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1 Introduction

Cyber-physical systems (CPS) are new engineering structures that involve interdis-
ciplinary system components and a human interaction in order to link platforms
to the physical world for higher productivity, optimal decision-making, lesser
operational costs, controllable environment, etc. [1]. CPS integrates platforms,
applications, computation systems, communication systems, devices, and sen-
sors/actuators to build a new generation of smart environments, such as smart city,
smart grid, and smart industry. In a general sense, CPS harnesses the power of
Internet of Things, computing paradigms (public datacenters, private datacenters,
and/or edge datacenters), and the Internet to represent and control the actual physical
environments (Fig. 1). For example, a smart city can embed thousands of sensors
and IoT devices such as the Spanish smart city of Santander, which has deployed
more than 20,000 sensors, to measure everything ranging from trash containers, to
parking spaces, to air pollution, to smart traffic management [2].
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Fig. 1 Cyber-physical systems (CPS) architecture

Internet of Things (IoT) is an integral part of CPS providing the ability to capture
and improve real world environments by using certain objects to sense, process, and
communicate based on particular conditions and configurations [3]. Smart homes,
smart transportation, and smart industry are a few examples of IoT environments,
which consist of different types of things such as sensors, actuators, smartphones,
etc. Each IoT environment produces a large amount of real-time data that needs to
be analyzed, stored, and delivered to intended receivers [4, 5]. However, performing
intensive computation and communication operations on IoT devices/environments
is not easy, if not impossible, due to the limited capabilities of hardware and
software [3]. To overcome such limitation, IoT devices traditionally delegate most
of their computing and storing operations to Cloud datacenters [1, 3].

The advances in both IoT and Cloud technologies have led to a Big Data
paradigm in order to handle the large amount of data generated from various
resources (social networking, IoT devices, etc.) with diverse speed, volume, and
type [6]. Big Data is derived due to the needs of discovering and finding specific
information of a massive amount of data that would be so valuable for individuals,
organizations, and governments. Prior Big data, traditional processing frameworks
(e.g., MySQL and Oracle) had been used where they failed to handle a large amount
of IoT data [6]. Therefore, big data programming frameworks and models (e.g.,
Hadoop, Storm, MapReduce, etc.) have been introduced to deal with IoT data
integration and batch/stream big data analytics.

Traditionally, IoT has utilized Cloud computing as the main infrastructure for its
data operations, such as computation, filtering, and storing [1, 3]. However, many
papers [4, 5, 7] had argued that the exhaustive migration of IoT data operations to
the Cloud alone is not sufficient due to many reasons. First, IoT delay-sensitive
applications (e.g., natural disaster monitors) cannot only depend on the Cloud
because of the unpredicted data transfer time of the Internet, known as best-
effort data delivery. Second, cloud datacenters operate on geo-distributed manners,
resulting in unstable and unpredictable decision-making time. Third, IoT data might
be useless and such data would result in the waste of resources. Therefore, Edge
computing has emerged to allow distinct computing operations to be executed at or
closer to data sources, resulting in optimal decision-making and saving of resources.
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Figure 1 represents the architecture of CPS. In IoT environments, devices (e.g.,
sensors, actuators, cameras, cars, etc.) sense, capture, and send the behaviors of
the physical world as raw data to Edge Data Centers (EDCs) and/or Cloud Data
Centers (CDCs) for further processing. EDCs and CDCs perform computational
and analytical operations (e.g., filtering, analyzing, detecting, etc.) on the received
data in order to make automatable actions on physical environments and ultimately
forward visualized results to end-users. EDC contains a small-scale datacenter to
perform lightweight tasks, often on IoT streaming data in order to foster decision-
making. In contrast, CDC consists of large-scale distributed datacenters to perform
intensive tasks on historical and real-time data, if needed.

