on a rule relevance score to
extract global explanations from a set of local explanations in the form
of decision rules. Experiments on several datasets and black boxes show
the stability, and low complexity of the global explanations provided by
the proposed solution in comparison with baselines and state-of-the-art
global explainers.

Keywords: Explainable AI · Rule-based explainer · Decision system

1 Introduction

The adoption of machine learning models in Artificial Intelligence (AI) has found
application in increasingly sensitive and diverse areas such as speech recognition,
image classification, biology, and medicine. When approaching a machine learn-
ing classifier, one has to take into consideration several potential issues such
as overfitting, fragility to adversarial attacks, and over-parameterization. These
well-known weaknesses highlight the underlying complexity of the generalization
problem and have been addressed by several scholars in the field which leverage
other learning tools, such as distillation and dataset enriching [7,11].

A recent prominent research area is that of Explainable AI, which instead of
addressing the model complexity in a ante-hoc fashion, subsumes it in human-
understandable explanations. In this setting the objective is to explain the deci-
sions of “black box” machine learning classifiers [6]. Explanations are a powerful
tool which enables model inspection [22], validation [5], and human-in-the-loop
systems [14]. Explainability also gained attention from institutional bodies which
recently put into law the General Data Protection Regulation (GDPR). Besides
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giving people control over their personal data, the GDPR provides restrictions for
automated decision-making processes. It introduces a right to meaningful’ expla-
nation: an individual has the right to obtain “meaningful information about the
logic involved” when automated decision making takes place [17,19,24].

In spite of the common interest and effort in the explainability field, the
formal definition of what an explanation is remains an open question [18]. How-
ever, the research community is converging towards a small set of families of
explanations (Sect. 2). With respect to tabular data, that is the focus of our
work, explanations can take the form of: prototypes [3,13], that is samples rep-
resentative of some cluster of interest; sets of relevant features [1,12]; or decision
rules [23,27]. In our work, we focus on rule-based explanations. Single-instance
explanations, also known as local explanations, have shown promising results in
approximating the behavior and motivating the decisions of black box models,
and seldom they are able to outperform global interpretable-by-design models.

In light of these results we introduce the local-to-global problem (Sect. 3),
a generalization problem which aims to relax the locality constraints of single-
instance explanations [19]. It is based on the idea of deriving a global explanation
by subsuming local logical rules. We propose to address this problem with a scor-
ing system which subsumes a given set of local interpretable decision rules into
a smaller set, then it is used to perform predictions and to describe the overall
logic of the black box model (Sect. 4). In particular, we aim to derive explana-
tions with a good trade-off among the following properties. Conciseness, which
describes the succinctness of an explainable model: a concise model is composed
of a small number of rules. Completeness which identifies the validity boundaries
of explanations: complete models provide the user with explanations for a large
number of instances. Finally, complexity which measures the inherent complexity
of an explanation. We attempt to take into account these properties in the scor-
ing system by defining a local Rule Relevance Score (rrs). We empirically show
the effectiveness of the proposed explanation method explaining the decisions of
two different black box models on four datasets in which each entry represents
a human (Sect. 5). The local-to-global scoring system using the rrs, thanks to
the aforementioned properties, is able to compete with and outperforms a set of
baselines and explainable-by-design models.

2 Related Work

We report in this section some of the most relevant explainability techniques
with a focus on our area of application, tabular dataset. Our scope is rule-based
classifiers and rule generation/selection algorithms.

There are two main actors in an explainability problem: an opaque clas-
sifier, also called black box whose behavior must be explained, and a dataset
to train the explainable model [6]. Explanation algorithms and models can be
split into two branches of local and global explanation method [10]. The for-
mer provides explanations on the model behavior on a single prediction while
the latter provides explanations on the whole model behavior. In this setting,
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local explainability problems operate on an available dataset comprised of a
single instance. Local explanation algorithms tend to focus either on a neighbor-
hood or on a candidate approach. Given a black box, a distance measure, and
a record x, neighborhood approaches generate a synthetic neighborhood of x,
then exploits an interpretable algorithm (such as a decision tree or a rule-based
classifier) to extract a local explanation from it. lime [22] and lore [9] tackle
the neighborhood generation through input perturbation and genetic algorithms,
respectively. Candidate approaches instead focus on greedily exploring the prob-
lem space. anchors [23] generates a starting one-premise rule, then iteratively
adds relevant premises by leveraging multi-bandit algorithms. Global explana-
tion algorithms instead leverage the whole dataset and try to explain the overall
logic of the black box classifier with explainable-by-design models. trepan [4]
for instance, is a revised decision tree, and tries to jointly optimize gain ratio
and fidelity to the given black box. This feature allows to reduce erroneous splits
and dampen overfitting in the deeper levels of the tree.

While the methods previously discussed try to approximate either the local
or global behavior of a black box, interpretable classifiers are explainable by
design [8,10] and are meant to substitute it in the classification task. However, at
the cost of their interpretability comes a generally lower performance than those
of black boxes. Decision trees like C4.5 [20] are probably the most notorious
family of interpretable models. Another large family is the one of rule-based
classifiers like foil [21] and cpar [27] that operate by iteratively generating
detailed rulesets. Restricting ourselves to rule-based algorithms, there are several
recent proposals in the literature. Decision sets [15] and MUSE [16] optimize
an objective function balancing accuracy and complexity of the output ruleset,
thus yielding a set of sorted and mutually exclusive rules. In [26] the authors
introduce the Scalable Bayesian Rule Lists (sbrl), i.e., a Bayesian model to filter
a given ruleset. The authors set up a prior distribution over the output ruleset
bounded in number of premises per rule and size of the ruleset. The posterior
is then addressed with a probabilistic scheme. A Bayesian formulation is also
applied by the Falling Rule Lists [25], where the ruleset is updated with random
operations such as premise swapping, replacement, addition and removal. Finally,
corels [2] introduces an algorithmically bounded ruleset construction procedure
with a strong emphasis on optimality.

The explanation methods reviewed above operate by either generating local
(lore, anchors) or global rules (cpar, foil, corels, sbrl, etc.). The problem
we address is instead that of subsuming a set of local rules to a set of global
ones guaranteeing high affordability with the black box and a low complexity
in the explanation for a better understanding. Note that the problem we deal
with extracts explanations from other explanation, rather than directly from
the data, as it is the case for the above global models. As a consequence, to the
best of the our knowledge, our proposal is conceptually different from all those
existing in the literature. However, in the experiment section we try to exploit
existing methods as a replacement of the proposed one.



162 M. Setzu et al.

3 Problem Formulation

We first recall basic notations on classification and explanation. Afterwards, we
define the local-to-global explanation problem for which we propose a solution.

We name black box b a not interpretable classification model, such as a neural
network or a random forest. It is defined as a function b : X (m) → Y which maps
records x from a feature space X (m) with m input features to a decision y in a
target space1 Y. We write b(x) = y to denote the decision y predicted by b, and
b(X) = Y as a shorthand for {b(x) | x ∈ X} = Y . An instance x consists of a
set of m attribute-value pairs (ai, vi), where ai is a feature (or attribute) and
vi is a value from the domain of ai. We assume that b can be queried at will.
Given b and an instance x for which the outcome b(x) = y has to be explained,
we model a local explanation e of such decision as a decision rule r = p → y,
where each premise pi ∈ p is associated to a feature ai and a range [v(l)

i , v
(u)
i ].

We can now formalize the local-to-global explanation problem as follows:

Definition 1 (Local-to-Global Explanation). Let b be a black box classifier,
X = {x1, . . . , xn} a set of instances and R = {r1, . . . , rn} a set of the rule-based
local explanations of b for all the instances in X. The local-to-global explana-
tion problem consists in deriving from R an interpretable rule-based classifier
approximating the global behavior of b.

Therefore, starting from a set of local explanations, our objective is to find a
global interpretable classifier from which is possible to understand the overall
logic followed by the black box for taking its decision.

4 Scoring Methods and Rule Relevance Score

In this section, we describe a scoring system for solving the local-to-global expla-
nation problem. The proposed approach can be summarized as follows. Given a
set of rules R as local explanation of a black box classifier b, the scoring system
calculates a score for each rule ri ∈ R. Then, it prunes out the rules with a score
lower than a given threshold. The resulting set of rules R∗ ⊆ R is the global
explanation approximating the behavior of the black box b.

In particular, our target is to select a small set of rules sufficiently large
and precise to approximate the black box b, i.e., to extract from R a subset R∗

rewarding the following properties. Firstly, generality: we wish for rules to be
general, and hence applicable to large subsets of the dataset. The more general a
rule set is, the larger the probability that a record in the dataset can be explained
by it. Secondly, high accuracy: naturally, we wish for the predictions of the rule
set to be accurate. Lastly, “outliers accuracy”. The results in [27] suggest that, in
the solution space, accuracy and coverage are involved in a trade-off relationship.
We wish to reward rules which capture rule-outliers, i.e., rules able to explain

1 Without loss of generality, in our study we restrict to binary decisions, but the
problem can also be faced for multi-class decisions.
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records matched by few other rules, as they are outliers in the solution space
of explanations. Moreover, rewarding such rules allows us to reduce the overlap
between rules and to discard a large chunk of the most “obvious” rules. Measures
embedding these properties can act as a proxy for model completeness, as highly
general rule sets lower the probability of occurring in non-explainable records.
As a side-effect, fixed the rule set, general models tend to be simpler, since the
more complex and detailed an explanation is, the lower its generality. Therefore,
the effectiveness of the scoring system lies in the definition of a scoring function
implementing the above properties.

In this proposal, we define the Rule Relevance Score (rrs). The proposed
scoring formulation accounts for the required generality and accuracy constraints
by weighting them in a tunable linear sum:

rrsR,X = α1 · c + α2 · s + α3 · a + α4 · c̃ + α5 · ã (1)

where c is a coverage score, s is a sparsity score, a is an association score, c̃ is a
prediction coverage score, ã is a prediction association score, and α1, . . . , α5 are
tunable weights2. Coverage and sparsity act as a proxy for model complexity:
the longer a rule is, the lower its coverage. It also follows that high-coverage
rulesets yield highly complete models: the larger the ruleset coverage, the more
records can be explained. Score vectors are computed on a given ruleset R and
validation set X. Next, we detail each component of rrs defined in Eq. 1.

4.1 Coverage

Given a rule r = p → y and a dataset X, we define the coverage of the rule r on
X as the set of records x ∈ X that satisfy the premise of the rule, i.e.,

Γ (r,X) = {x ∈ X | ∀ai ∈ p, (ai, vi) ∈ x. v
(l)
i ≤ vi < v

(u)
i }. (2)

In addition, we call the inverse of the coverage function of a record the associated
ruleset of a record, that is the set of rules satisfied by the record. Moreover, we
extend the notion of coverage to that of perfect coverage of a rule r with target
y, that is the subset of records covered and correctly predicted by r:

˜Γ (r,X) = {x ∈ X | x ∈ Γ (r,X) ∧ b(x) = y}. (3)

The definition of perfect associated ruleset of a record is analogous to the non-
perfect version and replaces the coverage function with its perfect extension.

We turn the above sets into the scores of the rrs formula as follows. Given
a ruleset R, the coverage matrix CR,X of R over X is a binary matrix such
that CR,X [i, j] = 1 if and only if the i-th rule in R covers the record j, i.e., if
xj ∈ Γ (R, {xj}).

2 We adopt default unitary weights of αi = 0.2 to balance the score vectors in a linear
non-weighted sum.
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It is then straightforward to define both the coverage score vector cR,X and
association score vector c−1

R,X as the ratio of covered records and the ratio of the
covering ruleset, respectively:

cR,X = 1/|X| · CR,X · 1, c−1
R,X = 1/|R| · 1T · CR,X (4)

where 1 is a column vector of appropriate size and 1 entries. The coverage score
vector accounts for the normalized coverage of the records, while the association
score vector accounts for the coverage of the rules.

4.2 Associated Rule Coverage

In order to accommodate also “outlier coverage”, i.e., the coverage of rare
records, we apply product between the cR,X and c−1

R,X , resulting in the asso-
ciated rule-coverage score vector aR,X :

aR,X = CR,X(c−1
R,X)−1. (5)

This score captures, for each rule, the average associated rule set cardinality
of its covered records. Hence, rules covering less-covered records will tend to have
a large associated rule-coverage.

We define the perfect coverage matrix ˜CR,X using the ˜Γ operator, and in line
with Eqs. 4 and 5 we name c̃R,X and ãR,X the perfect coverage score and perfect
associated rule-coverage of the rrs formula.

4.3 Sparsity

Coverage is not necessarily the unique measure to account for the coverage of
a ruleset. We also account for the distance among the records covered by a
rule with an average pairwise distance of the covered records. Let DX be the
pairwise symmetric distance matrix in which element (i, j) holds the distance
between record i and record j, we define sparsity as:

sR,X = 1/DX · CR,X · DX . (6)

4.4 Model Explanation and Prediction

The model explanation is comprised of two phases: a pruning phase, which
extracts a global set of rules from a set of local ones, and a prediction phase,
which employs the global set of rules to classify a given instance.

Pruning. Given a set R of local rules, and a validation set X, we calculate the
rrs vector. Then, we extract a subset of rules R∗ from R by pruning out the
rules having a rrs lower than a threshold. As a threshold, we adopt a percentile
of the values in the rrs vector. Formally, given β we prune R to R∗ by removing
all r ∈ R with score lower than the βth percentile. The ruleset R∗ represents the
global interpretation of the black box b explained by the scoring system rrs.
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Prediction. Given a set of relevant rules R∗ and a record x, we adopt the Lapla-
cian schema introduced in [27]. Given a record x, the set of relevant rules R∗

and a validation set X, the prediction of R∗ on x is the prediction of the rule
with the highest Laplacian accuracy in the associated ruleset of x.

5 Experiments

In this section we present an array of experiments showing the validity of the
proposed solution3. In particular, we show the effectiveness of the scoring system
using rrs in subsuming an optimal set of rules with respect to baseline scores
and to state-of-the-art rule-based explainable by design methods.

Table 1. Dataset cardinality and encoded dimensionality.

Dataset Training #Local explanations Dimensionality

adult 39,072 9,768 109

churn 3,332 2,333 79

compas 7,213 1,544 19

german 999 299 60

5.1 Experimental Setting

We selected a set of standard binary classification tasks with datasets pre-
processed in a one-hot format4: adult is a dataset on future income prediction5;
churn is a Kaggle dataset on telephone plan subscription prediction6; compas is
a dataset on recidivism prediction7; german is a dataset on creditor prediction8.
We split each dataset in a stratified fashion: 80% is used for training the black
box classifiers, and we explain the remaining 20%, namely X. Table 1 reports
basic information about the datasets9. As black box classifiers, we report exper-
iments10 explaining a Neural Network (NN) and a Random Forest (RF). As
initial set of local rules R we adopt the explanation rules extracted using the
local-explanation method lore [9] on the dataset X. As validation set, we adopt
the test set X from which we extract the local explanations.

In order to evaluate the requirements reported in the previous section, we
validate the explanation methods using the following measures.
3 Code available at github.com/msetzu/rule-relevance-score.
4 Missing values were replaced by mean and mode according to the feature type.
5 https://archive.ics.uci.edu/ml/datasets/adult.
6 https://www.kaggle.com/becksddf/churn-in-telecoms-dataset.
7 https://github.com/propublica/compas-analysis.
8 https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data).
9 The reported dimensionality refers to the one-hot encoding applied.

10 RF trained with scikit-learn, three-layer NN trained with keras.io.

https://github.com/msetzu/rule-relevance-score
https://archive.ics.uci.edu/ml/datasets/adult
https://www.kaggle.com/becksddf/churn-in-telecoms-dataset
https://github.com/propublica/compas-analysis
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://scikit-learn.org/stable/
https://keras.io/
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– fidelity(X,R, b) ∈ [0, 1], the fidelity of the interpretable model with respect
to a given black box b on a dataset X. It indicates how well the interpretable
model mimics the black box.

– coverage(X,R) ∈ [0, 1] the normalized coverage of the interpretable model
R on the given dataset X, i.e., cR,X . It indicates how many records the
interpretable model is able to deal with.

– hmean(X,R, b) ∈ [0, 1] the harmonic score, that is the harmonic mean of
fidelity and coverage, striking a balance between the two.

– size(R) ∈ [0,+∞), the conciseness of the interpretable model in terms of
cardinality of the ruleset R, i.e., |R|.

– len(R) ∈ [0,+∞), the complexity of the interpretable model in terms of
average number of conditions in the premises of the rules in R.

As baselines, we compare the proposed rrs, with a trivial fidelity-based scor-
ing schema fs, and with a coverage-based scoring schema cs. In practice, we
replace the rrs adopted in the pruning phase of the proposed scoring system
with fs or cs. Moreover, we compare the rrs scoring schema against global rule-
based state-of-the-art11 explainable-by-design classifiers: cpar [27], corels [2]
and sbrl [26]. In addition, we prove that the global rules, extracted by these
classifiers and provided as input to the rrs scoring system, do not guarantee the
same performance of the local rules.

5.2 Rule Relevance Score vs. Fidelity and Coverage Scores

In this section, we show the importance of using a compound score like rrs in
the pruning phase of the scoring system instead of trivial scores like fs or cs.

Figure 1 shows how fidelity, coverage and harmonic score varies when varying
the pruning percentile threshold β for the various datasets using the NN black
box classifier. Results using the RF as black box are close to those obtained
using the NN and are not reported due to lack of space.

Regardless of the score rrs, fs or cs, most datasets show increasingly higher
fidelity on higher pruning factors. We attribute this behavior to a large number of
poorly performing rules which sway the ensemble towards the wrong prediction.
fs shows the highest and the most stable fidelity across pruning factors. This
pattern is probably due to the low usage of each rule. rrs and cs show almost
no difference in terms of fidelity with a slight increase, indicating that (i) the
fidelity score does not play a crucial role in the pruning, (ii) the coverage may
hinder the prediction performance on lower pruning factors.

The differences between fs, rrs and cs grow significantly when coverage,
and hence harmonic score, is measured. While both rrs and cs display a stable
trend, fs dips in coverage between the 50th and 80th percentile, regardless of the
dataset. As suggested in the fidelity analysis, coverage does not seem to correlate
with fidelity. We notice that the decrease in coverage in fs does not correlate
with a decrease in fidelity. This suggests that most of the rules in R and therefore

11 For cpar, corels and sbrl we adopt the default hyperparameter setting.
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Fig. 1. Fidelity, coverage and harmonic score for rrs, fs and cs on local explanations
extracted from a NN, for the different datasets varying the pruning percentile threshold
β. The highest score is highlighted by a double marker.

in R∗ are not useful in prediction, and thus, that the fidelity measure strongly
relies on the default rule with majority target label.

5.3 Local vs Global Rules

In this section we compare the rrs scoring schema against the global rule-based
classifiers: cpar, corels and sbrl. Tables 2 and 3 report the harmonic score,
and ruleset size as a proxy of conciseness (the lower the better) and average
rule length as a proxy for complexity (the lower the better) of the interpretable
models for the NN and RF explanations, respectively. On the one hand, we
have the scoring system with rrs subsuming the best local rules; on the other
hand, we have the global rules from the explainable by design algorithms. rrs
shows the highest harmonic score at the cost of a not very low complexity and
conciseness. On the NN rules, cpar has an overall lower harmonic score, and
higher complexity and conciseness than rrs. On the RF rules, instead, there
is not a clear winner. Viceversa, corels, and sbrl provide a low-complexity
highly concise model at the cost of the harmonic score. Finally, it is worth to
underline that rrs displays consistent and stable performance across all the
metrics independently from the dataset or the black box.
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Table 2. Harmonic score, conciseness and complexity (in terms of ruleset size and
average rule length, respectively) for rrs with β = 75, and for the global interpretable
models cpar, corels and sbrl explaining the NN black box.

Method rrs cpar corels sbrl

Dataset hmean size len hmean size len hmean size len hmean size len

adult 0.93 331 2.74 0.90 299 4.15 0.00 1 1.0 0.84 24 1.0

compas 0.99 51 1.90 0.83 94 2.37 0.91 3 1.0 0.99 6 1.0

churn 0.81 58 2.62 0.77 2247 3.08 0.53 1 1.0 0.08 7 1.0

german 0.92 21 1.80 0.75 26 2.19 – – – 0.00 2 1.0

Table 3. Harmonic score, conciseness and complexity (in terms of ruleset size and
average rule length, respectively) for rrs with β = 75, and for the global interpretable
models cpar, corels and sbrl explaining the RF black box.

Method rrs cpar corels sbrl

Dataset hmean size len hmean size len hmean size len hmean size len

adult 0.92 361 5.2 0.92 85 2.3 0.00 1 1.0 0.29 26 1.0

compas 0.92 56 1.9 0.84 130 2.8 0.92 1 1.0 0.24 6 1.0

churn 0.91 82 2.8 0.83 44 2.7 0.36 2 1.0 0.55 5 1.0

german 0.82 30 2.0 0.83 18 2.3 – – – 0.47 6 1.0

In Fig. 2 we show that if we replace the local rules in the rrs scoring system
with the global rules extracted by cpar, corels and sbrl there is a clear drop
in the performance with respect to rrs. Analyzing the fidelity and coverage we
observe that several methods show sub-par fidelity regardless of the rule filtering,
and in some cases, they fail in generating output rules (corels on german), with
cpar being the best method after the scoring system with rrs. We attribute
the poor performance of corels and sbrl to the low number of rules generated
(see Tables 2 and 3 for β = 0).

5.4 Qualitative Evaluation

In this section, we explore the rules employed by the rrs scoring system, cpar,
corels and sbrl to explain the decision of a sample of instances. In particular,
we consider two instances x1 adn x2 from the compas dataset for which using
the RF as black box we have b(x1) = High and b(x2) = Low .

x1 = {age = 25, priors count = 0, days before arrest = 1, is recidive ,
is violent recidive , not 2-years recidive , length of stay = 1,
age ∈ [25, 45], sex = Male , race = african , charge = grave}

x2 = {age = 47, priors count = 23, days before arrest = 1, is recidive ,
is not violent recidive , not 2-years recidive , length of stay = 403,
age ∈ [25, 45], sex = Male , race = african , charge = not grave}
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Fig. 2. Fidelity, coverage and harmonic score for rrs on local explanations and global
methods for NN, for the different datasets varying the pruning percentile threshold β.
The highest score is highlighted by a double marker.

We report in the following the rules selected to explain the black box decision.
x1 - rrs {priors count ∈ [0, 4], is recidive , age < 25} → High

- cpar {priors count ∈ [0, 4], is recidive} → High

- corels {age < 45, priors count /∈ [18, 34]}∗ → High
- sbrl {is violent recid} → High

x2 - rrs {age > 45} → Low
- cpar {priors count > 15} → Low
- corels {age > 45} → Low
- sbrl {is recid} → Low

We notice that while all methods are able to capture significant features (age,
priors count, past recidivism), rrs leverages longer and more detailed rules than
cpar. This behavior is also empirically supported by the data shown in Tables 2
and 3 and is due to the local input rules, which are longer than the global ones.
We leave the study of the effect of input length on rrs and human-subject
experiments for future study.

6 Conclusion

In this paper, we have proposed a scoring system for explaining the global behav-
ior of a black box classifier starting from a set of local explanations in the form
of rules. To guarantee high performance and to account for important properties
when selecting the most relevant rules, we have defined the rule relevance score
(rrs). We have compared rrs to baseline scores finding comparable fidelity and
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significantly better performances in terms of coverage. We have also found that
coverage does not correlate with fidelity. In addition, we have compared the rrs
scoring system with state-of-the-art global explainers, observing that rrs has
comparable performance but is much more stable across different datasets and
black box models, both in terms of accountability and complexity. As future
work, we indicate the definition of more fine-grained filtering scores to further
reduce the output size. Moreover, we would like to experiment with different
local explanations. Finally, a case study involving real users would be helpful to
better asses the goodness of the global explanation derived with our approach.
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Abstract. The existence of adversarial examples has led to considerable
uncertainty regarding the trust one can justifiably put in predictions
produced by automated systems. This uncertainty has, in turn, lead to
considerable research effort in understanding adversarial robustness. In
this work, we take first steps towards separating robustness analysis from
the choice of robustness threshold and norm. We propose robustness
curves as a more general view of the robustness behavior of a model and
investigate under which circumstances they can qualitatively depend on
the chosen norm.

1 Introduction

Robustness of machine learning models has recently attracted massive research
interest. This interest is particularly pronounced in the context of deep learning.
On the one hand, this is due to the massive success and widespread deployment
of deep learning. On the other hand, it is due to the intriguing properties that can
be demonstrated for deep learning (although these are not unique to this setting):
the circumstance that deep learning can produce models that achieve or surpass
human-level performance in a wide variety of tasks, but completely disagree
with human judgment after application of imperceptible perturbations [13]. The
ability of a classifier to maintain its performance under such changes to the input
data is commonly referred to as robustness to adversarial perturbations.

In order to better understand adversarial robustness, recent years have seen
the development of a host of methods that produce adversarial examples, in
the white box and black box settings, with specific or arbitrary target labels,
and varying additional constraints [3,7,8,11,12]. There has also been a push
towards training regimes that produce adversarially robust networks, such as
data augmentation with adversarial examples or distillation [1,4,6,10]. The dif-
ficulty faced by such approaches is that robustness is difficult to measure and
quantify: even if a model is shown to be robust against current state of the art
attacks, this does not exclude the possibility that newly devised attacks may
be successful [2]. The complexity of deep learning models and counter-intuitive
nature of some phenomena surrounding adversarial examples further make it
challenging to understand the impact of robust training or the properties that
determine whether a model is robust or non-robust. Recent work has highlighted
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settings where no model can be simultaneously accurate and robust [14], or where
finding a model that is simultaneously robust and accurate requires optimizing
over a different hypothesis class than finding one that is simply accurate [9].
These examples rely on linear models, as they are easy for humans to under-
stand. They analyze robustness properties for a fixed choice of norm and, typi-
cally, a fixed disadvantageous perturbation size (dependent on the model). This
raises the question: “How do the presented results depend on the choice of norm,
choice of perturbation size, and choice of linear classifier as a hypothesis class?”

In this contribution, we:

– propose robustness curves as a way of better representing adversarial robust-
ness in place of “point-wise” measures,

– show that linear classifiers are not sufficient to illustrate all interesting robust-
ness phenomena, and

– investigate how robustness curves may depend on the choice of norm.

2 Definitions

In the following, we assume data (x, y) ∈ X × Y , X ⊆ R
d, are generated i.i.d.

according to distribution P with marginal PX . Let f : X → Y denote some
classifier and let x ∈ X. The standard loss of f on P is

L(f) := P ({(x, y) : f(x) �= y}). (1)

Let n : X → R
+ be some norm, let ε ≥ 0 and let

Bn(x, ε) := {x′ : n(x − x′) ≤ ε}. (2)

Following [14], we define the ε-adversarial loss of f regarding P and n as

Ln,ε(f) := P ({(x, y) : ∃x′ ∈ Bn(x, ε) : f(x′) �= y}
︸ ︷︷ ︸

=:An
ε

). (3)

We have Ln,0(f) = L(f). Alternatively, we can exclude from this definition
any points that are initially misclassified by the model, and instead consider
as adversarial examples all points where the model changes its behavior under
small perturbations. Then the ε-margin loss is defined as

L′
n,ε(f) := PX({x : ∃x′ ∈ Bn(x, ε) : f(x′) �= f(x)}). (4)

L′
n,ε is the weight of all points within an ε-margin of a decision boundary. We

have L′
n,0(f) = 0.

There are two somewhat arbitrary choices in the definition in Eqs. (3) and
(4): the choice of ε and the choice of the norm n. The aim of this contribution
is to investigate how ε and n impact the adversarial robustness.
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3 Robustness Curves

As a first step towards understanding robustness globally, instead of for an iso-
lated perturbation size ε, we propose to view robustness as a function of ε. This
yields an easy-to-understand visual representation of adversarial robustness in
the form of a robustness curve.

Definition 1. The robustness curve of a classifier f , given a norm n and under-
lying distribution P , is the curve defined by

rf,n,P : [0,∞) → [0, 1] (5)
ε 
→ Ln,ε(f). (6)

The margin curve of f given n and P is the curve defined by

r′
f,n,P : [0,∞) → [0, 1] (7)

ε 
→ L′
n,ε(f). (8)

Commonly chosen norms for the investigation of adversarial robustness are the
�1 norm (denoted by ‖ · ‖1), the �2 norm (denoted by ‖ · ‖2), and the �∞ norm
(denoted by ‖ · ‖∞). In the following, we will investigate robustness curves for
these three choices of n.

[14] propose a distribution P1 where y
u. a. r.∼ {−1,+1} and

x1 =

{

1 w. p. p
−1 w. p. (1 − p)

x2, . . . , xd+1
i. i. d.∼ N (ηy, 1). (9)

For this distribution, they show that the linear classifier favg(x) = sign(wT x)
with w = (0, 1/d, . . . , 1/d) has high accuracy, but low ε-robustness in �∞ norm
for ε ≥ 2η, while the classifier frob(x) = sign(wT x) with w = (1, 0, . . . , 0) has
high ε-robustness for ε < 1, but low accuracy. [9] proposes a distribution P2

where y
u. a. r.∼ {−1,+1} and

xi =

{

y w. p. 0.51
−y w. p. 0.49

(10)

where the linear classifier fs(x) = sign(wT x) with w = 1d has high accuracy,
but low ε-robustness in �∞ norm for ε ≥ 1

2 . Figure 1 shows margin curves and
robustness curves for P1 and favg, P1 and frob and P2 and fs.

4 The Impact of n

The curves shown in Fig. 1 seem to behave similarly for each norm. Is this always
the case? Indeed, if f is a linear classifier parameterized by normal vector w and
offset b, denote by

dn((w, b), x) = min{n(v) : ∃p : x = p + v, 〈w, p〉 + b = 0} (11)
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Fig. 1. Margin curves and robustness curves for several examples of distributions and
linear models from the literature. Row (a) shows curves for classifier favg and distri-
bution P1. Row (b) shows curves for classifier frob and distribution P1. In this case, all
three curves are identical and thus appear as one. Row (c) shows curves for classifier
fs and distribution P2.

the shortest distance between (w, b) and x in norm n. Then a series of algebraic
manipulations yield

d‖·‖1((w, b), x) =
|b + 〈w, x〉|

‖w‖∞
, (12)

d‖·‖2((w, b), x) =
|b + 〈w, x〉|

‖w‖2 , (13)

d‖·‖∞((w, b), x) =
|b + 〈w, x〉|

‖w‖1 . (14)



176 C. Göpfert et al.

In particular, there exist constants c and c′ depending on (w, b) such that for all
x ∈ X,

d‖·‖1((w, b), x) = cd‖·‖2((w, b), x) = c′d‖·‖∞((w, b), x) (15)

This implies the following Theorem:

Theorem 1. For any linear classifier f , there exist constants c, c′ > 0 such that
for any ε ≥ 0,

L‖·‖1,ε(f) = L‖·‖2,ε/c(f) = L‖·‖∞,ε/c′(f). (16)

As a consequence, for linear classifiers, dependence of robustness curves on the
choice of norm is purely a matter of compression and elongation.

What can we say about classifiers with more complex decision boundaries?
For all x, we have

‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 ≤
√

d‖x‖2 ≤ d‖x‖∞. (17)

These inequalities are tight, i.e. there for each inequality there exists some x
such that equality holds. It follows that, for any ε > 0,

A
‖·‖∞
ε/d ⊆ A

‖·‖2

ε/
√

d
⊆ A‖·‖1

ε ⊆ A‖·‖2
ε ⊆ A‖·‖∞

ε (18)

and so

L‖·‖∞,ε(f) ≥ L‖·‖2,ε(f) ≥ L‖·‖1,ε(f) (19)
≥ L‖·‖2,ε/

√
d(f) ≥ L‖·‖1,ε/d(f). (20)

In particular, the robustness curve for the �∞-norm is always an upper bound
for the robustness curve for any other �p-norm (since ‖x‖p ≤ ‖x‖∞ for all x and
p ≥ 1). Thus, for linear classifiers as well as classifiers with more complicated
decision boundaries, in order to show that a model is adversarially robust for
any fixed norm, it is sufficient to show that it exhibits the desired robustness
behavior for the �∞-norm. On the other hand, in order to show that a model is
not adversarially robust, showing this for the �∞ norm does not necessarily imply
the same qualities in another norm, as the robustness curves may be strongly
separated in high-dimensional spaces, both for linear and non-linear models.

Contrary to linear models, for more complicated decision boundaries, robust-
ness curves may also exhibit qualitatively different behavior. This is illustrated
in Fig. 2. The decision boundary in each case is given by a quadratic model in
2-dimensional space: f(x) = sign(x2

1 − x2). In the first example, we construct a
finite set of points, all at �2-distance 1 from the decision boundary, but at various
�1 and �∞ distances. For any distribution concentrated on a set of such points,
the �2-robustness curve jumps from zero to one at a single threshold value, while
the �1- and �∞-robustness curves are step functions with the height of the steps
determined by the distribution across the points and the width determined by
the variation in �1 or �∞ distances from the decision boundary. The robustness
curves in this example also exhibit, at some points, the maximal possible sep-
aration by a factor of

√
d (note that d = 2) while touching in other points.
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In the second example, we show a continuous version of the same phenomenon,
with points inside and outside the parabola distributed at constant �2-distance
from the decision boundary, but with varying �1 and �∞ distances. As a result,
the robustness curves for different norms are qualitatively different. The third
example, on the other hand, shows a setting where the robustness curves for the
three norms are both quantitatively and qualitatively similar.

Fig. 2. Margin curves and robustness curves for f(x) = sign(x2
1 − x2) and three differ-

ent underlying distributions, illustrating varying behavior of the robustness curves for
different norms. In rows (a) and (b), the robustness curves are qualitatively different,
while they are almost identical in row (c). Note that in these examples, robustness
curves and margin curves are nearly identical, as the standard loss of f is zero or close
to zero in all cases.
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These examples drive home two points:

– The robustness properties of a classifier may depend both quantitatively and
qualitatively on the norm chosen to measure said robustness. When investi-
gating robustness, it is therefore imperative to consider which norm, or, more
broadly, which concept of closeness best represents the type of perturbation
to guard against.

– Linear classifiers are not a sufficient tool for understanding adversarial robust-
ness in general, as they in effect neutralize a degree of freedom given by the
choice of norm.

5 Discussion

We have proposed robustness curves as a more general perspective on the robust-
ness properties of a classifier and have discussed how these curves can or cannot
be affected by the choice of norm. Robustness curves are a tool for a more princi-
pled investigation of adversarial robustness, while their dependence on a chosen
norm underscores the necessity of basing robustness analyses on a clear problem
definition that specifies what kind of perturbations a model should be robust to.
We note that the use of �p norms in current research is frequently meant only
as an approximation of a “human perception distance” [5]. A human’s ability
to detect a perturbation depends on the point the perturbation is applied to,
meaning that human perception distance is not a homogeneous metric, and thus
not induced by a norm. In this sense, where adversarial robustness is meant
to describe how faithful the behavior of a model matches that of a human,
the adversarial loss in Eq. (3) can only be seen as a starting point of analysis.
Nonetheless, since perturbations with small �p-norm are frequently impercepti-
ble to humans, adversarial robustness regarding some �p-norm is a reasonable
lower bound for adversarial robustness in human perception distance. In future
work, we would like to investigate how robustness curves can be estimated for
deep networks and extend the definition to robustness against targeted attacks.
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Abstract. With the increasing number of deep learning applications,
there is a growing demand for explanations. Visual explanations provide
information about which parts of an image are relevant for a classifier’s
decision. However, highlighting of image parts (e.g., an eye) cannot cap-
ture the relevance of a specific feature value for a class (e.g., that the
eye is wide open). Furthermore, highlighting cannot convey whether the
classification depends on the mere presence of parts or on a specific spa-
tial relation between them. Consequently, we present an approach that is
capable of explaining a classifier’s decision in terms of logic rules obtained
by the Inductive Logic Programming system Aleph. The examples and
the background knowledge needed for Aleph are based on the explanation
generation method LIME. We demonstrate our approach with images of
a blocksworld domain. First, we show that our approach is capable of
identifying a single relation as important explanatory construct. After-
wards, we present the more complex relational concept of towers. Finally,
we show how the generated relational rules can be explicitly related with
the input image, resulting in richer explanations.

Keywords: XAI · Deep learning · Inductive Logic Programming

1 Introduction

Explainable Artificial Intelligence (XAI) mostly refers to visual highlighting of
information which is relevant for the classification decision of a given instance
[9,19]. In general, the mode of an explanation can be visual, but also verbal or
example-based [13]. Visual explanations have been introduced to make black-
box classifiers such as (deep) neural networks more transparent [9,18,19]. In
the context of white-box machine learning approaches, such as decision trees
or Inductive Logic Programming (ILP) [16], it is argued that these models are
already transparent and interpretable by humans [16]. In the context of ILP it
has been shown that a local verbal explanation can easily be generated from
symbolic rules with a template-based approach [20].

For image classification tasks, it is rather obvious that visual explanations
are helpful for technical as well as for domain experts: Information about what
c© Springer Nature Switzerland AG 2020
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pixels or patches of pixels most strongly contribute to a class decision can help
to detect model errors which might have been caused by non-representative
sampling. Highlighting can also support domain experts to assess the validity of
a learned model [18]. In general, an explanation can be characterized as useful, if
it meets the principles of cooperative conversations [13]. These pragmatic aspects
of communication are described in the Gricean maximes [8] which encompass the
following four categories: (1) quality – explanations should be based on truth
or empirical evidence; (2) quantity – be as informative as required; (3) relation
– explanations should communicate only relevant information; (4) manner –
avoidance of obscurity and ambiguity. We argue that visual explanations can in
general not avoid obscurity and ambiguity since they cannot or only partially
capture the following kinds of information:

– Feature values: Visual highlighting can explain that a specific aspect of an entity
is informative for a specific class – e.g., that an emotion is expressed near the eye.
However, the relevant information is whether the eye is wide open or the lid is
tightened [21].

– Negation: While approaches like LRP [19] allow to visualize which pixels have
a negative contribution to the classification, it is not generally possible to inform
that the absence of a feature or object is relevant. E.g., it might be relevant to
explain that a person is not classified as a terrorist because he or she does not hold
a weapon (but a flower).

– Relations: If two parts of an image are highlighted, it is not possible to discrim-
inate whether the conjunction (e.g., there is a green block and a blue block) or a
more specific relation (e.g., the green block is on the blue block) is relevant.

ILP approaches [14] can capture all three kinds of information because
the models are expressed as first-order Horn clauses. Relational concepts such
as grandparent(X, Y) [15] or mutagenicity of chemical structures [23] can be
induced. Furthermore, classes involving relations, such as the Michalski Train
Domain [15], can be learned. Here, the decision whether a train is east- or west-
bound depends on relational information of arbitrary complexity, e.g., that a
waggon with six wheels needs to be followed by a waggon with an open top.

Recently, there have been proposed several deep learning approaches to tackle
relational concepts, such as the differentiable neural computer [7], RelNNs [10],
or RelNet [2]. In contrast to ILP, these approaches depend on very large sets of
training examples and the resulting models are black-box. A helpful explanation
interface should be able to take into account visual/image-based domains as well
as abstract/graph-based domains. The model agnostic approach of LIME [18]
provides linear explanations based on sets of super-pixels or words. This is not
sufficient when more expressive relational explanations are necessary. Current
focus of our work is to provide relational explanations for black-box, end-to-end
classifiers for image-based domains. We believe that for image-based domains, a
combination of visual and verbal explanations is most informative with respect to
the Gricean maximes. Psychological experiments also give evidence that humans
strongly profit from a combination of visual and verbal explanations [12].

In a previous study [17], we could show that relational symbolic explana-
tions (Prolog rules) can be generated by combining the ILP approach Aleph
[22] with LIME [18]. However, simple visual concepts have been pre-defined and



182 J. Rabold et al.

(a) A house, because three windows left
of each other.

(b) A tower, because three windows on
top of each other.

Fig. 1. Combining visual and symbolic explanations for house in contrast to tower.
Photo of house by Pixasquare, photo of lighthouse by Joshua Hibbert, both on Unsplash

used as input to Aleph and not extracted automatically. In the following, we
present an extension of [17] covering end-to-end image classification with a con-
volutional neural network (CNN) [11], partitioning images into sub-structures,
as well as automatic extraction of visual attributes and spatial relations. Local
symbolic explanations are learned with Aleph, providing logical descriptions of
original and perturbed images. Finally, local symbolic explanations are related
to visual highlighting of informative parts of the image to provide a combined
visual-symbolic explanation. The symbolic explanation can be transformed in a
verbal one with a template-based approach as demonstrated in [20]. An illus-
trative example is given in Fig. 1. Here the concept of house is explained by the
fact that three windows are next to each other. This information is given by
identifying three relevant parts of the image, naming them (A, B, C), labeling
them as windows (which might be done by another automatic image classifica-
tion or by the user) and stating the spatial relation between the objects using
the left of relation. This example also demonstrates an important aspect of
symbolic explanations: Which attributes and relations are useful to explain why
some object belongs to some class depends on the contrasting class [5].

In the next section, we introduce the core concepts for our approach. Then
we present a significantly extended version of the LIME-Aleph algorithm [17].
We demonstrate the approach on images of a blocksworld domain. In a first
experiment we show that LIME-Aleph is capable of identifying a single rela-
tion (left of(block1, block2)) as relevant for the learned concept. In a sec-
ond experiment, we demonstrate that more complex relational concepts such as
tower can be explained. Finally we show how the fusion of visual and symbolic
explanations might be realized.
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2 Explaining Relational Concepts with LIME-Aleph

2.1 Core Concepts

The ILP System Aleph. To find symbolic explanations for relational concepts
we use Aleph [22]. Aleph infers a logic theory T given a set of positive (E+)
and negative (E−) examples. An example is represented by the target predicate
(e.g. stack(e1). or not stack(e2).) together with additional predicates (e.g.
contains(b1, e1).) as background knowledge (BK). Predicates in BK are used
to build the preconditions for the target rules. Aleph is based on specific-to-
general refinement search. It finds rules covering as many positive examples
as possible, avoiding covering negative ones. Search is guided by modes which
impose a language bias. The general algorithm is [22]:

1. As long as positive exist, select one. Otherwise halt.
2. Construct the most-specific clause that entails the selected example and is within

the language constraints
3. Find a more-general clause which is a subset of the current literals in the clause.
4. Remove covered by the current clause.
5. Repeat from step 1.

An example of a rule from T in Prolog is stack(Stack) :- contains(Block1,

Stack), contains(Block2, Stack), on(Block2, Block1).

Denoting that a stack is defined by one block on top of another.

LIME’s Identification of Informative Super-Pixels. LIME (Local
Interpretable Model-Agnostic Explanations) is an approach to explain the deci-
sion result of any learned model [18]. Explanations state the parts of an instance
that are positively or negatively correlated to the class. It works by creating a
simpler, local surrogate model around the instance to be explained. In case of
an image, the explanation is a set of connected pixel patches called super-pixels.

Let x be an image and x′ be the binary vector that states whether super-
pixels x′

i ∈ x′ are switched on or off (see below). LIME finds a sparse linear model
g(x′) that locally approximates the unknown decision function f(x) represented
by a black-box classifier. It effectively finds the coefficients w for the super-
pixel representations being variables in a simplified linear model. This is done
by generating a pool of perturbed examples z′ by taking the original super-pixel
representation x′ and randomly selecting elements in a uniformly distributed
fashion. That way, images z are obtained with some super-pixels still original
and some altered according to a transform function h effectively removing the
information they contained (Switching them off). Each sample z′ (The binary
vector indicating if super-pixels are switched off in this sample) is stored in a
sample pool Z along with the classifier result f(z) and a distance measure πx(z)
that expresses the distance of the perturbed example z to the original image
x. For images this can be the Mean Squared Error. The distance is needed for
the linear model to be locally faithful to the original function f(x) and thus has
to be minimized. The “un-faithfulness” of the model g to the black-box model
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(a) All positions in
the image, where a
block has to be lo-
cated in order to be
left, right, top, or
bottom of block a.

(b) for the rela-
tions on and under,
illustrated with
on(b,a), on(c,d),
resp. under(a,b)

and under(d,c).

Fig. 2. Diagrams to show the different concepts of the relations used. (Color figure
online)

f with respect to the distance measure πx(z) is expressed with the following
formula [18]:

L(f, g, πx) =
∑

z,z′∈Z πx(z)(f(z) − g(z′))2.

The goal is to find the coefficients w for g that minimize this un-faithfulness L.
The coefficients ultimately translate back to weights for the super-pixels. LIME
uses K-Lasso to find the weights [3].

The original LIME uses the algorithm Quick Shift [25] to find super-pixel. It
imposes an irregular pixel mask over the input image that segments it in terms
of pixel similarity. The segmentation is performed in a 5D space consisting of the
image space and the color space. Quick Shift is only one of several segmentation
algorithms that are available for LIME. They all share the attribute of impos-
ing an irregular mask over an image. In many domains, this irregularity is not
wanted. For the domain used in this paper it is preferable to use a segmentation
algorithm that divides an image into a regular grid with square cells.

2.2 Extraction of Image Parts and Their Relations

Based on image segmentation into a grid of super-pixels i with domain-specific
cell size, a set of attributes Ai for cells and spatial relations between cells can be
automatically extracted. Attributes Ai are taken from a pool of attributes A. An
example for an attribute in A is the mean color of i in the RGB color space. To
find a human-comprehensible name, the nearest color according to the Euclidean
distance in a pool of commonly known color names is assigned. Other extractable
attributes are the size or the general location in the image. The coordinates of
the center point of i are stored for spatial reasoning. Extracted attributes are
converted into predicates for BK. The attribute that a given super-pixel SP is
blue is represented as has color(SP, blue).
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Spatial relations can be defined between pairs of super-pixels. To restrict the
number of pairs, we need a pre-selection S of super-pixels that might be relevant
for the concept. LIME’s w describe the magnitude of relevance for either the
true classification (positive weight) or the counter-class (negative weight). By
introducing a user-defined constant k, we restrict how many super-pixels the
selection S should contain, taking the k super-pixels with the highest values in
w. Spatial relations r : S × S are drawn from a pre-defined pool R. For this
work, we use the relations left of, right of, top of, bottom of as well as
relations that represent an immediate adjacency in the regular grid mentioned
earlier, namely on and under. Relations are defined with respect to the center
coordinates of the super-pixels in S. Figure 2 sketches the underlying semantics
of these relations. It is possible to include additional relations as long as they are
automatically extractable and their inverses are defined in the image space. In
domains with super-pixels that differ in size, a larger relation between super-
pixels could be defined. Also, a not equal relation can be considered.

2.3 Learning Rules for Relational Concepts via Aleph

To generate symbolic relational explanations for visual domains, we combine
LIME’s super-pixel weighting with Aleph’s theory generation. The input into
LIME-Aleph is an image x and a model f returning class probability estima-
tions for x. Currently our approach is only applicable for explaining one class in
contrast to all other classes, effectively re-framing the original classification as a
concept learning problem. The output of LIME-Aleph is a theory T of logic rules
describing the relations between the super-pixels that lead to the class decision.

LIME’s explanation relies on that linear surrogate model which contains the
set of super-pixels with the highest positive weights for the true class. When
dealing with the question which relations contribute most to the classification,
identifying the most informative super-pixels has to be replaced by identify-
ing the most informative pairs of super-pixels. Instead of turning super-pixels
on and off, LIME-Aleph inverts extracted relations between super-pixels and
observes the effects on the classification. Algorithm 1 shows our approach. Given
the selection S of super-pixels together with the extracted attributes, our app-
roach first finds all relations R ⊆ R that hold between them. For every relation
r(i, j) ∈ R, a new perturbed example z from the image space is created by flip-
ping the super-pixels i and j in the image space. To generate a new example
for Aleph, the resulting perturbed image is first put through the classifier f . If
the estimator f(z) exceeds a threshold θ for the class we want to explain, a new
positive example is declared. Otherwise, the example is declared negative. All
relations holding for the perturbed image are written in the BK characterizing
this example. The initial positive example for Aleph is always generated for the
unaltered constellation.
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Algorithm 1. Explanation Generation with LIME-Aleph.
1: Require: Instance x ∈ X
2: Require: Classifier f , Selection size k, Threshold θ
3: Require: Attribute pool A, Relation pool R
4: S ← LIME(f, x, k) � Selection of k most important super-pixels.
5: A ← extract attribute values(S, A) � Find all attribute values Ai for all i ∈ S.
6: R ← extract relations(S, R) � Find all relations r : S × S between all i ∈ S.
7: E+ ← {〈A, R〉}
8: E− ← {}
9: for each r(i, j) ∈ R do

10: z ← flip in image(x, i, j) � Flip the super-pixels in the image space.
11: r′ ← r(j, i) � Obtain new predicate for the BK by flipping parameters.
12: R′ ← R \ {r} ∪ {r′} � All relations in the BK; also the altered one.
13: R′ ← calculate side effects(R′, r′) � Re-calculate relations that are affected

by the flipped relation.
14: c′ ← f(z) � Obtain new estimator for the perturbed image.
15: if c′ ≥ θ do � If estimator reaches threshold, add new positive example.
16: E+ ← E+ ∪ {〈A, R′〉}
17: else � Else, add negative example.
18: E− ← E− ∪ {〈A, R′〉}
19: end for
20: T ← Aleph(E+, E−) � Obtain theory T with Aleph.
21: return T

3 Experiments and Results

We investigate the applicability of LIME-Aleph in a blocksworld domain consist-
ing of differently colored squares that can be placed in a regular-grid world. For
a first investigation, we decided to focus on artificially generated images rather
that real world domains.

3.1 An Artificial Dataset for Relational Concepts

We implemented a generator to create a huge variety of positive and negative
example images for different blocksworld concepts. All generated images are
of size 32 × 32 pixels consisting of a single-colored red background, containing
constellations of colored squares of dimension 4×4 pixels. The squares are single-
colored (excluding red) with color-channel values either being set to 0.0 or 0.8.
The squares are placed into the image according to an 8×8 uniform grid. Positive
examples are generated by first randomly placing a reference square. Then, the
other squares are placed randomly following the relation conventions shown in
Fig. 2. For the experiments we restricted A = {color} with attribute values
in {cyan, green, blue} and R = {left of, right of, top of, bottom of,
on, under}.
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3.2 Training a Black-Box Model

To obtain a black-box model for image classification, we used a small convolu-
tional neural network [11] which we trained from scratch with commonly known
best-practice hyper-parameters. The network consists of two convolution layers
with kernel size 2 × 2 and ReLU activations. Each layer learns 16 filters to be
able to robustly recognize the colored squares. After flattening the output, the
convolution layers are followed by 2 fully connected layers each with a ReLU
activation. The first layer consists of 256 neurons, the second one of 128 neu-
rons. A small amount of dropout is applied past each layer to cope with potential
overfitting [24]. The network does not contain a pooling layer. That way, fewer
location information is lost in aggregation during the learning process which
we believe is crucial for preserving spatial relationships (see [6] p. 331). For the
experiments, we generated perfectly balanced datasets with 7.000 training-, 2000
validation- and 1000 test-images for both the concept and the counter-examples.
We trained the networks for a maximum of 10 epochs with early stopping if the
validation loss did not decrease after 5 epochs.

3.3 Experiment 1: Single Relation Concept

The concept for the first experiment can be described by the single relation that
a green square is left of a blue square in an image x. Figure 3 shows two posi-
tive examples (a, b) and one negative example (c). After the full 10 epochs, the
accuracy on the validation set reached 93.47%. For Fig. 3a the classifier gave the
estimator for the concept to be 89.83%. For Fig. 3b the estimator was 94.18%.
The estimator output for belonging to the concept for Fig. 3c was 0.28% showing
that the network is able to discriminate the positive and negative examples. To
generate explanations for these three images, each image is separately fed into
LIME. The number of kept super-pixels k is set to 3. We choose this value for k
because we were aware that there are 2 squares in the image that are distinguish-
able from the background. One additional super-pixel was taken to generate a
richer pool for selection S containing also some background. In general, for many
domains it is not that easy to estimate good values for k. So in most of the cases
it is preferable to over-estimate the value to not lose information for the expla-
nation.

Fig. 3. Positive (a, b) and negative (c) for the first experiment. (Color figure online)
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Fig. 4. Positive (a) and negative (b, c) for the tower experiment. (Color figure online)

Finally, a symbolic explanation is generated with LIME-Aleph. We describe
the procedure for the positive example Fig. 3a. First, Algorithm 1 extracts the
colors of the selected super-pixels and the relations between them. Then, all the
relations get flipped one after the other to produce the example set and BK for
Aleph. The original example Fig. 3a is used as the seed for a set of perturbed
versions of the image. Threshold θ indicates whether the perturbed example
is classified positive or negative. Based on the final validation accuracy of the
trained f and from the estimator for the original Fig. 3a, it was set to θ = 0.8.
For example Fig. 3a 3 positive and 4 negative examples were created. From these
7 examples, Aleph induced a theory T consisting of a single rule with accuracy
of 100%:

concept(A) :- contains(B,A), has color(B,green), contains(C,A),
has color(C,blue), left of(B,C).

The learned rule accurately resembles the construction regulation of the wanted
concept; a green square has to be left of a blue square in an example A. Also,
this explanation matches the input image.

For Fig. 3b we used the same hyper-parameters (k = 3, θ = 0.8). Again,
Aleph came up with an accuracy of 100% and a rule structurally different, but
conveying the same concept as the first rule:

concept(A) :- contains(B,A), has color(B, blue), contains(C,A),
has color(C, green), left of(C,B).

3.4 Experiment 2: Tower Concept

In the second experiment, we investigated a specific concept of towers. Positive
examples consist of three differently colored blocks with a given restriction on
their stacking order. An example belongs to the concept tower, if a blue square
is present as a foundation. Directly on the foundation (one grid cell above) there
has to be a square of either cyan or green color. Directly on that square has
to be the remaining square (green or cyan). Figure 4 gives a positive and two
negative examples.

We again trained the CNN for 10 epochs. The final validation accuracy was
98.70%. The original estimator for example Fig. 4a gave f(a) = 94.88%. We first
set k = 3 being the smallest selection of which we know can contain a tower.
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Again setting θ = 0.8, LIME-Aleph came up with 5 positive and 6 negative
examples (accuracy 81.82%) and the following rule:

concept(A) :- contains(B,A), has color(B,cyan), contains(C,A),
on(B,C).

This rule expresses the fact, that the cyan square can not be the foundation.
When setting the selection size k = 4, we let an additional background super-
pixel be part of S. The resulting rule is:

concept(A) :- contains(B,A), has color(B,cyan), contains(C,A),
has color(C,blue), top of(B,C).

This rule captures the fact, that a cyan block has to be above a blue one. The
generated explanations are only partial representations of the intended concept.
The symbolic explanations capture relevant aspects, but are too general.

Fig. 5. An example for the combination of visual and verbal explanations. Here it is
explained, why and where this particular image shows evidence for belonging to the
concept tower.

4 Bringing Together Visual and Symbolic Explanations

The generated rules give explanations in symbolic form which can be re-written
into verbal statements. We postulate that helpful explanations for images should
relate highlighting of relevant parts of the image with explicit symbolic informa-
tion of attributes and relations. In this section we give an example on how this
fusion might look like. Let us take the tower example from Sect. 3.4. In Fig. 5,
the output of standard LIME is given with the 3 most important super-pixels
matching the expected region in the image. Additionally, the relation from the
instantiated rule from the experiment for k = 3 is given. Since cyan is the only
square that is mentioned in the rule, we take it as a reference. The relation on
links the cyan square to another unknown square below. This relation is shown
explicitly in the image by connecting the two squares and writing the instanti-
ated relation.
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5 Conclusion and Further Work

We proposed an approach to extract symbolic rules from images which can be
used to explain classifier decisions in a more expressive way than visual high-
lighting alone. For a simple artificial domain we gave a proof of concept for
our approach LIME-Aleph. The work presented here significantly extends [17]
by providing a method of automated extraction of visual attributes and spatial
relations from images. As a next step we want to also let the explanative power
be evaluated by humans. Also we plan to cover real world image datasets like
explaining differences between towers and houses as shown in Fig. 1. The chal-
lenge here is to come up with arbitrarily placeable segmentations that are easily
interchangeable. While our algorithm relies on a regular grid, in an image “in
the wild”, the semantic borders of sub-objects can be irregular in shape and not
easily be flipped in order to test for different relations. One idea to cope with
this problems is to use relevance information from inner layers in a CNN (e.g.,
with LRP, [19]) to first pinpoint small important regions and sub-objects, then
super-imposing a standardized selection shape (square, circle, etc.) over the pixel
values to find interchangeable super-pixels for filling selection S.

In general, it might be useful to consider a variety of explanation formats to
accommodate specific personal preferences and situational contexts. For exam-
ple, visual highlighting is a quick way to communicate what is important while
verbal explanations convey more details. Likewise, examples which prototypically
represent a class and near-miss counter-examples could be used to make system
decisions more transparent [1]. Explanations might also not be a one-way street.
In many domains, it is an illusion that the labeling of the training is really a
ground truth. For example, in medical diagnosis, there are many cases where not
even experts agree. Therefore, for many practical applications, learning should be
interactive [4]. To constrain model adaption, the user could mark-up that parts
of an explanation which are irrelevant or wrong. Such a cooperative approach
might improve the joint performance of the human-machine-partnership.
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Abstract. Post-hoc model-agnostic interpretation methods such as par-
tial dependence plots can be employed to interpret complex machine
learning models. While these interpretation methods can be applied
regardless of model complexity, they can produce misleading and verbose
results if the model is too complex, especially w.r.t. feature interactions.
To quantify the complexity of arbitrary machine learning models, we
propose model-agnostic complexity measures based on functional decom-
position: number of features used, interaction strength and main effect
complexity. We show that post-hoc interpretation of models that mini-
mize the three measures is more reliable and compact. Furthermore, we
demonstrate the application of these measures in a multi-objective opti-
mization approach which simultaneously minimizes loss and complexity.

Keywords: Model complexity · Interpretable machine learning ·
Explainable AI · Accumulated Local Effects · Multi-objective
optimization

1 Introduction

Machine learning models are optimized for predictive performance, but it is often
required to understand models, e.g., to debug them, gain trust in the predic-
tions, or satisfy regulatory requirements. Many post-hoc interpretation methods
either quantify effects of features on predictions, compute feature importances,
or explain individual predictions, see [17,24] for more comprehensive overviews.
While model-agnostic post-hoc interpretation methods can be applied regard-
less of model complexity [30], their reliability and compactness deteriorates when
models use a high number of features, have strong feature interactions and com-
plex feature main effects. Therefore, model complexity and interpretability are
deeply intertwined and reducing complexity can help to make model interpreta-
tion more reliable and compact. Model-agnostic complexity measures are needed
to strike a balance between interpretability and predictive performance [4,31].

Contributions. We propose and implement three model-agnostic measures of
machine learning model complexity which are related to post-hoc interpretabil-
ity. To our best knowledge, these are the first model-agnostic measures that
c© Springer Nature Switzerland AG 2020
P. Cellier and K. Driessens (Eds.): ECML PKDD 2019 Workshops, CCIS 1167, pp. 193–204, 2020.
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describe the global interaction strength, complexity of main effects and number
of features. We apply the measures to different datasets and machine learning
models. We argue that minimizing these three measures improves the reliability
and compactness of post-hoc interpretation methods. Finally, we illustrate the
use of our proposed measures in multi-objective optimization.

2 Related Work and Background

In this section, we introduce the notation, review related work, and describe the
functional decomposition on which we base the proposed complexity measures.

Notation: We consider machine learning prediction functions f : R
p �→ R,

where f(x) is a prediction (e.g., regression output or a classification score). For
the decomposition of f , we write fS : R|S| �→ R, S ⊆ {1, . . . , p}, to denote a
function that maps a vector xS ∈ R

|S| with a subset of features to a marginal
prediction. If subset S contains a single feature j, we write fj . We refer to the
training data of the machine learning model with the tuples D = {(x(i), y(i))}ni=1

and refer to the value of the j-th feature from the i-th instance as x
(i)
j . We write

Xj to refer to the j-th feature as a random variable.

Complexity and Interpretability Measures: In the literature, model com-
plexity and (lack of) model interpretability are often equated. Many complexity
measures are model-specific, i.e., only models of the same class can be compared
(e.g., decision trees). Model size is often used as a measure for interpretabil-
ity (e.g., number of decision rules, tree depth, number of non-zero coefficients)
[3,16,20,22,31–34]. Akaikes Information Criterion (AIC) and the Bayesian Infor-
mation Criterion (BIC) are more widely applicable measures for the trade-off
between goodness of fit and degrees of freedom. In [26], the authors propose
model-agnostic measures of model stability. In [27], the authors propose expla-
nation fidelity and stability of local explanation models. Further approaches mea-
sure interpretability based on experimental studies with humans, e.g., whether
humans can predict the outcome of the model [8,13,20,28,35].

Functional Decomposition: Any high-dimensional prediction function can be
decomposed into a sum of components with increasing dimensionality:

f(x) =

Intercept
︷︸︸︷

f0 +

1st order effects
︷ ︸︸ ︷

p
∑

j=1

fj(xj) +

2nd order effects
︷ ︸︸ ︷

p
∑

j<k

fjk(xj , xk) + . . . +

p-th order effect
︷ ︸︸ ︷

f1,...,p(x1, . . . , xp) (1)

This decomposition is only unique with additional constraints regarding the
components. Accumulated Local Effects (ALE) were proposed in [1] as a tool
for visualizing feature effects (e.g., Fig. 1) and as unique decomposition of the
prediction function with components fS = fS,ALE . The ALE decomposition is
unique under an orthogonality-like property described in [1].
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The ALE main effect fj,ALE of a feature xj , j ∈ {1, . . . , p} for a prediction
function f is defined as

fj,ALE(xj) =
∫ xj

z0,j

E

[

∂f(X1, . . . , Xp)
∂Xj

∣

∣

∣

∣
Xj = zj

]

dzj − cj (2)

Here, z0,j is a lower bound of Xj (usually the minimum of xj) and the expectation
E is computed conditional on the value for xj and over the marginal distribution
of all other features. The constant cj is chosen so that the mean of fj,ALE(xj)
with respect to the marginal distribution of Xj is zero, so that the ALE compo-
nents sum to the full prediction function. By integrating the expected derivative
of f with respect to Xj the effect of xj on the prediction function f is isolated
from the effects of all other features. ALE main effects are estimated with finite
differences, i.e., access to the gradient of a prediction function is not required
(see [1]). We base our proposed measures on the ALE decomposition, because
ALE are computationally cheap (worst case O(n) per main effect), they can be
computed sequentially instead of simultaneously, they do not require knowledge
of the joint distribution, and several software implementations exist [2,25].

3 Functional Complexity

In this section, we motivate complexity measures based on functional decomposi-
tion. Based on Eq. 1, we decompose the prediction function into a constant (esti-
mated as f0 = 1

n

∑n
i=1 f(x(i))), main effects (estimated by ALE), and a remain-

der term containing interactions (i.e., the difference between the full model and
constant + main effects).

f(x) = f0 +
p

∑

j=1

MEC: How complex?
︷ ︸︸ ︷

fj,ALE(xj) +

IAS: Interaction strength?
︷ ︸︸ ︷

IA(x)

︸ ︷︷ ︸

NF: How many features were used?

(3)

This arrangement of components emphasizes a decomposition of the prediction
function into a main effect model and an interaction remainder. We can analyze
how well the main effect model itself approximates f by looking at the magni-
tude of the interaction measure IAS. The average main effect complexity (MEC)
captures how many parameters are needed to describe the one-dimensional main
effects on average. The number of features used (NF) describes how many fea-
tures were used in the full prediction function.

3.1 Number of Features (NF)

We propose an approach based on feature permutation to determine how many
features are used by a model. We regard features as “used” when changing a
feature changes the prediction. If available, the model-specific number of features
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is preferable. The model-agnostic version is useful when the prediction function
is only accessible via API or when the machine learning pipeline is complex.

The proposed procedure is formally described in Algorithm1. To estimate
whether the j-th feature was used, we sample instances from data D, replace
their j-th feature values with random values from the distribution of Xj (e.g., by
sampling xj from other instances from D), and observe whether the predictions
change. If the prediction of any sample changes, the feature was used.

Algorithm 1. Number of Features Used (NF)
Input: Number of samples M , data D

1 NF = 0
2 for j ∈ 1, . . . , p do

3 Draw M instances {x(m)}M
m=1 from dataset D

4 Create {x(m)∗}M
m=1 as a copy of {x(m)}M

m=1

5 for m ∈ 1, . . . , M do

6 Sample x
(new)
j from {x

(i)
j }n

i=1 with the constraint that x
(new)
j �= x

(m)
j

7 Set x
(m)∗
j = x

(new)
j

8 if f(x(m)∗) �= f(x(m)) for any m ∈ {1, . . . , M} then NF = NF + 1.

9 return NF

We tested the NF heuristic with the Boston Housing data. We trained
decision trees (CART) with maximum depths ∈ {1, 2, 10} leading to 1, 2
and 4 features used and an L1-regularized linear model with penalty λ ∈
{10, 5, 2, 1, 0.1, 0.001} leading to 0, 2, 3, 4, 11 and 13 features used. For each
model, we estimated NF with sample sizes M ∈ {10, 50, 500} and repeated
each estimation 100 times. For the elastic net models, NF was always equal
to the number of non-zero weights. For CART, the mean absolute differences
between NF and number of features used in the trees were 0.300 (M = 10),
0.020 (M = 50) and 0.000 (M = 500).

3.2 Interaction Strength (IAS)

Interactions between features mean that the prediction cannot be expressed as a
sum of independent feature effects, but the effect of a feature depends on values
of other features [24]. We propose to measure interaction strength as the scaled
approximation error between the ALE main effect model and the prediction
function f . Based on the ALE decomposition, the ALE main effect model is
defined as the sum of first order ALE effects:

fALE1st(x) = f0 + f1,ALE(x1) + . . . + fp,ALE(xp)

We define interaction strength as the approximation error measured with loss L:

IAS =
E(L(f, fALE1st))

E(L(f, f0))
≥ 0 (4)
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Here, f0 is the mean of the predictions and can be interpreted as the functional
decomposition where all feature effects are set to zero. IAS with the L2 loss
equals 1 minus the R-squared measure, where the true targets yi are replaced
with f(x(i)).

IAS =
∑n

i=1(f(x(i)) − fALE1st(x(i)))2
∑n

i=1(f(x(i)) − f0)2
= 1 − R2

If IAS = 0, then L(f, fALE1st) = 0, which means that the first order ALE model
perfectly approximates f and the model has no interactions.

3.3 Main Effect Complexity (MEC)

To determine the average shape complexity of ALE main effects fj,ALE , we
propose the main effect complexity (MEC) measure. For a single ALE main
effect, we define MECj as the number of parameters needed to approximate the
curve with piece-wise linear models. For the entire model, MEC is the average
MECj over all main effects, weighted with their variance. Figure 1 shows an ALE
plot (= main effect) and its approximation with two linear segments.

Fig. 1. ALE curve (solid line) approximated by two linear segments (dotted line).

We use piece-wise linear regression to approximate the ALE curve. Within the
segments, linear models are estimated with ordinary least squares. The break-
points that define the segments are found by greedy and exhaustive search along
the interval boundaries of the ALE curve. Greedy here means that we first opti-
mize the first breakpoint, then the second breakpoint with the first breakpoint
fixed and so on. We measure the degrees of freedom as the number of non-zero
coefficients for intercepts and slopes of the linear models. The approximation
allows some error, e.g., an almost linear main effect may have MECj = 1, even
if dozens of parameters would be needed to describe it perfectly. The approx-
imation quality is measured with R-squared (R2), i.e., the proportion of vari-
ance of fj,ALE that is explained by the approximation with linear segments. An
approximation has to reach an R2 ≥ 1− ε, where ε is the user defined maximum
approximation error. We also introduced parameter maxseg, the maximum num-
ber of segments. In the case that an approximation cannot reach an R2 ≥ 1 − ε
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with a given maxseg, MECj is computed with the maximum number of seg-
ments. The selected maximum approximation error ε should be small, but not
too small. We found ε between 0.01 and 0.1 visually meaningful (i.e. a subjec-
tively good approximation) and used ε = 0.05 throughout the paper. We apply
a post-processing step that greedily sets slopes of the linear segments to zero,
as long as R2 ∈ {1 − ε, 1}. The post-processing potentially decreases the MECj ,
especially for models with constant segments like decision trees. MECj is aver-
aged over all features to obtain the global main effect complexity. Each MECj is
weighted with the variance of the corresponding ALE main effect to give more
weight to features that contribute more to the prediction. Algorithm2 describes
the MEC computation in detail.

Algorithm 2. Main Effect Complexity (MEC).
Input: Model f , approximation error ε, max. segments maxseg, data D

1 Define R2(gj , fj,ALE) :=
∑n

i=1(gj(x
(i)
j ) − fj,ALE(x

(i)
j ))2/

∑n
i=1(fj,ALE(x

(i)
j ))2

2 for j ∈ {1, . . . , p} do
3 Estimate fj,ALE

// Approximate ALE with linear model

4 Fit gj(xj) = β0 + β1xj predicting fj,ALE(x
(i)
j ) from x

(i)
j , i ∈ 1, . . . , n

5 Set K = 1
// Increase nr. of segments until approximation is good enough

6 while K < maxseg AND R2(gj , fj,ALE) < (1 − ε) do
// Find intervals Zk through exhaustive search along ALE

curve breakpoints

// For categorical feature, set slopes β1,k to zero

7 gj(xj) =
∑K+1

k=1 Ixj∈Zk · (β0,k + β1,kxj)
8 Set K = K + 1

9 Greedily set slopes to zero while R2 > 1 − ε
// Sum of non-zero coefficients minus first intercept

10 MECj = K +
∑K

k=1 Iβ1,k>0 − 1

11 Vj = 1
n

∑n
i=1(fj,ALE(x(i)))2

12 return MEC = 1∑p
j=1 Vj

∑p
j=1 Vj · MECj

4 Application of Complexity Measures

In the following experiment, we train various machine learning models on dif-
ferent prediction tasks and compute the model complexities. The goal is to ana-
lyze how the complexity measures behave across different datasets and mod-
els. The dataset are: Bike Rentals [10] (n = 731; 3 numerical, 6 categorical fea-
tures), Boston Housing (n = 506; 12 numerical, 1 categorical features), (down-
sampled) Superconductivity [18] (n = 2000; 81 numerical, 0 categorical features)
and Abalone [9] (n = 4177; 7 numerical, 1 categorical features).
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Table 1. Model performance and complexity on 4 regression tasks for various learners:
linear models (lm), cross-validated regularized linear models (cvglmnet), kernel support
vector machine (ksvm), random forest (rf), gradient boosted generalized additive model
(gamboost), decision tree (cart) and decision tree with depth 2 (cart2).

Learner Bike Boston housing Superconductivity Abalone

MSE MEC IAS NF MSE MEC IAS NF MSE MEC IAS NF MSE MEC IAS NF

cart 905974 1.2 0.07 6 26.6 1.9 0.12 4 329.0 1.0 0.27 8 5.9 2.8 0.09 3

cart2 1307619 1.0 0.01 2 34.6 1.7 0.02 2 431.4 1.0 0.27 3 6.6 3.0 0.02 1

cvglmnet 686320 1.2 0.00 9 27.7 1.0 0.00 9 349.3 1.0 0.00 45 5.2 1.0 0.00 7

gamboost 531245 1.6 0.00 8 16.5 2.5 0.00 10 362.1 2.1 0.00 17 5.3 1.1 0.00 4

ksvm 403762 1.6 0.04 8 16.4 1.7 0.09 13 268.5 2.2 0.22 81 4.6 1.0 0.11 8

lm 636956 1.5 0.00 9 23.0 1.0 0.00 13 330.2 1.0 0.00 81 4.9 1.0 0.00 8

rf 460362 1.8 0.06 9 12.0 2.4 0.11 13 180.8 2.9 0.21 81 4.6 1.7 0.29 8

Table 1 shows performance and complexity of the models. As desired, the
main effect complexity for linear models is 1 (except when categorical features
with 2+ categories are present as in the bike data), and higher for more flexible
methods like random forests. The interaction strength (IAS) is zero for additive
models (boosted GAM, (regularized) linear models). Across datasets we observe
that the underlying complexity measured as the range of MEC and IAS across
the models varies. The bike dataset seems to be adequately described by only
additive effects, since even random forests, which often model strong interactions
show low interaction strength here. In contrast, the superconductivity dataset
is better explained by models with more interactions. For the abalone dataset
there are two models with low MSE: the support vector machine and the random
forest. We might prefer the SVM, since main effects can be described with single
numbers (MEC = 1) and interaction strength is low.

5 Improving Post-hoc Interpretation

Minimizing the number of features (NF), the interaction strength (IAS), and
the main effect complexity (MEC) improves reliability and compactness of post-
hoc interpretation methods such as partial dependence plots, ALE plots, feature
importance, interaction effects and local surrogate models.

Fewer Features, More Compact Interpretations. Minimizing the number
of features improves the readability of post-hoc analysis results. The computa-
tional complexity and output size of most interpretation methods scales with
O(NF), like feature effect plots [1,14] or feature importance [6,11]. As demon-
strated in Table 2, a model with fewer features has a more compact representa-
tion. If additionally IAS = 0, the ALE main effects fully characterize the pre-
diction function. Interpretation methods that analyze 2-way feature interactions
scale with O(NF2). A complete functional decomposition requires to estimate
∑NF

k=1

(
NF
k

)

components which has a computational complexity of O(2NF ).
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Less Interaction, More Reliable Feature Effects. Feature effect plots such
as partial dependence plots and ALE plots visualize the marginal relationship
between a feature and the prediction. The estimated effects are averages across
instances. The effects can vary greatly for individual instances and even have
opposite directions when the model includes feature interactions.

In the following simulation, we trained three models with different capabilities
of modeling interactions between features: a linear regression model, a support
vector machine (radial basis kernel, C = 0.05), and gradient boosted trees. We
simulated 500 data points with 4 features and a continuous target based on
[15]. Figure 2 shows an increasing interaction strength depending on the model
used. More interaction means that the feature effect curves become a less reliable
summary of the model behavior.

Fig. 2. The higher the interaction strength in a model (IAS increases from left to
right), the less representative the partial dependence plot (light thick line) becomes
for individual instances represented by their individual conditional expectation curves
(dark thin lines).

The Less Complex the Main Effects, the Better Summarizable. In linear
models, a feature effect can be expressed by a single number, the regression
coefficient. If effects are non-linear the method of choice is visualization [1,14].
Summarizing the effects with a single number (e.g., using average marginal effects
[23]) can be misleading, e.g., the average effect might be zero for U-shaped
feature effects. As a by-product of MEC, there is a third option: Instead of
reporting a single number, the coefficients of the segmented linear model can be
reported. Minimizing MEC means preferring models with main effects that can
be described with fewer coefficients, offering a more compact model description.

6 Application: Multi-objective Optimization

We demonstrate model selection for performance and complexity in a multi-
objective optimization approach. For this example, we predict wine quality (scale
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from 0 to 10) [7] from the wines physical-chemical properties such as alcohol and
residual sugar of 4870 white wines. It is difficult to know the desired compromise
between model complexity and performance before modeling the data. A solution
is multi-objective optimization [12]. We suggest searching over a wide spectrum
of model classes and hyperparameter settings, which allows to select a suitable
compromise between model complexity and performance.

We used the mlrMBO model-based optimization framework [19] with
ParEGO [21] (500 iterations) to find the best models based on four objec-
tives: number of features used (NF), main effect complexity (MEC), interaction
strength (IAS) and cross-validated mean absolute error (MAE) (5-fold cross-
validated). We optimized over the space of following model classes (and hyperpa-
rameters): CART (maximum tree-depth and complexity parameter cp), support
vector machine (cost C and inverse kernel width sigma), elastic net regression
(regularization alpha and penalization lambda), gradient boosted trees (maxi-
mum depth, number of iterations), gradient boosted generalized additive model
(number of iterations nrounds) and random forest (number of split features
mtry).

Results. The multi-objective optimization resulted in 27 models. The measures
had the following ranges: MAE 0.41–0.63, number of features 1–11, mean effect
complexity 1–9 and interaction strength 0–0.71. For a more informative visual-
ization, we propose to visualize the main effects together with the measures in
Table 2. The selected models show different trade-offs between the measures.

Table 2. A selection of four models from the Pareto optimal set, along with their ALE
main effect curves. From left to right, the columns show models with (1) lowest MAE,
(2) lowest MAE when MEC = 1, (3) lowest MAE when IAS =≤ 0.2, and (4) lowest
MAE with NF ≤ 7.

gbt (maxdepth:8,

nrounds:269)

svm (C:23.6979,

sigma:0.0003)

gbt (maxdepth:3,

nrounds:98)

CART

(maxdepth:14,

cp:0.0074)

MAE 0.41 0.58 0.52 0.59

MEC 4.2 1 4.5 2

IAS 0.64 0 0.2 0.2

NF 11 11 11 4

fixed.acidity

volatile.acidity

citric.acid

residual.sugar

chlorides

free.sulfur.dioxide

total.sulfur.dioxide

density

pH

sulphates

alcohol
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7 Discussion

We proposed three measures for machine learning model complexity based on
functional decomposition: number of features used, interaction strength and
main effect complexity. Due to their model-agnostic nature, the measures allow
model selection and comparison across different types of models and they can be
used as objectives in automated machine learning frameworks. This also includes
“white-box” models: For example, the interaction strength of interaction terms
in a linear model or the complexity of smooth effects in generalized additive mod-
els can be quantified and compared across models. We argued that minimizing
these measures for a machine learning model improves its post-hoc interpreta-
tion. We demonstrated that the measures can be optimized directly with multi-
objective optimization to make the trade-off between performance and post-hoc
interpretability explicit.

Limitations. The proposed decomposition of the prediction function and defi-
nition of the complexity measures will not be appropriate in every situation. For
example, all higher order effects are combined into a single interaction strength
measure that does not distinguish between two-way interactions and higher order
interactions. However, the framework of accumulated local effect decomposition
allows to estimate higher order effects and to construct different interaction mea-
sures. The main effect complexity measure only considers linear segments but
not, e.g., seasonal components or other structures. Furthermore, the complexity
measures quantify machine learning models from a functional point of view and
ignore the structure of the model (e.g., whether it can be represented by a tree).
For example, main effect complexity and interaction strength measures can be
large for short decision trees (e.g. in Table 1).

Implementation. The code for this paper is available at https://github.com/
compstat-lmu/paper 2019 iml measures. For the examples and experiments we
relied on the mlr package [5] in R [29].
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Abstract. Model-agnostic interpretation techniques allow us to explain
the behavior of any predictive model. Due to different notations and ter-
minology, it is difficult to see how they are related. A unified view on
these methods has been missing. We present the generalized SIPA (sam-
pling, intervention, prediction, aggregation) framework of work stages for
model-agnostic interpretations and demonstrate how several prominent
methods for feature effects can be embedded into the proposed frame-
work. Furthermore, we extend the framework to feature importance com-
putations by pointing out how variance-based and performance-based
importance measures are based on the same work stages. The SIPA
framework reduces the diverse set of model-agnostic techniques to a sin-
gle methodology and establishes a common terminology to discuss them
in future work.

Keywords: Interpretable Machine Learning · Explainable AI · Feature
Effect · Feature Importance · Model-Agnostic · Partial Dependence

1 Introduction and Related Work

There has been an ongoing debate about the lacking interpretability of machine
learning (ML) models. As a result, researchers have put in great efforts devel-
oping techniques to create insights into the workings of predictive black box
models. Interpretable machine learning [15] serves as an umbrella term for all
interpretation methods in ML. We make the following distinctions:

(i) Feature effects or feature importance: Feature effects indicate the direction
and magnitude of change in predicted outcome due to changes in feature
values. Prominent methods include the individual conditional expectation
(ICE) [9] and partial dependence (PD) [8], accumulated local effects (ALE)
[1], Shapley values [19] and local interpretable model-agnostic explanations
(LIME) [17]. The feature importance measures the importance of a feature
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to the model behavior. This includes variance-based measures like the fea-
ture importance ranking measure (FIRM) [10,20] and performance-based
measures like the permutation feature importance (PFI) [7], individual con-
ditional importance (ICI) and partial importance (PI) curves [4], as well
as the Shapley feature importance (SFIMP) [4]. Input gradients were pro-
posed by [11] as a model-agnostic tool for both effects and importance that
essentially equals marginal effects (ME) [12], which have a long tradition
in statistics. They also define an average input gradient which corresponds
to the average marginal effect (AME).

(ii) Intrinsic or post-hoc interpretability: Linear models (LM), generalized lin-
ear models (GLM), classification and regression trees (CART) or rule
lists [18] are examples for intrinsically interpretable models, while random
forests (RF), support vector machines (SVM), neural networks (NN) or
gradient boosting (GB) models can only be interpreted post-hoc. Here, the
interpretation process is detached from and takes place after the model
fitting process, e.g., with the ICE, PD or ALEs.

(iii) Model-specific or model-agnostic interpretations: Interpreting model coef-
ficients of GLMs or deriving a decision rule from a classification tree is
a model-specific interpretation. Model-agnostic methods such as the ICE,
PD or ALEs can be applied to any model.

(iv) Local or global explanations: Local explanations like the ICE evaluate the
model behavior when predicting for one specific observation. Global expla-
nations like the PD interpret the model for the entire input space. Further-
more, it is possible to explain model predictions for a group of observations,
e.g., on intervals. In a lot of cases, local and global explanations can be
transformed into one another via (dis-)aggregation, e.g., the ICE and PD.

Motivation: Research in model-agnostic interpretation methods is complicated
by the variety of different notations and terminology. It turns out that decon-
structing model-agnostic techniques into sequential work stages reveals strik-
ing similarities. In [14] the authors propose a unified framework for model-
agnostic interpretations called SHapley Additive exPlanations (SHAP). How-
ever, the SHAP framework only considers Shapley values or variations thereof
(KernelSHAP and TreeSHAP). The motivation for this research paper is to pro-
vide a more extensive survey on model-agnostic interpretation methods, to reveal
similarities in their computation and to establish a framework with common ter-
minology that is applicable to all model-agnostic techniques.

Contributions: In Sect. 4 we present the generalized SIPA (sampling, interven-
tion, prediction, aggregation) framework of work stages for model-agnostic tech-
niques. We proceed to demonstrate how several methods to estimate feature
effects (MEs, ICE and PD, ALEs, Shapley values and LIME) can be embed-
ded into the proposed framework. Furthermore, in Sects. 5 and 6 we extend the
framework to feature importance computations by pointing out how variance-
based (FIRM) and performance-based (ICI and PI, PFI and SFIMP) importance
measures are based on the same work stages. By using a unified notation, we
also reveal how the methods are related.
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2 Notation and Preliminaries

Consider a p-dimensional feature space XP = X1 × · · · × Xp with the feature
index set P = {1, . . . , p} and a target space Y. We assume an unknown func-
tional relationship f between XP and Y. A supervised learning model f̂ attempts
to learn this relationship from an i.i.d. training sample that was drawn from the
unknown probability distribution F with the sample space XP ×Y. The random
variables generated from the feature space are denoted by X = (X1, . . . , Xp).
The random variable generated from the target space is denoted by Y . We
draw an i.i.d. sample of test data D with n observations from F . The vector
x(i) = (x(i)

1 , . . . , x
(i)
p ) ∈ XP corresponds to the feature values of the i-th obser-

vation that are associated with the observed target value y(i) ∈ Y. The vector
xj = (x(1)

j , . . . , x
(n)
j )� represents the realizations of Xj . The generalization error

GE(f̂ ,F) corresponds to the expectation of the loss function L on unseen test
data from F and is estimated by the average loss on D.

GE(f̂ ,F) = E
[
L(f̂(X1, . . . , Xp), Y )

]

ĜE(f̂ ,D) =
1
n

n∑
i=1

L(f̂(x(i)
1 , . . . , x(i)

p ), y(i))

A variety of model-agnostic techniques is used to interpret the prediction
function f̂(x1, . . . , xp) with the sample of test data D. We estimate the effects
and importance of a subset of features with index set S (S ⊆ P ). A vector of
feature values x ∈ XP can be partitioned into two vectors xS and x\S so that
x = (xS , x\S). The corresponding random variables are denoted by XS and X\S .
Given a model-agnostic technique where S only contains a single element, the
corresponding notations are Xj ,X\j and xj , x\j .

The partial derivative of the trained model f̂(xj , x\j) with respect to xj is
numerically approximated with a symmetric difference quotient [12].

lim
h→0

f̂(xj + h, x\j) − f̂(xj , x\j)
h

≈ f̂(xj + h, x\j) − f̂(xj − h, x\j)
2h

, h > 0

A term of the form f̂(xj + h, x\j) − f̂(xj − h, x\j) is called a finite difference
(FD) of predictions with respect to xj .

FDf̂ ,j(xj , x\j) = f̂(xj + h, x\j) − f̂(xj − h, x\j)

3 Feature Effects

Partial Dependence (PD) and Individual Conditional Expectation (ICE): First
suggested by [8], the PD is defined as the dependence of the prediction function
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on xS after all remaining features X\S have been marginalized out [9]. The PD
is estimated via Monte Carlo integration.

PDf̂ ,S(xS) = EX\S

[
f̂(xS ,X\S)

]
=

∫
f̂(xS ,X\S) dP(X\S) (1)

P̂Df̂ ,S(xS) =
1
n

n∑
i=1

f̂(xS , x
(i)
\S)

The PD is a useful feature effect measure when features are not interacting
[8]. Otherwise it can obfuscate the relationships in the data [4]. In that case,
the individual conditional expectation (ICE) can be used instead [9]. The i-th
ICE corresponds to the expected value of the target for the i-th observation as
a function of xS , conditional on x

(i)
\S .

̂ICE
(i)

f̂ ,S(xS) = f̂(xS , x
(i)
\S)

The ICE disaggregates the global effect estimates of the PD to local effect esti-
mates for single observations. Given |S| = 1, the ICE and PD are also referred to
as ICE and PD curves. The ICE and PD suffer from extrapolation when features
are correlated, because the permutations used to predict are located in regions
without any training data [1].

Accumulated Local Effects (ALE): In [1] ALEs are presented as a feature effect
measure for correlated features that does not extrapolate. The idea of ALEs is
to take the integral with respect to Xj of the first derivative of the prediction
function with respect to Xj . This creates an accumulated partial effect of Xj

on the target variable while simultaneously removing additively linked effects of
other features. The main advantage of not extrapolating stems from integrating
with respect to the conditional distribution of X\j on Xj instead of the marginal
distribution of X\j [1]. Let z0,j denote the minimum value of xj . The first order
ALE of the j-th feature at point x is defined as:

ALEf̂ ,j(x) =
∫ x

z0,j

EX\j |Xj

[
∂f̂(Xj ,X\j)

∂Xj

∣∣∣∣Xj = zj

]
dzj − constant

=
∫ x

z0,j

[∫
∂f̂(zj ,X\j)

∂zj
dP(X\j |zj)

]
dzj − constant (2)

A constant is subtracted in order to center the plot. We estimate the first order
ALE in three steps. First, we divide the value range of xj into a set of intervals
and compute a finite difference (FD) for each observation. For each i-th observa-
tion, x

(i)
j is substituted by the corresponding right and left interval boundaries.

Then the predictions with both substituted values are subtracted in order to
receive an observation-wise FD. Second, we estimate local effects by averaging
the FDs inside each interval. This replaces the inner integral in Eq. (2). Third,
the accumulation of all local effects up to the point of interest replaces the outer
integral in Eq. (2), i.e., the interval-wise average FDs are summed up.
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The second order ALE is the bivariate extension of the first order ALE. It is
important to note that first order effect estimates are subtracted from the second
order estimates. In [1] the authors further lay out the computations necessary
for higher order ALEs.

Marginal Effects (ME): MEs are an established technique in statistics and often
used to interpret non-linear functions of coefficients in GLMs like logistic regres-
sion. The ME corresponds to the first derivative of the prediction function with
respect to a feature at specified values of the input space. It is estimated by
computing an observation-wise FD. The average marginal effect (AME) is the
average of all MEs that were estimated with observed feature values [2]. Although
there is extensive literature on MEs, this concept was suggested by [11] as a novel
method for ML and referred to as the input gradient. Derivatives are also often
utilized as a feature importance metric.

Shapley Value: Originating in coalitional game theory [19], the Shapley value
is a local feature effect measure that is based on a set of desirable axioms. In
coalitional games, a set of p players, denoted by P , play games and join coalitions.
They are rewarded with a payout. The characteristic function v : 2p → R maps
all player coalitions to their respective payouts [4]. The Shapley value is a player’s
average contribution to the payout, i.e., the marginal increase in payout for the
coalition of players, averaged over all possible coalitions. For Shapley values
as feature effects, predicting the target for a single observation corresponds to
the game and a coalition of features represents the players. Shapley regression
values were first developed for linear models with multicollinear features [13]. A
model-agnostic Shapley value was first introduced in [19].

Consider the expected prediction for a single vector of feature values x, con-
ditional on only knowing the values of features with indices in K (K ⊆ P ), i.e.,
the features X\K are marginalized out. This essentially equals a point (or a line,
surface etc. depending on the power of K) on the PD from Eq. (1).

EX\K

[
f̂(xK ,X\K)

]
=

∫
f̂(xK ,X\K) dP(X\K) = P̂Df̂ ,K(xK) (3)

Equation (3) is shifted by the mean prediction and used as a payout function
vPD(xK), so that an empty set of features (K = ∅) results in a payout of zero
[4].

vPD(xK) = EX\K

[
f̂(xK ,X\K)

]
− EXK∪(P\K)

[
f̂(XK ,X\K)

]

= P̂Df̂ ,K(xK) − P̂Df̂ ,∅(x∅)

= P̂Df̂ ,K(xK) − 1
n

n∑
i=1

f̂(x(i)
K , x

(i)
\K)

The marginal contribution Δj(xK) of a feature value xj joining the coalition of
feature values xK is:

Δj(xK) = vPD(xK∪{j}) − vPD(xK) = P̂Df̂ ,K∪{j}(xK∪{j}) − P̂Df̂ ,K(xK)
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The exact Shapley value of the j-th feature for a single vector of feature values
x corresponds to:

̂Shapley
f̂ ,j

=
∑

K ⊆P\{j}

|K|!(|P | − |K| − 1)!

|P |! Δj(xK)

=
∑

K ⊆P\{j}

|K|!(|P | − |K| − 1)!

|P |!
[
P̂D

f̂ ,K∪{j}(xK∪{j}) − P̂D
f̂ ,K

(xK)
]

Shapley values are computationally expensive because the PD function has
a complexity of O(N2). Computations can be sped up by Monte Carlo sampling
[19]. Furthermore, in [14] the authors propose a distinct variant to compute
Shapley values called SHapley Additive exPlanations (SHAP).

Local Interpretable Model-Agnostic Explanations (LIME): In contrast to all pre-
vious techniques which are based on interpreting a single model, LIME [17]
locally approximates the black box model with an intrinsically interpretable
surrogate model. Given a single vector of feature values x, we first perturb xj

around a sufficiently close neighborhood while x\j is kept constant. Then we
predict with the perturbed feature values. The predictions are weighted by the
proximity of the corresponding perturbed values to the original feature value.
Finally, an intrinsically interpretable model is trained on the weighted predic-
tions and interpreted instead.

4 Generalized Framework

Although the techniques presented in Sect. 3 are seemingly unrelated, they all
work according to the exact same principle. Instead of trying to inspect the
inner workings of a non-linear black box model, we evaluate its predictions when
changing inputs. We can deconstruct model-agnostic techniques into a framework
of four work stages: sampling, intervention, prediction, aggregation (SIPA). The
software package iml [16] was inspired by the SIPA framework.

We first sample a subset (sampling stage) to reduce computational costs,
e.g., we select a random set of available observations to evaluate as ICEs. In
order to change the predictions made by the black box model, the data has to
be manipulated. Feature values can be set to values from the observed marginal
distributions (ICEs and PD or Shapley values), or to unobserved values (FD
based methods such as MEs and ALEs). This crucial step is called the interven-
tion stage. During the prediction stage, we predict on previously intervened
data. This requires an already trained model, which is why model-agnostic tech-
niques are always post-hoc. The predictions are further aggregated during the
aggregation stage. Often, the predictions resulting from the prediction stage
are local effect estimates, and the ones resulting from the aggregation stage are
global effect estimates.

In Fig. 1, we demonstrate how all presented techniques for feature effects are
based on the SIPA framework. Although LIME is a special case as it is based
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Fig. 1. We demonstrate how all presented model-agnostic methods for feature effects
are based on the SIPA framework. For every method, we assign each computational
step to the corresponding generalized SIPA work stage. Contrary to all other methods,
LIME is based on training an intrinsically interpretable model during the aggregation
stage. We consider training a model to be an aggregation, because it corresponds to an
optimization problem where the training data is aggregated to a function. For reasons
of simplicity, we do not differentiate between the actual functions or values and their
estimates.



212 C. A. Scholbeck et al.

on training a local surrogate model, we argue that it is also based on the SIPA
framework as training a surrogate model can be considered an aggregation of
the training data to a function.

5 Feature Importance

We categorize model-agnostic importance measures into two groups: variance-
based and performance-based.

Variance-Based: A mostly flat trajectory of a single ICE curve implies that in
the underlying predictive model, varying xj does not affect the prediction for
this specific observation. If all ICE curves are shaped similarly, the PD can be
used instead. In [10] the authors propose a measure for the curvature of the PD
as a feature importance metric. Let the average value of the estimated PD of
the j-th feature be denoted by P̂Df̂ ,j(xj) = 1

n

∑n
i=1 P̂Df̂ ,j(x

(i)
j ). The estimated

importance ÎMP
̂PD,j

of the j-th feature corresponds to the standard deviation of
the feature’s estimated PD function. The flatter the PD, the smaller its standard
deviation and therefore the importance metric. For categorial features, the range
of the PD is divided by 4. This is supposed to represent an approximation to
the estimate of the standard deviation for small to medium sized samples [10].

ÎMP
̂PD,j

=

⎧
⎪⎪⎨
⎪⎪⎩

√
1

n−1

n∑
i=1

[
P̂Df̂ ,j(x

(i)
j ) − P̂Df̂ ,j(xj)

]2
xj continuous

1
4

[
max

{
P̂Df̂ ,j(xj)

}
− min

{
P̂Df̂ ,j(xj)

}]
xj categorial

(4)

In [20] the authors propose the feature importance ranking measure (FIRM).
They define a conditional expected score (CES) function for the j-th feature.

CESf̂ ,j(v) = EX\j

[
f̂(xj ,X\j)

∣∣ xj = v
]

(5)

It turns out that Eq. (5) is equivalent to the PD from Eq. (1), conditional on
xj = v.

CESf̂ ,j(v) = EX\j

[
f̂(v,X\j)

]

= PDf̂ ,j(v)

The FIRM corresponds to the standard deviation of the CES function with all
values of xj used as conditional values. This in turn is equivalent to the standard
deviation of the PD. The FIRM is therefore equivalent to the feature importance
metric in Eq. (4).

̂FIRM f̂ ,j =
√

V ar( ̂CES f̂ ,j(xj)) =
√

V ar(P̂Df̂ ,j(xj)) = ÎMP
̂PD,j
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Performance-Based: The permutation feature importance (PFI), originally
developed by [3] as a model-specific tool for random forests, was described as a
model-agnostic one by [6]. If feature values are shuffled in isolation, the relation-
ship between the feature and the target is broken up. If the feature is important
for the predictive performance, the shuffling should result in an increased loss
[4]. Permuting xj corresponds to drawing from a new random variable X̃j that is
distributed like Xj but independent of X\j [4]. The model-agnostic PFI measures
the difference between the generalization error (GE) on data with permuted and
non-permuted values.

PFIf̂ ,j = E
[
L(f̂(X̃j ,X\j), Y )

]
− E

[
L(f̂(Xj ,X\j), Y )

]

Let the permutation of xj be denoted by x̃j . Consider the sample of test data
Dj where xj has been permuted, and the non-permuted sample D. The PFI
estimate is given by the difference between GE estimates with permuted and
non-permuted values.

̂PFI f̂ ,j = ĜE(f̂ ,Dj) − ĜE(f̂ ,D)

=
1
n

n∑
i=1

L(f̂(x̃(i)
j , x

(i)
\j ), y(i)) − 1

n

n∑
i=1

L(f̂(x(i)
j , x

(i)
\j ), y(i)) (6)

In [4] the authors propose individual conditional importance (ICI) and partial
importance (PI) curves as visualization techniques that disaggregate the global
PFI estimate. They are based on the same principle as the ICE and PD. The
ICI visualizes the influence of a feature on the predictive performance for a
single observation, while the PI visualizes the average influence of a feature for
all observations. Consider the prediction for the i-th observation with observed
values f̂(x(i)

j , x
(i)
\j ) and the prediction f̂(x(l)

j , x
(i)
\j ) where x

(i)
j was replaced by a

value x
(l)
j from the marginal distribution of observed values xj . The change in

loss is given by:

ΔL(i)(x(l)
j ) = L(f̂(x(l)

j , x
(i)
\j )) − L(f̂(x(i)

j , x
(i)
\j ))

The ICI curve of the i-th observation plots the value pairs (x(l)
j ,ΔL(i)(x(l)

j )) for
all l values of xj . The PI curve is the pointwise average of all ICI curves at all l

values of xj . It plots the value pairs (x(l)
j , 1

n

∑n
i=1 ΔL(i)(x(l)

j )) for all l values of
xj . Substituting values of xj essentially resembles shuffling them. The authors
demonstrate how averaging the values of the PI curve results in an estimation
of the global PFI.

̂PFI f̂ ,j =
1
n

n∑
l=1

1
n

n∑
i=1

ΔL(i)(x(l)
j )

Furthermore, a feature importance measure called Shapley feature impor-
tance (SFIMP) was proposed in [4]. Shapley importance values based on model
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Fig. 2. We demonstrate how importance computations are based on the same work
stages as effect computations. In the same way as in Fig. 1, we assign the computational
steps of all techniques to the corresponding generalized SIPA work stages. Variance-
based importance measures such as FIRM measure the variance of a feature effect,
i.e., we add a variance computation during the aggregation stage. Performance-based
importance measures such as ICI, PI, PFI and SFIMP are based on computing changes
in loss after the intervention stage. For reasons of simplicity, we do not differentiate
between the actual functions or values and their estimates.
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refits with distinct sets of features were first introduced by [5] for feature selec-
tion. This changes the behavior of the learning algorithm and is not helpful to
evaluate a single model, as noted by [4]. The SFIMP is based on the same com-
putations as the Shapley value but replaces the payout function with one that is
sensitive to the model performance. The authors define a new payout vGE(xj)
that substitutes the estimated PD with the estimated GE. This is equivalent to
the estimated PFI from Eq. (6).

vGE(xj) = ĜE(f̂ ,Dj) − ĜE(f̂ ,D) = ̂PFI f̂ ,j = vPFI(xj)

We can therefore refer to vGE(xj) as vPFI(xj) and regard the SFIMP as an
extension to the PFI [4].

6 Extending the Framework to Importance Computations

Variance-based importance methods measure the variance of feature effect esti-
mates, which we already demonstrated to be based on the SIPA framework.
Therefore, we simply add a variance computation during the aggregation stage.
Performance-based techniques measure changes in loss, i.e., there are two possi-
ble modifications. First, we predict on non-intervened or intervened data (pre-
diction stage). Second, we aggregate predictions to the loss (aggregation stage).
In Fig. 2, we demonstrate how feature importance computations are based on
the same work stages as feature effect computations.

7 Conclusion

In recent years, various model-agnostic interpretation methods have been devel-
oped. Due to different notations and terminology it is difficult to see how they
are related. By deconstructing them into sequential work stages, one discov-
ers striking similarities in their methodologies. We first provided a survey on
model-agnostic interpretation methods and then presented the generalized SIPA
framework of sequential work stages. First, there is a sampling stage to reduce
computational costs. Second, we intervene in the data in order to change the
predictions made by the black box model. Third, we predict on intervened or
non-intervened data. Fourth, we aggregate the predictions. We embedded mul-
tiple methods to estimate the effect (ICE and PD, ALEs, MEs, Shapley values
and LIME) and importance (FIRM, PFI, ICI and PI and the SFIMP) of fea-
tures into the framework. By pointing out how all demonstrated techniques are
based on a single methodology, we hope to work towards a more unified view
on model-agnostic interpretations and to establish a common ground to discuss
them in future work.
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for Classical Hamiltonian Systems
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Abstract. We consider the problem of learning an interpretable poten-
tial energy function from a Hamiltonian system’s trajectories. We address
this problem for classical, separable Hamiltonian systems. Our approach
first constructs a neural network model of the potential and then applies
an equation discovery technique to extract from the neural potential a
closed-form algebraic expression. We demonstrate this approach for sev-
eral systems, including oscillators, a central force problem, and a problem
of two charged particles in a classical Coulomb potential. Through these
test problems, we show close agreement between learned neural poten-
tials, the interpreted potentials we obtain after training, and the ground
truth. In particular, for the central force problem, we show that our app-
roach learns the correct effective potential, a reduced-order model of the
system.

Keywords: Neural networks · Equation discovery · Hamiltonian
systems

1 Introduction

As a cornerstone of classical physics, Hamiltonian systems arise in numerous
settings in engineering and the physical sciences. Common examples include
coupled oscillators, systems of particles/masses subject to classical electrostatic
or gravitational forces, and rigid bodies. For integer d ≥ 1, let q(t) ∈ R

d and
p(t) ∈ R

d denote, respectively, the position and momentum of the system at
time t. Let T and V denote kinetic and potential energy, respectively. Our focus
here is on classical, separable systems that arise from the Hamiltonian

H(p,q) = T (p) + V (q). (1)

In this paper, we consider the problem of learning or identifying the potential
energy V from data (q(t),p(t)) measured at a discrete set of times. We assume
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T is known. To motivate this problem, consider the setting of m interacting
particles in three-dimensional space; here d = 3m. Suppose that we are truly
interested in a reduced set of variables, e.g., the position and momentum of
one of the m particles. Let us denote the reduced-order quantities of interest
by (q̃(t), p̃(t)) ∈ R

2˜d. The direct approach is to integrate numerically the 6m-
dimensional system of differential equations for the full Hamiltonian (1) and then
use the full solution (q(t),p(t)) to compute (q̃(t), p̃(t)). While such an approach
yields numerical answers, typically, it does not explain how the reduced-order
system evolves dynamically in time. If we suspect that (q̃(t), p̃(t)) itself satis-
fies a Hamiltonian system, we can search for a potential ˜V (q̃) that yields an
accurate, reduced-order model for (q̃(t), p̃(t)). If ˜V is interpretable, we can use
it to explain the reduced system’s dynamics—here we mean interpretability in
the sense of traditional models in the physical sciences, which are written as
algebraic expressions, not as numerical algorithms. We can also use the reduced-
order model to simulate (q̃(t), p̃(t)) directly, with computational savings that
depend on d/˜d.

There is a rapidly growing literature on machine learning of potential energies
in computational/physical chemistry, e.g., [1–3,9,10]. As in these studies, the
present work uses neural networks to parameterize the unknown potential. A key
difference is that, in the present work, we apply additional methods to interpret
the learned neural potential. There exists a burgeoning, recent literature on
learning interpretable dynamical systems from time series, e.g., [4–6,8,12], to
cite but a few. We repurpose one such method—SINDy (sparse identification of
nonlinear dynamics)—to convert the learned neural potential into a closed-form
algebraic expression that is as interpretable as classical models. We apply only
one such method for accomplishing this conversion into an algebraic expression;
we hope that the results described here lead to further investigation in this area.

2 Approach

Assume T (p) =
∑d

i=1 M−1
ii p2

i where M is a diagonal mass matrix. Then, from
(1), we can write Hamilton’s equations:

q̇ = M−1p (2a)
ṗ = −∇V (q). (2b)

Let the training data consist of a set of R trajectories; the j-th such trajectory is
{qj

i ,p
j
i}N

i=0. Here (qj
i ,p

j
i ) denotes a measurement of (q(t),p(t)) at time t = ih

for fixed h > 0. We choose this equispaced temporal grid for simplicity; this
choice is not essential. Because we treat the kinetic energy T as known, we
assume that the training data consists of (possibly noisy) measurements of a
system that satisfies (2a). We now posit a model for V that depends on a set of
parameters θ. For instance, if we model V using a neural network, θ stands for
the collection of all network weights and biases. Then we use (2b) to form an
empirical risk loss
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L(θ) =
1

RN

R
∑

j=1

N−1
∑

i=0

∥

∥

∥

∥

∥

pj
i+1 − pj

i

h
+ ∇qV (qj

i ;θ)

∥

∥

∥

∥

∥

2

. (3)

Let τ = Nh denote the final time in our grid. Note that (3) approximates
E

[

(1/τ)
∫ t=τ

t=0
‖Ṗ(t) + ∇QV (Q(t);θ)‖2dt

]

, the expected mean-squared error of
a random trajectory (Q(t),P(t)) assumed to satisfy (2a).

We model V using a dense, feedforward neural network with L ≥ 2 layers.
Because we train with multiple trajectories, the input layer takes data in the
form of two tensors—one for q and one for p—with dimensions N × R × d. The
network then transposes and flattens the data to be of dimension NR × d. Thus
begins the potential energy function part of the network (referred to in what
follows as the neural potential), which takes a d-dimensional vector as input and
produces a scalar as output. Between the neural potential’s d-unit input layer
and 1-unit output layer, we have a number of hidden layers. In this model, we
typically choose hidden layers to all have ν units where 1 ≤ ν ≤ d. As these
architectural details differ by example, we give them below.

Note that the loss (3) involves the gradient of V with respect to the input
q. We use automatic differentiation to compute this gradient. More specifically,
in our IPython/Jupyter notebooks (linked below), we use the batch jacobian
method in TensorFlow. This is easy to implement, fast, and accurate up to
machine precision.

The trained network gives us a neural potential ̂V : Rd → R. To interpret
̂V , we apply the SINDy method [5]. We now offer a capsule summary of this
technique. Suppose we have a grid {xk}K

k=1 of points in R
d. We use the notation

xk = (xk
1 , . . . , xk

d). We evaluate ̂V on the grid, resulting in a vector of values
that we denote by V. We also evaluate on the grid a library of J candidate
functions ξj : Rd → R for 1 ≤ j ≤ J ; each such evaluation results in a vector
Ξj that we take to be the j-th column of a matrix Ξ. In d = 1, examples of
candidate functions are {1, x, x2, . . .} or {1, x−1, x−2, . . .}. In d = 2, an example
is {1, x1, x2, x

2
1, x1x2, x

2
2, . . .}. Each candidate function is simply a scalar-valued

function on R
d.

Equipped with the K × 1 vector V and the K × J matrix Ξ, we solve the
regression problem

V = Ξβ + ε (4)

for the J × 1 vector β using an iteratively thresholded least-squares algorithm.
The algorithm has one constant hyperparameter, λ > 0. The algorithm is then
succinctly described as follows: (i) estimate β using ordinary least squares, and
then (ii) reset to zero all components of β that are less than the threshold λ.
Once components of β are reset to zero, they stay frozen at zero. We then repeat
steps (i) and (ii) until β stabilizes to its converged value.

As shown recently [13], this algorithm converges in a finite number of steps
to an approximate minimizer of ‖V − Ξβ‖2 + λ2‖β‖0. Here ‖β‖0 denotes the
number of nonzero entries of β. Hence, increasing the parameter λ leads to a
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more sparse set of coefficients β. Once we have fit the regression model in this
way, we obtain an interpretable model of ̂V , specifically:

̂V (x) =
J

∑

j=1

βjξ
j(x) + ε. (5)

If β is highly sparse, most of the coefficients βj will be zero. Suppose that the
candidate functions ξj are well-known functions such as positive or negative
powers of the coordinates xi of the input x. In this case, the right-hand side
will be a relatively short algebraic expression that is as interpretable as most
potential energy functions routinely encountered in classical physics. The norm
of ε here captures the error in this sparse approximation of ̂V . In general, one
chooses λ to balance the sparsity of β with the quality of the approximation ‖ε‖.

3 Tests

We now describe a series of increasingly complex tests that demonstrate the
proposed method. For each such model, we use either exact solutions or fine-scale
numerical integration to create a corpus of time series measurements. Using the
time series, we train a neural potential energy model, which we then interpret
using SINDy. We use NumPy/SciPy or Mathematica for all data generation,
TensorFlow for all neural network model development/training, and the sindyr
package [7] in R to interpret the neural potential. In what follows, the mass
matrix M in (2) is the identity unless specified otherwise. In all cases, we train
the neural network using gradient descent. We are committed to releasing all
code/data at https://github.com/hbhat4000/learningpotentials.

