
HPC for Weather Forecasting

John Michalakes

1 Introduction: Weather and HPC

Numerical weather prediction (NWP) and high-performance computing have grown
up together. Even before the computational means existed, L. F. Richardson of
the UK Met Office had published a numerical foundation for forecasting the
weather [33]. The first computer-generated forecast of the atmosphere had to
wait until 1950 and was conducted by Jule Charney’s meteorology group within
John von Neumann’s ENIAC project at Princeton’s Institute for Advanced Study.
By the 1970s, advances in models and computing capability allowed the skill of
numerically generated forecasts to outpace forecasting that relied solely on expert
meteorologists interpreting weather observations [17, 38]. Today the list of major
weather services that develop and run operational weather forecasting systems
includes the European Center for Medium Range Weather Forecasts (ECMWF) and
its member national services, the U.S. National Weather Service within NOAA, the
U.S. Navy’s Fleet Numerical Meteorology and Oceanography Center (FNMOC)
and Naval Research Laboratory (NRL), the U.K. Met Office (UKMO), Meteo
France, the German National Weather Service (DWD), Environment Canada, the
Japan Meteorological Agency, the Korea Meteorological Administration, and the
China Meteorological Administration.

Historically, an exponential rate of increase in supercomputing power has fueled
a linear pace of forecast skill improvement (Fig. 1). Each decade’s 1000-fold
increase in computing power has enabled larger numbers of higher resolution
forecasts, better representations of the physics of the atmosphere, and more
sophisticated assimilation of greater volumes of observational data to provide better

J. Michalakes (�)
University Corporation for Atmospheric Research, Boulder, CO, USA
e-mail: michalak@ucar.edu

© Springer Nature Switzerland AG 2020
A. Grama, A. H. Sameh (eds.), Parallel Algorithms in Computational Science and
Engineering, Modeling and Simulation in Science, Engineering and Technology,
https://doi.org/10.1007/978-3-030-43736-7_10

297

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43736-7_10&domain=pdf
mailto:michalak@ucar.edu
https://doi.org/10.1007/978-3-030-43736-7_10

298 J. Michalakes

Fig. 1 Anomaly correlation, a measure of forecast skill (100 = perfect), increases linearly as
computing increases exponentially over successive generations of supercomputer at the U.S.
National Weather Service [20]

initial conditions. The result has been to add 1 day of forecast skill every decade
for the last 40 years [3]. Five-day forecasts today are as accurate as 3-day forecasts
20 years ago. Today, twenty of the fastest 500 supercomputers in the world are
dedicated to weather forecasting, consuming 7% (60 PFLOPs) of the total compute
capacity of the Top500 list in November, 20171. Continuing this trend into the era
of exascale supercomputers is the ongoing challenge for weather forecast centers.

Operational weather forecasting involves running a large suite of applications:
preprocessors, post-processors, and the model itself (Fig. 2). Preprocessors combine
data streaming in from weather stations, aircraft, and satellites with archives of
climatological data and previously generated forecasts to produce initial conditions
for the new forecast. The forecast model takes this initial state of the atmosphere
and computes an approximation of the future state over a succession of many small
time intervals until the desired end time of the forecast is reached—as little as 12 h
or as long as 16 days, depending on the needs of the center (climate predictions
run longer still from seasonal to decadal scales). Periodic output over the course
of the forecast is fed into a myriad of post-processors and downstream models that
produce specialized products with analysis and visualization for use by forecasters

1https://www.top500.org/lists/2017/11/.

https://www.top500.org/lists/2017/11/

HPC for Weather Forecasting 299

Regional
Hurricane

GFDL
WRF-NMM

WRF(ARW, NMM)
NMMB

Climate Forecast
System (CFS)

Short-Range
Ensemble Forecast

GFS, MOM4,
NOAH, Sea Ice

North American Ensemble
Forecast System

GEFS, Canadian Global Model

Dispersion
HYSPLIT

Air Quality
CMAQ

Regional NAM
NMMB
NOAH

3D
-V

AR
DA

Regional Bays
•Great Lakes (POM)

•N Gulf of Mexico (FVCOM)
•Columbia R. (SELFE)
•Chesapeake (ROMS)

•Tampa (ROMS)
•Delaware (ROMS)

Space
Weather

ENLIL

North American Land
Surface Data Assimila�on

System
NOAH Land Surface Model

Global Spectral
NOAH3D

-E
n-

Va
r

DA

Global Forecast
System (GFS)

3D
-V

AR
DA

3D
-V

AR
DA

WRF ARW

Rapid Refresh

3D
-V

AR
DA

Waves
WAVEWATCH III

Ocean
HYCOM

Ecosystem
EwE

Global Ensemble Forecast
System (GEFS)
21 GFS Members

ESTOFS
ADCIRC

SURGE
SLOSH

P-SURGE
SLOSH

WRF ARW

3D
-V

AR
DA

High Resolu�on RRNEMS Aerosol Global
Component (NGAC)

GFS & GOCART

WRF(ARW, NMM) & NMMB

High Res Windows

Fig. 2 Production suite at the National Centers for Environmental Prediction (NCEP) in 2014,
presented as part of a NOAA annual review. The model itself, the Global Forecast System (GFS),
appears as the red box in the first column. Illustration by William Lapenta, NOAA/NWS. Used
with permission [44]. The diagram is drawn this way to illustrate the system was becoming too
complex. In fact, the system is actually more complex than shown, since data assimilation and
other model preprocessors are subsumed within the blue area of the small GFS box

and end users. End-to-end forecasting involves both large amounts of data handling
and large amounts of computational horsepower. The focus of this chapter is on the
computational requirements and challenges of the forecast model at the heart of the
operational weather forecast system.

Models vary according to their use. Climate models simulate characteristics of
the atmosphere from seasonal to century time scales at relatively low resolutions.
Models designed for real-time weather forecasting run at higher resolution over time
scales short enough to fit within the limits of predictability for weather forecasting,
from several hours to usually no longer than 2 weeks [43]. The domains for weather
and climate models also vary. Models may forecast the entire global atmosphere or a
specific region. Global models are constrained by available computing to relatively
modest resolutions (currently grid cells no smaller than 9–13 km to a side). Finer
than this and the model will not run fast enough for the forecast to be timely2.
Regional model domains are smaller and can run at higher resolutions but typically
require data generated by global models to provide lateral boundary conditions. As
computers become more powerful a convergence has begun such that global models

2The U.S. National Weather Service requires a forecast rate of 8.5 min per forecast day.

300 J. Michalakes

will soon capture finer-scale turbulent and convective processes important for local
weather, especially severe storm forecasting.

2 History

The history of NWP is tied closely to the steady but occasionally disruptive
evolution of supercomputing over the last half-century. As today’s computational
scientists scratch their heads wondering how to design efficient codes for exascale
systems on the horizon, it is comforting to realize that every previous generation
of supercomputer forced scientific programmers to devise codes and data structures
tortured in some way to run efficiently on the HPC architecture at hand.

Until the 1990s, supercomputers used for NWP were expensive room-size
devices with a single processor. Very fast for their day, speed came from high clock
rates (hundreds of megahertz!) and special vector processing units, hardware that
could perform many floating point operations over successive data elements during
each clock cycle. Today’s architectural analogs are vector or SIMD3 instructions
on conventional CPU cores (e.g. Intel’s AVX instruction set) and fine-grained
parallelism over warps of threads on GPUs. Multi-port memories and high capacity
buses were needed to provide the bandwidth necessary to keep up with the
processors. These high-performance memory systems contributed further to the
already high cost (millions of dollars) of vector supercomputers in the 1970s,
1980s, and 1990s. The impact on software design was also considerable. Weather
calculations most naturally expressed in one dimension of the domain had to be
rewritten to operate over whatever dimension happened to be vectorizable. For
example, subroutines that computed a vertical process such as convection up and
down a single column of grid cells had to be rewritten to run horizontally over
multiple columns because data dependencies in the vertical inhibited vectorization.

