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Preface

High-performance computing (HPC) has been a critical enabling technology for
a variety of scientific and engineering applications over the past five decades. As
a result of advances in parallel computing, one is now able to handle large-scale
and large-scope applications in diverse domains such as fluid dynamics, structural
mechanics, fluid—structure interaction, weather forecasting, materials modeling
and design, electromagnetics, and computational biology. As HPC methods have
continued to mature for traditional applications, emerging application domains pose
new challenges for modeling paradigms, numerical techniques, and their parallel
implementations.

The past decade has also witnessed significant advances in our ability to collect
massive datasets from physical, engineered, social, and computational processes.
There has been a concomitant realization of the immense value that can be unlocked
by these datasets through the use of data analytics and machine learning techniques.
The scale of the underlying datasets and computational costs of common analytics
techniques strongly motivate the use of HPC platforms for these applications.
Where a number of core computational techniques such as linear and nonlinear
system solvers, eigenvalue problem solvers, and optimization techniques were
traditionally motivated by scientific and engineering applications, these kernels are
now ubiquitous in data science. However, the structure and scale of data science
applications pose new challenges for parallel formulations of even traditional
compute kernels. Statistical and randomized approaches play important roles in
these applications as well. These approaches present additional opportunities for
parallel execution, in the form of ensemble methods, sampling techniques, and
asynchronous (or loosely synchronous) computations. Finally, the role of data is
central to these approaches, since the overheads associated with accessing massive
datasets (typically from disks or over the network) are significant. The size of these
datasets, which typically do not fit in the main memory, also influences the nature
of the solution methods. For this reason, solution techniques are often designed to
make several passes over the data so as to process a subset that can fit in the main
memory in each pass. All of these characteristics motivate new algorithms even for
traditional compute kernels.
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The past two decades have also seen significant changes in computing plat-
forms. Processors have gone from single-core scalar execution units to multicore
superscalar issue units. It is common to have single processors with 16 processing
cores in conventional configurations. These chip multiprocessors typically have
private L1-caches and shared L2- or L3-caches, connected to large DRAMs. This
deep memory hierarchy puts additional pressure on optimizing for locality of data
access. Current data centers have in the range of 107 such processors and beyond,
connected through high-speed interconnects, typically meshes or fat-tree topologies.
At these scales, the energy footprint of computations is an important consideration.
To this end, accelerators such as GPUs and FPGAs have emerged as alternatives
for enabling high-speed computations with lower energy consumption (on a per-
FLOP basis). For this reason, typical supercomputing installations and many data
centers have nodes with one or more accelerators. The I/O subsystems of these
platforms have also evolved significantly over time. The addition of nonvolatile
RAMs (NVRAMs) provides significant opportunities for staging data that may
not fit in memory. The distinct read—write overhead characteristics of NVRAMs
pose additional challenges. Finally, emerging network concepts allow for limited
in-network computations, which allow for much faster aggregate communication
operations.

In addition to science and engineering applications and hardware platforms,
the system software stack has also evolved significantly in recent times. While
traditional APIs such as MPI, pthreads, and OpenMP continue to be used for parallel
software, emerging distributed frameworks such as MapReduce and Spark find
increasing utilization. Higher-level programming models such as parallel Matlab
and Julia hold the promise for significantly higher programmer productivity in
parallel software. In terms of the runtime, cloud systems that support schedulers,
resource managers, and higher-level I/O primitives are increasingly used. Virtual-
ization and containerization technologies have enabled a level of portability and
ease of execution that has transformed many engineering applications.

The evolution of classical applications, emergence of new applications, and
changes to underlying hardware platforms motivate significant innovations in
algorithms and software for scalable high-performance computations. At the single
node level, use of accelerators, managing memory hierarchies for high node
performance, and extracting concurrency to leverage on-chip parallelism are major
challenges. At the data center level, extracting all available parallelism, minimizing
communication and idling, leveraging algorithmic asynchrony, and fundamentally
redesigning algorithms for extreme scalability are major challenges. Finally, at the
level of applications, integrating disparate compute kernels into a single scalable
application, integrating I/O, and analyzing large amounts of data from high-
resolution simulations pose significant challenges. These themes are explored in
various application contexts in this book.

This book covers two major areas in high-performance computing: core algo-
rithms and compute kernels, and high-performance science and engineering appli-
cations. These kernels and applications span the space of conventional scientific and
engineering domains, in addition to emerging data analytics problems.
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Part 1: High-Performance Algorithms

The chapter “State of the Art of Sparse Direct Solvers” by Bollhofer et al.
provides an overview of how parallel sparse direct linear system solvers should
be developed. Specifically, for PARDISO 6.2, the preprocessing stage consists of
combinatorial algorithms (maximum weight matching and multilevel nested dis-
section) that enhance diagonal dominance, reduce fill-in, and improve concurrency.
The effectiveness of PARDISO 6.2 is demonstrated for solving challenging linear
systems that arise in integrated circuit simulation. PARDISO 6.2 proved to be far
superior to the sequential direct solver KLU and the parallel direct sparse solver
in Intel’s Math Kernel Library (MKL). Further, the authors point out two special
features of PARDSO 6.2 that proved to be extremely effective in several situations:
(1) computing only those elements of the solution vector that correspond to the
few nonzero elements of a sparse right-hand side and (2) computing only the
diagonal elements of the inverse of the sparse coefficient matrix. Using these two
features, PARDSO 6.2 realizes remarkable savings compared to the obvious brute-
force procedures. For example, the authors show that for a sparse coefficient matrix
A (that arises in circuit simulation) of order almost 5.6 million, PARDISO 6.2
computes the diagonal elements of the inverse of A in 2.1s, while computing all
the elements of the inverse of A on the same parallel computing platform consumes
371h.

Reordering of general sparse matrices plays a crucial role in both direct and
preconditioned iterative sparse linear system solvers. This topic is addressed in the
chapter “The Effect of Various Sparsity Structures on Parallelism and Algorithms
to Reveal those Structures” by Selvitopi et al. This chapter deals with graph and
hypergraph algorithms for reordering general sparse matrices into structured forms.
The focus is on four structures: single-bordered block diagonal, double-bordered
block diagonal, nonempty off-diagonal block minimization, and overlapped diag-
onal blocks. The authors, who produced the well-known sparse matrix reordering
software package “PArtitioning TOol for Hypergraphs” (PATOH), also demonstrate
the advantage of such forms in sparse matrix—vector multiplication as well as the
transpose of a sparse matrix—vector multiplication.

In the chapter “Structure-Exploiting Interior Point Methods” by Kardso et
al., the authors address interior point (IP) methods, which proved to be quite
effective for large-scale nonlinear optimization problems in computational science
and engineering applications. In many of these applications, however, the resulting
optimization problems possess certain structures. This chapter reviews parallel
variants of IP methods that take advantage of such structure. In particular, the
chapter provides efficient parallel algorithms for solving the resulting saddle-point
problems (KKT systems) that consume most of the computing time in handling
these optimization problems. Specifically, it highlights the vital role of the sparse
direct solver PARDISO in solving KKT systems, associated arrowhead systems,
and determining the inertia of symmetric matrices via the LDL” factorization, in
case correction is needed to guarantee that the Hessian matrix projected on the null
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space of the constraint Jacobian is positive definite. Exploiting the structure of large-
scale optimization problems that arise in the management of modern power grids,
those parallel variants of IP methods realize significant savings in both memory
requirements and computing time compared to those achieved in IPOPT (the well-
known software library for “Interior Point OPTimizer”).

In the chapter “Parallel Hybrid Sparse Linear System Solvers” by Manguoglu et
al., the authors describe a highly versatile class of parallel algorithms for banded
linear systems and their generalization for solving general sparse linear systems.
A crucial preprocessing stage consists of reordering the coefficient matrix so as
to strengthen the main diagonal and encapsulate as many of the heaviest off-
diagonal elements in a central band. This central band, which may be dense or
sparse, can be used as an effective preconditioner. Based on the bandwidth of the
central band, variations of the SPIKE algorithm are referred to as members of the
PSPIKE solver. The “P” in “PSPIKE” denotes the use of the direct sparse solver
PARDISO as an essential kernel. This chapter describes the banded solver SPIKE
and its generalization, PSPIKE, in detail, outlining various algorithmic choices,
their parallel implementation on shared and distributed memory platforms, and
comparison of their parallel performance with other state-of-the-art solvers. The
chapter also provides a historical context for these hybrid solvers.

Part 2: High-Performance Computational Science and
Engineering Applications

The chapter “Computational Materials Science and Engineering” by Polizzi and
Saad gives a summary of the state of the art in computational materials science and
engineering. It focuses on density functional theory and the novel algorithms devel-
oped for the solution of the underlying symmetric eigenvalue problem, which are
suitable for parallel computing. More specifically, the authors outline algorithmic
advances introduced in the software package NESSIE and the eigensolvers EVSL
and FEAST. This chapter is not only of interest to researchers in nonoelectronics
but also of interest to researchers in parallel numerical linear algebra.

The following three chapters deal with critical applications that involve fluid—
structure Interaction: “Computational Cardiovascular Analysis with the Variational
Multiscale Methods and Isogeometric Discretization,” by Hughes et al., “ALE and
Space-Time Variational Multiscale Isogeometric Analysis of Wind Turbines and
Turbomachinery,” by Bazilevs et al., and “Variational Multiscale Flow Analysis in
Aerospace, Energy, and Transportation Technologies,” by Takizawa et al.

These chapters consider challenging problems in the above applications that
are characterized by: (a) fluid—structure interaction; (b) complex geometries; (c)
moving boundaries and interfaces; (d) contact between moving solid surfaces; and
(e) turbulent and rotational flows. These challenges are addressed by techniques
developed mainly by the authors of these chapters. Such techniques include space-
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time variational multiscale methods, the arbitrary Lagrangian—Eulerian method, and
isogeometric discretization. The simulations presented in these chapters demon-
strate agreements with experiments, thus proving the power and scope of the
methods developed for computational analysis of a variety of applications: (1)
cardiovascular flows, surgical planning, and virtual stent placement; (2) wind
turbines (including two back-to-back wind turbines); and (3) aerodynamics of ram-
air parachutes.

The chapter “Multiscale Crowd Dynamics Modeling and Safety Problems:
Towards Parallel Computing” by Bellomo and Aylaj deals with multiscale crowd
dynamics modeling and safety problems, along with issues concerning implemen-
tation on parallel computing platforms. It specifically deals with the modeling and
simulation of human crowds. This is motivated not only by scientific curiosity but
also by safety of individuals in emergency situations. It proposes three components
of a research strategy: (1) multiscale vision of crowd dynamics varying from motion
of an individual to clusters of individuals; (2) development of a systems approach to
movements across different areas with specific geometries; and (3) development of
modeling and simulation to support crisis managers in evacuation dynamics. In each
of the above three components, the authors describe the use of artificial intelligence
and parallel computing to ensure the effectiveness of rapid evacuation strategies in
crisis situations.

The chapter “HPC for Weather Forecasting” by Michalakes discusses the use
of high-performance computing platforms for weather forecasting. It starts with
a history of weather forecasting based on numerical models that go back from
its roots in the year 1922 to current day petascale models and concludes with
an extrapolation beyond the year 2025. The chapter describes various issues
associated with modeling, complexity of grids laid atop spherical surfaces, and
issues of parallel implementation. The need for spectral models and dynamics
is motivated in this context. The underlying operations are mapped to common
library calls (in LAPACK) and the associated complexities are discussed. The
use of semi-implicit semi-Lagrangian transport for advection is motivated in this
context as well. An important issue in modeling is the development of suitable
meshing techniques. These are discussed in detail, for Cartesian, non-Cartesian,
structured, and unstructured grids. In terms of parallel processing, issues of domain
decomposition and load balancing are considered. Use of suitable finite element
formulations that incorporate appropriate physics models and constraints is then
discussed. The chapter concludes with an outline of the emerging challenges
in weather models on the next generation of HPC platforms. These challenges
include single-node and scale-out considerations, along with issues in algorithm
and software design at extreme scales.

In the chapter “A Simple Study of Pleasing Parallelism on Multicore Computers”
by Gleich et al., the authors present a detailed study of parallel graph computa-
tions with PageRank and personalized PageRank as the canonical representative
computation. This kernel appears in different forms in other graph computations
as well, notably all-pairs type computations. The chapter sets up the problems
of PageRank and personalized PageRank and describes variants that are used in
practice (e.g., those that do not generate the entire O(n?) data associated with
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personalized PageRank). A number of commonly used algorithms are described,
along with considerations of computational cost and memory. Parallel processing
issues of these methods are discussed, both in the context of shared address space
and message passing platforms. The need for graph reordering and partitioning is
discussed, along with scheduling, load balancing, and communication optimiza-
tions. Finally, the chapter presents a comprehensive set of experimental results
evaluating the algorithms discussed. The code (in Julia) is made available to the
readers in order to conduct their own experiments.

The chapter “Parallel Fast Time-Domain Integral-Equation Methods for Tran-
sient Electromagnetic Analysis” by Liu and Michielssen presents a comprehensive
overview of time-domain integral equation methods for analyzing electromagnetic
systems. The chapter starts with an introduction to Marching-On-in-Time (MOT)
based integral equation formulation for modeling radiation and scattering. The
formulation is contrasted with time-domain differential equation models (lack of
need for absorbing boundary conditions, fewer degrees of freedom), along with
challenges presented by time-domain integral equation (TDIE) formulations. It also
presents a concise survey of recent efforts aimed at addressing these challenges and
the need for use of HPC platforms with accelerators. Mathematical formulations for
TDIE solvers in the presence of different scatterers and media are then discussed,
including PEC scatterers, as well as homogeneous and inhomogeneous dielectrics.
This is followed by a discussion of solvers for the underlying mathematics models.
These solvers focus on higher-order methods, time-stability, and conditioning.
Issues of discretization including higher-order spatial basis functions and meshing
are also discussed. The chapter then considers techniques for dealing with high-
frequency, DC, and resonant instabilities. A number of fast solvers are also
considered, along with a discussion of parallel implementation techniques for TDIE
solvers. Issues of partitioning workload (rays) and associated computations are
presented and their computational costs are characterized. Optimizations for load
balancing and communication are described, and experimental results are presented
for several parallel solvers.

The chapter “Parallel Optimization Techniques for Machine Learning” by
Grama et al. deals with the development of parallel optimization techniques for
machine learning problems involving massively large datasets. Such datasets arise
in applications like autonomous vehicles, artificial intelligence, image classification,
and cybersecurity. These applications are modeled as either convex or non-convex
optimization problems. This chapter focuses on parallel algorithms for finite sum
minimization problems in the context of convex and non-convex formulations.

This book is meant to provide a state-of-the-art reference for researchers and
practitioners. The thirteen chapters present a survey of various topics while provid-
ing a comprehensive methodological coverage of algorithms and applications. In
many instances, these chapters reference, or are accompanied by parallel software,
which the readers can download and use to conduct their own experiments.

West Lafayette, IN, USA Ananth Grama
West Lafayette, IN, USA Ahmed H. Sameh
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State-of-the-Art Sparse Direct Solvers M)

Check for
updates

Matthias Bollhofer, Olaf Schenk, Radim Janalik, Steve Hamm,
and Kiran Gullapalli

1 Introduction

Solving large sparse linear systems is at the heart of many application problems
arising from computational science and engineering applications. Advances in
combinatorial methods in combination with modern computer architectures have
massively influenced the design of the state-of-the-art direct solvers that are
feasible for solving larger systems efficiently in a computational environment with
rapidly increasing memory resources and cores. Among these advances are novel
combinatorial algorithms for improving diagonal dominance which pave the way to
a static pivoting approach, thus improving the efficiency of the factorization phase
dramatically. Besides, partitioning and reordering the system such that a high level
of concurrency is achieved, the objective is to simultaneously achieve the reduction
of fill-in and the parallel concurrency. While these achievements already signifi-
cantly improve the factorization phase, modern computer architectures require one
to compute as many operations as possible in the cache of the CPU. This in turn
can be achieved when dense subblocks that show up during the factorization can be
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grouped together into dense submatrices which are handled by multithreaded and
cache-optimized dense matrix kernels using level-3 BLAS and LAPACK [3].

This chapter will review some of the basic technologies together with the latest
developments for sparse direct solution methods that have led to the state-of-the-
art LU decomposition methods. The paper is organized as follows. In Sect.2 we
will start with maximum weighted matchings which is one of the key tools in
combinatorial optimization to dramatically improve the diagonal dominance of
the underlying system. Next, Sect.3 will review multilevel nested dissection as
a combinatorial method to reorder a system symmetrically such that fill-in and
parallelization can be improved simultaneously, once pivoting can be more or less
ignored. After that, we will review established graph-theoretical approaches in
Sect. 4, in particular the elimination tree, from which most of the properties of the
LU factorization can be concluded. Among these properties is the prediction of
dense submatrices in the factorization. In this way several subsequent columns of
the factors L and U7 are collected in a single dense block. This is the basis for
the use of dense matrix kernels using optimized level-3 BLAS as well to exploit
fast computation using the cache hierarchy which is discussed in Sect. 5. Finally,
we show in Sect. 6 how the ongoing developments in parallel sparse direct solution
methods have advanced integrated circuit simulations. We assume that the reader is
familiar with some elementary knowledge from graph theory, see, e.g., [15, 21] and
some simple computational algorithms based on graphs [1].

2 Maximum Weight Matching

In modern sparse elimination methods the key to success is ability to work with
efficient data structures and their underlying numerical templates. If we can increase
the size of the diagonal entries as much as possible in advance, pivoting during
Gaussian elimination can often be bypassed and we may work with static data
structures and the numerical method will be significantly accelerated. A popular
method to achieve this goal is the maximum weight matching method [16, 37] which
permutes, e.g., the rows of a given nonsingular matrix A € R"™" by a permutation
matrix [T € R™" such that T17 A has a nonzero diagonal. Moreover, it maximizes
the product of the absolute diagonal values and yields diagonal scaling matrices
D,, D, € R™" such that A= 7 D, AD, satisfies la;j| < 1and |a;;| = 1 for all
i,j =1,...,n. The original idea on which these nonsymmetric permutations and
scalings are based is to find a maximum weighted matching of a bipartite graphs.
Finding a maximum weighted matching is a well known assignment problem in
operation research and combinatorial analysis.

Definition 1 A graph G = (V, E) with vertices V and edges E C V? is called
bipartite if V can be partitioned into two sets V, and V., such that no edge e =
(v1, v2) € E has both ends vy, vy in V, or both ends vy, vy in V.. In this case we
denote G by G, = (V,, V¢, E).
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Definition 2 Given a matrix A, then we can associate with it a canonical bipartite
graph Gp(A) = (V,, V., E) by assigning the labels of V. = {rq, ..., r,} with the
row indices of A and V. = {c1, ..., ¢,} being labeled by the column indices. In this
case E is defined via E = {(r;, ¢;)| a;j # 0}.

For the bipartite graph G,(A) we see immediately that if a;; # 0, then we have
that ; € V, from the row set is connected by an edge (v, c;) € E to the column
c;j € V., but neither rows are connected with each other nor do the columns have
interconnections.

Definition 3 A matching M of a given graph G = (V, E) is a subset of edges
e € E such that no two of which share the same vertex.

If M is a matching of a bipartite graph G, (A), then each edge e = (r;,¢c;) € M
corresponds to a row i and a column j and there exists no other edge ¢ = (r, ¢;) €
M that has the same vertices, neither ry = r; nor ¢; = c;.

Definition 4 A matching M of G = (V, E) is called maximal, if no other edge
from E can be added to M.

If for an n x n matrix A a matching M of G,(A) with maximum cardinality n
is found, then by definition the edges must be (i1, 1), ..., (i, n) with iy, ..., i,
being the numbers 1, ..., n in a suitable order and therefore we obtain a;, 1 # 0,
...a;, n 7 0. In this case we have established that the matrix A is at least structurally
nonsingular and we can use a row permutation matrix I17 associated with row
ordering iy, . .., i, to place a nonzero entry on each diagonal location of 17 A.

Definition 5 A perfect matching is a maximal matching with cardinality n.

It can be shown that for a structurally nonsingular matrix A there always exists a
perfect matching M.

Perfect Matching
In Fig. 1, the set of edges M = {(1,2),(2,4),(3.5), (4,1),(5,3), (6,6)}
represents a perfect maximum matching of the bipartite graph G, (A).

The most efficient combinatorial methods for finding maximum matchings in
bipartite graphs make use of an augmenting path. We will introduce some graph
terminology for the construction of perfect matchings.

Definition 6 If anedge e = (u, v) in a graph G = (V, E) joins a verticesu, v € V,
then we denote it as uv. A path then consists of edges uua, uous, uzus ..., up—_1ug,
where each (u;, u;y1) € E,i=1,...,k—1.
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130000 G 200010
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Fig. 1 Perfect matching. Left side: original matrix A. Middle: bipartite representation G,(A) =
(Vy, V., E) of the matrix A and perfect matching M. Right side: permuted matrix I17 A

If G, = (V,, V., E) is a bipartite graph, then by definition of a path, any path is
alternating between the vertices of V, and V., e.g., paths in G} could be such as
ri1€c2, Cor3, r3C4, . ...

Definition 7 Given a graph G = (V, E), a vertex is called free if it is not incident
to any other edge in a matching M of G. An alternating path relative to a matching
Mis apath P = ujuy, usus, ..., us_1ug where its edges are alternating between
E\ M and M. An augmenting path relative to a matching M is an alternating path
of odd length and both of it vertex endpoints are free.

Augmenting Path
Consider Fig.1. To better distinguish between row and column vertices

we use 1 [l 2 |...,] 6 for the rows and @,@,...,@

for the columns. A non-perfect but maximal matching is given by M =

¢ 4 &) 1 D) 6 LA)( 2 |OG®)( 5 @)}

We can easily see that an augmenting path alternating between rows and

columns is given by | 3 @ , @ 4 |, 4 @ ,@ r |,
1 @.@Q 6 ||l 6 @ 2 || 2 @@ 5 |

5 @ Both endpoints| 3 |and @ of this augmenting path are free.
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In a bipartite graph G, = (V,, V., E) one vertex endpoint of any augmenting
path must be in V., whereas the other one must be in V.. The symmetric difference,
A @ B of two edge sets A, B, is defined to be (A \ B) U (B \ A).

Using these definitions and notations, the following theorem [5] gives a construc-
tive algorithm for finding perfect matchings in bipartite graphs.

Theorem 1 If Mis non-maximum matching of a bipartite graph G, = (Vy, Ve, E),
then there exists an augmenting path P relative to M such that P = M & M and
M is a matching with cardinality | M| + 1.

According to this theorem, a combinatorial method of finding perfect matching in a
bipartite graph is to seek augmenting paths.

The perfect matching as discussed so far only takes the nonzero structure of
the matrix into account. For their use as static pivoting methods prior to the LU
decomposition one requires in addition to maximize the absolute value of the
product of the diagonal entries. This is referred to as maximum weighted matching.
In this case a permutation 7 has to be found, which maximizes

n

1_[ laziyil. (D)

i=1

The maximization of this product is transferred into a minimization of a sum as
follows. We define a matrix C = (¢;;) via

o loga; —logla;j| a;j #0
Y 00 otherwise,

where a; = max; |a;;| is the maximum element in row i of matrix A. A permutation
7 which minimizes the sum

n
ch(i)i

i=1

also maximizes the product (1). The minimization problem is known as linear-
sum assignment problem or bipartite weighted matching problem in combinatorial
optimization. The problem is solved by a sparse variant of the Hungarian method.
The complexity is O(nt logn) for sparse matrices with 7 entries. For matrices,
whose associated graph fulfill special requirements, this bound can be reduced
further to O(n®(r + nlogn)) with @ < 1. All graphs arising from finite-difference
or finite element discretizations meet the conditions [24]. As before, we finally get
a perfect matching which in turn defines a nonsymmetric permutation.

When solving the assignment problem, two dual vectors u = (#;) and v = (v;)
are computed which satisfy
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u +vj =cij @ j) eM, 2

u; +vj <¢jj otherwise. 3)

Using the exponential function these vectors can be used to scale the initial matrix.
To do so define two diagonal matrices D, and D, through

D, = diag(d{,d5, ..., d}), dl = exp(u;), “)
D, = diag(dy.d5, ..., d;), d? =exp(v;)/a;. (5)

*'n
Using Egs. (2) and (3) and the definition of C, it immediately follows that A =
17 D, AD, satisfies

laii| =1, (6)
la;j| < 1. @)

The permuted and scaled system A has been observed to have significantly better
numerical properties when being used for direct methods or for preconditioned
iterative methods, cf., e.g., [4, 16]. Olschowka and Neumaier [37] introduced these
scalings and permutation for reducing pivoting in Gaussian elimination of full
matrices. The first implementation for sparse matrix problems was introduced by
Duff and Koster [16]. For symmetric matrices |A|, these nonsymmetric matchings
can be converted to a symmetric permutation P and a symmetric scaling Dy =
(D, Dc)l/ 2 such that PT DgADy P consists mostly of diagonal blocks of size 1 x 1
and 2 x 2 satisfying a similar condition as (6) and (7), where in practice it rarely
happens that 1 x 1 blocks are identical to O [17]. Recently, successful parallel
approaches to compute maximum weighted matchings have been proposed [28, 29].

Example 1: Maximum Weight Matching

To conclude this section we demonstrate the effectiveness of maximum
weight matchings using a simple sample matrix “west0479” from the SuiteS-
parse Matrix Collection. The matrix can also directly be loaded in MATLAB
using load west0479. In Fig.2 we display the matrix before and after
applying maximum weighted matchings. To illustrate the improved diagonal
dominance we further compute r; = |a;;|/ Z?zl |a;j| for each row of A and

A= "D, ADs,i =1, ...,n.r can be read as relative diagonal dominance
of row i and yields a number between 0 and 1. Moreover, whenever r; > %,
the row is strictly diagonal dominant, i.e., |a;;| > Zj:j?éi |a;j|. In Fig. 3 we
display for both matrices r; by sorting its values in increasing order and taking

% as reference line. We can see the dramatic impact of maximum weighted

(continued)
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Fig. 2 Maximum weight matching. Left side: original matrix A. Right side: permuted and rescaled

matrix A = n’p,AD,.
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Fig. 3 Diagonal dominance. Left side: r; for A. Right side: r; A=1"D,AD.

matchings in improving the diagonal dominance of the given matrix and thus
paving the way to a static pivoting approach in incomplete or complete LU
decomposition methods.

3 Symbolic Symmetric Reordering Techniques

When dealing with large sparse matrices a crucial factor that determines the
computation time is the amount of fill that is produced during the factorization of
the underlying matrix. To reduce the complexity there exist many mainly symmetric
reordering techniques that attempt to reduce the fill-in heuristically. Here we will
demonstrate only one of these methods, the so-called nested dissection method.
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The main reason for selecting this method is that it can be easily used for parallel
computations.

3.1 Multilevel Nested Dissection

Recursive multilevel nested dissection methods for direct decomposition methods
were first introduced in the context of multiprocessing. If parallel direct methods
are used to solve a sparse system of equations, then a graph partitioning algorithm
can be used to compute a fill-reducing ordering that leads to a high degree of
concurrency in the factorization phase.

Definition 8 For a matrix A € R™" we define the associated (directed) graph
G4(A) = (V,E),where V = {1, ..., n} and the set of edges E = {(i, Nlaij # 0}.
The (undirected) graph is given by G4(|A| +|A|T) and is denoted simply by G(A).

In graph terminology for a sparse matrix A we simply have a directed edge (i, j)
for any nonzero entry a;; in G4(A), whereas the orientation of the edge is ignored
in G(A).

The research on graph partitioning methods in the mid-nineties has resulted in
high-quality software packages, e.g., METIS [25]. These methods often compute
orderings that on the one hand lead to small fill-in for (incomplete) factorization
methods, while on the other hand they provide a high level of concurrency. We
will briefly review the main idea of multilevel nested dissection in terms of graph
partitioning.

Definition 9 Let A € R™" and consider its graph G(A) = (V, E). A k-way graph
partitioning consists of partitioning V into k disjoint subsets Vi, V3, ..., Vi such
that V; N V; = @ fori # j U;V; = V. The subset E; = E N Ui#(Vi x V) is
called edge separator.

Typically we want a k-way partitioning to be balanced, i.e., each V; should satisfy
|Vi| & n/k. The edge separator E; refers to the edges that have to be taken away
from the graph in order to have k separate subgraphs associated with Vp, ..., Vi and
the number of elements of Ej is usually referred to as edge-cut.