3.1 Simple Harmonic Oscillator

The first model we consider is the simple harmonic oscillator (d = 1) with
Hamiltonian

H(q, p) =
p2

2
+

q2

2
. (6)

Exact trajectories consists of circles centered at the origin in (q, p) space. For
training data, we use R = 10 such circles; for 1 ≤ i ≤ 10, the i-th circle passes
through an initial condition (q(0), p(0)) = (0, i). We include N = 1000 steps
of each trajectory, recorded with a time step of 0.01, in the training set. Here
our goal is to check how closely the neural potential ̂V (q) can track the true
potential V (q) = q2/2. We take the neural potential model to have two hidden
layers, each with 16 units and tanh activations. We train for 50000 steps at a
learning rate of 0.01.

In Fig. 1, we plot both the trained neural potential ̂V (in red) and the true
potential V (q) = q2/2 (in black). When plotting ̂V , we have subtracted a con-
stant bias (the minimum obtained value of ̂V ) so that the curve reaches a min-
imum value of zero. Note that this constant bias is completely unimportant for

https://github.com/hbhat4000/learningpotentials
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Fig. 1. For the simple harmonic oscillator (6), after adjusting a constant bias, the

neural potential ̂V (q) closely matches the true potential V (q) = q2/2. (Color figure
online)

physics, as only ∇V appears in Hamilton’s equations (2) and the loss (3). How-
ever, the constant bias does lead us to include an intercept in the regression
model (4), i.e., to include 1 in the set of candidate functions for SINDy. We
follow this practice in all uses of SINDy below.

We apply SINDy to the learned potential ̂V (q) with candidate functions
{1, q, q2, q3}. In the following test, and in fact throughout this paper, we start
with λ = 1 and tune λ downward until the error ‖ε‖—between the neural network
potential ̂V (q) and the SINDy-computed approximation—drops below 10−10. We
find that with λ = 0.04, the estimated system is

̂V (q) ≈ β0 + β2q
2 (7)

with β0 ≈ −49.18 and β2 ≈ 0.4978. We see that ̂V closely tracks the true
potential V (q) = q2/2 up to the constant bias term, which can be ignored.

3.2 Double Well

Let us consider a particle in a double well potential (d = 1)

V (q) = x2(x − 2)2 − (x − 1)2. (8)

We take the kinetic energy to be T (p) = p2/2. We now use explicit Runge-Kutta
integration in Mathematica to form three training sets:

– Training set T1 includes R = 10 trajectories with random initial conditions
(q(0), p(0)) chosen uniformly on [−1, 1]2, one of which has sufficiently high
energy to visit both wells.

– Training set T2 consists of R = 2 trajectories, each of which starts and stays in
an opposing well. The first trajectory has initial condition (q(0), p(0)) = (3, 0)
while the second has initial condition (q(0), p(0)) = (−1, 0). These q(0) values
are symmetric across q = 1, the symmetry axis of V (q).

– Training set T3 has only R = 2 trajectories that stay in the left well only.
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Fig. 2. For the double well potential (8), the neural potential ̂V (q) trained on T1 closely
matches the true potential V (q). This training set includes one high-energy trajectory
that visits both wells. In red, we plot V (q) for q ∈ T1; in green, we plot V (q) for
q ∈ [−1, 3] \ T1. Potentials were adjusted by a constant bias so that they both have
minimum values equal to zero. (Color figure online)

For each trajectory, we record 5001 points at a time step of 0.001. We take the
neural potential model to have two hidden layers, each with 16 units and tanh
activations. For each training set Tm, we train for 50000 steps at a learning rate
of 0.01.

We seek to understand how the choice of training set Tm affects the ability
of the neural potential ̂V to track the true potential (8). We plot and discuss
the results in Figs. 2 and 3. Overall, the neural potentials trained using T1 and
T2 match V (q) closely—both on the training set and extrapolated to the rest
of the interval −1 ≤ q ≤ 3. Clearly, the neural potential trained using T3 only
captures one well and does not extrapolate correctly to the rest of the domain.

Let ̂V m(q) denote the neural potential trained on Tm. We now apply SINDy
to the output of each ̂V m only on its respective training set Tm, with candidate
functions {1, q, q2, q3, q4, q5, q6}. For reference, the ground truth V (q) can be
written as V (q) = −1 + 2q + 3q2 − 4q3 + q4. Adjusting λ downward as described
above, we find with λ = 0.5 the following algebraic expressions:

̂V 1(q) ≈ −8.138 + 2.0008q + 3.0009q2 − 4.0009q3 + 1.0001q4

̂V 2(q) ≈ −6.061 + 2.0032q + 3.0054q2 − 4.0148q3 + 0.9748q4

̂V 3(q) ≈ −6.165 + 1.9909q + 2.9991q2 − 3.9886q3 + 0.9955q4

Noting that the constant terms are irrelevant, we note here that all three models
agree closely with the ground truth. The agreement between V and the alge-
braic forms of ̂V 1 and ̂V 2 was expected. We find it somewhat surprising that
SINDy, when applied to the output of ̂V 3 on its training set T 3, yields a quartic
polynomial with two wells.
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Fig. 3. For the double well potential (8), we train neural potentials ̂V (q) using, in

turn, the training sets T2 (left) and T3 (right). We plot in red ̂V (q) only for the values

of q covered by the respective training sets; in green, we extrapolate ̂V (q) to values
of q that are not in the respective training sets. Since T2 includes two trajectories,
one from each well, the neural potential captures and extrapolates well to both wells.
Conversely, because T3 only includes trajectories that stay in one well, the neural
potential completely misses one well. Potentials were adjusted by a constant bias so
that they all have minimum values equal to zero. (Color figure online)

3.3 Central Force Problem

We consider a central force problem for one particle (d = 3) with Hamiltonian

H(q,p) =
‖p‖2

2
+ ‖q‖−1 + (10 − ‖q‖)−1. (9)

The norm here is the standard Euclidean norm. Using explicit Runge-Kutta
integration in Mathematica, we generate R = 1 trajectory with random initial
condition (q(0),p(0)) chosen uniformly on [−1, 1]6. Using this trajectory, we
compute r(t) = ‖q(t)‖ as well as ṙ(t) = dr/dt. We save the (r(t), ṙ(t)) trajectories
at N = 20001 points with a time step of 0.001. We then search for a reduced-
order (d = 1) model with Hamiltonian

H(r, ṙ) =
ṙ2

2
+ ˜V (r), (10)

where ˜V (r) is a neural potential. We take the neural potential model to
have two hidden layers, each with 16 units. We train for 500000 steps at a
learning rate of 10−3, first using exponential linear unit activations ψ(x) =
{

x x ≥ 0
exp(x) − 1 x < 0.

. We then initialize the neural network using the learned

weights/biases and retrain using softplus activations φ(x) = log(1 + exp(x))—
this activation was chosen to enable series expansions of ̂V (r), as described in
greater detail below. Prior to retraining, we also change the network by adding
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Fig. 4. For the central force problem (10), after adjusting a constant bias, the neural

potential ̂V (r) closely matches the effective potential Veff(r). (Color figure online)

an exponential function to the output layer—we incorporate this function to
better model the steep gradients in the potential near r = 0 and r = 10. When
we retrain, we take 500000 steps at a learning rate of 10−3. We carry out the
training in two stages because training directly with softplus activations and
exponential output failed.

For this problem, classical physics gives us an effective potential

Veff(r) = r−1 + (10 − r)−1 + �2/(2r2). (11)

where � is a conserved quantity determined from the initial condition. In Fig. 4,
we plot both the trained neural potential ̂V (in red) and the effective poten-
tial Veff(r) (in black). After adjusting for the constant bias term, we find close
agreement.

We then exported the weight and bias matrices to Mathematica, forming the
neural potential model

̂V (r) = W3φ(W2φ(W1r + b1) + b2) + b3. (12)

Unlike ψ, the softplus activation φ is amenable to series expansion via symbolic
computation. In particular, since we can see that the effective potential Veff(r) is
a rational function, we explored Padé expansions of ̂V (r). These attempts were
unsuccessful in the sense that we did not obtain models of ̂V (r) that are any
more interpretable than the compositional form of (12).

Turning to SINDy, we formed a library of candidate functions

{1, r−1, r−2, r−3, (10 − r)−1, (10 − r)−2, (10 − r)−3}.

Adjusting λ in the same manner described above, we find that with λ = 0.15,
the estimated model is

̂V (r) ≈ β0 + β1r
−1 + β2r

−2 + β4(10 − r)−1 (13)

Here β0 ≈ −0.2384, β1 ≈ 1.005, β2 ≈ 0.4461, and β4 ≈ 0.9723. We see from the
form of Veff(r) given above that β1 and β4 are both close to the ground truth
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values of 1. Note that for the trajectory on which the system was trained, we
have �2/2 ≈ 0.4655. Hence β2 has an error of less than 4.2%. This demonstrates
a successful application of SINDy to interpret the neural potential as a rational
function; this interpretation of ̂V is itself close to Veff.

3.4 Charged Particles in Coulomb Potential

We now consider two oppositely charged particles (d = 6) subject to the
classical Coulomb electrostatic potential. We take the mass matrix to be
M = diag(1, 1/2). The kinetic energy is T (p) = pT M−1p/2. If we partition
q = (q1,q2) where qi is the position of the i-th particle, then the potential is

V (q) = − 1
4π

1
‖q1 − q2‖

. (14)

Here we apply the Störmer-Verlet algorithm, a symplectic method, to generate
R = 1000 trajectories, each with N = 10001 points recorded at a time step of
0.001. Each trajectory starts with random initial conditions (q(0),p(0)) chosen
from a standard normal. For this problem, our goal is to use the data to recover
V . We train two different neural potential models with increasing levels of prior
domain knowledge:

1. We first set up the neural network’s input layer to compute from q the differ-
ence q1−q2 ∈ R

3; the neural potential then transforms this three-dimensional
input into a scalar output. The neural network here has 8 hidden layers, each
with 16 units and tanh activations. Using only 800 of the R = 1000 trajecto-
ries, we first train using the first 100 points from each of the 800 trajectories,
taking 500000 steps at a learning rate of 0.01. Again restricting ourselves to
the 800 training trajectories, we then use the next 100 points, followed by
the next 100 points, etc., each time taking 500000 steps at a learning rate of
0.01. As the training loss was observed to be sufficiently small (≈ 0.006021),
we halted training.
In Fig. 5, we plot both training (left) and test (right) results. The training
results are plotted with the first 1000 points of the 800 trajectories used for
training, while the test results are plotted with the first 1000 points of the 200
held out trajectories. For both plots, we subtracted the maximum computed
value of ̂V (on each respective data set). In each plot, we plot ̂V (on all points
q in the training and test sets) versus r = ‖q1 − q2‖.
Overall, we see reasonable agreement between the neural potential and the
ground truth. Note that the neural network is essentially tasked with discov-
ering that it should compute the inverse of the norm of q1 − q2. We suspect
that this function of q1 − q2 may be somewhat difficult to represent using
a composition of activation functions and linear transformations as in (12).
Despite training for a large number of steps, there is noticeable variation in
neural potential values for large r.
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Fig. 5. Here we plot both training (left) and test (right) results for the Coulomb
problem (14). For both plots, we have subtracted a constant bias, the maximum value
of the neural potential on the data set in question. These results are for a neural
potential ̂V that is a function of the difference q1−q2 between the two charged particles’
positions; for each q in the training and test sets, we plot ̂V (q1 − q2) versus r =
‖q1 − q2‖. We also plot the true potential (14) versus r. Both training and test plots
show reasonable agreement between the neural potential and the ground truth.

We now apply SINDy to ̂V (on the training set) using candidate functions
{1, r−1, r−2, r−3}. Adjusting λ as described above, we find with λ = 0.04, the
approximation

̂V (r) ≈ β0 + β1r
−1 (15)

with β0 ≈ 0.7602 and β1 ≈ −0.06911. For comparison, the ground truth
coefficient of r−1 is −(4π)−1 ≈ −0.07958.

2. We then rearchitect the network to include a layer that takes the input q and
computes the norm of the difference ‖q1−q2‖; the rest of the neural potential
is then a scalar function of this scalar input. Here the neural network has 8
hidden layers, each with 8 units and tanh activations. We train for 50000 steps
with learning rate of 0.05. Note that here, for training, we use N = 5001 time
steps of only 100 trajectories.
In Fig. 6, we plot both training (left) and test (right) results. The training
results are plotted with the first 5001 points of the 100 trajectories used for
training, while the test results are plotted with a completely different set
of 100 trajectories, each of length 5001 For both plots, we subtracted the
minimum computed value of ̂V (on each respective data set). In each plot, we
compute ̂V on all points q in the training and test sets, and then plot these
̂V values versus r = ‖q1 − q2‖.
To generate an interpretable version of ̂V (on the training set), we apply
SINDy with candidate functions {1, r−1, r−2, r−3}. Adjusting λ as described
above, we find with λ = 0.05, the approximation

̂V (r) ≈ β0 + β1r
−1 (16)
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Fig. 6. Here we plot both training (left) and test (right) results for the Coulomb
problem (14). For both plots, we have subtracted a constant bias, the maximum value
of the neural potential on the data set in question. These results are for a neural
potential ̂V that is a function of the distance r = ‖q1 − q2‖ between the two charged

particles; for each q in the training and test sets, we plot ̂V (r) versus r = ‖q1−q2‖. We
also plot the true potential (14) versus r. Both training and test plots show excellent
agreement between the neural potential and the ground truth.

with β0 ≈ 2.267 and β1 ≈ −0.07792. This computed value of β1 is less than
2.1% away from the ground truth value of −(4π)−1; the error for the earlier
approximation (15) was just over 13.1%.
Incorporating prior knowledge that the potential should depend only on r
dramatically improves the quality of the learned potential. Essentially, we
have eliminated the need for the neural network to learn the norm function.
We outperform the results from Fig. 5 using a less complex network, trained
for fewer steps and a larger learning rate. Comparing with Fig. 5, we see that
Fig. 6 features reduced variation in ̂V (r) for large r, and improved test set
results as well.

4 Conclusion

We conclude that, for the examples we have explored, our approach does lead
to accurate potentials that can themselves be approximated closely by inter-
pretable, closed-form algebraic expressions. In ongoing/future work, we plan
to apply the techniques described here to high-dimensional systems for which
reduced-order (i.e., effective) potentials are unknown. We also seek to extend our
method to quantum Hamiltonian systems. While we have focused here on clean
data from known models, we are also interested in learning potentials from noisy
time series. We expect that by adapting the method of [11], we will be able to
simultaneously filter the data and estimate an interpretable neural potential.
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Abstract. In this paper we propose and study the novel problem of
explaining node embeddings by finding embedded human interpretable
subspaces in already trained unsupervised node representation embed-
dings. We use an external knowledge base that is organized as a taxon-
omy of human-understandable concepts over entities as a guide to iden-
tify subspaces in node embeddings learned from an entity graph derived
from Wikipedia. We propose a method that given a concept finds a lin-
ear transformation to a subspace where the structure of the concept is
retained. Our initial experiments show that we obtain low error in finding
fine-grained concepts.

Keywords: Interpretability · Node embeddings · Conceptual spaces

1 Introduction

Representations of nodes in a graph or node embeddings have proven useful in
many applications such as question answering [1], dialog systems [14], recom-
mender [21] systems and knowledge-base completion [15]. The core idea behind
node representation learning (NRL) [4,10,22] approaches is to distill the high-
dimensional discrete representation of nodes into a dense vector embedding using
dimensionality reduction methods, which optionally not only incorporate the
graph structure, but also features attached to nodes. These representations can
be seen as features extracted from only the topology or from both the topology
and the available node attributes. The dense representations thereby learnt form
a latent feature space where the basis or dimensions are non-interpretable.

Consequently, in spite of their success, there is a lack of an understanding of
what the latent dimensions encode in terms of existing human knowledge. This
is problematic for downstream tasks requiring interpretability, since using such
embeddings results in the input already being non-interpretable. For aiding inter-
pretability and utility of these embeddings in downstream application scenarios
we initiate an inquiry into presence of interpretable or human understandable
subspaces in the learnt feature representation space of these graph embeddings.
We ask the fundamental question: What do node embeddings encode in terms of
c© Springer Nature Switzerland AG 2020
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human world knowledge? Recent works in interpretability for learning on struc-
tured data either focus on generating interpretable embeddings or explaining
the predictions made by a classifier to which embeddings form the input [26].
But none of these methods provide insights into the embedding itself, a problem
which we propose and study in this work.

We take an alternate view on interpretability of node embeddings in that
we want to find sub-spaces in the embedding space corresponding to human-
understandable concepts. Our main contribution is in finding interpretable sub-
spaces in the latent feature representation space and thus characterizing the
behavior of node representations when projected into these interpretable spaces.
This has two distinct advantages – first we do not compromise on the effective-
ness of these embeddings as we post-hoc analyze the presence of interpretable
spaces in the already learned representation space. Secondly, we ground the
interpretable space to existing world knowledge in the form of knowledge bases.

To this extent, in this work, we use external knowledge bases (KB) to learn
conceptual spaces for corresponding characteristics that can be attributed to a
given node. In particular, we assume that we have an input graph of labelled or
named nodes. As a use case we focus on a hyperlink graph of named entities. We
observe that KBs like YAGO [7] encode human understandable concepts orga-
nized in a taxonomy which can be used as the source of world knowledge assum-
ing that the nodes/entities in the input graph are also present in the taxonomy.
In principle one can use any input graph and KB as long as the input graph node
names are grounded in the KB. Having extracted the possible concepts from the
taxonomy, we then propose methods to explain a node embedding in terms of
the applicability of various concepts. For example, a node named Albert Einstein
could be explained by concepts like Theoretical physicists, Scientists etc.

We propose two simple algorithms, SAS and CSD, to explain node embed-
dings in terms of concepts and provide promising first results for pre-trained
embeddings corresponding to two unsupervised random walk based node embed-
ding methods, namely, DeepWalk [22] and LINE [24]. We show that our second
approach CSD that projects a node embedding to a common learnt concept
space distinguishes the applicable and non applicable concepts better than our
first approach which operates in the original embedding space.

2 Related Work

Supervised learning approaches are either interpretable by design [3,13,25]
or explanations can be generated in a post-hoc manner after the model is
trained [12,19,23]. Post-hoc methods for interpretability either operate intro-
spectively (full access to the model parameters) [12,19] or are model agnos-
tic [23]. We operate in the model introspective interpretable regime where we
assume full access to the model parameters. For other notions of interpretability
and a more comprehensive description of the approaches we point the readers
to [5].

Methods focussing on building interpretable representations include MEm-
bER [8] which learns entity embeddings using max-margin constraints to encode
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the desideratum that (salient) properties of entities should have a simple geomet-
ric representation in the entity embedding. Jameel and Schockaert [9] propose
a method which learns a vector-space embedding of entities from Wikipedia
and constrains this embedding such that entities of the same semantic type are
located in some lower-dimensional subspace. Minervini et al. [18] leverage equiv-
alence and inversion axioms during the learning of knowledge graph embeddings,
by imposing a set of model dependent soft constraints on the predicate embed-
dings. Post-hoc methods include GNN-Explainer [26] which provides interpre-
tations for GNN predictions on link prediction, node classification and graph
classification tasks. The interpretations are tied to specific tasks. We, on the
other hand, propose to understand the node representations directly in terms of
user provided conceptual categories.

Unlike the above works we focus on explaining the node vector representation
itself which might have been obtained using an arbitrary embedding method.

3 Preliminaries

In this section we give a brief overview of YAGO and node embedding methods
used in this work.

3.1 Knowledge Graphs

As a source of concepts or human understandable world knowledge we use the
YAGO [7] knowledge base (KB), which was automatically constructed from
Wikipedia. Typically, each article in Wikipedia becomes an entity in the knowl-
edge base (e.g., since Albert Einstein has an article in Wikipedia, Albert Einstein
is an entity in YAGO). Each entity is organized into a taxonomy of classes. In
addition, every entity is an instance of one or multiple classes and every class
(except the root class) is a subclass of one or multiple classes. therefore yielding
a hierarchy of classes – the YAGO taxonomy.

Each class name is of the form <wordnet XXX YYY> or <wikicat XXX YYY>,
where XXX is the name of the concept (e.g., singer), and YYY is the WordNet
3.0 synset id of the concept (e.g., 110599806). For example, the class of singers is
<wordnet singer 110599806>. Additionally, each class is connected to its more
general class by the rdfs:subclassOf relationship.

Not all Wikipedia categories correspond to classes in YAGO. The lowest
layer of the taxonomy is the layer of instances. Instances comprise individual
entities such as rivers, people, or movies. For example, the lowest layer contains
<Elvis Presley>. Each instance is connected to one or multiple classes of the
higher layers by the relationship rdf:type. For example, for entity Albert Einstein
we have:

<Albert Einstein> rdf:type <wikicat Nuclear physicist>.

One can therefore walk from the instance up to its class by rdf:type, and
then further up by rdfs:subclassOf. In Sect. 4 we will provide details about
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how the concepts derived from the taxonomy are used as explanations for node
embeddings.

3.2 Node Embeddings

Node representations or node embeddings can be understood as the set of fea-
tures extracted from the graph topology and (if given) node attributes. The
present set of techniques for node representation learning generally fall into one
of these categories: (1) random walk based [4,10,22,24], (2) matrix factorization
based [2,20] or (3) deep learning or Graph Neural Network (GNN) based [6,11].
In this section we describe briefly the two random walk based approaches which
we employ in this work. In future we will investigate our methods using a general
set of unsupervised and semi-supervised embedding approaches.

The basic idea behind random walk based embedding techniques is to trans-
form the graph into a collection of node sequences, in which, the occurrence fre-
quency of a node-context pair measures the structural distance between them.
DeepWalk [22] was the first method to exploit random walk techniques to build
sentence like structures from graphs to train a SkipGram model [17]. It employs
truncated random walks to create vertex sequences, which are later used in a
word2vec fashion to learn vertex embeddings given its context. For a graph G,
it samples uniformly a random vertex v as the root of the random walk Wv. A
walk samples uniformly from the neighbors of the last vertex visited until the
maximum length t is reached. For each vi ∈ Wv and for each uk ∈ W [j−c : j+c]
(c is the window size), (vj , uk) forms a vertex-context training pair (similar to
word -context pair in word embeddings). The objective is then to maximize the
probability of observing uk given the representation of vj . LINE [24] optimizes
first order proximity (i.e. embeds nodes sharing a link closer) and second order
proximities (embeds nodes closer if they have similar neighborhoods) using an
SGNS (Skip-gram with negative sampling) objective function [16]. Similar to
DeepWalk, it can be understood as sampling random walks of length 1 and uses
vertices sharing an edge as training pairs.

4 Research Questions and Our Approach

We propose a general approach for post-hoc interpretability of node represen-
tation learned by an unsupervised or semi-supervised method. We bring in a
completely new perspective of interpretability of extracted features of nodes by
using external knowledge to determine the concepts that a given representation
encodes. More precisely, we use Wikipedia entity graph, G = (V,E), as the
input graph, where the nodes are Wikipedia pages and the edges correspond
to the hyperlinks between them. We employ DeepWalk and LINE to generate
embeddings for all v ∈ V . We ignore the edge direction to learn the embed-
dings. We also recall that the present topic of this work is to define and validate
interpretability on node embeddings and the choice of embeddings methods is
therefore arbitrary. Let Φv represent the embedding vector corresponding to v.
We ponder over the following question:
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RQ 1 What concepts do these embeddings encode?

As the embeddings are usually generated only considering the structure of
the graph or/and node attributes, an embedding vector Φv encodes the con-
cepts which it shares with its neighborhood (neighborhood here depends on the
employed embedding method). Consider, for example, an entity Barack Obama,
which could be understood as sharing characteristics with other Presidents and
Nobel Prize winners. Presidents and Nobel Prize winners here are the human
understandable world knowledge or concepts. Rather than characterizing nodes
in terms of their neighbors, we in this work use these implicit human under-
standable concepts to characterize an embedding vector. In particular, for a
given embedding vector Φv and a concept c, we assign a score S(Φv, c) ∈ R
which quantifies the characteristic c of the embedding Φv. Roughly speaking,
the score measures the amount of the characteristic that an embedding vector
possesses.

The challenge here is that often only the graph structure or sometimes the
node attributes are also available but there are no explicit concepts provided.
We therefore ask the following question:

RQ 2 How can explicit concepts be constructed given an input graph with named
vertices?

In order to generate possible concepts related to an entity, we propose the
use of external knowledge base like YAGO (see also Sect. 3.1), which provides
a hierarchy of concepts related to any given node, say v in the graph. These
concepts form the characteristics of v. The user can then query the encoding of
possible concepts in the trained node embedding. For example, a user may ask
how much the embedding vector corresponding to Barack Obama encodes Amer-
ican Presidents and Scientists. One might assume that the Obama’s embedding
vector should not have anything to do with the concept Scientists, which might
not be true as the underlying graph might put Obama in close proximity with
other Nobel Prize winners who are also Scientists. Having defined or collected
concepts from external knowledge bases, the next natural question is:

RQ 3 For a given embedding vector, Φv and a concept c, how can we score the
applicability of c to Φv ?

To quantify the applicability of concept corresponding to an embedding or to
explain an embedding in terms of the applicable and not applicable concepts, we
propose two algorithms: Simple Aggregation Strategy (SAS) and Concept Space
Discovery (CSD).

4.1 Simple Aggregation Strategy

The first approach uses a simple aggregation strategy to build concept represen-
tations from the representations of the nodes (from the training set) to which
the concept is applicable (test nodes are held out). In particular, we first com-
pute a vector representing the given concept by taking the element-wise mean of
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all the embedding vectors corresponding to nodes to which the concept applies,
excluding the query nodes. This vector defines the concept center. To score a
query node, we compute the L2 distance between its embedding vector and the
concept center.

Fig. 1. Extracting concept spaces

4.2 Concept Space Discovery (CSD)

The second algorithm is more involved and explicit, in the sense that for each
concept c it learns a linear transformation, which is used to project the node
vectors into a more restricted space for c, that we call concept space. The original
embedding vectors are projected into this new space to extract their effective
representations which best encode the given concept (refer Fig. 1). We learn the
parameters for this transformation on triplets of entities, using triplet loss. Let
a be the entity node (also called anchor node) which is a direct descendant of
concept c, p be some sibling of a in the taxonomy and n be the negative example,
i.e., an entity which is not a sibling of a in the taxonomy. For any node v, let
Φv represent the corresponding embedding vector. The triplet loss L(a, p, n) is
then defined as follows.

L(a, p, n) = max{d(Φa,Φp) − d(Φa,Φn) + m, 0} (1)

where d(Φx,Φy) = ||x− y||2 and m is a margin specific to the negative entity in
a triplet. We set this margin to be the distance from the target concept to the
lowest common ancestor concept shared by the positive and the negative entity,
i.e. negative entities that are conceptually close to the positive entity have lower
margins and ones that are conceptually far away have higher margins. We refer to
negative entities with low margins as soft negatives and to negative entities with
high margins as hard negatives. An illustrative example for computing margin
is provided in Fig. 2.
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Fig. 2. Margin for triplet loss is determined by the similarity in the taxonomy graph.
The margin between Albert Einstein and Donald Knuth is 2, where as the margin
between Albert Einstein and Alfred Nobel is 1.

Score Computation. The scoring of how much a concept applies to a query
entity is analogous to the first approach, but of course operates in the concept
space. That is, for a given concept c and the positive entities (the training set)
corresponding to the concept, we first compute their projections into common
concept space and then compute the mean of the resulting projected vectors
to represent the concept. Again for a given query node, we first compute its
projection into the concept space and the final score is then given by the L2
distance between the concept vector and the query projection. Lower the score,
better is the concept encoded by the query node. Note that both loss function
and scoring make use of the same distance metric, the L2 distance.

5 Experiments

5.1 Data Acquisition

We conduct our experiments on the Wikipedia entity graph, where the nodes are
Wikipedia pages and the edges correspond to the hyperlinks between them. In
addition, we use the type hierarchy of YAGO as the KB and consider all leaves
under a concept node as belonging to the concept, as described in Sect. 3.1.

5.2 Methodology

Given a query entity q and a start concept cstart we learn concept spaces for
cstart and its sibling concepts in the taxonomy. Note that we limit the number of
concepts due to computation (Some concepts have a large number of siblings).
For each selected concept, we a learn a concept representation as described in
Sect. 4. Below we give more details about the training employed in our second
approach CSD.

For CSD where we use triplet loss function to learn the concept space we
choose positive and negative examples as follows. For each concept c, the set of
positive entities (examples) consists of all entities contained in c. Next, we rank
all ancestor concepts of c by the margin, which is the distance of the concept to
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c. Following Fig. 2, if c is Theoretical Physicists, then entities which belong to the
concept Physicists are negative entities with a margin of 1, entities belonging to
the concept Scientists are negative entities with a margin of 2, and so on. Note
that an entity is always assigned the lowest possible margin. In this example, all
physicists get assigned a margin of 1 and only all scientists that are not physicists
get assigned a margin of 2. We also exclude the query entity q from the sampling
process. We split the sets of positive and negative entities into a training and a
validation set, taking 20% of the entities for the validation set.

In order to generate a triplet, we select a positive entity uniformly from the
set of positive samples. An anchor entity is selected in the same way, with respect
to the anchor not being the same entity as the chosen positive one. Next, we
select a margin m uniformly from the available margins in the set of negative
entities. Then, we select a negative entity uniformly from the negative samples
corresponding to margin m. To train one concept space, we sample a total of
ten thousand triplets. We then train the linear transformation using Stochastic
Gradient Descent with Momentum for 100 epochs, with a mini batch size of 16
and a leaning rate of 0.001. We stop the training early if the validation loss does
not improve over 5 epochs. After training, we score the query entity as described
in Sect. 4 corresponding to our two approaches.

Fig. 3. Mean validation losses for training concept space projections for concepts of
different hierarchy levels. Level 1 includes concepts high up in the hierarchy, namely
person, organization and country. The second level includes scientist, educational insti-
tution and countries in Europe. Level 3 then covers the more fine-grained concepts
theoretical physicist, university or college in Germany and states of Germany.

6 Results

In Fig. 3 we show the errors corresponding to each concept level for different
node embedding approaches (DeepWalk and LINE). Concepts at a higher level,
as expected, exhibit higher error but the error reduces to a small value for more
specific concepts. It is interesting to observe that it is easier to find interpretable
concept spaces in DeepWalk as opposed to LINE. In this regard DeepWalk can
be in some sense regarded as more interpretable than LINE.
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(a) SAS DeepWalk (b) SAS LINE

(c) CSD DeepWalk (d) CSD LINE

Fig. 4. Concept ranking for Albert Einstein (Color figure online)

(a) SAS DeepWalk (b) SAS LINE

(c) CSD DeepWalk (d) CSD LINE

Fig. 5. Concept ranking for Donald Trump (Color figure online)

Figures 4 and 5 show the scores of different concepts for the query entities
Albert Einstein and Donald Trump, respectively. We recall that lower the score
S(Φv, c), more is the applicability of c towards the embedding vector Φv or the
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entity v. Concepts under which the query entity is listed in YAGO are shown in
green, concepts under which it is not listed in red.

We note that for the query entity Albert Einstein, scoring concepts in both
of the original embedding spaces (Fig. 4a, b) yields a correct ranking of the
concepts. Yet, there is not much difference between the scores of concepts which
apply to the query entity and the scores of non-applicable concepts. This is more
prominent the case for the embeddings generated by LINE, where differences in
the scores are barely noticeable.

We observe a similar behaviour with our second query entity Donald Trump.
An interesting observation here is that the best ranked concept in Fig. 5b, Leaders
of organizations which is not listed as applicable concept in the taxonomy, in fact
applies to the query entity Donald Trump. This is another finding, in the sense
that the embeddings encode knowledge not present in YAGO. Using concept
spaces to score the query entity increases the differences between scores. This
seems to work well for both query entities when using the embeddings generated
by DeepWalk. The concept spaces deliver scores where it is much clearer whether
a concept applies to the query entity or not, as there is a large gap between
applicable ones and non-applicable ones.

7 Conclusions and Future Work

In this work we proposed a method to find interpretable concept spaces for graph
embeddings. We hypothesize that latent feature spaces that embed named ver-
tices are not interpretable themselves but contain subspaces that do contain
human understandable concepts. We propose an algorithm that tries to find
subspaces in the feature representation space by exploiting similarity of enti-
ties in the KB using triplet loss. We anecdotally show the effectiveness of our
approach on a small subset of concepts chosen from the KB.

As future work there are plenty of avenues to investigate in detail. First, we
would want to improve our evaluation procedure to quantitatively establish the
effectiveness of our concept space discovery approach. This would require us to
not only experiment with a large set of concepts but increase our coverage to
multiple unsupervised and semi-supervised node representation learning meth-
ods. Secondly, we would want to find out that if there are non-linear sub spaces
that encode coarse-granularity concepts like scientists, politicians etc. Currently,
we see room for improvement in finding subspaces for coarser granularity topics
due to choice of linear subspaces.
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Abstract. As machine learning becomes an important part of many
real world applications affecting human lives, new requirements, besides
high predictive accuracy, become important. One important requirement
is transparency, which has been associated with model interpretability.
Many machine learning algorithms induce models difficult to interpret,
named black box. Black box models are difficult to validate. Moreover,
people have difficulty to trust models that cannot be explained. Explain-
able artificial intelligence is an active research area. In particular for
machine learning, many groups are investigating new methods able to
explain black box models. These methods usually look inside the black
models to explain their inner work. By doing so, they allow the interpre-
tation of the decision making process used by black box models. Among
the recently proposed model interpretation methods, there is a group,
named local estimators, which are designed to explain how the label of
particular instance is predicted. For such, they induce interpretable mod-
els on the neighborhood of the instance to be explained. Local estimators
have been successfully used to explain specific predictions. Although they
provide some degree of model interpretability, it is still not clear what
is the best way to implement and apply them. Open questions include:
how to best define the neighborhood of an instance? How to control
the trade-off between the accuracy of the interpretation method and its
interpretability? How to make the obtained solution robust to small vari-
ations on the instance to be explained? To answer these questions, we
propose and investigate two strategies: (i) using data instance properties
to provide improved explanations, and (ii) making sure that the neigh-
borhood of an instance is properly defined by taking the geometry of the
domain of the feature space into account. We evaluate these strategies in
a regression task and present experimental results that show that they
can improve local explanations.
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1 Introduction

Machine learning (ML) algorithms have shown high predictive capacity for model
inference in several application domains. This is mainly due to recent tech-
nological advances, increasing number and size of public dataset repositories,
and development of powerful frameworks for ML experiments [1–6]. Applica-
tion domains where ML algorithms have been successfully used include image
recognition [7], natural language processing [8] and speech recognition [9]. In
many of these applications, the safe use of machine learning models and the
users’ right to know how decisions affect their life [10] make the interpretability
of the models a very important issue. Many currently used machine learning
algorithms induce models difficult to interpret and understand how they make
decisions, named black boxes. This occurs because several algorithms produce
highly complex models in order to better describe the patterns in a dataset.

Most ML algorithms with high predictive performance induce black box mod-
els, leading to inexplicable decision making processes. Black box models reduce
the confidence of practitioners in the model predictions, which can be a obsta-
cle in many real world applications, such as medical diagnostics [11], science,
autonomous driving [12], and others sensitive domains. In these applications, it
is therefore important that predictive models are easy to interpret.

To overcome these problems, many methods that are able to improve model
interpretation have been recently proposed; see e.g. [13,14] for details. These
methods aim at providing further information regarding the predictions obtained
from predictive models. In these methods, interpretability can occur at different
levels: (i) on the dataset; (ii) after the model is induced; and (iii) before the model
is induced [15]. We will focus our discussion on methods for model interpretability
that can be applied after the induction of a predictive model by a ML algorithm;
these are known as agnostic methods.

Model-agnostic interpretation methods are a very promising approach to
solve the problem of trust and to uncover the full potential of ML algorithms.
These methods can be applied to explain predictions made by models induced
by any ML algorithm. Some well known model-agnostic interpretation methods
are described in [16–20]. Perhaps the most well known interpretation method
is LIME [18], which allows local explanations for classification and regression
models. LIME has been shown to present a very good capability to create local
explanations. As a result, LIME has been used to interpret models induced
by ML algorithms in different application domains. However, it it still not clear
how to make some decisions when implementing and applying LIME and related
methods. Some questions that arise are:

(i) How to best define the neighborhood of an instance?
(ii) How to control the trade-off between the accuracy of the interpretation

model and its interpretability?
(iii) How to make the obtained solution robust to small variations on the

instance to be explained?
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A good local explanation for a given instance x∗ needs to have high fidelity
to the model induced by a ML algorithm in the neighborhood of x∗. Although
this neighborhood is typically defined in terms of Euclidean distances, ideally it
should be supported by the dataset. Thus, the sub-domain used to fit the local
explanation model (i.e., a model used to explain the black box model) should
reflect the domain where the black model model was induced from. For instance,
high-dimensional datasets often lie on a submanifold of Rd, in which case defining
neighborhoods in terms of the Euclidean distance is not appropriate [21–24].
To deal with this deficiency, we address issue (i) by creating a technique that
samples training points for the explanation model along the submanifold where
the dataset lies (as opposed to Euclidean neighborhoods). We experimentally
show that this technique provides a solution to (iii).

In order to address (ii), we observe that a good local explanation is not nec-
essarily a direct map of the feature space. For some cases, the appropriate local
description of the explanation lies on specific properties of the instance. These
instance properties can be obtained through a transformation of the feature
space. Thus, we address issue (ii) by creating local explanations on a transformed
space of the feature space. This spectrum of questions should be elaborated by
the specialists of the specific application domain.

In this work, we focus on performing these modifications for regression tasks.
However, these modifications can be easily adapted for classification tasks. In
Sect. 2.1, we discuss the use of instance properties, how to deal with the trade-
off between explanation complexity and the importance of employing a robust
method as an explanatory model. In Sect. 2.2, we describe how to improve the
local explanation method using the estimation of the domain of feature space.
In Sect. 3, we apply our methodology to a toy example. Finally, Sect. 4 presents
the main conclusions from our work and describes possible future directions.

2 Model Interpretation Methods

2.1 Local Explanation Through Instance Properties

A crucial aspect for providing explanations to predictive models induced by ML
algorithms is the relevant information to the specific knowledge domain. In some
cases, a direct representation of the original set of features of an instance does
not reflect the best local behavior of a prediction process. Hence, other instance
properties can be used to create clear decision explanations. These properties
can be generated through a map of the original features space, i.e., a function of
the input x. Moreover, these instance properties can increase the local fidelity
of the explanation with the predictive model. This can be easily verified when
the original feature space is highly limited and providing poor information on
the neighborhood of a specific point. This case is illustrated by Fig. 1(a).

In order to provide a richer environment to obtain a good explanation, the
interpretable model should be flexible to possible questions that an user want to
instigate the ML model. Given that the possible explanations are mapped using
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Fig. 1. (a) An example where a linear regression of the original features would provide
little information regarding the model prediction. The blue continuous line represents
the predictive model output as a function of the input, and the red circles represent
two critical points of the curve. A local linear regression of the original feature space
will produce a limited explanation in the neighborhood of the two critical points. (b)
Representation of a domain of a two-dimensional feature problem where the plane
defined by the two features is not fully covered. A local sampling can be used to
create explanations on the neighborhood of the instance (red circle) that belongs to
the correct task domain (blue region) (i.e., the intersection of the orange circle with
the blue region) rather than on the orange circle (Color figure online).

specific functions of the feature space, we can create an interpretable model using

g(x) = α0 +
N∑

i=1

αifi(x) (1)

where x represents the original vector of features, αi are the coefficients of the
linear regression that will be used as an explanation, and fi(.) are known func-
tions that map x to the properties (that is, questions) that have a meaningful
value for explaining a prediction, or that are necessary to obtain an accurate
explanation.

Once fi’s are created, the explainable method should choose which of these
functions better represent the predictions made by the original model locally.
This can be achieved by introducing an L1 regularization in the square error loss
function. More precisely, let h be a black-box model induced by a ML algorithm
and consider the task of explaining the prediction made by h at a new instance
x. Let x′

1, . . . ,x
′
M be a sample generated on a neighborhood of x. The local

explanation can be found by minimizing (in α)

L =
M∑

k=1

(h(x′
k) − g(x′

k))
2 +

N∑

i=1

λi|αi| , (2)

where the first term is the standard square error between the induced model
and the explanatory model and the second term is the penalization over the
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explanatory terms. The value of λi can be set to control the trade-off among
the explanatory terms. For instance, if some explanatory terms (fi) are more
difficult to interpret, then a larger value can be assigned to λi.

In order to set the objective function (Eq. 2), one must be able to sample in a
neighborhood of x. To keep consistency over random sampling variations on the
neighborhood of x, we decided to use a linear robust method that implements
the L1 regularization (see [25]). This robust linear regression solves some of the
problems of instability of local explanations [26].

Additionally, a relevant question is how to define a meaningful neighborhood
around x. In the next section we discuss how this question can be answered in
an effective way.

Fig. 2. A graphical bi-dimensional representation of the spiral toy model described
by Eq. 3. (a) Original data where the colors represent the target value (y). (b) The
domain of feature space (manifold), the blue points represent the original data, the
pink polygon is the estimate of the manifold using α-shape (α = 1.0), the black crosses
represent the instances to be explained (xexp) (details in Sect. 3.1 - x1 = (0.0, 14.5),
x2 = (10.0, 10.0) and x3 = (−16.0, 0.0)), gray points represent a sample from a normal
distribution around the xexp, and the red points correspond to the sample that belong
to the estimated domain (Color figure online).

2.2 Defining Meaningful Neighborhoods

Feature Space. The training data used by a ML algorithm defines the domain
of the feature space. In order to obtain a more reliable explanation model, we can
use the estimated domain of the feature space for sampling the data needed to
obtain this model via Eq. 2, x′

1, . . . ,x
′
M . This approach improves the fidelity and

accuracy of the model when compared to standard Euclidean neighborhoods used
by other methods [18]. The estimation of the feature domain is closely related to
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the manifold estimation problem [27]. Here, we show how this strategy works by
using the α-shape technique [28,29] to estimate the domain of the feature space.

α-shape. The α-shape is a formal mathematical definition of the polytope con-
cept of a set of points on the Euclidean space. Given a set of points S ⊂ R

d and a
real value α ∈ [0,∞), it is possible to uniquely define this polytope that enclose
S. The α value defines an open hypersphere H of radius α. For α → 0, H is a
point, while for α → ∞, H is an open half-space. Thus, an α-shape is defined
by all k-simplex, {k ∈ Z|0 ≤ k ≤ d}, defined by a set of points s ∈ S where
there exist an open hypersphere H that is empty, H ∩ S = ∅, and ∂H ∩ s = s.
In this way, the α value controls the polytope details. For α → 0, the α-shape
recovered is the set of points S itself, and for α → ∞, the convex hull of the set
S is recovered [28,29]. We define the neighborhood of an instance x to be the
intersection of an Euclidean ball around x and the space defined by polytope
obtained from the α-shape. In practice, we obtain the instances used in Eq. 2
by sampling new points around x that belong to the space defined by polytope
obtained from the α-shape.

Fig. 3. Comparison of prediction performed by the explanation model and the true
value of the spiral length using a data set not used during the induction of the model
by a ML algorithm. The explanation model was generated for point x1 = (0.0, 14.5).
Figures (a) and (c) show the true label y versus the explanation model prediction.
The black line represents the perfect matching between the two values. Figures (b) and
(d) show the importance of the features obtained by the explanation model. Normal
sampling strategy ((a) and (b)): MSE = 1.18; R2 = 0.72. Selected sampling ((c) and
(d)): MSE = 0.19; R2 = 0.95.
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Fig. 4. Comparison of prediction performed by the explanation model and the true
value of the spiral length using a data set not used during training of the ML model.
The explanation model was generated for point x2 = (10.0, 10.0). Figures (a) and (c)
show the true label y versus the explanation model prediction. The black line represents
the perfect matching between the two values. Figures (b) and (d) show the importance
of the features obtained by the explanation model. Normal sampling strategy ((a) and
(b)): MSE = 0.70; R2 = 0.81. Selected sampling ((c) and (d)): MSE = 0.16; R2 = 0.96.

3 Results for a Toy Model: Length of a Spiral

In this section, we present an application of our proposed methodology for a
toy model in which the data is generated along a spiral. For such, we use the
Cartesian coordinates of the spiral on the plane as features.

3.1 Definition

We explore the toy model described by

x1 = θ cos(θ) + ε1 x2 = θ sin(θ) + ε2 (3)

y =
1
2

[
θ
√

1 + θ2 + sinh−1 θ
]

where x1 and x2 are the values that form the feature vector x = (x1, x2), θ is
a independent variable, εi, i ∈ {1, 2}, is a random noise, and the target value
is given by y, the length of the spiral. This toy model presents some interesting
features for our analysis, such as the feature domain over the spiral and the sub-
stantial variance of the target value when varying one of the features coordinate
while keeping the other one fixed.

Instances for Investigation. We investigate the explanation for 3 specific
instances of our toy model: x1 = (0.0, 14.5), x2 = (10.0, 10.0) and x3 =
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(−16.0, 0.0). For the first point, x1, we have that the target value (the length of
the spiral) will locally depend on the value of x1 , and thus explanation methods
should indicate that the most important feature is x1. For the second value, x2,
the features x1 and x2 have the same contribution for explaining such target.
Finally, for the third point, x3, the second feature should be the most important
feature to explain the target.

Data Generation: Using the model described in Eq. 3, we generated 80 thou-
sand data points. These data was generated according to θ ∼ Unif[0, 8π], a uni-
form distribution. The values of random noise were selected from ε1 ∼ N (0, 0.4)
and ε2 ∼ N (0, 0.4), where N (μ, σ) is a normal distribution with mean μ and
standard deviation σ. The feature space and the target value are shown in Fig. 2
(a). The generated data was split into two sets in which 90% used for training
and 10% for testing. Additionally, we test the explanation methods by sampling
three sets of data in the neighborhoods of x1, x2, and x3.

Model Induction Using a ML Algorithm: We used a decision tree induction
algorithm (DT) in the experiments. We used the Classification and Regression
Trees (CART) algorithm implementation provided by the scikit-learn [5] library.
The model induced by this algorithm using the previously described dataset had
as predictive performance MSE = 24.00 and R2 = 0.997.

Determining the α-shape of the Data: For this example, we applied the α-
shape technique using α = 1.0. The value of α can be optimized for the specific
dataset at hand; see [29] for details. The estimation of the domain using the
α-shape is illustrated by Fig. 2(b).

3.2 Local Explanation

The local explanation was generated though a linear regression fitted to a data
generated over the neighborhood of the point for which the explanation was
requested (xexp). We use the linear robust method available on the scikit-learn
package [5].

Explanation for Instance x1 = (0.0,14.5): The obtained explanation using
the standard sampling approach (hereafter normal sampling) presents low agree-
ment with true value of the spiral length (Fig. 3(a)). We also noticed that this
explanation is unstable with respect to sampling variations (even though we use
a robust method to create the interpretation), and indicates that the best feature
to explain the ML algorithm locally is x2 (Fig. 3(b)). This description is inac-
curate (see discussion in Section Instances for Investigation). On the other
hand, when the sampling strategy is performed over the correct domain of the
feature space (hereafter selected sampling), we obtain an explanation method
with high predictive accuracy (i.e., that accurately reproduces the true target
value - Fig. 3(c)). Moreover, the feature that best explains such prediction is x1

(Fig. 3(d)), which is in agreement with our expectation.
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Fig. 5. Comparison of prediction obtained by the explanation model and the true value
of the spiral length using a data set not used during training of the ML model. The
explanation model was generated for point x3 = (−16.0, 0.0). Figures (a) and (c) show
the true label y versus the explanation model prediction. The black line represents the
perfect matching between the two values. Figures (b) and (d) show the importance of
the features obtained by the explanation model. Normal sampling strategy ((a) and
(b)): MSE = 0.45; R2 = 0.91. Selected sampling ((c) and (d)): MSE = 0.17; R2 = 0.97.

Explanation for Instances x2 = (10.0,10.0) and x3 = (−16.0,0.0): We also
analyzed the other two points to demonstrate the capability of the selected sam-
pling to capture the correct feature importance. For the instance x2, the features
importance is almost equally divided between the two features (Fig. 4). For the
instance x3, the most important feature is x2, with importance of −1.0 (Fig. 5).
In the case of x3, the normal sampling strategy produced a good explanation
(Fig. 5(b)). However, we noticed that this result is unstable due to random vari-
ation in the sampling. All results presented here are in agreement with our
discussion in Section Instances for Investigation.

3.3 Robustness of Explanations

Good explanation models for x∗ should be stable to small perturbations around
x∗. To illustrate the stability of our method, we generated explanations for
instances in the neighborhood of x1: x1a = (−2.0, 14.5), x1b = (1.0, 14.0) and
x1c = (0.5, 13.7). Table 1 shows that the explanations created for these points
using selected sampling are compatible with those for x1. On the other hand,
the normal sampling strategy is unstable. These results demonstrate that using
the domain defined by the feature space can improve the robustness of a local
explanation of an instance.
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Table 1. Local explanations generated for instances around instance x1: for normal
and selected sampling strategies. MSE and R2 measured between true values and pre-
dictions performed by the local explanation model.

Point x1 x2 x1 Importance x2 Importance MSE R2

Normal sampling

x1 0.0 14.5 −0.92 2.46 1.18 0.72

x1a −2.0 14.5 −1.07 1.87 6.19 0.64

x1b 1.0 14.0 −0.89 3.91 8.99 0.46

x1c 0.5 13.7 −0.95 1.47 1.09 0.93

Selected sampling

x1 0.0 14.5 −0.96 0.33 0.19 0.95

x1a −2.0 14.5 −0.98 0.31 0.30 0.98

x1b 1.0 14.0 −0.97 0.07 0.21 0.99

x1c 0.5 13.7 −0.96 0.39 0.39 0.99

4 Conclusion

In order to increase trust and confidence on black box models induced by ML
algorithms, explanation methods must be reliable, reproducible and flexible with
respect to the nature of the questions asked. Local agnostic-model explanations
methods have many advantages that are aligned with these points. Besides,
they can be applied to any ML algorithm. However, the standard of the existing
agnostic methods present problems in producing reproducible explanation, while
maintaining accuracy to the original model. To overcome these limitations, we
developed new strategies to overcome them. For such, the proposed strategies
address the following issues: (i) estimation of the domain of the feature space
in order to provide meaningful neighborhoods; (ii) use of different penalization
level on explanatory terms; and (iii) employment of robust techniques for fitting
the explanatory method.

The estimation of the domain of the features space should be performed
and used during the sampling step of local interpretation methods. This strat-
egy increases the accuracy of the local explanation. Additionally, using robust
regression methods to create the explainable models is beneficial to obtain stable
solutions. However, our experiments show that robust methods are not enough;
the data must be sampled taking the domain of the feature space into account,
otherwise the generated explanations can be meaningless.

Future work includes testing other methods for estimating manifolds such
as diffusion maps [30] and isomaps [31], extending these ideas to classification
problems, and investigating the performance of our approach on real datasets.
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Abstract. One often finds in the literature connections between mea-
sures of fairness and measures of feature importance employed to inter-
pret trained classifiers. However, there seems to be no study that com-
pares fairness measures and feature importance measures. In this paper
we propose ways to evaluate and compare such measures. We focus in
particular on SHAP, a game-theoretic measure of feature importance; we
present results for a number of unfairness-prone datasets.

Keywords: Group and individual fairness · Interpretability · Feature
importance · Shapley value

1 Introduction

Machine learning algorithms have been used in a range of applications, from
decisions about bank loans to criminal sentencing. Due to concerns about algo-
rithmic fairness [4,12], several metrics have been created to detect bias injustice
across groups [8,10] or individuals [7,9] or both [25]. It has been suggested that
measures of feature importance can identify failure of fairness [1,26,27] as fea-
ture importance can indicate that a feature has a larger effect that it should
have [19,21,24,30].

There seems to be no study that verifies whether feature importance measures
are indeed useful in assessing fairness. Moreover, no study about the (supposed)
connection between the two kinds of measures seems to be available. This paper
proposes a simple scheme to evaluate the relationship between feature impor-
tance and fairness measures, by comparing measures on a dataset with and
without bias removal technique.

The contributions of this paper are: (i) a framework to evaluate the merits
of feature importance in assessing fairness, based on comparing the variation
of results with and without application of reweighing; and (ii) a study across
four standard datasets, where the results obtained through feature importance
are compared with fairness measures. We focused on reweighing techniques to
remove bias [14] and SHAP to measure feature importance [20].
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In the next section we review various metrics concerning fairness and inter-
pretability; we introduce a few twists to emphasize their connection. Later we
describe our proposals and experiments.

2 Background

In this section we summarize definitions of fairness, techniques for bias removal,
and tools to measure feature importance that are related to interpretability.

2.1 Defining Fairness

Definitions of fairness can be divided into two major categories: group fairness
and individual fairness. These definitions quantify the relationship between an
“unprivileged” and a “privileged” group.

In this paper we assume that there is a unique sensitive feature A that
differentiates the privileged group from the unprivileged one. And we assume
that that value zero for this feature signals the unprivileged group, while value
one indicates the privileged group. The target output has values {0, 1}, where 1
is the desirable class, such as good credit score, and 0 is the undesirable class.

Group fairness is obtained when the privileged and the unprivileged groups
are treated the same. One possible way to quantify group fairness is to use
disparate impact [8]:

disp impact = P (Ŷ = 1|A = 0)/P (Ŷ = 1|A = 1), (1)

where Ŷ is the predicted outcome and A is the sensitive feature. Equation (1)
must be close to one to indicate fairness; other values indicate unequal treatment
through feature A.

Another measure of group fairness is based on predicted and actual outcomes
as captured by equality of opportunity [10]:

equal opport = P (Ŷ = 1|A = 0, Y = 1) − P (Ŷ = 1|A = 1, Y = 1), (2)

where Y is the actual outcome. Expression (2) should be close to zero; other
values indicate unequal treatment.

Approaches that aim at equalizing relationships between groups may increase
unfairness amongst individuals. Consider for instance a job application setting:
to equalize relationship between groups one may select less qualified candidates
from the unprivileged group. Individual-level fairness then makes sense.

Individual fairness requires similar individuals to receive similar classifi-
cation outcomes. For instance, consistency compares a model prediction of an
instance x to its k-nearest neighbors, kNN(x) [29]:

consistency = 1 − 1
N

N∑

n=1

∣∣∣∣∣∣
ŷn − 1

k

∑

jεkNN(x′
n)

ŷj

∣∣∣∣∣∣
. (3)
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Note that we here introduced a small change to the original formulation of con-
sistency: instead of calculating kNN for the input x, we use x′, where the latter
refers to the input x with the removal of the sensitive feature. Expression (3)
must be close to one to indicate fairness.

In this paper we employ the three definitions presented above in our experi-
ments: disparate impact (1), equality of opportunity (2) and consistency (3).

2.2 Removing Bias

Techniques that attempt to remove bias from a model can be divided into three
categories: ones that preprocess data before a classifier is trained [8,13,29]; ones
that operate inprocessing, where the model is optimized at training time [15];
and ones that explores postprocessing of the model prediction [10]. In this paper
we adopt a preprocessing methodology called reweighing [14] that aims at
improving group fairness, as it is a well-known technique that requires no hyper-
parameters (thus allowing us to avoid lengthy digressions into parameter tuning).
In addition, reweighting does not change the features as other methods do [8,29].

Reweighing assigns weights to the points in the training dataset to reduce
bias. Every random unlabeled data object X is assigned a weight:

W (X) =
Pexp(A = X(A) ∧ Y = X(Y ))
Pobs(A = X(A) ∧ Y = X(Y ))

, (4)

where Pobs is the observed probability, Pexp is the expected probability and A is
the sensitive feature. Lower weights are assigned to instances that the privileged
class favors. This approach is restricted to a single binary sensitive attribute and
a binary classification problem.

2.3 Feature Importance

We can divide techniques that explain the behavior of machine learning algo-
rithms in two main groups: global approaches that aim at understanding the
behavior of the model as a whole [18] and local approaches that interpret indi-
vidual predictions [19–21]. In this paper we choose a local approach called SHAP,
which has the advantage of ensuring three important properties: local accuracy,
missingness and consistency. We use a local approach because if the methodology
were used in practice, it is important that it be able to provide justification for
a certain generated result, which would allow to assess whether the prediction
was fair.

SHAP (SHapley Additive exPlanations) [20] produces a local explanation for
each prediction of a given classifier. Using insights from game theory, SHAP can
explain prediction of any machine learning model and unifies concepts of several
previous methods [2,5,17,21–23,30].

SHAP approximates locally the function to be explained, which we call f ,
by a linear function g such that

f(x) = g(x′) = φ0 +
M∑

i=0

φix
′
i,
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where x′ is again the modified input and each weight φi is called a SHAP value,
given by

φi =
∑

S⊆N\{i}

|S|!(M − |S| − 1)!
M !

[fx(S ∪ {i}) − fx(S)], (5)

where S is the set of non-zero entries in x′ and N is the set of all input features.
SHAP values satisfy a few properties. Local accuracy requires the result of

the explanation model g for an input x to be equal to the prediction of the model
desired to explain f . Missingness requires features missing in the input to be
given no importance. Finally, recall that consistency states that if a change in the
model occurs so that a feature has larger impact on the result, the importance
of that feature should not decrease.

In this paper we mostly focus on a unique sensitive feature A in the model, but
with the graphical results provided by the SHAP framework one can understand
influences that go far beyond that. For instance, one can investigate how the
input of each feature impacts the output, analyze relations between variables,
and verify which variables exert a greater influence on the model result.

We selected two types of graphs that influences detected by SHAP: depen-
dence plots and summary plots [19].

Dependence plots represent the effect of a single feature in the model output.
To represent this relation the plot shows in the x-axis the value of the feature and
the y-axis shows the SHAP value of the same feature. SHAP dependence plots
also let one visualize the effect of the feature with the strongest interaction (cal-
culated by SHAP interaction values). These effects are shown by coloring from
low (blue) to high (red) each dot in the graph with the value of an interacting
feature. Examples of these graphs are shown later in Fig. 4.

Summary plot sorts features by global impact on the model, calculated as

Gj =
1
N

N∑

i=1

| φi
j | . (6)

Each dot in the graph represents the SHAP value of that feature. Examples are
shown later in Fig. 5.

3 Proposal

In this section we propose techniques that will allow us to compare fairness
measures and results obtained through SHAP. It should be noted that simply
computing SHAP values will not help us doing it: SHAP values are computed by
datapoint, whereas fairness measures capture the whole behavior of a classifier.
Hence the need for novel ideas as proposed here.

To evaluate fairness we resort, first, to global impact of each feature (Expres-
sion (6)) as we focus on the ranking of the feature in a list of features ordered
by descending global values. Besides looking at global impact, we also employ
the following measure:



Measuring Unfairness Through Game-Theoretic Interpretability 257

Dj =
1

Nk

Nk∑

k=1

φk
j − 1

Nl

Nl∑

l=1

φl
j , (7)

where k represents unprivileged group and l privileged group, and each φ is a
SHAP value. A value of Dj close to one indicates fairness, while a negative value
favors the privileged group and a positive value favors the unprivileged one.

Fig. 1. Fairness through feature importance: the model in red was trained with a
fairness-sensitive dataset; the model in blue had bias removed. (Color figure online)

Figure 1 summarizes the steps in assessing fairness through feature impor-
tance. An initial step in the workflow is the encoding of categorical variables in
the dataset, followed by data split into 80% − 20% train-test sets and a stan-
dardization of features.

Then there are two possible paths: the red box indicates training directly
with the model, and the blue box indicates an additional step of de-biasing
before model training (through reweighting). Finally, results obtained from fea-
ture importance and fairness measures are compared.

More precisely, we compare the results by evaluating how fairness and feature
importance measures vary as bias varies. When bias is present, we expect discrim-
ination to appear in fairness measures (disparate impact and consistency smaller
than one, and equality of opportunity smaller than zero), while we expect fea-
ture importance measures to display a negative SHAP value difference between
privileged and unprivileged groups.

Note that reweighting focuses on group fairness; consequently, we can expect
three scenarios concerning group fairness, as we now analyze:

– Equality between groups: This scenario is characterized by disparate
impact close to one and equality of opportunity to zero. We hypothesize that
privileged and unprivileged groups get similar importance, which should be
reflected in their mean SHAP values getting closer and in some reduction in
feature importance with a global SHAP value close to zero.

– Favoring the privileged group: This scenario is characterized by increase
of disparate impact and equality of opportunity. However, disparate impact
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would remain smaller than one and equality of opportunity negative. We
hypothesize a decrease in SHAP value difference, but the value would remain
negative. We also hypothesize a decrease in importance of the sensitive fea-
ture.

– Favoring the unprivileged group: This scenario is characterized by inver-
sion of importance between groups, which would be perceived with disparate
impact result greater than one or equality of opportunity positive. We hypoth-
esize the SHAP values difference between groups to be positive. While we
expect an increase in the feature importance if the discrimination between
groups increases, which would be perceived for example with increase in mod-
ule of equality of opportunity, and we hypothesize a decrease in feature impor-
tance if the discrimination decreases.

Clearly the hypotheses just described must be validated through empirical
analyses. This is the goal of the remainder of this paper. Before we proceed,
a comment on individual fairness: as reweighting does not focus on individual
fairness, it is hard in principle to say how reweighting affects consistency (later
we show that the relationship between these techniques is significant and actually
somewhat surprising).

4 Experiments

To test our proposed scheme and the hypotheses outlined at the end of the
previous section, we applied Logistic Regression, Random Forests and Gradient
Boosting to four unfairness-prone datasets (using the scikit-learn library1). The
study was limited to one binary sensitive attribute and a binary classification
problem, due to limitations in reweighing and in some fairness measures. How-
ever, the methodology used to obtain feature importance could be applied to
any classifier, and the sensitive variable could be of any type.

All tests were done using the same hyperparameters. The AIF-3602 library
was used to apply reweighing and to calculate disparate impact and equality of
opportunity metrics. We use the kNN implementation of sckit-learn to compute
the consistency metric.

All datasets and techniques are available in a github repository3.

4.1 Datasets

Four datasets often analyzed with respect to fairness were used: Adult, Ger-
man, Default and COMPAS datasets. Adult, German and Default datasets were
obtained from the UCI repository [6] and the COMPAS dataset from ProP-
ublica [12]. The Adult dataset [16] contains information from the 1994 census
database. The objective is to predict whether income is larger 50K dollars per

1 http://scikit-learn.org.
2 https://aif360.mybluemix.net.
3 https://github.com/cesarojuliana/feature importance fairness.

http://scikit-learn.org
https://aif360.mybluemix.net
https://github.com/cesarojuliana/feature_importance_fairness
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year. We consider gender as the sensitive attribute, following Ref. [15]. The Ger-
man dataset contains information about bank account holders, and the goal is
to classify each holder as good or bad credit risk. We use age as the sensitive
attribute as in Ref. [13]. The Default dataset [28] contains information from
credit card clients in Taiwan from April 2005 to September 2005. The objec-
tive is to predict default of their customers. We use the gender as the sensitive
attribute as in [3]. The COMPAS dataset [12] contains data from criminal defen-
dants in Broward County, Florida, which objective is to predict recidivism over
a two-year period. We use the same filter as in Ref. [11]. The sensitive attribute
is race, being selected Caucasian as the privileged group.

We remove the variable fnlwgt from Adult dataset, because this variable
does not aggregate information to the problem goal. In the Default dataset
we excluded id variable for the same reason. For the COMPAS dataset we
use only the following variables: race, age, c charge degree, v score text, sex,
priors count, days b screening arrest, v decile score, two year recid, is recid.

4.2 Results and Discussion

In Fig. 2, in the x-axis lr means Logistic Regression, rf means Random Forest
and gbm means Gradient Boosting. The y-axis carries the names of fairness
and feature importance measures. The red line shows results without reweighing
and the blue line shows results with reweighing. The results were separated in
four columns according to the used dataset. In Fig. 3 we can see the relation
between variation in fairness measures with feature importance measures in the
y-axis and the x-axis respectively. The unfilled markers represents results without
reweighing, and the filled markers results with reweighing. The markers in red
show results for Adult dataset, in green for COMPAS dataset, in blue for German
dataset, and in black for Default dataset. Legends indicate both the dataset and
abbreviation of the used model.

In this section we will classify the results according to the three scenarios
described previously: equality between groups, favoring the privileged group and
favoring the unprivileged group. This classification is made based on the fairness
results, and we hypothesized about what would be the feature importance result.
We will compare whether the assumptions made actually occurred.

From the results we see that when reweighing is applied, disparate impact,
equality of opportunity and difference in SHAP value between groups had a
variation greater than or equal to zero. Furthermore, in several cases equality
of opportunity and difference in SHAP value changed from negative to positive
value; there was no case where disparate impact changes to a value greater than
one with reweighing. With exception of the COMPAS results, in all other cases
there was an decrease in feature importance with reweighing.

In the COMPAS results we perceived the following peculiarity with reweigh-
ing: increased in consistency and in feature importance. In COMPAS we also
note the scenario of favoring the privileged group with Random Forest and with
Gradient Boosting. However, this case had the unexpected result of increasing
in feature importance probably due to variation in consistency.
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Fig. 2. Evaluation of fairness on test set for four datasets: Adult, COMPAS, German
and Default, for three types of models: Logistic Regression, Random Forest and Gra-
dient Boosting. Fairness is evaluated according to several definitions so as to capture
both group and individual fairness.

Fig. 3. Comparison between fairness and feature importance measures, performed with
four datasets (Adult, COMPAS, German and Default) and with three types of models
(Logistic Regression, Random Forest and Gradient Boosting). The unfilled markers
represents results without reweighing, and the filled markers results with reweighing.
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The scenario of equality between groups can be seen in the Default datatset
and German dataset with Gradient Boosting. In all cases we see that equality of
opportunity was very close to zero, but disparate impact was not close to one. In
this situation, feature importance measures behaved as expected, SHAP values
difference and feature importance approached zero.

We find the scenario of favoring the privileged group in Adult dataset with
Logistic Regression and Random Forest, COMPAS with Logistic Regression and
German with Random Forest. Only with Adult dataset there is no variation in
consistency, and in this situation we see the expected scenario where equality of
opportunity ranged from a negative to a positive value.

Results demonstrate two important facts. First, there is a direct relation
between SHAP value difference and equality of opportunity, which is much more
significant than the relationship with disparate impact. This is most evident from
Fig. 3. Second, the relation of feature importance is inverse with consistency. In
the results where there was a decrease in consistency, we note that the impact
of consistency dominates feature importance (rather than the effect of increase
in equality of opportunity).

Thus we reach our main conclusion in this empirical study: feature impor-
tance measures are connected both with consistency and equality of opportunity.
Consequently we see that feature importance measures do quantify both group
and individual fairness.

Fig. 4. SHAP dependence plot of a Logistic Regression trained with Adult dataset.
The sensitive feature is race, where value one refers to white and value zero to non
white. In y-axis is the SHAP value attributed to race. In (a) the model was trained
with the original data, and we can see that it associated higher SHAP values with the
white group, indicating discrimination in the dataset. In (b) reweighing was applied to
reduce unfairness caused by race; we note that the relationship was reversed and non
white became the group favored by the model according to SHAP values.

In the remainder of this section we present some additional remarks on the
graphs that are provided by graphs build with SHAP values and on the insights
that one may get from them. Basically, these graphs allow us to note implicit
relationships between variables. Furthermore, they display the overall effect of
any variable in the model by varying its input.
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Fig. 5. SHAP summary plots of Logistic Regression trained with Adult dataset not
applying (a) and applying (b) reweighing so as to reduce unfairness caused by race. We
can see that without reweighing the rank position of race was 17th. When reweighing is
applied the position decreases, and race is no longer among the twenty most important
features.

For example, Figs. 4 and 5 show results obtained with Logistic Regression
in the Adult dataset, with and without reweighing. Figure 4 shows dependence
plots, and Fig. 5 shows summary plots.

In the Adult dataset, race is the sensitive feature, and it was assigned value
zero for the unprivileged group and value one for the privileged group. Figure 4
depicts a partial dependency plot of Logistic Regression that displays unfairness
between privileged and unprivileged group when reweighing is not applied, but
the relation is inverted when reweighing is applied (greatly favoring the unpriv-
ileged group).

In Fig. 5 we can see that, besides the decrease in rank position of the sensitive
feature race, other variables changed in importance, such as the increase in Age
when reweighing is applied from the 6th to 4th position.

In Short: It is difficult to get real insights on relationships amongst variables
by examining SHAP values and related graphs. A possible future research topic
would be to extract such insights automatically.

5 Conclusion

We presented a framework that compares fairness definitions (group or individ-
ual) with results based on feature importance as quantified by SHAP. The basic
idea is to examine how fairness definitions vary by changing the effect of the
sensitive feature on the model (this was done here with reweighing). Experi-
ments show that feature importance measures can identify group and individual
fairness in the model. Certainly this is a preliminary effort that must be refined
and extended in a variety of ways, but we feel that it is a valuable contribution
due to the absence of similar analyses in the literature.
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In particular, further work is needed to remove some important restrictions.
We have focused on binary sensitive features and two-class classification prob-
lems. Such restrictions must be lifted. In future work we intend to study other
interpretability techniques that are based on feature importance. This would
allow us to determine whether some methodologies work better for some defini-
tions of fairness than others. Furthermore, we want to extend the tests to other
techniques that remove bias besides reweighting. Another promising extension of
this work would be to evaluate the visualization techniques that must be used to
present results. SHAP graphs speed up the perception of relationships between
variables, but additional insights would be welcome.

References

1. Adebayo, J., Kagal, L.: Iterative orthogonal feature projection for diagnosing bias
in black-box models (2016)

2. Bach, S., et al.: On pixel-wise explanations for non-linear classifier decisions by
layer-wise relevance propagation. PloS one 10(7) (2015)

3. Berk, R., et al.: A convex framework for fair regression (2017)
4. Dastin, J.: Amazon scraps secret AI recruiting tool that showed bias against women

(2018). https://reut.rs/2Od9fPr
5. Datta, A., Sen, S., Zick, Y.: Algorithmic transparency via quantitative input influ-

ence: theory and experiments with learning systems (2016)
6. Dua, D., Taniskidou, E.K.: UCI machine learning repository (2018). https://

archive.ics.uci.edu/ml
7. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.S.: Fairness through

awareness (2011)
8. Feldman, M., Friedler, S.A., Moeller, J., Scheidegger, C., Venkatasubramanian,

S.: Certifying and removing disparate impact. In: ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 259–268. ACM, New
York (2015)

9. Gupta, S., Kamble, V.: Temporal aspects of individual fairness (2018)
10. Hardt, M., Price, E., Srebro, N.: Equality of opportunity in supervised learning.

In: International Conference on Neural Information Processing Systems, pp. 3323–
3331 (2016)

11. Angwin, J., Larson, J., Mattu, S., Kirchner, L.: How we analyzed the compas recidi-
vism algorithm (2016). https://www.propublica.org/article/how-we-analyzed-the-
compas-recidivism-algorithm

12. Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine bias (2016). https://www.
propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

13. Kamiran, F., Calders, T.: Classifying without discriminating (2009)
14. Kamiran, F., Calders, T.: Data preprocessing techniques for classification without

discrimination. Knowl. Inf. Syst. 33, 1–33 (2012). https://doi.org/10.1007/s10115-
011-0463-8

15. Kamishima, T., Akaho, S., Asoh, H., Sakuma, J.: Fairness-aware classifier with
prejudice remover regularizer. In: Learning and Knowledge Discovery in Databases,
pp. 35–50 (2012)

16. Kohavi, R.: Scaling up the accuracy of Naive Bayes classifiers: a decision-tree
hybrid. In: International Conference on Knowledge Discovery and Data Mining,
pp. 202–207 (1996)

https://reut.rs/2Od9fPr
https://archive.ics.uci.edu/ml
https://archive.ics.uci.edu/ml
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://doi.org/10.1007/s10115-011-0463-8
https://doi.org/10.1007/s10115-011-0463-8


264 J. Cesaro and F. Gagliardi Cozman

17. Lipovetsky, S., Conklin, M.: Analysis of regression in game theory approach. Appl.
Stochast. Mod. Bus. Ind. 17(4), 319–330 (2001)

18. Louppe, G., Wehenkel, L., Sutera, A., Geurts, P.: Understanding variable impor-
tances in forests of randomized trees. In: Advances in Neural Information Process-
ing Systems, vol. 26, pp. 431–439 (2013)

19. Lundberg, S.M., Erion, G.G., Lee, S.I.: Consistent individualized feature attribu-
tion for tree ensembles (2018)

20. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
In: Advances in Neural Information Processing Systems, vol. 30, pp. 4765–4774
(2017)

21. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should i trust you?”: explaining the
predictions of any classifier (2016)

22. Saabas, A.: Interpreting random forests (2014). http://blog.datadive.net/
interpreting-random-forests

23. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through
propagating activation differences (2017)

24. Sliwinski, J., Strobel, M., Zick, Y.: A characterization of monotone influence mea-
sures for data classification (2017)

25. Speicher, T., et al.: A unified approach to quantifying algorithmic unfairness: mea-
suring individual & group unfairness via inequality indices (2018)

26. Tan, S., Caruana, R., Hooker, G., Lou, Y.: Distill-and-compare: auditing black-box
models using transparent model distillation, pp. 303–310 (2018)

27. Wadsworth, C., Vera, F., Piech, C.: Achieving fairness through adversarial learning:
an application to recidivism prediction (2018)

28. Yeh, I., Lien, C.H.: The comparisons of data mining techniques for the predictive
accuracy of probability of default of credit card clients (2009)

29. Zemel, R., Wu, Y., Swersky, K., Pitassi, T., Dwork, C.: Learning fair representa-
tions. In: International Conference on Machine Learning, pp. 325–333 (2013)
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Abstract. Technological breakthroughs on smart homes, self-driving
cars, health care and robotic assistants, in addition to reinforced law
regulations, have critically influenced academic research on explainable
machine learning. A sufficient number of researchers have implemented
ways to explain indifferently any black box model for classification tasks.
A drawback of building agnostic explanators is that the neighbourhood
generation process is universal and consequently does not guarantee
true adjacency between the generated neighbours and the instance. This
paper explores a methodology on providing explanations for a neural
network’s decisions, in a local scope, through a process that actively
takes into consideration the neural network’s architecture on creating an
instance’s neighbourhood, that assures the adjacency among the gener-
ated neighbours and the instance. The outcome of performing experi-
ments using this methodology reveals that there is a significant ability
in capturing delicate feature importance changes.

Keywords: Explainable · Interpretable · Machine learning · Neural
networks · Autoencoders

1 Introduction

Explainable artificial intelligence is a fast-rising area of computer science. Most
of the research in this area is currently focused on developing methodologies
and libraries for interpreting machine learning models for two main reasons:
(a) increased use of black box machine learning models, such as deep neural
networks, in safety-critical applications, such as self-driving cars, health care
and robotic assistants, and (b) radical law changes empowering ethics and human
rights, which introduced the right of users to an explanation of machine learning
models’ decisions that concern them.

Local Explanators are methods aiming to explain individual predictions of
a particular model. LIME [18] is a state-of-the-art methodology that first con-
structs a local neighbourhood around a given new unlabeled instance, by per-
turbing the instance’s features, and then trains a simpler transparent decision
model to extract the features’ importance. Subsequent model agnostic methods
like Anchors [19], X-SPELLS [12] and LORE [8] focused on generating better
neighbourhoods.
c© Springer Nature Switzerland AG 2020
P. Cellier and K. Driessens (Eds.): ECML PKDD 2019 Workshops, CCIS 1167, pp. 265–276, 2020.
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This paper is concerned with generating better neighbourhoods too. How-
ever, it focuses on neural network models in particular, in contrast to the model
agnostic local explanators mentioned in the previous paragraph that can work
with any type of machine learning model. Our approach is inspired by the fol-
lowing observation: small changes at the input layer might lead to large changes
at the penultimate layer of a (deep) neural network, based on which the final
decision of the network is taken. We hypothesize that creating neighbourhoods
at the penultimate layer of the neural network instead, could lead to better
explanations.

To investigate this intuitive research hypothesis, we introduce our approach,
dubbed LioNets (Local Interpretation Of Neural nETworkS through penultimate
layer decoding). LioNets constructs a local neighbourhood at the penultimate
layer of the neural network and records the network’s decisions for this neigh-
bourhood. However, in order to build a transparent local explanator, we need to
have input representations at the original input space. To achieve this, LioNets
trains a decoder that learns to reconstruct the input examples from their repre-
sentations at the penultimate layer of the neural network. Taking together, the
neural network model and the decoder resemble an autoencoder.

For the evaluation of LioNets, a set of experiments have been conducted,
whose code is available at GitHub repository “LioNets”1. The results show that
LioNets can lead to more precise explanations than LIME.

2 Background and Related Work

In order to be able to present LioNets architecture, this section will provide a
sequence of definitions concerning the matter of explainable machine learning,
autoencoders and knowledge distillation.

2.1 Explainable Machine Learning

Explainable artificial intelligence is a broad and fast-rising field in computer
science. Recent works focus on ways to interpret machine learning models. Thus,
this paper will focus on explainable machine learning. An accurate definition is
the following:

“An interpretable system is a system where a user cannot only see but also
study and understand how inputs are mathematically mapped to outputs.
This term is favoured over “explainable” in the ML context where it refers
to the capability of understanding the work logic in ML algorithms” [1].

There are several dimensions that can define an interpretable system accord-
ing to [9]. One interesting dimension is the scope of interpretability. There are
two different scopes. An interpretable system can provide global or/and local

1 https://github.com/iamollas/LioNets.

https://github.com/iamollas/LioNets
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explanations for its predictions. Global explanations can present the structure
of the whole system, while local explanations are focused on particular instances.

In the same paper, they are also presenting the desired features of any inter-
pretable system. Those are:

– Interpretability: Interpretability measures how much comprehensible is an
explanation. In fact, there is not a formal metric because for every problem
we measure different attributes.

– Accuracy: The accuracy, and probably other metrics, of the original model
and the accuracy of the explanator.

– Fidelity: Fidelity describes the mimic ability of the explanator, namely the
ability of the explanator on providing the same results as the model it explains
for specific instances.

2.2 Autoencoders

Autoencoders is a growing area within deep learning [13]. An autoencoder is an
unsupervised learning architecture and can be expressed as a function

f : X → X. (1)

Autoencoder networks are widely used for reducing the dimensionality of the
input data. They initially encode the original data into some latent representa-
tion and subsequently reconstruct the original data by decoding this represen-
tation to the original dimensions. The most common varieties of autoencoders
are the three following:

– Vanilla: A three-layered neural network with one hidden layer.
– Multilayer: A deeper neural network with more than one hidden or recurrent

layers. For example Variational Autoencoders [11,17].
– Convolutional: Used for image or textual data. In practice, the hidden layers

are not fully connected, but convolutional layers.

2.3 Related Work

As already mentioned, LIME [18] is a state-of-the-art method for explaining
predictions. It follows a simple pipeline. It generates a neighbourhood of a specific
size for an instance by choosing randomly to put a zero value in one or more
features of every neighbour. Then the cosine similarity of each neighbour with the
original instance is measured and multiplied by one hundred. This constitutes
the weight on which the simple linear model will depend on for its training.
Thus, the most similar neighbours will have more impact on the training process
of the linear model. A disadvantage of LIME is in sparse data. Due to the
perturbation method that takes place on the original space, LIME can only
generate 2n different neighbours, where n the number of non-zero values. For
example, in textual data, in a sentence of six words represented as a vector
of four thousand features, where each feature corresponds to a word from the
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vocabulary, the non-zero features are only six. Hence, only 26 = 64 different
neighbours can be generated. However, LIME will create a neighbourhood of five
thousand instances by randomly sampling through the 64 unique neighbours.

X-SPELLS [12] is a forthcoming solution providing model agnostic local
explanations to black boxes dealing with sentiment analysis problems. The
core idea of this work is to generate neighbourhoods for instances, which they
will contain semantically correct synthetic neighbours, using techniques similar
to paraphrasing. By creating such neighbourhoods, using variational autoen-
coders [11,17] to create new examples in the latent space, the goal is to present
some of these neighbours to the user as the explanation. To accomplish this,
they train a decision tree on the neighbourhood with labels assigned from the
black box and subsequently they are extracting the exemplars.

Another set of methodologies in explaining decision systems, and specifically
neural networks, are using Knowledge Distillation [7,10]. Those methods are
trying to explain globally the whole structure and the predictions of a deep
neural network, by distilling its knowledge to a transparent system. This idea
originates by the Dark Knowledge Distillation [20], which is trying to enhance
the performance of a shallow network (the student) through the knowledge of a
deeper and more complex network (the teacher).

3 LioNets

This section presents the full methodology and architecture of LioNets. LioNets
consist of four fundamental sub-architectures, which are visible in Fig. 1 at points
1, 2, 6 and 11. The main part of such system is the neural network, which will
work as the predictor. A decoder based on the predictor is the second part.
Finally, a neighbourhood generation process and a transparent predictor are the
last two mechanisms. Hence, the following process should be executed.

3.1 Neural Network Predictor

For a given dataset, a neural network with a suitable fine-tuned architecture is
being trained on this dataset. The output layer is by design in the same length
as the number of classes of the classification problem. This process is similar
to other supervised methodologies of building and training a neural network for
classification tasks, which defines a function f : X → Y .

3.2 Encoder and Decoder

When the training process of the neural network is over, a duplicate it is created.
Then removing the last layer of this copy model and labelling every other layer as
untrainable, the foundations for the autoencoder havebeendefined.Actually, these
foundations would be the encoder, the first half of the autoencoder, thus only the
decoder part is missing. By building successfully the decoder part and training it,
the first two stages for Lionets’ completion are achieved. Although, this is the most
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Fig. 1. LioNets’ architecture. In this flow chart, the four fundamental mechanisms of
LioNets are visible. In point 1 there is the predictor, while in point 2 the decoder. In
point 3 there is the neighbourhood generation process and in point 4 the transparent
model.

difficult stage to complete since it is not easy to successfully train autoencoders,
especially when the first half of the autoencoder is untrainable. Another approach
is to build the autoencoder firstly and afterwards to extract the layers in order to
create the encoder, decoder and predictor networks.

Mathematically those neural networks can be expressed via these functions:

Encoder: X → Z, (2)

Decoder: Z → X, (3)

Autoencoder: X → X, (4)

Predictor: X → Y . (5)

By keeping the encoder part untrainable with stable weights, it guarantees
that the generated neighbourhood is transforming from the reduced dimensions
to the original dimensions with a decoder, which was trained with the original
architecture of the neural network. That process will produce a more representa-
tive neighbourhood for the instance, without any semantic meaning to humans.

The academic community has extensively explored ways to create better
neighbourhoods for an instance, but every methodology was focused on generat-
ing new instances in the level of the input. In this work, the generation processes
take place to the latent representation of the encoded input.
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3.3 Neighbourhood Generation Process

The neighbourhood generation process takes place after the training of the neural
network, the encoder and the decoder. This process could be a genetic algorithm,
like the proposed methods in LORE [8] or even another neural network, but
simpler solutions are preferred. In LioNets for an instance, that is desirable to
get explanations, after encoding it via the encoder neural network, extracting its
new representation form from the penultimate level of the neural network, the
neighbourhood generation process begins with input the instance with reduced
dimensions. By making small changes in the reduced space it could affect more
than one dimensions of the original space. Thus, the simple feature perturbation
methods on low dimensions will lead to a complex generated neighbour, which
most probably would have no semantic meaning for humans.

At that point in time, a specific number of neighbours is generated through
a selected generation process and that set of neighbours is given to the decoder,
in order to be reversed to the original dimensions.

3.4 Transparent Predictor

By the end of the neighbourhood generation stage, the neighbourhood dataset
is almost complete. The only missing part is the neighbours’ labels. Thus, the
neural network is predicting each instance of the neighbourhood dataset assign-
ing labels to every neighbour, in the form of probabilities. Afterwards, the final
dataset with the neighbours and their labels are given as training data to any
transparent regression model. The ultimate goal is to overfit that model to the
training data.

4 Evaluation

The following section is presenting the setup for the experiments. The data pre-
processing methods for two different datasets are described, alongside with the
neural network models preparation and the neighbourhood generation process.
Finally, there is a discussion about the results of the experiments.

4.1 Setup

Our experiments involve two textual binary classification datasets. The first
one concerns the detection of hateful YouTube comments2 [3] and contains 120
hate and 334 non-hate comments. The second dataset deals with the detection
of spam SMS messages [2] and contains 747 spam and 4.827 ham (non-spam)
messages. The pre-processing of these datasets consists of the following steps for
each document:

– Lowercasing,
– Stemming and Lemmatisation through WordNet lemmatizer [14] and Snow-

ball stemmer [15],
2 https://intelligence.csd.auth.gr/research/hate-speech-detection.

https://intelligence.csd.auth.gr/research/hate-speech-detection
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– Phrases transformations (Table 1),
– Removal of punctuation marks,
– Once again, Stemming and Lemmatisation.

Table 1. Phrases and words transformations.

“what’s” to “what is”

“don’t” to “do not”

“doesn’t” to “does not”

“that’s” to “that is”

“aren’t” to “are not”

“’s” to “is”

“isn’t” to “is not”

“%” to “percent”

“e-mail” to “email”

“i’m” to “i am”

“he’s” to “he is”

“she’s” to “she is”

“it’s” to “it is”

“’ve” to “have”

“’re” to “are”

“’d” to “would”

“’ll” to “will”

Then, for transforming the textual data to vectors a simple term frequency-
inverse document frequency [21] (TF-IDF) vectorization technique is taking
place.

Afterwards, the neural network predictor for these experiments consists of six
layers (Fig. 2a) and it has ‘binary crossentropy’ as loss function. The encoder has
five layers, which we extract from the predictor and the decoder has four layers
as well (Fig. 2b), which we train using ‘categorical crossentropy’ loss function.
The autoencoder is the combination of the encoder and the decoder.

In this set of experiments, a simple generation process via features per-
turbation methods is applied. Specifically, the creation of neighbours for an
instance emerges by multiplying one feature value at a time with 0 and 2z,
z ∈ {−2,−1, 1, 2}. Concisely, the above process generates instances which are
different in only one dimension in their latent representation.

As soon as the neighbourhood is acquired, every neighbour is transformed
via the decoder to the original dimensions. Then, the transformed neighbour-
hood is given as input to the predictor to predict the class probabilities. Finally,
combining the output of the predictor with the transformed neighbourhood a
new oracle dataset has been created.
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Fig. 2. The predictor’s architecture (a) and the decoder’s architecture (b).

input: neighbourhood

output: X, y

transformed_neighbourhood = decoder.predict(neighbourhood)

class_probabilities = predictor.predict(transformed_neighbourhood)

X = transformed_neighbourhood, y = class_probabilities

Algorithm 1.1. Oracle dataset synthesis

The last step is to train a transparent model with this oracle dataset. It
might be useful to check the distribution of probabilities of this dataset and if
needed to transform it to have a normal distribution. In these experiments, the
transparent model chosen is a Ridge Regression model. By training this model,
the coefficients of the features are extracted and transformed into explanations,
presented as features’ weights in the x-axis of the following figures.

input: X, y, instance, feature_names

transparent_model = Ridge().fit(X,y)

coef = transparent_model.coef_

plot_explanation(coef*instance, feature_names)

Algorithm 1.2. Explaining an instance

4.2 Results on the Hate Speech Dataset

We take the following YouTube comment from the hate speech dataset as an
example: “aliens really, Mexicans are people too”. The true class of this comment
is no hate. According to the neural network, the probability of the hate class is
approximately 0.00208.
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Fig. 3. Explanation plots of a hate speech instance via (a) LioNets and (b) LIME.

Figure 3 visualizes the explanation of the neural network’s decision via
LioNets (Fig. 3a) and LIME (Fig. 3b). At first sight, they appear similar. Their
main difference is that they assign the feature’s “are” contribution to different
classes. By removing this word from the instance the neural network predicts
0.00197, which is a lower probability. Thus, it is clear that the feature “are” it
was indeed contributing to the “Hate Speech” class for this specific instance as
LioNets explained.

Although to support LioNets explanations, the generated neighbourhoods’
distances from the original instance computed and presented in Table 2. As it
seems the neighbours generated by LIME on original space, in this example,
when are encoded to the reduced space are further to the neighbours generated by
LioNets in the encoded space. However, when the LioNets’ generated neighbours
are transformed back to the original space, are more distant to the original
instance in comparison to LIME’s neighbours, but that is the assumption that
has been made through the beginning of these experiments. It is critical to
mention at this point, that these distances measured with neighbours generated
by changing only one feature at a time.

Table 2. Neighbourhood distances for instance of hate speech dataset.

Euclidean distance

LIME: generated on original space 0.3961

LIME: encoded 0.9444

LioNets: generated on encoded space 0.2163

LioNets: decoded to original space 0.7635
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4.3 Results on SMS Spam Dataset

The second example which is going to be explained belongs to the SMS spam
dataset. The text of the preprocessed instance is the following: “Wife.how she
knew the time of murder exactly”. This instance has true class “ham”. The
classifier predicted truthfully 0.00014 probability to be “spam”.

Figure 4 presents two different explanations for the classifier’s prediction. As
before, Fig. 4a shows the explanation provided by LioNets and Fig. 4b shows
LIME’s explanation. The contribution of feature “wife” to the prediction is
assigned to different classes in each explanation. To prove the stability and
robustness of LioNets, this feature is removed and by auditing again the neural
network the new prediction is lower with a probability of 0.000095. Thus, it is
clear that feature “wife” was indeed contributing to the “spam” class as LioNets
explained and captured.

Fig. 4. Explanation plots of SMS spam instance using LioNets (a) and LIME (b).

Like before, the neighbourhoods’ distances from the original instance are
computed and presented in Table 3. As it seems the neighbours generated by
LIME on original space, by projecting them into the encoded space, are more dis-
tant to the encoded instance, compared to the neighbours generated by LioNets
directly in the encoded space.

Table 3. Neighbourhood distances for instance of SMS spam collection.

Euclidean distance

LIME: generated on original space 0.3184

LIME: encoded 0.8068

LioNets: generated on encoded space 0.3459

LioNets: decoded to original space 0.7875
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5 Conclusion

In summary, the LioNets architecture provides valid explanations for the deci-
sions of a neural network that are comparable to other state-of-the-art tech-
niques, while at the same time it guarantees better adjacency between the gen-
erated neighbours of an instance because the generation of the neighbours is
performed on the penultimate layer of the network. In addition, LioNets can
create better, larger and more representative neighbourhoods, because the gen-
eration process takes place at the encoded space, where the instance has a dense
representation. These are the main points of creating and using LioNets on deci-
sion systems like neural networks.

One main disadvantage of LioNets is that it is focused only on explaining
neural networks, thus it is not a model agnostic method. Moreover, the overall
process of building LioNets is harder than training neural network predictors,
because they demand the training of a decoder, which is a difficult task.

Future work plans include testing the LioNets methodology on different vari-
ations of encoders and decoders and implementing more complex neighbour-
hood generation and neighbours selection processes. In addition, we would like
to explore different transparent models for explaining the instances, such as
rule-based models [5], decision tree models [4,16] and models based on abstract
argumentation [6]. Lastly, we plan to evaluate LioNets based on human subject
experiments.
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Decentralized Machine Learning at the Edge

Many of today’s parallel machine learning algorithms were developed for tightly
coupled systems like computing clusters or clouds. However, the volumes of data
generated from machine-to-machine interaction, by mobile phones or autonomous
vehicles, surpass the amount of data that can be realistically centralized. Thus, tradi-
tional cloud computing approaches are rendered infeasible. To scale parallel machine
learning to such volumes of data, computation needs to be pushed towards the edge,
that is, towards the data generating devices. By learning models directly on the data
sources—which often have computational power of their own, for example, mobile
phones, smart sensors, and vehicles-network communication can be reduced by orders
of magnitude. Moreover, it enables raining a central model without centralizing
privacy-sensitive data. This workshop aims to foster discussion, discovery, and dis-
semination of novel ideas and approaches for decentralized machine learning.

The second international workshop on Decentralized Machine Learning at the Edge
(DMLE’19) was held in Würzburg, Germany in conjunction with ECML PKDD. The
workshop included a keynote by Dr. Ingo Thon (Siemens AG) followed by technical
presentations, a hardware demo, and a poster session. The workshop was attended by
around 40 people.

The accepted papers presented interesting novel aspects of decentralized machine
learning, especially in the context of edge computing, including hardware aspects of
physically decentralized systems. We want to thank the authors for their valuable
contributions, great presentations, and lively and fruitful discussions. We would also
like to thank the DMLE’19 program committee, whose members made the workshop
possible with their rigorous and timely review process. Finally, we would like to thank
ECML PKDD for hosting the workshop and the workshop chairs, Peggy Cellier and
Kurt Driessens for their valuable support.
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Distributed Generative Modelling
with Sub-linear Communication Overhead

Nico Piatkowski(B)

Fraunhofer IAIS, ME Group, Sankt Augustin, Germany
nico.piatkowski@iais.fraunhofer.de

Abstract. Pushing machine learning towards the edge, often implies the
restriction to ultra-low-power (ULP) devices with rather limited compute
capabilities. Generative models estimate the data generating probability
mass P

∗ which can in turn be used for various tasks, including simula-
tion, prediction/forecasting, and novelty detection. Whenever the actual
learning task is unknown at learning time or the task is allowed to change
over time, learning a generative model is the only viable option. How-
ever, learning such models on resource constrained systems raises several
challenges. Recent advances in exponential family learning allow us to
estimate sophisticated models on highly resource-constrained systems.
Nevertheless, the setting in which the training data is distributed among
several devices in a network with presumably high communication costs
has not yet been investigated. We close this gap by deriving and exploit-
ing a new property of integer models. More precisely, we present a model
averaging scheme whose communication complexity is sub-linear w.r.t.
the parameter dimension d, and provide an upper bound on the global
loss. Experimental results on benchmark data show, that the aggregated
model is often on par with the non-distributed global model.

Keywords: Distributed learning · Undirected models · Integer
models · Model averaging

1 Introduction

When data is collected at various physical locations, we are faced with several
opportunities regarding the subsequent data processing. Data might be parti-
tioned in several different ways. Two prototypical scenarios are depicted in Fig. 1.
In the horizontal scenario, the full data is distributed instance-wise over multiple
devices. This happens due to storage or privacy restrictions. For vertically dis-
tributed data, different devices measure different features of the same instance.
This does not imply that those features are independent. An example are large
industrial processes, where measurement hardware itself is distributed. Here,
we consider case (a), i.e., the same data generating process can be observed at
multiple locations. Approaches for case (b) can be found in [14].

c© Springer Nature Switzerland AG 2020
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The most obvious option to address horizontal data distribution is to send
the data to a central server. This comes of course with a huge communication
overhead and a loss of privacy. To address these issues, we may aggregate the
collected data to reduce the communication. Moreover, data points can be per-
turbed [4] to increase the privacy of the data source. However, we still have to
send a significant amount of data over the network. Instead of sending the raw,
aggregated, or perturbed data, an alternative is to learn the model directly at
the edge, i.e., where the data is actually generated. In this scenario, models are
updated whenever new data arrives at the device. If a convergence criterion is
met, e.g., based on distributed convex thresholding [16], the models of all devices
are collected and aggregated, to arrive at a global solution that can benefit from
the complete data. Such an aggregation can be carried out by Radon machines
[8]. However, we will resort to a simple averaging operation that is reminiscent
of Bayesian model averaging [5].

A huge set of machine learning techniques can potentially be applied in
this setting. Here, we restrict ourselves to generative probabilistic models for
discrete data, which can used for various tasks, including simulation, predic-
tion/forecasting, and novelty detection. Moreover, these models are statistically
sound, in the sense that they allow for consistent estimation of the data gener-
ating probability mass. This is especially interesting when the actual learning
task is unknown at learning time or the task is allowed to change over time.

Learning a model close to where the data is actually generated, often implies
the restriction to ultra-low-power (ULP) devices with rather limited compute
capabilities. Especially in the distributed or federated learning settings, edge
devices are subject to strong resource constraints. Communication efficiency [9]
and computational burden [2,13] must be reduced, in order to get along with
the available hardware. Here, we will resort to integer undirected models [11,13]
which provide a complete framework for learning and inference under heavy
resource constraints. Nevertheless, the setting in which the training data is dis-
tributed among several devices in a network with presumably high communi-
cation costs has not yet been investigated in the context of integer undirected
models. We close this gap by deriving and exploiting a new property of inte-
ger models. More precisely, we show that integer models have a high intrinsic
sparsity. Based on this observation, we present a model averaging scheme whose
communication complexity is sub-linear w.r.t. the parameter dimension d.

2 Notation and Background

Let us summarize the notation and background necessary for the subsequent
development. The Kullback-Leibler divergence between two probability mass
functions P and Q is defined by KL[Q‖P] =

∑
x∈X Q(x)(logQ(x) − logP(x)),

which is never negative and zero if and only if P = Q. The set N contains all
non-negative integers.
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a)

id X1 X2 X3 X4

I
1 x1

1 x1
2 x1

3 x1
4

2 x2
1 x2

2 x2
3 x2

4

II
3 x3

1 x3
2 x3

3 x3
4

4 x4
1 x4

2 x4
3 x4

4

b)

III IV

id X1 X2 X3 X4

1 x1
1 x1

2 x1
3 x1

4

2 x2
1 x2

2 x2
3 x2

4

3 x3
1 x3

2 x3
3 x3

4

4 x4
1 x4

2 x4
3 x4

4

Fig. 1. Two prototypical scenarios for data distribution of an exemplary data set with
n = 4 features (columns) and N = 4 data points (rows). Left: Horizontal distribution.
The data points are distributed among devices I and II. Right: Vertical distribution.
The features are distributed among devices III and IV.

2.1 Undirected Models

An undirected graph G = (V,E) consists of n = |V | vertices, connected via
edges (v, w) ∈ E. A clique C is a fully-connected subset of vertices, i.e., ∀v, w ∈
C : (v, w) ∈ E. The set of all maximal cliques of G is denoted by C. Here, any
undirected graph represents the conditional independence structure of some n-
dimensional random variable X [15]. To this end, we identify each vertex v ∈ V
with a random variable Xv taking values in the state space Xv. The random
vector X = (Xv : v ∈ V ), with probability mass function (pmf) P, represents
the random joint state of all vertices in some arbitrary but fixed order, taking
values x in the Cartesian product space X =

⊗
v∈V Xv. If not stated otherwise,

X is a discrete set. Moreover, we allow to access these quantities for any proper
subset of variables S ⊂ V , i.e., XS = (Xv : v ∈ S), xS , and XS , respectively.
According to the Hammersley-Clifford theorem [6], the probability mass of X
factorizes over positive functions ψC : X → R+, one for each maximal clique of
the underlying graph,

P(X = x) =
1
Z

∏

C∈C
ψC(xC) , (1)

normalized via Z =
∑

x∈X
∏

C∈C ψC(xC). Due to positivity of ψC , it can be
written as an exponential, i.e., ψC(xC) = exp(〈θC , φC(xC)〉) with sufficient
statistic φC : XC → R

|XC |. Here, we assume the use of overcomplete sufficient
statistic, i.e., for discrete data, φC(xC) is a |XC |-dimensional “one-hot” vector,
where the single 1 entry indicates the specific state xC of the clique C. Thus,
ψC(xC) = exp(〈θC , φC(xC)〉) = exp(θC=xC

). The full joint pmf can then be
written in the famous exponential family form P(X = x) = exp(〈θ, φ(x)〉 − A)
with θ = (θC : C ∈ C), φ(x) = (φC(xC) : C ∈ C), and log-partition function
A = log Z = log

∑
x exp(〈θ, φ(x)〉).

The parameters of exponential family members are estimated by minimizing
the negative average log-likelihood �(θ;D) = −(1/|D|)∑

x∈D logPθ (x) for some
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data set D via first-order numeric optimization methods. D contains samples
from X, and it can be shown that the estimated probability mass converges to
the data generating distribution P

∗ as the size of D increases.
In the context of horizontally distributed data (Fig. 1a), we assume the exis-

tence of k data sets D1,D2, . . . ,Dk, each generated by P
∗, and collected by one

of k distributed devices.

2.2 Integer Undirected Models

Pushing machine learning towards the edge, i.e., towards the data generating
devices, often translates to pushing machine learning to devices with heavily
restricted resources. To facilitate the application of undirected models on such
devices, we consider an integer version of ψC(xC) [13]:

ψ̄C(xC) = 2〈θ̄C ,φC(xC)〉 (2)

with θ̄ ∈ N
d. Let us shortly recap the different layers of approximation that

are involved in integer undirected model: (1) The mere base change from exp
to 2 is not an approximation at all—the exponential family of densities can be
formulated equivalently with any arbitrary base. (2) The restriction to parameter
vectors in N

d is indeed an approximation. However, it can be shown that the error
w.r.t. the model likelihood is bounded—the best integer model is not arbitrarily
far away from the best real-valued solution. (3) Probabilistic inference is per se
possible in the integer domain, e.g., via belief propagation [10] or Gibbs sampling.
To circumvent issues with numerical stability, we use an approximate message
passing scheme, called bit-length propagation [11]. In general, we assume that
the underlying conditional independence structure G is a tree. If not, we employ
the junction tree algorithm [15].

Using integer models has several convenient implications for ultra-low-power
systems. First of all, it can be shown that approximate maximum likelihood
estimation can be carried out without the need for floating point co-processing
units [11]. This reduces both, the required chip-size as well as the power con-
sumption of the underlying hardware: Evaluating (2) reduces to a mere bit-shift
instead of a rather costly (in terms of clock-cycles) evaluation of the transcen-
dental function exp. Indeed, having 〈θ̄C , φC(xC)〉 > ω results in an overflow
during bit-shifting on systems with word-size ω. However, it was shown in [11]
that overflows can be prevented by using specialized inference algorithms and
data structures. The actual parameter learning is carried out by an integer gra-
dient descent technique that is guaranteed to output a (locally) optimal integer
solution.

Second, empirical results show [11,13], that only a few (≈ 3) bits for each
model parameter suffice to achieve practical results in terms of prediction accu-
racy and approximate marginals probabilities. Technically, learning is carried
out over {0, 1, . . . , 2b − 1}d instead of the full N—a fact that is always true on
practical hardware—where b is a hyper-parameter. Hence, storing and commu-
nicating the learned model θ̄ requires less than 10% of bits compared to an
ordinary model with 64 bit encoding.
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Third, it can be shown that the parameter vector of exponential family mod-
els with overcomplete sufficient statistic is never dense, i.e., at least |C| model
parameters are guaranteed to be zero. We exploit and improve this fact in the
sequel and use it to devise a distributed learning scheme with sub-linear com-
munication overhead.

3 Distributed Integer Undirected Models

We will now go through a series of theoretical insights which will eventually lead
to a new distributed learning scheme for integer undirected models. But before
we start, let us stress the meaning of “sub-linear” in the context of exponen-
tial family models. As said in the introduction, the easiest solution is to send
the raw data to a central server and perform learning there. Having observed
Ni n-dimensional data points at device i, this amounts to nNiω transmitted
bits, assuming word-size ω. In this extreme case, no computational resources
are required at the data source but at the cost of maximum communication
complexity. One could tend to say that communicating less than O(nNiω) is
“sub-linear”. However, in case of exponential family models, neither sending nor
storing the full amount of data is required at all—the model parameters can
be learned from an aggregated version of the data set. To see this, consider the
objective function of the integer model:

�(θ;D) = − 1
|D|

∑

x∈D
log2 Pθ (x) = − 1

|D|
∑

x∈D
log2 2〈θ ,φ(x)〉−A2(θ)

= − 1
|D|

∑

x∈D
〈θ, φ(x)〉 − A2(θ) = A2(θ) − 〈θ,

1
|D|

∑

x∈D
φ(x)〉 (3)

Setting μ = 1/|D|
∑

x∈D φ(x), we see that �(θ;D) = A2(θ)−〈θ,μ〉 = �(θ;μ),
i.e., θ can be learned from the average sufficient statistic μ—access to the raw
data set D is not required. Assuming a process that generates new data points
in some fixed time intervals, it is straightforward to update μ as a running
average. Thus, in case of exponential family models, transmitting μ and |D| to
some central server is equivalent to transmitting the full data set. This implies
that sub-linearity requires a communication complexity that is strictly less than
d—the dimension of φ(x) and θ. To achieve this, we first exploit a property of
the one-hot encoding that underlies φ(x).

Theorem 1 (Overcomplete models are always sparse). Denote the num-
ber of non-zeros by ‖θ‖0 =

∑d
i=1 |θi|0 with 00 = 0, and let θ ∈ R

d with ‖θ‖0 = d
be the dense parameter vector of some exponential family member with overcom-
plete sufficient statistic φ. Then, there is θ′ ∈ R

d such that Pθ = Pθ ′ and

‖θ′‖0 ≤ ‖θ‖0 − |C| < ‖θ‖0 = d
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Proof. Exponential family models with overcomplete sufficient statistics are
shift-invariant w.r.t. each clique parameter vector [11]. Recall that θ is defined
as the concatenation of the parameter vectors of all cliques. Consider the d-
dimensional vector SC(α) which is zero everywhere, except for the positions of
the parameters that belong to the clique C—at these positions, we put the value
α. For the proof, explicit knowledge about these positions it not required. The
only important fact is that some arbitrary subset of the d dimensions contains
the parameters for clique C. Now, consider the vector θ′ = θ + SC(α). We have

Pθ ′(x) =
exp(〈θ′, φ(x)〉)

∑
x′ exp(〈θ′, φ(x′)〉) =

exp(〈θ, φ(x)〉 + α)
∑

x′ exp(〈θ, φ(x′)〉 + α)
= Pθ (x)

The equality in the middle holds because 〈SC(α), φ(x)〉 = α for all x ∈ X . This
is, in fact, a direct implication of φ’s overcompleteness. The above result is called
shift-invariance.

Let θC,1 be the first parameter of each clique’s parameter vector. We con-
struct the vector θ′ = θ +

∑
C∈C SC(−θC,1). Shift-invariance holds for each C,

and thus Pθ ′(x) = Pθ ′(x). By assumption, θ is dense, i.e., ‖θ‖0 = d. By con-
struction, θ′ must have at least |C| zero-values. ‖θ′‖0 ≤ ‖θ‖0 − |C| holds with
equality if all d dimensions of θ have a different value. ��

The above theorem guarantees that any exponential family member with
overcomplete sufficient statistic has an optimal parameter with at least |C| zero-
entries. This result arises from overcompleteness and has not yet any specific
connection to our integer models. Based on this result, we provide the following
genuine new insight:

Theorem 2 (Integer models are sparser). Let θ ∈ {1, . . . , 2b − 1}d be the
dense parameter vector of some integer exponential family member with over-
complete sufficient statistic φ. Let further |XCmin | be the smallest clique state
space. Then, if b is chosen such that 2b − 1 < |XCmin |, there exists θ′ such that
Pθ = Pθ ′ and

‖θ′‖0 ≤ ‖θ‖0 − 2|C| < ‖θ‖0 = d

Proof. By assumption, there are less parameter values than clique states. Thus,
each clique parameter vector θC must contain one parameter value z at least
twice. Again, we exploit shift-invariance to subtract z from each parameter in
θC which generates at least 2 zero values. This procedure is applied to all cliques
C ∈ C to end up with a parameter vector θ′ that contains at least 2|C| zeros. ��

Thus the number of zero-parameters is increased by at least a factor of 2.
The same idea cannot be applied to ordinary (non-integer) exponential families—
there, all real-valued parameters will be different with probability 1.

Our new result tells us that integer models have not only computational
benefits but also non-trivial implications when the learned integer model has to
be transmitted. The final step is the aggregation of independent local models.
For simplicity, we restrict ourselves to plain model averaging. Assuming that
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the underlying network allows for broadcasts, this operation can be carried out
locally in each device. If no broadcast is available, we can send each model
to a designated central node that carries out the aggregation. Clearly, model
averaging involves some error, due to the non-linearity of the exponential family.
However, the following corollary raises some hope that the averaged model is not
too bad.

Lemma 1 (Upper bound on the loss). Let θi ∈ R
d for i = 1, 2, . . . , k be

the parameter vector of the model learned on the i-th device. Let further θ̂ =∑k
i=1 αiθi with αi > 0 and

∑k
i=1 αi = 1 be the corresponding model average.