Despite the great achievements of CPS’ individual components, integrating
distinct technologies and platforms in CPS remains challenging; Scheduling, Mon-
itoring, and End-to-End SLA (SMeSLA) in CPS are still open issues, which need
to be investigated to cope CPS performance deficiencies. Thus, the objective of this
chapter is to identify major challenges and issues CPS should address especially
towards (1) developing a dynamic multi-level CPS scheduler, (2) deploying an
accurate and fine-grained monitoring system, (3) implementing end-to-end Service
Level Agreement (SLA) mechanisms.

1.1 Motivation Example

Consider a city has deployed hundreds of sensors and cameras for early flood
detection/predication by analyzing sensed data and images as well as comparing
current water level with the historical water level (Fig. 2). The city council
subscribed to different cloud service providers to detect potential flood within an
optimal time, which consequently minimizes damages such as an early evacuation
of citizens to safer zones. To perform flood monitoring, compute- and data-intensive
operations must be executed by leveraging the power of CPS according to the
following steps:

1. Smart gateways should forward sensed data generated from different types of
sensors (e.g., water level and gauge sensors) to available EDCs while forwarding
images to available CDCs for further processing due to the need of massive
computation resources;

2. EDCs run computational frameworks (e.g., Strom and/or Hadoop) in a dis-
tributed fashion to filter sensed data based on given threshold values and then
forward filtered data to CDCs for further processing;

3. CDCs then start analyzing received data from EDCs to detect rain and flood
levels by comparing the pattern of data with the pattern of historical data. CDCs
then combine the analyzed results to make an appropriate action, such as:

(a) If the analysis shows a low possibility of a flood, then one of possible action
is to change sending data interval time from a pre-defined time (e.g., every
60 s) to real-time and notify interested parties.
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Fig. 2 Data flow in flood monitoring (Use Case)

(b) If the analysis shows a medium/high possibility of a flood, then one of
possible action is to notify interested parties, such as city council, as well
as send commands to smart gateways to change data sampling rate, sending
data interval time, and update actuators to turn on siren alarms so people
start evacuation.

From the above-mentioned scenario, having a cooperation among scheduling,
monitoring, and SLA-management components on end-to-end basis (cross and
within CPS components) is essential. SLA specifies when, where, and what to
consider, scheduler translates SLA constraints at run time for provisioning purposes
while monitoring keeps track of resources states and notify scheduler and SLA
whenever there is a violation (Fig. 2).

2 Cyber-Physical Systems (CPS) Architecture

IoT revolution has been utilized in many fields, such as industries, government, and
health-care, which has led to the needs of leveraging Cloud computing resources due
Cloud’s unbounded capabilities. The centralized architecture of Cloud computing
plays an important role in its success in terms of economic perspectives; yet,
considering a logical extreme scenario of a full centralisation approach could result
in unexpected drawbacks. In [8], authors mentioned four fundamental issues of
centralized approaches. First, there is a need to make a trade-off between releasing
personal and sensitive data to centralized services (e.g., social networks, location
services, etc.) and privacy. Second, utilizing cloud services allows only a one-
sided trust from clients to the Clouds, while there is no trust from one client
to another. Third, Cloud providers neglect the fact that new generations of Edge
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devices are embedded with high computational capacity and sufficient storage
space. Last, Cloud-based centralisation hinders human-centered designs, which
limits the interactions between humans and machines. Thus, moving computations
to the Edge under certain conditions will minimize the Cloud-based centralisation
issues as well as take the advantages of Edge devices’ capabilities. Figure 1
illustrates the data flow in CPS, which, generally, consists of the following layers:

A. Sensing/actuating layer

Represents devices (e.g., sensors, actuators, cameras, smart mobiles, etc.) that
are used to sense, capture, and send the behaviors of the physical world as raw data
to EDCs and/or CDCs for further processing.

B. Edge computing layer

EDCs are small-scale datacenters used to perform lightweight-computational and
-analytical operations (e.g., filtering, analyzing, detecting, etc.) on the received-
IoT data to improve the performance, save unnecessary data transfers, accelerate
decision-making, and make automatable actions on physical environments. EDCs
are more secured and private compared with CDCs, in which sensitive data can be
processed ad stored more properly [8].

