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1 Introduction

Some science and engineering applications give rise to large banded linear systems
in which the bandwidth is a very small percentage of the system size. Often, these
systems arise in the inner-most computational loop of these applications which
indicates that these systems need to be solved efficiently as fast as possible on
parallel computing platforms. This motivated the development of the earliest version
of the SPIKE tridiagonal linear systems in the late 1970s, e.g. see [27] followed by
an investigation of the communication complexity of this solver in [12] in 1984.
In both of these studies this solver was not named “SPIKE” until it was further
developed in [23, 24] in 2006. In this chapter, we also present an extension of
this algorithm for solving sparse linear systems. This is done through reordering
schemes that bring as many of the heaviest off-diagonal elements as closer to the
main diagonal, followed by extracting effective preconditioners (that encapsulate as
many of these heaviest elements as possible) for outer Krylov subspace methods for
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solving these sparse systems. In each outer iteration variants of the SPIKE algorithm
are used for solving linear systems involving these preconditioners. An extensive
survey of the SPIKE algorithm and its extensions are given in [10].

2 The SPIKE for Banded Linear Systems (Dense Within the
Band)

Consider the nonsingular banded linear system

Ax = f (1)

shown in Fig. 1 with A ∈ R
N×N being of bandwidth β = 2m + 1. Let N be an

integer multiple of p (the number of partitions). In Fig. 1, p is chosen as 4. The
off-diagonal blocks are given by

B̄j =
(

0 0
Bj 0

)
and C̄j =

(
0 Cj

0 0

)
(2)

for j = 1, 2, . . . , p − 1, where Bj ,Cj ∈ R
m×m.

In what follows, we first describe “Spike” as a direct banded solver when A is
diagonally dominant followed by the general case for which “Spike” becomes a
hybrid (direct-iterative) banded solver for the linear system (1).
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First, let A be a diagonally dominant matrix. Thus, each Aj is also diagonally
dominant, j = 1, 2, . . . , p, with the block diagonal matrix

Fig. 1 A ∈ R
N×N ; bandwidth: β = 2m + 1; number of partitions: p = 4, Aj ∈ R

n×n, j =
1, 2, . . . , p; B̄j , C̄j+1 ∈ R

n×n, j = 1, 2, . . . , p − 1; N = 4n; n = 3m
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Fig. 2 p = 4, n = 3m,
N = 4n

D =

⎛
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A1

A2
. . .

Ap

⎞
⎟⎟⎟⎠ (3)

nonsingular. Premultiplying both sides of (1) by D−1, we obtain the modified
system

Sx = g, (4)

where the matrix S = D−1A, and the updated right-hand side is given in which the
bandwidth is very small percentage of the system size. Often, these updated right-
hand side are given in Fig. 2. Here, the off-diagonal blocks, V̄j and W̄j , are given
by

V̄j = (
Vj , 0

)
and W̄j+1 = (

0,Wj+1
)
, j = 1, 2, . . . , p − 1. (5)

⎛
⎜⎜⎝

I V̄1

W̄2 I V̄2

W̄3 I V̄3

W̄4 I

⎞
⎟⎟⎠

︸ ︷︷ ︸
S

⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠

︸ ︷︷ ︸
x

=

⎛
⎜⎜⎝

g1

g2

g3

g4

⎞
⎟⎟⎠

︸ ︷︷ ︸
g

The spikes,
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are obtained by solving the linear systems

A−1
j [Ĉj , Aj , B̂j ] = [Wj, In, Vj ] (7)

and

gj = A−1
j fj , j = 1, 2, . . . , p (8)
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in which

B̂j =
(

0
Im

)
Bj ; Ĉj =

(
Im

0

)
Cj (9)

with Vj ,Wj ∈ R
n×m. Solving the linear system in (4), involving the “Spike matrix”

S, reduces to solving a much smaller block-tridiagonal system of order 2m(p − 1)

of the form (See Fig. 2),
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in which x
(t)
i = (Im, 0)xi , and x

(b)
i = (0, Im)xi , and similarly for g

(t)
i and g

(b)
i . We

refer to (10) as the reduced system,

Ry = h, (11)

where R results from the symmetric permutation

PSP T =
(

Iν G

0 R

)
(12)

in which ν = pn − 2m(p − 1). Note that since A is nonsingular, so is S as well
as R. Solving the reduced system (10) for x

(b)
i and x

(t)
i+1, i = 1, 2, . . . , p − 1, the

solution x of system (4) is retrieved directly via

x1 = g1 − V1x
(t)
2

xi = gi − Wix
(b)
i−1 − Vix

(t)
i+1, i = 2, 3, . . . , p − 1

xp = gp − Wpx
(b)
p−1.

(13)

In summary, the SPIKE algorithm for solving the diagonally dominant banded
system Ax = f consist of the D-S factorization scheme in which D is block
diagonal and S is the corresponding spike matrix. Consequently, solving system (1)
consists of two phases:

(i) solve Dg = f followed by
(ii) solve Sx = g via the reduced system approach.
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In (i) each system Ajgj = fj is solved via the classical LU-factorization as
implemented in Lapack [2].