Then, for any arbitrary data set D, we have

�(θ̂;D) ≤
k∑

i=1

αi�(θi;D)

Proof. The negative log-likelihood is convex. The result is thus a direct corollary
of Jensen’s inequality. ��

At a first glace, this result seems odd, since it suggests that the global model
average is better than the local models. It is important to understand that the
negative log-likelihoods on the right-hand-side are computed w.r.t. the (global)
data set D, and not w.r.t. the local sets Di. The local model’s loss can be
arbitrarily large on D which explains why this inequality holds. However, in the
joint limit of |Di| → ∞ for i = 1, . . . , k, all local data sets are equivalent and the
inequality will turn into an equality. In practice, we want to explore the space “in
between”, where a finite amount of data has been observed at each device, but
the individual local models are still similar to each other. The pairwise distances
between local average sufficient statistics can be bounded by a function of the
available data.

Lemma 2 (Distance between expected statistics). Let X be a random
variable with state space X , Di and Dj two pairwise independent data sets with
samples from X, and φ : X → R

d some function. Denote the estimated expecta-
tion of φ(X) w.r.t. Di by μi = 1

|Di|
∑

x∈Di
φ(x) and likewise for μj. Then,

‖μi − μj‖∞ ≤ 2

√
(c + 1) log d

2|D′| = ε

with probability of at least δ = (1 − 2 exp(−c log d))2 for any c > 0. D′ is the
smaller of the two data sets Di and Dj.

Proof. μi is unbiased due to E[μi] = 1
|Di|

∑
x∈Di

E[φ(X)] = μ∗. According to
Hoeffding’s inequality [7],

P(|μi
l − E[μi]l| > t) ≤ 2 exp(−2|D|t2)
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Algorithm 1: Distributed ULP-Learning of Generative Models
input k local data sets, one per device; desired (ε, δ)-pair; parameter width b
output Global model θ̂ = (1/k)

∑k
i=1 θi (Lemma 1)

1: for all devices i = 1, 2, . . . , k in parallel do
2: if New data arrives then
3: Update(μi) (Eq. 3)
4: θi ← arg minθ∈{0,1,...,2b−1}d �(θ; μi)
5: end if
6: if |Di| is large enough to satisfy (ε, δ) (Lemma 2) then
7: Sparsify(θi) (Theorem 2)
8: Broadcast(θi)
9: return

10: end if
11: end for

for all t > 0. Since this holds for any dimension l, we can apply the union bound
to get

P(∃l ∈ [d] : |μi
l − μ∗

l | > t) ≤ 2 exp(−2|D|t2 + log d) .

We set t =
√

(c + 1) log d/(2|D|). Thus ‖μi − μ∗‖∞ ≤
√

(c+1) log d
2|Di| with prob-

ability at least 1 − 2 exp(−c log d). Indeed, the same holds for μj . Finally, we
apply the triangle inequality to derive ‖μi −μj‖∞ ≤ ‖μi −μ∗‖∞ +‖μj −μ∗‖∞.
Since both events are independent, the final inequality has probability of at least
δ = (1 − 2 exp(−c log d))2. ��

Increasing c makes the probability δ larger, at the cost of an increased dis-
tance ε. The lemma can help us to decide when local models are “good enough”:
Informally, θi and θj will approach each other when μi and μj are approaching
each other. We will make use of this intuition without providing a proof. How-
ever, the relation between θ and μ can be made explicitly by proof techniques
provided in [1]. Here, we choose ε and δ to determine the number of samples that
is required at each device for all local models being similar with high probability.

The final distributed learning procedure is provided in Algorithm 1. There,
evaluating the stopping criterion requires knowledge about the amount of data
that has been collected by each device—this number could be transmitted in
a recurring manner. Here, for simplicity, we assume that data arrives syn-
chronously at the devices and that all devices are started at the same point
in time. Hence, all models will collect the same number of data points.

Note that the global model θ̂ is likely to be non-integer. The resulting model
average can be rounded to recover an integer solution. This, however, involves
an additional approximation error [11]. Instead, we scale local models by log 2,
which results in a base-change back to exp. The scaled output (log 2)θ̂ is thus the
parameter of an ordinary (non-integer) exponential family member. Algorithm 1
can hence be re-interpreted as a method that recovers an ordinary exponential
family from a set of integer models.
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4 Experimental Demonstration

We perform numerical experiments to assess the proposed method. More pre-
cisely, we to answer the following questions:
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Fig. 2. Experimental results on three benchmark data sets. Each point represents the
outcome of a single cross-validation fold. Top: Negative average log-likelihood �(θ; D).
Mid: Classification accuracy. Bottom: Number of non-zero values for each learned
parameter vector θ, i.e., ‖θ‖0. All three plots share the same key. Best viewed in
color.
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(Q1) What is the improvement w.r.t. communication complexity on real data
sets?

(Q2) How does the averaged model perform, compared to the global model and
the individual local models?

All experiments are carried out with the PX framework1. For (Q1), we mea-
sure the number of bits that must be transmitted for each model. For (Q2), we
measure the negative log-likelihood of each model, as well as the classification
accuracy. We record these measurements for three different models:

(M1) Ordinary undirected model with access to the full training data.
(M2) k = 10 local integer undirected models with b = 3.
(M3) Scaled model average (log 2)θ̂ of all k = 10 local (M2) models.

All models are trained on three benchmark data sets from the UCI machine
learning repository, namely SUSY (n = 19, N = 5 × 106), covertype (n = 55,
N = 581012), and DOTA2 (n = 117, N = 102944)—representing normal, small,
and tiny data sets, respectively. The conditional independence structure G is
approximated by the Chow-Liu algorithm [3], computed on a hold-out set of size
104. Each numeric variable is discretized into its 10-quantiles. All results are 10-
fold cross-validated. For (M2), we split the training set of each cross-validation
fold further into k = 10 separate data sets which are then used as local data
sets D1,D2, . . . ,Dk. In total, we have 10 global models, 100 local modes, and 10
averaged models, where each model averaging is performed over 10 local models.

The results are summarized in Fig. 2. Let us first investigate (Q1). The third
plot in Fig. 2 shows the individual model sizes for each cross-validation run.
As asserted by Theorem 2, the local integer models exhibit a superior sparsity
while the global model (M1) and the averaged model (M3) are mostly dense.
Moreover, recall that we learned the integer models with b = 3, i.e., each model
parameter can be encoded with 3 bits. Combining the higher sparsity and the
lower representation complexity, we see that the number of bits required to
transmit each local model is reduced by a factor of almost 40 on SUSY compared
to a dense 64 bit floating point model.

Regarding (Q2), results for likelihood and accuracy are shown in the first
two plots of Fig. 2. Please note that the likelihood-value of the integer models
is an approximation, the likelihood-values of the other model types are exact.
We observe that the accuracy of all models on DOTA2 and covertype is qual-
itatively the same, where (M1) achieves the best accuracy, followed by (M2)
and (M3). This alone is interesting, since the amount of data available to each
local model is 10× lower compared to the global model. On SUSY, the accuracy
degrades dramatically on the integer models and hence also on the combined
model. Moreover, the local models exhibit a much larger variance compared to
the other model types. On all data sets, we see that various local models show a
much higher classification error than the global model. Indeed, the accuracy of

1 http://randomfields.org/px.

http://randomfields.org/px
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the aggregated model depends strongly on the local model’s quality. The classi-
fication results for the (M3) model on DOTA2 and covertype are almost indis-
tinguishable from the global (M1) model, while the accuracy on SUSY breaks
down. The results for the likelihood show similar effects. However, we see that
accuracy and likelihood are not strongly coupled. The likelihood of (M2) and
(M3) is much worse than those of (M1) models, the corresponding classification
results are yet similar.

5 Conclusion

Based on new theoretical findings about the sparsity of integer undirected mod-
els, we proposed a new scheme for the distributed learning of generative exponen-
tial family models. Theoretical and experimental results certify that our method
has a sub-linear communication complexity—a fraction of bits which are required
to transmit the dense models is sufficient to reconstruct a full-fledged exponen-
tial family model. In many cases, the reconstructed models exhibit a similar
classification performance as non-distributed (global) models. Our scheme can
thus serve as the basis for many practical distributed solutions.

Moreover, our results provide several new research opportunities: First, our
scheme can be easily combined with recent latent variable models [12] and hence,
opens the path for distributed probabilistic deep learning. Second, the stopping
criterion and the averaging scheme suggest some room for improvement. Our
Hoeffding-bound-based stopping criterion is very pessimistic and requires a very
large number of samples to guarantee that all local models are similar with
high probability. It shall be investigated if convex thresholding [16] delivers any
benefit over the stopping criterion that was derived from Lemma 2. Finally, the
results presented in [8] suggest, that the model aggregation based on Radon
points delivers a higher quality compared to plain model averaging. We should
hence employ radon machines instead of plain model averaging to aggregate the
local models.

Acknowledgments. This research has been funded by the Federal Ministry of Edu-
cation and Research of Germany as part of the competence center for machine learning
ML2R (01S18038A).
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Abstract. The optimal weighted average (OWA) is an algorithm for
distributed learning of linear models. It achieves statistically optimal
theoretical guarantees with only a single round of communication [3].
This paper introduces the non-linear OWA (NOWA) algorithm, which
extends the linear OWA into the non-linear setting of neural networks.
Due to the difficulty of proving theoretical results in this more complex
setting, NOWA loses the theoretical guarantees of the OWA algorithm.
Nevertheless, we show that NOWA works well empirically. We follow an
evaluation procedure introduced by McMahan et. al. [16] for federated
learning and show significantly improved results on a simple MNIST
baseline task.

1 Introduction

Existing distributed learning algorithms fall into one of two categories:
Interactive algorithms require many rounds of communication between

machines. Representative examples include [4,7,11,13,18,22]. The appeal of
interactive algorithms is that they enjoy the same statistical performance as
standard sequential algorithms. But, interactive algorithms have three main dis-
advantages. First, these algorithms are slow when communication latency is the
bottleneck. An extreme example occurs in the federated learning environment
proposed by [16], which uses cell phones as the computational nodes. Recent
work in this setting has studied how to only communicate between nodes when
doing so would proveably decrease loss [7]. Second, these algorithms require spe-
cial implementations. They are not easy for non-experts to implement or use,
and in particular they do not work with off-the-shelf statistics libraries provided
by (for example) Python, R, and Matlab. Third, because of the many rounds of
communication, any sensitive information in the data is likely to leak between
machines.

Non-interactive algorithms require only a single round of communication.
Each machine independently solves the learning problem on a small subset of
data, then a master machine merges the solutions together. These algorithms
solve all the problems of interactive ones: they are fast when communication
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is the main bottleneck; they are easy to implement with off-the-shelf statistics
packages; and they are robust to privacy considerations. The downside is worse
statistical performance. A growing body of work analyzes the popular naive
averaging merging procedure under special conditions [14,17,19–21], and devel-
ops more robust merging procedures [1,5,6,10,12,23]. All of these estimators
are either statistically sub-optimal or have computationally intractable merge
procedures.

The optimal weighted average (OWA) [2,3] is a recently proposed non-
interactive estimator with statistically optimal guarantees. OWA’s merge pro-
cedure uses a second round of optimization over a tiny fraction of the data.
Because the fraction of data is small, it presents negligible computational bur-
den, but OWA is still able to achieve the optimal sequential statistical error rates
in the non-interactive setting. The downside of OWA is that it only works for
linear models. In this paper, we develop an algorithm called NOWA that extends
OWA into the nonlinear setting. The next section introduces OWA in the orig-
inal linear setting, and then Sect. 3 describes the NOWA extension. Section 4
shows preliminary experiments with NOWA on the MNIST dataset. We see that
the standard naive averaging algorithm commonly used in federated learning
performs significantly worse in this simple task than NOWA.

2 Warmup: The Linear OWA

2.1 Problem Statement

Let Y ⊆ R be the space of response variables, X ⊆ R
d be the space of covariates,

and W ⊆ R
d be the parameter space. We assume a linear model where the loss of

data point (x, y) ∈ X ×Y given the parameter W ∈ W is denoted by �(y,x�W ).
We define the true loss of parameter vector W to be L∗(W ) = E�(y;x�W ),
and the optimal parameter vector W ∗ = arg minW∈WL∗(W ). We do not require
that the model be correctly specified, nor do we require that � be convex with
respect to W . Let Z ⊂ X × Y be a dataset of mn i.i.d. observations. Finally, let
r : W → R be a regularization function (typically the L1 or L2 norm) and λ ∈ R

be the regularization strength. Then the regularized empirical risk minimizer
(ERM) is

Ŵ erm = arg min
W∈W

∑

(x,y)∈Z

�(y,x�W ) + λr(W ). (1)

Assume that the dataset Z has been partitioned onto m machines so that each
machine i has dataset Zi of size n, and all the Zi are disjoint. Then each machine
calculates the local ERM

Ŵ erm
i = arg min

W∈W

∑

(x,y)∈Zi

�(y,x�W ) + λr(W ). (2)

Notice that computing Ŵ erm
i requires no communication with other machines.

Our goal is to merge the Ŵ erm
i s into a single improved estimate.
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To motivate our OWA merge procedure, we briefly describe a baseline pro-
cedure called naive averaging :

W ave =
1
m

m∑

i=1

Ŵ erm
i . (3)

Naive averaging is simple to compute but has only limited theoretical guarantees.
Recall that the quality of an estimator Ŵ can be measured by the estimation
error ‖Ŵ − W ∗‖2, and we can use the triangle inequality to decompose this
error as

‖Ŵ − W ∗‖2 ≤ ‖Ŵ − EŴ‖2 + ‖EŴ − W ∗‖2. (4)

We refer to ‖Ŵ − EŴ‖2 as the variance of the estimator and ‖EŴ − W ∗‖2 as the
bias. McDonald et al. [14] show that the W ave estimator has lower variance than
the estimator Ŵ erm

i trained on a single machine, but the same bias. Zhang et al.
[20] extend this analysis to show that if Ŵ erm

i is a “nearly unbiased estimator,”
then naive averaging is optimal. But Rosenblatt and Nadler [17] show that in
high dimensional regimes, all models are heavily biased, and so naive averaging is
suboptimal. All three results require � to be convex in addition to other technical
assumptions. The OWA estimator relaxes these assumptions and achieves better
error bounds.

2.2 The Full OWA

To motivate the OWA estimator, we first present a less efficient estimator that
uses the full dataset for the second round of optimization. Define the matrix
Ŵ : Rd×m to have its ith column equal to Ŵ erm

i . Now consider the estimator

Ŵ owa,full = Ŵ V̂ owa,full, (5)

where
V̂ owa,full = arg min

V ∈Rm

∑

(x,y)∈Z

�
(
y,x�ŴV

)
+ λr(ŴV ). (6)

Notice that Ŵ owa,full is just the empirical risk minimizer when the parameter
space W is restricted to the subspace Ŵowa = span{Ŵ erm

i }mi=1. In other words,
the V̂ owa,full vector contains the optimal weights to apply to each Ŵ erm

i when
averaging. Figure 1 shows graphically that no other estimator in Ŵowa can have
lower regularized empirical loss than Ŵ owa,full.

2.3 The OWA Estimator

The OWA estimator uses fewer data points in the second round of optimization.
Recall that in a linear model, the amount of data needed is proportional to the
problem’s dimension. Since the dimension of the second round is a fraction m/d
smaller than the first round, only an m/d fraction of data is needed for the same
accuracy.
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Ŵ erm

W aveŴ erm
1 Ŵ erm

2

Ŵ owa,full

Ŵ owa

�(y,x�W ) + λr(W )

Ŵowa

Fig. 1. Ŵ owa,full is the estimator with best loss in Ŵowa, and Ŵ owa is close with high
probability.

Formally, let Zowa be a set of m2n/d additional data points sampled i.i.d.
from the original data distribution. Thus the total amount of data the OWA
estimator requires is mn+m2n/d. Whenever m/d ≤ 1, this expression simplifies
to O(mn), which is the same order of magnitude of data in the original problem.
The OWA estimator is then defined as

Ŵ owa = Ŵ V̂ owa, (7)

where
V̂ owa = arg min

V ∈Rm

∑

(x,y)∈Zowa

�
(
y,x�ŴV

)
+ λr(ŴV ). (8)

OWA’s merge procedure is more complicated than the naive averaging merge
procedure, but still very fast. Notice that the projected data points x�Ŵ have
dimensionality m << d, and there are only m2n/d of them. Because the opti-
mization uses a smaller dimension and fewer data points, it takes a negligible
amount of time. Izbicki and Shelton [3] show an experiment where the first round
of optimizations takes about a day, and the second optimization takes about a
minute.

3 The Non-linear OWA (NOWA)

The intuition of the NOWA algorithm is that we apply the OWA algorithm
to each layer of a neural network independently. Unfortunately, the notation is
much messier in this scenario due to the need to keep track of many indices.

3.1 Problem Setting

We now extend our notation to include neural networks with multiple hidden
layers. In particular, we continue to use subscripts to denote different machines
(and let i range over the machines), but we also introduce superscripts to denote
different network layers (and let j range over the layers).

Formally, assume our network architecture has p layers. For each layer j ∈
{1, ..., p}, there is an associated dimension d(j) ∈ N, activation function σ(j) :
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R
d(j) → R

d(j)
, and weight matrix W (j) : Rd(j)×d(j−1)

. The input to the network
is a vector x ∈ R

d(0)
. The output of layer j is then recursively given by

f (j)(x) : Rd(j)
=

{
x j = 0
σ(j)(W (j)f (j−1)(x)) j > 0

(9)

and f (p)(x) is the final output of the network. In supervised learning problems,
we are given a dataset Z ⊂ R

d(0) × R
d(p)

with mn data points, and our goal is
to solve

Ŵ erm = arg min
W

∑

(x,y)∈Z

�(y, f (p)(x)) + λr(W ), (10)

where � is the loss function and r is the regularization function. We divide Z
into m disjoint smaller datasets {Z1, ..., Zm} each with n points. Each dataset
Zi is transfered to processor i, which solves the local learning problem

Ŵ erm
i = arg min

W

∑

(x,y)∈Zi

�(y, f (p)(x)) + λr(W ). (11)

Each machine solves (11) without communicating with other machines using
any optimizer appropriate for the network architecture and data. Our goal is to
develop a merge procedure that combines the Wa local parameter estimates into
a single global parameter estimate with small loss.

3.2 The Merge Procedures

In this non-linear setting, the naive averaging merge procedure for the jth layer
is given by

W ave,(j) =
1
m

m∑

i=1

Ŵ erm,(j)
i. (12)

Google’s recent federated learning architecture uses naive averaging to merge
models together that have been independently trained on users’ cellphones [16].

We will define an improved merge procedure based on a weighted average of
the local parameter estimates. This requires some tensor notation for each layer
j in the network, we define the 3rd-order tensor W stacked(j) : Rm×R

d(j) ×R
d(j−1)

,
where the (a, b, c)th component of W stacked(j) is defined to be the (b, c)th com-
ponent of Ŵ erm,(j)

i. In words, W stacked(j) is the 3rd-order tensor constructed by
stacking the local parameter estimates Ŵ erm,(j)

a along a new axis. We also define
the function contract : (Rm,Rm × R

d(j) × R
d(j−1)

) → R
d(i) × R

d(j−1)
to be the

tensor contraction along the first dimension. That is, if V : Rm, then the (b, c)th
component of contract(V,W stacked(j)) is equal to

∑m
a=1 V (a)Ŵ erm,(j)

a(b, c). In

particular, if each component of V equals 1/m, then contract(V,W stacked(j)) =
1
m

∑m
a=1 Ŵ erm,(j)

a = W ave,(j).
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Fig. 2. The performance of the naive averaging estimator used in McMahan et al. [16]
is constant as we add more machines, but the performance of the NOWA estimator
increases.

In our non-linear optimal weighted average (NOWA) merge procedure, we
first construct the modified neural network

fmod,(j)(x) : Rd(j)
=

{
x j = 0
σ(j)(Wmod,(j)fmod,(j−1)(x)) j > 0

(13)

where
Wmod,(j) = contract(V (j),W stacked(j)). (14)

We then select a small subset of the data Zowa (i.e. |Zowa| << |Z|) and train the
network fmod over only the parameters V (j). That is, we solve the optimization
problem

V owa = arg min
V

∑

(x,y)∈Zowa

�(y, fmod,(p)(x)) + λr(V ). (15)

The parameter matrices W owa
i = contract(V owa,(j),W stacked(j)) can then be

used in the original neural network. Intuitively, we need only a small number of
data points in the optimization of (15) because the number of parameters is sig-
nificantly smaller than in the original optimization (10). That is, the dimension
of V owa is much less than the dimension of Ŵ erm. When the network contains
no hidden layers, then the NOWA procedure reduces to the OWA procedure
described above.

4 Experiments

McMahan et al. [16] evaluated the naive averaging merge procedure on the
MNIST dataset, and we perform a similar experiment here. We train the LeNet
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neural network [9] provided by TensorFlow’s standard tutorial using the Adam
optimizer and dropout. We performed no hyperparameter tuning and simply
used the default hyperparameters provided by TensorFlow.

We perform our experiment using a cluster of 128 machines. MNIST contains
a training set 55,000 data points, and each machine receives a subset of the
data containing either 429 or 430 data points. The 10 class labels are evenly
distributed throughout the original training set, but we made no effort to ensure
they were evenly distributed throughout the subsets. That means on average,
each machine has access to only 43 examples from each class, but most machines
will have significantly fewer examples for some classes. Under such an extreme
paucity of data, it is unlikely for a single machine to be achieve high classification
accuracy.

Figure 2 shows the classification accuracy as the number of machines used
varies from 2 to 128. (Each experiment is repeated 5 times, and the average
is shown.) Since the number of data points per machine is fixed, adding more
machines adds more data, so we should expect the classification accuracy to
increase for a good merge procedure. We see that the NOWA algorithm signifi-
cantly outperforms naive averaging. The NOWA algorithm does not perform as
well as the oracle network trained on all the data (which has > 0.99 accuracy).
This is because of the difficulty of the local learning problems, which average
only 42 instances of each class.

5 Discussion

The original papers on federated learning [8,15,16] perform several rounds of
naive averaging to improve performance. In each round, the average from the
previous round is used to initialize the optimization of each worker node. This
procedure can easily be extended to use the NOWA merge procedure instead of
naive averaging. Since NOWA’s weighted averaging procedure performs better
than naive averaging in a single round, a multi-round version of NOWA will
likely perform better than a multi-round version of naive averaging. The second
round of optimization used in NOWA is particularly negligible in the federated
setting because this optimization can be performed in the data center on dedi-
cated machines. Therefore, using NOWA in a federated setup would provide no
additional burden to the node machines, which are typically severely computa-
tionally limited devices like cell phones.
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Abstract. We examine a network of learners which address the same
classification task but must learn from different data sets. The learn-
ers cannot share data but instead share their models. Models are
shared only one time so as to preserve the network load. We intro-
duce DELCO (standing for Decentralized Ensemble Learning with COp-
ulas), a new approach allowing to aggregate the predictions of the clas-
sifiers trained by each learner. The proposed method aggregates the
base classifiers using a probabilistic model relying on Gaussian cop-
ulas. Experiments on logistic regressor ensembles demonstrate com-
peting accuracy and increased robustness in case of dependent clas-
sifiers. A companion python implementation can be downloaded at
https://github.com/john-klein/DELCO.

Keywords: Decentralized learning · Classifier ensemble · Copulas

1 Introduction

Big data is both a challenge and an opportunity for supervised learning. It is
an opportunity in the sense that we can train much more sophisticated models
and automatize much more complex tasks. It is a challenge in the sense that
conventional learning algorithms do not scale well when either the number of
examples, the number of features or the number of class labels is large. On
more practical grounds, it becomes also infeasible to train a model using a single
machine for both memory and CPU issues.

Decentralized learning is a setting in which a network of interconnected
machines are meant to collaborate in order to learn a prediction function. Each
node in the network has access to a limited number of training examples. Local
training sets may or may not be disjoint and the cost of transferring all data to
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a single computation node is prohibitive. The cost of transfer should be under-
stood in a general sense. It can encompass the network traffic load or the risk to
violate data privacy terms. Decentralized learning is a framework which is well
suited for companies or public institutions that wish to collaborate but do not
want to share their data sets (partially of entirely).

There are several subfields in the decentralized learning paradigm that
depend on the network topology and the granted data transfer budget. When
any pairwise connection is allowed and when the budget is high, some well estab-
lished algorithms can be adapted with limited effort to the decentralized setting.
For instance, in deep neural networks [4], neural units can exchange gradient val-
ues to update their parameters as part of the backpropagation algorithm. This
implies that some nodes are used just for training some given neural units or
layers and do not have local training sets. The nodes that have training data
must train the first layer and share their parameters. In the end, the amount of
transferred data may in this case be greater than the entire training data transfer
to a single node. When each node is meant to train a model from its private data
set but nodes can only exchange symmetrically information with their one-hop
neighbors in the network, Giannakis et al. [10] explain that the global optimiza-
tion of the sum of losses over training data can be broken into several local
optimization problems on each node. Since many training algorithms rely essen-
tially on such an optimization problem, the method is rather generic. It also has
the advantage that no training data has to be shared and that the distributed
optimization can converge to the same parameter estimates as the global one.
On the downside, the algorithm is iterative and the amount of transferred data
cannot be anticipated. A similar decentralized learning problem is addressed in
[9] where an approximate Bayesian statistical solution is proposed.

In this article, we place ourselves in a context where the amount of transferred
data must be anticipated and no training examples can be shared. We assume a
fully connected topology allowing each node to share its trained base classifier
with every other node as well as with a central node which will aggregate models.
Local training phases do not have to be synchronized. Ensemble methods or
multiple classifier systems are good candidates to operate in such a form of
decentralized learning. Indeed, many such methods do not require that the base
learners, i.e. those trained on each local node, have to collaborate at training
time.

In the central node, we train a probabilistic model to aggregate the base clas-
sifiers. We investigate a model relying on conditional probabilities of classifier
outputs given the true class of an input (whose estimation can be decentralized
without difficulty). These distributions are used as building blocks to classify
unseen examples as those maximizing class probabilities given all classifiers out-
puts [3,13]. The originality of our approach consists in resorting to copula func-
tions to obtain a relatively simple model of joint conditional distributions of the
local base classifier outputs given the true class.

The next section presents the classifier aggregation problem and existing
approaches addressing this issue. Section 2 gives an outline of our new ensemble
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method. We first present this method in a centralized setting for simplicity. Its
deployment in a decentralized setting is explained in the final subsection of this
very section. Section 3 assesses the performances of this new ensemble method
on both synthetic and real challenging data sets as compared to prior arts.

1.1 Combining Classifiers

Let Ω denote a set of � class labels Ω = {c1, . . . , c�}, where each element ci

represents one label (or class). Let x denote an input (or example) with d entries.
Most of the time, x is a vector and lives in R

d but sometimes some of its entries
are categorical data and x lives in an abstract space X which does not necessarily
have a vector space structure. For the sake of simplicity, we suppose in the
following of this article that x is a vector.

A classification task consists in determining a prediction function ĉ that maps
any input x with its actual class y ∈ Ω. This function is obtained from a training
set Dtrain which contains pairs

(
x(i), y(i)

)
where y(i) is the class label of example

x(i). The cardinality of the training set is denoted by ntrain. We usually also
have a test set Dtest which is disjoint from Dtrain to compute unbiased estimates
of the prediction performance of function ĉ. The size of Dtrain ∪ Dtest is denoted
by n.

Given m classifiers, the label y assigned by the kth classifier to the input x is
denoted by ĉk(x). In the usual supervised learning paradigm, each ĉk is typically
obtained by minimizing a weighted sum of losses incurred by deciding ĉk

(
x(i)

)
as

compared to y(i) for each data point in the training set or by building a function
that predicts y(i) in the vicinity of x(i) up to some regularity conditions. Once we
have trained multiple classifiers, a second algorithmic stage is necessary to derive
an ensemble prediction function ĉens from the set of classifiers {ĉ1, . . . , ĉm}.

Early attempts to combine classifiers focused on deterministic methods rely-
ing on voting systems [27] and Borda counts [12]. In later approaches [14,15],
some authors started to formalize the classifier aggregation problem in proba-
bilistic terms when base classifier outputs are estimates of probabilities p (y|x). It
is also possible to probabilistically combine classifiers without assuming that base
classifiers rely themselves on probabilistic models. Indeed, we can picture the set
of classifier predictions as entries of some vector z (x) = [ĉ1 (x) , . . . , ĉm (x)]T .
Regarding these vectors as new inputs, we resort to a decision-theoretic frame-
work. Under 0–1 loss, the optimal decision rule (in terms of expected loss) is

ĉens (x) = arg max
y∈Ω

p (y|z (x)) . (1)

Suppose we select nval training examples from Dtrain to build a validation set
Dval and let D′

train = Dtrain \ Dval. We can train functions ĉ1 to ĉm using D′
train

and compute predictions for each member of the validation set. So we can build
nval vectors z(i) and use their labels y(i) to infer the parameters of the conditional
distributions p (y|z). In the next subsection, we detail such inference methods.

Let alone probabilistic approaches, another possibility is to use the set of
pairs

(
z(i), y(i)

)
to train a second stage classifier. This approach is known as
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stacking [25] and has gained in popularity in the past decade as several machine
learning competitions were won by stacked classifiers [16]. There are many other
multiple classifier systems or ensemble methods in the literature but few of them
are applicable in a decentralized setting. In particular, boosting [7] requires each
ensemble component to see all data and bagging [2] consists in drawing bootstrap
samples of training data so they would both require greater amounts of data
transfer than simply sending all data to a single machine. To get a broader
picture of the landscape of classifier combination and ensemble methods, we
refer the reader to [26].

Stacking is also used in [20] along with correlation analysis in order to account
for correlation in classifier predictions. Taking into account these correlations is
the most important added value of the copula based probabilistic model that
we introduce in Sect. 2. The approach in [20] corresponds to a discriminative
model while ours is a generative model of aggregation. It is not adapted to the
decentralized setting as it involves a singular value decomposition of a matrix
with n × m × � entries which is prohibitive and propagates big data bottlenecks
on the aggregation side.

1.2 A Probabilistic Model of Aggregation

In this subsection, we present several approaches for inferring the parame-
ters of the multinomial conditional distributions p (y|ĉ1 (x)) , . . . , ĉm (x)). These
approaches are essentially due to Dawid and Skene [3] and were promoted and
further developed by Kim and Ghahramani [13] in the context of classifier com-
bination; see also [24] for a Bayesian committee algorithm tailored for Gaussian
processes. Inferring parameters of multinomial distributions may not seem chal-
lenging at first sight. The problem is that, we need to solve �m such inference
problems so the complexity of the problem does not scale well w.r.t. both � and
m. Applying Bayes formula, we have

p (y|ĉ1(x), . . . , ĉm(x)) ∝ p (ĉ1(x), . . . , ĉm(x)|y) × p (y) . (2)

The estimation of class probabilities is easy but again, the estimation of condi-
tional joint distributions p (ĉ1(x), . . . , ĉm(x)|y) has the same complexity as the
estimation of the posterior.

Linear complexity can be achieved by making conditional independence
assumptions that allow each conditional joint distribution to factorize as the
product of its marginals, that is

p (y|ĉ1(x), . . . , ĉm(x)) ∝ p (y) ×
m∏

i=1

p (ĉi(x)|y) . (3)

In this approach, the parameters of m + 1 multinomial distributions need
to be estimated which does not raise any particular difficulty. Unfortunately,
the independence assumption is obviously unrealistic: the classifier outputs are
likely to be highly correlated. Indeed, examples that are difficult to classify cor-
rectly for classifier ĉi are usually also difficult to classify correctly for any other
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classifier ĉj , j �= i. The dependence between classifiers has its roots in several
causes, such as learning on shared examples, use of classifiers of the same type,
correlation between training examples. This accounts for the fact that misclas-
sifications for each ĉk occur most of the time with the same inputs. In spite of
this, we will see that this approach achieves nice classification accuracy on sev-
eral occasions. We believe this is explained by the same reason as the one behind
naive Bayes classifier1 efficiency. This model is an efficient technique although
it also relies on unrealistic independence assumptions. Indeed, the inadequacy
of these assumptions is compensated by a dramatic reduction of the number of
parameters to learn making the technique less prone to overfitting.

Let us formalize the inference problem in a more statistical language to
present further developments allowing to infer parameters in (3). The classifica-
tion output ĉk of the kth classifier is a random variable and the conditional distri-
bution of ĉk given Y = y is multinomial: ĉk|y ∼ Mult

(
θ(k)

y

)
with θ(k)

y a param-

eter vector of size �: θ(k)
y =

[
θ
(k)
y,1 . . . θ

(k)
y,�

]T

. In other words, the success/failure

probabilities of the kth classifier are the parameters θ
(k)
y,i = p (ĉk = i|y). The

random variable Y representing class labels has a multinomial distribution as
well: Y ∼ Mult (γ) and γ is another vector of parameters of size �. Let Dagg

denote the data set whose elements are tuples
(
ĉ1

(
x(i)

)
, . . . , ĉm

(
x(i)

)
, y(i)

)
for(

x(i), y(i)
) ∈ Dval. Under classifier independence assumptions, the likelihood

writes

p
(
Dagg|θ(1)

1 , . . . ,θ
(m)
� ,π

)
=

nval∏

i=1

γy(i)

m∏

k=1

θ
(k)

y(i),ik
, (4)

where ik = ĉk

(
x(i)

)
. Maximum likelihood estimates of γ and each θ(k)

y are known
in closed form and can be easily computed. Kim and Ghahramani [13] propose
a Bayesian treatment consisting of using hierarchical conjugate priors on the
parameters of all conditional distributions p (ck|y) as well as on the class distri-
bution p (y). The conjugate priors for θ(k)

y and γ are Dirichlet: θ(k)
y ∼ Dir

(
α

(k)
y

)

and γ ∼ Dir (β). A second level of priors is proposed for the parameters α
(k)
y .

The conjugate prior distribution of each α
(k)
y is exponential. Gibbs and rejection

sampling are then used to infer these parameters.
Finally, Kim and Ghahramani [13] also extend this model in order to take

into account dependencies between classifiers. They propose to use a Markov
random field as a model of classifier output interactions. The main limitation
of this method is the high computational cost induced by MCMC and rejection
sampling. In the next section, we introduce a copula-based model that allows to
grasp classifier dependency without resorting to an MCMC step.

1 This probabilistic approach can actually be regarded as a form of stacking in which
the second stage classifier is a naive Bayes classifier.
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2 Method Outline

In this section, we present a new ensemble method allowing to build the deci-
sion function ĉens from (2) without resorting to some conditional independence
assumption. We propose a Gaussian copula model for the conditional joint dis-
tributions p (ĉ1(x), . . . , ĉm(x)|y). We start by giving elementary background on
copulas and later explain how they can be efficiently implemented in a decen-
tralized learning setting.

2.1 Copulas

An m-dimensional copula function Cop : [0; 1]m → [0; 1] is a cumulative distri-
bution with uniform marginals. The growing popularity of these functions stems
from Sklar’s theorem which asserts that, for every random vector L ∼ f , there
exist a copula Cop such that F = Cop ◦ G where F is the cumulative version
of distribution f and G is a vector whose entries are the cumulative marginals
Gk (a) = F (∞, . . . ,∞, a,∞, . . . ,∞) for any a in the k-dimensional domain of f .

When F is continuous, the copula is unique. When we deal with discrete ran-
dom variables as in our classification problem, the non-uniqueness of the copula
raises some identifiability issues [6,8]. Without denying the importance of these
issues, we argue that, from a pattern recognition standpoint, what essentially
matters is to learn a model that generalizes well. For instance, there are also
identifiability issues for neural networks [23] which do not prevent deep nets to
achieve state-of-the-art performance in many applications.

In this article, we investigate parametric copula families to derive a model
for the conditional joint distributions p (ĉ1(X), . . . , ĉm(X)|y) where X is the
random vector capturing input uncertainty. Parametric copulas with parame-
ters vector λ are denoted by Copλ. A difficulty in the quest for an efficient
ensemble method is that we must avoid working with cumulative distributions
because the computational cost to navigate from cumulative to non-cumulative
distributions is prohibitive. We can compute Radon-Nikodym derivatives of
Copλ ◦ G w.r.t. a reference measure but again since we work in a discrete set-
ting we will not retrieve closed form expression for f for an arbitrary large
number of classifiers. As a workaround, we propose to embed each discrete
variable ĉk (X) |y in the real interval [0; �[. Let fy : R

m → R
+ be a proba-

bility density (w.r.t. Lebesgue) whose support is [0; �[m and such that for any
z ∈ Ωm, we have fy (a) = p (ĉ1 (X) = z1, . . . , ĉm (X) = zm|y) for any vector a
in the unit volume Vz = [z1 − 1; z1[ × . . . × [zm − 1; zm[. This means that fy

is piecewise constant and it can be understood as the density of some continu-
ous random vector whose quantized version is equal in distribution to the tuple
(ĉ1 (X) |y, . . . , ĉm (X) |y). Moreover, if f

(i)
y is the ith marginal density of fy, we

also have f
(i)
y (a) = p (ĉ1 (X) = z|y) for any a ∈ [z − 1; z[ and any z ∈ {1; . . . ; �}.
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For any z ∈ Ωm, according to this continuous random vector vision of the prob-
lem, we can now thus write

p (ĉ1 = z1, . . . , ĉm = zm|y) = copλ (u) ×
m∏

i=1

p (ĉi = zi|y) , (5)

u = [F1,y (z1) , . . . , Fm,y (zm)] (6)

where copλ is the density of Copλ and Fi,y is the cumulative distribution of
variable ĉi (X) |y. This construction is not dependent in the (arbitrary) way in
which the elements of Ω are indexed.

Among parametric copula families, the only one with a closed form density
for arbitrary large m is the Gaussian copula. The density of a Gaussian copula
[28] is given by

copλ (u) =
1

|R|1/2
exp

(
−1

2
vT · (

R−1 − I
) · v

)
, (7)

where R is a correlation matrix, I is the identity matrix and v is a vector with
m entries such that vk = Q (uk) where Q is the quantile function of a standard
normal distribution. The copula parameter in this case is the correlation matrix.
Estimating the entries of this matrix is not trivial. We will therefore choose a
simplified model and take R = λ1 + (1 − λ) I where 1 is the all-one matrix.
In this model, each diagonal entry of R is 1 and each non-diagonal entry is λ.
The dependency between classifier outputs is regulated by λ which is a scalar
living in

(
−1

m−1 ; 1
)
. We also make the assumption that correlation matrices are

tied across conditionings on Y = y. The m × � cumulative distributions Fi,y are
evaluated using estimates of the vectors θ(i)

y = [p (ĉi = c1|y) . . . p (ĉi = c�|y)]T .
Observe that when λ = 0, the copula density is constant one and the proposed

model boils down to the independent case (3). Since our model is a generalization
of (3), this latter is referred to as the independent copula-based ensemble in the
remainder of this article but it should be kept in mind that it is a prior art.

2.2 New Ensemble Method

Now that we have introduced all the ingredients to build our new ensemble
method, let us explain how it can be implemented efficiently in practice. The
only crucial remaining problem is to tune the parameter λ of the parametric
copula. This parameter summarizes the dependency information between each
pair of random variables (ĉk (X) |y ; ĉk′ (X) |y).

Since we have only one parameter to set, we can use a grid search on the
interval

(
−1

m−1 ; 1
)

using the validation set and select λ̂ as the value achieving
maximal accuracy on this validation set. In the experiments, we use an evenly
spaced grid (denoted gridλ) containing 101 values. In the sequel, our approach
will be referred to as Decentralized Ensemble Learning with COpula (DELCO).
The pseudo-code for DELCO is given in Algorithm1.
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Algorithm 1. DELCO (training)
Data: Dtrain, nval, gridλ and {train-algk}m

k=1

Select nval data points from Dtrain to build Dval

D′
train ← Dtrain \ Dval

for k ∈ {1, . . . , m} do
Run train-algk on D′

train to learn ĉk

for y ∈ {1, . . . , �} do

γy ←
1+

nval∑

i=1
Iy(y(i))

�+nval

for k ∈ {1, . . . , m} do
for j ∈ {1, . . . , �} do

θ
(k)
y,j ←

1+
nval∑

i=1
Iy(y(i))Ij(ĉk(x(i)))

�+
nval∑

i=1
Iy(y(i))

Fk,y (j) ← [1 − I0 (j)] × Fk,y (j − 1) + θ
(k)
y,j

for λ ∈ gridλ do
Obtain ĉens by substituting (5) in (2) and then (2) in (1), and using

ĉ1, . . . , ĉm, γ, θ
(1)
1 , . . . , θ

(m)
� and λ

Acc (λ) ←
nval∑

i=1
I
y(i)(ĉens(x(i)))

nval

λ̂ ← arg max
λ∈gridλ

Acc (λ)

Obtain ĉens by substituting (5) in (2) and then (2) in (1), and using

ĉ1, . . . , ĉm, γ, θ
(1)
1 , . . . , θ

(m)
� and λ̂

return ĉens

In Algorithm 1, Ix denotes the indicator function of the singleton {x}. The
vectors of parameters γ and

{
θ
(1)
1 , . . . ,θ

(m)
�

}
are estimated using the Laplace

add-one smoothing which is the conditional expectation of the parameters given
the data in a Dirichlet-multinomial model. As opposed to maximum likelihood
estimates, it avoids zero counts which are numerically speaking problematic. It
is also recommended to maximize the log-version of (1) which is numerically
more stable.

Finally, one can optionally retrain the classifiers on Dtrain after λ̂ is estimated.
Since Dtrain is larger then D′

train, it allows training algorithms to converge to
possibly slightly better decision functions. Training them initially on Dtrain is
however ill-advised as the parameter estimates would be biased. In the next
section, where we present numerical results, we use this optional step.

2.3 Dencentralized DELCO

In the previous paragraphs, we presented our new ensemble method in the cen-
tralized setting first for simplicity. It can be adapted to the decentralized setting
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described in the introduction with little efforts. To achieve decentralized learning
with DELCO, each local private data set needs to be separated in a local train-
ing set and a local validation set. After all locally trained models are exchanged
between all nodes, each node computes the confusion matrix of each base clas-
sifier using its local validation set. These matrices are sent to the central node
which just needs to average and normalize them to obtain the estimates of vec-
tors θ(i)

y . Similarly, vector γ can be estimated by sending to the central node
the number of examples belonging to each class. Finally, grid search can also be
implemented in the same fashion. The central node can send the global estimates
of θ(i)

y and γ to each node. Each node can then perform grid search using its
local validation set, compute accuracies and send them back to the central node
which will average them. Note that the number and the cost of transfers through
the network are known before starting to train.

3 Numerical Experiments

In this section, the performance of DELCO is assessed in terms of classification
accuracy and robustness. Situations in which aggregation performance discrep-
ancies are most visible usually occur when there is diversity [11,17] in the trained
base prediction functions ĉi. Among other possibilities [1,18,19,21], one way to
induce diversity consists in distributing data points across the network of base
classifiers in a non-iid way, that is, each base classifiers only sees inputs that
belong to a given region of the feature space. This is a realistic situation as the
data stored in a network node might be dependent on the geographic location
of this node for instance.

Furthermore, we chose to combine base classifiers with limited capacity, i.e.
weak classifiers as in boosting [7], so that the aggregated model has a significantly
larger capacity allowing to discover better decision frontiers. We decided to use
logistic regression on each local data set as this algorithm yields a linear decision
frontier. Also, logistic regression has the advantage to have no hyperparameter
to tune making the conclusions from the experiments immune to this issue. This
is also the reason why we do not use a regularized version of this algorithm.

In each experiment, 10% of the data are used for validation, i.e. nval = ntrain
10 .

We compare DELCO to the following state-of-the-art or reference methods:

– classifier selection based on accuracies,
– best base classifier,
– weighted vote combination based on accuracies,
– stacking,
– centralized classifier trained on all data,
– the independent copula ensemble (equivalent to (3)).

Each method relying on base classifier accuracies uses estimates obtained
from the validation set. The validation set is also used as part of stacking to
generate inputs for the second stage training. We also use a logistic regres-
sion for this second stage and input entries are predicted classes from each
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(a) Moons (b) Blobs (c) Circles

Fig. 1. Synthetic data sets and their partitions into feature space regions (n = 400).

base classifier. Stacking is applicable if the validation set is shared across learn-
ers. The best base classifier and the centralized classifier are relevant references
to assess the quality of the aggregation. Concerning DELCO, we examine the
simplified Gaussian copula where the copula hyperparameter is estimated by
grid search from the validation set. In a reproducible research spirit, we pro-
vide a python implementation of DELCO and other benchmarked methods
(https://github.com/john-klein/DELCO).

3.1 Synthetic Data

Using synthetic data sets is advantageous in the sense that, in the test phase,
we can generate as many data as we want to obtain very reliable estimates of
classification accuracies. We examine three different data generation processes
from the sklearn library [22]: Moons, Blobs and Circles. Each of these processes
yields non-linearly separable data sets as illustrated in Fig. 1.

The Moons and Circles data sets are binary classification problems while
Blobs involves three classes. For each problem, the data set is partitioned into
disjoint regions of the input space as specified in Fig. 1 and consequently we
combine two base classifiers for the Blobs data set and three base classifiers for
the others. Also, in each case, input vectors live in R

2.
The Moons data set consists in two half-circles to which a Gaussian noise is

added. For each half-circle, one of its extremal point is the center of the other
half-circle. The covariance matrix of the noise in our experiment is 0.3×I where I
is the identity matrix. Before adding this noise, we also randomized the position
of sample points on the half circle using a uniform distribution while the baseline
sklearn function samples such points with fixed angle step. The Blobs data set is
also obtained using a slightly different function than its sklearn version. It gen-
erates a data set from four 2D Gaussian distributions centered on each corner of
a centered square whose edge length is 4. Each distribution covariance matrix is
I. The examples generated by the distributions whose expectations are (−2;−2)
and (2; 2) are assigned to class c0. Each remaining Gaussian distribution yields
examples for either class c1 or c2. Finally, the Circles data set consists in sam-
pling with fixed angle step two series of points from centered circles with radius
0.5 and 1. A Gaussian noise with covariance matrix 0.15 × I is added to these
points. The python code for the synthetic data set generation is also online.

https://github.com/john-klein/DELCO
http://scikit-learn.org/stable/
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Table 1. Classification accuracies for several synthetic data sets. (ntrain = 200 in the
left table, ntrain = 400 in the right table)

Method Moons Blobs Circles Method Moons Blobs Circles

Clf. selection 79.25% 72.34% 62.38% Clf. selection 79.67% 72.43% 62.50%

std. 3.51% std. 0.37% std. 0.32% std. 2.14% std. 0.27% std. 0.05%

Best clf. 79.25% 72.34% 62.38% Best clf. 80.66% 72.45% 62.50%

std. 1.67% std. 0.36% std. 0.32% std. 1.08% std. 0.22% std. 0.06%

Weighted vote 84.60% 82.43% 50.50% Weighted vote 87.83% 78.72% 50.50%

std. 2.20% std. 11.02% std. 0.05% std. 1.19% std. 9.96% std. 0%

Stacking 81.07% 69.87% 70.20% Stacking 85.32% 71.70% 78.19%

std. 3.89% std. 5.37% std. 8.08% std. 4.08% std. 2.61% std. 6.95%

Indep. copula 83.46% 91.14% 79.32% Indep. copula 86.43% 93.78% 84.54%

std. 2.91% std. 7.27% std. 6.70% std. 3.28% std. 2.48% std. 4.45%

DELCO 80.57% 93.15% 84.49% DELCO 86.75% 94.39% 86.39%

Gauss. copula std. 4.68% std. 4.83% std. 4.51% Gauss. copula std. 3.07% std. 0.96% std. 1.11%

Centralized clf. 84.99% 88.49% 50.02% Centralized clf. 85.22% 88.72% 50.01%

std. 0.55% std. 0.42% std. 0.49% std. 0.45% std. 0.42% std. 0.50%

Optimal 91.50% 95.50% 94.50% Optimal 91.50% 95.50% 94.50%

std. 0% std. 0% std. 0% std. 0% std. 0% std. 0%

To evaluate the accuracy of a classifier or classifier ensemble trained on a
data set drawn from any of the above mentioned generating processes, we drew
test points from the same process until the Clopper-Pearson confidence interval
of the accuracy has length below 0.2% with confidence probability 0.95. For
each generating process, we repeated this procedure 3000 times to estimate the
expected accuracy across data set draws.

The estimated expected accuracies and the estimated accuracy standard devi-
ations are given for each classification method of the benchmark in Table 1 for
ntrain = 200 and ntrain = 400. In these experiments, one of the copula-based
methods is the top 2 method for the Moons data set and is the top 1 for the
Blobs and Circles data sets. Most importantly, both copulas based method are
obviously more robust since they never perform poorly on any data set. While
the weighted vote method is the top 1 for Moons data set, it completely crashed
on the Circles data set and converges to a random classifier.

Another result which is surprising at first sight, is that the centralized classi-
fier is sometimes outperformed by some decentralized ensembles. This is actually
well explained by the deterministic way in which input spaces are partitioned.
Indeed, the partitions are cleverly chosen so that a combination of linear deci-
sion frontiers fits intuitively a lot better the data than a single linear separation
does. In other words, ensembles have a larger VC dimension and visit a larger
hypotheses set. One may wonder to which extent it would be possible to pur-
posely partition data sets in such a relevant way to reproduce such conditions in
more general situations. This is however beyond the scope of this article in which
we address decentralized learning, a setting where we take distributed data as is
and we cannot reorganize them.

There are three situations in which significant performance discrepancies are
observed between DELCO and the independent copula. The first one is the
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Table 2. Real data set specifications

Name Size n Dim. d Nbr. of classes � Data type Source

20newsgroup 18846 100 (after red.) 20 Text Sklearn

MNIST 70000 784 10 Image Sklearn

Satellite 6435 36 6 Image features UCI repo. (Statlog)

Wine 6497 11 2 (binarized) Chemical features UCI repo. (Wine

Quality)

Spam 4601 57 2 Text UCI repo. (Spam)

Avila 10430 10 2 (binarized) Layout features UCI repo. (Avila)

Drive 58509 48 11 Current statistics UCI repo. (Sensorless

Drive Diagnosis)

Particle 130064 50 2 Signal UCI repo.

(MiniBooNE particle

identification)

Moons data set when ntrain = 200. We argue that DELCO fails to correctly
estimate the parameter λ as performance levels are reversed when ntrain = 400
and the validation set has now 40 elements instead of 20.

The other situations are the Circles data set when either ntrain = 200 or
ntrain = 400. In this case, we see that the independent copula-based ensemble
fails to keep up with DELCO regardless of how many points the validation set
contains. In conclusion, DELCO does offer increased robustness as compared to
the independent copula model provided that the validation set size allows to
tune correctly λ. Remember that when λ = 0, both models coincide, so if we
have enough data and if being independent is really what works best, then there
is no reason why we should not obtain λ̂ = 0.

3.2 Real Data

To upraise the ability of the benchmarked methods to be deployed in a decen-
tralized learning setting, we also need to test them on sets of real data. Since
decentralized learning is essentially useful in a big data context, we chose eight
from moderate to large public data sets. The specifications of these data sets are
reported in Table 2.

Example entries from the 20newsgroup data set are word counts obtained
using the term frequency - inverse document frequency statistics. We reduced
the dimensionality of inputs using a latent semantic analysis [5] which is a stan-
dard practice for text data. We kept 100 dimensions. Also, as recommended,
we stripped out each text from headers, footers and quotes which lead to over-
fitting. Besides, for the Wine and Avila datasets, the number of class labels is
originally 10 and 12 respectively. We binarized these classification tasks because
some classes have very small cardinalities making it impossible for each node
to have access to at least one example of this class. Aggregating base classifiers
trained w.r.t different subsets of class labels goes behind the scope of this paper
and will be touched in future works. In the Wine data set, class labels are wine
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Table 3. Classification accuracies (with standard deviations) for several real data sets.
(m = 10 nodes)

Method 20newsgroupMNIST Satellite Wine Spam Avila Drive Particle

Clf. selection 37.35% 66.26% 77.83% 63.23% 85.26% 60.76% 58.58% 81.28%

std. 1.38% std. 1.57% std. 2.04% std. 5.51% std. 1.31% std. 3.80% std. 2.77% std. 1.07%

Best clf. 38.25% 67.24% 79.10% 64.83% 86.60% 62.79% 58.77% 81.81%

std. 0.68% std. 0.76% std. 1.16% std. 4.75% std. 1.32% std. 2.24% std. 2.60% std. 0.32%

Weighted vote 50.17% 82.46% 81.99% 62.89% 89.61% 63.50% 70.42% 81.10%

std. 0.65% std. 1.54% std. 0.80% std. 4.35% std. 0.83% std. 2.51% std. 2.75% std. 0.72%

Stacking 14.47% 41.47% 70.16% 66.44% 89.42% 65.06% 46.27% 81.95%

std. 1.13% std. 2.90% std. 3.35% std. 3.20% std. 1.16% std. 4.97% std. 3.30% std. 0.52%

Indep. copula 49.19% 85.77% 83.21% 61.38% 89.70% 63.89% 85.45% 81.56%

std. 0.64% std. 1.30% std. 0.68% std. 5.82% std. 1.07% std. 4.83% std. 1.31% std. 2.88%

DELCO 49.06% 85.86% 82.99% 65.06% 89.35% 64.26% 85.45% 83.04%

Gauss. copula std. 0.64% std. 1.17% std. 0.83% std. 3.01% std. 1.18% 4.25% std. 1.31% std. 1.68%

Centralized clf. 58.19% 90.65% 83.16% 73.83% 92.26% 68.23% 74.95% 81.95%

std. 0.36% std. 0.33% std. 0.40% std. 0.57% std. 0.52% std. 0.44% std. 0.59% std. 0.52%

quality scores. Two classes are obtained by comparing scores to a threshold of
5. In the avila dataset, class labels are middle age bible copyist identities. The
five first copyists are grouped in one class and the remaining ones in the other
class.

Unlike synthetic data sets, we need to separate the original data set into a
train set and a test set. To avoid a dependency of the reported performances
w.r.t train/test splits, we perform 2-fold cross validation (CV). Also, we shuffled
at random examples and repeated the training and test phases 100 times.

To comply with the diversity condition, we distributed the training data over
network nodes using the following procedure: for each data set, for each class,

1. apply principal component analysis to the corresponding data,
2. project this data on the dimension with highest eigenvalue,
3. sort the projected values and split them into m subsets of cardinality ni/m

where ni is the proportion of examples belonging to class ci.

Each such subset is sent to only one node (the node being chosen arbitrarily).
We argue that this way of splitting data is somehow adversarial because some
nodes may see data that are a lot easier to separate than it should and will
consequently not generalize very well. Average accuracies over random shuffles
and CV-folds are given in Table 3 for m = 10 nodes.

In most experiments, decentralized ensemble methods have difficulties to
compete with a centralized classifier. This is presumably because PCA-based
data splits do not allow to discover better decision frontiers. However, for the
Drive and Particle datasets, it is remarkable that the copula-based approaches
achieve higher accuracies than the centralized classifier.

Most importantly, we see that one of the copula-based method is always either
the top 1 decentralized method or the top 2 which is in line with the robustness
observed in the synthetic data set experiments. When the Gaussian copula is
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Table 4. Classification accuracies (with standard deviations) for several real data sets.
(m = 10 base classifiers. 6 of them are identical ones.)

Method 20newsgroup MNIST Satellite Wine Spam Avila Drive Particle

Clf. selection 45.90% 73.20% 79.60% 62.37% 86.91% 58.83% 64.18% 81.40%

std. 0.70% std. 0.54% std. 1.03% std. 4.95% std. 2.20% std. 4.88% std. 2.84% std. 0.86%

Best clf. 46.11% 73.26% 80.23% 63.30% 87.42% 61.24% 64.31% 81.68%

std. 0.69% std. 0.55% std. 0.75% std. 4.32% std. 1.89% std. 2.98% std. 2.83% std. 0.33%

Weighted vote 47.07% 75.14% 79.79% 61.87% 86.94% 58.27% 65.80% 79.87%

std. 0.66% std. 0.64% std. 0.69% std. 4.62% std. 2.48% std. 4.49% std. 2.63% std. 1.74%

Stacking 14.25% 36.69% 70.61% 64.91% 89.35% 61.29% 40.17% 80.43%

std. 1.08% std. 2.13% std. 3.05% std. 2.79% std. 1.47% std. 4.89% std. 4.60% std. 1.43%

Indep. copula 47.49% 76.37% 81.50% 62.13% 87.20% 58.28% 71.28% 81.56%

std. 0.67% std. 0.64% std. 0.87% std. 4.90% std. 2.41% std. 4.50% std. 2.52% std. 0.74%

DELCO 47.04% 77.97% 82.00% 64.65% 89.43% 60.93% 72.10% 83.15%

Gauss. copula std. 0.89% std. 0.62% std. 0.84% std. 2.70% std. 1.56% std. 3.48% std. 2.26% std. 1.70%

Centralized clf. 59.41% 90.77% 83.15% 73.83% 92.26% 61.29% 74.94% 88.49%

std. 0.39% std. 0.14% std. 3.05% std. 0.57% std. 0.52% std. 4.88% std. 0.59% std. 2.60%

outperformed by the independent copula, the maximal absolute accuracy dis-
crepancy is 0.37%. However, when the independent copula is outperformed by
the Gaussian one, the maximal absolute accuracy discrepancy is 3.68%.

To better upraise the added value brought by DELCO, we performed another
experiment in which six out of the ten base classifiers are replaced by six copies of
a majority vote ensemble relying on those six base classifiers. In this situation,
there is clearly a strong dependency among base classifiers. Since copulas are
meant to capture dependency information, a better fit should be achieved by
the Gaussian copula. This is indeed confirmed by the corresponding average
accuracies which are reported in Table 4.

In this second series of results, we see that performance discrepancies between
DELCO and the independent copula are much larger. Except for the 20news-
group data set, the Gaussian copula always achieves higher accuracies than the
independent copula. DELCO is the top one decentralized method for 5 datasets
and the top 2 for the remaining ones2. Classifier selection methods are immune to
the artificially added dependency because, by construction, they are idempotent
methods. They are nevertheless still outperformed by ensemble methods.

4 Conclusion

In this paper, we introduce a new ensemble method that relies on a probabilistic
model. Given a set of trained classifiers, we evaluate the probabilities of each
classifier output given the true class on a validation set. We use a Gaussian copula
to retrieve the joint conditional distributions of these latter which allow to build
an ensemble decision function that consists in maximizing the probability of the
true class given all classifier outputs.
2 We consider that DELCO and weighted vote have equal level of performances for

the 20newsgroup data set.
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We motivate this new approach by showing that it fits a decentralized learn-
ing setting which is a modern concern in a big data context. The approach is
validated through numerical experiments on both synthetic and real data sets.
We show that a Gaussian copula based ensemble achieves higher robustness than
other ensemble techniques and can compete or outperform a centralized learning
in some situations.

In future works, we plan to investigate other estimation techniques for the
copula parameter than grid search which is suboptimal. In particular, we would
like to set up a Bayesian approach to that end. This would also allow us to
observe if tying the correlation matrices is too restrictive or not. More complex
correlation matrix patterns will also be examined. Also, other copula models will
tested and the sensitivity of the method w.r.t the chosen copula family will be
studied.
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8. Genest, C., Nešlehová, J.: A primer on copulas for count data. ASTIN Bull.: J.
Int. Actuar. Assoc. 37(2), 475–515 (2007)

9. Gholami, B., Yoon, S., Pavlovic, V.: Decentralized approximate Bayesian inference
for distributed sensor network. In: Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence, pp. 1582–1588. AAAI Press (2016)

10. Giannakis, G.B., Ling, Q., Mateos, G., Schizas, I.D., Zhu, H.: Decentralized learn-
ing for wireless communications and networking. In: Glowinski, R., Osher, S.J.,
Yin, W. (eds.) Splitting Methods in Communication, Imaging, Science, and Engi-
neering. SC, pp. 461–497. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-41589-5 14

11. Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE Trans. Pattern Anal.
Mach. Intell. 10, 993–1001 (1990)

12. Ho, T.K., Hull, J.J., Srihari, S.N.: Decision combination in multiple classifier sys-
tems. IEEE Trans. Pattern Anal. Mach. Intell. 16(1), 66–75 (1994)

13. Kim, H.C., Ghahramani, Z.: Bayesian classifier combination. In: Artificial Intelli-
gence and Statistics, pp. 619–627 (2012)

14. Kittler, J., Hatef, M., Duin, R., Matas, J.: On combining classifiers. IEEE Trans.
Pattern Anal. Mach. Intell. 20(3), 226–238 (1998)

https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/978-3-319-41589-5_14
https://doi.org/10.1007/978-3-319-41589-5_14


316 J. Klein et al.

15. Kittler, J., Alkoot, F.M.: Sum versus vote fusion in multiple classifier systems.
IEEE Trans. Pattern Anal. Mach. Intell. 25(1), 110–115 (2003)

16. Koren, Y.: The bellkor solution to the netflix grand prize. Netflix Prize Doc. 81,
1–10 (2009)

17. Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active
learning. In: Advances in Neural Information Processing Systems, pp. 231–238
(1995)

18. Maclin, R., Shavlik, J.W., et al.: Combining the predictions of multiple classifiers:
using competitive learning to initialize neural networks. In: IJCAI, pp. 524–531.
Citeseer (1995)

19. Merz, C.J.: Dynamic learning bias selection. In: Proceedings of the Fifth Interna-
tional Workshop on Artificial Intelligence and Statistics, Ft. Lauderdale, FL, pp.
386–395 (1995, Unpublished)

20. Merz, C.J.: Combining classifiers using correspondence analysis. In: Advances in
Neural Information Processing Systems, pp. 591–597 (1998)

21. Opitz, D.W., Shavlik, J.W.: Generating accurate and diverse members of a neural-
network ensemble. In: Advances in Neural Information Processing Systems, pp.
535–541 (1996)

22. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

23. Sontag, E.D.: A learning result for continuous-time recurrent neural networks. Syst.
Control Lett. 34(3), 151–158 (1998)

24. Tresp, V.: A Bayesian committee machine. Neural Comput. 12(11), 2719–2741
(2000)

25. Wolpert, D.H.: Stacked generalization. Neural Netw. 5(2), 241–259 (1992)
26. Wozniak, M., Grana, M., Corchado, E.: A survey of multiple classifier systems as

hybrid systems. Inf. Fusion 16, 3–17 (2014). Special Issue on Information Fusion
in Hybrid Intelligent Fusion Systems

27. Xu, L., Krzyzak, A., Suen, C.Y.: Methods of combining multiple classifiers and
their applications to handwriting recognition. IEEE Trans. Syst. Man Cybern. 22,
418–435 (1992)

28. Zezula, I.: On multivariate gaussian copulas. J. Stat. Plan. Inference 139(11), 3942–
3946 (2009). Special Issue: The 8th Tartu Conference on Multivariate Statistics &
The 6th Conference on Multivariate Distributions with Fixed Marginals



Decentralized Recommendation Based
on Matrix Factorization: A Comparison

of Gossip and Federated Learning

István Hegedűs1(B) , Gábor Danner1 , and Márk Jelasity1,2

1 University of Szeged, Szeged, Hungary
ihegedus@inf.u-szeged.hu

2 MTA SZTE Research Group on Artificial Intelligence, Szeged, Hungary

Abstract. Federated learning is a well-known machine learning app-
roach over edge devices with relatively limited resources, such as mobile
phones. A key feature of the approach is that no data is collected cen-
trally; instead, data remains private and only models are communicated
between a server and the devices. Gossip learning has a similar appli-
cation domain; it also assumes that all the data remains private, but it
requires no aggregation server or any central component. However—one
would assume—gossip learning must pay a price for the extra robust-
ness and lower maintenance cost it provides due to its fully decentral-
ized design. Here, we examine this natural assumption empirically. The
application we focus on is making recommendations based on private
logs of user activity, such as viewing or browsing history. We apply low
rank matrix decomposition to implement a common collaborative filter-
ing method. First, we present similar algorithms for both frameworks
to efficiently solve this problem without revealing any raw data or any
user-specific parts of the model. We then examine the aggregated cost in
both cases for several algorithm-variants in various simulation scenarios.
These scenarios include a real churn trace collected over mobile phones.
Perhaps surprisingly, gossip learning is comparable to federated learning
in all the scenarios and, especially in large networks, it can even outper-
form federated learning when the same subsampling-based compression
technique is applied in both frameworks.

1 Introduction

Mobile phones represent a key source of data and a very important platform not
only for running pre-trained models but also for learning [17]. This is because
collecting data centrally has become more and more problematic over the past
few years due to novel data protection rules [7] as well as the increasing public
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awareness to privacy issues. For this reason, there is an increasing interest in
methods that keep the raw data on the device and process it using distributed
algorithms.

Google introduced federated learning to answer this challenge [10,12]. Not
unlike the well-known parameter server architecture [6], a server maintains the
current model and regularly distributes it to the workers who in turn calcu-
late a gradient update and send it back to the server, where the updates are
aggregated. In federated learning, this framework is optimized so as to minimize
communication between the server and the workers. For this reason, the local
update calculation is more thorough, and compression techniques can be applied
when uploading the updates to the server. Gossip learning has also been pro-
posed to address the same challenge [9,14]. This approach is fully decentralized,
no parameter server is necessary. Nodes exchange and aggregate models directly.
Since no infrastructure is required, and there is no single point of failure, gos-
sip learning enjoys a significantly cheaper scalability and better robustness than
centralized approaches.

However, it is not clear whether gossip learning is competitive in terms of con-
vergence time and communication cost. To shed light on this question, we carry
out an empirical comparison of the two approaches. To do this, we implement a
recommender system in both paradigms, based on low-rank matrix decomposi-
tion. The gossip learning implementation is based on our previous work [9]. We
propose a federated learning implementation as well, following the same design,
but adapted to the centralized communication pattern. Also, inspired by [10],
we apply subsampling to reduce communication in both approaches.

The result of our comparison is that gossip learning is in general comparable
to the centrally coordinated federated learning approach, and in some scenarios
it actually outperforms federated learning. One should obviously not jump to
conclusions based on one empirical study, but our results suggest that fully
decentralized algorithms perhaps deserve more attention in the future.

To sum up our key original contributions in the present study: (1) we propose
an efficient collaborative filtering method for federated learning; (2) we improve
several details of our previous solution [9] as well including the introduction of
coordinate-based age parameters to manage aggregation and the application of
an optimized version of subsampling to gossip learning; and (3) we compare
the two methods empirically based on a realistic churn trace collected by the
application Stunner [2].

We are aware of only two (at the time of writing, unpublished) studies that
address the specific problem of recommender systems in federated learning. The
first is based on the idea of meta-learning [4]. Here, it is assumed that the devices
have enough data to learn a model based only on local data. Then, federated
learning is used to find the optimal hyperparameters for the algorithm, using the
devices to calculate gradients for the hyperparameters. We are interested in sce-
narios where there is not much local data, so meta-learning is not an option. The
second study is closer to our approach [1] in spirit. However the authors assume
a different setup with only implicit binary feedback as data (e.g., a movie was
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watched or not). Due to this, their input data is a dense matrix (there are no rat-
ings labeled as “unknown”) so compressed communication is more problematic.
We focus on modeling only the known ratings (a small minority of all ratings)
and make predictions based on these. Also, the optimization algorithm they
approximate is alternating least squares with a federated gradient optimization
step in the inner loop, while we use simple SGD which is more robust to failure
and asynchrony.

We note that both approaches offer mechanisms for explicit privacy protec-
tion, apart from the basic feature of not collecting data. In federated learning,
Bonawitz et al. [3] describe a secure aggregation protocol, whereas for gossip
learning one can apply the methods described in [5]. Here, we are concerned
only with the efficiency of the different communication patterns and do not
compare security mechanisms.

The outline of the paper is as follows. In Sect. 2, we describe the low rank
matrix decomposition problem, formulated as a machine learning problem. Here,
we also present the key ideas to solve this problem in a decentralized setting.
In Sect. 3, we describe the basics of solving the problem with federated learning
while in Sect. 4 we present the gossip learning algorithm for the same problem. In
Sect. 5 we present the key details of the learning algorithm that are common to
both approaches. These include the details of the update rule, the subsampling
technique, and the initialization. Finally, in Sect. 6, we present our empirical
results.

2 Rank-k Matrix Approximation

Here, we present the problem definition in the form of a model and a corre-
sponding loss function. We also describe our approach and main assumptions—
common to both federated learning and gossip learning—regarding the optimiza-
tion of the model.

2.1 Problem Definition

The problem of rank-k matrix approximation [11] is defined in the following way.
Let A ∈ IRm×n be a matrix that contains our data (for example, user ratings
of items such as movies, songs, or locations). The goal is to find two matrices
X ∈ IRm×k and Y ∈ IRn×k that minimize the error function

J(X,Y ) =
1
2

∥
∥A − XY T

∥
∥
2

F
=

1
2

m∑

i=1

n∑

j=1

(aij −
k∑

l=1

xilyjl)2. (1)

We consider the matrix XY T an optimal rank-k approximation of A. Note that
the rank of X and Y T (and therefore XY T ) is at most k. Usually a k much
smaller than m and n is chosen to significantly compress the data. X and Y T

can be interpreted as high level features (e.g. genres of movies and tastes of
users) that compactly represent the original data.



320 I. Hegedűs et al.

Often in practice we have only partial information regarding A; that is, some
values in A might be unknown. As an important generalization of the problem
above, here we are looking for a rank-k decomposition that approximates only
the known values. A common approach is to minimize the error function

J(X,Y ) =
1
2

∑

(i,j)∈I

(aij −
k∑

l=1

xilyjl)2 +
λ

2
‖X‖2F +

λ

2
‖Y ‖2F , (2)

where I contains the indices of the known values of A. We can then use the
decomposition XY T to approximate the unknown values in A, since XY T is
fully defined. Note the here we also included additional regularization terms and
the regularization parameter λ. This helps stabilize the optimization process in
a machine learning context.

Another practical technique used is to add bias terms to the model. The bias
terms b ∈ IRm×1 and c ∈ IR1×n are incorporated into the model via the loss
function

J(X,Y, b, c) =
1
2

∑

(i,j)∈I

(aij − bi − cj −
k∑

l=1

xilyjl)2 +
λ

2
‖X‖2F +

λ

2
‖Y ‖2F . (3)

For example, in a recommender system, the bias can represent the fact that some
users tend to give higher or lower scores than others, and some movies tend to get
higher or lower scores. Intuitively, the bias represents average scores, and X and
Y represent relative differences. This often enhances the prediction performance.
With bias, the approximation of A (both known and unknown values) is given
by XY T + b1n + cT1m where 1k is a row vector of k ones.

2.2 Optimization Approach

Our targeted application environment consists of a potentially large set of per-
sonal devices holding private data. We follow the approach in our previous
paper [9] and we will adapt the same approach to federated learning. We shall
assume that each row in matrix A is stored on exactly one device. We shall also
assume that each device will host exactly one row. This setup covers applica-
tions where one row of the matrix belongs to one user and the devices belong to
exactly one user, as in the case of mobile phones. One matrix row can naturally
represent any kind of private user activity, such as watching movies. We should
add though that if more than one row is stored on a device, the algorithms are
still applicable.

The main idea is that matrix X will also be stored in a similar manner; that
is, every device will store the row of X that belongs to the row of A stored on
the device. This way, the matrix X that contains information about the users
is completely private, every device knows only its own row. However, the entire
matrix Y will be shared among all the devices. This is safe, because matrix Y
contains only user-independent information about all the items the users might
consume.
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Algorithm 1. Federated Learning Master
1: (t, Y, c) ← initY()
2: loop
3: (˜t, ˜Y , c̃) ← (0n, 0n,k, 0n)
4: for every node i in parallel do � non-blocking (in separate thread(s))
5: send (t, Y, c) to i
6: receive (t′, Y ′, c′) from i � model gradient
7: (˜t, ˜Y , c̃) ← (˜t + t′, ˜Y + Y ′, c̃ + c′)
8: end for
9: wait(Δf ) � the round length

10: for j ← 1 . . . n do
11: if ˜tj �= 0 then
12: Yj ← Yj + ˜Yj/˜tj
13: cj ← cj + c̃j/˜tj
14: tj ← tj + 1
15: end if
16: end for
17: end loop

The gradient of Y computed by a single user may leak private data. In
federated learning, Bonawitz et al. [3] describe a secure aggregation protocol
with additional measures to prevent this kind of information leakage. In gossip
learning, one can apply the secure distributed mini-batch methods described
in [5]. We do not include such additional techniques in our present study.

Using the loss function defined in Eq. (3), and assuming that every device
has a copy of Y , the gradient of both its own row of X and the global matrix Y
can be computed by each device locally, w.r.t. the local row of A. Devices can
use these gradients to update their own row of X locally. Therefore, all we need
to take care of is to somehow aggregate the gradients of Y over the devices and
then redistribute new versions of Y . Federated learning and gossip learning offer
two, rather different alternative solutions to this problem. (Note that the bias
vectors b and c are handled similarly to X and Y , respectively.)

3 Federated Learning

Here, we present the well-known federated learning algorithm [10,12], adapted
to the problem of rank-k matrix decomposition.

In this framework, there is a master node that runs Algorithm1, and several
worker nodes that execute Algorithm 2. The master first initializes the global
model (t, Y, c) that contains matrix Y , the bias vector c and an age vector t. For
each row j, tj counts how many times Yj and cj have been updated. Having a
separate counter for each row is necessary because there can be a very different
number of examples for each item, and thus there can be a different number of
updates applied to each row (see below).

Similarly, each worker node initializes its private model (xi, bi) that contains
its own row of X, xi, and the corresponding bias bi. After initialization, in every
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Algorithm 2. Federated Learning Worker
1: (xi, bi) ← initX()
2:
3: procedure onReceiveModel(˜t, ˜Y , c̃)
4: ((t, Y, c), (xi, bi)) ←update((˜t, ˜Y , c̃), (xi, bi), ai) � ai: the local ratings
5: (t′, Y ′, c′) ← (t − ˜t, Y − ˜Y , c − c̃)
6: send (compress(t′, Y ′, c′)) to master
7: end procedure

round, the master sends the global model to all the workers. The workers then
update the received global model and their own local user model using the local
ratings, and they then send the (potentially compressed) model gradient to the
master. In this message to the master, the vector t′ can contain only ones and
zeros, indicating which rows of Y (and elements of c) were updated. At the end of
each round, the server updates the global model with the average of the received
gradients.

Each row Yj (and value cj) will typically have different associated t̃j values
depending on how many valid (non-missing) values are there in the matrix col-
umn Aj , and also on which clients manage to send a message to the master in
the given round. We can think of t̃j as the effective mini-batch size correspond-
ing to updating Yj and cj . Thus, by normalizing with t̃j , we effectively perform
parallel mini-batch updates on Yj and cj .

Note that in the federated learning framework it is typically assumed that the
workers are synchronized; that is, the master has to wait until all (or most of)
the nodes send a gradient in the given round and, most importantly, the workers
have to wait as well for the next globally aggregated model from the master
to process. Although asynchronous distributed learning is common, federated
learning also seeks to handle the non-uniform sampling of training data, which
is expected to make asynchronous implementations less stable.

The methods update, compress, initX and initY shall be explained in
detail in Sect. 5. Note that the same methods are used in gossip learning as well.

4 Gossip Learning

In gossip learning, there is no master node. All the participants are equivalent,
and form a P2P network [14]. All the nodes run Algorithm3. The nodes first
initialize their own copy of the global model (t, Y, c) as well as the private model
(xi, bi). Then, in each cycle, they send their (potentially compressed) copy of the
global model to a random online neighbor in the P2P network. Upon receiving a
model, the node merges it into its own, then updates both the resulting merged
new global model and the local model, using the local ratings.

As mentioned above, methods update, compress, initX and initY shall be
explained in detail in Sect. 5. Note that the same methods are used by federated
learning as well.
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Algorithm 3. Gossip Learning
1: (t, Y, c) ← initY()
2: (xi, bi) ← initX()
3: loop
4: wait(Δg)
5: p ← selectPeer()
6: send (compress(t, Y, c)) to p
7: end loop
8:
9: procedure onReceiveModel(˜t, ˜Y , c̃)

10: (t, Y, c) ←merge((t, Y, c), (˜t, ˜Y , c̃))
11: ((t, Y, c), (xi, bi)) ←update((t, Y, c), (xi, bi), ai)
12: end procedure

Algorithm 4. Various versions of the merge function
1: procedure mergeNone((t, Y, c), (˜t, ˜Y , c̃))
2: return (˜t, ˜Y , c̃)
3: end procedure
4:
5: procedure mergeAverage((t, Y, c), (˜t, ˜Y , c̃))
6: for j ← 1 . . . n do
7: if ˜tj �= 0 then
8: w ← ˜tj

tj+˜tj

9: tj ← max(tj ,˜tj)
10: Yj ← (1 − w)Yj + w˜Yj

11: cj ← (1 − w)cj + wc̃j
12: end if
13: end for
14: return (t, Y, c)
15: end procedure

Method merge, however, is specific to gossip learning, and it is responsible
for aggregating the updates computed at the devices. Possible implementations
of this method are listed in Algorithm 4. The first option is not to perform any
aggregation, in which case different versions of the global model perform random
walks in the network independently. The other option is to take the average of
the two models row by row, weighted by the corresponding elements of the age
vectors so that the more converged copy has a larger effect.

An important effect of this weighted merging technique is that the freshly
initialized rows of the model of any newly joined node are ignored. This is because
if a row has never been updated, then the age is zero for the given row. The
new model will be assigned the maximum of the two merged ages. This is a
conservative heuristic that performed better in our preliminary experiments than
possible alternatives such as the sum of the two ages. Note that the age of the
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Algorithm 5. Model initialization
1: procedure initX()
2: for d ← 1 . . . k do
3: xd ← rand() · √

(Rmax − Rmin)/k � rand() ∼ U(0, 1)
4: end for
5: b ← Rmin/2
6: return (x, b)
7: end procedure
8:
9: procedure initY()

10: for j ← 1 . . . n do
11: tj ← 0
12: (Yj , cj) ←initX()
13: end for
14: return (t, Y, c)
15: end procedure

different rows can differ significantly because the number of known ratings for
different items typically has a large variance.

Since gossip learning uses a P2P network, we have to make our assumptions
about this network explicit. We assume that there is a membership service in
our system. This service provides unique identities to the participants that might
include public and private keys for public key cryptography that are tied to the
network address of the node. The membership service also offers peer sampling,
accessed through method selectPeer. That is, all the nodes are assumed to have
access to addresses of live nodes from the network. In practice, peer sampling
can have a decentralized implementation that can be dynamic [16] or it can be
based on a static network with random neighbors [15] that is able to handle
NAT devices as well. It can also be implemented as a centralized service. Ideally,
the neighbors returned by the peer sampling service should be uniform random
samples of the live nodes, but in practice it suffices if the network has good mixing
when, for example, the neighbors are sampled from a fixed overlay network graph.

5 Shared Methods

Here, we present those methods that are used by both federated learning and
gossip learning. Let us begin with the initialization methods in Algorithm 5.
Both X and Y are initialized with uniform random numbers from the range
[0,

√

(Rmax − Rmin)/k], and the initial bias is set to Rmin/2, where Rmax and
Rmin are the largest and the smallest possible ratings, respectively. This ensures
that when a prediction xiY

T
j +bi+cj is made using initial values, the result falls

in the range [Rmin, Rmax].
As for learning, both models use a stochastic gradient descent (SGD) update

rule with the fixed learning rate η (see Algorithm6). The age vector t is incre-
mented in positions corresponding to updated rows of Y (that is, for those items
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Algorithm 6. Model update rule
1: procedure update((t, Y, c), (xi, bi), ai)
2: for all j where aij is defined do
3: tj ← tj + 1
4: err ← aij − xiY

T
j − bi − cj

5: (Yj , xi) ← ((1 − ηλ)Yj + η · err · xi, (1 − ηλ)xi + η · err · Yj)
6: cj ← cj + η · err
7: bi ← bi + η · err
8: end for
9: return ((t, Y, c), (xi, bi))

10: end procedure

Algorithm 7. Various versions of the compress function
1: procedure compressNone(t, Y, c)
2: return (t, Y, c)
3: end procedure
4:
5: procedure compressSubsampling(t, Y, c)
6: U ← {1, . . . , n}
7: D ← {j ∈ U |aij is defined}
8: Jd ← random subset of D of size min(s, |D|)
9: Ju ← random subset of (U \ D) of size (s − |Jd|)

10: for all j ∈ Jd ∪ Ju do
11: t′

j ← tj
12: Y ′

j ← Yj

13: c′
j ← cj

14: end for
15: return (t′, Y ′, c′) � we assume a sparse vector representation
16: end procedure

that the user rated). The update rule simply follows from the partial derivatives
of (3). Note that this version of the update rule uses a constant learning rate,
but other implementations might also use the age vector passed to the update
method.

Let us now turn to the compression methods. In this study, we focus on
subsampling as a simple compression technique. That is, only s rows of Y are
sent along with the corresponding elements of t and c, where s is the compres-
sion parameter (see Algorithm7). Subsampling is performed randomly without
replacement from the updated rows (that is, those rows where the corresponding
rating is known) and, if there is still room left, from the remaining, non-updated
rows. Note that sending non-updated rows in fact makes sense because in such
cases the given node might act as a forwarding agent. In other words, such rows
might be useful for the recipient nodes.
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6 Experiments

Here, we present our simulation experiments with gossip learning and federated
learning over the MovieLens database in several scenarios.

Table 1. The main properties of the MovieLens data sets and algorithm parameters

100K 1M 10M

# users (m) 943 6,040 69,878
# movies (n) 1,682 3,952 10,677
# ratings 100,000 1,000,209 10,000,054
Density 6.3% 4.2% 1.3%
Training/Test 90.57%/9.43% 93.96%/6.04% 93.01%/6.99%
Time period 20.09.97–22.04.98 25.04.00–28.02.03 09.01.95–05.01.09

η/λ/k 10−2/10−1/5 10−2/10−1/5 10−2/10−1/5

Message size 0.6 Mbit 1.5 Mbit 4.1 Mbit

6.1 Datasets

The MovieLens data sets [8] were collected by the GroupLens Research Project
at the University of Minnesota. The data was collected through the MovieLens
website (movielens.org) over various periods of time, depending on the size of the
set. The main properties of the MovieLens data sets are shown in Table 1 and
Fig. 1. Each data set is split into a training matrix and a test matrix in such a
way that for each user, there are either 0 or 10 defined values in the test matrix.
Each row of the training matrix (representing the ratings of a given user) was
assigned to a unique node in the simulation experiments.

6.2 System Model

In our simulations, fixed random 20-out graphs were used as the overlay network.
The number of nodes was equal to the number of users in the given data set. In
the churn-free scenario, every node stayed online for the whole experiment. A real
availability trace, gathered from smartphones, was used in the churn scenario.
A message was considered successfully delivered if and only if both the sender
and the receiver remained online during the transfer. Peer selection (method
selectPeer) returned online nodes only.

The nodes had the same upload and download bandwidths. The motivation
for this was that it is likely that in a real application there will be a low, uniform,
configured bandwidth cap. The server had infinite bandwidth (which favors fed-
erated learning, as gossip learning does not use a server). The transfer time of a
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Fig. 1. Visualization of the distribution of the number of rated items per user. Users
are sorted according to the number of their rated items for all three databases.

full model was assumed to be 1728 s (irrespective of the data set used) in the low
bandwidth scenario, and 172.8 s in the high bandwidth scenario. This allowed
for around 100 and 1000 iterations over the course of 48 h, respectively.

The cycle length parameters Δg and Δf were set so that the two approaches
fully utilized the available bandwidth. In our case this also means that the two
algorithms transfer the same amount of data overall in the network in the same
amount of time, making comparisons of convergence dynamics fair. The gossip
cycle length Δg is exactly the transfer time of a model, which is proportionally
smaller when compression is used. The cycle length Δf of federated learning is
the round-trip time, that is, the sum of the upload and download times. In this
case, only the upstream transfer is compressed.

Note that we use rather low bandwidth settings because in the churn sce-
nario if the transfer is very fast, the network hardly changes during the learning
process, the models are learned over an effectively static subset of the nodes.
Slower transfer is more challenging, because more transfers fail, just like in the
case of very large machine learning models such as deep neural networks. (This
issue is completely irrelevant in the churn-free scenario, since the dynamics are
identical apart from the scale of time.)

6.3 Smartphone Traces

We used a trace collected by STUNner, a locally developed, openly available
smartphone application [2]. In short, the app monitors and collects information
about the battery level, charging status, bandwidth, and NAT type.

The trace contains time series spanning varying lengths of time, originating
from 1191 different users. Based on the UTC hour of day, we split the data into
2-day segments (with a one-day overlap), resulting in 40,658 segments altogether.
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Fig. 2. Online session length histogram (left) and device churn (right).

Using this, we can simulate a virtual 48-hour period by assigning a segment to
each simulated node.

To make our algorithm phone and user friendly, we consider a device to be
online (available) when it has been on a charger and connected to the Internet
(with a bandwidth of at least 1 Mbit/s) for at least a minute, therefore we do
not use battery power at all.

The main properties of the trace are shown in Fig. 2. The plot on the right
illustrates churn by showing what percentage of the nodes left, or joined the
network (at least once) in any given hour. Notice that at any given moment
about 20% of the nodes are online. The mean online session length is 81.368min.

6.4 Hyperparameters

The learning rate η and regularization parameter λ were optimized in the churn-
free, low-bandwidth, uncompressed scenario. The resulting values are η = 10−2

and λ = 10−1, as shown in Table 1. We used rank-5 factorization.

6.5 Results

We used PeerSim [13] for the simulations. We measured performance with the
help of the root-mean-square deviation

RMSE =
√

1
|T |

∑

i,j∈T

(ri,j − xiyT
j )2,

where R ∈ IRm×n is the test matrix, and T is the set of indices defined in R. In
the case of gossip learning, the error is calculated using the models stored in the
currently online nodes and the corresponding rows of R. In the case of federated
learning, the aggregated global model is used instead of the local ones. Figure 3
contains our results without churn, and Fig. 4 shows the same experiments over
the smartphone trace. The evaluated algorithms are
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Fig. 3. Churn-free scenario with 1 epoch (left) and 10 epochs (right).

Gossip Learning: no merging and no subsampling. Here, the cycle length
equals the time needed for one full model transmission.

Gossip Learning Merge: with merging but no subsampling, so the cycle
length is still one full transmission.

Gossip Learning 10%: with merging and subsampling with s = n/10. Here,
the cycle length corresponds to 0.1 full transmissions.

Federated Learning: no subsampling, so the cycle length corresponds to two
full transmissions: upload and download.

Federated Learning 10%: the uploaded model is subsampled with s = n/10,
so the cycle length corresponds to 1.1 full transmissions.
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In Fig. 3 we include results with 1 and 10 epochs of local learning in the
left and right columns, respectively. In the case of 10 epochs, the local gradi-
ent update step is iterated 10 times. Clearly, for both methods, increasing the
number of epochs improves convergence speed without any extra communica-
tion. The compressed variants consistently perform better. Federated learning
has an initial advantage, which disappears after a few hours. In fact, for the
largest problem, gossip learning is almost identical to federated learning, and
the difference between the two methods seems to decrease with increasing net-
work size. Interestingly, when only 1 epoch is performed, gossip learning actually
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Fig. 4. Churn trace scenario with low bandwidth (left) and 10× higher bandwidth
(right).
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outperforms federated learning by a significant margin especially on the largest
network.

In Fig. 4 we ran one local epoch in each experiment, but the plots on the right
show the effect of speeding up communication. Faster communication results in
a dramatically better performance, simply because the convergence speed is able
to “beat” the speed of churn. Apart from this observation, the other conclusions
are similar, namely compression helps both methods and gossip learning per-
forms relatively better in larger networks. Overall, federated learning and gossip
learning have a very similar performance, despite the disadvantage of gossip
learning of not relying on a central server for aggregation and broadcast.

7 Conclusions

In this study, our main goal was to explore the differences between federated
learning and gossip learning over a collaborative filtering task. Since gossip learn-
ing does not rely on central servers, one might expect it to pay a performance
penalty in terms of convergence speed, when given the same communication
budget.

Our main conclusion based on our empirical study is that federated learning
does not seem to have a clear performance advantage. In fact, in certain sce-
narios gossip learning proved to be preferable. Obviously, the design space for
both protocols is very large, and there are many possibilities for improving the
communication efficiency in both paradigms. It is also a non-trivial question of
how one should model communication constraints and costs, since this depends
on many factors. However, it is interesting, and perhaps non-trivial, that gos-
sip learning is clearly comparable in performance. This might motivate further
research into fully decentralized methods that otherwise have clear benefits such
as a very low cost of entry that is not dependent of the network size, or the
robustness due to the lack of any critical components.
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Abstract. In decentralized distributed systems the data resides on the
compute devices, which are connected through a high latency network
that can adversely impact the communication cost. In such systems, it
is desirable to employ a training regime that is inherently decentralized,
where learning algorithms operate on local hosts using only the local data
partitions. To ensure their convergence to a joint model, the parameters
of the local models have to be regularly averaged. As each averaging
operation incurs network communication costs, the right balance has to
be found between either communication intensive dense averaging oper-
ations or sparse averaging operations which slows down the convergence.
We propose a hierarchical two-layer sparse communication topology, a
ring of fully-connected meshes of workers that communicate with each
other (Ring-Star). Ring-Star allows a principled trade-off between the
convergence speed and communication overhead and is well suited to
loosely coupled distributed systems. We demonstrate on an image clas-
sification task and a batch stochastic gradient descent learning (SGD)
algorithm that our proposed method shows similar convergence behavior
as Allreduce while having lower communication cost of Ring.

Keywords: Decentralize sparse topology · Model averaging ·
Distributed stochastic gradient descent · Deep learning

1 Introduction

Mini-batch Stochastic Gradient Descent is often employed for training deep
learning models in distributed settings, as each instance of data can be processed
in parallel, which is useful in speeding up the learning process. The most widely
used distributed learning approaches focus mainly on using centralized training
procedures [4,7], which are based on a parameter server (PS) framework. How-
ever, the centralized approaches are not suited for the computing environment,
where data cannot be centralized and the central server can become a bottleneck
due to the underlying network characteristics [8]. Decentralized training proce-
dures [8,9] are proposed to scale on loosely connected, high latency computing
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systems. In these procedures, workers are sparsely connected to each other form-
ing a Ring topology. For synchronization, each worker averages its model with
two neighboring workers. Decentralized approaches are motivated by control
systems and wireless sensor network research, which solve a global consensus
problem. These procedures show a significant reduction in the communication
overhead. However, sparse averaging increases the parameter variance between
workers, which is termed as “network error” in the literature [1,13]. The “net-
work error” or variance is large in the early stages of optimizing a non-convex
objective and frequent averaging helps to reduce the variance. Despite being
communication efficient, decentralized training procedures suffer from high net-
work error, which increases with an increasing number of workers. On the other
hand, a grand averaging step, like Allreduce [2], incurs zero network error but is
a communication inefficient operation, especially in a high latency network.

The competing objectives of reducing communication overhead, while keep-
ing the network error as small as possible is a challenging task, which requires
designing a topology that benefits from both worlds. In this paper we analyze
different characteristics of decentralized topologies and design a sparse topol-
ogy that balances trade-off between communication cost and network error.
The main contributions of this paper are (1) a new Ring-Star topology for a
decentralized parallel SGD that balances network error and communication over-
head, and (2) detailed analysis of different design choices for designing a sparse
topology. The empirical evaluations on an image classification task show, supe-
rior convergence behavior of Ring-Star as compared to communication efficient
Ring based topologies. As a result Ring-Star achieves better final test accuracy
than Ring and RingRandom in same wall clock time.

2 Decentralized Model Averaging

2.1 Problem Formulation

Decentralized distributed settings consist of a set of distributed workers V =
{1, · · · , V }, where each worker v ∈ V holds a local model ŷ(x; θv), with model
parameters θv ∈ R

K and runs a mini-batch SGD to update its model parameters
by sampling a mini-batch Bv ⊂ Dv from the local shard of data Dv.

θt+1
v = θtv − η

1
|Bv|

∑

(x,y)∈Bv

∇L(y, ŷ(x; θtv)) (1)

where L(·, ·) is a loss function. Typical loss functions include the cross entropy
loss, square loss, hinge loss etc. These workers periodically synchronize their
models by averaging over the models learned by other workers. Given a weight
matrix W ∈ R

V ×V , the averaging step at worker v can be defined as:

θ̄tv =
∑

v′∈V
Wv,v′θtv′ (2)
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The weight matrix (or mixing matrix) W is symmetric and W1 = 1, where
1 denotes a vector of all ones. The weight matrix W defines the influence of
the averaging step in Eq.(2) at each worker. In a dense averaging scheme, such
as Allreduce [2], each worker gets the model average of all other workers at
each averaging step, whereas in a sparse scheme, such as Ring [8], each worker
averages over two neighboring workers. The weight matrices for Allreduce and
Ring schemes are given as:

WAllreduce =

⎛

⎜⎝

1
V . . . 1

V
...

. . .
...

1
V . . . 1

V

⎞

⎟⎠ ,WRing =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1
3

1
3 0 · · · 0 1

3
1
3

1
3

1
3 0 · · ·

0 1
3

1
3

1
3 0 · · ·

. . . . . . . . .
· · · 0 1

3
1
3

1
3

1
3 0 · · · 0 1

3
1
3

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

2.2 Designing a Sparse Topology

To design a sparse topology that incurs a lower communication cost and at the
same time has lower network error, we define the average-age matrix and the
communication overhead as design characteristics of the topology. The average-
age matrix H holds the information about how old the contribution of a worker
u is to a worker v. Given the weight matrix W, the average-age matrix H can be
defined as the shortest path between the workers, which measures the number of
averaging steps required to average over the model from any other worker. The
second important characteristic of topology is the communication cost, which can
be defined, following [11], as Υα + Πβ, where Υ is the number of handshakes,
α is the latency, Π is the size of data transferred, and β is the bandwidth. The
importance of latency in high latency networks cannot be understated as it can
cause a performance bottleneck.

Table 1. Comparison of characteristics of different topologies.

Topology Averaging step Communication cost Average age

Allreduce [2] Dense 2(V − 1)α + 2Kβ O(1)

Ring [8] Sparse 2α + 2Kβ O(V )

RingRandom [9] Sparse 2α + 2Kβ O(log(V ))

Ring-Star (proposed) Sparse (2(L − 1) + 2)α + 2Kβ O(G) or O(log(G))

2.3 Existing Topologies

The Allreduce (AR) topology [2] is a dense averaging scheme used for training
deep learning models. In this scheme, every worker requires a single averaging
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step to get the contributions of all other workers, therefore the age matrix H has
one. A disadvantage, however, inherent to this topology is the high communica-
tion cost, which for the most optimized implementation still requires O(V ) hand-
shakes. The total communication cost incurred by Allreduce is (V − 1)α + 2Kβ,
which becomes more pronounced in high latency network as latency grows in V ,
where V is the number of workers.

The Ring (R) topology proposed in [8] has a sparse averaging scheme, where
at an averaging step each worker only averages with its two adjacent neighboring
workers. This sparse connectivity incurs a very low communication cost of 2α +
2Kβ per communication round. However, due to a sparse averaging, a worker
on average has to take O(V ) averaging steps before it gets the contribution from
its furthest neighbor, which causes high network error, requiring more iterations
for a model to converge.

The RingRandom (RR) topology proposed in [9], improves the averaging
steps by averaging randomly with a neighbor that is 2i +1 hops away, where i is
an integer between 0 and log(V )−1. They also introduce a bipartite partitioning
of the workers, where workers in an active group initiate the communication,
whereas a passive group worker only responds to the request. These random
re-links connect any pair of workers in O(log(V )) steps. The communication
overhead is the same as the Ring topology, i.e. 2α + 2Kβ per communication
round.

2.4 Ring-Star : A Sparse Topology

The existing topologies discussed above either incur a high communication over-
head or suffer from a low averaging operation which results in a high network
error. Keeping in view these characteristics, we propose the Ring-Star topology
that aims to reduce their disadvantages. In our proposed Ring-Star (RS) topol-
ogy, distributed workers are divided into local groups and a worker from each
group is selected as a Delegate. The Delegate is responsible for averaging models
from the local group as well as exchange the group average with two neighboring
Delegates (similar to a Ring topology). After the averaging step, each worker in
the connected group gets the average of the two neighboring groups. Let the size
of the local group be L then the size of the Delegates Ring becomes G = V/L.
This significantly reduces the average age in H, as each worker requires O(G)1

averaging steps to get contribution from the furtherest worker, and speeds-up the
information propagation among workers. Ring-Star incurs ((2(L−1)+2)α+2Kβ
communication cost, where O(L) handshakes are required for local group averag-
ing and two more handshakes are required for averaging between two Delegates.
Ring-Star is a sparse topology, in which, after the averaging step each worker
gets the contribution of a subset of workers, and it has a significantly different
communication pattern from dense Allreduce [2,6], where after the averaging
step each worker gets the contribution from all other workers. The characteris-
tics of Ring-Star and other topologies are summarized in Table 1.

1 replacing Ring for Delegates with RingRandom will give O(log(G)).
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Fig. 1. Analysis of different group configurations for Ring-Star.

The group configuration of Ring-Star, i.e. [G×L], controls the sparsity in W
and is a tunable parameter. We designed an experiment by training Resnet20 on
the CIFAR10 dataset using 64 workers to analyze the effect of choosing the
[G × L] on average age, communication cost and final test accuracy, and we
have used the “Relative Gain”2 ∈ R

+ to compare Ring-Star and other topolo-
gies. Figure 1 shows that Ring-Star has better “Relative Gain” in average age
over Ring and RingRandom, whereas it has a lower communication cost as com-
pared to Allreduce. The test error of Ring-Star is also lower than Ring and
RingRandom across different group configurations. It is also shown that choosing
L = 1 retrieves the Ring topology and L = V retrieves the Allreduce topology.

3 Experiments

In this section, we empirically investigate the effect of sparse topologies on the
decentralized training of deep convolution neural networks for an image clas-
sification task. We selected well-known CIFAR10 and CIFAR100 as evaluation
datasets for our experiments, which consists of 32 × 32 color images with 10 and
100 classes respectively and split into 50K train-set and 10K test-set. The deep
learning models and hyperparameters for our experiments are summarized in
Table 2. The models are implemented in PyTorch and the distributed framework
is implemented using mpi4py. The experimental setup consists of nodes on the
Google Cloud Platform (GCP), where each node is a “n1-standard-64” instance
with Intel Xeon E5 v3 (Haswell) 64 vCPUs, 240 GB of memory, 1000GB SSD
storage, and 4 Nvidia P100 GPUs. The nodes are connected through a 10Gbit/s
Ethernet interconnect.

3.1 Convergence Behavior of Difference Topologies with Respect
to Epochs

Experiments on CIFAR10: We looked at the convergence behaviors of dif-
ferent topologies on the CIFAR10 dataset by varying the number of work-
ers. Figures 2(a) and (b) summarize the results on the CIFAR10 datasets for

2 “Relative Gain” is a ratio between Ring-Star and other topologies, i.e. AR
RS

> 1
indicates Ring-Star is better than Allreduce and AR

RS
< 1 indicates otherwise.
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Table 2. Hyperparameters for experiments

Dataset Model batch sizea lr lr schedule lr decay Size

CIFAR10 Resnet20 [3] 32 0.1 {81, 122} 0.1 1 MB

VGG16 [10] 64 0.1 {25, 50, 75, 100} 0.5 60 MB

CIFAR100 DensNet-40-12 [5] 64 0.1 {150, 225} 0.1 1 MB

WideResnet-28-10 [12] 64 0.1 {60, 120, 160} 0.2 146 MB
aThe warmup learning rate scaling technique as described in [2] is employed for
stabilizing the learning process for large batch sizes i.e Bglobal = V × B.
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Fig. 2. Epoch-wise convergence behavior of different topologies on the CIFAR10 (a−b)
and CIFAR100 (c−d) training using 32 and 64 workers.

Resnet20 and VGG16 respectively. The Allreduce and Ring-Star consistently
show better performance across both the models. It can be seen that Ring-
Star learning curves follow closely the Allreduce learning curves. The impact
of fast averaging over all the workers becomes more pronounced as the num-
ber of workers is increased. The more sparsely connected workers in Ring and
RingRandom have more divergence among the local models, and they tend
to converge to the worst local optima. To overcome this issue, Lian et al. [9]
decreased the learning rate for Ring and RingRandom earlier than Allreduce in
their experiments for the number of workers ≥32 to stabilize the optimization.
The final test accuracies in Table 3 also show a similar trend, where Allreduce and
Ring-Star achieved the best test accuracy with minimum effect of increasing the
number of workers. EASGD [14] performs the worst among all methods.

Experiments on CIFAR100: In this section, we present results on the
CIFAR100 dataset. In these experiments, we choose complex workloads i.e.
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Table 3. Comparison of test accuracy for the CIFAR10 experiments.

Model Workers Allreduce Ring-Star RingRandom Ring EASGD [14]

Resnet20 16 [4× 4] 91.98% 91.93% 91.68% 91.59% 90.76%

32 [8× 4] 91.58% 91.42% 90.82% 90.70% 86.68%

64 [16× 4] 90.90% 90.50% 89.44% 87.32% 81.32%

VGG16 16 [4× 4] 91.89% 91.57% 91.61% 91.43% 89.323%

32 [8× 4] 91.77% 91.44% 90.19% 89.71% 83.726%

64 [16× 4] 91.47% 91.25% 88.74% 86.04% –
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Fig. 3. Time-wise convergence behavior of different topologies on the CIFAR10 (a−b),
and CIFAR100 (c−d) training using 32 and 64 workers.

DensNet-40-12 and WideResnet-28-10. Figures 2(c) and (d) summarize the
results on the CIFAR100 datasets for DensNet-40-12 and WideResnet-28-
10 respectively. The results show similar trends in the learning curves as for
the CIFAR10 dataset. The hybrid Ring-Star is shown to perform at par with
Allreduce in terms of final test accuracy (Table 4) as well as speed of convergence,
whereas Ring and RingRandom suffers from a slow averaging step, which leads
to slower learning.

3.2 Convergence Behavior of Difference Topologies with Respect
to Time

In the second set of experiments, we analyze the convergence speed with respect
to time. The comparisons of convergence with respect to time is presented in
Figs. 3(a) and (b) for Resnet20 and VGG16 trained on CIFAR10, and Figs. 3(c)
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Table 4. Comparison of test accuracy for the CIFAR100 experiments.

Model Workers Allreduce Ring-Star RingRandom Ring

DensNet-40-12 16 [4× 4] 71.59% 71.61% 71.11% 71.09%

32 [8× 4] 71.31% 71.24% 69.37% 67.91%

64 [16× 4] 71.25% 71.19% 68.70% 66.01%

WideResnet-28-10 16 [4× 4] 78.86% 78.73% 78.49% 78.10%

32 [8× 4] 78.26% 78.31% 77.18% 76.37%

64 [16× 4] 78.15% 78.20% 76.23% 74.77%

and (d) for DensNet-40-12 and WideResnet-28-10 trained on CIFAR100. The
effect of communication is clearly visible, as Allreduce requires more time to
converge due to high communication overhead. The communication efficient
Ring and RingRandom show better communication behavior and require less
amount of time to finish training. However, due to their slow averaging step,
they still need more epochs to converge to a similar loss as Allreduce. Ring-
Star on the other hand enjoys superior communication behavior and converges
to the lowest loss in less amount of time. Ring-Star shows similar communication
requirements as Ring and RingRandom, while achieving a similar solution as a
more accurate, but communication inefficient Allreduce.

4 Conclusion

In this paper we address the design choices for a sparse model averaging strategy
in a decentralized parallel SGD. The detailed analysis of different topologies show
the importance of averaging age, communication overhead and variance among
workers, and how it could effect the overall learning behavior of the deep learning
model. We propose a hierarchical two-layer sparse communication topology, a
ring of fully-connected meshes of workers that communicate with each other
(Ring-Star). Ring-Star allows a principled trade-off between convergence speed
and communication overhead and is well suited to loosely coupled distributed
systems. We demonstrate on an image classification task and a batch stochastic
gradient descent learning (SGD) algorithm that our proposed method shows
similar convergence behavior as Allreduce while having lower communication
cost of Ring.
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Abstract. Specialized hardware for machine learning allows us to train
highly accurate models in hours which would otherwise take days or
months of computation time. The advent of recent deep learning tech-
niques can largely be explained by the fact that their training and infer-
ence rely heavily on fast matrix algebra that can be accelerated easily
via programmable graphics processing units (GPU). Thus, vendors praise
the GPU as the hardware for machine learning. However, those accelera-
tors have an energy consumption of several hundred Watts. In distributed
learning, each node has to meet resource constraints that exceed those
of an ordinary workstation—especially when learning is performed at
the edge, i.e., close to the data source. The energy consumption is typi-
cally highly restricted, and relying on high-end CPUs and GPUs is thus
not a viable option. In this work, we present our new quantum-inspired
machine learning hardware accelerator. More precisely, we explain how
our hardware approximates the solution to several NP-hard data mining
and machine learning problems, including k-means clustering, maximum-
a-posterior prediction, and binary support vector machine learning. Our
device has a worst-case energy consumption of about 1.5 W and is thus
especially well suited for distributed learning at the edge.

Keywords: Hardware acceleration · Machine learning · FPGA

1 Introduction

Hardware acceleration for machine learning usually refers to GPU implementa-
tions that can do fast linear algebra to enhance the speed of numerical compu-
tations. This, however, includes the implicit assumptions that (1) the learning
problem can actually benefit from fast linear algebra, i.e., the most complex
parts of learning and inference can be phrased in the language of matrix-vector
calculus. And (2), learning is carried out in an environment where energy supply,
size, and weight of the system are mostly unrestricted. The latter assumption is
indeed violated when learning has to be carried out at the edge, that is, on the
device that actually measures the data.

c© Springer Nature Switzerland AG 2020
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Fig. 1. Power consumption of different hardware solutions for machine learning; CPU:
Intel Core i7-9700K, GPU: Nvidia GEFORCE RTX 2080 Ti, QA (Quantum Annealer):
D-Wave 2000Q, FPGA: Kintex-7 KC705

Especially in the distributed or federated learning settings, edge devices are
subject to strong resource constraints. Communication efficiency [6] and compu-
tational burden [3,7] must be reduced, in order to get along with the available
hardware. One way to address these issues are efficient decentralized learning
schemes [5]. However, the resource consumption of state-of-the-art hardware
accelerators are often out of reach for edge devices.

We thus present a novel hardware architecture that can be used as a solver
at the core of various data mining and machine learning techniques, some of
which we will explain in the following sections. Our work is inspired by the so-
called quantum annealer, a hardware architecture for solving discrete optimiza-
tion problems by exploiting quantum mechanical effects. In contrast to GPUs
and quantum annealers, our device has a highly reduced resource consumption.
The power consumption of four machine learning accelerators is shown in Fig. 1.
For the CPU and GPU, we provide the thermal design power (TDP), whereas
the FPGA’s value is the total on-chip power, calculated using the Vivado Design
Suite1. We see that the actual peak consumption of CPUs and GPUs exceeds
the energy consumption of our device by several orders of magnitude. Moreover,
we provide the estimated energy consumption of the D-Wave 2000Q quantum
annealer. The annealer optimizes the exact same objective function as our device,
but the cooling and magnetic shielding required for its operation leads to an enor-
mous energy consumption, which is very impractical for real applications at its
current stage. Hence, its low resource requirements and versatility makes our
device the ideal hardware accelerator for distributed learning at the edge.

1 https://www.xilinx.com/products/design-tools/vivado.html.

https://www.xilinx.com/products/design-tools/vivado.html
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Fig. 2. Exemplary visualization of the demo setup; left: multiple FPGAs (Kintex-
7, Artix-7) with accompanying visualizations of board configuration and convergence
results; right: Kintex-7 KC705 Evaluation Kit

Our approach is different to GPU programming in that our hardware is
designed to solve a fixed class C of parametric optimization problems. “Program-
ming” our device is then realized by reducing a learning problem to a member
of C and transferring only the resulting coefficients β. The optimization step,
e.g. model training, is performed entirely on the board, without any additional
communication cost.

In our demo setup (shown in Fig. 2) we will showcase several machine learning
tasks in a live setting on multiple devices, accompanied by live visualizations of
the learning progress and the results.

The underlying idea of using a non-universal compute-architecture for
machine learning is indeed not new: State-of-the-art quantum annealers rely on
the very same problem formulation. There, optimization problem are encoded
as potential energy between qubits – the global minimum of a loss function
can be interpreted as the quantum state of lowest energy [4]. The fundamen-
tally non-deterministic nature of quantum methods makes the daunting task of
traversing an exponentially large solution space feasible. However, their practical
implementation is a persisting challenge, and the development of actual quan-
tum hardware is still in its infancy. The latest flagship, the D-Wave 2000Q, can
handle problems with 64 fully connected bits2, which is by far not sufficient for
realistic problem sizes.