C. Cloud computing layer

CDCs consists of large-scale distributed datacenters to perform intensive tasks
on historical and real-time data, if needed. CDCs mainly consists of infrastructure
hardware and Big Data frameworks:

• Big Data layer: this layer deals with a massive volume of data generated from
various resources at different rates. It consists of the following components [6]:

– Data ingestion: accepts data from multiple sources, such as online services
and back-end system logs.

– Data analytics: consists of many platforms (e.g., stream/batch processing
frameworks, machine learning frameworks, etc.) to ease the implementation
of data analytics operations.

– Data storage: to store intermediate and final datasets. The ingestion and
analytics layers make use of different databases during execution.

• Cloud Infrastructure layer: provides consumers with different capabilities,
such as processing of data, access to networks, and store of data. It also enables
end-users to run arbitrary software, such as applications and operating systems
[8].

D. CPS Management layer

CPS consists of multi-layers, multi-environments, and multi-users where a new
management layer must be integrated into its overall architecture (Fig. 3). CPS
components and layers depend on each other (an output from one layer might
become an input to another layer), which makes CPS management a daunting task.
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Fig. 3 Conceptual interaction between scheduling, and monitoring, and SLA managers/agents
(SMeSLA) in CPS

For example, real-time data can be forwarded to the ingestion layer using Kafka
framework. Data can be then sent to the stream processing layer to be analyzed and
stored on the fly. Further, the batch processing layer can execute Hadoop framework
to process data received from the stream processing layer. Last, machine-learning
frameworks can be executed to identify similarities between Hadoop’s generated
data and historical data in order to detect/predict interesting events.

Moreover, the management layer empowers CPS system to meet consumers’
satisfaction and achieve optimal performance (e.g., saving energy, cost reduction,
etc.). The management layer can also ensure the correctness of SMeSLA, including
system components, algorithms, layers, Quality of Services (QoSs), etc. The
interaction among SLA, scheduling, and monitoring managers leads to an effective
management mechanism (Fig. 3). For instance, end-users can specify their QoS
preferences (e.g., sensor data rate, processing latency of gateways, etc.) and submit
them to the SLA manager. As a result, the SLA manager will translate and submit
the preferences to the scheduling and monitoring managers to be deployed and
reported, respectively. Last, by deploying an agent within each layer, layer status and
commands can be reported and executed on behave of its respective manager. Figure
3 reflects the conceptual interaction between SLA, scheduling and monitoring
managers.

3 Studies Related to Scheduling, Monitoring,
and End-to-End SLA (SMeSLA) in CPS

This section represents related-work that had been conducted toward Scheduling,
Monitoring, and SLA in CPS.
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3.1 Scheduling in CPS

According to the a forementioned motivation section, CPS scheduling becomes a
substantial factor, in which the real-time adaptation can be achieved/deployed. CPS
scheduling can also handle issues including, but not limited to, resource contention,
performance enhancement, optimal resource utilization, and cost reduction. As
CPS consists of IoT, CDC, EDC, environments, developing a multi-objective smart
scheduler is essential, which allows the deployment of real-time scheduling policies
and algorithms according to users’ and administrators’ QoS objectives within (intra)
and across (inter) environments. However, building a CPS scheduler is so complex
due to (1) the complex interlinked among cyberspace components (e.g., IoT
devices, gateways, network and computational devices, frameworks/applications,
EDC, CDC, etc.); (2) cyber-physical space (e.g., movement, sensor random deploy-
ment, etc.); and (3) different CPS environments (flood monitoring systems, traffic
management systems, etc.).

On the topic of CPS scheduling, most of the existing works mainly focus on
specific layers/applications in an individual datacenter. For example, authors in [9–
11] have contributed and proposed many CDC scheduling algorithms (e.g., dynamic
priority, deadline, and delay-sensitive) to enhance the performance of big data
applications/frameworks, such as Hadoop. However, they only consider server-level
utilization and discard network-level utilization, which leads to issues such as flow
congestion, network overload, packet loss, etc. By leveraging Software-Defined
Networking technology (SDN), authors in [12–15] developed scheduling algorithms
in accordance with server and network levels, resulting in optimal job completion
time in terms of computation-intensive and/or bandwidth-intensive jobs. Moreover,
authors in [16–18] proposed SDN-IoT architectures where sensing intelligence
are decoupled from sensor’s physical hardware and placed on SDN controller(s),
providing application-customizable, a flexibility of policy changes, and ease of
management.