Definition 10 Given A € R™"", a vertex separator Vg of G(A) = (V, E) is a set of
vertices such that there exists a k-way partitioning Vi, V;, ..., Vi of V' \ V; having
noedgee € V; x Vjfori # j.

A useful vertex separator V; should not only separate G(A) into k independent

subgraphs associated with Vip,..., Vg, it is intended that the number of edges
U Heis € Vi, s € Vi}| is also small.
Nested dissection recursively splits a graph G(A) = (V, E) into almost

equal parts by constructing a vertex separator Vi until the desired number k of
partitionings are obtained. If k is a power of 2, then a natural way of obtaining a
vertex separator is to first obtain a 2-way partitioning of the graph, a so-called graph
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Fig. 4 A 2-way partition with vertex separator V; = {1, 4} and the associated reordered matrix

placing the two rows and columns associated with V; to the end

bisection with its associated edge separator E;. After that a vertex separator Vj is
computed from Ey, which gives a 2-way partitioning Vi, V; of V\ V. This process is
then repeated separately for the subgraphs associated with Vi, V> until eventually a
k = 2!-way partitioning is obtained. For the reordering of the underlying matrix
A, the vertices associated with V| are taken first followed by V, and V. This
reordering is repeated similarly during repeated bisection of each V;. In general,
vertex separators of small size result in low fill-in.

Example 2: Vertex Separators

To illustrate vertex separators, we consider the reordered matrix I’ A from
Fig. | after a matching is applied. In Fig.4 we display its graph G(T1” A)
ignoring the orientation of the edges. A 2-way partitioning is obtained with
Vi = {3, 5}, Vo = {2, 6}, and a vertex separator Vi = {1, 4}. The associated
reordering refers to taking the rows and the columns of I17 A in the order
3,5,2,6,1,4.

Since a naive approach to compute a recursive graph bisection is typically
computationally expensive, combinatorial multilevel graph bisection has been used
to accelerate the process. The basic structure is simple. The multilevel approach
consists of three phases: at first there is a coarsening phase which compresses the
given graph successively level by level by about half of its size. When the coarsest
graph with about a few hundred vertices is reached, the second phase, namely the
so-called bisection, is applied. This is a high-quality partitioning algorithm. After
that, during the uncoarsening phase, the given bisection is successively refined as it
is prolongated towards the original graph.

3.1.1 Coarsening Phase

The initial graph Go = (Vp, Eg) = G(A) of A € R™" is transformed during
the coarsening phase into a sequence of graphs Gy, G», ..., G, of decreasing size
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such that |Vo| > |Vi| > V2] > -+ > |Vl Given the graph G; = (V;, E;),
the next coarser graph G;y is obtained from G; by collapsing adjacent vertices.
This can be done, e.g., by using a maximal matching M; of G; (cf. Definitions 3
and 4). Using M;, the next coarser graph G, is constructed from G; collapsing
the vertices being matched into multinodes, i.e., the elements of M; together with
the unmatched vertices of G; become the new vertices V; of G;11. The new edges
E;41 are the remaining edges from E; connected with the collapsed vertices. There
are various differences in the construction of maximal matchings [9, 25]. One of the
most popular and efficient methods is heavy edge matching [25].

3.1.2 Partitioning Phase

At the coarsest level m, a 2-way partitioning VmglUVmgz =Vn,of G,, = (Vi, Ep)
is computed, each of them containing about half of the vertices of G,,. This
specific partitioning of G,, can be obtained by using various algorithms such as
spectral bisection [19] or combinatorial methods based on Kernighan—Lin variants
[18,27]. It is demonstrated in [25] that for the coarsest graph, combinatorial methods
typically compute smaller edge-cut separators compared with spectral bisection
methods. However, since the size of the coarsest graph G, is small (typically
|Vin| < 100), this step is negligible with respect to the total amount of computation
time.

3.1.3 Uncoarsening Phase

Suppose that at the coarsest level m, an edge separator E,, s of G,, associated with
the 2-way partitioning has been computed that has led to a sufficient edge-cut of G,
with V,, 1, Vin 2 of almost equal size. Then E,, ; is prolongated to G,,—1 by reversing
the process of collapsing matched vertices. This leads to an initial edge separator
E—1,5 for Gp—1. But since G, is finer, E;,—1 s is sub-optimal and one usually
decreases the edge-cut of the partitioning by local refinement heuristics such as the
Kernighan—Lin partitioning algorithm [27] or the Fiduccia—Mattheyses method [18].
Repeating this refinement procedure level-by-level we obtain a sequence of edge
separators E,, s, Ei—15, ..., Eo,s and eventually and edge separator E; = Eo s of
the initial graph G(A) is obtained. If one is seeking for a vertex separator V of
G (A), then one usually computes Vi from Ej; at the end.

There have been a number of methods that are used for graph partitioning, e.g.,
METIS [25], a parallel MPI version PARMETIS [26], or a recent multithreaded
approach MT-METIS [30]. Another example for a parallel partitioning algorithm
is SCOTCH [9].
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Fig. 5 Application of multilevel nested dissection after the matrix is already rescaled and
permuted using maximum weight matching

Multilevel Nested Dissection

We will continue Example 1 using the matrix A = I17 D, AD; that has
been rescaled and permuted using maximum weight matching. We illustrate
in Fig. 5 how multilevel nested dissection changes the pattern A= PTAP,
where P refers to the permutation matrix associated with the partitioning of
G(A).

3.2 Other Reordering Methods

One of the first methods to reorder the system was the reverse Cuthill-McKee
(RcM) methods [10, 34] which attempts to reduce the bandwidth of a given matrix.
Though this algorithm is still attractive for sequential methods and incomplete
factorization methods, its use for direct solvers is considered as obsolete. An attrac-
tive alternative to nested dissection as reordering method for direct factorization
methods is the minimum degree algorithm (MMD) [20, 40] and its recent variants,
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in particular the approximate minimum degree algorithm (AMD) [2, 12] with or
without constraints. The main objective of the minimum degree algorithm is to
simulate the Gaussian elimination process symbolically by investigating the update
process a;j —> ajj — a,'ka,gclakj by means of graph theory, at least in the case
of the undirected graph. The name-giving degree refers to the number of edges
connected to a vertex and how the graph and therefore the degrees of its vertices
change during the factorization process. Over the years this has led to an evolution
of the underlying minimum degree algorithm using the so-called external degree for
selecting vertices as pivots and further techniques like incomplete degree update,
element absorption, and multiple elimination as well as data structures based on
cliques. For an overview see [20]. One of the most costly parts in the minimum
degree algorithm is to update of the degrees. Instead of computing the exact external
degree, in the approximate minimum degree algorithm [2], an approximate external
degree is computed that significantly saves time while producing comparable fill-in
for the LU decomposition.

We like to conclude this section by mentioning that if nested dissection is
computed to produce a vertex separator Vs and a related k-way partitioning
Vi,..., V — k for the remaining vertices of V \ Vs of G(A) = (V, E) which
allow for parallel computations, then the entries of each Vi, i,...,k could be
taken in any order. Certainly, inside V; one could use nested dissection as well,
which is the default choice in multilevel nested dissection methods. However, as
soon as the coarsest graph G, is small enough (typically about 100 vertices), not
only the separator is computed, but in addition the remaining entries of G, are
reordered to lead to a fill-reducing ordering. In both cases, for G, as well as
Vi, ..., Vi one could alternatively use different reordering methods such as variants
of the minimum degree algorithm. Indeed, for G, this is what the METIS software
is doing. Furthermore, a reordering method such as the constrained approximate
minimum degree algorithm is also suitable as local reordering for Vi, ..., Vi as
alternative to nested dissection, taking into account the edges connected with V;
(also referred to as HALO structure), see, e.g., [38].

4 Sparse LU Decomposition

In this section we will assume that the given matrix A € R*" is nonsingular and
that it can be factorized as A = LU, where L is a lower triangular matrix with unit
diagonal and U is an upper triangular matrix. It is well-known [21], if A = LU,
where L and U are lower triangular matrices, then in the generic case we will
have G4(L + U) D Gg4(A), i.e., we will only get additional edges unless some
entries cancel by “accident” during the elimination. In the sequel we will ignore
cancellations. Throughout this section we will always assume that the diagonal
entries of A are nonzero as well. We also assume that G;(A) is connected.

In the preceding sections we have argued that maximum weight matching
often leads to a rescaled and reordered matrix such that static pivoting is likely
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Fig. 6 Fill-in with respect to 30f/oofo1
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to be enough, i.e., pivoting is restricted to some dense blocks inside the LU
factorization. Furthermore, reordering strategies such as multilevel nested dissection
have further symmetrically permuted the system such that the fill-in that occurs
during Gaussian elimination is acceptable and even parallel approaches could be
drawn from this reordering. Thus assuming that A does not need further reordering
and a factorization A = LU exists is a realistic scenario in what follows.

4.1 The Elimination Tree

The basis of determining the fill-in in the triangular factors L and U as by-product of
the Gaussian elimination can be characterized as follows (see [23] and the references
therein).

Theorem 2 Given A = LU with the aforementioned assumptions, there exists an
edge (i, j) in G4(L + U) if and only if there exists a path

IX1,X2X3, ooy Xk ]

in G4(A) such that x1, ..., xx < min(i, j).

In other words, during Gaussian elimination we obtain a fill edge (i, j) for every
path from i to j through vertices less than min(i, j).

Fill-in
We will use the matrix I17 A from Example 2 and sketch the fill-in obtained
during Gaussian elimination in Fig. 6.

The fastest known method for predicting the filled graph G;(L + U) is Gaussian
elimination. The situation is simplified if the graph is undirected. In the sequel we
ignore the orientation of the edges and simply consider the undirected graph G (A)
and G(L + U), respectively.



16 M. Bollhofer et al.

Fig. 7 Entries of G(A) are ®0[0 0|0 e
denoted by filled circle, fill-in 0el00|®0
is denoted by times 00|e o|@ 0
00(e ®|X e
0ele X|e e
© 00 e|ee

Definition 11 The undirected graph G (L + U) that is derived from the undirected
graph G(A) by applying Theorem 2 is called the filled graph and it will be denoted
by G r(A).

Fill-in with Respect to the Undirected Graph

When we consider the undirected graph G (A) in Example 4.1, the pattern of
|17 A+ 117 A|T and its filled graph G 7 (A) now equals G(A) up to positions
(5,4) and (4, 5) (cf. Fig. 7).

The key tool to predict the fill-in easily for the undirected graph is the elimination
tree [33].

Recall that an undirected and connected graph is called a tree, if it does not
contain any cycle. Furthermore, one vertex is identified as root. As usual we call a
vertex j parent of i, if there exists an edge (i, j) in the tree such that j is closer to the
root. In this case i is called child of j. The subtree rooted at vertex j is denoted by
T (j) and the vertices of this subtree are called descendants of j, whereas j is called
their ancestor. Initially we will define the elimination tree algorithmically using the
depth-first-search algorithm [1]. Later we will state a much simplified algorithm.

Definition 12 Given the filled graph G ¢(A) the elimination tree T (A) is defined
by the following algorithm.

Perform a depth-first-search in G f(A) starting from vertex 7.

When vertex m is visited, choose from its unvisited neighbors i, . . ., i; the index
J with the largest number j = max{iy, ..., it} and continue the search with j.

A leaf of the tree is reached, when all neighbors have already been visited.

We like to point out that the application of the depth-first-search to G f(A) starting at
vertex n behaves significantly different from other graphs. By Theorem 2 it follows
that as soon as we visit a vertex m, all its neighbors j > m must have been visited
prior to vertex m. Thus the labels of the vertices are strictly decreasing until we
reach a leaf node.
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Depth-First-Search
We illustrate the depth-first-search using the (filled) graph in Fig. 8 and the
pattern from Example 4.1. The extra fill edge is marked by a bold line.

The ongoing depth-first-search visits the vertices in the order 6 — 5 —
4 — 3. Since at vertex 3, all neighbors of 3 are visited (and indeed have
a larger number), the algorithm backtracks to 4 and to 5 and continues the
search in the order 5 — 2. Again all neighbors of vertex 2 are visited (and
have larger number), thus the algorithm backtracks to 5 and to 6 and continues
by 6 — 1. Then the algorithm terminates.

©,
® ©, @ @ ©
@ ® ® @ @

Fig. 8 Filled graph (left) and elimination tree (right)

Remark 1 Tt follows immediately from the construction of 7(A) and Theorem 2
that additional edges of G r(A) which are not covered by the elimination tree can
only show up between a vertex and some of its ancestors (referred to as “back-
edges”). In contrast to that, “cross-edges” between unrelated vertices do not exist.

Remark 2 One immediate consequence of Remark 1 is that triangular factors can be
computed independently starting from the leaves until the vertices meet a common
parent, i.e., column j of L and U” only depend on those columns s of L and U7
such that s is a descendant of j in the elimination tree 7 (A).

Elimination Tree

We use the matrix “west0479” from Example 3.1.3, after maximum weight
matching and multilevel nested dissection have been applied. We use
MATLAB’s etreeplot to display its elimination tree (see Fig.9). The

(continued)
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Fig. 9 Elimination tree of “west0479” after maximum weight matching and nested dissection are
applied

elimination tree displays the high level of concurrency that is induced by
nested dissection, since by Remark 2 the computations can be executed
independently at each leaf node towards the root until a common parent vertex
is reached.

Further conclusions can be easily derived from the elimination tree, in particular
Remark 2 in conjunction with Theorem 2.

Remark 3 Consider some k € {1, ..., n}. Then there exists a (fill) edge (j, k) with
Jj < k if and only if there exists a common descendant i of k, j in T (A) such
that a;jr # 0. This follows from the fact that once a;;x # 0, by Theorem 2 this
induces (fill) edges (j, k) in the filled graph G f(A) for all nodes j between i and
k in the elimination tree 7 (A), i.e., for all ancestors of i that are also descendants
of k. This way, i propagates fill-edges along the branch from i to k in 7 (A) and the
information a;; # 0 can be used as path compression to advance from i towards k
along the elimination tree.

Path Compression

Consider the graph and the elimination tree from Fig. 8. Since there exists the
edge (3, 5) in G(A), therefore another (fill) edge (4, 5) must exist. Similarly,
the same conclusion can be drawn from the existence of the edge (4, 6) (here
not a fill edge, but a regular edge).

The elimination tree itself can be easily described by a vector p of length n such
that for any i < n, p; denotes the parent node, while p, = 0 corresponds to the
root. Consider some step k with a;;x # 0, for some i < k. By Remark 3, i must
be a descendant of k and there could be further ancestors j of i which are also
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descendants of k. Possibly not all ancestors of i have been assigned a parent node
so far. Thus we can replace i by j = p; until we end up with p; = O or p; > k.
This way we traverse T (A) from i towards to k until we have found the child node
J of k. If the parent of j has not been assigned to j yet, then p; = 0 and k must be
the parent of j. If some I < k were the parent of j, then we would have assigned
[ as parent of j in an earlier step / < k. In this case we set p; < k. Otherwise, if
pj = k, then we have already assigned j’s parent in an earlier step [ < k.

Computation of Parent Nodes
Consider the elimination tree 7' (A) from Fig. 8. Unless k = 4, no parents have
been assigned, i.e., p; = 0 for all i.

Now for k = 4 we have azs # 0 and using the fact that p3 = 0 implies
that we have to set az = p3 < 4.

For k = 5, aps # 0 and again pp = 0 requires to set ap = pa < 5. Next,
ass # 0, path compression enables a3 < 5 and after another loop we obtain
as = pgy < 5.

Finally, if k = 6, we have a6 # 0 and immediately obtain a; = p; < 6.
Since a4 # 0, a path compression is applied which yields a4 < 6 and in
the next step we set as = ps5 < 6. At last asg # 0 does not cause further
changes.

In total we have p = [6, 5,4, 5, 6, 0] which perfectly reveals the parent
properties of the elimination trees in Fig. 8.

By Remark 3 (cf. [12, 43]), we can also make use of path compression. Since our
goal is to traverse the branch of the elimination tree from i to k as fast as possible,
any ancestor j = @; of i would be sufficient. With the same argument as before, an
ancestor a; = 0 would refer to a vertex that does not have a parent yet. In this case
we can again set p; < k. Moreover, k is always an ancestor of a;.

The algorithm including path compression can be summarized as follows (see
also [12, 33)).

Computation of the Elimination Tree
Input: A € R™” such that A has the same pattern as |A| + |A|”.
Output: vector p € R” such that p; is the parent of i, i = 1,...,n — 1,
except p, = 0.
1: leta € R” be an auxiliary vector used for path compression.
2: p<0,a<0
3: fork=2,...,ndo
4 for all i < k such that a;; # 0 do

(continued)
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5 while ;i £ 0 and i < k do
6: Jj < a;

7: a; <k

8: if j = 0 then

9: pi < k

10: end if

11: i< j

12: end while

13:  end for

14: end for

4.2 The Supernodal Approach

We have already seen that the elimination tree reveals information about concur-
rency. It is further useful to determine the fill-in L and U”. This information can
be computed from the elimination tree 7'(A) together with G(A). The basis for
determining the fill-in in each column is again Remark 3. Suppose we are interested
in the nonzero entries of column j of L and U”. Then for all descendants of j,
i.e., the nodes of the subtree 7 (j) rooted at vertex j, a nonzero entry a;x # 0 also
implies ly; # 0. Thus, starting at any leaf i, we obtain its fill by all a;z # 0 such
that £ > i and when we move forward from i to its parent j, vertex j will inherit
the fill from node i for all £ > j plus the nonzero entries given by ajx # 0 such that
k > j. When we reach a common parent node k with multiple children, the same
argument applies using the union of fill-in greater than k from its children together
with the nonzero entries ay; # 0 such that / > k. We summarize this result in a very
simple algorithm

Computation of Fill-in

Input: A € R™” such that A has the same pattern as |[A| + |A|”.
Output: sparse strict lower triangular pattern P € R with same pattern as
LUT.
1: compute parent array p of the elimination tree 7 (A)
2: for j=1,...,ndo
3:  supplement nonzeros of column j of P with alli > j such thata;; # 0
4: k=p y
5: if k > 0 then

(continued)
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6: supplement nonzeros of column k of P with nonzeros of column j
of P greater than k

7:  end if

8: end for

Algorithm 4.2 only deals with the fill pattern. One additional aspect that allows to
raise efficiency and to speed up the numerical factorization significantly is to detect
dense submatrices in the factorization. Block structures allow to collect parts of the
matrix in dense blocks and to treat them commonly using dense matrix kernels such
as level-3 BLAS and LAPACK [13, 14].

Dense blocks can be read off from the elimination tree employing Algorithm 4.2.

Definition 13 Denote by #; the nonzero indices of column j of P as computed by
Algorithm 4.2. A sequence k, k + 1, ...,k + s — 1 is called supernode of size s if
the columns of P; =P, U{j+ 1} forall j =k, ..., k+s—2.

In simple words, Definition 13 states that for a supernode s subsequent columns can
be grouped together in one dense block with a triangular diagonal block and a dense
subdiagonal block since they perfectly match the associated trapezoidal shape. We
can thus easily supplement Algorithm 4.2 with a supernode detection.

Computation of Fill-in and Supernodes

Input: A € R™” such that A has the same pattern as [A| + |A|”.
Output: sparse strict lower triangular pattern P € R with same pattern as
L, UT as well as column size s € R™ of each supernode.
1: compute parent array p of the elimination tree 7 (A)
2:m <0
3: forj=1,...,ndo
4:  supplement nonzeros of column j of P with alli > j such thata;; # 0
5:  denote by r the number of entries in column j of P
6: if j>1land j = p;_;ands, +r =I[then
7
8
9

Sm < Sm + 1 > continue current supernode
else
2 m<m+1,s, < 1,l <r > start new supernode
10:  end if

11:  k=p;

(continued)
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Fig. 10 Supernodes in the
triangular factor

zﬂ

12:  ifk > O then

13: supplement nonzeros of column k of P with nonzeros of column j
of P greater than k

14:  end if

15: end for

Supernode Computation

To illustrate the use of supernodes, we consider the matrix pattern from Fig. 7
and illustrate the underlying dense block structure in Fig. 10. Supernodes are
the columns 1, 2, 3 as scalar columns as well as columns 4—6 as one single
supernode.

Supernodes form the basis of several improvements, e.g., a supernode can be
stored as one or two dense matrices. Beside the storage scheme as dense matrices,
the nonzero row indices for these blocks need only be stored once. Next the use
of dense submatrices allows the usage of dense matrix kernels using level-3 BLAS
[13, 14].

Supernodes

We use the matrix “west0479” from Example 3.1.3, after maximum weight
matching and multilevel nested dissection have been applied. We use its undi-
rected graph to compute the supernodal structure. Certainly, since the matrix
is nonsymmetric, the block structure is only sub-optimal. We display the
supernodal structure for the associated Cholesky factor, i.e., for the Cholesky
factor of a symmetric positive definite matrix with same undirected graph as
our matrix (see left part of Fig. 11). Furthermore, we display the supernodal
structure for the factors L and U computed from the nonsymmetric matrix
without pivoting (see right part of Fig. 11).
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nz = 5289 nz = 4607

Fig. 11 Supernodal structure. Left: vertical lines display the blocking of the supernodes with
respect to the associated Cholesky factor. Right: vertical and horizontal lines display the blocking
of the supernodes applied to L and U

While the construction of supernodes is fairly easy in the symmetric case, its
generalization for the nonsymmetric case is significantly harder, since one has to
deal with pivoting in each step of Gaussian elimination. In this case one uses the
column elimination tree [22].

5 Sparse Direct Solvers—Supernodal Data Structures

High-performance sparse solver libraries have been a very important part of scien-
tific and engineering computing for years, and their importance continues to grow as
microprocessor architectures become more complex and software libraries become
better designed to integrate easily within applications. Despite the fact that there are
various science and engineering applications, the underlying algorithms typically
have remarkable similarities, especially those algorithms that are most challenging
to implement well in parallel. It is not too strong a statement to say that these
software libraries are essential to the broad success of scalable high-performance
computing in computational sciences. In this section we demonstrate the benefit of
supernodal data structures within the sparse solver package PARDISO [42]. We
illustrate it by using the triangular solution process. The forward and backward
substitution is performed column wise with respect to the columns of L, starting
with the first column, as depicted in Fig. 12. The data dependencies here allow to
store vectors y, z, b, and x in only one vector . When column j is reached, r;
contains the solution for y;. All other elements of L in this column, i.e. L;; with
i=j+1,..., N, are used to update the remaining entries in r by
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: procedure SPARSE FORWARD SUBSTITUTION
for j =0; j <n; j++ do
for i = xI[j]; i <xI[j+1]; i++ do
row = id[i]
r[row] -=r[j] * 1[i] »indexed DAXPY
end for
end for
end procedure

jrl
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L r
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RN WD

iteration direction

] 1: procedure SPARSE BACKWARD SUBSTITUTION

2 for j=n;j>0;j--do

3 for i =xI[j]; i <xI[j+1]; i++ do

1 4 row = id[i]

b 5 r[j] == rfrow] * 1[i] >indexed DDOT
6
7
8

= -1

i
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¥ 1 v end for
L r end for
: end procedure
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Fig. 12 Sparse triangular substitution in CSC format based on indexed DAXPY/DDOT kernel
operations

ri =ri—er,-j. (8)

The backward substitution with LT will take place row wise, since we use L and
perform the substitution column wise with respect to L, as shown in the lower part of
Fig. 12. In contrast to the forward substitution the iteration over columns starts at the
last column N and proceeds to the first one. If column j is reached, then r;, which
contains the j-component of the solution vector x, is computed by subtracting the
dot-product of the remaining elements in the column L;; and the corresponding
elements of r; withi = j+ 1,..., N fromit:

ri =rj—riLjj. ©))

After all columns have been processed r contains the required solution x. It is
important to note that line 5 represents in both substitutions an indexed DAXPY
and indexed DDOT kernel operations that has to be computed during the streaming
operations of the vector r and the column j of the numerical factor L. As we are
dealing with sparse matrices it makes no sense to store the lower triangular matrix L
as a dense matrix. Hence, PARDISO uses its own data structure to store L, as shown
in Fig. 13.

Adjacent columns exhibiting the same row sparsity structure form a panel, also
known as supernode. A panel’s column count is called the panel size n,. The
columns of a panel are stored consecutively in memory excluding the zero entries.
Note that columns of panels are padded in the front with zeros so they get the same
length as the first column inside their panel. The padding is of utmost performance
for the PARDISO solver to use Level-3 BLAS and LAPACK functionalities [41].
Furthermore panels are stored consecutively in the 1 array. Row and column
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Fig. 13 Sparse matrix data panels
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information is now stored in accompanying arrays. The xsuper array stores for
each panel the index of its first column. Also note that here column indices are the
running count of nonzero columns. Column indices are used as indices into x1 array
to lookup the start of the column in the 1 array which contains the numerical values
of the factor L. To determine the row index of a column’s element an additional array
idis used, which holds for each panel the row indices. The start of a panel inside 1d
is found via xid array. The first row index of panel p is 1d [x1d [p] ] . For serial
execution this information is enough. However, during parallel forward/backward
substitution concurrent updates to the same entry of r must be avoided. The parts
structure contains the start (and end) indices of the panels which can be updated
independently as they do not touch the same entries of r. Two parts, colored blue and
orange, are shown in Fig. 13. The last part in the bottom right corner of L is special
and is called the separator and is colored green. Parts which would touch entries of r
in the range of the separator perform their updates into separate temporary arrays t.
Before the separator is then serially updated, the results of the temporary arrays are
gathered back into r. The backward substitution works the same, just reversed and
only updates to different temporary arrays are not required. The complete forward
substitution and backward substitution is listed in Algorithms 1 and 2.

6 Application—Circuit Simulation

In this section we demonstrate how these developments in sparse direct linear
solvers have advanced integrated circuit simulations. Integrated circuits are com-
posed of interconnected transistors. The interconnects are modeled primarily with
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Algorithm 1 Forward substitution in PARDISO. Note that in case of serial execution
separated updates to temporary arrays in Lines 10—13 are not necessary and can be
handled via the loop in Lines 6-9

1: procedure FORWARD

2 for part o in parts do > parallel execution
3 for panel p in part p do
4: for column j in panel do > unroll
5: i = xid[p] + offset
6: for k = xI[j] + offset; k < sep; ++k do
7 row = id[i++]
8: r[row] - = r[j] 1[k] > indexed DAXPY
9: end for
10: for k =sep + 1; k < xI[j+1]; ++k do
11: row = id[i++]
12: t[row,p] -= r[j] 1[k] > indexed DAXPY
13: end for
14: end for
15: end for
16: end for
17: rli] = r[i] - sum(t[i,:]) > gather temporary arrays
18:  for panel p in separator do > serial execution
19: for column j in panel do > unroll
20: i =xid[p] + offset
21: for k = xI[j] + offset; k < xI[j+1]; ++k do
22: row = id[i++]
23: r[row] -= r[j] 1[k] > indexed DAXPY
24: end for
25: end for
26: end for

27: end procedure

resistors, capacitors, and inductors. The interconnects route signals through the
circuit, and also deliver power. Circuit equations arise out of Kirchhoff’s current law,
applied at each node, and are generally nonlinear differential-algebraic equations. In
transient simulation of the circuit, the differential portion is handled by discretizing
the time derivative of the node charge by an implicit integration formula. The
associated set of nonlinear equations is handled through use of quasi-Newton
methods or continuation methods, which change the nonlinear problem into a series
of linear algebraic solutions. Each component in the circuit contributes only to a few
equations. Hence, the resulting systems of linear algebraic equations are extremely
sparse, and most reliably solved by using direct sparse matrix techniques. Circuit
simulation matrices are peculiar in the universe of matrices, having the following
characteristics [11]:

* they are nonsymmetric, although often nearly structurally symmetric;

* they have a few dense rows and columns (e.g., power and ground connections);

* they are very sparse and the straightforward usage of BLAS routines (as in
SuperLLU[32]) may be ineffective;
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Algorithm 2 Backward substitution in PARDISO. Separator (sep.), parts, and
panels are iterated over in reversed (rev.) order
1: procedure BACKWARD

2 for panel p in sep. rev. do > serial execution
3 for col. j in panel p rev. do > unroll
4: i = xid[p] + offset
5: for k = xI[j] + offset; k < xI[j+1]; ++k do
6: row = id[i++]
7 r[j] -= r[row] 1[k] > indexed DDOT
8: end for
9: offset = offset - 1
10: end for
11: end for
12:  for part in parts do > parallel execution
13: for panel p in part rev. do
14: for col. j in panel p rev. do > unroll
15: i =xid[p] + offset
16: for k = xl[j] + offset; k < xI[j+1]; ++k do
17: row = id[i++]
18: r[j] -= r[row] 1[k] > indexed DDOT
19: end for
20: offset = offset - 1
21: end for
22: end for
23: end for

24: end procedure

¢ their LU factors remain sparse if well-ordered;

* they can have high fill-in if ordered with typical strategies;

¢ and being unstructured, the highly irregular memory access causes factorization
to proceed only at a few percent of the peak flop-rate.