Observe that if we assign one processor (or one multicore node) to each partition,
then solving Dg = f realizes maximum parallelism with no interprocessor
communications. Solving the reduced system (10), however, requires interprocessor
communications which increases as the number of partitions p increases. The
retrieval process (13) again achieves almost perfect parallelism.

Variations of this basic form of the SPIKE algorithm are given in [24]. Also
note that this SPIKE algorithm requires a larger number of arithmetic operations
than those required by the classical banded LU-factorization scheme. In spite of
this higher arithmetic operation count, this direct form of the SPIKE algorithm
realizes higher parallel performance than ScaLapack on an 8-core Intel processor,
see Fig. 3 [17], due to enhanced data locality.

The reason for the superior performance of Spike is illustrated in Fig. 4 showing
that the total number of off-chip data accessed (in bytes) for Spike (red color) is less
than that required by ScaLapack. Also, Fig. 5 shows that the number of instructions
executed by Spike is almost half that required by ScaLapack. For more details about
the measurements shown in Figs. 4 and 5, see Liu et al. [13].

Second, if the banded linear system (1) is not diagonally dominant, there is
no guarantee that any of the diagonal blocks Aj , j = 1, 2, . . . , p, see Fig. 1, is
nonsingular. In this case, the banded linear system (1) is solved via a preconditioned
Krylov subspace method such as GMRES or BiCGStab, e.g. see Saad [25]. Here the
preconditioner M is chosen as M = D̂Ŝ where D̂ = diag(Â1, Â2, . . . , Âp) with

Fig. 3 Speedup of SPIKE and ScaLapack compared to the sequential Lapack for solving a linear
system of size 960,000 with a bandwidth of 201
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Fig. 4 Off-chip data being accessed for Spike (red) and ScaLapack (blue), using 4 cores

Fig. 5 Number of instructions executed by Spike (red) and ScaLapack (blue), using 4 cores

Âj = L̂j Ûj , in which the factors L̂j and Ûj are obtained via the LU=factorization
of each Aj using diagonal pivoting with a “boosting” strategy. In other words, if
a diagonal element α during the factorization satisfies |α| ≤ ε||A||1 where ε is a
multiple of the unit roundoff, then α is modified as follows:

α := α + θ ||Aj ||1 if α ≥ 0

α := α − θ ||Aj ||1 if α < 0,
(14)
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where θ ∼ √
ε. Ŝ is then of a form identical to that of S , see Fig. 2, except that the

spikes Vj and Wj are obtained as follows:

(L̂j Ûj )
−1[Ĉj , B̂j ] = [Vj ,Wj ], j = 1, 2, . . . , p (15)

which entails a block forward sweep followed by a block backsweep. In each
iteration of GMRES, for example, one needs to solve a system of the form Mv = r .
This is accomplished in two steps: (1) solve D̂u = r , and (2) solve Ŝv = u. As
outlined above, the first system is solved via two triangular solvers: L̂j u̇j = rj ,
and Ûjuj = u̇j , j = 1, 2, . . . , p. The second system, Ŝv = u, is solved via the
reduced system approach, see (10), with retrieving the rest of the solution vector v

via (13).
Since the elements of the inverse of a banded matrix decay as they move away

from the main diagonal, the elements of the spikes V,W decay as they move away
from the main diagonal as well. Such decay becomes more pronounced as the degree
of diagonal dominance increases. We define the degree of diagonal dominance of A

by

τ = min
1≤k≤N

[|akk|/
∑
k �=j

|akj |]. (16)

Even for system (1) for which τ ≥ 0.25 , one can take advantage of the decay in
the spikes Vj , (||V (j)

q || � ||V (j)

1 ||), and Wj , (||W(j)
q || � ||W(j)

1 ||) (In our example

above q = 3). Taking advantage from such a property by replacing V
(j)
q and W

(j)
q

by zero, the reduced system (10) becomes a block diagonal system that requires only
obtaining V

(j)

1 and W
(j)

1 , j = 1, 2, . . . , p. In other words, we need only to obtain the
bottom (m×m) tip of each right spike Vj , and the top (m×m) tip of each left spike
Wj , 1 ≤ j ≤ p. Consequently, if we assign enough processors to obtain the LU-
factorization of slightly perturbed A1, A2, . . . , Ap−1 using the diagonal boosting
strategy, and the UL-factorization of similarly perturbed A2, A3, . . . , Ap, we need
not obtain the whole spikes Vj and Wj . The LU-factorizations will obtain the bottom
tips of Vj , while the UL-factorizations will enable obtaining the top tips of Wj

resulting in significant savings for computing the coefficient matrix R of the reduced
system. Further, since R in this case is block diagonal, solving the reduced system
achieves maximum parallelism. This “truncated” version of the SPIKE algorithm
was compared with Lapack and MKL-ScaLapack (i.e., Intel’s Math Kernel Library)
on an Intel multicore processor for solving 8 banded linear systems with coefficient
matrices obtained from Matrix-Market (see Table 1). Table 2 shows the ratios:

