
Explorations of Game Theory Applied in
Cloud Computing

Chubo Liu, Kenli Li, and Keqin Li

1 Background and Motivation

Cloud computing has recently emerged as a paradigm for a cloud provider to
host and deliver computing services to enterprises and consumers [1]. Usually,
the provided services mainly refer to Software as a Service (SaaS), Platform as a
Service (PaaS), and Infrastructure as a Service (IaaS), which are all made available
to the general public in a pay-as-you-go manner [2, 3]. In most systems, the service
provider provides the architecture for users to make reservations/price bidding in
advance [4, 5]. When making reservations for a cloud service or making price
bidding for resource usage, multiple users and the cloud provider need to reach
an agreement on the costs of the provided service and make planning to use the
service/resource in the reserved time slots, which could lead to a competition for
the usage of limited resources [6]. Therefore, it is important for a user to configure
his/her strategies without complete information of other users, such that his/her
utility is maximized.

For a cloud provider, the income (i.e., the revenue) is the service charge to users
[7]. When providing services to multiple cloud users, a suitable pricing model is a
significant factor that should be taken into account. The reason lies in that a proper
pricing model is not just for the profit of a cloud provider, but for the appeals to
more cloud users in the market to use cloud service. Specifically, if the per request
charge is too high, a user may refuse to use the cloud service, and choose another

C. Liu (�) · K. Li
College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan,
China
e-mail: liuchubo@hnu.edu.cn

K. Li
Department of Computer Science, State University of New York, New Paltz, NY, USA

© Springer Nature Switzerland AG 2020
R. Ranjan et al. (eds.), Handbook of Integration of Cloud Computing, Cyber
Physical Systems and Internet of Things, Scalable Computing and Communications,
https://doi.org/10.1007/978-3-030-43795-4_3

39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43795-4_3&domain=pdf
mailto:liuchubo@hnu.edu.cn
https://doi.org/10.1007/978-3-030-43795-4_3

40 C. Liu et al.

cloud provider or just finish his/her tasks locally. On the contrary, if the charge is
too low, the aggregated requests may be more than enough, which could lead to low
service quality (long task response time) and thus dissatisfies its cloud users.

A rational user will choose a strategy to use the service/resources that maximizes
his/her own net reward, i.e., the utility obtained by choosing the cloud service minus
the payment [1]. On the other hand, the utility of a user is not only determined by the
importance of his/her tasks (i.e., how much benefit the user can receive by finishing
the tasks), but also closely related to the urgency of the task (i.e., how quickly it can
be finished). The same task, such as running an online voice recognition algorithm,
is able to generate more utility for a cloud user if it can be completed within a
shorter period of time in the cloud [1]. However, considering the energy saving and
economic reasons, it is irrational for a cloud provider to provide enough computing
resources to satisfy all requests in a time slot. Therefore, multiple cloud users have
to compete for the cloud service/resources. Since the payment and time efficiency
of each user are affected by decisions of other users, it is natural to analyze the
behavior of such systems as strategic games [4].

In this chapter, we try to enhance services in cloud computing by considering
from multiple users’ perspective. Specifically, we try to improve cloud services
by simultaneously optimizing multiple users’ utilities which involve both time
and payment. We use game theory to analyze the situation. We formulate a
service reservation model and a price bidding model and regard the relationship
of multiple users as a non-cooperative game. We try to obtain a Nash equilibrium to
simultaneously maximize multiple users’ utilities. To solve the problems, we prove
the existence of Nash equilibrium and design two different approaches to obtain a
Nash equilibrium for the two problems, respectively. Extensive experiments are also
conducted, which verify our analyses and show the efficiencies of our methods.

2 Related Works

In many scenarios, a service provider provides the architecture for users to make
reservations in advance [4–6] or bid for resource usage [8–10]. One of the most
important aspects that should be taken into account by the provider is its resource
allocation model referring users’ charging/bidding prices, which is closely related
to its profit and the appeals to market users.

Many works have been done on the pricing scheme in the literature [7, 11–
15]. In [7], Cao et al. proposed a time dependent pricing scheme, i.e., the charge
of a user is dependent on the service time of his/her requirement. However, we
may note that the service time is not only affected by the amount of his/her own
requirement, but also influenced by other factors such as the processing capacity
of servers and the requirements of others. Mohsenian-Rad et al. [11] proposed a
dynamic pricing scheme, in which the per price (the cost of one request or one

Explorations of Game Theory Applied in Cloud Computing 41

unit of load) of a certain time slot is set as an increasing and smooth function
of the aggregated requests in that time slot. That is to say, when the aggregated
requests are quite much in a time slot, the users have to pay relatively high costs
to complete the same amount of requests, which is an effective way to convince
the users to shift their peak-time task requests. In [9], Samimi et al. focused on
resource allocation in cloud that considers the benefits for both the users and
providers. To address the problem, they proposed a new resource allocation model
called combinatorial double auction resource allocation (CDARA), which allocates
the resources according to bidding prices. In [8], Zaman and Grosu argued that
combinatorial auction-based resource allocation mechanisms are especially efficient
over the fixed-price mechanisms. They formulated resource allocation problem in
clouds as a combinatorial auction problem and proposed two solving mechanisms,
which are extensions of two existing combinatorial auction mechanisms. In [10],
the authors also presented a resource allocation model using combinatorial auction
mechanisms. Similar studies and models can be found in [16–19]. Similar studies
and models can be found in [12–19]. However, these models are only applied to
control energy consumption and different from applications in cloud services, since
there is no need to consider time efficiency in them. Furthermore, almost all of them
consider from the perspective of a cloud provider, which is significantly different
from our multiple users’ perspective.

Game theory is a field of applied mathematics that describes and analyzes
scenarios with interactive decisions [20–22]. It is a formal study of conflicts and
cooperation among multiple competitive users [23] and a powerful tool for the
design and control of multiagent systems [24]. There has been growing interest in
adopting cooperative and non-cooperative game theoretic approaches to modeling
many problems [11, 25–27]. In [11], Mohsenian-Rad et al. used game theory to solve
an energy consumption scheduling problem. In their work, they proved the existence
of the unique Nash equilibrium solution and then proposed an algorithm to obtain it.
They also analyzed the convergence of their proposed algorithm. Even though the
formats for using game theory in our work, i.e., proving Nash equilibrium solution
existence, proposing an algorithm, and analyzing the convergence of the proposed
algorithm, are similar to [11], the formulated problem and the analysis process
are entirely different. In [28], the authors used cooperative and non-cooperative
game theory to analyze load balancing for distributed systems. Different from their
proposed non-cooperative algorithm, we solve our problem in a distributed iterative
way. In our previous work [29], we used non-cooperative game theory to address
the scheduling for simple linear deteriorating jobs. For more works on game theory,
the reader is referred to [15, 28, 30–32].

42 C. Liu et al.

3 Strategy Configurations of Multiple Users Competition
for Cloud Service Reservation

3.1 Model Formulation and Analyses

To begin with, we present our system model in the context of a service cloud
provider, and establish some important results. In this paper, we are concerned with
a market with a service cloud provider and n cloud users, who are competing for the
cloud service reservation. We denote the set of users asN = {1, . . . , n}. The arrival
of requests from cloud user i (i ∈ N) is assumed to follow a Poisson process. The
cloud provider is modeled by an M/M/m queue, serving a common pool of cloud
users with m homogeneous servers. Similar to [33, 34], we assume that the request
profile of each user is determined in advance for H future time slots. Each time slot
can represent different timing horizons, e.g., one hour of a day.

3.1.1 Request Profile Model

We consider a user request model motivated by [12, 15], where the user i′s (i ∈ N)
request profile over the H future time slots is formulated as

λi =
(
λ1

i , . . . , λ
H
i

)T
, (1)

where λh
i (i ∈ N) is the arrival rate of requests from user i in the hth time slot and it

is subject to the constraint
∑H

h=1 λh
i = �i , where �i denotes user i’s total requests.

The arrivals in different time slots of the requests are assumed to follow a Poisson
process. The individual strategy set of user i can be expressed as

Qi =
{

λi

∣∣∣∣
H∑

h=1

λh
i = �i and λh

i ≥ 0,∀h ∈ H
}

, (2)

whereH = {1, . . . , H } is the set of all H future time slots.

3.1.2 Load Billing Model

To efficiently convince the users to shift their peak-time requests and fairly charge
the users for their cloud services, we adopt the instantaneous load billing scheme,
which is motivated by [12, 15], where the request price (the cost of one request) of
a certain time slot is set as an increasing and smooth function of the total requests
in that time slot, and the users are charged based on the instantaneous request price.
In this paper, we focus on a practical and specific polynomial request price model.

Explorations of Game Theory Applied in Cloud Computing 43

Specifically, the service price for one unit of workload of the hth time slot is given
by

C
(
λh

�

)
= a
(
λh

�

)2 + b, (3)

where a and b are constants with a, b > 0, and λh
� is the aggregated requests from

all users in time slot h, i.e., λh
� =

n∑
i=1

λh
i .

3.1.3 Cloud Service Model

The cloud provider is modeled by an M/M/m queue, serving a common pool of
multiple cloud users with m homogeneous servers. The processing capacity of each
server is presented by its service rate μ0. We denote μ as the total processing
capacity of all m servers and � as the aggregated requests from all cloud users,

respectively. Then we have μ = mμ0, and � =
n∑

i=1
�i .

Let pi be the probability that there are i service requests (waiting or being
processed) and ρ = �/μ be the service utilization in the M/M/m queuing system.
With reference to [7, 35], we obtain

pi =
{

1
i! (mρ)ip0, i < m;
mmρi

m! p0, i ≥ m; (4)

where

p0 =
{

m−1∑
k=0

1

k! (mρ)k + 1

m!
(mρ)m

1 − ρ

}−1

. (5)

The average number of service requests (in waiting or in execution) is

N̄ =
∞∑
i=0

kpi = pm

1 − ρ
= mρ + ρ

1 − ρ
Pq, (6)

where Pq represents the probability that the incoming requests need to wait in queue.
Applying Little’s result, we get the average response time as

T̄ = N̄

�
= 1

�

(
mρ + ρ

1 − ρ
Pq

)
. (7)

44 C. Liu et al.

In this paper, we assume that all the servers will likely keep busy, because if not
so, some servers could be shutdown to reduce mechanical wear and energy cost. For
analytical tractability, Pq is assumed to be 1. Therefore, we have

T̄ = N̄

�
= 1

�

(
mρ + ρ

1 − ρ

)
= m

μ
+ 1

μ − �
. (8)

Now, we focus on time slot h (h ∈ H). We get that the average response time in
that time slot as

T̄ h = m

μ
+ 1

μ − λh
�

, (9)

where λh
� =

n∑
i=1

λh
i . In this paper, we assume that λh

i < μ (∀h ∈ H), i.e., the

aggregated requests in time slot h never exceeds the total capacity of all servers.

3.1.4 Architecture Model

In this subsection, we model the architecture of our proposed service mechanism,
in which the cloud provider can evaluate proper charge parameters according to
the aggregated requests and the cloud users can make proper decisions through
the information exchange module. As shown in Fig. 1, each user i (i ∈ N) is
equipped with a utility function (Ui) and the request configuration (λi), i.e., the
service reservation strategy over H future time slots. All requests enter a queue to
be processed by the cloud computing. Let λ� be aggregated request vector, then we

Cloud User 1

Cloud Provider

Utility: U1

Cloud User 2

Utility: U2

Cloud User n

Utility: Un

Service Capacity:
m = mm0

Usage Cost: C

Information
Exchange

lΣ

l1

l2

ln

Fig. 1 Architecture overall view

Explorations of Game Theory Applied in Cloud Computing 45

have λ� =
n∑

i=1
λi . The cloud provider consists of m homogeneous servers with total

processing rate μ, i.e., μ = mμ0, where μ0 is the service rate of each server, and
puts some information (e.g., price parameters a and b, current aggregated request
vector λ�) into the information exchange module. When multiple users try to make
a cloud service reservation, they first get information from the exchange module,
then compute proper strategies such that their own utilities are maximized and send
the newly strategies to the cloud provider. The procedure is terminated until the
set of remaining users, who prefer to make cloud service reservation, and their
corresponding strategies are kept fixed.

3.1.5 Problem Formulation

Now, let us consider user i′s (i ∈ N) utility in time slot h. A rational cloud user
will seek a strategy to maximize its expected net reward by finishing the tasks, i.e.,
the benefit obtained by choosing the cloud service minus its total payment. Since
all cloud users are charged based on the instantaneous load billing and how much
tasks they submit, we denote the cloud user i′s payment in time slot h by P h

i , where
P h

i = C
(
λh

�

)
λh

i with C
(
λh

�

)
denoting the service price for one unit of workload in

time slot h. On the other hand, since a user will be more satisfied with much faster
service, we also take the average response time into account. Note that time utility
will be deteriorated with the delay of time slots. Hence, in this paper, we assume that
the deteriorating rate of time utility is δ (δ > 1). Denote T̄ h the average response
time and T h the time utility of user i in time slot h, respectively. Then we have
T h = δhT̄ h. More formally, the utility of user i (i ∈ N) in time slot h is defined as

Uh
i

(
λh

i ,λ
h
−i

)
= rλh

i − P h
i

(
λh

i ,λ
h
−i

)
− wiT

h
(
λh

i ,λ
h
−i

)

= rλh
i − P h

i

(
λh

i ,λ
h
−i

)
− wiδ

hT̄ h
(
λh

i ,λ
h
−i

)
, (10)

where λh
−i = (λh

1, . . . , λh
i−1, λ

h
i+1, . . . , λ

h
n

)
denotes the vector of all users’ request

profile in time slot h except that of user i, r (r > 0) is the benefit factor (the
reward obtained by one task request), and wi (wi > 0) is the waiting cost factor,
which reflects its urgency. If a user is more concerned with task completion, then
the associated waiting factor wi might be larger.

For simplicity, we use P h
i and T̄ h to denote P h

i

(
λh

i ,λ
h
−i

)
and T̄ h

(
λh

i ,λ
h
−i

)
,

respectively. Following the adopted request price model, the total utility obtained
by user i (i ∈ N) over all H future time slots can thus be given by

Ui(λi ,λ−i) =
H∑

h=1

Uh
i (λh

i ,λ
h
−i) =

H∑
h=1

(
rλh

i − P h
i − wiδ

hT̄ h
)
, (11)

46 C. Liu et al.

where λ−i = (λ1, . . . ,λi−1,λi+1, . . . ,λn) denotes the (n − 1) H × 1 vector of all
users’ request profile except that of user i.