Circuit simulation matrices also vary from being positive definite to being
extremely ill-conditioned, making pivoting for stability important also. As circuit
size increases, and depending on how much of the interconnect is modeled, sparse
matrix factorization is the dominant cost in the transient analysis.

To overcome the complexity of matrix factorization a new class of simulators
arose in the 1990s, called fast-SPICE [39]. These simulators partition the circuit
into subcircuits and use a variety of techniques, including model order reduction
and multirate integration, to overcome the matrix bottleneck. However, the resulting
simulation methods generally incur unacceptable errors for analog and tightly
coupled circuits. As accuracy demands increase, these techniques become much
slower than traditional SPICE methods. Even so, since much of the research effort
was directed at fast-SPICE simulators, it brought some relief from impossibly slow
simulations when some accuracy trade-off was acceptable. Because these simulators
partitioned the circuit, and did not require the simultaneous solution of the entire
system of linear equations at any given time, they did not push the state of the art in
sparse matrix solvers.
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Starting in the mid-2000s, increasing demands on accuracy, due to advancing
semiconductor technology, brought attention back to traditional SPICE techniques.
This was aided by the proliferation of multicore CPUs. Parallel circuit simulation,
an area of much research focus in the 1980s and 1990s, but not particularly
in practice, received renewed interest as a way to speed up simulation without
sacrificing accuracy. Along with improved implementations to avoid cache misses,
rearchitecture of code for parallel computing, and better techniques for exploitation
of circuit latency, improved sparse matrix solvers, most notably the release of KLU
[11], played a crucial role in expanding the utility of SPICE.

Along with the ability to simulate ever larger circuits with full SPICE accuracy
came the opportunity to further improve sparse matrix techniques. A sparse matrix
package for transient simulation needs to have the following features:

e must be parallel;

* fast matrix reordering;

* incremental update of the L and U factors when only a few nonzeros change;
 fast computation of the diagonal entries of the inverse matrix;

 fast computation of Schur-complements for a submatrix;

* allow for multiple LU factors of the same structure to be stored;

* use the best-in-class method across the spectrum of sparsity;

* use iterative solvers with fast construction of sparse preconditioners;

* run on various hardware platforms (e.g., GPU acceleration).

Some of these features must be available in a single package. Others, such as
iterative solvers and construction of preconditioners, can be implemented with a
combination of different packages. The PARDISO solver' stands out as a package
that does most of these very well. Here we touch on a few of these features.

When applied in the simulation of very large circuits, the difference between a
“good” and a “bad” matrix ordering can be the difference between seconds and days.
PARDISO offers AMD and nested dissection methods for matrix ordering, as well
as permitting user-defined ordering. Because the matrix reordering method which
has been used most often in circuit simulation is due to Markowitz [35], and because
modern sparse matrix packages do not include this ordering method, we briefly
describe it here. The Markowitz method is quite well-adapted for circuit simulation.
Some desirable aspects of the typical implementation of the Markowitz method,
as opposed to the MD variants, are that it works for nonsymmetric matrices and
combines pivot choice with numerical decomposition, such that a pivot choice is a
numerically “good” pivot which generates in a local sense the least fill-in at that step
of the decomposition. Choosing pivots based on the Markowitz score often produces
very good results: near-minimal fill-in, unfortunately at the cost of an O(n?)
algorithm (for dense blocks). Even though the Markowitz algorithm has some good
properties when applied to circuit matrices, the complexity of the algorithm has
become quite burdensome. When SPICE [36] was originally conceived, a hundred-

I'The PARDISO solver is available from http://www.pardiso-project.org.
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Fig. 14 Performance improvements of PARDISO 6.2 against Intel MKL PARDISO (one thread)
for various circuit simulation matrices

node circuit was huge and the Markowitz algorithm was not a problem. Now we
routinely see netlists with hundreds of thousands of nodes and post-layout netlists
with millions of elements. As matrix order and element counts increase, Markowitz
reordering time can become an obstruction. Even as improved implementations of
the Markowitz method have extended its reach, AMD and nested dissection have
become the mainstay of simulation of large denser-than-usual matrices.

Next we turn our attention to parallel performance. While KLU remains a
benchmark for serial solvers, for parallel solvers, MKL-PARDISO is often cited
as the benchmark [6, 8]. To give the reader a sense of the progress in parallel sparse
matrix methods, in Fig. 14 we compare KLU, PARDISO (Version 6.2) to MKL-
PARDISO on up to 16 cores on an Intel Xeon E7-4880 architecture with 2.5 GHz
processors.

Some of the matrices here can be obtained from the SuiteSparse Matrix
Collection, and arise in transistor level full-chip and memory array simulations. It is
clear that implementation of sparse matrix solvers has improved significantly over
the years.

Exploiting latency in all parts of the SPICE algorithm is very important in
enabling accurate circuit simulation, especially as the circuit size increases. By
latency, we mean that only a few entries in the matrix change from one Newton
iteration to the next, and from one timepoint to the next. As the matrix depends
on the time-step, some simulators hold the time-steps constant as much as feasible
to allow increased reuse of matrix factorizations. The nonzero entries of a matrix
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Fig. 15 Regression analysis on the rank-k update LU factorization in PARDISO

change only when the transistors and other nonlinear devices change their operation
point. In most circuits, very few devices change state from one iteration to the
next and from one time-step to the next. Nonzeros contributed by entirely linear
components do not change value during the simulation. This makes incremental LU
factorization a very useful feature of any matrix solver used in circuit simulation.
As of April 2019 the version PARDISO 6.2 has a very efficient exploitation of
incremental LU factorization, both serial and parallel. In Fig. 15 we show that
PARDISO scales linearly with number of updated columns, and also scales well
with number of cores. Here, the series of matrices were obtained from a full
simulation of a post-layout circuit that includes all interconnects, power and ground
networks. The factorization time is plotted against the number of columns that
changed compared to the previous factorization. The scatter plot shows the number
of rank-k update and the corresponding factorization time in milliseconds. The
regression analysis clearly demonstrates a linear trend both for the single and the
multiple core versions. The dashed line shows the time for the full factorization.
Another recent useful feature in PARDISO is parallel selective inverse matrix
computation as demonstrated in Table 1. In circuit simulation, the diagonal of the
inverse matrix is the driving point impedance. It is often required to flag nodes
in the circuit with very high driving point impedance. Such nodes would indicate
failed interfaces between different subcircuits, leading to undefined state and high
current leakage and power dissipation. A naive approach to this is to solve for the
driving point impedance, the diagonal of the inverse matrix, by N triangular solves.
This is sometimes unacceptably expensive even with exploiting the sparsity of the
right-hand side, and minimizing the number of entries needed in the diagonal of
the inverse. To bypass this complexity, heuristics to compute the impedance of
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Table 1 Details of the benchmark matrices

Matrix N nnz(A) nnz(%) Al Selected A~!
circuitSM_DC 3,523,317 19,194,193 2.87 82.3h 1.3s
circuitSM 5,558,326 59,524,291 1.04 371.1h 2.1s
Freescale 3,428,755 18,920,347 2.94 89.8h 1.0s
Freescale2 2,999,349 23,042,677 2.92 8.5h 1.2s
FullChip 2,987,012 26,621,990 7.41 162.9h 1195
memchip 2,707,524 14,810,202 4.40 62.5h 09s
“N” is the number of matrix rows and “nnz” is the number of nonzeros
The table shows the fill-in factor related to the number of nonzeros in %, the time for computing

all diagonal elements of the inverse A~!' using N multiple forward/backward substitution in
hours, and using the selected inverse method in PARDISO for computing all diagonal elements
of the inverse A~! in seconds

connected components are used. But this is error prone with many false positives
and also false negatives. In the circuit Freescale, PARDISO, e.g., finished the
required impedance calculations in 11.9 s compared to the traditional computation
that consumed 162.9 h.

The productivity gap in simulation continues to grow, and challenges remain.
Signoff simulations demand 10x speedup in sparse matrix factorization. Simply
using more cores does not help unless the matrices are very large and complex. For
a majority of simulations, scaling beyond eight cores is difficult. As a result, some
of these simulations can take a few months to complete, making them essentially
impossible. Some of the problems in parallelizing sparse matrix operations for
circuit simulation are fundamental. Others may be related to implementation.
Research on sparse matrix factorization for circuit simulation continues to draw
attention, especially in the area of acceleration with Intel’s many integrated core
(MIC) architecture [6] and GPUs [7, 31]. Other techniques for acceleration include
improved preconditioners for iterative solvers [44]. We are presently addressing the
need for runtime selection of optimal strategies for factorization, and also GPU
acceleration. Given that circuits present a wide spectrum of matrices, no matter how
we categorize them, it is possible to obtain a solver that is 2-10x better on a given
problem. Improvements in parallel sparse matrix factorization targeted at circuit
simulation is more necessary today than ever and will continue to drive applicability
of traditional SPICE simulation methods. Availability of sparse matrix packages
such as PARDISO that completely satisfy the needs of various circuit simulation
methods is necessary for continued performance gains.
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1 Introduction

Various parallel numerical methods can greatly benefit from a structured matrix in
order to enhance parallel performance and convergence. Examples of these methods
include, but certainly not constrained to, QR factorization for solving linear least
squares problems and linear systems, the direct methods such as LU or Cholesky
factorizations for solving sparse linear systems of equations, or direct-iterative
hybrid solvers. Our goal in this work is to present combinatorial algorithms to
obtain certain sparse matrix forms that are beneficial for a wide variety of parallel
numerical methods.

We do not follow a comprehensive approach for obtaining structured sparse
matrices and limit ourselves to combinatorial graph and hypergraph models for that
purpose. An effective way of attaining the desired form of a sparse matrix is to
represent it with a graph/hypergraph, and then partition this graph/hypergraph with
a relevant objective and constraint in mind that correlates to the metrics pertaining
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to parallel performance or convergence. The duality between matrices and graphs
is successfully used to translate the computations on graphs into the language of
linear algebra [34], where there exist several decades of effort in optimizing them.
The hypergraphs generalize graphs where an edge may connect more than two
vertices and they are better compared to graphs in representing multiway relations.
However, the nature of the problem dictates whether it is better to utilize a graph or
a hypergraph model. Although this is usually the case, another important issue is the
availability of certain features in partitioners that may be necessitated by the model
(such as support for fixed vertices, multiple constraints, multiple objectives, etc.).

We consider four different sparse matrix structures or forms: (1) singly-bordered
block-diagonal form (SB form), (2) doubly-bordered block-diagonal form (DB
form), (3) nonempty off-diagonal block minimization, and (4) block diagonal with
overlap form (BDO form). The SB form is made up of a number of diagonal blocks
and a single row or column border stripe, where the former is referred to as the
rowwise SB form (Fig. 1a) and the latter is referred to as the columnwise SB form
(Fig. 1b). The goals in the SB form are to obtain balanced-size diagonal blocks and
minimize the border size. The DB form is similar to the SB form but it consists
of both a row and a column border stripe (Fig. 1c). The goals in the DB form are
also similar to the goals in the SB form. Another problem we investigate is the
minimization of number of nonempty off-diagonal blocks for a given sparse matrix
(Fig. 1d). This is not really a structured sparse matrix form in the strictest sense.
Nonetheless, it enables optimizations important for parallel performance. The BDO
form consists of a number of diagonal blocks where only the successive diagonal
blocks overlap with each other (Fig. 1e). The two goals of this form are to minimize
the overlaps between blocks and to obtain balanced-size diagonal blocks.

We give the background related to graph/hypergraph partitioning and the nota-
tions used for matrices in Sect. 2. We investigate each form on its own section. Each
of these sections consists of: (1) describing the target form and the goals sought in
the form, (2) the graph/hypergraph method(s) for obtaining the form, and (3) how
this form is utilized for different applications and how it benefits these applications
by enhancing parallel performance and/or convergence. The four forms are covered
between Sects. 3—6. We give our concluding remarks in Sect. 7.

(a) (b) (©) (d) (e)

Fig. 1 The sparse matrix forms examined in this work. (a) Rowwise SB form. (b) Columnwise
SB form. (¢) DB form. (d) Nonempty off-diagonal block minimization. (¢) BDO form
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2 Preliminaries

In this section we introduce the terminology used in the rest of the paper. We
first describe the graph and hypergraph partitioning problems, which are central
to obtaining the matrix forms described in the paper. Then we give some basic
definitions related to matrices.

2.1 Graph Partitioning by Vertex Separator (GPVS)

An undirected graph G = (V, &) is defined by a set V of vertices and a set & of
edges, where each edge ¢; ; € & connects a pair of distinct vertices v;, v; € V. The
vertices adjacent to v; in G are denoted by Adjg(v;). We appropriately extend this
notation to a subset V' C V of vertices. Each vertex v; is associated with a weight,
which we denote by w(v;). A vertex subset Vg is a K-way vertex separator if the
subgraph induced by the vertices in V — Vg has at least K connected components.
Vs is called wide if a strict subset of it also forms a separator, and narrow
otherwise.

Mys ={V1,...,Vk; Vs} is a K-way vertex partition of G by vertex separator
Vs if (1) the union of the vertices in all parts give V, (2) each part except the
separator is nonempty, (3) the parts are pairwise disjoint, and (4) the K parts are
pairwise nonadjacent. An edge is internal if the pair of vertices connected by it
are in the same part, and external, otherwise. A vertex is a boundary vertex if it is
connected by one or more external edges. The goal in the GPVS problem is to find a
K-way vertex separator with the objective of minimizing the separator size, which
is usually defined as

cost(Tlys) = | Vs, (1

under the constraint of maintaining the balance criterion (usually provided as a
parameter) on the weights of the K parts Vi, ..., Vk. The weight W(Vy) of
Vi is usually defined as the summation of the weights of the vertices in it, i.e.,
W( Vi) = Zv,e(vk w(v;), forl <k < K.

A relevant problem is the graph partitioning by edge separator (GPES), which
is similar to the GPVS problem except that its goal is to find an edge separator
with minimum size instead of a vertex separator with minimum size. The multilevel
approaches for GPES [9, 21] led to successful tools [20, 28, 41]. There are also
tools that solve the GPVS problem directly [22, 28]. The GPVS problem can
also be solved indirectly by first solving the GPES problem and forming a wide
separator with all the vertices that are incident to the edges in the edge separator, and
then narrowing down this separator using various algorithms based on refinement
heuristics or vertex cover [43]. It is shown that the direct approaches [22] are better
for the GPVS problem. The deficiency of GPVS-based approaches in multilevel
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frameworks is pointed out [11, 29]. Note both the GPES and GPVS problems are
NP-hard [8].

A variant of the GPVS problem is the ordered GPVS problem [2]. [T,ys =
{(Vi,....,Vk; Vs, ..., Vs,_,} is a K-way ordered partition of G by the K — 1
vertex separators {Vs,, ..., Vs, _,} if (1) the union of the parts and the separators
give V, (2) each separator is nonempty, (3) all parts and separators are pairwise
disjoint, (4) the K parts are pairwise nonadjacent, and (5) Vs, is only adjacent to
separators Vg, and Vs, ,, and the parts V and V1. The first four conditions
are similar to those in the GPVS problem. The fifth condition imposes an order on
the vertices of the parts and the separators, in which Vg, is the vertex separator
of the parts Vi and Vi41. The goal in the ordered GPVS problem is to find a K-
way partition of G by an ordered set of K — 1 vertex separators such that the total
separator size

K—1
cost(Tovs) = »_|Vs,l, 2)
k=1

is minimized and the balance criterion on the weights of the K parts is satisfied.

2.2 Hypergraph Partitioning (HP)

A hypergraph H = (U, N) is defined by a set U of nodes and a set N of nets,
where each net n; € N connects a subset of nodes, denoted with Pins(n;) C U.
We refer to the vertices of a hypergraph as nodes in order to separate them from
the vertices of a graph. This notation is extended to the subset of nodes Pins(N’)
connected by a subset of nets N/ C N. The set of nets that connect a node v; is
denoted by Nets(v;) € N. This notation is similarly extended to the subset of nets
Nets(U') that connect a subset of nodes U’ € U. Each node v; is associated with
a weight w(v;).

Nyp ={Uy, ..., Uk} is a K-way node partition of # if (1) the union of nodes
in all parts give U, (2) each part is nonempty, and (3) the parts are pairwise disjoint.
In [Ty p, anet is said to connect a part if it has at least one pin in it. The connectivity
set A(n;) denotes the set of parts connected by n; and the connectivity A(n;) =
|[A(n;)| of n; denotes the number of parts connected by n;. A net is said to be
external if it connects more than one part, and internal otherwise. A K-way partition
[Ty p on the nodes of the hypergraph induces a (K + 1)-way partition on N as
well. If we denote the nets internal to part Uy with Ny and the external nets with
Ns, we can interpret this partition also as [1gp = {N1, ..., Ng; Ns}. The goal in
the hypergraph partitioning problem is to find a K-way partition with objective of
minimizing the cutsize, which is defined either as
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cost(Tlgp) = Z A(nj) — 1 or as (3)
n,-eNs
cost(Tlgp) = |Ns|. 4)

These two are commonly referred to as the connectivity and the cutsize metrics,
respectively, and they are widely adopted in the scientific computing [10] and
VLSI communities [32]. We are interested in two variants of constraints in the HP
problem. The first variant is to maintain a balance on part weights similar to the one
in the GPVS problem. The second variant is to maintain a balance on the number of
internal nets.

The HP problem is NP-hard [32]. The most successful tools [12, 27] for solving
the HP problem rely on the multilevel schemes.

2.3 Matrix Definitions

We give the notation related to matrices. The row i and column j of matrix A are,
respectively, denoted by a; . and ay_ j, and the nonzero at the intersection of these
two is denoted by a; ;. We use the functions nnz(-), nr(-), and nc(-) to, respectively,
denote the number of nonzeros, rows, and columns in a (sub)matrix, which we may
apply to a row, column, block, stripe, or the entire matrix.

The m x n sparse matrix A will often appear in blocked form with K x L blocks,
in which the block at the intersection of kth row stripe and £th column stripe is
of size my x ny. We use the capital letters B, C, D to denote the blocks and use
two subscripts to denote a block. When clear from the context, we utilize a single
subscript. The kth row stripe contains the blocks By 1, ..., Bg 1 and the £th column
stripe contains the blocks Bj ¢, ..., Bk ¢. A block By ¢ is said to be diagonal if k =
£, and off-diagonal, otherwise. A row (column) is called a coupling row (coupling
column) if it has nonzeros in at least two blocks. In our discussions there exist both
symmetric and nonsymmetric matrices. Figure 2 illustrates a nonsymmetric matrix
that is used for reordering purposes throughout the paper.

3 Singly-Bordered Block-Diagonal Form

Target Form The singly-bordered block-diagonal form of an m x n sparse matrix
A consists of K diagonal blocks and a border stripe. In the rowwise SB form, A is
permuted into A,sp as
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Fig. 2 A 16 x 18 sparse 1 234567 89101112131415161718
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PAQ = - = ArsB, (5)
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R, --- Ry

where P and Q denote the row and column permutation matrices, respectively. The
row border stripe R = [R; --- Rg] consists of coupling rows, each of which has
nonzeros in the columns of at least two diagonal blocks. In the columnwise SB
form, A is permuted into A.sp as

B Ci
PAQ = o | = Acss. (6)
Bix Ck

The column border stripe C = [C 1T - C ,T(]T consists of coupling columns, each
of which has nonzeros in the rows of at least two diagonal blocks. The rowwise
and columnwise SB forms are also referred to as primal and dual SB forms,
respectively [5]. For the SB form, we do not impose a symmetric permutation on
the rows and columns of the matrix, i.e., we do not enforce that PT = 0.

The two goals in permuting a matrix into SB form are to reduce the border size
and satisfy a balance criterion on the sizes of the blocks. The border size is given by
the number of rows in R, nr(R), for the rowwise SB form and number of columns
in C, nc(C), for the columnwise SB form. The block size is usually defined in terms
of its dimensions or the number of nonzeros in it.
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Methods The SB form of a given sparse matrix can be attained via different
approaches [5, 15, 42]. Here, we focus on the hypergraph models, which are shown
to be more effective [5]. In addition, we only describe the rowwise SB form. The
columnwise SB form can be obtained using the dual of the discussed method. The
reordering process can be summarized in three successive steps: (1) the modeling
of the given matrix with the row-net hypergraph model, (2) partitioning of the
hypergraph, and (3) interpretation of this partition to reorder the matrix. We describe
each of these steps next.

The row-net hypergraph Hry = (U, N) used to model sparse matrix A consists
of n nodes and m nets. In Hgy, there exists a node u; € U for each column ay ; of
A and there exists anetn; € N for each row a; » of A. The net n; connects u; if and
only if a; ; # 0. Hence, Pins(n;) is given by the nodes that represent the columns
which have a nonzero in a; . In a dual manner, Nets(u;) is given by the nets that
represent the rows which have a nonzero in ay. ;. The vertices can be assigned either
unit weights or the number of nonzeros of the columns they represent depending on
the application’s need. Figure 3a displays the row-net hypergraph that models the
sparse matrix in Fig. 2.

We can use a K -way partition g p(Hry) = {U1, ..., Uk} = {N1, ..., Nk;
N5} of this hypergraph to obtain A,sp. To permute A into the SB form, we order
the rows associated with the internal nets in N4 after the rows associated with the
internal nets in N for 1 < k < K — 1, and we order the rows associated with the
external nets N all to the end. We obtain the column permutation by ordering the
columns associated with the nodes in Uy after the columns associated with the
nodes in Uj. Figure 3b illustrates the reordered matrix induced by the partition in
Fig. 3a. Observe that the external nets with ids 1, 11, 14, 15 correspond to the rows
in the border in A, sp.

Obtaining K -way partition with the aim of minimizing the cutsize (4) minimizes
the border size as the external nets in the partition corresponds to the rows in the

1 9111316172 3 6 812154 5 7 101418
4 L L]

(b)

Fig. 3 Obtaining the SB form via partitioning the row-net hypergraph model. (a) Row-net
hypergraph model of the matrix in Fig.2 and a 3-way partition of it. (b) Reordered matrix in
the rowwise SB form
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(a) (b)

(c) (d)

Fig. 4 A linear programming problem matrix karted with 47K rows, 133K columns, 1.8M
nonzeros (top) and a least squares problem matrix Maragal 8 with 33K rows, 75K columns,
1.3M nonzeros (bottom). The SB forms are obtained through the described method. (a) Linear
programming problem matrix. (b) Rowwise SB form of the matrix in left for 16 processes. (c)
Least squares problem matrix. (d) Columnwise SB form of the matrix in left for 16 processes

border. Maintaining a balance on part weights in Iy p (Hgy) infers balance among
the diagonal blocks. A dual methodology can be adopted by using the column-net
hypergraph model [5] to obtain A.sp. Figure 4 displays two matrices reordered
using the described methodology.

Application Areas and Parallelism Enhancement Various decomposition tech-
niques [15, 31, 36] for the parallel solution of linear programs (LPs) exploit the
coarse-grain parallelism inherent in the block-angular form [14]. These techniques
solve K independent LP subproblems corresponding to the block constraints
followed by a coordination phase, usually performed serially and referred to as the
master problem. Such a decomposition is useful since solving a small independent
subset of problems is more efficient compared to the aggregate problem due to
the quadratic or cubic complexity. In terms of parallel efficiency, it is crucial to
keep the sizes of the independent problems close and reduce the master problem
size [15, 35], which affects the convergence and the amount of communicated data
in each iteration. Hence, for efficient parallel solution of the LP problems, one
would like to order the constraints and variables of the problem, which, respectively,
correspond to the rows and columns of the matrix, in such a way to ensure these
goals. The rowwise SB form captures these goals effectively by minimizing the
row border size, which relates to minimizing the size of the master problem, and
by attaining balanced blocks, which translates into attaining balance in the sizes of
independent LP subproblems.
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Another application is the QR factorization which is a common method for
solving the linear least squares problems and linear systems. The QR factorization
decomposes a given m x n coefficient matrix A into a product of an m x m orthogonal
matrix Q and an n X n upper triangular matrix R, where m > n. The columnwise SB
form leads to efficient parallelization of the sparse QR factorization, where A.sp is
utilized by enabling each process factoring its row stripe independently as the first
step, for example for the last row block,

[Bi Ci] = O« [’f{‘ gk} . ™)
k

Finally, C" = [C]---C ;(]T [6] is factored to obtain the QR factorization of the
original matrix. A small-sized column border leads to less overhead in factoring
C’ and attaining balanced blocks leads to load balance in factoring those blocks.
Furthermore, the same reordering could be also used for the incomplete QR
factorization.

Finally, the rowwise and columnwise SB forms are recently exploited to paral-
lelize sparse matrix-vector and matrix-transpose-vector multiplication (SpMMTV)
on shared memory environments [26]. The range of algorithms covered is quite
wide as these two operations frequently occur in many application areas. These
include interior-point methods for solving LP problems [25, 37], Krylov subspace
methods for nonsymmetric systems such as the Biconjugate Gradient method or
the Conjugate Gradient on the Normal Equations [44], the LSQR method [40] for
solving the least squares problem, the Surrogate Constraints method [51, 52] for
solving the linear feasibility problem, and many more. The SB form is exploited
for a number of optimizations that are important for multi-threaded programs.
The objective in the SB form used for the parallelization of SpMM'V is the
minimization of the connectivity metric (3), which is different from minimizing
the border size. Figure 5 illustrates how the SB form is used to perform z = ArTS BX
followed by y = Az with four threads. The matrix blocks or subvectors stored
by a thread are indicated with the same color, whereas the subvectors that require
some sort of coordination among the threads are indicated with green color. The
SB form enables four benefits for the threads: (1) the reduction of cache misses in
reading the elements of xg and updating the elements of yg, both of which have
to be performed by multiple threads, (2) the reduction of concurrent writes to yg,
(3) the reuse of A-matrix nonzeros together with their indices, and (4) balancing of
computational loads of the threads, which are proportional to nnz(By) + nnz(Ry)
for the kth thread.
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Fig. 5 Exploiting the rowwise SB form on shared memory systems (image due to [26])

4 Doubly-Bordered Block-Diagonal Form

Target Form The doubly-bordered block-diagonal form of an m x n sparse matrix
A consists of K diagonal blocks and two border stripes. In the DB form, A is
permuted into App as

B Cq

PAQ = B = Aps, (8)
Bg Ck
R ---Rg D

where P and Q denote the row and column permutation matrices, respectively.
The row border stripe R = [R;--- Rg D] and the column border stripe C =
[CT---CcEDT]T consists of coupling rows and columns, respectively. For the DB
form, we consider both symmetric permutation and nonsymmetric permutation of
A in our discussions, respectively, referred to as the symmetric DB form and the
nonsymmetric DB form. The former is occasionally used for the symmetric matrices
and the latter for the nonsymmetric matrices.

The two main goals in permuting a matrix into DB form are to reduce the
summation of sizes of the two borders, nr (R)+nc(C), and satisfy a balance criterion
on the block sizes.

Methods A common way of permuting a matrix into the symmetric DB form is
to first represent the matrix with the standard graph model and then use a GPVS-
based multilevel partitioner for reordering. The standard graph model G = (V, &)
simply contains a vertex v; for each row/column i of A, and there exists an edge
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e;,j € & for each nonzero of A. The deficiency of this graph model when used
within a multilevel framework is that a narrow vertex separator at any level of the
multilevel partitioning does not usually form a narrow separator in the finer levels.
This causes overestimation of the separator size and degrades the partition quality. A
remedy has been proposed based on hypergraph partitioning [11]. In order to obtain
the symmetric DB form we focus on this model, which we refer to HP-based GPVS,
and for the nonsymmetric DB form we focus on a bipartite graph model [5].