Later, faster but similarly architected systems were developed by connecting
several vector processors to the same memory for parallelism over different tasks
(task parallelism) or different sections of the domain (data parallelism). This more
coarse-grained mechanism, called “microtasking” at the time, is analogous to
medium-grain thread parallelism (e.g. OpenMP, pthreads) today. The move to thread
parallelism was not overly disruptive since the codes had already been restructured
for vectors. Then as now, however, contention for memory bandwidth meant that
only a few processors could be added to provide more speed. In other words, the
systems could not scale. Ultimately, the cost of building and operating successively
faster supercomputers using vector/shared-memory designs became prohibitive.

In the 1990s, a new design for constructing supercomputers from many more
less powerful processors pushed past the shared-memory scaling barrier. Processors
were organized as nodes on a network, each accessing data exclusively from its own

3Single-instruction, multiple-data stream.

HPC for Weather Forecasting 301

memory to avoid the scaling bottleneck. The nodes worked in parallel by exchanging
messages over a network, the carrying capacity of which (bandwidth) increased
with the number of nodes. Distributed memory message passing was the third and
coarsest level of parallelism and could scale to arbitrarily large configurations.

The move to distributed memory supercomputers was unavoidable but deeply
disruptive for the NWP community. Significant effort was expended during the
1990s to update models that had been developed for vector supercomputers. Each
of the major weather services undertook programs to rapidly convert their large
investments in modeling software but struggled with their earlier legacy software
designs. The U.S. Department of Energy founded an entire program to convert
atmospheric and ocean models used for climate prediction to these new systems
[8, 22]. Global address spaces had to be decomposed—that is, broken up—
into distributed memory subdomains to be run as separate processes (tasks) over
many nodes. Data dependencies needed to be analyzed and explicit mechanisms
implemented to buffer and exchange data as messages between separate processes.
Entirely new problems of debugging and profiling parallel programs at scale remain
areas of active computer science research and development today.

Today’s supercomputers are still built as networks of coarse-grain parallel
nodes exchanging messages, but also incorporate the other two earlier forms of
parallelism: fine-grained within each processor core (vectors or GPU threads)
and medium-grained between processors on a node (OpenMP and pthreads).4

There is no longer any limit to scaling other than money, electrical power, and,
more fundamentally, the fraction of parallelism available in the application itself
(Amdahl’s law). And herein lie both the practical and fundamental disruptions for
weather prediction going forward into the exascale era.

The practical disruption is simply that current and next generation supercom-
puting architectures will require so much parallelism (estimates go to millions of
threads) that there is not any level of parallelism that can be ignored: fine-grain
vector parallelism at the loop level all the way out to hitherto underexploited coarse-
grain distributed memory parallelism over the vertical grid dimension, between
different physics subroutines, and between the components (atmosphere, ocean,
land, sea-ice, the ionosphere, and other physical systems) in coupled earth system
models. In many cases this will mean rediscovering and implementing fine-grained
parallelism (discussed in a later section) that was disregarded when microprocessor-
based clusters replaced vector supercomputers.

Mining all available parallelism also means rediscovering and implementing
shared-memory thread programming, which was largely discarded because the first
generations of distributed memory supercomputers had only a single-core processor
on each node. Even as nodes with multiple multicore processors have become
prevalent, hybrid MPI/OpenMP has only recently begun to show better performance

4There is also at least a fourth: instruction level parallelism at the processor core level that exists to
some extent even in otherwise outwardly sequential programs. ILP is limited and generally hidden
from and outside the control of the programmer.

302 J. Michalakes

than parallelizing entirely over single-threaded MPI parallel tasks. This is partly
because of improvements to memory systems on new generations of multicore
processors and nodes. ECMWF reported optimal performance using eight OpenMP
threads per MPI task running the current IFS model on 48 nodes of their Phase-1
Cray XC30 system [46]. But hybrid MPI/OpenMP programming is also taking hold
because it will be unavoidable: scaling to larger problem sizes, models run out of
pure-MPI parallelism. ECMWF also reported that running the IFS at high resolution
was not possible with only MPI parallelism because too much memory was needed
to replicate data over many MPI tasks on each node.

The more fundamental disruption from moving to more powerful generations of
HPC systems is that future increases in supercomputing speed must come solely
from increased parallelism, and that a real-time weather forecast is not weakly
scalable. Weak scaling is the ability of an application to run at the same speed
using more processors as problem size is increased. For a weather model, increasing
problem size means adding grid points and, for a global weather model, the only way
to add grid points is to increase resolution. But increasing spatial resolution requires
increased temporal resolution: many smaller time steps are needed to produce the
same length of forecast. Since time steps must be executed sequentially, complexity
increases with resolution in one more dimension, the temporal, than the available
parallelism. The cost for higher resolution balloons in terms of number of processors
and electricity needed (Fig. 3).

Fig. 3 Projected resources required to scale operational forecasting to higher resolution [3].
Global weather models are not weakly scalable with resolution because the temporal dimension
must also be refined and is inherently sequential. Additional notations are from [23]

HPC for Weather Forecasting 303

Note, this lack of weak scalability is the result of running the model determinis-
tically: one run from a single set of initial conditions to predict one possible future
state of the atmosphere. There is considerable value to consumers from probabilistic
weather information. For example output from an ensemble of many runs of a
hurricane forecast, each with a perturbed set of initial conditions, is used to generate
a Cone of Uncertainty5 for where the storm will make landfall. Adding members to
the ensemble increases parallelism without constraining the time step, so ensemble
forecasts are weakly scalable, at least computationally. The volume of model output
generated by the ensemble increases with more members too, so the scaling problem
does not disappear but instead shifts to I/O. Moreover, if one also increases the
resolution of each ensemble member, as shown in Fig. 3, weak scaling is again
problematic.

Parallel-in-time algorithms that can exploit scale separation in partial differential
equations to provide parallelism over the time dimension are possible [19] but
application to operational weather forecasting is likely distant.

3 Models, Grids, and Parallelization

The specific approach to parallelizing a weather model depends on the choice
of numerical scheme and how mapping the mesh onto a spherical geometry is
addressed. Various grid geometries and numerical fixes have been developed to
adapt “numerical methods to the spherical geometry of the earth, which presents
unique problems, usually and vaguely referred to collectively as the pole problem”
[48]. For example, in a latitude/longitude grid (Fig. 4) the narrowing of grid cells
approaching the two poles requires a smaller time step or unwanted filtering for
stability. Icosahedral (soccer ball) meshes have 12 pentagons. Cubed-sphere meshes
have corners. The main types of model are grid point, spectral, and finite element
(which includes spectral element).

Grid-point models using finite-difference and finite-volume methods evolve the
model state (wind velocities, temperature, pressure, moisture, and other tracers) in
physical space, directly at each cell of the grid.

Spectral models avoid distortions and singularities by first transforming the
gridded representation of the global state to a series of spherical harmonics. Addi-
tionally, spectrally computed derivatives are higher-order and non-local, providing
more accuracy than finite-difference methods for a given cost. Three dimensional
Helmholtz solvers are expensive in grid-point models but essentially free in spectral
models [40].

A third type, spectral element models are a hybrid formulation: finite-volume
methods between the elements and spectral methods local within each element [29].

5https://www.nhc.noaa.gov/aboutcone.shtml.

https://www.nhc.noaa.gov/aboutcone.shtml

304 J. Michalakes

Fig. 4 Sampling of grids used in weather and climate models [48]

The first weather models prior to the 1970s were grid-point formulations, but
numeric and computational advantages of globally spectral methods ushered in a
heyday that is only now beginning to wane as grid-point methods resurge. Scientific
and numerical factors have been central to the progression, but as noted above and
in the discussion that follows, a key driver has been the disruptive evolution of
HPC architectures. This section derives heavily from [48], an authoritative and to a
significant extent eyewitness account of the evolution and types of models used for
weather and climate modeling.