There are also recent studies that have explored and tried to make scheduling
decisions in a global fashion. For instance, authors in [7] practically extended a
Storm framework to operate in a geographically spread out environment (Cloud
and Edge), outperforming the Storm centralized-default scheduler. Moreover, many
gateway types, schemes, and designs have been proposed in many papers. For
example, authors in [19] proposed a smart gateway container-based virtualization
(e.g., Docker) that integrates networking, computation, and database functions to
allow users to configure IoT computation modes and schedule data analytical
tasks. Authors in [20] proposed a scheme where SDN controllers act as smart
gateways, yet providing full control of IoT network infrastructure. However, all the
a forementioned scheduling contributions do not target a CPS infrastructure, but
rather toward one or two layers/environments.
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3.2 Monitoring in CPS

Monitoring is an essential element to consider in the CPS architecture to detect
improper behaviors of one or more CPS components, layers, and environments
as well as respond to such behaviors accordingly [21, 38]. There are numerous
commercial and open source monitoring tools/frameworks (e.g., Monitis, Nimsoft,
LogicMonitor, CloudWatch, etc.), which are used for different purposes, such as
tracking the utilization of virtual machines’ CPU and memory. However, those tools
cannot be deployed in CPS because of the diverse components, layers, and environ-
ments CPS spans. For instance, Amazon CloudWatch is a cloud monitoring tool
used only in Amazon datacenters to monitor hardware-level whereas LogicMonitor
is a commercial tool used to perform monitoring in application-level.

3.3 SLA in CPS

As scheduling and monitoring are important aspects for CPS to operate efficiently,
a service-level agreement (SLA) is an important element to consider in CPS in
order to assure that consumers’ quality of service (QoS) requirements are observed.
SLA plays a significant role in specifying the required level of quality at which
a service should be delivered [22, 39]. SLA has been used in many IT-related
fields and platforms over many years [23]. For example, Web Service Level
Agreement (WSLA) was introduced in 2003, which is a framework composed of
SLA specifications and a number of SLA monitoring tools for web services [24]. In
[25], authors proposed web service agreement (WS-Agreement), which defines the
specification of web service agreement as a domain-specific language. However,
WSLA and WS-Agreement are specific for web services, and cannot be directly
applied to CPS systems.

There are a number of works related to SLA in Cloud computing. For example,
the European and National projects [26] developed a Blueprint concept where
SLA specification is presented as a descriptive document to express the service
dependencies across Cloud layers as well as within each layer. As well, Blueprint
can also define provisioning and management rules related to elasticity and multi-
tenancy. In [27], another SLA specification project so-called SLA@SOI was
developed to address multi-level multi-provider SLA lifecycle management within
service-oriented architecture and Cloud computing. It provides an abstract syntax
for describing functional and non-functional characteristics of a service. However,
the available SLA frameworks are either being too specific or too generic, while in
CPS systems there is a need to aggregate QoS requirements from the perspectives
of IoT, EDCs, CDCs environments.