Nevertheless, the particular class of optimization problems that quantum
annealers can solve is well understood which motivates its use for hardware
accelerators outside of the quantum world.

2 Boolean Optimization

A pseudo-Boolean function (PBF) is any function f : Bn �→ R that assigns a
real value to a fixed-length binary vector. Every PBF on n binary variables can
be uniquely expressed as a polynomial of some degree d ≤ n with real-valued
coefficients [2]. Quadratic Unconstrained Binary Optimization (QUBO) is the

2 https://www.dwavesys.com/sites/default/files/mwj dwave qubits2018.pdf.

https://www.dwavesys.com/sites/default/files/mwj_dwave_qubits2018.pdf
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problem of finding an assignment x∗ of n binary variables that is minimal with
respect to a second degree Boolean polynomial:

x∗ = arg min
x∈Bn

n∑

i=1

i∑

j=1

βijxixj

It has been shown that all higher-degree pseudo-Boolean optimization problems
can be reduced to quadratic problems [2]. For this reason a variety of well-
known optimization problems like (Max-)3SAT and prime factorization, but also
ML-related problems like clustering, maximum-a-posterior (MAP) estimation in
Markov Random Fields and binary constrained SVM learning can be reduced to
QUBO or its Ising-variant (where x ∈ {−1,+1}n). In our demo, we will explain
the impact of different reductions in terms of runtime and quality of different
learning tasks.

3 Evolutionary QUBO Solver

If no specialized algorithm is known for a particular hard combinatorial optimiza-
tion problem, randomized search heuristics, like simulated annealing or evolu-
tionary algorithms (EA), provide a generic way to generate good solutions.

Inspired by biological evolution, EAs employ recombination and mutation on
a set of “parent” solutions to produce a set of “offspring” solutions. A loss func-
tion, also called fitness function in the EA-context, is used to select those solu-
tions which will constitute the next parent generation. This process is repeated
until convergence or a pre-specified time-budget is exhausted [8].

Motivated by the inherently parallel nature of digital circuits, we developed
a highly customizable (μ+λ)-EA architecture on FPGA hardware implemented
using the VHDL language3. Here, “customizable” implies that different types
of FPGA hardware, from small to large, can be used. This is done by allowing
the end-user to customize the maximal problem dimension n, the number of
parent solutions μ, the number of offspring solutions λ and the number of bits
per coefficient βij . In case of low-budget FPGA, this allows us to either allocate
more FPGA resources for parallel computation (μ and λ) or for the problem size
(n and β). We will show how to generate and run chip designs for low-budget as
well as high-end devices in our demo.

4 Exemplary Learning Tasks

“Programming” our devices reduces to determining the corresponding coeffi-
cients β and uploading them to the FPGA via our Python interface. We will
explain how this is done for various machine learning tasks, two of which we will
explain below:

A prototypical data mining problem is k-means clustering which is already
NP-hard for k = 2. To derive β for a 2-means clustering problem, we use the
3 https://www.ics.uci.edu/∼jmoorkan/vhdlref/Synario%20VHDL%20Manual.pdf.

https://www.ics.uci.edu/~jmoorkan/vhdlref/Synario%20VHDL%20Manual.pdf
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method devised in [1], where each bit indicates whether the corresponding data
point belongs to cluster 1 or cluster 2—the problem dimension is thus n = |D|.
The coefficients are then derived from the centered Gramian G over the mean
adjusted data. To keep as much precision as possible, we stretch the parameters
to use the full range of b bits before rounding, so the final formula is βij =
�αGij + 0.5� with α = (2b−1 − 1)/maxi,j |Gij |. Exemplary results on the UCI
data sets Iris and Sonar are shown in Fig. 3 (top).

Fig. 3. QUBO loss value over time with different mutation rates, each averaged over 10
runs. Uncertainty indicated by transparent areas. Top-left: 2-means on Iris (n = 150,
d = 4). Top-right: 2-means on Sonar (n = 208, d = 61). Bottom-left: MRF-MAP with
edge encoding. Bottom-right: MRF-MAP with vertex encoding.

Another typical NP-hard ML problem is to determine the most likely config-
uration of variables in a Markov Random Field, known as the MAP prediction
problem [9]. Similar to efficiency differences between programs for classical uni-
versal computers, providing a different QUBO problem encoding has implications
for the efficiency of our device. To demonstrate this effect, we will perform a live
comparison of different encodings in terms of convergence behavior.

One possible solution for the MRF-MAP problem is to encode the assign-
ments of all Xv as a concatenation of one-hot encodings

(X1 = xi1
1 , . . . , Xm = xim

m ) �→ 0 . . . 010 . . . 0︸ ︷︷ ︸
|X1|

. . . 0 . . . 010 . . . 0︸ ︷︷ ︸
|Xm|

,

where m = |V | and xi
k is the i-th value in Xk. The weights −θuv=xy are encoded

into the quadratic coefficients; if two different bits belong to the same variable
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encoding, a penalty weight is added between them to maintain a valid one-hot.
The negative sign is added to turn MAP into a minimization problem.

For a different possible solution, we may assign bits buv=xy to all non-zero
weights θuv=xy between specific values x, y of two variables Xu,Xv, indicating
that Xu = x and Xv = y. Again, to avoid multiple assignments of the same
variable we introduce penalty weights between pairs of edges. We can see in
Fig. 3 (bottom) that both approaches lead to a different convergence behavior.

In addition to k-means and MRF-MAP, the demo will include binary SVM
learning, binary MRF parameter learning, and others.

A video demonstrating how to use our system by solving a clustering problem
can be found here: https://youtu.be/Xj5xx-eO1Mk.
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Workshop Description

The aim of the workshop “Managing and mining Large Evolving Graphs” (LEG) is to
bring together active scholars and practitioners of dynamic graphs. Graph models and
algorithms are ubiquitous of a large number of application domains, ranging from
transportation to social networks, semantic web, or data mining. However, many
applications require graph models that are time dependent. For example, applications
related to urban mobility analysis employ a graph structure of the underlying road
network where the traffic density and speed continuously change over time. Therefore,
the time a moving object takes to cross a path segment typically depends on the starting
instant of time. This dynamicity makes it more challenging to mine temporal and graph
patterns, yet this task is essential to study such structures. The same holds in other
contexts, such as social networks.

In this workshop, we aim to discuss the problem of mining large evolving graphs,
since many real world applications deal with large volumes of data. Managing and
analysing large evolving graphs is very challenging and requires sophisticated methods
and techniques for creating, storing, accessing, processing, and mining such large
evolving graphs. These techniques typically require a distributed environment, because
centralized approaches do not scale in a Big Data scenario. Contributions will clearly
point out answers to one of these challenges focusing on large-scale graphs.

Description of the Workshop’s Topic and its Goals

The workshop seeks papers with important new insights and experiences on knowledge
discovery aspects with dynamic and large-scale time-dependent graphs. The goal is to
shed light on the questions mentioned above, related to the knowledge discovery
process. Topics of interest include, but are not limited to, the following linked topics,
with regards to mining process:

• Large scale graph analysis
• Theoretical foundation of time-dependent and large scale graphs (LEG)
• Construction and maintenance of LEG
• Data quality in LEG
• Data integration in LEG
• Indexing techniques for LEG
• Distributed algorithms & navigational query processing
• LEG data mining: frequent pattern, similarity, cluster analysis, predictive learning
• Trajectory mining in LEG



• Probabilistic LEG
• Applications related to LEG
• Algorithms on LEG

We have received eleven submissions and we have accepted six as full papers and
1 as short paper. Each paper received three reviews. Five full papers are published in
this proceedings. The workshop also included the invited talk “Efficient Structural
Embeddings in Large Time-varying Networks” from Danai Koutra, Computer Science
and Engineering University of Michigan.
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Abstract. Link streams model interactions over time in a wide range of
fields. Under this model, the challenge is to mine efficiently both tempo-
ral and topological structures. Community detection and change point
detection are one of the most powerful tools to analyze such evolving
interactions. In this paper, we build on both to detect stable community
structures by identifying change points within meaningful communities.
Unlike existing dynamic community detection algorithms, the proposed
method is able to discover stable communities efficiently at multiple tem-
poral scales. We test the effectiveness of our method on synthetic net-
works, and on high-resolution time-varying networks of contacts drawn
from real social networks.

1 Introduction

In recent years, studying interactions over time has witnessed a growing interest
in a wide range of fields, such as sociology, biology, physics, etc. Such dynamic
interactions are often represented using the snapshot model: the network is
divided into a sequence of static networks, i.e., snapshots, aggregating all con-
tacts occurring in a given time window. The main drawback of this model is
that it often requires to choose arbitrarily a temporal scale of analysis. The link
stream model [9] is a more effective way for representing interactions over time,
that can fully capture the underling temporal information.

Real world networks evolve frequently at many different time scales. Fluc-
tuations in such networks can be observed at yearly, monthly, daily, hourly, or
even smaller scales. For instance, if one were to look at interactions among work-
ers in a company or laboratory, one could expect to discover clusters of people
corresponding to meetings and/or coffee breaks, interacting at high frequency
(e.g., every few seconds) for short periods (e.g., few minutes), project members

This work was supported by the ACADEMICS grant of the IDEXLYON, project of
the Universite de Lyon, PIA operated by ANR-16-IDEX-0005, and of the project
ANR-18-CE23-0004 of the French National Research Agency (ANR).
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interacting at medium frequency (e.g., once a day) for medium periods (e.g.,
a few months), coordination groups interacting at low frequency (e.g., once a
month) for longer periods (e.g., a few years), etc.

An analysis of communities found at an arbitrary chosen scale would neces-
sarily miss some of these communities: low latency ones are invisible using short
aggregation windows, while high frequency ones are lost in the noise for long
aggregation windows. A multiple temporal scale analysis of communities seems
therefore the right solution to study networks of interactions represented as link
streams.

To the best of our knowledge, no such method exists in the literature. In this
article, we propose a method having roots both in the literature on change point
detection and in dynamic community detection. It detects what we call stable
communities, i.e., groups of nodes forming a coherent community throughout
a period of time, at a given temporal scale.

The remainder of this paper is organized as follows. In Sect. 2, we present a
brief review of related works. Then, we describe the proposed framework in detail
in Sect. 3. We experimentally evaluate the proposed method on both synthetic
and real-world networks in Sect. 4.

2 Related Work

Our contribution relates to two active body of research: (i) dynamic community
detection and (ii) change point detection. The aim of the former is to discover
groups of nodes that persist over time, while the objective of the latter is to
detect changes in the overall structure of a dynamic network. In this section, we
present existing work in both categories, and how our proposed method relates
to them.

2.1 Dynamic Community Detection

The problem of detecting communities in dynamic networks has attracted a lot
of attention in recent years, with various approaches tackling different aspects of
the problem, see [16] for a recent survey. Most of these methods consider that the
studied dynamic networks are represented as sequences of snapshots, with each
snapshot being a well formed graph with meaningful community structure, see
for instance [5,12]. Some other methods work with interval graphs, and update
the community structure at each network change, e.g., [3,17]. However, all those
methods are not adapted to deal with link streams, for which the network is
usually not well formed at any given time. Using them on such a network would
require to first aggregate the links of the stream by choosing an arbitrarily
temporal scale (aggregation window).

2.2 Change Point Detection

Our work is also related to research conducted on change point detection con-
sidering community structures. In these approaches, given a sequence of snap-
shots, one wants to detect the periods during which the network organization
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and/or the community structure remains stable. In [15], the authors proposed
the first change-point detection method for evolving networks that uses genera-
tive network models and statistical hypothesis testing. Wang et al. [19] proposed
a hierarchical change point detection method to detect both inter-community
(local change) and intra-community (global change) evolution. A recent work by
Masuda et al. [11] used graph distance measures and hierarchical clustering to
identify sequences of system state dynamics.

From those methods, our proposal keeps the principle of stable periods delim-
ited by change points, and the idea of detecting changes at local and global scales.
But our method differs in two directions: (i) we are searching for stable individ-
ual communities instead of stable graph periods, and (ii) we search for stable
structures at multiple levels of temporal granularity.

3 Method

The goal of our proposed method is (i) to detect stable communities (ii) at
multiple scales without redundancy and (iii) to do so efficiently. We adopt an
iterative approach, searching communities from the coarser to the more detailed
temporal scales. At each temporal scale, we use a three step process:

1. Seed Discovery, to find relevant community seeds at this temporal scale.
2. Seed Pruning, to remove seeds which are redundant with communities found

at higher scales.
3. Seed Expansion, expanding seeds in time to discover stable communities.

We start by presenting each of these three steps, and then we describe the
method used to iterate through the different scales in Sect. 3.4.

Our work aims to provide a general framework that could serve as baseline
for further work in this field. We define three generic functions that can be set
according to the user needs:

– CD(g), a static community detection algorithm on a graph g.
– QC(N, g), a function to assess the quality of a community defined by the set

of nodes N on a graph g.
– CSS(N1,N2), a function to assess the similarity of two sets of nodes N1 and

N2.

See Sect. 3.5 on how to choose proper functions for those tasks.
We define a stable dynamic community c as a triplet c = (N, p, γ), with

c.N the list of nodes in the community, c.p its period of existence defined as an
interval, e.g., c.p = [t1, t2]1 means that the community c exists from t1 to t2, and
c.γ the temporal granularity at which c has been discovered.

We denote the set of all stable dynamic communities D.
1 We use right open intervals such as a community starting at tx and another one

ending at the same tx have an empty intersection, which is necessary to have coherent
results when handling discrete time steps.



356 S. Boudebza et al.

3.1 Seed Discovery

For each temporal scale, we first search for interesting seeds. A temporal scale
is defined by a granularity γ, expressed as a period of time (e.g.; 20 min, 1 h,
2 weeks, etc.). We use this granularity as a window size, and, starting from a time
t0 – by default, the date of the first observed interaction – we create a cumulative
graph (snapshot) for every period [t0, t0+γ[, [t0+γ, t0+2γ[, [t0+2γ, t0+3γ[, etc.,
until all interactions belong to a cumulative graph. This process yields a sequence
of static graphs, such as Gt0,γ is a cumulated snapshot of link stream G for the
period starting at t0 and of duration γ. Gγ is the list of all such graphs.

Given a static community detection algorithm CD yielding a set of commu-
nities, and a function to assess the quality of communities QC, we apply CD on
each snapshot and filter promising seeds, i.e., high quality communities, using
QC. The set of valid seeds S is therefore defined as:

S = {∀g ∈ Gγ ,∀s ∈ CD(g), QC(s, g) > θq} (1)

With θq a threshold of community quality.
Since community detection at each step is independent, we can run it in

parallel on all steps, this is an important aspect for scalability.

3.2 Seed Pruning

The seed pruning step has a twofold objective: (i) reducing redundancy and
(ii) speed up the multi-scale community detection process. Given a measure of
structural similarity CSS, we prune the less interesting seeds, such as the set of
filtered seeds FS is defined as:

FS = {∀s ∈ S,∀c ∈ D, (CSS(s.N, c.N) > θs) ∨ (s.p ∩ c.p = {∅}) (2)

Where D is the set of stable communities discovered at coarser (or similar, see
next section) scales, s.p is the interval corresponding to the snapshot at which
this seed has been discovered, and θs is a threshold of similarity.

Said otherwise, we keep as interesting seeds those that are not redundant
topologically (in term of nodes/edges), OR not redundant temporally. A seed is
kept if it corresponds to a situation never seen before.

3.3 Seed Expansion

The aim of this step is to assess whether a seed corresponds to a stable dynamic
community. The instability problem has been identified since the early stages of
the dynamic community detection field [1]. It means that the same algorithm
ran twice on the same network after introducing minor random modifications
might yield very different results. As a consequence, one cannot know if the
differences observed between the community structure found at t and at t + 1
are due to structural changes or to the instability of the algorithm. This problem
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is usually solved by introducing smoothing techniques [16]. Our method use a
similar approach, but instead of comparing communities found at step t and
t − 1, we check whether a community found at t is still relevant in previous and
following steps, recursively.

More formally, for each seed s ∈ FS found on the graph Gt,γ , we iteratively
expand the duration of the seed s.d = [t, t + γ[ (where t is the time start of this
duration) at each step ti in both temporal directions (ti ∈ (...[t − 2γ, t − γ[, [t −
γ, t]; [t + γ, t + 2γ[, [t + 2γ, t + 3γ]...)) as long as the quality QC(s.N,Gti,γ) of
the community defined by the nodes s.N on the graph at Gti,γ is good enough.
Here, we use the same similarity threshold θs as in the seed pruning step. If the
final duration period |s.p| of the expanded seed is higher than a duration θpγ,
with θp a threshold of stability, the expanded seed is added to the list of stable
communities, otherwise, it is discarded. This step is formalized in Algorithm 1.

Algorithm 1: Forward seed expansion. Forward temporal expansion
of a seed s found at time t of granularity γ. The reciprocal algorithm is
used for backward expansion: t + 1 becomes t − 1.
Input: s, γ, θp, θs

1 t ← tstart|s.p = [tstart, tend[ ;
2 g ← Gt,γ ;
3 p ← [t, t + γ[;
4 while QC(s.N, g) > θs do
5 s.p ← s.p ∪ p;
6 t ← t + γ;
7 p ← [t, t + γ[;
8 g ← Gt,γ ;
9 end

10 if |s.p| ≥ θpγ then
11 D ← D ∪ {s};
12 end

In order to select the most relevant stable communities, we consider seeds
in descending order of their QC score, i.e., the seeds of higher quality scores
are considered first. Due to the pruning strategy, a community of lowest quality
might be pruned by a community of highest quality at the same granularity γ.

3.4 Multi-scale Iterative Process

Until then, we have seen how communities are found for a particular time scale.
In order to detect communities at multiple scales, we first define the ordered list
of studied scales Γ . The largest scale is defined as γmax = |G.d|/θp, with |G.d|
the total duration of the dynamic graph. Since we need to observe at least θp

successive steps to consider the community stable, γmax is the largest scale at
which communities can be found.

We then define Γ as the ordered list:

Γ = [γmax, γmax/21, γmax/22, γmax/23, ..., γmax/2k] (3)
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With k such as γmax/2k > θγ >= γmax/2k+1, θγ being a parameter corre-
sponding to the finest temporal granularity to evaluate, which is necessarily
data-dependant (if time is represented as a continuous property, this value can
be fixed at least at the sampling rate of data collection).

This exponential reduction in the studied scale guarantees a limited number
of scales to study.

The process to find seeds and extend them into communities is then summa-
rized in Algorithm 2.

Algorithm 2: Multi-temporal-scale stable communities finding.
Summary of the proposed method. See corresponding sections for the
details of each step. G is the link streams to analyze, θq, θs, θp, θγ are thresh-
old parameters.
Input: G, θq, θs, θp, θγ

1 D ← {∅};
2 Γ ←studied scales(G, θγ) ;
3 for γ ∈ Γ do
4 S ← Seed Discovery(γ,CD,QC, θq);
5 FS ←Seed Pruning(S, CSS, θs);
6 for s ∈ FS do
7 Seed Expansion(s, γ, θp, θs);
8 end
9 end

3.5 Choosing Functions and Parameters

The proposed method is a general framework that can be implemented using
different functions for CD,QC and CSS. This section provides explicit guid-
ance for selecting each function, and introduces the choices we make for the
experimental section.

Community Detection - CD. Any algorithm for community detection
could be used, including overlapping methods, since each community is con-
sidered as an independant seed. Following literature consensus, we use the
Louvain method [2], which yields non-overlapping communities using a greedy
modularity-maximization method. The louvain method performs well on static
networks, it is in particular among the fastest and most efficient methods. Note
that it would be meaningful to adopt an algorithm yielding communities of good
quality according to the chosen QC, which is not the case in our experiments, as
we wanted to use the most standard algorithms and quality functions in order
to show the genericity of our approach.

Quality of Communities - QC. The QC quality function must express the
quality of a set of nodes w.r.t a given network, unlike functions such as the
modularity, which express the quality of a whole partition w.r.t a given network.
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Many such functions exist, like Link Density or Scaled Density [7], but the
most studied one is probably the Conductance [10]. Conductance is defined as
the ratio of (i) the number of edges between nodes inside the community and
nodes outside the community, and (ii) the sum of degrees of nodes inside the
community (or outside, if this value is larger). More formally, the conductance
φ of a community C is:

φ(C) =

∑
i∈C,j /∈C Ai,j

Min(A(C), A(C̄))

Where A is the adjacency matrix of the network, A(C) =
∑

i∈C

∑
j∈V Ai,j and

C̄ is the complement of C. Its value ranges from 0 (Best, all edges starting
from nodes of the community are internal) to 1 (Worst, no edges between this
community and the rest of the network). Since our generic framework expects
good communities to have QC scores higher than the threshold θq, we adopt the
definition QC = 1-conductance.

Community Seed Similarity - CSS. This function takes as input two sets
of nodes, and returns their similarity. Such a function is often used in dynamic
community detection to assess the similarity between communities found in dif-
ferent time steps. Following [5], we choose as a reference function the Jaccard
Index. Given two sets A and B, it is defined as: J(A,B) = |A∩B|

|A∪B|

3.6 Parameters

The algorithm has four parameters, θγ , θq, θs, θp, defining different thresholds.
We explicit them and provide the values used in the experiments.

1. θγ is data-dependant. It corresponds to the smallest temporal scale that will
be studied, and should be set at least at the collection rate. For synthetic
networks, it is set at 1 (the smallest temporal unit needed to generate a new
stream), while, for SocioPatterns dataset, it is set to 20 s (the minimum length
of time required to capture a contact).

2. θq determines the minimal quality a seed must have to be preserved and
expanded. The higher this value, the more strict we are on the quality of
communities. We set θq = 0.7 in all experiments. It is dependent on the
choice of the QC function.

3. θs determines the threshold above which two communities are considered
redundant. The higher this value, the more communities will be obtained.
We set θs = 0.3 in all experiments. It is dependent on the choice of the CSS
function.

4. θp is the minimum number of consecutive periods a seed must be expanded in
order to be considered as stable community. We set θs = 3 in all experiments.
The value should not be lower in order to avoid spurious detections due to
pure chance. Higher values could be used to limit the number of results.
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(a) Stable communities produced by the generator.

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

0 1000 2000 3000 4000 5000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

(b) Stable communities discovered by the proposed method.

Fig. 1. Visual comparison between planted and discovered communities. Time steps on
the horizontal axis, nodes on the vertical axis. Colors correspond to communities and
are randomly assigned. We can observe that most communities are correctly discovered,
both in terms of nodes and of duration. (Color figure online)

4 Experiments and Results

The validation of our method encompasses three main aspects: (i) the validity of
communities found, and (ii) the multi-scale aspect of our method, (iii) its scal-
ability. We conduct two kinds of experiments: on synthetic data, on which we
use planted ground-truth to quantitatively compare our results, and on real net-
works, on which we use both qualitative and quantitative evaluation to validate
our method.

4.1 Validation on Synthetic Data

To the best of our knowledge, no existing network generator allows to generate
dynamic communities at multiple temporal scale. We therefore introduce a sim-
ple solution to do so. Let us consider a dynamic network composed of T steps
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and N different nodes. We start by adding some random noise: at each step,
an Erdos-Renyi random graph [4] is generated, with a probability of edge pres-
ence equal to p. We then add a number SC of random stable communities. For
each community, we attribute randomly a set of n ∈ [4, N/4] nodes, a duration
d ∈ [10, T/4] and a starting date s ∈ [0, T − d]. n and d are chosen using a log-
arithmic probability, in order to increase variability. The temporal scale of the
community is determined by the probability of observing an edge between any
two of its nodes during the period of its existence, set as 10/d. As a consequence,
a community of duration 10 will have edges between all of its nodes at every
step of its existence, while a community of length 100 will have an edge between
any two of its nodes only every 10 steps in average.

Since no algorithm exists to detect communities at multiple temporal scales,
we compare our solution to a baseline: communities found by a static algorithm
on each window, for different window sizes. It corresponds to detect & match
methods for dynamic community detection such as [5]. We then compare the
results by computing the overlapping NMI as defined in [8], at each step. For
those experiments, we set T = 5000, N = 100, p = 10/N . We vary the number
of communities SC.

Table 1. Comparison of the average NMI scores (over 10 runs) obtained for the pro-
posed method (Proposed) and for each of the temporal scales (γ ∈ Γ ) used by the
proposed method, taken independently.

t scale (γ) 5 10 20 30 40 50

Proposed 0.91 0.78 0.69 0.69 0.62 0.54

1666 0.41 0.32 0.24 0.23 0.15 0.19

833 0.36 0.30 0.29 0.27 0.23 0.25

416 0.39 0.40 0.36 0.34 0.32 0.33

208 0.46 0.45 0.40 0.42 0.41 0.37

104 0.47 0.48 0.44 0.46 0.45 0.42

52 0.45 0.47 0.45 0.47 0.47 0.45

26 0.35 0.35 0.38 0.42 0.42 0.41

13 0.28 0.26 0.30 0.31 0.32 0.31

6 0.17 0.16 0.19 0.19 0.20 0.19

3 0.12 0.09 0.11 0.10 0.12 0.11

1 0.05 0.03 0.04 0.03 0.05 0.04

Figure 1 represents the synthetic communities to find for SC = 10, and the
communities discovered by the proposed method. We can observe a good match,
with communities discovered throughout multiple scales (short-lasting and long-
lasting ones). We report the results of the comparison with baselines in Table 1.
We can observe that the proposed method outperforms the baseline at every
scale in all cases in term of average NMI.
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The important implication is that the problem of dynamic community detec-
tion is not only a question of choosing the right scale through a window size, but
that if the network contains communities at multiple temporal scale, one needs
to use an adapted method to discover them.

4.2 Validation on Real Datasets

We validate our approach by applying it to two real datasets. Because no ground
truth data exists to compare our results with, we validate our method by using
both quantitative and qualitative evaluation. We use the quantitative approach
to analyze the scalability of the method and the characteristics of communities
discovered compared with other existing algorithms. We use the qualitative app-
roach to show that the communities found are meaningful and could allow an
analyst to uncover interesting patterns in a dynamic datasets.

The datasets used are the following:

– SocioPatterns primary school data [18], face-to-face interactions between
children in a school (323 nodes, 125 773 interaction).

– Math overflow stack exchange interaction dataset [14], a larger network to
evaluate scalability (24 818 nodes, 506 550 interactions).

Qualitative Evaluation. For the qualitative evaluation, we used the pri-
mary school data [18] collected by the SocioPatterns collaboration2 using RFID
devices. They capture face-to-face proximity of individuals wearing them, at a
rate of one capture every 20 s. The dataset contains face-to-face interactions
between 323 children and 10 teachers collected over two consecutive days in
October 2009. This school has 5 levels, each level is divided into 2 classes (A and
B), for a total of 10 classes.

No community ground truth data exists to validate quantitatively our find-
ings. We therefore focus on the descriptive information highlighted on the
SocioPatterns study [18], and we show how the results yielded by our method
match the course of the day as recorded by the authors in this study.

In order to make an accurate analysis of our results, the visualization have
been reduced to one day (the second day), and we limited ourselves to 4 classes
(1B, 2B, 3B, 5B)3. 120 communities are discovered in total on this dataset. We
created three different figures, corresponding to communities of length respec-
tively (i) less than half an hour, (ii) between half an hour and 2 h, (iii) more
than 2 h. Figure 2 depicts the results. Nodes affiliations are ordered by class, as
marked on the right side of the figure. The following observations can be made:

– Communities having the longest period of existence clearly correspond to the
class structure. Similar communities had been found by the authors of the
original study using aggregated networks per day.

2 www.sociopatterns.org.
3 Note that full results can be explored online using the provided notebook (see con-

clusion section).

www.sociopatterns.org
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(a) Second day, length<30min. Grey vertical areas corre-
spond to most likely break periods.

(b) Second day, 30min<length<2hours. Grey vertical area
corresponds to the lunch break

(c) Second day, length>2hours

Fig. 2. Stable communities of different lengths on the SocioPatterns Primary School
Dataset. Time on the horizontal axis, children on the vertical axis. Colors are attributed
randomly. (Color figure online)
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– Most communities of the shorter duration are detected during what are prob-
ably breaks between classes. In the original study, it had been noted that
break periods are marked by the highest interaction rates. We know from
data description that classes have 20/30 min breaks, and that those breaks
are not necessarily synchronized between classes. This is compatible with
observation, in particular with communities found between 10:00 and 10:30
in the morning, and between 4:00 and 4:30 in the afternoon.

– Most communities of medium duration occur during the lunch break. We
can also observe that the most communities are separated into two intervals,
12:00–13:00 and 13:00–14:00. This can be explained by the fact that children
have a common canteen, and a shared playground. As the playground and
the canteen do not have enough capacity to host all the students at the same
time, only two or three classes have breaks at the same time, and lunches
are taken in two consecutive turns of one hour. Some children do not belong
to any communities during the lunch period, which matches the information
that about half of the children come back home for lunch [18].

– During lunch breaks and class breaks, some communities involve children
from different classes, see the community with dark-green colour during lunch
time (medium duration figure) or the pink community around 10:00 for short
communities, when classes 2B and 3B are probably in break at the same time.
This confirms that an analysis at coarser scales only can be misleading, as
it leads only to the detection of the stronger class structure, ignoring that
communities exist between classes too, during shorter periods.

Quantitative Evaluation. In this section, we compare our proposition with
other methods on two aspects: scalability, and aggregated properties of commu-
nities found. The methods we compare ourselves to are:

– An Identify and Match framework proposed by Greene et al. [5]. We imple-
ment it using the Louvain method for community detection, and the Jaccard
coefficient to match communities, with a minimal similarity threshold of 0.7.
We used a custom implementation, sharing the community detection phase
with our method.

– The multislice method introduced by Mucha et al. [12]. We used the authors
implementation, with interslice coupling ω = 0.5.

– The dynamic clique percolation method (D-CPM) introduced by Palla et al.
[13]. We used a custom implementation, the detection in each snapshot is
done using the implementation in the networkx library [6].

For Identify and Match, D-CPM and our approach, the community detection
phase is performed in parallel for all snapshots. This is not possible for Mucha
et al., since the method is performed on all snapshots simultaneously. On the
other hand, D-CPM and Indentify and Match are methods with no dynamic
smoothing.

Figure 3 presents the time taken by those methods and our proposition,
for each temporal granularity, on the Math Overflow network. The task
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Fig. 3. Speed of several dynamic community detection methods for several temporal
granularities, on the Math Overflow dataset. Missing points correspond to computation
time above 1000 s. Temporal scales correspond to window sizes and are divided by 2 at
every level, from 1 = 67 681 200 s (about 2 years) to 10 = 132 189 s (about 36 h). OUR
and OUR-MP corresponds to our method using or not multiprocessing (4 cores)

accomplished by our method is, of course, not comparable, since it must not
only discover communities, but also avoid redundancy between communities in
different temporal scales, while other methods yield redundant communities in
different levels. Nevertheless, we can observe that the method is scalable to net-
works with tens of thousands of nodes and hundreds of thousands of interactions.
It is slower than the Identify and Match (CD&Match) approach, but does not
suffer from the scalability problem as for the two other ones (D-CPM and Mucha
et al.). In particular, the clique percolation method is not scalable to large and
dense networks, a known problem due to the exponential growth in the number
of cliques to find. For the method by Mucha et al., the scalability issue is due to
the memory representation of a single modularity matrix for all snapshots.

Table 2. Average properties of communities found by each method (independently
of their temporal granularity). #Communities: number of communities found. Persis-
tence: number of consecutive snapshots. Size: number of nodes. Stability: average Jac-
card coefficient between nodes of the same community in successive snapshots. Density:
average degree/size-1. Q: 1-Conductance (higher is better)

Method #Communities Persistance Size Stability Density Q

OUR 179 3.44 10.89 1.00 0.50 0.91

CD& MATCH 29846 1.21 5.50 0.97 0.42 0.96

CPM 3259 1.87 5.37 0.51 0.01 0.53

MUCHA 1097 15.48 9.72 0.62 0.38 0.85
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In Table 2, we summarize the number of communities found by each method,
their persistence, size, stability, density and conductance. It is not possible to
formally rank those methods based on these values only, that correspond to
vastly different scenarios. What we can observe is that existing methods yield
much more communities than the method we propose, usually at the cost of lower
overall quality. When digging into the results, it is clear that other methods yield
many noisy communities, either found on a single snapshot for methods without
smoothing, unstable for the smoothed Mucha method, and often with low density
or Q.

5 Conclusion and Future Work

To conclude, this article only scratches the surface of the possibilities of multiple-
temporal-scale community detection. We have proposed a first method for the
detection of such structures, that we validated on both synthetic and real-world
networks, highlighting the interest of such an approach. The method is proposed
as a general, extensible framework, and its code is available4,5 as an easy to use
library, for replications, applications and extensions.

As an exploratory work, further investigations and improvements are needed.
Heuristics or statistical selection procedures could be implemented to reduce the
computational complexity. Hierarchical organization of relations – both temporal
and structural–between communities could greatly simplify the interpretation of
results.
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Abstract. Community detection has recently received increased atten-
tion due to its wide range of applications in many fields. While at first
most techniques were focused on discovering communities in static net-
works, lately the focus has shifted toward evolving networks because of
their high relevance in real-life problems. Given the increasing number of
the methods being proposed, this paper explores the current availability
of empirical comparative studies of dynamic methods and also provides
its own qualitative and quantitative comparison with the aim of gaining
more insight in the performance of available methods. The results show
that no single best performing community detection technique exists, but
rather, the choice of the method depends on the objective and dataset
characteristics.

Keywords: Dynamic community detection · Large evolving graphs ·
RDyn

1 Introduction

Community detection techniques in complex networks are a well-covered topic
in academic literature nowadays as identifying meaningful substructures in com-
plex networks has numerous applications in a vast variety of fields ranging from
biology, mathematics, and computer science to finance, economics and sociol-
ogy. A majority of the literature covers static community detection algorithms,
i.e. algorithms used to uncover communities in static networks. However, real-
world networks often possess temporal properties as nodes and edges can appear
and disappear, potentially resulting in a changed community structure. Conse-
quently, researchers have recently taken a keen interest in community detection
algorithms that can tackle dynamic networks. Given the increasing number of the
methods being proposed, a systematic comparison of both their algorithmic and
performance differences is required so as to be able to select a suitable method for
a particular community discovery problem. Nonetheless, newly proposed com-
munity detection methods for dynamic graphs are typically compared with only
c© Springer Nature Switzerland AG 2020
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very few methods in settings aiming to demonstrate superiority of the proposed
method. Consequently, the setup and results of these comparisons might contain
an unconscious bias towards one’s own algorithm. As such, a well-founded and
extensive comparative analysis of dynamic community detection (DCD) tech-
niques is missing in the current literature. This is not surprising given the many
different aspects which come into play when comparing DCD methods: different
underlying network models, different community definitions, different temporal
segments used for detecting communities, different community evolution events
tracked etc.

To bridge this literature gap, we perform a qualitative and quantitative com-
parison of DCD techniques. To this end, we adopt the classification system of
Cazabet and Rossetti [1] to provide a concise framework within which the com-
parison is framed. For our qualitative comparison, we focus on relevant commu-
nity detection characteristics like community definition used, ability to detect
different type of communities and community evolution events as well as compu-
tational complexity. For quantitative analysis we report computational time and
partition quality in terms of NF1 statistics, on 900 synthetic RDyn [7] and one
real-world DBLP dataset [25]. Results showcase that no single best performing
community technique exists. Instead, the choice of the method should adapt to
the dataset and the final objective.

2 Methodology for Unbiased Comparison of Dynamic
Community Detection Methods

In this section we provide details of our comparative study which basically con-
sists of three parts: first, shortlisting candidate algorithms to be compared,
second, analyzing their algorithmic characteristics and, third, performing the
empirical analysis.

2.1 Algorithm Selection

Given the soundness and completeness of Cazabet and Rossetti’s classification
framework [1], we opt for using this framework as a steering wheel in the process
of method selection. Within this framework, three large types of dynamic algo-
rithms for searching communities are distinguished: (1) those that only consider
the current state of the network (instant-optimal); (2) those that only consider
past and present clustering and past instances of the network topology (tempo-
ral trade-off); (3) those that consider the entire network evolution available in
the data, both past and future clustering (cross-time).

In an applied setting, neglecting previous states of the network oftentimes
leads to sub-optimal solutions. Additionally, it is realistic to assume that com-
munities will be updated using data that become available periodically. Conse-
quently, no future information will be available at time t. With this in mind,
we opt for focusing on temporal trade-off algorithms. Within Cazabet and Ros-
setti’s framework, these are further subdivided into four categories: Global Opti-
mization (denoted originally as 2.1), Rule-Based Updates (2.2), Multi-Objective
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Optimization (2.3) and Network Smoothing (2.4). For each subcategory, at least
one representative is chosen. Additionally, the list of compared algorithms is
complemented by more recently published techniques, which, in turn, are also
classified in the four previously mentioned categories.

Moreover, three characteristics are instrumental in the selection. Firstly, the
algorithm has to be able to detect communities in evolving graphs. Secondly, the
algorithm would preferably be able to detect overlapping communities to ensure
a realistic partitioning in social network problems. Thirdly, the capability of
extracting community evolution events is a desired trait with the goal of having
realistic partitions that incorporate as much available information as possible in
the partitioning process. Finally, some algorithms will be included as benchmark
algorithms in order to compare results with previously performed comparative
analyses.

2.2 Qualitative Analysis

The qualitative analysis is based on the comparison of algorithmic character-
istics. In particular, comparison is performed with respect to the following six
questions:

1. How does the method search for communities? In other words, which of the
categories within the framework of Cazabet and Rossetti does it fit in (if
any)?

2. What community definition is adopted (modularity, density, conductance...)?
3. How efficient the method is? That is, what is its computational complexity?
4. Which community evolution events can the method track (birth, death,

merge, split, growth, contraction, continuation, resurgence)?
5. Can the method find overlapping communities?
6. Can the method find hierarchical communities?

2.3 Empirical Analysis Setup

Given their different characteristics, to provide a fair comparison, selected DCD
methods are benchmarked based on both synthetic and real-life datasets. As syn-
thetic datasets, 9 different RDyn graphs [7] were created by varying the number
of nodes to 1000, 2000 and 4000 and the communities size distribution parameter
α to be 2.5, 3 and 3.5. Larger α makes the sizes of communities relatively larger,
more dispersed, while smaller makes the differences between community sizes
smaller, more uniform. The rate of node appearance and vanishing is fixed to
0.05 and 0.02 respectively. The appearance rate is slightly larger than the van-
ishing rate in an attempt to mimic a slowly growing graph which could resemble,
for instance, a customer base where customers enter, remain for a (long) while,
and churn. For each of the 9 different RDyn graphs, 100 RDyn instances are
created, yielding 900 graphs in total. The specific number 100 was arbitrarily
chosen but is used to account for variations in the results.
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As for the real-life dataset, the co-authorship graph from [25] was used. This
dataset was originally extracted from DBLP database and for purposes of this
analysis, was further limited to data from 1971 to 2002. Resulting dataset has
850 875 nodes, which represent 303 628 unique authors, and 1 656 873 edges.

To measure the relative performance of the different algorithms, two metrics
were chosen. On the one side, the quality of the partition is measured by Nor-
malized F1-statistics (NF1) and on the other side, the efficiency of the algorithm
is reported in terms of the computation time.

3 Results

In this section we provide results of each of the three phases of our comparative
analysis: algorithm selection, qualitative and quantitative analysis.

3.1 Algorithm Selection

For the broad selection, the initial list of 51 papers on DCD methods was
used [6,13–18,20–23,27–65]. It was obtained by supplementing 32 temporal
trade-off algorithms [6,13–15,17,21,22,24,27–50] from [1] with 19 algorithms
not included in the aforementioned survey [16,18,20,23,51–65] that nonethe-
less possess interesting characteristics with regards to community and evolution
extraction. Figure 1 illustrates the relevance of adding those 19 papers as it
ensures the inclusion of more recent methods.

After this list of algorithms was compiled, the three algorithm-specific char-
acteristics mentioned before were compared in order to select the approximately
ten most promising algorithms that will be compared qualitatively and empiri-
cally. Following the analysis mentioned above, 13 algorithms were selected to be
compared, as follows.

Partition Update by Global Optimization (2.1). This category contains algo-
rithms that incrementally update and find communities by globally optimizing
a metric such as modularity, density or other utility functions. Two methods
represent this category in the analysis. Firstly, D-GT is a game-theory based
algorithm proposed in [13] for dynamic social networks. The technique consid-
ers nodes as rational agents, maximizes a utility function and finds the optimal
structure when a Nash equilibrium is reached. Secondly, Updated BGL is a mod-
ularity based incremental algorithm designed by [14]. It is more time-efficient
than its modularity-based peers that do not rely on community updating. Both
D-GT and Updated BGL are capable of tracking community evolution events.
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Partition Update by Set of Rules (2.2). This category seems to be the most
promising in terms of efficiency and accuracy for algorithms that take into
account past information. The algorithms belonging to this category all consider
a list of historic network changes in order to update the network’s partitioning.
AFOCS is an algorithm designed for performing well in mobile networks, such
as online social networks, wireless sensor networks and Mobile Ad Hoc Networks
[15]. The technique is able to uncover overlapping communities in an efficient way
by incrementally updating the communities based on past information. It avoids
the recalculation of communities at each time step, by identifying community
evolution events based on four network changes, namely the appearance of a new
node or edge and the removal of an edge or node. The algorithm applies different
rules on how to update communities depending on which events occur. HOC-
Tracker is a technique designed to detect hierarchical and overlapping commu-
nities in online social networks [16]. The approach detects community evolution
by comparing significant evolutionary changes between consecutive time steps,
reducing the number of operations to be performed by the algorithm. The algo-
rithm identifies active nodes, which are nodes that (dis)appear or are linked to
an edge that (dis)appears, and compares those nodes’ neighborhoods with their
previous time step to reassign nodes to new communities if necessary. TILES, is
an online algorithm that identifies overlapping communities by iteratively recom-
puting a node’s community membership in case of a new interaction [17]. The
approach is capable of singling out community evolution events such as birth,
death, merge, split, growth and contraction. OLCPM is an online, determin-
istic and DCD method based on clique percolation and label propagation [18].
OLCPM, unlike CPM (Clique Percolation Method) [19], works by updating com-
munities by looking at some predefined events resulting in improved computation
times. OLCPM is able to detect overlapping communities in temporal networks.
Finally, DOCET [20] incrementally updates overlapping dynamic communities
after it finds an initial community structure. It can track community evolution
events.

Informed CD by Multi-objective Optimization (2.3). The two previous categories
updated partitions by looking at past communities. Informed community detec-
tion algorithms, on the other hand, calculate the communities from scratch in
each time step. The algorithm tries to balance partition quality and temporal
partition coherence or in other words, the current network structure and past
partitions. A disadvantage of these kinds of approaches is the computational
power necessary to execute the algorithm. An advantage is its temporal inde-
pendence, potentially resulting in more stable outcomes. In informed community
detection by multi-objective optimization, the partition at time t is detected
by optimizing a certain metric, e.g. modularity, density. Two algorithms will
represent this category in the evaluation. FacetNet was a pioneer in detecting
communities in an unified process, in contrast with a two-step approach, where
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evolution events can be uncovered together with the partitioning [6]. Conse-
quently, FacetNet is used as a benchmark approach in many papers introducing
algorithms with similar capabilities. The approach finds communities based on
non-negative matrix factorization and iteratively updates the network structure
to balance the current partitioning fit and historical cost function. A disadvan-
tage of the technique is that the number of communities is fixed and should be
determined by the user. DYNMOGA [21], unlike FacetNet, balances the current
partitioning fit and cost function simultaneously and, therefore, does not need a
preference parameter with regard to maximizing partition quality and minimiz-
ing the historical cost or clustering drift. It optimizes a multi-objective problem
and automatically determines the optimal trade-off between cluster accuracy
and clustering drift. Neither FacetNet or DYNMOGA are capable of detecting
overlapping communities.

Fig. 1. Analyzed papers by year.

Informed CD by Network Smoothing (2.4). ECSD proposed by [22] is a particle-
and-density based evolutionary clustering method that is capable of determining
the number of communities itself. The method detects the network’s structure
and evolutionary events by trading off historic quality and snapshot quality,
similar to the previous subcategory. The difference, however, is that ECSD finds
its clusters by temporally smoothing data instead of results.

Other Benchmarks. Within this final category of methods introduced for com-
parison purposes we consider two algorithms: DEMON and iLCD. DEMON
introduced in [23] (and extended in [26]) is a technique that is able to hierarchi-
cally detect overlapping communities but cannot, unlike all previous methods,
identify community evolution events. iLCD [24], in previous empirical compar-
isons, is repeatedly shown to perform worse in terms of partition quality and
computation speed with regards to other tested algorithms (e.g. FacetNet). It
will be interesting to evaluate or verify the relative performance of these meth-
ods.



374 L. Coppens et al.

3.2 Qualitative Results

The first aspect that stands out is the larger presence of algorithms that update
communities by a set of rules (2.2) not only in our final selection, but, like-
wise, among the more recently proposed methods, such as AFOCS, HOCTracker,
OLCPM and DOCET which are also more focused on performing in dynamic
social environments.

The second aspect that attracted our attention was the fact that nearly none
of the analyzed algorithms focused in particular on the detection of hierarchi-
cal communities. Moreover, even though it was expected that hierarchy would
be a relevant factor, it was generally not even mentioned whether an algorithm
was capable of detecting hierarchical communities. On the other hand, detect-
ing overlapping communities in social networks was oftentimes considered as
necessity in current literature.

Thirdly, it is striking that all algorithms from the categories that optimize
an objective function use modularity as community definition. Algorithms that
do not optimize an objective function sometimes still utilize a metric as a guide
to search for communities, but operate by exploiting other characteristics of the
network topology, such as the frequency of node neighbors by labeling nodes,
done by label propagation [23].

An overview of previously discussed characteristics for selected methods can
be found in Table 1. In the last column of Table 1, time complexity per each
method, as provided by its introductory study, is presented. It can be seen that
the required resources needed for running Extended BGL, LabelRankT, ECSD
and iLCD grow linearly with the number edges, making these algorithms the
most efficient ones. Next, FacetNet’s computation time grows proportional with
its number of edges and communities, DYNMOGA scales log-linearly with the
number of nodes and DEMON is dependent on the number of nodes and the
maximum degree. Finally, TILES, AFOCS, HOCTracker and DOCET appear to
be the most complex algorithms as their computation time is expected to grow
quadratically with the number of nodes, which is particularly problematic for
large graphs. It cannot be derived whether the complexity is closely related to
the category the algorithm belongs to Category 2.2., however, seems to be most
complex.

In the context of social networks (and not only these), the knowledge of
what types of community evolution events occur at which moments in time can
be valuable information in order to understand what is happening with the net-
work structure over time. Currently, the literature recognizes eight community
evolution events, namely birth, death, merge, split, growth, contraction, con-
tinue and resurgence of a community, although, obviously, not every method is
able to detect all of them. Therefore, for each of the methods which do support
community evolution tracking (see column “Evolution” in Table 1), it is worth
investigating further which in particular event(s) the tracking refers to. As can
be seen from Table 2, several remarks can be made along these lines.
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Table 1. Comparison of dynamic methods based on observed characteristics and
their time complexity (last column). “CS Type” stands for category in Cazabet and
Rossetti’s framework. A “-” denotes that methods do not search communities by opti-
mizing a metric, but operate by exploiting characteristics of network topology. Notation
used for time complexity: n, m, c, g - number of nodes, edges, communities and gener-
ations respectively, K - maximum degree, α - degree distribution parameter, RQttl -
expected average size of interactions processed during interaction removal phase, |U | -
number of nodes to be updated.

CS Type Method Definition Overlap Evolution Hierarchy Time complexity

2.1 D-GT Modularity ? � ? -

Extended BGL Modularity ? � ? O(m)

2.2 TILES - � � ? O(|n(̇cu + cv)| + RQttl |̇U|2)
AFOCS Density � � ? O(n2)

HOCTracker Density � � � O(n2)

OLCPM Modularity � � ? -

DOCET - � � ? O(n2)

LabelRankT - ✗ � ? O(m)

2.3 FacetNet Modularity ✗ � ? O(m · c)
DYNMOGA Modularity ✗ � ? O(gn · log(n))

2.4 ECSD Modularity ✗ � ? O(m)

Other Demon - � ✗ � O(nK3−α)

iLCD - � � ? O(m)

Firstly, it is remarkable that the event resurgence cannot be detected by any
of the selected algorithms, nor by any of the other algorithms that were analyzed,
even though the event has been included in the literature, among others by [1].
Similarly, the event continue is rarely mentioned explicitly. It might be the case
that continue is implied/detected when no event occurs and is therefore not
mentioned by the authors.

Secondly, the algorithms, such as OLCPM, HOCTracker and DOCET, that
were included in addition to the survey by [1] because they were more recent and
possessed good features for social network community detection, can detect most
of the events community evolution events. Only resurgence cannot be detected by
any of the methods which we assume is due to the fact that detecting resurgence
requires more than two timestamps which is not the case with methods from
category 2.2, in general.

Thirdly, some algorithms, such as Extended BGL, ECSD and iLCD, only
track events that are linked with the emergence of nodes and not their disap-
pearance.

3.3 Quantitative Results

In this section we present the empirical results on synthetic dataset, RDyn, and
real-world dataset, DBLP, in terms of partition quality (NF1) and computation
times (secs).
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Synthetic Graph (RDyn)

Table 2. Tracking of community evolution events by selected algorithms. “CS Type”
stands for category in Cazabet and Rossetti framework. Question marks denote that
the algorithm is able to detect community evolution events, but the original papers do
not specify which ones explicitly.

CS Type Method Birth Death Merge Split Growth Contraction Continue Resurgence

2.1 D-GT � � ✗ ✗ � � � ✗

Extended BGL � ✗ � ✗ � ✗ � ✗

2.2 TILES � � � � � � ✗ ✗

AFOCS ? ? ? ? ? ? ? ?

HOCTracker � � � � � � ✗ ✗

OLCPM � � � � � � � ✗

DOCET � � � � � � ✗ ✗

LabelRankT ✗ � � � ✗ ✗ ✗ ✗

2.3 FacetNet ? ? ? ? ? ? ? ?

DYNMOGA � � � � � � ✗ ✗

2.4 ECSD � ✗ � ✗ � ✗ ✗ ✗

Other Demon ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

iLCD � ✗ � ✗ � ✗ ✗ ✗

Partition Quality. The results of partition quality in terms of NF1 measure are
provided in Table 3. The best performing algorithm is HOCTracker followed by
iLCD and DEMON which only slightly differ from each other. Next, OLCPM
is the second worst performer followed by Tiles who ended up having very poor
results in terms of NF1. In general, the community size distribution parameter
and the number of nodes do not have a trend that influences the partition quality.
The impact of these variables differs algorithm to algorithm.

HOCTracker returns the highest NF1 values for α = 3 and the lowest for
α = 2.5. However, it also exhibits much higher standard deviations associated
with each group of RDyn instances, especially in comparison with iLCD and
OLCPM. Note that standard deviation in Table 3 is not the standard deviation
of the mean NF1 across every RDyn instance of one of the nine RDyn categories,
but represents the average standard deviation of all NF1 measures within one
RDyn instance. Even though the small standard deviation values in iLCD could
be interpreted as method consistency (thus in its advantage), closer investigation
revealed that oftentimes a lot of nodes where not assigned to a community
for a specific graph resulting in NF1 scores of 0 for those communities and
consequently for their graphs. If NF1 mean is 0 than the standard deviation is
either close to 0 or 0. This can be seen in Fig. 2. OLCPM and iLCD appear
to classify algorithms quite well once the algorithm succeeds at assigning the
majority of the nodes.

Scalability. As can be seen from Table 4, the best performing algorithm on syn-
thetic dataset in terms of execution times is iLCD, followed by TILES, DEMON,
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OLCPM and lastly HOCTracker. Remarkably, the group with α = 3 takes the
longest to execute across all sizes with the exception of OLCPM on the (1000,
3) graph where (1000, 2.5) requires the longest time. Although this observation
is very notable, there is no reasonable explanation why this occurs. It can be
concluded that specific characteristics can have a significant impact on the time
required to analyze a graph but we refrain from specifying a specific relation
between community size distribution and execution times.

Another interesting observation is that within each size group, the graphs
with relatively large differences in community sizes (α = 3.5) often require the
least time to analyze. If they are not the fastest their performance is rather
similar to the fastest.

According to literature, iLCD scales with the number of edges in a graph.
However, this is not reflected in the execution times. For OLCPM, it was
observed that the execution time is very variable. For the α = 2.5, the exe-
cution times for 1000 and 4000 are almost equal. For 2000 nodes it only takes
75% of the time used for the former. An anomaly can clearly be observed for
OLCPM, the average execution time for the (2000, 2.5) and (2000, 3.5)-instances
group takes less time than their (1000, 2.5) and (1000, 3.5) despite having dou-
ble the number of nodes and approximately edges. This observation cannot be
attributed to a specific aspect of the algorithm. As expected, DEMON was found
to scale with the number of nodes and the average degree distribution parameter
(kept constant on all instances of RDyn). At last, HOCTracker performed the
worst which was not unsurprising as it scales in a quadratic way.

Real-World Graph (DBLP). Three algorithms were run on the DBLP
dataset: DEMON, iLCD and TILES. HOCTracker returns an OutOfMemoryEx-
ception when trying to run it on the DBLP dataset, which demonstrates the
unsuitability of the algorithm for large graphs. OLCPM runs itself into a loop on
the DBLP dataset. We also suspect the method unsuitability for large datasets
as this phenomenon did not occur on the RDyn dataset and the test in its
introductory paper encompassed only small datasets (<10 000 nodes).

To analyze the performance of DEMON, iLCD and TILES each partitioning
is benchmarked with the resulting partitioning of each of the other algorithms as
ground truth. From the results, in Table 5, it can be observed that, on average,
TILES is the worst and DEMON the best performing algorithm. Even though
DEMON is the best performing algorithm, it needs significantly more computa-
tion time 3099.48 s on DBLP dataset as compared to TILES requiring 1436.71 s
and iLCD which is the fastest with only 55.73 s. Figure 3 shows the evolution
of mean NF1 scores of the three different methods for each year from 1971 to
2002. A general trend can be observed: as time progresses and more nodes and
edges are introduced, the NF1 values drop significantly, however, not at the same
pace for every algorithm. While TILES starts as the worst-performing algorithm
in the earlier timestamps and thus smaller graphs, it ends up being the most
performing one once the graph size exceeds 35 000 nodes (1991).
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4 Related Work

A plethora of studies focusing purely on comparing algorithms for static com-
munity detection methods can be found in the literature [3,8–12]. In contrast, to
the best of our knowledge, there are no studies that focus purely on the empiri-
cal comparison of DCD algorithms. Instead, in the studies which introduce new
DCD algorithms or new dynamic benchmark graphs, authors typically bench-
mark their own method with few others with the aim to showcase that their
technique performs better with regard to peers.

Table 3. Mean NF1 results and the associated standard deviations of benchmarked
algorithms on RDyn dataset. The highest scores per different number of nodes and
alpha are underlined while the best averages are boldfaced. “CS Type” stands for
category in Cazabet and Rossetti framework.

CS Type Method Alpha Nodes

1000 2000 4000 Avg.

Mean Std. Mean Std. Mean Std. Mean Std.

2.2 TILES Avg. 0.2002 0.2035 0.1961 0.1967 0.2087 0.1954 0.2017 0.1985

2.5 0.1951 0.2068 0.1969 0.1994 0.2188 0.2017 0.2036 0.2026

3 0.2033 0.2026 0.1882 0.1971 0.1953 0.1960 0.1954 0.1985

3.5 0.2022 0.2010 0.2043 0.1934 0.2131 0.1882 0.2066 0.1941

HOCTracker Avg. 0.4600 0.2596 0.4236 0.2397 0.3852 0.2355 0.4236 0.2402

2.5 0.3839 0.2570 0.4095 0.2443 0.3605 0.2474 0.4070 0.2447

3 0.5346 0.2536 0.4493 0.2442 0.4352 0.2272 0.4515 0.2440

3.5 0.4469 0.2675 0.4096 0.2298 0.3714 0.2229 0.4101 0.2309

OLCPM Avg. 0.3132 0.0243 0.3118 0.0206 0.3257 0.0192 0.3169 0.0213

2.5 0.3006 0.0262 0.3173 0.0201 0.3274 0.0202 0.3151 0.0222

3 0.3222 0.0253 0.3043 0.0225 0.3227 0.0190 0.3163 0.0223

3.5 0.3171 0.0212 0.3143 0.0189 0.3270 0.0182 0.3196 0.0194

Other DEMON Avg. 0.4022 0.3059 0.3664 0.2962 0.3687 0.2970 0.3788 0.2996

2.5 0.3987 0.3135 0.3615 0.2974 0.3846 0.2956 0.3814 0.3021

3 0.3952 0.3001 0.3543 0.2898 0.3396 0.2996 0.3624 0.2964

3.5 0.4136 0.3041 0.3857 0.3021 0.3845 0.2957 0.3944 0.3006

iLCD Avg. 0.3961 0.0170 0.3797 0.0125 0.3968 0.0097 0.3908 0.0130

2.5 0.3838 0.0205 0.3826 0.0133 0.4018 0.0106 0.3894 0.0147

3 0.3999 0.0159 0.3677 0.0131 0.3826 0.0090 0.3829 0.0126

3.5 0.4054 0.0145 0.3908 0.0109 0.4071 0.0094 0.4012 0.0115

The situation is slightly better with respect to benchmark graphs, where a
vast body of literature is available. Although the most prominently used bench-
mark graphs Girvan-Newman (GN) [4] and Lancichinetti-Fortunato-Radicchi
(LFR) [2] are not suited for temporal community discovery, to this end, their
extensions in [6] and [5] respectively, were proposed. Next, RDyn, a framework
for generating dynamic networks along with time-dependent ground-truth par-
titions with tunable qualities, was introduced in [1].

To gain better insight in how the mentioned sporadic comparisons of DCD
algorithms and/or dynamic benchmark graphs have been performed, in the
context of this literature review, we considered a selection of 51 papers on
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Table 4. Average computation time (in sec) over 100 RDyn instances per each bench-
marked algorithm (the shortest boldfaced). “CS Type” stands for category in Cazabet
and Rossetti framework.

CS Type Method Computation time (sec)

Alpha Nodes

1000 2000 4000

2.2 TILES 2.5 3.43 5.45 7.47

3 3.53 6.05 8.42

3.5 3.45 5.48 7.73

HOCTracker 2.5 46.12 77.77 152.00

3 49.61 94.22 214.44

3.5 43.96 78.62 166.25

OLCPM 2.5 39.92 30.69 41.74

3 37.48 69.27 56.40

3.5 32.79 29.37 45.55

Other DEMON 2.5 11.34 18.68 30.42

3 11.77 20.8 35.02

3.5 10.38 16.81 28.98

iLCD 2.5 1.94 2.35 2.74

3 2 2.53 3.08

3.5 1.98 2.37 2.81

Fig. 2. NF1 mean vs. standard deviation for iCLD on synthetic data.

DCD methods. The first remarkable finding is that 12 out of 51 papers did
not include a single comparison with peer algorithms [28,33,35,40,41,44,45,48–
50,52,56], while 39 did. A closer investigation of these 39 papers revealed
57 algorithms out of 82 were only benchmarked once. On the other hand,
the most frequently referenced algorithm is FacetNet [6]. The second inter-
esting finding is that authors seem to use various datasets for comparison, as
they often include synthetic graphs and/or real-world graphs. In the assessed
papers, 1 made use of only synthetic graphs [32], 32 used only real graphs
[13,14,16,22,27,28,30,31,33,34,36–41,44,45,48–52,54–57,59–63] and 17 used
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Table 5. The mean NF1 results and the associated standard deviations when running
DEMON, iLCD and TILES (rows) and using them as ground truth (columns) on DBLP
dataset.

Method Ground truth

TILES DEMON iLCD Avg

Mean Std. Mean Std. Mean Std.

TILES 1.0000 0.0000 0.5840 0.3211 0.5941 0.3182 0.5891

DEMON 0.5369 0.2612 1.0000 0.0000 0.7612 0.2817 0.6490

iLCD 0.5117 0.2685 0.6619 0.3116 1.0000 0.0000 0.5868

Fig. 3. Mean NF1 results for 1971–2002.

both [6,15,17,18,20,21,23,24,29,42,43,46,47,53,58,64,65]. In the 49 papers
that used real graphs 47 different real graphs were introduced. A little over
half of the datasets are only used once. The most popular are graphs extracted
from the DBLP database. These occur as benchmark graphs in 19 of 51 papers.
Hence, similarly to the use of methods, the use of datasets is also fairly hetero-
geneous which contributes to the difficulty of assessing the relative performance
of techniques.

Due to the fact that the overlap in comparison is limited, it is hard to make
any deductions with regard to the relative performance of the algorithms. More-
over, as mentioned before, the setup and results of these comparisons might
contain an unconscious bias towards the proposed algorithm. This shows the
relevance of this study.

5 Conclusion

Dynamic community detection has numerous applications in different fields and
as such is extensively studied in the current literature. Nevertheless, a systematic
and unbiased comparison of these methods is still missing. Therefore, in this
paper we made steps towards scrutinizing algorithms and performing fairly both
qualitative and quantitative comparisons on synthetic as well as real-life evolving
graphs. The qualitative analysis included an overall set of characteristics relevant
for (social) community detection such as community definition used, the ability
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to track community life-cycle events, overlapping and hierarchical communities,
and the time complexity. For the empirical analysis, several limiting factors such
as unavailable/poorly documented source code and inability to run methods
on large graphs led to a narrower set of compared methods. Nevertheless, 900
synthetic, evolving graphs of various sizes and community size distributions and
the most frequently used real-world DBLP dataset were used for a thorough
analysis.

Undoubtedly, the field of community detection techniques that act on evolv-
ing graphs is characterized by its inherent heterogeneity in all its aspects. As
such, there is no single best performing community technique, but rather, the
choice and the performance depends on the objective and dataset characteristics.
For future work, we envision an even more extensive empirical evaluation.
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Abstract. Learning network representations is a fundamental task for
many graph applications such as link prediction, node classification,
graph clustering, and graph visualization. Many real-world networks are
interpreted as dynamic networks and evolve over time. Most existing
graph embedding algorithms were developed for static graphs mainly
and cannot capture the evolution of a large dynamic network. In this
paper, we propose Dynamic joint Variational Graph Autoencoders (Dyn-
VGAE) that can learn both local structures and temporal evolutionary
patterns in a dynamic network. Dyn-VGAE provides a joint learning
framework for computing temporal representations of all graph snap-
shots simultaneously. Each auto-encoder embeds a graph snapshot based
on its local structure and can also learn temporal dependencies by col-
laborating with other autoencoders. We conduct experimental studies
on dynamic real-world graph datasets and the results demonstrate the
effectiveness of the proposed method.

Keywords: Graph representation · Network embedding · Generative
model · Dynamic networks · Variational autoencoder

1 Introduction

Many real world data can be formulated as graphs to represent complex relation-
ships among the objects in the data. Dealing with high dimensional graph struc-
tures is a highly challenging task for many machine learning algorithms. Graph
embedding methods are helpful to reduce the high dimensionality of graph data
by learning low-dimensional features as latent representations. Many embedding
algorithms [1–4,8,12,13,18,24,25,27,31,35,37] have been proposed to capture
different characteristics of a network and they provide effective ways to extract
low-dimensional latent representations of graphs.

Most of the embedding approaches are designed as static methods, assum-
ing that the nodes and edges in the graph are fixed. However, real networks
are often dynamic, consisting of vertices and edges that may occur and disap-
pear at different time points. In modeling a dynamic network, it is essential to
take temporal dependencies and changes into account for characterizing evolv-
ing nodes and edges. Capturing these temporal factors requires a dynamic model
c© Springer Nature Switzerland AG 2020
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that can learn the evolution track of a dynamic network over time. A dynamic
network is often represented as a sequence of static graph snapshots over time.
Some attempts have been made to develop a dynamic model for leaning temporal
low-dimensional latent representations of graph snapshots [9,10,22,23,34,39–41].
A simple traditional method for obtaining the embedding vectors of a graph
snapshot is computing embedding vectors in each timestamp separately. Then,
the graph embedding vectors across all timestamps are aligned and placed in a
same vector space.

Alignment methods raise two main issues. First, some learned embedding
vectors are invariant to transformations and it is not possible to place embed-
ding vectors of all graph snapshots in the same latent space. Second, such meth-
ods need to solve a separate optimization problem for finding transformation
functions. In [41], the authors proposed a joint matrix factorization-based opti-
mization function which can jointly find embedding vectors across time without
the alignment step. The problem of this joint optimization function is a non-
convex and non-linear optimization problem with a large number of variables.
Recently, different types of deep autoencoders have been proposed to solve com-
plex nonlinear functions [13,25,36]. Among the autoencoders, variational graph
auto-encoder (VGAE) [18] is an effective static embedding method which is
a deep generative model by variational inference. Similar to other static graph
embedding methods, it is not designed for the dynamic setting. Joint deep learn-
ing models have recently achieved great success in many learning tasks such as
multi-task learning and domain adaptation [6], multimodal network embedding
[38], video description generation [26], image-text representation [15], and clus-
tering [7]. These joint deep leaning models aim to learn dependencies and sim-
ilarities among some target tasks by joining their goals together. As a dynamic
network includes temporal dependencies among all graph snapshots, the intu-
ition of join deep learning motivates us to develop a joint autoencoder based on
VGAE.

In this paper, we propose a joint dynamic Variational autoencoder (Dyn-
VGAE) which simultaneously learns latent representations of the graphs at all
timestamps. To the best of our knowledge, this is the first study on developing
a deep joint learning for dynamic network representations. We first assign a
specific variational autoencoder with a modified learning function for each graph
snapshot. This learning framework jointly learns latent variables of each graph
and captures evolving patterns among graphs by sharing learned latent variables
during the training iterations. The main contributions of this work are:

– We introduce a joint learning approach, which is the first study to extract
the dynamic network representation with collaboration among graph autoen-
coders. During the training steps, each autoencoder can collaborate with other
autoencoders of previous graph snapshots.

– We define a novel probabilistic smoothness term in the loss function to align
latent spaces across time, which provides a transfer learning strategy to adjust
learned latent spaces.
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– We conducted experiments on dynamic real-world datasets, which show that
the proposed joint method can significantly improve the state of the art.

The rest of the paper is organized as follows. The related works are discussed in
Sect. 2. In Sect. 3, we describe our proposed architecture. The experiments are
detailed in Sect. 4. Conclusions and future work are presented in Sect. 5.

2 Related Work

In this section, we describe related work on static, dynamic, and joint deep
learning methods.

2.1 Static Graph Embeddings

Network embedding for static graphs has been well studied in recent years [1,2,
8,12–14,18,25,27,31]. Conventional static network embedding methods include
DeepWalk [27], Node2vec [12], LINE [31] and SDNE [36]. [12,27,31] are based
on random walks and utilize random walks for capturing the neighborhood of
the nodes in a graph inspired by advances in natural language processing. The
main difference among these methods is related to the special kind of random
walk they exploit. In [27] and [12], uniform random walks and BFS/DFS-like
random walks are used, respectively. Another type of graph embedding methods
[13,18,25,36] is based on adjacency matrices of graphs. In [36], the first-order
and second-order proximity is used to represent the network structure. In [25]
a jointly optimized adversarial framework is proposed for network embeddings.
In this framework, the method first learns the topology of the graph and then
forces the latent codes to be similar to a prior distribution.

2.2 Dynamic Graph Embeddings

Temporal network representation is a challenging problem as it needs to consider
the evolutionary structure of graphs over time. There have been some recent efforts
to tackle the problems in dynamic network embedding [9–11,19,22,23,34,40,41].
[40] uses the triadic closure process to learns changes in the structure of graphs.
This method is specifically designed for undirected graphs. [10] is a deep learning
model that initialized a graph model with weights from models of previous graphs
to create the desired alignment among temporal embeddings. In [41] a joint matrix
factorization method was proposed that learns a temporal latent space model for
dynamic networks by developing local and incremental block-coordinate gradient
descent algorithms. In [9], the authors proposed a deep learning method that cap-
tures the transition model of dynamic networks using dense and recurrent layers.
dyngraph2vecAE, dyngraph2vecRNN and dyngraph2vecAERNN are three vari-
ations in [9]. dyngraph2vecAE models the changes in graphs using multiple fully
connected layers. Then, dyngraph2vecRNN is presented as it has less parameters
and takes into consideration the long term dependencies in graphs using an LSTM
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structure. In dyngraph2vecAERNN, the dimension of input vectors to LSTM is
reduced by inputting node representation vectors into LSTM rather than sparsed
vectors.

2.3 Joint Deep Learning Methods

Recently, many algorithms have been proposed to jointly learn embeddings for
different applications. In [6], a joint learning framework was developed for mul-
tiple tasks. The authors designed a neural network model with shared branches
for extracting information of common features and local branches for learning
features of each task. For visual semantic embeddings, Pan et al. [26] intro-
duced a long short-term memory with a visual-semantic embedding architecture
which simultaneously learns the semantic sentence and video content. A joint
convolutional autoencoder was proposed in [7] for the clustering task by jointing
clustering and embedding tasks. Ren et al. [28] introduced a joint representation
for image-text embedding task using the visual information in the text model.
A joint embedding was introduced in [38] for coupled networks. Each network
transfers some relevant information to other networks for learning intra-network
edges in these networks. Huang et al. [15] proposed a deep joint embedding which
incorporates the link information and multimodal contents together to obtain
embedding for social media.

3 Method

A dynamic network is represented as a time-ordered sequence of static graphs,
G1, G2, . . . , GT , where T is the number of time steps. The graph at time t is
denoted by Gt = (Vt, Et) with a set Vt of |V | vertices and an edge set Et that
may change in the time interval [0, T ]. The dynamic graph embedding can be
formulated as a temporal mapping function ft : At → Zt which finds a low-
dimensional latent representation Zt for graph Gt with an adjacency matrix At.
In this section, we first review the static variational graph autoencoder briefly
and then propose a novel dynamic graph embedding method, which we call
Dynamic joint Variational Graph Autoencoders (Dyn-VGAE).

3.1 Static Variational Graph Autoencoder (SVGAE)

The overall architecture of SVGAE consists of two components: a variational
graph convolutional network encoder and a probabilistic decoder [40]. The vari-
ational graph encoder is defined by an inference model, which encodes the
observed graph data into stochastic low-dimensional latent variables (Z). The
variational graph decoder is designed by a generative model, which decodes latent
variables into the distribution of the observed graph data. Let G = (V,E) denote
a graph with an adjacency matrix A and the content features X, where V and
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E are nodes and edges of the graph. Variational graph convolutional encoder is
constructed as follows:

GCN(X,A) = (D−1/2AD−1/2)fR((D−1/2AD−1/2)XW0)W1

fR(t) = Relu(t) = max(0, t)

where D is a degree matrix. Weight matrices are Wi and first-layer parameters
W0 are shared between GCNμ(X,A) and GCNσ(X,A). The generative process
is characterized by an inner product between latent variables:

p(A|Z) =
N∏

i=1

N∏

j=1

p(Ai,j |zi, zj),

with p(Ai,j = 1|zi, zj) = sigmoid(zT
i , zj)

The inference process is modeled by a two-layer graph convolutional network
(GCN) [17] (Variational Graph Encoder):

q(Z|X,A) =
N∏

i

q(zi|X,A), with q(zi|X,A) = N (zi|μi, diag(σ2
i ))

where N = |V |, μ and σ are parameters of the Gaussian distribution q(.),
μ = GCNμ(X,A) is the matrix of mean vectors, and logσ = GCNσ(X,A). The
variational autoencoder is trained by maximizing the variational lower bound
LV LBO = Eq(Z|X,A)[logp(A|Z)] − KL[q(Z|X,A)||p(Z)], where KL[p(.)||q(.)] is
the Kullback-Leibler (KL) divergence between p(.) and q(.). The LV LBO is usu-
ally optimized via stochastic gradient descent, using the reparameterization trick
to estimate the gradient.

3.2 Dynamic Joint Variational Graph Autoencoders (Dyn-VGAE)

Let G1, G2, . . . , GT denote a dynamic network with a series of adjacency matrices
A1, A2, . . . , AT . Dyn-VGAE aims to obtain a low dimensional latent represen-
tation of each graph Gt. This representation preserves both the local topology
and the structure of a static graph snapshot Gt and also captures its evolu-
tionary pattern from the previous time steps. In the proposed joint framework,
each graph Gt has its own model (the variational autoencoder V GAEt) which
is similar to SVGAE except that it has a different learning loss function. The
joint learning function encourages all autoencoders to collaborate together for
obtaining similar parameters (latent representations). We describe the algorithm
in detail below.

Autoencoder Model for GraphGt . The encoder of a graph snapshot Gt with
an adjacency matrix At and the content features Xt is modeled by a two-layer
GCN:

qt(Zt|Xt, At) =
Nt∏

i

qt(zt
i |Xt, At),

with qt(zt
i |Xt, At) = N (zt

i |μt,i, diag(σ2
t,i))
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The probabilistic decoder of V GAEt is:

pt(At|Zt) =
Nt∏

i=1

Nt∏

j=1

pt(At
i,j |zt

i , z
t
j),

with pt(At
i,j = 1|zt

i , z
t
j) = sigmoid((zt

i)
T
, zt

j).

Similar to the static variational autoencoder, V GAEt optimizes the variational
lower bound for learning the current latent representation by minimizing the loss
function as follows:

min LVt
= Eqt(Zt|Xt,At)[logpt(At|Zt)]

−KL[qt(Zt|Xt, At)||pt(Zt)]

A general assumption of a dynamic network is [10,22,29,40] that changes are
smooth and continuous in a short duration (length l) [40]. Thus, the key question
here is how an associated encoder for graph Gt can learn aligned embedding
vectors with embedding vectors of other graphs in a dynamic network. We change
the learning process in which the autoencoder V GAEt can be joint with other
autoencoders of previous graphs during the training process.

By collaborating with other prior autoencoders, each autoencoder is able to
transfer temporal dependencies from previous latent spaces to the current latent
space. The parameters of V GAEt are obtained by a modified loss function which
has a temporal smoothness dependency term for aligning the latent space of
graph Gt with l prior snapshots. By assuming change smoothness, we force the
current latent representations to be similar to the previous latent vectors by
minimizing the difference between two distributions of the current latent space
and a temporal Gaussian random walk [29]. The temporal Gaussian random
walk is defined based on latent representations of the previous graphs in l prior
times. For simplicity, first we explain our method by assuming the length l is
equal to two. This means the current latent space (Zt) of the graph Gt should
be similar to only the previous latent space (Zt−1); then we will extend l to a
general length. This temporal Gaussian random walk (qt

W ) can be defined as a
Gaussian distribution with the mean Zt−1:

qt
W = N (Zt−1, σ

2)

where σ2 is considered as Gaussian noise with a fixed standard deviation [29].
Temporal smoothness dependency term Lt

s is defined as the Kullback-Leibler
(KL) divergence among qt

W and q(Zt|Xt, At):

Lt
s = KL[qt(Zt|Xt, At)||qt

W ]

Lt
s prevents the current latent vectors from being placed very far from latent

vectors in the previous timestamps. Then, the final learning loss function can
be formulated by combining the variational learning function Lt

v and temporal
smoothness dependency term Lt

s:

min Lt
C = Lt

v + γLt
s
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Fig. 1. Joint framework for graphs G1, G2, . . . , GT with a series of adjacency matrices
A1, A2, . . . , AT

where the hyperparameter γ controls the importance of the two losses. The term
Lt

v learns latent representations of the graph Gt by minimizing the distance
between the model prediction p(.) and the target variable q(.). The additional
smoothness term Lt

s forces latent representations to be aligned with prior latent
representations of the graph Gt. For l > 2, Lt

v can be formulated as follows:

Lt
s =

t−l∑

i=t

KL[qt(Zt|Xt, At)||qi
W ]

Joint Dynamic Graph Autoencoders Framework. The joint learning
framework is shown in Fig. 1. Consider G1, G2, . . . , GT as a dynamic network,
we assign T autoencoders V GAE1, V GAE2, . . . , V GAET for all graphs. All loss
learning functions of these autoencodres can be jointly collaborated while each
autoencoder can focus on its own task to learn its own graph latent represen-
tations. The joint loss learning function can be formulated as the summation of
the loss function of all autoencoders:

min
T∑

i=1

Li
C =

T∑

i=1

Li
v + γLi

s

=
T∑

i=1

[
Ni∏

j=1

Ni∏

k=1

pi(Ai
j,k|zi

j , z
i
k)+

i−l∑

j=i

KL[qi(Zi|Xi, Ai)||qj
W ]]

Each autoencoder is trained to learn latent variables specific to a graph and
extract temporal dependencies among graphs by sharing learned latent variables
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during training iterations. Therefore, the embedding latent representations for
each timstamp can be aligned jointly with l autoencoders of previous graph
snapshots by using shared weights.

We use the reparameterization trick mentioned in [16,18] to minimize the
loss function. During training steps, weights for an autoencoder jointed with
l other autoencoders can be updated in two strategies. In the first method,
gradients in the autoencoder t are computed with respect to fixed weights from
the previous update step of other autoencoders. The second strategy updates
gradients of the autoencoder t after getting new updates of other autoencoders.
In this paper, we choose the second strategy which provides a flexible framework
to train autoencoders. Before the training step, we find the common nodes among
each graph with its l previous graphs, so during training each autoencoder just
needs to share learned weights for common nodes. The proposed joint framework
is very practical because the gradient of the additional smoothing term can be
easily computed similar to the KL term in the variational autoencoder. Also, the
framework is trivially parallelizable and each autoencoder just needs to cooperate
with only l autoencoders where l is considered as a short period of time.

4 Experiments

We performed the evaluation of our method on multiple real-world datasets from
various domains on node classification, link prediction and receommendation
tasks. The findings of our experiments are reported as follows.

4.1 Baselines

The models for comparison are listed below:

– DeepWalk [27]: DeepWalk is a static network embedding method based on
uniform random walks.

– Node2vec [12]: This method is a static network representation algorithm
utilizing breadth-first-search (BFS) or depth-first-search (DFS) based random
walks and skipgram.

– SVGAE [18]: This is a variational graph autoencoder model that works for
static graphs. SVGAE is an inference-based graph embedding model that
encodes the observed graphs into their respective distribution.

– dynAE [10]: dynAE stands for dyngraph2vecAE, a dynamic network embed-
ding method based on dyngraph2vec. It utilizes deep learning models with
multiple fully-connected layers to model interconnections of nodes.

– dynAERNN [10]: dynAERNN is the short form we used for dyn-
graph2vecAERNN. This is another variant of the dyngraph2vec method,
which is a dynamic representation learning method. It feeds previously
learned representations to LSTMs to generate embedding vectors.

For each static baseline method, we apply the static baseline method indepen-
dently to each graph snapshot Gt in a dynamic network.
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4.2 Experiment Settings

We run our experiments on DeepWalk and Node2vec with (p, q) = (1, 1) and
(p, q) = (0.5, 1), respectively. The number of random walks per node is set to
10. For dynAE and dynAERNN, we used the default parameters in the publicly
available source code [10,11]. The parameters of SVGAE and Dyn-VGAE are
similar to [18]. Their autoencoder model structure consists of 32 dimensional
hidden layers and 16 dimensional latent variables. For training, we used the
Adam optimizer, the learning rate is 0.01, and number of epochs are 200. Dyn-
VGAE1 is Dyn-VGAE with l = 1 and in Dyn-VGAE2, l = 2.

Table 1. Macro-F1 and Micro-F1 scores for node classification

Method Acm Dblp

mac-f1 mic-f1 mac-f1 mic-f1

node2vec 0.3775 0.5221 0.3768 0.5185

DeepWalk 0.3532 0.502 0.3815 0.5245

SVGAE 0.3896 0.5664 0.4224 0.5227

dynAE 0.3699 0.5237 0.3675 0.479

dynAERNN 0.402 0.5581 0.3876 0.4959

Dyn-VGAE1 0.4048 0.575 0.439 0.5283

Dyn-VGAE2 0.4402 0.5896 0.4716 0.5356

Table 2. AUC scores for link prediction

Method Hep-th AS St-Ov

node2vec 0.973137 0.91395 0.59249

DeepWalk 0.97238 0.91219 0.58776

SVGAE 0.97499 0.91974 0.65437

dynAE 0.87834 0.7969 0.52017

dynAERNN 0.93851 0.83913 0.56149

Dyn-VGAE1 0.98236 0.92981 0.74065

Dyn-VGAE2 0.97754 0.93187 0.69466

4.3 Node Classification

In node classification tasks, each node in a graph has a class label. We predict the
class label for the nodes in graph Gt using previous graphs in the stream from
0 to t − 1 based on the approach mentioned in [10]. Our classification method is
logistic regression. We used two measures, Micro-f1 and Macro-f1, for evaluating
our method. The results are presented in Table 1. The datasets are as follows:
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– Dblp [32,33]: Dblp is the main coauthorship network of researches in vari-
ous fields with 90k nodes and 749k edges over 18 years (2000–2017). There
are two class labels for nodes: (1) database and data mining (VLDB, SIG-
MOD, PODS, ICDE, EDBT, SIGKDD, ICDM, DASFAA, SSDBM, CIKM,
PAKDD, PKDD, SDM and DEXA) (2) computer vision and pattern recog-
nition (CVPR, ICCV, ICIP, ICPR, ECCV, ICME and ACM-MM).

– Acm [32,33]: The Acm dataset has the same characteristics as the Dblp
dataset. The timespan of Acm is considered as 16 years (2000–2015).

Based on the results, it is evident that our approach outperforms the baselines in
both Acm and Dblp datasets. Specially, Macro-F1 scores are significantly better
than the closest benchmarks and our performance gain is above other methods
in terms of Micro-F1 scores. From the results, it can been seen that on both
Acm and Dblp datasets, increasing the effect of previous graphs by extending l
in Dyn-VGAE2 improves the overall results. The reason is that in coauthorship
datasets the changes between consecutive snapshots are smooth and the research
area of authors is fixed in a short period of time.

4.4 Link Prediction

One of the main graph mining tasks is link prediction as it shows the effectiveness
of the edge embeddings in predicting unseen edges. We predict edges in graph
Gt using previous learned embeddings of graph Gt−1 mentioned in [10]. For
this task, the reconstruction scores are computed similar to [18] and we report
the average AUC (area under ROC curve) scores over time from 1 to T for
all datasets in Table 2. The evaluation was performed on the following three
datasets.

– Hep-th [20]: This is the coauthorship network of researchers in high energy
physics theory conference with 34k nodes, 421k edges, 60 time points.

– AS [20]: Autonomous Systems are the communication network between users
in BGP. It contains 6k nodes, 13k edges and 100 time steps.

– St-Ov [20]: This dataset shows the user interactions in the Math Overflow
website. This dataset consists of 14k nodes and 195k edges over 58 time points.

The results show that Dyn-VGAE achieves the highest AUC in all the three
datasets. In AS and St-Ov, our approach outperforms the benchmark methods
by a significant margin. This highlights that our method effectively learns the
dynamic representations in these datasets. Similarly, the results of our method
on the Hep-th dataset are better than those of other methods. The effects of
increasing l for AS and Hep-th are not that significant while this is not the
case in St-Ov. In the St-Ov dataset, graph snopshots have less common edges.
Therefore, its results with smaller l’s are better.
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Table 3. Analysis of parameter γ for node classification

Dataset γ mac-f1 mic-f1

Dblp 0.5 0.4386 0.5288

1.5 0.4377 0.5299

2 0.4362 0.529

Acm 0.2 0.3992 0.5714

1.2 0.4028 0.5754

1.5 0.4004 0.5776

4.5 Recommendation Task

Recommendation is a challenging task, especially in dynamic graphs. A recom-
mendation task aims to suggest potential relations to users in many networks
such as coauthorship, communication, and interaction networks. For example,
in the coauthorship network Hep-th, we recommend co-authors to researchers
by learning their embeddings over time. In [42], temporal recommendation is
defined as recommending new connections for a node at time t by using obtained
embeddings from previous time points. Here, we use the learned embedding at
time t−1 to rank nodes for recommending top-k possible relations for the graph
Gt. Our ranking score is based on the cosine similarity of embedding vectors of
nodes. We use Precision@k and Recall@k as evaluation measures where the value
k varies from 2 to 10. The number of nodes is different for each k because we
select common nodes of consecutive times with more than k neighbors. Tables 5,
6 and 7 show the average Precision@k and Recall@k over time from 1 to T for
three datasets: the coauthorship network Hep-th, communication network AS,
and interaction user network St-ov. From the results, it can be seen that Dyn-
VGAE performs better than other compared methods on Hep-th and St-ov;
it obtains higher Precision@k and Recall@k for all different k values. However,
the performance of Dyn-VGAE decreases on AS and dynAERNN performs the

Table 4. Analysis of parameter γ for link prediction

Dataset γ AUC

Hep-th 0.7 0.98186

1 0.98031

1.2 0.97773

AS 0.2 0.92283

0.5 0.92858

1.2 0.92766

St-Ov 0.5 0.75342

0.7 0.72256

1 0.72064
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Table 5. Precision and Recall for recommendation on AS dataset

Method k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

node2vec Recall 0.214669 0.334204 0.367184 0.394506 0.407605 0.416419 0.425321 0.429238 0.4371
Precision 0.388217 0.543356 0.640374 0.696155 0.739523 0.759523 0.769879 0.781488 0.785693

DeepWalk Recall 0.220448 0.338428 0.368539 0.394732 0.407542 0.415795 0.423611 0.42708 0.434744
Precision 0.395229 0.547698 0.64106 0.695375 0.737814 0.756948 0.76571 0.776629 0.780256

SVGAE Recall 0.273485 0.263785 0.273485 0.294505 0.306035 0.315532 0.321633 0.32235 0.318589
Precision 0.494758 0.432536 0.494758 0.540298 0.576909 0.596037 0.603462 0.610673 0.604129

dynAE Recall 0.243241 0.260874 0.249538 0.340724 0.363635 0.430242 0.027614 0.425404 0.424393
Precision 0.484355 0.519891 0.58471 0.675628 0.669945 0.667173 0.064773 0.764048 0.763721

dynAERNN Recall 0.294509 0.358547 0.375264 0.409208 0.445241 0.481598 0.436302 0.432607 0.43122
Precision 0.501646 0.555114 0.670827 0.712004 0.786749 0.794443 0.776476 0.773307 0.771579

Dyn-VGAE1 Recall 0.165353 0.253836 0.26011 0.280628 0.291986 0.301531 0.307532 0.31024 0.315377
Precision 0.30464 0.416175 0.47301 0.516912 0.551996 0.570365 0.57744 0.586087 0.588087

Dyn-VGAE2 Recall 0.16685 0.260054 0.269341 0.290558 0.302173 0.312019 0.317569 0.319883 0.325352
Precision 0.308355 0.426376 0.487754 0.53296 0.56928 0.588481 0.595397 0.604296 0.606698

Table 6. Precision and Recall for recommendation on Hep-th dataset

Method k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

node2vec Recall 0.32482 0.465231 0.55624 0.585563 0.609622 0.646217 0.569039 0.598079 0.547933
Precision 0.44415 0.585353 0.67445 0.726131 0.739472 0.766933 0.68246 0.687628 0.630987

DeepWalk Recall 0.315802 0.468277 0.550393 0.572584 0.607141 0.627954 0.568508 0.594742 0.545312
Precision 0.433653 0.586132 0.668169 0.709337 0.736379 0.745321 0.681347 0.683836 0.628118

SVGAE Recall 0.378678 0.511046 0.580978 0.600192 0.614316 0.643828 0.567718 0.551842 0.549033
Precision 0.510663 0.643486 0.703221 0.720982 0.751181 0.763746 0.682238 0.685163 0.632336

dynAE Recall 0.337487 0.059347 0.530609 0.57412 0.575352 0.558555 0.5437 0.537371 0.528373
Precision 0.452566 0.073831 0.644052 0.688662 0.685259 0.666084 0.649728 0.640798 0.601132

dynAERNN Recall 0.373237 0.508547 0.562752 0.599208 0.605728 0.581598 0.565275 0.557373 0.544694
Precision 0.501881 0.635114 0.665775 0.722004 0.722058 0.694443 0.675759 0.664076 0.620038

Dyn-VGAE1 Recall 0.389606 0.522072 0.591764 0.602518 0.627004 0.645771 0.581532 0.608694 0.55852
Precision 0.521951 0.646657 0.714264 0.743664 0.76054 0.766375 0.697046 0.699577 0.642631

Dyn-VGAE2 Recall 0.39046 0.522811 0.59121 0.602739 0.626602 0.64676 0.581511 0.610082 0.560516
Precision 0.522826 0.647528 0.713929 0.743913 0.760167 0.767543 0.697636 0.701501 0.645338

Table 7. Precision and Recall for recommendation on St-Ov dataset

Method k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

node2vec Recall 0.199371 0.170521 0.151717 0.142989 0.128116 0.125163 0.120154 0.116243 0.113564
Precision 0.343357 0.271554 0.229346 0.207767 0.185266 0.17563 0.163032 0.154961 0.148131

DeepWalk Recall 0.199072 0.170562 0.151378 0.142644 0.126195 0.122637 0.118336 0.119307 0.115129
Precision 0.342977 0.271374 0.228719 0.207191 0.182268 0.172017 0.161157 0.158638 0.150188

SVGAE Recall 0.200822 0.170041 0.155608 0.144517 0.131738 0.128646 0.125685 0.122943 0.121674
Precision 0.34631 0.274437 0.236112 0.212186 0.191121 0.181621 0.171127 0.164683 0.15869

dynAE Recall 0.088628 0.077637 0.067938 0.062643 0.05903 0.054914 0.054631 0.053159 0.049165
Precision 0.158084 0.125986 0.104936 0.093048 0.085407 0.077678 0.074203 0.071328 0.064948

dynAERNN Recall 0.108056 0.094056 0.082202 0.077242 0.071827 0.067795 0.066443 0.065219 0.064853
Precision 0.191947 0.152271 0.127425 0.114656 0.104315 0.095892 0.09075 0.087338 0.084257

Dyn-VGAE1 Recall 0.204545 0.177749 0.160533 0.151073 0.13851 0.136031 0.134245 0.133499 0.135583
Precision 0.352988 0.284164 0.244354 0.222065 0.202489 0.193704 0.185364 0.181157 0.179375

Dyn-VGAE2 Recall 0.20165 0.173873 0.157185 0.147463 0.134296 0.128952 0.128332 0.126622 0.127372
Precision 0.347869 0.277905 0.238164 0.21595 0.194931 0.182753 0.174999 0.170079 0.166873
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Table 8. Analysis of parameter γ for recommendation

Dataset a k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

Hep-th

0.6 Recall 0.389327 0.523287 0.594644 0.604486 0.628978 0.647625 0.582096 0.609569 0.561969
Precision 0.521504 0.648319 0.717725 0.746177 0.762935 0.768519 0.698145 0.701224 0.64713

1 Recall 0.388978 0.522966 0.592967 0.603635 0.629609 0.649588 0.58224 0.609715 0.558395
Precision 0.52145 0.648012 0.715753 0.745351 0.763854 0.770862 0.698341 0.701171 0.643245

1.2 Recall 0.389843 0.522133 0.592613 0.603883 0.628463 0.64613 0.581418 0.606744 0.559629
Precision 0.522121 0.647054 0.715439 0.745214 0.761996 0.766968 0.697532 0.698231 0.644725

AS

0.2 Recall 0.17086 0.266335 0.276734 0.297303 0.309268 0.317995 0.323751 0.325599 0.332499
Precision 0.314745 0.436361 0.499391 0.544163 0.581436 0.599712 0.607367 0.616013 0.620238

0.5 Recall 0.170643 0.264457 0.273346 0.293521 0.305441 0.314985 0.320376 0.322351 0.32855
Precision 0.313586 0.432619 0.493706 0.53772 0.574147 0.593054 0.59961 0.607748 0.611074

1.2 Recall 0.160112 0.247704 0.251588 0.270774 0.281948 0.290562 0.29635 0.298402 0.3036
Precision 0.296535 0.405931 0.458814 0.500643 0.53471 0.551478 0.558458 0.565753 0.56792

St-Ov

0.5 Recall 0.20672 0.18231 0.167141 0.162219 0.14719 0.144816 0.142089 0.140077 0.14082
Precision 0.35675 0.291245 0.253335 0.236867 0.213672 0.20471 0.194035 0.188426 0.185214

0.7 Recall 0.203847 0.175776 0.158857 0.149699 0.135384 0.130333 0.129943 0.129038 0.129972
Precision 0.351087 0.281454 0.241279 0.219523 0.197625 0.186804 0.17955 0.174856 0.171854

1 Recall 0.204545 0.177749 0.160533 0.151073 0.13851 0.136031 0.134245 0.133499 0.135583
Precision 0.352988 0.284164 0.244354 0.222065 0.202489 0.193704 0.185364 0.181157 0.179375
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Fig. 2. Computation time of embedding methods for the four timestamps on each
dataset.

best. Also, we can see that Dyn-VGA1 performs better than Dyn-VGA2 on the
dataset St-ov due to characteristics of this dataset. As mentioned previously,
the reason is that on this dataset considering smaller length l is more suitable as
we observed the same behaviour for the link predication task. It is worth men-
tioning that as the numbers of nodes for different k’s are different, we cannot
see a decreasing trend by increasing k for either Precision@k or Recall@k.



398 S. Mahdavi et al.

4.6 The Effect of Temporal Smoothness γ

We study the effect of γ on the performance of Dyn-VGAE. The parameter γ
can be fine-tuned to balance the weights of the local structure of the graph and
the effect of previous graphs based on the data and the requirement of the task.
We examine how the changes in γ can affect the results. We vary α from 0 to
3. If γ = 0, the dynamic representations are only learning the local structure
of the graph. By increasing the value of γ, we force the learned latent space
of the graph to be aligned with the space of previous graphs. Our experiments
show that Dyn-VGAE has the best performance when γ ∈ [0.1, 2.5] and it starts
decreasing for γ > 2.5. We report the results of our analysis for three values of
γ for each dataset in Tables 3, 4 and 8 for Dyn-VGAE with l = 1. We observe
the same behavior for Dyn-VGAE with l = 2.

4.7 Time Complexity Analysis

We compare our method with all baseline models in terms of running time
(in seconds) on three datasets AS, Hep-th, and St-Ov at their first four time
steps. All experiments are performed on a windows X-64 machine with 7 cores,
64 GB RAM and a clock speed of 3.6 GHz. From Fig. 2, we observe that all static
methods are faster than dynamic methods. The reason is that they only compute
embedding vectors for each time step without adjusting these embedding vectors.
Among compared dynamic embedding methods, Dyn-VGAE1 is the fastest. It
is worth noting that the computation time of Dyn-VGAE1 is not significantly
larger than SVGA while it outperforms SVGA in terms of the accuracy with
a large margin. To further decrease the running time of Dyn-VGAE1, we are
interested in developing a distributed version of our method by using proposed
strategies in [5,21,30] as future work.

5 Conclusions and Future Work

In this paper, a dynamic joint autoencoder is proposed to embed a dynamic net-
work into a low-dimensional latent space. For capturing evolving dependencies,
we define a probabilistic smoothness term which changes the learning process of
a graph variational autoencoder. The proposed joint framework provides a model
where autoencoders can share their learned latent vectors across time stamps.
The basic idea of the approach is the sharing of learned information of the cur-
rent graph snapshot with previous graph snapshots for common nodes while
each autoencoder works on its own specific graph. Dyn-VGAE simultaneously
learns the latent representations of a dynamic network and aligns them across
time. The experimental results show that Dyn-VGAE can significantly outper-
form the state-of-the-art methods on the node classification, link predication,
and recommendation tasks. In the future, we are interested in applying differ-
ent variants of joint deep learning architectures to extract the dynamic latent
space of a dynamic network and developing a distributed model to increase the
speed of training. Also, we will investigate a joint approach for other deep graph
embedding methods.
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Abstract. The temporal analysis of evolving graphs is an important
requirement in many domains. We are therefore extending the distributed
graph analysis framework Gradoop and its graph data model to support
temporal graph analysis. This paper contains an overview of our work
in progress and an example use case from the financial domain demon-
strating the flexibility of the temporal graph model and its operators.

Keywords: Temporal graph analysis · Distributed analytical
workflow · Temporal Property Graph Model

1 Introduction

Temporal graphs represent the evolution of entities and relationships among
them throughout time. Many real-world scenarios dynamically change over time,
e.g., friendships and likes in social networks, citations and authorship affiliations
in literature or transactions between accounts in the financial domain [8]. Instead
of neglecting this prevailing time dimension by using a static graph model, it
is better to represent the continuously changing network in a temporal graph
data model to enable studying the effect of time on the graph [18]. Since many
existing graph database systems [3,9,13], graph processing frameworks [4,6,7,10]
and graph query languages [2,5,14] concentrate on managing and querying static
graphs, there is a lack of native support of the additional time-domain, e.g., to
study how communities or paths change over time or to retrieve a snapshot from
a past state of the graph.

Sahu et al. show in [17] that graphs maintained and analyzed by companies
of all scales have common characteristics. Besides the presence of a wide variety
of entities, graphs in practice are very large (containing often over billions of
edges) and therefore the need for scalable systems to handle these large graphs is
existent. Besides, the biggest part of the graphs used by the companies contain
frequent changes (i.e., vertices and edges are added, deleted or updated over
time), and all changes are stored permanently in the dataset.

c© Springer Nature Switzerland AG 2020
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To deal with these characteristics, we developed a temporal property graph
model that enables modeling a graph with bitemporal time semantics as well as a
set of operators to build distributed analysis workflows considering the additional
time dimensions in the graph. The model and its operators are implemented in
Gradoop [10,11], an open-source framework1 for distributed graph analysis
based on Apache Flink [4]. After giving an overview of Gradoop’s temporal
extension we show its expressiveness by composing new and existing operators
to answer an analytical question from a use-case of the financial domain.

2 A Brief Overview of Gradoop’s Temporal Extension

Gradoop is an implementation of the Extended Property Graph Model
(EPGM) and supports many generic operators on graphs (for pattern matching,
grouping, etc.) that can be used within workflows for graph analysis. Workflows
representing graph analytical programs can be expressed in a declarative domain-
specific language called GrALa for distributed execution. Since the EPGM is
built on top of Apache Flink’s Dataset-API, each Gradoop operator is based
on a subset of Flink’s transformations (map, flatmap, join, etc.) to achieve a par-
allel execution and scalability to large graphs. It combines and extends features
of graph analytical systems with the benefits of distributed graph processing.

Extension of Data Model: Many applications require time-dependent
graph models. We therefore developed the Temporal Property Graph Model
(TPGM) [15,16] that extends Gradoop’s EPGM by adding additional time
attributes from and to, each for valid and transaction time semantics, to the
schema of vertices, edges and logical graphs. This approach offers a flexible rep-
resentation of temporal graphs with bitemporal time semantics where the time
can be empty, a timestamp or a time interval. A graph of this model contains
all historical and rollback information and therefore allows retrieving valid snap-
shots from the past, present or future for the application time dimension or past
and present states from the transaction time domain. An important advantage
of our extension is its backward compatibility to the original EPGM since every
existing Gradoop operator (that builds upon the EPGM) can be applied to
one or more temporal graphs by disregarding the temporal information of the
graph elements. A more detailed description of the TPGM and its operators is
given in [15].

Extension of Existing Gradoop Operators: Operators such as transfor-
mation, aggregate, subgraph, grouping and pattern matching may benefit from
the temporal extension of EPGM. For example, the subgraph operator can iden-
tify all vertices and edges where the validity range exceeds a limit. Similarly, the
pattern matching operator can extract all subgraphs where the query pattern is
valid at a given point in time.

Introduction of New Temporal Operators: We introduce snapshot and
difference as specific temporal operators of the TPGM. The snapshot operator
1 https://github.com/dbs-leipzig/gradoop.

https://github.com/dbs-leipzig/gradoop
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allows retrieving a valid state of the entire temporal graph either at a specific
point in time or a subgraph that is valid during a given time range by providing
a temporal predicate function. Such predicate functions are adopted from the
SQL standard for temporal databases [12]. The difference operator computes
the changes between two snapshots X and Y by determining the union of X and
Y and annotating each vertex and edge if it appears in Y only (i.e., if it has
been added), in X only (deleted) or in both X and Y (persistent). Following the
philosophy of Gradoop, both operators were implemented on top of Apache
Flink: snapshot employs Flink’s filter transformation while difference is based
on the flatMap transformation. Implementation details of these operators and
benchmark results exposing a good scalability can be found in [15].

Support of Time-Specific Grouping and Aggregation: The temporal
extension of Gradoop’s grouping operator offers a flexible mechanism to group
(summarize) vertices and edges, which belong to a given time instance. Users can
either define their own or use predefined functions to extract keys from a vertex
or edge on which to group. Any information of a graph element can be used
including all temporal information, such as the day of the week on which the
validity of an edge begins or the rounded duration of a vertex validity. Addition-
ally, multiple aggregate functions can be specified to compute aggregates within
a vertex or edge group and store them as a new property on the super-vertex (the
vertex representing the group) or super-edge respectively. Not only properties
can be aggregated, but also information from the additional time dimensions of
the graph. For example, the earliest or latest beginning of an edges validity or the
average, minimum or maximum vertex duration can be calculated. The resulting
grouped graph is again temporal, i.e., the valid times of the super-vertices and
-edges are defined by the earliest beginning and latest ending of the elements
that are responsible to the group.

Since timestamp values can be analyzed and grouped at different granu-
larities (e.g. year, month, day, hour, minute etc.), time properties inherently
lead to hierarchically organized dimensions. Graph summaries determined by
the grouping operator can thus be additionally “rolled-up” on the time hierarchy
to have aggregations on multiple levels of time-granularity. A detailed description
of graph grouping with Gradoop including the roll-up feature and predefined
aggregate functions can be found in our GitHub wiki2.

3 Temporal Graph Analysis Using Gradoop: A Use Case

Supporting graph analysis at large scale is necessary in various domains like
Internet-of-Things (IoT), finance, and web to perform risk analysis, customer
profiling, etc. In addition, time plays an important role in such analysis since
analysts want to know, e.g., how a specific result of their query looks in the
past or changes over time. As a result, a graph processing system has to offer
a flexible and rich library of functionalities and algorithms to support a wide
range of analysis respecting the additional time dimension.
2 https://github.com/dbs-leipzig/gradoop/wiki.
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Fig. 1. Simplified example of a call center network from the financial domain. Under-
lined properties contain temporal information that can be used to define the temporal
attributes of our model.

To show the expressiveness and flexibility of Gradoop and its tempo-
ral model among its declarative operator principle, we choose a business case
from the customer relationship management domain. Specifically, the scenario
deals with interactions in a call center for 25 banks of the banks association of
Turkey [1]. More than 7,500 agents are employed in about 16 service types (e.g.,
card, stock, ATM, online banking, etc.). Per month, about 46 million incoming
calls are answered by agents, 24 million calls are outgoing calls to customers.
These entities and their relations form a huge heterogeneous network that con-
tinuously evolves. Figure 1 shows a simplified example of the resulting graph
schema. It includes different types of vertices (entities), like Bank and Cus-
tomer, as well as edges (relations), like a call representing the telephone call
between customers and call center agents. Each element includes a variety of
properties describing it with additional information, e.g., an Agent vertex has
a defined staff number, a name and city. We can put all the collected data in
our temporal property graph model. Properties containing temporal information
(e.g., the started at and duration properties of the calls edge) can be directly
mapped to the valid-time attributes of the model, to enable various time-related
analysis.

In the following, we study how an analytical question of this use case can
be processed. We will utilize the modularity of our temporal graph operators as
well as operators from the reference EPGM implementation and compose them
within a simple but powerful workflow to show a way to answer them.

What is the average duration of calls per month, week and day between
agents of different cities and customers of Istanbul, where both agents and
customers joined the bank in 2018?
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This question includes the need for aggregations over time hierarchies besides
filters for a subset of entities on an extracted graph snapshot. The following
exemplary workflow definition shows the use of four operators that result in a
collection of graphs where each describes one out of the three time-granularities
month, week and day.

1 groupedGraphs = graph
2 .subgraph(
3 v -> { v._label = ’Agent’ OR
4 (v._label = ’Customer’ AND v.city = ’Istanbul’ )},
5 e -> { e._label = ’calls’})
6 .snapshot(CreatedIn(2018))
7 .verify()
8 .groupBy(
9 [Label(), Property(’city’)], // V group keys

10 [Count()], // V aggregates
11 [Month(from), Week(from), Day(from)] BY ROLLUP, // E group keys
12 [AvgDuration(), Count()]); // E aggregates

The initial subgraph operator (line 2–5) applies a filtering using the given
vertex and edge predicates to get a subgraph that contains only Agent vertices
and Customer vertices with a property city that is equal to the string Istanbul.
This operator is part of the EPGM. To receive customers that joined a bank
in 2018, we apply the newly developed TPGM snapshot operator (line 6) with
a predefined predicate. Since the result of the snapshot operator can contain
dangling edges (i.e., their source or target vertices are not contained in the result
set), we apply the verify operator (line 7) to remove these from the graph. The
final grouping operator (line 8–12) summarizes the graph. The vertices will be
grouped by their label and the property city (line 9). A property with the count
is added to each grouped vertex as a result of the given Count() vertex aggregate
function. The edges representing the calls are grouped by month, week and day
of the calls beginning timestamp (from) through the usage of time-specific value
transformation functions of the same name (line 11). Since we want to know
the average call duration, the predefined aggregate function AvgDuration() is
specified in addition to the Count() aggregate function (line 12). Equivalent to
the vertices, new properties storing the aggregates are added to each super-edge.

The additional BY ROLLUP (line 11) leads to three different aggregations
comparable to SQL. First, the graph will be grouped by day, then by week and
besides, by the month of the call’s beginning. This leads to deeper insights into
the evolution of the number and average duration of calls between agents of dif-
ferent cities and customers from the city Istanbul. The resulting three graphs are
contained in a graph collection, which is the result of our workflow and exempli-
fied in Fig. 2. The collection can be stored or visualized by one of Gradoop’s
data sinks. Further, an analyst may use the subgraph operator again to filter this
result for periods with a very low or high average call duration.
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calls
month : Jan
week : 01
day : 01

count : 510
avgDuration : 243 s

Agent
city : Istanbul
count : 234

Agent
city : Ankara
count : 311

Customer
city : Istanbul
count : 8.456

...

calls
month : Dez
week : 49
day : 05

count : 1.411
avgDuration : 348 s

Agent
city : Istanbul
count : 234

Agent
city : Ankara
count : 311

Customer
city : Istanbul
count : 8.456

...

Agent
city : Istanbul
count : 234

Agent
city : Ankara
count : 311

Customer
city : Istanbul
count : 8.456

...

calls
month : Jan
week : 01

count : 2.201
avgDuration : 203 s

calls
month : Dez
week : 49

count : 6.229
avgDuration : 202 s

calls
month : Jan
count : 9.111

avgDuration : 401 s

calls
month : Dez

count : 20.541
avgDuration : 448 s

Group Edges by Month(), Week(), Day() Group Edges by Month(), Week()

Group Edges by Month()

...

... ...

Fig. 2. The resulting temporal graph collection from the given example workflow. Each
multi-edge graph represents one temporal granularity. For example, the edges of the
lower graph are grouped by the month of their beginning timestamp. For simplicity,
each grouped graph contains only a tiny subset of agents and call edges without tem-
poral data. Practically, 24 edges (twelve for each direction) exist between the grouped
customer vertex and agents of a certain city within the lower graph.

4 Conclusions

We reported work in progress on temporal graph analysis with the distributed
graph analytics framework Gradoop. We introduced the Temporal Property
Graph Model (TPGM) that extends Gradoop’s graph data model. The new
temporal operators and further extensions enable a flexible answering of time-
oriented analytical questions on evolving graphs, e.g., by chaining several oper-
ators. We demonstrated the use of declarative workflows for a time-related use
case scenario of the financial domain. The described extensions are already imple-
mented and available in Gradoop. In future work, we plan further temporal
operators and algorithms to increase the functionality for temporal graph ana-
lytics.
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Abstract. With the evolution of the network, the interactions among
nodes in networks make networks exhibit dynamic properties. Mining the
rich information behind dynamic networks is of great importance for net-
work analysis. However, most of the existing network embedding meth-
ods focus on static networks which ignore the dynamic properties of net-
works. In this paper, we propose a novel approach MHDNE (Multivariate
hawkes process network embedding) to learn the representations of nodes
in dynamic networks. The key idea of our approach is to integrate the his-
torical edge information as well as network evolution properties into the
formation process of edges based on Hawkes process. By integrating the
multivariate Hawkes process into network embedding, MHDNE resolves
the issue that the existing methods cannot effectively capture both of
the historical information and evolution process of dynamic networks.
Extensive experiments demonstrate that the embeddings learned from
the proposed MHDNE model can achieve better performance than the
state-of-the-art methods in downstream tasks, such as node classification
and network visualization.

