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 Introduction

Stereotactic radiosurgery (SRS), as defined by 
the neurosurgery and radiation oncology societ-
ies consensus statement [1], is a stereotactic irra-
diation in one to five fractions. Single-fraction 
SRS is an effective treatment option for many 
patients with both intact and resected brain 
metastases. For patients with large brain metasta-
ses who are not candidates for surgery, whole- 
brain radiotherapy has historically been 
considered the standard of care. Due to concern 
for poor local control and neurotoxicity associ-
ated with whole-brain radiotherapy, SRS has 
increasingly been explored for the treatment of 
these patients. However, clinicians have concern 
about increased toxicity with single-fraction SRS 
for larger targets or targets located near or within 
critical structures or eloquent brain, such as the 
brainstem, optic pathway, or motor cortex. 
Hypofractionated SRS over two to five fractions 
may be an alternative treatment that allows safe 
delivery of high cumulative doses to lesions sub-
optimally treated with single-fraction SRS due to 
size and/or location. There is accumulating clini-
cal evidence showing that hypofractionated SRS 
can minimize risk to normal brain while main-
taining acceptable local control, although the 

optimal dose and fractionation for this approach 
have yet to be determined. Other reviews have 
examined the outcomes of SRS versus hypofrac-
tionated SRS for benign and malignant brain 
tumors [2]; herein, we focus on the role and ratio-
nale of hypofractionation for brain metastases.

 Limitations of Single-Fraction 
Radiosurgery

Single-fraction SRS dose is limited by risk of 
central nervous system toxicity. Adverse radia-
tion effect (ARE), the imaging equivalent of his-
tologically defined brain radiation necrosis, is the 
most common toxicity that occurs after SRS for 
tumors in or near the brain and can be associated 
with neurological deficits that can require man-
agement with steroids, bevacizumab, and, in 
some cases, surgical resection.

Factors that have been found to be correlated 
with the development of ARE include higher 
radiation dose, larger tumor volume, and volume 
of normal brain irradiated [3]. For recurrent, 
intact, previously irradiated primary brain tumors 
and brain metastases treated with escalating 
doses of single-fraction SRS, RTOG 90-05 found 
that normal brain tissue toxicity was significantly 
more likely to develop in patients with larger 
tumors. Compared to tumors smaller than 2 cm in 
maximum diameter, tumors with maximum 
diameters of 2–3 cm and 3–4 cm had,  respectively, 
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a 7.3 and 16.0 times higher risk of developing 
irreversible grade 3 or grade 4–5 central nervous 
system toxicity [3]. In addition to larger volume, 
increasing dose on this study was also associated 
with a greater risk of brain toxicity. Others have 
found that the risk of ARE correlates with the 
radio surgical volume encompassed by the 10-Gy 
or 12-Gy isodose line [4]. In a series of 206 
patients with a total of 310 brain metastases 
treated with single-fraction SRS, the actuarial 
risk of ARE was up to 51% when the volume of 
receiving a dose of 12 Gy exceeded 10.9 cc [5]. 
Blonigen et al. similarly showed in a series of 63 
patients with a total of 173 brain metastases that 
the risk of ARE is up to 69% when the volume of 
peritumoral normal brain receiving 10 and 12 Gy 
is greater than 14.5 and 10.8 cc, respectively [6].

For resected brain metastasis, the size of the 
preoperative lesion and volume of normal brain 
receiving 21 Gy have been found to be associated 
with incidence of radiation necrosis [7]. Although 
the addition of a margin around resection cavity 
improves local control [8], this also increases the 
volume of normal brain irradiated and, thus, can 
potentially increase risk of toxicity [9, 10].

In part due to the use of reduced doses to 
address these concerns for toxicity, larger lesions 
have been associated with lower control rates 
after single-fraction SRS.  On the basis of the 
results of RTOG 90-05, the proposed single- 
fraction SRS doses for lesions with maximum 
diameter >2 cm, 2.1–3.0 cm, and 3.1–4.0 cm are 
24 Gy, 18 Gy, and 15 Gy, respectively [3]. Using 
these doses, the 1-year local control rate has 
been reported to be only 49% and 45% for 
metastases 2.1–3.0 and 3.1–4.0 cm in diameter, 
respectively, compared with 85% for smaller 
lesions [11]. Similarly, Hasegawa et al. reported 
a 49% 1-year local control rate for tumors with a 
volume greater than 4  cc treated with single-
fraction SRS [12]. In 153 brain metastases 
treated with single- fraction SRS using doses of 
20 Gy or more, Chang et al. reported 1-year local 
control rates of 86% in tumors 1 cm or smaller in 
size and 56% in tumors greater than 1 cm [13]. A 
minimum prescribed isodose surface dose of 
18 Gy and higher has been found to be associ-
ated with local control [14].