Traditional SLAs that focus on availability and reliability are not enough for
CPS applications due to the requirement of strict SLA guarantees [28]. Therefore,
specifying contractual terms of SLA on an end-to-end basis is important, not only
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to specify end-to-end QoS requirements but to develop end-to-end SLA-aware
scheduling and monitoring algorithms to assure consumers that their quality of
service (QoS) requirements will be observed across computing environments in
order to deliver services that match consumer expectations, such as to complete
a required job with maximum latency equal to x time units. Delivering applications
which rely on SLA-aware services, such as SLA-aware resource allocation and
SLA-aware monitoring, will minimise the risk of violating the terms of the service
agreement, especially for real-time applications which require stable factors in order
to operate properly. For example, Flood Monitoring System applications (FMS)
must respond immediately and correctly to suspicious events in order to prevent
serious damage. FMS requires collecting real-time data from different types of
information, such as from sensors and gauges that measure rainfall-levels and water
level of rivers, respectively. FMS would then analyse collected data and indicate any
abnormal data patterns (e.g. flood possibility) by comparing new collected data with
historical/stored data. However, this type of IoT application is time-sensitive, which
means any unpredicted delay in one or more of the data flow stages (e.g. collecting,
transferring, ingesting, analysing, etc.) will affect the accuracy and suitability of the
actions taken. This example shows how the performance of FMS applications relies
not only on the functionality but also on the quality of offered services across Edge
or/and Cloud computing environments. Undoubtedly, SLAs need to be observed
across all layers of Cloud and Edge, for example: at which rate data should be
collected, transferred and ingested, how fast and accurate the analysis should be,
etc.

Having an individual SLA management mechanism for each layer of CPS is
inadequate because of the huge dependency across layers [29]. Within the SLA,
there is a need to express such constraints/policies which determine when and
which data can be processed within the Edge data centers as well as when and
which data need to be exported to be processed/analysed in Cloud data centers
under certain time limitations. Back to flood monitoring scenario to explain the
dependency among its required services across computation layers: Data from rain
gauges and water level sensors can be analysed within edge layer. If one or both
of the readings exceed the threshold value, then edge layer can make a decision,
such as to increase the sampling rate for rain gauges, river level sensors and bridge
cameras. This will increase the incoming data from edge devices. Therefore, based
on the computation capabilities of edge layer, some data can be analysed within
Edge, such as if water level measurement exceeds the threaten threshold, which
has been pre-calculated and specified based on previous experiences reflecting high
possibility of flooding, and then edge layer can send immediate notification and alert
interested parties/destinations. On the other hand, if measured data has not exceeded
the threaten threshold but it exceeds a specific threshold, then a combination of
water level, rain level as well as captured images need to be exported to Cloud for
two reasons, but not limited to these reasons. Firstly, to be analysed and compared
with historical data for early flood prediction purposes and then send an appropriate
command back to the edge layer such as change sample rate. For example, change
sample rate from a periodical sensing to instant one, i.e. rain fall and water level
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sensing and bridge picturing are performed instantly. Secondly, to be saved as
historical data if a flood has occurred to be used as data training to develop/enhance
a predictive model of flood prediction application for future usage.

From this scenario, there is a need to specify when data need to flow within and
across layers and under which speed using an end-to-end SLA. Furthermore, there
is a need to build a cross-layer multi-provider SLA-based monitoring system for the
CPS to enhance SLA compliance. This will aid service providers to operate their
services at an adequate level, which then will increase consumers’ trust, and also
help to avoid SLA violations.

4 SMeSLA Technical-Research Challenges in CPS

The following subsections represent research challenges and facts SMeSLA
encounter in CPS. In order to successfully deploy SMeSLA, end-users should
be able to specify QoS preferences by means of SLA terms in every point of the
following subsection. The SLA manager should then submit those preferences to
the scheduling and monitoring managers to operate upon (Fig. 3):

4.1 Sensing Devices

IoT devices (e.g., sensors) must communicate with one another and with gateways in
order to send their sensing data to end-receivers. However, the diverse characteristics
of wireless and wired gateways’ interfaces, the movement of IoT devices (fixed
or mobile), and properties of IoT devices (e.g., lifetime, coverage, etc.) impact on
latency, bandwidth, and speed of data. For example, sensors often come with low-
level electronic interfaces (e.g., I2C, SPI, 6LowPAN, ZigBee, etc.) to communicate
with one another and with gateways. Selecting the appropriate interface is an
essential factor that determines the efficiency of IoT environment. For instance,
Inter-Integrated Circuit (I2C) is a wired gateway interface allowing sensors to send
data up to 3.4 Mbit/s in its fastest mode whereas in a typical mode it is limited to
400 kbit/s for most cases [30]. In contrast, Serial Peripheral Interface (SPI) is more
efficient in terms of power consumption and full-duplex communication, leading to
energy saving and a higher throughput.

