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Increasing processing power of the bare metal hardware has motivated signifi-
cant interest in the development of optimization techniques for machine learning
problems on massively large datasets. Applications such as autonomous vehicles,
artificial intelligence (Google’s GO system [38], IBM’s Deep Blue [34], IBM’s
Project Debator [35]), image classification, and cybersecurity have been enabled
by developments in optimization techniques and their parallel implementations.
Many current applications mentioned above are modeled as either convex or non-
convex optimization problems. These problems have rich theoretical foundations,
as well as algorithmic (both serial and parallel) contributions. In this chapter, we
focus on finite-sum minimization problems in the context of convex and non-convex
formulations. We discuss state-of-the-art optimization methods for these problems
under real-world assumptions on parallel platforms. We also highlight the need for
hardware accelerators, such as GPUs, in significantly accelerating solutions.
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1 Introduction and Motivation

Finite-sum optimization problems can be written in the form:

min
x∈Rd

F (x) �
n∑

i=1

fi(x). (1)

Here, each fi(x) is a smooth convex function, representing a loss (or misfit)
corresponding to the ith observation (or measurement). These problems are well
studied in the machine learning community [7, 27, 66]. In such applications, F in
Eq. (1) corresponds to the empirical risk [65], and the goal of solving Eq. (1) is
to obtain a solution with small generalization error, i.e., high predictive accuracy on
“unseen” data. We consider Eq. (1) at scale, where the values of n and d are large. In
such settings, the mere computation of the first- and second-order statistics (gradient
and the Hessian, respectively) of F increases linearly in n. In large-scale settings,
operations involving these statistics constitute the main computational bottleneck.
In such cases, randomized sub-sampling has been shown to be highly successful in
reducing computational and memory costs of the state-of-the-art optimizers to be
effectively independent of n.

The most commonly used optimization technique in machine learning is gradient
descent and its stochastic version, stochastic gradient descent (SGD). Gradient
descent is a simple iterative procedure that takes steps in the direction of the
negative gradient of the function, evaluated at the current point, using a step-
size that is chosen to satisfy appropriate descent conditions. The stochastic variant
of gradient descent estimates the gradient using mini-batches, as opposed to the
entire training dataset. Algorithms such as gradient descent, that solely rely on
gradient information, are often referred to as first-order methods. In typical problem
settings, gradient descent does not offer good convergence results owing to a
number of limitations: (1) approximating proper learning rate (a.k.a. step-size),
(2) same learning rate schedule is applied to all components of the parameters,
when in most cases some components of parameters change frequently compared to
other components that change slowly, and (3) minimizing highly non-convex error
functions associated with deep learning problems, like neural networks, are known
to be dominated by saddle points surrounded by high error plateaus, which make
it very hard to escape from these regions for methods like SGD [22]. To address
these challenges, several first-order alternatives have been proposed in recent
literature such as SGD with Momentum (henceforth referred to as Momentum) [60],
Adam [42], Adagrad [24], Adadelta [81], and RMSProp [32, 68]. However the
hyper-parameter space for these methods becomes large and the methods become
difficult to tune.

Compared with first-order alternatives, second-order methods use additional
curvature information in the form of the Hessian matrix. As a result of incorporating
such information, in addition to faster convergence rates, second-order methods
offer a variety of, rather more subtle, benefits. For example, unlike first-order
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methods, Newton-type methods have been shown to be highly resilient to increasing
problem ill-conditioning [63, 64, 72]. Furthermore, second-order methods typically
require fewer parameters (e.g., inexactness tolerance for the subproblem solver and
line-search parameters) and are less sensitive to their specific settings [4, 71]. By
using curvature information at each iteration, these methods scale the gradient so
that it is a more suitable direction to follow. Consequently, they typically require
much fewer iterations, as compared to first-order counterparts.

A key challenge in optimization for machine learning problems is the large,
often, distributed nature of the training dataset. It may be infeasible to collect
the entire training set at a single node and process it serially because of resource
constraints (the training set may be too large for a single mode), privacy (data may
be constrained to specific locations), or the need for reducing optimization time.
In each of these cases, there is a need for optimization methods that are suitably
adapted to the parallel and distributed computing environments.

Distributed optimization solvers adopt one of the two strategies: (1) executing
each operation in conventional solvers (e.g., SGD or (quasi) Newton) in a distributed
environment, e.g., [15, 18, 20, 23, 29, 40, 61, 69, 83]; or (2) executing an ensemble
of local optimization procedures that operate on their own data, with a coordinating
procedure that harmonizes the models over iterations, e.g., [74, 75]. The trade-
offs between these two methods are relatively well understood in the context of
existing solvers—namely that the communication overhead of methods in the first
class is higher, whereas the convergence rate of the second class of methods is
compromised. For this reason, methods in the first class are generally preferred in
tightly coupled data-center type environments, whereas methods in the latter class
are preferred for wide area deployments.

A method that occupies the middle ground between first- and second-order
methods relies on the natural gradient [36, 37, 76], proposed by Shun-chin Amari.
This work posits that in fitting probabilistic models, the underlying parametric
distributions can be thought of as belonging to a manifold, whose geometry is
governed by the Fisher information matrix. Under this hypothesis, scaling the
gradient using the Fisher information matrix can result in more effective directions
for navigating the manifold of the parametric probability densities. However, in
high-dimensional settings, using the exact Fisher matrix can be intractable. To
remedy this, Martens et al. [30, 52] proposed a method, called Kronecker Factored
Approximated Curvature (KFAC), to approximate the Fisher information matrix
and its inverse-vector product, and applied it to applications in neural networks and
reinforcement learning. It was shown that KFAC can significantly outperform many
of the first-order alternatives.

Deep learning models such as convolution neural networks, residual neural
networks, and LSTM [33] have millions of parameters for state-of-the-art network
architectures and training such networks is a time-consuming proposition partic-
ularly when massively large datasets are used for training. Higher-order solvers
that use higher-order statistics of the underlying networks are often prohibitively
expensive at scale. In this context more effective solvers which would yield
better, if not similar, results in same number of epochs, as well as speedup in
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processing the mini-batches are critical to the performance of the optimizer. Higher-
order solvers like Newton-type methods and KFAC methods have been shown
to achieve significantly better results compared to first-order solvers for convex
and non-convex optimization problems. GP-GPUs provide powerful platforms for
realizing these results in practice. With thousands of compute cores, associated high
performance memory architecture, single-instruction-multiple-thread (SIMT), and
programming semantics, GPUs are capable of handling large compute intensive
tasks with significant performance gains over traditional CPU cores. In fact without
hardware accelerators, like GPUs, training state-of-the-art deep learning networks
is often not possible in practice.

The rest of this chapter is organized as follows: Section 2 provides an overview
of the existing methods for convex and non-convex problems in machine learning.
Section 4 provides a discussion of higher-order methods for convex optimization;
Sect. 6 extends these results to distributed settings, dealing with massively large
datasets. Finally, in Sect. 5 we provide an in-depth analysis of a hybrid method,
which uses Fisher information matrix of the objective function, in the context
of deep convolution neural networks. These developments have motivated the
development of distributed optimizers for non-convex applications, which involve
deep networks with millions of model parameters and trained on massively large
datasets.