The HP-based GPVS for permuting a given symmetric matrix A into the
symmetric DB form consists of six steps. A sample symmetric matrix used for
reordering purposes is illustrated in Fig. 6a.

1. The matrix A is first represented with the standard graph model G = (V, &). The
graph G that represents the matrix in Fig. 6a is displayed in Fig. 6b.

2. In the second step of the HP-based GPVS, an edge-clique cover [30] C =
{C1,...Cn} of G is computed. A set of cliques cover G if the pair of vertices
v; and v; for each edge ¢; ; € & are contained in at least one clique.

3. Using this set of cliques, a clique-node hypergraph (CNH) Henyg = (U, N) is
formed. In Hey g, there exists a node u; € U for each clique C; € C and there
exists a net n; € N for each vertex in v; € V. n; connects u; if and only if

1234567891011
l1le LN ] L]
2 LN ] L] LN ]
3 LN ] L] L]
4 L] LN ]
5le ®e® LN ] L] L ]
6|e® LN ] L ]
7 L] L ]
8 o e e e
9|l L] L]
10 L) o0 ]
11 LJ o ]

(a)

I 0D W= O ©
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Fig. 6 Obtaining the symmetric DB form through HP-based GPVS. The example is reproduced
from [11]. (a) A symmetric matrix A. (b) Standard graph representation G. (¢) The clique-node
hypergraph Hen g formed from the cliques in G and 3-way partition [Ty p (Heng). (d) Obtaining
Mys(G) from Ny p(Hey i) (€) The symmetric DB form obtained using Ty (&)
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Ci contains v;. Figure 6¢ shows the CNH formed from a 12-clique edge-clique
cover of G in Fig.6b. One can see which cliques are used to form Heypy by
Nets(u;) of anode u;. For example, Nets(us) = {n», n3, ns, n1g} indicates that
the clique containing vertices v2, v3, vs, V19 in G exists as node us in Hen g

4. Heny is partitioned to obtain My p (Heny) = {N1, ..., Nk; Ns}. In HP, the
cutsize objective (4) and the balancing constraint of internal nets are utilized.
Figure 6c¢ illustrates a 3-way partition of the CNH described in the previous step.

5. The partition Iy s(G) = {V1, ..., Vk; Vs} is obtained using [y p(Henv)-
This is done by using the net intersection graph (NIG) [3, 7, 13] representation
of Hewnp. Simply put, there exists a vertex in the NIG representation of a
hypergraph for each net and two vertices v; and v; in the graph have an edge if
the respective nets in the hypergraph share at least one common node. Hence, the
internal net sets of Iy p(Hcen ) correspond to the vertex sets of Iy s(G) and
the external net set of Iy p (Hcy ) become the separator in [Ty s(G). Figure 6d
shows the Iy 5(G) obtained using the Iy p (Heyy) in Fig. 6¢.

6. In the last step, the partition found on the previous step is used to permute
A into the symmetric DB form. To permute A into the target form, we order
the rows/columns associated with the vertices in Vi after the rows/columns
associated with the vertices in V; for 1 < k < K — 1, and we order the
rows/columns associated with the vertices in the separator Vs all to the end.
Figure 6e illustrates the ordered matrix induced by the partition in Fig. 6d.

Minimizing the cutsize in IIyp(Hceyy) in the fourth step corresponds to
minimizing the number of vertices in the separator in Ilyg(&), which in turn
corresponds to minimizing the border size in the DB form. Maintaining a balance
on the number of internal nets in [Tz p(Hceyg) in the fourth step corresponds to
maintaining a balance on the number of vertices in parts of [Ty 5(&), which in turn
infers a balance among the block sizes.

The method for permuting A into the nonsymmetric DB form is less involved
and achieved by formulating this problem as a GPVS problem on the bipartite graph
representation of A. In the bipartite graph 8 = (V = V" U V¢, &), there exists a
vertex v; € V" for each row i of A and there exists a vertex v; € V° for each
column j of A. There is an edge e; ; € & for each nonzero of A and it connects
the vertices r; and c;. Adj(r;) and Adj(c;) are, respectively, given by the vertices
corresponding to the columns and rows that have nonzeros in row i and column ;.
Figure 7a shows the bipartite graph the represents the matrix in Fig. 2.

We can use a K-way partition [Ty s(8) = {V, UV, ..., Vi UV%: VUV
of this bipartite graph to obtain the nonsymmetric DB form. In order to do so, for the
permutation of the rows we use {V1, ..., Vi (Vg} and order the rows associated
with the vertices in V}, 4 after the rows associated with the vertices in V; for 1 <
k < K —1, and we order the rows associated with the vertices in V all to the end. In
a similar manner, for the permutation of the columns we use {V{, ..., V%; V¢} and
order the columns associated with the vertices in V7, 41 after the columns associated
with the vertices in (V,i for1 < k < K—1, and we order the columns associated with
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Fig. 7 Obtaining the nonsymmetric DB form via bipartite graph model. (a) Bipartite graph model
of the matrix in Fig. 2 and a 3-way GPVS partition of it. (b) Reordered matrix in the DB form

the vertices in V¢ all to the end. Figure 7b illustrates the ordered matrix induced by
partition in Fig. 7a. In Fig. 7, the vertices that represent the row border are displayed
in green and the vertices that represent the column border are displayed in blue.

Minimizing the separator size in [Ty g($) with respect to (1) minimizes the
summation of the sizes of the row and column borders in A as the vertices in the
separator correspond to the rows and columns in the border. Maintaining a balance
on part weights in ITy s(8) infers balance among the diagonal blocks.

Application Areas and Parallelism Enhancement One of the most common
areas that the DB form finds its application is the solution of sparse linear systems
of equations using direct methods such as LU or Cholesky factorizations. For
most problems a reordering is required in order to reduce the fill-in and enhance
parallelism. The fill-in of a matrix is the set of nonzeros that are introduced in the
factors. Some of the most widely used fill-in reducing reordering schemes are [4,
17, 18, 33, 47]. Furthermore, these reordering techniques are used not only for direct
solvers but also for preconditioners in iterative solvers, for computing incomplete
factorization based preconditioners such as incomplete LU and Cholesky.

In order to show how obtaining the DB form through the described methodology
benefits the direct methods, we consider the coarse-grain parallelization of LU
factorization. Given a reordered matrix App in the DB form, first the diagonal
blocks can effectively be factored independently in parallel by each process to
get By = LiUg. In the following stage, the unfactored rows/columns and the
rows/columns in the border are factored. One of the two main goals in obtaining
App, satisfying a balance criterion on the block sizes, relates balancing the
computational load of the processes in the former stage in factoring diagonal blocks.
The other goal, minimizing the border size, relates to reducing the work done in the
latter stage, which is usually less amenable for parallelization. Hence, minimizing
the border size in A pp enhances parallelism in the LU factorization.
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5 Nonempty Off-Diagonal Block Minimization

Target Form Consider an m x n sparse matrix A in blocked into K x K grid:

By, --- Bk
PAQ=1| =+ . = AL, )

Bk, -+ Bk k

where P and Q denote the row and column permutation matrices, respectively. An
off-diagonal block By ¢ is nonempty if it contains at least one nonzero element,
ie., da; j € Bye. Note that we actually do not require A to be permuted into
some specific prior form, i.e., P and Q can be identity matrices. The requirement,
however, is that there is some sort of blocking in which the rows and columns of A
are grouped and these groupings may be arbitrary. It is also possible that K = m or
K = n. An example of a 4 x 4 blocked matrix is given in Fig. 8a and it has seven
nonempty off-diagonal blocks. Note that this matrix is a permutation of the sparse
matrix in Fig. 2.

The first of the two goals in this section is to minimize the number of nonempty
off-diagonal blocks, which is given by

{Bk,¢ : 3a; j € By ¢ and k # £}], (10)

by permuting either rows or columns of A gy . The second goal is to satisfy a balance
criterion on the coupling row or column sizes in K row or column stripes. The
size of a coupling row/column can be defined as unit or the number of nonempty
off-diagonal blocks that this row/column is contained in (referred to as the degree
weighting). In our discussions for describing the methodology, we only focus on
the row permutation. Therefore, we are looking for a row permutation matrix P’
to obtain P’Ag;, = Anop in which there exists as few nonempty off-diagonal
blocks as possible and the coupling rows in each row stripe are balanced. A dual
methodology holds for the column permutation where Ag; Q' = Anop.

Methods We focus on a hypergraph model called the communication hypergraph
model [46, 49, 50] in order to minimize the nonempty off-diagonal blocks. Given
a K x K blocked sparse matrix Apy, the reordering process consists of four steps:
(1) the formation of the communication matrix from Apr, (2) modeling of the
communication matrix with the communication hypergraph, (3) partitioning of the
communication hypergraph, and (4) interpretation of this partition to reorder the
matrix. We describe each of these steps next.

The communication matrix Acy corresponding to Ap; contains only the
coupling rows of Apr and there exists a column in Acy for each column stripe
in Apr. Hence, if there are m. coupling rows in Apy, then Acps is an m. X K
matrix. There exists a nonzero a; ; € Acy if the coupling row a; 4 in Agy has
a nonzero in the jth column stripe. Acys is called communication matrix as it is
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Fig. 8 Nonempty off-diagonal block minimization via communication hypergraph model. (a) The
matrix in Fig. 2 blocked into 4 x 4 Ay with 7 nonempty off-diagonal blocks. (b) Communication
matrix Acpy of Apr. (¢) Communication hypergraph Hcys and a 4-way partition of it. (d)
Reordered matrix Ayop with 5 nonempty off-diagonal blocks

originally proposed for encapsulating the communication requirements of sparse
matrix-vector multiplication on distributed memory systems. Figure 8b displays the
8 x 4 communication matrix Acys of the blocked sparse matrix in Fig. 8a.

Using the communication matrix Acys, we form the communication hypergraph
Hem = {U, N} with m,. nodes and K nets. There exists a node u; € U
for each row a; . of the communication matrix and there exists a net n; € N
for each column ay ; of the communication matrix. Net n; connects u; if and
only if @; ; is nonzero. In Ap;, this connection corresponds to column stripe j
having at least one nonzero in the ith coupling row. We use unit weights for the
nodes, although other variants also exist [50]. The hypergraph used to model the
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communication matrix is also known as the column-net hypergraph model [10].
Figure 8c displays the communication hypergraph with 8 nodes and 4 nets formed
using the communication matrix in Fig. 8b.

Next, we partition Hcyy into K parts to obtain [y p(Hepy) = (UL, ..., Uk}
The partitioning of communication hypergraph also includes K fixed nodes (indi-
cated in Fig. 8 with the triangle nodes) to express the ownership of the K nets,
i.e., column stripes. We use I1g p(Hcps) to reorder the coupling rows of Apy and
obtain Ayop. To do so, we order the internal rows in the (k + 1)th row stripe of
Apr and the coupling rows associated with the nodes in Ujy; after the internal
rows in the kth row stripe of Apy, and the coupling rows associated with the nodes
in Ui for 1 < k < K — 1. In other words, we only reorder the coupling rows by
using [Ty p(Hcum) as the nodes in the communication hypergraph, which are used
for ordering purposes, represent the coupling rows. Figure 8d displays the reordered
matrix using the node partition in Fig. 8c.

We use the connectivity metric (3) in partitioning Hcy. Minimizing the
connectivity of a net n; € N, i.e., A(n;), corresponds to minimizing the number
of nonempty off-diagonal blocks in jth column stripe as the parts connected by
correspond to the nonempty off-diagonal blocks in jth column stripe in Ayop. For
example, in Fig. 8a, the fourth column stripe has two nonempty off-diagonal blocks
and with the reordering of the coupling rows, it has a single nonempty off-diagonal
block in Fig. 8d. In other words, net Cy4 in Fig. 8c connects two parts, one of which
contains nodes {3, 11} and the other one contains nodes {6, 10}. The former part
corresponds to the nonempty off-diagonal block at the intersection of the first row
stripe and the fourth column stripe. The latter part is by default assumed to be in
the connectivity set of this net due to the fixed node connected by the net (i.e., it
captures the diagonal block information). Maintaining a balance on the part weights
in partitioning Hc s corresponds to maintaining a balance on the sizes of coupling
rows. In the reordered matrix A yop in Fig. 8d, there are five nonempty off-diagonal
blocks. Figure 9 illustrates a matrix reordered using the described methodology.

Application Areas and Parallelism Enhancement Permuting a given matrix A
into Ayop has been utilized within the context of parallelization of conjugate
gradient normal equation error and residual [44] and the standard quasi-minimal
residual methods [16] for solving nonsymmetric linear systems, the linear least
squares method [40] for solving the least squares problem, the Lanczos method
for computing the singular value decomposition [40] and the surrogate constraint
method for solving the linear feasibility problem [52]. The common theme in all
of these methods is the existence of repeated sparse matrix-vector (SpMV) and
sparse matrix transpose-vector multiplication (SpMT V) [50] in a distributed setting.
A nonsymmetric matrix utilized in these methods allows for the adoption of a non-
symmetric permutation of it. This fact is exploited for addressing communication
cost metrics which are important for parallel performance: total message count and
maximum communication volume.

A columnwise partitioning of A induces a rowwise partitioning of A”. Assume
that A is permuted to Ayop using the methodology described in the previous
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Fig. 9 An example matrix poisson3Db with 86K rows/columns and 2.4M nonzeros reordered
using the described method for minimizing the number off-diagonal blocks for 32 processes. (a)
A nonsymmetric matrix. (b) Reordered matrix with column-net hypergraph model. There are 345
oft-diagonal blocks. (¢) Reordered matrix with off-diagonal block minimization. There are 228
oft-diagonal blocks

section and each process in the parallel system is responsible one of the K column
stripes of Ayop. In parallel SpMV, which is performed with the column-parallel
algorithm, each nonempty off-diagonal block B ¢ signifies a message from kth
process to £th process and the contents of this message include the output vector
elements that correspond to the nonzeros in B ¢. The number of messages sent by
the kth process is given by the number of nonempty off-diagonal blocks in the kth
column stripe of Ayop. Therefore, minimizing the nonempty off-diagonal blocks
corresponds to minimizing the number of messages between processes. A dual logic
applies to row-parallel SpMTV.

Using degree weighting for the nodes in the communication hypergraph and then
satisfying a balance constraint on the part weights relates to balancing the receive
volume loads of the processes. In other words, it minimizes the maximum receive
volume. One can also utilize unit weights for the nodes in order to approximate
the send volume loads [50]. In SpMTV, the utilization of degree weighting enables
the minimization of maximum send volume. By reducing communication costs in
these two multiplication operations through minimizing the nonempty off-diagonal
blocks and satisfying a balance constraint on the sizes of coupling rows/columns,
we can improve the parallel performance of the methods mentioned at the beginning
of this section.

Note that the communication hypergraph model is also utilized for two-
dimensional partitioning of the sparse matrices [46].

6 Block-Diagonal Form with Overlap

In block diagonal with overlap form, the successive blocks overlap with each other.
We consider two variants of this form. In the first variant, called the general BDO
form (or simply the BDO form), the diagonal blocks may overlap in both row and
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column dimensions. In the second variant, the diagonal blocks may overlap only
along the row or column dimensions. The second variant is more restricted in the
sense that the diagonal blocks are allowed to be overlap in a single dimension.
For the second variant, we only consider the overlaps along the column dimension,
hence the name block diagonal with column overlap form (BDCO form).

6.1 BDO Form

Target Form The block diagonal with overlap form of an n x n symmetric sparse
matrix A consists of K diagonal blocks, where each diagonal block except the first
and the last one overlaps with two other diagonal blocks, and the first and the last
diagonal block overlaps with one diagonal block. In the BDO form, A is permuted
into Agpo as

[ B1,1 Bi2
BITQ Cr1 B21 Ci2
BZT,l Byo Byj3
T pT
PAPT = CiaBy3Crn-ee = ABpo, (11)

Ck-1,k-1 Bk k-1

T
L By k1 Bkk

where P denotes the permutation matrix. We indicate the kth diagonal block with
Dy. Each diagonal block Dj.x~x consists of nine subblocks, and D; and Dg
consist of four subblocks:

_Bl | Bia Cr—1,k—1 Bi -1 Cr—1,k

, , T

D, = T s Dick<k = Bk k—1 Bk,k Bk,k+l )
Bi, Ci1 CT’ BT C

- k—=1.k Prk+1 “kk

Dk =

Ck-1,Kk-1 BK,K—1:| (12)

T
L By k-1 Bk

The overlapping regions between diagonal blocks are referred to as coupling
diagonal blocks. For two diagonal blocks Dy and Diyi, where 1 < k < K,
the subblock Cy i couples these two blocks. Note that we consider a symmetric
permutation of the given matrix, hence, Appo is also symmetric.

The first goal in permuting a sparse matrix into the BDO form is to minimize
the summation of the number of rows/columns of the coupling diagonal blocks, i.e.,
to minimize Z,f;ll nr(Crr) = Z,f;ll nc(Cr k). The second goal is to satisfy a
balance criterion on the number of nonzero entries in diagonal blocks.
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Methods Among the methods to obtain the BDO form [2, 23], we focus on the
method that relies on recursive bipartitioning (RB) [2]. This method starts with
representing the given sparse matrix A with the standard graph model G (for the
standard graph model, see Methods in Sect. 4). In each bipartitioning, it makes use
of a two-way GPVS with fixed vertices. To permute A into Appo with K diagonal
blocks, this approach relies on the condition that G has a diameter of at least K — 2.
We first describe the general RB framework and then review some of the issues
related to fixed vertices and vertex weights.

Prior to any two-way GPVS on G in the RB process to obtain IMyg =
{Vi,Vg; Vs}, we fix two subsets of vertices F; and Fg, Fr, into V., and Fg
into Vg, using two sets of boundary vertices 8y and Bg. The function of the fixed
vertices will be clear shortly. The boundary vertices are formed from the vertices
that are boundary to the separator in the parent bipartitioning. In the case of the first
bipartitioning in which there is no separator yet (since we are in the root level), in
order to set B, and Bg, we find a pair of vertices v; and v; with the greatest shortest
path and let B = {v;} and Bg = {v;}. The bipartitioning of G’ is then carried out
with the fixed vertex sets 7, and ¥ to obtain [Ty s = {1 C Vi, Fr € Vr; Vsl
For the child bipartitionings, the separator Vs is removed and the new vertex-
induced subgraphs G and G are, respectively, formed from the vertices in Vy,
and V. In the left bipartitioning of the two spawned child bipartitionings from G/,
the boundary vertex sets are formed as Br; = B and Brg = Adj(Vs) N V. In
the right bipartitioning they are formed as B8gr = Bg and Brr = Adj(Vs) N Vk.
Then we recursively bipartition Q’L using the boundary vertex sets Br; and Brg,
and Q’R using the boundary vertex sets 8gy and Brr.

The bipartitionings in the final level of the RB tree slightly differ from those in the
former levels in terms vertex fixing. In these bipartitionings, we have the flexibility
of assigning the boundary vertices to the respective separators as opposed to the
bipartitionings in the former levels. For that purpose, two auxiliary fixed vertices
are introduced, and the boundary vertices are set free. The adjacency list of the first
fixed vertex contains the vertices in the left boundary and the adjacency list of the
other vertex contains the vertices in the right boundary. These fixed vertices are then
removed after obtaining the final bipartitions.

The fixed vertices are central to obtaining the BDO form in the described
methodology. First of all, if G; and Gr are two graphs in the intermediate levels
of the RB process, then the vertices in the right boundary set Br of G, need to be
assigned to the right part in [Ty 5(G1 ), and the vertices in the left boundary set B, of
Gr need to be assigned to the left part in [Ty s(Gr). If G, and Gr are two graphs in
the final level, then we have the additional flexibility of assigning the vertices in Bg
of G1 and B, of Gr to the respective separators in their bipartitionings in addition
to the described parts. In addition to the fixed vertices in the boundary vertex sets,
for a given value of K’, we fix all the vertices whose distances from the left and
right boundaries smaller than K’/2 — 1 to the left and right parts, respectively. K’
is K at the initial bipartitioning and it is halved at each level. This is the vertex
fixing scheme used to obtain the fixed vertex sets 7 and Fr mentioned earlier.
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This scheme ensures the existence of a valid separator in the bipartitioning, and
consequently in the K-way partitioning.

At the end of this RB process, we obtain the partition II,ys(G) =
(Vi,....Vk; Vs, ..., Vs, ). Tlhvs(G) is used to reorder A into Agpo
by ordering the rows/columns corresponding to the vertices in Vi after the
rows/columns corresponding to the vertices in Vi, for 1 < k < K, and the
rows/columns corresponding to the vertices in separator Vs, in between the
rows/columns corresponding to the vertices in Vi and Vy4q,for1 <k < K — 1.
Figure 10 illustrates reordering of a given symmetric sparse matrix using 1,y s(G).
The initial matrix is illustrated in Fig. 10a and its graph representation and a 4-way
ordered GPVS of this graph are illustrated in Fig. 10b. The reordered matrix Agpo
is illustrated in Fig. 10c. The vertex colors in parts and separators match the color
of the respective diagonal matrices and the overlapped regions.

To clarify how parts/separators relate to elements in the matrix, we present
Fig. 11. Consider a part V, the separators Vs, |, Vs,, and the diagonal matrix
Dy (12). The internal edges of Vs, |, Vi, and Vg, , respectively, correspond to the
nonzeros in diagonal subblocks Cx—_1 k—1, Bi k, and Ci  and
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Fig. 10 Obtaining the BDO form through ordered GPVS. (a) A symmetric matrix A. (b)
Reordered matrix Agpo. (¢) I1,vs of standard graph representation of A
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Fig. 11 The correspondence Vv vV
between the subblocks of the Sk-1 S
diagonal block and the edges

in/between two separators

and a part Ckfl.k

N

Vi

* the edges between Vi, | and V. correspond to the subblocks By _1 x and BkT_ Lk
» the edges between Vg, |, and Vs, correspond to the subblocks Cy_j; and
C kT_l, ¢ and

* the edges between Vy and Vs, correspond to the subblocks By x+1 and B,Z Kl

Minimizing the sizes of the K — 1 separators throughout the RB process
corresponds to minimizing the overlap sizes of diagonal blocks in Appo as
the vertices in the separators correspond to the rows/columns in the overlapped
regions. Assigning each vertex a weight of number of nonzeros in the row/column
representing that vertex does not correctly encapsulate the balancing the sizes of
the diagonal blocks. One can exploit the flexibility of the RB framework to achieve
better load balance. In the light of this direction, a weighting heuristic based on
introducing two isolated fixed vertices in each bipartitioning is adopted [2]. In this
way, maintaining a balance on the vertex weights of parts in 1,y s(G) relates to
maintaining a balance on the number of elements in diagonal blocks. Figure 12
displays a matrix reordered using the described methodology.

Application Areas and Parallelism Enhancement The BDO form is utilized in
the parallelization of the explicit formulation of Multiplicative Schwarz precondi-
tioner [24] and in direct-iterative hybrid solvers [38, 39]. In these methods, typically,
the kth diagonal block of the Appo is assigned to the kth process, where the
computations related to this block may contain operations such as sparse matrix-
vector multiplication and LU (or incomplete LU) factorization. Hence, having
balanced diagonal blocks in terms of the number of nonzero elements they contain
helps in balancing the computational loads. In general, minimizing the overlap
size in these methods minimizes the communication overhead. A smaller overlap
size means a smaller balance system [38, 39]. It also helps in speeding up the
convergence [24].
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(a) (b)

Fig. 12 An example problem matrix copter2 with 56K rows/columns and 760K nonzeros. The
BDO form of this matrix is obtained through the described method. (a) A computational fluid
dynamics problem matrix. (b) The BDO form of the matrix in left for 8 processes

6.2 BDCO Form

Target Form The block-diagonal column-overlapped (BDCO) form of an m x n
sparse matrix A consists of K diagonal blocks, where successive diagonal blocks
may overlap along their columns. In the BDCO form, A is permuted into Agpco as

B C
Ey By ¢
PAQ = E3 B3 C3 = Agpco, (13)

Ex Bk

where P and Q denote row and column permutation matrices, respectively. We
indicate the kth diagonal block with Dy. Each diagonal block Djx<x consists of
three subblocks, and D; and Dk consist of two subblocks:

Dy = [By C1]. Di<k<k = [Ex Bx Cx]. Dk = [Ex Bk]- (14)

The columns of the overlapping subblocks are referred to as coupling columns. Two
diagonal blocks Dy and Dy, where 1 < k < K, overlap along the columns of
subblocks Cy and Ej41.

The first goal in permuting a sparse matrix into the BDCO form is to minimize
the total overlap size, i.e., the number of coupling columns. The second goal is to
satisfy a balance criterion on the number of nonzero entries in diagonal blocks.
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Methods Similar to the approach described in Sect.6.1, the method [1] for
obtaining the BDCO form is based on recursive bipartitioning (RB) and utilizes
fixed nodes in each bipartitioning step. Here, we describe this method by comparing
and contrasting it against the method described in Sect. 6.1.

The major difference of the method that obtains the BDCO form from the method
that obtains the BDO form is that instead of using the standard graph representation
of the given sparse matrix A, this method uses the column-net hypergraph model of
A. In the column-net hypergraph Hey = (U, N) of A, there exists a node u; € U
for each row a; » of A and anetn; € N for each column a, ; of A [10]. Net n;
connects ; if and only if a; ; is nonzero. Nets in Hcy are assigned unit cost as
well as the nets in all hypergraphs formed during the RB process. Nodes in Hey
are assigned weights equal to the number of nonzeros in the corresponding rows.
During the RB process, node weights are kept intact.

To permute A into Agpco form with K diagonal blocks, the diameter of Hcy
should be at least K —1. Here, the graph terminology for path, distance, and diameter
are extended to hypergraphs. This extension relies on the consideration of two nodes
as adjacent if and only if there exists at least one net connecting both of those nodes.

Similar to the vertex-fixation approach described in Sect. 6.1, each hypergraph in
the RB tree has left and right boundary node sets and some nodes are fixed to the
left and right parts depending on their distances to the boundary vertices. Likewise,
the boundary nodes in the original hypergraph, i.e., the top-most hypergraph in the
RB tree, are determined as the pseudo-peripheral nodes. However, the definition of
the boundary nodes that are introduced during the RB process is different. Here,
each node that is connected by at least one cut (external) net is said to be a boundary
node. Instead of fixing the nodes whose distances to the boundary nodes are smaller
than K'/2 — 1, this method fixes the nodes whose distances to the boundary nodes
are smaller than K’ /2. Furthermore, in this method, node fixing method used in each
level of the RB tree is the same as opposed to the method described in Sect. 6.1.

In each RB step, after some nodes of the current hypergraph, say H, are fixed
as described above, H is bipartitioned and I1, = {U., Ur} is obtained. Recall
that in the method that obtains the BDO form, the separator vertices represent
the rows/columns of the coupling subblocks in the reordered Appop matrix. Here
in this method, cut nets represent the coupling columns of the reordered Agpco
matrix. Since the overall objective here is to minimize the total number of coupling
columns in Agpco, the target problem in each RB step is to minimize cost (ITg p)
of bipartition IT,. Note that cost(I1gp) definition in (3) becomes equal to that
in (4) for a bipartition with unit net costs, hence, both objectives can be used for
bipartitionings performed in this method.

After the current hypergraph H is bipartitioned to obtain ITy = {U, Ur}, two
new hypergraphs H;, and Hp are formed out of H using I1>. Node sets U and Ug
of I, correspond to the node sets of the new hypergraphs H;, and Hp, respectively.
Note that, in contrast to the method in Sect. 6.1, none of the nodes is removed while
forming the new hypergraphs. This implies that for each level of the RB tree, the
union of the node sets of the hypergraphs in that level corresponds to the node set
of the original hypergraph Hcy. There are two commonly-used techniques in the
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literature to form the net sets of H; and Hp: cut-net splitting and cut-net removal.
Both can be used in this method since the existence of the split nets has no effect
on the further bipartitionings. This is because they always connect boundary nodes,
which are always fixed.

Recursive bipartitionings are performed on new hypergraphs H; and Hy of
each RB step until the RB tree has K leaf hypergraphs. The K-way node partition
induced by the leaf hypergraphs is used to reorder the rows of A. Net sets of these
hypergraphs and the external net sets in between them induce a (2K — 1)-way net
partition of the net set of the original hypergraph H¢p, which is then used to reorder
the columns of A.