Nevertheless, wired communications are inefficient due to their difficulty of
deployments, regular maintenance, higher costs, etc. Therefore, wireless gateway
interfaces are more practical in IoT environments, such as 6LowPAN and ZigBee.
Ipv6 over Low-Power Wireless Personal Area Networks (6LowPAN) enables IPv6
packets to be transferred within a small link-layer frame, has a transfer rate of up to
250 kbit/s for a distance of 200 m, and supports up to 100 nodes for every network.
On the other hand, ZigBee is a preferable wireless standard because of its low-cost
and low-power consumption. It has a transfer rate of up 250 kbit/s for a distance of
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100 m and it supports a network of 100 nodes [30]. However, since wireless allows
the mobility of devices, it might affect data link availability and reliability such as
message loss, data inaccuracy, and higher latency.

4.2 Gateways

Typically, gateways link IoT devices to their intended EDC and/or CDC environ-
ments where data can be further processed, stored and analyzed. IoT devices can
operate without gateways if they have the ability to communicate directly to the
Internet. However, many IoT devices (e.g., sensors) have minimal functionalities;
therefore, they outsource the missing functionalities to gateways. Gateways, the
new generation of routers, are integrated with rich functionalities such as traffic
management, local database storage, data aggregation, and data analyzing [30, 31].
When specifying QoS for any IoT application, consumers must indicate the types
of IoT environments in their SLAs in terms of with or without gateways. There is
trade-off between with and without gateway deployments, which can influence on
overall delays.

4.3 Big Data Analytics Tools

Since IoT environments often generate extremely large raw data, they often rely on
big data frameworks and computational models to accelerate decision-making and
lesser response time. Every IoT application requires different big data analytical
ecosystems (e.g., Kafka, Hadoop, Storm, etc.), heterogeneous big data workflows
(static, streaming, etc.), and different QoS objectives (low cost, certain latency,
etc.). The following are some challenges that should be considered in the overall
development of SMeSLA:

Batch Processing: Apache Hadoop1 and Apache Spark2 are a few big data batch-
processing tools, which deploy a MapReduce programming model and are used
to process, analyze, and visualize data. End-users should be able to select the
preferred batch processing frameworks based on their needs and objectives. For
example, some users might prefer Hadoop due to its low cost (less use of memory
and network) while they are time-tolerant in terms of processing finishing time
(up to minutes, hours, or days) [32]. In contrast, other users might prioritize Spark
to perform their data analyses for machine learning due to its fast processing
mechanism, which is up to 100 time faster than Hadoop [3]. In addition, there

1http://hadoop.apache.org/
2http://spark.apache.org/

http://hadoop.apache.org/
http://spark.apache.org/
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are other factors that need to be considered, including data size, number of map
tasks and reducing tasks, the diverse architecture of HDFS (e.g., the number of
data nodes, the number of resources assigned to each node, and the replication
number), and the type of machine learning algorithms (e.g., Mahout) [33].

Distributed databases: Storing and handling a massive amount of data (real-time
or archived) requires powerful storage platforms. They are different types of
storage platforms with distinct capabilities. For example, Hadoop Distributed
File System (HDFS) can be used to store data in a distributed manner, but it does
not ensure a high level of data management (e.g., storing, accessing, querying,
etc.) [3]. On the other hand, Druid,3 open-source distributed databases, can
support real-time data ingestion and query with low latency.

Stream processing: Real-time stream applications perform operations on stream
data generated from different sources where the time of results should be in
a fraction of a second. Stream processing is crucial for real-time applications
and critical systems (e.g., disaster management) that require real-time decision-
making. Spark Streaming4 is a stream and batch analytics tool, which provides
low-cost but it might produce some delay. Apache Storm5 is another stream
processing tool outperforming Spark, only in terms of delay [3].