 Radiobiology and Rationale 
of Hypofractionation

Hypofractionated SRS may allow the delivery of 
higher cumulative dose to larger targets while 
minimizing the risk of toxicity. Fractionation is a 
central tenet in radiotherapy that leverages the 
four Rs of classic radiation biology (repair, 
repopulation, reassortment, and reoxygenation) 
to expand the therapeutic window. Single-
fraction SRS contradicts these conventional 
radiobiological principles but has been shown to 
be associated with excellent local control with 
acceptable toxicity for both metastatic and 
benign disease. A high level of precision and 
accuracy is required for delivering high doses of 
radiation to small targets. Previously, immobili-
zation was achieved by invasively fixing the 
patient’s head to a frame locked to the treatment 
couch. However, recent advances in image guid-
ance and robotic-based systems have allowed the 
evolution of noninvasive, frameless radiosurgery 
which can facilitate the fractionated delivery of 
stereotactic radiotherapy with acceptable levels 
of accuracy [15–17]. Furthermore, recent pre-
clinical and clinical studies on the radiobiology 
of single fraction, high-dose SRS have uncov-
ered mechanisms of radiation different from that 
of conventionally fractionated radiotherapy. In 
addition to DNA double-strand breaks, single-
fraction high-dose SRS may cause microvascu-
lar dysfunction and cell death through endothelial 
cell inflammation and apoptosis via the sphingo-
myelin pathway [18, 19]. There is still debate 
over whether there is a “new biology” beyond 
the classic radiobiologic paradigm of fraction-
ation or simply higher biological effective dose 
(BED) that accounts for the efficacy of single-
fraction SRS [20].

For malignant tumors, concern exists that 
single- fraction SRS results in a suboptimal thera-
peutic ratio between tumor control and late 
effects. As brain metastases comprise acutely 
responding neoplastic cells immediately sur-
rounded by late responding normal brain tissue, 
Hall and Brenner argue that fractionated radio-
therapy allows for normal tissue repair/recovery 
and offers the potential to exploit the different 
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biologic responses and repair mechanisms 
between neoplastic and normal tissues to irradia-
tion [21, 22]. Additionally, a radioresistant sub-
population of hypoxic cells may survive after 
single dose of radiation [23], leading to worse 
tumor control. Allowing for re-oxygenation over 
multiple fractions may improve tumor control 
outcomes. Expanding the therapeutic window 
may not be as important for smaller volumes 
treated with stereotactic techniques, as there is 
minimal dose spill outside the target volume. For 
larger volumes, hypofractionated SRS may offer 
an approach that leverages the radiobiologic 
advantages of both high doses per fraction and 
fractionation. Modeling studies suggest that 
treatment over 5–10 fractions provides the most 
gain in normal tissue sparing for fast-growing 
tumor; the rate of improvement generally levels 
off at a large (i.e., >10 fractions) number of frac-
tions [24].

Finally, there is emerging evidence that radia-
tion treatment of tumors may have immune- 
stimulatory effects through immunogenic tumor 
cell death and enhanced recruitment of antitu-
mor T cells and can be coupled with immuno-
therapy to improve cancer control outcomes [25, 
26]. Diverse radiation regimens have been used 
in combination with immunotherapy, and recent 
data suggest that dose fractionation can deter-
mine the efficacy of combination treatment. 
Dewan et al. showed using breast and colon car-
cinoma models that while a single dose of 20 Gy 
was as effective as the fractionated regimens of 
8 Gy × 3 and 6 Gy × 5 at controlling the growth 
of the irradiated tumor, only the two fractionated 
regimens were able to synergize with CTLA-4 
blockade to induce antitumor T-cell immunity 
and inhibit a second palpable tumor outside the 
radiation field (“abscopal effect”) [27]. It may be 
that single-fraction SRS damages the vascula-
ture and may impair perfusion and transport of 
antigens and immune cells [28]. Molecular 
responses of cells irradiated with fractionated 
radiation have also been found to differ from 
single-dose radiation in  vitro and in  vivo, and 
they may contribute to the observed differences 
in effect of fractionated versus single-fraction 
radiation [29].