Figure 13 illustrates reordering of a given 10 x 12 sparse matrix into a 4-way
BDCO form. The initial matrix A is given in Fig. 13a. A 4-way partition of the
column-net hypergraph Hcy of A obtained by the above-mentioned procedure is
given in Fig. 13b. The matrix Appco, which is reordered using the node and net
partitions given in Fig. 13b, is given in Fig. 10c.

Figure 14 displays a real-world matrix reordered using the described methodol-
ogy.

Application Areas and Parallelism Enhancement The BCDO form is directly
applicable in solution of sparse linear systems and sparse linear least squares
problems. The balance scheme was first proposed as a parallel direct solver for
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Fig. 13 Obtaining the BDCO form. (a) A matrix A. (b) Reordered matrix Agpco. (c) A 4-way
partition of the column-net hypergraph of A
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(a) (b)

Fig. 14 An example problem matrix mril with 66K rows, 115K columns, and 590K nonzeros.
The BDCO form of this matrix is obtained through the described method. (a) A computer graphics
problem matrix. (b) The BDCO form of the matrix in left for 8 processes

banded [19] and sparse [45] linear system of equations. Later it was extended for
obtaining the minimum 2-norm solution of underdetermined linear least squares
problems [48]. In this parallel algorithm, each diagonal block could be assigned
to a different process and they solve independent linear systems or least squares
problems using their respective diagonal blocks. This step is performed in parallel
without any communication, hence, maintaining balance on the number of nonzero
entries in diagonal blocks corresponds to maintaining balance on the computation
loads of the processors in this step. Then a small reduced system is formed and
solved either sequentially or in parallel to ensure the unique global solution vector
with the same values on the overlapping parts of the vector across processes are
obtained. The size of the reduced system as well as the communication amounts are
determined by the total number of coupling columns. Hence, obtaining the BDCO
form is a curicial step in enhancing the parallel scalability of these algorithms.

7 Conclusions

We presented a number of sparse matrix forms that are especially useful in
enhancing parallel performance and/or convergence of a wide range of parallel
numerical methods. We described the goals that are sought within these forms and
presented partitioning-based combinatorial graph and hypergraph models to attain
these goals. The partitionings obtained by the models are used to reorder the given
sparse matrix into the desired form. We then described some applications that can
benefit from these forms and how they benefit from them.
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Structure-Exploiting Interior Point m)
Methods ety

Juraj Kardos, Drosos Kourounis, and Olaf Schenk

1 Introduction

Interior point (IP) methods have became a successful tool for solving the nonlinearly
constrained optimal control problems. Their origin can be traced back to 1984 when
Karmarkar [10] announced a polynomial time linear program that was considerably
faster than the most popular simplex method to date. Furthermore, IP methods
can also be applied to quadratic and other nonlinear programs, unlike the simplex
method which can be applied only to linear programming. The main advantages of
the IP methods lie in the convenience they offer for handling nonlinear inequality
constraints using logarithmic barrier functions, so that a strictly feasible initial point
is unnecessary. Another advantage of IP methods is that they are applicable to
large-scale problems and allow for a variety of different direct sparse or iterative
solution methods for the underlying linear systems solved at each iteration until
convergence. Since different sparse system solvers can be plugged in with ease,
large-scale structured problems can be solved by exploiting parallel computing
infrastructures.

An example of successful application of the IP methods is the class of problems
known as the optimal power flow (OPF). OPF is a nonlinear, nonconvex, large-scale
optimization problem with the objective of minimizing the electricity generation
cost while satisfying the physical constraints of the electric grid. The security
constrained OPF (SCOPF) is an extension of the OPF problem that additionally
ensures the system security with respect to a set of postulated contingencies. The
SCOPF has become an essential tool for many transmission system operators for
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the planning, operational planning, and real time operation of the power system.
An increase of the number of considered contingencies requires the introduction of
additional variables and constraints, which in turn results in a significant problem
size growth, rendering the solution computationally intractable for standard general
purpose optimization tools. The structure of the SCOPF problems is appropriate for
the parallel structure-exploiting IP methods, where each contingency corresponds
to a separate partition on the linear level. The nonlinear IP framework leverages the
bordered block-diagonal sparse structure specific to these optimal control problems
by applying a Schur complement elimination on a block-per-block basis in order
to exploit parallelism intrinsic to sparse block-diagonal structures by distributing
the block contributions to the global Schur complement. In this way, the solution
of the large-scale optimization problems can be approached more efficiently, as
demonstrated in [19]. Similar structures arise also in the multistage stochastic opti-
mal control problems [3, 16], multiperiod OPF problems (MPOPF) [11], dynamic
simulations of the power grid [6], or problems such as natural gas dispatch [3].
This overview summarizes the algorithmic improvements in the recent years that
have significantly advanced IP methods. The focus is on parallel implementations
demonstrated on problems arising from the optimal control of the power grid. The
presented primal-dual IP method is based on the IPOPT algorithm [21, 23].

1.1 Notation

Throughout we adopt the following notation. Scalar values are denoted by lowercase
letters x in normal font, while vector objects are represented by bold lowercase
letters x. The vector e is a vector of ones with an appropriate dimension. If not
specified otherwise, column vectors are assumed. Similarly, scalar functions are
represented by a lowercase letter f, while vector functions are shown in bold
lowercase f. Concatenation of column vectors (x]T, x; ,...)T will be denoted by
(x1,x2,...). The elementwise product of two vectors x, y will be denoted by xy,
while x Ty stands for the inner product of the two vectors. Matrices are represented
by uppercase letters; for general (sparse) matrices we use bold fonts X while we
will use normal font to distinguish diagonal matrices X. Sets will be represented by
a calligraphic font X or uppercase Greek letters.

2 1P Algorithm

Definition 1 A general nonlinear programming (NLP) problem is formulated as a
minimization problem

minimize f(x) (1a)
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subject to ¢z (x) = 0, (1b)
cr(x) >0, (lc)
x>0, (1d)

where x € RVx, the objective function f is a mapping f : R¥x — R, the constraints
¢, : RV — RM and ¢; : RV — RN are assumed to be sufficiently smooth,
with continuous second-order derivatives, and N, > N, Ny, where N, Ny are the
number of equality and inequality constraints, respectively.

Definition 2 The feasible set Q2 is a set of points x that satisfy the constraints of the
NLP problem (1); that is

Q={x¢€ RN |ce(x) =0, cr(x) >0, x > 0}. 2)

Definition 3 The active set at any feasible point x is a set of inequality constraints
indices, for which the equality constraint holds; that is, A(x) = {i | ¢/ (x) = 0}.

Definition 4 Given the solution of the NLP problem xx* and the active set A(x™),
the linear independence constraint qualification (LICQ) holds if the set of active
constraint gradients {Vel(x*), i = 1...Ng; Vel (x*), j € Ax*)} is linearly
independent.

The NLP problem (1) can be transformed into the equivalent problem formulation
where the inequality constraints are converted to equality constraints by introducing
the slack variables s € RNZ with additional nonnegativity bounds s > 0. The NLP
problem can be written as

minimize f(x) (3a)
subject to ¢ (x) = 0, (3b)
cr(x)—s=0, (3¢)
(x,s) > 0. (3d)

Definition 5 The Lagrangian for the NLP problem (3) is defined as
L&, s, ke, A, A, A) = f(X) +A] e (x) +AT(er(x) —s) —Alx —A[s. (4

The vectors Ag, Az, Ay, and A are the Lagrange multipliers associated with the
equality, original inequality, and the bound constraints on the primal and slack
variables. This allows us to state the Karush—Kuhn-Tucker (KKT) first-order
necessary conditions for the NLP problem (3) which characterize the solution.

Theorem 1 Suppose that x* is a local solution of the NLP problem (3) and that
the LICQ holds at x*. Then there exist Lagrange multiplier vectors L} € RNe, PRags
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RNz, AP eR"and A} € RVz, (A%, X)) = 0, such that the following conditions are
satisfied at (x*, s*, A5, A5, A5, A3):

Ve f (%) 4 Ve () TA + Veer (x*) A — 15 =0, (5a)
—AE - =0, (5b)

c:(x*) =0, (5¢)

cr(x*) —s* =0, (5d)

Aix* =0, (5e)

Aist =0, (5)

(x*,5%) > 0. (52)

The conditions (5a) and (5b) are referred to as dual feasibility, (5c), (5d) as primal
feasibility, and (5f), (5e) as complementarity conditions. The point x* satisfying the
KKT conditions is called a stationary, or critical, point. In order to ensure that any
stationary point x* is indeed an optimal (local) solution of the NLP problem (3), the
second-order sufficient conditions are needed.

Theorem 2 Let x* be a point at which LICQ holds, the KKT conditions are
satisfied, and strict complementarity holds for the active inequality constraints.
Then, the point x* satisfies the second-order sufficient conditions for the NLP
problem (3) if the Hessian of the Lagrangian V2, L(x*, s*, A%, A7, A%, AY) projected
onto the null space of the constraint Jacobian is positive definite.

In practice, the second-order conditions are guaranteed by monitoring the inertia of
the iteration matrix, which is further elaborated in Sect. 2.3. Proofs of Theorems 1
and 2 can be found in classic optimization textbooks, e.g., [15, 25]. If the active set at
the solution of the NLP problem was known, we could apply a Newton-class method
directly to the linearization of the KKT conditions. However, the identification of the
active set is known to be an NP-hard combinatorial problem for which, in the worst
case, the computation time increases exponentially with the size of the problem.
Therefore, many solution strategies adopt an IP approach, introducing a barrier
subproblem where the nonnegativity bounds on the variables and slacks (x,s) > 0
are handled by the standard logarithmic barrier function, which is, in fact, a penalty
term penalizing the iterates that approach the boundary of the feasible region.

Definition 6 The barrier subproblem (BSP) reads:

n Nr
minimize f(x) — ) " log(xi) — i Y log(s;) (62)

i=1 i=1
subject to ¢, (x) = 0, (6b)
cr(x) —s=0. (6¢)
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Under certain conditions the solution x* of the BSP (6) converges to the solution
of the original NLP problem (1) as u; | 0. Consequently, a strategy to solve the
original NLP problem is to solve a sequence of the BSPs decreasing the barrier
parameter w ;. The solution of each iterate is not relevant for the solution of the
original problem, so it can be relaxed to a certain accuracy and such an approximate
solution is used as a starting point for the next BSP. The strategy for updating the
parameter and thus switching to the next BSP is discussed later in Sect. 2.4.

The solutions of the barrier problem (6) are critical points of the Lagrangian
function

Ny Ny
Lx, s, ke, k) =f(0) — i Y log(xi) — i Y log(si) (7)
i=1

i=1

+ A e (x) + AT (er(x) —5).

Formulating and solving the optimality conditions of (7) directly would lead to
singularities, since the derivatives of the barrier terms involve the fractions % and
sﬂ,-’ which are not defined at the solution x*, s* of the NLP problem (1) when active
bounds x}* = 0 or s;* = 0 are attained. Primal-dual IP methods [5, 9] define the dual
variables z and y as

Zi:ﬁ,iZI,Z,...,Nx, (8a)
Xi
=Y i=12...Nr (8b)
Si
From the definition of the dual variables it follows that z; = x& > 0; therefore,

zixi = w Vi = 1,..., Ny. Similarly, yis; = p,y; > O0Vi = 1,..., N7. The
optimality conditions of the BSP (6), considering also the dual variables (8), are
written

Vi f(X™) + Veee () TAS + Vier(x*)TAE — 2% = 0, (9a)
-\ —y* =0, (9b)

c.(x*) =0, (9¢)

cr(x™) —s* =0, (9d)

7"x* = ue, (%e)

y's* = ue, 9f)

(x*,s%) > 0. V2

Note that the dual variables z, y correspond to the Lagrange multipliers A, and A
for the bound constraints. The KKT conditions of the BSP (9) are equivalent to
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the perturbed conditions (5) of the original NLP problem (3), except for the strict
positivity of the dual variables (z, y) > 0. The primal-dual equations then become

lo:= Vif@®+JAe+JAr—z =0, (10a)
ly:= —Ar—y =0, (10b)
I, = c.(x) =0, (10c)
ly:= cr(x)—s =0, (10d)
l, .= Zx — e = 0, (10e)
ly:= Ys—pue =0, (101f)

where the Jacobian of constraints is written as J, = Vyc.(x) and J7 = V,cr(x).
The diagonal matrices X, S, Z, Y are defined as X = diag(x), S = diag(s), Z =
diag(z), and Y = diag(y).

Linearizing the primal-dual equations and solving them by applying Newton’s
method starting from an arbitrary value of the barrier parameter © may result in
slow convergence or poor conditioning of the associated KKT systems. Following
the central path ensures that certain favorable conditions for the KKT systems
and primal-dual variables are satisfied and descent directions can be obtained with
reasonable accuracy.

Definition 7 The central path C is an arc of strictly feasible points of the BSP prob-
lem (6),C = {(x*, s, AL, A7, 2, y*) | o > 0}, such that (x#, s#, Af', A7, 2/, y*)
is a solution of the BSP problem for every value of x> 0. Points on the central path
are characterized by the first-order KKT conditions (10).

Definition 8 The duality measure t is an average pairwise complementarity value
x;iz; and s;yi,

T T
T:M. (11)
Nx+NI

The barrier parameter w is usually chosen proportionally to the duality measure
and the centering parameter o € [0, 1], such that 4 = to. By choosing o = 1
the algorithm moves toward the central path C. Such a step is biased toward the
interior of the feasible region defined by the constraints (z,x) > 0, (y,s) > 0. At
the other extreme, the value ¢ = 0 results in the standard Newton step aiming to
satisy the KKT conditions (5). Many algorithms use intermediate values of o from
the open interval (0, 1) to trade off between the two objectives of reducing duality
measure and improving centrality. A strategy for selecting the centering parameter
is discussed later in Sects. 2.4.2 and 2.4.3.

Remark 1 The treatment for general box constraints XMl < 5y < pmax g4 general
upper and lower bounds on the nonlinear constraints ¢7'" < s < ¢7** requires the
addition of modified logarithmic barrier terms
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Ny Ny
B, kM0 M) — —j Zlog(xi — xl-min) — W leog(xlmax —x),

i=1 i=1
Ny Ny
Bs, P, ™) = —pu; Y log(si — ™) — pj Y log(€F™ —si).
i=1 i=1
The dual variables fori = 1, 2, ..., N, are defined by

L M I
4 = T Z,-U = Thax
Xi — X; X — X

while for the constraints the dual variables are defined by

[ - -
! S; — c%‘“ ! c?l.ax — s

2.1 Search Direction Computation

69

12)

13)

(14)

5)

Since the solution of the barrier problem (6) satisfies the perturbed KKT condi-
tions (10), Newton’s method may be applied to solve the system of nonlinear equa-
tions. The search direction (Axk , Ask , Ak’; , AX]_‘T, Azk , A yk) at the kth iteration

can be obtained from the linearization of (10) at the iterate (xk, sk, X’g‘, X?, 7+, yk ),

resulting in a system of linear equations

CH o0 JTyT-r 0" Tax]" ]
00 0—10—7|]|As Iy
Jo0o 00 o0 o |an| L
Jr—=10 0 0 0 A | ||
Z 000X 0| | Az I,
[0y 00 0 5| |ay] m

(16)

where H = V)%X.E. The system (16) is clearly unsymmetric. A symmetric system

can be obtained after eliminating the last two block rows:

Ao gT iy raxyt l,+x7'1,7"
0 Ly 0 —J As | |+ 57y
J: 0 0 0 Ake | I, ’
Jr—10 0 AXg ¥

A7)



70 J. Kardos et al.

where H = H + X~ !'Z and Ly = S~'Y. The directions Az* and Ayk can then be
recovered from the equations

AZF = —x"11, + ZAxb), (18)
Ayt = —s7'1 s + Y AsP). (19)

For a robust algorithm it is crucial to obtain highly accurate search directions.
Most of the burden is shifted to the sparse linear solver, where techniques such as
fill-in minimization reordering, symmetric scaling vectors, matching, and pivoting
can provide substantial improvement to the solution accuracy. Additional improve-
ment can be achieved by performing iterative refinement using the unsymmetrical
version KKT linear system of form (16). It is possible to further reduce the KKT
system by eliminating the slack variables s. The system (17) can be permuted to the
structure with the diagonal block L in the lower right corner,

Tyt o Praxcy” 1+ x711,7"
J: 0 0 0 Al I,

- . 20
Jr 0 0 —I | |Arf Ly 0
0 0 —7 L, As Iy + Sy

Since the block L; is a diagonal matrix, the reordered system (20) can be trivially
reduced by computing the Schur complement with respect to the 3 x 3 block in the
upper left corner, as illustrated in Fig. 1,

gl 1
Je 0 0 | —[oo—1]"H [o0-1]. 1)
Jr 0 0

60

nz =576

Fig. 1 Structure of the KKT system (17), reordered according to (20), and the structure of the
reduced KKT with the slacks removed (22)
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The additional elimination, compared to [16, 17], further reduces the memory
requirements and computation time due to the smaller amount of factorization fill-
in. Such an elimination, however, can be performed only for the nonzero elements of
L’S‘ sufficiently away from zero in order to avoid the ill-conditioning of the reduced
system. The reduced linear system that needs to be solved now has the structure

Byl oyt 1 raxf I+ XL, ‘
J: 00 Arg | =— Il (22)
Jr 0 —L! Alr Lo+ L7+ S7My)
and the eliminated slack variables can be recovered by solving
LEAs* = —1f — s7'1K + Ak (23)

2.2 Backtracking Line-Search Filter Method

After the successful computation of the search direction from (17) and (18) the step
sizes ok, a,ﬁ € (0, 1] need to be determined in order to obtain the next iterate:

= %% 4 o AxK, (24)
skl — gk akAsk, 25)
AFE K g ALk, (26)
A =2k +aank, (27)
=2+ ad ALk, (28)
Y = yh raiayt. (29)

Different step sizes for the primal and dual variables is commonly employed to
prevent unnecessarily small steps in either variables and delay the convergence to
the optimal. A first candidate step length is chosen such that the strict positivity of
x, s, and z is preserved, since it needs to hold both in the solution of the barrier
problem (6) and also in every iteration, which is necessary in order to evaluate the
barrier function. This is accomplished by the fraction-to-the-boundary rule, which
identifies the maximum step size oy, ai € (0, 1], such that

o™ = max (a €0, 17: xF +aAxk > (1 - t)xk) , (30)

of =max (& € 0,11: 2" + @At > (1 - 1)), a1
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where T € (0, 1) is a function of the current barrier parameter j ;. The step size for
the dual variables «; is used directly, but in order to ensure global convergence
the step size ax € (0, ™) for the remaining variables is determined by a
backtracking line-search procedure, exploring a decreasing sequence of trial step
sizes ol =27 fori =0, 1,2,....

The variant of the backtracking line-search filter method [8] used in IPOPT is
based on the idea of a biobjective optimization problem with the two goals (i)
minimizing the objective function

n Nr
O (x,8) = f(x) — pj Y _loglxi) — pj Y log(si) (32)
i=1

i=1

and (ii) minimizing the constraint violation

O(x,s) := || (ce(x), er(x) —s) [|1. (33)

A trial point xk(a,i) = xk 4 oe,iAxk and sk(oz,i) = sk 4+ a,iAsk during the
backtracking line search is considered to be acceptable, if it leads to sufficient
progress toward either goal compared to the current iterate. The emphasis is put on
the latter goal, until the constraint violations satisfy a certain threshold. Afterwards,
the former goal is emphasized and reduction in the barrier function is required,
accepting only iterates satisfying the Armijo condition.

Definition 9 The filter ¥ is a set of ordered pairs containing a constraint violation
value 6 and the objective function value ¢, such that

F C{6,9) eR>:6 > 0}. (34)

The algorithm also maintains a filter #; for each BSP j for which the u; is
fixed. The filter ¥ contains those combinations that are prohibited for a successful
trial point in all iterations within the jth BSP. The filter is initialized so that the
algorithm will never allow trial points to be accepted that have a constraint violation
larger than ™, During the line search, a trial point x¥ (a,i), sk (oz,i) is rejected
if (O(xk(a,i), sk (oz,i)), Pu; (xk((x,"{), sk(a,i))) € F;. After every iteration, in which
the accepted trial step size does not satisfy the two objectives of the backtracking
line search, the filter is augmented. This ensures that the iterates cannot return to
the neighborhood of the unsatisfactory iterates. Overall, this procedure ensures that
the algorithm cannot cycle, for example, between two points that alternate between
decrease of the constraint violation and the barrier objective function.

In cases when it is not possible to identify a satisfactory trial step size, the
algorithm reverts to a feasibility restoration phase. Here, the algorithm tries to find
a new iterate which is acceptable to the current filter, by reducing the constraint
violation with some iterative method. Note that the restoration phase algorithm
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might not be able to produce a new iterate for the filter line-search method, for
example, when the problem is infeasible.

2.3 Inertia Correction and Curvature Detection

Definition 10 The inertia of a square matrix is defined as the ordered triplet
(n+,n—,ng) € {(NU 0}3, where the terms denote the number of positive, negative,
and zero eigenvalues, respectively.

In order to guarantee descent properties for the line-search procedure, it is
necessary to ensure that the Hessian matrix projected on the null space of the
constraint Jacobian is positive definite (see Theorem 2). Also, if the constraint
Jacobian does not have full rank, the iteration matrix in (17) is singular, and the
solution might not exist. These conditions are satisfied if the iteration matrix has the
inertia (N + Nz, N; + N1, 0). The sizes correspond to the size of the Hessian block
(with respect to both primal variables x and the slack variables s) and the Jacobians
of the equality and inequality constraints. If the inertia is not correct, the iteration
matrix needs to be modified. In IPOPT implementation, the diagonal perturbations
8w, 8¢ > 0 are added to the Hessian (17), such that

H+s8,7 0 JI Jl
0 Li+8,0 0 I
J: 0 51 0
Jr -1 0 6.1

(35)

The system is refactorized with different trial values of §,,, 8. until the inertia is
correct. The inertia of the iteration matrix is readily available from several sparse
indefinite linear solvers, such as PARDISO [20]. In case the correct inertia cannot
be achieved, the current search direction computation is aborted and the algorithm
uses a different objective function that does try to solely minimize the feasibility
violation (e.g., minimizing the constraints violation), ignoring the original objective
function, in the hope that the matrix has better properties close to the feasible points.
The inertia detection strategy focuses on the properties of the augmented iteration
matrix (17) alone and can discard search directions that are of descent but for which
the inertia of the augmented matrix is not correct. Furthermore, the inertia detection
strategy might require multiple factorizations of the iteration matrix and, because the
factorization is the most expensive step in the algorithm, computational performance
can be greatly affected. Furthermore, the inertia estimates might vary, depending on
which linear solver is used or not be available at all. To bypass the need for the
inertia information, several authors suggest using the curvature test, e.g., [3, 4]:

diW(8)dy > kdldy, K« >0,86>0, (36)
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H 0

k
0 Ls] +81, di = (Axy, Asg).

Wi(d) = [

If the test is satisfied, the search direction is accepted; if it is not satisfied, the
regularization parameter § is increased and a new search direction is computed using
the new regularized matrix.

Remark 2 While the curvature detection strategy usually requires more IP iterations
until convergence compared with the inertia detection, it may require fewer extra
factorizations. Overall, the solution time is less than that of the inertia detection
because significantly fewer regularizations are needed.

2.4 Barrier Parameter Update Strategy

The strategy of the barrier parameter update is an important factor influencing the
convergence properties, especially for difficult nonconvex problems. When solving
nonlinear nonconvex programming problems, it is of great importance to prevent the
iteration from failing. Different barrier parameter update strategies are discussed
here, including the monotone Fiacco-McCormick strategy [1] and an adaptive
strategy based on minimization of a quality function [14].

2.4.1 Monotone and Adaptive Strategies

Using the default monotone Fiacco-McCormick strategy, an approximate solution
to the barrier problem (6) for a fixed value of u is computed, possibly iterating over
multiple primal-dual steps. Subsequently, the barrier parameter is updated and the
computation continues by solution of the next barrier problem, starting from the
approximate solution of the previous one. The approximate solution for the barrier
problem (6), for a given value of w , is required to satisfy the tolerance

i+1 j+1 i+1 j+1 j+1 41
JoNETAR TR PAnl ALK TAR A Ty (37)

for a constant k. > 0 before the algorithm continues with the solution of the
next barrier problem. The optimality error for the barrier problem is defined
by considering the individual parts of the primal-dual equations (10), that is,
the dual feasibility (optimality), primal feasibility (constraint violations), and the
complementarity conditions,

Epu(x,8, e, A7, 2, ¥) = max (Illalloo, 1slloos Ielloos 1alloos Ielloos 1L flloc) -
(38)
In the monotone barrier update strategy, the new barrier parameter is obtained
from
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€tol . 0,
Mj4+1 = max (%, min (KM/LJ', 'uj/ )) 39

with constants x, € (0,1) and 6, € (1,2). In this way, the barrier parameter is
eventually decreased at a superlinear rate. On the other hand, the update rule (39)
does not allow p to become smaller than necessary given the desired tolerance
€101, thus avoiding numerical difficulties at the end of the optimization procedure.
The monotone Fiacco-McCormick strategy can be very sensitive to the choice of
the initial point, the initial value of the barrier parameter, and the scaling of the
problem. Furthermore, different problems might favor strategies for selecting the
barrier parameter at every iteration of an IP method, that is, for every primal-dual
step computation. Adaptive strategies commonly choose 1141 proportionally to the
duality measure for the kth iterate,

Mkl = 0Tk, (40)

where o > 0 is a centering parameter and t denotes the duality measure (11). The
adaptive strategies vary in how the centering parameter is determined. Two adaptive
strategies implemented in IPOPT are discussed next.

2.4.2 Mehrotra’s Predictor-Corrector

Mehrotra’s proposed a predictor-corrector principle [12] for computing the search
direction. The centering parameter is computed as the ratio between the duality
measure (11) in the current iterate and the iterate updated by the predictor step,
considering the longest possible step sizes that retain the nonnegativity of the
variables in the barrier problem. If good progress in the duality measure is made in
the predictor step, the centering parameter obtained in this way is small, o < 1;
therefore, the p will be small in the next iteration. In other cases o may be
chosen to be greater than 1. This heuristic is based on experimentation with
linear programming problems, and has proved to be effective for convex quadratic
programming.

2.4.3 Quality Function

The adaptive barrier update strategy based on the quality function, as suggested
in [14], is trying to determine the centering parameter by minimizing a linear
approximation of the quality function. The quality function is a measure defined by
the infeasibility norms in the current iterate updated by the probing search direction,
which is expressed as a function of the sought parameter o. The minimization
problem is solved by a golden bisection procedure on the specified (Omin; Omax)
interval with a maximum of 12 bisections. The evaluation of the barrier update
strategies on both linear and nonlinear problems revealed superior performance of
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107 --=-. Objective 107 --=-. Objective

16 Feaﬁibili'ty 10* L6l Feaﬁibili'ty 104 5
= X Optimality 102 . Optimality 102 &
« = = = p-parameter r - = = p-parameter o
o 14 Lo T
2 -~
< .
i 1.2 E
o
i o
g 10 =
z 2z
o 7]
0.8 ]
10*10 10*10 =

0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40

Fig. 2 Barrier parameter update strategies (left: monotone 11y = 100; right: adaptive)

the adaptive methods over the monotone strategy, both in terms of CPU time and
number of IP iterations. Although the results were more pronounced on the linear
benchmarks, significant improvements can be expected by using adaptive strategies,
particularly in applications where the function evaluation has the dominant cost [14].
Figure 2 depicts the convergence with different barrier parameter update strategies.
The value of the barrier parameter w over the iterations of the IP is shown for the
two update strategies. Feasibility, optimality, and the objective function are shown
as well. The convergence tolerance for both benchmarks was set to tol = 0.01.

2.5 Problem Scaling and Convergence Criteria

Optimal control of realistic industrial and engineering problems, such as mod-
ern power networks, multienergy carrier systems, the variables and constraints
encountered, commonly involve different scales that usually differ by several
orders of magnitude. Sophisticated scaling is necessary to remedy problems related
to establishing accurate stopping criteria, improving convergence deteriorated by
unbalanced direction vectors, and dealing with loss of accuracy of the descent
direction computation due to bad conditioning of the associated KKT systems. In
the ideal case, not only the variables but also the functions should be scaled so that
changing a variable by a given amount has a comparable effect on any function
which depends on these variables or, in other words, so that the nonzero elements of
the function gradients are of the same order of magnitude. For this purpose, gradient-
based scaling is commonly employed so that at the starting point the gradients are
scaled close to one. The scaling factors for the gradients are defined as

sp=min(l, gmax/lIVxfx0)lloo), S
s¢ = min(l, gmax/I1Vxed x0)lloc), j=1... Ne, (42)
s = min(l, gmax/I1Vxey (x0)lloo), j=1... N1, (43)
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for a given gmax > 0. If the maximum gradient is above this value, then gradient-
based scaling will be performed. Note that all gradient components in the scaled
problem are at most of size gmax at the starting point. The scaling factors are
computed only at the beginning of the optimization using the starting point and
kept constant throughout the whole optimization process.

