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1 Introduction

Solving large sparse linear systems is at the heart of many application problems
arising from computational science and engineering applications. Advances in
combinatorial methods in combination with modern computer architectures have
massively influenced the design of the state-of-the-art direct solvers that are
feasible for solving larger systems efficiently in a computational environment with
rapidly increasing memory resources and cores. Among these advances are novel
combinatorial algorithms for improving diagonal dominance which pave the way to
a static pivoting approach, thus improving the efficiency of the factorization phase
dramatically. Besides, partitioning and reordering the system such that a high level
of concurrency is achieved, the objective is to simultaneously achieve the reduction
of fill-in and the parallel concurrency. While these achievements already signifi-
cantly improve the factorization phase, modern computer architectures require one
to compute as many operations as possible in the cache of the CPU. This in turn
can be achieved when dense subblocks that show up during the factorization can be
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grouped together into dense submatrices which are handled by multithreaded and
cache-optimized dense matrix kernels using level-3 BLAS and LAPACK [3].

This chapter will review some of the basic technologies together with the latest
developments for sparse direct solution methods that have led to the state-of-the-
art LU decomposition methods. The paper is organized as follows. In Sect. 2 we
will start with maximum weighted matchings which is one of the key tools in
combinatorial optimization to dramatically improve the diagonal dominance of
the underlying system. Next, Sect. 3 will review multilevel nested dissection as
a combinatorial method to reorder a system symmetrically such that fill-in and
parallelization can be improved simultaneously, once pivoting can be more or less
ignored. After that, we will review established graph-theoretical approaches in
Sect. 4, in particular the elimination tree, from which most of the properties of the
LU factorization can be concluded. Among these properties is the prediction of
dense submatrices in the factorization. In this way several subsequent columns of
the factors L and UT are collected in a single dense block. This is the basis for
the use of dense matrix kernels using optimized level-3 BLAS as well to exploit
fast computation using the cache hierarchy which is discussed in Sect. 5. Finally,
we show in Sect. 6 how the ongoing developments in parallel sparse direct solution
methods have advanced integrated circuit simulations. We assume that the reader is
familiar with some elementary knowledge from graph theory, see, e.g., [15, 21] and
some simple computational algorithms based on graphs [1].

2 Maximum Weight Matching

In modern sparse elimination methods the key to success is ability to work with
efficient data structures and their underlying numerical templates. If we can increase
the size of the diagonal entries as much as possible in advance, pivoting during
Gaussian elimination can often be bypassed and we may work with static data
structures and the numerical method will be significantly accelerated. A popular
method to achieve this goal is the maximum weight matching method [16, 37] which
permutes, e.g., the rows of a given nonsingular matrix A ∈ R

n,n by a permutation
matrix � ∈ R

n,n such that �T A has a nonzero diagonal. Moreover, it maximizes
the product of the absolute diagonal values and yields diagonal scaling matrices
Dr,Dc ∈ R

n,n such that Ã = �T DrADc satisfies |ãij | � 1 and |ãii | = 1 for all
i, j = 1, . . . , n. The original idea on which these nonsymmetric permutations and
scalings are based is to find a maximum weighted matching of a bipartite graphs.
Finding a maximum weighted matching is a well known assignment problem in
operation research and combinatorial analysis.

Definition 1 A graph G = (V ,E) with vertices V and edges E ⊂ V 2 is called
bipartite if V can be partitioned into two sets Vr and Vc, such that no edge e =
(v1, v2) ∈ E has both ends v1, v2 in Vr or both ends v1, v2 in Vc. In this case we
denote G by Gb = (Vr , Vc, E).
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Definition 2 Given a matrix A, then we can associate with it a canonical bipartite
graph Gb(A) = (Vr , Vc, E) by assigning the labels of Vr = {r1, . . . , rn} with the
row indices of A and Vc = {c1, . . . , cn} being labeled by the column indices. In this
case E is defined via E = {(ri, cj )| aij �= 0}.
For the bipartite graph Gb(A) we see immediately that if aij �= 0, then we have
that ri ∈ Vr from the row set is connected by an edge (ri, cj ) ∈ E to the column
cj ∈ Vc, but neither rows are connected with each other nor do the columns have
interconnections.

Definition 3 A matching M of a given graph G = (V ,E) is a subset of edges
e ∈ E such that no two of which share the same vertex.

If M is a matching of a bipartite graph Gb(A), then each edge e = (ri, cj ) ∈ M
corresponds to a row i and a column j and there exists no other edge ê = (rk, cl) ∈
M that has the same vertices, neither rk = ri nor cl = cj .

Definition 4 A matching M of G = (V ,E) is called maximal, if no other edge
from E can be added to M.

If for an n × n matrix A a matching M of Gb(A) with maximum cardinality n

is found, then by definition the edges must be (i1, 1), . . . , (in, n) with i1, . . . , in
being the numbers 1, . . . , n in a suitable order and therefore we obtain ai1,1 �= 0,
. . . ain,n �= 0. In this case we have established that the matrix A is at least structurally
nonsingular and we can use a row permutation matrix �T associated with row
ordering i1, . . . , in to place a nonzero entry on each diagonal location of �T A.

Definition 5 A perfect matching is a maximal matching with cardinality n.

It can be shown that for a structurally nonsingular matrix A there always exists a
perfect matching M.

Perfect Matching
In Fig. 1, the set of edges M = {(1, 2), (2, 4), (3, 5), (4, 1), (5, 3), (6, 6)}
represents a perfect maximum matching of the bipartite graph Gb(A).

The most efficient combinatorial methods for finding maximum matchings in
bipartite graphs make use of an augmenting path. We will introduce some graph
terminology for the construction of perfect matchings.

Definition 6 If an edge e = (u, v) in a graph G = (V ,E) joins a vertices u, v ∈ V ,
then we denote it as uv. A path then consists of edges u1u2, u2u3, u3u4 . . . , uk−1uk ,
where each (ui, ui+1) ∈ E, i = 1, . . . , k − 1.
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Fig. 1 Perfect matching. Left side: original matrix A. Middle: bipartite representation Gb(A) =
(Vr , Vc, E) of the matrix A and perfect matching M. Right side: permuted matrix �T A

If Gb = (Vr , Vc, E) is a bipartite graph, then by definition of a path, any path is
alternating between the vertices of Vr and Vc, e.g., paths in Gb could be such as
r1c2, c2r3, r3c4, . . . .

Definition 7 Given a graph G = (V ,E), a vertex is called free if it is not incident
to any other edge in a matching M of G. An alternating path relative to a matching
M is a path P = u1u2, u2u3, . . . , us−1us where its edges are alternating between
E \M and M. An augmenting path relative to a matching M is an alternating path
of odd length and both of it vertex endpoints are free.