3.1 Spectral Dynamics

The spectral transform method was first developed in 1970 [9, 30] and became
the dominant dynamical core for global weather and climate modeling for the two
decades that followed. Today, ECMWF’s world-leading IFS model is the premier
example of a spectral model. Other examples include the U.S. National Weather
Service’s Global Forecast System6, the U.S. Navy’s Global Environmental Model
(NAVGEM), and the Japan Meteorological Agency’s Global Spectral Model.

Whereas grid-point models represent fields as values at discrete points, spectral
models use expansions on a series of spherical harmonics. Each vertical layer
of a horizontal field is represented as an M by N array of spectral coefficients.
The M dimension corresponds to increasing wave numbers in the zonal (west-
east) dimension of the domain; N corresponds to increasing wave numbers in the
meridional (equator to pole) dimension. The M and N dimensions of spectral space
extend to infinity but are truncated for computational purposes above a certain wave
number. If the truncation is the same in both M and N dimensions, it is said to be
triangular and has the favorable property of being isotropic and not subject to the

6The spectral dynamics in the U.S. weather service’s Global Forecast System has reached end of
life and has been replaced by FvGFS, a grid point model.

HPC for Weather Forecasting 305

pole problem: discontinuities and time steps constrained by narrowing grid lines
near the poles in grid-point models. Higher truncation limits correspond to higher
spatial resolution. The spectral dynamics in use in the GFS at the U.S. National
Weather Service truncated M and N at wave number 1534, equivalent to a grid of
slightly over three million grid points covering the earth’s surface at a resolution
of 13 km. ECMWF’s IFS model achieves finer (9 km) spatial resolution for physics
and advection using fewer (1279) waves in M and N through the use of a cubic rather
than linear mapping between grid points and the highest frequency wave in spectral
space, and by using an octahedral adaptation to IFS’s reduced physical-space grid.

Only a portion of a spectral model time step is computed in the spectral
domain. Non-linear terms of the Eulerian dynamics, semi-Lagrangian transport,
and physics—subgrid-scale radiative heating and cooling, convection, turbulence,
surface drag, and other physical processes—are computed on grid points. To move
between spectral and grid-point representations, a forward and inverse spectral
transform is computed every model time step. The grid point to spectral transform
first applies an FFT to each west-east circle of grid values along latitude lines of the
domain, producing vectors of Fourier coefficients that correspond to wave numbers
in the M spectral dimension. Next, a Legendre transform is applied in the equator-to-
pole dimension to construct the N dimension of spectral space. Each resulting m,n
spectral coefficient is the sum of the products of the m element of each Fourier vector
times the Legendre coefficient for the Gaussian latitude from which the Fourier
vector was computed. The Legendre transform is algorithmically equivalent to a
matrix multiply, and can be implemented using calls to DGEMM in LAPACK.

The computational complexity of the combined N Fourier transforms is O(N2 log
N), where N is the truncation number. Overall, the spectral transform is dominated
by the O(N3) complexity of the Legendre transform. ECMWF has been able to
devise a “Fast” Legendre Transform (FLT) that is O(N2 log N3). The FLT exploits
similarities of associated Legendre polynomials at all the Gaussian latitudes but
with different wave number and then precomputes and reuses an approximate
representation of the matrices. The FLT is less efficient than DGEMM at lower
resolutions but breaks even and continues to improve at T2047 and higher [45].

Sensitivity to rounding error requires that Gaussian weights used in the Legendre
transform be computed using double (64 bit) floating point precision, even when
other parts of the model are computed at lower precision [7]. Other operations in the
spectral transform and other parts of the model may be computed using single (32-
bit) floating point precision but weather centers are only now beginning to explore
reducing precision for better computational efficiency [31].

The spectral transform method has advantages for parallel computing and
software engineering because virtually all computations in spectral dynamics are
dependency-free and perfectly parallel, both over wave components in spectral
space and in the two horizontal dimensions of physical grid space. From a software
point of view, the parallelism in a spectral model is highly encapsulated. Code to
implement message passing is compact and isolated to within the subroutines that
transform back and forth between grid and spectral space each model time step.

306 J. Michalakes

Fig. 5 Schematic of the forward and reverse spectral transforms in a time step of a spectral model,
showing the decompositions of the physical, Fourier, and spectral domains over four tasks with
transposes between the decompositions

Parallelizing the spectral transforms involves interprocessor communication that
can be implemented in either of two ways: distribute the FFTs and DGEMMs
themselves or transpose the data between decompositions to allow serial Fourier
and Legendre transforms to be used. The advantage of using distributed FFT and
DGEMM packages is that parallelism is built-in, the routines are portable and are
likely to have been optimized for the computational platform. On the other hand,
transpose implementations of spectral transforms are more flexible and general,
permitting the use of non-power of two serial FFT packages. Transposes also ensure
identical order of operations in the transforms giving results that are bit-for-bit
reproducible on different numbers of MPI tasks. Generally, transpose implemen-
tations are favored because they send less data than distributed implementations, an
advantage on systems where transfer (bandwidth) costs are high relative to message
startup costs [11]. Figure 5 shows parallel transposes and data layouts for one time
step of a typical spectral transform model.

Modern spectral models incorporate semi-implicit semi-Lagrangian transport
(SLT) for advection because SLT is unconditionally stable and allows longer time
steps. As with fully Lagrangian methods, SLT involves calculating the trajectories
of parcels of a fluid over time; the difference being that SLT interpolates forward or
backward trajectories relative to a fixed grid at each time step.

The issue for parallelizing SLT occurs when parcels flow to an area of the domain
on another processor. As with finite-difference and finite-volume methods, these
dependencies and dependencies associated with interpolation stencils are addressed
by communicating with neighboring tasks to update halo- or ghost-regions around
a task’s subdomain. Anisotropy of the domain closer to the poles will require more
data to be sent to update increasingly wide halos. Fortunately, the reduced grid used

HPC for Weather Forecasting 307

for computational efficiency elsewhere in the model (Fig. 4) also helps address the
communication costs near the poles for SLT.

Spectral models have been extremely successful since the 1970s and are still
deployed in major forecast centers. Nevertheless, the spectral method is approaching
obsolescence on new generations of supercomputers that will require applications
that can exploit 105 to 106 way parallelism without losing efficiency to parallel
overheads such as interprocessor communication. Of course, any model of fluid
flow requires communication between processors, but communication cost for local
methods such as explicit finite-difference and finite-volume remains constant with
increasing domain sizes and numbers of processors. Cost for non-local communica-
tion in spectral models increases as a function of domain size. Communication cost
for high-resolution 5 km and 2.5 km experimental runs of ECMWF’s IFS on up to a
quarter-million processor cores of the TITAN supercomputer at Oak Ridge National
Laboratory reached 75% of the total cost of the spectral transforms [46]. ECMWF
estimates that stopgap improvements such as the Fast Legendre transform, the cubic
grid-to-spectral mapping, and an octahedral grid-reduction geometry can extend the
spectral IFS model’s life for a time, but are exploring grid-point formulations for
scaling to higher resolution [42].