Average time(MKL-2 cores∗)
Average time (MKL-1 core)

, (17)

and
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Table 1 A Matrix-Market
collection of banded systems
(n > 10,000) where kl,ku, N ,
∼Cond are the lower, upper
bandwidths, matrix size, and
the condition number
estimate, respectively

Matrix name kl ku N ∼Cond

s3dkq4m2 614 614 90,449 N/A

s3dkt3m2 614 614 90,449 N/A

fidap035 244 247 19,716 4.3 × 1012

e40r0000 451 451 17,281 2.2 × 108

e40r5000 451 451 17,281 2.2 × 1010

bcsstk25 292 292 15,439 1.3 × 1013

bcsstk18 1243 1243 11,948 6.5 × 1011

bcsstk17 521 521 10,974 2.0 × 1010

Table 2 Time ratios for Spike and MKL-ScaLapack

MKL 1-core MKL 2-cores Spike 2-cores

Avg. time (ratio) 1.0 8.5 0.4

Rel. res. (norm) O(10−1)−O(10−10) O(10−2)−O(10−10) O(10−5)−O(10−11)

Average time(Spike-2 cores∗)
Average time (MKL-1 core)

, (18)

together with the lowest and highest relative residual for each solver for the 8
benchmarks. *Note that for the 2-core entries each core belongs to a different node.

2.1 Multithreaded SPIKE

In shared memory systems, the parallelism in LAPACK LU algorithms can directly
benefit from the threaded implementation of the low-level BLAS routines. In order
to achieve further scalability improvement, however, it is necessary to move to a
higher level of parallelism based on divide-and-conquer techniques. As a result,
the OpenMP implementation of SPIKE on multithreaded systems [19, 31], is
inherently better suited for parallelism than the traditional LAPACK banded LU
solver. A recent stand-alone SPIKE-OpenMP solver (v1.0) [1] has been developed
and released to the community.

Among the large number of variants available for SPIKE, the OpenMP solver
was implemented using the recursive SPIKE algorithm [23, 24]. The latter consists
of solving the reduced system (10) using SPIKE again but where the number of
partitions had been divided by two. This process is repeated recursively until only
two partitions are left (making the problem straightforward to solve). The SPIKE
algorithm applied to two partitions is actually the kernel of recursive SPIKE, and
from Fig. 3, we note the efficiency of 2 × 2 SPIKE which reaches a speedup
of two using two partitions with two processors. The recursive SPIKE technique
demonstrates parallel efficiency and is applicable to both diagonally and non-
diagonally dominant systems. However, it was originally known for its lack of
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flexibility on distributed architectures since its application was essentially limited
to a power of two number of processors. The scheme was then prone to potential
waste of parallel resources when applied to shared memory systems using OpenMP
[19]; for instance, if 63 cores were available, then only 32 would be effectively
used by recursive SPIKE (i.e., the lowest nearest power of two). This limitation
was overcome in [31] with the introduction of a new flexible threading scheme
that can consider any number of threads. If the number of threads is not a power
of two, some partitions are given two threads which, in turn, would benefit from
the 2 × 2 SPIKE kernel. Load balancing is achieved by changing the size of each
partition so that the computational costs of the large matrix operations on each
partition are matched. This multithreaded SPIKE approach is then ideally suited
for shared memory systems since optimized ratios between partition sizes can be
tuned for a given system matrix and architecture, independently from user input
[1]. Figure 6 demonstrates the efficiency of the scheme. The results show that the
speedup performance of the new threaded recursive SPIKE is not limited to a power
of two number of threads since the scalability keeps increasing with the number
of threads. For example, at 30 threads the overall speed improvement increases
from roughly ×6 to roughly ×9, as a result of the increased overall utilization of
resources. The results also show that the SPIKE computation time is significantly
superior to LAPACK Intel-MKL. We note that the two solvers’ scaling performance
are similar until 10 threads are reached, at which point SPIKE begins pulling
away. Unlike SPIKE, parallelism performance of the inherently recursive serial LU
approach used by MKL mainly relies on parallelism available via the BLAS which
is rather poor for this matrix.

The SPIKE-openMP solver has been designed as an easy to use, “black-box”
replacement to the standard LAPACK banded solver. In order to achieve near
feature-parity with the standard LAPACK banded matrix solver, we add to SPIKE
the feature known as transpose option, i.e. solve AT x = f . Transpose solve

Fig. 6 SPIKE scalability and computation time compared to MKL-LAPACK for a system matrix
of size N=1M, bandwidth 321, and with 160 right-hand sides
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operation allows improved algorithmic flexibility and efficiency by eliminating the
need for an explicit factorization of the matrix transpose when solving:

AT x = f. (19)

As a result, if the factorization A = DS is already available, it can now be used to
address the new SPIKE solve stages, which are now swapped:

1. solve ST y = f via the transposed reduced system approach, followed by
2. solve DT x = y.