Augmenting Path
Consider Fig. 1. To better distinguish between row and column vertices

we use 1 , 2 , . . . , 6 for the rows and ©1 ,©2 ,. . . ,©6

for the columns. A non-perfect but maximal matching is given by M =
{( 4 ,©5 ), ( 1 ,©1 ), ( 6 ,©2 ), ( 2 ,©6 ), ( 5 ,©4 )}.
We can easily see that an augmenting path alternating between rows and

columns is given by 3 ©5 , ©5 4 , 4 ©1 , ©1 1 ,

1 ©2 , ©2 6 , 6 ©6 , ©6 2 , 2 ©4 , ©4 5 ,

5 ©3 . Both endpoints 3 and ©3 of this augmenting path are free.



State-of-the-Art Sparse Direct Solvers 7

In a bipartite graph Gb = (Vr , Vc, E) one vertex endpoint of any augmenting
path must be in Vr , whereas the other one must be in Vc. The symmetric difference,
A ⊕ B of two edge sets A, B, is defined to be (A \ B) ∪ (B \ A).

Using these definitions and notations, the following theorem [5] gives a construc-
tive algorithm for finding perfect matchings in bipartite graphs.

Theorem 1 If M is non-maximum matching of a bipartite graph Gb = (Vr , Vc, E),
then there exists an augmenting path P relative to M such that P = M̃ ⊕ M and
M̃ is a matching with cardinality |M| + 1.

According to this theorem, a combinatorial method of finding perfect matching in a
bipartite graph is to seek augmenting paths.

The perfect matching as discussed so far only takes the nonzero structure of
the matrix into account. For their use as static pivoting methods prior to the LU

decomposition one requires in addition to maximize the absolute value of the
product of the diagonal entries. This is referred to as maximum weighted matching.
In this case a permutation π has to be found, which maximizes

n∏

i=1

|aπ(i)i |. (1)

The maximization of this product is transferred into a minimization of a sum as
follows. We define a matrix C = (cij ) via

cij =
{

log ai − log |aij | aij �= 0

∞ otherwise,

where ai = maxj |aij | is the maximum element in row i of matrix A. A permutation
π which minimizes the sum

n∑

i=1

cπ(i)i

also maximizes the product (1). The minimization problem is known as linear-
sum assignment problem or bipartite weighted matching problem in combinatorial
optimization. The problem is solved by a sparse variant of the Hungarian method.
The complexity is O(nτ log n) for sparse matrices with τ entries. For matrices,
whose associated graph fulfill special requirements, this bound can be reduced
further to O(nα(τ + n log n)) with α < 1. All graphs arising from finite-difference
or finite element discretizations meet the conditions [24]. As before, we finally get
a perfect matching which in turn defines a nonsymmetric permutation.

When solving the assignment problem, two dual vectors u = (ui) and v = (vi)

are computed which satisfy
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ui + vj = cij (i, j) ∈ M, (2)

ui + vj ≤ cij otherwise. (3)

Using the exponential function these vectors can be used to scale the initial matrix.
To do so define two diagonal matrices Dr and Dc through

Dr = diag(dr
1 , dr

2 , . . . , dr
n), dr

i = exp(ui), (4)

Dc = diag(dc
1, dc

2, . . . , dc
n), dc

j = exp(vj )/aj . (5)

Using Eqs. (2) and (3) and the definition of C, it immediately follows that Ã =
�T DrADc satisfies

|ãii | = 1, (6)

|ãij | ≤ 1. (7)

The permuted and scaled system Ã has been observed to have significantly better
numerical properties when being used for direct methods or for preconditioned
iterative methods, cf., e.g., [4, 16]. Olschowka and Neumaier [37] introduced these
scalings and permutation for reducing pivoting in Gaussian elimination of full
matrices. The first implementation for sparse matrix problems was introduced by
Duff and Koster [16]. For symmetric matrices |A|, these nonsymmetric matchings
can be converted to a symmetric permutation P and a symmetric scaling Ds =
(DrDc)

1/2 such that P T DsADsP consists mostly of diagonal blocks of size 1 × 1
and 2 × 2 satisfying a similar condition as (6) and (7), where in practice it rarely
happens that 1 × 1 blocks are identical to 0 [17]. Recently, successful parallel
approaches to compute maximum weighted matchings have been proposed [28, 29].

Example 1: Maximum Weight Matching
To conclude this section we demonstrate the effectiveness of maximum
weight matchings using a simple sample matrix “west0479” from the SuiteS-
parse Matrix Collection. The matrix can also directly be loaded in MATLAB

using load west0479. In Fig. 2 we display the matrix before and after
applying maximum weighted matchings. To illustrate the improved diagonal
dominance we further compute ri = |aii |/∑n

j=1 |aij | for each row of A and

Ã = �T DrADs , i = 1, . . . , n. ri can be read as relative diagonal dominance
of row i and yields a number between 0 and 1. Moreover, whenever ri > 1

2 ,
the row is strictly diagonal dominant, i.e., |aii | >

∑
j :j �=i |aij |. In Fig. 3 we

display for both matrices ri by sorting its values in increasing order and taking
1
2 as reference line. We can see the dramatic impact of maximum weighted

(continued)
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Fig. 2 Maximum weight matching. Left side: original matrix A. Right side: permuted and rescaled
matrix Ã = �T DrADc
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Fig. 3 Diagonal dominance. Left side: ri for A. Right side: ri Ã = �T DrADc

matchings in improving the diagonal dominance of the given matrix and thus
paving the way to a static pivoting approach in incomplete or complete LU

decomposition methods.

3 Symbolic Symmetric Reordering Techniques

When dealing with large sparse matrices a crucial factor that determines the
computation time is the amount of fill that is produced during the factorization of
the underlying matrix. To reduce the complexity there exist many mainly symmetric
reordering techniques that attempt to reduce the fill-in heuristically. Here we will
demonstrate only one of these methods, the so-called nested dissection method.
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The main reason for selecting this method is that it can be easily used for parallel
computations.

3.1 Multilevel Nested Dissection

Recursive multilevel nested dissection methods for direct decomposition methods
were first introduced in the context of multiprocessing. If parallel direct methods
are used to solve a sparse system of equations, then a graph partitioning algorithm
can be used to compute a fill-reducing ordering that leads to a high degree of
concurrency in the factorization phase.

Definition 8 For a matrix A ∈ R
n,n we define the associated (directed) graph

Gd(A) = (V ,E), where V = {1, . . . , n} and the set of edges E = {
(i, j)| aij �= 0

}
.

The (undirected) graph is given by Gd(|A| + |A|T ) and is denoted simply by G(A).

In graph terminology for a sparse matrix A we simply have a directed edge (i, j)

for any nonzero entry aij in Gd(A), whereas the orientation of the edge is ignored
in G(A).