Distributed queues: It is used to ingest data from different sources and distribute
the data to interested parties/components. Some of available open source mes-
saging queues are Apache Kafka6 and RabbitMQ.7 Kafka, which is based on a
publish/subscribe model, provides high throughput and low latency. In contrast,
RabbitMQ is more flexible and provides packet-loss guarantees by means of
message acknowledgment mechanisms, but it has less throughput and higher
latency [3].

Considering the a forementioned subsections in the overall SMeSLA-CPS
development process is important to meet consumers’ satisfaction (e.g., big data
framework types, latency in each layer, etc.). It can also provide CPS optimal
performance (e.g., saving energy, increasing profits, etc.). In fact, every subsection
has some effects on SLA terms (e.g., query response time), which in return will
affect CPS scheduling and monitoring.

3http://druid.io/
4https://spark.apache.org/streaming/
5https://storm.apache.org/
6http://kafka.apache.org/
7https://www.rabbitmq.com/

http://druid.io/
https://spark.apache.org/streaming/
https://storm.apache.org/
http://kafka.apache.org/
https://www.rabbitmq.com/
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5 SMeSLA General-Research Challenges in CPS

Besides technical challenges, there are general challenges that need to be considered
in the development of SMeSLA.

5.1 The Heterogeneity and Random Distribution of IoT
Devices

Various sectors deploy IoT technologies for delivering smart services by spreading
sensors everywhere within their target environments. The heterogeneity of IoT
devices and sensors in terms of capabilities, network protocols, applications,
and vendors along with the distinct nature of every IoT environment makes the
deployment of SMeSLA a challenging task. For example, administrators should be
able to dynamically configure sensing modes (e.g., transmission time and data rate)
and change activity mode (on/off) as an individual or group to save energy, reduce
costs, etc. Moreover, in the motivation example, administrators should be able to
control cameras that are in zones where a flood might occur should send full HD
videos while cameras in unexpected zones should send non-HD videos to avoid
network congestions, save power, etc.

There are also other factors that make the deployment of SMeSLA very
challenging. First, every cluster of sensors has different manufacturing features,
such as lightweight functionalities in temperature sensors compared with human
body detection sensors that require persisting data along with sophisticated security
mechanisms [30]. Second, the physical distance between IoT sensors and where
data are analyzed, processed, and stored, vary from one case to another. Third, since
IoT devices are often equipped with low capabilities, querying such devices/sensors
for monitoring purposes cannot be easily achieved because they do not provide
querying functionalities, such as querying memory utilization of sensors.

5.2 Lack of Standardization

As the architectures of CPS consists of different EDC and CDC providers, it
raises a serious standardization problem. There is a need for standardizing the
terminologies of service level objectives (SLOs) as well as QoS functions, which
specify how QoS metrics are being measured. In CDCs, for example, there are no
standard vocabularies to express SLAs – take availability as an example and how it
is expressed differently among well-known Cloud providers: Amazon EC2 offers
availability as a monthly uptime percentage of 99.95%, Azure offers a monthly
connectivity uptime service level of 99.95%, and GoGrid offers a 100% server
uptime and a 100% uptime of the internal network [34]. In contrast, EDCs describe



250 A. Alqahtani et al.

the rate at which sensors send data in many terms, such as sampling rate [35] or
sampling frequency [36]. Indeed, unifying terminologies and metrics as well as
proposing a taxonomy will lead to a well-designed SMeSLA; which in turn would
provide a successful interaction between consumers and providers and minimize the
amount of time required to write and negotiate SLAs.

5.3 Heterogeneity of Key QoS Metrics Across CPS
Environments

Understanding key performance metrics and their variation in CPS environments
and within their layers is crucial. In other words, there is a need for building a
coherent taxonomy that considers various QoS metrics among CPS’s layers while
data is flowing. There are different QoS metrics for each layer [35, 40]:

• Cloud environment:

(a) SaaS: contains event detection and decision-making delays.
(b) PaaS: includes QoS of big data frameworks (e.g. throughput and response

time).
(c) IaaS: includes QoS of infrastructure layer (CPU utilization, memory utilisa-

tion, network latency, network bandwidth, etc.).