We consider the scenario where all users are selfish. Specifically, each user tries
to maximize his/her total utility over the H future time slots, i.e., each user i (i ∈ N)
tries to find a solution to the following optimization problem (OPTi):

maximize Ui(λi ,λ−i), λi ∈ Qi. (12)

3.2 Game Formulation and Analyses

In this section, we formulate the considered scenario into a non-cooperative game
among the multiple cloud users. By employing variational inequality (VI) theory,
we analyze the existence of a Nash equilibrium solution set for the formulated
game. And then we propose an iterative proximal algorithm to compute a Nash
equilibrium. We also analyze the convergence of the proposed algorithm.

3.2.1 Game Formulation

Game theory studies the problems in which players try to maximize their utilities or
minimize their disutilities. As described in [28], a non-cooperative game consists of
a set of players, a set of strategies, and preferences over the set of strategies. In this
paper, each cloud user is regarded as a player, i.e., the set of players is the n cloud
users. The strategy set of player i (i ∈ N) is the request profile set of user i, i.e., Qi .
Then the joint strategy set of all players is given by Q = Q1 × · · · × Qn.

As mentioned before, all users are considered to be selfish and each user i (i ∈
N) tries to maximize his/her own utility or minimize his/her disutility while ignoring
the others. In view of (12), we can observe that user i′s optimization problem is
equivalent to

minimize fi(λi ,λ−i) =
H∑

h=1

(
P h

i + wiδ
hT̄ h − rλh

i

)
,

s.t. (λi ,λ−i) ∈ Q. (13)

The above formulated game can be formally defined by the tuple G = 〈Q,f 〉,
where f = (f1, . . . , fn). The aim of user i (i ∈ N), given the other players’
strategies λ−i , is to choose an λi ∈ Qi such that his/her disutility function
fi(λi ,λ−i) is minimized. That is to say, for each user i (i ∈ N),

λ∗
i ∈ arg min

λi∈Qi

fi(λi ,λ
∗−i), λ∗ ∈ Q. (14)

Explorations of Game Theory Applied in Cloud Computing 47

At the Nash equilibrium, each player cannot further decrease its disutility by
choosing a different strategy while the strategies of other players are fixed. The
equilibrium strategy profile can be found when each player’s strategy is the best
response to the strategies of other players.

3.2.2 Billing Parameters Analysis

It is important to investigate the way the cloud provider decides load billing scheme.
In our proposed model, the request charge changes according to the total load
during different time slots. The cloud provider needs to decide the proper pricing
parameters a and b. The reason lies in that if the per request charge (the cost of
one task request) is too high, some users may refuse to use the cloud service, and
choose to finish his/her tasks locally. On the contrary, if the charge is low, the
aggregated requests may be more than enough, which could lead to low service
quality (long task response time). In this paper, we assume that each user i (i ∈ N)
has a reservation value vi . That is to say, cloud user i will prefer to use the cloud
service if Ui (λi ,λ−i) ≥ vi and refuse to use the service otherwise. If the cloud
provider wants to appeal all n cloud users to use its service while charging relatively
high, then it must guarantee that the obtained utility of each user i (i ∈ N) is equal
to his/her reservation value vi , i.e., Ui (λi ,λ−i) = vi (∀i ∈ N), which implies that

H∑
h=1

(
rλh

i − P h
i − wiδ

hT̄ h
)

= vi,∀i ∈ N . (15)

Considering all users together, (15) is equivalent to

r� − PT − w�

H∑
h=1

δhT̄ h =
n∑

i=1

vi, (16)

where � =
n∑

i=1
�i , w� =

n∑
i=1

wi , and PT =
n∑

i=1

H∑
h=1

P h
i .

For the cloud provider, its objective is trying to decide proper pricing parameters
a and b such that its net reward, i.e., the charge to all cloud users (PT) minus its cost
(e.g., energy cost and machine maintenance cost), is maximized. In this paper, we
denote π as the net profit and γh the cost in time slot h. When total capacity μ is
determined, γh is assumed to be constant. Then the cloud provider’s problem is to
try to maximize the value π . That is

maximize π = PT (λ) −
H∑

h=1

γh,

48 C. Liu et al.

s.t. r� − PT (λ) − w�

H∑
h=1

δhT̄ h =
n∑

i=1

vi, (17)

� =
n∑

i=1

�i =
H∑

h=1

λh
�, (18)

μ > λh
� ≥ 0,∀h ∈ H . (19)

The above optimization problem is equivalent to

maximize π = r� − w�

H∑
h=1

δhT̄ h −
n∑

i=1

vi −
H∑

h=1

γh,

s.t. � =
n∑

i=1

�i =
H∑

h=1

λh
�,

μ > λh
� ≥ 0,∀h ∈ H . (20)

Theorem 3.1 For the cloud provider, the profit is maximized when the billing
parameters (a and b) satisfy the constraint (17) and

λh
� = μ − (Hμ − �)

(
1 − δ1/2

)
δ(h−1)/2

(
1 − δH/2

) , (21)

where h ∈ H .

Proof We can maximize π in (20) by using the method of Lagrange multiplier,
namely,

∂π

∂λh
�

= −w�δh ∂T̄ h

∂λh
�

= −ϕ,

where ϕ is the Lagrange multiplier. That is,

w�δh

(
μ − λh

�

)2 = ϕ,

for all 1 ≤ h ≤ H , and
H∑

h=1
λh

� = �. After some algebraic calculation, we have

ϕ = w�δ
(
1 − δH/2

)2

(Hμ − �)2(1 − δ1/2
)2 .

Explorations of Game Theory Applied in Cloud Computing 49

Then we can obtain

λh
� = μ − (Hμ − �)

(
1 − δ1/2

)
δ(h−1)/2

(
1 − δH/2

) ,

and the result follows. ��
Note that the obtained result (21) must satisfy the constraint (19), that is to say,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ − (Hμ−�)
(
1−δ1/2

)
δ(H−1)/2

(1−δH/2)
≥ 0, h = H ;

μ − (Hμ−�)
(
1−δ1/2

)
(1−δH/2)

< μ, h = 1;
Hμ − � > 0.

(22)

We obtain

{
μ ≤ c�

cH−1 ,

Hμ > �,
(23)

where

c =
(
1 − δ1/2

)
δ(H−1)/2

1 − δH/2 .

Then we have

H

�
< μ ≤ �

H − 1/c
, (24)

where

c =
(
1 − δ1/2

)
δ(H−1)/2

1 − δH/2 .

As mentioned before, we assume that the aggregated requests do not exceed the
capacity of all the servers, i.e., Hμ > �. In addition, if μ > �

H−1/c
, it is possible to

shutdown some servers such that μ satisfies the constraint (24), which can also save
energy cost. Therefore, in this paper, we assume that the total processing capacity μ

satisfies constraint (24).
From Theorem 3.1, we know that if the cloud provider wants to appeal all the n

cloud users to use its service, then proper pricing parameters a and b can be selected
to satisfy constraint (17). Specifically, if b (a) is given, and a (b) is higher than the
computed value from (17), then there exist some users who refuse to use the cloud
service, because their obtained utilities are less than their reservation values.

50 C. Liu et al.

3.2.3 Nash Equilibrium Analysis

In this subsection, we analyze the existence of Nash equilibrium for the formulated
game G = 〈Q,f 〉 and prove the existence problem by employing variational
inequality (VI) theory. Then we propose an iterative proximal algorithm (IPA). The
convergence of the proposed algorithm is also analyzed. Before address the problem,
we show three important properties presented in Theorems 3.2, 3.3, and 3.4, which
are helpful to prove the existence of Nash equilibrium for the formulated game.

Theorem 3.2 For each cloud user i (i ∈ N), the set Qi is convex and compact,
and each disutility function fi(λi ,λ−i) is continuously differentiable in λi . For each
fixed tuple λ−i , the disutility function fi(λi ,λ−i) is convex in λi over the set Qi .

Proof It is obvious that the statements in the first part of above theorem hold. We
only need to prove the convexity of fi(λi ,λ−i) in λi for every fixed λ−i . This can be
achieved by proving that the Hessian matrix of fi(λi ,λ−i) is positive semidefinite

[12, 36]. Since fi(λi ,λ−i) =
H∑

h=1

(
P h

i + wiδ
hT̄ h − rλh

i

)
, we have

∇λi
fi(λi ,λ−i) =

[
∂fi(λi ,λ−i)

∂λh
i

]H

h=1

=
(

∂fi(λi ,λ−i)

∂λ1
i

, . . . ,
∂fi(λi ,λ−i)

∂λH
i

)
.

and the Hessian matrix is expressed as

∇2
λi

fi(λi ,λ−i)

= diag

⎧
⎨
⎩

[
∂2fi(λi ,λ−i)

∂(λh
i)

2

]H

h=1

⎫
⎬
⎭

= diag

⎧
⎨
⎩

[
2a
(

2λh
� + λh

i

)
+ 2wiδ

h

(
μ − λh

�

)3
]H

h=1

⎫
⎬
⎭ . (25)

Obviously, the diagonal matrix in (25) has all diagonal elements being positive.
Thus, the Hessian matrix of fi(λi ,λ−i) is positive semidefinite and the result
follows. The theorem is proven. ��
Theorem 3.3 The Nash equilibrium of the formulated game G is equivalent to the
solution of the variational inequality (VI) problem, denoted by VI(Q, F), where
Q = Q1 × · · · × Qn and

F(λ) = (Fi (λi ,λ−i))
n
i=1 , (26)

Explorations of Game Theory Applied in Cloud Computing 51

with

Fi (λi ,λ−i) = ∇λi
fi(λi ,λ−i). (27)

Proof According to Prop. 4.1 in [37], we know that the above claim follows if
two conditions are satisfied. First, for each user i (i ∈ N), the strategy set Qi is
closed and convex. Second, for every fixed λ−i , the disutility function fi(λi ,λ−i)

is continuously differentiable and convex in λi ∈ Qi . By Theorem 3.2, it is easy to
know that both the mentioned two conditions are satisfied in the formulated game
G. Thus, the result follows. ��
Theorem 3.4 If both matricesM1 andM2 are semidefinite, then the matrixM3 =
M1 +M2 is also semidefinite.

Proof As mentioned above, both matricesM1 andM2 are semidefinite. Then we
have ∀x

xTM1x ≥ 0 and xTM2x ≥ 0.

We obtain ∀x,

xTM3x = xTM1x + xTM2x ≥ 0.

Thus, we can conclude thatM3 is semidefinite and the result follows. ��
Recall that the objective of this subsection is to study the existence of Nash

equilibrium for the formulated game G = 〈Q,f 〉 in (54). In the next theorem, we
prove that if several conditions are satisfied, the existence of such Nash equilibrium
is guaranteed.

Theorem 3.5 If maxi=1,...,n(wi) ≤ 1/n, there exists a Nash equilibrium solution
set for the formulated game G = 〈Q,f 〉.
Proof Based on Theorem 3.3, the proof of this theorem follows if we can show that
the formulated variational inequality problem VI(Q, F) in Theorem 3.3 possesses a
solution set. According to Th. 4.1 in [37], the VI(Q, F) admits a solution set if the
mapping F (λ) is monotone over Q, since the feasible set Q is compact and convex.

To prove the monotonicity of F (λ), it suffices to show that for any λ and s in Q,

(λ − s)T (F (λ) − F (s)) ≥ 0,

namely,

H∑
h=1

n∑
i=1

(
λh

i − sh
i

) (
∇λh

i
fi (λ) − ∇sh

i
fi (s)

)
≥ 0. (28)

52 C. Liu et al.

Let λh = (λh
1, . . . , λh

n

)T
and sh = (sh

1 , . . . , sh
n

)T
, then we can write (28) as

H∑
h=1

(
λh − sh

) (
∇λhf

h
(
λh
)

− ∇shf
h
(
sh
))

≥ 0, (29)

where

f h
(
λh
)

=
n∑

i=1

(
P h

i + wiδ
hT̄ h − rλh

i

)
,

and

∇λhf
h
(
λh
)

=
(
∇λh

1
f h
(
λh
)

, . . . ,∇λh
n
f h
(
λh
))T

.

We can observe that if
(
λh − sh

) (
gh
(
λh
)

− gh
(
sh
))

≥ 0, ∀h ∈ H, (30)

where gh
(
λh
) = ∇λhf h(λh), then equation (29) holds.

Recall the definition of a monotone mapping, we can find that (30) holds if
the mapping gh

(
λh
)

is monotone. With reference to [37], the condition in (30) is
equivalent to proving the Jacobian matrix of gh

(
λh
)
, denoted by G

(
λh
)
, is positive

semidefinite.
After some algebraic manipulation, we can write the (i, j)th element of G

(
λh
)

as

[
G
(
λh
)]

i,j
=

⎧⎪⎨
⎪⎩

2a
(
2λh

� + λh
i

)+ 2wiδ
h

(
μ−λh

�

)3 , if i = j ;
2a
(
λh

� + λh
i

)+ 2wiδ
h

(
μ−λh

�

)3 , if i �= j.

Since the matrix G
(
λh
)

may not be symmetric, we can prove its positive
semidefiniteness by showing that the symmetric matrix

G
(
λh
)

+ G
(
λh
)T =

2a

(
λh1T

n×1 + 1n×1

(
λh
)T + 2λh

�1n×n + 2λh
�En

)

︸ ︷︷ ︸
M1

+ 2aσ
(
w1T

n×1 + 1n×1w
T
)

︸ ︷︷ ︸
M2

Explorations of Game Theory Applied in Cloud Computing 53

is positive semidefinite [38], where

σ = δh

a
(
μ − λh

�

)3 ,

w = (w1, . . . , wn)
T , 1r×s is a r × s matrix with every element of 1, and En is an

identity matrix. This is equivalent to showing that the smallest eigenvalue of this
matrix is non-negative.

With referring to [12, 38], we obtain the two non-zero eigenvalues of M1 as
follows:

η1
M1

= (n + 3)λh
� +
√√√√n

n∑
i=1

(
λh

i + λh
�

)2
,

η2
M1

= (n + 3)λh
� −
√√√√n

n∑
i=1

(
λh

i + λh
�

)2
.

Let

A
(
λh
)

= (n + 3)λh
�,

and

B
(
λh
)

=
√√√√n

n∑
i=1

(
λh

i + λh
�

)2
,

and ηmin be the minimal eigenvalue of matrix M1. Then, we have ηmin =
min
{
A
(
λh
)− B

(
λh
)
, 2λh

�

}
. Furthermore, we can derive that

(
A
(
λh
))2 −

(
B
(
λh
))2 = (4n + 9)

(
λh

�

)2 − n

n∑
i=1

(
λh

i

)2

≥ n

⎛
⎝
(

n∑
i=1

λh
i

)2

−
n∑

i=1

(
λh

i

)2

⎞
⎠ ≥ 0.