The research on graph partitioning methods in the mid-nineties has resulted in
high-quality software packages, e.g., METIS [25]. These methods often compute
orderings that on the one hand lead to small fill-in for (incomplete) factorization
methods, while on the other hand they provide a high level of concurrency. We
will briefly review the main idea of multilevel nested dissection in terms of graph
partitioning.

Definition 9 Let A ∈ R
n,n and consider its graph G(A) = (V ,E). A k-way graph

partitioning consists of partitioning V into k disjoint subsets V1, V2, . . . , Vk such
that Vi ∩ Vj = ∅ for i �= j ∪iVi = V . The subset Es = E ∩ ⋃

i �=j (Vi × Vj ) is
called edge separator.

Typically we want a k-way partitioning to be balanced, i.e., each Vi should satisfy
|Vi | ≈ n/k. The edge separator Es refers to the edges that have to be taken away
from the graph in order to have k separate subgraphs associated with V1, . . . , Vk and
the number of elements of Es is usually referred to as edge-cut.

Definition 10 Given A ∈ R
n,n, a vertex separator Vs of G(A) = (V ,E) is a set of

vertices such that there exists a k-way partitioning V1, V2, . . . , Vk of V \ Vs having
no edge e ∈ Vi × Vj for i �= j .

A useful vertex separator Vs should not only separate G(A) into k independent
subgraphs associated with V1, . . . , Vk , it is intended that the number of edges
∪k

i=1|{eis ∈ Vi, s ∈ Vs}| is also small.
Nested dissection recursively splits a graph G(A) = (V ,E) into almost

equal parts by constructing a vertex separator Vs until the desired number k of
partitionings are obtained. If k is a power of 2, then a natural way of obtaining a
vertex separator is to first obtain a 2-way partitioning of the graph, a so-called graph
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Fig. 4 A 2-way partition with vertex separator Vs = {1, 4} and the associated reordered matrix
placing the two rows and columns associated with Vs to the end

bisection with its associated edge separator Es . After that a vertex separator Vs is
computed from Es , which gives a 2-way partitioning V1, V2 of V \Vs . This process is
then repeated separately for the subgraphs associated with V1, V2 until eventually a
k = 2l-way partitioning is obtained. For the reordering of the underlying matrix
A, the vertices associated with V1 are taken first followed by V2 and Vs . This
reordering is repeated similarly during repeated bisection of each Vi . In general,
vertex separators of small size result in low fill-in.

Example 2: Vertex Separators
To illustrate vertex separators, we consider the reordered matrix �T A from
Fig. 1 after a matching is applied. In Fig. 4 we display its graph G(�T A)

ignoring the orientation of the edges. A 2-way partitioning is obtained with
V1 = {3, 5}, V2 = {2, 6}, and a vertex separator Vs = {1, 4}. The associated
reordering refers to taking the rows and the columns of �T A in the order
3, 5, 2, 6, 1, 4.

Since a naive approach to compute a recursive graph bisection is typically
computationally expensive, combinatorial multilevel graph bisection has been used
to accelerate the process. The basic structure is simple. The multilevel approach
consists of three phases: at first there is a coarsening phase which compresses the
given graph successively level by level by about half of its size. When the coarsest
graph with about a few hundred vertices is reached, the second phase, namely the
so-called bisection, is applied. This is a high-quality partitioning algorithm. After
that, during the uncoarsening phase, the given bisection is successively refined as it
is prolongated towards the original graph.

3.1.1 Coarsening Phase

The initial graph G0 = (V0, E0) = G(A) of A ∈ R
n,n is transformed during

the coarsening phase into a sequence of graphs G1,G2, . . . ,Gm of decreasing size
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such that |V0| 
 |V1| 
 |V2| 
 · · · 
 |Vm|. Given the graph Gi = (Vi, Ei),
the next coarser graph Gi+1 is obtained from Gi by collapsing adjacent vertices.
This can be done, e.g., by using a maximal matching Mi of Gi (cf. Definitions 3
and 4). Using Mi , the next coarser graph Gi+1 is constructed from Gi collapsing
the vertices being matched into multinodes, i.e., the elements of Mi together with
the unmatched vertices of Gi become the new vertices Vi+1 of Gi+1. The new edges
Ei+1 are the remaining edges from Ei connected with the collapsed vertices. There
are various differences in the construction of maximal matchings [9, 25]. One of the
most popular and efficient methods is heavy edge matching [25].

3.1.2 Partitioning Phase

At the coarsest level m, a 2-way partitioning Vm,1∪̇Vm,2 = Vm of Gm = (Vm,Em)

is computed, each of them containing about half of the vertices of Gm. This
specific partitioning of Gm can be obtained by using various algorithms such as
spectral bisection [19] or combinatorial methods based on Kernighan–Lin variants
[18, 27]. It is demonstrated in [25] that for the coarsest graph, combinatorial methods
typically compute smaller edge-cut separators compared with spectral bisection
methods. However, since the size of the coarsest graph Gm is small (typically
|Vm| < 100), this step is negligible with respect to the total amount of computation
time.

3.1.3 Uncoarsening Phase

Suppose that at the coarsest level m, an edge separator Em,s of Gm associated with
the 2-way partitioning has been computed that has led to a sufficient edge-cut of Gm

with Vm,1, Vm,2 of almost equal size. Then Em,s is prolongated to Gm−1 by reversing
the process of collapsing matched vertices. This leads to an initial edge separator
Em−1,s for Gm−1. But since Gm−1 is finer, Em−1,s is sub-optimal and one usually
decreases the edge-cut of the partitioning by local refinement heuristics such as the
Kernighan–Lin partitioning algorithm [27] or the Fiduccia–Mattheyses method [18].
Repeating this refinement procedure level-by-level we obtain a sequence of edge
separators Em,s, Em−1,s , . . . , E0,s and eventually and edge separator Es = E0,s of
the initial graph G(A) is obtained. If one is seeking for a vertex separator Vs of
G(A), then one usually computes Vs from Es at the end.

There have been a number of methods that are used for graph partitioning, e.g.,
METIS [25], a parallel MPI version PARMETIS [26], or a recent multithreaded
approach MT-METIS [30]. Another example for a parallel partitioning algorithm
is SCOTCH [9].
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Fig. 5 Application of multilevel nested dissection after the matrix is already rescaled and
permuted using maximum weight matching

Multilevel Nested Dissection
We will continue Example 1 using the matrix Ã = �T DrADs that has
been rescaled and permuted using maximum weight matching. We illustrate
in Fig. 5 how multilevel nested dissection changes the pattern Â = P T ÃP ,
where P refers to the permutation matrix associated with the partitioning of
G(Ã).