• Edge environment:

(a) It has similar layers and QoS metrics as Cloud environments.

• IoT environment:

(a) Perception layer: includes data quality, precession, and freshness.
(b) Network layer: includes latency, throughput, and availability.

5.4 Heterogeneity of Application Requirements

Every IoT application has specific requirements according to its predefined purpose
and domain-specific application. For instance, traffic applications have a high-
priority for data accuracy while environmental prediction applications have a
high-priority for data accuracy and action response time. The heterogeneity of high-
level application requirements certainly hinders the development process of IoT
applications-SMeSLA-aware.
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5.5 Lack of Methods for Collecting QoS Metrics

The nature of CPS technology requires the interaction of cross-computing and
cross-layers delivered by different providers. Each component should have its
own SLA to clearly specify QoS capabilities, which monitoring and scheduling
should operate upon. One of the main challenges is how to collect and integrate
metrics from those different providers in order to monitor end-to-end SLAs at an
application level, without the necessity for understanding the complex format of
components/platforms [37].

5.6 Selection of Datacentres

IoT computation tasks (e.g., filtration, aggregation, analyzing, etc.) can be per-
formed in EDCs or/and CDCs. Determining the computation environment of IoT
raw data is not easy due to many factors. First, users’ QoS properties (e.g., higher
security, priorities, completion time, etc.) play important roles in determining the
preferable computation environments. Second, IoT devices might generate useless
data where the importance of data should be indicated in early stages; therefore,
the selected type of datacenters could have high impacts on computational and
network costs. Third, smart gateways might face traffic bursting (e.g., all sensors
continuously send data), which makes gateways a single point of failure.

6 Design Goals of SMeSLA in CPS

Developing a CPS software platform that provides SMeSLA is essential to enable
performance optimization and prediction, prevent failures, and meet QoS expecta-
tions. The platform should provide the following attributes:

(a) Connectivity & Interoperability: every device in CPS (e.g., sensors, gateways,
SDN controllers, etc.) should be connected and accessed using remote inter-
faces/middleware where CPS platform can dynamically adapt algorithms and
policies as well track behaviors and SLA in a local and global manner. By
deploying the notion of virtualization (e.g., application, data, server, network,
etc.), CPS-SMeSLA infrastructure can be easily developed, managed, and
instrumented while real-time responsiveness in terms of dynamic adaptation
and reconfiguration can be achieved.

(b) Availability: every EDC and CDC should advertise its available resources (e.g.,
applications, VMs, networks, etc.) along with the actual utilization in real-time.
This feature allows scheduling decisions to be made in a global fashion while
achieving optimal performance in accordance with different QoS needs (e.g.,
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network priority of video applications compared with computation-priority of
machine learning applications).

(c) Scalability: as the number of IoT, EDC, and CDC devices are increasing
to accommodate new configuration and deployment requirements, having a
scalable CPS-SMeSLA infrastructure is required to handle the growing number
of devices, data, and requests without losing its overall performance. Moreover,
CPS-SMeSLA infrastructure should be able to address varying loads that might
occur in IoT, EDC, and CDC environments.

7 Conclusion

In this chapter, we discussed the benefits and challenges of deploying real-
time Scheduling, Monitoring, and End-to-End SLA (SMeSLA) in Cyber-Physical
Systems (CPS). CPS is a very complex system where a new management layer based
on SMeSLA must be developed. We proposed an SMeSLA conceptual architecture
where end-users submit their QoSs to an SLA manager; as a result, scheduling and
monitoring managers would operate accordingly. Every layer of CPS must deploy
scheduling and monitoring agents in order to enforce policies/changes and keep
track of CPS in a global manner. In order to successfully deploy SMeSLA in CPS,
many technical and general challenges must be addressed such as the heterogeneity
of IoT devices, gateways, and big data, lack of standardization, etc.
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