 Clinical Experience 
with Hypofractionated SRS

 Intact Metastases

Table 10.1 summarizes published studies of 
hypofractionated SRS for intact brain metastases 
and overall shows acceptable local control rates 
with hypofractionated regimens despite the large 
tumor volumes treated in many of these series. 
Also, the data suggest equivalent to improved 
toxicity rates compared to historical outcomes 
with single-fraction SRS.

A retrospective study by Minniti et al. of 289 
patients with brain metastases with maximum 
diameters greater than 2  cm showed superior 
local control using a hypofractionated SRS regi-
men (9  Gy  ×  3 fractions) compared to single- 
fraction SRS, with 1-year local control rates of 
90% versus 77%, respectively [45]. Furthermore, 
there was a lower risk of ARE (9% versus 18%) 
with hypofractionated SRS.  In contrast, 
Wiggenraad et al. [52] found no difference in the 
local control rates or toxicity between hypofrac-
tionated SRS (8 Gy × 3) and single-fraction SRS 
(15 Gy) for large (volume >13 cc) brain metasta-
ses. Fokas et al. also found no difference in local 
control between hypofractionated SRS (using 
either 5 Gy × 7 or 4 Gy × 10) and single-fraction 
SRS; however, they found that grade 1–3 toxicity 
was significantly higher with single-fraction SRS 
(14%) compared with hypofractionated SRS (6% 
with 5  Gy  ×  7 and 2% with 4  Gy  ×  10) [34]. 
Another series found that 30 Gy in five fractions 
was associated with better local control than 
24 Gy in five fractions (1-year local control 91% 
vs 75%) [41]. Some series have reported poten-
tially worse local control with hypofractionated 
SRS for radioresistant histologies, although this 
may be due to lower BED of the hypofraction-
ated regimens used [47]. These data suggest that 
hypofractionated regimens are safe but that clini-
cians should be vigilant to maintain a high BED, 
equivalent to single-fraction doses, for optimal 
local control.

While randomized studies comparing hypo-
fractionated SRS over other techniques are 
lacking, the clinical experience so far suggests 
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that hypofractionated SRS may represent a 
better treatment option for larger metastatic 
brain tumors or those in close proximity to 
eloquent areas such as the brainstem or optic 
chiasm [44].

 Resection Cavities

Surgery alone after resection of brain metasta-
ses is inadequate for local control [53–55]. 
Compared to postresection whole-brain radio-
therapy, postresection SRS to the resection cav-
ity results in improved cognition with no 
detriment to overall survival and has now 
become a standard of care treatment [56]. 
Numerous studies have reported outcomes of 
single-fraction SRS to small resection cavities 
with 1-year local control rates ranging from 
around 70% to 90% [8, 55, 57, 58]. As with 
intact lesions treated with SRS, cavities from 
large preoperative metastases (maximum diam-
eter of 3 cm or greater) are more likely to recur 
locally after cavity SRS [59]. Increasing cavity 
volume is also associated with increased toxic-
ity [7, 60]. Delaying SRS does not help reduce 
target volumes as there is minimal cavity shrink-
age seen between the immediate postoperative 
scan to within a month following resection [61], 
and delay may be associated with inferior local 
control [62]. Hypofractionated SRS to the resec-
tion cavity has been shown to offer excellent 
local control rates, even for large brain metasta-
ses. Minniti et  al. reported 1- and 2-year local 
control rates of 93% and 84%, respectively, and 
symptomatic radiation necrosis rate of only 5% 
with 9  Gy  ×  3 to the resection cavity [60]. 
Table  10.2 summarizes published studies of 
hypofractionated SRS for resected brain 
metastases.

 Optimal Hypofractionated SRS 
Regimen

The optimal dose and fractionation schedule for 
hypofractionated SRS remain to be determined. 
Although the reliability of the linear–quadratic 

(LQ) model has been questioned for SRS [75], 
BED based on the LQ model is most widely 
used clinically to compare the effects of various 
fractionation schedules. Local control has been 
associated with peripheral BED10 (using an 
alpha/beta ratio of 10 for tumor): one series 
found that the 1-year local control rate was 97% 
for BED10 greater than 80 Gy versus 90% for 
BED10  less than  80  Gy [43]. A recently pub-
lished systematic review of SRS for brain 
metastases compared the BEDs of different SRS 
treatment schedules using an alpha/beta value of 
12 Gy and found that a BED12 of at least 40 Gy 
(which corresponds to 25.5 Gy in three fractions 
or 20  Gy in single fraction) is necessary to 
obtain a 1-year local control >70% [52]. 
Similarly, in the postoperative setting, multises-
sion SRS using BED10 ≥48 Gy to the resection 
cavity has been associated with improved local 
control. Surgical cavities treated with a BED10 
≥48  Gy (30  Gy in five fractions or 27  Gy in 
three fractions) had a 1-year local control of 
100% compared to 33% for cavities treated with 
a lower BED10 [69].