A transpose version of the recursive reduced system solver which has been proposed
in [31] achieves near performance parity with the non-transpose solver.

3 Hybrid Methods for General Sparse Linear Systems

In large-scale computational science and engineering application one is often faced
with solving large general sparse linear systems that cannot be reordered into a
narrow banded form. Therefore, we use nonsymmetric and symmetric reorderings
to maximize the magnitude of the product of the diagonal elements, move as many
of the largest off-diagonal elements as possible close to the main diagonal, and
extract a generalized banded preconditioner. In the next subsection we describe such
a reordering process after which an effective preconditioner can be extracted where
linear systems involving the such a preconditioner is solved using a variant of the
SPIKE algorithm.

3.1 Weighted Nonsymmetric and Symmetric Reorderings for
Sparse Matrices

As the first step of the reordering scheme we apply a nonsymmetric permutation and
scaling (if needed) to make the diagonal of the coefficient matrix as large as possible.
Such nonsymmetric permutation and scaling techniques are already available in the
Harwell Subroutine Library (HSL) and is called MC64 [8] which (without scaling)
creates permutations �1 and �2 such that the magnitude of the product of the
diagonal elements of B = �1A�2 is maximize, where A is the original coefficient
matrix. This is followed by obtaining a symmetric permutation of B, C = PBP T ,
where P is determined by the Fiedler vector [9] derived from B. The Fiedler vector
is the eigenvector corresponding to the second smallest eigenvalue of the “weighted
Laplacian” matrix based on B. This eigenvalue is sometimes called the algebraic
connectivity of the graph. Note that the smallest eigenvalue is zero. As a result, many
of the heaviest off-diagonal elements of C are much closer to the main diagonal.
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Fig. 7 The effect of the weighted spectral reordering using the Fiedler vector on F2 matrix (colors
indicate the magnitude of the absolute value of the elements. Red, green, and blue are the largest,
intermediate, and smallest elements, respectively. (a) Original matrix. (b) Reordered matrix

Here, PSPIKE refers to a solver that is a hybrid of the sparse direct solver Pardiso
[29] and the SPIKE algorithm. In Fig. 7, we illustrate the effect of such reordering
on a symmetric stiffness matrix with 71,505 rows and columns, obtained from the
SuiteSparse Matrix Collection [6].

From the original sparse linear system Ax = f , we obtain By = g, where
y = �T

2 x, and g = �1f . If B is symmetric, one can form the “weighted Laplacian”
matrix, Lw

ij = −|bij |, and

Lw
jj =

∑
k

|bkj | (20)

as follows: Note that one can obtain the unweighted Laplacian by simply replacing
each nonzero element of the matrix B by 1. In this subsection, we consider the
weighted case as a preprocessing tool for the PSPIKE algorithm given in Sect. 3.3.

We assume that the corresponding graph is connected since the disconnected
components can be easily identified and the Fiedler vector can be computed
independently for each if the graph is disconnected. The eigenvalues of Lw are
0 = λ1 < λ2 ≤ λ3 ≤ . . . ≤ λn. The Fiedler vector, xF , is the eigenvector
corresponding to smallest nontrivial eigenvalue, λ2. Since we assume a connected
graph, the trivial eigenvector x1 is a vector of all ones. If the coefficient matrix, B,
is nonsymmetric, we simply construct Lw using the elements of (|B| + |BT |)/2,
instead of those of |B|.

A Trace Minimization [26, 28] based parallel algorithm for computing the Fiedler
vector, TRACEMIN-Fiedler, has been proposed in [16]. We consider the standard
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symmetric eigenvalue problem,

Lwx = λx. (21)

The trace minimization eigensolver is based on the observation,

min
X∈Xp

tr(XT LwX) =
p∑

i=1

λi, (22)

where Xp is the set of all n × p matrices, X for which XT X = I . The equality
holds if and only if the columns of the matrix X span the eigenspace corresponding
to the smallest p eigenvalues. At each iteration of the trace minimization algorithm
an approximation Xk ∈ Xp which satisfies XT

k LwXk = 
k for some diagonal 
k

is obtained. The approximation Xk is corrected with �k obtained by

minimizing tr[(Xk − �k)
T Lw(Xk − �k)]

subject to XT
k �k = 0.

. (23)

The solution of the (23) can be obtained by solving the following saddle point
problem:

(
Lw Xk

XT
k 0

) (
�k

Lk

)
=

(
LwXk

0

)
. (24)

Once �k is known, Xk+1 is obtained by computing (Xk − �k) which forms
the section XT

k+1L
wXk+1 = 
k+1, XT

k+1Xk+1 = I . In [16], we solve those
saddle point systems by computing the block LU-factorization of the coefficient
matrix in (24), i.e. by forming the Schur complement matrix explicitly since
we are only interested in the second smallest eigenvector and hence p is small.
Then, the main computational cost is solving sparse linear systems of equations
with a few right-hand side vectors where the coefficient matrix, Lw, is a large
sparse and symmetric positive semi-definite matrix. The details of the TRACEMIN-
Fiedler algorithm are given in [16]. This algorithm proved (see Fig. 8) to be more
suitable for implementation on parallel architectures compared to the eigensolver
used in HSL for (21). Table 3 shows the dimension, number of nonzeros, and
symmetry properties of four large matrices obtained from the SuiteSparse Matrix
Collection [7].