Hence, we can obtain ηmin ≥ 0 and conclude that M1 is semidefinite. Similar
to the semidefinite proof ofM1, we can also obtain that if maxi=1,...,n(wi) ≤ 1/n,
thenM2 is semidefinite. By Theorem 3.4, we can conclude that the matrix G

(
λh
)

is semidefinite, and the result follows. ��

54 C. Liu et al.

3.2.4 An Iterative Proximal Algorithm

Once we have established that the Nash equilibria of the formulated game G =
〈Q,f 〉 exists, we are interested in obtaining a suitable algorithm to compute one
of these equilibria with minimum information exchange between the multiple users
and the cloud provider.

Note that we can further rewrite the optimization problem (54) as follows:

minimize fi(λi ,λ�) =
H∑

h=1

(
P h

i + wiδ
hT̄ h − rλh

i

)
,

s.t. λi ∈ Qi, (31)

where λ� denotes the aggregated request profile of all users over the H future time

slots, i.e., λ� =
n∑

i=1
λi . From (31), we can see that the calculation of the disutility

function of each individual user only requires the knowledge of the aggregated
request profile of all users (λ�) rather than that the specific individual request profile
of all other users (λ−i), which can bring about two advantages. On the one hand,
it can reduce communication traffic between users and the cloud provider. On the
other hand, it can also keep privacy for each individual user to certain extent, which
is seriously considered by many cloud users.

Since all users are considered to be selfish and try to minimize their own
disutilities while ignoring the others. It is natural to consider an iterative algorithm
where, at every iteration k, each individual user i (∀i ∈ N) updates his/her strategy
to minimize his/her own disutility function fi(λi ,λ�). However, following Th. 4.2
in [37], it is not difficult to show that their convergence cannot be guaranteed in
our case if the users are allowed to simultaneously update their strategies according
to (31).

To overcome this issue, we consider an iterative proximal algorithm (IPA), which
is based on the proximal decomposition Alg. 4.2 [37]. The proposed algorithm is
guaranteed to converge to a Nash equilibrium under some additional constraints
on the parameters of the algorithm. With reference to [37], consider the regularized
game in which each user i (i ∈ N) tries to solve the following optimization problem:

minimize fi(λi ,λ�) + τ

2

∥∥λi − λ̄i

∥∥2
,

s.t. λi , λ̄i ∈ Qi. (32)

That is to say, when given the aggregated requests, we must find a strategy vector
λ∗

i for user i (i ∈ N) such that

λ∗
i ∈ arg min

λi∈Qi

{
fi(λi ,λ�) + τ

2

∥∥λi − λ̄i

∥∥2
}

, (33)

Explorations of Game Theory Applied in Cloud Computing 55

Algorithm 1 Iterative Proximal Algorithm (IPA)
Input:

Strategy set of all users: Q, ε.
Output:

Request configuration: λ.
1: Initialization: Each cloud user i (i ∈ N) randomly choose a λ

(0)
i ∈ Qi and set λ̄i ← 0. Set

Sc ← N , Sl ← ∅, and k ← 0.
2: while (Sc �= Sl) do
3: Set Sl ← Sc.
4: while (

∥∥λ(k) − λ(k−1)
∥∥ > ε) do

5: for (each cloud user i ∈ Sc) do
6: Receive λ

(k)
� from the cloud provider and compute λ

(k)
i as follows (by Algorithm 2):

7:

λ
(k+1)
i ← arg min

λi∈Qi

{
fi(λi ,λ

(k)
�) + τ

2

∥∥λi − λ̄i

∥∥2
}

.

8: Send the updated strategy to the cloud provider.
9: end for

10: if (Nash equilibrium is reached) then
11: Each user i (i ∈ Sc) updates his/her centroid λ̄i ← λ

(k)
i .

12: end if
13: Set k ← k + 1.
14: end while
15: for (each user i ∈ Sc) do

16: if Ui

(
λ

(k)
i ,λ

(k)
�

)
< vi then

17: Set λ
(k)
i ← 0, and Sc ← Sc − {i}.

18: end for
19: end while
20: return λ(k).

where τ(τ > 0) is a regularization parameter and may guarantee the convergence
of the best-response algorithm Cor. 4.1 in [37] if it is large enough. The idea is
formalized in Algorithm 1.

Theorem 3.6 There exists a constant τ0 such that if τ > τ0, then any sequence{
λ

(k)
i

}∞
k=1

(i ∈ Sc) generated by the IPA algorithm converges to a Nash equilibrium.

Proof We may note that Algorithm 1 converges if the inner while loop (Steps
4–14) can be terminated. Therefore, if we can prove that Steps 4–14 converges,
the result follows. In practice, Steps 4–14 in Algorithm 1 is a developed instance
of the proximal decomposition algorithm, which is presented in Alg. 4.2 [37] for
the variational inequality problem. Next, we rewrite the convergence conditions
exploiting the equivalence between game theory and variational inequality (Ch.
4.2 in [37]). Given fi(λi ,λ−i) defined as in Eq. (54), Algorithm 1 convergences
if the following two conditions are satisfied. (1) The Jacobian matrix of F is positive
semidefinite (Th. 4.3 [37]). We denote the Jacobian by JF(λ) = (Jλj

Fi (λ)
)n
i,j=1

,

where Jλj
Fi (λ) = (∇λj

fi(λ)
)n
j=1

, which is the partial Jacobian matrix of Fi with
respect to λj vector. (2) The n× n matrix ϒF,τ = ϒF + τEn is a P-matrix (Cor. 4.1
[37]), where

56 C. Liu et al.

[ϒF]ij =
{

αmin
i , if i = j ;

−βmax
ij , if i �= j ;

with

αmin
i = inf

λ∈Q
ηmin
(
Jλi

Fi (λ)
)
,

and

βmax
ij = sup

λ∈Q

ηmin
(
Jλj

Fi (λ)
)
,

and ηmin (A) denoting the smallest eigenvalue of A. After some algebraic manipu-
lation, we can write the block elements of JF(λ) as

Jλi
Fi (λ) = ∇2

λi
fi(λi ,λ�)

= diag

⎧⎨
⎩

[
2a
(

2λh
� + λh

i

)
+ 2wiδ

h

(
μ − λh

�

)3
]H

h=1

⎫⎬
⎭ ,

and

Jλj
Fi (λ) = ∇2

λiλj
fi(λi ,λ�)

= diag

⎧⎨
⎩

[
2a
(
λh

� + λh
i

)
+ 2wiδ

h

(
μ − λh

�

)3
]H

h=1

⎫⎬
⎭ ,

for i �= j (i, j ∈ N).
Next, we show that the above conditions (1) and (2) hold, respectively. By

Theorem 3.2, we know that the vector function F(λ) is monotone on Q, which
implies that JF(λ) is semidefinite. On the other hand, considering Jλi

Fi (λ), we have
αmin

i > 0.
Let

Lh(λh
i ,λ

h
−i) = 2a

(
λh

� + λh
i

)
+ 2wiδ

h

(
μ − λh

�

)3 .

Then, we have ∂Lh

∂λh
i

> 0. As mentioned before, λh
� (∀h ∈ H) does not exceed the

total processing capacity of all servers μ. We assume that λh
� ≤ (1 − ε)μ, where ε

is a small positive constant. Then we can conclude that

Explorations of Game Theory Applied in Cloud Computing 57

Lh(λh
i ,λ

h
−i) ≤ 4a (1 − ε) μ + 2wmaxδ

h

(εμ)3 ,

where wmax = maxi=1,...,n{wi}.
Hence, if

τ0 ≥ (n − 1)

(
4a (1 − ε) μ + 2wmaxδ

H

(εμ)3

)
,

then

βmax
ij = sup

λ∈Q

∥∥Jλj
Fi (λ)

∥∥ ≤ τ0.

Then, it follows from Prop 4.3 in [37] that, if τ is chosen as in Theorem 3.6, the
matrix ϒF,τ is a P-matrix, and the result follows. ��

Next, we focus on the calculation for the optimization problem in (33). Let

Li(λi ,λ�) = fi(λi ,λ�) + τ

2

∥∥λi − λ̄i

∥∥2
. (34)

Then, we have to minimize Li(λi ,λ�). Note that the variable in (34) is only λi ,
therefore, we can rewrite (34) as

Li(λi , κ�) = fi(λi , κ�) + τ

2

∥∥λi − λ̄i

∥∥2
, (35)

where κ� = λ� − λi . We denote Ri the constraint of user i, i.e.,

Ri = λ1
i + λ2

i + . . . + λH
i = �i,

and try to minimize Li(λi , κ�) by using the method of Lagrange multiplier, namely,

∂Li

∂λh
i

= φ
∂Ri

∂λh
i

= φ,

for all 1 ≤ h ≤ H , where φ is a Lagrange multiplier. Notice that

∂P h
i

∂λh
i

= a

(
2(λh

i + κh
�)λh

i +
(
λh

i + κh
�

)2
)

+ b,

and

∂T̄ h

∂λh
i

= 1
(
μ − κh

� − λh
i

)2 .

58 C. Liu et al.

We obtain

∂Li

∂λh
i

= ∂P h
i

∂λh
i

+ wiδ
h ∂T̄ h

∂λh
i

− r + τ
(
λh

i − λ̄h
i

)

=a

(
2(λh

i +κh
�)λh

i +
(
λh

i +κh
�

)2
)

+b+ wiδ
h

(
μ−κh

�−λh
i

)2 −r+τ
(
λh

i −λ̄h
i

)
=φ.

(36)

Denote Yh
i (λh

i , κ
h
�) as the first order of Li(λi , κ�) on λh

i . Then, we have

Yh
i (λh

i ,κ
h
�) = a

(
2(λh

i + κh
�)λh

i +
(
λh

i + κh
�

)2
)

+ b + wiδ
h

(
μ − κh

� − λh
i

)2 − r + τ
(
λh

i − λ̄h
i

)
. (37)

Since the first order of Yh
i (λh

i , κ
h
�) is

∂Y h
i

∂λh
i

= ∂2Li

∂
(
λh

i

)2 =2a
(

3λh
i + 2κh

�

)
+ 2wiδ

h

(
μ − κh

� − λh
i

)3 + τ > 0, (38)

we can conclude that Yh
i (λh

i , κ
h
�) is an increasing positive function on λh

i . Based
on above derivations, we propose an algorithm to calculate λi (i ∈ N), which is
motivated by [35].

Given ε, μ, a, b, r, τ,λi ,λ� , and �i , our optimal request configuration algo-
rithm to find λi is given in Algorithm 2. The algorithm uses another subalgorithm
Calculateλh

i described in Algorithm 3, which, given ε, μ, a, b, r, τ, κh
� , and φ, finds

λh
i satisfies (36).

The key observation is that the left-hand side of (36), i.e., (37), is an increasing
function of λh

i (see (38)). Therefore, given φ, we can find λh
i by using the binary

search method in certain interval [lb, ub] (Steps 2–9 in Algorithm 3). We set lb

simply as 0. For ub, as mentioned in Theorem 3.6,

λh
i ≤ (1 − ε)μ,

where ε is a relative small positive constant. Therefore, in this paper, ub is set in
Step 1 based on the above discussion. The value of φ can also be found by using
the binary search method (Steps 10–20 in Algorithm 2). The search interval [lb, ub]
for φ is determined as follows. We set lb simply as 0. As for ub, we notice that the
left-hand side of (36) is an increasing function of λh

i . Then, we set an increment
variable inc, which is initialized as a relative small positive constant and repeatedly
doubled (Step 7). The value of inc is added to φ to increase φ until the sum of λh

i

Explorations of Game Theory Applied in Cloud Computing 59

Algorithm 2 Calculateλi(ε, μ, a, b, r, τ,λi ,λ�,�i)
Input: ε, μ, a, b, r, τ,λi ,λ�,�i
Output: λi .
1: Initialization: Let inc be a relative small positive constant. Set κ� ← λ� − λi , λi ← 0, and

φ ← 0.
2: while (λ1

i + λ2
i + . . . + λH

i < �i) do
3: Set mid ← φ + inc, and φ ← mid.
4: for (each time slot h ∈ H) do
5: λh

i ← Calculateλh
i (ε, μ, a, b, r, τ, κh

�, φ).
6: end for
7: Set inc ← 2 × inc.
8: end while
9: Set lb ← 0 and ub ← φ.

10: while (ub − lb > ε) do
11: Set mid ← (ub + lb)/2, and φ ← mid.
12: for (each time slot h ∈ H) do
13: λh

i ← Calculateλh
i (ε, μ, a, b, r, τ, κh

�, φ).
14: if (λ1

i + λ2
i + . . . + λH

i < �i) then
15: Set lb ← mid.
16: else
17: Set ub ← mid.
18: end if
19: end for
20: end while
21: Set φ ← (ub + lb)/2.
22: for (each time slot h ∈ H) do
23: λh

i ← Calculateλh
i (ε, μ, a, b, r, τ, κh

�, φ).
24: end for
25: return λi .

Algorithm 3 Calculateλh
i (ε, μ, a, b, r, τ, κh

�, φ)

Input: ε, μ, a, b, r, τ, κh
�, φ.

Output: λh
i .

1: Initialization: Set ub ← (1 − ε)μ − κh
� , and lb ← 0.

2: while (ub − lb > ε) do
3: Set mid ← (ub + lb)/2, and λh

i ← mid.
4: if (Yh

i (λh
i , κh

�) < φ) then
5: Set lb ← mid.
6: else
7: Set ub ← mid.
8: end if
9: end while

10: Set λh
i ← (ub + lb)/2.

11: return λh
i .

(h ∈ H) found by Calculateλh
i is at least �i (Steps 2–8). Once [lb, ub] is decided,

φ can be searched based on the fact that Yh
i (λh

i ,λ
h−i) is an increasing function of

λh
i . After φ is determined (Step 21), λi can be computed (Steps 22–24).

Finally, we can describe the proposed iterative proximal algorithm as follows. At
the beginning, each cloud user i (i ∈ N) sends his/her weight value (wi) and total
task request (�i) to the cloud provider. Then the cloud provider computes τ as in
Theorem 3.6 according to the aggregated information and chooses proper param-

60 C. Liu et al.

eters a and b such that constraint (17) is satisfied. After this, the cloud provider
puts the computed load billing parameters a and b into public information exchange
module. Then, at each iteration k, the cloud provider broadcasts a synchronization
signal and the current aggregated request profile λ

(k)
� . Within iteration k, each user

receives the aggregated profile λ
(k)
� and computes his/her strategy by solving its own

optimization problem in (32), and then sends the newly updated strategy to the cloud
provider. Lastly, as indicated in Steps 10–12 of Algorithm 1, the cloud provider
checks whether the Nash equilibrium has been achieved and if so, it broadcasts a
signal to inform all users to update their centroid λ̄i . It also checks whether all cloud
users’ strategies are unchanged and if so, it informs all users to choose whether they
still prefer to the cloud service due to their reserved values. This process continues
until the set of the remaining cloud users and their corresponding strategies are kept
fixed. In this paper, we assume that the strategies of all cloud users are unchanged

if
∥∥λ(k) − λ(k−1)

∥∥ ≤ ε, where λ(k) =
(
λ

(k)
i

)n
i=1

with λ
(k)
i =

((
λh

i

)(k)
)H

h=1
. The

parameter ε is a pre-determined relatively small constant. We also denote Sc as
the current set of remaining cloud users. Note that the individual strategies are not
revealed among the users in any case, and only the aggregated request profile λ(k),
which is determined at the cloud provider adding the individual H -time slots ahead
request profile, is communicated between the cloud provider and multiple cloud
users.