Overall treatment time also needs to be 
explored in the setting of high doses per frac-
tion. Studies in other organ sites have shown 
improved efficacy, toxicity, and quality of life 
with every other day dosing [76–78]. 
Radiobiologic studies suggest that the repair 
halftime for brain necrosis may be relatively 
long, with the potential of unrepaired damage 
still present after a 24-hour interval [79]. 
Reoxygenation may similarly require a longer 
time interval as hypoxia has been detected in 
lung tumors at 24–48 hours after a single frac-
tion of radiation to the lung [80]. Increasing the 
interval of time between radiation fractions by 
delivering treatment on nonconsecutive days 
can allow for reassortment of remaining tumor 
cells into G2-M phase of the cell cycle and 
improved oxygenation and radiation sensitivity 
for subsequent fractions, thereby maximizing 
efficacy of the radiation. There is also time for 
repair and repopulation of normal cells in 
between the treatment sessions, thereby mini-
mizing the risk of treatment. For patients with 
brain metastases not amenable to single-fraction 
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Table 10.2 Selected hypofractionated SRS series for resected brain metastases

Author Date
N 
(cavities)

Dose (Gy/
fractions)

Cavity diameter 
or volume 
(median, range) Histology

Margin 
(mm)

1-year 
LC (%)

Adverse 
radiation 
effect/
necrosisa 
(%)

Abuodeh 
et al. [63]

2016 77 25/5 8.92 cc, 
0.17–54.2 cc

Lung, 
melanoma, 
RCC, breast, 
other

1–2 89 3

Ahmed 
et al. [64]

2014 65 20–30/5 8.06 cc, 
0.13–54.25 cc

Lung, 
melanoma, 
RCC, breast, 
other

1–2 87 2

Ammirati 
et al. [65]

2014 36 30/5 10.25 cc, 
1.04–67.52 cc

Lung, 
melanoma, 
breast, other

3 16% 
LF

8

Connolly 
et al. [66] 

2013 33 40.05/15 3.3 cm, 
1.7–5.7 cm

Lung, 
melanoma, 
breast, other

10 90 0

Do et al. 
[67]

2009 33 24–27.5/4–6 >3 cm (n = 16) Lung, 
melanoma, 
breast, other

1–3 82 0

Doré et al. 
[7]

2017 103 23.1/3 >3 cm (n = 48) Lung, RCC, 
breast, colon, 
melanoma, 
other

2 84 7

Keller et al. 
[68]

2017 189 33/3 7.6 cc, 
0.2–48.81 cc

Lung, breast, 
GI, RCC, 
melanoma, 
other

2 88 19

Kumar 
et al. [69] 

2018 43 28–30/3–5 3.1 cm 
(preoperative 
size)

Lung, breast, 
melanoma, 
other

2 23% 
LF

0

Ling et al. 
[70]

2015 100 Median 22 
(range 10–28)/
median 3 
(range 1–5)

PTV: 12.9 cc, 
0.6–51.1 cc

Lung, 
melanoma, 
RCC, breast, 
other

0–1 72 6

Lockney 
et al. [39]

2017 143 30/5 3.2 cm, 
0.7–6.3 cm

Lung, breast, 
melanoma, 
other

2–5 84 4

Pessina 
et al. [71]

2016 69 30/3 29 cc, 
4.1–203.1 cc

Lung, 
melanoma, 
breast, other

3 100 9

Steinmann 
et al. [72]

2012 33 40/10, 35/7, 
30/5

9.7 cc, 
0.95–52.6 cc

Lung, 
melanoma, 
RCC, breast, 
other

4 71 0

Vogel et al. 
[73]

2015 33 Median 30 
(range 16–35)/
median 5 
(range 1–5)

3.8 cm, 
2.8–6.7 cm

Lung, breast, 
melanoma, 
other

2–3 69 10

Wang et al. 
[74]

2011 37 24/3 >3 cm Lung, 
melanoma, 
breast, kidney, 
colon

2–3 80 6

Abbreviations: N number, LC local control, RCC renal cell carcinoma, GI gastrointestinal, cc cubic centimeter,  
cm centimeter, mm millimeter, LF local failure
aClinically significant, requiring steroids
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SRS because of location or tumor size, Narayana 
et al. reported 1-year local control of 70% and 
steroid dependency in 15% of patients treated 
with 30 Gy in five fractions at two fractions per 
week [46]. However, other studies have found 
no benefit with every other day treatment com-
pared to daily treatment [81].