3.2 Other Reordering Methods

One of the first methods to reorder the system was the reverse Cuthill–McKee
(RCM) methods [10, 34] which attempts to reduce the bandwidth of a given matrix.
Though this algorithm is still attractive for sequential methods and incomplete
factorization methods, its use for direct solvers is considered as obsolete. An attrac-
tive alternative to nested dissection as reordering method for direct factorization
methods is the minimum degree algorithm (MMD) [20, 40] and its recent variants,
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in particular the approximate minimum degree algorithm (AMD) [2, 12] with or
without constraints. The main objective of the minimum degree algorithm is to
simulate the Gaussian elimination process symbolically by investigating the update
process aij → aij − aika

−1
kk akj by means of graph theory, at least in the case

of the undirected graph. The name-giving degree refers to the number of edges
connected to a vertex and how the graph and therefore the degrees of its vertices
change during the factorization process. Over the years this has led to an evolution
of the underlying minimum degree algorithm using the so-called external degree for
selecting vertices as pivots and further techniques like incomplete degree update,
element absorption, and multiple elimination as well as data structures based on
cliques. For an overview see [20]. One of the most costly parts in the minimum
degree algorithm is to update of the degrees. Instead of computing the exact external
degree, in the approximate minimum degree algorithm [2], an approximate external
degree is computed that significantly saves time while producing comparable fill-in
for the LU decomposition.

We like to conclude this section by mentioning that if nested dissection is
computed to produce a vertex separator Vs and a related k-way partitioning
V1, . . . , V − k for the remaining vertices of V \ Vs of G(A) = (V ,E) which
allow for parallel computations, then the entries of each Vi , i, . . . , k could be
taken in any order. Certainly, inside Vi one could use nested dissection as well,
which is the default choice in multilevel nested dissection methods. However, as
soon as the coarsest graph Gm is small enough (typically about 100 vertices), not
only the separator is computed, but in addition the remaining entries of Gm are
reordered to lead to a fill-reducing ordering. In both cases, for Gm as well as
V1, . . . , Vk one could alternatively use different reordering methods such as variants
of the minimum degree algorithm. Indeed, for Gm this is what the METIS software
is doing. Furthermore, a reordering method such as the constrained approximate
minimum degree algorithm is also suitable as local reordering for V1, . . . , Vk as
alternative to nested dissection, taking into account the edges connected with Vs

(also referred to as HALO structure), see, e.g., [38].

4 Sparse LU Decomposition

In this section we will assume that the given matrix A ∈ R
n,n is nonsingular and

that it can be factorized as A = LU , where L is a lower triangular matrix with unit
diagonal and U is an upper triangular matrix. It is well-known [21], if A = LU ,
where L and U� are lower triangular matrices, then in the generic case we will
have Gd(L + U) ⊃ Gd(A), i.e., we will only get additional edges unless some
entries cancel by “accident” during the elimination. In the sequel we will ignore
cancellations. Throughout this section we will always assume that the diagonal
entries of A are nonzero as well. We also assume that Gd(A) is connected.

In the preceding sections we have argued that maximum weight matching
often leads to a rescaled and reordered matrix such that static pivoting is likely
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Fig. 6 Fill-in with respect to
L + U is denoted by ×

to be enough, i.e., pivoting is restricted to some dense blocks inside the LU

factorization. Furthermore, reordering strategies such as multilevel nested dissection
have further symmetrically permuted the system such that the fill-in that occurs
during Gaussian elimination is acceptable and even parallel approaches could be
drawn from this reordering. Thus assuming that A does not need further reordering
and a factorization A = LU exists is a realistic scenario in what follows.

4.1 The Elimination Tree

The basis of determining the fill-in in the triangular factors L and U as by-product of
the Gaussian elimination can be characterized as follows (see [23] and the references
therein).

Theorem 2 Given A = LU with the aforementioned assumptions, there exists an
edge (i, j) in Gd(L + U) if and only if there exists a path

ix1, x2x3, . . . , xkj

in Gd(A) such that x1, . . . , xk < min(i, j).

In other words, during Gaussian elimination we obtain a fill edge (i, j) for every
path from i to j through vertices less than min(i, j).

Fill-in
We will use the matrix �T A from Example 2 and sketch the fill-in obtained
during Gaussian elimination in Fig. 6.

The fastest known method for predicting the filled graph Gd(L+U) is Gaussian
elimination. The situation is simplified if the graph is undirected. In the sequel we
ignore the orientation of the edges and simply consider the undirected graph G(A)

and G(L + U), respectively.
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Fig. 7 Entries of G(A) are
denoted by filled circle, fill-in
is denoted by times

Definition 11 The undirected graph G(L + U) that is derived from the undirected
graph G(A) by applying Theorem 2 is called the filled graph and it will be denoted
by Gf (A).

Fill-in with Respect to the Undirected Graph
When we consider the undirected graph G(A) in Example 4.1, the pattern of
|�T A|+|�T A|T and its filled graph Gf (A) now equals G(A) up to positions
(5, 4) and (4, 5) (cf. Fig. 7).

The key tool to predict the fill-in easily for the undirected graph is the elimination
tree [33].

Recall that an undirected and connected graph is called a tree, if it does not
contain any cycle. Furthermore, one vertex is identified as root. As usual we call a
vertex j parent of i, if there exists an edge (i, j) in the tree such that j is closer to the
root. In this case i is called child of j . The subtree rooted at vertex j is denoted by
T (j) and the vertices of this subtree are called descendants of j , whereas j is called
their ancestor. Initially we will define the elimination tree algorithmically using the
depth-first-search algorithm [1]. Later we will state a much simplified algorithm.

Definition 12 Given the filled graph Gf (A) the elimination tree T (A) is defined
by the following algorithm.

Perform a depth-first-search in Gf (A) starting from vertex n.
When vertex m is visited, choose from its unvisited neighbors i1, . . . , ik the index

j with the largest number j = max{i1, . . . , ik} and continue the search with j .
A leaf of the tree is reached, when all neighbors have already been visited.

We like to point out that the application of the depth-first-search to Gf (A) starting at
vertex n behaves significantly different from other graphs. By Theorem 2 it follows
that as soon as we visit a vertex m, all its neighbors j > m must have been visited
prior to vertex m. Thus the labels of the vertices are strictly decreasing until we
reach a leaf node.
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Depth-First-Search
We illustrate the depth-first-search using the (filled) graph in Fig. 8 and the
pattern from Example 4.1. The extra fill edge is marked by a bold line.

The ongoing depth-first-search visits the vertices in the order 6 → 5 →
4 → 3. Since at vertex 3, all neighbors of 3 are visited (and indeed have
a larger number), the algorithm backtracks to 4 and to 5 and continues the
search in the order 5 → 2. Again all neighbors of vertex 2 are visited (and
have larger number), thus the algorithm backtracks to 5 and to 6 and continues
by 6 → 1. Then the algorithm terminates.