Keywords: Network embedding · Dynamic network · Hawkes
process · Ternary closure theory

1 Introduction

In the era of big data, how to analyze contemporary networks is an urgent
problem to be solved. The research on complex networks can help us deal with
applications such as node classification, link prediction, community discovery
and so on. With the development of machine learning, network embedding, also
named network representation learning, serves as a bridge connecting networked
data analysis and traditional machine learning. It maps nodes in a network to
low-dimensional spaces in order to form low-dimensional dense vectors that can
be used as the input of traditional machine learning models to conduct the
downstream tasks.

The existing network embedding methods mostly model static networks with-
out dynamic attributes, that is, they assume that nodes and their edges in the
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networks don’t change with time. The early static network embedding methods
were mainly based on the matrix decomposition [2,18], which have high com-
putational complexity and cannot adapt to the growing large-scale networks.
With the development of artificial intelligence, Perozzi et al. proposed the classic
Deepwalk algorithm [16] to apply neural networks to network embedding which
is based on the Word2vec [12] model in natural language processing. Grover et
al. proposed the Node2vec algorithm [8] to modify the random walk process of
Deepwalk, which preserves both of the homogeneity and isomorphism of the net-
works by combining breadth-first search and depth-first search. Deepwalk and
Node2vec algorithm are based on the Word2vec framework, which has a three-
layer shallow neural network at its core. With the development of deep learning,
Wang et al. proposed the SDNE algorithm [21] to apply the deep neural network
to network embedding. The semi-supervised deep learning model preserves the
local information as well as the global information in the networks through the
first-order similarity module and the second-order similarity module. The Graph-
GAN model [22] proposed by Wang et al. and the ANE model [4] proposed by
Dai et al. adopt the generative adversarial nets [6] to network embedding, which
greatly improved the robustness of static network embeddings.

In recent years, the representation learning for static networks has gradually
matured. However, as the network evolves over time, new edges may appear
and expired edges may disappear. The evolving interactions among the nodes
in networks make networks exhibit dynamic properties. The addition of time
information makes the networks more complex, and dynamic networks often
have large scales. The research on dynamic network is of great significance to
solve practical application problems, such as community detection [1,17] and
link prediction [11]. Traditional dynamic network representation methods take
snapshots of dynamic networks at specific times to process which is equivalent
to split the dynamic network into multiple static network sequences. Thus, the
static network embedding models can be extended to handle dynamic networks.
Most of the existing dynamic network embedding methods are derived from
the static network embedding models: Inspired by the static network embed-
ding method based on matrix eigenvalue decomposition, Li et al. proposed
DANE algorithm [10] to capture the evolving patterns of network structures
and attribute information. DANE updates the current node embeddings based
on the node embeddings obtained from the previous time. DHPE algorithm [24]
preserved the high-order proximity based on generalized singular value decompo-
sition and updated the node embeddings dynamically based on matrix perturba-
tion theory. In addition to dynamic network embedding methods based on matrix
decomposition, there are some dynamic network embedding methods extended
from classic static network embedding methods, for instance, DNE algorithm [5]
which extends the LINE model [19] to dynamic network embedding and Dyn-
GEM algorithm [7] which is based on the SDNE model. These snapshot-based
embedding methods often ignore the network evolution patterns. Besides, the
embedding methods which only process dynamic information on the snapshots
are relatively coarse-grained. The HTNE algorithm [25] proposed by Zuo et al.
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leverages the Hawkes process to model the formation process of neighbor nodes,
which provides a novel idea of dynamic network embedding. However, HTNE
only takes the influence of historical neighbor nodes on current node embed-
dings into account, while ignoring the impact of network evolution properties.

Therefore, to overcome the drawbacks of the existing methods, this paper
proposes MHDNE (Multivariate hawkes process dynamic network embedding)
model to learn the dynamic network embedding. MHDNE integrates the his-
torical edge information as well as network evolution properties to model the
formation process of edges based on Hawkes process. The main contributions of
this paper are summarized as follows:

(1) We propose a novel approach for dynamic network embedding which pre-
serves the impacts of historical information on the current network based on
the Hawkes process.

(2) The MHDNE model proposed in this paper considers the historical edge
information as well as the network evolution properties, which captures the
influence of historical information on the formation of current edges com-
prehensively.

(3) Experimental results on real-world networks demonstrate that the embed-
ding vectors learned from the proposed MHDNE model can achieve better
performances than the state-of-the-art methods in node classification and
network visualization.

2 Problem Definition

In this section, we formulate the problem of dynamic network embedding and
give necessary definitions used throughout this paper as follows:

Definition 1 (Dynamic network). A dynamic network within time T can
be defined as a collection G = {G1, G2, ..., GT } containing a series of network
snapshots. The snapshot at time t(0 < t < T ) can be denoted as Gt = (Vt, Et),
where Vt and Et denote the set of nodes and edges at time t respectively.

Definition 2 (Dynamic network embedding). Given a dynamic network
G = {G1, G2, ..., GT }, we map nodes in the snapshots to the low-dimensional
space so that nodes can be represented as vectors. And the temporal and struc-
tural information can be preserved in the low-dimensional vector space.

Definition 3 (Ternary closure). The ternary closure generally refers to: two
people who have common friends in a social circle are more likely to become
good friends in the future. That is, if nodes a and b connect to the same node c
in a network, edge between a and b is likely to form. The ternary closure theory
affects the formation of networks which is an important characteristic reflecting
the network evolution mechanism.

Definition 4 (Hawkes process). The Hawkes process, as a special linear self-
excited point process, is widely used in economic analysis, social analysis, and
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geographic prediction. In the Hawkes process, the occurrence of new events is
not only affected by the internal properties of the events, but also the historical
events occurring at the previous moments. The generation intensity function of
a new event can be defined as follows:

λ(t) = γt +
∑

ts<t

ϕ(t − ts) (1)

Where γt indicates the base intensity of a new event, showing the spontaneous
event occurring intensity at time t. ϕ(t − ts) indicates the influence of historical
events on the occurrence of new event which continuously decays with time.
ϕ(t−ts) can be expressed as ϕ(t−ts) = αδ(t, ts), where α denotes the excitation
intensity of the historical events to the current event, δ(t, ts) denotes the time
decay coefficient of the historical event.

3 The Proposed Framework: MHDNE

In this section, first we generalize the MHDNE framework, and then we describe
the core components of MHDNE in details. Finally, we introduce the model
optimization.

3.1 MHDNE Framework

The framework of the MHDNE model proposed in this paper is shown in Fig. 1.
First, we model the edge formation process in the dynamic network as two tem-
poral sequences L1 and L2 which contain historical edge information and network
evolution information, respectively. Then, based on the temporal sequences, we
apply the Hawkes process to model the new edge formation process to inte-
grate the historical information of the dynamic network as well as the evolution
properties into the node embeddings.

3.2 Component Description

The formation of a dynamic network is a process with continuous emergence and
disappearance of edges, so the formation of edges can be regarded as temporal
point process. We can define the generation of edges as events in this process. And
they form in two ways: one is that the edge exists in the historical moment and
is preserved at the current moment. The other is that the edge never appears in
the historical moment but forms at the current moment in the evolution process.
These two kinds of edge generating ways are respectively related to the following
two edge formation sequences.

– Historical edge sequence: in a dynamic network, if there is an edge
between nodes m and n at time ti. the edge can be denoted as a time-stamped
tuple (enm, ti). Then, the edges between nodes m and n within time T can be
modeled as a temporal sequence L1 = (enm, t1)−→(enm, t2)−→...−→(enm, tT ).
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Fig. 1. The framework of MHDNE.

Intuitively, nodes that have more interactions in the history tend to form
edge at the current moment. Therefore, the generation intensity of the edge
containing nodes m and n at the current time is affected by the historical
edge (enm, ti).

– Open triangle sequence: if there is a common neighbor k between nodes
m and n at time t, the formed open triangle can be denoted as a triple
(ekm, enk , t). All of the open triangles composed of nodes m, n, and all of their
common neighbors S at time t can be represented as a set (TS

m,n, t). Then, an
open triangle sequence within time T can be modeled as a temporal sequence
L2 = (TS1

m,n, t1)−→(TS2
m,n, t2)−→...−→(TST

m,n, tT ). It can be known from the
ternary closure theory that even if there is no edge between nodes m and n
in history, if the two nodes have common neighbors, they tend to connect in
the process of network evolution.

Since Hawkes process [9] well captures the exciting effects of historical infor-
mation on the current events, we adapt it to model the edge formation process
of nodes m and n based on the historical edge sequence L1. The generation
intensity function for the arrival event (enm, t) can be formulated as:

λ1
enm

(t) = γm,n +
∑

ts<t

αeyxδ(t, ts) (2)

where λ1
enm

(t) indicates the probability of forming edge between node m and n at
time t, γm,n indicates the base intensity of forming edge between nodes m and
n at time t.The base intensity γm,n reflects the essential relationship between
node m and n, Which can be denoted as the negative Euclidean distance between
the embeddings of node m and n. i.e., γm,n = − ‖vm − vn‖, vm and vn are the
embeddings of node m and n respectively. x and y indicates the corresponding
historical nodes of node m and n respectively. αeyx denotes the influence of the
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historical edge (eyx, ts) on the new edge (enm, t). δ(t, ts) is a time decay function,
usually expressed as an exponential form δ(t, ts) = exp(−θ(t − ts)).

The more stable the local structure containing historical nodes x and y, the
more likely the current nodes m and n are to be connected at current time. We
can leverage the clustering coefficient of x and y to characterize the stability
of the local structure of the network in the time-varying process. The local
clustering coefficient refers to the ratio between the number of closed triangles
containing node r and the number of triples containing node r in the network,
which can be formulated as:

Cr =
2Er

mr(mr − 1)
(3)

where mr denotes the number of edges associated with node r, Er denotes
the number of edges between nodes connecting to r. The larger the cluster-
ing coefficient of historical nodes x and y, the higher the probability of con-
necting edges between current nodes m and n. Thus, we can denote αexy as
αexy

= CxCyg(vx, vy), the Eq. 2 can be updated as follows.

λ1
enm

(t) = g(vm, vn) +
∑

ts<t

CxCyg(vx, vy)δ(t, ts) (4)

In addition to the fact that the connected edges appeared in history will
appear at the current time with a certain probability, in the process of network
evolution, it can be known from the ternary closure theory [23] that nodes with
common neighbors in history tend to be connected at the current time. That
is, when there is historical event (ekm, enk , ts), the probability of occurring new
event (enm, t) will increase. Similarly, we can use the local clustering coefficients
of nodes to measure the intensity of this influence: the greater the clustering
coefficients of nodes, the stronger the ternary closure process nearby, and the
greater the probability of generating new event (enm, t). Meanwhile, the more
common neighbors two nodes have, the more likely they are to connect. And
the closer the historical event (ekm, enk , ts) is to the current time, the greater the
probability of generating edge (enm, t). Therefore, Eq. 4 can be updated to:

λenm(t) = g(vm, vn)+
∑

ts<t

(CxCyg(vx, vy)δ(t, ts)+
∑

(ekm,enk ,ts)∈L2

Ckg(v′
k, vk)δ(t, ts))

(5)
where g(v′

k, vk) is the negative Euclidean distance between the current common
neighbor k′ and the historical common neighbor k in the mapping space. It
can be seen from Eq. 5, λenm

(t) may be a negative value, and the probability of
generating new edges should be a positive value. Therefore, we take the index
value of λenm(t) as the final probability, namely ˆλenm(t) = exp(λenm(t)).
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Based on the Hawkes process, given the relevant historical edge sequence L1

and the open triangle sequence L2, we can obtain the probability of generating
edge (enm, t) between node m and n at time t as follows.

P (n|m,H(L1, L2)) =
ˆλenm(t)

∑
n∗∈V,en∗

m ∈E
ˆλenm(t)

(6)

3.3 Model Optimization

For all nodes in the network, the likelihood function of the model can be denoted
as follows.

logl =
∑

m∈V

∑

n∈V,enm∈E

logP (n|m,H(L1, L2)) (7)

In order to reduce the computational complexity of the algorithm, we use the
negative sampling method [13] to optimize the algorithm. The probability that
a node is selected as a negative sample is related to the frequency at which it
appears in the sequence, so we get samples according to the degree distribution
of nodes. According to [13], the sampling probability of node vi can be denoted
as follows.

P (vi) =
f(vi)

3
4

∑K
j=1 f(vi)

3
4

(8)

Based on the historical edge information and the ternary closure property,
the objective function of generating new edge (enm, t) can be denoted as follows.

O(X) = logσ( ˆλenm(t)) +
K∑

i=1

Evi∼P (v)[−logσ( ˆλe
vi
m

(t))] (9)

where K is the number of negative samples. σ(x) is the sigmoid function.
Commonly, we adopt Stochastic Gradient Descent method [3] to optimize

the objective function in Eq. 9. Algorithm 1 shows the core of our method.

Algorithm 1. MHDNE
Input: The dynamic information network G = {G1, G2, ..., GT }, embedding dimension

d, parameter θ, time step h.
Output: The latent node embeddings X ∈ RV ×d.
1: Initialize X
2: for epoch in len(epochs) do
3: for batch(L1, L2) do
4: Calculate the influence of historical information and network evolution infor-

mation on the current edge according to equation 5.
5: Select negative samples NegEK according to equation 8.
6: compute the objective function O(X) according to equation 9.

7: update gradients X = X − η ∂O(X)
O(X)

8: end for
9: end for
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4 Experiments

In this section, we validate the effectiveness of our model on two real-world
datasets as shown in Table 1. First, we introduce the datasets and baseline meth-
ods we used in our experiments in details, and then we conduct downstream
tasks: node classification and visualization. Finally, we analyze the parameter
sensitivity of θ.

4.1 Datasets

• DBLP [14]: the DBLP dataset contains a large amount of information about
computer science publications. We built the dynamic network in our exper-
iment through the co-author relationships of 28,085 authors in ten research
fields over ten years. The categories of authors are the research field in which
they published the most papers.

• Epinions [20]: the Epinions dataset consists of comment information, user
ID, product ID, and timestamp information. In our experiment, 21575 users
belonging to five categories in ten years were extracted from the subset of
Epinions dataset, and we build edges between users who comment on the
same product. The categories of users are determined by the categories of the
products they comment the most.

The detailed information of the two datasets is shown in Table 1.

Table 1. Datasets in experiments.

Datasets Nodes Edges Class Type Average clustering coefficient

DBLP 28085 236894 10 Undirected 0.715648

Epinions 21575 2590798 5 Undirected 0.153612

4.2 Baseline Methods

In this paper, MHDNE algorithm is compared with the following three baseline
algorithms:

• Avg Deepwalk algorithm: we conduct Deepwalk algorithm on different
snapshots to get node embeddings in different time.

• STWalk algorithm [15]: STWalk performs space-walk and time-walk on
the constructed graphs which can capture the spatio-temporal behavior of
nodes.

• HTNE algorithm [25]: HTNE performs the dynamic network embedding
based on the Hawkes process which can capture both the historical and cur-
rent information from the perspective of neighbor nodes sequences.
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4.3 Downstream Tasks

In this section, we carry out downstream tasks such as node classification and
visualization to verify the feasibility and effectiveness of the proposed dynamic
network representation method MHDNE. The experimental default parameters
are set as follows: the vector dimension is 128, the negative sample number is 5,
and the gradient drop learning rate is 0.01. In the algorithm using random walk
and skip-gram model, the random walk length is 50, the number of walks is 100,
and the window size is 10.

A. Classification
We conduct node classification task on the DBLP and Epinions datasets, the
embeddings learned from different methods were classified by a linear SVM clas-
sifier. We repeat classification experiment ten times and take the average of
Micro-F1 and Macro-F1 scores as the final classification results. The experimen-
tal results are shown in Tables 2 and 3.

We set the training set size varying from 15% to 90%. We can see from the
Tables 2 and 3, the MHDNE algorithm proposed in this paper performs better
than the baseline methods in node classification on the DBLP and Epinions
datasets. On the DBLP dataset, when the training set is 75%, the MHDNE

Table 2. Multi-class node classification results in DBLP dataset.

Metric Method 15% 30% 45% 60% 75% 90%

Micro-F1 Avg Deepwalk 0.6180 0.6253 0.6285 0.6310 0.6334 0.6371

STWalk 0.6270 0.6336 0.6413 0.6540 0.6594 0.6586

HTNE 0.6402 0.6521 0.6559 0.6594 0.6603 0.6559

MHDNE 0.6685 0.6724 0.6792 0.6890 0.6975 0.6856

Macro-F1 Avg Deepwalk 0.6193 0.6297 0.6302 0.6390 0.6389 0.6323

STWalk 0.6302 0.63820.6 476 0.6550 0.6598 0.6612

HTNE 0.6427 0.6584 0.6627 0.6583 0.6613 0.6594

MHDNE 0.6711 0.6793 0.6801 0.6850 0.6983 0.6926

Table 3. Multi-class node classification results in Epinions dataset.

Metric Method 15% 30% 45% 60% 75% 90%

Micro-F1 Avg Deepwalk 0.5279 0.5302 0.5386 0.5321 0.5391 0.5302

STWalk 0.5271 0.5327 0.5367 0.5409 0.5465 0.5497

HTNE 0.5689 0.5786 0.5796 0.5803 0.5851 0.5867

MHDNE 0.5964 0.5970 0.6054 0.6127 0.6089 0.6103

Macro-F1 Avg Deepwalk 0.5321 0.5343 0.5392 0.5441 0.5486 0.5467

STWalk 0.5386 0.5401 0.5427 0.5489 0.5504 0.5526

HTNE 0.5703 0.5794 0.5828 0.5864 0.5893 0.5907

MHDNE 0.5989 0.6054 0.6086 0.6154 0.6121 0.6128
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algorithm has the highest scores of Macro-F1 and Micro-F1, which are 3.72%–
6.41%, 3.70%–5.94% higher than the comparison algorithms respectively. On
the Epinions dataset, when the training set is 60%, the MHDNE algorithm
has the highest scores of Macro-F1 and Micro-F1, which are 3.24%–8.06% and
2.90%–7.13% higher than the comparison algorithms. It can be seen from the
experimental results that the integration of network historical information into
current node embeddings is beneficial to improve the quality of embeddings.
Especially when we integrate the historical edge information and the network
evolution properties into network embedding, the obtained node embeddings
perform better in classification.

B. Network visualization
We leverage the t-SNE algorithm to visualize the representation vectors of
2500 authors from four fields (Data Mining, Artificial Intelligence, Information
Retrieval and Computer Vision.) in the DBLP dataset into the 2-dimensional
space. We use different colors to indicate different research area. Specifically,
we use purple dot to represent “Data Mining”, blue dot to represent “Artifi-
cial Intelligence”, orange dot to represent “Information Retrieval”, green dot to
represent “Computer Vision”. Figure 2 demonstrates the visualization results of
node embeddings obtained by different algorithms.

(a)Avg Deepwalk. (b)STWalk.

(c)HTNE. (d)MHDNE.

Fig. 2. Visualization of authors from four research areas.

As can be seen from the Fig. 2: the Avg Deepwalk algorithm can only map
the authors in the “Artificial Intelligenc” field to an independent community,
and the authors in the other three domains are confused; the STWalk algorithm
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maps authors in the “Data Mining” and “Computer Vision” domain to relatively
scattered locations, failing to preserve the properties of such kind of nodes; the
HTNE algorithm can Map part of authors in the fields of “Artificial Intelligence”,
“Information retrieval” and “Computer Vision” to different communities, but
map some authors in these three fields to the “Data Mining” field; compared
with other algorithms, the proposed MHDNE algorithm can map authors into
different communities and there are clear margins among different areas.

The visualization results indicate that the historical information combined
with network evolution information in our method can help us do community
detection. This is because the formation of a community is often related to histor-
ical information, which can assist us in discovering communities. The embeddings
generated by our method MHDNE integrate historical information and network
evolution information, which can preserve the community information better.
Therefore, the embeddings learned by our method MHDNE perform better than
other baseline methods in visualization.

5 Parameter Sensitivity

The time decay function can be expressed in exponential form δ(t, ts) =
exp(−θ(t−ts)), where θ is the time decay coefficient excited by historical events.
We observe the changes of classification accuracy with θ varying from 0.01 to 1 to
analyze the parameter sensitivity. We conduct the node classification on DBLP
and Epinions, and set the training set to 75%. From Eq. 2, it can be known
that: the larger the value of θ is, the smaller the influence of historical events
on current events. The experimental results are shown in Fig. 3, from which it
can be seen that the optimal value of parameter θ is different from each other
in two datasets. On the DBLP dataset, when setting θ to 0.2, the classification
accuracy obtained is the highest; when 0.2 < θ < 0.4, the classification accuracy
remains basically unchanged; when θ > 0.4, the classification accuracy decreases
slightly with the increase of θ; On the Epinions dataset, when setting θ to 0.3,
the node classification accuracy is the highest; when θ > 0.4, the classification
accuracy greatly decreases with the increase of θ.

(a) DBLP dataset. (b) Epinions dataset.

Fig. 3. Sensitivity of θ on DBLP and Epinions dataset.
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The main reason for the different experimental results on the two datasets is
that the DBLP dataset is composed of authors and their co-author relationship,
and the co-author relationships between authors will not change much in a short
time. Therefore, the historical information of DBLP dataset has a small degree
of time decay, and the value of θ should be small. However, Epinions dataset
constitutes social network through users and their comment behaviors, and its
historical information has a large time decay degree, so θ should be large.

6 Conclusion

To combine the dynamic properties of contemporary networks into network
embedding, we proposed a dynamic network embedding method based on
Hawkes process (MHDNE). Since the node embedding vectors learned by our
model capture both the historical structure information and evolution mecha-
nism, they perform well in the downstream tasks such as node classification and
network visualization. At present, the research on network dynamic properties is
still in its infancy, our method only takes the dynamic properties of homogeneous
networks into account. However, networks in our real life may have both dynamic
and heterogeneous features. How to take the rich heterogeneous information into
the dynamic network embedding is the next research focus.
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Workshop Description

Recent years have witnessed new frameworks and algorithms able to deal with multiple
views, such as Multiple Kernel Learning, Boosting, Co-regularized, Deep approaches.
Such algorithms come from the Machine Learning community and find applications in
many different areas, such as Multimedia Indexing, Computer Vision, Bio-informatics
and Neuro-imaging. Multiview learning, naturally enough, emphasises the potential
benefits of learning through collaboration with multiple sources of data (e.g. video
document can be described through images, sound, motion, text).

The workshop on Data and Machine Learning Advances with Multiple Views built
upon successful previous machine learning workshops on multiview learning or con-
nections between ML and applications, such as Machine Learning techniques for
processing multimedia content (ICML 2005), Learning with multiples views (ICML
2005), Learning from multiples sources (NIPS 2008), Learning from multiples sources
with applications to robotics (NIPS 2009), Multiview learning and multimedia
(ECML’2014), Multimodal Learning (NIPS 2015), Multi-View Representation
Learning (ICML’2016), Multimodal Learning and Applications (CVPR’2018 and
2019).

The goal of the workshop was to bring together theoretical and applicative com-
munities around multiview learning, which could lead to significant contributions and
exchanges between Machine Learning and natural fields of applications such as biol-
ogy, computer vision, marketing, ecology and health. This workshop dedicated the
morning session to invited and contributed presentations on multi-view theory, algo-
rithms and real-world multi-view datasets and tasks. In the afternoon, a hackathon on a
multi-view dataset was organized where attendants tackled a multi-view learning
problem on a real-world dataset.

These proceedings contain four contributed papers from the workshop. Audebert
et al. present a neural network system for multimodal document classification, capable
of learning both from image and word embeddings. Karami presents a novel nonlinear
multi-view model where the deep neural network is leveraged to model complex latent
representation underlying the multi-view data. Pereira et al. put forward a manifold
mixing method for learning from multiple sources in a stacked regularization frame-
work, demonstrating robust performance on experimental data. Finally, the paper by
Pölsterl et al. introduces wide an deep neural network for multi-view learning with
applications in survival analysis in Alzheimer’s disease.

The programme chairs would like to thank all the to contributors to the oral
presentation programme and the hackathon, as well as all members of the scientific
programme committee and the organization committee.
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Abstract. Classification of document images is a critical step for accel-
erating archival of old manuscripts, online subscription and administra-
tive procedures. Computer vision and deep learning have been suggested
as a first solution to classify documents based on their visual appearance.
However, achieving the fine-grained classification that is required in real-
world setting cannot be achieved by visual analysis alone. Often, the rele-
vant information is in the actual text content of the document, although
this text is not available in digital form. In this work, we introduce a
novel pipeline based on off-the-shelf architectures to deal with document
classification by taking into account both text and visual information. We
design a multimodal neural network that is able to learn both the image
and from word embeddings, computed on noisy text extracted by OCR.
We show that this approach allows us to improve single-modality classi-
fication accuracy by several points on the small Tobacco3482 and large
RVL-CDIP datasets, even without clean text information. We release
a post-OCR text classification (https://github.com/Quicksign/ocrized-
text-dataset) that complements the Tobacco3482 and RVL-CDIP ones to
encourage researchers to look into multi-modal text/image classification.

Keywords: Document classification · Text classification · Multimodal
learning

1 Introduction

The ubiquity of computers and smartphones has incentivized governments and
companies alike to digitize most of their processes. Onboarding new clients, pay-
ing taxes and proving one’s identity is more and more done through a computer,
as the rise of online banking has shown in the last few years. Industrial and pub-
lic archives are also ongoing serious efforts to digitize their content in an effort
for preservation, e.g. for old manuscripts, maps and documents with a historical
value. This means that previously physical records, such as forms and iden-
tity documents, are now digitized and transferred electronically. In some cases,
those records are produced and consumed by fully automated systems that rely

c© Springer Nature Switzerland AG 2020
P. Cellier and K. Driessens (Eds.): ECML PKDD 2019 Workshops, CCIS 1167, pp. 427–443, 2020.
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Fig. 1. Multimodal classifier for hybrid text/image classification. Training is performed
end-to-end on both textual and visual features.

on machine-readable formats, such as XML or PDF with text layers. However,
most of these digital copies are generated by end-users using whatever mean
they have access to, i.e. scanners and cameras, especially from smartphones.
For this reason, human operators have remained needed to proofread the doc-
uments, extract selected fields, check the records’ consistency and ensure that
the appropriate files have been submitted. Automation through expert systems
and machine learning can help accelerate this process to assist and alleviate the
burden of this fastidious work for human workers.

A common task involved in data filing processes is document recognition, on
which depends the class-specific rules that command each file. For example, a
user might be asked to upload several documents such as a filled subscription
form, an ID and a proof-of-residence. In this work, we tackle the document
classification task to check that all required files have been sent so that they are
filed accordingly.

Yet, if discriminating between broad classes of documents can be achieved
based on their appearance only (e.g. separating passports from banking infor-
mation), fine-grained recognition often depends on the textual content of the
documents. For example, different tax forms might share their layout, logos and
templates while the content in itself vastly differs. Computer vision has been
interested for some time in optical character recognition (OCR) to extract text
from images. However, dealing with both the textual and visual contents remains
an open problem. In the past years, deep learning has been established as the
new state-of-the-art for image classification and natural language processing. For
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(a) Questionnaire (b) Memo (c) Email (d) Presentation

Fig. 2. Document samples from the RVL-CDIP [11] dataset with corresponding text
extracted by Tesseract OCR.

fine-grained document recognition, we expect the model to leverage both image
and text information.

This work introduces a multimodal deep network that learns from both a
document image and its textual content automatically extracted by OCR to
perform its classification. We design a pragmatic pipeline for end-to-end hetero-
geneous feature extraction and fusion under time and cost constraints. We show
that taking both the text and the document appearance into account improves
both single modality baselines by several percents on two datasets from the doc-
ument recognition literature. We detail some limitations of the current academic
datasets and give leads for an application in an industrial setting with unclean
data, such as photographed documents.

2 Related Work

Analyzing digitized documents is an old task in computer vision that was boosted
by the dissemination of computers in offices and then of digital cameras and
smartphones in everyday life. To allow for textual search and easy indexing, the
critical part of digitization is extracting text content from documents that have
been scanned or photographed. Indeed, either when scanning or taking a picture
of the document, its actual text is lost, although it is implicitly embedded in the
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pixel values of the image. Numerous optical character recognition (OCR) algo-
rithms have been designed to transform images into strings of characters [17,37].
Despite those efforts perfectly reading any type of document remains challeng-
ing due to the wide variety of fonts and languages. Layout analysis is a way to
preprocess the data to detect text areas and find the text orientation in order
to enforce a better local and global consistency [15,20].

Document image analysis is also one of the first topic where modern deep
learning has been applied. The first convolutional neural network (CNN) [21] was
originally designed for classification of digits and letters. The computer vision
community deployed consequent efforts to achieve image-based document classi-
fication without text, as shown by a 2007 survey [7] which focuses on document
image classification without OCR results. As an example, [19] introduced SURF
visual features with a bag-of-words scheme to perform document image classi-
fication and retrieval. In 2015, [11] introduced a large labeled image document
dataset which sparked interest and generated several studies of deep CNN on this
topic [1,9,36], inspired by the success of these networks on ImageNet and tuning
data augmentation policies, transfer learning strategies and domain adaptation
for document classification. In the same idea, [35] also investigated such deep
architectures to classify identity documents. [2] goes even further by trying to
segment the full layout of a document image into paragraphs, titles, ornaments,
images etc. These models focus on extracting strong visual features from the
images to classify the documents based on their layout, geometry, colors and
shape.

On the other hand, text-based document classification has also long been
investigated. In 1963, [6] introduced an algorithmic approach to classify scien-
tific abstracts. More recently, [23] experimented with one-class SVM for docu-
ment classification based on various text features, such as TF-IDF. [33] used
Latent Dirichlet Allocation to perform topic modeling and used it as a genera-
tive approach to document classification. The recent appearance of learned word
embeddings approaches such as word2vec [24] or ELMo [30] paved to way to
a large body of works related to recurrent and attention mechanisms for text
classification. For example, [39] proposed a bidirectional recurrent network with
a hierarchical attention mechanism that learns both at the word and sentence
levels to improve document classification.

Some works tried to reconcile the text-based and image-based approaches
to exploit both information sources. [26] performs OCR to detect keywords in
images which are then encoded as colored boxes before passing the image through
a CNN. While a clever trick, this does not leverage the representation power of
word embeddings. Closer to our approach, [38] goes further by generating text
feature maps that are combined with visual feature maps in a fully convolutional
network. However, the considered documents are synthetic and the network is
trained using perfectly clean texts and images, which is unrealistic for practical
uses. More similar to us, [4] learns to combine bag of words and bag of visual
words features for industrial document images using a statistical model combin-
ing outputs of two single-modality classifiers. While using shallow features, they



Multimodal Deep Networks for Text 431

show that using both information allows for a better accuracy when the OCR is
unreliable, which is often the case in an industrial setting.

(a) Residual block (b) Inverted residual block

Fig. 3. MobileNetV2 uses inverted residual blocks to reduce the number of channels
that are forwarded in subsequent layers. Figure from [34].

In this paper, we go further in this direction and propose a new baseline
with a hybrid deep model. In order to classify OCRized document images, we
present a pragmatic pipeline perform visual and textual feature extraction using
off-the-shelf architectures. To leverage the complementary information present
in both modalities, we design an efficient end-to-end network that jointly learn
from text and image while keeping computation cost at its minimum. We build
on existing deep models (MobileNet and FastText) and demonstrate significant
improvements using our fusion strategy on two document images dataset.

3 Learning on Text and Image

3.1 Visual Features

There is a large literature both in general image recognition and in image doc-
ument classification. Recent works have established deep convolutional neural
networks as the de facto state of the art on many competitions in object recog-
nition, detection and segmentation, e.g. ImageNet. Deep features, extracted by
pretrained or fine-tuned deep CNNs, constitute a strong baseline for visual recog-
nition tasks [32]. Based on this, we choose to fine-tune a CNN pretrained on
ImageNet in order to extract visual features on our images, as suggested in sev-
eral recent document classification publications [1,11,36]. As we aim to perform
inference on a large volume of data with time and cost constraints, we focus on a
lightweight architecture with competitive classification performance, in our case
the MobileNet v2 model [34].

MobileNetV2 [34] consists in a stack of bottleneck blocks. Based on the resid-
ual learning principle [13], each bottleneck block transforms a feature map first
by expanding it by increasing its number of channels with a 1 × 1 convolu-
tional layer with identity activation. Then, a 3 × 3 depthwise convolution is
performed, followed by a ReLU and a final 1 × 1 convolution with ReLU. For
efficiency issues, this block inverts the traditional residual block since the expan-
sion is performed inside the block, whereas residual blocks compress and then
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reexpand the information, as illustrated in Fig. 3. The final MobileNetV2 con-
tains 19 residual bottleneck layers. Compared to other state of the art CNNs,
MobileNetV2’s accuracy is on-par with VGG-16 while being significantly faster.

3.2 Textual Features

Since our use case focuses on document images in which the text has not been
transcribed, we need to perform an OCR step. To this end, we use the Tesseract
OCR engine [17] in its 4.0 version which is based on an LSTM network. Tesseract
is configured in English to use full page segmentation and the LSTM engine. In
practice, this means that Tesseract will try to detect the text orientation in
the image and perform the needed affine transformation and rotation if any.
Tesseract also deals with the image binarization using Otsu’s thresholding to
identify black text on white background [27]. This will suffice on the datasets
described in Sect. 4.1, although we found Tesseract challenging to apply on real-
world images, especially pictures which are not flat and grayscale scans.

(a) Document distribution w.r.t of
non-dictionary words % in the
Tobacco3482-Tesseract corpus. (b) Word embeddings similarity for misspelled words.

Fig. 4. Tesseract OCR outputs noisy text that does not entirely overlap with the
assumptions usually held when training word embeddings for NLP.

Recent literature in NLP suggests that pretrained word embeddings offer
a strong baseline which surpasses traditional shallow learning approaches.
Many word embeddings have been designed following the initial success of
word2vec [24], such as GloVe [29] or more recently the contextualized word
embeddings from ELMo [30].

However, those word embeddings assume a good tokenization of the words,
i.e. most embeddings remove digits, ignore punctuation and do not deal with
out-of-vocabulary (OOV) words. Since these embeddings are learned on clean
corpus (e.g. Wikipedia or novels), tokenization is fairly straightforward. OOV
words are either assigned a random embedding or mapped to the closest in-
vocabulary word based on the Levenshtein distance.

Unfortunately, outputs of the Tesseract OCR are noisy and not as clean
as the training data from these embeddings. Even in grayscale, well-oriented
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documents, OCR might have trouble dealing with diacritics, exotic fonts or
curved text, as illustrated by the extracts from Fig. 2. Moreover, specific user
domains (e.g. banking or medieval manuscripts) might use rare words, codes,
abbreviations or overall jargon that is absent from general-purpose word embed-
dings. Since we face many possible misspellings in the extracted text, we can-
not use the previous workarounds for OOV embeddings since it would inject a
lot of non-discriminant features in our text representation In average, on the
Tobacco3482 corpus, a document processed by Tesseract OCR contains 136
words with 4 characters or more. Of those, only 118 in average are in the GloVe
embeddings [29]1 and only 114 are in Enchant’s spellchecker US English dictio-
nary. Overall, approximately 26% of the corpus is absent from the US English
dictionary and 23% from the GloVe embeddings. The document distribution
with respect to the proportion of out-of-vocabulary words is shown in Fig. 4a.
Although most of the documents are concentrated around 10% of OOVs, there
is a significant long tail including several dozens of documents that contain only
words outside of the English language.

Therefore, we turn to character-based word embeddings that are able to deal
with OOV words by assigning them plausible word vectors that preserve both
a semantic and a spelling similarity. One possibility was to use the mimicking
networks from [31] that learn to infer word embeddings such as GloVe, but based
only on subword information. More complex embeddings such as FastText [5,16]
and ELMo [30], which produce vectors using respectively n-grams and subword
information, can also address this problem. Finally, the Magnitude library [28]
uses two alternative strategies to deal with OOV words:

– Assigning a deterministic random vector. These vectors do not capture
semantic sense, however similar words based on the Levenshtein-Damerau
distance will have similar vectors. Misspellings will therefore not be close to
the original word, but similar lingo words will be close.

– Using character n-grams inspired by [5] and interpolation with in-vocabulary
words, Magnitude can generate vectors for OOV words which are sensible
based on existing learned embedding.

Preliminary data exploration shows that subword-aware embeddings perform
better at preserving similarity despite misspellings, as illustrated in Fig. 4b. We
therefore focus our interest on the FastText embedding, which is faster than
ELMo since the latter requires passing the context through a bidirectionnal
LSTM during inference. It is worth noting that this raises concern for characters
that have not been seen by FastText. We found experimentally that Tesseract
OCR generated no character that was OOV for FastText on the documents we
considered.

Finally, it is necessary to convert those word embeddings into a document
embedding. We consider two approaches:

– The simple baseline for sentence embedding suggested in [3], which consists
in a weighted average of word embeddings altered by PCA.

1 Based on the Wikipedia 2014 + Gigaword 5 datasets.
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– Using variable-length document embeddings consisting in a sequence of word
embeddings.

The first approach is suitable as generic feature while the second requires a
statistical model able to deal with sequences, such as recurrent or convolutional
neural networks. For both methods, we use the SpaCy small English model [14] to
perform the tokenization and punctuation removal. Individual word embeddings
are then inferred using FastText [5] pretrained on the Common Crawl dataset.

3.3 Multimodal Features

Once text and image features have been extracted, we feed them to a multi-layer
perceptron following [10]. To do so, we need to combine both feature vectors into
one. Two approaches can be envisioned:

– Adaptive averaging of both feature vectors. This aligns both feature spaces
so that scalars at the same index become compatible by summation, i.e. that
each dimension of the vectors have a similar semantic meaning.

– Concatenating both vectors. This does not imply that both feature spaces
can be aligned and delegates to the fusion MLP the task of combining the
two domains.

Both fusion strategies are differentiable, therefore the whole network can
be trained in an end-to-end fashion. Moreover, the model is modular and each
feature extractor can be swapped for another model, e.g. MobileNet can be
exchanged with any other popular CNN and FastText could be replaced by
subword-level NLP models, even differentiable ones that could allow fine-tuning
the embeddings. In this work, we try to keep things simple and build on robust
base networks in order to clearly understand how the data fusion impacts model
performance. Preliminary experiments showed that the summation fusion signif-
icantly underperformed compared to pure image baseline. We suggest that this is
provoked by the impossibility of aligning the text and image feature spaces with-
out breaking their discriminating power, resulting in suboptimal space. There-
fore, we move on with the concatenation strategy for the rest of this paper. The
complete pipeline is illustrated in Fig. 1.

4 Experimental Setup

4.1 Datasets

Tobacco3482. The Tobacco3482 dataset [19] contains 3482 black and white
documents, a subset from the Truth Tobacco Industry Documents2 archives of
legal proceedings against large American tobacco companies. There are annota-
tions for 10 classes of documents (e.g. email, letter, memo. . . ). Following common
practices, we perform k-fold cross-validation using 800 documents for training
and the rest for testing. Results are averaged over 3 runs.
2 https://www.industrydocuments.ucsf.edu/tobacco/.

https://www.industrydocuments.ucsf.edu/tobacco/
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Table 1. Preliminary tuning of the single-modality baselines on Tobacco3482.

(a) Preliminary experiments on Tobacco3482 for
the text baseline.

Model OA F1

MLP (document) 70.8% 0.69
CNN 1D (word sequence) 73.9% 0.71

OA = overall accuracy,F1 = class-balancedF1 score.

(b) Preliminary experiments on Tobacco3482 for
the image baseline.

Model OA F1

MobileNetV2 84.5% 0.82
MobileNetV2 (w/ DA) 83.9% 0.82

OA = overall accuracy,F1 = class-balancedF1 score, DA = data augmentation.

RVL-CDIP. The RVL-CDIP dataset [11] is comprised of 400 000 grayscale
digitized documents from the Truth Tobacco Industry Documents. There are
annotations for 16 classes of documents (e.g. email, letter, invoice, scientific
report. . . ), each containing 25 000 samples. We use the standard train/val/test
split from [11] with 320 000 documents for training, 40 000 for validation and
40 000 for testing.

Text Generation. The Tobacco3482 and RVL-CDIP are image-based datasets.
In order to evaluate our multi-modal networks, we wish to learn from both visual
and textual content. Therefore we use the Tesseract OCR library3 to extract
text from the grayscales images. We perform this operation on both datasets.
We release the OCR text dataset openly4 to encourage other researchers to
replicate our work or test their own model for post-OCR text classification or
multi-modal text/image classification.

4.2 Models

This subsection describes the implementation details of our deep networks. All
models are implemented in TensorFlow 1.12 using the Keras API and trained
using a NVIDIA Titan X GPU. Hyperparameters were manually selected on a
subset of Tobacco3482 and fixed for all experiments.

Text Baseline. Seeing that our representation of textual data can be either a
document embedding or a sequence of word embeddings, we compare two models
for our text baseline.

The first model is an improved Multi-Layer Perceptron (MLP) with ReLU
activations, Dropout and Batch Normalization (BN) after each layer. The net-
work has a fixed width of 2048 neurons for all layers except the last one, which
produces a 128 feature vector, classified by a softmax layer. Weights are randomly
initialized using He’s initialization [12]. The averaged document embedding [3]
is used as an input for this classifier.
3 https://github.com/tesseract-ocr/tesseract/.
4 The QS-OCR dataset is available at: https://github.com/Quicksign/ocrized-text-

dataset.

https://github.com/tesseract-ocr/tesseract/
https://github.com/Quicksign/ocrized-text-dataset
https://github.com/Quicksign/ocrized-text-dataset
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The second model is a one-dimensional convolutional neural network designed
inspired by previous work for sentence classification [18]. The CNN is 4-layers
deep and interlaces 1D convolutions with a window of size 12 with maxpooling
with a stride of 2. Each layer consists in 512 channels with ReLU activation.
The final feature map is processed by a max-pooling-through-time layer that
extracts maximal features on the sequence on top of which we apply Dropout
for regularization. A fully connected layer then maps the features to the softmax
classifier. The input word sequence is zero-padded up to 500 words for documents
with less 500 words.

We experiment on the Tobacco3482 dataset in order to evaluate which text
model to choose. Results are reported in Table 1a. Without surprise, the CNN
1D outperforms significantly the MLP classifier. The pattern recognition abilities
of the convolutional network makes it possible to interpret the word sequences
by leveraging contextual information. Since only some part of the text might be
relevant, averaging over all word embeddings dilute the discriminating informa-
tion. Moreover, noisy embeddings due to garbage output from Tesseract (e.g.
incoherent strings where OCR has failed) are included in the final document
embedding. However, when dealing with word sequences, convolutional layers
and temporal max-pooling help extracting only the relevant information. There-
fore, we choose to include the 1D CNN as the text component in our multimodal
architecture.

This model is denoted Text in the rest of the paper. It is optimized using
Stochastic Gradient Descent with momentum for 100 epochs, with a learning
rate of 0.01, a momentum of 0.9 and a batch size of 405.

Image Baseline. We investigate as our base CNN the lightweight MobileNetV2
[34]which focuses on computing efficiency, albeit at the cost of a slightly lower top-1
accuracy on ImageNet compared to other state of the art CNN. We train the CNN
ongrayscale document images resized at 384 × 384. Although thiswarps the aspect
ratio, [36] reports better accuracy than when using padding at the same resolution.
As the model is designed for RGB images, the grayscale channel is duplicated three
times. This allows us to initialize the network by loading its pretrained weights on
ImageNet, which accelerates convergence and slightly improves accuracy through
transfer learning.

This model is denoted Image in the rest of the paper. It is optimized using
Stochastic Gradient Descent with momentum for 200 epochs, with a learning
rate of 0.01, a momentum of 0.9 and a batch size of 40.

As reported in Table 1b, preliminary experiments on the Tobacco3482 with
random JPEG artifacts, saturation and contrast alterations did not significantly
alter the classifier’s accuracy compared to no augmentation. This is explained
by the low variability between the grayscale document images. All images are
grayscale with dark text on white background with horizontal text lines, there-
fore color and geometric augmentation are not necessary. However, [36] report
some success using shear transform, which we did not consider in this work. It is
5 Hyperparameters are manually tuned on a small validation set.
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worth noting that compared with previous literature on the RVL-CDIP dataset,
e.g. [1,11,36], we do not average predictions over multiple crops at inference time
for speed concerns. This might explain why our visual baseline underperforms
the current state of the art in this state (although this does not question the
gains due to the multi-modal network).

Table 2. Overall accuracy on the RVL-CDIP dataset.

Model Image Text Fusion CNNs [11] VGG-16 [1] AlexNet+SPP [36]

OA 89.1% 74.6% 90.6% 89.8% 90.97% 90.94%
OA = Overall Accuracy.

Fusion. For our multimodal network, we consider the same model as our base-
lines except that the final layers are cut-off. For the Text model, the last layer
produces an output vector of dimension 128 instead of the number of classes.
For the Image model, we aggregate the last convolutional features using global
average pooling on each channel, which produces a feature vector of dimension
1280. We then map this feature vector using a fully connected layer to a repre-
sentation space of dimension 128.

Table 3. Overall accuracy and F1 scores on the Tobacco3482 datasets.

Model OA F1 Adv. Email Form Letter Memo News Notes Report Res. Sci.

CNNs [11] 79.9 – –

Text 73.8 0.71 0.60 0.96 0.76 0.71 0.79 0.67 0.62 0.43 0.97 0.57
Image 84.5 0.82 0.94 0.96 0.85 0.83 0.90 0.89 0.83 0.61 0.80 0.62
Fusion 87.8 0.86 0.93 0.98 0.88 0.86 0.90 0.90 0.85 0.71 0.96 0.68
Oracle 92.1 0.91 0.94 0.99 0.94 0.92 0.93 0.93 0.89 0.81 0.97 0.79
Adv. = Advertisement, Res. = Resume, Sci. = Scientific.

This model is denoted Fusion in the rest of the paper. It is optimized using
Stochastic Gradient Descent with momentum for 200 epochs, with a learning
rate of 0.01, a momentum of 0.9 and a batch size of 40.

5 Discussion

5.1 Performances

Model performances scores on Tobacco3482 and RVL-CDIP are reported in
Tables 2 and 3. Behaviour of all models is consistent both on the smaller dataset
and on the very large one. In both cases, the Text baseline is significantly
underperforming the Image one. Indeed, as could be seen in Fig. 2, Tesseract
OCR outputs noisy text. This includes words that have been misspelled – which
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are correctly dealt with by the FastText embeddings – and new words that are
hallucinated due to poor binarization or salt-and-pepper noise in the image.
Moreover, layout and visual information tends to be more informative based
on how the classes were defined: scientific papers, news and emails follow sim-
ilar templates while advertisements present specific graphics. However, in both
cases, this simple document embedding is enough to classify more than 70% of
the documents, despite its roughness.

Using the Image model only, we reach accuracies competitive with the state
of the art. MobileNetV2 alone does on-par is with the holistic CNN ensem-
ble from [11] and is competitive with fine-tuned GoogLeNet and ResNet-50 [1]
(90.97%).

On both datasets, the fusion scheme is able to improve the overall accuracy
by �1.5% which demonstrates the relevance of our approach. While the docu-
ment embedding we chose is simple, it appears to be at least partially robust
to OCR noise and to preserve enough information about the document content
to boosts CNN accuracy on document image classification even further. We also
report the results from an oracle, which corresponds to the perfect fusion of the
Text and Image baselines, i.e. a model that would combine the predictions
from both single-modality networks and always choose the right one. The oracle
corresponds to the theoretical maximal accuracy boost that we could expect from
the Fusion model. On Tobacco3482, the oracle corresponds to a 7.6% absolute
improvement (9% relative). In our case, the Fusion model improves the best
single-source baseline by an absolute 3.3% (4% relative), which is significant
although still leaves the door open to further improvements. More importantly,
the gains are consistent on all classes of interest, almost never underperforming
one of the two base networks on any class. This confirm the proposed approach
as the two sources, image and text, give complementary information to classify
a document.

5.2 Processing Time

Although some applications of document image recognition can be performed
offline, most of the time users upload a document and expect near real-time
feedback. User experience engineering [25] indicates than less than 1 s is the
maximum latency the user can suffer before the interface feels sluggish, and 10 s
is the maximum delay before they start loosing their attention. On the RVL-
CDIP dataset, Tesseract processes a document image in �910ms in average on
an Intel Core i7-8550U CPU using 4 threads, including loading the image from
disk. This means that every additional latency induced by the network inference
time is critical since it will negatively affect the user experience.

On the same CPU, the full inference using the Fusion model takes �360ms
including loading, resizing and normalizing the image. The complete process
including Tesseract OCR therefore takes less than �1300ms which is acceptable
in a system requiring user input. Of those, 130ms are spent in the 1D CNN
(including reading the file and performing FastText inference) and 230ms in
MobileNetV2 (including image preprocessing). The overhead added by the final
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fusion layer is negligible. We stress that this is using a standard TensorFlow
without any CPU-specific compilation flags, which could speed up the inference
further. On a NVIDIA Titan X GPU, the Fusion network runs in 110ms
(50ms for Text, 60ms for MobileNetV2), which brings the total just above the
1 s recommendation. In our case, using compute-efficient architectures allow us
to avoid running on an expensive and power-hungry GPU.

As a comparison basis, other architecture choices that we dismissed earlier
would have resulted in poorer performance and the network would not be usable
in a near real-time user application. For example, the Xception network [8] takes
630ms to run during inference with the same parameters and hardware. For the
text model, an LSTM-based RNN with a similar depth takes many seconds to
run.

Note that, although this does not reduced the perceived delay for one user,
the global throughput of the system can be improved by batching the images.
Two Tesseract processes can leverage the full eight cores from an Intel Core
i7-8550U CPU. In this setting, processing an image takes �660ms in average.
Thanks to the batch efficiency of neural networks, the average processing time
becomes ≤750ms on GPU and ≤1000ms on CPU. This is particularly helpful
when users have several documents to upload that can be processed concurrently.

5.3 Limitations

One of the main limitation of this work stems from the public document image
datasets available. Indeed, in a real-world application, document images can be
grayscale, RGB, scanned images and photographs with various rotations, bright-
ness, contrast and hue values. The Tobacco documents are all oriented in the
right way, which makes it easier for Tesseract to perform OCR. Moreover, docu-
ments have been scanned by professionals who tried to maximize their legibility
while user-generated often presents poor quality.

While it was not required here, data augmentation is definitely required for
practical applications to encompass the large variety of environmental conditions
in which documents are digitized. This is especially true for rotations, since
it is often not possible to ensure that users will capture the document with
the right orientation and Tesseract does not always correctly detects it. For
industrial-grade applications dealing with user-generated content, such a data
augmentation is necessary to alleviate overfitting and reduce the gap between
train and actual data. Preprocessing page segmentation and layout analysis tools,
such as dhSegment [2] can also bring significant improvements by renormalizing
image orientation and cropping the document before sending it to the classifier.

Moreover, as we have seen, the post-OCR word embeddings include lots of
noisy or completely wrong words that generate OOV errors. In practical appli-
cations, we found beneficial to perform a semantic tokenization and named
entity recognition using SpaCy. This allows us to perform a partial spellcheck-
ing, e.g. using symspell6 to correct words that have been misread by Tesser-

6 https://github.com/wolfgarbe/SymSpell.

https://github.com/wolfgarbe/SymSpell
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act, without affecting proper nouns or domain-specific abbreviations and codes.
If this can deal frequent mispellings of words, it might also suppress out-of-
vocabulary words such as alphanumeric codes. Therefore, learning domain spe-
cific, character-based or robust-to-OCR embeddings [22] is an interesting lead
for future research, as the current interest in the ICDAR2019 competition on
Post-OCR Text Correction shows7.

6 Conclusion

In this work, we tackled the problem of document classification using both image
and text contents. Based only on an image of a digitized document, we try
to perform a fine-grained classification using visual and textual features. To
do so, we first used Tesseract OCR to extract the text from the image. We
then compute character-based word embeddings using FastText on the noisy
Tesseract output and generate a document embedding which represents our text
features. Their counterpart visual features are learned using MobileNetv2, a
standard CNN from the state of the art. Using those pragmatic approaches, we
introduce an end-to-end learnable multimodal deep network that jointly learns
text and image features and perform the final classification based on a fused
heterogeneous representation of the document. We validated our approach on the
Tobacco3482 and RVL-CDIP datasets showing consistent gains both on small
and large datasets. This shows that there is a significant interest into hybrid
image/text approach even when clean text is not available for document image
classification and we aim to further investigate this topic in the future.
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Abstract. In many real-world learning tasks, one has access to datasets
consisting of multiple modalities, for example, various omics profiles of
the patients coupled with medical records and other unstructured data
sources. Often, the “core mechanism” (e.g. health or disease state) is
reflected in all of these modalities and so this commonality can become
more evident when the source domain (e.g. proteins) can accordingly
transform the local geometry of the target (e.g. lipids). In this paper, we
propose a novel algorithm that takes multiple data sources, constructs
corresponding manifolds, and “mixes” information across them to find
the common denominators in the observable outcomes. By leveraging
manifold information from these different sources we obtain more robust
and accurate results in comparison to standard methods. In the empiri-
cal evaluation on a clinical cohort related to ischaemia in patients with
coronary artery disease, we demonstrate the applicability and efficacy of
the proposed algorithm.

Keywords: Manifold Mixing · Multi-view · Stacked regularization

1 Introduction

Exponential increase in multi-modal data, stemming from different instruments
and measurements presents both an opportunity and a challenge. With a larger
sheer volume of information, there is potentially more we can learn for a given
process, but coherently combining different data sources with the goal of improv-
ing analysis remains a challenging and underdeveloped task. In the medical field
for instance, multiple omics data such as proteins or lipids encode somewhat
related biological information. Therefore, one might expect that health or dis-
ease state is reflected in both of these modalities, despite their different format.
Learning frameworks such as manifold alignment [5,10] and domain adapta-
tion [6,8] may not be directly applicable as they try to find a common latent
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manifold and learn to transfer knowledge from a source to a target domain,
respectively. Orthogonally to existing methods, we present a way of “mixing”
information from multiple domains, without imposing hard similarity between
them. The motivation is that for a given outcome, the “core mechanism” (e.g.
health or disease state) is reflected in all of these modalities and so this com-
monality can become more evident when the source domain (e.g. proteins) can
accordingly transform the local geometry of the target (e.g. lipids).

2 Approach

We use a stacked regularization setting [11] where each level-one model is trained
using “mixed manifolds” of various data modalities. In the next subsections we
briefly discuss classical stacked regularization, domain alignment, adaption, and
finally propose our mixing algorithm. Regarding notation, we will use capital
bold, bold and no formatting for matrices, vectors and scalars or functions,
respectively (e.g. X,x, f/W ). We will also use calligraphic font to denote spaces
(e.g. X ).

2.1 Stacking

Let X be a dataset of N samples whose values are sampled from an input
space X = {X 1, X 2, ..., XM} where X 1 to XM are subspaces corresponding
to different “sources” or “views” 1 → M which we will refer to as “domains”.
Denote by y the output sampled from an output space Y. In a supervised setting,
the goal is to compute p

(
y|x1, ..., xM

)
, where xi are the coordinates of an

instance from X in the domain X i. In stacked regularization, or stacking, the
input is passed to a first layer of W0 predictors g01(x), ..., g0W0

(x), with:

g0i (x) = p
(
y|x1, ...xM , θ0

i

)
, (1)

where θ0
i are the hyperparameters of the ith model. For our task, we suggest to

pass one data source per model: g0i (x) = p
(
y|xi, θ0

i

)
, so that the width of the

first layer W0 is equal to the number of domains M . The output from this layer
is then passed to one or more layers of Wk models gk1 , ..., gkWk

which blend the
outputs of the previous ones:

gki (x) = p
(
y|gk−1

1 (·), ..., gk−1
Wk

(·)), θk
i

)
, k ∈ [1, L], (2)

where L is the total number of blending layers and θk
i the hyperparameters of

ith model from the kth layer. The last blending layer is then passed to a final
model f that produces the output f(x) = p

(
y|gL1 (x), ..., gLWL

(x), θL+1
)
, where

θL+1 are the hyperparameters of f . You can visualize the stacked model general
architecture in Fig. 1. From a frequentist point of view, the goal of stacking is
then to find:

argmin
θ

L(y; f(X),θ), (3)
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where θ is the set of hyperparameter values from all of the stack models, y
is the output for all of the data, and L is the loss function when using f(x) to
predict y. For a fully Bayesian approach, one should compute the posterior prob-
ability of each model by integrating out the hyperparameter values:

p
(
gki |Z) ∝ p

(
Z|gki

)
p

(
gki

) ∝
p

(
gki

) ∫
p

(
Z|θk

i , gki
)
p

(
θk
i |gki

)
dθk

i ,
(4)

where Z is the complete dataset (X,y).

Fig. 1. Our proposed stacked setting

Although this approach is attractive because it considers the uncertainty of
the model, it also incurs high computational cost for large θk

i .
Two important aspects are: (a) optimizing each model independently does

not guarantee finding the global optimal stacked model and (b) there is an
implicit assumption that each model gki can learn/handle data from different
sources (possibly with different formats) effectively.

2.2 Stacking Optimization

Finding an optimal stacked model can be done by optimizing each sub-model
individually or by jointly optimizing all the sub-models. Optimizing each model
individually has an important complexity advantage because the number of pos-
sible θ combinations increases exponentially with the number of parameters:
k|θ |, where k is the number of values considered for each parameter.

Lemma 1. For a given dataset X,y, stacked model f(x) and parameters θ, the
following relation is true: L (y, f(x),θ∗) ≤ L (y, f(x),θ′), where
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θ∗ = argmin
θ

L (y, f(x),θ), θ′ = ϕL
k=1

(

ϕWk
i=0

(

argmin
θk
i

L (
y, gki (x),θk

i

)
))

,

and ϕL
j=1

(

argmin
θj

f(θj )

)

is a sequential composition of minimizations with

respect to index j: argmin
θj=L

(

argmin
θj=L−1

(

... argmin
θj=1

(f(θj ))

))

.

Proof. Let μ be a measure on the measurable space (Θ,θ). Since θ is a disjoint
set, its measure is just:

μ(θ) =
L+1∏

k=0

Wk∏

i=1

μ(θk
i ) (5)

Denote by {θk
i }∗ the set of values that satisfy argmin

θk
i

L (
y, gki (x),θk

i

)
, and

{θk
i } the set of values θk

i can take. Since {θk
i }∗ ⊂ {θk

i }, then μ
({θk

i }∗) ≤
μ

({θk
i })

, ∀ i, k, and so:

μ (θ′) =
L+1∏

k=0

Wk∏

i=1

μ
({θk

i }∗) ≤
L+1∏

k=0

Wk∏

i=1

μ
({θk

i })
(6)

L (y, f(x),θ∗) is thus optimizing over a larger domain than L (y, f(x),θ′) is,
yielding L (y, f(x),θ∗) ≤ L (y, f(x),θ′)

There is a trade-off between complexity and performance when it comes to
optimizing the model. If performance is the goal, then the next step is to decide
what form is the optimization going to take. A grid-search would quickly become
unfeasible for models with multiple hyperparameters, so an attractive solution
is to instead use Bayesian optimization [1].

2.3 Domain Alignment

Note that at this point there is no information sharing between the first layer’s
models. However, in many situations it may be desirable that some information
is shared across these models since they are build using different modalities of
the same sample set. The motivation is that even though the samples come from
different distributions, the generating processes should be similar and thus they
should lie in a similar low-dimensional manifold. This is the central problem of
Manifold Alignment [7]. Our Manifold Mixing is based on similar motivation,
with crucial difference - we consider that each domain has a contribution of its
own, and therefore we will not enforce an exact match between the manifolds
but merely a transformation of the local inter-sample geometry using all the
domains, indirectly linking the stacked first layer models together.
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2.4 Domain Adaptation

Given two domains X s and X t, that are different but related, the goal of Domain
Adaptation is that of learning to transfer knowledge acquired from the source
X s to the target X t. The most common setting is when there are many labeled
examples in the source, but not in the target, and therefore one tries to learn
an estimator h such that it minimizes the error on both the source and target
distribution prediction [2]. In our setting, the source and target domains repre-
sent different modalities of the same sample. For clarity, we will use source and
target domain definitions as well, and use the former to transform the latter.

2.5 Manifold Mixing

We would like to address the question: how to combine data from different
domains with a similar relation to the output? Our approach consists in creat-
ing a map between each pair of domains X s → X t, while deforming the local
geometry of the two to become more similar. We drew inspiration from LLE [9]
in that we will also use the neighbours of a point to predict its position. In our
case, we will use the neighbours of this point in the other domains to predict
its position in the original domain. Consider a set of points S and two map-
pings taking the points in S to two coordinate systems of domains X t and X s:
ϕ : S → R

|t|, ψ : S → R
|s|, and suppose the subsets Xt, Xs of the dataset X are

measured in these coordinate systems. Let us introduce an approximation Lt
s to

the mapping ϕ ◦ ψ−1 : R|s| → R
|t| from the coordinates of domain X s to the

coordinates of domain X t: min
Lt

s

∑N
i=1 ||xt

i −Lt
sx

s
i ||2, with xt

i,x
s
i corresponding to

the ith entry of Xt and Xs, respectively. The optimal solution is then given by:

∂

∂Lt
s

N∑

i=1

||xt
i − Lt

sx
s
i ||2 = 0 ⇔

N∑

i=1

Lt
s (xs

ix
sᵀ
i ) =

N∑

i=1

xt
ix

sᵀ
i

Lt
s (XsXsᵀ) = XtXsᵀ ⇔ Lt

s = XtXsᵀ (XsXsᵀ)−1
.

(7)

Denote by nt
i[j] the jth neighbour of instance xi in the domain X t. Let the

array of the points in X s which are the neighbours of instance xt
i in the domain

X t be: Ns←t
i =

[
xs
nt

i[1]
,xs

nt
i[2]

, . . . ,xs
nt

i[k]

]
. Our goal is to ‘mix’ information from

different manifolds. This is accomplished by projecting the neighbours of xt
i from

the source to the target domain and then finding the linear combination of the
points that best reconstructs xt

i in the original domain:

min
wi

∑

i

||xt
i − x̃t←s

i ||2 = min
wi

∑

i

||xt
i − Lt

sN
s←t
i wi||2, (8)

where x̃t←s
i is the reconstruction of xt

i using domain X s. We visualize how sub-
stituting xi by x̃t←s

i might affect the target manifold in Fig. 2. After setting the
derivative w.r.t. wi to zero, the optimal solution corresponds to:

wi =
((

Ñt←s
i

)ᵀ
Ñt←s

i

)−1 (
Ñt←s

i

)ᵀ
xt
i, (9)
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Fig. 2. Target manifold being deformed by the source manifold using the manifold
mixing method. The crosses are the neighbours of point xi (point in red) in the target
domain. These neighbours are mapped from the source to the target domain and then
used to locate xi. This causes the target manifold to be locally deformed by the source
manifold. (Color figure online)

where Ñt←s
i = Lt

sN
s←t, the neighbors of xi in Xt projected from their coordi-

nates in Xs back to the coordinates in Xt. We can now transform the original
space X t into the space reconstructed from the other domains X̃ t by computing
for each instance the weighted mean of its reconstructions:

x̃t
i = βtxt

i +
∑

s �=d

βsx̃t←s
i , (10)

where βj can be seen as the prior of domain X j ’s relevance, and
∑

j βj = 1. When
evaluating a new point xnew, first the nearest neighbours from the training set
are found, and then the reconstruction is given by Ñs←t

i wnew. The complexity of
the algorithm is bounded by the matrix inversion of the coordinate mapping in
Eq. 7, and therefore the algorithm complexity is O(d3), where d is the maximum
number of features among all the domains.
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Algorithm 1. Manifold Mixing Algorithm
Input: data X = [X1, . . . ,XM ], domain weights β
Output: transformed data X̃
for t = 1 to M do

nt ← NearestNeighbours(Xt, k)
X̃t ← βtX

t

for s in m ∈ [1, M ] \ t do
Lt

s ← XtXsᵀ (XsXsᵀ)−1

for xi = 1 to N do
Ns←t

i ← Xs[nt
i], Ñ

t←s
i ← Lt

sN
s←t
i

wi ←
((

Ñt←s
i

)ᵀ
Ñt←s

i

)−1 (
Ñt←s

i

)ᵀ
xt
i

X̃t
i += βsÑ

t←s
i wi

end for
end for

end for
X̃ ← [X̃1, , ..., , X̃M ]
return: X̃

3 Experimental Section

3.1 Methods

To test our method we used a recent clinical cohort [3] containing data on
patients with cardiovascular disease. There are 440 subjects in the dataset of
which 56 suffered from an early cardiovascular event. For each patient, 359 pro-
tein levels and 9 clinical parameters are measured. We evaluate performance our
method (stacked regularization with manifold mixing) for predicting a cardiovas-
cular event. We compare proposed approach to that of using a standard stacked
model with joint Bayesian optimization of the hyper-parameters, as well as with
using random forest on the merged/ feature concatenated datasets (protein lev-
els and clinical parameters). For both our method and the standard stacking,
the architecture consisted of two larger random forest models in the first layer
and a smaller one in the output.

3.2 Data Selection and Preprocessing

We perform random shuffles with 90% train size and even class distribution in
the train/test set. We use remaining 10% to test the model. Since the dataset is
unbalanced (much larger number of negative than positive subjects), we took a
random sample from the negative class of size equal to the total number of pos-
itive class subjects, prior to the split at each shuffle. The protein were measured
using a technology that uses standard panels for different proteins, meaning some
of the proteins might have no relation to the outcome at all. For this reason,
for each run we pre-selected 50 proteins using Univariate Feature Selection on
the training set. Then, we normalized the train and test data independently,
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and measured the average ROC for each of the methods. We perform 5-fold
cross validation for optimal hyper-parameter estimation on the train set for the
random forests, and bayesian optimization for the stacked models. Once that is
accomplished, we retrain the model with the optimal parameters on the complete
training set and test on the remaining 10%. We repeat the this procedure mul-
tiple times and report the average ROC-AUC as well as the standard deviation.
Described strategy is frequently referred to as stability selection procedure [4]
The proteins were measured using OLINK technology that records expression
levels of proteins via targeted and customised analysis [3].

3.3 Results

The results are presented in Fig. 3. Proposed approach (MM stacked) outper-
formed both the regular stacked model and the random forests (RF) using the
merged data. Both stacked regularized techniques outperformed standard RF.

Fig. 3. Average AUC for the three methods compared. The highest performance is that
of the Manifold Mixing stacked model (MM), and both stacked models outperformed
using Random Forests (RF) on the merged data

4 Conclusions and Future Work

In this paper we propose the manifold mixing framework to improve the analysis
of multi-modal data stemming from different sources. In our preliminary experi-
ments, the obtained results support efficacy of our method. We outperform both
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standard stacked regularization and the model built on feature concatenated
data. In the near future, we plan on performing further tests with larger number
of shuffles, and testing on different datasets and heterogeneous domains. One
pitfall of the current algorithm is the linearity of the map between manifolds
which might fail in highly curved regions. A possible solution is to kernelize
the method using graph kernels. Another interesting direction is to subdivide
the manifold into multiple subregions based on the local curvature and create a
mapping per subregion.
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Abstract. We introduce a wide and deep neural network for predic-
tion of progression from patients with mild cognitive impairment to
Alzheimer’s disease. Information from anatomical shape and tabular clin-
ical data (demographics, biomarkers) are fused in a single neural network.
The network is invariant to shape transformations and avoids the need
to identify point correspondences between shapes. To account for right
censored time-to-event data, i.e., when it is only known that a patient did
not develop Alzheimer’s disease up to a particular time point, we employ
a loss commonly used in survival analysis. Our network is trained end-
to-end to combine information from a patient’s hippocampus shape and
clinical biomarkers. Our experiments on data from the Alzheimer’s Dis-
ease Neuroimaging Initiative demonstrate that our proposed model is
able to learn a shape descriptor that augments clinical biomarkers and
outperforms a deep neural network on shape alone and a linear model
on common clinical biomarkers.

1 Introduction

Alzheimer’s disease (AD) is a neurodegenarative disorder and the most common
form of dementia diagnosed in people over 65 years of age. Initially, patients suf-
fer from short memory loss, until progressive deterioration eventually requires
patients to be completely dependent upon caregivers due to severe impairment
of cognitive and motor abilities [1,38,45]. Mild cognitive impairment (MCI) is
a pre-dementia stage which is characterized by clinically significant cognitive
decline, but without impairing daily live [29,41]. Although subjects with MCI
are at an increased risk of developing dementia due to AD, a significant portion
of patients with MCI remain stable and do not progress [41]. The pathophysi-
ological processes of this transition are complex and not fully understood, but
previous studies showed that changes in certain biomarkers precede the onset
of cognitive symptoms by many years [25]. Important biomarkers include brain
atrophy measured by magnetic resonance images (MRI), levels of cortical amy-
loid deposition obtained from cerebrospinal fluid (CSF), and glucose uptake of
c© Springer Nature Switzerland AG 2020
P. Cellier and K. Driessens (Eds.): ECML PKDD 2019 Workshops, CCIS 1167, pp. 453–464, 2020.
https://doi.org/10.1007/978-3-030-43823-4_37
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neurons measured by fluorodeoxyglucose positron emission tomography (FDG-
PET) (see [44] for a detailed overview). To stop or slow down the progression to
dementia, it is vital to identify those patients that are at an increased risk for
rapid progression from MCI to AD. In particular, several previous studies have
established strong morphological changes in the hippocampus associated to the
progression of dementia [18–20,50,51].

We study progression to Alzheimer’s disease by explicitly modelling the tim-
ing of this transition and by considering the finite follow-up time and drop-out
of patients in clinical studies using techniques from survival analysis (also called
time-to-event analysis). Survival analysis differs from traditional machine learn-
ing in the fact that parts of the training data can only be partially observed –
they are censored. If a patient withdraws from the study, is lost to follow-up, or
did not develop AD during the study period, the patient’s time of progression is
right censored, i.e., it is unknown whether the patient has or has not progressed
after the study ended. Only if a patient develops AD during the study period,
one can record the exact time of this event – it is uncensored.

In this paper, we propose for the first time a wide and deep neural network
for survival analysis that learns to identify patients at high risk of progressing
to AD by fusing information from 3D hippocampus shape and tabular clinical
data. To the best of our knowledge, no one has previously attempted to learn
a deep survival model on 3D anatomical shape representations in an end-to-end
fashion. In our experiments on data from the Alzheimer’s Disease Neuroimaging
Initiative, we demonstrate by fusing information we can more accurately predict
AD converters than a baseline deep network on shapes and a Cox’s proportional
hazards model on clinical data.

2 Related Work

Most previous work formulates progression analysis from MCI to AD as a clas-
sification problem within a fixed time horizon such as 3 years (see e.g. [4,9,
11,40,48]). The major downside of this approach is that such a model cannot
generalize to other time spans, and that censored conversion times are ignored
during training. Instead, it is statistically more appropriate to explicitly incorpo-
rate censored event times using methods from survival analysis. Several authors
used survival analysis techniques by combining information from various modal-
ities such as structural MRI, FDG-PET, genetics, and neuropsychological tests
[3,12–15,27,31,34,46,49,51,53]. All of these approaches compute features from
high-dimensional imaging data in a pre-processing step, before training a linear
survival model. They differ with respect to the type and extend of computed
features, which range from volume measurements of a few brain regions [15] to
voxel-based analysis [49]. In addition, we note that extensive prior work aims to
identify healthy controls, patients with MCI, and patients with AD by casting
it as a three-way classification problem and using multi-view machine learning
techniques; we refer interested readers to the review in [36].

In contrast, this work focuses on multi-view learning to predict progression
from MCI to AD, which has been formulated as a classification problem within a
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fixed time period in [35,47,52,54]. [52] propose to use sparsity-inducing penalties
to combine features extracted from MRI and PET images with CSF measure-
ments and neuropsychological tests. MCI to AD conversion within 2 years was
studied in [35]. They propose to learn from features extracted from MRI and
FDG-PET, and CSF measurements by view-aligned hypergraph learning. The
approach in [47] uses stability-weighted low-rank matrix completion to impute
missing values in MRI and PET features, and neuropsychological tests. They
consider right censored conversion times as missing values and try to impute
the actual (unobserved) time of conversion via matrix completion. In [54], the
authors propose a missing-data-aware approach to learn from MRI, PET, and
genetics by learning a common and multiple modality-specific latent feature rep-
resentations. To the best or our knowledge, the only previous work that employed
multi-view learning for survival analysis was presented in [42] for predicting
adverse events in cancer and heart disease.

Using neural networks for survival analysis originated in the late 1990s in
the work of [2,5,16,33], who studied relatively simple networks with one hidden
layer applied to tabular data. The first deep survival model was proposed in [26]
and builds on the loss proposed in [16]. The only previous work that investigated
deep learning for MCI to AD conversion from multi-modal data is [30,37]. Both
approaches consider a classification problem within a fixed time frame, which
ignores censoring of conversion times. In addition, the features in [30] were pre-
computed from MRI and not learned end-to-end. In [37], a deep network is
proposed that learns from 3D patches of MRI and FDG-PET at multiple scales.

Finally, [20] proposed a deep neural network operating on point clouds of
multiple neuroanatomical shapes. They study diagnosis of MCI and AD patients
rather than progression, and do not consider demographics or clinical biomarkers
in their model.

3 Methods

We present a wide and deep neural network for learning from right censored
time-to-event data (see Fig. 1). Our model takes a point cloud representation of
an anatomical shape and tabular data as input. The deep part of the network is
a PointNet [43] that learns features describing the 3D geometric structure of the
left hippocampus. The wide part of the network takes demographics and clinical
biomarkers and their interactions. The network is trained to fuse both types of
information in and end-to-end fashion using a survival analysis loss appropriate
for right censored event times. First, we are going to describe PointNet, which
constitutes the deep part of the network, before showing how it can be integrated
with tabular clinical data for survival analysis.

3.1 Learning from Anatomical Shape

We represent anatomical shapes as point clouds that represent a 3D geometric
structure as a set of coordinates. Point clouds avoid the combinatorial irregular-
ities and complexities of meshes, and thus are easier to learn from. However, the
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network needs to be constructed in a way to consider that a point cloud is just
an unordered set of points that is invariant to permutations of its members. To
this end, we employ PointNet [43], which is illustrated in Fig. 1 and described in
more detail below.

The i-th point cloud Pi is represented by a set of K 3D coordinates Pi =
{pi1 , . . . ,piK} with pik ∈ R

3 being the x, y, and z coordinates. To be invariant
to permutations of the input set, the symmetric max pooling operator across
all embedding vectors of points is used. We first pass each individual coordinate
vector through a multilayer perceptron MLPpoint with shared weights among all
points, thus projecting each 3D point to a higher dimensional representation.
These representations are aggregated using the max pooling operator across all
points, which ensures that our downstream survival analysis task is invariant to
permutation:

POINTNET(Pi) = MAXPOOL (MLPpoints(pi1), . . . ,MLPpoints(piK )) . (1)

MLPpoint is a three-layer network with 64, 128, and 400 dimensional outputs,
respectively, with rectified linear units (ReLU) and batch normalization [23].
Hence, we extract 400 features that globally describe the input anatomical shape.

In order to make our network invariant to rotation of the input point cloud,
we use an affine transformation network that outputs a rotation matrix T ∈ R

3×3

which is multiplied by the raw 3D coordinates of input points. This transforma-
tion is learned in a data-dependent manner by using an additional POINTNET
network that learns to predict the optimal T for each individual point cloud. The
global feature vector computed by POINTNET is fed to three fully-connected
layers with 200, 100, and 9 units, ReLU activation function and batch normaliza-
tion, respectively. Finally, we modify the vanilla PointNet in (1) by transforming
individual points by the output of the transformation network:

TRANSFORM(Pi) = MAXPOOL (MLPpoints(pi1), . . . ,MLPpoints(piK )) ,

ϕik = TRANSFORM(Pi)pik ,

POINTNET(Pi) = MAXPOOL (MLPpoints(ϕi1), . . . ,MLPpoints(ϕiK )) .

(2)

3.2 Wide and Deep Neural Network

After obtaining a global latent representation of an anatomical shape, we can
further learn high-level descriptors of point clouds by feeding the output of the
max pooling operation to an MLP. In addition, we can leverage routine clini-
cal patient information to predict progression to Alzheimer’s disease. Typically,
such information consists of feature vectors that are either dense (e.g. biomarker
concentrations), or sparse (e.g. one-hot encoded genetic alterations). Compared
to individual points in a point cloud, clinical information already contains rich
information for which we do not need to learn a highly abstract latent repre-
sentation. In fact, most clinical research relies on linear models, which allow for
easy interpretation of individual feature’s contribution to the overall prediction.
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Fig. 1. Wide and Deep PointNet Architecture. The network takes a point cloud rep-
resentation P of the left hippocampus with K points, applies a transformation, and
then aggregates point features by max pooling. The global feature vector is processed
by a global MLP outputting a 100-dimensional latent representation that is fused with
tabular clinical data using a linear model.

Here, we jointly train a linear model on clinical information with a deep
PointNet on anatomical shapes using a wide and deep architecture [8]. While
the deep component learns a complex latent representation of anatomical shape,
the linear component models known clinical variables x ∈ R

d associated with
Alzheimer’s disease. In particular, we can easily incorporate gene-gene (epista-
sis) and gene–environment interactions by using a cross-product transformation
φ(x) [8]. Thus, the final patient-level latent representation is given by

μ(xi,Pi) = w�
wideCONCAT (xi, φ(xi))

+ w�
deepMLPglobal(POINTNET(Pi)), (3)

where CONCAT denotes vector concatenation, POINTNET is the global feature
vector from (2), MLPglobal is a three-layer MLP with 200, 100, and 100 units,
ReLU activation and batch normalization, and wwide and wdeep are weights to
be learned.

3.3 Survival Analysis

Our overall objective is to predict progression from mild cognitive impairment
to Alzheimer’s disease from right censored time-to-event data, which demands
for proper training algorithms that take this unique characteristic into account.
More formally, we denote by ti > 0 the time of an event (Alzheimer’s disease),
and ci > 0 the time of censoring of the i-th patient. Due to right censoring,
it is only possible to observe yi = min(ti, ci) and δi = I(ti ≤ ci) for every
patient, with I(·) being the indicator function and ci = ∞ for uncensored records.
Hence, training our survival model is based on a dataset comprising quadruplets
(Pi,xi, yi, δi) for i = 1, . . . , n. After training, the survival model ought to predict
a risk score of experiencing an event based on a point cloud and a set of clinical
features. As loss function, we employ the loss proposed in [16], which is an
extension of Cox’s proportional hazards model [10] to neural networks. Let Θ
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denote the set of all parameters of the wide and deep neural network (3), then
we want to solve

arg min
Θ

n∑

i=1

δi

⎡

⎣μ(xi,Pi |Θ) − log

⎛

⎝
∑

j∈Ri

exp(μ(xj ,Pi |Θ))

⎞

⎠

⎤

⎦ , (4)

where Ri = {j | yj ≥ ti} denotes the risk set, i.e., the set of patients who were
still free of Alzheimer’s disease shortly before time point ti.

4 Experiments

4.1 Data

In our experiments, we are using data from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) [24]. ADNI was launched in 2003 as a public-private partner-
ship with the primary goal to test whether longitudinal MRI and PET imaging
combined with other biomarkers, clinical and neuropsychological assessments to
measure the progression of MCI and early AD. For up-to-date information, see
www.adni-info.org. We selected 397 subjects with MCI at baseline and at least
one follow-up visit. Magnetic resonance images of all subjects were processed with
FreeSurfer [17] to obtain segmentations, which were subsequently pre-processed
using the grooming operations included in ShapeWorks [7] to obtain smooth hip-
pocampi surfaces. We used left hippocampus shapes represented as point clouds
comprised of 1024 points. For tabular clinical data, we used age, gender, educa-
tion, CSF, FDG-PET, and AV45-PET. CSF measurements included levels of beta
amyloid 42 peptides (Aβ42), total tau protein (T-tau), and Tau phosphorylated
at threonine 181 (p-Tau181). We augment age to account for non-linear effects by
using a natural B-spline expansion with four degrees of freedom and an interac-
tion term between age and gender [22]. Education, which is a categorical vari-
able, was encoded using orthogonal polynomial coding. In addition, we consid-
ered left hippocampus volume (normalized by intra-cranial volume) as estimated
by FreeSurfer [17] from MRI scans of the brain.

4.2 Model Training

We trained our deep and wide network using Adam [28] for 120 epochs with
weight decay. We tuned hyper-parameters (size of PointNet’s global feature
vector, size of wdeep, weight decay, learning rate schedule, β1 of Adam) using
Bayesian black-box optimization by computing the model’s performance on the
validation set [32]. Data is randomly split into three parts: 80% for training,
10% for validation, and 10% for testing. We repeated this process 10 times
with different splits. The performance of all methods was estimated by Harrell’s
concordance index (c index), which is identical to the area under the receiver
operating characteristics curve if the outcome is binary and no censoring is
present [21]. As baseline model, we selected a linear Cox’s proportional haz-
ards model (CoxPH) [10] trained on tabular clinical data. The baseline model

http://www.adni-info.org
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was trained once on tabular clinical data only (see above), and once with the
volume of left hippocampus included as additional feature. We note that CoxPH
and our model optimize the same loss during training. Therefore, differences
in performance stem from the ability of our model to directly incorporate 3D
anatomical shape information.

5 Results

The performance of our deep and wide network and baseline models is summa-
rized in Fig. 2. It shows that tabular clinical makers with a median c index of
0.750 are already strong predictors of conversion from MCI to AD. When includ-
ing hippocampus volume as additional feature, the median c index increased
to 0.803. Using a deep PointNet solely using hippocampus shape and ignoring
any clinical variables resulted in a c index of 0.534. Our deep and wide network
achieved a median c index of 0.780 without hippocampus volume, and 0.809 with
hippocampus volume. The latter is the model with highest median c index and
outperforms the linear model with hippocampus volume on 6 of 10 splits. This
shows that when jointly learning a deep PointNet, it is able to learn a powerful
global descriptor of hippocampus shape that augments clinical features for MCI-
to-AD progression. Moreover, our results confirm that hippocampus volume is a
useful independent predictor that cannot be fully captured by anatomical shape
alone, as described previously [50].

Fig. 2. Performance of individual models across ten random splits of the data. w/
Volume: tabular data includes left hippocampus volume. w/o Volume: tabular data
does not include left hippocampus volume.

We can also compare the coefficients of the linear models with the linear part
of our wide and deep neural network. The coefficients can be directly interpreted
in terms of log-hazard ratio, which is a measure of effect a variable has on sur-
vival, similar to log-odds ratio in logistic regression. The coefficients across all
folds are depicted in Fig. 3. All models agree with respect to which features are
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Fig. 3. Comparison of coefficients associated with tabular clinical features. Additional
eight orthogonal polynomial encodings of education have been omitted from this plot.
w/ Volume: tabular data includes left hippocampus volume. w/o Volume: tabular data
does not include left hippocampus volume.

contributing to increased/decreased hazard of AD, as indicated by the coeffi-
cients’ sign, except for p-Tau. The linear model without hippocampus volume
associated higher p-Tau levels with a decrease in hazard (on average) compared
to the other models, which is surprising because hyperphosphorylation of tau
is a marker for AD [6]. The most important clinical features (in terms of mag-
nitude) are gender and education for both linear models, but have only minor
importance for the deep and wide network. Similar behavior can be observed
for age-gender interactions. In addition, increased hippocampus volume has a
relatively high importance and is associated with a decreased hazard of AD. It
is ranked third for the deep and wide network and eleven for the linear model.
FDG-PET has the biggest effect for the wide and deep network and is also among
the top 4 features for the linear models. From a clinical perspective, this result
is reassuring as reduction of metabolic activity in cortical regions has been asso-
ciated with AD [39]. Finally, we note that the variability of coefficients across
splits is smaller for the deep and wide neural network compared to the linear
model. We believe this is an effect of using weight decay during optimization,
which penalizes large coefficients.
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6 Conclusion

We proposed a wide and deep neural network that fuses 3D anatomical shape
and tabular clinical variables for the prediction of MCI-to-AD conversion. We
trained a model end-to-end using a survival loss that properly accounts for right
censored time of conversion. Our experiments demonstrate that the proposed
architecture is able to learn a global shape descriptor that augments clinical
variables and leads to improved prediction performance.
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Abstract. Deep generative networks has attracted proliferating inter-
ests recently. In this work, the linear generative multi-view model is
extended to nonlinear multi-views model where the deep neural net-
work is leveraged to model complex latent representation underlying the
multi-view observation. The proposed deep multi-view model admits fast
stochastic optimization for training the network and offers a model to
infer the shared hidden representation and subsequently generate the
second view based on the available primary view at the test time. Empir-
ical results prove the merits of the proposed methods. Furthermore, it
is shown that the proposed deep model can generate samples in the
input space and suppress the background noise or other complex forms
of distortions, the abilities that are not naturally available in CCA based
methods.

1 Introduction

The problem of multi-view learning is studied extensively in the literature and its
merits has been demonstrated in extracting richer representation from available
multiple views at the training time (Chaudhuri et al. 2009; Hardoon et al. 2004;
Foster et al. 2008). To capture nonlinearity in the model, one can either use ker-
nel methods or follow the recent growing path of the deep neural network (DNN).
Both of these methods have been explored in the literature and researchers pro-
posed some advanced two-view models (Hardoon et al. 2004; Bach and Jordan
2003; Andrew et al. 2013). Kernel based methods, such as KCCA (Hardoon et al.
2004), require large memory to store a massive amount of training data to use
at the test time. To overcome this issue and improve the kernel based method in
terms of memory and speed, some kernel approximation techniques based on ran-
dom sampling of training data are proposed in Williams and Seeger (2001) and
Lopez-Paz et al. (2014). On the other hand, the main advantage of the DNN over
kernel based method is that, its parametric model can be better trained with larger
amount of data using the fast stochastic optimization techniques.

The proposed deep two-view methods can be mainly categorized in two
groups. On one hand, there are models inspired by auto-encoder, e.g. split
autoencoder (SplitAE) of Ngiam et al. (2011), in which the deep autoencoders
are trained so that the reconstruction error of both views are minimized. In this
methods, the encoding network of both view are shared while each view has
its own (split) decoder network. On the other hand, another pathway is based
c© Springer Nature Switzerland AG 2020
P. Cellier and K. Driessens (Eds.): ECML PKDD 2019 Workshops, CCIS 1167, pp. 465–477, 2020.
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on canonical correlation analysis (CCA), such as deep CCA (DCCA) method
(Andrew et al. 2013) that extends the linear single layer CCA to deep CCA
in which the model parameters are estimated to maximize the cross correlation
between the projection of both views.

To combine the benefits of both deep auto-encoder (AE) and CCA for multi-
view datasets and hence enhance learned representation, the idea of deep CCA-
Auto encoder (DCCAE) is proposed in Wang et al. (2015b). This method tries to
optimize the following objective function that is combination of reconstruction
errors of two autoencoders and the canonical correlation between the learned
bottleneck features (the output of the deep encoders)

min
Wf ,Wg,Wp,Wq,U,V

− 1
T trUT f(X)g(Y)TV

+ λ
T

T∑

i=1

(‖xi − p(f(xi))‖2 + ‖yi − q(g(yi))‖2
)

s.t. 1
T UT f(X)f(X)TU = I
1
T VT g(Y)g(Y)TV = I

uT
i f(X)g(Y)T vj = 0 for i �= j (1)

Here, the functions {f, g, p, q} are flexible nonlinear mappings modeled by
neural networks that are parameterized by the set of learnable parameters
{Wf ,Wg,Wp,Wq}. λ > 0 is a trade-off parameter that controls the reconstruc-
tion error and canonical correlation between the projected views in the objective
function (1). In this equation, CCA term tries to maximize the mutual informa-
tion between the projected views, f(xi) and g(yi), and AE loss tries to minimize
the reconstruction error between views and their projections. This approach was
shown to outperform DCCA and SplitAE for classification and clustering tasks
in two-view application (Wang et al. 2015b).

On the other hand, DCCAE has some drawbacks that limits its applications.
Its main drawbacks are two folds. First, the objective function and the con-
straints couples all the training samples through the (cross-)covariance terms,
this will block the stochastic optimization method (e.g. SGD) to be applied here
in its standard form. Nevertheless, it was shown in Wang et al. (2015a) that if
the mini-batch size is large enough the stochastic gradient can approximate the
true gradient but still this requires very large mini-batch sizes which imposes
heavy computational complexity on the training algorithm. Second, it does not
estimate the hidden state and a model that can generate the second view based
on the observation from the primary (first) view. In addition, the empirical stud-
ies showed that the canonical term of the objective function (1) dominates in
practice and hence the objective is less sensitive to the reconstruction error; this
in turn result in the trained autoencoders that don’t reconstruct the views very
well while mainly trying to learn projected mapping UT f(X), VT f(Y) that are
maximally correlated.

Wang et al. (2015b) also proposed a modification of their DCCAE method,
in which the constraints are relaxed so that the feature dimensions are no longer
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required to be uncorrelated, the objective of this method, also called as correlated
autoencoder (CorrAE), is formulated as

min
Wf ,Wg,Wp,Wq,U,V

− 1
T trUT f(X)g(Y)TV

+ λ
T

T∑

i=1

(‖xi − p(f(xi))‖2 + ‖yi − q(g(yi))‖2
)

s.t. 1
T uT

i f(X)f(X)Tui = 1
T vT

i g(Y)g(Y)Tvi = 1. (2)

This variation of the deep multi-view model is designed to examine the impor-
tance of the correlation among the learned feature dimensions by comparing its
performance with that of the original DCCAE method in some learning tasks.

Deep Generative Multi-view (DGMV) Model: On the other hand, it was
shown by White et al. (2012) and Yu et al. (2014) that simple linear CCA can
be expressed as a linear generative two-view form where the views are generated
as perturbed linear model of the latent representation φi as

{
xi = Cφi + εi,

yi = Eφi + νi

(3)

where the perturbation terms are Gaussian independent and identically dis-
tributed (i.i.d.) vectors ε ∼ N (0,Σε) and ν ∼ N (0,Σν). This model makes the
latent representation explicit and its joint model parameter estimation and latent
variable inference can be expressed as a regularized loss objective function that
can be reformulated as a convex optimization problem. We can generalize (3) to
nonlinear model resulting in the deep nonlinear generative multi-view model

{
xi = p(φi) + εi,

yi = q(φi) + νi

(4)

where the generative mappings p(φi), q(φi) can be modeled by deep neural
networks parameterized by Wp,Wq. Therefore, given the shared latent represen-
tation φi, two views can be generated by a non-linear mapping plus independent
Gaussian noises hence one can formulate the following regularized loss objective
function

min
Wp,Wq,Φ

1
T

T∑

i=1

(‖xi − p(φi)‖2 + ‖yi − q(φi)‖2
)

+ R(Φ), (5)

In this work, we tackle this deep multi-view subspace learning problem by
introducing auto-encoders as inference model.

2 Problem Definition

As explained in the previous section, we prefer a deep multi-view network that
offers a model to explicitly infer the shared latent source that generates both
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views and can predict the second view based on the available primary view at
the test time. To this end, we introduce two auto-encoder networks with encoder
(recognition) networks f(), g() that provide latent projected views, fxi

= f(xi)
and gyi

= g(yi), and the decoder (reconstruction) networks p(φi), q(φi) that
reconstruct each view based on the latent representation. The encoders and
decoders can be modeled by deep neural networks with learnable parameter
matrices {Wf ,Wg,Wp,Wq} that correspond to each deep model function.
Inspired by the generative interpretation of linear CCA (3), we add a gener-
ative linear two-view layer, on top of auto-encoder in the latent space, in order
to obtain a shared latent representation φi for the pair of encoded projected
{fxi

, gyi
}. Since the auto-encoders reconstruct each individual view, the latent

variable φi indeed provides a shared underlying representation of both views in
a deep nonlinear form. In the other words, the deep generative two-view network
(DGMV) can be expressed mathematically as the following pairs of models

{
xi = p(fxi

) + εi,

yi = q(gyi
) + νi

,

{
fxi

= Cφi + ε′
i,

gyi
= Eφi + ν′

i

(6)

where C,E are the factor loading matrices (matrices of basis) for each view
and the latent representations vectors φi are stacked in the matrix Φ. Figure 1
depicts the graphical representation of this model. Consequently, the deep multi-
view subspace learning problem can be formulated by the following combined
regularized objective function

min
Wf ,Wg,Wp,Wq,C,E,Φ

λ
T

T∑

i=1

‖xi − p(f(xi))‖2 + ‖yi − q(g(yi))‖2
︸ ︷︷ ︸

autoencoder objective terms

+ 1
T

T∑

i=1

L1 (Cφi; f(xi)) + L2 (Eφi; g(yi)) + λr

K∑

j=1

R1(Φj:)R2(C:j ,E:j)

︸ ︷︷ ︸
linear two-view objective terms

(7)

Here, {L1, L2} are the loss functions that measure the divergences between the
latent projected views {fxi

, yyi
} and their corresponding factorized estimates

{Cφi,Eφi}. These losses are assumed to be convex in their first arguments,
where different noise assumptions result different loss functions, for instance the
i.i.d. Gaussian noise assumption amounts to �2 losses. The regularizer terms,
R1(Φj:),R2(C:j ,E:j), capture special structures on the factors loading matrices
and the latent features which are controlled by constant factor λr. On the other
hands, the loss functions that measure the fitness error between each view and its
reconstruction by the auto-encoder are modeled by �2 losses. Minimizing these
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loss terms results the latent projections that best reconstruct each view. The
parameter λ > 0 balances the trade-off between the auto-encoder loss and the
linear two-view loss.

Fig. 1. Graphical representation of the deep generative two-view model.

2.1 Deep Multi-view with Conditionally Independent Views

One important assumption in multi-view learning is that the views are condi-
tionally independent given the shared latent representation (Yu et al. 2014). This
property is crucial in some applications aiming to recover a natural latent repre-
sentation. As explained in White et al. (2012), this property can be encouraged
by selecting regularizer terms of the form R2(C:j ,E:j) = max{‖C:j‖2, ‖E:j‖2}
in the optimization objective (7). Using this regularizer, the basis of reconstruc-
tion models of each view are individually constrained and don’t compete against
each other to obtain their own share in reconstructing the views xi, yi, so this
regularizer better respects the conditional independence of the views. Here, we
select R1(Φj:) = ‖Φj:‖2 to encourage row-wise sparsity which, in turn, results in
low-rank representation. Subsequently, the two-view objective terms in Eq. (7)
can be reformulated as a convex optimization problem in the parameters of lin-
ear two-view model, {C,E,Φ} (White et al. 2012; Yu et al. 2014). Although,
the combined objective function of the deep generative model (7) is not convex
in the parameters of deep networks, we found this convex reformulation of the
linear two-view layer to be beneficial for the training of deep two-view model
and final latent variable in practice.

2.2 Advantages of the Proposed Model

– As mentioned above, the proposed method provide a model for inferring the
hidden representation underlying both views and subsequently predicting the
second view based on the available primary view at the test time. This is in
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contrast to CCA-based methods, such as DCCAE, that don’t directly offer
a model for generating samples from the latent variable so it is difficult to
reconstruct one view based on the other one (Wang et al. 2015b).

– In addition, as opposed to CCA-based methods that require sufficiently large
batch size in order to estimate the whitening matrices in the constraints
and the gradients, the average loss function (empirical risk) in (7) exhibits
the standard summation form that enables random sampling for stochastic
gradient calculation therefore the stochastic optimization algorithms can be
readily employed here to optimize for deep network parameters.

– In contrast to the DCCAE that is limited to standard CCA formulation on the
projected views, our proposed model is more flexible to include different types
of losses for the two-view objective formulation to capture different properties
of latent variables and hence is able to learn more complex models.

– Also, dissimilar to CCA based methods that are limited to two views, this
generative model can be naturally extended to datasets with more than two
views available at the training (Guo 2013), so it can better integrate different
information related to the same source to enhance representation learning.

– Additionally, it is expected that the reconstruction losses are more involved in
deep generative multi-view training compared to DCCAE since all the objec-
tive terms in (7) has the form of losses. So, one might expect that other forms
of losses can be replaced for the �2 of reconstruction error in the objective
function (7) to improve reconstruction ability of the model; the property that
doesn’t seem practical in the DCCAE as its CCA term tends to dominate in
practice while ignoring the reconstruction terms which in turn results in poor
reconstructed views. This property will be investigated in the experimental
studies in Sect. 3.

– Similar to the deep variational CCA model (Wang et al. 2016), we can intro-
duce private variables that capture view-specific structures in the datasets
and disentangle the underlying shared and private information in each view.

The combination of the aforementioned advantages, make the proposed deep
generative two-view model a powerful and flexible candidate in multi-view set-
tings with different downstream goals such as classification, subspace clustering,
speech recognition and word pair semantic similarity. In the following section we
empirically study the performance of the proposed method.

3 Experiments

Experimental Design. For the experiments, we used the two-view noisy digits
datasets of Wang et al. (2015b) created based on MNIST dataset that consists
of grayscale digit images of size 28 × 28 pixels. To synthesize the views, the
pixel values are scaled to range [0, 1]. The first view of the dataset is generated
by rotating each image at angles randomly sampled from uniform distribution
U(−π/4, π/4) and the second view is selected from a different image of the same
identity as in the first view and a random uniform noise is added, then the final
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Table 1. Classification error of different multi-view learning algorithms on a two-
view data set generated based on the MNIST digit images. The results of DGMV
method are averaged over 3 rials. The performance of the DGMV is compared against
the following benchmark methods: Linear CCA: linear single layer CCA, SplitAE:
split autoencoder with Sigmoid gates (Ngiam et al. 2011), DCCA: deep CCA with
Sigmoid gates (Andrew et al. 2013), Randomized KCCA: randomized kernel CCA
approximation with Gaussian RBF kernels and random Fourier features (Lopez-Paz
et al. 2014), CorrAE: deep correlated auto-encoder with Sigmoid gates (2) (Wang
et al. 2015b), DistAE: deep minimum-distance auto-encoder with Sigmoid gates
(Wang et al. 2015b), DCCAE: deep CCA-Auto encoder with Sigmoid gates (1) (Wang
et al. 2015b), VCCA: deep variational CCA with ReLU gates (Wang et al. 2016),
VCCA-private: deep variational CCA with an extra pair of latent variables for mod-
eling the private information within each view. ReLU gates are used as the nonlinear-
ities in all the networks (Wang et al. 2016), the performance results of the benchmark
methods are from Wang et al. (2015b, 2016).

Method Classification error (%)

Linear CCA (K = 10) 19.6

SpliAE (K = 10) 11.9

CorrAE (K = 10) 12.9

DistAE (K = 20) 16.0

KCCA (K = 10) 5.1

DCCA (K = 10) 2.9

DCCAE (K = 10) 2.2

VCCA 3.0

VCCA-private 2.4

DGMV (K = 50) 1.32

DGMV (K = 70) 1.30

value is truncated to remain in range [0, 1]. Following this procedure, both views
are just sharing the same identity (label) of the digit but not the style of the
handwriting as they are based on arbitrary images in the same class. The train-
ing set is divided into training/validation subsets of length 50K/10K and the
performance is measured on the 10K images in the test set. This noisy MNIST
two-view dataset was used in Wang et al. (2015b) to evaluate the performance
of the multi-view model.

To make a fair comparison, we used neural network architecture for the auto-
encoders with the same capacity as the one used in Wang et al. (2015b). Accord-
ingly, for the deep network models, the encoding networks are composed of three
fully-connected nonlinear layers of size 1024 units and the last linear layer of size
K where K is the dimensionality of the final mapping of the encoding network.
The decoding networks consist of three fully-connected layers of 1024 nonlinear
units with final layer of size 784 that reconstruct the original images. Sigmoid
function is used as the nonlinearity in the deep auto-encoders. Here, we used
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(a) (b) (c)

Fig. 2. (a) Running time of different learning algorithms over the rounds (epochs) of
SGD optimization, (b) histogram of one dimensions of the primary projected view
f(xi) of DCCAE and (c) histogram of one dimensions of the primary projected view
f(xi) of DGMV.

sigmoid gate function for all the hidden units of the deep networks. In order
to prevent over-fitting, we also applied stochastic drop-out to all the layers as
regularization techniques.

In the experiments, the downstream task is classification and the misclassifi-
cation rate is measured as the performance metric. For that goal, the one-versus-
one linear SVM classification algorithm is applied on the shared latent represen-
tation φ of the proposed models or the projected mappings of the CCA based
methods. It is worth emphasizing that the proposed DGMV model is able to infer
the shared underlying representation of both views based on both encoding pro-
jections {fxi

, gyi
}. The shared latent representation is not naturally available in

the CCA-based methods which are only able to construct the projection of each
individual view. To tune the parameters of the SVM algorithm, cross-validation
procedure is employed selecting the best performing model, averaged over 3 tri-
als, on the validation set and the final classification error is evaluated on the test
set. For the proposed deep multi-view models, we used the �2 loss function for
both L1,L2 in the objective function (7). To train the deep generative multi-view
(DGMV) model, the stochastic gradient descent is used for learning the param-
eters of the deep networks and accelerated proximal gradient descent (Karami
et al. 2017) is employed for optimization of the latent two-view model while we
alternatively switch between training of latent multi-view model and the deep
AEs after each epoch of training while keeping the other set fixed. Furthermore,
we practically found that the convex reformulation of the linear two-view model
results in better performance than non-convex optimization algorithm for the
training of the latent two-view model and inference of shared latent variable.
Similar to Wang et al. (2015b), deep auto-encoders are pre-trained using the
layer-wise training method of restricted Boltzmann machines (RBMs) (Hinton
and Salakhutdinov 2006). The parameters of each algorithm are tuned through
cross validation with grid search.

Classification performance of different methods are presented in Table 1 in
bit error rate where the best dimensionality of latent variable for each method
is reported in parenthesis. The results highlight that DGMV outperform the
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available methods in terms of the classification performance. In CCA based meth-
ods, the dimensionality of the projected latent variable, K, is selected from the
set {5, 10, 20, 30, 50} in Wang et al. (2015b) and the best results are achieved by
K = 10 while in our experiments we found that DGMV can benefit from larger
projected latent variable size and it achieves better performance with larger K.

In order to evaluate the learning behavior of the methods, we also compare
the running time of different learning algorithms in CPU seconds over the rounds
(epochs) of optimization in Fig. 2(a). To make a fair comparison, all experiments
were rerun on the same machine using Matlab. Comparing the computation
times, we can see that the training of the proposed DGMV methods is faster
than DCCAE and while the running time of DCCA is shorter per epoch but it
needs more epochs of training (50 epochs versus 14 epochs used for DCCAE and
deep two-view models) until it converge to a reasonable result.

Moreover, the histograms of projected view, depicted in Fig. 2(b) and (c),
confirm that the outputs of the encoders in DCCAE are not Gaussian distributed
while CCA is known to work well in the Gaussian setting while on the other hand,
the histograms of projected view of deep generative multi-view model in Fig. 2(c)
shows that its distribution is approximately Gaussian.

(a) validation fitness of the 1st view (b) validation fitness of the 2nd view

Fig. 3. Reconstruction fitness of both views for different learning algorithms over the
rounds (epochs) of optimization.

3.1 Reconstruction Performance

To examine the sample generation behavior of the proposed method, the recon-
struction performance of the proposed methods is also evaluated and compared
against that of DCCAE. First, the reconstruction error of each view is evaluated
for different methods with latent variable dimensionality of K = 10. As the val-
idation fitness over the course of training in Fig. 3 illustrates, DGMV tends to
decrease the reconstruction errors of both views as the training algorithm pro-
gresses while DCCAE leads to increased reconstruction error to achieve smaller
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canonical correlation among the projected views. This empirical study shows
that DCCAE sacrifices the reconstruction ability and focuses on canonical cor-
relation term in order to achieve good discrimination performance while accurate
reconstruction of input signal is highly desirable in practice.

Also to illustrate the reconstruction capability of the proposed method, some
training samples of digits in both views and their reconstructed images are
depicted in Figs. 4(a) and (b) each reconstruction image is generated by its own
autoencoder network. Figure 4(c) depicts the predicted images of the second
view based on the 1st view using the combined network: 1st encoder (f()) →
latent linear multi-view on the encoded projections → 2nd decoder ( q()). Here,
the network is trained with latent variable dimensionality of K = 70. These
figures shows the reconstruction capability of DGMV method where the gener-
ated samples in the input space can denoise the noisy observation, the ability
that was missing in DCCA and DCCAE. More specifically, one can observe from
Fig. 4(c) that the rotations of images in the first view are eliminated from the
generated images in the second view and a prototypical image of same digit is
reconstructed by feeding a sample from that digit class to the network. This
observation, which is also reported in Wang et al. (2016) for variational CCA
(VCCA) model, can be justified by the fact that the 2nd view only contains
the class information of the 1st view but not its style and the rotation so the

(a) (b) (c)

Fig. 4. (a) Samples of the training dataset in the first views and their reconstructed
images generated by autoencoder network of view 1 (AE1) depicted in columns 1
and 2, respectively. (b) Samples of the training dataset in the first views and their
reconstructed images generated by autoencoder network of view 2 (AE2) depicted n
columns 1 and 2, respectively. (c) Column 3 is the predicted images of the second view
based on the samples from the first (primary) view of the test dataset in column 1.
The second column shows the observed noisy samples of the second view.
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trained autoencoder of the second view (AE2) will ignore the style information
of the 1st view. More generated samples from different experimental setup can
be found in AppendixA.1.

4 Conclusion and Discussion

In this work, a new deep generative multi-view model is proposed that extends
the linear generative interpretation of classical CCA to a nonlinear deep archi-
tecture. The proposed deep multi-view network provides a model for inferring
the hidden representation underlying both views that subsequently provides bet-
ter class separation and also reconstruction. Furthermore, training of the model
parameters enjoys the stochastic optimization algorithms that provide fast and
efficient learning. This deep network can generate samples in the input space,
so it can be employed to reconstruct one view based on available primary view
at the test time. In addition to its denoising capability, this method also showed
the potential to suppress more complex forms of distortion, such as random rota-
tion, from the signal. While CCA based methods achieve good discrimination
performance at the expense of sacrificing the reconstruction error, the proposed
method offers both class separation and sample generation in a more flexible
way.

A Appendix

A.1 More Generated Samples

To illustrate the reconstruction capability of the proposed methods, we also
made another two-view dataset where views are drawn not only from the same
identity but also from the same digit of that identity of the MNIST dataset. Note
that in the previous setting, images of the second view were sampled arbitrarily
from the same class of 1st view. For these new setting, we select the main view
unaltered from the MNIST dataset and synthesize the second view by adding
noise and/or randomly rotating the main view. In this way, both views of each
pair are originated from the same digit image (same pose), then we use the
data from the main view to recover the image of second view, consequently we
evaluate the ability of different non-linear two-view learning models in denoising
and removing random rotation effect.

In the following figure, the reconstruction and prediction ability of the deep
multiview networks are illustrated where the second view is built by adding uni-
form noise to the first view. Here, the deep network trained for hidden dimension
size of K = 60 (Fig. 5).
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(a) Reconstruction of both views in training (b) Prediction of second view by the first
view

Fig. 5. Column 1 and 3 are the images from 1st and 2nd view, respectively, column
2 is the reconstructed image based on view 1 using 1st autoencoder (AE1). Column
4 of (a) shows reconstructed image based on view 2 using AE2 while column 4 of
(b) are predicted images based on view 1 using the network: encoder1+multiview
model+decoder2. Samples of figure (a) and figure (b) are drawn from training set
and test set, respectively
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Introduction

Welcome to the First Workshop on New Trends in Representation Learning with
Knowledge Graphs (KGRL) co-located with ECML-PKDD 2019. The primary goal of
the workshop is to use Knowledge Graphs which are becoming the standard for storing,
retrieving and querying structured data. In academia and industry, they are increasingly
used to provide background knowledge. Over the last few years, several research
contributions are made to show machine learning especially representation learning is
successfully applied to knowledge graphs enabling inductive inference about facts with
unknown truth values. In this workshop, we want to see how novel representation
learning methods can be applied to flexible relational reasoning tasks and what are its
advantages in terms of expressive power, interpretability, and generalization. In this
first edition, we called for short papers. All the accepted ones agreed for archival are
published in these proceedings.