Even if the original problem is well scaled, the multipliers Ag, Ay, z might
become very large, for example, when the gradients of the active constraints are
(nearly) linearly dependent at a solution of (1). In this case, the algorithm might
encounter numerical difficulties satisfying the unscaled primal-dual equations (17)
to a tight tolerance. The convergence criteria in (38), therefore, need to be scaled
accordingly. The scaled optimality error used to determine the convergence criteria
is defined as

l l ) )
Eo(x,s,lg,)u], Z) =max<” a”oo’ ” h”oo ” e”oo’ || f”oo) ’
S1 N

M elloos Halloo
52

(44)
where the scaling factors s1, 57 are defined as

I\XsH1+\|X1H1+Ilz||1+||y||1)

lzlli Iyl
max (Smax, Ne+N7+Ne+N7 max (Smax, Ne+ N7
S = ’ 2 =

Smax Smax

(45)
The overall IPOPT algorithm terminates successfully, if the NLP error for the
current iterate with p = 0 in (44),

Eo(xvssxé‘vva Z, y) S €tol» (46)

becomes smaller than the user provided value €, > 0, and if the individual criteria
according to dual, primal, and complementarity conditions in (44) are met. Each
criterion uses a separate, user provided tolerance value.

3 1P Methods for OPF Problems

Recent developments in modern power grids involve widespread deployment of
intermittent renewable generation, embrace installation of a wide variety of energy
storage devices, as well as an increasing and widespread usage of electric vehicles.
These developments will motivate fundamental changes in methods and tools for
the optimal daily operation and planning of modern power grids. Operational
decisions taken by power system operators on a daily basis are commonly assisted
by repeatedly solving OPF problems, aiming to determine optimal operating
levels for electric power plants, so that the overall electricity generation cost is
minimized, while at the same time it satisfies load demands imposed throughout
the transmission grid and meets safe operating limits. In actual industrial operations
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the entire distribution network needs to be optimized in real time, approximately
every 5 min according to several independent system operators to ensure variations
in load demand, renewable generation, and real-time electricity market responses to
electricity prices are accurately met.

3.1 Optimal Power Flow

The OPF problem seeks a solution that minimizes the cost of the electricity
generation f, while satisfying the power flow balance, maximum power flow over
the transmission lines, and the bounds of the bus voltages and the generator limits.
Consider a power network with Np buses, Ng generators, and Ny, transmission lines.
The bus voltage vector v € CM8 is defined in polar notation as v = ve’/?, where
v, 0 € RVB specify the magnitude and phase of the complex voltage. The complex
voltages v determine the entire network power flow that can be computed using
the Kirchhoff equations, network configuration, and properties of its components.
The magnitude of the voltage components is bounded by the limits (47d), while
the phase is determined relative to a single reference bus. The current injections,
I € CM8, are defined as I = YBv, where YB € C¥8*MB is the bus admittance
matrix. The complex power at each bus of the network, S = vI*, S € CNB, and
the power demand consumption S? € CVB are to be balanced by the net power
injections from the generators S¢ € CN6. Thus, the AC nodal power flow balance
Egs. (47b) are expressed as a function of the complex bus voltages and generator
injections as ¢, := S + 8P — CO8Y% = 0, where C¢ € RVBXNG js the generator
connectivity matrix.

Generator power injections S¢ = p + jqare expressed in terms of real and
reactive power components p, q € RY6, respectively. The output of the generators
is limited by the lower and upper bounds (47¢) and (47f). Each bus has an associated
complex power demand S, which is assumed to be known at all of the buses and
is modeled by a static polynomial (ZIP) model [26]. If there are no loads connected
to the bus i, then {SP}; = 0. Real-world transmission lines are limited by the
instantaneous amount of power that can flow through the lines due to the thermal
limits (47c). The apparent power flow in the transmission lines, 8/ € CM. and
S' € CM., are therefore limited by the power injections at both ends of the lines,
which cannot exceed a prescribed upper bound F{™*. The “from” and “to” ends of
the line, denoted as f and ¢, respectively, specify the buses that are connected to
the corresponding ends of the line. Squared values of the apparent power magnitude
are usually used in practice, such that ¢y := sf(SsH* < (F?ax)z. Overall, the OPF
problem is formulated as

Ng
minimize Y  f;(p}) (47a)
0,v.p.q ;
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subject to ¢ (0, v, p,q) = 0, (47b)
cr(@,v) <F™, (47¢)
yoin <y < ymax - gref _ 47d)
p™" <p < p™, (47e)
q"" < q < ¢ 470)

The presented AC steady-state power grid model is following MATPOWER [27].

3.2 Structure-Exploiting IP Methods—Security Constrained
and Multiperiod OPF

Real-world real-time implementation of OPF problems for energy systems still
remains computationally intractable. This is mainly for two reasons. The real-world
OPF problem is time coupled, owing to the presence of smart loads and energy
storage devices such as batteries for demand shaping and deferral. Additional time
couplings of the OPF problem at each time period are introduced by generator ramp
rate limits. The higher the number of time periods considered, the larger the resulting
optimal control problem becomes. For a significantly large number of time periods
(each of 5min length) the problem becomes notoriously difficult to solve and for
this purpose several approximations and simplifications are currently employed by
the industry in order to meet real-time responses. Furthermore, the system operators
have to foresee possible contingency events and operate the grid in such a way that
its operation will remain secure in the event of any contingencies.

Grid security is the focus of the SCOPF problem [13, 18], which seeks an optimal
solution that remains feasible under any postulated contingency event, thus making
the grid operation secure. It supplements the standard OPF problem with constraints
for the nodal power flow balance (48a), the branch flow limits (48b), and other
operational limits (48c), (48e), which have to be honored not only for the nominal
case cg, but also for every contingency event ¢ € C, N, = |C|, such as a generator or
a transmission line failure. An increase of the number of considered contingencies
requires the introduction of additional variables and constraints that in turn result
in a significant problem size growth, rendering it computationally intractable for
standard general purpose optimization tools. The contingencies are modeled by
the admittance matrices Xf, which are updated accordingly for each scenario. The
values of the control variables are coupled in all system scenarios, as expressed by
the two nonanticipatory constraints (48g) and (48h). These declare that the voltage
magnitude and real power generation at the PV buses Bpy should remain the same
as in the nominal scenario cq, regardless of which contingency they are associated
with. The only generator that is allowed to change its output is the generator at the
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Ng Ng

juiizize > (o) Juiimize. 200

subject to Ve € {co, c1, ..., CnN,. }, subjectto Vn € {1,2,..., N},
(48a) cc(0c.Ve,perqe) = 0, €e(0n, Vi, Pn-40) =0, (492)
(48b) c$(Oc,ve) < FM™, c5(60,,v,) < FI'™, (49b)
(48¢) VI <ve <V Vi <y, < VT (49¢)
(48d) 0.<f =, 07 =, (49d)
(48¢) P < pe <p™, p"" <p, <p™ (49%)
(48f) q"" < qc < g™, q"" <q, <q™ (49f)
(482) Vb € Bpy 1 Ve = Ve M < g, < M, (49¢g)
(48h) Vg € Bpv 1 Pc = Pey-

Fig. 3 SCOPF (left) and MPOPF (right) problem formulations

singleton reference bus B,.r, as its real power generation can be modified to refill
the power transmission losses occurring in each contingency ¢ (Fig. 3).
Time-coupled formulations, such as storage scheduling, or storage placement,
are collectively known as MPOPF problems (49). Similar to the SCOPF, addition
of a large number of time periods results in problem size growth, rendering it
computationally intractable [11]. The OPF constraints must hold in each time
period, and the inter-temporal coupling is introduced by energy storage devices
and generator ramp limits. For a practical MPOPF application, consider Ns energy
storage units. Each storage unit in the network is modeled by two network power
injections for each time period n. A positive active power injection psd’i e R,

pgd’i > 0 models the discharging of storage unit i. A negative active power injection
psc" € R, pEC” < 0 models the charging of storage unit i. The vector of active

storage power injections p,sl € R?Ns is defined as

py =@ s et e (50)

and bounded by pS ™ < ps’ < p% ™ Identical definitions apply for the reactive
storage power injections qid’i, qﬁc’i, q with bounds g% ™" and g% ™, Together,
they yield the complex storage power injections §§ = ps +J qﬁ. Similarly, §S‘ =
pg +j qS is a vector of generator power injections. The complex power at each bus
must be balanced by the power demand §nD and the vector of free complex power

injections
-G~ ()
S, = () =(Pu)+i (% 51)
! (Eﬁ P q;

——— ——
Pn qn
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in each time period, as specified by the constraint (49a). The evolution of the vector
of storage levels €, € RS follows the update equation

€1 =€, +B5p> n=0,1,...,N—1, (52)

and introduces a coupling between the individual time periods. The energy level
in each period needs to honor the storage capacity, as expressed by the constraint
(49 g). The initial storage level is denoted € and the constant matrix BS € RVs*2Ns
models discharging and charging efficiencies of the storage devices.

3.3 Impact of Slack Variables Elimination

Figure 4 illustrates the symmetric KKT structure of the SCOPF problem for a
simple power grid, together with the reduced variant, where the slack variables are
eliminated. Realistic power grids are significantly larger and contain proportionally
more nonzero entries, but the structure remains very similar. The expected benefits
of solving the reduced KKT system compared to the original system are savings
both in terms of memory requirements for storing the sparse L factor of the LDLT
factorization of the symmetric indefinite system, and possibly faster factorization
and solution times due to a smaller number of required floating point operations. The
numerical evaluation of the benefits of solving the reduced system are summarized
in Fig. 5. The elimination of the slack variables from the KKT system reduces its
dimension by approximately 30% with 13% fewer nonzeros in the KKT system and
up to 12% fewer nonzeros in the L factor, resulting in up to 28% memory savings,
with similar reduction in solution time. Since in the neighborhood of the optimal
solution some of the diagonal terms in Lg approach zero, the associated slacks
variables whose coefficients in L are close to machine epsilon are not eliminated
and are left to be treated by the direct sparse solver. This prevents the excessive
ill-conditioning of the reduced system.
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Fig. 4 Structure of the SCOPF KKT system (17) with two contingencies, reordered according
to (20), and, finally, the reduced KKT with the slacks removed (22)
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4 Structure-Exploiting Solution Strategies for IP
Optimization

Computers have evolved significantly over the past decade, at an even faster
pace than modern power grids. Multicore and many-core computer architectures
and distributed compute clusters are ubiquitous today, while at the same time no
significant performance gains are expected for sequential codes due to faster clock
frequencies of modern processors. Significant performance gains, however, may be
achieved by algorithmic redesign tailored to the particular application that is also
able to utilize multicore and many-core architectures with deep memory hierarchies.
More importantly, the practical efficiency of the IP algorithms highly depends
on the linear algebra kernels used. For large-scale optimal control problems, the
computation of the search direction (17) determines the overall runtime. Hence, any
attempt at accelerating the solution should be focused on the efficient solution of the
KKT linear system. In Fig. 6 we demonstrate how various IP method components
contribute to the overall time for various OPF benchmarks. The number of IP
iterations was fixed to five. Note that the solution of the linear system represents
the majority of the overall time.

4.1 Revealing the Structure of SCOPF and MPOPF Problems

A widespread approach for solving KKT systems consists of employing black-box
techniques such as direct sparse solvers, due to their accuracy and robustness. The
direct sparse solvers obtain the solution of the linear system by factorization and
subsequent forward-backward substitutions. The factorization is a computationally
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expensive operation commonly introducing significant fill-in, which may quickly
exhaust available memory on shared memory machines for large-scale linear
systems. Furthermore, these solvers are not aware of the underlying structural
properties of the KKT systems arising from many engineering problems which
make it possible to significantly decrease time to solution by employing structure-

exploiting algorithms and distributed memory computers.

The appropriate structure emerges from the fact that each of the variables in
the SCOPF optimization vector (x, A;, A7) or the MPOPF optimization vector
(x,Ag, A1, L4) correspond to some contingency scenario ¢ = 0, 1, ..., N,, or the

time periodn = 1,2,..., N:

x = (xo, ..
Ae = (Aeo, - -
Ar =@z --

x = (xg,...
Ae = (egy - ..
Ar =g, .

XN, Xg),
B Avz?Nc),
AN
VXN,

) xé‘N)y

(53)
(54)
(55)
(56)
(57)
(58)

In order to reveal the scenario-local structure of the Hessian (22), the variables

corresponding to the same contingency are grouped together, i.e.,

Uc = (va )vac, Av_Z'C),

u, = (xnz )vsna )»In),

(59)
(60)
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and, thus, the global ordering will be

u = (uo,

u = (uo,

J. Kardos et al.

(61)
(62)

RN uNc’ ug)y

""uN9ug)’

where the coupling variables u, are placed at the end of the new optimization
vector u. Coupling in the SCOPF problem, u, = x,, is introduced by the two
nonanticipatory constraints (48g) and (48h). The coupling in a case of the MPOPF

problem, u, = X4, is introduced by

the linear energy constraints (49g). Under

the new orderings (61) and (62), the Hessian matrix of the system (22) obtains the
arrowhead structure (also described as bordered block-diagonal [7] or dual block-
angular [16]) structure, as illustrated in Figs. 7 and 8,

Ag Bg Aug by
A Bir Aug b
A= | (63)
Ap, B}VC Au, b,
B() B] ...BNC C Aug bc
where the block matrices A;,
iIxiaxz Jgi,x,' J.]r"i,xl-
Ai=\|J,, O 0 , (64)
-1
JI,,X,' 0 _Lsi
0 — — 0 RO .
S TR NARR :.
RO N
50| N }{1& " 50 ;2\ |
PR, : AN RN :
100 % &\v . 100 - }‘{- 2
N : MRS
.'.\:\ 3 % H
150 <hAL L 8 150 |- N ‘|
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ShNC | | b oo 3 goNer o e 9 oW e pe
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nz = 1421 nz = 1421

Fig. 7 Symmetrized SCOPF system (22) permuted to the arrowhead structure (63)
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Fig. 8 Symmetrized MPOPF system (22) permuted to the arrowhead structure (63)

i{xi’xi J;riyxi J}i,x,' 0
Joo 0 0 0
Jr. 0 —Lg' 0

0 0 0 Ly

A = , (65)

incorporate the Hessian of the Lagrangian with respect to the scenario-local
variables H , ., = V2 L+ X _1Z ; and the Jacobians of the constraints for the
ith scenario with respect to the local variables J = Vy,¢g; and J T = Vycri,
as well as the diagonal entries corresponding to the eliminated slack Varlables In
the case of the SCOPF problem, the block C =V xg.[: +X, 1Z, contains Hessian
of the Lagrangian with respect to the coupling variables x, while in the case of the
MPOPF problem it is a block of zeros. The off-diagonal blocks in the arrowhead
SCOPF system are

~ T ~
ng,x,' Hxiyxg
Bi = J;,xg s B;r = Je,-,xg P (66)
T
in,xg in,xg
where H Xixg = V%i x L represents the off-diagonal blocks of the Hessian of

Lagrangian with respect to the local and coupling variables and J X = Vi, Ce; and
J Tixg = Vi, cr; are the Jacobians of the ith scenario with respect to the coupling
variables. The MPOPF coupling matrices By, By, ..., By € RNNsxNa where Ny
is the size of the diagonal blocks in (63), contain the constant subblocks, which arise
from the particular form of the linear constraints (49g)
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(of) 0 0
Coy C 0

B =|Co|,By=|Cof,....By=]| : |. (67)
: : 0
Co Co Ci

4.2 Schur Complement Decomposition

The direct factorization of the full KKT system is not feasible for large-scale SCOPF
problems due to their growing size with the number of contingencies and associated
factorization fill-in that quickly exhausts the available memory. Instead, the solution
is obtained by a sequence of partial block elimination steps, which are decoupled,
aiming to form the Schur complement of the system. This way, we detour the
factorization of the full KKT system, by factorizing only the smaller diagonal blocks
as described in the Algorithm 1. At the first step, the Schur complement S is formed,

N,
S=C-> BiA;'B]. (68)
i=0

which in the general case becomes a dense matrix. Because the size of the coupling
stays constant, independently of the number of contingency scenarios, the size of the
Schur complement does not increase with an increasing number of contingencies.
It can therefore be solved using dense LDLT factorization and back substitution
algorithms. The solution of the dense Schur system,

Ne
SAug:bC_ZBiAi_lbiv (69)
i=0

yields a part of the solution corresponding to the coupling variables Aug, which is
used to obtain all the local solutions Au; by solving

A;Au; = b; — B[ Au,. (70)

Since the block contributions to the Schur B; A~ ! B;r complement are independent,
they can be evaluated in parallel, as well as the residuals B ,-Ai_lbi and the solution
Au; can be computed independently at each process. Interprocess communication
occurs because the local Schur complement contributions and Schur complement
residuals need to be assembled by the master process, and during the broadcast of
the Schur complement solution to the remaining processes.

In the description of Algorithm 1, sequential steps such as reduction and
broadcast are performed only by the master process.
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Algorithm 1 Parallel procedure for solving the linear systems based on the Schur
complement decomposition (68)—(70)
Input: KKT system with arrowhead structure (63), right-hand side b
Output: Au

1: Distribute blocks from the KKT system (63) evenly across # processes, where N, is the set

of diagonal blocks assigned to process p € P

2: Factorize A; = L; D;L] foreachi € N,
3: Compute S; = B;AleiT foreachi € N,
4: Accumulate C, =3 e, Si
5: if master then
6.
7
8

: Reduce §=C-3,,Cp
: end if
: Compute r; = BiAflb,- foreachi e N,

9: Accumulate rp =3 pri

10: if master then

Il: Reducer =3 prp

12: Factorize S = LSDSLST

13: Solve SAug =bc —r

14:  Broadcast solution u, to all p € P

15: end if

16: Solve A; Au; = Bjuy, — b; foreachi e N,

Remark 3 One should bear in mind that the computational efficiency obtained by
exploiting the block-diagonal structure, such as (63), is determined by the number
of the coupling variables |u,|. If coupling is large, then the Schur decomposition
will not be efficiently compared to the direct factorization techniques because of the
cubic complexity of dense factorizations (69).

The most expensive step of the presented computational scheme is evaluation of
the local contributions to the Schur complement BiAi_lBlT in (68). The standard
approach uses a direct sparse solver, such as PARDISO [16], to factorize the sym-
metric matrix A; = L; D,~L;.r and perform multiple forward-backward substitutions
with all right-hand side (RHS) vectors in B ;r, followed by multiplication from the
left by B;. This approach, however, does not exploit sparsity of the problem in BIT
blocks, since the linear solver treats the RHS vectors as being dense.

An alternative approach, implemented in PARDISO [17], addresses these limita-
tions by performing an incomplete factorization of the augmented matrix M;:

Ai B;r
;= 1
M; <Bi 0 ) 71

exploiting also the sparsity of BZ.T. The factorization of M; is stopped after pivoting
reaches the last diagonal entry of A;. At this point, the term —B,-Al._lBiT is
computed and resides in the (2, 2) block of M;. By exploiting the sparsity not only
in A;, but also in B; it is possible to reduce memory traffic by using in-memory
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Fig. 10 Scaling of the parallel approach using the PEGASE1354-4096 benchmark and the
speedup with respect to the direct sparse solver

sparse matrix compression techniques, which render this approach quite favorable
for multicore parallelization.

In Fig.9 we compare the standard, so-called backsolve, technique and the
multicore incomplete factorization with increasing number of cores is shown for
various benchmarks. This demonstrates that the incomplete factorization approach
is orders of magnitude faster, especially for the large problems. Due to the extensive
memory requirements for storing the RHS vectors in the “backsolve” approach, only
its single-core execution is demonstrated.

We evaluated the strong scaling efficiency of the distributed solver on the
“Piz Daint” supercomputer, using an increasing number of compute cores on the
distributed compute nodes. The instance of the solved problem contained up to
1.1 - 107 variables and 2.7 - 107 constraints and the size of the KKT system
is 5.48 - 107. Figure 10 shows the average wall time of the individual phases
of Algorithm 1, indicating also the ideal strong scaling of the overall time. The
algorithmic phases presented are the initialization phase, assembly of the Schur
complement using the incomplete factorization of the augmented matrix in steps 2—
6, RHS vector assembly and Schur complement solution in steps 12-13, and
solutions of the local parts of the system in steps 14—16. Figure 10 also demonstrates
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the speedups of the distributed solver compared to the serial direct factorization. The
benchmarks were run with a single MPI process per node and 16 threads per process.

The distributed approach using a single process outperforms the sequential direct
factorization by a factor of up to 40x. With an increasing number of distributed
nodes the observed speedup was up to 500x. The distributed solution time scales
reasonably up to 512 cores at 32 compute nodes, which in terms of workload
translates to 128 scenarios per node of PEGASE1354 benchmark. At this point,
the most expensive part of the algorithm, the computation of the local contributions
to the Schur complement, requires approximately the same time as the initialization
phase, where the KKT system is distributed to all available compute nodes. The
acceleration and efficiency of the structure-exploiting algorithm stems from the
reduced complexity associated with the factorization of the smaller sparse diagonal
blocks when applying the Schur decomposition scheme to the permuted KKT
system with the arrowhead structure (63), as opposed to factorizing the original
SCOPF KKT system (17) or its reduced variant (22). For sufficiently large power
grids, however, the dense Schur complement (SC) system might become very large,
and dominate the overall processing time in steps 12 and 13. Hardware accelerators
such as GPUSs might be deployed to address the computational complexity of
the dense linear algebra. Otherwise, the dimensions of the dense systems remain
feasible for the majority of power grids, since the dimensions depend only on the
power grid properties, not on the number of contingency scenarios.

4.3 Structure-Exploiting Algorithms for MPOPF

For the MPOPF problems, the size of the dense SC grows very quickly, not only with
the size of the network but also proportionally to the number of installed storage
devices and the number of time periods N Ng. As the number of time periods N or
storage devices Ng increases, the solution approach based on Algorithm 1 results in
a less efficient algorithm than the direct sparse approach employing PARDISO on
the original KKT system (16), both with respect to computational time and memory
consumption despite the benefits of the Schur decomposition. However, the MPOPF
problem, unlike the SCOPF problem, can be optimized even further by exploiting
the particular structure of the off-diagonal blocks B,,.

Inspecting the particular structure of the blocks B, (67), one can see that the SC
matrix computed by (71) for the nth block S, = —B, A, ' B has the structure

0, Siin Sio, S
S, =1 O S0 Soon - Sgo,n ) (72)

0, S10,n S00,n - S00,1
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where the 0, € RNsx(=DNs g ¢ RO:=DNsx(n=DNs 34 Sijn = —CiAn_lC]T-,
i, j € {0, 1}. The only blocks in S, that are distinct are colored in blue and form the
entries of the 2 by 2 block matrix

5, = <Sll,n SIQ,n) ’ 73)
8102 S00,n
where the rest of the rows and columns of §,, are direct replicates of the entries of
the last row and column of S’n
Since each one of the blocks of S'n has size Ns x Ng, the computation of S,
becomes independent of the number of time periods N and only depends on the

number of storage devices Ns. It is easily verified that the global SC S, obtains the
form

S sz SIz SIz
Si12 82 835 -+ 81
S, = | Si2 823 833 -+ S§ |, (74)
S12 823 834 -+ Syw
where each block of S, € RVNs*NNs hag dimensions Ns x Ns. Storing S. due
to its special structure requires only two block vectors: one for all diagonal blocks
Sq =[811, 82, -, Syn] of size Ns x N Ng, and one for the off-diagonal blocks
So = [S12, 823, -+, Sn—1n] of size Ng x (N — 1)Nsg, significantly reducing
this way the storage requirements for S.. Furthermore, exploiting the fact that the
blocks below the main diagonal of each column of S, in (74) are identical, we
can perform the factorization in 0 n?) operations instead of O (n3), which is the
case for standard dense LDLT factorization of S, with n = NNg. Similarly, the
back substitution can be performed in O (n) instead of O (n?). The reduction in the
computational complexity and storage requirements of the SC system renders the
overall approach significantly more economical in terms of overall running time
and memory footprint, as demonstrated in Fig. 11.

For comparison, we also consider three alternative optimization algorithms that
also adopt an IP strategy, namely IPOPT [22, 23], MIPS [24], and KNITRO [2].
The structure exploiting IP algorithm introduced in this section is referred to as
BELTISTOS. The average time per iteration for N = 3600 up to N = 8760
corresponding to 1 year with a time step size corresponding to one hour is shown in
Fig. 11a. For this set of benchmarks KNITRO needed more than 1 TB of memory for
N > 5760 and it terminated with a related error message. For N = 8760 PARDISO
failed due to overflow of the number of nonzero entries in the L, D factors. It is
worth noting that BELTISTOSmem (the memory saving approach of BELTISTOS that
implements Algorithm 1 without storing the factors of the blocks A; and computing
them on the fly in steps 2, 8, and 16), although it is slightly slower than the normal
mode of BELTISTOS, it is still almost four orders of magnitude faster than IPOPT and



Structure-Exploiting Interior Point Methods 91

0 @ BELTISTOS B B BELTISTOSMem B @ BELTISTOS B B BELTISTOSMem
BrrorT BEmips N B RirorT N N
N8 kNITRO N8 kNITRO
10° _ 10° N
<
< —_~
m
= )
3 > 3
'E 10 5 10
& 5
=
101 101
N N NI N N LN N N
3600 4800 7200 8760 3600 4800 7200 8760
N N
(@) (b)

Fig. 11 Case IEEE118. Statistics for solving the KKT system. (a) Average time per iteration. (b)
Memory allocated

MIPS. It also needs approximately two orders of magnitude less memory than IPOPT
as it is shown in Fig. 11b, where we plot the memory (in MB) allocated by each
algorithm for the solution of the KKT system. The MIPS and KNITRO solvers do not
report the memory allocated and it could only be estimated for the case of KNITRO.

5 Results and Discussion

This study demonstrates that significant performance gains are possible, for specific
classes of optimal control problems, not by exploiting supercomputers and parallel
distributed or multithreaded programming, but through deeper understanding of the
problem structure and the design of algorithms adapted to the problem structure.
Orders of magnitude of faster execution time and orders of magnitude of memory
savings were achieved rendering the solution of very-large-scale problems, previ-
ously intractable without a supercomputer, possible on a common laptop [11].

The Schur decomposition enables low memory SC assembly on a per-block
basis, whenever a problem can be reordered to an arrowhead structure, which is
the case for many real life problems composed of enumerated subproblems, such as
contingency scenarios for SCOPF problems or time periods for MPOPF problems,
while at the same time promoting parallel processing. Even on single-core execution
for SCOPF problems, speedups from 40-270-fold were observed while further
exploitation of distributed multicore and many-core computing environments for
the solution of the structured KKT system drastically reduces the execution times
and demonstrates significant progress towards the solution of large-scale SCOPF
problems.
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In contrast to SCOPF and although MPOPF problems can be reordered into an
arrowhead structure, the reordering results in a dense SC that grows in size with the
number of time periods and does not necessarily lead to a more efficient solution
strategy. However, owing to the intrinsic structure of the linear constraints, the Schur
decomposition algorithm supplemented with elimination strategies exploiting data
compression, resulted in an overall solution strategy of unprecedented performance.
Memory was reduced by approximately two orders of magnitude, while runtime
performance still remains about three orders of magnitude higher than competitors,
even on a single core.