3

4

5

6 1

2

6

1 5

24

3

Fig. 8 Filled graph (left) and elimination tree (right)

Remark 1 It follows immediately from the construction of T (A) and Theorem 2
that additional edges of Gf (A) which are not covered by the elimination tree can
only show up between a vertex and some of its ancestors (referred to as “back-
edges”). In contrast to that, “cross-edges” between unrelated vertices do not exist.

Remark 2 One immediate consequence of Remark 1 is that triangular factors can be
computed independently starting from the leaves until the vertices meet a common
parent, i.e., column j of L and UT only depend on those columns s of L and UT

such that s is a descendant of j in the elimination tree T (A).

Elimination Tree
We use the matrix “west0479” from Example 3.1.3, after maximum weight
matching and multilevel nested dissection have been applied. We use
MATLAB’s etreeplot to display its elimination tree (see Fig. 9). The

(continued)
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Fig. 9 Elimination tree of “west0479” after maximum weight matching and nested dissection are
applied

elimination tree displays the high level of concurrency that is induced by
nested dissection, since by Remark 2 the computations can be executed
independently at each leaf node towards the root until a common parent vertex
is reached.

Further conclusions can be easily derived from the elimination tree, in particular
Remark 2 in conjunction with Theorem 2.

Remark 3 Consider some k ∈ {1, . . . , n}. Then there exists a (fill) edge (j, k) with
j < k if and only if there exists a common descendant i of k, j in T (A) such
that aik �= 0. This follows from the fact that once aik �= 0, by Theorem 2 this
induces (fill) edges (j, k) in the filled graph Gf (A) for all nodes j between i and
k in the elimination tree T (A), i.e., for all ancestors of i that are also descendants
of k. This way, i propagates fill-edges along the branch from i to k in T (A) and the
information aik �= 0 can be used as path compression to advance from i towards k

along the elimination tree.

Path Compression
Consider the graph and the elimination tree from Fig. 8. Since there exists the
edge (3, 5) in G(A), therefore another (fill) edge (4, 5) must exist. Similarly,
the same conclusion can be drawn from the existence of the edge (4, 6) (here
not a fill edge, but a regular edge).

The elimination tree itself can be easily described by a vector p of length n such
that for any i < n, pi denotes the parent node, while pn = 0 corresponds to the
root. Consider some step k with aik �= 0, for some i < k. By Remark 3, i must
be a descendant of k and there could be further ancestors j of i which are also
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descendants of k. Possibly not all ancestors of i have been assigned a parent node
so far. Thus we can replace i by j = pi until we end up with pj = 0 or pj � k.
This way we traverse T (A) from i towards to k until we have found the child node
j of k. If the parent of j has not been assigned to j yet, then pj = 0 and k must be
the parent of j . If some l < k were the parent of j , then we would have assigned
l as parent of j in an earlier step l < k. In this case we set pj ← k. Otherwise, if
pj � k, then we have already assigned j ’s parent in an earlier step l < k.

Computation of Parent Nodes
Consider the elimination tree T (A) from Fig. 8. Unless k = 4, no parents have
been assigned, i.e., pi = 0 for all i.

Now for k = 4 we have a34 �= 0 and using the fact that p3 = 0 implies
that we have to set a3 = p3 ← 4.

For k = 5, a25 �= 0 and again p2 = 0 requires to set a2 = p2 ← 5. Next,
a35 �= 0, path compression enables a3 ← 5 and after another loop we obtain
a4 = p4 ← 5.

Finally, if k = 6, we have a16 �= 0 and immediately obtain a1 = p1 ← 6.
Since a46 �= 0, a path compression is applied which yields a4 ← 6 and in
the next step we set a5 = p5 ← 6. At last a56 �= 0 does not cause further
changes.

In total we have p = [6, 5, 4, 5, 6, 0] which perfectly reveals the parent
properties of the elimination trees in Fig. 8.

By Remark 3 (cf. [12, 43]), we can also make use of path compression. Since our
goal is to traverse the branch of the elimination tree from i to k as fast as possible,
any ancestor j = ai of i would be sufficient. With the same argument as before, an
ancestor aj = 0 would refer to a vertex that does not have a parent yet. In this case
we can again set pj ← k. Moreover, k is always an ancestor of ai .

The algorithm including path compression can be summarized as follows (see
also [12, 33]).

Computation of the Elimination Tree
Input: A ∈ R

n,n such that A has the same pattern as |A| + |A|T .
Output: vector p ∈ R

n such that pi is the parent of i, i = 1, . . . , n − 1,
except pn = 0.

1: let a ∈ R
n be an auxiliary vector used for path compression.

2: p ← 0, a ← 0
3: for k = 2, . . . , n do
4: for all i < k such that aik �= 0 do

(continued)
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5: while i �= 0 and i < k do
6: j ← ai

7: ai ← k

8: if j = 0 then
9: pi ← k

10: end if
11: i ← j

12: end while
13: end for
14: end for

4.2 The Supernodal Approach

We have already seen that the elimination tree reveals information about concur-
rency. It is further useful to determine the fill-in L and UT . This information can
be computed from the elimination tree T (A) together with G(A). The basis for
determining the fill-in in each column is again Remark 3. Suppose we are interested
in the nonzero entries of column j of L and UT . Then for all descendants of j ,
i.e., the nodes of the subtree T (j) rooted at vertex j , a nonzero entry aik �= 0 also
implies lkj �= 0. Thus, starting at any leaf i, we obtain its fill by all aik �= 0 such
that k > i and when we move forward from i to its parent j , vertex j will inherit
the fill from node i for all k > j plus the nonzero entries given by ajk �= 0 such that
k > j . When we reach a common parent node k with multiple children, the same
argument applies using the union of fill-in greater than k from its children together
with the nonzero entries akl �= 0 such that l > k. We summarize this result in a very
simple algorithm

Computation of Fill-in

Input: A ∈ R
n,n such that A has the same pattern as |A| + |A|T .

Output: sparse strict lower triangular pattern P ∈ R
n,n with same pattern as

L, UT .
1: compute parent array p of the elimination tree T (A)

2: for j = 1, . . . , n do
3: supplement nonzeros of column j of P with all i > j such that aij �= 0
4: k = pj

5: if k > 0 then

(continued)



State-of-the-Art Sparse Direct Solvers 21

6: supplement nonzeros of column k of P with nonzeros of column j

of P greater than k

7: end if
8: end for

Algorithm 4.2 only deals with the fill pattern. One additional aspect that allows to
raise efficiency and to speed up the numerical factorization significantly is to detect
dense submatrices in the factorization. Block structures allow to collect parts of the
matrix in dense blocks and to treat them commonly using dense matrix kernels such
as level-3 BLAS and LAPACK [13, 14].