KGRL 2019 received 4 submissions. These papers have received 2 highly-qualified
double-blind reviews. Besides considering the average overall score, only papers for
which none of the reviewers expressed a negative opinion (strong or weak reject) were
accepted. In total, 2 papers were accepted to appear in the workshop proceedings, with
an acceptance rate of 50.

The program of the workshop, besides 4 oral presentations, includes 2 invited talks
by Maximilian Nickel and Mathias Niepert. The workshop received sponsorship by
“Maschinelles Lernen mit Wissensgraphen” (MLwin).
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Abstract. State-of-the-art techniques that perform reasoning over large
knowledge graphs incorporate a path-finder and a path-reasoner. The
path-reasoner is a learning agent that performs the inference task by
producing a relation. The path-finder is usually the knowledge graph
environment that moves the agent to the next-hop entity. While the path-
reasoner can work on a continuous state space, the knowledge graph envi-
ronment on which it is being trained, operates on a discrete state space.
This restricts the agent from deducing implicit paths. In this paper, a
novel path-finder called Stochastic Dynamic Environment for Knowledge
Graphs (SDE-KG) has been proposed. SDE-KG is a meta-framework
that can be combined with many embedding methods to create a contin-
uous function of the knowledge graph environment which may facilitate
smarter multi-hop reasoning.

Keywords: Knowledge Graphs · Stochastic Dynamic Environment ·
Multihop reasoning · Reinforcement learning · Representation learning

1 Introduction

Multi-hop traversal over Knowledge Graphs (KGs) involves finding at a chain
of reasoning that best describes the relation between a source and a target
entity. This is better assisted by KG embedding techniques that allows for the
completion of a KG by representing its components in a vector space [12]. Neural
multi-hop approaches introduced by Neelakantan et al. [9] and Guu et al. [4] use
KG embeddings with supervised learning techniques on data gathered using
random walks. Newer approaches introduced by Xiong et al. [12] and Das et al.
[2] embrace the reinforcement learning approach which improved the quality of
reasoning paths. The environment moves the agent to the next-hop entity after
selecting a suitable path and gives the agent a reward. These approaches train
the agent to traverse over a discrete state space of the KG. This disallows the
agent from combining relations thereby reducing the number of hops required
to traverse from a source to the target entity [7]. Moreover, incomplete nature
of KGs may cause entities and relationships to be pretermitted. A stochastic
environment may allow for the implicit inclusion of such entities and relations.
c© Springer Nature Switzerland AG 2020
P. Cellier and K. Driessens (Eds.): ECML PKDD 2019 Workshops, CCIS 1167, pp. 483–488, 2020.
https://doi.org/10.1007/978-3-030-43823-4_39
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The quality of reasoning decreases as the size of the KG increases. Multi-hop
traversal algorithms, presented in previous work, do not simplify the KG for the
agent to focus on a portion of the graph. A dynamic environment may allow the
agent to focus on a subportion of the KG. This would allow the agent to make
more intelligible traversal decisions.

This paper presents a novel approach towards building a path-finder for
multi-hop reasoning called SDE-KG. SDE-KG is trained using a novel objec-
tive function that takes into account the existence of an entity in the KG
and the euclidean distance hopped towards the target entity. The outline of
the paper is as follows. Section 2 introduces SDE-KG, a Stochastic Dynamic
Environment for Knowledge Graphs along with the motivation and mathe-
matical formulation. In Sect. 3, experiments are conducted on various knowl-
edge graphs with several translation-based knowledge graph embedding meth-
ods. Section 4 provides the concluding remarks with the future scope of
SDE-KG. The code and software for the training and evaluation of SDE-
KG, along with the dataset statistics and hyperparameters can be found at
github.com/varunranga/SDEKG-KGRL. Results obtained from experiments can
be found at tinyurl.com/SDEKG-KGRL-Results.

2 SDE-KG: Stochastic Dynamic Environment
for Knowledge Graphs

2.1 Motivation and Task

The motivation behind SDE-KG arises from the need for a smarter environment
for multi-hop reasoning over large scale knowledge graphs. Knowledge graph
environments adopted in previous methodologies do not explicitly assist the
agent towards the required target. Given the head entity and the relation out-
putted by the agent, the environment searches the knowledge graph for relevant
triplets and picks a random tail entity as the next-hop entity. This could prove
to be harmful for relations of the 1-N type. The environment may select a ‘candi-
date entity’, a next-hop entity related to the source entity with the 1-N relation
which is closest (in terms of euclidean distance) to the target entity. In doing
so, the time taken to perform the reasoning task increases. The proposed path-
finder is trained to move the agent as close as possible to the required target
entity, while placing it on an entity that exists in the knowledge graph (Fig. 1).

The environment can be represented as a continuous function E which accepts
the current and target entity from a state space S, and a relation from an action
space A and returns the next-hop entity from the state space S. The following
notations have been used: esrc is the source entity, r is the relation, enxt is the
next-hop entity, etgt is the target entity, eint is an intermediate entity, ecnd is a
candidate entity and d is the embedding dimension. In this problem setup, the
source entity esrc and the target entity etgt are known. The succeeding or next-
hop entity enxt is unknown. The relation r is given by the path-reasoner. The
entity prediction task is to predict the next-hop entity enxt, given (esrc, r, ?, etgt).

https://www.github.com/varunranga/SDEKG-KGRL
https://www.tinyurl.com/SDEKG-KGRL-Results
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2.2 Deriving SDE-KG

Lin et al. [8] views relations as a transformation from one entity to another.
When an agent interacts with the environment using a relation, it transforms a
point in space. Therefore, the next-hop entity y can be given by:

eint = Fr(esrc) (1)

Two types of relations can arise: 1-1 and 1-N. For a 1-1 relation type, Eq. (1)
implies that eint is the next-hop entity. For a 1-N type of relation, Eq. (1) causes a
mode collapse [10], since the transformation leads to several entities. To overcome
this issue, the environment must assist the agent by moving it to a next-hop
entity closest to the target entity. Therefore, another transformation function
is used which considers the relation type, the current position of the agent and
the target entity. In the case of a 1-N relationship type, eint is considered as an
intermediate entity. The final entity can be given by:

enxt = G(r, eint, etgt) (2)

To allow for the representation of the environment as a continuous function,
function F is represented by a matrix, that performs a linear transformation on
the vector representation of an entity. This matrix can be formed using linear
function approximators such as perceptrons [3]. A layer of d2-perceptrons takes
the vector representation of the relation, and creates an appropriate transfor-
mation matrix F . The matrix F is applied on the source entity, to give the
intermediate entity eint. Function G models the difference between the interme-
diate entity and the next-hop entity in the direction of the given target. Inspired
by skip connections from Residual Networks [5], function G adds an appropriate
vector to vector representation of eint. This vector can be approximated by a
layer of d-perceptrons that take the vector representations of the intermediate
entity, relation and the target entity and output the next-hop entity enxt.

To train SDE-KG, two objectives are taken into consideration. The first
objective maximizes the hop towards target entity. A hop can be defined as
the displacement (in terms of euclidean distance) towards a target entity given
the source entity. To satisfy this objective, the difference in the distance between
the target entity and the next-hop entity and the distance between the target
entity and the source entity is minimized. To avoid overshooting the agent from
the target entity, the absolute value, represented by |.|, of the difference is taken.
Ljump is given by:

Ljump = |
√

Σd
i=1(etgti − enxti)2 −

√
Σd

i=1(etgti − esrci)2| (3)

The second objective is to move the entity to a point in space corresponding
to an entity that exists in the knowledge graph, which can be reached from the
source entity through that relation. This is a matching objective which involves
the minimization of the squared error between the predicted next-hop entity
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Fig. 1. Left: Example of a query to relate entity ‘peace activists’ to entity ‘pakistan’. A
multi-hop agent that is on ‘nobel peace prize 2014’ may be shifted to ‘kailash satyarthi’
which is not as close as ‘malala yousafzai’ to ‘pakistan’, even after querying with the
correct relation ‘awarded to’. This is one of the problems with random picking of tail
entity by discrete environments when 1-N relationships are involved. Right: SDE-KG
helps the agent move towards the target by moving it to an intermediate position based
on the relationship type, and shifts it to the entity nearest to the target entity.

embedded vector enxt and a candidate entity embedded vector ecnd. The candi-
date entity can be described as the tail entity that is closest to the target for a
given head entity and the relation. Lvalid is given by:

Lvalid = Σd
i=1(ecndi

− enxti)
2 (4)

The two objective functions are combined to create a loss function on which
SDE-KG is trained. The overall loss function L is given by:

L = Ljump + Lvalid (5)

3 Experiments and Results

To understand the properties of SDE-KG, experiments were performed on three
small knowledge graph datasets, and two large knowledge graph datasets. To
gain a better insight, four translational knowledge graph embedding methods
were used to train SDE-KG. These were TransE [1], TransH [11], TransR [8],
and TransD [6].

SDE-KG is trained via a random entity picking procedure. In each training
step, two random entities are chosen as the source and destination entities. A
random relation is also chosen. To train SDE-KG to land on an entity which
exists in the knowledge graph, the candidate entity is search using a simple
rule-based approach. The evaluation procedure of SDE-KG uses a random walk
strategy. A random agent is used to generate paths of length L from a source
entity to a destination entity by taking paths available from the knowledge graph.
A random entity esrc is chosen as the source entity. A random triplet is selected
such that its head entity matches the source entity. For the first hop, the relation
r of the randomly selected triplet is stored. This process is iterated L times.
The tail of the last randomly selected triplet etgt is stored as the target. For
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Table 1. Performance of the predictive power of SDE-KG with respect to picking the
candidate entity. TransH embedding method best represents the KG to allow complex
chains of reasoning. TransR and TransD embedding methods perform indistinguishably
due to the similarity in the underlying concept of their embedding methodology.

Dataset Hop

length

Embedding model

TransE TransH TransR TransD

MRR H@10 MRR H@10 MRR H@10 MRR H@10

Countries 1 0.4766 0.9340 0.5496 0.9340 0.4412 0.7460 0.4470 0.9080

2 0.4700 0.9660 0.5984 0.9660 0.4018 0.6760 0.4622 0.9360

3 0.3270 0.9600 0.3548 0.9580 0.3383 0.6880 0.3403 0.8980

5 0.3000 0.9640 0.3499 0.9620 0.3248 0.6640 0.3318 0.9320

UMLS 1 0.3380 0.6980 0.3146 0.6400 0.3439 0.7600 0.3022 0.5920

2 0.4586 0.7760 0.4217 0.6860 0.4291 0.7580 0.4159 0.6700

3 0.4563 0.7980 0.4156 0.7060 0.4187 0.7300 0.4838 0.7100

5 0.4486 0.8080 0.4017 0.6580 0.3904 0.6680 0.5088 0.7440

Kinship 1 0.2367 0.5080 0.1866 0.4500 0.3076 0.7080 0.2826 0.6680

2 0.2937 0.5600 0.2815 0.5420 0.4613 0.7920 0.3327 0.6860

3 0.3118 0.5820 0.2701 0.4960 0.4328 0.7600 0.3202 0.6380

5 0.3096 0.5520 0.2491 0.4880 0.4424 0.7740 0.3348 0.6700

NELL-995 1 0.0086 0.0182 0.1216 0.2662 0.0032 0.0047 0.0155 0.0331

2 0.0148 0.0294 0.0545 0.1291 0.0036 0.0059 0.0117 0.0247

3 0.0171 0.0369 0.0641 0.1470 0.0041 0.0054 0.0147 0.0300

5 0.0204 0.0412 0.0698 0.1567 0.0045 0.0066 0.0147 0.0289

10 0.0266 0.055 0.0841 0.1967 0.0060 0.0097 0.0176 0.0364

20 0.0377 0.0745 0.1466 0.3348 0.0072 0.0126 0.0305 0.0625

FB15K-237 1 0.0185 0.0390 0.0211 0.0453 0.0028 0.0020 0.0089 0.0115

2 0.0407 0.0747 0.0659 0.1424 0.0331 0.0464 0.0142 0.0237

3 0.0304 0.0593 0.0686 0.1577 0.0092 0.0130 0.0141 0.0244

5 0.0399 0.0774 0.0824 0.1976 0.0143 0.0205 0.0159 0.0269

10 0.0846 0.1521 0.1094 0.2536 0.0653 0.0957 0.0206 0.0369

20 0.0928 0.1681 0.1173 0.2724 0.0725 0.1082 0.0229 0.0443

the example (esrc, r, ?, etgt), the candidate entity is also selected. The entity
outputted by SDE-KG is compared with the candidate entity based on their
euclidean distance.

Upon inspection of results presented in Table 1, a few properties can be
observed. The increase in the MRR and Hits@10 metrics can be noticed as the
hop length increases. It can be inferred that, further away the agent is from the
target entity, better are the predictions for the next-hop entity. SDE-KG moves
the agent towards the target with exponentially increasing jump lengths. Better
embedding methods help SDE-KG land the agent on valid entities present in the
knowledge graph. Another noticeable property of SDE-KG is its stateless nature,
that is, it does not remember information regarding previous transactions. This
can allow for multiple agents, that perform various tasks, to traversal over one
continuous function of the knowledge graph.
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4 Conclusion and Future Scope

This paper proposes a novel path-finder for knowledge graph traversal called
SDE-KG. SDE-KG converts a knowledge graph into a continuous function that
can allow for efficient multi-hop logical reasoning. SDE-KG also allows for the
representation of entities and relations that do not explicitly exist in the knowl-
edge graph. The evaluation methodology provides evidence for the working of
SDE-KG. Future works could make use of SDE-KG to perform the task of multi-
hop logical reasoning. Since the path-finder operates on a continuous state and
action space, an end-to-end differentiable approach to multi-hop reasoning can
be adopted. Appropriate vector representations can be obtained for the com-
ponents of the knowledge graph that will better the performance in multi-hop
reasoning.
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Abstract. Entity alignment (EA), which aims to find equivalent entities
in different knowledge graphs (KGs), is an essential task for aggregating
KGs from different sources. State-of-the-art EA solutions mainly rely on
KG structure representation for judging the equivalence of entities while
overlooking textual representation. Additionally, the lack of supervision
signals for learning structural representation has not attracted enough
attentions. In this work, we propose an iterative representation learn-
ing process that can increase the scale of training set with confident EA
pairs selected from each round and generate structural representation
with higher quality. Additionally, we point out that structural and tex-
tual representations are in essence two complementing views for EA and
propose to integrate them to convey more comprehensive signals. The
experimental results reveal that our solution outperforms the state-of-
the-arts by a large margin.

Keywords: Entity alignment · Representation learning

1 Introduction

Knowledge graph (KG) is an effective means to acquire knowledge from data
in unstructured or structured forms, and present them in an organized and
approachable manner. Nevertheless, whichever approach is taken for construc-
tion, the resulting KG can never reach full coverage or being fully correct, and
there always exists a trade-off between coverage and correctness [1].

One way to automatically increase the coverage and correctness of KGs is
by utilizing knowledge from other KGs. This is intuitive, since most KGs con-
tain complementing information. To incorporate the knowledge in external KGs
into the target KG, the first, and the most crucial step, is to align KGs. Most
recent research works [2–7,10] focus on the entity alignment (EA) task, since the
number of unique entities is much larger than that of other unique elements [1].

State-of-the-art EA methods normally utilize KG representation, e.g.,
TransE [2–4,6] and graph convolutional network (GCN) [5], to make the most of
c© Springer Nature Switzerland AG 2020
P. Cellier and K. Driessens (Eds.): ECML PKDD 2019 Workshops, CCIS 1167, pp. 489–494, 2020.
https://doi.org/10.1007/978-3-030-43823-4_40
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KG structures and learn structural embeddings of entities. The intuition behind
this is that identical entities in different KGs often have similar surrounding
structures, and hence close embeddings. However, most of the state-of-the-arts
neglect that, textual information, e.g., entity names and entity descriptions, could
also offer string and semantic signals for matching entities. Furthermore, the
performance of embedding based methods is also constrained by the lack of
supervision signals for alignment in real-life scenarios.

To fill these gaps, we propose to learn both structural and textual representa-
tions of entities for EA. Specifically, regarding structural information, we adopt
a self-training graph convolutional network (GCN) that leverages newly labeled
EA pairs as training data to generate structural representation in higher qual-
ity. Noting that textual representation is actually complementing to structural
representation, we utilize entity name embedding to capture textual signals and
then combine them so as to provide a more comprehensive view for aligning enti-
ties. The evaluation on cross-lingual EA task against existing methods reveals
the advantage of our proposed solution (East).

2 Methodology

Structural Information. In this work, we harness GCN to encode the neigh-
bourhood information of entities as real-valued vectors. GCN is a kind of convo-
lutional network which directly operates on graph structured data [8]. It gener-
ates node-level embeddings by encoding information about the node neighbour-
hoods. A GCN model normally comprises multiple stacked GCN layers. The
input to l-th GCN network layer is a vertex feature matrix Hl ∈ R

N×dl

, where
N is the number of nodes and dl is the dimensionality of feature vectors in the
l-th layer. The output of the l-th layer Hl+1 = σ(D̂− 1

2 ÂD̂− 1
2HlWl), where

Â = A + I and I is the identity matrix, D̂ is the diagonal node degree matrix
of Â. Wl ∈ R

dl×dl+1
is the weight matrix of the l-th layer in GCN. dl+1 is the

dimensionality of the feature vectors in the next layer. The activation function
σ is normally set to ReLU .

In EA task, GCN is harnessed to generate structural representations of enti-
ties. We build two 2-layer GCNs, and each GCN processes one KG to generate
embeddings of its entities. The initial feature matrix, X, is sampled from trun-
cated normal distribution with L2-normalization on rows [5]. It gets updated by
GCN layers and the final output matrix Z can encode the structural information
contained in each KG. Note that the dimensionality of feature vectors is fixed
at ds and kept the same for all layers.

The entity embeddings generated by two different GCNs are then aligned
into the same embedding space by using pre-aligned EA pairs S. In specific, the
training objective is to minimize the margin-based ranking loss function:

L =
∑

(e1,e2)∈S

∑

(e
′
1,e

′
2)∈S

′
(e1,e2)

[‖ e1 − e2 ‖l1 − ‖ e
′
1 − e

′
2 ‖l1 +γ]+, (1)
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where [x]+ = max{0, x}, S
′
(e1,e2)

denotes the set of negative EA pairs obtained
by corrupting (e1, e2), i.e., substituting e1 or e2 with a randomly sampled entity
from its corresponding KG. e denotes the (structural) embedding of entity e. γ
is a positive margin that separates positive and negative EA pairs. Stochastic
gradient descent (SGD) is harnessed to minimize the loss function.

Textual Information. An entity contains abundant textual information, which
helps match entities in different KGs since equivalent entities have the same
semantic meaning.

More specifically, we choose averaged word embeddings to capture the seman-
tic meaning on account of its simplicity and generality. Suppose the name of
entity e comprises p words, w1, ..., wp. Then the name embedding can be calcu-
lated by ne(e) = 1

p

∑p
i=1 wi, where wi is the word embedding of word wi.

Considering entity name embedding and GCN entity embedding represent
different views of entities, i.e., from semantic aspect and from structural aspect,
we combine them to provide a more comprehensive view for bridging entities
in different KGs. Concretely, the distance between two entities, e1 ∈ G1 and
e2 ∈ G2, is defined as D(e1, e2) = αDs(e1, e2)+(1−α)Dt(e1, e2), where Ds(e1, e2)
represents Euclidean distance between entities e1 ∈ G1 and e2 ∈ G2 in the
structural embedding space and Dt(e1, e2) represents Euclidean distance in the
textual embedding space. α is a hyper-parameter balancing the significance of
two different sources of information. Theoretically, the distance would be small
for equivalent entities in different KGs and the entity with the smallest D to
target entity e can be regarded as the counterpart for e.

Iterative Training. Among real-life KGs, the number of existing EA pairs
is limited. As thus, we propose to include newly-labeled EA pairs with high
confidence into the seed EA pairs (training set) for generating more accurate
structural representation.

The specific self-training procedure can be found in Algorithm 1. It takes two
KGs, a set of pre-aligned EA pairs as inputs and generates final aligned entity
pairs S

′
. The first step is to generate name embedding matrix N and input feature

matrix X (line 1). By feeding X, KGs and pre-aligned pairs into the 2-layer GCN
model, the structural representation Z can be learned, which, together with other
elements, are forwarded to a HardAlign procedure to generate augmented train-
ing set (line 2). Note that HardAlign and SoftAlign are two methods with differ-
ent constraints for selecting confident EA pairs from the results and adding them
to training set. SH and SS denote the augmented training set after HardAlign and
SoftAlign procedures, respectively. The output structural matrix Z is considered
as input matrix X for the next training round. The iteration of GCN training and
HardAlign would continue until the number of newly selected pairs is below a
given threshold, θ1, otherwise it would take too long for the iteration to end (line
3–5). Then we loosen the constraint for adding new EA pairs into the training set
and replace HardAlign with SoftAlign. Similar looping would be performed on
GCN and SoftAlign before the number of newly added EA pairs reaches another
given threshold θ2 (line 6–9).
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Algorithm 1. Self-training.
Input:

S = {(ei1, ei2)|ei1 ∈ E1, ei2 ∈ E2}m
i=1, KGs: G1 = (E1, R1, T1), G2 = (E2, R2, T2)

Output:
Final aligned pairs S

′

1: Initialization of entity embedding matrix X; entity name embedding matrix N
2: Z ← GCN(G1, G2, S,X), SH ← HardAlign(G1, G2, S,Z,N),X ← Z
3: while len(SH) − len(S) > θ1 do
4: S ← SH ,Z ← GCN(G1, G2, S,X), SH ← HardAlign(G1, G2, S,Z,N),X ← Z
5: end while
6: S ← SH ,Z ← GCN(G1, G2, S,X), SS ← SoftAlign(G1, G2, S,Z,N),X ← Z
7: while len(SS) − len(S) > θ2 do
8: S ← SS ,Z ← GCN(G1, G2, S,X), SS ← SoftAlign(G1, G2, S,Z,N),X ← Z
9: end while

The HardAlign process requires that, for every given entity ej1 ∈ E1 − S1

(in G1 but not in the training set), suppose its closest entity in G2 is ek2, if for
ek2, its closest entity in G1 is ej1, and the distance between them is below a
given threshold θ3, (ej1, ek2) would be considered as a correct EA pair. This is a
relatively strong constraint as it requires the distance between the two entities
is the smallest from both sides and also below a certain threshold. As a result,
we allow the introduction of more EA pairs via a soft alignment mechanism.

Regarding SoftAlign, suppose the focus is to find the counterpart for ej1 ∈
E1 − S1, we first select its top-ε closest entities Ek2, which are sorted from the
smallest distance to the largest. Then for each ek2 ∈ Ek2, if ej1 is one of its top-ε
closest entities, and the distance between them is below a given threshold θ4,
(ej1, ek2) would be regarded as a correct EA pair and the rest entities in Ek2

would not be considered. This procedure is similar for finding the counterpart
of ek2 ∈ E2 − S2.

3 Experiment

Parameter Settings. We utilize the fastText embedding as word embedding
and the multilingual word embeddings are obtained from MUSE [9]. As for GCN
settings, ds is set to 300, γ is set to 3, the training epochs are 300. Five negative
examples are generated for each positive pair. The hyper-parameter α is chosen
as 0.3. For the self-training process, θ1 and θ2 are set to 100, θ3 and θ4 are set
to 10, while ε is 3. The parameters are tuned on validation set.

Datasets and Competitors. For fair comparison, we adopt the WK3l60k [7]
dataset, which consists of two cross-lingual datasets, English-French (En-Fr)
and English-German (En-De), extracted from the subset of DBpedia. The En-
Fr dataset comprises 54,205 entity pairs, while there are 55,523 entity pairs in
En-De dataset. In both datasets, 20% are used for training, 10% for validation
and 70% for testing (according to previous works). We utilize state-of-the-art EA
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methods for comparison, i.e., MTransE [2], ITransE [3], BootEA [6], KDCoE [7]
and GCN [5]. We also report the results generated by name embedding, East(NE),
which can reflect the importance of name information.

Evaluation Protocol. We consider Hits@k (k = 1, 10) and mean reciprocal
rank (MRR) as evaluation metrics. For each target entity in test set, the entities
in the other KG would be ranked according to their distance D to target entity
in an ascending order. Hits@k reflects the percentage of correctly aligned entities
in top-k closest entities for target entities. Unless otherwise specified, the results
of Hits@k are represented in percentages.

Results. Table 1 presents the results of cross-lingual EA. ITransE merely achieves
10.14% Hits@1 score on En-Fr and 6.55% on En-De. This might be explained that
it is designed for mono-lingual EA task and might not adapt well to cross-lingual
EA where there is a higher inconsistency among KGs. The results of MTransE
and GCN(SE) are equally matched on En-De, while MTransE outperforms GCN
on En-Fr. This demonstrates that GCN is more sensitive to the consistency of
KGs.

BootEA outperforms MTransE by over 0.1 on MRR, whereas it is inferior to
KDCoE on En-Fr in terms of all metrics. This reveals the significance of textual
information. Nevertheless, on En-De, KDCoE achieves worse results than BootEA
on both Hits@10 and MRR, which indicates that entity description sometimes
can bring noise and hurt the overall performance. In contrast to entity descrip-
tion text, entity name might be a more stable source of textual information
as East(NE) exceeds KDCoE by 0.2 in terms of MRR on En-De. Integrating
East(NE) with structural information and self-training framework, East further
improves the performance and its Hits@1 value already doubles that of KDCoE
on En-De.

Table 1. Results on Wk3l60k

En-Fr En-De

Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

MTransE 27.4 33.98 0.309 17.9 31.59 0.225

ITransE 10.14 11.59 0.106 6.55 11.44 0.076

GCN 13.39 30.91 0.193 16.98 31.6 0.22

BootEA 33.1 56.73 0.412 29.39 48.76 0.36

KDCoE 48.32 56.95 0.496 33.52 45.47 0.349

East(NE) 39.19 59.2 0.461 48.4 67.31 0.549

East 61.35 76.67 0.664 68.54 80.87 0.725

Ablation Study. To testify the effectiveness of each component, we perform
ablation study on East. Specifically, there are six variants, East-SA (removing soft
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alignment), East-ST (removing self-training process), East-NE (removing name
embedding), East-SE (removing structural embedding), East-NE-ST (removing
name embedding and self-training), East-SE-ST (removing structural embed-
ding and self-training). As revealed in Fig. 1, all components in East contribute
positively to the overall results.

Fig. 1. Ablation study.
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The Fourth Workshop on Data Science for Social Good (SoGood 2019) was held in
conjunction with the European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML PKDD 2019) in Würzburg,
Germany, on 20th September 2019. The previous three editions of the workshop were
also held jointly with ECML PKDD in 2016–2018.

Data Science has a great potential for contributing to social good (also called
common or public good) and benefiting communities and societies. These possibilities,
however, are often not sufficiently perceived by the public at large. Emerging Data
Science applications are already aiding people at the bottom of the economic pyramid
and people with special needs; improving healthcare, public safety and transportation;
dealing with environmental problems, disasters and climate change, and promoting
sustainable development. In regular conferences and journals, papers on these topics
are often scattered in sessions with names such as “Social networks”, “Predictive
models” or the catch-all term “Applications”, which hide the social good nature of
these papers. Additionally, such forums tend to have a strong bias for papers that are
novel in the strictly technical sense (new algorithms, new kinds of data analysis, new
technologies) rather than novel in terms of the social impact of the application.

This workshop aimed to attract papers presenting applications of Data Science to
Social Good (which may or may not require new methods), or applications that take
into account social aspects of Data Science methods and techniques. It also aimed to
bring together researchers, students and practitioners to share their experience and
foster discussion about the possible applications, challenges and open research prob-
lems, and to continue building a research community in the area of Data Science for
Social Good.

There are numerous application domains; the call for papers included the following
non-exclusive list:

• Government transparency and IT against corruption
• Public safety and disaster relief
• Access to food, water and utilities
• Efficiency and sustainability
• Data journalism
• Economic, social and personal development
• Transportation
• Energy
• Smart city services
• Education
• Social services, unemployment and homelessness
• Healthcare



• Ethical issues, fairness and accountability
• Topics aligned with the UN Sustainable Development Goals:

http://www.un.org/sustainabledevelopment/sustainable-development-goals/

The workshop papers were selected through a peer-reviewed process in which each
submitted paper was assigned to three members of the Program Committee. The main
selection criteria were the novelty of the application and its social impact. Twelve
papers were accepted for presentation.

The SoGood 2019 Best Paper Award was awarded to Tobias Bauer, Emre Devrim,
William Lopez Jaramillo, Misha Glazunov, Balaganesh Mohan and Gerasimos Spa-
nakis from the University of Maastricht in the Netherlands for their paper
“#MeTooMaastricht: Building a Chatbot to Assist Survivors of Sexual Harassment”.

The program included two excellent and thought-provoking keynotes:

• “How Can Data Science Make the World a Better Place – Some Examples and
Personal Thoughts” by Professor Stan Matwin, Dalhousie University, Canada

• “The Pulse of a City - a Glimpse at a Locality Using Microblogs and Machine
Learning” by Professor Osmar Zaiane, University of Alberta, Canada

More information about the workshop, including the slides of the keynote talks, can
be found on the workshop website: https://sites.google.com/view/
ecmlpkddsogood2019.

We would like to thank Stan Matwin and Osmar Zaiane for their excellent talks, the
Program Committee members for their detailed and constructive reviews, the authors
for their well-prepared presentations, and all workshop attendees for their engagement
and participation – thank you for making this workshop a very successful event.

December 2019 Ricard Gavaldà
Irena Koprinska

João Gama
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How Can Data Science Make the World
a Better Place – Some Examples and Personal

Thoughts

Stan Matwin

Dalhousie University, Canada

Abstract. Wewill present briefly several projects that - working with various
types of data - had very different social improvement goals as their objectives.
In the first project, joint work with NGOs PeaceGeeks and UMATI, we
analyzed twitter traffic in Kenya. Based on Susan Benesch’s hate speech
theory, the goal was to detect violence-inducing social media posts. In the
second project we have analyzed the equality-driven social media activism of
women in Saudi Arabia. In another project, starting with a gender studies
framework describing different kinds of sexist language, we used Machine
Learning and text mining to find sexism in social media (twitter) data.Wewill
also discuss select cases of environmental and economic Data Science for the
Social Good (DSSG). One elegant example involves the work of Trygg Mat
Tracking, a Norwegian company that uses a specialized ocean big data to
monitor, and effectively fight, illegal fishing in East Africa. The Data for
Development (D4D) Data Challenge is another example of an interesting
initiative in DSSG. We will close with some personal thoughts and recom-
mendations as to what makes a good DSSG project.

Biography. StanMatwin is a Professor and Canada Research
Chair (Tier 1), and the Director of the Institute for Big Data
Analytics at Dalhousie University, Canada. Internationally
recognized for his work in Machine Learning and Artificial
Intelligence, he has authored and co-authored more than 300
refereed papers, supervised more than 70 graduate students,
and taught Data Science on four continents. He is the Coor-
dinator for the Applications Area of the Springer Encyclo-
pedia ofMachine Learning, and one of the founders of Ocean
Data Science Inc., a new Canadian start-up. He is a Fellow of
the European Coordinating Committee for AI, a Fellow of the
Canadian AI Society (CAIAC), and a recipient of the CAIAC
Lifetime Achievement Award.



The Pulse of a City - a Glimpse at a Locality
Using Microblogs and Machine Learning

Osmar Zaïane

University of Alberta, Canada

Abstract. Since the advent of Web 2.0 and social media, anyone with an
Internet connection can create content online. Popular social media appli-
cations, such as microblogging with Twitter, are used for a number of rea-
sons. Users can share millions of posts daily on Twitter to cover events real-
time, express opinions or simply describe their daily life. Many argue that
the majority of information shared this way is worthless. However, some-
one’s trash is someone-else’s treasure.

In this ongoing work, we present the Grebe social data aggregation
framework for extracting geo-fenced Twitter data for analysis of user
engagement in health and wellness topics. Grebe also provides various
visualization tools for analyzing temporal and geographical health trends.
A large dataset of geo-fenced twitter posts was collected to analyze three
types of contexts: geographical context via prediction of user location using
supervised learning, topical context via determining health-related tweets
using various learning approaches and a six dimensional wellness model, and
affective context via sentiment analysis of tweets using rule-based methods.

When location is determined, the information in tweets can be used, not
only to learn about what is happening in a city, but also to understand users'
emotions (e.g., love, fear) and sentiments (e.g., positive, negative) on topics
and events as they unfold over time. An interactive visualization tool was
developed to compare and contrast sentiments and emotions during dif-
ferent temporal periods at city level.

Biography. Osmar R. Zaïane is a Professor in Computing
Science at the University of Alberta, Canada, and Scientific
Director of the Alberta Machine Intelligence Institute
(Amii). Dr. Zaiane obtained his Ph.D. from Simon Fraser
University, Canada, in 1999. He has published more than
300 papers in refereed international conferences and jour-
nals. He is Associate Editor of many international journals
on data mining and data analytics and served as program
chair and general chair for scores of international confer-
ences in the field of knowledge discovery and data mining.
Dr. Zaiane received numerous awards including the 2010
ACM SIGKDD Service Award from the ACM Special
Interest Group on Data Mining, which runs the world’s
premier data science, big data, and data mining association
and conference.



#MeTooMaastricht: Building a Chatbot
to Assist Survivors of Sexual Harassment

Tobias Bauer, Emre Devrim, Misha Glazunov, William Lopez Jaramillo,
Balaganesh Mohan, and Gerasimos Spanakis(B)

Department of Data Science and Knowledge Engineering, Maastricht University,
Maastricht, The Netherlands

jerry.spanakis@maastrichtuniversity.nl

Abstract. Inspired by the recent social movement of #MeToo, we
are building a chatbot to assist survivors of sexual harassment cases
(designed for the city of Maastricht but can easily be extended). The
motivation behind this work is twofold: properly assist survivors of such
events by directing them to appropriate institutions that can offer them
help and increase the incident documentation so as to gather more
data about harassment cases which are currently under reported. We
break down the problem into three data science/machine learning com-
ponents: harassment type identification (treated as a classification prob-
lem), spatio-temporal information extraction (treated as Named Entity
Recognition problem) and dialogue with the users (treated as a slot-
filling based chatbot). We are able to achieve a success rate of more
than 98% for the identification of a harassment-or-not case and around
80% for the specific type harassment identification. Locations and dates
are identified with more than 90% accuracy and time occurrences prove
more challenging with almost 80%. Finally, initial validation of the chat-
bot shows great potential for the further development and deployment
of such a beneficial for the whole society tool.

Keywords: Chatbots · Named entity recognition · Classification

1 Introduction

As one of the most influential social movements in recent years, #MeToo has
enabled sexual harassment to rise to the surface that usually does not get the
attention required [1]. There are various types of sexual harassment such as
verbal, physical or non-verbal issues in real life and unfortunately, those are some
of the most under-reported criminal offenses. Most survivors (we intentionally
use the terminology “survivors” instead of “victims”) may not be willing to go to
the police or reveal these issues on social media or even people around, although

T. Bauer, E. Devrim, M. Glazunov, W.L. Jaramillo and B. Mohan—Equal contribution.

c© Springer Nature Switzerland AG 2020
P. Cellier and K. Driessens (Eds.): ECML PKDD 2019 Workshops, CCIS 1167, pp. 503–521, 2020.
https://doi.org/10.1007/978-3-030-43823-4_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43823-4_41&domain=pdf
https://doi.org/10.1007/978-3-030-43823-4_41


504 T. Bauer et al.

they are affected mentally or physically or both. There are plenty of reasons for
this under reporting, for example, the feeling of shame or embarrassment [2].

In this nonprofit project, #MetooMaastricht, we aim to help sexual harass-
ment survivors in the city of Maastricht, Netherlands. Therefore, we introduce
the idea of an intelligent tool (namely a chatbot), which can retrieve crucial
information from survivors’ texts such as the types of harassment as well as the
time and location of the event in order to suggest the best set of actions.

Bearing in mind the previous studies in sexual harassment and text mining
techniques our main research questions are defined as follows:

– How can we best design and implement an intelligent chatbot in order to
advise people affected by harassment cases?

– How can we successfully classify different types of harassment cases based on
short texts by using text classification techniques?

– Can we extract time and location information from these texts?
– How can we use the information extracted from our models in our final prod-

uct, a chatbot, for proper guidance to survivors?

2 Related Work

Most of the work in this project is based on concepts and techniques used in
the domain of natural language processing (NLP), so in this section, we set the
theoretical framework of our project.

2.1 Language Representation

Getting from raw text to computer-based language representations is a crucial
task in NLP [3]. We briefly describe the most influential ones here: traditional
sparse representations (word count vectors etc.) and modern dense representa-
tions (word embeddings etc.).

Sparse Representations. The most basic representations of text requires sim-
ply counting terms and represent different texts as rows and frequency of each
possible term as columns. This approach would result in higher values for more
repetitive words and longer texts, advanced techniques to find out relative impor-
tance of a term were derived such as TF-IDF vectors [4]. These vectors consist
of two terms; the first one is Term Frequency (TF), which is the ratio of a spe-
cific term in a document. The second one is Inverse Document Frequency (IDF)
that is equal to the logarithm of the ratio of the total number of documents
over the number of documents containing such term within the corpus. Those
vectors can be created based on various input types such as words, characters
or combination of N terms (N-grams) [5].
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Word Embeddings. The motivation behind finding better representations for
categorical data comes from the limitations of the traditional use of one-hot
encoding mapping of categorical variables, where each category is mapped to
a high N-dimensional vector consisting of a single “one” representing a specific
value in the variable category, and N-1 zeroes alongside representing the other
possible values for the same variable. To overcome the limitations present in one
hot encoding representations, approaches such as Word2vec models have been
used in NLP. These models create a dense high dimensional vector representa-
tion for each unique word in the corpus of a text input. The vectors obtained are
positioned in the vector space such that words that share the same context or
are similar are close to one another in that space [6]. The two main model archi-
tectures used in the Word2vec algorithm are: continuous bag-of-word (CBOW)
and skip-gram (SG) models. The main difference between the two of them is
that while CBOW takes multiple context of each word as inputs and tries to
predict the word corresponding to its context, skip-gram uses the target word
to predict the context [7].

Document/Paragraph Embeddings. Paragraph or document vector
(Doc2vec) is the extended version of Word2vec such that Word2vec learns the
d-dimensional representation of words while Doc2vec aims to learn projection of
documents into dimensional space. For this purpose, the authors of the Doc2vec
simply introduced an additional document vector along with word vectors into
Word2vec [8]. Therefore, while training the word vectors, the document vector is
trained as well, that gives us the numeric representation of the document. Sim-
ilar to Word2vec, Doc2vec has two main models which are Distributed Memory
(DM) and Distributed Bag of Words (DBOW). DM is analogous to CBOW that
uses document feature vector in addition to surrounding words to predict the
target word. On the other hand, DBOW is similar to skip-gram that tries to
predict randomly sampled words from the paragraph as outputs.

State-of-the-Art Language Models and Representations. By combining
the latest achievements in language modelling by means of transformers based
on self-attention with the idea of deep contextualized word-piece embeddings
together with pretraining universal language model, several NLP and AI research
groups introduced universal language models that can be subsequently fine-tuned
for a specific NLP task.

Google AI group introduced the so-called bidirectional encoder representa-
tions from transformers or BERT for short [9]. Google has made BERT code
and implementation available, as well as pre trained BERT models on different
languages on huge amounts of data where only minor changes can be done to
the model to fine tune it to the tasks needed. On top of this research several
frameworks have incorporated the current state-of-the-art models such as Deep-
Pavlov [10], a python library that builds upon BERT, and many others allowing
the user to combine them to improve on many NLP tasks.
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2.2 Text Classification

Text classification is widely used as part of supervised machine learning to tackle
similar problems such as sentiment analysis or categorization of articles. Prior
to the 1990s, the most common approach were rule-based classification systems,
which were manually constructed for each class based on expert opinion [11].
Machine Learning techniques have started to dominate old-fashioned rule-based
systems in the following decades, as they help to decrease a remarkable amount
of engineering effort on rule construction. Text representations (as discussed in
the previous paragraphs) play an important role here. Different models can be
applied based on the representation basis (TF-IDF vectors, word embeddings,
etc.) or the techniques (traditional machine learning algorithms like logistic
regression, support vector machines, etc. or deep learning models like recurrent
neural networks).

2.3 Named Entity Recognition

Named Entity Recognition (NER) is an NLP task that attempts extracting the
so called “named entities” from a text. Named entities may include persons,
organizations, locations, time, etc. The most common classical way of NER is
based on sequence model tagging like Conditional Random Fields (CRF) [12].
State-of-the-art methods of NER are also based on the fine-tuning of pre-trained
universal language models (such as BERT which was described previously).

One of the challenges in NER is disambiguation: tagging a named entity
appropriately frequently implies knowledge about the world than cannot be
deduced from the formal text analysis only. To that end various knowledge bases
and semantic ontologies may be of use. Some of them aim at the specific lexical
areas such as WordNet [13] that allows handling of synonym/antonym words
together with a simple hierarchy of hypernyms and hyponyms. Other techniques
aim at constructing universal knowledge graphs that represent all the possible
knowledge concepts within a single graph with complex and diverse links between
them like Wikidata [14] which stores information from Wikipedia in a structured
way available for online querying.

2.4 Chatbots

Chatbot technology was firstly introduced with the implementation of ELIZA in
1964. It was the first program to make Natural language conversation with a com-
puter possible [15]. ELIZA tackled five problems of a chatbot “the identification
of critical words, the discovery of a minimal context, the choice of appropriate
transformations, the generation of responses appropriate to the transformation
or in the absence of critical words”. These are the basic rules still applicable
even in modern chatbots.

Today, chatbots have come a long way, and together with more complex NLP
modules are used in many business setups for automatic answering and other
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functions. Some of the most used frameworks include Facebook’s wit.ai1 and
Google’s Dialogflow API2. The operation of modern chatbots does not require
any stand-alone platforms; they can be integrated into massively used messaging
platforms such as Facebook Messenger, Google Assistant or Telegram.

3 Methodology

To answer our research questions, we used data available from SafeCity3 regard-
ing previous harassment reports written by survivors in India. Based on this
data, we have trained models with different approaches to classify the cases into
different kinds of harassment. Then, by using harassment cases correctly identi-
fied by the classifier, we aimed to extract spatio-temporal subject information to
properly assist the survivor. This assistance consists of a set of instructions rec-
ommended by the chatbot (our final product). All the inputs and end products
of this project are designed for English language.

3.1 Dataset

The SafeCity reports contain around 12,000 precise texts in English mainly men-
tioning commenting, ogling and groping issues. Moreover, there are more severe
physical harassment cases mentioned as well. Also, it should be underlined that
a report naturally may include more than one types of harassment. Figure 1
shows the distribution of several types of harassment in such reports used for
this project.

Fig. 1. Number of harassment types in SafeCity

1 https://wit.ai/.
2 https://dialogflow.com/.
3 https://safecity.in/.

https://wit.ai/
https://dialogflow.com/
https://safecity.in/
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Text Pre-processing. We applied the following pre-processing pipeline by
taking into account the nature of the reports provided by SafeCity.

– Contraction handling: Replacing word contractions such as I’m with their
unabbreviated form I am taking into account misspellings such as Im. This
was done using regular expressions.

– Special character removal: Removing special characters such as $ and
double spaces. This was done using regular expressions as well.

– Spelling correction: Simple spelling correction function available in Python
was added that uses Levenshtein distance [16].

– Negation handling: Simple negation handling approach was used in order
to identify the word not and finding an antonym for the following word, then
replacing both not and its following word with the antonym. This was done
using the Wordnet synonym-antonym lexicon from the NLTK in Python [13]
following a similar approach to [17].

– Lemmatization: In the feature extraction process for Text Classification
models, the corpus was lemmatized in both Bag of Words and Embeddings
approaches. This was done using the SpaCy [18].

– Lower case: For the majority of tasks (except Named-entity Recognition)
the text was converted to lowercase, since this reduced the corpus size and
made no difference in most of the tasks.

– Part-of-Speech Tags: We used SpaCy again to find out the most frequent
POS tags to visualize our reports (See word clouds in the Appendix). Addi-
tionally, we created some models using only these tags but dropped this idea
since we couldn’t observe performance improvements.

3.2 Text Classification

In this part of our pipeline, the main goal is to determine whether a report
is related to a harassment issue. After that, we want to extract more details
about the issue, namely types of the harassment or missing information such
as time and location in order to suggest proper actions. This would be helpful
for our chatbot, in advising appropriate actions to different types of harassment
based on the severity of the case such as recommending psychological or medical
support.

The initial step is feature engineering where we transform pre-processed
text data into feature vectors based on state-of-the-art techniques. We exper-
imented with traditional techniques (like TF-IDF) and with more modern tech-
niques based on embeddings. In particular, we used Doc2vec, a special version of
Word2vec for documents/paragraphs [8]. Logistic Regression and Support Vector
Machine models were built by using the representations and their performance
are discussed in the results under Sect. 4.

Figure 2 shows a graphical representation of the workflow used to do the
classification task.
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3.3 Named Entity Recognition

To provide specific assistance to the survivors of harassment, we are interested in
the spatial and temporal information of an incident. Spatial information (in this
context) is the place where the harassment has occurred. Temporal information,
on the other hand, is information about the date and time of the incident. This
information can help us provide the right instructions on which actions a survivor
should take and can help towards building a spatio-temporal map of harassment
cases in Maastricht. To receive these types of information we applied different
named entity recognition techniques.

Fig. 2. Classification flow

In our project we applied state-of-the-art techniques (mainly based on CRF
models) and modern pretraining/finetuning techniques. For the first part we
made use of available solutions in several software packages that are freely dis-
tributed, namely the Natural Language Toolkit (NLTK) (Python), the spaCy
library (Python) and the Stanford CoreNLP software (Java).

Each of the package exploits different approaches in identifying named enti-
ties, so we estimated their capabilities (e.g., entities they are able to extract,
the annotation type BIO or BILUO) and identified the one that best fits our
needs based on this research study [19], namely, Stanford CoreNLP. We consid-
ered entities only on the same sentence level, so no co-reference and anaphora
resolution have been applied.

BERT Model Finetuning. 2018 gave a rise to new successfully applied trends
in NLP, namely, unsupervised universal language model pretraining and a sub-
sequent fine-tuning of such a model to the specific NLP task. For this task,
we considered Google AI BERT encapsulated into DeepPavlov framework and
which was fine-tuned on several widely-used NER datasets for benchmarking
such as OntoNotes [20] and CoNLL 2003 [21]. Fine-tuning is basically a form
of transfer learning: It is applied using a pre-trained generative language model
[9,22]. Large neural networks have been trained on general tasks such as lan-
guage modelling and then fine-tuned for classification tasks. Particularly, NLP
tasks can be fine-tuned with the same single model. In our project we used
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approach based on universal language model fine-tuning for named entity recog-
nition, namely, pre-trained BERT model for NER task was used for sequence
tagging. The framework that is used for Bert NER is DeepPavlov4. The model
is based on the Transformer architecture [23].

Knowledge Base Incorporation. The problem of the wrong NER labeling
for cases when a location is labelled as a person has been addressed by means
of Wikidata. Namely, each person entity is being queried and checked for the
presence of the property related to geographical coordinates in the knowledge
base. If such property is found there then the person tag is relabelled to the
location.

3.4 Chatbot

Chatbots (or more formally conversational agents) have been blooming lately
both in research and industry. A chatbot could be defined as a platform that can
deal with natural language and queries of the user and respond with appropriate
responses. It is important to design an intuitive architecture for conversational
user experience.

Design Details. The conversation flow must be designed in order to gather
all the data required to provide correct information. An example of incomplete
information follows (“U” stands for user and “A” stands for the chatbot answer):

U: Hello
A: Hello, how are you feeling today?
U: Not very well.
A: May I ask what happened?
U: I was walking down the xyz street and a group of men called me mean
things.
A: I’m so sorry that happened to you. I will try my best to help you with
this.

This dialogue doesn’t give detailed information such as the type of the inci-
dent as well as the exact time and location that are required to provide useful
information to the user. “Mean things” cannot be classified into any kind of
legit harassment type. This is why it is important for the chatbot to get direct
answers from the user with clear information. To overcome this, we will employ
a slot filling based chatbot architecture.

4 http://docs.deeppavlov.ai/en/master/components/ner.html.

http://docs.deeppavlov.ai/en/master/components/ner.html
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Slot Filling Based Dialogue Modeling. Slot filling is a way to represent the
crucial components that the chatbot should extract from a conversation with
any use. In a way, slots are used to represent the semantics of the dialogue. For
example, consider the following dialogue (where “U” stands for the user, “A”
stands for the answer of the chatbot).

U: I was walking down in Frankenstraat yesterday evening and a bunch of
mean were staring at me!
P: I was walking down in {location} {time} and {harassment type}
slots:

– harassment type: a bunch of mean were staring at me
– location: Frankenstraat
– time: yesterday

A: I am sorry that happened to you! suggest appropriate action like helpline
phone number

Based on the example, we define three slots for our architecture (and we also
present some challenges):

@Date : Dates can be given in international formats like mm/dd/yy or ver-
bally written like 24th of April etc.

@Time : Yesterday cannot be a valid time slot, so the system has to reply
with an query for asking for exact time, e.g. I’m sorry that happened to you,
I am trying to get the help you need, but I need the exact time frame of the
incident. Alternatively, we can use the system time to understand the meta like
yesterday and today.

@location : Frankenstraat is a valid slot location.
We also define what will the different intents of the conversation are. In our

case, intents are the different type of harassment, and entities are the slots, i.e.
date, time and locations. More specifically, we define three intent categories:
physical abuse, verbal abuse and non-verbal abuse.

Approaches for Chatbot. Nowadays, chatbots can be broadly classified as
rule-based (scripted) or end-to-end (usually based on deep learning) chatbots.
For this project, we experimented with both but decided to proceed with a rule-
based approach because of the lack of necessity for a deep learning chatbot and
data for training a dataset being very small for deep learning to be useful.

Telegram5 is a mass communication application used worldwide simi-
lar to alternative applications such as Facebook Messenger or WhatsApp6.
Telegram has support where users can interact with bots by sending them mes-
sages, commands and inline requests. The bot created by the API can be spe-
cialized for our use case by integrating our NLP platform for question answering.
A script was written based on the intents and entities of the several scenarios
with appropriate reply vocabularies using python and Telegram API.
5 https://telegram.org/.
6 https://www.whatsapp.com/.

https://telegram.org/
https://www.whatsapp.com/
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Fig. 3. Chat dialogue flow
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Chatbot - Dialogue Flowchart. The ultimate goal of the chatbot is to provide
the user with the necessary information based on their input. This has to be as
diverse as possible and the conversations must be natural and efficient at the
same time. The overall chat workflow is shown in Fig. 3 and each block will
have chatbot reply with unique sentences which were framed with the help of
experts7.

Initially, the chatbot greets the user and asks for information about the
possible harassment event. If the user’s input is not classified as a harassment
case, the chatbot continues to ask. At every step for the user the text sent by
the user is concatenated to its previous inputs and it is sent to the classification
and named entity recognition system for evaluation. Once the text is classified
as harassment, depending on whether the location, date and time information
could be retrieved, the chatbot either asks the user for that information if it
was missing, or asks the user to confirm the retrieved location, date or time
information from the previous input. When there is some slot (location, date or
time) missing information the chatbot will ask the user for the details up to 3
times per slot and continue asking for information to fill the next slot. Once all
the slots are filled or the attempts to do so have been executed, depending on
the type of abuse (physical, verbal, non verbal) identified in the users input the
chatbot will provide specific information to the user depending on the case.

When physical abuse is detected, the chatbot provides information for med-
ical assistance (Emergency Department of Maastricht UMC+), Centrum Sek-
sueel Geweld Limburg (CSG Limburg), Acute care (for crises or emergencies),
GGD Zuid Limburg-Centrum voor Seksuele Gezondheid (Burgers). When verbal
abuse is detected, the chatbot provides information of fier.nl8, an online chat for
support for this kind of abuse. When non-verbal abuse is detected, the chatbot
provides information of “Against her will”, another organization specialised in
this kind of abuse. Obviously, the specific information provided for each case can
be further tailored.

Finally, the user is asked if they have reported the event to the police and
relevant information is provided and in the end the chatbot asks the user if they
found the process useful and ask for consent to keep the user’s data anonymously
for further use (e.g. more training data or provide the relevant authorities with
more cases).

4 Results and Validation

4.1 Classification Models

We define 4 classification (sub)problems as follows:

– Harassment or not: First of all, we wanted to see that at what level we
can diversify a harassment case from any similar short text which is written

7 United Nations University - Maastricht.
8 https://www.fier.nl/chat.

https://www.fier.nl/chat
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by a user on the Internet. Therefore, we collected datasets consisting of some
user reviews on IMDB, Amazon or tweets on Twitter as the negative class of
our target.

– Labeling verbal abuses among all harassment reports: As a next step,
we created models in order to catch verbal abuses among all harassment cases.
We already had those labels thanks to the SafeCity dataset.

– Labeling non-verbal abuses among all harassment reports: Similar
to verbal models.

– Labeling physical abuses among all harassment reports: Since the
number of serious physical abuses was low, they were merged to physical
abuses.

For these models, different datasets were created in which numbers of positive
and negative classes were in balance. In order to compare candidate models
properly, 30% of the data were selected as a test set which was stratified by the
target. Then, combinations of various text types, feature extraction methods and
modeling techniques were implemented as can be seen in Fig. 2.

In the final models, which are input for the chatbot, two models for each clas-
sification problem were created by using pre-processed (lemmatized) text. Those
use TF-IDF with up to 3 n-grams and Doc2Vec with Distributed Bag of Words
(DBOW) approaches respectively. We decided to use these different approaches
since both resulted in a good performance in the test set and ensembling them
in the chatbot would give us more robust outcomes.

As the classification model, both use Logistic Regression since it has per-
formed better than SVM and returns the probability that gives us the flexibility
to change the cutoff. The chatbot is capable of processing incoming texts through
the same steps and classify them. Figure 4 shows the performance of final models
on test sets.

(a) TF-IDF (up to 3 n-grams) (b) Doc2Vec

Fig. 4. Logistic regression models final performance

4.2 NER Validation

For the named entity recognition we did a validation using a self made dataset.
We created this dataset by writing 5 short reports of harassment cases. In these
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reports we set the named entities with placeholder variables. To show that the
NER model works for a variety of different named entities we downloaded a list
of 12900 city names from around the world from SimpleMaps9. To further verify
that the model is able to identify date and time information in a text we chose
different formats to represent those information that can be inserted into the
reports. Examples for the date format are: “yesterday”, “5 months ago” or “on
the 5th July 2019”. On the other hand examples for a time format are: “around
10 am”, “at 10 o’clock” or “at night”.

In the next step we inserted these location, date and time information into the
reports at the designated positions randomly. Subsequently we put the resulting
reports into the different NER models and compared the results provided by
these with the original named entities. To avoid cases in which the detected
named entities match except for the prefix we removed prefixes from both strings.

Table 1. Validation results for accuracy

Classifier Location Date Time

BERT with Ontonotes 0.92 0.934 0.798

BERT with CoNLL 0.976 – –

Stanford 0.45 0.2 0.1

To receive comparable results for the three different used NER models namely
Stanford, BERT trained on CoNLL corpora and BERT trained on Ontonotes we
generated for each report template 100 variations with randomly picked named
entities and used them as input for the models. Table 1 shows the result of these
tests. It can be seen that both BERT models deliver reasonable results for the
identification of location entities. However the BERT model trained on CoNLL
corpora is not able to identify any information about the date or time. However
the results produced by BERT are significantly better than the results from the
Stanford NER model. The drop of accuracy for time information in the BERT
model can be explained by looking at the returned values. Apparently there is
some confusion between date and time information.

4.3 Chatbot Validation

Because of the complexity of the chatbot dialogue flow we were not able to
validate the chatbot entirely. However, we were able to write scripts of specific
showcases and compare the responses given by the chatbot with the responses
we expected.

In the first scenario we don’t greet the chatbot at all and just report to it
an incidence that is clearly a form of physical harassment. We also provide all
necessary information about the location, date and time of the incident directly
9 https://simplemaps.com/data/world-cities.

https://simplemaps.com/data/world-cities
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in the first message. Thus the bot just asks us to confirm this information. In the
next step we expect that the bot asks if we need medical assistance. We decline
that and the bot gives us the contact details of CSG Limburg, acute care and
the GGD Zuid Limburg-Centrum voor Seksuele Gezondheid. Afterwards the bot
asks us if we reported the incidence to the police. We answer with yes, so the bot
does not give us any additional information and just asks us if it was helpful.
To try out if everything is working we answer with no. In the last step the bot
asks if it can store the data anonymously. We accept this and the bot ends the
conversation as expected.

In the second scenario we greet the bot and introduce ourselves as John in
the first message. Thus we expect the bot to ask us about the incident. So the
second message we send describes an incident that can be categorized as a form
of verbal abuse. But this time we do not provide any information about the
location, date or time at all. So we expect the bot to ask us about the location
this incident took place. So we tell the bot that this took place “in Maastricht”
and confirm with yes after the it asks us if this is correct. In the next step the bot
asks us about the date on which the abuse occurred. Again we give it the answer
straight away by replying with “yesterday” and confirm with yes. Lastly the bot
asks us at which time it occurred and we answer with “at 10 am” and confirm
once again. In the next step, since the report clearly described an incident of
verbal abuse the bot gives us the contact information of fier.nl and asks us if
the police was already informed. We reply with “no” and receive the contact
information of the local police department. Afterwards the bot asks us again if
it was helpful. We answer with yes this time and the bot then asks for permission
to store our data. This time we refuse and the bot says us goodbye and ends the
conversation.

In the last scenario we send the bot a message that clearly has nothing to do
with any form of sexual harassment. Hence we expect the bot to ask for more
information. So in the next message we report an incidence that falls under
the category of non-verbal abuse. But again we do not provide any information
about the location, date or time. Thus the bot asks us where and when this took
place. We reply three times with a message that clearly does not contain any
information about the location, date or time. Thus the bot continues by giving
us information about “Against her will” and asking us if it was reported to the
police, if the bot was helpful and if it can store the data.

The complete transcripts of the conversations can be found in the Appendix
in Figs. 5, 6 and 7. The responses of the bot match the chat dialogue flow
described in Sect. 3.4.
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5 Conclusion

#MeToo is a social movement that has attracted great media attention in recent
years, especially in social networks. As global awareness is rising, the goal of this
work, namely #MeTooMaastricht is to provide survivors of sexual harassment
a safe platform to share their experiences and get proper assistance. To this
twofold purpose, we implemented a chatbot using the Telegram API. In order to
provide the most appropriate help, we have taken into account various factors
related to the incident, such as the type of harassment that was experienced
as well as the location, date and time of the incident. The latter proved to be
challenging, as it is not trivial to extract accurate spatio-temporal info from a
chat text about sexual harassment.

Classification of the harassment type was successful by reusing data from
SafeCity and combining two models: a TF-IDF with up to 3 n-grams and
Doc2Vec with Distributed Bag of Words (DBOW) with a Logistic Regression
classifier. Results gave an over 80% accuracy for identification of harassment
type. Named entity recognition (NER) was implemented by finetuning BERT
state-of-the-art model enhanced by the Wikidata knowledge base and delivered
very accurate results for location and dates (90%) and very satisfactory results
for time events (80%). Finally, a slot-filling based chatbot was implemented so
as to encapsulate the classification and NER frameworks into the dialogue flow.

Initial results of this work are really encouraging into ways that survivors of
harassment can be assisted by means of data science. However, there are many
possible directions for improvement in the future. First of all, the interaction
with the chatbot can be improved in terms of what type of language is used.
On this end, we plan to further work with social scientists that can run specific
focus groups on validating the script flow. Moreover, we want to explore more
possibilities on the technical side (e.g. use location or map info so as to enhance
the results of NER) and on the security front (e.g. guarantee anonymity and
malicious use). Finally, one of our overarching goals is to have a chatbot which
is adaptable to each case (e.g. show empathy when needed) and be less “linear”
in its functionality (e.g. act more freely but still within the script).

Acknowledgements. We would like to thank the Safecity website for providing the
dataset needed for the first part of this research. We also gratefully acknowledge the
valuable contributions of Mary Kaltenberg, post-doctoral fellow at Brandeis University,
in building the dialogue flow of the chatbot implemented in this paper.
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Appendix

Fig. 5. Transcript of scenario 1
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Fig. 6. Transcript of scenario 2
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Fig. 7. Transcript of scenario 3
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Abstract. In this paper, we introduce BDFP, an ongoing project devel-
oped by the Big Data Center of Excellence of Barcelona which aims at
analysing the Vocational Education and Training (VET) and its demand
in the labour market. The main contribution of the project is the devel-
opment of a data science-based solution to assist policymakers to design
effective policies that help on building the bridge between the VET
educational system and the labour demand. The project combines data
sources from both the job market and educational domains, leveraging
machine learning for breaking the existing information silos and develop
a set of visualisations, reports and dashboards that enable the combined
study of both the VET and the jobs market. The present article describes
the process of inception and development of the tools and details pre-
liminary results that are currently being analysed together with domain
experts of both fields. The final results will be compiled in a final report
that will be publicly available.

Keywords: Vocational Education and Training · Labour market ·
Data science · NLP

1 Introduction

Motivated by the high potential benefits of a data-rich society, in February
2015 a public-private partnership launched the Big Data Center of Excellence
in Barcelona1 to assist and boost a data culture at all types of organisations
operating in Catalonia. One of the main activities driven since then has been
linking the dots among relevant stakeholders of the data economy in the region
while promoting meaningful initiatives to demonstrate the advantages of putting
together significant datasets, still a highly challenging task nowadays.

1 https://www.bigdatabcn.com/.
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Led by prominent actors constituted as an advisory board, debates took place
to identify meaningful societal questions that could be, nowadays, solved by
data-driven projects. Vocational and Educational Training (VET)2 was selected
due to its relevance for current societal challenges (i.e., it is key to fight young
unemployment [1]) as well as for the existing datasets were valuable insights
could be derived from. After 6 months interviewing all relevant stakeholders,
selecting the right questions to answer (mapped to 5 concrete research topics),
and signing collaboration agreements to be able to access data we could kick-off
the BDFP project in mid-2018, where BDFP stands for Big Data en Formació
Professional which translates to Big Data in VET.

The present work proposes a data-driven approach with a combination of dif-
ferent data analysis algorithms including data mining, rule-based systems and
machine learning to analyse the evolution of the labour market (extracted by
the free text job vacancies posted in the leading job portal) and the VET offer-
ing (extracted by the official training curricula in the complete territory) in
Catalonia during the last few years. Special attention is devoted to two main
strategic market sectors for the region, namely ICT and Industry 4.0, and the
transformation of the particular skill set demanded by employers.

The paper is organised as follows. Section 2 describes similar initiatives, and
Sect. 3 contextualises the work described and introduces the research topics
posed. Section 4 describes the data sources included and the exploratory tools
developed. In Sect. 5, we describe the main challenges of the approach proposed
and how we overcame them by applying ML techniques. Section 7 describes some
preliminary results obtained by using the tools developed and Sect. 8 points to
conclusions and future work.

2 Similar Initiatives

Analysing the relationship between the labour market and the VET is a broad
field of study due to its relevance for society. In the scientific community, we can
find [2], where various works were compiled that analysed VET skills from differ-
ent perspectives, analysing the role of policymakers, the territorial deployment
or the impact of demographical and employment patterns changes.

Focusing on the link between labour demand and VET supply, we can find
similar works focused on different regions, like in [3], where they analyse the
situation of VET in India, and the situation of VET graduates in the labour
market. In [5], they studied in depth the relationship between the VET and jobs
in Germany from different points of view like gender or type of training. In [4],
they carried out a similar study in Australia but performing the analysing at
the level of the skills acquired in training and how these skills were translated
to the labour market.

Most of the previous works base their studies on surveys and official sources
of information. In this sense, the present work is more aligned with initiatives like
2 Training for a specific occupation through a combination of theoretical teaching and

practical experience.
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the project e-skills match3, that analyse the labour market from the demands
posted on job portals. In this study, we follow this approach but extending it to
other types of studies and skills like those related to Industry 4.0.

3 Context, Methodology and Goals

The BDFP project has been promoted by the Big Data Center of Excellence
in Barcelona, an initiative led by Eurecat (the primary Technology Center of
Catalonia) with the support of the Catalan government, the City Council of
Barcelona and Oracle. Thanks to the commitment and contacts of its advisory
board4 a consortium was put together with the required datasets as well as tech-
nological and domain knowledge. Namely, the following organizations and teams
have contributed significantly to this project: three departments of the Catalan
government (Digital Policy and Public Administration, Education, and, Business
and Knowledge), the Catalan Occupation Service, the local development agency
of the Barcelona City Council (Barcelona Activa), the GIPE research group of
the Universitat Autònoma of Barcelona, the consulting company Everis, the job
portal Infojobs, the Bertelsmann foundation aimed to improve the youth employ-
ment, the Fundació Barcelona Formació Professional aimed at improving VET,
and the Big Data and Data Science department of Eurecat.

This project was launched with the aim of achieving two very different goals.
First, it provides valuable insights about the evolution of the skill-sets offered in
the VET contents in all Catalan territory as well as the ones demanded by the
job market during the same period, 2015–2018. This information is of great value
for the Catalan Education Department in charge of designing the curricula of
the VET courses trying to satisfy the local job market near future requirements.
Second, the project aims also to showcase the need and benefits of joining efforts
by different institutions to solve societal challenges, with different knowledge and
assets, ranging from datasets, data science experts, technology providers, domain
experts, decision-makers and facilitators. From the one hand, all these roles are
required to launch and successfully execute such a project and are impossible to
find in a single organization but many. On the other hand, the potential benefits
of data sharing and novel analytic approaches can only be efficiently assimilated
by decision-makers when knowledge sharing processes are established among the
different actors when working in common challenges, and therefore, they will be
inserted in the next future agenda of the relevant stakeholders.

As a matter of fact, the first 6 months of the project were dedicated to hold-
ing several one-to-one meetings with every organization, understanding their
perspectives and goals around VET in Catalonia, the existing challenges and
what would be the main questions that they would find most relevant answer-
ing, taking into consideration their feasibility, and how could they help. The
agreed five research topics are the following:

3 https://www.eskillsmatch.eu/en/about.
4 https://www.bigdatabcn.com/el-big-data-coe-barcelona/big-data-working-group/.
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– T1: Geographic characterization of the labour demand, evolution of the labour
demand based on the contracts registered in Catalonia during the last 5 years.

– T2: Analysis of the relationship between Dual VET and sectorial labour
demand, a particular study case of the type of VET training includes an
internship in a company.

– T3: Temporal evolution of the VET skills, evolution of the demanded kills
focusing on ICT and Industry 4.0.

– T4: Comparison of labor supply and demand in ICT and Industry 4.0,
– T5: Identification of overqualification, required in a job post with respect to

the responsibilities described.

During the following eight months, a core team was established, mainly
formed by data analysts and scientists, who explored the data and created the
models as explained in the next sections. On-demand meetings were done with
domain experts of the organizations when needed to set the basis, describe stan-
dard definitions, and interpret the results in every step. Further, after each sig-
nificant step, high-level meetings were appointed with high-level representatives
to inform and validate those partial results and define the next steps. Finally,
a great effort was devoted with volunteers of most organizations, first to define
the rules in order to categorize the skills from the free text, and afterwards to
label 100 skills in 1,117,729 job posts to train the models.

4 Exploratory Analysis

4.1 Data Collection and Processing

Concerning the datasets used in the project, we split them into two categories:
the labour demand or the VET offer.

First, we start by studying the VET offer in Catalonia. In Spain, there are
three types of VET: FP INICIAL, which corresponds to Initial VET studies
that combine theoretical subjects with practical training, FP Dual, a type of
VET that includes in-company training, and FP Ocupacional, that is meant for
professionals that are unemployed or that want to improve their careers. For
each type of VET, we obtained the number of students enrolled, and graduates
by family, studies, year (for the period 2013–2017, except for Dual where only
the period 2016–2017 was available) We obtained this data from the Education
Department of the Local Government and the local Employment Service, SOC.

We also analyze the labour demand from two sources. On the one hand,
the original contracts as registered during 2013–2017 in the Public Employment
service, including the contract duration, occupation code, company activity code
and geographical location, plus some demographic information like gender or
age. On the other hand, for the same period, we collected jobs posted in two job
portals: Infojobs, one of the leading job portals in Spain, and Feina Activa, the
job portal hosted by the local Employment Service.

Beyond gathering all data and standard processing carried out to the different
datasets, to handle outliers or missing values or to normalize some attributes,
there have been some individual cases where additional processing was required.
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For the VET data sources, the first issue to solve was the identification of
the studies to be included in the study. The posterior analysis includes two
levels of granularity: the characterization of the demand, including all the VET
studies, and, on the other hand, the analysis of the matching between demand
and supply focused on the two families of studies: ICT and Industry 4.0 To
characterize those studies and be able to link them to the labour demand, a set
of training skills definition was selected. The selection was carried out following
the official definitions provided by the National Ministry of Education for each
of the studies included in the study.

In the case of the contracts, we had to deal with different types of contracts
depending on their duration, ranging from hours to years, so just counting the
number of contracts would have led to wrong conclusions. To mitigate this issue,
we complement the contracts with an index of labour turnover based on the
annual reports by the Labor and Productive Model Observatory, and a study
carried out by the Observatory of Industry, allowing to approximate the effective
hiring from the total contracting. Besides, we selected the training skills as the
link between both domains to match the contract with the VET supply. We
developed together with SOC, the local public Employment Service, a dictionary
of National Occupational Codes, CNO, and training skills.

Moreover, there was an additional processing step to merge the information
of job averts coming from both the private portal, Infojobs, and the public one,
Feina Activa. To have a single source of information for the demand, we defined a
data model for job posts that included a common set of attributes present in both
portals. To merge some of the attributes, we developed individual dictionaries
of equivalences for things like the duration of the contract, the educational level
or the type of working day.

4.2 Exploration

The different sources of information included in the project, both for the defini-
tion of the labour demand and the supply of VET, are stored as different Elas-
ticsearch indexes in the system. We chose Elasticsearch because it is an indexing
system that offers a very nice search API, and comes with Kibana, an excellent
tool for building useful and intuitive dashboards, both of them opensource.

We developed an exploratory dashboard for each of the sources (contracts,
the different types of VET and job posts) in order to deliver an exploratory tool
that allows the analysis of the data sources and start answering the research
questions posed, especially to non-technical users. An example of this dashboard
is shown in Fig. 1.

In the case of the job posts, the results obtained by the different classification
models complemented the information included from the original data sources,
i.e., we were able to add the families they belong, the skills, languages required
and if there was overqualification.

For some of the research topics, it was required to join some of the data
sources altogether to, for example, compare the demand and the supply. We
found out that Kibana was quite limiting in this aspect, as it did not allow to
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Fig. 1. Example of dashboard created using Kibana that includes some indicators
related to the job posts.

join different indexes to produce combined visualizations. Thus, for some of the
analysis, we had to develop custom visualizations in order to show some of the
indicators required in the study.

5 Scientific Challenges

This section explains the main two challenges encountered during the execution
of the project and how they are addressed thanks to knowledge discovery, data
mining and machine learning techniques.

5.1 Challenge 1: Mapping Job Posts with Training Skills

Mapping skills like “Implement, verify and document web apps” or “Manage rela-
tional databases” to jobs like “.NET junior developer” or “Analyst in SQLServer
and SSIS” is not straightforward. Despite some of the fields included in the job
advert can help on establishing this link, they sometimes can be misleading - for
example, the sector of the company may differ from the position to cover - or
might not be informed if they are marked as optional.

The significant volume of job posts included in the study, more than one
million, prevent the team from manually analysing them, making it necessary
to adopt smarter approaches. Leveraging the presence of domain experts in the
team, we used a combination of rule-based models together with ML models,
based on annotated data.

The Large Scale Labelling Problem. The development of a semi-automatic
tool for large scale labelling is required to automate the process of assigning
job offerings to the family of studies and tagging the required skills demanded.
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This semi-automatic labelling mechanism combines a first fully automatic iden-
tification of instances based on the definition of a set of rules, together with a
labelling tool that allowed to perform fine-grained annotation of some of the job
adverts by human experts.

Automatic Labelling: The first step used in the project for tackling the different
classification tasks included was the development of a set of rules that allowed to
classify job descriptions on whether they require a given training skill or not. To
develop these rules, we asked the domain experts to define a set of keywords and
expressions that are usually associated with a given training skill. For example,
The skill of “Set up and manage a database” relates to concepts like DBA, SQL,
Mysql, Oracle, and similar words.

Once this set of rules is defined, we translated them using the Spacy library.
This library delivers a set of models for different NLP tasks like POS identifi-
cation, NER, Lemmatization or Tokenization, and Rule-based matching, among
others. In this case, we made use of the Rule-based matching tool and the POS,
Lemmatization and tokenization available for the Spanish language.

This rule-based method allows having the first selection of skills and, by
grouping these skills by the family of studies they belong, it also allows us to
give a first tagging of the family they belong to. The same approach was used
in the project to infer other characteristics of the job posts like the requirement
of a foreign language and other soft skills by developing ad-hoc rules for that
purpose. The main drawback of this approach is the fact that it depends on how
exhaustive is the definition of the rules, making it impossible to capture all the
terms and expressions that might be related to each concept.

Labelling Tool: To overcome the limitations of the rule-based model, we comple-
ment it with a ML classification system. In order to have labelled data, in the
context of the project we developed a labelling tool, that aimed at enabling the
domain experts to evaluate job descriptions, allowing them to identify the family
of studies, training skills required and determine whether there was overqualifi-
cation or not.

The annotation process run for two months with the invaluable help of more
than 30 experts that annotated more than 3,000 job posts. Despite this signif-
icant effort, the annotation of some skills was not sufficient. Some of the skills
had less than ten labels, preventing the corresponding classifier from training
properly. To fight the lack of labels, we added some positive examples drawing a
sample from the most representative examples as classified using the rule-based
system for each skill. Besides complementing the positive examples with those
obtained from the rule-based, we also limited the study to those skills with more
than 100 labels.

Job Advertisement Topic Prediction and Skills Automatic Tagging.
After the annotation process, we first trained a classifier for topic prediction,
with three possible labels: ICT, Industry 4.0, and Others. Once the job advert
is classified in a family, the original intention was to apply a multi-labelling
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Fig. 2. Models used in the project. (a) Deep learning model used for challenge 1, (b)
Uncertainty Bayesian wrapper for deep black-box models used in challenge 2.

classifier for the skills. The fact that the labelling tool stored a separated label for
each skill, having no way to link them afterwards, force us to train a classifier for
each of them. At this step, we trained for those skills that were more annotated,
15 for ICT and 30 for Industry 4.0.

The model used in all cases is shown in Fig. 2(a). The input for the mod-
els is the description of the job, including different attributes like the level of
education, minimum requirements, description of the position, title or previous
knowledge. In order to fight the lack of positive labels for some of the skills, we
try different combinations of those fields for building different samples out of
the same labelled job. We also combine samples obtained from the labelling tool
with some from the rule-based model to obtain balanced datasets. The resulting
text for each job position is transformed into a sequence of words with a limited
length of 120 words, using left padding for shorter texts.

We used an artificial neural network, where the first layer of the model is
an embedding layer. In this work, we use a pre-trained Word2vec embedding [6]
trained with a billion of Spanish words [7]. We average the embeddings of the
words included in the job description to obtain a latent representation for it.
This latent representation is the input for a fully connected layer with a softmax
activation, used for obtaining the probabilities of each class predicted. For some
of the classifiers, we substitute the average of the embeddings for an LSTM layer
plus a hidden dense layer, showing better accuracy scores. Sometimes, though,
this leads to overfitting, despite having 50% of dropout, probably due to the lack
of sufficient data samples, so we have to stick to the original model.

From the original 100 skills selected, 29 for ICT and 71 for Industry 4.0, we
finally selected only 38, 15 for ICT and 23 for Industry 4.0, that correspond
with those that received enough labels to train the classifier properly. Each
classifier was trained using a specific training dataset. The number of examples
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for each classifier depended on the number of labels and the results obtained
from the rule-based model for that specific skill, varying from 1,000 to almost
4,000 examples.

Besides tuning the architecture, some of the hyperparameters needed to be
tuned depending on each problem, with learning rates for the Adam optimiser
used varying from 1e−3 to 5e−4, or a different number of epochs. Each training
dataset was split into three sets: the training set itself, a validation set that was
used for adjusting the parameters of the optimiser and validate the architecture,
and a test set that was used to obtain the performance metrics. The proportion
for each set was 90% for training and validation, split then in 90% and 10% each,
and 10% for testing. For each training process, we train each model until the
training loss converged, preventing overfitting by observing the validation loss.

As a result, the family/topic classifier obtained an accuracy of 94.75%.
Figure 3 shows the accuracy obtained by the 38 skill classifiers. In addition to
the accuracy, we computed a confusion matrix to analyse the behaviour of each
classifier with regards to false positives or negatives, and we performed a manual
check of some examples to carry out a qualitative evaluation of the models. Even
though the majority of the classifiers achieved accuracies over 80%, we observe
that those with lower values correspond to skills that are hard to model using
rules. For those cases, obtaining a more significant set of labels could help with
improving the results.

Fig. 3. Accuracies obtained in test for the 38 skills classifiers

Once trained, we employed the learned classifiers to the whole set of job
adverts. First, we applied the family of studies classifier, to isolate those that
belong to ICT and Industry 4.0. Later on, we used the 15 ICT skill classifiers
to the ICT jobs and the 23 Industry 4.0 one to tag the job adverts of each
family with the skills that are required for the position. As a result, we add a
list of skills required for the described position for each ICT and Industry 4.0
job advert that can be used in the later analysis.
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5.2 Challenge 2: Job Overqualification Analysis

A second valuable insight from this project consists of understanding the degree
of matching between job demands and job offerings. In this second challenge,
we take advantage of the data gathered to classify each job advert on whether
it includes overqualification in its description or not. Similarly to the case of
detecting the skills present in the job offers, in the case of detecting overqualifi-
cation in demand, it is required to deal with unstructured textual information.
This motivates us to use advanced NLP models.

Using a similar strategy to that explained in challenge 1, the prediction accu-
racy only reaches 72.28%. This value, though acceptable in some contexts, is
inadequate for a careful analysis of the problem. Our hypothesis for justifying
this value considers the difficulty of defining the concept of over-qualification
and the subjectivity involved in those definitions. There are different levels of
overqualification. For example, they are asking a university degree for a job that
a VET student can perform, or asking for a high level of VET when it can be
carried out by medium degree VET graduates.

These two different properties introduce noise in the labelling process, and
consequently, affect the performance of the machine learning classifiers. In this
setting, the degree of confidence in the prediction can help to refine the results.
This is addressed by means of modeling uncertainty.

At first glance, when using artificial neural networks, observing the entropy
of the probabilities resulting from the softmax output can provide an idea of how
confident the predictions are. This is, high probabilities for the target class, close
to 1, suggests confident predictions. However, the problem with this approach is
that for some data points with low occurrences in the training dataset or with
ambiguous semantics, the model can yield overconfident predictions [8]. And,
thus mislead further analysis.

Estimating the Uncertainty. When talking about machine learning tech-
niques’ uncertainty we find two different concepts of uncertainty depending on
its source. These are:

– Epistemic uncertainty, which corresponds to the uncertainty originated
by the model. It can be explained as to which extent our model is able to
describe the distribution that generated the data. There are two different
types of uncertainties caused by whether the model has been trained with
enough data, or whether the expressiveness of the model can capture the
complexity of the distribution. When using an expressive enough model, this
type of uncertainty can be reduced by including more samples during the
training phase.

– Aleatoric uncertainty, that belongs to the data. This uncertainty is inher-
ent to the data and cannot be reduced by adding more data to the training
process. We can further divide this uncertainty in two classes:
• Homoscedastic: measures the level of noise that is derived from the mea-

surement process. This uncertainty remains constant for all the data.
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• Heteroscedastic: measures the level of uncertainty caused by the data. In
the case of NLP, this can be explained by the ambiguity of some words
or sentences.

The different types of uncertainty must be measured differently. Consider a
dataset, D = {xi, yi}, i = 1 . . . N , that is composed by pairs of data and labels
points, respectively. Given a new sample x∗ we want to predict its label y∗. Our
goal is to capture the distribution that generated the outputs by using a model
with parameters W . Under the Bayesian setting, this description corresponds to
the following marginal equation,

p(y∗|x∗,D) =
∫
W

p(y∗|fW (x∗))p(W |D)dW (1)

In Eq. 1 one can see that the distribution of the output depends on two terms:
one that depends on the application of the model to the input data, the aleatoric
component, and a second one that is measuring how the model may vary depend-
ing on the training data, the epistemic component. For the epistemic uncertainty,
we model the weights as random variables by introducing Gaussian perturba-
tions and Flipout as introduced in [10], to estimate the conditioned probability
by using Montecarlo (MC) sampling. The model trained up to this model is a
deterministic model, except for the epistemic components. As such, it does not
allow to infer the aleatoric component of the uncertainty. Thus, for computing
the aleatoric heteroscedastic uncertainty, we build an assistance a deep neural
model that will complement the former ANN. We assume that the aleatoric
component can be modelled using a latent layer of random variables following
Gaussian distributions [9]. While the ANN output will stand for the mean value
of that distribution, we will let the assistance NN to work out the standard devi-
ation corresponding to each input sample. The details of the implementation can
be found in [13]. As in the former case, we use Montecarlo approximations to
sample from the latent layer and approximate the output distribution.

As a result of both Montecarlo samplings, a probability density function of
the output values is obtained. This will serve for computing the overall uncer-
tainty.

Computing the Uncertainty Score. Figure 2(b) illustrates the classifier
trained to estimate both epistemic and aleatoric uncertainties. It is remarkable
that just by training the model with the new architecture for 20 epochs, the
resulting accuracy increases up to 84,25%.

Model in Fig. 2(c) depicts the model that is used to predict the uncertainty
score. In this article, we used predictive entropy as defined in [8]. The predictive
entropy, introduced by [11], measures the dispersion of the predictions around the
mode. In this case, we combine the computation of the aleatoric and epistemic
uncertainty. Thus it is necessary to combine the random variables that learned
the variability of the model, the epistemic component, together with the random
variables assigned to the output logits that model the aleatoric uncertainty.
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In order to obtain the uncertainty score, we carry out two consecutive Monte-
carlo simulations: first, we sample a model W and then use this model to sample
the output prediction for each logit, following the distribution parameterized by
the outputs of the ANN and the assistance NN. Using the resulting probabilities,
we compute the predictive entropy as follows,

H[y|x,Dtrain] := −
∑
c

E(pc) logE(pc) (2)

Uncertainty-Based Rejection Classifier. Despite the increment in accu-
racy obtained after training the ANN with uncertainty, we can further exploit
the uncertainty scored to improve the results by filtering out the less confident
predictions. As a result, the quality of the filtered predictions obtained increases
as it only outputs confident predictions. This score can be used as a rejection
mechanism for the classification.

Different measurements can be defined for rejection. For example, the test
dataset can be sorted by the rejection value, from higher to lower scores. If there
is a correlation between the uncertainty score and the misclassification value of
the input, by discarding the more uncertain data points, we will increase the
performance of the classification system. We consider different rejection points
corresponding to descending values of the rejector from including all points to
discard all of them in the last iteration. The analysis of the three performance
measures [12] for each rejection point must consider a trade-off between the
number of samples rejected and the quality of the classifications.

Fig. 4. Performance measures showing the accuracy of kept points, how correct pre-
dictions are kept and wrong discarded, and the ability of rejecting wrong samples.

Figure 4 compares the results obtained after applying three different mod-
els for computing uncertainty: predictive entropy for the aleatoric model, as
proposed in this work, the predictive entropy of the original model, used as a
baseline, and an additional uncertainty score, variation ratios, as described in [8].
The plot shows how only by rejecting the 10% of predictions with higher uncer-
tainty scores, the model increases its performance up to 88% – reaching 90%
prediction accuracy when rejecting the more uncertain 20% of the predictions.
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6 Project Results Insights

The present section shows preliminary results obtained from the application of
the models and techniques introduced in the previous sections. The goal of the
section is to describe how these results complement the original information and
allow domain experts to analyse them in order to obtain insights and explana-
tions for the relationship between labour demand and VET supply.

6.1 Overall Analysis of the Labour Market

For answering T1, geographic characterization of the labour demand, we looked
at the demand at a general level, not focusing on the selected families but consid-
ering the full picture of the hiring at the region. To do so, we look at the contracts
data source, connecting it to the VET studies by using the mapping developed.
For tackling this research topic, we also include additional data sources, like
demographic information and about the companies, like the number of compa-
nies per sector, their number of employees, to contextualize the data about the
hiring and its evolution, enabling comparisons between the number of contracts,
population and number or size of companies.

For T2, we analyze the relationship between Dual VET and sector labour
demand, as a specific case of T1 focusing on Dual VET. Dual VET is a particular
type of training where students have the opportunity of finishing their studies
doing an internship in a company. Here, we focus on aspects like the impact of
gender or age range, studying the distribution of the dual VET across the families
of studies and the region. For this analysis, we only had access to one year of
data instead of the five years that the study covers. The conclusions extracted,
therefore, are preliminary, waiting for having access to a more extended period
of data.

6.2 Analysis of the Matching Between VET and Job Market

After applying the family and skill classification models described in Sect. 5.1,
tagging, therefore, each job with the skills required, now it is possible to analyse
the temporal evolution of these skills, Fig. 5, and link this information with the
rest of the attributes of the job descriptions. The study of T3 will allow the
analysis of trends in demand for the selected skills, delivering new tools for the
design of VET curricula that best adapt to the real market needs.

The skills assigned to the job positions are also used to match VET studies
and answer T4, checking the degree of educational coverage of the VET according
to the real demand obtained from the analysis of job posts.

Figure 6 shows a comparison between the demand for job positions that
require a given skill and the enrollments for studies that include the skill, aim-
ing to study the educational coverage for those skills across the region. Again,
this study can be carried out considering different aspects like the temporary
evolution, the type of job positions, and so forth.
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Fig. 5. Evolution of % of top 10
demanded skills with respect to the
total ICT demand.

Fig. 6. Territorial analysis comparing
between contracts and VET students for
sys admins.

6.3 Adequacy Between Required Functions/Skills and the Level of
Studies

Finally, T5 is answered based on the results obtained from the uncertainty-based
rejection method described in Sect. 5.2. Taking the 222,957 job posts that cor-
respond to ICT and Industry 4.0 positions, as indicated by the results obtained
from using the family classifier, we apply a rejection ratio that, on test time,
reached a 92.5% of accuracy. Thus, we discard 137,157 job descriptions, focus-
ing the study on the remaining 85,800. From those, we estimate only 17,388 as
including overqualification in the job position.

This process allows us to study the trends associated with the overqualifi-
cation, its temporal evolution, analysing potential differences between ICT and
Industry 4.0, or studying the phenomenon individually on each family. By exam-
ining the overqualified job positions, we would like to study the different types
and levels of overqualification and determine their cause. Together with domain
experts, we continue to analyse these results to obtain the final project insights.

7 Conclusions

In this paper, we have introduced the BDFP project, (Big Data per a la Formació
Professional or Big Data for VET in English, an ongoing initiative promoted
by the Center of Excellence in Big Data of Barcelona, and supported by the
local government and a total of 11 public and private institutions. The project
aims at analysing the evolution of the jobs market and the corresponding VET
offering in the region of Catalonia since 2013 to 2018, with a strong focus on two
strategic sectors, ICT and Industry 4.0.

We consider the following three as the main contributions of the project. The
first one has been to enable the joint conversation and definition of common goals
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in data terms among all participating entities. Having debates aiming at social
good with the main decision-makers, data owners, domain experts and data
technologies experts in a region is of capital relevance and, although not easy,
should be energetically motivated everywhere.

The second main contribution has been the opportunity to break down some
information silos and connect the labour market as seen by private companies
like Infojobs (with mostly free text job posts) to the VET offering as defined by
the information managed by local authorities. This significant effort consisted
in an active collaboration of data scientists and domain experts who together
designed the classification models by defining the rules and participating in the
labelling process of more than one million job posts, including hundreds of hours
devoted by a team of knowledgeable volunteers. The project has also been an
excellent opportunity to validate the effectiveness of NLP techniques based on
Deep Learning to extract the skillsets required by employers from the free text
of job posts as defined in the VET official curricula. Moreover, the complexity
inherent in some tasks - e.g. the detection of overqualification - has required the
application of advanced methods for improving the performance of the resulting
models.

The third main contribution has been the characterisation of the evolution
of a relevant part of the skill sets required by the employers in the whole Cata-
lan territory for the two selected sectors during the period of study, and the
relationship of the corresponding VET offerings. We, therefore, validated the
applicability of the data sources and models selected for relevantly answering
the research topics defined in the project. Although we are aware that the job
vacancies from the two collaborating portals do not represent the entire job
market, and it is biased to those higher profiled, it is a significant sample where
concluding results can be derived from.

Currently, together with the domain experts, we are exploring the results of
the project to obtain further insights and explanations for the questions posed
at the beginning of the project. The complete conclusions of this work will be
compiled into a report that will be publicly available and will be used by local
policymakers to analyse the evolution of the labour demand, detect new trends
on the demand of VET skills and study how to best adapt the training programs
to the current requirements of the companies. Finally, we expect to work with
some of the many organisations that have approached us during this process in
order to extend it to other disciplines beyond ICT or Industry 4.0, and other
regions in Spain and Europe.
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Abstract. Opioid addictions and overdoses have increased across the
U.S. and internationally over the past decade. In urban environments,
overdoses cluster in space and time, with 50% of overdoses occurring in
less than 5% of the city and dozens of calls for emergency medical ser-
vices being made within a 48-hour period. In this work, we introduce
a system for early detection of opioid overdose clusters based upon the
toxicology report of an initial event. We first use drug SMILES, one
hot encoded molecular substructures, to generate a bag of drug vectors
corresponding to each overdose (overdoses are often characterized by
multiple drugs taken at the same time). We then use spectral clustering
to generate overdose categories and estimate multivariate Hawkes pro-
cesses for the space-time intensity of overdoses following an initial event.
As the productivity parameter of the process depends on the overdose
category, this allows us to estimate the magnitude of an overdose spike
based on the substances present (e.g. fentanyl leads to more subsequent
overdoses compared to Oxycontin). We validate the model using opioid
overdose deaths in Indianapolis and show that the model outperforms
several recently introduced Hawkes-Topic models based on Dirichlet pro-
cesses. Our system could be used in combination with drug test strips to
alert drug using populations of risky batches on the market or to more
efficiently allocate naloxone to users and health/social workers.

Keywords: Opioid overdose · Hawkes process · Embedding · Spectral
clustering · Topic model · Drug mover’s distance

1 Introduction

The United States is experiencing an overdose epidemic with more than a half
million drug overdose deaths since 2,000 and over 70,000 drug overdose deaths in
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2017 alone [43]. A majority of these deaths have been opioid-related overdoses;
however, the role of opioids has varied dramatically across three waves of the
epidemic, each resulting in increasing death rates [2]. This first wave began in
the 1990s and was driven by prescription opioid-related deaths [3]. The reduced
availability of these prescription medications is said to have resulted in the sec-
ond wave of the epidemic, which began in 2010, and was driving by heroin-related
deaths [3,41,45]. The third wave started in 2013 and has largely been driven by
illicit fentanyl, a synthetic opioid that is 50 to 100 times more potent than mor-
phine [12]. National estimates suggest that in 2016 nearly half of opioid-related
deaths contained fentanyl [16], and there is evidence showing that fentanyl is
being mixed into heroin and cocaine which is likely contributing overdose deaths
involving these substances [17,29]. Recent research has also shown that opioid
overdoses cluster in space and time, where over half of opioid overdose deaths
may occur in less than 5% of a city [1].

As the overdose epidemic has progressed researchers and policy makers have
revealed shortcomings in official data sources, namely vital records data. One
limitation is that vital records data rely on the International Classification of
Diseases, 10th Revision (ICD-10) codes which do not record the specific sub-
stances related to an overdose fatality [6,15,27,48]; for example, there is no
ICD code for fentanyl. Another limitation though has been the undercounting
of opioid-related fatalities as 20 to 35% of drug overdose deaths are unspecified
[42], meaning no substance was indicated as a primary or contributing cause
of death. Moreover, rates of undercounting vary geographically as they are the
result of state policies for death investigation procedures [42]. While researchers
have developed measures to adjust for these limitations [42], better data collec-
tion systems are being implemented [47], and state policies are changing [11], it
remains clear that we lacked sufficient data to quickly detect and identify the
substances driving this overdose epidemic at the national level. However, one
source of local information that can be used to address these gaps are toxicology
results collected as part of an overdose death investigation. In the present study,
we use a robust toxicology dataset from Marion County, Indiana [Indianapolis]
that were collected as part of the CDCs Prevention for States funding initia-
tive [28,37,38]. In the toxicology dataset, we observe spatio-temporal clustering
patterns [1]. These shift patterns demonstrate that overdose events concentrate
within micro places in a short time window and shift through time, which moti-
vates our present work.

Our goal in the present work is to develop a statistical framework for mod-
eling and prediction of opioid overdose clusters in space and time, leveraging
information provided in the toxicology report of the initial overdose in the clus-
ter. An overview of our proposed system, SOS-EW, is given in Fig. 1. We use
a Hawkes process to model overdoses as a branching process. Each event may
trigger offspring events nearby in space and time. The branching ratio of the
process, determining the average number of offspring, depends on the drugs con-
tained in the toxicology report of each parent event in the branching process.
To reduce the dimension, we use spectral clustering with earth mover’s distance
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Fig. 1. Overview of the SOS− EW system for early warning of opioid spikes. The initial
overdose toxicology report shows fentanyl, benzodiazepine, and heroin present. Each
drug is vectorized using SMILES and the event is assigned an overdose category using
spectral clustering based on earth mover’s distance of the drug vectors (“drug mover’s
distance”). The increase in the intensity of the Hawkes process is determined by the
category and allows for the prediction of an opioid overdose spike, those events triggered
in the branching process by the initial overdose.

on bags of drug SMILES [14] vectors corresponding to each toxicology report
(we refer to in the rest of the paper as “drug mover’s distance”). The resulting
method outperforms existing Dirichlet-based Hawkes topic models in the task of
early warning of opioid overdose spikes (clusters) based on an initial event and
its toxicology report.

The outline of the paper is as follows. In Sect. 2, we review related work
on point process models of event clustering in urban environments and topic
point processes for event data with high dimensional marks. In Sect. 2, we then
present the details on our proposed method including clustering of the toxicology
reports and the spatio-temporal Hawkes process. In Sect. 3, we provide details for
several baseline models we use to benchmark SOS-EW and in Sect. 4 we present
the results of our numerical experiments. We then discuss the implications of
our results for practice in Sect. 5.

2 Method

SOS − EW system for early warning of opioid spikes is mainly comprised of the
following two components:

1. Overdose category clustering;
2. Marked spatio-temporal Hawkes process kernel estimation and simulation.

Given a toxicology report, overdose events are first clustered into several over-
dose categories through spectral clustering [34]. The distance between overdose
events in spectral clustering is measured based on earth mover’s distance [40] of
drug vectors which characterize drug’s two-dimensional molecular structure (in
particular we use SMILES, one hot encoded molecular substructures [14]). Drug
overdose events over continuous time are then modeled through spatio-temporal
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Hawkes processes. We estimate the productivity for each category based on his-
torical overdose events and simulate future events to generate a short ranked
list of hotspots containing overdose spikes. Figure 1 presents an overview of the
SOS − EW system. In Sect. 2.1, we review related work on spatial self-exciting
point processes, along with topic point processes. In Sect. 2.2, we present the
details of our method for overdose event clustering and we introduce our app-
roach for the estimation and simulation of spatio-temporal Hawkes processes in
Sect. 2.3.

2.1 Related Work

Self-exciting (Hawkes) point processes have been used to model space-time clus-
tering in urban crime patterns [32] and Hawkes process-based learning to rank
algorithms were recently a top-performing solution in the 2017 NIJ Crime Fore-
casting competition [31], which focused on ranking the top crime hotspots in a
city according to short-term crime risk. Other point process models, for example,
log-Gaussian Cox Processes, can model spatial diffusion of events and have also
proven accurate at modeling crime hotspots [8,44]. More recently, self-exciting
point processes have been used to model clustering in emergency call data [25].
In more extreme security settings spatio-temporal point process models for event
prediction have been applied to conflict [51] and terrorism [10] datasets.

In the above studies, the models either only used as input the spatial coor-
dinates and time of the events, or in some cases an additional low-dimensional
(<10) event category. However, event data often is accompanied by a high dimen-
sional mark, for example, text data, imagery, sensor data, or in our case a 133
dimensional vector indicating drugs in a toxicology screen.

Recent work in the machine learning and information retrieval literature has
focused on extending temporal and network-based Hawkes processes to handle
text information in the events [4,21]. Dirichlet Hawkes processes [4,49] have
been introduced for this purpose, where document clustering is jointly learned
with a temporal Hawkes process. In the network setting, Hawkes processes have
been used to model coupled information and event diffusion on networks [5].
However, these studies have not dealt with spatio-temporal data, which is critical
in studying the spread of opioid overdoses.

Our work offers several contributions to the above-related literature. First, we
investigate the applicability of existing Hawkes-topic models in the spatial setting
and then we improve upon the accuracy of these models in several prediction
tasks related to early warning of opioid overdose clusters. Second, we introduce
a novel clustering method for drug overdoses based upon drug mover’s distance.
Related to word mover’s distance [20] that has shown higher coherence than
LDA based topic models, we believe our drug mover’s distance-based spectral
clustering may be useful in a variety of applications where sets of molecules need
to be compared and clustered.
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2.2 Overdose Categorization

To categorize overdose events through clustering, we first measure the similar-
ity between two overdose events in terms of a “distance” based on the drugs
involved in the events. Each event consists of a mark indicating one or more
drug substances found in the victim’s system. We denote an event i containing
m drug substances as Ei = {d1,d2, · · · ,dm}, where drug m is denoted as dm.
Each drug is represented by a set of 2D substructures, i.e., d ∈ {s1, s2, · · · , sk},
where the substructure k is denoted as sk. The distance between each drug event
is then calculated by earth mover’s distance [40].

Earth mover’s distance (EMD) is a metric to measure a distance between two
distributions. EMD is based on the minimal cost that must be paid to move one
distribution into the other. Given two events, Ep and Eq, with m and n drugs,
respectively, we want to find a transportation flow F ∈ Z

m×n
2 , where Z2 = {0, 1},

that minimizes the overall cost:

min
m∑

i=1

n∑

j=1

FijCij ,

subject to
n∑

j=1

Fij ≤ 1 1 ≤ i ≤ m,

m∑

i=1

Fij ≤ 1 1 ≤ j ≤ n,

m∑

i=1

n∑

j=1

Fij ≤ min(m,n).

(1)

Cij is the cost for moving di to dj . We define such cost as Jaccard distance [23]
and it can be calculated by dividing the difference of the sizes of the union and
the intersection of two sets of substructure by the size of the union:

Cij =
|di ∪dj | − |di ∩dj |

|di ∪dj | . (2)

Such an optimization problem 1 can be further solved through the transportation
simplex method [26]. Once the optimal transportation flow is found, the EMD
between event Ep and Eq is defined as the resulting overall cost normalized by
the total transportation flow:

EMD(Ep,Eq) =

∑m
i=1

∑n
j=1 FijCij∑m

i=1

∑n
j=1 Fij

. (3)

After calculating the EMD between each overdose events, we then construct
a similarity matrix (i.e., adjacency matrix). The similarity between Ep and Eq

is calculated using a radial basis function kernel, i.e., exp
( −EMD(Ep,Eq)

2

2ε2

)
.

To categorize drug overdose events into different clusters, we apply spectral
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clustering [46] on all the events. The spectral clustering algorithm takes in
the adjacency matrix and uses the eigenvalues and eigenvectors from the adja-
cency matrix of the events to perform dimensionality reduction before clustering.

Fig. 2. Gephi visualization of graph used for
spectral clustering (edges correspond to adja-
cency weight greater than .9) and the most fre-
quent drugs in each of the 5 overdose categories.

Each overdose event is then
assigned to a category u. There-
fore, each event Ei = (ti, xi, yi, ui)
consists of four pieces of infor-
mation: ti is the timestamp
of the date of death (D.o.D)
of the victim; xi and yi are
the latitude and longitude of
where the victim is found; and
ui is the drug overdose cat-
egory. Our approach to over-
dose categorization can seam-
lessly integrate the molecular
substructure similarities across
different drug overdoses and
produce more pharmacokinetic-
aware categories. Figure 2 shows
the top 5 overdose categories, along with the most frequent drugs in each
category, computed using our drug mover’s distance-based spectral clustering
approach.

2.3 Spatio-Temporal Hawkes Process

Clustering in space-time drug overdose event data may occur for a variety of
reasons; for example, an increase in the prevalence of a new street drug may
appear in a neighborhood leading to a spike in overdoses; or a particular batch
of drugs may contain a higher than usual amount of a dangerous substance, for
example, fentanyl. Motivated by the observed clustering of overdose data [1],
we further characterize drug overdose events through a cross-exciting spatio-
temporal Hawkes process [50] that models the contagiousness of events across
overdose categories (computed using DMD spectral clustering).

Given a drug overdose sequence {Ei}N
i with N events, we characterize a

multivariate spatio-temporal Hawkes process through the following conditional
intensity function for each category u:

λu(x, y, t) = μu(x, y) +
∑

t>ti

Kuiug(x − xi, y − yi, t − ti). (4)

In Eq. (4), the background rate μu(x, y) for each category is assumed to be a
constant in time, while inhomogeneous in space. The historical events increase
the likelihood of the near-future events through the spatio-temporal triggering
density function g. K(ui, uj) = Kui,uj

is the productivity (or triggering) matrix
to quantify the self or cross-exciting impact of the events associated with category
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ui on the subsequent events in the category uj . Specifically, Kui,uj
denotes the

mean number of events in process uj that are triggered by each event in the
process ui.

We introduce a parametric form of the triggering density with an exponential
function in time and a Gaussian density in space. These choices allow for a
weighted sample mean estimation of the parameters in the maximization (M)
step of expectation-maximization (EM) based maximum likelihood estimation
(MLE) [30].

Our kernel density-based background rate and triggering density function
take the following form:

μu(x, y) =
N∑

i=1

βuiu

2πη2Tspan
× exp

(
− (x − xi)2 + (y − yi)2

2η2

)
,

g(x, y, t) = ωexp(−ωt) × 1
2πσ2

exp(−x2 + y2

2σ2
),

(5)

where Tspan denotes the time spanned through the whole training dataset; βuiu

measures the extent to which events in process ui contribute to the background
rate in the process uj ; ω controls how fast the rate λu(x, y, t) returns to its
baseline level μu(x, y) after an event occurs; and η and σ dictate the spreading
scale of the triggering effect in space.

We perform the M step of the EM-type algorithm following the framework of
Algorithm 1 in [50] to estimate the parameters. We use the “optimal” parameters
from the previous M step to update the latent variables and alternately iterate E
and M step. After parameter estimation, we utilize the branching structures [52]
of self-exciting point processes to simulate self and cross-exciting events (See
Algorithm 3 in [50]) for the next T days for 1, 000 times. The simulated events
are denoted as Ê = (t̂, x̂, ŷ, û).

To make recommendations for early warning of overdose spikes, we generate
a short ranked list of hotspots in the domain of interest. We first partition the
domain of interest into N ×N fine-grained grid cells by dividing the latitude and
longitude span into N parts with equal length. Based on the latitude and longi-
tude (i.e., x̂ and ŷ) from the simulated events, we calculate the average number
of the simulated events for each grid cell from 1, 000 repeated simulations. We
denote the average number of the simulated events in the ith and jth grid in
terms of latitude and longitude as χ(i, j). Finally, we sort the grids according to
the average number of the simulated events in descending order and retain the
top-N grids as the recommended short ranked list.

3 Comparison Methods

We compare our model with several state-of-the-art methods including the fol-
lowing: Non-parametric temporal Hawkes Processes; Spatio-temporal univari-
ate Hawkes Processes; and Dirichlet Hawkes Processes that learn the category
assignment while estimating the intensity function. None of the existing point
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process methods jointly learn the spatio-temporal self and cross-exciting density
together for different overdose categories based on the drug substance struc-
ture; methods either exist for spatio-temporal point processes or for time-only
topic point processes, but not both. The details of our implementation for these
baseline methods are presented in the following sections.

Non-parametric Hawkes Processes: SimpHP [24]
Our first baseline model utilizes a non-parametric Hawkes process [24] that takes
a series of time stamps and then uses a penalized MLE to simultaneously esti-
mate the background rate μ(t) and triggering kernel g(t) without prior knowl-
edge of their form. Given a set of overdose events, we partition the training
dataset into N ×N subsets according to which fine-grained grid cell they belong
(as defined in Sect. 2.3). Each subset of events corresponds to an independent
Hawkes process. Once the estimation is done, the simulation for the next T inter-
val is done through thinning [35]. Each Hawkes process is first simulated 1, 000
times and the average number of simulated events is calculated. The top-N grids
cell with the largest average number of simulated events is recommended. We
denote this baseline method as SimpHP.

Spatial-Temporal Hawkes Processes: SpatHP [50]
We compare SOS − EW with a sub-model that only uses the geolocation and time
stamps for estimation, without clustering events into different categories (uni-
variate). The model estimation and recommendation follow the same framework
in Sect. 2.3. Such a baseline model is denoted as SpatHP.

Dirichlet Hawkes Processes: TopicHP [4]
The Dirichlet Hawkes process [4] is a random process which takes into account
both text information from documents and temporal dynamics of their arrival
pattern to cluster the document streams. The model is estimated through an
online inference algorithm that jointly learns the pattern of the clusters and the
parameters of the Hawkes process for each cluster. To adapt to this model, we
view each overdose event as a document and each drug as a word. Spatial infor-
mation is integrated into each event by adding a grid cell index as an additional
word. After model estimation, we then use thinning [35] based simulation and
average the number of events for each grid cell and topic (over 1, 000 simulations)
to generate a recommendation of the top-N grid cells with the most number of
simulated events.

4 Experiments

4.1 Data

We analyze a toxicology dataset from Marion County, Indiana that was col-
lected as part of the CDCs Prevention for States funding initiative [28,37,38].
The dataset contains toxicology reports of 1,489 overdose death events in Indi-
anapolis, Indiana, U.S.A. from 2010 to 2016. Each overdose event includes the
date of death (D.o.D) of the victim and the geolocation (latitude and longitude)
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of where the victim was found. In addition, every event also contains forensic
toxicology testing results that screen for 164 drug substances. A binary indi-
cator represents whether a specific drug substance was found in the victim’s
body. In our analysis, we restricted to a subset of 133 drugs whose 2D chemical
structure representation can be found in the chemical molecules database, Pub-
chem [19], for further feature generation. We also restricted our analysis to the
1,425 overdose events that include geolocation information and occurred within
the city of Indianapolis boundary, where the latitude ranges from 39◦37′58.8′′N
to 39◦55′30.3′′N and the longitude ranges from 87◦06′41.1′′W to 85◦56′18.7′′W.
Table 1 presents the statics of the pruned dataset. Figure 4 presents the example
of some overdose events. The number of overdoses is increasing in recent years
(see Fig. 3).

Table 1. Statistics on overdoes event

Start date 01-14-2010

End date 12-30-2016

#event 1,425

#d 6.3698

#entd 68.2481

In this table, “#event” represents
the number of events in the
toxicology report; “#d” represents
the average number of drug
substances in each event; and
“#entd” is the average number of
events involved in each drug.
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Fig. 3. Number of events per year

Features for each drug are extracted by identifying its molecular substruc-
ture fingerprints. Specifically, each drug is represented by a set of substructures
s (i.e., d ∈ {s1, s2, · · · , sk}). We further used RDKit [22], open-source software
that allows us to search the substructures based on 2D chemical structures rep-
resentation, to generate a feature vector of dimension 1,024 for each drug. The
pruned dataset is then used for model evaluation.