2 Related Research

SGD [6] is the most commonly used first-order method in machine learning,
owing to its simplicity and inexpensive per-iteration cost. Iterations in SGD require
computation of the gradient on a mini-batch scaled by a predetermined learning
schedule and possibly Nesterov-accelerated momentum [55]. It has been argued
that high-dimensional non-convex functions such as those arising in deep learning
are riddled with undesirable saddle points [2, 21, 22, 39]. For instance, convolutional
neural networks, CNNs, display structural symmetry in their parameter space, which
leads to an abundance of saddle points [3, 30, 51]. First-order methods, such as SGD,
are known to “zig-zag” in high curvature areas and “stagnate” in low curvature
regions [3, 22]. In these regions step-size (or learning rate) plays a critical role.
Perturbed gradient based methods [28, 39, 45], where random noise is injected in
the gradient computation have been proposed and shown to converge to second-
order stationary points. However, their computational cost is often worse compared
to second-order methods.

One of the primary reasons for the susceptibility of first-order methods to
getting trapped in saddle points or nearly flat regions is their reliance on gradient
information. Indeed, navigating around saddle points and plateau-like regions can
become a challenge for these methods because the gradient is close to zero in most
directions [22]. To this end, a number of alternate methods have been proposed
in recent times, which using history of gradients aim to approximate curvature
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information, and hence maintaining the simplicity of SGD. Such methods include
Adam [42] and Adagrad [24]. However, such approximations of the Hessian do
not always scale the gradient according to the entire curvature information. Hence,
these methods suffer from similar deficiencies near saddle points and flat regions.
More effective variants of these curvature approximations are those in quasi-Newton
methods such as SR1 [58], DFP [58], and BFGS [48, 58], which use rank-1
and rank-2 updates to iteratively approximate the Hessian. Aided by line-search
methods, typically satisfying Strong-Wolfe [58] conditions, these methods yield
good results compared to first-order methods for convex problems [43]. However,
these methods remain as topics of active investigation in the non-convex regime.

Newton-type optimizers have been developed as alternatives to first-order meth-
ods. These optimizers can effectively navigate the steep and flat regions of the
optimization landscape. By incorporating curvature information in the form of the
Hessian matrix, e.g., negative curvature directions, these methods can escape saddle
points [2, 21, 70, 73, 77, 79, 80]. Nocedal and Wright [58] propose the use of
absolute Hessian matrix, H, to update parameters. Dauphin et al. [21] propose a
saddle-free Newton method that optimizes first-order Taylor series approximation
of the objective function in a trust-region framework constrained by the distance
between successive updates measured by the curvature, |H | of the objective
function. In order to make this computationally tractable, the Lanczos-method is
used to compute the eigenvectors corresponding to few highest eigenvalues as an
approximation to H. Negative curvature descent methods, where the eigenvector
corresponding to the least eigenvalue is used to traverse past the parameter
manifold around saddle points, have been proposed by Yaodong Yu et al. [80].
Negative curvature can be embedded in gradient descent based methods, which upon
encountering saddle points injects random perturbations in the gradient to navigate
past the saddle points (perturbed gradient). Neon [2, 73] and Flash [79] methods also
use negative curvature direction in a novel form in stochastic methods to navigate
past the saddle points. However, such methods need to compute the least eigen-pair
for each iteration, which is computationally expensive. To avoid explicitly forming
the Hessian matrices, Hessian-free methods [14, 50, 54, 82] have been proposed,
which only require Hessian-vector products. Arguably, a highly effective among
these methods is the trust-region based method that comes with attractive theoretical
guarantees and is relatively easy to implement [16, 70, 71, 77].

Several distributed optimization solvers have been developed recently [15, 18,
20, 23, 29, 40, 61, 69, 83]. Among these, [15, 23, 29, 40] are classified as first-
order methods. Although they incur low computational costs, they have higher
communication costs due to a large number of messages exchanged per mini-
batch and high total iteration counts. Second-order variants [18, 20, 61, 69, 83]
are designed to improve convergence rate, as well as to reduce communication
costs (because of more accurate descent direction leading to fewer epochs to reach
convergence). DANE [20] and the accelerated scheme AIDE [61] use SVRG [41]
as the subproblem solver to approximate the Newton direction. These methods
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are often sensitive to the fine-tuning of SVRG. DiSCO [83] uses distributed
preconditioned conjugate gradient (PCG) to approximate the Newton direction. The
number of communications across nodes per PCG call is proportional to the number
of PCG iterations. In contrast to DiSCO, GIANT [69] executes CG at each node and
approximates the Newton direction by averaging the solution from each CG call.
Empirical results have shown that GIANT outperforms DANE, AIDE, and DiSCO.
The solver of Dunner et al. [25] is shown to outperform GIANT; however, it is
restricted to sparse datasets. More recently, DINGO [18] has been developed, which
unlike GIANT can be applied to a class of non-convex functions, namely invex [19],
which includes convexity as a special sub-class. However, in the absence of invexity,
the method can converge to undesirable stationary points.

A popular choice in distributed settings is ADMM [9], which combines dual
ascent method and the method of multipliers. ADMM only requires one round of
communication per iteration. However, ADMM’s performance is affected by the
selection of the penalty parameter [74, 75], as well as the choice of local subproblem
solvers.

Lying on the spectrum between first- and second-order methods is Amari’s
natural gradient method [36, 37]. This method provided a new direction in the
context of high-dimensional optimization of probabilistic models. In this work,
Amari showed that natural gradient descent yields Fisher efficient estimate of
the parameters; he subsequently applied the method to multi-layer perceptrons
for solving blind source detection problems. However, computing Fisher matrix
and its inverse in high-dimensional settings is computationally expensive both in
terms of memory and computational resources. RMSProp [32, 68] methods use
a diagonal approximation of Fisher matrix of the objective function to compute
the descent direction. These methods incur little overhead with regard to diagonal
approximation but nevertheless fail to make progress relative to SGD in some cases.
Martens et al. [30, 51, 52] proposed the KFAC method, which approximates the
natural gradient using Kronecker products of smaller matrices formed during back-
propagation. KFAC method and its distributed counterpart [3] have been shown to
outperform well-tuned SGD in many applications.

For non-convex optimization, we discuss an optimizer that couples the advan-
tages of trust-region and KFAC methods and propose a stochastic optimization
framework involving trust region objective computed on a mini-batch, constrained
to directions that are aligned with those obtained from KFAC. Major computational
tasks in updating the parameters in our method are Hessian-vector products
involving the solution of the trust region subproblem, as well as finding the KFAC
direction. Our Hessian-vector products can be computed at a similar cost as that
of gradient computation using back-propagation. Furthermore, the Fisher matrix
approximation and its inverse are only needed once every few mini-batches, thus
reducing average iteration cost significantly. Invariance to re-parameterization, as
well as immunity to large batch sizes, makes this method a suitable alternative to
first-order methods for practitioners.
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3 Notation and Assumptions

In the rest of this chapter, vectors are denoted by bold lowercase letters, e.g., v,
and matrices or random variables are denoted by bold uppercase letters, e.g., V.
For a vector v and a matrix V, ‖v‖ and ‖V‖ denote the vector �2 norm and matrix
spectral norm, respectively, while ‖V‖F is the matrix Frobenius norm. ∇f (x) and
∇2f (x) are the gradient and the Hessian of f evaluated at x, respectively, and I

denotes the identity matrix. For two symmetric matrices A and B, A � B indicates
that A − B is symmetric positive semi-definite. The superscript, e.g., x(k), denotes
iteration counter and ln(x) is the natural logarithm of x. S denotes a collection
of indices from {1, 2, · · · , n}, with potentially repeated items and its cardinality is
denoted by |S|.