Dense blocks can be read off from the elimination tree employing Algorithm 4.2.

Definition 13 Denote by Pj the nonzero indices of column j of P as computed by
Algorithm 4.2. A sequence k, k + 1, . . . , k + s − 1 is called supernode of size s if
the columns of Pj = Pj+1 ∪ {j + 1} for all j = k, . . . , k + s − 2.

In simple words, Definition 13 states that for a supernode s subsequent columns can
be grouped together in one dense block with a triangular diagonal block and a dense
subdiagonal block since they perfectly match the associated trapezoidal shape. We
can thus easily supplement Algorithm 4.2 with a supernode detection.

Computation of Fill-in and Supernodes

Input: A ∈ R
n,n such that A has the same pattern as |A| + |A|T .

Output: sparse strict lower triangular pattern P ∈ R
n,n with same pattern as

L, UT as well as column size s ∈ R
m of each supernode.

1: compute parent array p of the elimination tree T (A)

2: m ← 0
3: for j = 1, . . . , n do
4: supplement nonzeros of column j of P with all i > j such that aij �= 0
5: denote by r the number of entries in column j of P

6: if j > 1 and j = pj−1 and sm + r = l then
7: sm ← sm + 1 � continue current supernode
8: else
9: m ← m + 1, sm ← 1, l ← r � start new supernode

10: end if
11: k = pj

(continued)
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Fig. 10 Supernodes in the
triangular factor

12: if k > 0 then
13: supplement nonzeros of column k of P with nonzeros of column j

of P greater than k

14: end if
15: end for

Supernode Computation
To illustrate the use of supernodes, we consider the matrix pattern from Fig. 7
and illustrate the underlying dense block structure in Fig. 10. Supernodes are
the columns 1, 2, 3 as scalar columns as well as columns 4–6 as one single
supernode.

Supernodes form the basis of several improvements, e.g., a supernode can be
stored as one or two dense matrices. Beside the storage scheme as dense matrices,
the nonzero row indices for these blocks need only be stored once. Next the use
of dense submatrices allows the usage of dense matrix kernels using level-3 BLAS
[13, 14].

Supernodes
We use the matrix “west0479” from Example 3.1.3, after maximum weight
matching and multilevel nested dissection have been applied. We use its undi-
rected graph to compute the supernodal structure. Certainly, since the matrix
is nonsymmetric, the block structure is only sub-optimal. We display the
supernodal structure for the associated Cholesky factor, i.e., for the Cholesky
factor of a symmetric positive definite matrix with same undirected graph as
our matrix (see left part of Fig. 11). Furthermore, we display the supernodal
structure for the factors L and U computed from the nonsymmetric matrix
without pivoting (see right part of Fig. 11).
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Fig. 11 Supernodal structure. Left: vertical lines display the blocking of the supernodes with
respect to the associated Cholesky factor. Right: vertical and horizontal lines display the blocking
of the supernodes applied to L and U

While the construction of supernodes is fairly easy in the symmetric case, its
generalization for the nonsymmetric case is significantly harder, since one has to
deal with pivoting in each step of Gaussian elimination. In this case one uses the
column elimination tree [22].

5 Sparse Direct Solvers—Supernodal Data Structures

High-performance sparse solver libraries have been a very important part of scien-
tific and engineering computing for years, and their importance continues to grow as
microprocessor architectures become more complex and software libraries become
better designed to integrate easily within applications. Despite the fact that there are
various science and engineering applications, the underlying algorithms typically
have remarkable similarities, especially those algorithms that are most challenging
to implement well in parallel. It is not too strong a statement to say that these
software libraries are essential to the broad success of scalable high-performance
computing in computational sciences. In this section we demonstrate the benefit of
supernodal data structures within the sparse solver package PARDISO [42]. We
illustrate it by using the triangular solution process. The forward and backward
substitution is performed column wise with respect to the columns of L, starting
with the first column, as depicted in Fig. 12. The data dependencies here allow to
store vectors y, z, b, and x in only one vector r . When column j is reached, rj
contains the solution for yj . All other elements of L in this column, i. e. Lij with
i = j + 1, . . . , N , are used to update the remaining entries in r by
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j

j+1

j-1

L r

iteration direction

1: procedure
2: for j = 0; j < n; j++ do
3: for i = xl[j]; i < xl[j+1]; i++ do
4: row = id[i]

5: r[row] -= r[j] * l[i] indexed DAXPY

6: end for
7: end for
8: end procedure

j

j+1

j-1

L r

LT

iteration direction

1: procedure
2: for j = n; j > 0; j - - do
3: for i = xl[j]; i < xl[j+1]; i++ do
4: row = id[i]

5: r[j] -= r[row] * l[i] indexed DDOT

6: end for
7: end for
8: end procedure

Fig. 12 Sparse triangular substitution in CSC format based on indexed DAXPY/DDOT kernel
operations

ri = ri − rjLij . (8)

The backward substitution with LT will take place row wise, since we use L and
perform the substitution column wise with respect to L, as shown in the lower part of
Fig. 12. In contrast to the forward substitution the iteration over columns starts at the
last column N and proceeds to the first one. If column j is reached, then rj , which
contains the j -component of the solution vector xj , is computed by subtracting the
dot-product of the remaining elements in the column Lij and the corresponding
elements of ri with i = j + 1, . . . , N from it:

rj = rj − riLij . (9)

After all columns have been processed r contains the required solution x. It is
important to note that line 5 represents in both substitutions an indexed DAXPY
and indexed DDOT kernel operations that has to be computed during the streaming
operations of the vector r and the column j of the numerical factor L. As we are
dealing with sparse matrices it makes no sense to store the lower triangular matrix L

as a dense matrix. Hence, PARDISO uses its own data structure to store L, as shown
in Fig. 13.

Adjacent columns exhibiting the same row sparsity structure form a panel, also
known as supernode. A panel’s column count is called the panel size np. The
columns of a panel are stored consecutively in memory excluding the zero entries.
Note that columns of panels are padded in the front with zeros so they get the same
length as the first column inside their panel. The padding is of utmost performance
for the PARDISO solver to use Level-3 BLAS and LAPACK functionalities [41].
Furthermore panels are stored consecutively in the l array. Row and column
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Fig. 13 Sparse matrix data
structures in PARDISO.
Adjacent columns of L

exhibiting the same structure
form panels also known as
supernodes. Groups of panels
which touch independent
elements of the right-hand
side r are parts. The last part
in the lower triangular matrix
L is called separator

panels

parts separator

r tL

information is now stored in accompanying arrays. The xsuper array stores for
each panel the index of its first column. Also note that here column indices are the
running count of nonzero columns. Column indices are used as indices into xl array
to lookup the start of the column in the l array which contains the numerical values
of the factor L. To determine the row index of a column’s element an additional array
id is used, which holds for each panel the row indices. The start of a panel inside id
is found via xid array. The first row index of panel p is id[xid[p]]. For serial
execution this information is enough. However, during parallel forward/backward
substitution concurrent updates to the same entry of r must be avoided. The parts
structure contains the start (and end) indices of the panels which can be updated
independently as they do not touch the same entries of r . Two parts, colored blue and
orange, are shown in Fig. 13. The last part in the bottom right corner of L is special
and is called the separator and is colored green. Parts which would touch entries of r
in the range of the separator perform their updates into separate temporary arrays t.
Before the separator is then serially updated, the results of the temporary arrays are
gathered back into r. The backward substitution works the same, just reversed and
only updates to different temporary arrays are not required. The complete forward
substitution and backward substitution is listed in Algorithms 1 and 2.