4.2 Evaluation Protocols and Metrics

The domain of Indianapolis covered by the pruned dataset is first partitioned
into N × N grid cells by dividing the latitude and longitude span into N parts
with equal length in each direction. For each time interval tth, we recommend
a ranked list of grid cells based on how likely those grid cells are to have over-
dose events in the near future, using the history of the process up to tth time
interval. The performance is then evaluated through walk forward optimization
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Initial Event
Alcohols, Ethanol, Benzodiazepine, Fentanyl

Triggered Events
1. Benzodiazepine, 6_MAM, Heroin_from_combo, 
Morphine, Codeine, Hydrocodone, Hydromorphone

2. Alcohols, Ethanol, Benzodiazepine, 6_MAM, 
Heroin_from_combo, Morphine, Codeine, 
Oxycodone, Oxymorphone

3. THC, Carboxy_THC, Oxycodone, Oxymorphone, 
Hydromorphone

4. Benzodiazepine, 6_MAM, Heroin_from_combo, 
Cocaine, Morphine, Codeine, Fentanyl, Oxycodone, 
Oxymorphone

Fig. 4. An illustration for an initial event and its triggered events in one of the cate-
gories (i.e., one of the Hawks processes). The initial overdose event marked in triangle
symbol consists of four drug substances and it triggered four neighboring events con-
sisting of different number of drug substances respectively.

[30]. Specifically, in our experimental setting, we first train our model over a
fixed amount of the most recent historical events, which is 255 events (the num-
ber of events in the first two years). We then test the model on the next time
period starting on 01/01/2012 and report the performance. Finally, the overall
performance is the average from all the time periods that we have tested.

At each time interval T , models recommend a ranked list of size K for poten-
tial overdose events. In our experimental setting, we set T as 5 days and partition
the domain of interest into 100 × 100 grid cells. The time window is consistent
with the time scale on which police and health services can respond and the
grid cell size is similar to those used in field trials of predictive policing [33].
The ranking performance is evaluated through normalized discounted cumula-
tive gain at K (NDCG@K), which is a measurement of ranking quality and
commonly used in information retrieval. NDCG@K is calculated by normal-
izing discounted cumulative gain (denoted as DCG@K) with ideal DCG@K
(denoted as IDCG@K). The definition are as follows:

DCG@K =
K∑

i=1

2reli − 1
log2(i + 1)

, NDCG@K =
DCG@K

IDCG@K
, (6)

where reli is the ith relevance value of the ith grid in the ranked list r; IDCG@K
is the ideal DCG@K when the ranked list r is perfectly ranked based on its rel-
evance values; and then we define relevance value reli as the number of overdose
events that happen in the ith grid cell in the ranked list r and tth time interval.

In a certain time interval, a spike of overdose events may occur. To evaluate
our model’s ability to forecast future spikes, we first define an event spike at the
tth time interval in a grid cell (i, j) as follows: If the total number of events in
the neighboring cells between the (t − 1)th and (t + 1)th intervals is more than a
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threshold, then we consider that there is an event spike in (i, j) grid within these
time intervals. The set of grids with an event spike is defined as the following:

s =
{
(i, j, t)

∣∣
i+w∑

î=i−w

j+w∑

ĵ=j−w

t+1∑

t̂=t−1

χ(̂i, ĵ, t̂) ≥ ξ
}

(7)

where χ(i, j, t) is the count of events in grid cell (i, j) and time interval t, w is the
spatial window size defining how many neighboring cells we should consider; and
ξ is the spike threshold: we set ξ = 2 (for w = 2 and 4) and ξ = 10 (for w = 10
and 15) in our evaluation setting. With larger w and ξ, more gird cells will be
considered to have an event spike. We choose w and ξ to ensure a reasonable
amount of event spikes for further evaluation while an event spike includes a huge
amount of overdose events. We adopt modified reciprocal hit rank [36], precision
and recall at different ranked list size K, denoted as MRHR, Prec, and Rec to
evaluate the performance. MRHR is a modified version of average reciprocal hit
rank (ARHR), which is feasible for ranking evaluations where there are multiples
relevant items (i.e., multiple spikes events), and it is calculated as the following:

MRHR =
1∣∣ s

∣∣
K∑

i=1

( hiti
ranki

)
,

where hiti =

{
1 if ri ∈ s
0 if ri, /∈ s

, ranki =

{
ranki−1 if hiti−1 = 1
ranki−1 + 1 if hiti−1 = 0,

(8)

where each hit is rewarded based on its position in the ranked list. Prec and
Rec are commonly used to evaluate the performance in recommendation system.
Prec evaluates how precisely the model can predict for future spike events while
Rec measures the ability of retrieving spikes. We also evaluate average precision,
denoted as APC, to account for both precision and recall without choosing K:

Prec =

∣∣ s∩ r
∣∣

∣∣ r
∣∣ , Rec =

∣∣ s∩ r
∣∣

∣∣ s
∣∣ , APC =

∑
{k:1,··· ,K| rk∈s} Prec@k

| s∩ r | . (9)

4.3 Experimental Results

Table 2 presents the overall performances on overdose spikes prediction under
different breadth definition of spike events (Eq. 7). Our SOS − EW system consis-
tently outperforms other baseline methods by a large margin in terms of MRHR,
Prec, Rec, and APC. MRHR is used to evaluate the ranking quality while Prec,
Rec, and APC evaluate the retrieval for events spikes. This shows our proposed
method not only can successfully recommend the regions with potential event
spikes considering the ranking position but it can also precisely generate a short
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Table 2. Overall performance on different spike window size w

w mdl MRHR Prec Rec APC

@1% @3% @5% @1% @3% @5% @1% @3% @5%

2 SOS− EW .0172 .0188 .0191 .0277 .0174 .0124 .2534 .5038 .6110 .0451

SimpHP .0088 .0089 .0090 .0034 .0019 .0018 .0289 .0496 .0842 .0103

SpatHP .0017 .0021 .0023 .0036 .0029 .0025 .0375 .1129 .1590 .0043

TopicHP .0080 .0082 .0082 .0130 .0085 .0055 .1258 .2386 .2748 .0125

4 SOS− EW .0218 .0236 .0240 .1091 .0724 .0555 .2690 .5196 .6699 .1187

SimpHP .0059 .0060 .0060 .0126 .0070 .0060 .0279 .0475 .0660 .0118

SpatHP .0016 .0018 .0020 .0114 .0111 .0112 .0274 .0784 .1294 .0102

TopicHP .0082 .0089 .0090 .0474 .0315 .0205 .1089 .2226 .2434 .0250

10 SOS− EW .0219 .0254 .0259 .2000 .1526 .1229 .1911 .6734 .8554 .1851

SimpHP .0029 .0031 .0032 .0189 .0119 .0111 .0128 .0662 .0854 .0125

SpatHP .0003 .0007 .0007 .0167 .0181 .0193 .0109 .0691 .1025 .0151

TopicHP .0096 .0097 .0098 .0856 .0548 .0360 .1974 .2868 .3121 .0335

15 SOS− EW .0620 .0718 .0726 .4387 .3275 .2549 .3234 .6470 .8025 .3644

SimpHP .0070 .0072 .0072 .0445 .0291 .0254 .0336 .0526 .0676 .0301

SpatHP .0016 .0019 .0020 .0516 .0506 .0503 .0220 .0746 .1119 .0387

TopicHP .0083 .0091 .0092 .1739 .1212 .0802 .1035 .2081 .2267 .0622

The column “mdl” corresponds to different models. The best overall performance is bold.

ranked list for those event spikes precisely. As the ranking list size increases, per-
formances of MRHR remains similar after MRHR@3%; Prec decreases while
Rec increases due to the natural trade-off between these two metrics. SOS − EW
estimates the model parameters and makes predictions specifically for different
overdose categories compared to SpatHP which estimates the same parameters
for all event data aggregated together. This indicates that strategically clus-
tering overdose events based on the drug molecular structure can achieve better
performances than the model which solely relies on spatio-temporal information.
TopicHP jointly learns the clustering structure and model parameters and it can
be viewed as a competitive baseline. However, only the drug distribution in each
event is taken into account and drugs’ chemical structure is not included in the
model training. This may explain why TopicHP falls short of spikes recommen-
dation metrics compared to SOS − EW but is still better than other baselines.
Overall, SOS − EW leverages the information from geo-locations, event trigger-
ing dynamics, and drugs’ high level physical and chemical properties based on
2D structures altogether and precisely makes the recommendations for future
overdose event spikes.
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Table 3. Overall NDCG perfor-
mance

mdl @1% @3% @5%

SOS− EW .0322 .0637 .0842

SimpHP .0191 .0236 .0265

SpatHP .0092 .0179 .0262

TopicHP .0492 .0733 .0750

The column “mdl” corresponds to
different models. The best overall
performance is bold.

Table 3 presents the overall model per-
formances on NDCG when only evaluat-
ing each models ability to rank grid cells
(equivalent to ω = 0). The ranking qual-
ity increases as the size of the ranked list
grows larger (i.e., from 1% to 5%). Our
proposed SOS − EW outperforms the second
best baseline method TopicHP by 12.27%
at NDCG@5%, however, TopicHP is the
top performing model at 1% and 3%. These
results indicate that for the very highest risk
cells, spatial diffusion may play less of a role
and TopicHP and SOS − EW have similar performance. However, for flagging
neighborhoods instead of individual cells for spikes, SOS − EW is superior due
to its ability to model spatial diffusion of risk.

5 Implications for Practice

Results from our proposed system can be translated into more effective social
service delivery and intervention programming. When flagging the top 1% of pre-
dicted spikes defined in neighborhoods of approximately O(1 km2) in size and
5 days in length, the method captures around 25% of opioid spikes. These spa-
tial and temporal scales are similar in size to those used in predictive policing
[33] and by efficiently predicting the geographic diffusion of opioid-related tox-
ins (such as fentanyl), social service programs and first responders can develop
dynamic programs to best target areas where people face the highest risk of
overdose. Further research is needed to verify whether or not the results found
in Indianapolis in this study extend to other cities and rural areas.

Studies have revealed polydrug patterns whereby fentanyl is being detected
alongside cocaine and methamphetamines, which is contributing to overdose
deaths involving these substances [17,29]. Given the nature of this supply-side
poisoning among illicit drugs, the most feasible approach may be to empower and
provide persons who used drugs with the ability to test these substances. Drug
testing technologies (i.e., fentanyl test strips) allow drug users to understand
whether the drugs they use are contaminated with lethal substances, such as
fentanyl, which can allow them to adjust behaviors and prevent a potentially
fatal overdose [13]. Furthermore, the average of dispatch and response time for
emergency medical services (EMS) personnel to arrive when an overdose event
is reported is seven minutes on average1 and the time to results of many drug
test strips is usually less then minutes nowadays. Therefore, our system can
make a prediction in a short time so that the health/social workers can react
accordingly. More research is needed to extend the method in this paper, that

1 https://www.medicalnewsbulletin.com/response-time-emergency-medical-
services/.

https://www.medicalnewsbulletin.com/response-time-emergency-medical-services/
https://www.medicalnewsbulletin.com/response-time-emergency-medical-services/
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utilizes toxicology reports, to the application of drug test strips and other drug
testing tools (which may not be a thorough as a coroner’s report).

Public health services can deploy syringe services, such as retractable syringes
or exchange programs, that have been shown to reduce fatal opioid use [9,18].
From a policing perspective, officers can be equipped with nasal naloxone (or
Narcan) within high-risk opioid locations to reduce the likelihood of death from
an opioid overdose [7,39].
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Abstract. Gaussian processes (GPs) have been widely applied to machine learn-
ing and nonparametric approximation. Given existing observations, a GP allows
the decision maker to update a posterior belief over the unknown underlying func-
tion. Usually, observations from a complex system come with noise and decom-
posed feedback from intermediate layers. For example, the decomposed feedback
could be the components that constitute the final objective value, or the various
feedback gotten from sensors. Previous literature has shown that GPs can success-
fully deal with noise, but has neglected decomposed feedback. We therefore pro-
pose a decomposed GP regression algorithm to incorporate this feedback, leading
to less average root-mean-squared error with respect to the target function, espe-
cially when the samples are scarce. We also introduce a decomposed GP-UCB
algorithm to solve the resulting bandit problem with decomposed feedback. We
prove that our algorithm converges to the optimal solution and preserves the no-
regret property. To demonstrate the wide applicability of this work, we execute
our algorithm on two disparate social problems: infectious disease control and
weather monitoring. The numerical results show that our method provides signif-
icant improvement against previous methods that do not utilize these feedback,
showcasing the advantage of considering decomposed feedback.

Keywords: Decomposed feedback · Decomposed GP regression · D-GPUCB

1 Introduction

Many challenging sequential decision making problems involve interventions in com-
plex physical or social systems, where the system dynamics must be learned over time.
For instance, a challenge commonly faced by policymakers is to control disease out-
breaks [16], but the true process by which disease spreads in the population is not known
in advance. We study such problems from the perspective of online learning, where a
decision maker aims to optimize an unknown expensive objective function [2]. At each
step, the decision maker commits to an action and receives the objective value for that
action. For instance, a policymaker may implement a disease control policy [9,12] for
a given time period and observe the number of subsequent infections. This informa-
tion allows the decision maker to update their knowledge of the unknown function. The
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goal is to obtain low cumulative regret, which measures the difference in objective value
between the actions that were taken and the true (unknown) optimum.

This problem has been well-studied in optimization and machine learning. When
a parametric form is not available for the objective (as is often the case with complex
systems that are difficult to model analytically), a common approach uses a Gaussian
process (GP) as a nonparametric prior over smooth functions. This Bayesian approach
allows the decision maker to form a posterior distribution over the unknown function’s
values. Consequently, the GP-UCB algorithm, which iteratively selects the point with
the highest upper confidence bound according to the posterior, achieves a no-regret
guarantee [14].

While GP-UCB and similar techniques [3,17] have seen a great deal of interest in
the purely black-box setting, many physical or social systems naturally admit an inter-
mediate level of feedback. This is because the system is composed of multiple inter-
acting components, each of which can be measured individually. For instance, disease
spread in a population is a product of the interactions between individuals in differ-
ent demographic groups or locations [19], and policymakers often have access to esti-
mates of the prevalence of infected individuals within each subgroup [4,18]. The true
objective (total infections) is the sum of infections across the subgroups. Similarly, cli-
mate systems involve the interactions of many different variables (heat, wind, humidity,
etc.) which can be sensed individually then combined in a nonlinear fashion to produce
outputs of interest (e.g., an individual’s risk of heat stroke) [15]. Prior work has stud-
ied the benefits of using additive models [6]. However, they only examine the special
case where the target function decomposes into a sum of lower-dimensional functions.
Motivated by applications such as flu prevention, we consider the more general set-
ting where the subcomponents are full-dimensional and may be composed nonlinearly
to produce the target. This general perspective is necessary to capture common pol-
icy settings which may involve intermediate observables from simulation or domain
knowledge.

However, to our knowledge, no prior work studies the challenge of integrating such
decomposed feedback in online decision making. Our first contribution is to remedy
this gap by proposing a decomposed GP-UCB algorithm (D-GPUCB). D-GPUCB uses
a separate GP to model each individual measurable quantity and then combines the
estimates to produce a posterior over the final objective. Our second contribution is a
theoretical no-regret guarantee for D-GPUCB, ensuring that its decisions are asymp-
totically optimal. Third, we prove that the posterior variance at each step must be less
than the posterior variance of directly using a GP to model the final objective. This for-
mally demonstrates that more detailed modeling reduces predictive uncertainty. Finally,
we conduct experiments in two domains using real-world data: flu prevention and heat
sensing. In each case, D-GPUCB achieves substantially lower cumulative regret than
previous approaches.
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2 Preliminaries

2.1 Noisy Black-Box Optimization

Given an unknown black-box function f : X → R where X ⊂ R
n, a learner is able to

select an input x ∈ X and access the function to see the outcome f(x) – this encom-
passes one evaluation. Gaussian process regression [11] is a non-parametric method
to learn the target function using Bayesian methods [5,13]. It assumes that the target
function is an outcome of a Gaussian process with given kernel k(x,x′) (covariance
function). Gaussian process regression is commonly used and only requires an assump-
tion on the function smoothness. Moreover, Gaussian process regression can handle
observation error. It allows the observation at point xt to be noisy: yt = f(xt) + εt,
where εt ∼ N(0, σ2I).

2.2 Decomposition

In this paper, we consider a modification to the Gaussian process regression process.
Suppose we have some prior knowledge of the unknown reward function f(x) such
that we can write the unknown function as a combination of known and unknown sub-
functions:

Definition 1 (Linear Decomposition).

f(x) =
∑J

j=1
gj(x)fj(x) (1)

where fj , gj : Rn → R.

Here gj(x) are known, deterministic functions, but fj(x) are unknown functions that
generate noisy observations. For example, in the flu prevention case, the total infected
population can be written as the summation of the infected population at each age [4].
Given treatment policy x, we can use fj(x) to represent the unknown infected pop-
ulation at age group j with its known, deterministic weighted function gj(x) = 1.
Therefore, the total infected population f(x) can be simply expressed as

∑J
j=1 fj(x).

Interestingly, any deterministic linear composition of outcomes of Gaussian pro-
cesses is still an outcome of Gaussian process. That means if all of the fj are generated
from Gaussian processes, then the entire function f can also be written as an outcome
of another Gaussian process.

Next, we generalize this definition to the non-linear case, which we call a general
decomposition:

Definition 2 (General Decomposition).

f(x) = g(f1(x), f2(x), ..., fJ (x)) (2)

The function g can be any deterministic function (e.g. polynomial, neural network).
Unfortunately, a non-linear composition of Gaussian processes may not be a Gaussian
process, so we cannot guarantee function f to be an outcome of a Gaussian process.
We will cover the result of linear decomposition first and then generalize it to the cases
with general decomposition.
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2.3 Gaussian Process Regression

Although Gaussian process regression does not require rigid parametric assumptions, a
certain degree of smoothness is still needed to ensure its guarantee of no-regret. We can
model f as a sample from a GP: a collection of random variables, one for each x ∈ X .
A GP(μ(x), k(x,x′)) is specified by its mean function μ(x) = E[f(x)] and covariance
function k(x,x′) = E[(f(x) − μ(x))(f(x′) − μ(x′))]. For GPs not conditioned on
any prior, we assume that μ(x) ≡ 0. We further assume bounded variance k(x,x) ≤ 1.
This covariance function encodes the smoothness condition of the target function f
drawn from the GP.

For a noisy sample yT = [y1, ..., yT ]� at points AT = {xt}t∈[T ], yt = f(xt) +
εt ∀t ∈ [T ] with εt ∼ N(0, σ2(xt)) Gaussian noise with variance σ2(xt), the posterior
over f is still a Gaussian process with posterior mean μT (x), covariance kT (x,x′) and
variance σ2

T (x):

μT (x) = kT (x)�K−1
T kT (x′), (3)

kT (x,x′) = k(x,x′) − kT (x)�K−1
T k(x′), (4)

σ2
T (x) = kT (x,x′) (5)

where kT (x) = [k(x1,x), ..., k(xT ,x)]�, and KT is the positive definite kernel
matrix [k(x,x′)]x,x′∈AT

+ diag([σ2(xt)]t∈[T ]).

Algorithm 1. GP Regression

1 Input: kernel k(x,x′), noise function σ(x), and previous samples {(xt, yt)}t∈[T ]

2 Return: kT (x,x′), μT (x), σ2
T (x)

2.4 Bandit Problem with Decomposed Feedback

Considering the output value of the target function as the learner’s reward (penalty),
the goal is to learn the unknown underlying function f while optimizing the cumulative
reward. This is usually known as an online learning or multi-arm bandit problem [1].
In this paper, given the knowledge of deterministic decomposition function g (Defi-
nition 1 or Definition 2), in each round t, the learner chooses an input xt ∈ X and
observes the value of each unknown decomposed function fj perturbed by a noise:
yj,t = fj(xt) + εj,t, εj,t ∼ N(0, σ2

j ) ∀j ∈ [J ]. At the same time, the learner
receives the composed reward from this input xt, which is yt = g(y1,t, y2,t, ..., yJ,t) =
f(xt) + εt where εt is an aggregated noise. The goal is to maximize the sum of noise-
free rewards

∑T
t=1 f(xt), which is equivalent to minimizing the cumulative regret

RT =
∑T

t=1 rt =
∑T

t=1 f(x∗) − f(xt), where x∗ = argmaxx∈X f(x) and indi-
vidual regret rt = f(x∗) − f(xt).

This decomposed feedback is related to the semi-bandit setting, where a decision
is chosen from a combinatorial set and feedback is received about individual elements
of the decision [10]. Our work is similar in that we consider an intermediate feedback
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model which gives the decision maker access to decomposed feedback about the under-
lying function. However, in our setting a single point is chosen from a continuous set,
rather than multiple items from a discrete one. Additional feedback is received about
components of the objective function, not the items chosen. Hence, the technical chal-
lenges are quite different.

3 Problem Statement and Background

Using the flu prevention as an example, a policymaker will implement a yearly disease
control policy and observe the number of subsequent infections. A policy is an input
xt ∈ R

n, where each entry xt,i denotes the extent to vaccinate the infected people in
age group i. For example, if the government spends more effort xt,i in group i, then the
people in this group will be more likely to get a flu shot.

Given the decomposition assumption and samples (previous policies) at points
xt ∀t ∈ [T ], including all the function values f(xt) (total infected population)
and decomposed function values fj(xt) (infected population in group j), the learner
attempts to learn the function f while simultaneously minimizing regret. Therefore, we
have two main challenges: (i) how best to approximate the reward function using the
decomposed feedback and decomposition (non-parametric approximation), and (ii) how
to use this estimation to most effectively reduce the average regret (bandit problem).

3.1 Regression: Non-parametric Approximation

Our first aim is to fully utilize the decomposed problem structure to get a better
approximation of f(x). The goal is to learn the underlying disease pattern faster by
using the decomposed problem structure. Given the linear decomposition assumption
that f(x) =

∑J
j=1 gj(x)fj(x) and noisy samples at points {xt}t∈[T ], the learner

can observe the outcome of each decomposed function fj(xt) at each sample point
xt ∀t ∈ [T ]. Our goal is to provide a Bayesian update to the unknown function which
fully utilizes the learner’s knowledge of the decomposition.

3.2 Bandit Problem: Minimizing Regret

In the flu example, each annual flu-awareness campaign is constrained by a budget,
and we assume policymaker does not know the underlying disease spread pattern. At
the beginning of each year, the policymaker chooses a new campaign policy based on
the previous years’ results and observes the outcome of this new policy. The goal is to
minimize the cumulative regret (all additional infections in prior years) while learning
the underlying unknown function (disease pattern).

We will show how a decomposed GP regression, with a GP-UCB algorithm, can be
used to address these challenges.
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4 Decomposed Gaussian Process Regression

First, we propose a decomposed GP regression (Algorithm 2). The idea behind decom-
posed GP regression is as follows: given the linear decomposition assumption (Defini-
tion 1), run Gaussian process regression for each fj(x) individually, and get the aggre-
gated approximation by f(x) =

∑J
j=1 gj(x)fj(x) (illustrated in Fig. 1).

(a) Decomposed functions f1, f2 and their GP regression posteriors.

(b) Entire target function f = f1 + f2 and its
sampled values

(c) The posteriors of decomposed GP
regression and GP regression

Fig. 1. Illustration of the comparison between decomposed GP regression (Algorithm 2) and stan-
dard GP regression. Decomposed GP regression shows a smaller average variance (0.878 v.s.
0.943) and a better estimate of the target function.

Assuming we have T previous samples with input x1,x2, ...,xT and the noisy
outcome of each individual function yj,t = fj(xt) + εj,t ∀j ∈ [J ], t ∈ [T ],
where εj,t ∼ N(0, σ2

j ), the outcome of the target function f(x) can be computed

as yt =
∑J

j=1 gj(xt)yj,t. Further assume the function fj(x) is an outcome of
GP (0, kj) ∀j. Therefore the entire function f is also an outcome of GP (0, k) where
k(x,x′) =

∑J
j=1 gj(x)kj(x,x′)gj(x′).

We are going to compare two ways to approximate the function f(x) using existing
samples. (i) Directly use Algorithm 1 with the composed kernel k(x,x′) and noisy
samples {(xt, yt)}t∈[T ] – the typical GP regression process. (ii) For each j ∈ [J ],
first run Algorithm 1 with kernel kj(x,x′) and noisy samples {(xt, yj,t)}t∈[T ]. Then
compose the outcomes with the deterministic weighted function gj(x) to get f(x).
This is shown in Algorithm 2.

In order to analytically compare Gaussian process regression (Algorithm 1) and
decomposed Gaussian process regression (Algorithm 2), we are going to compute the
variance (uncertainty) returned by both algorithms. We will show that the latter variance
is smaller than the former. Proofs are in the Appendix for brevity.

Proposition 1. The variance returned by Algorithm 1 is

σ2
T,entire(x) = k(x,x) −

∑

i,j

z�
i (

∑

l

DlKl,TDl)−1zj (6)

where Dj = diag([gj(x1), ..., gj(xT )]) and zi = Dikj,T (x)gj(x) ∈ R
T .
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Algorithm 2. Decomposed GP Regression

1 Input: kernel functions kj(x,x′) to each fj(x) and previous samples
(xt, yj,t) ∀j ∈ [J ], t ∈ [T ]

2 for j = 1, 2..., J do
3 Let μj,T (x), kj,T (x,x′), σ2

j,T (x) be the output of GP regression with kj(x,x′) and
(xt, yj,t).

4 Return: kT (x,x′) =
∑J

j=1 g2
j (x)kj,T (x,x′)g2

j (x
′), μT (x) =

∑J
j=1 gj(x)μj,T (x),

σ2
T (x) = kT (x,x)

Proposition 2. The variance returned by Algorithm 2 is

σ2
T,decomp(x) = k(x,x) −

∑
l
z�

l (DlKl,TDl)−1zl (7)

In order that our approach has lower variance, we first recall the matrix-fractional
function and its convex property.

Lemma 1. Matrix-fractional function h(X,y)=y�X−1y is defined and also convex
on dom f ={(X,y) ∈ ST

+ × R
T }.

Now we are ready to compare the variance provided by Propositions 1 and 2.

Theorem 1. The variance provided by decomposed Gaussian process regression
(Algorithm 2) is less than or equal to the variance provided by Gaussian process regres-
sion (Algorithm 1), which implies the uncertainty by using decomposed Gaussian pro-
cess regression is smaller.

Proof (Proof sketch). In order to compare the variance given by Propositions 1 and 2,
we calculate the difference of Eqs. 6 and 7. Their difference can be rearranged as a
Jensen inequality with the form of Matrix-fractional function (Lemma 1), which turns
out to be convex. By Jensen inequality, their difference is non-negative, which implies
the variance given by decomposed GP regression is no greater than the variance given
by GP regression.

Theorem 1 implies that decomposed GP regression provides a posterior with smaller
variance, which could be considered the uncertainty of the approximation. In fact, the
posterior belief after the GP regression is still a Gaussian process, which implies the
underlying target function is characterized by a joint Gaussian distribution, where a
smaller variance directly implies a more concentrated Gaussian distribution, leading to
less uncertainty and smaller root-mean-squared error. Intuitively, this is due to Algo-
rithm 2 adopts the decomposition knowledge but Algorithm 1 does not. This contribu-
tion for handling decomposition in the GP regression context is very general and can be
applied to many problems. We will show some applications of this idea in the following
sections, focusing first on how a linear and generalized decompositions can be used to
augment the GP-UCB algorithm for multi-armed bandit problems.
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5 Decomposed GP-UCB Algorithm

The goal of a traditional bandit problem is to optimize the objective function f(x) by
minimizing the regret. However, in our bandit problem with decomposed feedback, the
learner is able to access samples of individual functions fj(x). We first consider a linear
decomposition f(x) =

∑J
j=1 gj(x)fj(x).

In [14], they proposed the GP-UCB algorithm for classic bandit problems and
proved that it is a no-regret algorithm that can efficiently achieve the global optimal
objective value. A natural question arises: can we apply our decomposed GP regression
(Algorithm 2) and also achieve the no-regret property? This leads to our second con-
tribution: the decomposed GP-UCB algorithm, which uses decomposed GP regression
when decomposed feedback is accessible. This algorithm can incorporate the decom-
posed feedback (the outcomes of decomposed function fj), achieve a better approx-
imation at each iteration while maintaining the no-regret property, and converge to a
globally optimal value.

Algorithm 3. Decomposed GP-UCB

1 Input: Input space X ; GP priors μj,0, σj,0, kj ∀j ∈ [J ]
2 for t = 1,2,... do
3 Compute all mean μj,t−1 and variance σ2

j,t−1∀j

4 μt−1(x) =
∑J

j=1 gj(x)μj,t−1(x)
5 σ2

t−1(x) =
∑J

j=1 g2
j (x)σ

2
j,t−1

6 Choose xt = argmaxx∈X μt−1(x) +
√

βtσt−1(x)
7 Sample yj,t = fj(xt) ∀j ∈ [J ]
8 Perform Bayesian update to obtain μj,t, σj,t ∀j ∈ [J ]

Theorem 2. Let δ ∈ (0, 1) and βt = 2 log(|X |t2π2/6δ). Running decomposed GP-
UCB (Algorithm 3) for a composed sample f(x) =

∑
j=1 gj(x)fj(x) with bounded

variance kj(x,x) ≤ 1 and each fj ∼ GP (0, kj(x,x′)), we obtain a regret bound

of O(
√

T log |X |∑J
j=1 B2

j γj,T ) with high probability, where Bj = maxx∈X |gj(x)|.
Precisely,

Pr
{
RT ≤

√
C1TβT

∑J

j=1
B2

j γj,T ∀T ≥1
} ≥ 1 − δ (8)

where C1 = 8/ log(1 + σ−2) with noise variance σ2.

We present Algorithm 3, which replaces the Gaussian process regression in GP-
UCB with our decomposed Gaussian process regression (Algorithm 2). According to
Theorem 1, our algorithm takes advantage of decomposed feedback and provides a
more accurate and less uncertain approximation at each iteration. We also provide a
regret bound in Theorem 2, which guarantees no-regret property to Algorithm 3.

According to the linear decomposition and the additive and multiplicative properties
of kernels, the entire underlying function is still an outcome of GP with a composed
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kernel k(x,x′) =
∑J

j=1 gj(x)kj(x,x′)gj(x′), which implies that GP-UCB algorithm

can achieve a similar regret bound by normalizing the kernel k(x,x′) ≤ ∑J
j=1 B2

j =
B2. The regret bound of GP-UCB can be given by:

Pr{RT ≤
√

C1TβT B2γentire,T ∀T ≥ 1} ≥ 1 − δ (9)

where γenitre,T is the upper bound on the information gain I(yT ; fT ) of the composed
kernel k(x,x′).

But due to Theorem 1, D-GPUCB can achieve a lower variance and more accurate
approximation at each iteration, leading to a smaller regret in the bandit setting, which
will be shown to empirically perform better in the experiments.

5.1 No-Regret Property and Benefits of D-GPUCB

Previously, in order to guarantee a sublinear regret bound to GP-UCB, we require an
analytical, sublinear bound γentire,T on the information gain. [14] provided several ele-
gant upper bounds on the information gain of various kernels. However, in practice, it is
hard to give an upper bound to a composed kernel k(x,x′) and apply the regret bound
(Inequality 9) provided by GP-UCB in the decomposed context.

Instead, D-GPUCB and the following generalized D-GPUCB provide a clearer
expression to the regret bound, where their bounds (Theorems 2 and 3) only relate to
upper bounds γj,T of the information gain of each kernel kj(x,x′). This resolves the
problem of computing an upper bound of a composed kernel. We use various sublin-
ear upper bounds of different kernels, which have been widely studied in prior litera-
ture [14].

5.2 Generalized Decomposed GP-UCB Algorithm

We now consider the general decomposition (Definition 2):

f(x) = g(f1(x), f2(x), ..., fJ (x))

To achieve the no-regret property, we further require the function g to have bounded par-
tial derivatives |∇jg(x)| ≤ Bj ∀j ∈ [J ]. This corresponds to the linear decomposition
case, where |∇jg| = |gj(x)| ≤ Bj .

Since, a non-linear composition of Gaussian processes is no longer a Gaussian pro-
cess, the standard GP-UCB algorithm does not have any guarantees for this setting.
However, we show that our approach, which leverages the special structure of the prob-
lem, still enjoys a no-regret guarantee:

Theorem 3. By running generalized decomposed GP-UCB with hyperparameter βt =
2 log(|X |Jt2π2/6δ) for a composed sample f(x) = g(f1(x), ..., fJ (x)) of GPs
with bounded variance kj(x,x) ≤ 1 and each fj ∼ GP (0, kj(x,x′)). we obtain

a regret bound of O(
√

T log |X |∑J
j=1 B2

j γj,T ) with high probability, where Bj =
max
x∈X

|∇jg(x)|. Precisely,

Pr
{
RT ≤

√
C1TβT

∑J

j=1
B2

j γj,T ∀T ≥ 1
} ≥ 1 − δ (10)
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Algorithm 4. Generalized Decomposed GP-UCB

1 Input: Input space X ; GP priors μj,0, σj,0, kj ∀j ∈ [J ]
2 for t = 1,2,... do
3 Compute the aggregated mean and variance bound:
4 μt−1(x) = g(μ1,t−1(x), ..., μJ,t−1(x))

5 σ2
t−1(x) = J

J∑

j=1

B2
j σ2

j,t−1(x)

6 Choose xt = argmaxx∈X μt−1(x) +
√

βtσt−1(x)
7 Sample yj,t = fj(xt) ∀j ∈ [J ]
8 Perform Bayesian update to obtain μj,t, σj,t ∀j ∈ [J ]

where C1 = 8/ log(1 + σ−2) with noise variance σ2.

The intuition is that so long as each individual function is drawn from a Gaussian
process, we can still perform Gaussian process regression on each function individually
to get an estimate of each decomposed component. Based on these estimates, we com-
pute the corresponding estimate to the final objective value by combining the decom-
posed components with the function g. Since the gradient of function g is bounded, we
can propagate the uncertainty of each individual approximation to the final objective
function, which allows us to get a bound on the total uncertainty. Consequently, we can
prove a high-probability bound between our algorithm’s posterior distribution and the
target function, which enables us to bound the cumulative regret by a similar technique
as Theorem 2.

The major difference for general decomposition is that the usual GP-UCB algo-
rithm no longer works here. The underlying unknown function may not be an outcome
of Gaussian process. Therefore the GP-UCB algorithm does not have any guarantees
for either convergence or the no-regret property. In contrast, D-GPUCB algorithm still
works in this general case if the learner is able to attain the decomposed feedback.

Our result greatly enlarges the feasible functional space where GP-UCB can be
applied. We have shown that the generalized D-GPUCB preserves the no-regret prop-
erty even when the underlying function is a composition of Gaussian processes. Given
the knowledge of decomposition and decomposed feedback, based on Theorem 3, the
functional space that generalized D-GPUCB algorithm can guarantee no-regret is closed
under arbitrary bounded-gradient function composition. This leads to a very general
functional space, showcasing the contribution of our algorithm.

5.3 Continuous Sample Space

All the above theorems are for discrete sample spaces X . However, most real-world
scenarios have a continuous space. [14] used the discretization technique to reduce
the compact and convex continuous sample space to a discrete case by using a larger
exploration constant:

βt = 2 log(2t2π2/(3δ)) + 2d log(t2dbr
√

log(4da/δ))
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while assuming Pr{supx∈X |∂f/∂xi|>L}≤ae−(L/b)2 . (In the general decomposition
case, βt = 2 log(2Jt2π2/(3δ))+2d log(t2dbr

√
log(4da/δ))). All of our proofs directly

follow using the same technique. Therefore the no-regret property and regret bound also
hold in continuous sample spaces.

6 Experiments

In this section, we run several experiments to compare decomposed Gaussian process
regression (Algorithm 2), D-GPUCB (Algorithm 3), and generalized D-GPUCB (Algo-
rithm 4). We also test on both discrete sample space and continuous sample space. All
of our examples show a promising convergence rate and also improvement against the
GP-UCB algorithm, again demonstrating that more detailed modeling reduces the pre-
dictive uncertainty.

6.1 Decomposed Gaussian Process Regression

For the decomposed Gaussian process regression, we compare the average standard
deviation (uncertainty) provided by GP regression (Algorithm 1) and decomposed GP
regression (Algorithm 2) over varying number of samples and number of decomposed
functions. We use the following three common types of stationary kernel [11]:

– Square Exponential kernel is k(x,x′) = exp(−(2l2)−1 ‖x − x′‖2), l is a length-
scale hyper parameter.

– Matérn kernel is given by k(x,x′)= (21−ν/Γ (ν))rνBν(r), r=(
√
2ν/l) ‖x − x′‖,

where ν controls the smoothness of sample functions and Bν is a modified Bessel
function.

– Rational Quadratic kernel is k(x,x′) = (1 + ‖x − x′‖2 /(2αl2))−α. It can be seen
as a scale mixture of square exponential kernels with different length-scales.

For each kernel category, we first draw J kernels with random hyper-parameters. We
then generate a random sample function fj from each corresponding kernel kj as the
target function, combined with the simplest linear decomposition (Definition 1) with
gj(x) ≡ 1∀j. For each setting and each T ≤ 50, we randomly draw T samples as the
previous samples and perform both GP regression and decomposed GP regression. We
record the average improvement in terms of root-mean-squared error (RMSE) against
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Fig. 2. Average improvement for different kernels (with trend line) using decomposed GP regres-
sion and GP regression, in RMSE
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Fig. 3. Comparison of cumulative regret: D-GPUCB, GP-UCB, and various heuristics on syn-
thetic (a) and real data (b, c)

the underlying target function over 100 independent runs for each setting. We also run
experiments on flu domain with square exponential kernel based on real data and SIR
model [4], which is illustrated in Fig. 2(d).

Empirically, our method reduces the RMSE in the model’s predictions by 10–15%
compared to standard GP regression (without decomposed feedback). This trend holds
across kernels, and includes both synthetic data and the flu domain (which uses a real
dataset). Such an improvement in predictive accuracy is significant in many real-world
domains. For instance, CDC-reported 95% confidence intervals for vaccination-averted
flu illnesses for 2015 range from 3.5M–7M and averted medical visits from 1.7M–3.5M.
Reducing average error by 10% corresponds to estimates which are tighter by hundreds
of thousands of patients, a significant amount in policy terms. These results confirm our
theoretical analysis in showing that incorporating decomposed feedback results in more
accurate estimation of the unknown function.

6.2 Comparison Between GP-UCB and D-GPUCB

We now move the online setting, to test whether greater predictive accuracy results in
improved decision making. We compare our D-GPUCB algorithm and generalized D-
GPUCB with GP-UCB, as well as common heuristics such as Expected Improvement
(EI) [8] and Most Probable Improvement (MPI) [7]. For all the experiments, we run 30
trials on all algorithms to find the average regret.

Synthetic Data (Linear Decomposition with Discrete Sample Space): For synthetic
data, we randomly draw J = 10 square exponential kernels with different hyper-
parameters and then sample random functions from these kernels to compose the entire
target function. The sample noise is set to be 10−4. The sample space X = [0, 1] is
uniformly discretized into 1000 points. We follow the recommendation in [14] to scale
down βt by a factor 5 for both GP-UCB and D-GPUCB algorithm. We run each algo-
rithm for 100 iterations with δ = 0.05 for 30 trials (different kernels and target functions
each trial), where the cumulative regrets are shown in Fig. 3(a), and average regret in
Fig. 4(a).

Flu Prevention (Linear Decomposition with Continuous Sample Space): We con-
sider a flu age-stratified SIR model [4] as our target function. The population is stratified
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Fig. 4. Comparison of average regret: D-GPUCB, GP-UCB, and various heuristics on synthetic
(a) and real data (b, c)

into several age groups: young (0–19), adult (20–49), middle aged (50–64), senior (65–
69), elder (70+). The SIR model allows the contact matrix and susceptibility of each
age group to vary. Our input here is the vaccination rate x ∈ [0, 1]5 with respect to
each age group. Given a vaccination rate x, the SIR model returns the average sick
days per person f(x) within one year. The model can also return the contribution to
the average sick days from each age group j, which we denote as fj(x). Therefore we
have f(x) =

∑5
j=1 fj(x), a linear decomposition. The goal is to find the optimal vac-

cination policy which minimizes the average sick days subject to budget constraints.
Since we do not know the covariance kernel functions in advance, we randomly draw
1000 samples and fit a composite kernel (composed of square exponential kernel and
Matérn kernel) before running UCB algorithms. We run all algorithms and compare
their cumulative regret in Fig. 3(b) and average regret in Fig. 4(b).

Perceived Temperature (General Decomposition with Discrete Sample Space):
The perceived temperature is a combination of actual temperature, humidity, and wind
speed. When the actual temperature is high, higher humidity reduces the body’s abil-
ity to cool itself, resulting a higher perceived temperature; when the actual temperature
is low, the air motion accelerates the rate of heat transfer from a human body to the
surrounding atmosphere, leading to a lower perceived temperature. All of these are
nonlinear function compositions. We use the weather data collected from 2906 sensors
in United States provided by OpenWeatherMap. Given an input location x ∈ X , we
can access to the actual temperature f1(x), humidity f2(x), and wind speed f3(x). In
each test, we randomly draw one third of the entire data to learn the covariance ker-
nel functions. Then we run generalized D-GPUCB and all the other algorithms on the
remaining sensors to find the location with highest perceived temperature. The result is
averaged over 30 different tests and is also shown in Figs. 3(c) and 4(c).

Discussion: In the bandit setting with decomposed feedback, Fig. 3 shows a 10%−20%
improvement in cumulative regret for both synthetic (Fig. 3(a)) and real data (Fig. 3(b),
(c)). As in the regression setting, such improvements are highly significant in policy
terms; a 10% reduction in sickness due to flu corresponds to hundreds of thousands
of infections averted per year. The benefit to incorporating decomposed feedback is
particularly large in the general decomposition case (Fig. 3(c)), where a single GP is a
poor fit to the nonlinearly composed function. Figure 4 shows the average regret of each
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algorithm (as opposed to the cumulative regret). Our algorithm’s average regret tends
to zero. This allows us to empirically confirm the no-regret guarantee for D-GPUCB
in both the linear and general decomposition settings. As with the cumulative regret,
D-GPUCB uniformly outperforms the baselines.

7 Conclusions

We propose algorithms for nonparametric regression and online learning which exploit
the decomposed feedback common in real world sequential decision problems. In the
regression setting, we prove that incorporating decomposed feedback improves predic-
tive accuracy (Theorem 1). In the online learning setting, we introduce the D-GPUCB
algorithms (Algorithm 3 and Algorithm 4) and prove corresponding no-regret guaran-
tees. We conduct experiments in both real and synthetic domains to investigate the per-
formance of decomposed GP regression, D-GPUCB, and generalized D-GPUCB. All
show significant improvement against GP-UCB and other methods that do not consider
decomposed feedback, demonstrating the benefit that decision makers can realize by
exploiting such information.
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Abstract. The smart cities concept - use of connected services and intel-
ligent systems to support decision making in cities governance - aims to
build better sustainability and living conditions for urban spaces, which
are more complex every day. This work expects to optimize the waste
collection circuits for non-residential customers in a city in Portugal. It is
developed through the implementation of a simple, low-cost methodology
when compared to commercial-available sensor systems. The main goal is
to build a classifier for each client, being able to forecast the presence or
absence of containers and, in a second step, predict how many containers
of glass, paper or plastic would be available to be collected. Data were
acquired during the period of one year, from January to December 2017,
from more than 100 customers, resulting in a 26.000+ records dataset.
Due to its degree of interpretability, we use Decision trees, implemented
with a sliding window, which ran through the months of the year, stack-
ing it one-by-one and/or merging few groups aiming the best correct
predictions score. This project results in more efficient waste-collection
routes, increasing the operation profits and reducing both costs and fuel-
consumption, therefore diminishing it environmental footprint.

Keywords: Data mining for social good · Smart cities · Waste
collection

1 Introduction

As the concentration of people increases in cities all over the world [1], more
important becomes the policies to deal with waste. The mean waste weight pro-
duced by every person in European Union during 2010 was 5.2 tons. In the
specific case of Portugal, 1.35 tons were produced per person in 2012, where
69% was recovered [4]. This process of finding a new destination for what was
discarded is also called Circular Economy. It can be done not only by revamp-
ing used aluminum cans into new ones, but, for example, composting organic
leftovers, transforming it in powerful fertilizers.

In Northern Portugal, one company is responsible for dealing with the waste
collection and treatment over several cities. One service it provides is the door-
to-door non-residential collection, where the signing customers receive three dif-
ferent colored containers (rigid or plastic bags), which they should separately fill
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with papers and cartons, plastic and general packages, and glass. In the city and
collection circuits analyzed in this study, 120-L container bags were distributed
to the customers. Those bags were picked-up via appropriate container vehicles
that follows a pre-determined route. This way of picking up the waste is report-
edly more efficient when compared with the clients having to move the waste to
another place [2]. The pre-scheduled itinerary is sometimes not followed, due to
the overfilling of the trucks. Occasionally, some customers do not have any full
bag to deliver, turning inefficient the route. The collection cost itself counts for
up to 70% of the total cost, according to [3].

Intending to optimize the collection routes this project was built. First, trying
to predict the existence or not of waste to be gathered. Then, in a second step,
forecasting how many bags would be available to be picked up. Both predictions
were made for each customer. There are commercially available routing optimizer
systems, which are used for this purpose. However, such schemes usually depend
on sensor readings (e.g., to check how full the truck is), what would not be
possible in this application due the fact that it uses plastic bags as containers.
Another limitation are their elevated costs.

The proposed predictor was developed in a low-cost way, using artificial intel-
ligence and the data already registered by the employees responsible for the waste
collection. The results obtained by the predictor should be fed into the company
route design tool.

2 Methodology

2.1 Preprocessing

All data used in this project was gathered by the people responsible for the
waste collection, namely the truck driver and its assistant. They should manually
register the date, client’s name, address, and type of business, if there were
delivered any bags or not, and, if positive, how many bags of each type. The
data was logged for each one of the 141 customers during the period of one year,
from January to December 2017, generating more than 26.000 records. This
dataset was then adjusted, first, the costumers’ addresses were converted into a
new feature called centrality. This categorical variable with 3 classes, describes
how centralized the client is in a current collection area. Another change was
the transformation of the date, originally in the format dd-mm-yyyy, into two
variables: weekday and month. Other features were also introduced:

– Climate - cold, warm or hot;
– Week number - 1, 2, 3 or 4;
– Proximity to a holiday or extended weekend - yes or no.

2.2 Model Training

The technique chosen to be used was Decision Trees, due to the main factor its
results could be easily plotted and interpreted. It was implemented using the
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scikit-learn [5] library in Python [6]. The response-variable for the first training
was imbalanced, as there was way more days of waste delivered by the costumers
than the opposite. Hence, the most appropriate scoring method are Sensitivity,
Recall and F1-Score. As input, the full dataset was used for training. In this
case it uses Leave One Out to validate the model, as there were some months
with few examples to be used. Sliding window concept was also used during
the model training. First, it was fed with January and predicted the results for
February. Then, fed with February to predict March, and so on following this
pattern. The second and third approaches used the two and the three previous
months, respectively, to predict the next one (e.g., train with March and April
to predict May, train with March, April, and May to predict June).

3 Results and Discussion

The results are presented in three parts: The first is a fast analysis of the dataset.
The second concerns the primary objective, the prediction of the presence or not
of waste to be collected. Then, the second objective is discussed, the forecast of
the quantity of containers.

3.1 Analysis of the Dataset

When analyzing the dataset regarding the day with higher collection, Friday is
the first one, followed by Wednesday and Monday. It is important to mention
that there are no collections on weekends. Monday could be expected to be a
peak day, especially for restaurants that tend to have more customers over the
weekend. However it does not happen. This can be explained by the fact that
many of these establishments, in the studied area, close early on Saturdays and
do not open on Sundays. Also, there are no relevant peaks which could be related
to the proximity to holidays or extended weekends. On the other hand, there is
a clear trend of waste increasing during summer vacations - from the end of July
until the end of August. Despite those trends, it could not be observed other
traces of seasonality in the dataset.

3.2 First Objective - Presence or Absence of Waste

As the model is trained individually for each one of the 141 customers, it was
decided that the best way to present the results is using a histogram counting
the number of customers and their score tiers and to create a table dividing the
percentage of customers in scores above as: 95%, 90%, 85% and 80%. The results
of the predictor trained with the whole dataset at once, i.e., training the model
with all months at once, is presented in the Table 1 and Fig. 1.

It can be seen that 80% of the data was predicted scoring more than 80% on
F1 score, and only 46.67% reached more than 95%. Looking at the histogram it
is possible to see a spike around the 100% bin, and a concentration around the
80% score.
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Table 1. Training with full data - scores.

Full Year

Precision Recall F1 Score

>95% 46.67 46.67 46.67

>90% 55.24 55.24 55.24

>85% 66.67 66.67 66.67

>80% 80.00 80.00 80.00

Fig. 1. Training with full data - histogram.

When feeding the training with one month and prediction the following,
named here as “1p1”, the result improve significantly, as shown in Table 2 and
Fig. 2.

Table 2. Training with 1p1 - scores

1p1

Precision Recall F1 Score

>95% 21.90 20.95 20.95

>90% 64.76 72.38 58.10

>85% 97.14 96.19 96.19

>80% 100.00 99.05 99.05

Note that 64.76% of the predictions reached more than 90% in precision,
and 100% scored above 80%. Now it is possible to see that regarding precision,
there is a wider concentration around the 90% score when comparing to the
concentration around 90% recall score. However, the F1 results have presented
distribution more similar to the precision score.
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Fig. 2. Training with 1p1 - histogram.

The results for the training with two months and prediction for the next one,
named “2p1”, is presented in Table 3 and Fig. 3.

Table 3. Training with 2p1 - scores.

2p1

Precision Recall F1 Score

>95% 20.95 19.05 18.10

>90% 45.71 52.38 43.81

>85% 85.71 84.76 83.81

>80% 100.00 99.05 100.00

All customers reached more than 80% precision score, while 20.95% were
above 95%. It is possible to note that precision histogram has an elevated con-
centration immediately bellow the 90% tier, while recall and F1 score depicts
similar distributions.

At Table 4 and Fig. 4 are presented the results for the case when three months
were used for training and predicting the following month, named here “3p1”.

It can be seen 80.95% of the predictions reached more than 85% of precision.
Looking at the F1 histogram it can be noted a concentration around 90% score
while both precision and recall show a more spiked trend.

Analyzing the results, it is interesting to note that when training the model
with all months at once it is reached the highest concentration of predictions
above 95%, summing 46.67% of forecasts in this group. However, its results
among the other tiers are poor when compared to the other models which used
the sliding window approach.
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Fig. 3. Training with 2p1 - histogram.

Table 4. Training with 3p1 - scores.

3p1

Precision Recall F1 Score

>95% 18.10 20.95 20.00

>90% 41.90 53.33 41.90

>85% 80.95 81.90 78.10

>80% 97.14 98.10 94.29

Fig. 4. Training with 3p1 - histogram.
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In this group, the best scores are reached when training used only one month,
i.e., forgetting the past results. It can be seen through all the four chosen ranges:
95%, 90%, 85%, and 80% scores. Probably this more accurate result can be
explained by the fact that the behavior of the customers vary across the year,
and previous knowledge acquired by the model will have no positive influence in
the results.

3.3 Second Objective - Quantity of Containers

The secondary objective of this project is to predict the total quantity of waste
containers that will be available for collection. This is of utmost importance in
the route optimization, so it can be previewed how full the trucks will be, and,
therefore, if they will be able to finish the predetermined course.

As in the first objective, the model was trained with the whole dataset at
once, the results are displayed in Table 5 and Fig. 5.

Table 5. Training with full data - quantity scores.

Quantity - 1p1

Precision Recall F1 Score

>95% 40.95 40.95 40.95

>90% 62.86 62.86 62.86

>85% 76.19 76.19 76.19

>80% 85.71 85.71 85.71

It can be noticed that despite having a high concentration of good scores,
above 95%, it does not ensure that 100% of the results are above the lower set
limit, in 80%.

Fig. 5. Training with full - histogram.
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The results for the quantity estimation for the model trained with 1 month
to predict the next one, is shown in Table 6 and Fig. 6.

Table 6. Training with 1p1 data - quantity scores.

Quantity - 1p1

Precision Recall F1 Score

>95% 34.29 41.90 39.05

>90% 58.10 65.71 58.10

>85% 75.24 76.19 74.29

>80% 84.76 85.71 83.81

Fig. 6. Training with 1p1 - histogram.

It can be seen that a higher number of customers have reached +90%, i.e.,
58.10% is above 90% of precision score. Moreover, just 86.76% of the clients are
above 80% in the same metric. This result was expected to be higher, therefore,
in a first approach it is acceptable.

4 Conclusion

What could be seen during the progress of this work is that despite the higher
concentration of predictions scoring above 95% being reached when the model
was trained with the full year of data, the stratified results were better using the
1p1 approach. For this reason, it is important to analyze the case to each cus-
tomer, as it was intended for. In a macro perspective, the 1p1 would certainly be
the best solution. On the other hand, if it can be analyzed in a closer viewpoint,
it will depend if the customer belongs to the +95% tier of the first model or not.
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Following the methodology, it was supposed to train all 3 schemes: 1p1, 2p1
and 3p1 for the quantity prediction. However, due to the small difference between
the approaches and the lowest scores of 1p1, it was decided not to include it here.
Also, it does make sense to have a fairer forecast in this situation, as it is more
specific and probably more related to the short past, than with a long past time,
as two or three months.

To improve the averages of both first and second objective, it may be neces-
sary to analyze individually the lowest scorers. Maybe a different approach can
be taken with this group and the predictions will be enhanced.

The results obtained by the model developed are satisfactory and mean a
significant advance in the waste collection routing theme. This forecast data can
be used right away. In a near future it could be fed to the company’s new routing
system to help deciding which and when to visit a customer. Therefore, saving
costs, being able to expand the service to more clients, in summary, contributing
to a better environment.
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Abstract. Gang violence remains a persistent public safety problem
in Los Angeles. Gang interventionists and community organizers are
turning to proactive peacekeeping, a process of addressing the under-
lying structures that cause young people to join gangs such as perva-
sive poverty and marginalization. Given the increasing prevalence and
decreasing cost of mobile technology, there may be opportunities for
interventionists to employ technological solutions in their work. However,
before such solutions can be deployed, it is necessary to have accurate
models of the target users—in this case, gang-involved youth. Of partic-
ular interest with regard proactive peacekeeping is their propensity for
cooperation. However, given the unique circumstances surrounding the
lives of gang-involved youth, traditional laboratory-based experiments
measuring cooperation are infeasible. In this paper, we present a novel
method of collecting experimental data from gang-involved youth in the
Los Angeles area. We design a mobile application based on the clas-
sic Prisoner’s Dilemma model, which has been used to collect almost
3000 data points on cooperation from more than 20 participants. We
present initial results that show despite their unique life circumstances
gang-involved youth cooperate at roughly the same rate as university stu-
dents in classic studies of cooperation. We conclude by addressing the
implications of this result for future work and proactive peacekeeping
endeavors.

Keywords: Game theory · Experimental design · Data collection

1 Introduction

In his book Tattoos on the Heart, Father Gregory Boyle speaks of riding his bike
between the poorest neighborhoods of Los Angeles during the late 1980s negoti-
ating peace treaties between rival street gangs [3]. The process was informal and
tenuous at best, and although gang violence has declined since the early 1990s, it
remains a chronic public safety issue in Los Angeles. While a proper census does
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not exists, estimates suggest that there are hundreds of unique gangs and tens-
of-thousands gang-affiliated individuals in the city [29]. These are distributed
throughout the city with particular concentrations in the San Fernando Valley
and South Los Angeles. Many of these gangs are territorial in nature, claiming
some area as their home turf. As in Chicago, this feature sets Los Angeles apart
from many other cities where territoriality appears to be less important. As in
other settings, however, Los Angeles gangs appear to be responsible for a dispro-
portionate share of crime, particularly violent crime. Nearly 60% of homicides
in Los Angeles are thought to be gang related [5].

Father Boyle has since stopped this kind of negotiation, writing in Tattoos on
the Heart, “Though I don’t regret having orchestrated these truces and treaties,
I’d never do it again. The unintended consequence of it all was that it legitimized
the gangs and fed them oxygen” [3]. Today, community organizers and gang
interventionists, some of whom are former gang members themselves, are turn-
ing to proactive peacekeeping. Proactive peacekeeping aims to address the root
causes that drive youth into gangs, such as generational poverty, marginalization,
abuse, and a sense of hopelessness. It is about giving them options and oppor-
tunities beyond violence and building community outside of gangs [16,28]. Two
exemplars of the proactive peacekeeping process include the late Darren “Bo”
Taylor, a former gang member who founded Unity One, an organization dedi-
cated to community building and citizen empowerment, and civil rights attorney
Connie Rice, who spent decades fighting against problematic policing policies by
the Los Angeles Police Department and co-founded the Advancement Project,
a racial justice organization that works directly in impacted communities of
Los Angeles to build grassroots organizing around public policy change [28].
Part of the proactive peacekeeping process also involves dismantling the stig-
mas associated with the gang label, which can serve as a barrier to peacekeeping
efforts. Therefore, for the rest of this paper we will refer to our study population,
gang-involved youth from Los Angeles, as “gamers”, in reference to our use of
game-theory and mobile games to study their behavior. In addition, we do not
want to further stigmatize youth in our study whose gang involvement may be
peripheral or transitory.

The world and our day-to-day interactions are increasingly moving online,
and technologies like smart phones are becoming cheaper and more accessible
even in areas with pervasive poverty. We feel that technology can help play a
role in proactive peacekeeping activities, for instance by giving resource-limited
interventionists a new way to reach gamers and provide services on demand. In
order to better understand how to best utilize technology in processes such as
proactive peacekeeping, it is important to have a clear model of the target users.
This paper focuses on the process of collecting data from gamers about their
propensity for cooperation using a mobile game.

We focus on understanding the gamers propensity for cooperation as a first
step as cooperation is one of the main values associated with proactive peace-
keeping. There are also well known game-theoretic models for studying cooper-
ation, the most notable being the Prisoner’s Dilemma, which we utilize in this
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work. Given the rich history of Prisoner’s Dilemma experiments, it also provides
a well-established baseline against which we can compare our data.

Despite this rich history, we cannot directly assume that the gamers propen-
sity for cooperation will align with the accepted baseline since experiments on
the propensity for cooperation have typically been limited to populations of
university students. Typical members of this population are distinctly different
from the typical gamer in terms of socioeconomic status and lived experiences.
McCullough et al. found that individuals who experience neglect and personal
violence, and are exposed to high levels of neighborhood crime, are more anti-
social and tend to cooperate at lower rates [19]. Given these are particularly
common experiences among the gamers, we theorize that we may need special
behavioral models, requiring new, population specific data. However, due to the
unique ecological circumstances surrounding gamers’ lives, and a desire to study
territorial influences as well, traditional lab-based experiments would be all but
impossible to execute. Thus we develop a novel mobile application-based app-
roach to collect the desired data.

In the rest of this paper we describe the mobile phone based experiment
which implemented a one-shot prisoner’s dilemma game in order to collect data
from gamers. We then present initial results which show that counter to our
hypothesis, in spite of the unique ecological circumstances surrounding the lives
of gamers, we do not need special models to account for their patterns of coop-
eration. Finally, we discuss areas for future work and implications of this finding
for proactive peacekeeping efforts.

2 Related Work

Gang Violence. Current approaches to negotiating peace between gangs are typi-
cally informal, short-lived (but see [4]), and are often precipitated by some major
violent act such as the March 2019 shooting of Los Angeles-based rapper and
activist Nispey Hussle [16,17]. One potential solution is Just-in-Time Adaptive
Interventions, which are designed to deliver targeted, personalized interventions
at just the right moment, often via technology such as a mobile device, and
is already being explored in public health and education [2,20,21]. Patton et
al. suggest that threats of retaliation and violence on gang members’ Twitter
accounts could be used to inform new intervention strategies [23]. However, in
contrast to this kind of intervention, we are interested in proactive peacekeeping,
which means making a concentrated effort to prevent violence from occurring in
the first place, not just stopping retaliation once a violent event has occurred.

Game Theory in the Wild. This field is defined by the study of interactions
between independent agents in which the payoff or utility to one agent depends
on the actions of the other player(s) [10]. Classic games such as prisoner’s
dilemma, used in this study, and the ultimatum game can be used to exper-
imentally gauge a population’s propensity for traits such as cooperation and
fairness. The prisoner’s dilemma, although universal and timeless in its abstract
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form, was formalized using the well-known prisoner scenario in the early 1950s
by researchers from the RAND group [25].

As previously mentioned, there is a rich history of experimentation with the
prisoner’s dilemma scenario and a variety of related models. However, the diffi-
culties that surround working with the gamer population, particularly a lack of
trust in authority [3,16], create a barrier to traditional lab-based experiments,
so we conduct our experiments “in the wild”. Game theoretic experiments in
the wild have been conducted in a variety of contexts. Henrich et al. took tradi-
tional ultimatum game experiments to the field, conducting them in small-scale
societies across the globe [14]. Other studies have used “natural experiments”
such as the choices made by Swedish lottery players and the decisions of movie
executives about whether or not to “cold-open” a film [6,22]. Additionally, there
are experiments such as that by Delle Fave et al., which uses a smartphone appli-
cation to eld test a schedule for metro patrols designed using the theory of Stack-
elberg security games [8]. There is also an attempt to understand the interaction
among rangers and patrollers protecting wildlife in the field within a game theo-
retic framework [12,30]. Our work falls between the Henrich et al. and Delle Fave
work, using a classic game, the one-shot prisoner’s dilemma (PD), embedded in a
mobile application. This allows us to compare our results to an established base-
line, while collecting data from an otherwise hard to reach population. We are
also able to collect location data during game play, which we hypothesize may
influence gamers’ propensity for cooperation given the significance of territory
in their lives.

One-Shot Prisoner’s Dilemma. The propensity for humans to cooperate with
strangers has presented a long-standing paradox for game theorists [15,26]. The
expected rational behavior of an individual in many common games is to eschew
cooperation in favor of a selfish action that maximizes their own utility, often at
the expense of the other player. This non-cooperative equilibrium is well-known
in the two-person, one-shot Prisoner’s Dilemma (PD) game where both players
would be better off cooperating with one another, but this strategy is strictly
dominated by mutual defection [27]. In numerous experiments stretching back
over decades, however, it is clear that cooperation is common in the one-shot PD,
in spite of the tactical vulnerability it creates [1]. One possible explanation for
the prevalence of cooperation when it is predicted to be rare is that individuals
have prior expectations about the likelihood that partners will cooperate (or that
failure to cooperate will incur punishment) and that these expectations interfere
with the incentives of the experiment [1,9,13]. This “homemade altruism” is
thought to derive from the role that cooperation plays in routine life experiences
that are rooted in repeated interactions and unique social circumstances [14].
One-shot games thus reveal prior expectations precisely because they are artifi-
cial. They also illustrate that prior expectations are subject to change, sometimes
quite quickly. The one-shot PD, when played repeatedly with random strangers,
shows that players adjust their strategies through a sequence equilibria with
decreasing frequency of cooperation.
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3 The Gamers

Gang membership is not a one-size-fits all problem. Gang researchers now typ-
ically think of gang-involvement in terms of degrees of embeddedness [7]. Indi-
viduals may be central to the activities of a gang (i.e., high embeddedness),
peripheral to it (i.e., low-embeddedness), or occupy various positions between.
Individuals may also readily move between social roles that are clearly identified
with the gang (e.g., calling shots) and independent of the gang (e.g., parenting).
Gang involvement also varies by age and gender, with the degree of involvement
higher for young men between the ages of 15–25 [18].

We used an existing network of community members and outreach workers
to identify and recruit active gamers to participate in the study. We made a
concerted effort to ensure that gamers’ privacy was respected and that they were
willing participants in the study. Gamers were able to discontinue participation
in the experiment at any time with no questions asked. Gamer recruitment and
consent procedures were governed by UCLA IRB Protocol #16001755. Gamers
were paid for their participation in the study according to the payoff scheme
described in Sect. 4.

We recruited a population of 22 gamers—8 females and 14 males—between
the ages of 16 and 25 from four different regions of Los Angeles which have
high levels of gang activity. The gamers ranged in their level of gang affiliation
and involvement. Ten of the gamers are fully initiated members of a gang with
levels of engagement given by “very active”, “active”, or “not very active”. The
affiliated gamers are members of five different gangs. The remaining 12 are “not
affiliated”. These individuals are not officially initiated in gang life, but are
familiar with it and have friends who are active.

4 Mobile One-Shot Prisoner’s Dilemma

The current study aims to achieve a high degree of ecological validity, reflecting
decision-making in the real-world settings experienced by gamers. Traditionally,
studies in behavioral game theory have been conducted with participants brought
into a controlled setting such as a research laboratory. However, it has been
shown that tendencies shown by participants in the lab are in line with their
behavior outside this setting [11]. Therefore we argue that we can compare the
findings from our study “in the wild” to studies which have been carried out in
a lab setting.

4.1 Game Design

The mobile one-shot PD application consists of a simple card game with a payoff
matrix following the PD form [27]. Cards were chosen because they are a neutral
object not belonging to any one particular gang. Figure 1a shows the basic game
interface. The game consists of a choice between two playing cards, a king repre-
senting cooperation, and a queen representing betrayal. After the gamer chooses
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a card, the opponent’s choice is revealed and the gamer is awarded points accord-
ing to the matrix shown in Table 1. Gamers received a $50 incentive payment
for signing up to play and earned a maximum of $0.25 per game, obtained when
the gamer defected against a cooperating opponent (i.e., the temptation payoff).
The gamers played against a simple algorithm, where cooperation was deployed
as a Bernoulli trial with probability p = 0.5.

One-Shot PD Card Game Game Notification
(a) (b)

Fig. 1. Screenshots of (a) the game interface and (b) a game notification from the
one-shot PD mobile application

The game was installed as an application on inexpensive android smart
phones, which were given to the gamers by coordinators from their commu-
nities. Each time the gamers played a game, we collected a unique ID associated
with their phone, their move (cooperate or defect), the computer’s move, the
date, time, and their location in latitude and longitude coordinates. In order to
constrain payouts and increase the variability of location data collected, gamers
were given a limited number of games spaced throughout each day.
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Table 1. The payoff matrix for the mobile one-shot PD card game.

Card selection Payout

You Opponent You Opponent

King King 3000 3000

King Queen 1000 4000

Queen King 4000 1000

Queen Queen 2000 2000

4.2 Pilot Test

The game was piloted with four gamers for two months in the fall of 2017. In
the pilot, games were spaced evenly from 9 AM to 4 PM, coming in at the top
of each hour. Gamers were given 30 min to play each game. If a game was not
played within the allotted time, it was forfeit, with no points lost or gained. The
gamer then had to wait for the next incoming game notification to play. During
the two month pilot, data was collected from 125 games with one of the four
gamers accounting for 86 of those instances. During the pilot, the gamers tended
to play infrequently and very quickly. Twenty-four percent of games were played
within the first 15 s of the hour, and 57.6% were played within the first 30 s.
Although the game is not complicated, we felt that this might indicate a lack of
attention on the part of the gamers. It became evident that the game needed to
be more engaging to better capture the attention of the youth population.

4.3 Changes and Redeployment

After the pilot concluded, several updates were made to make the game more
engaging. Rather than sending game notifications at the top of each hour, games
were allocated randomly between 9 AM and 9 PM based on a Poisson dis-
tribution with λ = 1/30 to space games approximately half an hour apart,
and a reminder notification was added five minutes before the end of unplayed
games to encourage more play. Although gamers were still playing against the
computer algorithm, randomly generated usernames were given to the “oppo-
nent” for each game to make it feel more realistic. Gamers were also given the
opportunity to submit their own username before playing the game for the first
time, although for the purpose of keeping identities, these usernames were not
recorded or stored. Figure 1b shows a game notification with a randomly gen-
erated username—“MortalMonkey 3”. The updated game was introduced into
the field in February of 2018 for approximately five months of data collection.
Throughout this time, 22 gamers played the game with varying levels of engage-
ment.

Gamers in both the pilot and final experiment were paid at the end of the
end of the experimental period. The results of the one-shot PD experiment are
described in the next section.
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5 Initial Results

A total of 2945 games were played during the study period, with the individual
level of gamer engagement (number of games played) varying greatly. The num-
ber of games played by any one of the 22 gamers ranged from 0 to 551, with a
mean of 134 (±135). The median number of games played was 76, with Q1 = 48
and Q3 = 211. We did not find any significant results with regard to the spatial
distribution of cooperate and defect plays, however, our findings with regard
to the general propensity for cooperation were both interesting and somewhat
surprising to the authors.

Figure 2 depicts the patterns of cooperation observed in the one-shot mobile
PD experiment. Plot A shows the Gamer IDs on the x-axis, in descending order
of number of games played (y-axis). Each gamer is represented by two bars
showing the number of games in which they defected (blue) and cooperated
(red), respectively. Overall, gamers tended to defect at higher rates than they
cooperated, particularly as the number of games played increased. The overall
rate of cooperation ranged from zero to 69%, with a mean of 15 (±20). Fifteen
of the twenty-two gamers engaged in more than 50 games. These gamers had an
average cooperation rate of 0.15 (±0.18). Nine of the gamers played more than
100 games, and had a mean cooperation rate of just 0.10 (±0.08).

This decrease in cooperation over the number of games played is reflected
in Fig. 2 plot C. This plot shows the fraction of games on which each subject
cooperated as well as a five-game moving average for the first 80 games.

Finally, plot B shows the first 200 or so games for Gamer L, an unaffiliated
female gamer, who played 282 games—the third most active gamer overall. This
plot also reflects the deterioration of cooperation over time. During the first 50
or so games, she cooperated at a rate of about 50%, but this quickly deteriorated
to less than 10%, consistent with the Andreoni and Miller findings.

6 Conclusion and Implications for Future Work

The most striking finding from these gamers “in the wild” is that they coop-
erate at quite high levels, at least initially. Indeed, the moving average shown
in Fig. 2C is consistent with Andreoni and Miller [1], who found that initial
cooperation rates of around 38% in the repeated one-shot PD with strangers,
declined to less than 20% within 10 rounds of play. Over the long-run, coopera-
tion among strangers deteriorated to less than 10% of all moves, but remained
relatively stable at this low level. Our results are consistent with the conclusion
that altruism exists at a natural baseline among individuals with considerable
exposure to gangs. This cooperation is maintained even under conditions that
are particularly inhospitable to cooperation such as in the one-shot PD [24]. We
conclude not only that we do not need special models to understand coopera-
tive tendencies among active gang members and gang-adjacent individuals, but
also that their levels of cooperation are entirely consistent with other normative
populations.
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In the future, we wish to conduct additional studies of the gamers’ propensi-
ties for cooperation such as a repeated-PD experiment. Another area of interest
is the gamers’ inclinations for fairness, which can be measured using classic
frameworks such as the ultimatum or dictator games.

Our initial results suggest that interventions seeking to reduce the risk of vio-
lence among gang-involved youth can generally start from a very similar baseline
propensity to cooperate as other populations. However, there are still many open
questions about how to develop and deploy these interventions. Who would be
eligible for such interventions, how they would be recruited to participate, who
would be responsible for interventions in the field and how such interventions
would be received by the community? These open questions raise important legal
and ethical implications that deserve careful attention.
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Abstract. As AI systems develop in complexity it is becoming increas-
ingly hard to ensure non-discrimination on the basis of protected
attributes such as gender, age, and race. Many recent methods have been
developed for dealing with this issue as long as the protected attribute is
explicitly available for the algorithm. We address the setting where this
is not the case (with either no explicit protected attribute, or a large
set of them). Instead, we assume the existence of a fair domain expert
capable of generating an extension to the labeled dataset - a small set
of example pairs, each having a different value on a subset of protected
variables, but judged to warrant a similar model response. We define
a performance metric - paired consistency. Paired consistency measures
how close the output (assigned by a classifier or a regressor) is on these
carefully selected pairs of examples for which fairness dictates identical
decisions. In some cases consistency can be embedded within the loss
function during optimization and serve as a fairness regularizer, and in
others it is a tool for fair model selection. We demonstrate our method
using the well studied Income Census dataset.

Keywords: Fairness · AI · Machine learning · Social responsibility

1 Introduction

The notion of fairness is deeply rooted in human kind [8,9,13] and even in other
intelligent species [2,3]. In practice, fairness is elusive. Due to the nature of
complex systems we operate within, both conscious and unconscious cognitive
biases, and lack of complete knowledge, it is extremely hard to guarantee fairness
even in the presence of sufficient good will.

When considering large scale machine learning systems we must proceed with
caution. On the one hand the current trend of increased adoption of machine
learning is a unique opportunity to clean the slate and utilize automation for
objectivity and fairness. On the other hand, it is often unclear how to operate
when labeled data is derived from historic processes with questionable fairness.
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Furthermore, models are typically optimized with respect to some measure of
performance on the task they are designed to do, a process that has no relation
to fairness and almost always favors the average outcomes.

Arguably, there are three levels of adherence to ethical and fair practice of
AI. In the best case, a system designer is clearly and unequivocally fair. This
option is unusual if at all possible (for instance because of the often mutually-
exclusive notions of fairness). Failing that, fairness disputes could be based on
the notion of what is fair. In this case there should be little or no doubt about the
integrity and intentions of the designer. For instance, when trading off individual
fairness in order to obtain better group fairness. Finally, a system can be outright
discriminatory.

Too often systems already in use are discovered to be outright discriminatory.
It has been claimed that the Correctional Offender Management Profiling for
Alternative Sanctions (COMPAS) system – a system widely used by courts for
predicting a defendant’s risk of recidivism within 2 years using 137 features, has
low prediction power and a strong racial bias [5,12].

While explicit discrimination is easy to detect and remove, features that are
correlated to discriminating attributes are much harder to detect. Consider a
classification or a regression task via some method f(·), with a dataset at hand
{
(d(i), x(i), y(i))

}N

i=1
, where Y is the target variable, and D and X are separate

feature spaces, D contains the protected variables. Restricting the fitting of
f(·) solely through X clearly eliminates explicit discrimination with respect to
features in D. However, although Y ⊥⊥ D|X, we might still observe association
between the predictions and D, since Y ⊥/⊥ D in the general case, even when D
is not included in the fitting stage [17]. Hence, even if the protected attributes
is completely removed from the input data, this does not guarantee fairness.

What characterizes a fair system? Several competing notions of fairness have
been recently proposed in the machine learning literature. The simplest notion
of fairness is demographic parity [4] (Table 1). To satisfy demographic parity the
underlying proportion of the protected variable should be preserved within the
classification process (for example, an equal number of male and female candi-
dates should pass the exam). This criteria is meant to preserve group fairness,
and as such has several drawbacks.

First, demographic parity can be naively achieved through random assign-
ment of the target Ŷ in the underprivileged group according to the distribution
in the privileged group. This clearly achieves demographic parity, but misses
the original objective of achieving a useful prediction of Y in the entire popu-
lation. This sort of unfair selection in the underprivileged group leads to two
detrimental consequences. Not only is it unfair to deserving individuals in the
underprivileged group, since they have a smaller probability of being selected
than similar individuals in the majority group, but this process also leads to a
selection of less appropriate individuals from the underprivileged group, setting
them up for failure, and reinforcing stigma. This behavior is prone to happen for
instance when D represents minority groups, and there is little or no training
data available for one of the demographics [11].
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Second, the demographic parity approach assumes that the population affili-
ation and the target are independent. For example, consider the case of a hiring
process for a job associated primarily with males. It is possible that the few
females that do submit an application are on average more qualified than the
male applicants. In such a case, we would expect a fair process not to preserve
the original proportions, and indeed accept a higher proportion of the female
applicants.

Metrics which asses how well a model maintain demographic parity are dis-
parate impact and parity difference which are the ratio and difference between
the conditional probability of the positive class given the binary protected vari-
able, and prejudice index, which quantifies the mutual information between the
target Y and D [14] (Table 1).

Other notions of fairness focus on the individual rather than on the group,
and try to assure that an individual is treated fairly irrespective of D. These
measures are based on the notion that similar individuals should be treated
similarly by the system. One approach for achieving individual fairness is to
aim at removing the information about D from the original data representation
X. This however is not an easy thing to do, for instance, studies on gender bias
show that removing bias from word embedding is extremely hard [10]. In another
study it was shown that removing demographic information from representations
of text is also not an easy task [7]. Recently the adversarial learning framework
has been suggested to reduce bias in learned representations for fair models [20],
and in the context of fair and private recommendations [18].

Metrics for evaluating a system’s individual fairness include average odds
difference and equal opportunity difference [11] which attempt to guarantee uni-
form aggregate behavior of the predictor with respect to a binary protected
variable, and consistency, which compares a model’s classification prediction of
a given data item x to its k-nearest neighbors [19] (see Table 1 for a glossary of
definitions and metrics in the fairness literature).

The aim of research on fair AI methods and metrics is to help design systems
that adhere to the notion of fairness the system designer chooses to adopt. This
is the how, not the what. Assuming good intentions, the normative question of
what we consider to be fair is a separate issue that should be addressed by a
much wider community. All of the above notions rely on the clear, categorical
definition of the discriminatory variable D, and its presence in the data. In this
paper we address the question of designing fair models with any specific notion
of individual fairness.

Unlike the methods described above, we deal in a setting where there is no
simple categorical variable (or small number thereof) that defines demographic
groups for which fairness should be guaranteed. This can be the case when
there are no explicit protected attributes (but still discrimination danger from
demographic-correlated attributes). Alternatively there may be many protected
attributes, with either many categories or continuous values. In these cases the
existing methods do not apply or are infeasible to use. The proposed method
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uses an expert to mine a small auxiliary dataset that refines the desired notion
of fairness, a performance metric, and a regularization method to obtain it.

The core idea is that if we had many pairs with similar merit, in the sense
that with respect to the chosen notion of fairness they should get the same
treatment, we could force the model to behave that way. To this end we assume
the existence of a (fair) domain expert who is able to label pairs of instances.
Each pair has a different value in a subset of protected variables D, and the
expert asserts that a fair model should output a similar response for them.
Note that this methodology doesn’t require a defined similarity metric between
samples, a property which allows more flexibility in applying it.

The proposed method is general in two aspects. While previous fairness
inducing methods require explicit access to the protected attribute D, the pairs
generated by the expert in our method can be selected on the basis of any
implicit idea of a potentially discriminatory variable, that doesn’t have to be
directly measurable. The second aspect of generality is the wide applicability
to machine learning models. We suggest a tree-training variant, and a gradient-
descent training variant, together covering the majority of widely used machine
learning methods.

The rest of the paper is structured as follows: in the next section we describe
the proposed method of paired-consistency for fairness. Next, we describe exper-
iments and results on the “Census Income” dataset, comparing the proposed
method to alternatives that do require direct access to the restricted variables,
using a large set of fairness criteria. We finish with a discussion on the pros and
cons of the proposed method and future direction of research.

2 Methods

In this section we present the method of paired-consistency. The setting we
operate in is a dataset:

{
(d(i), x(i), y(i))

}N

i=1
, where each example consists of

features x, an additional (and possibly empty) set of explicitly given restricted
variables d, and a target y. In addition, access to a fair domain expert is assumed.
The expert may be a literal human expert, or an algorithm or method used as
a surrogate.

The fair domain expert comes equipped with a notion of fairness, and of the
potential attributes that must be protected from discrimination. These attributes
may be explicit (i.e. contained in d – for example gender or age), or more complex
constructs that the expert is able to determine based on a sample (d, x, y) (for
example being of an underprivileged background). Upon request, the expert
returns pairs:

{
(x(j)

1 , x
(j)
2 )

}M

j=1

denoted as the consistency set. Each of these pairs consists of the features from
two examples of the original dataset, that obey two requirements. First, the
pair represents two examples which are different with respect to the protected
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attribute or construct, as determined by the expert. Second, based on the remain-
der of the information the expert is able to judge that the two samples warrant
a similar response by the model.

An interesting property of the paired-consistency method is that it is able
to protect from discrimination not only in the absence of the explicit protected
variable, but even when the construct of interest is not directly measurable, as
long as the fair domain expert is able to match pairs which are different with
respect to it. Cases when this may be of use include when individuals with cer-
tain special circumstances are historically under-represented and a fair selection
process might therefore attempt to take this into consideration. Furthermore,
this method is able to mix and combine fairness with respect to different poten-
tial sources of discrimination, by combining the sets of pairs derived from each
one.

In this setting, we suggest a simple model-agnostic method which can be
used to assess (if used for model selection) or help assure fairness (if used as
a regularizer) of a classification or regression model for predicting y. We define
a paired-consistency score, which measures how similar is an output (in terms
of assigned class, or predicted score) a model produces for paired members, for
classification:

1
M

M∑

j=1

I[ŷ(j)
1 = ŷ

(j)
2 ] (1)

where ŷ
(j)
1 = f(x(j)

1 ) is the model output, and I[·] is the indicator function.
This measures the fraction of the pairs on which the model agrees. Likewise for
regression:

1 − 1
M · δmax

M∑

j=1

(ŷ(j)
1 − ŷ

(j)
2 )2 (2)

where δmax is the maximal square difference, used to normalize the measure into
[0, 1] (this is necessary only when comparing models, otherwise the measure to
minimize becomes 1

M

∑M
j=1(ŷ

(j)
1 − ŷ

(j)
2 )2).

The consistency score is embedded within the loss function as a fairness regu-
larization term, to make the model consistency aware. This is done by adding the
measure (Eq. 2) to the objective, multiplied by a trade-off parameter to deter-
mine the relative importance of the main objective and the paired-consistency.
Any algorithm trained via gradient-descent (and variants) can be adapted to
incorporate this additional loss component. In addition, we suggest a variant
for training of trees, where the local optimization criterion is augmented in a
similar way to include the fraction of pairs kept intact in each split. Results of
both these types are presented below (Sect. 3).

In addition (or alternatively for fairness-based model selection), the score is
calculated post-hoc, and can be aggregated with other performance metrics, or
used as part of a performance-fairness trade-off. A good classifier will be accurate
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but also consistent in the scoring of the pairs. To this end we define the PRC score
as the weighted Harmonic Mean of Precision, Recall, and Paired-Consistency,
which as an F1-score analogue it is a natural candidate for integrating consis-
tency in evaluation of models.

The proposed method also allows a natural integration of the certainty of
the expert. Suppose that together with the pairs, the expert also produces a
weight reflecting how sure they are that the pair is indeed a fairness-match –
different on some subset of the protect variables or constructs, and deserving of
the same treatment – so that the expert now outputs

{
(x(j)

1 , x
(j)
2 , w(j))

}M

j=1
. The

classification paired-fairness measure (Eq. 1) will thus become:

∑M
j=1 w(j) · I[ŷ(j)

1 = ŷ
(j)
2 ]

M · ∑M
j=1 w(j)

(3)

Table 1. Glossary: several common definitions and measures in the fairness literature.
(F/TPR - false/true positive rate, D - protected variable, Y - the target, Ŷ - model
prediction, knn - k nearest neighbors).

Name Definition

Demographic parity Pr(Ŷ = 1|D = 0) = Pr(Ŷ = 1|D = 1)

Parity difference Pr(Ŷ = 1|D = 0) − Pr(Ŷ = 1|D = 1)

Disparate impact
Pr(Ŷ =1|D=0)

Pr(Ŷ =1|D=1)

Equalized odds [11] TPRD=0 = TPRD=1;FPRD=0 = FPRD=1

Average odds difference 1
2

[(FPRD=0 − FPRD=1) + (TPRD=0 − TPRD=1))]

Equal opportunity [11] TPRD=0 = TPRD=1

Equal opportunity difference TPRD=0 − TPRD=1

Consistency [19] 1 − 1
N

∑N
i=1 |ŷi − 1

k

∑
j∈knn(i) ŷj |

Prejudice index [14]
∑

p̂(y, d)ln
p̂(y,d)

p̂(y)p̂(d)

Paired-consistency (ours) 1
M

∑M
j=1 I[ŷ

(j)
1 = ŷ

(j)
2 ]

3 Results

We demonstrate the paired-consistency method using a well-known dataset, and
both for tree-based and gradient-based model training. The dataset we use to
demonstrate the method is the “Census Income” dataset [6,15] derived from
the 1994 census in the US. In this dataset the set of discriminatory variables
D appears explicitly in the data. We proceed to generate consistency pairs in
order to emulate the case where an expert is called upon to generate pairs in
the absence of explicit information. In some of the experiments below we also
leave the protected attributes in the set of features used by the model in order to
test the effect of paired-consistency regularization on the utilization of restricted
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information by the model. This setting emulates the standard case where the
outright discriminatory features are indeed excluded from the model (gender,
age, race, etc.), but other highly correlated features are included.

(a) Income gender bias (b) Work hours and income bias

Fig. 1. The gender-income bias and interaction with number of weekly work hours as
reflected in the census income dataset.

The “Census Income” dataset was chosen because it contains a combination
of attributes a person is born with or has no control over (gender, race, age,
native-country) and attributes that reflect their preferences and decisions in life
(occupation, weekly work hours, education, martial status). The Census Income
dataset contains data pertaining to over 32,000 individuals. The dataset also
contains a binary field indicating high income (over 50K as of the 1994 census)
which will be used as the target variable for our tests. The overall fraction of
high-income individuals in the dataset is 26%.

In this experiment we model the likelihood of being a high-income individual
based on individual traits. The setting we have in mind is one where the output
of a model of this sort will impact the way people are treated. As such, we
would need to take care not to discriminate on the bases of certain properties of
individuals. While it is clear that if left untreated, attributes such race, gender
and native-country will have predictive power for income level, some attributes
are both relevant and at the same time a proxy of discriminating attributes.
Figure 1 illustrates this ambiguity. The gender income imbalance reflected in the
census data is captured by Fig. 1(a). However, the swarm-plot figure (Fig. 1(b))
shows there is a gender difference in the probability of being in the high-income
group, and also a difference in distribution of weekly work hours. As a result, the
otherwise innocent (and intuitively relevant) variable of number of work hours,
gives away some information about the protected variable (which is gender).

In order to test the effect of paired-consistency on the fairness and perfor-
mance of a predictive model, we use a decision tree and a Logistic Regression
model. The motivation for using these simple models is that the readily inter-
pretable outcome lets us better understand the effect of the fairness regulariza-
tion, and at the same time these are representatives of the two major classes of
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machine learning models at this time (i.e. tree based and gradient based train-
ing). Paired-consistency is added to the Logistic Regression model by inserting
the mean square deviation in output among pairs (Eq. 2) directly to the loss
function, via a trade-off parameter.

For tree training, we add the fairness metric as an extension to the Gini
Index used in the tree creation. In order to adapt the measure (Eq. 1) to the
local criterion of tree growing, for a given split we seek to maximize the number
of pairs that go in the same direction. To this end we add to the Gini Index a
term that is the percent of the pairs arriving at the node that are kept intact
following the split (i.e. both examples in the pair go to the same side). This term
is multiplied by a trade-off parameter that controls the relative importance of
the fairness regularization in the tree construction. As expected when training
trees, this is a local optimization criterion. Feature importance in the resulting
model was measured using the column permutation method (and using the eli5
Python package [16]). Experiments were conducted using a 80–20 train-test split,
making sure original pairs are kept in the same set. All categorical features are
encoded as dummies, leading to a total of 58 features. For regularization, and to
ensure an interpretable result, we limit decision tree depth to 5 and the minimal
items in a leaf to 5.

Baseline. The tree baseline consists of a regular decision tree, achieving an
accuracy level of 82.6%. Figure 2 shows the most important features resulting
from this model. Interestingly the list is topped by the “married civil spouse”
indicator, followed by occupation and education indicators. We choose to focus
on the next most important variable – age, which we chose as the discriminating
factor we want to mitigate in the following experiments with consistency pairs.
It is important to note that in a real use-case the protected variables would
undoubtedly be removed from the model themselves, but this blindness would

Fig. 2. Top-6 feature importance in the basic tree model for census income (arbitrary
units).
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not suffice to achieve fairness because of correlated features that remain in the
input. We keep the age variable in the model in order to emulate the case of
additional information correlated with the protected variable(s). The Logistic
Regression baseline achieves an accuracy level of 82.9%.

Consistency Pairs. We automatically created 3,062 consistency pairs by
selecting pairs of individuals who are similar in all other aspects except for
age (while ignoring income). We picked pairs where the age gap is of 10 years or
more. Obviously this is a toy example, and in a more complicated model a fair
domain expert will likely be necessary for this purpose.

To minimize the paired-consistency fairness penalty the model must predict
for each pair the same predicted income and avoid discriminating on the basis
of age. We test the model with four levels of the fairness-regularization trade-off
parameter. Tables 2 and 3 summarizes the results of this experiment. Table 2
shows that the importance rank of the variable under consideration is reduced
monotonically as the weight of the fairness-regularization is increased, from rank
5 in the naive model to rank 10 with larger weights, reaching a plateau with a
weight of 1. The effect flattens out when the percent of pairs classified together
is 100% after which the fairness penalty is 0 and therefore further increasing
the weight is irrelevant. Overall accuracy of the model is virtually unaffected,
and even slightly improved together with increased fairness. Table 3 shows this
effect – as the number of pairs used for the consistency regularization increases,
the importance of the age feature in the model decreases. We note that even a
relatively small number of pairs (500 pairs, versus the 32, 561 examples in the
dataset) was sufficient to significantly mitigate the age bias, although the change
obtained in importance of the restricted variable from rank-5 to rank 7 may not
be sufficient.

Table 2. Effect of fairness regularization on importance rank of and score of the pro-
tected variable, model accuracy, and percent of consistency pairs labeled consistently.

Regularization weight Age importance (rank) % Accuracy % Pairs intact

0 1.35 (5) 82.9 97.6

0.1 0.2 (8) 83.0 99.8

1 0.03 (10) 83.0 100

10 0.03 (10) 83.8 100

Logistic Regression with paired-consistency regularization displays the
expected trade-off between overall model accuracy and fairness (as measured
by paired-consistency score). Figure 3 shows this trade-off between the two com-
ponents of the loss function (accuracy and fairness components). Increasing the
trade-off parameter η shifts the weight towards the fairness objective, and in
turn leads to a decrease in the paired-consistency component of the objective,
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Table 3. Effect of the number of consistency pairs on importance rank and score
of the protected variable, model accuracy, and percent of consistency pairs labeled
consistently. The fairness-regularization weight (eta) is fixed to 0.5.

# Pairs Age importance (rank) % Accuracy % Pairs intact

100 1.50 (5) 82.7 100

500 0.58 (7) 82.7 100

1000 0.33 (7) 82.8 100

3062 0.03 (10) 83.0 100

together with an increase in the original Logistic Regression loss component. The
effect of the trade-off parameter is shown as the fractional change in each of the
loss components, compared to the baseline (η = 0; regular Logistic Regression).
Results indicate that for the price of a modest decline in accuracy, the fairness
component of the loss can be reduced by as much as half. This favorable trade-off
can be seen in the relative slopes of the lines in Fig. 3 for eta in the range of
0–0.5.

We further compare the fairness-accuracy trade-off in various methods for
predicting the target variable using the dataset. The compared methods include
both classification methods without any fairness regularization or constraints,
and methodologies with the objective of a creating a fair model. We applied
our paired-consistency regularization to Logistic Regression and decision tree
models, and a prejudice remover [14] regularization (with η = 10) to a Logistic
Regression model (using the AI Fairness 360 [1] python package). Methods were
compared both in accuracy and in fairness. Accuracy was used to measure utility,
and the metrics in Table 1, as well as our paired consistency metric were used to
measure various aspects of model fairness.

Such comparisons provides a clear understanding with regard to the potential
trade-off between predictive modeling utility and fairness. The ultimate result
would be to achieve high fairness, while maintaining the model performance
with respect to the prediction objective. As theoretically expected, almost all
fairness-regularization methods hindered the model’s accuracy, but this effect
is not dramatic for the tested dataset and methods. All fairness regularization
methods show improvements in the fairness metrics over the respective baselines.
The consistency-paired regularized tree seems like the fairest model available
here (both in group and individual fairness), but under-performs in terms of
accuracy. Another aspect to learn from these results is the differentiation between
the various fairness metrics – while the overall trend is to improve fairness for
all methods, each methodology outperform in a different fairness metric. This
is of course expected. Each method optimizes with respect to a specific notion
of fairness, and in general is likely therefore to do best on that, while being less
competitive on others (this is especially the case when considering contradictory
metrics such as group vs. individual fairness, where it is not possible generally
to be optimal in both).
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Fig. 3. Trade-off of Logistic Regression loss and paired-consistency loss components
as a function of the trade-off parameter eta. Values are normalized and presented as
fraction of the respective loss components for η = 0.

Finally, we test the effect of the number of consistency pairs available on
the accuracy-fairness trade-off when used as a fairness regularization in Logistic
Regression. The importance of this stems from the high cost and effort involved
in generating fairness pairs in some real-world situations. Unlike in our current
experiment, it is not always possible to generate this auxiliary data automati-
cally, and instead a human expert is used to label data pairs. Ideally, we would
want to know how many pairs are necessary, and how the number of pairs is
likely to impact the fairness measures.

Results are summarized in Table 5. Logistic Regression models are trained
with paired-consistency regularization (η = 0.4). As expected, as the number
of consistency-pairs used is increased, the paired-consistency score increases as
well, from 0.705 with 100 pairs, to 0.945 with 1000 pairs. However, 500 pairs are
enough to obtain a score of 0.912, not significantly less than the optimal value.
A similar picture is reflected also in the other fairness measures. The accuracy
of the fairness-regularized Logistic Regression models is seen to increase overall
with the number of pairs. This can be explained by the arbitrary effect each
pair has on the overall the model, which may average out when many pairs
are applied. An analytic understanding of this phenomenon will be necessary in
future research, as well as testing on additional datasets (Table 4).
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Table 4. Census Income: Comparison of different methodologies (with and without
fairness constraints), in terms of performance and various fairness metrics. LR – Logis-
tic Regression. (prej.) – Prejudice Remover (Table 1). tree/LR+pairs – tree/LR with
our method of paired-consistency.

Tree Tree+pairs LR LR [14]
(prej.)

LR+pairs
eta=0.4

LR+pairs
eta=0.5

Paired consistency score 0.976 1.000 0.912 0.913 0.927 0.932

Classification accuracy 0.832 0.834 0.829 0.826 0.824 0.815

Disparate impact 0.250 0.299 0.193 0.213 0.212 0.225

Statistical parity diff −0.164 −0.160 −0.314 −0.314 −0.304 −0.318

Equal opportunity diff −0.149 −0.091 −0.248 −0.227 −0.234 −0.220

Average odds diff −0.103 −0.073 −0.215 −0.205 −0.204 −0.207

Table 5. Logistic Regression with paired-consistency regularization (η = 0.4). Effect
of the number of consistency pairs on various performance and fairness scores.

# Pairs Accuracy Paired consistency Parity difference Average odds difference

100 0.759 0.705 −0.490 −0.477

500 0.804 0.912 −0.376 −0.269

1000 0.797 0.945 −0.322 −0.191

3062 0.824 0.927 −0.304 −0.204

4 Discussion and Conclusion

With the rise in popularity of AI across many domains, questions of ethical use
and fairness are revisited with renewed vigor. Many methods have previously
been proposed to help create fair machine learning algorithms, when the vari-
able which leads to potential discrimination is explicitly available in the data.
However, this is not always the case.

We present a simple yet powerful method to help mitigate discrimination
in machine learning models, without using an explicit partitioning of the data
with respect to a protected variable. Our approach relies on the ability of a
fair domain expert to generate a set of pairs of examples which are equivalent
based on all attributes except for a subset of the protected variables. We then
assert that a fair model should treat the two examples in each of these pairs in
a similar way, and define a measure of consistency that when added to a models
loss function helps enforce fairness via consistency. This fairness regularization
technique is shown to reduce the extent to which a decision tree model uses a
forbidden feature in classification, and has favorable outcomes also with respect
to other measures of fairness.

The proposed method of paired-consistency is related to several existing tech-
niques. In a broad sense, statistically defined group fairness methods try to
ensure that on the group level the minority group is treated by the machine
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learning algorithm in a similar way to the majority group. In that case our
method is similar by reducing the size of the groups to 1 and having many such
pairs.

Experiments on a well-studied dataset in the fair model literature demon-
strates the viability of our method, both for tree-based and gradient-based train-
ing (with Logistic Regression). It is interesting to note that in our experiments
we see little to no decline in accuracy as we increasingly enforce fairness by
adjusting the trade off parameter in the loss function. This sort of degenerate
trade-off is likely not the general case. When the trade-off takes on a more sub-
stantial form, the additional paired-consistency term added to the loss function
can be seen as a regularization mechanism against bias, in as much as it restricts
the search during optimization to regions of higher fairness. The result in the
general case will inevitably be some loss in overall model accuracy.

One of the merits of the proposed approach is that it enables domain experts
to take part in the fairness efforts and mitigate discrimination without the need
to understand how the model works or what features or information it is based
on. Even better, by using examples, the expert bypasses the need to formalize the
sometimes elusive notion of fairness. In fact, the fairness labelling can and should
be done by an expert prior to and independently from machine learning work.
Since the labeling is independent from the methods used to make predictions,
it can be seen as an extension of labeling for supervised learning rather than of
the process of evaluating results of a model. However, new consistency pairs can
be generated after a model is created to further evaluate its fairness properties
with respect to discriminating variable of interest. Adding new consistency pairs
doesn’t require the model itself to be changed, only to be re-trained.

There are several limitations to paired-consistency. First, our method
assumes the existence and availability of a fair domain expert capable of gen-
erating consistency pairs. In many cases this is not a huge stretch, but other
times may be infeasible due to time, cost, or trust. The current experiments do
however suggest that a relatively small number of pairs (several hundred) are
already sufficient to achieve most of the benefit.

Even when such an expert is available, there is still a problem in agreeing on
the notion of fairness to be used in the pairing of examples. This final issue is a
fundamental problem of fair machine learning (and possibly fairness in general).
The inability to agree on what is fair is inherently a limitation on the ability to
design fair systems. We note that this question is outside of the scope of machine
learning and engineering in general, and is rather a question to be tackled by a
wider community in the broad spectrum of the humanities and social sciences.

Future work will focus on extending the ideas brought here to other types of
models and domains, and provide theoretical performance guarantees. In the case
of deep learning (or more generally gradient optimized models), it is relatively
straight forward to add the consistency term as specified in Eq. 2, as is demon-
strated for the Logistic Regression case here. It remains to be seen how this will
effect different types of models, and how the effect varies between datasets. For
other types of models it may be more difficult to incorporate this penalty, but
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the method can still be used independently for the purpose of fair model selec-
tion (since in that case it is a post-hoc calculation on the model output, that
doesn’t depend on the model’s cost function itself).

An additional question of interest that we do not cover here is the effect of the
number of consistency pairs necessary to achieve the goal. While we were able
to generate a relatively large number for the current datasets (since it was an
automatic process), in the more general case a human expert will manually pick
consistency pairs, a potentially costly and time consuming effort. The cost and
effort required limit the number of pairs that are feasible for any given dataset.

Finally, we note that this method can be applied synergistically with other
fairness techniques for model construction and evaluation. For example, this
method can be used in conjunction with adversarial techniques for removing
unwanted information from deep learning representations [7,20] to obtain a
model that is based on a representation devoid of the information about the
protected variables on the one hand, and that enforces fairness in the notion of
consistency on the other hand. Future work will focus on the interplay between
the various trade-off parameters that emerge from such a construction. Simi-
larly, it is interesting to investigate the effect of the pair sampling done by the
fair domain expert, and cases when specific types of sampling lead to paired-
consistency converging back to one of the previously proposed statistical notions
of fairness.
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Abstract. Recent years have seen a surge in studies developing clinical
prediction models based on electronic health records (EHRs) as a result
of advances in machine learning techniques and data availability. Yet,
validation and implementation of such models in practice are rare, in
part because EHR-based clinical prediction models are more difficult to
apply to new data sets than results of classical clinical studies due to less
controlled clinical environments.

In this paper we propose to use the theoretical framework of domain
adaptation to analyze the problem of transferring machine-learning-based
clinical prediction models across different hospitals and EHR systems.
Using the model of Thoral et al. [12] predicting patient-level risk of read-
mission and mortality after intensive care unit discharge as a case study,
we discuss, apply and compare multiple domain adaptation methods. We
transfer the model from the original source data set to two new target data
sets. We find that, while model performance deteriorates substantially
when applying a model developed for one data set to another directly,
updating models with training data from the target set and using meth-
ods that explicitly model differences in data sets always improves model
performance. In a simulation experiment, we show that having access to
data or model parameters from another hospital can substantially reduce
the amount of data required to build an accurate prediction model for a
new hospital. We also show that these performance gains diminish with
increasing availability of data from the target hospital.

Keywords: Clinical prediction models · Domain adaptation · Transfer
learning · Electronic Health Records · Intensive Care Medicine

1 Introduction

The increased availability and quality of electronic health records (EHRs)
and the development of sophisticated learning algorithms have opened up the
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possibility of developing machine learning models to support doctors in clinical
decision making [5]. These models can offer valuable patient-level information
about the risk of adverse events to clinicians, particularly in highly complex
and high-resource environments with large amounts of routinely collected data.
Yet, only a small proportion of machine-learning-based clinical prediction mod-
els presented in studies are re-used after their original publication, and even
fewer are ever implemented in clinical practice [9]. In part, this is due to a lack
of validation studies and transferability of such models.

Unfortunately, transfer of EHR-based risk prediction models to new EHR-
based data sets is inherently more difficult than that of models based on curated
data from classical clinical trials and cohort studies: the data is less structured,
the patient samples are less homogeneous, and often the amount of predictor
variables is much larger while their definitions can be much less precise [5].
In addition to differences in patient populations and data quality, differences
in other institutional factors, such as standards in clinical practice [7], can also
lead to models that perform well in one hospital but perform substantially worse
at another. Therefore, it is crucial to investigate how clinical prediction models
can be safely transferred to new data sets so that they can be validated and
ultimately be implemented in clinical practice to actually have an impact on
patient outcomes.

With this paper, we aim to explore theory and methods that enable the
transfer of clinical prediction models. For this purpose, we consider the model
of [12], which uses EHRs to predict a patient’s risk of readmission and mortality
after discharge from the intensive care unit (ICU), as a case study. As this model
is currently in the process of being implemented as a clinical decision-support
software-tool at the ICU of the Amsterdam UMC, location VUmc (hereafter:
VUmc), we investigate how to perform validation of this model within the VUmc,
and how to use it to facilitate implementation of ICU software at other hospitals
as well. To do so, we transfer the model from the original source data set to two
new target data sets: a new data set obtained from the current EHR system of
the VUmc, and a data set from a new hospital.

Some domain adaptation and transfer learning methods have already been
employed in related work to transfer clinical prediction models across hospitals:
pooling of multiple data sets using fixed weight schemes was used in the context
of ICU readmission [4] and in-hospital mortality [3], also illustrating the poten-
tial of data-set pooling on reducing data-size requirements [3]. More complex
methods formalizing dependence between source and target hospitals within the
model structure have been used to predict Clostridium difficile infections [13]
and surgical mortality [7]. While these are examples of successful applications of
transfer methods in a clinical setting, they lack a unified theoretical framework
and consequentially, do not facilitate the comparison of different methods.

This paper fills this gap in existing literature by making two contributions:
first, we apply the theoretical framework of domain adaptation to formalize the
problem of transferring clinical prediction models across data sets, and place
different methods that have been used in clinical predictive modeling and else-
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where into one coherent framework. Second, we empirically compare their per-
formance by applying them to the problem of transferring ICU readmission mod-
els between our data sets. We also evaluate their performance when artificially
decreasing the amount of available data from the target data sets to simulate
moving towards implementation of a model at a new hospital, showing that the
added value of different domain adaptation methods is sensitive to the amount
of available target data.

We proceed as follows: In Sect. 2, we discuss the theoretical framework of
domain adaptation as well as methods that can be used to overcome shifts in
patient populations and conditional outcome probabilities between data sets.
In Sect. 3, we discuss our empirical strategy for testing these methods and in
Sect. 4, we present our results. Section 5 summarizes and concludes.

2 Theoretical Framework

In this paper, we consider transferring a clinical prediction model from a source
data set, on which said model was first developed and trained, to another, target,
data set as a domain adaptation problem. Domain adaptation covers problems
where input feature spaces and outcome definition are identical across data sets
(domains), while the probability densities over the feature space and outcome
may differ.1

In Sect. 2.1, we introduce the theoretical framework of domain adaptation
and discuss issues common to domain adaptation problems. In Sects. 2.2 and
2.3, we review strategies to handle covariate shift and concept shift.

2.1 Formalizing Domain Adaptation Problems

To assess the theoretical consequences of learning from different domains, we
closely follow the general framework and notation of [1]. We define a domain d
to consist of (1) a distribution Dd over the k-dimensional feature space X , where
φd : X → R is the probability density function of Dd, and (2) a labelling function
fd : X → [0, 1]. In clinical prediction models, φd(x) captures the distribution of
patient characteristics in the patient population of domain d, while fd(x) is
pd(y|x), the true (unobserved) probability of the clinical outcome y, which in
our application is readmission or mortality after ICU discharge, conditional on
a patient’s observed characteristics. To build a clinical prediction model, we aim
to find a hypothesis function h that approximates the true underlying outcome
probability as closely as possible. To do so, we define the probability that a
hypothesis h disagrees with any labelling function f , given distribution Dd over
X , as:

εd(h, f) = Ex∼Dd
[|h(x) − f(x)|] =

∫
|h(x) − f(x)|φd(x)dx (1)

1 If we would also allow feature spaces and outcome definitions to differ across domains,
then the problem would become a more general transfer learning problem [6]. We
restrict ourselves to the assumption that we can map correspondence between fea-
tures across hospitals and EHRs reasonably well.
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Of special interest is εd(h, fd), which is the error of the given classification
problem in domain d. For notational convenience, we will refer to this as εd(h).
To solve the binary classification problem at hand, we aim to find h from a
hypothesis class H such that

h = arg min
h∈H

εd(h) (2)

Assume now that we shift our attention from one domain to another: a source
domain S for which we already have created a good model, and a target domain
T , for which we aim to create a model. We consider moving to a new hospital
as well as moving EHR systems within one hospital as such a change in domain,
as for both cases the underlying patient populations or the conditional outcome
probability could differ. We can relate the error on source and target domain as
follows:

εT (h) = εS(h) + εT (h, fT ) − εS(h, fT )︸ ︷︷ ︸
‘Covariate shift’

+ εS(h, fT ) − εS(h, fS︸ ︷︷ ︸
‘Concept shift’

)
(3)

When trying to transfer models across hospitals or EHR systems, there are
three cases of interest:

1. φT = φS and fT = fS : If the underlying patient populations are identical,
and the true conditional readmission probabilities are equal across domains,
then εT (h) = εS(h) and the classifier that minimizes the source error is also
optimal for the target domain. In practice this would mean that we could then
directly re-use the model build for one hospital for the other, and performance
on both data sets should be equally good. Classical clinical studies facilitate
this by strongly restricting included patient characteristics and controlling
the environment, ensuring replicability of the exact settings at the cost of
applicability to other patient populations and to daily practice.

2. φT �= φS and fT = fS : The underlying patient populations differ, yet the
unobserved conditional readmission probability is the same across domains.
This phenomenon is referred to as covariate shift [8]. Intuitively, the conse-
quence of this covariate shift is that during training, too much emphasis is
given to patient groups that are not important during testing as they are less
represented in the target data set. In this case, re-weighted source data can
still be used to estimate a target model. To see this, note that

εT (h) =
∫

|h(x) − fT (x)|φT (x)
φS(x)
φS(x)

dx = Ex∼DS

[
|h(x) − fS(x)|φT (x)

φS(x)

]

where we used that fT = fS . To solve this covariate shift problem, there are
many weighting algorithms available, which will be discussed in Sect. 2.2.

3. fT �= fS : The unobserved conditional readmission probabilities (also) dif-
fer between data sets, a phenomenon referred to as concept shift [8]. Clearly,
many observed patient characteristics can be expected to have a generaliz-
able effect across hospitals - e.g. risk factors such as high age. If, however,
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there are differences in institutional factors associated with the change in
domain [7], for example, the quality of care, clinical practice or accuracy of
feature measurement, it is possible that certain features contribute differently
to the probability of adverse clinical outcomes. In this case, there is no guar-
antee that a good source model will perform well also on a new data set, and
training a model only on source data is not sufficient to build a good target
model. Methods to optimally exploit data from more than one domain are
discussed in Sect. 2.3.