We assume that each fi is twice-differentiable, smooth, and convex, i.e., for some
0 < Ki < ∞ and ∀x ∈ R

p

0 � ∇2fi(x) � KiI. (2a)

We also assume that F is smooth and strongly convex, i.e., 0 < γ ≥ K < ∞
and ∀x ∈ R

p

γ I � ∇2F(x) � KI. (2b)

Note that assumption (2b) implies uniqueness of the minimizer, x∗, which is
assumed to be attained. The quantity

κ = K

γ
(3)

is known as the condition number of the problem.
For an integer 1 ≤ q ≤ n, let Q be the set of indices corresponding to q largest

Ki’s and define the “sub-sampling” condition number as

κq = K̂q

γ
, (4)

where

K̂q = 1

q

∑

j∈Q
Kj, (5)

It is easy to see that for any two integers q and r such that 1 ≤ q ≤ r ≤ n, we
have κ ≤ κr ≤ κq . Finally, define
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κ̃ =
{

κ1 : If sample S is drawn with replacement
κ|S| : If sample S is drawn without replacement .

4 Convex Optimization Problems

The standard deterministic or full gradient method, which dates back to
Cauchy [13], for minimizing (1) uses iterates of the form:

x(k+1) = x(k) − αk∇F(x(k)).

Here, αk is the step-size at iteration k. However, when n � 1, the full gradient
method can be inefficient because its iteration cost scales linearly in n. In addition,
when p � 1 or when individual functions fi are complicated (e.g., evaluating each
fi may require the solution of a partial differential equation), the mere evaluation of
the gradient can be computationally prohibitive. Consequently, a stochastic variant
of full gradient descent, stochastic gradient descent (SGD) was developed [5, 6, 8,
17, 46, 62]. In such methods a subset S ⊂ {1, 2, · · · , n} is chosen at random and
the update is obtained by

x(k+1) = x(k) − αk

∑

j∈S
∇fj (x(k)).

When |S| � n (e.g., |S| = 1 for simple SGD), the iteration cost of stochastic
gradient methods is independent of n and can be much cheaper than the full gradient
methods, making them suitable for modern problems with large n. This class of
methods is referred to as first-order methods, since only the gradient information is
used at each iteration. By incorporating curvature information (e.g., Hessian) as a
form of scaling the gradient, i.e.,

x(k+1) = x(k) − αkDk∇F(x(k)),

we can significantly improve convergence rate. This class of methods, which take
curvature information into account, are known as second-order methods. Compared
to first-order methods, they enjoy superior convergence rate in theory, as well as in
real application scenarios. This is because of implicit local scaling of components
at a given x, which is determined by the local curvature of F . This local curvature
determines the condition number of a F at x. Consequently, second-order methods
can rescale the gradient direction so that it is a better direction to traverse. Second-
order methods have long been used in many machine learning applications [6, 11,
12, 47, 50, 78].

The canonical example of second-order methods, Newton’s method [10, 55, 57],
uses a step-size of one and scales the gradient by the inverse of the Hessian, i.e.,
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x(k+1) = x(k) −
[
∇2F(x(k))

]−1 ∇F(x(k)).

It is well known that for a smooth and strongly convex function F , the Newton
direction is always a descent direction and with a suitable step-size, αk , global
convergence is guaranteed. In addition, for cases when F is not strongly convex,
Levenberg–Marquardt type regularization [44, 49] of the Hessian can be used to
obtain a globally convergent algorithm. Newton’s method exhibits scale invariance,
i.e., for some new parameterization x̃ = Ax for invertible matrix A, optimal search
direction in the new coordinate system is p̃ = Ap, where p is the original optimal
search direction. In contrast the search direction produced by gradient descent
methods behaves in an opposite fashion p̃ = A−ᵀp. This scale invariance property
is important for effectively optimizing poorly scaled parameters; see [50] for an
intuitive explanation of this phenomenon. However, when n, p � 1, the per-
iteration cost of this algorithm is significantly higher than that of first-order methods.

We now discuss a sub-sampling based method that approximates the gradient and
Hessian of the objective function and present analyses of bounds on sample sizes.
We then present results for an accelerated sub-sampled Newton’s method over a
range of real-world datasets and show that such methods can be highly competitive
for machine learning applications.

For the optimization problem Eq. (1), in each iteration, consider selecting
two sample sets of indices from {1, 2, . . . , n}, uniformly at random with or
without replacement. Let Sg and SH denote the sample collections, and define
g and H as

g(x) � n

|Sg|
∑

j∈Sg

∇fj (x), (6a)

H(x) � n

|SH|
∑

j∈SH

∇2fj (x) (6b)

to be the sub-sampled gradient and Hessian, respectively.

Lemma 1 (Uniform Hessian Sub-sampling) Given any 0 < εH < 1, 0 < δ < 1,
x ∈ R

p, and assumption (2a) holds, if

|SH| ≥ 2κ1log(p/δ)

ε2
H

,

then for H(x) defined in (6b), we have

Pr ((1 − εH)γ ≤ λmin(H(x))) ≥ 1 − δ,

where γ and κ1 are defined in (2b) and (4), respectively.
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Using random matrix concentration inequalities, Roosta et al., [63, 64] derive
lower bounds on the sample sizes for gradient and Hessian computation to proba-
bilistically guarantee their utility in sub-sampled Newton-type methods. Depending
on κ1, the sample size |SH| can be smaller than n. In addition, we can always guar-
antee that the sub-sampled Hessian is uniformly positive definite and, consequently,
the direction given by it, indeed, yields a direction of descent. Note that the sample
size |SH| here grows only linearly in κ1 compared to quadratically as in [63, 64].

Lemma 2 (Uniform Gradient Sub-Sampling) For a given x ∈ R
p, let:

‖∇fi(x)‖ ≤ G(x), i = 1, 2, · · · ,n . (7)

For any 0 < εg < 1 and 0 < δ < 1, if

|Sg| ≥ G(x)2

ε2
g

(
1 +

√
8ln

1

δ

)2

, (8)

then for g(x) defined in (6a), we have

Pr
(‖∇F(x) − g(x)‖ ≤ εg

) ≥ 1 − δ.

Lemma 2 assumes that sampling preserves as much first-order information from the
full gradient as possible. Note that in each iteration, G(x) is required to guarantee
the theoretical bounds on the gradient sample size, |Sg|. Fortunately this can be
estimated for most of the well-known objective functions [63].

With the bounds in Lemmas 1 and 2 on the size of the samples, |Sg| and |SH|,
one can, with high probability, ensure that g and H are “suitable” approximations to
the full gradient and Hessian, in an algorithmic sense [63, 64]. For each iterate x(k),
using the corresponding sub-sampled approximations of the full gradient, g(x(k)),
and the full Hessian, H(x(k)), we consider inexact Newton-type iterations of the
form

x(k+1) = x(k) + αkpk, (9a)

where pk is a search direction satisfying

‖H(x(k))pk + g(x(k))‖ ≤ θ‖g(x(k))‖, (9b)

for some inexactness tolerance 0 < θ < 1 and αk is the largest α ≤ 1 such that:

F(x(k) + αpk) ≤ F(x(k)) + αβpT
k g(x(k)), (9c)

for some β ∈ (0, 1).