3.2 Grid-Point Dynamics

The first computer models of the atmosphere were grid-point models, which
flourished during a period of active development beginning with the U.S. Joint
Numerical Weather Prediction Unit in the 1950s and lasting until a two-decade
hiatus around the advent of spectral transform models in the 1970s. A key focus was
to address the pole problem inherent in Cartesian latitude-longitude grids, leading
to development of novel and promising quasi-uniform mesh geometries such as
those shown in Fig. 4. These included composite and overset grids, icosahedral
and geodesic grids, reduced latitude-longitude grids, Fibonacci grids (these were
later), and regular polyhedra circumscribed to the sphere, most commonly the
cubed sphere. The new approaches were generally successful at addressing the
pole problem but presented other issues for solution quality: noise and interpolation
error at boundaries of overset meshes, the edges and corners of faces on the cubed
sphere or at the 12 pentagons in hexagonal meshes. Numerous schemes to reduce
or eliminate these issues were developed and the topic remains an active focus of
research and development today.7

Generating grids that are composed of Cartesian grids involves projecting the
component grids onto curvilinear coordinates of the sphere. The cubed-sphere grid
in the U.S. National Weather Service’s next model, FvGFS, is composed of six

7The PDEs on the Sphere workshop series (https://pdes2017.sciencesconf.org) have focused on the
problems of grids and numerical methods for weather, climate, and ocean circulation since 1990.

https://pdes2017.sciencesconf.org

308 J. Michalakes

Cartesian grid faces of a cube inflated out to the surface of an enclosing sphere.
The global version of the NCAR Weather Research and Forecast (WRF) model
[41] is an overset mesh scheme comprised of two Cartesian meshes, one covering
each hemisphere and then projected onto polar stereographic coordinates. In both
cases, and aside from the extra work involved to handle the corners and edges
on the cubed sphere and the overlap regions of the overset mesh, the component
grids themselves are Cartesian and straightforward from a coding point of view.
Traversing the domain and accessing values for neighboring grid cells is done using
array index arithmetic inside multiply nested loops that are easily recognized and
optimized by modern compilers.

Approaches for non-Cartesian grids are more complex and interesting from
numerical, geometric, and computational points of view. The Non-hydrostatic Icosa-
hedral Model (NIM) developed at NOAA uses an icosahedral mesh constructed
mostly of hexagons with 12 pentagons. The Model for Prediction Across Scales
(MPAS) developed by NCAR and Los Alamos National Laboratory uses a cen-
troidal Voronoi tessellation (CVT) of arbitrary polygons that aligns to an icosahedral
hexagonal mesh but that allows further in-place refinement (Fig. 6) to focus higher
resolution over an area of interest: for example, the Gulf of Mexico and western
Atlantic during hurricane season. The CVT in MPAS obeys the additional constraint
that lines connecting neighboring cell centers bisect the neighbor edges and intersect
at right angles. This supports an unstructured generalization of Arakawa C-grid
staggering used to overcome problems with the representation of gravity waves in
collocated grids while addressing problems reproducing geostrophic balance that
stem from the discretization of the Coriolis force [36].

The unstructured horizontal dimensions in the MPAS grid are represented as
arrays of vertical columns of the domain. The relationships between adjacent cell
centers, edges, and vertices are computed when a mesh is generated and stored as
integer arrays for each column. Traversing the grid and accessing neighbor values

Fig. 6 Centroidal Voronoi Tessellation (CVT) of a quasi-uniform (left) and variable resolution
MPAS mesh. The meshes shown contain the same number of grid cells [32]. © American
Meteorological Society. Used with permission

HPC for Weather Forecasting 309

Fig. 7 Lloyd algorithm for constructing centroidal Voronoi tessellations used in the MPAS model
[35]

for computation require indirect indexing, a computational penalty compared to
iterating over Cartesian meshes. This impact can be offset by ordering grid points in
memory to be stored successively in vertical vectors that can be vector-parallel on
CPUs [25] and thread parallel on GPUs.

Relative to Cartesian meshes, generating unstructured meshes is complicated and
expensive and is typically done offline. The MPAS grid generation program is based
on a method originally developed at Bell Laboratories for signal processing (Lloyd
1982) and applied to generating CVTs on the sphere (Fig. 7). The Lloyd method
is sequential and essentially trial and error, so that creating a global mesh at a new
quasi-uniform resolution or generating a global mesh with new areas of refinement
may require days of computer time to converge8. Fortunately, once generated, the
meshes can be reused, rotating to a different orientation if necessary to expose a
different part of the domain to the area of mesh refinement. Improvements in mesh-
generation speed have been obtained using GPUs and work to improve the quality
and speed of generated CVTs is ongoing [21] (Engwirda 2017 JIGSAW-GEO).

3.2.1 Domain Decomposition

Once generated, decomposing unstructured grids involves finding a partitioning
that assigns approximately equal numbers of grid columns to MPI tasks for load
balance while minimizing the surface area to adjacent partitions to minimize
the volume of data communicated. The MPAS model uses the METIS package
from the University of Minnesota to decompose its domain over tasks (Fig. 8).

8Skamarock, W., personal communication.

310 J. Michalakes

Fig. 8 MPAS unstructured grid decomposition that minimizes the amount of overlap between
subdomain edges, thus minimizing the amount of data that must be communicated. Reproduced
with permission [34]. Used with permission. Partitioning was generated using the METIS package
from U. Minnesota [24]

METIS uses recursive bisection and K-way partitioning to find a decomposition
that minimizes computational imbalance which results from uneven distribution of
work and communication imbalance which results from edge-cuts between vertices
of the mesh.

The icosahedral mesh of the NIM model consists of the ten rhombus-shaped
faces and is decomposed over tasks in two steps. First, each face is assigned to
a separate set of MPI tasks. Then each face is decomposed over its set of tasks
in checkerboard Hex9-board? fashion. The decomposition originally required NIM
to run on multiples of 10 MPI tasks. Subsequent refinements using 20 rhombuses
allowed multiples of 1, 2, or 5 MPI tasks. Ordering the grid columns on each task
in spirals eliminated the need copy cells into buffers to send and receive data to
neighboring tasks through MPI (Fig. 9).

Space filling curves have been used to order and decompose elements in the
HOMME and NEPTUNE spectral element models on cubed-sphere grids [4, 6].

3.2.2 Load Imbalance

Partitioning may also need to account for varying amounts of work for a given
column depending on location in the domain and the time of the simulation. Sources
of load imbalance can be static or can vary over the course of a simulation. An
example of a static imbalance occurs when the number of processors does not
divide the number of grid columns without a remainder. Or with limited-area

9https://www.hexwiki.net.

https://www.hexwiki.net

HPC for Weather Forecasting 311

Fig. 9 Spiral traversal of icosahedral grid cells for MPI tasks in the NOAA NIM model,
allowing interior data and data stored for interprocessor halo exchanges stored contiguously
in memory. The ordering allows exchange sections of the computational storage to be passed
directly to MPI without additional copies. © American Meteorological Society. Used with
permission [18]

(not global) domains, the computations on the lateral boundaries may involve less
work. Static imbalances can be addressed by assigning different numbers of grid
columns to processors. Dynamic imbalances may be associated with processes
such as cloud physics that require more computation around convective systems
(storms).

Arriving at a perfectly balanced load is usually not possible. A weather model
is multi-phasic, performing different physical or dynamical processes in the course
of a time step and also different mixes of these processes from one time step to
another. Since each phase of computation may have a different load profile, using
an optimal decomposition to balance each phase is impractical. Inefficiency from
load imbalance in the 5–20% range is usually not enough to justify the cost of
redistributing work and data between each phase. An exception is the imbalance
associated with the diurnal cycle in radiation physics that is computed only in
the sunlit half of the domain. Here the imbalance is large and regular enough
for load balancing to provide a benefit, even with the cost for relocating the
data [10, 37].

312 J. Michalakes

3.3 Element-Based Dynamics

Finite element and spectral element methods, used widely in aerospace and other
applications of computational fluid dynamics, are being applied to weather mod-
eling because they are high order local methods that scale well computationally.
Each element computes a local solution to the desired level of accuracy using
an expansion on a set of orthogonal basis functions, not unlike the calculations
done globally in spectral models described above. The element-local solutions are
combined to form a global solution using either a continuous or discontinuous
Galerkin method: the local solution at points along the faces of each element is
summed with the edge solutions of the element’s neighbors in a process called direct
stiffness summation (DSS). DSS requires only nearest neighbor communication and
the amount of data communicated is constant with respect to numerical order. Thus,
element-based methods provide the accuracy and high computational intensity of
globally spectral methods but without domain-wide interprocessor communication
that inhibits scalability. Element-based methods are also well suited to complex
geometries and lend themselves to adaptive mesh refinement [2, 12, 14, 15, 29].
Examples of models using element-based dynamical cores include the NUMA10

dynamical core in the U.S. Navy’s NEPTUNE and the HOMME dynamical core
used in the Community Earth System Model11 and the Department of Energy’s
Energy Exascale Earth System Model (E3SM)12. The UK Met Office is developing
the finite element Gung-Ho13 dynamical core for its new LFRic14 modeling system.