Table 3 Properties of
matrices from the SuiteSparse
matrix collection

Matrix group/name n nnz Symmetry

Rajat/rajat31 4,690,002 20,316,253 No

Schenk/nlpkkt120 3,542,400 95,117,792 Yes

Freescale/freescale1 3,428,755 17,052,626 No

Zaoui/kkt_power 2,063,494 12,771,361 Yes
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Fig. 8 Seedup of TRACEMIN-Fiedler reordering (using 8 cores per node) compared to the
sequential HSL_MC73

After these two reordering steps, the resulting sparse linear system is of the form
Cz = h, where C = PBP T , z = Py, and h = Pg, with C having its heaviest
off-diagonal elements as close to the main diagonal as possible. Choosing a central
“band” of bandwidth (2β + 1) as a preconditioner M of a Krylov subspace method
with β chosen such that

||M||F 
 (1 − ε)||C||F . (25)

Here || · ||F denotes the Frobenius norm, and ε chosen in the interval [0.001, 0.05].
Assuming C is of sufficiently large order n, say n = 106, then if β ≤ 10,
we call M a Narrow banded Preconditioner (NBP). If β > 10, we choose M

as a block-tridiagonal preconditioner in which the diagonal blocks are sparse
with relatively large “bandwidth,” and the interconnecting off-diagonal blocks
are dense square matrices of small dimensions. We call such M as Medium
banded Preconditioner (MBP). When β becomes much larger than 10 in order to
encapsulate as many off-diagonal as possible, we construct the preconditioner M as
overlapped block diagonal sparse matrices. In this case, M is referred to as Wide
banded Preconditoner (WBP). In each outer Krylov subspace iteration, one needs to
solve linear systems involving M . For the cases of “MBP” and “WBP,” one needs to
use a sparse linear system solver. In Fig. 9 we show the classical computational loop
that arises in many science and engineering applications. Solving linear systems
occurs in the inner-most loop where the solution of such systems is needed to yield
only modest relative residuals. For this purpose, we created a family of solvers
that generalizes SPIKE for solving sparse linear systems Ax = f using hybrid
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Fig. 9 Target computational
loop

Loop: Integration
Loop: Nonlinear iteration

Loop: Linear system solvers
Implemented on parallel computing platforms;

End
End

End

schemes, i.e. a combination of the direct sparse linear system solver Pardiso [29] and
SPIKE. Even though SPIKE, rather than Pardiso is used for the case M being narrow
banded, we refer to our family of hybrid solvers as PSpike_NBP, PSpike_MBP,
and PSpike_WBP, respectively. In Fig. 10, we illustrate the structure of each of
those preconditioners obtained from the reordered matrix C. Next, we describe
and present some results illustrating the performance of each of Narrow Banded,
Medium Banded, and Wide Banded preconditioners.

3.2 PSPIKE_NBP

Certain sparse linear systems Ax = f yield, after the reordering procedures
described in Sect. 3.1, effective narrow banded preconditioners to Krylov subspace
methods like GMRES or BiCGStab.

Example 1
The first system A1x1 = f1 considered here has the sparse coefficient matrix
A1 := “Rajat31” from the SuiteSparse Matrix Collection[6] of order 
4.7M, see
Fig. 11, which is in the form of an arrowhead. After reordering, and choosing
ε = 0.05, we extract a banded preconditioner M of bandwidth 2β + 1 = 11,
i.e. β = 5. Using an outer Krylov solver (BiCGStab) with a stopping criterion
of relative residual = 10−5, Fig. 12 shows that PSPIKE_NBP consumes ∼2.8 s
on an Intel cluster of 32 nodes (8 cores/node). Here, solving linear systems of
the form Mz = r in each BiCGStab iteration is achieved by using the truncated
version of the SPIKE algorithm outlined in Sect. 2. We compare the performance of
PSPIKE_NBP with IBM’s direct sparse linear system solver WSMP (implemented
on the same Intel cluster). Figure 12 shows that while the factorization stage of
WSMP is quite scalable, solving A1x1 = f1 using WSMP on 16 nodes of this Intel
cluster consumes ∼27 s (approximately 9.6 times slower than PSPIKE_NBP). This
is due to solving the sparse triangular systems resulting from the LU-factorization
of A1. Note, however, that solving A1x1 = f1 via WSMP yields a relative residual
of order 10−10.