Our findings strongly motivate further structural inspection and analysis of the
present and similar problems of the same family, anticipating that adopting and
extending the presented structure-exploiting techniques for other problems would
result in significant acceleration of other OPF problems of interest paving the way
for the next generation of OPF algorithms.
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Parallel Hybrid Sparse Linear System m)
Solvers iy

Murat Manguoglu, Eric Polizzi, and Ahmed H. Sameh

1 Introduction

Some science and engineering applications give rise to large banded linear systems
in which the bandwidth is a very small percentage of the system size. Often, these
systems arise in the inner-most computational loop of these applications which
indicates that these systems need to be solved efficiently as fast as possible on
parallel computing platforms. This motivated the development of the earliest version
of the SPIKE tridiagonal linear systems in the late 1970s, e.g. see [27] followed by
an investigation of the communication complexity of this solver in [12] in 1984.
In both of these studies this solver was not named “SPIKE” until it was further
developed in [23, 24] in 2006. In this chapter, we also present an extension of
this algorithm for solving sparse linear systems. This is done through reordering
schemes that bring as many of the heaviest off-diagonal elements as closer to the
main diagonal, followed by extracting effective preconditioners (that encapsulate as
many of these heaviest elements as possible) for outer Krylov subspace methods for
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solving these sparse systems. In each outer iteration variants of the SPIKE algorithm
are used for solving linear systems involving these preconditioners. An extensive
survey of the SPIKE algorithm and its extensions are given in [10].

2 The SPIKE for Banded Linear Systems (Dense Within the
Band)

Consider the nonsingular banded linear system
Ax = f 6]

shown in Fig. 1 with A € RV*V being of bandwidth 8 = 2m + 1. Let N be an
integer multiple of p (the number of partitions). In Fig. 1, p is chosen as 4. The
off-diagonal blocks are given by

_ 00 - 0C;
B = = J 2
J <B,» 0) and C; (0 0) @)

forj=1,2,..., p—1,where B;, C; € R"*".

In what follows, we first describe “Spike” as a direct banded solver when A is
diagonally dominant followed by the general case for which “Spike” becomes a
hybrid (direct-iterative) banded solver for the linear system (1).

41 B _ X1 f1

C2 Ay By |l _|/f

C3 A3 B3 | | x3 /3

Cs Ay) \x4 Ja
—_——— S — — ——

A x f

First, let A be a diagonally dominant matrix. Thus, each A; is also diagonally

dominant, j = 1,2, ..., p, with the block diagonal matrix
A B X fi
C Ay By X2 b

C3 Az B3 [ |x3 5

Cy As) \x4 Ja
—_— — — ——

A x f

Fig.1 A € lRNXN; bandwidth: = 2m + 1; number of partitions: p = 4, A; € R™", j =

L,2,...,p;Bj,Cjp1 e R j=1,2,..., p—1;N=4n;n=3m
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Fig.2 p=4,n=3m, v X g1
N =4n Wo I 'V, x| _|&
Wi I Vi||x3 83

Wy I ) \x4 84
NN

s x g

Ay
As

D= . 3)

nonsingular. Premultiplying both sides of (1) by D~!, we obtain the modified
system

Sx =g, “)

where the matrix § = D' A, and the updated right-hand side is given in which the
bandwidth is very small percentage of the system size. Often, these updated right-
hand side are given in Fig. 2. Here, the off-diagonal blocks, V; and W;, are given
by

Vi=(v;,0) and Wiy = (0, W;41).j=1.2,....,p— L )
1 Vi . x| 81
W IV x| _ |82
Wi I Vi) |x3 83
Wy I X4 84
—_— S~~~ ——
s x g
The spikes,
V3(/) Wl(j)
Vi=|v | andw; = [ W} (6)
Vl(]) W3(.])

are obtained by solving the linear systems
ATC) A, B =1W), I, V)] (7)
and

g =A7'fi.i=12....p ®)
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. 0 . I
b= (2)orcr=(5)o

with V;, W; e R™"™_ Solving the linear system in (4), involving the “Spike matrix”
S, reduces to solving a much smaller block-tridiagonal system of order 2m(p — 1)
of the form (See Fig. 2),

in which

L, viP 0 0 x” g\
W L, 0 v xy) gy
w2 o L, v oo o [ ] |8 10)
0 0w 5, o vl &)
w0 g, VO x gy
0 0 W1(4) I xflt) gi’)

in which xl.(t) = (I,y, 0)x;, and xl.(b) = (0, I,y)x;, and similarly for gi(t) and gl.(b). We
refer to (10) as the reduced system,

Ry =h, (11)

where R results from the symmetric permutation

T _ IUG
PSP _<O R) (12)

in which v = pn — 2m(p — 1). Note that since A is nonsingular, so is S as well
as R. Solving the reduced system (10) for xl.(b) and x\", i = 1,2,...,p—1, the

i+
solution x of system (4) is retrieved directly via
X1 =g1 — V])Cg)
b .
Xi = gi —W,‘)ci(_)1 —Vl-xi(f:I,l =2,3,...,p—1 (13)

(b)
Xp=gp— Wpx,”;.

In summary, the SPIKE algorithm for solving the diagonally dominant banded
system Ax = f consist of the D-S factorization scheme in which D is block
diagonal and S is the corresponding spike matrix. Consequently, solving system (1)
consists of two phases:

(i) solve Dg = f followed by
(i) solve Sx = g via the reduced system approach.
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In (i) each system Aj;g; = f; is solved via the classical LU-factorization as
implemented in Lapack [2].

Observe that if we assign one processor (or one multicore node) to each partition,
then solving Dg = f realizes maximum parallelism with no interprocessor
communications. Solving the reduced system (10), however, requires interprocessor
communications which increases as the number of partitions p increases. The
retrieval process (13) again achieves almost perfect parallelism.

Variations of this basic form of the SPIKE algorithm are given in [24]. Also
note that this SPIKE algorithm requires a larger number of arithmetic operations
than those required by the classical banded LU-factorization scheme. In spite of
this higher arithmetic operation count, this direct form of the SPIKE algorithm
realizes higher parallel performance than Scalapack on an 8-core Intel processor,
see Fig. 3 [17], due to enhanced data locality.

The reason for the superior performance of Spike is illustrated in Fig. 4 showing
that the total number of off-chip data accessed (in bytes) for Spike (red color) is less
than that required by ScaLapack. Also, Fig. 5 shows that the number of instructions
executed by Spike is almost half that required by ScalLapack. For more details about
the measurements shown in Figs. 4 and 5, see Liu et al. [13].

Second, if the banded linear system (1) is not diagonally dominant, there is
no guarantee that any of the diagonal blocks A;, j = 1,2,..., p, see Fig. 1, is
nonsingular. In this case, the banded linear system (1) is solved via a preconditioned
Krylov subspace method such as GMRES or BiCGStab, e.g. see Saad [25]. Here the
preconditioner M is chosen as M = DS where D = dzag(A1 Az, o p) with

OO LAPACK [ ScalAPACK B SPIKE

35

2.5

Speedup
~N

15

0.5

N\
\
\
\
§

1 D 4 8
Number of Cores

Fig. 3 Speedup of SPIKE and Scal.apack compared to the sequential Lapack for solving a linear
system of size 960,000 with a bandwidth of 201
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where 6 ~ /. S is then of a form identical to that of S , see Fig. 2, except that the
spikes V; and W; are obtained as follows:

(L;U)C;, B1=1[V;, Wil j=1,2,....p (15)

which entails a block forward sweep followed by a block backsweep. In each
iteration of GMRES, for example, one needs to solve a system of the form Mv = r.
This is accomplished in two steps: (1) solve Du = r, and (2) solve Sv = u. As
outlined above, the first system is solved via two triangular solvers: L juj =rj,
and 0juj =uj, j =1,2,..., p. The second system, Sv = u, is solved via the
reduced system approach, see (10), with retrieving the rest of the solution vector v
via (13).

Since the elements of the inverse of a banded matrix decay as they move away
from the main diagonal, the elements of the spikes V, W decay as they move away
from the main diagonal as well. Such decay becomes more pronounced as the degree
of diagonal dominance increases. We define the degree of diagonal dominance of A
by

= lggN[|akk|/§ a1 (16)
J

Even for system (1) for which 7 > 0.25, one can take advantage of the decay in
the spikes V;, (V|| < IV, and W;, (1w 11 < 1IW]) (In our example

above g = 3). Taking advantage from such a property by replacing Vq(] ) and W,;" )
by zero, the reduced system (10) becomes a block diagonal system that requires only
obtaining Vl(j ) and Wl(] ), j=1,2,..., p.Inother words, we need only to obtain the
bottom (m x m) tip of each right spike V;, and the top (m x m) tip of each left spike
W;, 1 < j < p. Consequently, if we assign enough processors to obtain the LU-
factorization of slightly perturbed Ap, A2, ..., Ap—1 using the diagonal boosting
strategy, and the UL-factorization of similarly perturbed Az, A3, ..., Ap, we need
not obtain the whole spikes V; and W;. The LU-factorizations will obtain the bottom
tips of V;, while the UL-factorizations will enable obtaining the top tips of W;
resulting in significant savings for computing the coefficient matrix R of the reduced
system. Further, since R in this case is block diagonal, solving the reduced system
achieves maximum parallelism. This “truncated” version of the SPIKE algorithm
was compared with Lapack and MKL-Scal.apack (i.e., Intel’s Math Kernel Library)
on an Intel multicore processor for solving 8 banded linear systems with coefficient
matrices obtained from Matrix-Market (see Table 1). Table 2 shows the ratios:

Average time(MKL-2 cores™)
Average time (MKL-1 core) ’

A7)

and
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Table 1 A Matrix-Market

: Matrix name | k/ ku N ~Cond

collection of banded systems

(1 > 10.000) where kl ki, N s3dkq4m?2 614 | 614 90,449 |N/A

~Cond are the lower, upper s3dkt3m2 614 | 614 90,449 | N/A

bandwidths, matrix size, and fidap035 244 247 19,716 |4.3 x 10!2

the condition number e40r0000 451 | 451 17,281 |22 x 108

estimate, respectively €40r5000 451 | 451 17,281 [2.2 x 10%0
besstk25 292 | 292 15,439 | 1.3 x 1013
besstk18 1243 | 1243 | 11,948 | 6.5 x 101
besstk17 521 | 521 10,974 |2.0 x 10'°

Table 2 Time ratios for Spike and MKL-Scal.apack

MKL 1-core MKL 2-cores Spike 2-cores
Avg. time (ratio) 1.0 8.5 0.4
Rel. res. (norm) 010~ H—0(10~1%) 0(10~%)—0(10719) 010~ —0(10~ '

Average time(Spike-2 cores*)
Average time (MKL-1 core)

(18)

together with the lowest and highest relative residual for each solver for the 8
benchmarks. *Note that for the 2-core entries each core belongs to a different node.

2.1 Multithreaded SPIKE

In shared memory systems, the parallelism in LAPACK LU algorithms can directly
benefit from the threaded implementation of the low-level BLAS routines. In order
to achieve further scalability improvement, however, it is necessary to move to a
higher level of parallelism based on divide-and-conquer techniques. As a result,
the OpenMP implementation of SPIKE on multithreaded systems [19, 31], is
inherently better suited for parallelism than the traditional LAPACK banded LU
solver. A recent stand-alone SPIKE-OpenMP solver (v1.0) [1] has been developed
and released to the community.

Among the large number of variants available for SPIKE, the OpenMP solver
was implemented using the recursive SPIKE algorithm [23, 24]. The latter consists
of solving the reduced system (10) using SPIKE again but where the number of
partitions had been divided by two. This process is repeated recursively until only
two partitions are left (making the problem straightforward to solve). The SPIKE
algorithm applied to two partitions is actually the kernel of recursive SPIKE, and
from Fig.3, we note the efficiency of 2 x 2 SPIKE which reaches a speedup
of two using two partitions with two processors. The recursive SPIKE technique
demonstrates parallel efficiency and is applicable to both diagonally and non-
diagonally dominant systems. However, it was originally known for its lack of
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flexibility on distributed architectures since its application was essentially limited
to a power of two number of processors. The scheme was then prone to potential
waste of parallel resources when applied to shared memory systems using OpenMP
[19]; for instance, if 63 cores were available, then only 32 would be effectively
used by recursive SPIKE (i.e., the lowest nearest power of two). This limitation
was overcome in [31] with the introduction of a new flexible threading scheme
that can consider any number of threads. If the number of threads is not a power
of two, some partitions are given two threads which, in turn, would benefit from
the 2 x 2 SPIKE kernel. Load balancing is achieved by changing the size of each
partition so that the computational costs of the large matrix operations on each
partition are matched. This multithreaded SPIKE approach is then ideally suited
for shared memory systems since optimized ratios between partition sizes can be
tuned for a given system matrix and architecture, independently from user input
[1]. Figure 6 demonstrates the efficiency of the scheme. The results show that the
speedup performance of the new threaded recursive SPIKE is not limited to a power
of two number of threads since the scalability keeps increasing with the number
of threads. For example, at 30 threads the overall speed improvement increases
from roughly x6 to roughly x9, as a result of the increased overall utilization of
resources. The results also show that the SPIKE computation time is significantly
superior to LAPACK Intel-MKL. We note that the two solvers’ scaling performance
are similar until 10 threads are reached, at which point SPIKE begins pulling
away. Unlike SPIKE, parallelism performance of the inherently recursive serial LU
approach used by MKL mainly relies on parallelism available via the BLAS which
is rather poor for this matrix.

The SPIKE-openMP solver has been designed as an easy to use, “black-box”
replacement to the standard LAPACK banded solver. In order to achieve near
feature-parity with the standard LAPACK banded matrix solver, we add to SPIKE
the feature known as transpose option, i.e. solve ATx = f. Transpose solve

SPIKE combined scalability SPIKE and MKL combined times

32 -

(26.0 8/ Typ0)
Computation times (s)

Speedup over single threaded SPIKE

20

30

Number of threads

40

i
50

60

SR

N TR

20 30

Number of threads

40

50 60

SPIKE with flexible threading
f(x] SPIKE
MKL

SPIKE 2" threads projection

Fig. 6 SPIKE scalability and computation time compared to MKL-LAPACK for a system matrix
of size N=1M, bandwidth 321, and with 160 right-hand sides
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operation allows improved algorithmic flexibility and efficiency by eliminating the
need for an explicit factorization of the matrix transpose when solving:

ATx = 1. (19)

As a result, if the factorization A = DS is already available, it can now be used to
address the new SPIKE solve stages, which are now swapped:

1. solve STy = f via the transposed reduced system approach, followed by
2. solve DTx = y.

A transpose version of the recursive reduced system solver which has been proposed
in [31] achieves near performance parity with the non-transpose solver.

3 Hybrid Methods for General Sparse Linear Systems

In large-scale computational science and engineering application one is often faced
with solving large general sparse linear systems that cannot be reordered into a
narrow banded form. Therefore, we use nonsymmetric and symmetric reorderings
to maximize the magnitude of the product of the diagonal elements, move as many
of the largest off-diagonal elements as possible close to the main diagonal, and
extract a generalized banded preconditioner. In the next subsection we describe such
a reordering process after which an effective preconditioner can be extracted where
linear systems involving the such a preconditioner is solved using a variant of the
SPIKE algorithm.

3.1 Weighted Nonsymmetric and Symmetric Reorderings for
Sparse Matrices

As the first step of the reordering scheme we apply a nonsymmetric permutation and
scaling (if needed) to make the diagonal of the coefficient matrix as large as possible.
Such nonsymmetric permutation and scaling techniques are already available in the
Harwell Subroutine Library (HSL) and is called MC64 [8] which (without scaling)
creates permutations I1; and IT, such that the magnitude of the product of the
diagonal elements of B = I1] AIl; is maximize, where A is the original coefficient
matrix. This is followed by obtaining a symmetric permutation of B, C = PBPT,
where P is determined by the Fiedler vector [9] derived from B. The Fiedler vector
is the eigenvector corresponding to the second smallest eigenvalue of the “weighted
Laplacian” matrix based on B. This eigenvalue is sometimes called the algebraic
connectivity of the graph. Note that the smallest eigenvalue is zero. As a result, many
of the heaviest off-diagonal elements of C are much closer to the main diagonal.
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(a) (b)

Fig. 7 The effect of the weighted spectral reordering using the Fiedler vector on 2 matrix (colors
indicate the magnitude of the absolute value of the elements. Red, green, and blue are the largest,
intermediate, and smallest elements, respectively. (a) Original matrix. (b) Reordered matrix

Here, PSPIKE refers to a solver that is a hybrid of the sparse direct solver Pardiso
[29] and the SPIKE algorithm. In Fig.7, we illustrate the effect of such reordering
on a symmetric stiffness matrix with 71,505 rows and columns, obtained from the
SuiteSparse Matrix Collection [6].

From the original sparse linear system Ax = f, we obtain By = g, where
y = l'IzT x,and g = I f. If B is symmetric, one can form the “weighted Laplacian”
matrix, L}”j = —|b;jl, and

LY, =" Ibyl (20)
k

as follows: Note that one can obtain the unweighted Laplacian by simply replacing
each nonzero element of the matrix B by 1. In this subsection, we consider the
weighted case as a preprocessing tool for the PSPIKE algorithm given in Sect. 3.3.

We assume that the corresponding graph is connected since the disconnected
components can be easily identified and the Fiedler vector can be computed
independently for each if the graph is disconnected. The eigenvalues of LY are
0 =i < X < X3 < ... < A, The Fiedler vector, xp, is the eigenvector
corresponding to smallest nontrivial eigenvalue, X,. Since we assume a connected
graph, the trivial eigenvector x; is a vector of all ones. If the coefficient matrix, B,
is nonsymmetric, we simply construct LY using the elements of (|B| + |BT|)/2,
instead of those of | B|.

A Trace Minimization [26, 28] based parallel algorithm for computing the Fiedler
vector, TRACEMIN-Fiedler, has been proposed in [16]. We consider the standard
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symmetric eigenvalue problem,
LYx = Ax. 21

The trace minimization eigensolver is based on the observation,

14
min tr(XTLYX) =) A, 22
fin 1r( )= A (22)

i=1

where X, is the set of all n x p matrices, X for which X TX = I. The equality
holds if and only if the columns of the matrix X span the eigenspace corresponding
to the smallest p eigenvalues. At each iteration of the trace minimization algorithm
an approximation X; € X, which satisfies XkTLwX x = Oy for some diagonal ®y
is obtained. The approximation Xy is corrected with Ay obtained by

minimizing r[(Xy — ADTLY (Xp — Ap)
. 23)
subject to X! Ay = 0.

The solution of the (23) can be obtained by solving the following saddle point

problem:
LY X Ar LY X,

(s 0) ()= (") o
Once Ay is known, Xj41 is obtained by computing (X; — Ax) which forms
the section X/<T+1Lka+1 = Ok+1, XkT+1Xk+1 = [I. In [16], we solve those
saddle point systems by computing the block LU-factorization of the coefficient
matrix in (24), i.e. by forming the Schur complement matrix explicitly since
we are only interested in the second smallest eigenvector and hence p is small.
Then, the main computational cost is solving sparse linear systems of equations
with a few right-hand side vectors where the coefficient matrix, L", is a large
sparse and symmetric positive semi-definite matrix. The details of the TRACEMIN-
Fiedler algorithm are given in [16]. This algorithm proved (see Fig. 8) to be more
suitable for implementation on parallel architectures compared to the eigensolver
used in HSL for (21). Table 3 shows the dimension, number of nonzeros, and
symmetry properties of four large matrices obtained from the SuiteSparse Matrix
Collection [7].

Table 3 Properties of
matrices from the SuiteSparse
matrix collection

Matrix group/name | n nnz Symmetry
Rajat/rajat31 4,690,002 | 20,316,253 | No
Schenk/nlpkkt120 3,542,400 | 95,117,792 | Yes
Freescale/freescalel | 3,428,755 | 17,052,626 | No
Zaoui/kkt_power 2,063,494 | 12,771,361 | Yes
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Fig. 8 Seedup of TRACEMIN-Fiedler reordering (using 8 cores per node) compared to the
sequential HSL_MC73

After these two reordering steps, the resulting sparse linear system is of the form
Cz = h, where C = PBPT, 7z = Py, and h = Pg, with C having its heaviest
off-diagonal elements as close to the main diagonal as possible. Choosing a central
“band” of bandwidth (28 + 1) as a preconditioner M of a Krylov subspace method
with 8 chosen such that

IMIlF =~ (I =€)IC]lF. (25)
Here || - || denotes the Frobenius norm, and € chosen in the interval [0.001, 0.05].
Assuming C is of sufficiently large order n, say n = 10°, then if 8 < 10,

we call M a Narrow banded Preconditioner (NBP). If 8 > 10, we choose M
as a block-tridiagonal preconditioner in which the diagonal blocks are sparse
with relatively large “bandwidth,” and the interconnecting off-diagonal blocks
are dense square matrices of small dimensions. We call such M as Medium
banded Preconditioner (MBP). When $ becomes much larger than 10 in order to
encapsulate as many off-diagonal as possible, we construct the preconditioner M as
overlapped block diagonal sparse matrices. In this case, M is referred to as Wide
banded Preconditoner (WBP). In each outer Krylov subspace iteration, one needs to
solve linear systems involving M. For the cases of “MBP” and “WBP,” one needs to
use a sparse linear system solver. In Fig. 9 we show the classical computational loop
that arises in many science and engineering applications. Solving linear systems
occurs in the inner-most loop where the solution of such systems is needed to yield
only modest relative residuals. For this purpose, we created a family of solvers
that generalizes SPIKE for solving sparse linear systems Ax = f using hybrid
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Fig. 9 Target computational Loop: Integration
loop Loop: Nonlinear iteration
Loop: Linear system solvers
| Implemented on parallel computing platforms;
End i
End €]
End At

schemes, i.e. a combination of the direct sparse linear system solver Pardiso [29] and
SPIKE. Even though SPIKE, rather than Pardiso is used for the case M being narrow
banded, we refer to our family of hybrid solvers as PSpike_ NBP, PSpike_ MBP,
and PSpike_ WBP, respectively. In Fig. 10, we illustrate the structure of each of
those preconditioners obtained from the reordered matrix C. Next, we describe
and present some results illustrating the performance of each of Narrow Banded,
Medium Banded, and Wide Banded preconditioners.

3.2 PSPIKE_NBP

Certain sparse linear systems Ax = f yield, after the reordering procedures
described in Sect. 3.1, effective narrow banded preconditioners to Krylov subspace
methods like GMRES or BiCGStab.

Example 1
The first system Ajx; = f; considered here has the sparse coefficient matrix
A1 := “Rajat31” from the SuiteSparse Matrix Collection[6] of order ~4.7M, see

Fig. 11, which is in the form of an arrowhead. After reordering, and choosing
€ = 0.05, we extract a banded preconditioner M of bandwidth 28 + 1 = 11,
ie. B = 5. Using an outer Krylov solver (BiCGStab) with a stopping criterion
of relative residual = 1073, Fig. 12 shows that PSPIKE_NBP consumes ~2.8s
on an Intel cluster of 32 nodes (8 cores/node). Here, solving linear systems of
the form Mz = r in each BiCGStab iteration is achieved by using the truncated
version of the SPIKE algorithm outlined in Sect. 2. We compare the performance of
PSPIKE_NBP with IBM’s direct sparse linear system solver WSMP (implemented
on the same Intel cluster). Figure 12 shows that while the factorization stage of
WSMP is quite scalable, solving Ajx; = f1 using WSMP on 16 nodes of this Intel
cluster consumes ~27 s (approximately 9.6 times slower than PSPIKE_NBP). This
is due to solving the sparse triangular systems resulting from the LU-factorization
of A1. Note, however, that solving A1x; = f; via WSMP yields a relative residual
of order 10710,

Example 2
Here, we consider the sparse linear system Asx; = f>, where Ay results from
a Microelectromechanical System (MEMS) simulation—a mix of structural and
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(b)

(c)

Fig. 10 Three forms of preconditioners based on the band structure and bandwidth, illustrated
on F2 matrix after reordering. Yellow and Black colors indicate the preconditioners. (a) Narrow
banded preconditioner. (b) Medium banded preconditioner. (¢) Wide banded preconditioner

electromagnetic—with A, banded (sparse within the band) of order 11.0M and
bandwidth of 0.3M, see Fig. 13. On an Intel cluster of 64 nodes (8 cores/node)
PSPIKE_NBP with a preconditioner of bandwidth 11 consumes ~2.4 s to obtain an
approximation of x, with the required relative residual of 1072, see Fig. 14. WSMP
could not be implemented on more than 32 nodes and requiring 86s (~21.5 times
slower than PSPIKE_NBP) to obtain a solution with relative residual of order 1010,

Example 3
Using the same linear system Axxp = f, we compare the performance of
PSPIKE_NBP and the algebraic multigrid preconditioned Krylov subspace solver
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Fig. 11 Sparsity plot of
Rajat31 (the figure is
obtained from [6])
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Fig. 12 SPIKE-NBP for Rajat31 system

Fig. 13 Sparsity plot of
MEMS matrix
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Fig. 15 Speed improvement: time (Trilinos-ML)/time (PSPIKE)

in Trilinos-ML developed at Sandia National Lab. on an Intel cluster of 64 nodes
(8 cores/node). Using the Chebyshev smoother for Trilinos-ML, Fig. 15 shows the
speed improvement realized by PSPIKE_NBP once we use more than 4 nodes. In
PSPIKE we use a hybrid programming paradigm, OpenMP within each node (k
threads per MPI process) and one node per MPI process with k depending on the
number of nodes used to obtain a solution with relative residual of order 101,
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3.3 SPIKE MBP

Here, we note how a system of the form Mz = r is solved in each iteration of a
Krylov subspace method, where M € R"*" is of the form of a block-tridiagonal
matrix

M, B
Cr My B>
M = s (26)
Ci—1 Mi— Bi—
C, My

where k is the number of partitions (often chosen as the number of nodes), where
each M; is a large sparse matrix of order m = [n/k7], and

= (00\ ~ (0C;
5= (,0)- 4= (%) e

in which B; and C; are dense matrices of order v << m. Now, Mz = r is solved
using the SPIKE algorithm by forming only the reduced system by solving

V; W; C; 0
* % 0 0
M= 28)
* ok 0 0
VW, 0 B;

only for the tips of the spikes V;, V} and W;, W} via an interesting feature of the
sparse direct solver Pardiso. Using the spike tips only, the reduced system is formed
and solved via ScalLapack. Once this is achieved, the solution of Mz = r is realized
by employing the factors of each M obtained by Pardiso.

The description of PSPIKE_MBP is given in more detail with parallel scalability
results for large-scale problems in [18] and its application to a PDE-constrained
optimization problem in [30]. While Pardiso is primarily suitable for single node
platforms, PSPIKE is scalable across multiple nodes. Furthermore, we would
like to mention that PSPIKE is capable of using message passing-multithreaded
hybrid parallelism. In Fig. 16, we present the required solution time of PSPIKE
compared to Pardiso (on one node) for a medium size and large 3D PDE-constrained
optimization problems with 75 x 75 x 75 and 150 x 150 x 150 meshes, respectively,
using hybrid parallelism with 8 threads (cores) per node. Note that for the larger
problem Pardiso runs out of memory due to fill-in. Further details of these problems
and the results are given in [30].
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Fig. 16 SPIKE_MBP and Pardiso solution times for the optimization problem

3.4 SPIKE WBP

For some applications it is not possible to obtain, after reordering, a narrow banded
preconditioner, or a block-tridiagonal preconditioner in which the interconnecting
off-diagonal blocks are of much smaller size than the diagonal blocks. An example
of that is illustrated in Fig. 17. Note that, after reordering, the “heavy” off-diagonal
elements (black color) cannot be contained in either of the two previous forms of
the preconditioner M € R"*". As an alternative, one way to encapsulate as many
of the heavy elements in M is to create a preconditioner that consists of overlapped
diagonal blocks, see Fig. 17, for M consisting of two overlapped blocks. In each
outer Krylov subspace iteration we solve systems of the form Mz = r via the
algorithm given in [22]. Using the two overlapped blocks, Mz = r becomes of
the form

My Mi;
My | My | M3
M3z Ms33

(29)
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Fig. 17 WBP highlighted after reordering, see [21] for the tearing based parallel hybrid sparse
solver

which can be “torn” into two linear systems

My Mp \ [ z1(») | _ ri
<M21 Mz?) (Zél)(y)> B <a72 +Y) G0
Mz My ) \5" () ars ’

where the overlap matrix M = MZ%) + Mg), and 0 < o < 1. Clearly, we need to

choose y so that Z;l) = zg). Enforcing zél)(y) = zéz) (y) results in a linear system

Gy = g of size equal to that of overlap matrix M»,, v << n. In solving Gy = g for
the unknown y, using a Krylov subspace method, it is shown in [22] that one needs
not generate either G or g explicitly, in fact the residual r(p) = g — G * p is given
by [zéz) (p)— zg) (p)),r(0) =g = [zgz) ©0)— zg)(O)], and the matrix-vector product
G x g =r(0) —r(g). The case of more than two overlapped blocks is considered in
detail in [22].