6 Application—Circuit Simulation

In this section we demonstrate how these developments in sparse direct linear
solvers have advanced integrated circuit simulations. Integrated circuits are com-
posed of interconnected transistors. The interconnects are modeled primarily with
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Algorithm 1 Forward substitution in PARDISO. Note that in case of serial execution
separated updates to temporary arrays in Lines 10–13 are not necessary and can be
handled via the loop in Lines 6–9
1: procedure FORWARD

2: for part o in parts do � parallel execution
3: for panel p in part p do
4: for column j in panel do � unroll
5: i = xid[p] + offset
6: for k = xl[j] + offset; k < sep; ++k do
7: row = id[i++]
8: r[row] - = r[j] l[k] � indexed DAXPY
9: end for

10: for k = sep + 1; k < xl[j+1]; ++k do
11: row = id[i++]
12: t[row,p] -= r[j] l[k] � indexed DAXPY
13: end for
14: end for
15: end for
16: end for
17: r[i] = r[i] - sum(t[i,:]) � gather temporary arrays
18: for panel p in separator do � serial execution
19: for column j in panel do � unroll
20: i = xid[p] + offset
21: for k = xl[j] + offset; k < xl[j+1]; ++k do
22: row = id[i++]
23: r[row] -= r[j] l[k] � indexed DAXPY
24: end for
25: end for
26: end for
27: end procedure

resistors, capacitors, and inductors. The interconnects route signals through the
circuit, and also deliver power. Circuit equations arise out of Kirchhoff’s current law,
applied at each node, and are generally nonlinear differential-algebraic equations. In
transient simulation of the circuit, the differential portion is handled by discretizing
the time derivative of the node charge by an implicit integration formula. The
associated set of nonlinear equations is handled through use of quasi-Newton
methods or continuation methods, which change the nonlinear problem into a series
of linear algebraic solutions. Each component in the circuit contributes only to a few
equations. Hence, the resulting systems of linear algebraic equations are extremely
sparse, and most reliably solved by using direct sparse matrix techniques. Circuit
simulation matrices are peculiar in the universe of matrices, having the following
characteristics [11]:

• they are nonsymmetric, although often nearly structurally symmetric;
• they have a few dense rows and columns (e.g., power and ground connections);
• they are very sparse and the straightforward usage of BLAS routines (as in

SuperLU[32]) may be ineffective;
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Algorithm 2 Backward substitution in PARDISO. Separator (sep.), parts, and
panels are iterated over in reversed (rev.) order
1: procedure BACKWARD

2: for panel p in sep. rev. do � serial execution
3: for col. j in panel p rev. do � unroll
4: i = xid[p] + offset
5: for k = xl[j] + offset; k < xl[j+1]; ++k do
6: row = id[i++]
7: r[j] -= r[row] l[k] � indexed DDOT
8: end for
9: offset = offset - 1

10: end for
11: end for
12: for part in parts do � parallel execution
13: for panel p in part rev. do
14: for col. j in panel p rev. do � unroll
15: i = xid[p] + offset
16: for k = xl[j] + offset; k < xl[j+1]; ++k do
17: row = id[i++]
18: r[j] -= r[row] l[k] � indexed DDOT
19: end for
20: offset = offset - 1
21: end for
22: end for
23: end for
24: end procedure

• their LU factors remain sparse if well-ordered;
• they can have high fill-in if ordered with typical strategies;
• and being unstructured, the highly irregular memory access causes factorization

to proceed only at a few percent of the peak flop-rate.

Circuit simulation matrices also vary from being positive definite to being
extremely ill-conditioned, making pivoting for stability important also. As circuit
size increases, and depending on how much of the interconnect is modeled, sparse
matrix factorization is the dominant cost in the transient analysis.

To overcome the complexity of matrix factorization a new class of simulators
arose in the 1990s, called fast-SPICE [39]. These simulators partition the circuit
into subcircuits and use a variety of techniques, including model order reduction
and multirate integration, to overcome the matrix bottleneck. However, the resulting
simulation methods generally incur unacceptable errors for analog and tightly
coupled circuits. As accuracy demands increase, these techniques become much
slower than traditional SPICE methods. Even so, since much of the research effort
was directed at fast-SPICE simulators, it brought some relief from impossibly slow
simulations when some accuracy trade-off was acceptable. Because these simulators
partitioned the circuit, and did not require the simultaneous solution of the entire
system of linear equations at any given time, they did not push the state of the art in
sparse matrix solvers.
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Starting in the mid-2000s, increasing demands on accuracy, due to advancing
semiconductor technology, brought attention back to traditional SPICE techniques.
This was aided by the proliferation of multicore CPUs. Parallel circuit simulation,
an area of much research focus in the 1980s and 1990s, but not particularly
in practice, received renewed interest as a way to speed up simulation without
sacrificing accuracy. Along with improved implementations to avoid cache misses,
rearchitecture of code for parallel computing, and better techniques for exploitation
of circuit latency, improved sparse matrix solvers, most notably the release of KLU
[11], played a crucial role in expanding the utility of SPICE.

Along with the ability to simulate ever larger circuits with full SPICE accuracy
came the opportunity to further improve sparse matrix techniques. A sparse matrix
package for transient simulation needs to have the following features:

• must be parallel;
• fast matrix reordering;
• incremental update of the L and U factors when only a few nonzeros change;
• fast computation of the diagonal entries of the inverse matrix;
• fast computation of Schur-complements for a submatrix;
• allow for multiple LU factors of the same structure to be stored;
• use the best-in-class method across the spectrum of sparsity;
• use iterative solvers with fast construction of sparse preconditioners;
• run on various hardware platforms (e.g., GPU acceleration).

Some of these features must be available in a single package. Others, such as
iterative solvers and construction of preconditioners, can be implemented with a
combination of different packages. The PARDISO solver1 stands out as a package
that does most of these very well. Here we touch on a few of these features.