3.3 Performance Evaluation of IPA

In this section, we provide some numerical results to validate our theoretical
analyses and illustrate the performance of the IPA algorithm.

In the following simulation results, we consider the scenario consisting of
maximal 50 cloud users. Each time slot is set as one hour of a day and H is set as
24. As shown in Table 1, the aggregated request (�) is varied from 50 to 500 with
increment 50. The number of cloud users (n) is varied from 5 to 50 with increment 5.
Each cloud user i (i ∈ N) chooses a weight value from 0 to 1/n to balance his/her
time utility and net profit. For simplicity, the reservation value vi for each user i

(i ∈ N) and billing parameter b are set to zero. Market benefit factor r is set to
50, deteriorating rate on time utility δ is equal to 1.2, and ε is set as 0.01. The total
capacity of all servers μ is selected to satisfy constraint (24) and another billing
parameter a is computed according to (17). In our simulation, the initial strategy
configuration, i.e., before using IPA algorithm, is randomly generated from Q.

Figure 2 presents the utility results for five different cloud users versus the
number of iterations of the proposed IPA algorithm. Specifically, Fig. 2 presents the
utility results of 5 randomly selected cloud users (users 1, 9, 23, 38, and 46) with
a scenario consisting of 50 cloud users. We can observe that the utilities of all the
users seem to increase and finally reach a relative stable state with the increase of
iteration number. The reason behind lies in that the request strategies of all the users

Explorations of Game Theory Applied in Cloud Computing 61

Table 1 System parameters

System parameters Value (Fixed)–[Varied range] (increment)

Aggregated task requests (�) (500)–[100, 500] (50)

Number of cloud users (n) (50)–[5, 50] (5)

Weight value (wi) [0, 1/n]

Reservation value (vi) 0

Other parameters (ε, b, r, δ) (0.01, 0, 50, 1.2)

0 5 10 15 20
80

90

100

110

120

130

140

150

Iterations

U
se

r u
til

ity

User1
User9
User23
User38
User46

Fig. 2 Convergence process

keep unchanged, i.e., reach a Nash equilibrium solution after several iterations. This
trend also reflects the convergence process of our proposed IPA algorithm. It can
be seen that the developed algorithm converges to a Nash equilibrium very quickly.
Specifically, the utility of each user has already achieved a relatively stable state after
about 8 iterations, which verifies the validness of Theorem 3.6, as well as displays
the high efficiency of the developed algorithm.

In Fig. 3, we compare the aggregated request profile of all cloud users with the
situation before and after IPA algorithm. Specifically, Fig. 3 shows the aggregated
requests in different time slots. The situation before IPA algorithm corresponds
to a feasible strategy profile randomly generated in the initialization stage, while
the situation after IPA algorithm corresponds to the result obtained by using
our proposed IPA algorithm. Obviously, the proposed service reservation scheme
encourages the cloud users to shift their task requests in peak time slots to non-peak
time slots, resulting in a more balanced load shape and lower total load. We can also
observe that the aggregated requests in different time slots are almost the same. To

62 C. Liu et al.

0 5 10 15 20 25
0

5

10

15

20

25

30

35

Time slots

To
ta

l r
eq

ue
st

 a
gg

re
ta

tio
n

Before Algorithm
After Algorithm

Fig. 3 Aggregation load

0 5 10 15 20 25
20

21

22

23

24

25

26

27

28

29

30

Time slots

S
lo

t u
til

ity

User2, w2 =0.0187

User3, w3 =0.0101

User4, w4 =0.0005

User7, w7 =0.0120

User9, w9 =0.0163

User10, w10 =0.0015

Fig. 4 Specific slot utility

demonstrate this phenomenon, we further investigate the specific utilities of some
users and their corresponding strategies in different time slots, which are presented
in Figs. 4 and 5.

Explorations of Game Theory Applied in Cloud Computing 63

0 5 10 15 20 25

1.9286

1.9288

1.929

1.9292

a

b

c

Time slots

R
eq

ue
st

 s
tra

te
gy User2, w2 =0.0187

0 5 10 15 20 25
2.1911

2.1912

2.1913

2.1914

2.1915

Time slots

R
eq

ue
st

 s
tra

te
gy User3, w3 =0.0101

0 5 10 15 20 25
2.1785
2.1786
2.1787
2.1788
2.1789

2.179
2.1791

Time slots

R
eq

ue
st

 s
tra

te
gy User4, w4 =0.0005

0 5 10 15 20 25
1.5965

1.5966

1.5967

1.5968

1.5969

1.597
d

e

f

Time slots

R
eq

ue
st

 s
tra

te
gy User7, w7 =0.0120

0 5 10 15 20 25

1.8156

1.8158

1.816

1.8162

1.8164

Time slots

Time slots

R
eq

ue
st

 s
tra

te
gy

R
eq

ue
st

 s
tra

te
gy

User9, w9 =0.0163

User10, w10 =0.0015

0 5 10 15 20 25
2.2208
2.2209

2.221
2.2211
2.2212
2.2213
2.2214

Fig. 5 Specific slot shifting

In Figs. 4 and 5, we plot the utility shape and the request profile of some cloud
users for the developed IPA algorithm for a scenario of 10 users. Figure 4 presents
the utility shape under the developed algorithm over future 24 time slots. We
randomly select 6 users (users 2, 3, 4, 7, 9, and 10). It can be seen that the utilities
in different time slots of all users tend to decrease at different degrees. Specifically,
the slot utilities of the users with higher weights have a clearly downward trend and
tend to decrease sharply in later time slots (users 2, 3, 7, 9). On the other hand, the
slot utilities of the users with lower weights decline slightly (users 4, 10). Figure 5
exhibits the corresponding request strategies of the users shown in Fig. 4. We can
observe that the slot utilities of the users with higher weights tend to decrease (users
2, 3, 7, 9) while those of the users with lower weights tend to increase (users 4,
10). Furthermore, the aggregated requests increase or decrease sharply in later time
slots. The reason behind lies in the fact that in our proposed model, we take into the
average response time into account and the deteriorating factor of the value grows
exponentially, which also demonstrates the downward trends shown in Fig. 4. On
the other hand, the weights are chosen randomly, there could be a balance between
the increment and the decrement of the utilities. Hence, the aggregated requests in
different time slots make little differences (Fig. 3).

64 C. Liu et al.

100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

160

Request aggregation

Av
er

ag
e

ut
ili

ty

Before Algorithm
After Algorithm

Fig. 6 Average utility vs. aggregation

5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

1400

Number of users

Av
er

ag
e

ut
ili

ty

Before Algorithm
After Algorithm

Fig. 7 Average utility vs. number of users

Figures 6 and 7 present the average utility versus the increase of request
aggregation and the number of users, respectively. Figure 6 illustrates the average
utility results with the linear increment of request aggregation. We can observe that

Explorations of Game Theory Applied in Cloud Computing 65

the average utility also linearly increases with the increase of request aggregation.
No matter what the request aggregation is, the average utility obtained after our
proposed IPA algorithm is better than that of the initial strategy profile. Moreover,
the differences between the results before IPA algorithm and those after the
algorithm are also increases. That is to say, our proposed IPA algorithm makes
significant sense when the aggregated requests are somewhat large. Figure 7 shows
the impacts of number of users. It can be seen that both of the results after IPA
algorithm and before algorithm are inversely proportional to the number of uses.
The reason behind lies in that the variation of number of users makes little impact
on the average utility value when the request aggregation is fixed. Moreover, similar
to the results presented in Fig. 6, the average utility obtained after IPA algorithm is
always better than that of the initial strategy profile.

4 A Framework of Price Bidding Configurations for
Resource Usage in Cloud Computing

4.1 System Model and Problem Formulation

To begin with, we present our system model in the context of a service cloud
provider with multiple cloud users, and establish some important results. In this
paper, we are concerned with a market with a service cloud provider and n cloud
users, who are competing for using the computing resources provided by the cloud
provider. We denote the set of users asN = {1, . . . , n}. Each cloud user wants to bid
for using some servers for several future time slots. The arrival requests from cloud
user i (i ∈ N) is assumed to follow a Poisson process. The cloud provider consists
of multiple zones. In each zone, there are many homogeneous servers. In this paper,
we focus on the price bidding for resource usage in a same zone and assume that the
number of homogeneous servers in the zone is m. The cloud provider tries to allocate
cloud user i (i ∈ N) with mi servers without violating the constraint

∑
i∈N mi ≤ m.

The allocated mi servers for cloud user i (i ∈ N) are modeled by an M/M/m queue,
only serving the requests from user i for ti future time slots. We summarize all the
notations used in this sub-section in the notation table.

4.1.1 Bidding Strategy Model

As mentioned above, the n cloud users compete for using the m servers by bidding
different strategies. Specifically, each cloud user responds by bidding with a per
server usage price pi (i.e., the payment to use one server in a time slot) and the
number of time slots ti to use cloud service. Hence, the bid of cloud user i (i ∈ N)
is an ordered pair bi = 〈pi, ti〉.

66 C. Liu et al.

Table 2 Notations

Notation Description

n Number of cloud users

m Number of servers in a zone in the cloud

N Set of the n cloud users

M Set of the m servers in the zone in the cloud

pi Bidding price of cloud user i

p Minimal bidding price for a server in one time slot

p̄i Maximal possible bidding price of cloud user i

Pi The set of price bidding strategies of cloud user i

ti Reserved time slots of cloud user i

bi Bidding strategy of cloud user i

b Bidding strategy of all cloud users

b−i Bidding strategy profile of all users except that of user i

λt
i Request arrival rate of cloud user i in t-th time slot

λ
ti
i User i′s request profile over the ti future time slots

mi Allocated number of servers for cloud user i

m Allocated server vector for all cloud users

μi Processing rate of a server for requests from user i

T̄ t
i Average response time of cloud user i in t-th time slot

�S Aggregated payment from users in S for using a server

P t
i Payment of cloud users i in t-th time slot

PT Total payment from all cloud users

ri Benefit obtained by user i by finishing one task request

ut
i Utility of cloud user i in t-th time slot

ui Total utility of cloud user i over ti future time slots

u Utility vector of all cloud users

We assume that cloud user i (i ∈ N) bids a price pi ∈ Pi , where Pi =
[
p, p̄i

]
,

with p̄i denoting user i′s maximal possible bidding price. p is a conservative bidding
price, which is determined by the cloud provider. If p is greater than p̄i , then Pi is
empty and the cloud user i (i ∈ N) refuses to use cloud service. As mentioned
above, each cloud user i (i ∈ N) bids for using some servers for ti future time slots.
In our work, we assume that the reserved time slots ti is a constant once determined
by the cloud user i. We define user i′s (i ∈ N) request profile over the ti future time
slots as follow:

λ
ti
i =
(
λ1

i , . . . , λ
ti
i

)T
, (39)

where λt
i (t ∈ Ti) with Ti = {1, . . . , ti}, is the arrival rate of requests from cloud

user i in the t-th time slot. The arrival of the requests in different time slots of are
assumed to follow a Poisson process.

Explorations of Game Theory Applied in Cloud Computing 67

4.1.2 Server Allocation Model

We consider a server allocation model motivated by [39, 40], where the allocated
number of servers is proportional fairness. That is to say, the allocated share of
servers is the ratio between the cloud user’s product value of his/her bidding price
with reserved time slots and the summation of all product values from all cloud
users. Then, each cloud user i (i ∈ N) is allocated a portion of servers as

mi (bi, b−i) =
⌊

piti∑
j∈N pj tj

· m

⌋
, (40)

where b−i = (b1, . . . , bi−1, bi+1, . . . , bn) denotes the vector of all users’ bidding
profile except that of user i, and �x� denotes the greatest integer less than or equal
to x. We design a server allocation model as Eq. (40) for two considerations. On one
hand, if the reserved time slots to use cloud service ti is large, the cloud provider
can charge less for one server in a unit of time to appeal more cloud users, i.e., the
bidding price pi can be smaller. In addition, for the cloud user i (i ∈ N), he/she
may be allocated more servers, which can improve his/her service time utility. On
the other hand, if the bidding price pi is large, this means that the cloud user i

(i ∈ N) wants to pay more for per server usage in a unit of time to allocate more
servers, which can also improve his/her service time utility. This is also beneficial
to the cloud provider due to the higher charge for each server. Therefore, we design
a server allocation model as Eq. (40), which is proportional to the product of pi and
ti .

4.1.3 Cloud Service Model

As mentioned in the beginning, the allocated mi servers for cloud user i (i ∈ N)
are modeled as an M/M/m queue, only serving the requests from cloud user i for
ti future time slots. The processing capacity of each server for requests from cloud
user i (i ∈ N) is presented by its service rate μi . The requests from cloud user i

(i ∈ N) in t-th (t ∈ Ti) time slot are assumed to follow a Poisson process with
average arrival rate λt

i .
Let πt

ik be the probability that there are k service requests (waiting or being
processed) in the t-th time slot and ρt

i = λt
i

/
(miμi) be the corresponding service

utilization in the M/M/m queuing system. With reference to [7], we obtain

πt
ik =

⎧⎨
⎩

1
k!
(
miρ

t
i

)k
πt

i0, k < mi;
m

mi
i (ρt

i)
k

mi ! πt
i0, k ≥ mi;

(41)

where

68 C. Liu et al.

πt
i0 =

⎧⎨
⎩

mi−1∑
l=0

1

l!
(
miρ

t
i

)l + 1

mi ! ·
(
miρ

t
i

)mi

1 − ρt
i

⎫⎬
⎭

−1

. (42)

The average number of service requests (in waiting or in execution) in t-th time
slot is

N̄ t
i =

∞∑
k=0

kπt
ik = πt

imi

1 − ρt
i

= miρ
t
i + ρt

i

1 − ρt
i

�t
i, (43)

where �t
i represents the probability that the incoming requests from cloud user i

(i ∈ N) need to wait in queue in the t-th time slot.
Applying Little’s result, we get the average response time in the t-th time slot as

T̄ t
i = N̄ t

i

λt
i

= 1

λt
i

(
miρ

t
i + ρt

i

1 − ρt
i

�t
i

)
. (44)

In this work, we assume that the allocated servers for each cloud user will likely
keep busy, because if no so, a user can bid lower price to obtain less servers such
that the computing resources can be fully utilized. For analytical tractability, �t

i is
assumed to be 1. Therefore, we have

T̄ t
i = N̄ t

i

λt
i

= 1

λt
i

(
miρ

t
i + ρt

i

1 − ρt
i

)
= 1

μi

+ 1

miμi − λt
i

. (45)

Note that the request arrival rate from a user should never exceed the total
processing capacity of the allocated servers. In our work, we assume that the
remaining processing capacity for serving user i (i ∈ N) is at least σμi , where
σ is a relative small positive constant. That is, if λt

i > (mi − σ)μi , cloud user i

(i ∈ N) should reduce his/her request arrival rate to (mi − σ)μi . Otherwise, server
crash would be occurred. Hence, we have

T̄ t
i = 1

μi

+ 1

miμi − χt
i

, (46)

where χt
i is the minimum value of λt

i and (mi−σ)μi , i.e., χt
i = min

{
λt

i, (mi−σ) μi

}
.