Benchmarking NOAA’s Next Forecast Model
In 2015 the National Weather Service needed to replace its aging Global Spec-
tral Model. Six dynamical cores from development teams in the USA were
evaluated: NOAA/GFDL’s FV3, NOAA/NCEP’s NMM-UJ, NOAA/ESRL’s NIM,
NCAR’s MPAS, and Naval Research Laboratory’s NEPTUNE based on the Naval
Postgraduate School’s NUMA model. FV3, NMM-UJ, and NEPTUNE used a
cubed-sphere grid; NIM and MPAS used icosahedral/unstructured. Numerically,
NMM-UJ used finite-difference; FV3, NIM, and MPAS were finite-volume; and
NEPTUNE/NUMA used spectral elements. ECMWF’s spectral/semi-Lagrangian
IFS was included for comparison.

Computational performance and scaling were benchmarked on Edison, a large
Cray supercomputer at the Department of Energy’s NERSC facility. The first chart
shows performance results for the models running a 13 km resolution workload
(up to 3.5 million cells). The horizontal dotted at 1.0 is the speed threshold for
forecasting. The second chart shows strong scaling efficiency for a higher resolution

10http://faculty.nps.edu/fxgirald/projects/NUMA/Introduction_to_NUMA.html.
11http://www.cesm.ucar.edu.
12https://e3sm.org/.
13https://www.metoffice.gov.uk/research/foundation/dynamics/next-generation.
14https://www.metoffice.gov.uk/research/modelling-systems/lfric.

http://faculty.nps.edu/fxgirald/projects/NUMA/Introduction_to_NUMA.html
http://www.cesm.ucar.edu
https://e3sm.org/
https://www.metoffice.gov.uk/research/foundation/dynamics/next-generation
https://www.metoffice.gov.uk/research/modelling-systems/lfric

HPC for Weather Forecasting 313

3 km resolution workload (up to 65-million cells) expected to be commonplace
within the next decade.

The fastest models scaled the least well, a not unexpected result. Computationally
heavy models like MPAS and NEPTUNE perform more work per processor
making the overhead from communication proportionately less costly. Non-local
communication in IFS’s spectral transforms hindered its scaling. FV3 ran 1.36
times faster (and scaled less well) at single precision than double precision and
gave acceptable results [27].

The evaluation concluded in 2016 with selection of GFDL’s FV3. The reports
from all phases of testing are available online from the National Weather Service.

(https://www.weather.gov/sti/stimodeling_nggps).

For a given forecast configuration, element-based methods are more costly in
terms of floating point operations than finite-difference and finite-volume based
approaches but provide greater accuracy and scalability to large numbers of parallel
threads on current and next generation HPC architectures. The NUMA spectral
element dynamical core was the first ever to achieve operational forecast speed at
a uniform global resolution of 3 km (1.8 billion cells), scaling with 99% efficiency
to the full 786-thousand cores of the IBM Blue Gene/Q Mira system at Argonne
National Laboratory [28]. In NOAA’s 2015 intercomparison to choose the next
dynamical core for the U.S. National Weather Service, the NUMA/NEPTUNE
dynamical core was the most costly but also the most efficient running up to the
full number of processors available (see “Benchmarking NOAA’s Next Forecast
Model”).

3.4 Physics

The parts of a weather model that provide forcing terms that drive atmospheric
dynamics—radiative heating, evaporation, condensation, convection, chemistry,
turbulence, surface drag, and other physical processes—are collectively known
as physics (the usage may be singular or plural). Physics differentiate weather
and climate models from more general computational fluid dynamics applications.

https://www.weather.gov/sti/stimodeling_nggps

314 J. Michalakes

Physics packages in a model are parameterizations because they are simplified
representations of processes that occur at subgrid scales, too fine to be resolved
by the dynamics. Physics is where much of the predictive skill of a model resides.
Adapting a physics package to a particular forecast application involves tuning—
adjusting parameters within the physics package—to remove forecast error and
biases at a given forecast scale with respect to observations.

Physics usually represents processes that act only in the vertical dimension, and
is perfectly parallel between adjacent columns in the horizontal domain dimensions;
however, physics work-per-column depends on the state of the atmosphere and
is a major source of load imbalance. There are opportunities for parallelism over
different physics packages—for example, running radiative transfer concurrently
with convention and other physics. Parallelism in the vertical dimension is typically
limited or non-existent.

The computational cost of physics is a significant fraction of the overall cost
of a model run, anywhere from 20% to half of a typical forecast depending on
the configuration. Radiative transfer (Fig. 10) and cloud microphysics (Fig. 11) are
typically the most expensive physics components unless chemistry is also employed.
In that case, for air quality and pollution predictions, the cost of simulating chemical
reactions in the atmosphere and for advecting large numbers of chemical tracers

Fig. 10 Heating and cooling from incoming shortwave and outgoing longwave solar radiation as
modeled by the Rapid Radiative Transfer Model. Illustration by AER Corp. Used with permission

HPC for Weather Forecasting 315

Fig. 11 Cloud microphysics models subgrid-scale moisture processes governing production of
precipitation in multiple forms and thermodynamic feedbacks from evaporation and condensation
in active convection. Illustration by Rob Seigel, Colorado State University. Used with permission

may be several times greater than the cost of the entire rest of the model. Physics
is also state-heavy. While dynamics requires no more than a half-dozen or so
prognostic variables per grid cell, the combined working set for a full-physics
meteorological application is at least an order of magnitude larger (two orders larger
with chemistry). In spite of large working sets, physics makes greater use than
dynamics of exponent, log, square root, power, and other intrinsic operations and
is therefore more computationally intense than the model overall.

From a software point of view, physics code must be updated more frequently
than dynamics and is a source of inconsistency in a model’s software repository. The
physics packages within a given model may have been developed and contributed
by groups of experts outside a model development team using different vertical
coordinates, representations of physical fields, and coding practices.

4 Challenges for Next-Generation HPC

HPC systems are increasingly out of balance. Floating point capability is increasing
but the usable percentage is decreasing because only the number of floating point
units that can be constructed and powered for a given area of silicon and watt of
electricity continues to increase exponentially (and that may end soon). Rates of
increase for memory system, network, and I/O performance have slowed. The 8
billion transistor Knights Landing (KNL) processor, Intel’s most recent (and last)

316 J. Michalakes

generation of Intel’s Many-Integrated Core (MIC) architecture, was rated at up to
three TFLOPs peak performance (2.2 TFLOPs measured). To achieve that, however,
an application would need to perform seven floating point operations for every byte
accessed from KNL’s high-bandwidth (700 GB/s) MCDRAM memory. The number
one ranked system on the Top50015 list at this writing was the 200 PFLOPs Summit
system at Oak Ridge National Laboratory, which comprises 28,000 NVidia Volta
(V100) GPUs. To reach the rated 7 TFLOPs peak performance on the V100 GPU, an
application must perform nine operations for every byte accessed. By contrast, the
highest computational intensity (CI) measured for a full NWP model (non-spectral
transform) is 0.7 operations per byte [28], an order of magnitude gap between
application intensity and realizable floating point performance that is widening with
time.

One may argue that realized percentage of peak performance is an artificial
metric and that time-to-solution is what matters. If a model is scalable, why not
use larger numbers of processors to reach the required simulation speed? In the
first place, as discussed above, real-time deterministic weather forecasting does not
weakly scale with resolution because the sequential temporal dimension must also
be refined. But even within this fundamental scaling limit, there are also sound
practical reasons to worry about efficiency. Although it may be possible to run a
forecast using 15–20 MW of electricity, wasting all but a few percent is difficult to
justify. And application parallelism itself is a limited resource. Scaling to more tasks
and threads without using the resources available to each thread efficiently leaves
performance on the table and limits additional speedup unnecessarily.