Example 2
Here, we consider the sparse linear system A2x2 = f2, where A2 results from
a Microelectromechanical System (MEMS) simulation—a mix of structural and
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Fig. 10 Three forms of preconditioners based on the band structure and bandwidth, illustrated
on F2 matrix after reordering. Yellow and Black colors indicate the preconditioners. (a) Narrow
banded preconditioner. (b) Medium banded preconditioner. (c) Wide banded preconditioner

electromagnetic—with A2 banded (sparse within the band) of order 11.0M and
bandwidth of 0.3M, see Fig. 13. On an Intel cluster of 64 nodes (8 cores/node)
PSPIKE_NBP with a preconditioner of bandwidth 11 consumes ∼2.4 s to obtain an
approximation of x2 with the required relative residual of 10−2, see Fig. 14. WSMP
could not be implemented on more than 32 nodes and requiring 86 s (∼21.5 times
slower than PSPIKE_NBP) to obtain a solution with relative residual of order 10−10.

Example 3
Using the same linear system A2x2 = f2, we compare the performance of
PSPIKE_NBP and the algebraic multigrid preconditioned Krylov subspace solver



110 M. Manguoğlu et al.

Fig. 11 Sparsity plot of
Rajat31 (the figure is
obtained from [6])
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Fig. 12 SPIKE-NBP for Rajat31 system

Fig. 13 Sparsity plot of
MEMS matrix



Parallel Hybrid Sparse Linear System Solvers 111

WSMP total

WSMP factor

1

10

100

1000

4 8 16 32 64 128 256 512 1024

Ti
m

e 
(S

ec
on

ds
)

Cores

WSMP Factor

WSMP Total

SPIKE-NBP

~345

~31
~86

~4

~ 2.4

Fig. 14 SPIKE-NBP for MEMS system

0.1

1

10

100
1 2 4 8 16 32 64

Speed Im
provem

ent

Nodes

# of nodes k 
1 to 4 1
8 to 16 4
> 16 8

PSPIKE: k threads per MPI process 

Fig. 15 Speed improvement: time (Trilinos-ML)/time (PSPIKE)

in Trilinos-ML developed at Sandia National Lab. on an Intel cluster of 64 nodes
(8 cores/node). Using the Chebyshev smoother for Trilinos-ML, Fig. 15 shows the
speed improvement realized by PSPIKE_NBP once we use more than 4 nodes. In
PSPIKE we use a hybrid programming paradigm, OpenMP within each node (k
threads per MPI process) and one node per MPI process with k depending on the
number of nodes used to obtain a solution with relative residual of order 10−10.
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3.3 SPIKE_MBP

Here, we note how a system of the form Mz = r is solved in each iteration of a
Krylov subspace method, where M ∈ R

n×n is of the form of a block-tridiagonal
matrix

M =

⎛
⎜⎜⎜⎜⎜⎝

M1 B̃1

C̃2 M2 B̃2
. . .

. . .
. . .

C̃k−1 Mk−1 B̃k−1

C̃k Mk

⎞
⎟⎟⎟⎟⎟⎠

, (26)

where k is the number of partitions (often chosen as the number of nodes), where
each Mj is a large sparse matrix of order m = �n/k�, and

B̃j =
(

0 0
Bj 0

)
, C̃j =

(
0 Cj

0 0

)
(27)

in which Bj and Cj are dense matrices of order ν << m. Now, Mz = r is solved
using the SPIKE algorithm by forming only the reduced system by solving

Mj

⎛
⎜⎜⎜⎜⎜⎜⎝

Vj Wj

∗ ∗
...

...

∗ ∗
V

′
j W

′
j

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

Cj 0
0 0
...

...

0 0
0 Bj

⎞
⎟⎟⎟⎟⎟⎠

(28)

only for the tips of the spikes Vj , V
′
j and Wj,W

′
j via an interesting feature of the

sparse direct solver Pardiso. Using the spike tips only, the reduced system is formed
and solved via ScaLapack. Once this is achieved, the solution of Mz = r is realized
by employing the factors of each Mj obtained by Pardiso.

The description of PSPIKE_MBP is given in more detail with parallel scalability
results for large-scale problems in [18] and its application to a PDE-constrained
optimization problem in [30]. While Pardiso is primarily suitable for single node
platforms, PSPIKE is scalable across multiple nodes. Furthermore, we would
like to mention that PSPIKE is capable of using message passing-multithreaded
hybrid parallelism. In Fig. 16, we present the required solution time of PSPIKE
compared to Pardiso (on one node) for a medium size and large 3D PDE-constrained
optimization problems with 75×75×75 and 150×150×150 meshes, respectively,
using hybrid parallelism with 8 threads (cores) per node. Note that for the larger
problem Pardiso runs out of memory due to fill-in. Further details of these problems
and the results are given in [30].
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Fig. 16 SPIKE_MBP and Pardiso solution times for the optimization problem