Parallel Optimization Techniques for Machine Learning 391

The requirement in Eq. (9c) is often referred to as Armijo-type line-search [58],
and (9b) is the θ -relative error approximation condition of the exact solution to the
linear system:

H(x(k))pk = −g(x(k)), (10)

which is similar to that arising in classical Newton’s method. Note that in (strictly)
convex settings, where the sub-sampled Hessian matrix is symmetric positive
definite (SPD), conjugate gradient (CG) with early stopping can be used to obtain an
approximate solution to Eq. (10) satisfying Eq. (9b). It has also been shown [63, 64]
that to inherit the convergence properties of the rather expensive algorithm that
employs the exact solution to Eq. (10), the inexactness tolerance, θ , in Eq. (9b) can
be chosen in the order of the inverse of the square root of the problem condition
number. As a result, even for ill-conditioned problems, only a relatively moderate
tolerance for CG ensures that we maintain convergence properties of the exact
update (see also examples in Sect. 4.1). Putting all of these together, we obtain
Algorithm 1, which under specific assumptions has been shown [63, 64] to be
globally linearly convergent1 with problem-independent local convergence rate.2

Algorithm 1: Sub-Sampled Newton Method

Input : Initial iterate, x(0)

Parameters: εg as in Lemma( 2) εH as in Lemma( 1) and σ ≥ 0
1 foreach k = 0, 1, 2, . . . do
2 Form g(x(k)) as in Eq. (6a)
3 Form H(x(k)) as in Eq. (6b)
4 if ‖g(x(k))‖ < σε then

STOP
end

5 Update x(k+1) as in Eq. (9)
end

Theorem 1 (Global Convergence of Algorithm: 1: Inexact Update) Let
Assumptions 2 hold. Also let 0 < θ < 1 be given. For any xk ∈ R

p, using
Algorithm 1 with εH < 1

2 , the “inexact” update direction 6b, and

σ ≥ 8κ̃

(1 − θ)(1 − β)
,

1It converges linearly to the optimum, starting from any initial guess x(0).
2If the iterates are close enough to the optimum, it converges with a constant linear rate independent
of the problem-related quantities.
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we have the following with probability 1 − δ:

1. if “STOP,” then

∥∥∥∇F(x(k))

∥∥∥ < (1 + σ)εg, (11)

2. otherwise, global convergence results for Hessian sample size hold where

(a) if

θ ≤
√

(1 − εH)

4κ̃
, (12)

then ρ = 4αkβ/9κ̃ ,
(b) otherwise ρ = 4αkβ(1−θ)(1−εH)/9κ̃2, with κ̃ defined as in (6). Moreover,

for both cases, the step-size is at least

αk ≥ (1 − θ)(1 − β)(1 − εH)

κ
, (13)

where κ is defined as in (3).

Theorem 1 says that, in order to guarantee a faster convergence rate, the linear
system needs to be solved to a “high-enough” accuracy, which is in the order of
O(

√
1/κ̃).

4.1 Experimental Results

We compare our methods to state-of-the-art methods—SGD with momentum
(henceforth referred to as Momentum) [67], Adagrad [24], Adadelta [81], Adam
[42], and RMSProp [68] as implemented in TensorFlow [1].

Table 1 presents the datasets used, along with the Lipschitz continuity constant
of ∇F(x), denoted by L. Recall that, an over-estimate of the condition number of
the problem, as defined in [63], can be obtained by (L + λ)/λ. As it is often done
in practice, we first normalize the datasets such that each column of the data matrix
A ∈ R

n×p has Euclidean norm one. This helps with the conditioning of the problem.
The resulting dataset is, then, split into training and testing sets, as shown in Table 1.

Table 1 Description of the datasets

Dataset Train size (n) Test size Features (p) Classes(C) Lipschitz Const. (L)

Drive diagnostics 50,000 8509 48 11 3.95

MNIST 38,000 38,000 785 10 28.67

CIFAR-10 50,000 10,000 3072 10 534.92

Newsgroups20 10,142 1127 53,975 20 128.79
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We present results for two implementations of second-order methods: (a)
FullNewton, the classical Newton-CG algorithm [58], which uses the exact gradient
and Hessian, and (b) SubsampledNewton-20, |Sg| = 0.2n, and SubsampledNewton-
100, |Sg| = n, are compared against first-order methods using batch sizes 128 and
20%, respectively. These methods use |SH| = 0.05n. CG-tolerance is set to 10−4.
Maximum number of CG iterations is 10 for all datasets except Drive Diagnostics
and Gisette, for which it is 1000. λ is set to 10−3 and we perform 100 iterations
(epochs) for each dataset.

Tables 2 and 3 present the performance results of the proposed Newton-type
methods in comparison with first-order methods for batch sizes 128 and 20%,
respectively. In each of these tables we show the plots for cumulative time vs.
test accuracy in column 1 and cumulative time vs. objective function (training) in
column 2. Please note that x-axis in all the plots is in “log-scale.”

4.1.1 Drive Diagnostics Dataset

Row 2 of Tables 2 and 3 shows the results for the Drive Diagnostics dataset for
batch sizes 128 and 20% (of the dataset), respectively. We notice that all Newton-
type methods achieve lower objective function in the initial few iterations compared
to first-order counterparts. When the batch size is larger, we notice that first-order
methods take longer to achieve the same objective function value compared to
smaller batch sized counterparts. Note that smaller gradient sample size yields
similar results (objective function value and generalization error) throughout the
simulations.

4.1.2 MNIST and CIFAR-10 Datasets

Rows 3 and 4 in Tables 2 and 3 present plots for MNIST and CIFAR-10 datasets,
respectively. Regardless of the batch size, Newton-type methods clearly outperform
first-order methods for these two datasets. When larger batch size is used for first-
order methods, we notice that these methods take more epochs compared to their
smaller batch sized counterparts in reaching same objective function value and
generalization error. This behavior is more prominent in CIFAR-10 dataset, which
represents a relatively ill-conditioned problem. As a result, in terms of lowering
the objective function on CIFAR-10, first-order methods are negatively impacted
by problem ill-conditioning, whereas all Newton-type methods show excellent
robustness. (Note that, for CIFAR-10, our proposed methods are ≈1000× faster
than first-order alternatives irrespective of the mini-batch size.)

4.1.3 Newsgroups20 Dataset

Plots in row 5 of Tables 2 and 3 represent Newsgroups20 dataset, which is a sparse
dataset, and the Hessian is ≈1e6 × 1e6. We clearly notice SubsampledNewton-100
yields superior training accuracy compared to all methods (column 1). However,
SubsampledNewton-20 takes more epochs to achieve the same objective function



Table 2 Performance comparison between first-order and second-order methods (batch size =
128)

Time vs. Accuracy Time vs. Objective Function (training)
First Order Batch Size = 128

Alg. 1 Gradient Sample Size = 100%
Alg. 1 Hessian Sample Size = 5%

Drive Diagnostics

MNIST

CIFAR-10

newsgroups



Table 3 Performance comparison between first-order and second-order methods (batch size =
20%)

Time vs. Accuracy Time vs. Objective Function (training)
First Order Batch Size = 20%

Alg. 1 Gradient Sample Size = 20%
Alg. 1 Hessian Sample Size = 5%

Drive Diagnostics

MNIST

CIFAR-10

newsgroups



396 S. Kylasa et al.

value as its full gradient counterpart, as seen in column 4. This can be attributed to
a smaller gradient sample size and the sparse nature of this dataset.