4.1.4 Architecture Model

In this subsection, we model the architecture of our proposed framework to
price bids for resource usage in cloud computing. The multiple users can make
appropriate bidding decisions through the information exchange module. As shown
in Fig. 8, each cloud user i (i ∈ N) is equipped with a utility function (ui), the

Explorations of Game Theory Applied in Cloud Computing 69

Fig. 8 Architecture model

request arrival rate over reserved time slots (λti
i), and the bidding configuration

(bi), i.e., the payment strategy for one server in a unit of time and the reserved
time slots. Let �N be the aggregated payment from all cloud users for using a

server, then we have �N =
n∑

i=1
piti . Denote m = (mi)i∈N as the server allocation

vector, b = (bi)i∈N as the corresponding bids, and u = (ui)i∈N as the utility
functions of all cloud users. The cloud provider consists of m homogeneous servers
and communicates some information (e.g., conservative bidding price p, current
aggregated payment from all cloud users for using a server �N) with multiple
users through the information exchange module. When multiple users try to make
price bidding strategies for resource usage in the cloud provider, they first get
information from the information exchange module, then configure proper bidding
strategies (b) such that their own utilities (u) are maximized. After this, they send the
updated strategies to the cloud provider. The procedure is terminated when the set of
remaining cloud users, who prefer to use the cloud service, and their corresponding
bidding strategies are kept fixed.

4.1.5 Problem Formulation

Now, let us consider user i′s (i ∈ N) utility in time slot t (t ∈ Ti). A rational
cloud user will seek a bidding strategy to maximize his/her expected net reward
by finishing the requests, i.e., the benefit obtained by choosing the cloud service
minus his/her payment. Since all cloud users are charged based on their bidding
prices and allocated number of servers, we denote the cloud user i′s payment
in time slot t by P t

i (bi, b−i), where P t
i (bi, b−i) = pimi (bi, b−i) with b−i =

(b1, . . . , bi−1, bi+1, . . . , bn) denoting the vector of all users’ bidding profile except
that of user i. Denote PT (bi, b−i) as the aggregated payment from all cloud users,

70 C. Liu et al.

i.e., the revenue of the cloud provider. Then, we have

PT (bi, b−i) =
n∑

i=1

ti∑
t=1

P t
i (bi, b−i) =

n∑
i=1

(pimi (bi, b−i) ti) . (47)

On the other hand, since a user will be more satisfied with much faster service,
we also take the average response time into account. From Eq. (46), we know that
the average response time of user i (i ∈ N) is impacted by mi and χt

i , where
χt

i = min
{
λt

i, (mi − σ)μi

}
. The former is varied by (bi, b−i), and the latter is

determined by λt
i and mi . Hence, we denote the average response time of user i as

T̄ t
i

(
bi, b−i , λ

t
i

)
. More formally, the utility of user i (i ∈ N) in time slot t is defined

as

ut
i

(
bi, b−i , λ

t
i

) = riχ
t
i − δiP

t
i (bi, b−i) − wiT̄

t
i

(
bi, b−i , λ

t
i

)
, (48)

where χt
i is the minimum value of λt

i and (mi (bi, b−i) − σ)μi , i.e., χt
i =

min
{
λt

i, (mi (bi, b−i) − σ) μi

}
with σ denoting a relative small positive constant,

ri (ri > 0) is the benefit factor (the reward obtained by finishing one task request)
of user i, δi (δi > 0) is the payment cost factor, and wi (wi > 0) is the waiting cost
factor, which reflects its urgency. If a user i (i ∈ N) is more concerned with service
time utility, then the associated waiting factor wi might be larger. Otherwise, wi

might be smaller, which implies that the user i is more concerned with profit.
Since the reserved server usage time ti is a constant and known to cloud user i

(i ∈ N), we use ut
i

(
pi, b−i , λ

t
i

)
instead of ut

i

(
bi, b−i , λ

t
i

)
. For further simplicity, we

use P t
i and T̄ t

i to denote P t
i (bi, b−i) and T t

i

(
bi, b−i , λ

t
i

)
, respectively. Following

the adopted bidding model, the total utility obtained by user i (i ∈ N) over all ti
time slots can thus be given by

ui

(
pi, b−i ,λ

ti
i

)
=

ti∑
t=1

ut
i

(
pi, b−i , λ

t
i

)

=
ti∑

t=1

(
riχ

t
i − P t

i − wiT̄
t
i

)
. (49)

In our work, we assume that each user i (i ∈ N) has a reservation value vi . That is

to say, cloud user i will prefer to use the cloud service if ui

(
pi, b−i ,λ

ti
i

)
≥ vi and

refuse to use the cloud service otherwise.
We consider the scenario where all users are selfish. Specifically, each cloud user

tries to maximize his/her total utility over the ti future time slots, i.e., each cloud
user i (i ∈ N) tries to find a solution to the following optimization problem (OPTi):

maximize ui

(
pi, b−i ,λ

ti
i

)
, pi ∈ Pi . (50)

Explorations of Game Theory Applied in Cloud Computing 71

Remark 4.1 In finding the solution to (OPTi), the bidding strategies of all other
users are kept fixed. In addition, the number of reserved time slots once determined
by a user is constant. So the variable in (OPTi) is the bidding price of cloud user i,
i.e., pi .

4.2 Game Formulation and Analyses

In this section, we formulated the considered scenario into a non-cooperative game
among the multiple cloud users. By relaxing the condition that the allocated number
of servers for each user can be fractional, we analyze the existence of a Nash
equilibrium solution set for the formulated game. We also propose an iterative
algorithm to compute a Nash equilibrium and then analyze its convergence. Finally,
we revise the obtained Nash equilibrium solution and propose an algorithm to
characterize the whole process of the framework.

4.2.1 Game Formulation

Game theory studies the problems in which players try to maximize their utilities or
minimize their disutilities. As described in [5], a non-cooperative game consists of
a set of players, a set of strategies, and preferences over the set of strategies. In this
paper, each cloud user is regarded as a player, i.e., the set of players is the n cloud
users. The strategy set of player i (i ∈ N) is the price bidding set of user i, i.e., Pi .
Then the joint strategy set of all players is given by P = P1 × · · · × Pn.

As mentioned before, all users are considered to be selfish and each user i (i ∈
N) tries to maximize his/her own utility or minimize his/her disutility while ignoring
those of the others. Denote

ψt
i

(
pi, b−i , λ

t
i

) = δiP
t
i + wiT

t
i − riχit . (51)

In view of (49), we can observe that user i′s optimization problem (OPTi) is
equivalent to

minimize fi

(
pi, b−i ,λ

ti
i

)
=

ti∑
t=1

ψt
i

(
pi, b−i , λ

t
i

)
,

s.t.
(
pi,p−i

) ∈ P. (52)

The above formulated game can be formally defined by the tuple G = 〈P,f 〉, where
f = (f1, . . . , fn). The aim of cloud user i (i ∈ N), given the other players’ bidding
strategies b−i , is to choose a bidding price pi ∈ Pi such that his/her disutility

function fi

(
pi, b−i ,λ

ti
i

)
is minimized.

72 C. Liu et al.

Definition 4.1 (Nash equilibrium) A Nash equilibrium of the formulated game
G = 〈P,f 〉 defined above is a price bidding profile p∗ such that for every player i

(i ∈ N):

p∗
i ∈ arg min

pi∈Pi

fi

(
pi, b−i ,λ

ti
i

)
, p∗ ∈ P. (53)

At the Nash equilibrium, each player cannot further decrease its disutility by
choosing a different price bidding strategy while the strategies of other players are
fixed. The equilibrium strategy profile can be found when each player’s strategy is
the best response to the strategies of other players.

4.2.2 Nash Equilibrium Existence Analysis

In this subsection, we analyze the existence of Nash equilibrium for the formulated
game G = 〈P,f 〉 by relaxing one condition that the allocated number of servers for
each user can be fractional. Before addressing the equilibrium existence analysis, we
show two properties presented in Theorems 4.1 and 4.2, which are helpful to prove
the existence of Nash equilibrium for the formulated game.

Theorem 4.1 Given a fixed b−i and assuming that ri ≥ wi

/(
σ 2μ2

i

)
(i ∈ N), then

each of the functions ψt
i

(
pi, b−i , λ

t
i

)
(ti ∈ Ti) is convex in pi ∈ Pi .

Proof Obviously, ψt
i

(
pi, b−i , λ

t
i

)
(t ∈ Ti) is a real continuous function defined on

Pi . The proof of this theorem follows if we can show that ∀p(1), p(2) ∈ Pi ,

ψt
i

(
θp(1) + (1 − θ) p(2), b−i , λ

t
i

) ≤ θψt
i

(
p(1), b−i , λ

t
i

)+ (1 − θ)ψt
i

(
p(2), b−i , λ

t
i

)
,

where 0 < θ < 1.
Notice that, ψt

i

(
pi, b−i , λ

t
i

)
is a piecewise function and the breakpoint satisfies

(mi − σ)μi = λt
i . Then, we obtain the breakpoint as

pt
i = mi��N\{i}

(m − mi) ti
=
(
λt

i + σμi

)
�N\{i}(

(m − σ) μi − λt
i

)
ti

,

where �N\{i} denotes the aggregated payment from all cloud users in N except of
user i, i.e., �N\{i} =∑j∈N,j �=i pi ti . Next, we discuss the convexity of the function
ψt

i

(
pi, b−i , λ

t
i

)
.

Since

ψt
i

(
pi, b−i , λ

t
i

) = δiP
t
i + wiT̄

t
i − riχ

t
i ,

where χt
i = min

{
(mi − σ)μi, λ

t
i

}
, we have

Explorations of Game Theory Applied in Cloud Computing 73

∂ψt
i

∂pi

(
pi, b−i , λ

t
i

) = δi

∂P t
i

∂pi

+ wi

∂T̄ t
i

∂pi

− ri
∂χt

i

∂pi

.

On the other hand, since
∂T̄ t

i

∂pi
= 0 for pi ∈

[
p, pt

i

)
and

∂χt
i

∂pi
= 0 for pi ∈ (pt

i , p̄i

]
,

we obtain

∂

∂pi

ϕt
i

(
pi, b−i , λ

t
i

) =
⎧⎨
⎩

δi
∂P t

i

∂pi
− ri

∂χt
i

∂pi
, pi < pt

i ;
δi

∂P t
i

∂pi
+ wi

∂T̄ t
i

∂pi
, pi > pt

i .

Namely,

∂

∂pi

ϕt
i

(
pi, b−i , λ

t
i

) =

⎧⎪⎪⎨
⎪⎪⎩

δi

(
mpi ti�N\{i}

�2
N

+ mi

)
− mriμi ti�N\{i}

�2
N

, pi < pt
i ;

δi

(
mpi ti�N\{i}

�2
N

+ mi

)
− mwiμi ti�N\{i}

(miμi−λt
i)

2
�2
N

, pi > pt
i ,

where

�N = �N\{i} + piti =
∑

j∈N pj tj .

We can further obtain

∂2

∂p2
i

ψt
i

(
pi, b−i , λ

t
i

) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2mti�N\{i}
�2
N

(
(riμi−pi)ti

�N
+ 1
)
, pi < pt

i ;
2mti�N\{i}

�2
N

(
1 − pi ti

�N

)
+

2mwiμi t
2
i �N\{i}

(miμi−λt
i)

2
�3
N

(
μi�N\{i}

(miμi−λt
i)�N

+ 1
)
, pi > pt

i .

Obviously,

∂2

∂p2
i

ψt
i

(
pi, b−i , λ

t
i

)
> 0,

for all pi ∈
[
p, pt

i

)
and pi ∈ (pt

i , p̄i

]
. Therefore, ∀p(1), p(2) ∈

[
p, pt

i

)
or

∀p(1), p(2) ∈ (pt
i , p̄i

]
,

ψt
i

(
θp(1) + (1 − θ) p(2), b−i , λ

t
i

)

≤ θψt
i

(
p(1), b−i , λ

t
i

)+ (1 − θ) ψt
i

(
p(2), b−i , λ

t
i

)
,

where 0 < θ < 1.
Next, we focus on the situation where p(1) ∈

[
p, pt

i

)
and p(2) ∈ (pt

i , p̄i

]
. Since

ψt
i

(
pi, bi , λ

t
i

)
is convex on

[
p, pt

i

)
and
(
pt

i , p̄i

]
, respectively. We only need to

74 C. Liu et al.

(pi
t,ψi

t(pi
t))

ψi
t(pi,b−i,λi

t)

gi
t(pi,b−i,λi

t)

p(1)

p(2)

Bidding price pi

Fu
nc

tio
n

va
lu

e

Fig. 9 An illustration

prove that the value of ψt
i

(
pt

i , bi , λ
t
i

)
is less than that of in the linear function value

connected by the point in p(1) and the point in p(2), i.e.,

ψt
i

(
pt

i , bi , λ
t
i

) ≤ θ t
i ψ

t
i

(
p(1), bi , λ

t
i

)+ (1 − θ t
i

)
ψt

i

(
p(2), bi , λ

t
i

)
,

where θ t
i = p(2)−pt

i

p(2)−p(1)
. We proceed as follows (see Fig. 9).

Define a function gt
i

(
pi, bi , λ

t
i

)
on pi ∈ Pi , where

gt
i

(
pi, bi , λ

t
i

) = δipimi + wi (σ + 1)

σμi

− ri (mi − σ) μi.

We have

ψt
i

(
pi, bi , λ

t
i

) = gt
i

(
pi, bi , λ

t
i

)
,

for all p ≤ pi ≤ pt
i . If ri ≥ wi

/(
σ 2μ2

i

)
, then

∂

∂pi

gt
i

(
pi, bi , λ

t
i

)

= δi

(
mpiti�N\{i}

�2
N

+ mi

)
− mriμiti�N\{i}

�2
N

Explorations of Game Theory Applied in Cloud Computing 75

≤ δi

(
mpiti�N\{i}

�2
N

+ mi

)
− mwiμiti�N\{i}(

miμi − λt
i

)2
�2
N

= ∂

∂pi

ψt
i

(
pi, bi , λ

t
i

)
,

for all pt
i < pi ≤ p̄i . We have

ψt
i

(
pi, bi , λ

t
i

) ≥ gt
i

(
pi, bi , λ

t
i

)
,

for all pt
i < pi ≤ p̄i .