Roofline analysis [47] characterizes realizable performance in terms of how
an application maps to the memory system and computational capabilities of a
processor. The idea, illustrated in the roofline plot for a Knights Landing (KNL)
processor (Fig. 13), is that performance (vertical axis) is bound by memory system
performance in the sloping part of the roofline. In that region, the memory system
cannot provide operands fast enough to keep up with the floating point units of
the processor. When CI is high enough and the roofline is flat, the application is
bound only by its ability to saturate the speed of the floating point units. The several
sloping parts of the roofline in the figure correspond to levels of the KNL memory
system from the fastest and smallest level one cache out to the DRAM main-memory
on the KNL device. The memory image of a weather model is too small to fit
entirely within the L1 and L2 caches but does fit within the 16 GB MCDRAM, the
high-bandwidth (nominally 400 GB/s, 387 GB/s measured) on-chip memory of the
KNL. Thus, MCDRAM bandwidth is the limiting factor on KNL for applications
with CI of <7 FLOP/byte. The shaded area shows how little of the KNL’s peak
performance is used by weather models with an overall CI of <1. Optimization
involves restructuring loops and data structures to increase memory locality, moving
CI to the right; and then increasing vector utilization to use as much of the increased
headroom under the roofline as possible.

15June 2018 Top500 list, https://www.top500.org/lists/2018/06/.

https://www.top500.org/lists/2018/06/

HPC for Weather Forecasting 317

The example in the figure is the roofline plot of an expensive subroutine from
the NEPTUNE model’s profile that diffuses energy cascading to wave numbers too
high to be resolved. The routine already has better than average CI, but additional
improvement was obtained using an AoS to SoA (array of structures to structure
of arrays) transformation. The original version of the code copied from a model
array into local spectral element arrays and back again. Fields in the state array
were stored together for each point (AoS), so that traversing a field required non-
stride-one accesses. In the optimized code, fields for each element were stored in an
element structure (SoA). The element structures were stored as an array (AoSoA)
that replaced the original state array. The diffusion routine was modified to be
called over each element structure in the state array and compute using the field
data in place without copying in and out of the routine. This optimized memory
restructuring moved CI to the right from 1.1 to 1.5 FLOP/byte.

Remaining optimization involved increasing vector and FMA (fused multiply-
add) utilization by reorganizing loops to make it easier for the compiler to generate
vector and FMA instructions, nearly doubling performance. A key benefit of
roofline analysis is signaling when the programmer has more work to do. In this
case, Fig. 12 shows considerable unexploited headroom remained beneath the
700 GFLOPs roofline for MCDRAM, suggesting other sources of inefficiency,
for example, incomplete vector utilization, instruction latency, or load imbalance
between threads.

Figure 13 shows the end result of a several month cycle of AoS to SoA and
other optimizations to improve CI and vectorization in the NEPTUNE model. The
solid bars are performance of the unoptimized code for a workload small enough
for a single node running on generations of Intel Xeon processors and Cavium
Corp’s ARM-based ThunderX2 processor. The hatched bars show the increase in
simulation rate (simulated time over wall clock) after optimization.

4.1 Next Generation HPC and the Programming Challenge

In the absence of increasing clock rates, effort now focuses on-processor fine-
grained parallelism: threads on GPUs and vector instructions on CPU cores. On
GPUs, approaches have ranged from inserting OpenACC or OpenMP directives
to offload computation to the GPU to complete recoding into NVidia’s CUDA
programming language. Because of the difficulty of generating and maintaining a
separate GPU version, the only instance of an entire weather model converted to
CUDA by hand was the Japan Meteorological Agency’s ASUCA model [39]. The
authors showed their code running 80 times faster on the GPU, but with caveats.
The comparison was relative to original Fortran code running on a single CPU core.
Moreover, single-precision GPU performance was compared to performance of the
original code at double precision. Taking this into account, one estimates that a
node-for-node GPU to CPU comparison with equivalent configurations would have

318 J. Michalakes

Fig. 12 Roofline plot for a costly diffusion routine in the NEPTUNE spectral element model.
The plot was generated by running the UC Berkeley’s Empirical Roofline Toolkit on an Intel Xeon
Knights Landing processor, then annotated with computational intensity (CI) and performance that
was measured for the diffusion kernel. Dotted lines show original measurements, solid show after
optimization. The shaded box shows the portion of the KNL’s theoretical peak performance that
can be utilized by weather models having overall CI of <1.0

yielded two- to four-times speedup, a ratio that has remained consistent with other
NWP codes on successive generations of hardware.

Directive-based approaches using OpenACC and OpenMP allow code to be
implemented, maintained, and optimized on both CPU and GPU architectures.
NOAA’s Earth System Research Laboratory developed a single-source implemen-
tation of the NIM model (one of the models described in the box) using OpenACC
directives [18]. The authors showed a two to three times performance benefit for
GPUs compared to conventional multicore CPUs and 1.3 times compared to MIC
on a device-to-device basis. This was without accounting for the additional cost of
moving data between the GPU device and its host processor. The authors showed
up to a 2× GPU to CPU benefit in terms of hardware cost in dollars, after internode
communication and overhead for transferring data between the host and GPU device
were addressed.

Meteo Suisse has deployed a GPU version of the COSMO model that was
implemented using Gridtools (formerly STELLA), a domain specific framework
of C++ templates and libraries developed by the Swiss National Supercomputing

HPC for Weather Forecasting 319

Fig. 13 Original and optimized performance (as simulation rate) of the NEPTUNE model on
single-node workload over a successive generations of multicore CPUs

Center. Gridtools uses template metaprogramming to embed the DSL within the
C++ host language. At compile time the DSL is translated into an executable with
OpenMP threading on CPU architectures and CUDA for GPUs [13]. Physics in
the COSMO model was adapted to GPU outside of Gridtools using OpenACC.
The authors reported between two and three times faster performance on the GPU
compared to multicore CPU, depending on the amount of work (number of grid
points) per node.

On the MIC architecture, application speedups relative to conventional multicore
CPUs are similar to speedups seen on GPU, but with considerably less programming
effort. This is because vector and parallel programming on the Knights Landing
is fundamentally the same as for conventional multicore Xeon processors. WRF
and other models able to use both MPI for message passing and OpenMP for
threading ported easily to MIC. Programmers can focus attention on exploiting
fine-grain parallelism, usually by helping the compiler recognize and generate
vector instructions and by restructuring code and data to make more efficient use
of cache and memory. The Knights Landing version of the MIC ran a standard
WRF benchmark 1.7 times faster than one node (two sockets) of an Intel Xeon
(Broadwell) processor [16].

Porting and optimizing NWP codes for next generation architectures remain
areas of active effort and research, and are the focus of numerous conference

320 J. Michalakes

and workshop series.16, 17, 18 The European Union’s Energy-efficient Scalable
Algorithms for Weather Prediction at Exascale (ESCAPE) is a 3-year project to
address the problem for weather and climate services in the EC, stated as follows:

Existing extreme-scale application software of weather and climate services is ill-equipped
to adapt to the rapidly evolving hardware. This is exacerbated by other drivers for hardware
development, with processor arrangements not necessarily optimal for weather and climate
simulations.19

A key activity within ESCAPE has been to identify and package kernel benchmarks
called Weather and Climate Dwarfs, after the original Berkeley Dwarfs [1], to focus
co-design efforts between the applications and HPC research and manufacturing
communities. In the USA, the HPC working group of the multi-agency Earth System
Prediction Capability (ESPC) program comprises model developers and users from
NOAA, NASA, DOE, the Dept. of Defense, and the National Science Foundation.
Less far along than the European efforts, at this writing the ESPC group had
defined initial requirements on which to undertake effort along the lines of the EC
program [5].