A further extension of this concept is staged 
SRS treatment, in which fractions are separated 
by an even longer interval of at least few weeks. 
Staged SRS distributes high cumulative doses 
over time and allows for potentially smaller tar-
gets at subsequent treatment sessions. Higuchi 
et al. published the first report of staged SRS, in 
which patients with brain metastases of volume 
larger than 10 cc were treated with a total dose of 
30 Gy over three staged fractions separated by 
2-week interfraction intervals [35]. Overall 
tumor shrinkage was observed in 91% of the 
tumors, with tumor volumes decreasing by 19% 
and 40% at the second and third sessions. This 
approach resulted in 1-year local control rates of 
76%, with only one patient developing grade 3 
toxicity that required surgery. Other series have 
since been subsequently reported, showing simi-
larly successful treatment of large brain metasta-
ses using staged SRS of 20–33  Gy over two 
sessions with minimal treatment-related morbid-
ity [82–84]. Angelov et al. used a 30-day inter-
fraction interval in order to allow for 10 half-lives 
for repair, assuming the repair half-time for late 
radiation effects in the brain is as long as 
76 hours [79]. In their series of brain metastases 
greater than 2 cm treated with a median of 30 Gy 
in two sessions, they reported a 6-month local 
control rate of 88% and 6% of symptomatic radi-
ation necrosis [83].

 Indications for Surgery (Versus 
Radiosurgery) for Larger Lesions

For larger lesions, hypofractionated SRS has 
been shown as an effective primary treatment 
modality for large brain metastases that cannot 
be resected. While large brain metastases (those 

measuring greater than 2–3  cm in maximum 
diameter) are typically treated with resection 
followed by adjuvant radiation, surgical resec-
tion is sometimes not appropriate due to factors 
such as patients’ performance status and comor-
bidities or extent of disease. In fact, a secondary 
analysis of EORTC 22952-26001 found that in 
patients with one to two brain metastases with a 
diameter of no greater than 4 cm, SRS was asso-
ciated with improved early local control com-
pared to surgical resection [85]. However, 
surgical resection is necessary in the following 
scenarios:

• Pathologic proof of metastatic disease is 
needed.

• Symptoms of edema/mass effect do not 
resolve with steroids.

• Symptoms that resolve with steroids but con-
cern that the patient would be steroid depen-
dent for weeks/months until the tumor shrinks 
(i.e., surgery would allow for more rapid reso-
lution of edema/mass effect than with SRS 
alone).

 Future Directions and Conclusions

Hypofractionated radiosurgery is a promising 
strategy for maximizing local control while 
minimizing toxicity, particularly for larger 
lesions or lesions in critical locations. While 
there is a wide range of acceptable fraction-
ation regimens reported in the literature, main-
taining a high BED (i.e., BED10 ≥48  Gy, 
equivalent to 27  Gy in three fractions) is 
important for optimal local control [52, 69]. 
Areas of uncertainty include how hypofrac-
tionated SRS compares with surgery for the 
treatment of larger brain metastases and how 
hypofractionated SRS compares with single-
fraction SRS for the treatment of small brain 
metastases. Additional work is warranted in 
determining the optimal interfraction time 
interval and investigating novel approaches 
such as staged SRS.
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 Case Vignettes

 Case 1: Postresection Cavity 
Hypofractionated SRS due to Size 
Along with Single-Fraction SRS 
for Small Intact Metastases