3.4 SPIKE_WBP

For some applications it is not possible to obtain, after reordering, a narrow banded
preconditioner, or a block-tridiagonal preconditioner in which the interconnecting
off-diagonal blocks are of much smaller size than the diagonal blocks. An example
of that is illustrated in Fig. 17. Note that, after reordering, the “heavy” off-diagonal
elements (black color) cannot be contained in either of the two previous forms of
the preconditioner M ∈ R

n×n. As an alternative, one way to encapsulate as many
of the heavy elements in M is to create a preconditioner that consists of overlapped
diagonal blocks, see Fig. 17, for M consisting of two overlapped blocks. In each
outer Krylov subspace iteration we solve systems of the form Mz = r via the
algorithm given in [22]. Using the two overlapped blocks, Mz = r becomes of
the form

M11 M12

M21 M22 M23

M32 M33

⎛
⎜⎜⎝

⎞
⎟⎟⎠

(29)
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Fig. 17 WBP highlighted after reordering, see [21] for the tearing based parallel hybrid sparse
solver

which can be “torn” into two linear systems

(
M11 M12

M21 M
(1)
22

) (
z1(y)

z
(1)
2 (y)

)
=

(
r1

αr2 + y

)
(30)

(
M

(2)
22 M23

M32 M
(1)
33

) (
z
(2)
2 (y)

z
(3)
2 (y)

)
=

(
(1 − α)r2 − y

αr3

)
, (31)

where the overlap matrix M22 = M
(1)
22 + M

(2)
22 , and 0 < α < 1. Clearly, we need to

choose y so that z
(1)
2 = z

(2)
2 . Enforcing z

(1)
2 (y) = z

(2)
2 (y) results in a linear system

Gy = g of size equal to that of overlap matrix M22, ν << n. In solving Gy = g for
the unknown y, using a Krylov subspace method, it is shown in [22] that one needs
not generate either G or g explicitly, in fact the residual r(p) = g − G ∗ p is given
by [z(2)

2 (p)−z
(1)
2 (p)], r(0) = g = [z(2)

2 (0)−z
(1)
2 (0)], and the matrix-vector product

G ∗ g = r(0) − r(g). The case of more than two overlapped blocks is considered in
detail in [22].

3.5 The General SPIKE

Now we describe the general case where the coefficient matrix has not been sub-
jected to the reordering process described earlier. In other words it is a general sparse
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matrix and also there are multiple right-hand side vectors. Given a nonsingular linear
system of equations,

AX = F, (32)

where A ∈ R
n×n is a general sparse matrix and assume we have m right-hand side

vectors F , we can still apply the General SPIKE algorithm as follows. As in the
banded case, let us assume A, X, and F are partitioned conformably into k block
rows and A is also partitioned into k block columns. The Spike factorization can be
described as the factorization of the coefficient matrix [14],

A = DS, (33)

where D is the block diagonal of A and S is the “spike” matrix. Let A = D + R

where R is a matrix that contains elements except diagonal blocks. Assuming D is
invertible and using (33) we obtain the spike matrix,

S = I + S̄, (34)

where S̄ = D−1R. Note that the diagonal of S consists of ones and the off-diagonals
are the spikes (S̄). Going back to the original linear system in (32), if we multiply
both sides of the equality with D−1 from left, we have the modified system

SX = G, (35)

where G = D−1F . The modified system in (35) has the same solution vector, X,
as the original system in (32). Furthermore, let idx be the nonzero column indices
of R which also correspond to nonzero column indices of D−1R. Then, there is an
independent subsystem corresponding to the unknowns with row indices idx, i.e.
X(idx, :) in (35) such that,

ŜX̂ = Ĝ, (36)

where Ŝ = S(idx, idx), X̂ = X(idx, :), and Ĝ = G(idx, :). Dimensions of the
reduced system in (36) are r × r where r = length(idx) with r ≤ n. After solving
the reduced system we can retrieve the remaining unknowns in parallel,

X = G − S̄X. (37)

Note that we only need a subset of unknowns, X̂, to evaluate the right-hand side
of the equality since the other columns in S̄ are zeros. This approach requires S̄

to be computed explicitly. Alternatively, one can obtain the solution by solving the
following system in parallel,

DX = F − RX. (38)
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Again, the right-hand side can be evaluated once we obtain X̂. In contrast to (37),
(38) does not require the computation of S̄ completely, even though it still requires
the solution of the reduced system involving Ŝ which may be explicitly formed via
partially computing S̄. Alternatively, the reduced system can be solved iteratively
without forming Ŝ explicitly. Some of these alternatives might be preferred in
practice, depending on the current availability of efficient software tools to perform
those operations.

In any case, the size of the reduced system depends on r . A smaller r not only
enhances parallelism by enabling a smaller reduced system and less communication
requirements, but also reduces the arithmetic complexity in computing Ŝ and S̄ (if
needed) as well as the complexity of (37) and (38).

In practice, we assume r << n. Ideally, r = 0 and some matrices can be
reordered into a block diagonal form. In this case, there is no reduced system and
the block diagonal systems are solved independently in parallel. Most applications,
however, give rise to sparse linear system of equations that does not contain
independent blocks, then the objective is to reorder and partition those matrices
in such a way that the number of the nonzero columns in R̄ is minimized [15].