5 Summary

“Modern weather prediction is perhaps the most cooperative activity of our species”
– Prof. Clifford Mass, Dept. of Atmos. Sciences. U. Washington [26]

Today, the numerically generated weather information available through print,
radio, television, and the internet is public’s most direct experience with high-
performance computing. The half-century history of numerical weather prediction
is a story of massive scientific and technical investment on an international scale;
of steady progress fraught with technological disruption harnessing a billion-fold
increase in computer power; and of the challenges for continuing to add value from
numerically generated forecasts into the exascale era.

Acknowledgements Thank you to Tom Henderson, Kevin Viner, Jim Doyle, John Dennis,
Michael Duda, Jacques Middlecoff, and Jordon Powers for reading the manuscript and providing
their valuable advice.

16NCAR Multicore Workshop series: www2.cisl.ucar.edu/events.
17ECMWF Workshop on HPC in Meteorology: events.ecmwf.int.
18AMS Symposium on HPC for Weather, Water and Climate: ams.confex.com.
19http://www.hpc-escape.eu/.

http://www2.cisl.ucar.edu/events
http://events.ecmwf.int
http://ams.confex.com
http://www.hpc-escape.eu/

HPC for Weather Forecasting 321

References

1. Asonovic, K., Bodik, R., Catanzaro, B., Gebis, J., Husbands, P., Keutzer, K., . . . Yellick,
K. (2006). The landscape of parallel computing research: a view from Berkeley. Electrical
Engineering and Computer Sciences. University of California at Berkeley. Retrieved from
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

2. Bao, L., Nair, R., & Tufo, H. (2014). A mass and momentum flux-form high-order discontin-
uous Galerkin shallow water model on the cubed-sphere. Journal of Computational Physics,
271, 224-243.

3. Bauer, P., Thorpe, A., & Brunet, G. (2015, September 3). A quiet revolution of numerical
weather prediction. Nature, 525, 47-55. Retrieved from www.nature.com/doifinder/10.1038/
nature14956

4. Burstedde, C., Wilcox, L., & Ghattas, O. (2011, May). p4est: Scalable Algorithms for Parallel
Adaptive Mesh Refinement on Forests of Octrees. SIAM J. Sci. Comput., 33(3), 1103-1133.
Retrieved from https://doi.org/10.1137/100791634

5. Carman, J., Clune, T., Giraldo, F., Govette, M., Gross, B., Kamrath, A., . . . Whitcomb, T.
(2017). Position paper on high performance computing needs in earth system prediction.
ESPC position paper, National Earth System Prediction Capability, Silver Spring, MD.
doi:10.7289/V5862DH3

6. Dennis, J. (2003). Inverse space-filling curve partitioning of a global ocean model. Pro-
ceedings fo IEEE International Parallel and Distributed Processing Symposium, (p. 7).
doi:10.1109/IPDPS.2003.1213486

7. Drake, J., Flanery, R., Semararo, D., Worley, P., Foster, I., Michalakes, J., . . . Williamson,
D. (1995). Parallel Community Climate Model: Description and User’s Guide. Oak Ridge
National Laboratory.

8. Drake, J., Semeraro, B., Worley, P., Foster, I., Michalakes, J., Toonen, B., . . . & Williamson,
D. (1994). PCCM2: A GCM adapted for scalable parallel computers. Chicago, IL: Argonne
National Laboratory. Retrieved from https://www.osti.gov/biblio/10114472

9. Eliasen, E., Machenhauer, B., & Rasmussen, E. (1970). On a numerical method for integration
of the hydrodynamical equations with a spectral representation of the horizontal fields. Report
No. 2, University of Copenhagen, Institute for Teoretisk Meteorologi.

10. Foster, I., & Toonen, B. (1995). Load Balancing Algorithms for the Parallel Community
Climate Model. Technial memorandum ANL/MCS-TM-190, Argonne National Laboratory.

11. Foster, I., & Worley, P. (1997). Parallel algorithms for the spectral transform method. SIAM
Journal on Scientific Computing, 18, 806-837. doi:10.2172/10168301

12. Fournier, A., Taylor, M., & Tribbia, J. (2004). A spectral element atomsopheric model (SEAM).
Monthly Weather Review, 132, 726-748.

13. Fuhrer, O., Osuna, C., Lapillonne, X., Gysi, T., Cumming, B., Bianco, M., . . . Schulthess,
T. (2014). Towards a performance portable, architecture agnostic implementation strategy
for weather and climate models. Supercomputing Frontiers and Innovations, 1(1), 45-62.
doi:10.14529/jsfi140103

14. Gaberšek, S., Giraldo, F., & Doyle, J. (2012). Dry and moist experiments with a two-
dimensional spectral element model. Mon. Wea. Rev., 140, 3163-3182.

15. Giraldo, F., & Rosmond, T. (2004, January). A scalable spectral element Eulerian atmospheric
model (SEE-AM) for NWP. Monthly Weather Review, 132, 133-153.

16. Gokhale, I., & Michalakes, J. (2016). Weather Research and Forecasting (WRF). In J. Jeffers,
J. Reinders, & A. Sodani, Intel Xeon Phi Processor High Performance Programming: Knights
Landing Edition (pp. 499-509). Morgan Kaufman.

17. Golding, B., Mylne, K., & Clark, P. (2004). The history and future of numerical weather
prediction in the Met Office. Weather, 59(11), 299-3-6. doi:10.1256/wea.113.04

18. Govett, M., Rosinski, J., Middlecoff, T., Lee, J., MacDonald, A., Wang, N., . . . Duarte, A.
(2017). Parallelization and performance of the NIM weather model on CPU, GPU and MIC

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www.nature.com/doifinder/10.1038/nature14956
http://dx.doi.org/10.1137/100791634
https://www.osti.gov/biblio/10114472

322 J. Michalakes

processors. Bulletin of the American Meteorology Society © American Meteorological Society.
Used with permission, 2201-2213.

19. Haut, T., & Wingate, B. (2014). An Asymptotic Parallel-in-Time Method for Highly Oscil-
latory PDEs. SIAM Journal on Scientific Computing, 32(2), 693-713. Retrieved from https://
doi.org/10.1137/130914577

20. Henderson, T., Michalakes, J., Gokhale, I., & Jha, A. (2015). Numerical weather prediction
optimization. In J. Reinders, & J. Jeffers, High Performance Parallelism Pearls, Volume 2 (pp.
7-23). Morgan Kaufman.

21. Jacobsen, D., Gunzburger, M., Ringler, T., Burkardt, J., & Peterson, J. (2013). Parallel
algorithms for planar and spherical Delaunay construction. Geosci. Model Dev., 6, 1353-1365.
doi:10.5194/gmd-6-1353-2013

22. Jones, P. (1996). The Los Alamos Parallel Ocean Program (POP) and Coupled Model on MPP
and Clustered SMP Architectures. In G.-R. Hoffman, & N. Krietz (Ed.), Seventh ECMWF
Workship on the Use of Parallel Processors in Meteorology (pp. 226-238). Reading, UK: World
Scientific.