On the other hand, according to the earlier derivation, we know that

∂2

∂p2
i

gt
i

(
pi, bi , λ

t
i

)
> 0,

for all pi ∈ Pi . That is, gt
i

(
pi, bi , λ

t
i

)
is a convex function on Pi , and we obtain

ψt
i

(
pt

i , bi , λ
t
i

)

≤ θ t
i g

t
i

(
p(1), bi , λ

t
i

)+ (1 − θ t
i

)
gt

i

(
p(2), bi , λ

t
i

)

= θ t
i ψ

t
i

(
p(1), bi , λ

t
i

)+ (1 − θ t
i

)
gt

i

(
p(2), bi , λ

t
i

)

≤ θ t
i ψ

t
i

(
p(1), bi , λ

t
i

)+ (1 − θ t
i

)
ψt

i

(
p(2), bi , λ

t
i

)
.

Thus, we have ψt
i

(
pi, b−i , λ

t
i

)
is convex on pi ∈ Pi . This completes the proof

and the result follows. ��
Theorem 4.2 If both functions K1 (x) and K2 (x) are convex in x ∈ X, then the
function K3 (x) = K1 (x) +K2 (x) is also convex in x ∈ X.

Proof As mentioned above, both of the functions K1 (x) and K2 (x) are convex in
x ∈ X. Then we have ∀x1, x2 ∈ X,

K1 (θx1 + (1 − θ) x2) ≤ θK1 (x1) + (1 − θ)K1 (x2) ,

and

K2 (θx1 + (1 − θ) x2) ≤ θK2 (x1) + (1 − θ)K2 (x2) ,

where 0 < θ < 1. We further obtain ∀x1, x2 ∈ X,

K3 (θx1 + (1 − θ) x2)

= K1 (θx1 + (1 − θ) x2) +K2 (θx1 + (1 − θ) x2)

76 C. Liu et al.

≤ θ (K1 (x1) +K2 (x1)) + (1 − θ) (K1 (x2) +K2 (x2))

= θK3 (x1) + (1 − θ)K3 (x2) .

Thus, we can conclude thatK3 (x) is also convex in x ∈ X and the result follows.
��

Theorem 4.3 There exists a Nash equilibrium solution set for the formulated game
G = 〈P,f 〉, given that the condition ri ≥ wi

/(
σ 2μ2

i

)
(i ∈ N) holds.

Proof According to [12, 20], the proof of this theorem follows if the following two
conditions are satisfied. (1) For each cloud user i (i ∈ N), the set Pi is convex and

compact, and each disutility function fi

(
pi, b−i ,λ

ti
i

)
is continuous in pi ∈ Pi . (2)

For each fixed tuple b−i , the function fi

(
pi, b−i ,λ

ti
i

)
is convex in pi over the set

Pi .
It is obvious that the statements in the first part hold. We only need to prove

the convexity of fi

(
pi, b−i ,λ

ti
i

)
in pi for every fixed b−i . By Theorem 4.1, we

know that if ri ≥ wi

/(
σ 2μ2

i

)
(i ∈ N), then each of the functions ψt

i

(
pi, b−i , λ

t
i

)
(t ∈ Ti) is convex in pi ∈ Pi . In addition, according to the property presented in
Theorem 4.2, it is easy to deduce that

fi

(
pi, b−i ,λ

ti
i

)
=

ti∑
t=1

ψt
i

(
pi, b−i , λ

t
i

)
,

is also convex in pi ∈ Pi . Thus, the result follows. ��

4.2.3 Nash Equilibrium Computation

Once we have established that the Nash equilibrium of the formulated game G =
〈P,f 〉 exists, we are interested in obtaining a suitable algorithm to compute one of
these equilibriums with minimum information exchange between the multiple users
and the cloud providers.

Note that we can further rewrite the optimization problem (52) as follows:

minimize fi

(
pi,�N ,λ

ti
i

)
=

ti∑
t=1

ψt
i

(
pi,�N , λt

i

)
,

s.t.
(
pi,p−i

) ∈ P, (54)

where �N denotes the aggregated payments for each server from all cloud users, i.e.,
�N = ∑j∈N pj tj . From (54), we can observe that the calculation of the disutility
function of each individual user only requires the knowledge of the aggregated
payments for a server from all cloud users (�N) rather than that the specific

Explorations of Game Theory Applied in Cloud Computing 77

individual bidding strategy profile (b−i), which can bring about two advantages.
On the one hand, it can reduce communication traffic between users and the cloud
provider. On the other hand, it can also keep privacy for each individual user to
certain extent, which is seriously considered by many cloud users.

Since all users are considered to be selfish and try to minimize their own disutility
while ignoring those of the others. It is natural to consider an iterative algorithm
where, at every iteration k, each individual user i (i ∈ N) updates his/her price

bidding strategy to minimize his/her own disutility function fi

(
pi,�N ,λ

ti
i

)
. The

idea is formalized in Algorithm 1.

Algorithm 4 IterativeAlgorithm (IA)
Input: S, λS, ε.
Output: pS.
1: //Initialize pi for each user i ∈ S
2: for (each cloud user i ∈ S) do
3: set p

(0)
i ← b.

4: end for
5: Set k ← 0.
6: //Find equilibrium bidding prices

7: while (
∥∥∥p(k)

S − p
(k−1)

S

∥∥∥ > ε) do

8: for (each cloud user i ∈ S) do
9: Receive �

(k)

S from the cloud provider and compute p
(k+1)
i as follows (By Algorithm 2):

10:

p
(k+1)
i ← arg min

pi∈Pi

fi

(
pi,�

(k)

S ,λ
ti
i

)
.

11: Send the updated price bidding strategy to the cloud provider.
12: end for
13: Set k ← k + 1.
14: end while
15: return p

(k)

S .

Given S, λS, and ε, where S is the set of cloud users who want to use the cloud

service, λS is the request vector of all cloud users in S, i.e., λS =
{
λ

ti
i

}
i∈S, and ε is

a relative small constant. The iterative algorithm (IA) finds optimal bidding prices
for all cloud users in S. At the beginning of the iterations, the bidding price of each
cloud user is set as the conservative bidding price (p). We use a variable k to index
each of the iterations, which is initialized as zero. At the beginning of the iteration
k, each of the cloud users i (i ∈ N) receives the value �

(k)

S from the cloud provider
and computes his/her optimal bidding price such that his/her own disutility function

fi

(
pi,�

(k)

S ,λ
ti
i

)
(i ∈ S) is minimized. Then, each of the cloud users in S updates

their price bidding strategy and sends the updated value to the cloud provider. The
algorithm terminates when the price bidding strategies of all cloud users in S are

kept unchanged, i.e.,
∥∥∥p(k)

S − p
(k−1)

S

∥∥∥ ≤ ε.

78 C. Liu et al.

In subsequent analyses, we show that the above algorithm always converges to
a Nash equilibrium if one condition is satisfied for each cloud user. If so, we have
an algorithmic tool to compute a Nash equilibrium solution. Before addressing the
convergency problem, we first present a property presented in Theorem 4.4, which
is helpful to derive the convergence result.

Theorem 4.4 If ri > max

{
2δi p̄i

μi
,

wi

σ 2μ2
i

}
(i ∈ N), then the optimal bidding price

p∗
i (p∗

i ∈ Pi) of cloud user i (i ∈ N) is a non-decreasing function with respect to
�N\{i}, where �N\{i} =∑j∈N pj tj − piti .

Proof According to the results in Theorem 4.1 we know that for each cloud user i

(i ∈ N), given a fixed b−i , there are ti breakpoints for the function fi

(
pi, b−i ,λ

ti
i

)
.

We denote Bi as the set of the ti breakpoints, then we have Bi = {pt
i

}
t∈Ti

, where

pt
i = mi�N\{i}

(m − mi) ti
=
(
λt

i + σμi

)
�N\{i}(

(m − σ) μi − λt
i

)
ti

.

Combining the above ti breakpoints with two end points, i.e., p and p̄i , we obtain

a new set Bi ∪
{
p, p̄i

}
. Reorder the elements in Bi ∪

{
p, p̄i

}
such that p

(0)
i ≤

p
(1)
i ≤ · · · ≤ p

(ti)
i ≤ p

(ti+1)
i , where p

(0)
i = p and p

(ti+1)
i = p̄i . Then, we obtain a

new ordered set B′
i . We discuss the claimed theorem by distinguishing three cases

according to the first derivative results of the disutility function fi

(
pi, b−i ,λ

ti
i

)
on

pi ∈ Pi\Bi .

Case 1 ∂
∂p̄i

fi

(
pi, b−i ,λ

ti
i

)
< 0. According to the results in Theorem 4.2, we

know that the second derivative of fi

(
pi, b−i ,λ

ti
i

)
on pi ∈ Pi\Bi is positive, i.e.,

∂2

∂p2
i

fi

(
pi, b−i ,λ

ti
i

)
> 0 for all pi ∈ Pi\Bi . In addition, if ri ≥ wi

/(
σ 2μ2

i

)
, the left

partial derivative is less than that of the right partial derivative in each of the break-

points in Bi . Therefore, if ∂
∂p̄i

fi

(
pi, b−i ,λ

ti
i

)
< 0, then ∂

∂pi
fi

(
pi, b−i ,λ

ti
i

)
< 0

for all pi ∈ Pi\Bi . Namely, fi

(
pi, b−i ,λ

ti
i

)
is a decreasing function on pi ∈

Pi\Bi . Hence, the optimal bidding price of cloud user i is p∗
i = p̄i . That is to say,

the bidding price of cloud user i increases with respect to �−i .

Case 2 ∂
∂p

fi

(
pi, b−i ,λ

ti
i

)
> 0. Similar to Case 1, according to the results in

Theorem 4.2, we know that ∂2

∂p2
i

fi

(
pi, b−i ,λ

ti
i

)
> 0 for all pi ∈ Pi\Bi . Hence,

if ∂
∂p

fi

(
pi, b−i ,λ

ti
i

)
> 0, fi

(
pi, b−i ,λ

ti
i

)
is an increasing function for all pi ∈

Pi\Bi . Therefore, under this situation, the optimal bidding price of cloud user i is
p∗

i = p, i.e., the optimal bidding price is always the conservative bidding price,
which is the initialized value.

Explorations of Game Theory Applied in Cloud Computing 79

Case 3 ∂
∂p

fi

(
pi, b−i ,λ

ti
i

)
< 0 and ∂

∂p̄i
fi

(
pi, b−i ,λ

ti
i

)
> 0. Under this situation,

it means that there exists an optimal bidding price p∗
i ∈ Pi\B′

i such that

∂

∂pi

fi

(
p∗

i , b−i ,λ
ti
i

)
=

ti∑
t=1

∂

∂pi

ψt
i

(
p∗

i , b−i , λ
ti
i

)

=
ti∑

t=1

(
∂P t

i

∂pi

+ wi

∂T̄ t
i

∂pi

− r
∂χt

i

∂pi

)
= 0. (55)

Otherwise, the optimal bidding price for cloud user i (i ∈ N) is in B′
i . If above

equation holds, then there exists an integer t
′

(0 ≤ t
′ ≤ ti), such that the optimal

bidding price p∗
i is in (p

(t
′
)

i , p
(t

′+1)
i) ⊆ Pi\Bi

′
.

According to the derivations in Theorem 4.1, we know that the first derivative of
ψt

i

(
pi, b−i , λ

t
i

)
is

∂

∂pi

ψt
i

(
pi, b−i , λ

t
i

)

=

⎧⎪⎪⎨
⎪⎪⎩

δi

(
mpi ti�N\{i}

�2
N

+ mi

)
− mriμi ti�N\{i}

�2
N

, pi < pt
i ;

δi

(
mpi ti�N\{i}

�2
N

+ mi

)
− mwiμi ti�N\{i}

(miμi−λt
i)

2
�2
N

, pi > pt
i ,

That is,

∂

∂pi

ψt
i

(
pi, b−i , λ

t
i

)

=

⎧
⎪⎨
⎪⎩

mti
�2
N

(
δipi

(
piti + 2�N\{i}

)− riui�N\{i}
)
, pi < pt

i ;
mti
�2
N

(
δipi

(
piti + 2�N\{i}

)− wiui�N\{i}
(miμi−λt

i)
2

)
, pi > pt

i .

Therefore, the Eq. (55) is equivalent to the following equation:

h
(
p∗

i

) =
ti∑

t=1

ϕt
i

(
p∗

i , b−i , λ
t
i

) = 0,

where

ϕt
i

(
p∗

i , b−i , λ
t
i

)

80 C. Liu et al.

=
⎧⎨
⎩

δip
∗
i

(
p∗

i ti + 2�N\{i}
)− riui�N\{i}, p∗

i < pt
i ;

δip
∗
i

(
p∗

i ti + 2�N\{i}
)− wiui�N\{i}

(miμi−λt
i)

2 , p∗
i > pt

i .

After some algebraic manipulation, we can write the first derivative result of
ϕt

i

(
p∗

i , b−i , λ
t
i

)
on p∗

i as

∂

∂p∗
i

ϕt
i

(
p∗

i , b−i , λ
t
i

)

=
⎧
⎨
⎩

2δi

(
p∗

i ti + �N\{i}
)
, p∗

i < pt
i ;

2δi

(
p∗

i ti + �N\{i}
)+ 2witiμ

2
i �

2
N\{i}

(miμi−λt
i)

3
�2
N

, p∗
i > pt

i ,

and the first derivative result of the function ϕt
i

(
p∗

i , b−i , λ
t
i

)
on �N\{i} as

∂

∂�N\{i}
ϕt

i

(
p∗

i , b−i , λ
t
i

)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2δip
∗
i − riui, p∗

i < pt
i ;

2δip
∗
i − riui − wiμi

(miμi−λt
i)

2

− 2mwiμ
2
i p

∗
i ti�N\{i}

(miμi−λt
i)

3
�2
N

, p∗
i > pt

i .

Obviously, we have

∂

∂p∗
i

ϕt
i

(
p∗

i , b−i , λ
t
i

)
> 0,

for all p∗
i ∈ Pi\B′

i . If ri > 2δi p̄i

/
μi , then

∂

∂�N\{i}
ϕt

i

(
p∗

i , b−i , λ
t
i

)
< 0.

Therefore, if ri > max

{
2δi p̄i

μi
,

wi

σ 2μ2
i

}
, the function h

(
b∗
i

)
decreases with the

increase of �N\{i}. If �N\{i} increases, to maintain the equality h
(
b∗
i

) = 0, b∗
i must

increase. Hence, b∗
i increases with the increase of �N\{i}. This completes the proof

and the result follows. ��
Theorem 4.5 Algorithm IA converges to a Nash equilibrium, given that the

condition ri > max

{
2δi p̄i

μi
,

wi

σ 2μ2
i

}
(i ∈ N) holds.