4.2 Sensitivity to Hyper-Parameter Tuning

A major consideration for first-order methods is that of fine-tuning of various
underlying hyper-parameters, most notably, the step-size [4, 71]. Indeed, the success
of most such methods is strongly determined by many trial-and-error steps to find
proper parameter settings. In contrast, second-order optimization methods involve
much less parameter tuning and are less sensitive to specific choices of their hyper-
parameters [4, 71].

To further highlight these issues, we demonstrate the sensitivity of several
first-order methods with respect to their learning rate. Figure 1 shows the results
of multiple runs of SGD with Momentum, Adagrad, RMSProp and Adam on

(a) (b)

(c) (d)

(e)

Fig. 1 Sensitivity of various first-order methods with respect to the choice of the step-size, i.e.,
learning rate. It is clear that too small a step-size can lead to slow convergence, while larger step-
sizes cause the method to diverge. The range of step-sizes for which some of these methods perform
reasonably can be very narrow. This is in contrast with Newton-type, which comes with a priori
“natural” step-size, i.e., α = 1, and only occasionally requires the line-search to intervene. (a)
SGD with Momentum. (b) Adagrad. (c) RMSProp. (d) Adam. (e) Step-sizes
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Newsgroups20 dataset with several choices of step-size. Each method is run 13
times using step-sizes in the range 10−6/L to 106/L, in increments of 10, where
L is the Lipschitz constant; see Table 1. It is clear that small step-sizes can result
in stagnation, whereas large step-sizes can cause the method to diverge. Only if the
step-size is within a particular and often narrow range, which greatly varies across
various methods, does one see reasonable performance.

Remark 1 For some first-order methods, e.g., momentum based, line-search type
techniques simply cannot be used. For others, the starting step-size for line-search is,
almost always, a priori unknown. This is in sharp contrast with randomized Newton-
type methods considered here, which come with a priori “natural” step-size, i.e.,
α = 1, and furthermore, only occasionally require the line-search to intervene;
see [63, 64] for theoretical guarantees in this regard.

5 Non-convex Optimization

With the goal of avoiding being trapped at saddle points, many first-order alter-
natives such as Adam and Adagrad, and quasi-Newton methods that use low-rank
updates, approximate underlying curvature of the objective function. These methods
either require a large number of iterations for convergence (first-order alternatives)
or are unstable in practice. Natural gradient based methods were proposed in
the early 1960s and have been shown to yield efficient parameter estimates for
non-convex applications, but were computationally expensive because of high-
dimensionality of deep learning problems. Recently, Martens et al. [30, 50–52]
proposed approximation methods to efficiently estimate Fisher matrix (and asso-
ciated natural gradient direction) and proved that natural gradient based learning
methods can yield superior results for non-convex applications. In this section, we
describe a stochastic trust-region based method and validate it using real-world
datasets for learning convolution neural networks (CNNs).

We describe a technique called Fisher Informed Trust-REgion (FITRE ) method,
which is inspired by Martens and Grosse [52], Xu et al. [70], and Yao et al. [77] and
is formalized in Algorithm 2. At the heart of FITRE lies the stochastic trust-region
method using the local quadratic approximation:

min‖s‖≤t

mt (s) = 〈gt , s〉 + 1

2
〈s, Ht s〉 . (14)

We adopt the approach of [77] and use a stochastic estimate of the gradient gt and
Hessian Ht . [70, 71]. The step-length which is governed by the trust-region radius
t is automatically adjusted based on the quality of the quadratic approximation and
the amount of descent in the objective function. In practice, (14) is approximated by
restricting the problem to lower dimensional spaces, e.g., Cauchy condition, which
amounts to searching in a one-dimensional space spanned by the gradient. Here,
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we do the same, however by restricting the subproblem to the space spanned by
the direction derived from the Kronecker factorization of the Fisher matrix, or its
combination with the gradient.

Our choice is motivated by the following observation: when the objective func-
tion involves probabilistic models, as is the case in many deep learning applications,
natural gradient direction amounts to the steepest descent direction among all
possible directions inside a ball measured by KL-divergence between the underlying
parametric probability densities. On the contrary, the (standard) gradient represents
the direction of steepest descent among all directions constrained in a ball measured
by the Euclidean metric [30], which is less informative than the former, though
much easier to compute. To alleviate the computational burden of working with the
Fisher information matrix and its inverse, Kronecker-product based approximations
[51, 52] have shown success in simultaneously preserving desirable properties of
the exact Fisher matrix such as invariance to re-parameterization and resilience to
large batch sizes. Indeed, many empirical studies have confirmed that the natural
gradient provides an effective descent direction for optimization of neural networks
[30, 50–52].

5.1 Natural Gradient Computation

We present an overview of the approximations involved in estimating the natural
gradient direction. We refer readers to [30, 52] for a detailed discussion on
estimation of Fisher information matrix and approximations used in deriving the
natural gradient direction.

We define

Dθ := dL(y, f (x, θ))

dθ
= −d log p(y|x, θ)

dθ
,

where Dθ is the gradient of the loss function, which is computed using the
conventional back-propagation algorithm. Since the network defines a conditional
distribution p(y|x, θ), its associated Fisher information matrix is given by

F(θ) = E

[
d log p(y|x, θ)

dθ

(
d log p(y|x, θ)

dθ

)ᵀ]
= E

[Dθ (Dθ)
ᵀ]

. (15)

Natural gradient is defined as F−1(θ)∇h(θ). It defines the direction in parameter
space that gives the largest change in the objective function per unit change in the
model, as measured by the KL-divergence, which is measured between the model
output distribution and the true label distribution. In the context of this discussion,
for simplicity, we drop the dependence of F and h on θ .
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5.2 Natural Gradient Using Kronecker Factored Approximate
Curvature Matrix:

We define:

E

[
vec

(
W̄l

)
vec

(
W̄l

)ᵀ]
≈ � l−1 ⊗ �l � F̆l , (16)

where � l−1 and �l denote the second moment matrices of the activation and pre-
activation derivatives, respectively.

To invert F̆, we use the fact that: (1) we can invert a block-diagonal matrix by
inverting each of the blocks and (2) the Kronecker product satisfies the identity
(A ⊗ B)−1 = A−1 ⊗ B−1:

F̆−1 =
⎡

⎢⎣
�−1

0 ⊗ �−1
1 0

. . .

0 �−1
�−1 ⊗ �−1

�−1

⎤

⎥⎦ . (17)

The approximate natural gradient F̆−1∇h can be computed as follows:

F̆−1∇h =

⎡

⎢⎢⎢⎣

vec
(
�−1

1

(
∇W̄1

h
)

�−1
0

)

...

vec
(
�−1

�

(
∇W̄�

h
)

�−1
�−1

)

⎤

⎥⎥⎥⎦ . (18)

A common multiple of the identity matrix is added to F for two reasons: First, as a
regularization parameter, which corresponds to a penalty of 1

2λθ
ᵀ
θ . This translates

to F + λI to approximate the curvature of the regularized objective function.
The second reason is to use it as a damping parameter to account for multiple
approximations used to derive F̆, which corresponds to adding γ I to the approximate

curvature matrix. Therefore, we aim to compute:
[
F̆ + (λ + γ ) I

]−1 ∇h.