23. Källén, E. (2016). Weather Prediction and the Scalability Challenge. EASC 2016: Exascale
Applications & Software Conference. Stockholm, Sweden. Retrieved from https://youtu.be/
WAqR4aUzpgo

24. Karypis, G., & Kumar, V. (1998). METIS 4.0: Unstructured graph partitioning and sparse
matrix ordering system. University of Minnesota, Dept. of Computer Science and Engineer-
ing. University of Minnesota. Retrieved from http://glaros.dtc.umn.edu/gkhome/metis/metis/
overview

25. MacDonald, A., Middlecoff, J., Henderson, T., & Lee, J. (2010). A general method for mod-
eling on irregular grids. International Journal of High Performance Computing Applications.
Retrieved from http://journals.sagepub.com/doi/abs/10.1177/1094342010385019

26. Mass, C. (2014, December 25). Is Numerical Weather Prediction One of Mankind’s Greatest
Achievements? Retrieved from http://cliffmass.blogspot.com/2014/12/

27. Michalakes, J., Govett, M., Benson, R., Black, T., Juang, H., Reinecke, A., & Skamarock,
W. (2015). AVEC Report: NGGPS Level-1 Benchmarks and Software Evaluation. Techni-
cal report, NOAA, Office of Science and Technology Integration. Retrieved from https://
www.weather.gov/sti/stimodeling_nggps_implementation_atmdynamics

28. Müller, A., Koera, M., Marras, S., Wilcox, L., Isaac, T., & Giraldo, F. (2018, April 5). Strong
scaling for numerical weather prediction at petascale with the atmospheric model NUMA.
International Journal of High Performance Computing Applications, 31. Retrieved from https:/
/doi.org/10.1177/1094342018763966

29. Nair, R., Thomas, S., & Loft, R. (2005, April). A discontinuous Galerkin global shallow
water model. Monthy Weather Review, 876-888. Retrieved from https://doi.org/10.1175/
MWR2903.1

30. Orszag, S. A. (1970). Transform method for calculation of vector coupled sums: Application
to the spectral form of the vorticity equation. Journal of Atmospheric Science, 27, 890-895.

31. Palmer, T., & Düben, P. (2014, August). The use of imprecise processing to improve accuracy
in weather & climate prediction. Journal of Computational Physics, 271, 2-18. Retrieved from
https://doi.org/10.1016/j.jcp.2013.10.042

32. Raucher, S., Ringler, T., Skamarock, W., & Mirin, A. (2012). Exploring a Global Multi-
Resolution Modeling Approach Using Aquaplanet Simulations. Journal of Climate ©
American Meteorological Society. Used with permission, 2432-2452. doi:10.1175/JCLI-D-12-
00154.1

33. Richardson, L. (1922). Weather Predication by Numerical Process. Cambridge University
Press.

34. Ringler, T. (2018). Personal communication.
35. Ringler, T., Ju, L., & Gunzburger, M. (2008). A multiresolution method for climate system

modeling: application of spherical centroidal Voronoi tessellations. Ocean Dynamics, 58(5-6),
475-498. doi:10.1007/s10236-008-0157-2

http://dx.doi.org/10.1137/130914577
https://youtu.be/WAqR4aUzpgo
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://journals.sagepub.com/doi/abs/10.1177/1094342010385019
http://cliffmass.blogspot.com/2014/12/
https://www.weather.gov/sti/stimodeling_nggps_implementation_atmdynamics
http://dx.doi.org/10.1177/1094342018763966
http://dx.doi.org/10.1175/MWR2903.1
http://dx.doi.org/10.1016/j.jcp.2013.10.042

HPC for Weather Forecasting 323

36. Ringler, T., Thuburn, J., Klemp, J., & Skamarock, W. (2010, May). A unified approach
to energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids.
Journal of Computational Physics, 229(9), 3065-3090. Retrieved from https://doi.org/10.1016/
j.jcp.2009.12.007

37. Rodrigues, E., Navaux, P., Panetta, J., Fazenda, A., Mendes, C., & Kale, L. (2010). A
comparitive analysis of load balancing algorithms applied to a weather forecast model.
22nd International Symposium on Computer Architecture and High Performance Computing.
Petropolis, Brazil. doi:10.1109/SBAC-PAD.2010.18

38. Schuman, F. G. (1989). History of Numerical Weather Prediction at
the National Meteorlogical Center. AMS Weather and Forecasting, 4,
286-296. Retrieved from https://journals.ametsoc.org/doi/pdf/10.1175/1520-
0434%281989%29004%3C0286%3AHONWPA%3E2.0.CO%3B2

39. Shimokawabe, T., Aoki, T., Muroi, C., Ishida, J., Kawano, K., Endo, T., . . . Matsuoka, S.
(2010). An 80-fold speeup 15.0 TFlops, full GPU acceleration of non-hydrostatic weather
model ASUCA production code. Proceeddings of the 2010 ACM/IEEE conference on Super-
computing (SC’10). New Orleans, LA.

40. Simmons, A., Burridge, D., Jarraud, M., Girard, C., & Wergen, W. (1989). The ECMWF
medium range prediction models, development of the numerical formulations and the impact
of increased resolution. Meteorol. Atmos. Phys., 40, 28-60.

41. Skamarock, W., Klemp, J., Dudhia, J., Gill, D., Barker, D., Wang, W., & Powers, J. (2005). A
description of the advanced research WRF version 2. Technical report. Retrieved from http://
www.dtic.mil/docs/citations/ADA487419

42. Smolarkiewicz, P., Deconinck, W., Hamrud, M., Kühnlein, C., Mizdzynski, G., Szmelter,
J., & Wedi, N. (2015, Autumn). An all-scale, finite-volume module for the IFS. ECMWF
Newsletter, pp. 24-29. Retrieved from https://www.ecmwf.int/en/elibrary/14589-newsletter-
no-145-autumn-2015

43. Stern, H., & Davidson, N. (2015, October). Trends in the skill of weather prediction at lead
times of 1-14 days. Q. J. R. Meteorol. Soc., 2726-2736. doi:10.1002/qj.2559

44. Tolman, H. (2017). The production suite: looking forward. National Oceanic and Atmospheric
Administration, OSTI, College Park, MD. Retrieved from http://www.emc.ncep.noaa.gov/
annualreviews/day-2/01a-Tolman_NPSR_2017_townhalls.pdf

45. Wedi, N. P., Hamrud, M., & Mozdzynski, G. (2013). A fast spherical harmoics transform for
global NWP and climate models. Monthly Weather Review, 141, 3450-3461.

46. Wedi, N., Bauer, P., Deconinck, W., Diamantakis, M., Hamrud, M., Kühnlein,
C., . . . Smolarkiewicz, P. (2015). The modeling infrastructure of the Integrated
Forecast System: Recent advances and future challenges. Technical Memorandum
760, European Centre for Medium-Range Weather Forecasts, Reading, UK. Retrieved
from https://www.ecmwf.int/sites/default/files/elibrary/2015/15259-modelling-infrastructure-
integrated-forecasting-system-recent-advances-and-future-challenges.pdf

47. Williams, S., Waterman, A., & Patterson, D. (2009). Roofline: an insightful visual performance
model for multicore architectures. Communications of the ACM, 52, 65-76. Retrieved from
https://www.osti.gov/servlets/purl/963540

48. Williamson, D. (2007). The Evolution of Dynamical Cores for Global Atmospheric Models.
Journal of the Meteorological Society of Japan. Used with permission, 85B, 241-269. Retrieved
from https://pdfs.semanticscholar.org/5a42/471e95ec434e0eb08bf03380da4a578c420d.pdf

http://dx.doi.org/10.1016/j.jcp.2009.12.007
https://journals.ametsoc.org/doi/pdf/10.1175/1520-0434%281989%29004%3C0286%3AHONWPA%3E2.0.CO%3B2
http://www.dtic.mil/docs/citations/ADA487419
https://www.ecmwf.int/en/elibrary/14589-newsletter-no-145-autumn-2015
http://www.emc.ncep.noaa.gov/annualreviews/day-2/01a-Tolman_NPSR_2017_townhalls.pdf
https://www.ecmwf.int/sites/default/files/elibrary/2015/15259-modelling-infrastructure-integrated-forecasting-system-recent-advances-and-future-challenges.pdf
https://www.osti.gov/servlets/purl/963540
https://pdfs.semanticscholar.org/5a42/471e95ec434e0eb08bf03380da4a578c420d.pdf

	HPC for Weather Forecasting
	1 Introduction: Weather and HPC
	2 History
	3 Models, Grids, and Parallelization
	3.1 Spectral Dynamics
	3.2 Grid-Point Dynamics
	3.2.1 Domain Decomposition
	3.2.2 Load Imbalance

	3.3 Element-Based Dynamics
	3.4 Physics

	4 Challenges for Next-Generation HPC
	4.1 Next Generation HPC and the Programming Challenge

	5 Summary
	References