A 59-year-old woman with metastatic ovarian 
cancer presented with headaches, confusion, 
and visual disturbance due to a hemorrhagic 
brain metastasis measuring 4.8 × 4.9 cm in the 
left parieto-occipital lobe, with trace rim 
enhancement and surrounding vasogenic 
edema. She was started on antiseizure medica-
tion and steroids, which resulted in complete 
resolution of her symptoms. She underwent 
craniotomy for resection the hemorrhagic por-
tion of her metastases followed by radiosur-

gery treatment 1 week later. On her radiosurgery 
planning MRI, the left parieto- occipital lesion 
measured 2.7 × 1.5 cm. Two additional lesions 
were seen in the left precentral gyrus 
(7 × 5 mm) and right frontal lobe (2 mm). The 
left parieto-occipital lesion was treated without 
margin to 27  Gy in three fractions with dose 
prescribed to the 72% isodose line (Fig. 10.1a). 
In a separate plan, the other two lesions were 
each treated together to 24 Gy in one fraction 
with dose prescribed to the 72% isodose line 
(Fig. 10.1b, c). She remains locally controlled 
at 1 year following radiosurgery, without neu-
rological symptoms.

 Case 2: Postresection Cavity 
Hypofractionated SRS over 5 Days 
due to Large Size

A 64-year-old woman with metastatic hormone- 
positive breast cancer presented with forgetful-
ness and abnormal behavior and was found to 
have a large cystic and solid right frontal mass 
measuring 5.5 cm with associated edema, sub-
falcine herniation, and midline shift. She under-
went a gross total resection which revealed 
metastatic breast carcinoma. She was not able 
to undergo adjuvant radiosurgery until 2 months 
after her resection. At the time of her treatment 
planning, there was a thick rim of enhancement 
of the resection cavity margins, concerning for 
recurrent tumor. She underwent radiosurgery to 
the resection cavity with 2-mm margin to 25 Gy 
in five fractions. She developed nodular lepto-
meningeal progression 3  months following 
radiosurgery for which she completed whole-
brain radiotherapy (Fig. 10.2).

 Case 3: Hypofractionated SRS over 
3 Days due to Large Size and Location

A 65-year-old woman with metastatic ovarian 
carcinoma, previously treated with SRS 
6  months ago for four brain metastases, pre-

Table 10.3 Recommended radiosurgery doses used at 
our institution for both intact metastases and resection 
cavities

Target maximum diameter (cm) Dose (Gy/fractions)
<2 cm 20–24/1
2–3 cm 27–30/3 or 18/1
3–4 27/3
4–5 24/3
>5 25/5

Key Points
• For intact metastases and resection cavi-

ties greater than 2  cm in maximum 
diameter, data suggest improved tumor 
control and/or treatment-related toxicity 
with hypofractionated SRS over 
2–5  days compared to single-fraction 
SRS.

• Maintain high BED equivalent to single- 
fraction doses for optimal local control 
with hypofractionation (i.e., BED10 
≥48  Gy, equivalent to 27  Gy in three 
fractions). Recommended radiosurgery 
doses for intact brain metastases and 
resection cavities are listed in Table 10.3.
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Fig. 10.1 Postresection cavity hypofractionated SRS due 
to size along with single-fraction SRS for small intact 
metastases. (a) Left parieto-occipital lesion (2.7 × 1.5 cm), 
status postresection of hemorrhagic portion, treated to 
27 Gy in three fractions prescribed to the 72% isodose line 

(green 27  Gy, light blue 13.5  Gy, dark blue 6.75  Gy).  
(b and c) Left precentral gyrus lesion (7 × 5 mm) and right 
frontal lobe lesion (2  mm) treated in a separate plan to 
24 Gy in one fraction prescribed to the 72% isodose line 
(green 24 Gy, light blue 12 Gy, dark blue 6 Gy)

Fig. 10.2 Axial and sagittal views of right frontal resec-
tion cavity with 2-mm margin treated with 25 Gy in five 
fractions prescribed to the 72% isodose line. The preop-

erative MRI was fused with the postoperative images to 
aid in contouring the target volume. The preoperative 
extent rather than entire surgical tract was covered
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sented with mild diplopia on far lateral gaze. 
MRI revealed a 2.7 × 2.7  cm metastasis in the 
pons. She received 24  Gy in three consecutive 
daily fractions to the 72% isodose line. Follow-up 

MRI 9 months later revealed continued shrink-
age of the tumor with no adverse radiation effect 
(Fig. 10.3).

a b

c d

Fig. 10.3 Axial and sagittal views of pontine metastasis 
treated with 24 Gy (green isodose line) in three consecu-
tive daily fractions to the 72% isodose line (a and b). Also 
shown is the 50% dose line in cyan (12 Gy isodose line). 

Follow-up MRI 9 months later (c and d) revealed contin-
ued shrinkage of the tumor with no adverse radiation 
effect
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