Since adding the term (λ + γ )I breaks the Kronecker factorization structure, an
approximated version is used for computational purposes, which is as follows:

F̆� + (λ + γ ) I ≈
(
��−1 + π�

√
λ + γ I

)
⊗

(
�� + 1

π�

√
λ + γ I

)
(19)

for some π�.
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Algorithm 2: FITRE
Input :

- Starting point x0
- Initial trust-region radius: 0 < 0 < ∞
- KFAC parameters: damping parameter (γ ≥ 0), moving

average (0 < θ < 1)
Result: xt - direction to be used to update model parameters.
foreach t = 0, 1, . . . do

Set the approximate gradient gt and Hessian Ht

/* Compute the approximated Inverse Fisher ×
gradient, a.k.a natural-gradient */

Obtain natural-gradient direction pt , as described in [30, 52]
Case 1: KFAC

ηt = arg min
‖ηpt‖≤t

m(ηpt ) = ηgᵀt pt + η2

2 pᵀ
t Htpt

st = ηtpt

Case 2: KFAC + Gradient
ηt = arg min

‖ηpt‖≤t

m(ηpt ) = ηgᵀt pt + η2

2 pᵀ
t Htpt

αt = arg min
‖αgt‖≤t

m(ηgt ) = αgT
t gt + α2

2 gT
t Htgt

st = arg min
s∈{ηt pt ,αt gt }

m(s)

Set ρt � ht (θ t )−ht (θ t+st )−m(st )
, (ht (.)

are evaluated on the same mini-batch as gt and Ht ).
if ρt ≥ 0.75 then

wt+1 = wt + st and t+1 = min{2t,max}
end
else if ρt ≥ 0.25 then

wt+1 = wt + st and t+1 = t

end
else

wt+1 = wt and t+1 = t/2
end

end

Algorithm 2 describes a realization of our proposed method in trust-region
settings. First, the natural gradient direction, pt is computed and used in determining
the step-size using the quadratic approximation of the objective function at pt ,
whose closed-form solution is (/ ‖Htpt + gt‖) (Htpt + gt ) (note that gradient, gt ,
can also be used to estimate the step-size and may yield a better descent direction
in some cases). Once the step-size, η is determined, ρt is computed over the same
mini-batch to determine the trust-region radius as well as the iterate update. These
steps are repeated until desired generalization is achieved. Note that we can compare
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the efficiency of natural gradient direction with that of the standard gradient and use
the appropriate one at each iteration, this is referred to as “KFAC + gradient” in this
algorithm.

5.3 Updating KFAC Block Matrices

Block matrices, � l and �l , are typically updated using a momentum term to capture
the variance in input samples across successive mini-batches. If sample points across
the dataset are well correlated, with little variance among the sample points, the
inverse block matrices, �−1

l and �−1
l , need not be updated for every mini-batch.

“KFAC Update Frequency,” the frequency with which the inverse block matrices
are updated, is typically decided based on the size of the input dataset as well as the
correlatio n among the sample points. For boot strapping the optimizer, we either
use a larger sample of the dataset, like 5 × the mini-batch size, or use the very first
mini-batch itself for computing the block inverses.

5.4 Experimental Results

Tables 4 and 5 present a comparison of our solver, FITRE with other state-of-the-
art methods on the ImageNet dataset using VGG11 convolutional neural networks
(CNNs) and Tables 6 and 7 show the results for VGG16 CNN. In these tables, we
show the generalization errors plotted against wall-clock time and against number of
epochs in Columns 3 and 4, respectively, and negative log-likelihood (NLL) using
softmax cross-entropy loss function against wall-clock time and against number of
epochs in Columns 1 and 2, respectively. KFAC update frequency is set to 5 (mini-
batches) for the first row and for the second row, it is set to 25. Plots in Tables 4 and 6
use default initialization, as defined in pyTorch, which is a uniform distribution.
Corresponding results using Kaiming initialization [31] (this initialization is based
on random Gaussian distribution) are shown in Tables 5 and 7.

The following conclusions can be made from the plots for VGG11 (as shown in
Tables 4 and 5) and VGG16 (as shown in Tables 6 and 7). (1) FITRE minimizes the
likelihood function to a significantly smaller value compared to well-tuned SGD,
and at any given wall-clock instant (FITRE yields better NLL value compared to
SGD), (2) Kaiming initialization yields superior generalization errors compared to
default initialization of the CNNs, (3) contrary to expectations KFAC update fre-
quency of 25 yields better generalization errors relative to more frequent updates, (4)
with increasing network complexity, VGG16 compared to VGG11, FITRE yields
significantly better generalization errors compared to SGD, showcasing its superior
scaling characteristics compared to SGD, and (5) default initialization is relatively
immune to �2 regularization compared to Kaiming initialization.

For VGG16 network with Kaiming initialization and KFAC update frequency of
25 we observe that to attain 50% test accuracy FITRE (with 1e-6 regularization)
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takes ≈6500 s compared to ≈20,500 s for SGD (for all regularizations used);
a speedup of 3.2 over SGD. Furthermore, when regularization is set to 1e−4

FITRE achieves 53.5% test accuracy, whereas SGD fails to obtain similar accuracy.
Similar arguments can be made for the VGG11 network as well. This shows that
even though FITRE is computationally more expensive on a per-iteration basis,
it yields significantly better results in shorter time compared to SGD. This can be
attributed to better descent direction (SGD’s gradient vs. FITRE ’s natural gradient)
and an adaptive second-order approximated learning rate computation within the
trust-region framework used by the FITRE .

Contrary to expectation, we notice that for VGG11 CNN and default ini-
tialization, FITRE’s execution of 50 epochs takes less time compared to SGD
for KFAC update frequency 25. FITRE makes two passes over the network
(one forward and backward pass for gradient computation and another pass for
Hessian-vector product computation used to compute the learning rate in the
trust-region framework). One would expect that SGD is at least twice as fast as
FITRE on the wall-clock time (on a per-iteration basis). We note that SGD’s
pyTorch implementation uses auto-differentiation to compute the gradient of the
given network, whereas our implementation of the FITRE is R-operator based (as
proposed by Perlmutter et al. [59]). We note that GPU memory management in
pyTorch is not efficient [26, 43]. pyTorch allocates and frees memory very often and
tends to persist very little information on the device. Even though FITRE makes
two passes over the network and computes inverses of smaller matrices at each
layer of the network (for computing the inverse of the KFAC block matrices) our
implementation persists relevant information on the GPU memory. Coupled with
our efficient implementation of the R-operator based Hessian-vector product, we
can significantly reduce the computation cost associated with each mini-batch.
In addition, our proposed method is a true stochastic online method in which
there is no dependence on any part of the dataset other than the current mini-
batch during its entire execution, compared to state-of-the-art existing second-order
methods [53, 56].