Note that there are also the related but conceptually slightly different issues
covariate drift and concept drift. Both refer to the fact that there might be
gradual changes to the underlying distributions along a temporal dimension t,
such that φd,t �= φd,t+1 and/or fd,t �= fd,t+1, resulting in deteriorating model
performance within one domain over time. We do not consider this case here2.
Further, we would like to point out that this paper is concerned purely with
predictive models; any model with the objective to establish a universal causal
relationship should of course control for all confounding factors that result in
concept shift, and define underlying patient populations well enough.

2.2 Strategies to Handle Covariate Shift

In this section we discuss how to solve issues related to covariate shift, i.e. patient
populations differing between source and target. In unsupervised estimation (i.e.
when we can train only on source data), under the assumption of no concept shift,
we focus on estimating the so-called importance weight of a source observation,
giving weight to patients in the source data set based on their similarity to
patients in the target data set. The goal is to find a weight such that:

w(xi) =
φT (xi)
φS(xi)

for i ∈ S (4)

Generally, there are two approaches to estimate this weight: (a) first esti-
mate the two distributions φd(x) separately, which is a hard problem in high-
dimensional feature spaces [10], and then compute their ratio for each obser-
vation i ∈ S or (b) estimate the density ratio φT (x)

φS(x) directly. We considered
the latter, i.e. Direct Importance Estimation, and as an exemplary re-weighting
method we used the well-established Kullback-Leibler Importance Estimation
Procedure (KLIEP) [10]. As the assumption of no concept shift is very unlikely
to hold for our data sets, our attempts at unsupervised estimation using re-
weighting resulted in negligible model improvements. We therefore exclude this
method in the empirical applications later in this paper, yet results are available
upon request.

2 A change in EHR system within a hospital, strictly speaking, also leads to a change
in distributions over time. However, that is not a gradual change and we decide to
treat such a situation as a shift in distributions, not a drift.
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When there is target data available to update the model, then training on
combined data should mitigate some of the concerns related to covariate shift
as the correct regions of the feature space are represented in the sample. Giving
relatively more weight to target samples may then be a simple solution to set
the focus on the correct regions of the feature space.

2.3 Strategies to Handle Concept Shift

In this section we present methods that can be applied in the presence of con-
cept shift, i.e. differences in conditional outcome probabilities. This list is by no
means exhaustive, and we have selected these methods because they can eas-
ily be incorporated into already existing modelling strategies. We consider the
following three strategies:

1. Pool the data sets: Simply exploit increases in available training data and
minimize an upper bound on the target error by considering a convex com-
bination of source and target errors, using an empirical alpha error [1]:

εα(h) = αεT (h) + (1 − α)εS(h) (5)

Intuitively, this means that with increasing alpha, we give more weight to
target patients over source patients. Given source and target sample sizes
nS and nT , each patient from the target data gets weight α ∗ nT +nS

nT
and

conversely, source patients get weight (1−α)∗ nT +nS
nS

. There is a theoretically
optimal α∗ which approaches 1 (which corresponds to training on target data
only) with increasing difference of underlying distributions, increasing nT and
decreasing nS [1]. As the upper bound on the error underlying the derivation
of α∗ is in general computationally intractable [1], we will not compute the
theoretically optimal value, rather, we wish to show that non-trivial values
of alpha can be useful by tuning α as an additional hyperparameter of the
learning algorithm. For the problem of transferring knowledge across ICUs,
this pooling and re-weighting method has been applied by [3] and [4].

2. Sequential modeling: use the model trained on source data as a prior3 to
regularize the target model towards [2]. Intuitively, this means that we believe
that a model for a new ICU will be similar to the one we already know, but
is allowed to learn differences from the target data. For generalized linear
models of the form hβ(x) = g(xβ), where β is a vector of coefficients, e.g.
linear or logistic regressions, this translates to empirically solving

min
β

∑
i∈T

l(hβ(xi), yi) + λ
∑

k

(βk − β̂k,S)2

2
(6)

3 The notion of a prior might be considered more natural within a Bayesian framework.
We do not consider Bayesian techniques here, but note that the given approach with
cross-entropy loss for binary classification results in an estimate equal to the Bayesian
maximum a posteriori estimate with normal prior.
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where l(hβ(xi), yi) denotes the empirical loss of hypothesis hβ on observa-
tion i and β̂S is the optimal parameter vector estimated from the source
domain. Note that with β̂S = 0, this is equivalent to standard estimation
with shrinkage enforced through a L2-penalty. For highly non-linear models,
such as gradient boosting models, regularizing towards a prior might not be
feasible. In those cases, we suggest another approach discussed by [2]: include
the probability prediction from the source model as an additional feature
into the target model. Intuitively, this corresponds to starting with a ‘source
risk-score’ and focusing during modeling on improving it along dimensions
where it does not perform well yet. Both sequential methods can be par-
ticularly useful when source hospitals are not able to share the data used
to create their model, e.g. due to data protection regulations, and can only
transfer the model itself. Such a sequential modeling approach using priors for
support vector machines, has, in our context, been used to transfer surgical
mortality models across hospitals [7].

3. Hierarchical modeling: Impose a hierarchy on the model structure. This
assumes that there is a global ICU model f∗(h) that underlies all hospital
specific ICU models fd(h). For generalized linear models, this means that the
predictive effect for variable k in domain d is given by βk,d = βk,∗+ξk,d, where
βk,∗ captures its global effects and ξk,d captures domain-specific differences.
The empirical optimization problem is similar to Eq. (6):

min
β∗,ξT ,ξS

∑
d∈{T ,S}

(∑
i∈d

l(hβ,d(xi), yi) +
∑

k

λk,d
(ξk,d)2

2

)
+

∑
k

λk,∗
(βk,∗)2

2
(7)

In fact, the main difference to (6) is that we train model (7) on both
data sets at the same time. Formulating βk,d as the sum of two compo-
nents has the advantage that estimation of this hierarchical model can be
greatly simplified by using the approach of [2]: augment the feature space
X ⊆ R

k to X̃ ⊆ R
3k such that any observation xi can be represented as

x̃i = 〈xi, I[i ∈ T ] ∗ xi, I[i ∈ S] ∗ xi〉, where I[i ∈ d] is an indicator specifying
whether observation i originates in domain d. In this augmented representa-
tion, we can estimate β̃ = 〈β∗, ξT , ξS〉 using standard estimation methods. We
set the regularization parameters λk,∗ < λk,d due to our belief that between-
hospital differences should be small. For features that we believe have mainly
domain-specific effects, we reverse this relationship. In our implementation
of this model, we only estimate 〈β∗, ξT 〉 and thus only augment the feature
space to R

2k to ensure identification of all parameters in the otherwise very
large model.

In principle, both sequential and hierarchical approaches would allow to add
features into the model that are only available in the target domain, similar to
the approach used by [13] to transfer models for Clostridium difficile infections
across hospitals. They use a variation of (7) where they allow variables j that
are available only in the target domain to have only target-specific effects (i.e.
they set βj,∗ = 0). We do not investigate this further, but note that relaxing
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the assumption of perfectly coinciding feature spaces is a possibility to improve
domain-specific versions of models further.

3 Experimental Set-Up: Data and Methods

3.1 Data Description and Feature Engineering

As a source data set, we consider the original set of VUmc admissions (here-
after: VUmc MV) used by [12]. The data is extracted from the VUmc Patient
Data Management System (MetaVision, iMDsoft, Tel Aviv, Israel) and contains
observations gathered between 2004 and March 2016. We consider two different
data sets as target data:

– VUmc Epic: A new data set of VUmc admissions, gathered from March 2016
to December 2018. This set is extracted from the EpicCare EHR (Epic Sys-
tem, Verona, WI, USA), the current EHR system of the VUmc, adopted in
March 2016. This transition in EHR system is to some extent associated with
a change in clinical practice, e.g. due to different standardization of lab test
orders.

– ETZ : Data from the Elisabeth-TweeSteden hospital (ETZ), a large non-
university teaching hospital in Tilburg, the Netherlands. The data set contains
data from two locations of the hospital: we use admissions from 2012 through
March 2018 from the first location (ETZ Elisabeth) while for the second (ETZ
TweeSteden) we use admissions from 2015 through March 2018. The Patient
Data Management System used by ETZ is also MetaVision.

All data are pseudo-anonymized and signals deemed relevant are extracted
from the three data sets4. Where possible, we extract the same signals across
all data sets, yet the available signals do not coincide perfectly. For each source-
target combination, we use only features that are available in both data sets.
They include:

– patient demographics (e.g. age and sex)
– characteristics of the admission (e.g. length of stay, department of origin)
– clinical observations (e.g. nursing scores and Glasgow Coma Scale)
– automated physiological measurements from devices (e.g. patient monitor and

ventilator)
– laboratory studies
– medications (e.g. sedatives and vasopressors)
– other support (e.g. enternal feeding)

Signals that can be measured more than once during the admission undergo
special feature engineering. In particular, we identify 3 time windows to capture
a patient’s clinical condition at different points in time (the first 24 h, the last
4 The clinical data used in this study was collected at the VUmc and ETZ and trans-

ferred to Pacmed’s servers in a de-identified format. They are not publicly available,
and restrictions apply to their use.
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24 h and the whole ICU stay) and, for each window, we compute 8 features for
each signal: the average of the measurements within a window, the standard
deviation around the average, the first and last values, the minimum and the
maximum value, the number of available measurements and an indicator whether
there is at least one measurement. For measurements that are characterized by a
start and end time (e.g. medications or interventions), we compute the following
features: time spent while receiving the medication/intervention, time passed
between the end of the window and the last time the medication/intervention
was administered, the number of times the medication/intervention was provided
and the total dosage. Some engineered features can be highly correlated with
other aggregations of the same signal especially when the signal is measured
infrequently. Therefore, we remove features that have correlation of above 97.5%
with another aggregation of the same signal.

The distributions of all features have been visualized and inspected. We
notice the presence of covariate shift in the form of different patient populations
between hospitals. One example of this is the higher proportion of neurological
patients at ETZ than at VUmc. We suspect concept shift, in, for example, the
features measuring if and how many times a specific signal was recorded for an
individual patient. These features can capture otherwise unobserved clinicians’
judgment of a patients condition, yet standards differ vastly across the three
data sets, making it unlikely that the features generalize well.

3.2 Cohort and Task Specification

For all domains we include only patients of 18 years and older who did not die
during their ICU admission. We also remove ICU admissions shorter than 12 h
and longer than 30 days, as well as patients who received palliative care. After
applying these criteria, our cohort consists of 14,105 admissions in the source
domain (VUmc MV) and 2,847 (VUmc Epic) and 13,300 (ETZ) admissions in
the target domains.

To model the risk of readmission and death after ICU discharge, we identify
admissions that are followed by another admission (for the same patient) or by
death between 12 h and 7 days as the adverse outcome of interest.5 The lower
bound is implemented to remove unusually early readmissions, which are most
often administrative errors, while the upper bound removes readmissions that are
probably not related to the first admission. The proportion of adverse outcomes
in our sample range from 5.3% (VUmc MV) to 6.1% (ETZ) and 7.3%(VUmc
Epic). A summary of the sample characteristics can be found in Table 1.

5 VUmc also has a High-dependency unit (HDU): we only consider strictly ICU admis-
sions as initial admissions (not admissions to the HDU) but if the patient, after
having been discharged by the ICU, is readmitted to the HDU, we consider this a
readmission, too.
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Table 1. Sample compositions of the three cohorts

VUmc MV VUmc Epic ETZ

Source Target Target

Period of collection 01/2004–03/2016 03/2016–12/2018 01/2012–03/2018

Hospital VUmc VUmc ETZ

EHR system Metavision Epic Metavision

Number of admissions 14,105 2,847 13,300

Readmission/post-discharge
mortality rate

5.3 % 7.3 % 6.1 %

Number of common features
used for modelling

1342 1258

3.3 Model Training

For each source-target combination we concatenate the two data sets prior to
training, impute missing values by hospital median, standardize all values across
the combined data set and randomly shuffle the data. We train and test all mod-
els using stratified 10-fold cross-validation, where the testing folds only contain
data from the target domain and the training folds contain the full source data
and/or the remaining target data, depending on which method is used. All code
used for this paper is built on top of the machine learning library scikit-learn6.

We incorporate a feature-selection step into our modeling strategy to reduce
the high dimensionality of our feature space. To do so, we fit a logistic regression
model with L1-penalty, and include only features with non-zero coefficient into
the final model [11]. The penalty parameter is chosen based on cross-validated
performance. For simplicity, we choose from a fixed menu of three values that
encourage different degrees of sparsity of the model. To prevent leakage, feature
selection is performed within each training fold.

As the final prediction model, after feature selection, we consider Logistic
Regressions and Gradient Boosted Classifiers. We set our main focus on Logis-
tic Regressions because we aim to show the relative effect the different domain
adaptation methods can have, without taking a whole battery of other hyper-
parameters into account. We include Gradient Boosted Classifiers because we
also wish to show that the availability of more information improves model per-
formance, which is more relevant for highly non-linear machine-learning models.

When training Logistic Regressions, we impose a L2-penalty to punish over-
fitting. As for the feature selection step, we consider a discrete menu of different
values for the penalty parameter that shrink the model coefficients by different
degrees. We train Gradient Boosted Classifiers with fixed hyperparameters: 1000
trees, a learning rate of 0.01 and allowing maximally 5 splits by tree, where only
20% of all features are considered at each split.

We make some modifications to this general training procedure within some
of the methods discussed in Sect. 2.3:
6 See https://scikit-learn.org/stable/.

https://scikit-learn.org/stable/
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– Prior : when training with a prior, we skip the feature selection step and
instead include only features selected for the source model.

– Prediction-feature: When including the prediction as a new feature into the
gradient boosting model, we consider multiple values for the fraction of fea-
tures inspected per split, because we want to allow the prediction to be con-
sidered more often than a ‘regular’ feature.

– Hierarchy : To implement this model, we first perform feature selection using
the normal data set, and afterwards augment the feature space using the
dummy method described in Sect. 2.3.

3.4 Experimental Procedures

Experiment 1: Comparing Model Performance on the Full Data Sets.
We compare the performance of different strategies to create a clinical prediction
model for the two target data sets. Next to the performance of the source model
on the source data set, we compute the target performance of models trained on
source only and on target only as baselines. We compare this to the performance
of:

– Pooled data: training on the combined data-set, both un-weighted and
weighted with the best alpha, where alpha is chosen from a fixed menu of
values.

– Prior : training with the source only model as prior. Logistic Regression only.
– Prediction-feature: training with a standardized probability prediction from

the source only model as additional feature.
– Hierarchy : Imposing a hierarchy on the model structure that regularizes the

domain-specific parts of the model more heavily than the general parts, and
reverses this relationship for features capturing the presence and count of
signals. Logistic Regression only.

Experiment 2: Simulating Introduction of the Model at New Hospi-
tals. To simulate the effect the different methods can have on data requirements
when moving towards implementation of clinical prediction models at a new hos-
pital, we remove all target observations from the training folds and gradually
increase the proportion of target data available for training. This also allows us
to evaluate model performance for different regimes of target sample size. We do
so for n increments by randomly choosing n ∗ 250 observations from the target
data in each original training fold until we reach the original target set size. To
perform this analysis, we fix all hyperparameter settings to those chosen using
the full data set7. This approach is similar to the methods used by [3] to simulate
a learning curve. We choose to exclude the α-weighted method from this exper-
iment since α∗ depends on the sample size. We found that fixing any ratio of
target to source weight gives a curve that is almost identical to the un-weighted
pooling.
7 We choose this approach for computational feasibility of the simulation exercise. For

the very small data sets considered at the beginning of the learning curve, different
hyperparameter settings would have probably resulted in better performance.
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3.5 Model Evaluation

As clinicians are mainly interested in probability (risk) predictions, we evaluate
the performance of our models based on the area under the receiver-operating
curve (AUROC). To ensure stable results, we repeat the 10-fold cross validation
10 times for different random seeds, yielding 100 different AUROC values. In
Sect. 4 we report the mean of this metric m across the 100 runs, and use the
standard error of this mean, i.e. σm√

100
, to quantify uncertainty.

4 Results

4.1 Experiment 1: Comparing Model Performance on the Full Data
Sets

Table 2 presents the results of the first experiment discussed in Sect. 3.4. We find
that, for both target data sets, target performance is significantly below source
performance when applying the model trained on source data to the target data
directly. This is in line with the expectations we derived theoretically in Sect. 2.1.
This performance drop is relatively larger when using ETZ as target8, which is

Table 2. Model performance (AUROC) for different methods

Method VUmc Epic ETZ

LR GB LR GB

(1) Source performance� 0.795 (0.002) 0.793 (0.002) 0.790 (0.002) 0.791 (0.002)

(2) Source only 0.764 (0.006) 0.767 (0.008) 0.697 (0.003) 0.688 (0.003)

(3) Target only 0.767 (0.005) 0.763 (0.006) 0.742 (0.003) 0.744 (0.002)

(4) Pooled, no weight 0.797 (0.005) 0.796 (0.005) 0.743 (0.002) 0.751 (0.002)

(5) Pooled, best α 0.799 (0.005) 0.796 (0.005) 0.745 (0.002) 0.751 (0.002)

(6) Prior 0.799 (0.005) 0.733 (0.003)

(7) Prediction-feature 0.789 (0.005) 0.781 (0.005) 0.745 (0.003) 0.747 (0.002)

(8) Hierarchy 0.800 (0.005) 0.746 (0.002)

Area under the receiver-operating cure (AUROC) averaged over 10 random runs of 10-fold
cross-validation for Logistic Regression (LR) and Gradient Boosted Classifier (GB), with stan-
dard errors in parentheses. �: Note that this is trained and evaluated on only source data to
provide a reference point, and that, due to differences in data availability, slightly different
subsets of features are used for VUmc Epic (columns 2 and 3) and ETZ (columns 4 and 5),
resulting in slight differences in the respective source performance.

8 Regardless of the method used, our classifiers exhibit much lower performance on
ETZ data than on the VUmc data set using the same features (row (1), columns 4
and 5), despite the high number of admissions included in modeling. We postulate
two possible explanations for this: First, it could be that for patient groups present at
the ETZ, the underlying prediction problem is simply more difficult and readmissions
are less predictable from observable patient characteristics. Second, the ETZ data
set has many more missing values than the two VUmc data sets, and we hypothesize
that lower data quality could be another reason for the drop in performance.
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also in line with expectations because the difference in institutional factors and
patient populations is larger between source and this target. Using only target
data for training improves model performance significantly compared to using
only source data for the ETZ case, but not for VUmc Epic.

We gain a number of useful insights from the performance of the different
domain adaptation approaches. For both target data sets, there is some signifi-
cant gain in using also the source data by pooling the data sets. As expected, this
increase in the amount of training data results in gains that are larger for the
non-linear gradient boosting model (when comparing the two classifiers), and
for the VUmc Epic data (when comparing the relative improvement in model
performance across the two target data sets). The latter can be attributed to
VUmc MV and VUmc Epic sharing many institutional factors, and the VUmc
Epic set being substantially smaller than the ETZ data set. We also find that
simple re-weighting schemes based on α can improve model performance, yet
these improvements fall within one standard error of the average AUROC. Our
results also show that some of the sequential and in particular the hierarchical
method can outperform the data pooling approach, yet, also only by a small
margin that does not exceed two standard errors of the pooled data AUROC.

4.2 Experiment 2: Simulating Introduction of the Model at New
Hospitals

The results presented above indicate that the effects of using more sophisticated
domain-adaptation methods is comparable to the effect of the rather simple
approach of pooling data. However, domain adaptation methods are made for
the case where target data sets are small, and both our target data sets, the
ETZ set in particular, are already relatively large. Therefore, we now investigate
the relative performance of these methods for different sizes of target data sets.

(a) VUmc Epic (b) ETZ

Fig. 1. Average AUROC by number of available target observations, using logistic
regressions and pooled data. Shaded area indicates one standard error.
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Figure 1 shows parts of the learning curves for methods requiring access to
both data sets, based on Logistic Regressions. For both target samples, the
experiment above illustrates that access to source data in addition to target data
substantially reduces the amount of target data needed to create a model that
performs well in the target domain. When there is little target data available, the
hierarchical model substantially outperforms the simple pooling of data. With
increasing data availability, the two approaches converge.

(a) VUmc Epic (b) ETZ

Fig. 2. Average AUROC by number of available target observations, using logistic
regressions and only target data. Shaded area indicates one standard error.

The learning curves in Fig. 2 give insights into the case where source data
is unavailable for training, which can often be the case in practice due to legal
restrictions on data use. The results using the prior method are particularly
striking, as they show that we can significantly improve target predictions by
simply using the source model as the regularization objective. Training with a
prior outperforms standard training even when using the full 2 years of admis-
sions in the VUmc Epic data, and for ETZ until the data set contains around
6000 admissions, which corresponds to around 3 years of data collection at ETZ.
We expect that if we had allowed to select new features into the prior model,
this learning curve would have flattened out even later. Similarly, including a
prediction from a source model as a feature into the target model also allows
to learn without having the underlying source data at hand. This method has a
longer warming up period, which we attribute to the fact that all other model
parameters have to be learned from scratch.

We expect that the results presented here will be more striking for more
expensive machine learning methods that need more data to perform well. In
Fig. 3 we provide some learning curve simulations using gradient boosting. We
find that the curves indeed flatten out and converge later, which gives support
for the claim that more advanced machine learning techniques will benefit more
from the pooling of data sets and domain adaptation methods.
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(a) VUmc Epic (b) ETZ

Fig. 3. Average AUROC by number of available target observations, for different gra-
dient boosting methods. Shaded area indicates one standard error.

5 Conclusions and Directions for Future Research

In this paper, we analyze the problem of transferring EHR-based clinical predic-
tion models across hospitals and EHR systems using the theoretical framework of
domain adaptation. We discuss and apply different domain adaptation methods
to illustrate their benefit when validating models on new data sets, and when
moving towards implementation at new hospitals. Both the theoretical consid-
erations and the empirical results have provided us with insights on transferring
clinical prediction models to new domains.

We discuss that validation studies applying existing EHR-based machine
learning models directly to new data sets are very likely to report deteriorated
model performance if there are any differences in underlying patient populations
or institutional factors and confirm this empirically. We show empirically that
updating these models by adding some data from the target cohort to the train-
ing set can lead to substantial increases in model performance. We also find that
having access to data from both target and source domain during training leads
to better model performance than training on target data alone. As this is mainly
due to an increased amount of available training examples, we find larger gains
in performance for smaller amounts of available target data, for more similar
target and source data sets and for more non-linear model specifications.

Our empirical experiments illustrate some important practical implications
for the process of creating hospital-specific clinical decision support tools. We
show that when implementing prediction models in new hospitals, having a large
data set from another hospital at hand substantially reduces the amount of tar-
get data required to build a good model. If sharing of this patient-level data is
not possible, then merely having access to the underlying model parameters of
another hospital’s model can have a similar effect. Both findings give motiva-
tion to centralize data collection and model development with cross-institutional
research groups or external parties that can create and maintain large collections
of EHR data and/or models for a large collection of hospitals.
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This paper also highlights multiple promising directions for future research:
first, we believe that even larger gains can be made if more medical expertise is
incorporated into the modelling process by creating categorizations of features
into sets that are expected to generalize more or less well. The good perfor-
mance of the hierarchical model gives an indication that this could be a fruitful
approach, and can be applied to all methods discussed in this paper, either by
exclusion of problematic features, or by varying regularization strengths. Sec-
ond, one could exploit the potential of the sequential and hierarchical models to
include features that are only available in one of the two domains, transitioning
from a domain adaptation problem to a more general transfer learning problem
where underlying feature spaces do not necessarily have to coincide. Third, the
flattened out learning curves indicate that there is potential to harvest the gain
of increasing sample size by moving towards more expensive non-linear machine
learning models that could improve model performance for all hospitals in the
sample.
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Abstract. Informing professionals about the latest research results in
their field is a particularly important task in the field of health care,
since any development in this field directly improves the health status
of the patients. Meanwhile, social media is an infrastructure that allows
public instant sharing of information, thus it has recently become pop-
ular in medical applications. In this study, we apply Multiple Distance
Knowledge Graph Embeddings (MDE) to link physicians and surgeons to
the latest medical breakthroughs that are shared as the research results
on Twitter. Our study shows that using this method physicians can be
informed about the new findings in their field given that they have an
account dedicated to their profession.

Keywords: Knowledge graph embeddings · Social media · Social
good · Health care · Twitter · Machine learning

1 Introduction

Twitter is a projection of the interactions of a society connected to the inter-
net, which is in constant evolution. The dynamic aspect of this social media
allows manifold applications. From the rise of social media, Twitter was used to
measure campaign impacts, collect opinions, analyze trends and to study crisis.
However, recently, its applications are more individualized. Particularly, because
Twitter has become the most popular form of social media used for health care
communication [15], and it is reshaping health care [10], it has become the cen-
ter of many studies in the field of health care. For example, a study suggests
Twitter for knowledge exchange in academic medicine [7] and it was argued that
disease-specific hashtags and the creation of Twitter medical communities [13]
has improved the uniformity of medical discussions. Another study is dedicated
to the influence of specific medical hashtags on social media platforms [5].
c© Springer Nature Switzerland AG 2020
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Problem Statement: Pershad et al. [14] point out the potential of Twitter to
reshape public health efforts, including disseminating health updates, sharing
information about diseases. Especially, they emphasize on the role of Twitter
to make research advances more accessible for physicians. They argue that con-
necting researchers and clinicians is crucial and useful since clinicians can use
new information they discover from this closer contact with researchers to guide
decision-making about patient treatments in such a field that is in constant
progress.

In this study, we target this problem by providing a method that suggests
physicians and clinicians the recent research breakthroughs in their specialized
field based on their current social activity. As the first step to reach this goal, we
extract a subset of Twitter network and we generate a knowledge graph (KG)
from the extracted data. Figure 1 depicts a schema of the KG with example
user instances and the relations between them. In this figure, it is shown that
our method recommends a Tweet of Jane, who is a researcher about her latest
findings to Bob who is a surgeon. The method calculates a probability that such
a Tweet will be useful to Bob based on his previous favored Tweets and the
relation to other physicians that work in the same field.

ResearcherPhysician

is a

is a

Is afollows
follows

Jane

Paul

Bob

Our last 
study shows 

talks about

Likes

Recommended

Another last 
study shows 

Likes

Fig. 1. A schema of the medical professional knowledge graph on Twitter with example
user instances. An orange dot line depicts a new link suggested by the proposed method.
(Color figure online)
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We then apply an embedding method to predict links that are likely to be
serving to the physicians. The proposed application is different from the user
recommendation service of Twitter [9] which recommends users to follow or the
works that discover similar users [8]. Here, we focus our study and evaluation
on suggesting related Tweets.

The main contribution of this study is the application of knowledge graph
embeddings for a new field, the extraction of a KG from Twitter for the proof
of concept and experiments targeted at physicians to help them stay up-to-date
in their field.

2 Background

In a social network, a node of the graph represents a person while edges that link
the nodes correspond to relationships between people. The edges are also called
“connections”, “links”. Examples of social networks are graphs that describe
Facebook and Twitter. Link prediction, in general, is the task of predicting
whether a link exists between a given pair of nodes or not.

Definition 1: a knowledge graph is defined by (E, P, T), a set of entities e ∈ E,
a set of predicates p ∈ P and a set of triples t ∈ T. A triple (ei, pk, ej) is made
of two entities and a predicate that connects them.

In a KG, two entities can be connected by several predicates. When describing
a social network by a KG, nodes are translated to entities and links are translated
to predicates, however, in KG an ontology usually specifies the class of describes
what types of entities and predicates can construct a triple. A relational learning
model usually learns the relations of a KG. Particularly, embedding models are
a class of relational learning models that produce vector representations of the
entities and predicates and predict the missing links.

Definition 2: link prediction in a KG means to predict the existence of a triple,
i.e., whether a relation exists from two entities ei and ej and a k-th predicate.

3 Related Work

Classic link prediction methods on social media use graph properties of the
social network or NLP feature of nodes to predict links between entities. For
example, [11] is base solely on graph features and [3] uses a similar technique
for the social networks in healthcare. Meanwhile, [1] uses common words to
cluster and rank nodes and based on that predicts the closely-ranked nodes
to be connected. Another Study [2] uses a combination of graph features and
keyword matches to train classifiers (SVM, Naive Bayes, etc) to predict if a link
exists between two nodes.

Most of the studies on link prediction of social networks focus on the problem
of link existence. Where some methods attempt to find link weights and the
number of links between the nodes [17]. An advantage of link prediction using KG
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embedding is that the type of links are also predicted since these KG embedding
models distinguish the type of links.

TransE [4] is an embedding model that is popular because of its simplicity
and efficiency. It represents the entities in a KG by a relation between the vectors
representing them. The score function describing these vectors in TransE is:

ScoreTransE = ‖ hi + ri − ti ‖p (1)

where n refers to L1 or L2 norm and hi and ti are the vector representations of
an entity and ri is the vector representations of a predicate. For training, TransE
uses margin ranking loss as the loss function. The following Section describes
embedding a KG extracted from Twitter using MDE model.

4 KG Embeddings for Twitter Link Prediction

Knowledge graph embedding models usually generate a prediction based on their
score function. Nickel et al. [12] suggests performing link prediction by compar-
ing the score of a triple with some given threshold θ or by ranking the entries
according to their likelihood that the link in question exists. We similarly use
the Multiple-Distance Embedding (MDE) model [16]. In comparison to TransE,
this model can learn several relational patterns and thus more can more accu-
rately learn the hidden relation between the entities. Specifically, MDE can learn
relations with symmetry, antisymmetry, transitive, inversion and composition
patterns. The score function of this model is as follows:

ScoreMDE = w1 ‖ hi+ri−ti ‖p + w2 ‖ hj +tj −rj ‖p + w3 ‖ tk+rk−hk ‖p −ψ
(2)

where ψ ∈ R+ is a positive constant. The loss function of this model is:

loss = β1

∑

τ∈T+

[f(τ) − γ1]+ + β2

∑

τ ′∈T−
[γ2 − f(τ ′)]+ (3)

where γ1, γ2 are small positive values and δ0, δ
′
0 = 0. β1, β2 > 0 are constraints.

The given loss minimizes the score of the positive samples. Therefore, the smaller
the score of a triple, that relation is more probable. Base on this property of the
loss function, we define a measure to estimate the existence of a predicate such
that the more probable triples are given a higher score.

We designate the division of the maximum score of a triple in the training
set to the score of a triple A as the probability of the existence of A:

Pa =
max(Scoretraining−triples)

ScoreA
(4)

This definition is based upon the assumption that after the training, the
model accurately predicates the triples of the training set.

The equation compares only the triples of the same type (with the same pred-
icate). Thus, in predicting the triples for linking physicians to medical Tweets,
we consider only triples with like research Tweet id predicates.
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Fig. 2. A sample of the extracted Tweets about the recent medical studies. Each row
shows the content of one of the extracted Tweets.

To perform link prediction on Twitter, we train MDE over an extracted KG.
In the following, we explain the procedure to extract the dataset from which we
later generate a KG using it.

Knowledge Graph Extraction: We extract a set of Tweets about the latest
medical studies using Python scripting and the Tweepy library1. We filter our
search by medical keywords and time in order to only obtain medical research
related Tweets which were created from the beginning of the year 2019. Figure 2
shows a sample of the extracted Tweets. To keep the privacy of users, we removed
the user and Tweet identifiers from the figure.

With the same tools, we search for Twitter users who are physicians, sur-
geons, nurses, and researchers in the medical fields which have written about
these topics or favored such Tweets. Our continues inquiry which took 8 hours,
provided us 5996 Twitter users. Between these users, the job title of 69 instances
was deductible (researcher in the medical field or physician) based on the med-
ical job titles in their profile descriptions. This step reduced the users to 69
instances. We then extract the relations among these users and the relations
among the users and the gathered Tweets. We also extract the users who follow
or are followed by these users so we gain the neighbors of these users in the social
network.

We then generate a multi-relational knowledge graph from scraped data by
converting these relations to triples. To create these triples, we first define an
ontology for the social KG. This ontology includes five types of relations. Table 1
lists these relation types. We also anticipate two classes for users in the ontology.
Table 2 presents these classes. The created knowledge graph (TW52) includes
4439 entities which are comprised of 1021 users and 3418 Tweets. The final
constructed KG includes 4791 triples. The anonymised dataset is openly available
for research purposes in https://git.io/fj6h8.

1 https://www.tweepy.org/.

https://git.io/fj6h8
https://www.tweepy.org/
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Table 1. Relation types in the Social
Ontology

Relation Id Relation

0 is talking about

1 is followed by

2 is following

3 job title type is

4 likes research Tweet id

Table 2. Class of users in the Social
Ontology

Class Id User entity class

0 job title medical researcher

1 job title physician

5 Experiments

We set up two experiments. We firstly evaluate how well the MDE method per-
forms on the social media dataset against a baseline in the task of link prediction.
We then analyze the suggestion results of the model in different situations.

5.1 Performance Evaluation

We set up an experiment to evaluate the link prediction performance of MDE
against TransE as the baseline.

Evaluation Setup: We dedicate 80% of the knowledge graph extracted from
Twitter as the training dataset and set the rest as the test dataset. We randomly
choose triples by uniform random selection to separate them for the test set. We
perform ranking the score of each test triple against its versions with replaced
head, and once with a replaced tail. We then compute the hit at N (hit@N),
mean rank (MR) and mean reciprocal rank (MRR) of these rankings. We set
the vector size of TransE to 20 and choose the vector size of 10 for MDE. We
use L2 normalization to normalize their score function and train them by 700
iterations. For MDE, we set the hyperparameters as follows: γ1 = γ2 = 3 and
ψ = 1.2.

Results: Table 3 lists the evaluation results of TransE and MDE on the extracted
knowledge graph. Due to the sparsity of the graph, TransE gains very low ranking
scores while MDE produces superior results for all the MR and MRR and hit@N
tests. The results suggest the positive influence of relation patterns learning in
MDE.

Table 3. Results on Twitter extracted dataset (TW52). Better results are in bold.

Model MR MRR Hit@1 Hit@3 Hit@10

TransE 1327 0.021 0.005 0.019 0.048

MDE 1287 0.148 0.071 0.161 0.332
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5.2 Link Prediction Analysis

In this section rather than studying the performance of the model, we estab-
lish an experiment to analyze the suggestion results of the model to find out
whether it creates sound suggestions in different situations. We apply the model
to learn on the constructed KG and then we use it to suggest the possible inter-
esting research results for the physicians suggested. We then study the suggested
results.

Considering the physicians in the KG and Tweets which include research
results, we calculate the probability that such a Tweet is favorable for physicians
using Eq. 4. In our experiment, the hit@1 of the training triples was 99.8%,
therefore, assuming maximum probability for the training triples in the formula
holds for the experiment.

The observation of relations and entities in the KG shows that it is structured
with the small world network patterns [18]. Particularly, it includes hub users
and Tweets which are connected to other nodes with a number of links that
greatly exceed the average degree in the network.

We select a subset of physicians in the KG and classify them according to
their relation to other users and Tweets into 4 groups of 5 users. We particularly
inspected their relation to hub users, which we call them User type A. Users of
type A are followed by a large number of users (at least 200), they are active users
and have favored variant Tweets. We consider also Users of type B which follow
a small number of users (25) who are also physicians or researchers. Table 4 lists
these groups of users and the mean of their probability to like a Tweet C that
includes a research study. We consider two Tweets similar if their representative
vectors have a small angle. These Tweets are usually favored by the same group
of people.

Table 4. Mean probability of linking to a Tweet C for users with different communities
and liked Tweets

User group Mean probability of C

Users U that follow A. A and U like a Tweet similar to C 0.205

Users U that follow A. A likes a Tweet similar to C 0.134

Users U that follow B. A and B like a Tweet similar to C 0.975

New users U that still follow nobody and like no Tweet 0.127

It is observable from Table 4 that in the proposed model, users that follow a
diverse group of users and topics, are less likely to be interested in an inquired
Tweet than those with less diverse connections. This effect is even stronger than
when the user has liked a similar Tweet before. This suggests that the model
performs better if a Twitter account is dedicated only to social communications
related to her profession.

Additionally, the new users that have not favored any Tweet are expected
the least among the users to favor a Tweet.
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6 Discussion of the Specificity of the Problem

The proposed experiment in the study has two major components. The first is
data extraction and KG construction section which we specify it to the problem
by data cleaning and filtering the extracted data and creating an ontology specific
to the physicians and research related tweets. The result of this part is TW52
knowledge graph which is sparse in comparison to the conventional benchmark
datasets of embedding models, i.e., WordNet18 and FB15K.

The second part of the study is the MDE embedding model. Although MDE
is a general method for the link prediction problems, the evaluations showed that
it is capable of embedding the sparse dataset much better than the state-of-the-
art TransE model. Therefore we consider both components appropriate for the
proposed problem.

7 Conclusion

We proposed the usage of multiple-distance knowledge graph embeddings (MDE)
to suggest Tweets about medical breakthroughs to physicians. We extracted a
KG of medical research Tweets and their relations to the users which medical
researcher or physicians.

We evaluated MDE against TransE as the baseline in a link prediction test for
the social network KG. Our experiment shows the superior ranking performance
of MDE over the baseline. We defined a probability for link suggestion and
provided an analytic study for it. We thereby conclude that the model can be
suggested to serve in connecting the physicians and the up-to-date advances in
the medical studies. Considering the time constraints of physicians on social
media [6], automating such suggestions can help physicians to find news and
trends relevant for medical research results more easily and in less time.

As future work, it would be interesting to extend this study on a large scale
and provide it as a live service. In addition, future studies may investigate the
social effect of such application to find its effect benefits for patients besides the
physicians.
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Abstract. The thesis of this research is that through the mining of
Electronic Medical Records containing mixed types of data, and extract-
ing patterns from the processed data, patients can be successfully cat-
egorised through means of supervised machine learning early in their
engagement with health care providers. This categorisation has quite
narrow parameters: the aim of which is identify patients that are less
suitable to the health care provider being examined in the course of
this research; specifically that of an out-of-hours health care cooperative
(OOHC). The motivation for this is to provide potential means for inter-
ventionist healthcare, in line with the increasingly role that decentralised
regional programmes are having in the avenues of treatment available for
patients [19] and the increasing emphasis on community based interven-
tion [24]. The patients in question are frequent users of the OOHC, and
represent a small cohort within the dataset as a whole. Our classification
methodology, based upon recurrent neural networks, achieves an Area
Under the Curve of between 0.81 and 0.92 in the identification of these
patients.

Keywords: Medical informatics · Electronic health record · Deep
learning

1 Introduction

The context of this research is treatment provided by an out-of-hours health care
(OOHC) cooperative. OOHC acts as an ad-hoc delivery of triage and treatment,
where interactions occur without recourse to a full medical history of the patient
in question. We are motivated by the prediction of a small cohort of patients
who have very frequent usage of the OOHC under investigation. This paper will
first describe the setting of OOHC, the way this form of medical care informs
our research, and the manner in which data is recorded in these types of organ-
isations. We will discuss the prevailing research concerning frequent users and
why their prediction is an important topic. This paper will briefly describe the
dataset available to our research before explaining the methodology employed to
predict cases which are likely to belong to this cohort. Finally we will provide a
post-hoc explanation of what features were most significant in the determination
of these cases.
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2 Problem Statement

Our research is based upon the early identification of patients who have under-
lying conditions which will cause them to repeatedly require medical attention,
far beyond what would be witnessed in the general population. Such frequent
patients pose a significantly increased financial and temporal demand on health
care providers than that posed by non FA cases. However, a much more substan-
tial concern is that these patients are a poor match to the services provided by
telemedical OOH organisations, which are predominantly designed to treat acute
and emergency cases rather than chronic illnesses. We define frequent users as
patients with over 24 interactions with the OOHC in question over the course of
a year, and those with over 50 interactions as high frequent users, for this same
period. Relative to the threshold being considered (relating to frequent and high-
frequent users) the aim of this research was to provide an accurate classification
of individual cases as either positive (frequent) or negative (non-frequent) dur-
ing testing using a single case entry relating to the given patient. This research
represents an example of outlier detection due to the relative scarcity of these
patients. Consequently, meaningful testing in relation to this problem necessi-
tates the use of an imbalanced dataset (thereby making the detection of true
positive cases a challenge).

3 Out-Of-Hours Health-Care

High level OOHC management in the form of cooperatives is becoming an
increasingly common means of primary health care provision. Electronic Health
Records (EHRs) are habitually used in primary care such as this for the record-
ing of patient data [25]. However, medical histories relating to people contacting
an OOHC organisation may reside in several distinct EHR systems in multi-
ple hospitals or surgeries which may be unavailable to the OOHC provider in
question [34].

OOHC cooperatives are a relatively modern health care delivery system,
forming a hybridisation of traditional primary care and telemedicine. Similar
to the structure adopted by the United Kingdom’s National Health Service,
out-of-hours care in Ireland features a plethora of services, including walk-in
centres, out-of-hours centres, telephone consultation, and the emergency depart-
ment (A&E) [6].

The scope of Caredoc’s integrated care model is nominally quite broad, but
fundamentally it is underpinned by its operation of a call centre which provides
the hub for out-of-hours care for quite a wide geographical area. It has been envi-
sioned since its inculcation, that nurse operated phones, providing both advice
and triage, would reduce the burden on other areas of the health service during
out-of-hours operation [21].

However, the telemedicine and triage provided is not diagnostic in nature.
Numerous OOHC take advantage of software for clinical decision making, typ-
ically known as clinical decision support systems (CDSS), and Caredoc is no
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Fig. 1. Graphical User Interface used by staff at OOHC, showing text boxes used to
record case data.

exception in this regard [20]. CDSS take in symptoms input by phone operators,
and make suggestions about the types of conditions the patient may be suffering
from. This software is useful is narrowing down the scope of what phone oper-
ators should consider when dealing with patients, but neither the values input
by phone operators, nor the suggested comorbidities derived by the CDSS are
actually recorded.

The patient records treated in this research may be presented in media res,
as patients will have had prior interaction with healthcare that is not recorded,
and indeed may have possible further interaction with health infrastructure, that
is likewise unavailable within the scope of this project. The data flow within
Caredoc is independent of any information relating to patients which may exist
in health records in other health care organisations (such as in hospitals, or
with the patient’s own GP). While Caredoc will transfer data to a patient’s GP
(or public health nurse, where appropriate), the reverse is not true. As such, if
diagnoses are made in relation to these patients in subsequent analysis, these
diagnoses are unlikely to feature within the data possessed by the co-op, unless
specifically mentioned by the patient in potential subsequent interaction between
the co-op and the patient.

As such, data relating to patients often form little more than snapshots. The
incomplete nature of patient medical histories is a typical feature of OOHC [1]. A
decentralised solution with respect to OOHC patient medical informatics is thus
a key motivation of this research. The software used to record each of episode
of care is Ad AstraTM. Most of the OOHC in both Ireland and the UK use this
particular software (or at least some version of it) [18].



634 D. Wallace and T. Kechadi

4 Electronic Health Records

For our purposes we will consider the data system managed by Caredoc to be
an Electronic Health Record, as it contains information shared between different
organisations, but provides a very disjointed and incomplete record relating to
individual patients [16].

The concept of Electronic Health Records was set out in order to close the
gap between institution-specific patient data and a comprehensive, longitudinal
collection of the patient’s health data [31]. EHR-like systems and e-prescription
are priorities in various EU e-Health Action Plan and in the policies of several
Member States (respectively, 27 and 22 EU countries). However, the general
political commitment to these e-health fields is at different stages of implemen-
tation across countries [33]. Overall, on average, 77.4% of GPs across Europe
store patient consultations in some form of EHR [9].

While the digital recording of patient data has been embraced by many coun-
tries due to the potential benefits such a policy poses to cost effectiveness of
health care provision, accuracy of treatment for patients, and research [28], there
are a number of extant problems that are common among EHR implementation.
Most EHR systems used in health centres are proprietary systems built with
different architectures, business rules, information technologies and models, in
addition to incompatible clinical terminology. These facts hinder the interop-
erability among the Health Information Systems (HIS), making it difficult for
health professionals to provide adequate care [13].

Electronic Health Records used in the operation of OOH cooperatives are
composed of both structured, parameterized fields, and unstructured, free-text
clinical notes. Knowledge discovery currently has very limited application in
Caredoc. Identification of patterns within this data, at either a population or
individual level, is limited to shallow treatment and narrow parametrisation
[7,15]. Like many HIS, each call handled by Caredoc is treated as a unique
encounter (or case) [26]. However, phone operators are able to automatically fill
in the parameterised demographic fields related to the patient being treated.
This is achieved by the phone number that is being used to call Caredoc being
on record, or the operator manually searching for the patient by name.

EHR documentation is thus encumbered by a number of challenges. In the
current system, each provider writes his or her own encounter-based notes, lead-
ing to redundancy, fragmentation, and lack of a single shared clinical narrative.
This problem is further aggravated when a patient receives care across organ-
isations whose EHRs are not interoperable [34]. EHRs generally lack standard
templates to document additional inputs in structured data fields, and the EHR
system that Caredoc operates is no different in relation to this shortcoming.
This limitation makes it difficult for practices to find, extract, and track rele-
vant behavioural health and physical health information to monitor quality and
improve the delivery of integrated care [5].

Patient demographic details, as seen in Fig. 1, have a large number of
fields, including General Medical Services (GMS) Number (if applicable), home
address, and telephone number. Most of these are sensitive data, and subject
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to restricted access based upon data protection legislation. Parametric informa-
tion also contains details about the call itself, such as the time of day and date
that the call was made. However, virtually all information relating to the case
in question is treated in non-sanitised free-text boxes.

Generally, case free-text records are written by highly skilled physicians and
nurses using specialised terms. As is typical in EHR, case record text is very
domain specific, depending on which medical discipline it is written in. Each
discipline or domain within medicine uses its own set of terms that can be
incomprehensible to other disciplines [8]. Patient records are primarily written
for hospital internal use and for mnemonic reasons. Daily running notes might
contain more spelling errors or noisiness than discharge letters that are read by
a larger audience [11].

Text mining of medical information can extract features from clinical digital
reports. Features from clinical data typically represent medical concepts, such as
symptoms, diagnoses and prescriptions. Using this data, partial medical histories
can be constructed for individuals.

5 Frequent Users

The problem of high recurring patients has long been acknowledged in health-
care. High recurring patients are, however, a complicated subset of subjects that
are difficult to classify. Not only do these patients have disparate demographic
details, but the symptoms with which they present to primary care staff are
diverse, and rarely indicate their belonging to this subgroup. This paper will
give an overview of the extant literature concerning frequent users of health-
care, why the prediction of such patients could be a significant contribution to
healthcare delivery, and how general principles relating to frequent users ties
into our research. In particular, this paper will discuss what measures currently
exist for predicting such patients, and how our proposed model improves upon
these approaches.

While frequent users of healthcare facilities has been a perennial issue, rela-
tively little research has been conducted in relation to frequent use in the context
of telemedicine. Most extant health-care management documentation relating
to frequent use has focused exclusively upon frequent attendance in secondary
healthcare, particularly that of emergency departments (ED). Such research has
largely been conducted with the motivation of moving these types of patients
to primary care (e.g. GPs or ambulatory healthcare centres). There is growing
understanding that interventionist measures, while an area of critical impor-
tance, should be patient focused, and not merely shift responsibility for care of
such patients. It is accepted that patients who repeatedly use either primary or
secondary healthcare have ongoing medical issues which are not being resolved,
despite their repeated use of healthcare facilities.

There is no standard definition of what constitutes a high use patient in any
sector of healthcare provision [3]. Despite it being self evident that frequent users
are characterised by the high frequency with which they interact with healthcare
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provision, the terminology relating to such patients is nonetheless volatile. The
actual threshold for what is considered to be ‘high’ use varies between insti-
tutions, and usually depends on the type of healthcare being considered. For
instance, the number of attendances deemed to constitute a Frequent Attender
(FA) of secondary healthcare is typically significantly lower than the number of
phone calls used to define a Frequent Caller (FC) [10]. Furthermore, the def-
inition of a frequent user may depend on the manner in which healthcare is
offered on a nationwide level, while the specific threshold used to determine how
many contacts constitutes “frequent use” fluctuates significantly between dif-
ferent countries, regions, and even particular departments. In countries where
public healthcare is free, such as in Denmark, Ireland, and the United Kingdom,
any difference in the proportion of frequent attenders must be explained by other
factors than economic [27].

A growing tendency within research into frequent users has been to create
delineations between frequent and high frequent use of health care facilities, as
this can help identify divergent characteristics between different types of frequent
usage. For instance a study in 2019 by Bhroin et al. in the A&E department
of Mercy University Hospital in Ireland (in an administrative region adjacent
to the area that is covered by the OOHC we are examining) classified high
frequent attender as patients with between 13 to 30 Emergency Department
visits per year, and very high frequent attenders as those with over 30 Emergency
Department visits [2]. Helplines on the other hand typically use a threshold of
one call a week to define FC. No study has shown a threshold number at which
striking differences in resources, demographics, or clinical import are observed
in relation to a specific threshold for emergency department FA [23].

While mental and psychological disease, and drug abuse, have long been
attributed to FA of ED, recent literature has pointed to a far more complicated
set of morbidities and co-morbidities that are present in patients that are classi-
fied as frequent users. Frequent users also tend to originate from a wide range of
backgrounds. There is significant disagreement between researchers on whether
demographic details have any significant predictive power in relation to such
patients.

Healthcare staff have described both the psychological and temporal burden
that these patients pose on their facilities. Frequent use has been associated
with frustration both on the part of the patient and also the healthcare staff
[17]. However, it is erroneous to view such patients as merely “time wasters” [29].
The negative viewpoint that these patients may have historically been subject to
reflects the difficulties of treating such patients, as they invariably present with
underlying issues which are not easily resolvable by the staff that are treating
them. Additionally they may present with increased psychological requirements,
and interaction may be complicated by the nominal reason for their contacting
the healthcare provider.

Frequent use of helplines, emergency departments, and primary care is heav-
ily associated with serious medical conditions, the requirements of which are
often not being met in the recourse offered to these patients. Emergency and
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OOHC prove to be ill adapted at treating many of these patients. Although
these facilities are adept at handling acute episodes, by necessity these health-
care providers are limited to the short-term, superficial treatment that will not
engage with the primary issues facing this cohort. A growing body of research
has suggested the creation of a specific arm of healthcare provision, featuring
staff specifically trained to treat frequent users cases [3]. Moreover, strategies
need to be developed to attempt to tackle underlying issues which are bringing
these types of patients into contact with healthcare provision.

Intervention specifically designed to target and treat frequent users has shown
significant promise, not only in terms of a reduction in the frequency with which
such patients present to healthcare operators, but also in terms of the acuity of
treatment and satisfaction of patients [3]. However, the means to develop ways
of identifying these patients is non-trivial. If the healthcare facility is using EHR
to record data, a frequent user of the same healthcare facility can be identified
simply by searching for how many previous encounters the healthcare facility
has had with that patient. This is nonetheless an undesirable approach, as it
necessitates that a patient already be established as a FP before any sort of
interventionist approach can be adopted. Furthermore, the lack of interoper-
ability between the EHR of different institutions is a widespread and ongoing
problem [32]. Interactions between a patient and a given health care provider
is typically isolated from any other interaction that patient may have had with
other health care provision. This is not only true in terms of types of healthcare
provision (e.g. GP, OOHC, ED) but even between different institutions providing
the same type of treatment. Consequently frequent users are almost exclusively
considered in terms of their interactions with a single institution.

The primary complaint presented to healthcare staff is typically only tan-
gentially related to ongoing reasons for such patients contacting the healthcare
provider. As a result of this there tends to be obfuscation of the main issues
facing these patients, which adds to difficulties of discoverability. Even where
literature agrees that certain diseases have high correlation with frequency of
presentation, major issues arise in the episodic nature of treatment in OOHC.
The specific, or at least nominal reason for the patient appearing in an ED, or
contacting an OOHC centre by phone, may be different with each visit. This
can hide underlying conditions. Frequent users are at risk of becoming serial
users (having consistent patterns of usage over multiple years). Other frequent
users, on the other hand, may be acute (having a large number of contacts over
a relatively short period of time). Attrition rates of those who remain frequent
users decrease over time, making them an ideal group for targeted interventions
[22].

While there were many factors that differentiated non-FAs from FAs in gen-
eral, persistent frequent attendance was specifically associated with gender, base-
line reports of depression, self-reported physical conditions and disability, and
medication use [30].
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6 Data-Set

Our data-set is derived from interactions that took place in the calendar year
of 2014. Frequent users are an usual, but significant subset of patients in our
dataset. The distribution of cases relative to patient frequency can be seen in
Fig. 2, showing that the vast majority of interactions with the OOHC are “non-
frequent”.
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Fig. 2. Case distribution of dataset.

The dataset consists of 294336 cases, featuring some 131841 unique lexemes.
The top seventy words in positive (threshold of twenty-four cases) and negative
cases can be seen in Fig. 3, excluding the NLTK set of stopwords [4]. A significant
overlap of high-occurring words for both frequent and non frequent users is
observable in this context.

The volume of free-text used for cases was not particularly consistent (see
Table 2 where average word length (w), and character length (c) is described).
There were four different fields where free-text may be recorded. A single case
may have free-text data in multiple fields. The different fields (labelled on the
system as relating to history, diagnosis, treatment, and teleguides), while only
loosely corresponding to their described purposes were nonetheless done so in
this particular temporal order. Consequently, if simultaneously present for a
given case, these data were appended together when creating datasets for our
classifier. We considered a word length of 100 to be a good length to capture
the majority of these cases. However also tested against an input length of 200
to ascertain whether any information was being inadvertently discarded which
could potentially improve classification performance.
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positive 

negative 

'pain', 'per', 'pt', 'hx',   'x', 'temp', 'nkda', 'meds', 'chest', '2', 'nil', '7', 'c', 'gp', 'advised', 'throat', 
'back', '1', 'o', 'clear', 'nad', 'appt', 'normal', 'days', 'cough', 'last', 'mum', 'left', '5', 'rash', 'since', 'e', 
'3', 'prn', 'today', 'sore', 'given', 'ago', 'med', 'tds', 'vomiting', 'red', 'bp', 'right', 'r', 'urine', 'see', 
'well', '36', 'dr', 'review', 'ent', 'bd', 'fever', 'mg', 'tender', 'abdo', '4', 'ear', 'calpol', 'ears', 'night', 
'ok', 'yesterday', 'home', 'week', 'call', 'neck', 'symptoms', 'infection', 'patient' 

'pt', 'per', 'pain', 'advised', 'dr', 'see', 'meds', 'hx', 'back', 'gp', 'chest',   'advice', 'call', 'c', 'o', '2', 
'home', 'nkda', 'notes', 'patient',   'x', 'today', 'special', 'last', 'feels', 'please', 're', 'feeling', 'given', 
'take', 'copd', 'says', 'visit', 'nurse', 'sob', 'phone', 'advise', 'happy', '1', 'taken', 'ago', 'took', 'appt', 
'prn', 'left', 'since', 'bp', '7', 'normal', 'temp', 'ring', 'paracetamol', 'tonight', 'cough', 'nil', 'e', 
'caredoc', 'spoke', '3', 'night', 'med', 'get', 'well', 'wants', 'steroids', 'days', 'v', 'also', 'go', 'seen', 'leg' 

Fig. 3. Top seventy words in positive and negative cases respectively, excluding stop-
words.

Table 1. Classification using bag-of-word model

Naive Bayes SVM RF

Accuracy 0.26 ± 0.51 0.66 ± 0.385 0.68 ± 0.045

PPV 0.89 ± 0.53 0.52 ± 0.459 0.37 ± 0.015

NPV 0.24 ± 0.019 0.49 ± 0.412 0.69 ± 0.044

TPR 0.013 ± 0.001 0.01 ± 0.0049 0.006 ± 0.001

7 Methodology

We initially attempted to classify cases as either frequent or non-frequent users
based upon a bag-of-words representation of the data, relating to the top 100
words in the dataset, using three different algorithms; namely Support Vector
Machines (SVM), Random Forest (RF) and Naive Bayes (NB). These results,
relating to positive predictive rate (PPV), negative predictive rate (NPV), and
true positive rate (TPR) are visible in Table 1. This provided a decent spread
of results and provided suitable baselines from which to work when developing
a case classification methodology.

Unsupervised neural networks can be used to create dense vector represen-
tation of lexemes, typically referred to as word embeddings. We created word
embeddings from patient free-text notes using Word2Vec, by applying the Skip-
Gram model [14]. For this we trained the unsupervised network on a version of
the corpus itself, which had been carefully processed in order to remove noise
and provide sentence disambiguation.

Long Short-Term Memory (LSTM), originally developed to help solve the
vanishing gradient problem common in simple Recurrent Neural Networks [12],
is a block that has the capacity to store representations of recent input events.
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Table 2. Free-text data in preprocessed corpus

Attribute Entries |c̄| |w̄|
olc history 15226 212.86 34.01

olc examination 11326 148.13 22.65

olc diagnosis 120433 36.04 5.13

olc treatment 123517 122.08 17.11

teleguides 58906 315.17 49.95

This has proven application in natural language processing problems due to
capacity of the ANN to remember term dependencies, and could be useful in the
interpretation of contextual information in patient cases.

The output of the ANNs was a continuous value reflecting determined likeli-
hood that the patient case being tested belonged to someone who would become
a frequent user. Training data was produced using downsampling in order to
produce a dataset evenly balanced between positive and negative cases. While
this approach was necessary, insofar that domination by a majority class had to
be avoided during training, this produced a significant prospect for overfitting.
Positive cases for training, validation, and testing sets were randomly allocated
in a 50:25:25 ratio, where testing was performed against an unbalanced dataset.
While dropout was considered as part of the search space of hyperparameters
that were subject to Bayesian hyperparameter optimization (along with the num-
ber of layers, learning rate, activation function, and optimisation function used
within the ANN), we also sought another potential means to counter overfit-
ting. Our approach was to deliberately prepend the vector data input with six
channels of noise, to see if this would improve ultimate testing results. This
was compared to the addition of normalized features derived from demographic
detail recorded through the OOHC software (see Fig. 1) in the corpus. Although
these normalized features were quite limited in scope, it was hypothesized that
the introduction of these features, such as patient age and gender, might improve
classification performance.

The structure and set of hyperparameters determined through Bayesian opti-
mization to be the most successful, and used pursuant to the ultimate classifica-
tion of patients in relation to this paper, was a Recurrent Neural Network fea-
turing a four layer LSTM with a learning rate of 0.001, dropout of 0.109, batch
size of 100, and using the Adam optimizer. It was uncertain whether increasing
the length of input (maximum number of lexemes considered in each case) and
channels (the dimensionality of word embeddings) would improve results, and
as such, these were also tested.
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8 Results

Long-Short Term Memory, using Word2Vec, trained on the corpus, and using
the hyperparameters described above overall performed strongly when given 100
lexemes of input, coupled with a dimensionality of 100 channels.

We use receiver operating characteristic (ROC) curve and the area under
curve (AUC) to evaluate the effectiveness of the classifier. The ROC curve shows
the trade-off between the true positive rate (TPR) and the false positive rate
(FPR), where the TPR and FPR are defined as follows:

TPR =
True Positives

True Positives + False Negatives
(1)

TNR =
True Negatives

True Positives + False Positives
(2)

If the ROC curve is closer to the top left corner of the graph, the model is
better. The AUC is the area under the curve generated. In medical data, more
attention is typically paid to recall rather than accuracy. While this metric is
often employed in relation to the prediction of a cohort that are, or will, suffer
a particular disease, in this instance the metric describes the capacity of the
model to classify a cohort suffering from a non-specific set of conditions that
have forced them to become frequent users of the OOHC being examined.

Results were obtained based on the criteria outlined above on 5-fold cross
validated testing sets. A distinction between frequent users (using a threshold
equal or above 24 cases) and high frequent users (over 50 cases) was made in
testing (relating to 7365 and 2922 cases respectively). While our model provided
best results with the most extreme of outliers, namely high frequent users, it
did not perform quite as well on those at a threshold of over 24 cases. A lin-
ear degradation of performance was observed when more generalized types of
patients were included (from an AUC of 0.92 for a threshold of 50 cases, when
noise was added, to an AUC of 0.79 for a threshold of 17 cases, when noise was
added). Nevertheless our model provided accurate results during testing despite
a setting involving significantly imbalanced data.

Looking at Table 3, it is interesting to observe that the inclusion of features
provided no significant improvement in performance by the recurrent neural
network architecture. In counterpoint, the inclusion of noise had the effect of
often reducing the propensity of the classifiers to overfit (which remained an
issue, even with dropout).

Increasing the length of input or number of channels did not necessarily have
a beneficial effect. Even where a higher percentage of true classifications were
achieved in one field, there would be a corresponding decrease in true predictions
in another. In particular, doubling both input length and channel size (C) tended
towards far more unstable models.

A high AUC was achieved for both frequent usage and high frequent usage
with our LSTM model (using 100 channels and 100 input length based on W2V
word embeddings trained on preprocessed corpus), visible in Fig. 4. High FAs
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Fig. 4. ROC curve over both High FA patients and FA patients with difference in
performance when including noise recorded as the red, and blue lines, for high FA and
FA cases respectively. (Color figure online)

achieved an AUC of 0.9 (or 0.92 with noise added) and FAs achieved an AUC
of 0.78 (or 0.81 with noise added).

9 Discussion

One issue with ANNs is their problem of interpretability. In order to improve this
aspect of our program, we produced a post-hoc analysis by measuring lexemes
related to cases, based upon whether these lexemes were within cases correctly,
or incorrectly, classified by our ANN. The predictive value output by our ANN
was summed for each lexeme for each of the related cases, with the count being
inversely proportional to how frequent each lexeme was in the corpus as a whole.
Finally, only the lexemes which collectively represented 80% of the entire number
of words in the particular dataset were kept in order to reduce the long tail of
insignificant lexemes. The resultant graph is viewable in Fig. 5.

True positives strongly featured the terms ‘depressed’, ‘angina’, ‘suicidal’,
‘gauze’, ‘neuralgia’, and ‘diabetic’. It is worth noting that these terms may often
be subject to contextual negation in individual cases (like ‘patient is not suici-
dal’). In the case of ‘suicidal’, approximately 25% of the instances of this term
were subject to negation. When considering the course of a patient interac-
tion that results in these terms appearing in free text notes, it is perhaps no
surprise that they bear significance, even if they are negated. While words that
have strong association with psychological disorders are apparent here (including
‘anxiety’ and ‘depressed’) it is worth noting the terms that also seem to strongly
indicate chronic disease (such as ‘angina’, ‘gauze’, and ‘diabetic’). A further
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Table 3. Architecture and input comparison

T Length C LSTM

Features Noise

PPV NPV PPV NPV

24 100 100 0.71 ± 0.006 0.76 ± 0.005 0.75 ± 0.033 0.75 ± 0.047

24 100 200 0.73 ± 0.021 0.75 ± 0.003 0.72 ± 0.047 0.76 ± 0.013

24 200 100 0.71 ± 0.018 0.72 ± 0.012 0.54 ± 0.21 0.89 ± 0.081

24 200 200 0.78 ± 0.098 0.63 ± 0.21 0.38 ± 0.33 0.91 ± 0.042

50 100 100 0.88 ± 0.009 0.78 ± 0.008 0.86 ± 0.012 0.88 ± 0.014

50 100 200 0.85 ± 0.017 0.83 ± 0.026 0.88 ± 0.019 0.84 ± 0.025

50 200 100 0.80 ± 0.083 0.69 ± 0.23 0.79 ± 0.015 0.71 ± 0.17

50 200 200 0.89 ± 0.048 0.75 ± 0.165 0.82 ± 0.14 0.72 ± 0.21

investigation may be merited to the end of finding the connection between such
terms in the free text notes.

There were also true positive terms that were more surprising, such as
‘driver’, ‘wondering’, and ‘list’. In particular the term ‘said’ would convention-
ally seem too frequent to pose much significance. However, the nature of the
medical notes is important in this regard. For instance the term ‘said’ appears a
total of 2967 times in our corpus, as opposed to 2323 times for a term like ‘dia-
betic’. In other textual environments (such as social media) the relative preva-
lence of two terms like these would be striking. True negatives for their part were
strongly associated with the terms ‘runny’, ‘viral’, ‘tonsillitis’, ‘tract’, and ‘rash’,

Fig. 5. Scatter-plot of the top 80% of words used in relation to cases correctly classified,
with the X-axis representing positive predictions, and the Y-axis representing negative
predictions
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clearing indicating infections and acute diseases. True negative cases were also
strongly connected to family-orientated words, such as ‘mum’, ‘dad’, and ‘child’.
It is worth pointing out that ‘mum’ and ‘inflamed’ also stood out among false
negatives. Interestingly, ‘dementia’ and ‘cancer’ were two terms most strongly
associated with false positives.

It is also the case that, notwithstanding efforts to improve the features derived
from such notes, some textual notes have very little data (perhaps a couple
of words at most) making the correct classification of these, in isolation, very
difficult.

10 Conclusion

This paper has outlined a system which can provide accurate prediction of high
use patients given a very limited amount of information relating to individual
patients. The way that this was achievable was by training a model that could
successfully learn patterns that were likely to represent such patients. In our
investigation we learned that these patterns were likely to be informed by terms
relating not only to psychological distress, but also chronic conditions. Given
that the seriousness of the conditions and signs related to cases that were likely
to relate to high use, or future high use patients, the value of providing potential
means to intervene in the medical welfare of such patients is underscored. Like
all predictive analysis in the medical domain, absolute accuracy is impossible
to guarantee. These models can be used to indicate patients that may warrant
further investigation in order to determine if they require elevated care than that
conventionally available through OOHC provision, but cannot substitute clini-
cian evaluation. Consequently, this type of prediction is potentially a valuable
tool in the suite of services available within existing OOHC structures, such as
the one considered within this paper. Through these means, a cohort of patients
which have been historically difficult to predict, such as frequent users, can
potentially be focused on, and healthcare with greater efficacy may be provided
for these patients’ individual requirements.

References

1. Aldosari, B.: Patients’ safety in the era of EMR/EHR automation. Inf. Med.
Unlocked 9, 230–233 (2017)

2. Uı́ Bhroin, S., Kinahan, J., Murphy, A.: Profiling frequent attenders at an inner
city emergency department. Ir. J. Med. Sci. (1971 -) 188(3), 1013–1019 (2019).
https://doi.org/10.1007/s11845-019-01964-2

3. Billings, J., Raven, M.C.: Dispelling an urban legend: frequent emergency depart-
ment users have substantial burden of disease. Health Aff. 32(12), 2099–2108
(2013)

4. Bird, S., Klein, E., Loper, E.: Natural language processing with Python: analyzing
text with the natural language toolkit. O’Reilly Media, Inc., Sebastopol (2009)

https://doi.org/10.1007/s11845-019-01964-2


Prediction of Frequent Out-Of-Hours’ Medical Use 645

5. Cifuentes, M., Davis, M., Fernald, D., Gunn, R., Dickinson, P., Cohen, D.J.:
Electronic health record challenges, workarounds, and solutions observed in prac-
tices integrating behavioral health and primary care. J. Am. Board Fam. Med.
28(Supplement 1), S63–S72 (2015)

6. Coombes, R.: How to fix out of hours care. BMJ 353, i2356 (2016)
7. Cunniffe, M., Burke, M., Curran, M., Collier, D.: Developing people-centeredness

in the Irish healthcare system-continuous awareness and communication are key
enablers to success. Int. J. Integr. Care 16(6) (2016)

8. Dalianis, H.: Characteristics of patient records and clinical corpora. In: Clinical
Text Mining, pp. 21–34. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-78503-5 4

9. De Rosis, S., Seghieri, C.: Basic ICT adoption and use by general practitioners:
an analysis of primary care systems in 31 European countries. BMC Med. Inform.
Decis. Mak. 15(1), 70 (2015)

10. Edwards, M.J., Bassett, G., Sinden, L., Fothergill, R.T.: Frequent callers to the
ambulance service: patient profiling and impact of case management on patient
utilisation of the ambulance service. Emerg. Med. J. 32(5), 392–396 (2015)

11. Ehrentraut, C., Tanushi, H., Dalianis, H., Tiedemann, J.: Detection of hospital
acquired infections in sparse and noisy Swedish patient records. A machine learning
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Abstract. We present an approach to the forecast of the study success
in selected STEM disciplines (computer science, mathematics, physics,
and meteorology), solely based on the academic record of a student so
far, without access to demographic or socioeconomic data. The purpose
of the analysis is to improve student counseling, which may be essential
for finishing a study program in one of the above mentioned fields. Tech-
nically, we show the successful use of propositionalization on relational
data from educational data mining, based on standard aggregates and
basic LSTM-trained aggregates.

1 Introduction

In our today’s world a good higher education is required for a multitude of posi-
tions in the economy and it is a necessity in academia. But there are multiple
hurdles students have to overcome during their study in order to successfully
graduate. As an American study [12] shows, almost a third of students change
their major at least once. Additionally, many students, especially enrolled in
STEM majors, take longer than the scheduled three years to finish their bache-
lors. One cause for that may be the need of many students to work in addition
to their study in order to sustain themselves. This takes up some amount of
their preparation time for their courses, which can lead to failed exams and thus
eventually to longer study times.

Those struggles lead to longer study times and therefore a higher financial
burden for many students. In order to minimize the time spent by a student
to graduate and therefore minimize the financial burden for the student, many
universities have student counseling facilities. But often the troubled students
do not visit the counselors early or even at all by themselves and rely on the
counselors to find and invite them. Since searching for those students at risk by
hand is a quite tedious task and often software solutions only offer very simple
queries, many of those students can only be found late or not at all.

We show how educational data mining (EDM) [17] can be used to build pre-
dictive models, which can detect students at risk with a high accuracy, while
minimizing the amount of regular students being predicted as risky. Addition-
ally we show that we can achieve those high predictive performances without
c© Springer Nature Switzerland AG 2020
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the use of any socioeconomic or demographic features and therefore without
any bias related to the background, ethnicity or gender of a student, thus the
prediction is solely reliant on the study history of a student. The focus of our
study is on multiple STEM disciplines, in particular computer science, math-
ematics, physics, and meteorology. Those models are trained and validated on
real student and study data of Johannes Gutenberg University Mainz (JGU)1

and are developed to be applied by the student counselors, in order to improve
their success rate in the future. The original structure of the data is relational,
so relational data mining or machine learning methods are called for.

While there exists some literature on the detection of students at risk, related
approaches are not applicable to our application scenario: They either focus on
online course or learning systems [14,18], single departments and courses [5,8],
different levels of education [13], or they are either heavily based on non-academic
data [8,13,19] or hand-selected or hand-crafted features [3]. Also relational data
has not really been used in EDM so far, therefore we have to apply techniques
new to the context of EDM in order to optimally solve our problem.

2 Student Monitoring

2.1 Problem Statement

In order to improve the success rate of the student counseling, the discovery rate
for students at risk has to be improved. Especially the students who study for
several years, but drop out before they can obtain any degree, are important
to discover as early as possible. Without early counseling those students go on
to study an unsuitable subject for them or in a non purposeful way, instead of
studying an appropriate subject in a purposeful way.

In addition to discovering those students, we also want to know why they are
at risk. Therefore we want to find common study patterns for those students and
investigate their significance to compile a list of risk factors for students. And in
order to improve the study quality, it is of high importance for the university to
find risk factors induced by the structural construction of the different studies.

2.2 Data

The data used in this project is gathered from the student management sys-
tem of the JGU JOGU-StINe. It is stored in a relational database with tables
for students, studies, enrollment status, courses and exams. We just consider
those bachelor studies where the student enrolled between 2009 and 2013 and
either successfully finished their degree or dropped out from that study. Addi-
tionally, we only looked at bachelor of science studies with computer science,
math, physics or meteorology as major.

1 The study was carried out in compliance with the EU General Data Protection
Regulation (GDPR).
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The subset of the features we use is represented in Table 1 and Fig. 1 shows
the relations between entries. To minimize any form of bias or discrimination, we
just use the entrance qualification, which can be either general or subject-specific,
as student-dependent feature. For each semester of all student and study pairs,
the ECTS credit points gained that semester, the credit points accumulated so
far, and the enrollment status are used as features. Additionally, for each exam
the type (such as oral, written, presentation, etc.), the passing status, and the
numeric grade (1.0, 1.3, ... 5.0) are used.

Table 1. Data structure

Table Attribute name Type About

Student and
study data

student study id integer key

university entrance qualification categorical used as feature

major categorical used as feature

Semester data student study id integer foreign key

semester id integer key

credits for this semester integer used as feature

cumulative credits integer used as feature

enrollment status categorical used as feature

Exam data student study id integer foreign key

semester id integer foreign key

exam id integer key

type of exam categorical used as feature

passing status boolean used as feature

grade numeric used as feature

student and study 1

student and study 2

...
student and study l

semester 1
semester 2

...
semester n

exam1,1

exam1,2

...
exam1,m1

Fig. 1. Relational representation

The data used so far is quite homogeneous, since it just contains bachelor of
science studies in STEM disciplines, but the system should be used for the whole
university, where there are many different studies with very dissimilar structures
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and there are some studies with vast changes in their examination regulations
throughout the years, so this has to be considered as well. Also the data before
2009 is rather inconsistent and has plenty of missing values, since JOGU-StINe
was introduced in that year and prior to that system, the study records were
organized by the different departments and not by a common software system.

2.3 Challenges

As described above, there are multiple challenges to cope with. First, we want to
migrate as much information as possible from our database to the final models,
so we need to incorporate some relational data mining techniques [16]. Second,
we want to use as consistent and complete data as possible. Therefore, we just
use the data from 2009 and onward. The last challenge, the differences in the
structure of studies from different departments, has not been tackled yet.

3 Experiments

3.1 Data Preprocessing

From all student and study combinations, we only consider those which are not
active anymore. So the student has either successfully completed the study or the
student dropped from it. Further, we only consider the combinations, where the
student has taken at least one exam, since it is trivial to predict the failure of a
student who earns no credit points. We gather the data from those combinations
as our data set X and give each entry x ∈ X the target label y = 1 if the student
successfully graduates and y = 0 otherwise. From the whole data set X multiple
subsets Xn, which contain the entries of the first n semesters, are taken. The
distributions of the two classes for the considered majors are presented in Table 2.

As mentioned above, the data is stored in a relational database and can
therefore not be handled by standard data mining or machine learning algo-
rithms. Our approach to solve this problem is the use of propositionalization [9]
techniques, where the relational representation of the data is transformed into a
propositional representation.

Table 2. The total number of students, the number of successful graduates and the
number of dropouts split up by the different majors

Major Total number Successful graduates Dropouts

Computer science 339 106 233

Math 380 186 194

Physics 383 219 164

Meteorology 59 29 30

Combined 1161 540 621
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The first propositionalization technique we use is relational aggregations
(RELAGGS) [10]. Starting from the target table, this algorithm uses foreign
key relationships to discover all entries related to a specific instance. To combine
those entries into a single row of data, a variety of different aggregation functions
are used. We use the maximum, minimum, mean, standard deviation and sum
as aggregation functions in our experiments. The schema in which the tables are
combined is shown in Fig. 2.

student and study semester 1
semester 2

...
semester n

exam1,1

exam1,2

...
exam1,m1

Model prediction

aggregate aggregate

propositional data

Fig. 2. Aggregation schema for the propositionalization of the data

Additionally, we try to learn useful aggregation functions, to better fit the
data and therefore improve the quality of the results. Our approach for this task
is the use of long short-term memory (LSTM) [6,7] networks. We feed all corre-
sponding entries from a table, in the order in which they occur temporally, as a
sequence into the LSTM and use the final output as aggregated representation
of those entries. So in this case we feed all exam entries for a specific semester
into an LSTM, concatenate the output with the corresponding semester entry
and feed those semester entries into another LSTM, whose output is then con-
catenated with the student and study entry, as shown in Fig. 3. Since we can
implement the LSTMs together with a multilayer perceptron (MLP) in a single
network, we are able to jointly train the classifier and the aggregation functions.
Therefore we should be able to increase the predictive performance in contrast to
the generic aggregation performed by the RELAGGS algorithm. Unfortunately,
we can only use this technique with a MLP as classifier so far.

3.2 Classification

Our goal is to find students at risk of dropping out with a high rate of success,
which is the task to optimally classify students as either successful graduates
(y = 1) or dropouts (y = 0). So we use random forests [2], linear support vector
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Data instance

exam1,1

...
exam1,m1

semester 1
...

semester n

student and study · · ·
examn,1

...
examn,mn

LSTM for exams LSTM for exams· · ·

exams1 · · · examsn

semester 1
...

semester n

exams1
...

examsn

LSTM for semesters

student and study aggregated semesters

MLP prediction

Fig. 3. Aggregation-Network using LSTMs

machines (SVM) and MLPs as classifiers in conjunction with the data propo-
sitionalized using RELAGGS and MLPs together with the LSTMs for propo-
sitionalization. For the random forests and SVMs we use the scikit-learn [15]
implementations and the MLPs and LSTMs are implemented using Keras [4]
with TensorFlow [1] as backend.

To validate our results. We use a ten-fold cross validation (CV) with a small
grid search for hyper parameter tuning, which are described in Table 3. The hyper
parameters for each fold are chosen by the area under the Receiver Operating
Characteristic curve (ROC AUC) over a three-fold CV. The ten-fold CV is run
for each of the first four semesters as cutoff (X1, X2, X3 and X4) and for each
classifier setup the mean accuracy, ROC AUC, accuracy restricted to y = 0 and
restricted to y = 1 are calculated. Since we want to have a high purity of our
classification results, we additionally calculate the mean positive predictive value



Forecast of Study Success in the STEM Disciplines 653

(PPV), also called precision, defined by Eq. 1, and the mean negative predictive
value (NPV), analogously defined, by Eq. 2.

PPV = Precision =
number of true positives

number of true positives + number of false negatives
(1)

NPV =
number of true negatives

number of true negatives + number of false positives
(2)

Table 3. Tested hyper parameters

Algorithm Parameter Values

Random forest Number of trees 100, 1000, 10000

Number of features “sqrt”, “log2”, 0.1, 0.33

SVM C value 0.01, 0.1, 1, 10

MLP Dense layers (100, 100, 50, 25), (200, 100, 100, 50, 25)

Number of training epochs 10, 20

LSTM Size of exam LSTMs 1×, 2× size of exam entry

Size of semester LSTMs 1×, 2× size of semester entry

In Table 4, the results for each tested data set and algorithm are presented. As
one would expect, the results improve with the number of considered semesters,
so that we find over 90% of all dropouts and have under 10% of future gradu-
ates in our risk group after four semesters. But already after one semester, we
can correctly predict about 80% of all dropouts and only 20% of the predicted
dropouts are actually successful graduates. In Fig. 4a and b we can see that
the improvement of the results diminishes with higher semester cutoffs. This is
probably caused by the higher difference in passed exams between the future
graduates and the future dropouts.

The results for all algorithms are quite close to each other and there is no
clear best algorithm found for this task. Considering the rather small hyper
parameter space that was searched during optimization and the small size of the
data set in contrast to the large number of trainable parameters, especially for
the LSTM and MLP combination, further experiments with larger parameter
spaces and optimally more data have to be conducted, in order to come to a
definite conclusion about the best algorithm for the task.

3.3 Reasoning

In addition to finding students at risk we also want know what is the reasoning
behind the prediction. To achieve this we look at the feature importance given
by the random forest and the coefficients of the SVM. The five features with the
highest importance, hence the features with the biggest influence on the random
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(a) ROC AUC (b) Accuracy

(c) Accuracy(y = 0) (d) Accuracy(y = 1)

(e) Precision (f) NPV

Fig. 4. Result plots

forest classification, as well as the sign of the corresponding SVM coefficient,
which is also the sign of the correlation between the feature and the target,
are presented in Table 5. Since high numeric grades are worse in Germany, it is
reasonable that the grade is negatively correlated to the successful graduation.
The passing status is encoded in such a way that 0 indicates a success and 1 a
fail, and therefore also negatively correlated with the graduation. Interesting is
the positive coefficient of the written exam for the first three semester cutoffs,
which changes into a negative coefficient in the fourth. This anomaly is probably
caused by the more frequent attending of repetitive exams by the students at
risk compared to successful graduating students.
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Table 4. Results

Data set Algorithm ROC AUC Accuracy Accuracy (y = 0) Accuracy (y = 1) Precision NPV

X1 Random

forest

0.848 0.783 0.78 0.786 0.756 0.807

SVM 0.872 0.804 0.839 0.773 0.807 0.809

MLP 0.867 0.794 0.807 0.782 0.779 0.811

LSTM and

MLP

0.86 0.783 0.789 0.778 0.762 0.803

X2 Random

forest

0.929 0.852 0.852 0.852 0.833 0.869

SVM 0.93 0.847 0.859 0.836 0.838 0.857

MLP 0.929 0.842 0.867 0.821 0.843 0.849

LSTM and

MLP

0.933 0.854 0.854 0.855 0.835 0.872

X3 Random

forest

0.953 0.883 0.892 0.875 0.876 0.891

SVM 0.952 0.885 0.898 0.873 0.882 0.89

MLP 0.95 0.874 0.885 0.865 0.868 0.883

LSTM and

MLP

0.95 0.882 0.915 0.853 0.897 0.878

X4 Random

forest

0.967 0.899 0.919 0.882 0.903 0.899

SVM 0.965 0.898 0.911 0.887 0.897 0.903

MLP 0.964 0.889 0.889 0.889 0.874 0.902

LSTM and

MLP

0.96 0.895 0.896 0.894 0.883 0.907

4 Discussion

The results show that successfully identifying students at risk is very doable,
even without almost any knowledge about the background of a student, just by
using data about the course of the respective study. This is very much in contrast
to other research in that field [5,8,11,13,19], where demographic and socioeco-
nomic data plays a large role. And compared with the results of other related
work, our approach performs equally or better regarding the range of several
performance measures. Another special feature of our approach is the inclusion
of the relational structure into the process. Usually just a few aggregated fea-
tures, such as the grade point average (GPA), are used in the classification of
students at risk, but we use a rather extensive amount of aggregated features
derived from the structure of the data by the RELAGGS algorithm or the even
more sophisticated LSTM aggregation.

The current student counseling at the JGU is mostly voluntary for students.
Therefore, some sort of risk potential shown to the students could increase the
rate of students who use the voluntary counseling. Additionally, simple and
conclusive rules could be extracted from the models and those could be added
to the regulations as deciding factors for mandatory student counseling.
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Table 5. Results

Data set Top features ranked by importance SVM coefficient sign

X1 Grade -

Cumulative credit points +

Credit points per semester +

Type of exam: written exam +

Passing status -

X2 Cumulative credit points +

Credit points per semester +

Type of exam: written exam +

Grade -

Passing status -

X3 Cumulative credit points +

Credit points per semester +

Type of exam: written exam +

Grade -

Passing status -

X4 Cumulative credit points +

Credit points per semester +

Grade -

Type of exam: written exam -

Type of exam: active participation -

5 Future Work and Conclusion

Our goal is to build a system for the whole university, therefore more and espe-
cially structural different studies have to be incorporated. The next step in that
direction will be the incorporation of some two subject bachelors, which have a
big structural difference to the so far used single subject bachelors.

Another important next step is the continued research on the learned aggre-
gation functions using LSTMs. To exploit the full potential of this method,
further experiments on different relational data sets have to be conducted and
other network topologies and improved implementations have to be tested.
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Gelingensbedingungen von Bologna (LOB) (project number 01PL17055).

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems (2015). Software available from https://www.tensorflow.org/

https://www.tensorflow.org/


Forecast of Study Success in the STEM Disciplines 657

2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/
10.1023/A:1010933404324

3. Chanlekha, H., Niramitranon, J.: Student performance prediction model for early-
identification of at-risk students in traditional classroom settings. In: Proceed-
ings of the 10th International Conference on Management of Digital EcoSystems,
MEDES 2018, pp. 239–245. ACM, New York (2018). https://doi.org/10.1145/
3281375.3281403

4. Chollet, F., et al.: Keras (2015). https://keras.io
5. Dekker, G.W., Pechenizkiy, M., Vleeshouwers, J.M.: Predicting students drop out:

a case study. In: International Working Group on Educational Data Mining (2009)
6. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction

with LSTM. Neural Comput. 12, 2451–2471 (1999)
7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9,

1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735
8. Kovai, Z.J.: Predicting student success by mining enrolment data. Res. High. Educ.

J. 15, 1–20 (2012)
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Abstract. One of the major goals of science is to make the world socially
a good place to live. The old paradigm of scholarly communication
through publishing has generated enormous amount of heterogeneous
data and metadata. However, most of the scientific results are not easily
discoverable, in particular those results which benefit social good and are
also targeted by non-scientists. In this paper, we showcase a knowledge
graph embedding (KGE) based recommendation system to be used by
students involved in activities aiming at social good. The proposed rec-
ommendation system has been trained on a scholarly knowledge graph
constructed for this specific goal. The obtained results highlight that the
KGEs successfully encoded the structure of the KG, and therefore, our
system could provide valuable recommendations.

Keywords: Machine learning · Knowledge graph embeddings · Social
good

1 Introduction

People with different backgrounds ranging from school students to high pro-
file professionals around the world are engaged in several initiatives such as
political movements, environmental protection and fund-raising with the goal
to achieve individual, community and society well-being [21]. One example is
the Fridays For Future movement which was initiated by the young student
Greta Thunberg to demonstrate against Swedens climate policy [40]. One of her
main demands has been that the actions of the government of Sweden should
become sufficient in order to comply with the essence of the Paris Agreement.
Her initiative has quickly gained a lot of attention and initiated demonstrations
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all over Europe, and later in different countries around the world. Greta Thun-
berg is an illustrative example of a young school student who recognized some
of the scientific findings with regards to the climate change and understood its
importance for the social good: “We want politicians to listen to the scientists”1,
“Why should I be studying for a future that soon may be no more, when no one
is doing anything to save that future?”. While scientists increasingly have been
called to share research findings about climate change [47], many other topics
that are relevant to social good do not have a comparable media presence. For
this reason, the information needs of activists that are non-experts may remain
unsatisfied with regards to these topics. However, information technology and
the digitization of scientific artifacts haves increased the amount of available
scientific resources and offer a great potential to fulfill the information needs of
activists that are concerned about social good. An overwhelming amount of sci-
entific artifacts such as publications and their metadata have been made available
independent of any geographical or temporal constraints on the web [6,21,52].
However, for non-experts the effective access to these artifacts is limited. While
there are already existing services such as Google Scholar (GS) to explore and
retrieve scientific publications, they alone are not sufficient to effectively fulfill
the information needs of non-expert activists. One of the main reasons is the
discrepancy between their search behaviors and the functionality of these ser-
vices: GS expects specific search queries in order to provide relevant content on
the first result page whereas non-experts (for instance undergraduate students)
tend to use simple keyword or phrase queries, do not refine their search queries
(e.g. by analyzing metadata), and usually ignore retrieved results beyond the
first result page [10,20]. In addition, search engines and services such as Google
Scholar are not developed with the specific goal of providing access to content
related to social good. Therefore, there is a need for a domain-specific system
that can be effectively used by non-experts to access scientific content related to
social good.

An approach to structure related knowledge that can be used to per-
form concept-based retrieval instead of string matching are knowledge graphs
(KGs) [6,25] which represent information as a set of triples of the form (h, r, t) ∈
KG where h and t represent entities and r their relation. Recently, knowledge
graph embeddings (KGEs) that encode the entities and relations of a KG into
vector spaces while maintaining structural characteristics of the KG became pop-
ular. These embeddings can be used for several downstream machine learning
tasks including recommendation systems.

In this paper, we present a recommender system that suggests for an entity
of interest (i.e., publication, author, domain and venue) a set of related enti-
ties which helps users to effectively find relevant content related to the topic of
social good from the large amount of available information. Our contributions
are: (i.) a KG that contains information about publications, domains, authors
and venues. We focused on publications that are related to real-world problems
such as climate change, marine litter, right movement and cyber security, (ii.) a

1 https://www.fridaysforfuture.org/greta-speeches#greta fullspeech feb21 2019.

https://www.fridaysforfuture.org/greta-speeches#greta_fullspeech_feb21_2019
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baseline recommender system that exploits KGEs to provide recommendations.
We trained four different KGE models i.e., TransE, TransR, TransD and Com-
plEx, and selected TransE to provide recommendations that have been manually
evaluated. While the general approach can be transferred to different domains,
the proposed recommender system is domain-specific.

In the following, we give an overview of the related work (Sect. 2), explain
the KGE models that are relevant in the context of this work (Sect. 3), describe
the process of creating our KG (Sect. 4), present our recommendation system
(Sect. 5), explain our performed experiments (Sect. 6), discuss the limitations
of our system and point out future work (Sect. 7), and finally, we give a short
summary of this work (Sect. 8).

2 Related Work

Through the development of specialized search engines, digital libraries, databases
and social networks for the scholarly domain, the availability of scientific artifacts
and their metadata has been facilitated. Google Scholar2 is an online search engine
that has been realized in 2004 and enables users to search for both, the printed and
digital version of articles. Aminer3 provides a faceted browser on top of its min-
ing service for researchers. ResearchGate4 is a social network for researchers in
which they can present their scientific profiles, their publications and interact with
each other. Mendeley5 is a desktop service with a web program created by Else-
vier for managing and sharing research papers. There are several efforts to provide
enhanced services by representing metadata of scholarly artifacts in a structured
form. A crowd-sourcing platform for metadata management of scholarly artifacts
is introduced in [43], and the representation of metadata in a semantic format is
proposed in [3]. In Chi et al. [6] a knowledge graph and a metadata management
system for smart education is presented. However, most of these services either
lack a systematic recommendation service or provide specialized suggestions based
on user profiles. To the best of our knowledge (apart from dedicated journals and
university libraries [48]) the domain of social science lacks a comprehensive and
specialized knowledge graph with analytical and recommendation services on top.
In a recent work, an embedding based recommendation system for books has been
proposed. However, the recommendations are limited to a single entity type, i.e.
books. In this study and the follow up work, we aim to provide a comprehensive
and domain-specific system in order to assist users in finding relevant artifacts
of different types. Through the use of machine learning approaches, the system
proposes recommendations that are beyond simple keyword-matching based rec-
ommendations.

2 https://scholar.google.de/.
3 https://www.aminer.org/.
4 https://www.researchgate.net/.
5 https://www.mendeley.com/.

https://scholar.google.de/
https://www.aminer.org/
https://www.researchgate.net/
https://www.mendeley.com/
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3 Knowledge Graph Embeddings

Knowledge graph embedding models can be roughly divided into translational
distance models and semantic matching models. Translational distance models
compute the plausibility of a triple based on distance function (e.g. based on the
Euclidean distance) and semantic matching models determine the plausibility
of a triple by comparing the similarity of the latent features of the entities and
relations [45]. In the following, we describe KGE models that are relevant in the
context of this work, however many others have been proposed.

TransE. An established translational distance model is TransE [5] that models
a relation r as the translation from head entity h to the tail entity t :

h + r ≈ t (1)

To measure the plausibility of a triple, following scoring function is defined:

fr(h, t) = −‖h + r − t‖ (2)

Besides its simplicity, TransE is computational efficient, and can therefore
be applied to large scale KGs. However, TransE is limited in modeling 1-N, N-1
and N-M relations. For this reason, several extensions have been proposed [45].

TransH. TransH [45] is an extension of TransE that addresses the limitations of
TransE in modeling N-M relations. Each relation is represented by an additional
hyperplane, and the translation from the head to the tail entity is performed in
the relation specific hyperplane. First, the head and tail entities are projected
into the relation specific hyperplane:

h⊥ = h − w�
r hwr (3)

t⊥ = t − w�
r twr (4)

where wr is the normal vector of the hyperplane. After projecting the head and
tail entity, the plausibility of the triple (h,r,t) is computed:

fr(h, t) = −‖h⊥ + dr − t⊥‖22 (5)

where dr is the relation specific translation vector lying in the relation specific
hyperplane.

TransR. TransR [45] is an extension of TransH that encodes entities and rela-
tions in contrast to TransE and TransH, in different vector spaces. Each relation
is represented by a matrix Mr that is used to project the entities into the rela-
tional specific space:

hr = hMr (6)

tr = tMr (7)

Consequently, the scoring function is defined as:

fr(h, t) = −‖hr + r − tr‖22 (8)
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TransD. TransD [15] is an extension of TransR that uses fewer parameters
than TransR. It also eliminates the involvement of matrix-vector multiplications.
Entities and relations are represented by two vectors, of which h, r, t encode the
semantics of the entities/relations, and hp, rp, tp are used to construct projection
matrices which project the entities in relation specific spaces:

Mrh = rph
T
p + Im×n (9)

Mrt = rpt
T
p + Im×n, (10)

where I is a matrix where the values of the diagonal elements are 1 and 0
elsewhere (in case of m = n, I is the identity matrix). These matrices are used
to compute the projections of the head and tail entity:

h⊥ = Mrhh (11)

t⊥ = Mrtt (12)

Based on the projected entities, the score of the triple (h, r, t) is computed:

fr(h, t) = −‖h⊥ + r − t⊥‖22 (13)

RESCAL. RESCAL [24] is a semantic matching model that represents each
entity as a vector and each relation as a matrix, Mr. It uses the following scoring
function:

fr(h, t) = hTMrt (14)

The relation matrix, Mr, encodes pairwise interactions between the features
of the head and tail entities.

DistMult. DistMult [50] simplifies RESCAL by allowing only diagonal matrices:

fr(h, t) = hT diag(r)t (15)

where r ∈ Rd and Mr = diag(r). The restriction to diagonal matrices makes
DistMult more computationally efficient than RESCAL, but also less expressive
compared to RESCAL.

ComplEx. ComplEx [42] is an extension of DistMult into the complex space.
Considering the scoring function of DistMult (Eq. 15), it can be observed that
it has a limitation in representing anti-symmetric relations since hT diag(r)t is
equivalent to tT diag(r)h. Equation 15 can be written in terms of the Hadamard
product of h, r, t: < h, r, t > =

∑d
i=1 hi ∗ ri ∗ ti, where h, r, t ∈ Rd. The scoring

function of ComplEx uses the Hadamard product in the complex space, i.e.
h, r, t ∈ Cd:

fr(h, t) = �(
d∑

i=1

hi ∗ ri ∗ ti) (16)

where �(x) represents the real part of a complex number and x its conjugate.
It is straightforward to show that fr(h, t) �= fr(t, h), i.e. ComplEx is capable of
modeling anti-symmetric relations.
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Fig. 1. KG schema for social good. The graph shows a snapshot of schema for our
KG with core entities and relations between them

4 Knowledge Graph Creation

As a first step, we created a scientific KG that gathers information relevant for
social good which we used as a basis for providing recommendations. We defined
the following requirements for the KG:

R1 The KG should contain publications with a focus on topics related to social
good (e.g. climate change, social initiatives, political movements etc.)

R2 The KG should contain sufficient metadata to provide qualitative recom-
mendations.

R3 The KG should be sufficiently large to allow conclusive insights about the
applicability of modern machine learning methods.

To create the KG, the following steps were performed: (i.) Domain Conceptu-
alization, (ii.) Topic Conceptualization, (iii.) Data collection and Data Curation.

Domain Conceptualization. Reusing already existing ontologies, we modeled
possible characteristics of KGs related to social good (see Fig. 1). The model is
defined generic enough to support researchers gaining an overview of the domain,
to define new KGs. The model can be exploited by machines as an additional
source of knowledge. Due to the lack of FAIR data [49] in scientific artifacts of
social good topics, currently our KG does not contain all types and relations
described in the schema. Overall, seven core classes have been identified, namely
Papers, Venues, Authors, Organizations, Funders, Domains and Projects. Fur-
thermore, eight relationship types have been defined between these classes (see
Fig. 1) (Table 1).
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Table 1. KG Statistics

Relation Number of triples

authorOf 9090

isCoauthor 37326

hasPaperIn 6820

belongsToDomain 3998

isPublishedIn 3000

p isCitedBy p 355

a isCitedBy a 4388

a isCitedBy p 1225

Topic Conceptualization. A list of topics have been collected from focal
resources active in social good such as development program of United Nation6

and sustainable development goals for 2030 [16] in addition to a systematic
exploration on the Web. The topics have been short listed into four distinct
categories as climate change, political movements, marine/sea litter and cyber
security. This list have been used in the follow up steps of this work.

Listing 1.1. Raw metadata 1. JSON representation of original metadata.

*Paper1: {"title": T1 , "publication_venue": V1,

"citation_number": "50","doc_id": 7931d391 -...dd32e50e8959 ,

"source_name": S1, "venue_id": 34544,

"raw_text": RW1 , "authors": [A1, A2 , A3],

"keywords":[ Social Science , ..., Climate Change],

"publisher": P1, literature_type": Journal ,

"source_url": [U1, U2, U3, U4],

"date": 2015-01-01, "doi": 10.1016/...,

"references": [R1, R2, R3, R4 ]}*

*Paper2: { ... }*

...

Data Collection. The data was collected using web crawlers of the RAx7

platform which has reached to index metadata of 160+ million research paper.
Based on the keywords, an exemplary dataset of 4004 matched papers has been
extracted. The data was initially stored in JSON format (Listing 1.1), which we
converted into a set of triples (Listing 1.2) representing our KG. KGs not only
enable to represent data in form of triples, but also the metadata. For instance,
for an entity representing a paper, we created triples of the form (Paper1,
belongsToDomain, Environmental Studies) or (Author1, authorOf, Paper1).

6 https://www.undp.org/.
7 https://raxter.io.

https://www.undp.org/
https://raxter.io
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Listing 1.2. TSV representation of metadata. The KG in TSV format is used as
input for the embedding models.

e9391a29 -.... "belongsToDomain" Environmental studies.

Alan C. York "isCoauthor" G. J. Cary

Alan Manning "authorOf" 7604c5dc -...

Alark Saxena "hasPaperIn" Journal of Resources , Energy ,

and Development

05607dab -... "p_isCitedBy_p" 635c28c3 -...

05832950 -... "isPublishedIn" International Womens Studies

A Allen "a_isCitedBy_a" Caroline S.E. Homer

5 System Description

The input to our workflow is a KG based on which a set of recommendations are
computed in two major steps (Fig. 2): (i.) learning the KGEs and (ii.) generating
the recommendations based on the KGEs.

Learning the KGEs. In order to learn KGEs on the constructed scholarly KG
for social good, we utilize the software package PyKEEN [1] which integrates sev-
eral KGE models. The learned embeddings encode structured knowledge repre-
sented in the KG. In the context of this work, we focused on the models TransE,
TransD, TransR and ComplEx. The learned embeddings have been used as a
basis for computing the recommendations.

Generating Recommendations. For each seed entity that can be any entity
in the KG (a publication, an author or a venue), the n nearest neighbors have
been computed using the Euclidean norm (however, any similarity measure can

...

TransE TransR

TransD ComplEx

Embeddings

Fig. 2. A pipeline of recommendation services. (i) embedded KG into latent
feature space, (ii) filter publications based on KGEs, (iii) filter publications based on
embeddings of their abstracts.
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be applied) and provided as recommendations. The recommendations for a seed
publication can be for example the list of researchers who co-authored other pub-
lications with the authors in the seed publication, related publications or venues.
The system is able to provide recommendations that represent n-hop dependen-
cies in the KG. In turn, the provided recommendations can be used as seed enti-
ties to access information that represents long-term dependencies in the KG. The
described steps don’t require any complex traversing of the graph, instead, simple
arithmetic operations are applied on the learned embeddings (Fig. 3).

Latent Feature 1

La
te

nt
 F

ea
tu

re
 2

Person Seed Publication Seed Venue Seed

Fig. 3. Recommendations per seed entities. For every seed entity type, a number
of different recommendations are given.

6 Experiments

We evaluated four different KGE models (i.e., TransE, TransD, TransR and
ComplEx) on the created KG. Afterward, we took one of the best performing
models to provide the top n recommendations for a set of seed papers that have
been manually evaluated. However, our approach be can applied on any type of
seed entities.

6.1 Experimental Setup

We randomly split the initial KG into a training and test set where we took
for each relation 10% of the triples which contain this relation as test triples.
For each model, we performed a hyper-parameter optimization based on random
search [11] and used mean rank and hits@k as evaluation metrics.
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6.2 Evaluation of the KGE Models

All the models have been trained based on the open world assumption, i.e.,
triples that are not part of the KG are not considered as non-existing, but as
unknowns [25]. Therefore, we created artificial negative samples based on the
negative sampling approach described by Bordes et al. [5]. For TransE, TransR
and TransD the margin ranking loss that maximizes the distance between a
positive and a corresponding negative triple [25] was applied, and for ComplEx
and ComplEx* the softplus loss [42] was used. Furthermore, for all models except
for ComplEx* one negative per each positive example, and for ComplEx* 10
negatives per each positive example were created in every forward step (Table 2).

Table 2. HPO results.

Model Mean rank Hits@10

TransE [5] 90.63 91.22%

TransD [15] 443.84 6.43%

TransR [17] 397.02 43.63%

ComplEx [42] 267.91 83.00%

ComplEx* [42] 141.64 93.66%

It can be observed that TransE and ComplEx* performed very well (Fig. 1).
The high performance of TransE can be explained due to the fact that for most
of the unique (subject, relation) and (relation, object)-pairs, there exists exactly
one corresponding entity (subject/object) (77,72%/70.05% of the unique pairs).
TransE even outperformed ComplEx when using only one negative for each pos-
itive example. However, for ComplEx only a few iterations of hyper-parameter
optimization have been performed, and therefore, it is worthy to extend the
hyper-parameter search. Similarly, the results of TransR and TransD might
improve when applying a more extensive hyper-parameter search.

6.3 Recommendation of Related Information

Based on the results of the experiments, the TransE model has been selected to
be used to compute and evaluate recommendations for a set of seed publications
(Table 3 shows the titles, domains and venues of our seed papers). We chose
TransE instead of ComplEx*, because it performed similarly and ComplEx(*)
provides for each entity two vector representations those efficient combination
should be investigated in more depth in a future work.

Table 4 includes the validated recommendations for two of our seed papers
from which one belongs to the domain of Environmental Studies and the second
to the domain of Social Science. The recommendations are sorted according to
their scores in descending order, i.e. the first recommendation received the high-
est score. For each recommended artifact, we performed a manual evaluation
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Table 3. Selected seed publications.

Domain Title Venue

Social Science Cyber Bullying Detection Using
Social and Textual Analysis [14]

System Analysis And Modeling

Social Science Social Media, Indian Youth and
Cyber Terrorism Awareness: A
Comparative Analysis [23]

Journal of Mass Communication
and Journalism

Social Science Expansion of Social Assistance:
Does Politics Matter? [30]

Economic and Political Weekly

Environmental
studies

Reducing the impact of climate
change [13]

Bulletin of The World Health
Organization

Environmental
studies

General Chemistry Students’
Understanding of Climate Change
and the Chemistry Related to
Climate Change [44]

Journal of Chemical Education

by looking them up in Google Scholar (the most used search engine for schol-
arly artifacts), and analysing their metadata. Among the recommendations there
were obvious recommendations such as the authors of the seed papers (which we
removed from the list of recommendations), irrelevant recommendations such as
recommendation (1) for the first seed paper, related publications (e.g. recom-
mendation (2) and (3) for the first seed paper), co-authors of the authors of a
seed paper (such as “Manfred Hauswirth”) for the fist seed paper). Similar pat-
terns can be detected in the recommendations for the second seed paper. The
results highlight that relevant artifacts are recommended by the system. The
recommendations indicate that the KGEs preserved the structure of the KG,
for instance: (i) “Manfred Hauswirth” is a co-author of the authors of first seed
paper, (ii) recommendation (1) that represents a publication, cites two of the
authors of the seed paper (“Cory Andrew Henson”, and “Vivek Kumar Singh”).
Furthermore, it seems that the model has been able to distinguish entity types
since the top recommendations usually represented publications for seed publi-
cations. While our evaluation approach indicates that the system is capable of
providing relevant recommendations, involving external participants in the eval-
uation procedure will provide important insights regarding the effectiveness of
our proposed system. In particular, we aim to perform a user study with expert
and non-expert participants in order to analyse whether their information needs
to topics related to social good can be fulfilled more effectively by using the
proposed system. Because our work represents a preliminary work and such an
evaluation requires an extensive preparation, we plan to target the described
evaluation in a future work.
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Table 4. Recommendation for selected seed publications.

Recommendations for Cyber Bullying Detection Using Social and Textual Analysis [14] Type

(1) Physical-cyber-social computing: An early 21st century approach [37] Paper

(2) Physical cyber social computing for human experience [37] Paper

(3) Physical-Cyber-Social Computing (Dagstuhl Reports 13402) [38] Paper

(4) Transatlantic Social Politics: 1800-Present [34] Paper

(5) System-level design optimization for security-critical cyber-physical-social systems [53] Paper

(6) Cybermatics: Cyber–physical–social–thinking hyperspace based science and

technology [27]

Paper

(7) A cloud-edge computing framework for cyber-physical-social services [46] Paper

(8) Guest Editorial Data Mining in Cyber, Physical, and Social Computing [18] Paper

(9) Cyber-physical-social based security architecture for future internet of things [26] Paper

(10) Towards a politics of collective empowerment: Learning from hill women in rural

Uttarakhand, India [35]

Paper

(11) Manfred Hauswirth Author

(12) Payam M. Barnaghi Author

(13) Steffen Staab Author

(14) Markus Strohmaier Author

(15) Ramesh Jain Author

(16) Amit P. Sheth Author

(17) Social machine politics are here to stay [28] Paper

(18) IEEE Internet Computing Journal Venue

Recommendations for: General Chemistry Students’ Understanding of Climate Change and

the Chemistry Related to Climate Change [44]

(1) Journal of Chemical Education Venue

(2) Marine Transportation and the Environment [19] Paper

(3) Stalinism and British Politics [41] Paper

(4) Piracy and the politics of social media [2] Paper

(5) Climate Change, Public Health and Sustainable Development: The Interlinkages [33] Paper

(6) Moisture dynamics in walls: response to micro-environment and climate change [12] Paper

(7) Diagenesis and Geochemistry of Sediments in Marine Environment [36] Paper

(8) Power, norms and institutional change in the European Union: The protection of the free

movement of goods [8]

Paper

(9) Adapting to climate change in Bangladesh: Good governance barriers [4] Paper

(10) Improving US Highway Safety: Have We Taken the Right Road? [29] Paper

(11) Climate change: the biggest challenge in the next decade? Report

(12) Social-Historical Transformations in Russia [22] Paper

(13) Fuller and Rouse on the legitimation of scientific knowledge [32] Paper

(14) High Politics, Low Politics, and Global Health [51] Paper

(15) Climate Change: A Serious Threat to Our Welfare and Environment [39] Paper

(16) Australian developments in marine science [7] Paper

(17) Pathways out of patronage politics: new roles for communities, new rules for politics in

the Philippines [9]

Paper

18) Effects of climate change and variability on population dynamics in a long-lived

shorebird [31]

Paper

7 Limitations and Future Work

The approach presented in this paper represents a preliminary work that will be
extended in future. Although the created KG contains already valuable informa-
tion that we exploited to provide recommendations, it can benefit from several
extensions. Currently, it contains only four entity and eight relationship types.
We aim to augment this KG with additional information. In particular, we want
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to add entities that represent NGOs and other organizations, public speakers and
events that are related to the topic of social good. Moreover, we want to pro-
vide major supporters/sponsors behind these organizations and events in order
to provide more insights. Furthermore, we want to include relationship types
that represent connections between (public/private) organizations to events and
venues. The extended KG would contain more complex information that could
be used to find non-obvious dependencies and to provide more diverse recom-
mendations. For this work, we made use of KGE models that only consider
triples of the form (h, r, t) where both h and t represent entities of the KG.
However, there is a trend to develop multimodal KGE models that incorporate
different types of information such as textual, numerical and visual information.
In our future work, we plan to develop a multimodal KGE model in order to
exploit textual information (e.g. abstracts of the papers) and numerical infor-
mation (e.g. publication date, number of citations) which are available for our
KG and might help to provide better recommendations.

Here, we provided recommendations by computing the nearest neighbors of
a seed entity in the embedding space. Although this approach is easy to realize
and provides interesting recommendations, it should serve as a baseline system
for more sophisticated systems. As a next step, we aim to explore reinforcement
learning based approaches in which feedback of the recommendations are taken
into account during the training.

8 Conclusion

In this paper, we presented a socio-scholarly knowledge graph which contains
information about scientific artifacts that are related to the topic of social good.
A specific knowledge graph embedding-based recommendation system has been
developed for this KG. The system provides recommendations for any given
seed entity (publication, author, venue, domain) by returning related entities.
Our results show a great potential to leverage the system in broader scale of
scholarly recommendations for active members of social good movements.
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