Explorations of Game Theory Applied in Cloud Computing 81

Proof We are now ready to show that the proposed IA algorithm always converges

to a Nash equilibrium solution, given that ri >

{
2δi p̄i

μi
,

wi

σ 2μ2
i

}
(i ∈ N) holds. Let

p
(k)
i be the optimal bidding price of cloud user i (i ∈ N) at the k-th iteration. We

shall prove above claim by induction that p
(k)
i is non-decreasing in k. In addition,

since p∗
i is bounded by p̄i , this establishes the result that p

(k)
i always converges.

By Algorithm 1, we know that the bidding price of each cloud user is initialized
as the conservative bidding price, i.e., p

(0)
i is set as p for each of the cloud users i

(i ∈ N). Therefore, after the first iteration, we obtain the results p
(1)
i ≥ p

(0)
i for all

i ∈ N . This establishes our induction basis.
Assuming that the result is true in the k-th iteration, i.e., p

(k)
i ≥ p

(k−1)
i for all

i ∈ N . Then, we need to show that in the (k + 1)-th iteration, p
(k+1)
i ≥ p

(k)
i is

satisfied for all i ∈ N . We proceed as follows.
By Theorem 4.4, we know that if ri > 2δip̄i

/
μi , the optimal bidding price p∗

i

of cloud user i (i ∈ N) increases with the increase of �N\{i}, where �N\{i} =∑
j∈N,j �=i pj tj . In addition, we can deduce that

�
(k)
N\{i} =

∑
j∈N,j �=i

p
(k)
j tj ≥

∑
j∈N,j �=i

p
(k−1)
j tj = �

(k−1)
N\{i}.

Therefore, the optimal bidding price of cloud user i (i ∈ N) in the (k + 1)-th
iteration p

(k+1)
i , which is a function of �

(k)
N\{i}, satisfies p

(k+1)
i ≥ p

(k)
i for all i ∈ N .

Thus, the result follows. ��
Next, we focus on the calculation for the optimal bidding price p∗

i in prob-
lem (54), i.e., calculate

p∗
i ∈ arg min

pi∈Pi

fi

(
pi,�N ,λ

ti
i

)
. (56)

From Theorem 4.5, we know that the optimal bidding price p∗
i of cloud user i (i ∈

N) is either in B′
i or in Pi\B′

i such that

∂

∂pi

fi

(
p∗

i , �N ,λ
ti
i

)
=

ti∑
t=1

∂

∂pi

ψt
i

(
p∗

i , �N , λt
i

)

=
ti∑

t=1

(
δi

∂P t
i

∂pi

+ wi

∂T̄ t
i

∂pi

− ri
∂χt

i

∂pi

)
= 0, (57)

where B′
i is an ordered set for all elements in Bi ∪

{
p, p̄i

}
, and Bi is the set of ti

breakpoints of cloud user i (i ∈ N), i.e., Bi = {pt
i

}
t∈Ti

with

82 C. Liu et al.

Algorithm 5 Calculatepi(�, λ
ti
i , ε)

Input: �, λ
ti
i , ε.

Output: p∗
i .

1: Set t
′ ← 0.

2: //Find p∗
i in Pi\B′

i

3: while (t
′ ≤ ti) do

4: Set ub ← p
(t

′ +1)
i − ε, and lb ← p

(t
′
)

i + ε.

5: if (∂
∂pi

fi

(
lb,�,λ

ti
i

)
> 0 or ∂

∂pi
fi

(
ub,�,λ

ti
i

)
< 0) then

6: Set t
′ ← t

′ + 1; continue.
7: end if
8: while (ub − lb > ε) do
9: Set mid ← (ub + lb) /2, and pi ← mid.

10: if (∂
∂pi

fi

(
pi,�,λ

ti
i

)
< 0) then

11: Set lb ← mid.
12: else
13: Set ub ← mid.
14: end if
15: end while
16: Set pi ← (ub + lb) /2; break.
17: end while
18: //Otherwise, find p∗

i in B′
i

19: if (t
′ = ti + 1) then

20: Set min ← +∞.

21: for (each break point p
(t

′
)

i ∈ B′
i) do

22: if (fi

(
p

(t
′
)

i , �,λ
ti
i

)
< min) then

23: Set min ← fi

(
p

(t
′
)

i , �,λ
ti
i

)
, and pi ← p

(t
′
)

i .

24: end if
25: end for
26: end if
27: return pi .

pt
i = mi�N\{i}

(m − mi) ti
=
(
λt

i + σμi

)
�N\{i}(

(m − σ) μi − λt
i

)
ti

. (58)

Assuming that the elements in B′
i satisfy p

(0)
i ≤ p

(1)
i ≤ · · · ≤ p

(ti+1)
i , where

p
(0)
i = p and p

(ti+1)
i = p̄i . If equation (57) holds, then there exists an integer t

′

(0 ≤ t
′ ≤ ti) such that the optimal bidding price p∗

i ∈ (p
(t

′
)

i , p
(t

′+1)
i) ⊆ Pi\B′

i . In
addition, from the derivations in Theorem 4.5, we know that

∂2

∂p2
i

fi

(
pi,�N ,λ

ti
i

)
> 0, (59)

for all pi ∈ Pi\B′
i . Therefore, we can use a binary search method to search the

optimal bidding price p∗
i in each of the sets (p

(t
′
)

i , p
(t

′+1)
i) ⊆ Pi\B′

i (0 ≤ t
′
i ≤

Explorations of Game Theory Applied in Cloud Computing 83

ti), which satisfies (57). If we cannot find such a bidding price in Pi\B′
i , then the

optimal bidding price p∗
i is in B′

i . The idea is formalized in Algorithm 2.
Given �, λ

ti
i , and ε, where � =∑j∈N pj tj , λ

ti
i = {λt

i

}
t∈T〉 , and ε is a relatively

small constant. Our optimal price bidding configuration algorithm to find p∗
i is

given in Algorithm Calculatepi . The key observation is that the first derivative

of function fi

(
pi,�,λ

ti
i

)
, i.e., ∂

∂pi
fi

(
pi,�,λ

ti
i

)
, is an increasing function in

pi ∈ (p
(t

′
)

i , p
(t

′+1)
i) ⊂ Pi\B′

i (see (59)), where 0 ≤ t
′ ≤ ti . Therefore, if the

optimal bidding price is in Pi\B′
i , then we can find p∗

i by using the binary search

method in one of the intervals (p(t
′
)

i , p
(t

′+1)
i) (0 ≤ t

′ ≤ ti) (Steps 3–17). In each of

the search intervals (p
(t

′
)

i , p
(t

′+1)
i), we set ub as (p

(t
′+1)

i − ε) and lb as (p
(t

′
)

i + ε)

(Step 4), where ε is relative small positive constant. If the first derivative of function

fi

(
pi,�,λ

ti
i

)
on lb is positive or the first derivative on ub is negative, then the

optimal bidding price is not in this interval (Step 5). Once the interval, which
contains the optimal bidding price is decided, we try to find the optimal bidding
price p∗

i (Steps 8–16). Notice that, the optimal bidding price may in B′
i rather than

in Pi\B′
i (Step 19). Under this situation, we check each of the breakpoints in B′

i and
find the optimal bidding price (Steps 21–25).

By Algorithm 2, we note that the inner while loop (Steps 8–15) is a binary search

process, which is very efficient and requires �
(

log
p̄max−p

ε

)
to complete, where

p̄max is the maximum upper bidding bound of all users, i.e., p̄max = maxi∈N (p̄i).
Let tmax = maxi∈N (ti), then the outer while loop (Steps 3–17) requires time

�
(
tmaxlog

p̄max−p

ε

)
. On the other hand, the for loop (Steps 21–25) requires �(tmax)

to find solution in set B′
i . Therefore, the time complexity of Algorithm 2 is

�
(
tmax

(
log

p̄max−p

ε
+ 1
))

.

4.2.4 A Near-Equilibrium Price Bidding Algorithm

Notice that, the equilibrium bidding prices obtained by IA algorithm are considered
under the condition that the allocated number servers can be fractional, i.e., in the
computation process, we use

mi = piti∑
j∈N pj tj

· m, (60)

instead of

mi =
⌊

piti∑
j∈N pj tj

· m

⌋
. (61)

84 C. Liu et al.

Therefore, we have to revise the solution and obtain a near-equilibrium price bidding
strategy. Note that, under Eq. (61), there may exist some remaining servers, which
is at most n. Considering for this, we reallocate the remaining servers according to
the bidding prices. The idea is formalized in our proposed near-equilibrium price
bidding algorithm (NPBA), which characterizes the whole process.

Algorithm 6 Near-equilibrium Price BiddingAlgorithm (NPBA)
Input: N , P, λN , ε.
Output: pN .
1: Set Sc ← N , Sl ← ∅, and k ← 0.
2: while (Sc �= Sl) do
3: Set pN ← 0, Sl ← Sc, pSc

← IA(Sc,λSc
, ε), and � ←∑

j∈N pj tj .
4: for (each cloud user i ∈ Sc) do
5: Compute the allocated servers as (61), i.e., calculate: mi ← ⌊ pi ti

�
· m⌋.

6: end for
7: Set mR ← m −∑i∈Sc

mi , and f lag ← true.
8: while (mR �= 0 and f lag = true) do
9: Set f lag ← false.

10: for (each cloud user i ∈ Sc) do
11: Compute the reallocated servers, i.e., calculate: mt

i ← ⌊ pi ti
�

· mR
⌋

.

12: if (ui

(
mi + mt

i , pi ,λ
ti
i

)
> ui

(
mi, pi,λ

ti
i

)
) then

13: Set mi ← mi + mt
i , mR ← mR − mt

i , and f lag ← false.
14: end if
15: end for
16: end while
17: for (each cloud user i ∈ Sc) do
18: if (ui(mi, pi,λ

ti
i) < vi) then

19: Set pi ← 0, and Sc ← Sc − {i}.
20: end if
21: end for
22: end while
23: return pN .

At the beginning, the cloud provider sets a proper conservative bidding price (p)
and puts its value to into public information exchange module. Each cloud user i (i ∈
N) sends his/her reserved time slots value (ti) to the cloud provider. We denote the
current set of cloud users who want to use cloud service as Sc and assume that in the
beginning, all cloud users inN want to use cloud service, i.e., set Sc asN (Step 1).
For each current user set Sc, we calculate the optimal bidding prices for all users in
Sc by IA algorithm, under the assumption that the allocated servers can fractional
(Step 3). And then, we calculate their corresponding allocated servers (Steps 4–
6). We calculate the remaining servers and introduce a f lag variable. The inner
while loop tries to allocate the remaining servers according to the calculated bidding
strategies of the current users in Sc (Steps 8–16). The variable f lag is used to flag
whether there is a user in Sc can improve his/her utility by the allocated number of
servers. The while loop terminates until the remaining servers is zero or there is no
one such user can improve his/her utility by reallocating the remaining servers. For
each user inSc, if his/her utility value is less than the reserved value, then we assume

Explorations of Game Theory Applied in Cloud Computing 85

that he/she refuses to use cloud service (Steps 17–21). The algorithm terminates
when the users who want to use cloud service are kept unchanged (Steps 2–22).

4.3 Performance Evaluation

In this section, we provide some numerical results to validate our theoretical
analyses and illustrate the performance of the NPBA algorithm.

In the following simulation results, we consider the scenario consisting of
maximal 200 cloud users. Each time slot is set as one hour of a day and the maximal
time slots of a user can be 72. As shown in Table 2, the conservative bidding price
(p) is varied from 200 to 540 with increment 20. The number of cloud users (n)
is varied from 50 to 200 with increment 10. The maximal bidding price (p̄i) and
market benefit factor (ri) of each cloud user are randomly chosen from 500 to 800
and 30 to 120, respectively. Each cloud user i (i ∈ N) chooses a weight value from
0.1 to 2.5 to balance his/her time utility and profit. We assume that the request arrival
rate (λt

i) in each time slot of each cloud user is selected randomly and uniformly
between 20 and 480. The processing rate (μi) of a server to the requests from cloud
user i (i ∈ N) is randomly chosen from 60 to 120. For simplicity, the reservation
value (vi) and payment cost weight (δi) for each of the cloud users are set as zero
and one, respectively. The number of servers m in the cloud provider is set as a
constant 600, σ is set as 0.1, and ε is set as 0.01 (Table 3).

Figure 10 shows an instance for the bidding prices of six different cloud users
versus the number of iterations of the proposed IA algorithm. Specifically, Fig. 10
presents the bidding price results of 6 randomly selected cloud users (users 8, 18,
27, 41, 59, and 96) with a scenario consisting of 100 cloud users. We can observe
that the bidding prices of all users seem to be non-decreasing with the increase of
iteration number and finally reach a relative stable state, which verifies the validness

Table 3 System parameters

System parameters (Fixed)–[Varied range] (increment)

Conservative bidding price (p) (200)–[200, 540] (20)

Number of cloud users (n) (100)–[50, 200] (10)

Maximal bidding price (p̄i) [500, 800]

Market profit factor (ri) [30, 120]

Weight value (wi) [0.1, 2.5]

Request arrival rates (λt
i) [20, 480]

Processing rate of a server (μi) [60, 120]

Reserving time slots (ti) [1, 72]

Reservation value (vi) 0

Payment cost weight (δi) 1

Other parameters (ε, σ,m) (0.01, 0.1, 600)

86 C. Liu et al.

0 5 10 15 20

200

300

400

500

600

700

800

Iterations

B
id

di
ng

 p
ric

e
(p

i)

User 8
User 18
User 27

User 41
User 59
User 96

Fig. 10 Convergence process of bidding price

of Theorem 3.4. That is, the bidding prices of all cloud users keep unchanged, i.e.,
reach a Nash equilibrium solution after several iterations. In addition, it can also
be seen that the developed algorithm converges to a Nash equilibrium very quickly.
Specifically, the bidding price of each user has already achieved a relatively stable
state after 5 iteration, which shows the high efficiency of our developed algorithm.

In Fig. 11, we show the trend of the aggregated payment from all cloud users
(PT), i.e., the revenue of the cloud provider, versus the increment of the conservative
bidding price. We compare two kinds of results with the situations by computing
the allocated number of servers for each cloud user i (i ∈ N) as (60) and (61),
respectively. Specifically, we denote the obtained payment as VT when compute mi

as (60) and PT for (61). Obviously, the former is the optimal value computed from
the Nash equilibrium solution and bigger than that of the latter. However, it cannot
be applied in a real application, because the allocated number of servers cannot be
fractional. We just obtain a near-equilibrium solution by assuming that the allocated
number of servers can be fractional at first. Even though the obtained solution is
not optimal, we can compare these two kinds of results and show that how closer
our proposed algorithm can find a near-equilibrium solution to that of the computed
optimal one.