We also note that default initialization is immune to regularization for both
networks (VGG11 and VGG16) and for both methods (FITRE and SGD). These
two methods show negligible changes in NLL function values (as well as gener-
alization errors) while the FITRE yields superior results compared to SGD for
significant part of the execution. At the end of the execution, SGD tends to achieve
similar generalization errors compared to FITRE but on minimizing the NLL
function FITRE always achieves superior results. However, when using Kaiming
initialization, based on random Gaussian distribution, for both the networks, we
notice that regularization helps in achieving superior generalization errors for
FITRE (with VGG11 network, KFAC update frequency set to 25 and regularization
of 1e−6) compared to SGD. But in all cases, FITRE yields superior results when
the underlying model does not use any regularization. Compared to FITRE , SGD is
relatively invariant to Kaiming initialization as well, as shown in plots in columns 1
and 2 of Tables 5 and 7. Notice that there is very little change in objective function
value throughout the simulations.
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KFAC update frequency is a hyper-parameter used to control the frequency with
which the block matrix inverses are computed at each layer of the network. These
block inverses are used to compute the natural gradient direction eventually for
each mini-batch. Since these blocks approximate the Fisher matrix of the loss
function, they are updated once every few mini-batches. Martens et al. [30, 52]
argue that more frequent updates of these block inverses make them too rigid and
may lead to overfitting. Using larger values for this update frequency has the effect
of a regularizer on the underlying model and helps in avoiding overfitting. As an
added advantage, this dependence of the FITRE reduces its computation cost (note
also that the computation of block inverses can be delegated to slave processing
units, if available, further reducing the computation cost thereby decreasing the
time for processing each mini-batch). This is also one of the reasons why our
proposed method scales well with increasing network complexity. We note that for
VGG16 (with Kaiming initialization), a larger and more complex network compared
to VGG11, FITRE yields superior generalization errors as well as minimizing
objective function compared to SGD.

6 Distributed Higher-Order Methods

Typically, machine learning problems are associated with massively large datasets
during the training phase for learning model parameters. In such scenarios, one must
resort to distributed/parallel methods for training models, due to resource constraints
on individual nodes. Even in stochastic settings, where only a small part of the
dataset is processed at any point in time, time spent in training is a critical parameter
contributing to the use of distributed procedures in deep learning. Furthermore,
it may be infeasible to accumulate the dataset at a single physical location either
due to privacy or resource constraints of the underlying application or system.
In such applications communication-efficient optimizers can significantly reduce
the training time while optimally using the compute resources. The need for such
methods is even more pressing when nodes in distributed systems are connected
through high latency networks.

Several distributed optimization techniques have been developed in the recent
past to address these concerns. Distributed methods, which are direct adaptations of
existing first-order or quasi-Newton methods (i.e., those that parallelize kernel oper-
ations such as matrix–vector and dot products), suffer from high communication
overhead because of the exchange of model parameters at least once in each iteration
among the compute nodes, in addition to inherent communication overhead of the
optimizer itself. Ensemble methods in which local optimization procedures compute
local solutions (using only locally available data) and a coordinating consensus
procedure, which harmonizes local solutions to form a global solution, are more
efficient in high latency environments.

In this section, we discuss a communication-efficient method, called Newton-
ADMM, based on Alternating Direction Methods of Multipliers (ADMM) frame-
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work coupled with sub-sampled Newton-type methods for local optimization as
discussed in Sect. 4, along with results using real-world datasets in the context of
convex optimization problems of the form (1).

Let N denote the number of nodes (compute elements) in the distributed
environment. Assume that the input dataset D is split among the N nodes as
D = D1 ∪ D2 . . . ∪ DN . Using this notation, (1) can be written as:

min
N∑

i=1

∑

j∈Di

fj (xi ) + g(z) (20)

s.t. xi − z = 0, i = 1, . . . ,N,

where z represents a global variable enforcing consensus among xi’s at all the
nodes. In other words, the constraint enforces a consensus among the nodes so
that all the local variables, xi , agree with global variable z. This formulation (20)
is often referred to as a global consensus problem. ADMM is based on an
augmented Lagrangian framework; it solves the global consensus problem by
alternating iterations on primal/dual variables. In doing so, it inherits the benefits
of decomposability of dual ascent and the superior convergence properties of the
method of multipliers. For a detailed discussion on ADMM method, we refer the
readers to [9].

ADMM methods introduce a penalty parameter ρ, which is the weight on the
measure of disagreement between xi’s and global consensus variable, z. The most
common adaptive penalty parameter selection is Residual Balancing [9], which tries
to balance the dual norm and residual norm of ADMM. Recent empirical results
using Spectral Penalty Selection (SPS) [75], which is based on the estimation of
the local curvature of subproblem at each node, yield significant improvement in
the efficiency of ADMM. Using the SPS strategy for penalty parameter selection,
ADMM iterates can be written as follows:

xk+1
i = arg min

xi

fi(xi ) + ρk
i

2
||zk − xi + yk

i

ρk
i

||22, (21a)

zk+1 = arg min
z

g(z) +
N∑

i=1

ρk
i

2
||z − xk+1

i + yk
i

ρk
i

||22, (21b)

yk+1
i = yk

i + ρk
i (zk+1 − xk+1

i ). (21c)

With �2−regularization, i.e., g(x) = λ‖x‖2/2, (21b) has a closed-form solution
given by

zk+1(λ +
N∑

i=1

ρk
i ) =

N∑

i=1

[
ρk

i xk+1
i − yk

i

]
, (22)

where λ is the regularization parameter.
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Algorithm 3: ADMM method (outer solver)

Input : x(0) (initial iterate), N (no. of nodes)
Parameters: β, λ and θ < 1

1 Initialize z0 to 0
2 Initialize y0

i to 0 on all nodes.
foreach k = 0, 1, 2, . . . do

3 (i) Perform Algorithm 1 with, xk
i , yk

i , and zk on all nodes

4 (ii) Collect all local xk+1
i

5 (iii) Evaluate zk+1 and yk+1
i using (21b) and (21c).

6 (iv) Distribute zk+1 and yk+1
i to all nodes.

7 (v) Locally, on each node, compute spectral step-sizes and penalty
parameters as in [75]

end

Algorithm 3 presents a distributed optimization method incorporating the above
formulation of ADMM. Steps 1 and 2 initialize the multipliers, y, and consensus
vectors, z, to zeros. In each iteration, Single Node Newton method, Algorithm 1, is
executed with local xi , yi , and global z vectors. Upon termination of Algorithm 1 at
all nodes, resulting local Newton directions, xk

i , are gathered at the master node,
which generates the next iterates for vectors y and z using spectral step-sizes
described in [75]. These steps are repeated until convergence.

Remark 2 Note that in each ADMM iteration only one round of communication
is required (a “gather” and a “scatter” operation), which can be executed in
O(log(N)) time. Further, the application of the GPU-accelerated inexact Newton-
CG Algorithm 1 at each node significantly speeds up the local computation per
epoch. The combined effect of these algorithmic choices contributes to the high
overall efficiency of the proposed Newton-ADMM Algorithm 3 when applied to
large datasets.