When applied in the simulation of very large circuits, the difference between a
“good” and a “bad” matrix ordering can be the difference between seconds and days.
PARDISO offers AMD and nested dissection methods for matrix ordering, as well
as permitting user-defined ordering. Because the matrix reordering method which
has been used most often in circuit simulation is due to Markowitz [35], and because
modern sparse matrix packages do not include this ordering method, we briefly
describe it here. The Markowitz method is quite well-adapted for circuit simulation.
Some desirable aspects of the typical implementation of the Markowitz method,
as opposed to the MD variants, are that it works for nonsymmetric matrices and
combines pivot choice with numerical decomposition, such that a pivot choice is a
numerically “good” pivot which generates in a local sense the least fill-in at that step
of the decomposition. Choosing pivots based on the Markowitz score often produces
very good results: near-minimal fill-in, unfortunately at the cost of an O(n3)

algorithm (for dense blocks). Even though the Markowitz algorithm has some good
properties when applied to circuit matrices, the complexity of the algorithm has
become quite burdensome. When SPICE [36] was originally conceived, a hundred-

1The PARDISO solver is available from http://www.pardiso-project.org.

http://www.pardiso-project.org
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Fig. 14 Performance improvements of PARDISO 6.2 against Intel MKL PARDISO (one thread)
for various circuit simulation matrices

node circuit was huge and the Markowitz algorithm was not a problem. Now we
routinely see netlists with hundreds of thousands of nodes and post-layout netlists
with millions of elements. As matrix order and element counts increase, Markowitz
reordering time can become an obstruction. Even as improved implementations of
the Markowitz method have extended its reach, AMD and nested dissection have
become the mainstay of simulation of large denser-than-usual matrices.

Next we turn our attention to parallel performance. While KLU remains a
benchmark for serial solvers, for parallel solvers, MKL-PARDISO is often cited
as the benchmark [6, 8]. To give the reader a sense of the progress in parallel sparse
matrix methods, in Fig. 14 we compare KLU, PARDISO (Version 6.2) to MKL-
PARDISO on up to 16 cores on an Intel Xeon E7-4880 architecture with 2.5 GHz
processors.

Some of the matrices here can be obtained from the SuiteSparse Matrix
Collection, and arise in transistor level full-chip and memory array simulations. It is
clear that implementation of sparse matrix solvers has improved significantly over
the years.

Exploiting latency in all parts of the SPICE algorithm is very important in
enabling accurate circuit simulation, especially as the circuit size increases. By
latency, we mean that only a few entries in the matrix change from one Newton
iteration to the next, and from one timepoint to the next. As the matrix depends
on the time-step, some simulators hold the time-steps constant as much as feasible
to allow increased reuse of matrix factorizations. The nonzero entries of a matrix



30 M. Bollhöfer et al.

Fig. 15 Regression analysis on the rank-k update LU factorization in PARDISO

change only when the transistors and other nonlinear devices change their operation
point. In most circuits, very few devices change state from one iteration to the
next and from one time-step to the next. Nonzeros contributed by entirely linear
components do not change value during the simulation. This makes incremental LU
factorization a very useful feature of any matrix solver used in circuit simulation.
As of April 2019 the version PARDISO 6.2 has a very efficient exploitation of
incremental LU factorization, both serial and parallel. In Fig. 15 we show that
PARDISO scales linearly with number of updated columns, and also scales well
with number of cores. Here, the series of matrices were obtained from a full
simulation of a post-layout circuit that includes all interconnects, power and ground
networks. The factorization time is plotted against the number of columns that
changed compared to the previous factorization. The scatter plot shows the number
of rank-k update and the corresponding factorization time in milliseconds. The
regression analysis clearly demonstrates a linear trend both for the single and the
multiple core versions. The dashed line shows the time for the full factorization.

Another recent useful feature in PARDISO is parallel selective inverse matrix
computation as demonstrated in Table 1. In circuit simulation, the diagonal of the
inverse matrix is the driving point impedance. It is often required to flag nodes
in the circuit with very high driving point impedance. Such nodes would indicate
failed interfaces between different subcircuits, leading to undefined state and high
current leakage and power dissipation. A naive approach to this is to solve for the
driving point impedance, the diagonal of the inverse matrix, by N triangular solves.
This is sometimes unacceptably expensive even with exploiting the sparsity of the
right-hand side, and minimizing the number of entries needed in the diagonal of
the inverse. To bypass this complexity, heuristics to compute the impedance of
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Table 1 Details of the benchmark matrices

Matrix N nnz(A) nnz( L+U
A

) A−1 Selected A−1

circuit5M_DC 3,523,317 19,194,193 2.87 82.3 h 1.3 s

circuit5M 5,558,326 59,524,291 1.04 371.1 h 2.1 s

Freescale 3,428,755 18,920,347 2.94 89.8 h 1.0 s

Freescale2 2,999,349 23,042,677 2.92 8.5 h 1.2 s

FullChip 2,987,012 26,621,990 7.41 162.9 h 11.9 s

memchip 2,707,524 14,810,202 4.40 62.5 h 0.9 s

“N” is the number of matrix rows and “nnz” is the number of nonzeros
The table shows the fill-in factor related to the number of nonzeros in L+U

A
, the time for computing

all diagonal elements of the inverse A−1 using N multiple forward/backward substitution in
hours, and using the selected inverse method in PARDISO for computing all diagonal elements
of the inverse A−1 in seconds

connected components are used. But this is error prone with many false positives
and also false negatives. In the circuit Freescale, PARDISO, e.g., finished the
required impedance calculations in 11.9 s compared to the traditional computation
that consumed 162.9 h.

The productivity gap in simulation continues to grow, and challenges remain.
Signoff simulations demand 10× speedup in sparse matrix factorization. Simply
using more cores does not help unless the matrices are very large and complex. For
a majority of simulations, scaling beyond eight cores is difficult. As a result, some
of these simulations can take a few months to complete, making them essentially
impossible. Some of the problems in parallelizing sparse matrix operations for
circuit simulation are fundamental. Others may be related to implementation.
Research on sparse matrix factorization for circuit simulation continues to draw
attention, especially in the area of acceleration with Intel’s many integrated core
(MIC) architecture [6] and GPUs [7, 31]. Other techniques for acceleration include
improved preconditioners for iterative solvers [44]. We are presently addressing the
need for runtime selection of optimal strategies for factorization, and also GPU
acceleration. Given that circuits present a wide spectrum of matrices, no matter how
we categorize them, it is possible to obtain a solver that is 2–10× better on a given
problem. Improvements in parallel sparse matrix factorization targeted at circuit
simulation is more necessary today than ever and will continue to drive applicability
of traditional SPICE simulation methods. Availability of sparse matrix packages
such as PARDISO that completely satisfy the needs of various circuit simulation
methods is necessary for continued performance gains.
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