The main difference between the sparse and the banded SPIKE algorithms is
the dependence of the reduced system size (r) on the sparsity structure of the
matrix (and hence on the corresponding graph or hypergraph representation of the
sparse matrix). Therefore, sparse graph/hypergraph partitioning methods are key
ingredients for the algorithm to be scalable and to perform efficiently. METIS [11]
and PaToH [4], are suitable for graph and hypergraph partitioning, respectively, and
they fit well to the objective of minimizing the reduced system dimension.

To illustrate the algorithm, we give a small (9 × 9) coefficient matrix, A, in
Fig. 18a for simplicity we ignore the numerical values. Given k = 3, the coefficient
matrix and right-hand side are comformably partitioned,

A =
⎛
⎝D11 R12 R13

R21 D22 R23

R31 R32 D33

⎞
⎠ and F =

⎛
⎝F1

F2

F3

⎞
⎠ . (39)

The set of indices of nonzero columns of R̄ are idx = {1, 5, 8}. After partitioning,
S and G can be computed as follows:

S =
⎛
⎝ I D−1

11 R12 D−1
11 R13

D−1
22 R21 I D−1

22 R23

D−1
33 R31 D−1

33 R32 I

⎞
⎠ and G =

⎛
⎝D−1

11 F1

D−1
22 F2

D−1
33 F3

⎞
⎠ . (40)

If the right-hand side vector is available immediately, the computation involved is
the solution of independent linear systems with multiple right-hand sides,

D11[S12, S13,G1] = [R12, R13, F1], (41)
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Fig. 18 A, S, and Ŝ for the small example. (a) Coefficient matrix (A). (b) Spike matrix (S). (c)
Reduced system coefficient matrix (Ŝ)

D22[S21, S23,G2] = [R21, R23, F2], (42)

D33[S31, S32,G3] = [R31, R32, F3]. (43)

Note that in (41),(42), and (43) only a few columns of Rij,i �=j are nonzero and the
rest are zeros. We do not store or perform operations with zero columns since the
corresponding solution vector is already zero. The resulting S matrix is shown in
Fig. 18b. Light green elements are fill-ins and some of them can be negligible as in
the banded case [20, 24] if A is diagonally dominant or near diagonally dominant.

Further savings can be obtained, if a sparse solver with sparse right-hand side
vectors is available and if it is capable of solving only for a few unknowns, one
can compute only those components of vectors in Sij that is required for forming
the reduced system (defined by idx). One of the implementation of the General
SPIKE algorithm in [3] performs partial solves via the sparse right-hand side feature
of PARDISO [29]. Next, we can form the reduced system explicitly by selecting
Ŝ = S(idx, idx) and Ĝ = G(idx, :) and solve the reduced system, ( 36), to obtain
X̂ = X(idx, :). Ŝ for the small example is shown in Fig. 18c. The complete solution
is obtained in parallel via either:

X = G − S̄X (44)
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Algorithm 1: General spike algorithm
1: procedure GENERALSPIKE(A,X,F, k) � to solve AX = F with k partitions
2: D + R ← A

3: Identify nonzero columns of R and store their indices in idx

4: D[S(:,idx),G] = [R(:,idx), F ], solve for:

• [S(:,idx),G] (full solve) or
• [S(idx,idx),G(idx,:)] (partial solve)

5: S(idx,idx)X(idx,:) = G(idx,:) (Solve for X(idx,:))
6: Retrieve the solution vector (X):

• X ← G − S(:,idx)X(idx) if S(:,idx)] is available
• DX = [F − R(:,idx)x(idx)] (Solve for X), otherwise

7: end procedure

or

DX = F − RX. (45)

The former is preferred if the spikes are formed explicitly since the multiplication
S̄X can be implemented using dense matrix-vector (BLAS Level 2) or matrix-
matrix (BLAS Level 3) operations, for m = 1 and m > 1, respectively. The latter
requires sparse matrix-dense matrix multiplications (RX), followed by the solution
of independent sparse linear systems. It is preferred if the spikes are not explicitly
available. The pseudocode of the algorithm is summarized in Algorithm 1.

Numerical results and the performance of this scheme are given in [14] in the
context of a parallel solver for the preconditioned linear system and in [3] as a
direct multithreaded recursive parallel sparse solver. Furthermore, a multithreaded
general sparse triangular solver is proposed in [5].

4 Conclusions

The SPIKE algorithm for banded linear systems that are dense withing the band
has been shown to be competitive in parallel scalability with the parallel banded
solver in ScaLapack on a variety of parallel architectures. Also, the hybrid PSPIKE
(Pardiso-SPIKE) algorithm for large sparse linear systems has proven to be equally
competitive with: (1) direct sparse solvers such as Pardiso and WSMP if one requires
only approximate solutions that correspond to modest relative residuals, and (2)
black-box preconditioned Krylov subspace methods including algebraic multigrid
preconditioners.

Acknowledgments The authors would like to thank Drs. Maxim Naumov and Faisal Saied for
performing many of the numerical experiments reported in this chapter.
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