6.1 ADMM Residuals and Stopping Criteria:

The consensus problem (20) can be solved by iterating ADMM subprob-
lems (21a), (21c), and (21b). To monitor the convergence of ADMM, we can check
the norm of primal and dual residuals, rk and dk , which are defined as follows:

rk =
⎡

⎢⎣
rk

1
...

rk
N

⎤

⎥⎦ , dk =
⎡

⎢⎣
dk

1
...

dk
N

⎤

⎥⎦ , (23)
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where ∀i ∈ {1, 2, . . . ,N},

rk
i = zk − xk

i , dk
i = −ρk

i (zk − zk−1). (24)

As k → ∞, zk → z∗ and ∀i, xk
i → z∗. Therefore, the norm of primal and dual

residuals, ||rk|| and ||dk||, converges to zero. In practice, we do not need the solution
to high precision, thus ADMM can be terminated as ||rk

i || ≤ εpri and ||dk
i || ≤ εdual .

Here, εpri and εdual can be chosen as:

εpri = √Nεabs + εrel max{
N∑

i=1

||xk
i ||2,N ||zk||2} (25)

εdual = √
dεabs + εrel max{

N∑

i=1

||yk
i ||2}. (26)

The choice of absolute tolerance εabs depends on the chosen problem and the
choice of relative tolerance εrel for the stopping criteria is, in practice, set to 10−3

or 10−4.

6.2 Experimental Results

In this section, we evaluate the performance of Newton-ADMM as compared with
several state-of-the-art alternatives. In these experiments, pyTorch is used as the
software platform and nodes are equipped with NVIDIA P100 GPU accelerators.
Table 8 describes the datasets that are used for validation purposes.

6.3 Comparison with Distributed First-Order Methods

While the per-iteration cost of first-order methods (synchronous SGD) is relatively
low, they require larger number of iterations, increasing associated communication
overhead, and CPU–GPU transactions (because of resource constraints on GPUs,
data must be swapped back to the CPU for temporarily releasing global memory

Table 8 Description of the
datasets

Classes Dataset Train size Test size Dims

2 HIGGS 10,000,000 1,000,000 28

10 MNIST 60,000 10,000 784

10 CIFAR-10 50,000 10,000 3072

20 E18 1,300,128 6000 279,998
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on the GPUs, partly because of the pyTorch’s execution model). In this experiment,
we demonstrate that these drawbacks of first-order methods are significant, in the
context of MNIST, CIFAR-10, HIGGS, and E18 datasets using four workers for
Newton-ADMM and synchronous SGD, both with the GPUs enabled and GPUs
disabled. The results are shown in Table 9. We note that GPU-accelerated Newton-
ADMM method with minimal communication overhead yields significantly better
results—over an order of magnitude faster in most cases, when compared to
synchronous SGD.

We present the ratio of CPU time to GPU time for Newton-ADMM and SGD
in Table 10. We observe that for both Newton-ADMM and SGD, the CPU–GPU
time ratio is proportional to the dimension of datasets. For example, on the dataset
with the lowest dimension (HIGGS), the CPU–GPU time ratio is the least for
both Newton-ADMM and SGD, whereas on the dataset with the highest dimension
(E18), the CPU–GPU time ratios are the highest for both Newton-ADMM and SGD.
In all cases, the use of GPUs results in highest speedup for Newton-ADMM. The
gain in GPU utilization is compromised by large number of CPU–GPU memory
transfers for SGD. As a result, SGD shows meaningful GPU acceleration only for
the E18 dataset.

Second, we observe that Newton-ADMM has much lower communication cost,
compared to SGD. This can be observed from Table 9. In all cases, SGD takes longer
than Newton-ADMM with GPUs enabled. This is mainly because SGD requires a
large number of gradient communications across nodes. As a result, we observe that
Newton-ADMM is 4.9x, 6.3x, 22.6x, and 17.8x times faster than SGD on MNIST,
CIFAR-10, HIGGS, and E18 datasets, respectively.

Finally, we observe that Newton-ADMM has superior convergence properties
compared to SGD. This is demonstrated in Table 9 for the HIGGS dataset. We
observe that Newton-ADMM converges to low objective function values in just a
few iterations. On the other hand, the objective function value, even at 100-th epoch
for SGD, is still higher than Newton-ADMM.

6.4 Comparison with Distributed Second-Order Methods

We compare Newton-ADMM against DANE [20], AIDE [61], and GIANT [69],
which have been shown in recent results to perform well. In each iteration,
DANE [20] requires an exact solution of its corresponding subproblem at each node.
This constraint is relaxed in an inexact version of DANE, called InexactDANE [61],
which uses SVRG [41] to approximately solve the subproblems. Another version of
DANE, called Accelerated Inexact DanE (AIDE), uses techniques for accelerating
convergence while still using InexactDANE to solve individual subproblems [61].
However, using SVRG to solve subproblems is computationally inefficient due to
its double loop formulation, with the outer loop requiring full gradient recalculation
and several stochastic gradient calculations in inner loop. Figure 2 shows the
comparison between these methods on the MNIST dataset with λ = 10−5. Although



Table 9 Training objective function and test accuracy as functions of time for Newton-ADMM and
synchronous SGD, both with GPU enabled and GPU disabled, with four workers

Time vs. Test Accuracy Time vs. Objective Function (training)

MNIST

CIFAR-10

HIGGS

E18

Overall, Newton-ADMM favors GPUs, enjoys minimal communication overhead, and enjoys faster
convergence compared to synchronous SGD



Parallel Optimization Techniques for Machine Learning 413

Table 10 GPU speedup for
Newton-ADMM and SGD

CPU/GPU
time ratio Newton-ADMM SGD

MNIST 44.7345904 0.47896507

CIFAR-10 112.670178 0.8212862

HIGGS 11.842679 0.26789652

E18 154.425688 1.54673642

(a) (b)

Fig. 2 Training objective function and test accuracy comparison over time for Newton-ADMM,
GIANT, InexactDANE, and AIDE on MNIST dataset with λ = 10−5. We run both Newton-
ADMM and GIANT for 100 epochs. Since the computation times per epoch for InexactDANE
and AIDE are high, we only run 10 epochs for these methods. (a) Time vs. Test Accuracy. (b)
Time vs. Objective Function (training)

InexactDANE and AIDE start at lower objective function values, the average epoch
time compared to Newton-ADMM and GIANT is orders of magnitude higher (order
of 1000x). For instance, to reach an objective function value less than 0.25 on the
MNIST dataset, Newton-ADMM takes only 2.4 s, whereas InexactDANE consumes
an hour and a half.

7 Concluding Remarks

Optimization techniques for training machine learning models are of significant
current interest. Common machine learning models lead to convex or non-convex
optimization problems defined on very large datasets. This necessitates the develop-
ment of efficient (in terms of optimization time), effective (in terms of generalization
error), and parallelizable methods.

Most current machine learning applications rely on stochastic gradient descent to
solve the underlying optimization problems. In this chapter, we have discussed the
use of higher-order methods that rely on curvature, in addition to gradient informa-
tion for computing the descent direction. We rely on two important concepts: the use
of sampling in dealing with the dense Hessian matrix and the use of natural gradient
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in non-convex optimization. We show that second-order methods are fast (in terms
of iteration counts), can be made efficient (in terms of per-iteration computation
cost), result in solutions that are generalizable (as determined by test accuracy), are
robust to problem ill-conditioning, and do not require extensive hyper-parameter
tuning. Finally, we show how these methods can be parallelized using ADMM and
formulated to efficiently use GPUs to deliver accurate and scalable solvers.
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