We can observe that the aggregated payment from all cloud users tends to
increase with the increase of conservative bidding price at first. However, it
decreases when conservative bidding price exceeds a certain value. The reason
behind lies in that when conservative bidding price increases, more and more cloud
users refuse to use the cloud service due to the conservative bidding price exceeds
their possible maximal price bidding values or their utilities are less than their
reservation values, i.e., the number of users who choose cloud service decreases (see

Explorations of Game Theory Applied in Cloud Computing 87

180 280 380 480 580
0

2

4

6

8

10

12

x 106

Value of p

(V
irt

ua
l)

ag
gr

eg
at

ed
 p

ay
m

en
t PT

VT

Fig. 11 Aggregated payment of all users

180 280 380 480 580
50
55
60
65
70
75
80
85
90
95

100

A
ct

ua
l n

um
be

r o
f u

se
rs

an

Value of p

Fig. 12 Actual number of cloud users

Fig. 12). We can also observe that the differences between the values of PT and VT

are relatively small and make little differences with the increase of the conservative
bidding price. Specifically, the percent differences between the values of VT and
PT range from 3.99% to 8.41%, which reflects that our NPBA algorithm can
find a very well near-optimal solution while ignoring the increment of conservative
bidding price. To demonstrate this phenomenon, we further investigate the specific
utilities of some users and their corresponding bidding prices, which are presented
in Figs. 13 and 14.

88 C. Liu et al.

180 220 260 300 340 380 420 460 500 540
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 105

S
pe

ci
fic

 u
se

r u
til

ity
 (u

i)

User 1
User 19
User 35

User 58
User 87
User 100

Value of p

Fig. 13 Specific user utility

180 220 260 300 340 380 420 460 500 540

0

100

200

300

400

500

600

700

S
pe

ci
fic

 u
se

r b
id

di
ng

 p
ric

e
(p

i)

User 2
User 19
User 34
User 75
User 87
User 100

Value of p

Fig. 14 Specific user bidding price

In Figs. 13 and 14, we plot the utility shape and the bidding prices of some
cloud users for the developed NPBA algorithm. Figure 13 presents the utility
shape under the developed algorithm versus the increment of conservative bidding
price. We randomly select 6 users (users 1, 19, 35, 58, 87, and 100). It can be
seen that the utility trends of all cloud users tend to decreases with the increase
of conservative bidding price. However, under every conservative bidding price,

Explorations of Game Theory Applied in Cloud Computing 89

40 60 80 100 120 140 160 180 200 240
0

1

2

3

4

5

6

7
x 106

Number of users (n)

(V
irt

ua
l)

ag
gr

eg
at

ed
 p

ay
m

en
t

PT VT

Fig. 15 Aggregated payment on number of users

for each user, the differences between the utilities computed by using mi as (60)
(the larger one) and (61) (the smaller one) for each cloud user are relatively small.
Therefore, the differences between the aggregated payments of (PT) and (VT) are
small (see Fig. 11). Figure 14 exhibits the corresponding bidding prices of the users
shown in Fig. 13. We can observe that some users may refuse to use cloud service
when conservative bidding price exceeds a certain value (user 2). When users choose
to use cloud service, the treads of their bidding prices tend to be non-decreasing
with the increment of conservative bidding price (user 19, 34, 75, 87, and 100).
This phenomenon also verifies the aggregated payment trend shown in Fig. 11.
Specifically, due to the increases of users’ bidding prices, the aggregated payment
from all cloud users tend to increase at first. However, when conservative bidding
price exceeds a certain value, more and more cloud users refuse to use cloud service.
Therefore, the aggregated payment tends to decrease when conservative bidding
price is large enough.

In Fig. 15, we show the impact of number of cloud users on aggregated payment.
Similar to Fig. 11, the differences between the values of PT and VT are relatively
small. Specifically, the percent differences between the values of VT and PT range
from 3.14% to 12.37%. That is, the aggregated payment results for different number
of users are largely unchanged. In Fig. 16, we can observe that with the increase of
number of cloud users, the trend of the differences between the number of cloud
users and the actual number of cloud users who choose cloud service also increases.
The reason behind lies in that with the increase of number of cloud users, more
and more users refuse to use cloud service due to their utilities are less than their
conservative values. This also partly verifies the aggregated payment trend shown in

90 C. Liu et al.

40 60 80 100 120 140 160 180 200 240
0

20

40

60

80

100

120

140

160

180

200

Number of users (n)

(A
ct

ur
al

) n
um

be
r o

f u
se

rs

n
an

Fig. 16 (Actural) number of cloud users

Fig. 15, in which the aggregated payments are largely unchanged with the increase
of number cloud users.

5 Conclusions

With the popularization of cloud computing and its many advantages such as cost-
effectiveness, flexibility, and scalability, more and more applications are moved
from local to cloud. However, most cloud providers do not provide a mechanism
in which the users can configure optimizing strategies and decide whether to use the
cloud service. To remedy these deficiencies, we focus on proposing a framework to
obtain an appropriate strategy for each cloud user.

We try to enhance services in cloud computing by considering from multiple
users’ perspective. Specifically, we try to improve cloud services by simultaneously
optimizing multiple users’ utilities which involve both time and payment. We
use game theory to analyze the situation and try to obtain a Nash equilibrium to
simultaneously maximize multiple users’ utilities. We prove the existence of Nash
equilibrium and design two different approaches to obtain a Nash equilibrium for
the two problems, respectively. Extensive experiments are also conducted, which
verify our analyses and show the efficiencies of our methods.

Explorations of Game Theory Applied in Cloud Computing 91

References

1. Y.F.B. Li, B. Li, Price competition in an oligopoly market with multiple IaaS cloud providers.
IEEE Trans. Comput. 63(1), 59–73 (2014)

2. R. Pal, P. Hui, Economic models for cloud service markets: pricing and capacity planning.
Theor. Comput. Sci. 496, 113–124 (2013)

3. P.D. Kaur, I. Chana, A resource elasticity framework for QoS-aware execution of cloud
applications. Futur. Gener. Comput. Syst. 37, 14–25 (2014)

4. N.B. Rizvandi, J. Taheri, A.Y. Zomaya, Some observations on optimal frequency selection in
DVFS-based energy consumption minimization. CoRR, abs/1201.1695 (2012)

5. R. Cohen, N. Fazlollahi, D. Starobinski, Path switching and grading algorithms for advance
channel reservation architectures. IEEE/ACM Trans. Netw. 17(5), 1684–1695 (2009)

6. S. Son, K.M. Sim, A price- and-time-slot-negotiation mechanism for cloud service reserva-
tions. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42(3), 713–728 (2012)

7. J. Cao, K. Hwang, K. Li et al., Optimal multiserver configuration for profit maximization in
cloud computing. IEEE Trans. Parallel Distrib. Syst. 24(6), 1087–1096 (2013)

8. S. Zaman, D. Grosu, Combinatorial auction-based allocation of virtual machine instances in
clouds. J. Parallel Distrib. Comput. 73(4), 495–508 (2013)

9. P. Samimi, Y. Teimouri, M. Mukhtar, A combinatorial double auction resource allocation
model in cloud computing. Inf. Sci. 357(357), 201–216 (2014)

10. T.T. Huu, C.K. Tham, An auction-based resource allocation model for green cloud computing,
in Proceedings of Cloud Engineering (IC2E), 2013 IEEE International Conference on (2013),
pp. 269–278

11. A.H. Mohsenian-Rad, V.W. Wong, J. Jatskevich et al., Autonomous demand-side management
based on game-theoretic energy consumption scheduling for the future smart grid. IEEE Trans.
Smart Grid 1(3), 320–331 (2010)

12. Chen H, Li Y, Louie R et al., Autonomous demand side management based on energy
consumption scheduling and instantaneous load billing: an aggregative game approach. IEEE
Trans. Smart Grid 5(4), 1744–1754 (2014)

13. Z. Fadlullah, D.M. Quan, N. Kato et al., GTES: an optimized game-theoretic demand-side
management scheme for smart grid. IEEE Syst. J. 8(2), 588–597 (2014)

14. H. Soliman, A. Leon-Garcia, Game-theoretic demand-side management with storage devices
for the future smart grid. IEEE Trans. Smart Grid 5(3):1475–1485 (2014)

15. I. Atzeni, L.G. Ordóñez, G. Scutari et al., Noncooperative and cooperative optimization of
distributed energy generation and storage in the demand-side of the smart grid. IEEE Trans.
Signal Process. 61(10), 2454–2472 (2013)

16. M. Rahman, R. Rahman, CAPMAuction: reputation indexed auction model for resource
allocation in Grid computing, in Proceedings of Electrical Computer Engineering (ICECE),
2012 7th International Conference on (2012), pp. 651–654

17. A. Ozer, C. Ozturan, An auction based mathematical model and heuristics for resource co-
allocation problem in grids and clouds, in Proceedings of Soft Computing, Computing with
Words and Perceptions in System Analysis, Decision and Control, 2009. ICSCCW 2009. Fifth
International Conference on (2009), pp. 1–4

18. X. Wang, X. Wang, C.L. Wang et al., Resource allocation in cloud environment: a model based
on double multi-attribute auction mechanism, in Proceedings of Cloud Computing Technology
and Science (CloudCom), 2014 IEEE 6th International Conference on (2014), pp. 599–604

19. X. Wang, X. Wang, H. Che et al., An intelligent economic approach for dynamic resource
allocation in cloud services. IEEE Trans. Cloud Comput. PP(99):1–1 (2015)

20. G. Scutari, D. Palomar, F. Facchinei et al., Convex optimization, game theory, and variational
inequality theory. IEEE Signal Process. Mag. 27(3), 35–49 (2010)

21. M.J. Osborne, A. Rubinstein, A Course in Game Theory (MIT Press, Cambridge, 1994)
22. J.P. Aubin, Mathematical Methods of Game and Economic Theory (Courier Dover Publica-

tions, New York, 2007)

92 C. Liu et al.

23. S.S. Aote, M. Kharat, A game-theoretic model for dynamic load balancing in distributed
systems, in Proceedings of the International Conference on Advances in Computing, Com-
munication and Control (ACM, 2009), pp. 235–238

24. N. Li, J. Marden, Designing games for distributed optimization, in Proceedings of Decision
and Control and European Control Conference (CDC-ECC), 2011 50th IEEE Conference on
(2011), pp. 2434–2440

25. E. Tsiropoulou, G. Katsinis, S. Papavassiliou, Distributed uplink power control in multiservice
wireless networks via a game theoretic approach with convex pricing. IEEE Trans. Parallel
Distrib. Syst. 23(1), 61–68 (2012)

26. G. Scutari, J.S. Pang, Joint sensing and power allocation in nonconvex cognitive radio games:
Nash equilibria and distributed algorithms. IEEE Trans. Inf. Theory 59(7), 4626–4661 (2013)

27. N. Immorlica, L.E. Li, V.S. Mirrokni et al., Coordination mechanisms for selfish scheduling.
Theor. Comput. Sci. 410(17), 1589–1598 (2009)

28. S. Penmatsa, A.T. Chronopoulos, Game-theoretic static load balancing for distributed systems.
J. Parallel Distrib. Comput. 71(4), 537–555 (2011)

29. K. Li, C. Liu, K. Li, An approximation algorithm based on game theory for scheduling simple
linear deteriorating jobs. Theor. Comput. Sci. 543, 46–51 (2014)

30. N. Mandayam, G. Editor, S. Wicker et al., Game theory in communication systems [Guest
Editorial]. IEEE J. Select. Areas Commun. 26(7), 1042–1046 (2008)

31. E. Larsson, E. Jorswieck, J. Lindblom et al., Game theory and the flat-fading gaussian
interference channel. IEEE Signal Process. Mag. 26(5), 18–27 (2009)

32. C. Liu, K. Li, C. Xu et al., Strategy configurations of multiple users competition for cloud
service reservation. IEEE Trans. Parallel Distrib. Syst. 27(2), 508–520 (2016)

33. P. Samadi, H. Mohsenian-Rad, R. Schober et al., Advanced demand side management for the
future smart grid using mechanism design. IEEE Trans. Smart Grid 3(3), 1170–1180 (2012)

34. I. Atzeni, L. Ordonez, G. Scutari et al., Demand-side management via distributed energy
generation and storage optimization. IEEE Trans. Smart Grid 4(2):866–876 (2013)

35. J. Cao, K. Li, I. Stojmenovic, Optimal power allocation and load distribution for multiple
heterogeneous multicore server processors across clouds and data centers. IEEE Trans.
Comput. 63(1), 45–58 (2014)

36. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge,
2009)

37. G. Scutari, D. Palomar, F. Facchinei et al., Monotone games for cognitive radio systems, in
Proceedings of Distributed Decision Making and Control, ed. by R. Johansson, A. Rantzer
(Springer, London, 2012), pp. 83–112

38. Altman E, Basar T, Jimenez T et al., Competitive routing in networks with polynomial costs.
IEEE Trans. Autom. Control 47(1), 92–96 (2002)

39. K. Akkarajitsakul, E. Hossain, D. Niyato, Distributed resource allocation in wireless networks
under uncertainty and application of Bayesian game. IEEE Commun. Mag. 49(8), 120–127
(2011)

40. S. Misra, S. Das, M. Khatua et al., QoS-guaranteed bandwidth shifting and redistribution in
mobile cloud environment. IEEE Trans. Cloud Comput. 2(2), 181–193 (2014)

	Explorations of Game Theory Applied in Cloud Computing
	1 Background and Motivation
	2 Related Works
	3 Strategy Configurations of Multiple Users Competition for Cloud Service Reservation
	3.1 Model Formulation and Analyses
	3.1.1 Request Profile Model
	3.1.2 Load Billing Model
	3.1.3 Cloud Service Model
	3.1.4 Architecture Model
	3.1.5 Problem Formulation

	3.2 Game Formulation and Analyses
	3.2.1 Game Formulation
	3.2.2 Billing Parameters Analysis
	3.2.3 Nash Equilibrium Analysis
	3.2.4 An Iterative Proximal Algorithm

	3.3 Performance Evaluation of IPA

	4 A Framework of Price Bidding Configurations for Resource Usage in Cloud Computing
	4.1 System Model and Problem Formulation
	4.1.1 Bidding Strategy Model
	4.1.2 Server Allocation Model
	4.1.3 Cloud Service Model
	4.1.4 Architecture Model
	4.1.5 Problem Formulation

	4.2 Game Formulation and Analyses
	4.2.1 Game Formulation
	4.2.2 Nash Equilibrium Existence Analysis
	4.2.3 Nash Equilibrium Computation
	4.2.4 A Near-Equilibrium Price Bidding Algorithm

	4.3 Performance Evaluation

	5 Conclusions
	References