3.5 The General SPIKE

Now we describe the general case where the coefficient matrix has not been sub-
jected to the reordering process described earlier. In other words it is a general sparse
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matrix and also there are multiple right-hand side vectors. Given a nonsingular linear
system of equations,

AX = F, (32)

where A € R"*" is a general sparse matrix and assume we have m right-hand side
vectors F, we can still apply the General SPIKE algorithm as follows. As in the
banded case, let us assume A, X, and F are partitioned conformably into k& block
rows and A is also partitioned into k£ block columns. The Spike factorization can be
described as the factorization of the coefficient matrix [14],

A=DS, (33)

where D is the block diagonal of A and S is the “spike” matrix. Let A = D + R
where R is a matrix that contains elements except diagonal blocks. Assuming D is
invertible and using (33) we obtain the spike matrix,

S=1+S8§, (34)

where S = D’]_R. Note that the diagonal of S consists of ones and the off-diagonals
are the spikes (§). Going back to the original linear system in (32), if we multiply
both sides of the equality with D~! from left, we have the modified system

SX =G, (35)

where G = D~!'F. The modified system in (35) has the same solution vector, X,
as the original system in (32). Furthermore, let idx be the nonzero column indices
of R which also correspond to nonzero column indices of D~!R. Then, there is an
independent subsystem corresponding to the unknowns with row indices idx, i.e.
X (idx, :) in (35) such that,

SX =G, (36)
where § = S(idx,idx), X = X (idx,:), and G = G(idx, :). Dimensions of the

reduced system in (36) are r x r where r = length(idx) with r < n. After solving
the reduced system we can retrieve the remaining unknowns in parallel,

X =G — SX. (37)

Note that we only need a subset of unknowns, X , to evaluate the right-hand side
of the equality since the other columns in S are zeros. This approach requires S
to be computed explicitly. Alternatively, one can obtain the solution by solving the
following system in parallel,

DX = F — RX. (38)
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Again, the right-hand side can be evaluated once we obtain X. In contrast to (37),
(38) does not require the computation of S completely, even though it still requires
the solution of the reduced system involving S which may be explicitly formed via
partially computing S. Alternatively, the reduced system can be solved iteratively
without forming S explicitly. Some of these alternatives might be preferred in
practice, depending on the current availability of efficient software tools to perform
those operations.

In any case, the size of the reduced system depends on r. A smaller » not only
enhances parallelism by enabling a smaller reduced system and less communication
requirements, but also reduces the arithmetic complexity in computing Sand S (if
needed) as well as the complexity of (37) and (38).

In practice, we assume r << n. Ideally, r = 0 and some matrices can be
reordered into a block diagonal form. In this case, there is no reduced system and
the block diagonal systems are solved independently in parallel. Most applications,
however, give rise to sparse linear system of equations that does not contain
independent blocks, then the objective is to reorder and partition those matrices
in such a way that the number of the nonzero columns in R is minimized [15].

The main difference between the sparse and the banded SPIKE algorithms is
the dependence of the reduced system size (r) on the sparsity structure of the
matrix (and hence on the corresponding graph or hypergraph representation of the
sparse matrix). Therefore, sparse graph/hypergraph partitioning methods are key
ingredients for the algorithm to be scalable and to perform efficiently. METIS [11]
and PaToH [4], are suitable for graph and hypergraph partitioning, respectively, and
they fit well to the objective of minimizing the reduced system dimension.

To illustrate the algorithm, we give a small (9 x 9) coefficient matrix, A, in
Fig. 18a for simplicity we ignore the numerical values. Given k = 3, the coefficient
matrix and right-hand side are comformably partitioned,

D11 Rz Ri3 Fi
A=|Ry DpRy|andF=|F]|. 39
R31 R3 D33 F3

The set of indices of nonzero columns of R are idx = {1, 5, 8}. After partitioning,
S and G can be computed as follows:

I Dy'Ri Dj'Ri D 'Fy
S=|Dy Ry I DyRy|andG=|D,'F]|. (40)
Dy Ryt Dy Ry 1 D3 F3

If the right-hand side vector is available immediately, the computation involved is
the solution of independent linear systems with multiple right-hand sides,

D11[812, S13. G1] = [R12, Ri3, F1], (41)
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[ 1

L

(c)

Fig. 18 A, S, and $ for the small example. (a) Coefficient matrix (A). (b) Spike matrix (). (c)
Reduced system coefficient matrix (S)

D2 [851, 823, G2] = [Ra1, Ry, F2], (42)
D33[ 831, S32, G3] = [R31, R32, F3]. (43)

Note that in (41),(42), and (43) only a few columns of R;; ;- ; are nonzero and the
rest are zeros. We do not store or perform operations with zero columns since the
corresponding solution vector is already zero. The resulting § matrix is shown in
Fig. 18b. Light green elements are fill-ins and some of them can be negligible as in
the banded case [20, 24] if A is diagonally dominant or near diagonally dominant.

Further savings can be obtained, if a sparse solver with sparse right-hand side
vectors is available and if it is capable of solving only for a few unknowns, one
can compute only those components of vectors in S;; that is required for forming
the reduced system (defined by idx). One of the implementation of the General
SPIKE algorithm in [3] performs partial solves via the sparse right-hand side feature
of PARDISO [29]. Next, we can form the reduced system explicitly by selecting
S = S(idx,idx) and G = G(idx, :) and solve the reduced system, ( 36), to obtain
X = X (idx, ). § for the small example is shown in Fig. 18c. The complete solution
is obtained in parallel via either:

X=G-S8X (44)
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Algorithm 1: General spike algorithm

1: procedure GENERALSPIKE(A, X, F, k) > to solve AX = F with k partitions
: D+R <« A

3:  Identify nonzero columns of R and store their indices in idx
4. D[S iax)» Gl = [R(. iax), F1, solve for:

* [S¢,idx), G] (full solve) or
* [Stdx,idx)> Gadx,] (partial solve)

5S¢ SGdx.idx)X(idx,:) = Gidx,:) (Solve for Xiax,:))
6: Retrieve the solution vector (X):

* X < G — S¢,id0)X(idx) if S(iqx)] is available
* DX =[F — R, iax)X(idx)] (Solve for X), otherwise

7: end procedure

or
DX = F — RX. (45)

The former is preferred if the spikes are formed explicitly since the multiplication
SX can be implemented using dense matrix-vector (BLAS Level 2) or matrix-
matrix (BLAS Level 3) operations, for m = 1 and m > 1, respectively. The latter
requires sparse matrix-dense matrix multiplications (R X), followed by the solution
of independent sparse linear systems. It is preferred if the spikes are not explicitly
available. The pseudocode of the algorithm is summarized in Algorithm 1.

Numerical results and the performance of this scheme are given in [14] in the
context of a parallel solver for the preconditioned linear system and in [3] as a
direct multithreaded recursive parallel sparse solver. Furthermore, a multithreaded
general sparse triangular solver is proposed in [5].

4 Conclusions

The SPIKE algorithm for banded linear systems that are dense withing the band
has been shown to be competitive in parallel scalability with the parallel banded
solver in ScalLapack on a variety of parallel architectures. Also, the hybrid PSPIKE
(Pardiso-SPIKE) algorithm for large sparse linear systems has proven to be equally
competitive with: (1) direct sparse solvers such as Pardiso and WSMP if one requires
only approximate solutions that correspond to modest relative residuals, and (2)
black-box preconditioned Krylov subspace methods including algebraic multigrid
preconditioners.

Acknowledgments The authors would like to thank Drs. Maxim Naumov and Faisal Saied for
performing many of the numerical experiments reported in this chapter.
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1 Introduction

Among the many jobs running at any given time on a high-performance computing
facility today, it is likely that those related to quantum mechanical calculations
will figure prominently. The numerical simulations that arise from the modeling
of matter are very demanding both in terms of memory and computational power.
These simulations combine ideas and techniques from a variety of disciplines
including physics, chemistry, applied mathematics, numerical linear algebra, and
computer science.

Determining matter’s electronic structure can be a major challenge: The number
of particles is large [a macroscopic amount contains ~10?* electrons and nuclei]
and the physical problem is intrinsically complex.

The most significant change in computational methods used in materials in the
past two decades has undoubtedly been the systematic use of parallel processing.
This revolution in methodology has taken some time to unravel and then mature. For
example, it was not clear in the early 1990s whether massively parallel computing
could be achieved with vector processors or if a message passing interface would
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be best. There were phases in which programming models and languages took
different directions. As architectures changed over the years, the software and
techniques have been in constant flux. At the same time algorithms have also
evolved considerably, in part to cope with the new computing environments and
the enormous power afforded by new hardware.

Most of the gains in speed combine advances from three areas: simplifications or
improvements from physical models, effective numerical algorithms, and powerful
hardware and software tools.

In terms of physical models, the biggest advances in nanotechnology were made
in the sixties with the emergence of Density Functional Theory (DFT) which made
it possible to approximate the initial problem by one which involves unknowns that
are functions of only one space variables instead of N space variables, for N-particle
systems in the original Schrodinger equation. Thus instead of dealing with functions
in R3" we only need to handle functions in R3. DFT provides (in principle) an exact
method for calculating the ground state energy and electron density of a system of
interacting electrons using exchange-correlation density functionals, and a set of
single electron wavefunctions solution of an eigenvalue equation.

The number of atoms contained in nanostructures of technological interests
usually range from few hundreds to many thousands posing a unique challenge
for DFT electronic structure modeling and computation. Many modeling advances
were made in designing various discretization techniques to accommodate atomistic
systems with high level of accuracy. In addition, since both system size and
number of needed eigenpairs to compute the electron density depend linearly on
the number of atoms, progress in electronic structure calculations are tied together
with advances in eigenvalue algorithm and their scalability on parallel architectures.

The goal of this paper is not to provide another exhaustive review of the state of
the art in materials but rather to discuss the impact that parallel processing has had
on the design of algorithms. From physics to algorithms, we will begin with a review
of the basics, and then discuss the recent advances made in electronic structure
calculations using appropriate discretization schemes and new parallel algorithms
that can fully capitalize on modern HPC computing platforms.

2 Quantum Descriptions of Matter

Consider N nucleons of charge Z, at positions {R,} forn = 1,--- , N and M
electrons at positions {r;} in space, fori = 1,---, M. The non-relativistic, time-
independent Schrodinger equation that describes the physical state of the system
can be written as:

HY=EUV ey

where the many-body wave function W is of the form
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WEW(R11R27R31"';rlsr2ar3a"') (2)

and E is the total electronic energy. The Hamiltonian H in its simplest form can be
written as:

N 2v2 N
—h°V; 1 ZnZye
Ri,R,R3,---;1r|, 0, I3, - = —
H(R1, Rz, R3 1,12, 13 nE_l 20, + 3 E/_I R, _R, |
;17&11”
M 2v72 N M 2 M 2
—h Vt Zne 1 e
— _ 3
Fl o T LlR i ta o @
i=l1 n=1 i=l1 lzJ;jl

Here, M,, is the mass of the nucleon, % is Planck’s constant divided by 2, m is the
mass of the electron, and e is the charge of the electron.

The above Hamiltonian includes the kinetic energies for each nucleon (first sum
in H), and each electron (3rd sum), the inter-nuclei repulsion energies (2nd sum),
the nuclei-electronic (Coulomb) attraction energies (4th sum), and the electron-
electron repulsion energies (Sth sum). Each Laplacian V,% involves differentiation
with respect to the coordinates of the nth nucleon. Similarly the term Vl.z involves
differentiation with respect to the coordinates of the ith electron.

In principle, the electronic structure of any system is completely determined
by (1) by finding the wave function W that minimizes the energy < W|H|W¥ > over
all normalized wavefunctions W. The function W has a probabilistic interpretation:
for the minimizing wave function W,

[WRy, -, Ry; T, -, ) Pd°Ry - - dPRydPry - dPry

represents the probability of finding nucleon 1 in volume |R; + d>R;|, nucleon 2 in
volume |R;+d>Ry|, etc. However, solving (1) is not practically feasible for systems
that include more than just a few atoms.

The main computational difficulty stems from the nature of the wavefunction
which depends on all coordinates of all particles (nuclei and electrons) simulta-
neously. To give an illustration of this, imagine we have 10 atoms each with 14
electrons [e.g., Silicon]. This represents a total of 15 % 10 = 150 particles. The wave
function in its form without spin is W(Ry, --- , R0, 71, -+ , r140) and it must be
discretized. A simple scheme would be some finite difference method. If we use 100
points for each of the 150 coordinates, we would get a huge number of unknowns:

# Unknowns = 100 x 100 x---x 100 = 100"
—_ =~ —

part.l  part.2 part.150

The original Schrddinger equation (1) can be viewed as an eigenvalue problem:
we need to compute the smallest eigenvalue and associated eigenvector of the
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Hamiltonian. It can also be viewed from the point of view of optimization since
finding the smallest eigenpair is known to be equivalent to finding the wavefunction
W that minimizes the Rayleigh quotient:

[ W*HY d*Ry d*Ry &Ry - -+ . dry dPry drs - - -
f W 3R d3Ry d3R3 - -+ . d3r1 d3ra d3r3 - - -

E=<U|H|V >= @)

The symbols bra (for < |) and ket (for | >) are common in chemistry and physics.
When applying the Hamiltonian to a state function W the result is another state
function: & = |H|W >. The inner product of this function with another function ®
is < ®|® > which is a scalar.

The first, and basic, approximation made to reduce complexity is the Born-
Oppenheimer or adiabatic approximation. This approximation separates the nuclear
and electronic degrees of freedom: exploiting the fact that the nuclei have a
much bigger mass than the electrons, it can be assumed that the electrons will
respond “instantaneously” to the nuclear coordinates. This allows one to treat the
nuclear coordinates as classical parameters. For most condensed matter systems,
this assumption is highly accurate [29, 79]. Under this approximation the first term
in (3) vanishes and the second becomes a constant, so we end up with the simplified
Hamiltonian:

M 292 N M 2 M 2
—h“V: Z,e 1 e
H(ry, ra,r3,---) = L— 4 R 5
D Dhe D D) DYy I D DY oy L
i=1 n=1i=1 lzJ;/l

This simplified Hamiltonian is often taken as a practical replacement of the original
problem.

Its eigenfunctions determine the states. There are infinitely many states, labeled
1,2, --- by increasing eigenvalue. Each eigenvalue represents an “energy” level of
the state. The state with lowest energy (smallest eigenvalue) is the ground state.
It determines stable structures, mechanical deformations, phase transitions, and
phonons. States above the ground state are known as “excited states.” They are used
to study many body effects, quasi-particles, electronic band gaps, optical properties,
etc.

A direct numerical treatment of the Schrodinger equation using the simplified
many-body Hamiltonian (5) leads to a deceptively simple linear eigenvalue problem
which is still intractable because of its exponential growing dimension with the
number of electrons. This limitation has historically motivated the need for lower
levels of sophistication in the description of the electronic structure using a single
electron picture approximation where the size of the Hamiltonian operator scales
linearly with the number of electrons. It is within the single electron picture that
first-principle electronic structure calculations are usually performed [49] using
either (post) Hartree—Fock type methods widely used in quantum chemistry, or as an
alternative to wave function based methods, the Density Functional Theory (DFT)
associated with the Kohn—Sham equations [31, 36].
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3 Density Functional Theory and the Kohn—-Sham Equation

A breakthrough in the solution of the Schrédinger equation came with the discovery
of Density Functional Theory. In a series of papers, Hohenberg, Kohn, and Sham
established a theory in which the many-body wave function was replaced by one-
electron orbitals [31, 36, 48]. The basic idea is that the state of the system will
now be expressed in terms of the the charge density p, which is a distribution
of probability, i.e., p(r;)d’r; represents—in a probabilistic sense—the number of
electrons (all electrons) in the infinitesimal volume d>r;. It is easy to calculate the
charge density from a given wavefunction. The fundamental theorem which these
authors were able to state is that this mapping is one-to-one, i.e., given the charge
density it should be possible to obtain the ground state wavefunction. In essence
there is a certain Hamiltonian—as defined by a certain potential (that depends on p)
whose minimum energy is reached for the ground state W. Kohn and Sham wrote
this Hamiltonian as

h2
Hgs = EW + VN (p) + Vi (p) + Vic(p) (©6)

where Vi (p) is the external potential, Vi (p) is the Hartree potential, and Vy.(p)
is the exchange-correlation potential. Note the dependence on the charge density
p which is itself implicitly defined from the set of occupied eigenstates ¢;,i =
1,---, N of (6) by:

occup

p(r) =2 lp;(®)P, (7)
j=1

where N is the number of occupied states (i.e., number of electrons) and the factor
2 accounts for the electron spin.

3.1 The Kohn—-Sham Equation

We can now write the Kohn—Sham equation [36] for the electronic structure of
matter as

2v72

—h
( + Vn(r) + Vu(r) + ch[p(l‘)]) ¢i(r) = Ei¢i(r) ®)

2m

As stated above the charge density is defined in terms of the orbitals ¢; given by (7).
Given a charge density p the Hartree potential V is the solution of Poisson
equation:
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V2V = —dmp(r) )

The exchange and correlation potential V. is unknown in theory but it is approx-
imated by a potential in different ways, the simplest of which is the Local Density

Approximation (LDA).
Therefore, this equation is usually solved “self-consistently” in the sense that
if a given p'", as obtained from a set of occupied states ¢;(r), i = 1,---, N

is utilized to compute new occupied states from (6), and a new charge density
0% is then computed according to (7) then p and p°*' should be the same. The
SCF procedure takes some initial approximate charge to estimate the exchange-
correlation potential and this charge is used to determine the Hartree potential
from (9). These approximate potentials are inserted in the Kohn—Sham equation
and the total charge density determined as in (7). The “output” charge density is
used to construct new exchange-correlation and Hartree potentials. The process is
repeated until the input and output charge densities (or potentials) are close enough.
This process is illustrated in Fig. 1.

DFT has been widely used in computational material science and quantum
chemistry over the past few decades, since it provides (in principle) an exact method
for calculating the ground state density and energy of a system of interacting
electrons using a nonlinear single electron equation associated with exchange-
correlation (XC) functionals. In practice, the reliability of DFT depends on the

Initial Guess for V', V =V,

!

Solve (—3V* + V) = et

!

Calculate new p(r) = 259 |1)?

!

Find new V‘.’J’: —VZT'H = "Iﬁﬁ(f') V= 1"!nr w
Find new V.. = f[p(r)]

!

b4 7 P 4 AMivime®
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!

If |Vyew — V| < tol stop

Fig. 1 The self-consistent field iteration
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numerical approximations used for the XC terms that range from the simplest local
density approximation (LDA) to more advanced schemes which are still the subject
of active research efforts [14, 65, 70]. Solutions of the DFT/Kohn—Sham problem
are routinely used in the calculations of many ground state properties including:
total energy and ionization potential and, via perturbation: crystal-atomic structure,
ionic forces, vibrational frequencies, and phonon bandstructure.

3.2 Pseudopotentials

When discretizing the KS equation, we run into a major difficulty which arises from
the different scales of the lengths involved. The inner (core) electrons are highly
localized and tightly bound compared to the outer (valence electrons). Another
major advance in the solid-state physics field was the advent of pseudopotential
techniques which remove the core states from the problem and replacing the all
electron potential by one that replicates only the chemically active, valence electron
states[16]. This is possible because the physical properties of solids depend much
more on the valence electrons than on the core electrons. The whole art is then to
construct pseudopotentials that reproduce the valence state properties such as the
eigenvalue spectrum and the charge density outside the ion core.

3.3 Discretization

One can identify three main discretization techniques that have been widely used
over the past four decades by both the quantum chemistry and the solid-state physics
communities [49]: (1) the plane wave expansion scheme, (2) the linear combination
of atomic orbitals (LCAO) (along with the dominant use of Gaussian local basis
sets), and (3) the real-space mesh techniques (also loosely called “numerical
grids”) based on the finite difference method (FDM), finite element method (FEM),
spectral element, or wavelets methods. Each of these approaches has advantages and
disadvantages.

3.3.1 Plane waves

Plane wave bases have been very popular in materials science and solid-state
physics for performing bandstructure calculations. For example, in the context of
pseudopotentials methods, plane wave bases can be quite effective in representing
the orbitals for crystalline periodic matter, requiring a small number of plane waves.
This leads to a compact representation of the Schrodinger operator. The resulting
matrix is dense in Fourier (plane wave) space, but it is not formed explicitly.
Instead, matrix-vector product operations are performed with the help of fast Fourier
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transforms. This plane wave approach is akin to spectral techniques used in solving
certain types of partial differential equations [24]. The plane wave basis used is of
the form:

Yi() =Y a(k, G)exp (i(k+G) - r) (10)
G

where Kk is the wave vector, G is a reciprocal lattice vector, and « (k, G) represent the
coefficients of the basis. Thus, each plane wave is labeled by a wave vector which is
a triplet of 3 integers, i.e., k = (Ki, K2, k3). The vector parameter G translates the
periodicity of the wave function with respect to a lattice which attempts to describe
a crystalline structure of the atoms.

3.3.2 Linear Combination of Atomic Orbitals (LCAO)

An appealing approach uses a basis set of orbitals localized around the atoms. This
is the approach, for example, taken in the SIESTA code [68] where with each atom
a is associated with a basis set of functions which combine radial functions around
a with spherical harmonics:

¢1amn (r) = ¢1an (ra)Yim (Ta)

wherer, =r — R,.

In contrast to plane wave methods, LCAO techniques cannot be universally and
systematically improved towards convergence. On the positive side, LCAO benefits
from a large collection of local basis sets that has been refined over the years by
the quantum chemistry community to obtain high level of accuracy in simulations.
Atomic orbital basis also yields much smaller matrices and requires less memory
than plane wave methods. The sparsity of the matrices depends on how many
neighboring atoms are accounted for in the linear combination.

A popular basis employed with pseudopotentials is that of Gaussian orbitals[13,
17, 32, 33]. Gaussian bases have the advantage of yielding analytical matrix
elements provided the potentials are also expanded in Gaussians. However, the
implementation of a Gaussian basis is not as straightforward as with plane waves.
For example, numerous indices must be employed to label the state, the atomic site,
and the Gaussian orbitals used.

3.3.3 Real-Space Methods

When applied to electronic structure calculations, real-space mesh techniques
exhibit the following significant advantages: (1) they avoid deriving global basis
sets for a specific problem by employing universal mathematical approximations
at local regions in the physical space; (2) they can easily handle the treatment of
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various boundary conditions such as Dirichlet, Neumann, or mixed (such as self-
energy functions useful in transport problems [59]); (3) they produce very sparse
matrices and are cast as linear scaling electronic structure discretization methods;
(4) they allow solving the Poisson equation for electrostatics using the same
numerical grid; (5) they can benefit from the recent advances made in mathematical
modeling techniques and numerical algorithm design including multigrids, domain
decomposition, or direct and Krylov-subspace iterative techniques. All of these
properties motivated the development of real-space mesh software packages for
electronic structure calculations such as Octopus [5, 8], MIKA [3], PARSEC [6, 37],
and NESSIE [4].

Finite Differences An appealing discretization alternative is to avoid traditional
explicit bases altogether and work instead in real space, by discretizing the space
variable. This can be achieved with Finite Difference Methods (FDM), see, e.g.,
[9, 22, 27, 30, 37, 41, 53, 72]. FDM is the simplest real-space method which
utilizes finite difference discretization on a cubic grid. One of the most popular
schemes is to use regular grids with high-order discretizations [25] for the Laplacian
which represents the kinetic energy operator. Such high order schemes significantly
improve convergence of the eigenvalue problem when compared with standard, low
order, finite difference methods. With a uniform grid where the points are described
3y

in a finite domain by (x;, y;, zx), 37 at (xi, y;, zx) is approximated by
Y
2M
- :n_E_Man(x,-+nh,yj,2k)+0(h ) (11)

where & is the grid spacing. Thus using a total of 2M + 1 points in each direction
yields an error of order O(h?M). Algorithms are available to compute the coefficients
C, for arbitrary order in A [25].

With the kinetic energy operator expanded as in (11), one can set up a one-
electron Schrodinger equation over a grid. One may assume a uniform grid, but
this is not a necessary requirement. Once the Kohn—Sham equation is discretized
using high order finite differences, we obtain a standard matrix eigenvalue problem
of the form:

Ay = Ay (12)

in which A is a real sparse symmetric matrix. Note that the discretization (11) for
the kinetic energy term will lead to 2M nonzero entries for each of the 3 directions,
plus the diagonal entry, so we end up with a total of 6M + 1 nonzero entries, to
which we need to add the nonzero entries that correspond to the other terms of the
Hamiltonian. The Hartree and exchange correlation terms usually lead to a diagonal
matrix, while the external potential is non-local and leads to a sort of low-rank
matrix centered around each atom. An example of such a matrix is shown in Fig. 2.
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Fig. 2 Matrix resulting from 0 s
a 12-th order (M = 6) FD
discretization of the 2000 ¥

Kohn-Sham equation. The
matrix is obtained from a
Parsec simulation of a small
silicon cluster passivated by

hydrogen atoms (Sil0H16). 6000
A spherical domain is used

which explains the curved 8000
diagonals

10000

12000

14000

16000

oy

0 2000 4000 6000 8000 10000 12000 14000 16000

nz = 875923

A grid based on points uniformly spaced in a three- dimensional cube is typically
used. Many points in the cube are far from any atoms in the system and the wave
function on these points may be replaced by zero. Special data structures may be
used to discard these points and keep only those having a nonzero value for the
wave function. The size of the Hamiltonian matrix is usually reduced by a factor
between two and three with this strategy, which is quite important considering the
large number of eigenvectors which must be saved. Further, since the Laplacian can
be represented by a simple stencil, and since all local potentials sum up to a simple
diagonal matrix, the Hamiltonian need not be stored explicitly as a sparse matrix.
Handling the ionic pseudopotential is complex as it consists of a local and a non-
local term. In the discrete form, the non-local term becomes a sum over all atoms,
a, and quantum numbers, (I, m) of rank-one updates:

Vion = Z Vloc,a + Z Ca,l,mUa,l,mU,{,l,m (13)
a

a,l,m

where U, ; ,, are sparse vectors which are only nonzero in a localized region around
each atom, and ¢, ,, are normalization coefficients.

Finite Elements One of the main advantages of the finite element method (FEM)
is its flexibility to be used with non-uniform meshes and include local refinement
by adding more nodes in various regions of interests. In electronic structure calcula-
tions, local refinement is important to capture the strong variations of potential and
electron density in the vicinity of the atom center regions. Consequently, FEM has
been employed in some electronic structure codes [42, 43] as a way to bypass the
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Fig. 3 The figures represent a 2D cross-section of 3D finite element mesh using a coarser
interstitial mesh (left) connecting all of the atoms of a benzene molecule, and a much finer mesh
(right) for the atom-centered regions suitable to capture the highly localized core states around the
nuclei

pseudopotential approach and consider the full core potential. These calculations are
called all-electron calculations since both core and valence electrons are included.

As illustrated in Fig. 3 with the example of a benzene molecule, the 3D finite-
element mesh can be built in two steps: (1) a 3D atom-centered mesh which is highly
refined around the nucleus to capture the core states and (2) a much coarser 3D
interstitial mesh that connects all the atom-centered regions. For the atom-centered
mesh, successive layers of polyhedra as proposed in [42], along with cubic finite
element, do provide high level of accuracy for solving single atom systems. Not
only, the distance between layers can be systematically refined while approaching
the nucleus, the outer-layer is consistently providing the same (relatively small)
number of connectivity nodes that will be used by the coarser interstitial mesh at
the surface with the atoms. This approach, used in the NESSIE code [4], is ideally
suited for domain-decomposition techniques and parallel computing [34].

3.4 Comparison of Discretization Approaches

Real-space approaches have a number of advantages and have become popular
in recent years, see [11, 12, 18-20, 23, 24, 27, 35, 41, 54, 74, 80]. It is worth
mentioning that the Gordon Prize in 2011 was awarded to a team that relied on
finite difference discretization [28] a testimony of the capability of this approach.
One of the attractions of space approaches relative to plane waves is that they
bypass many of the difficulties involved with non-periodic systems. Although the
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resulting matrices are usually (much) larger than with plane waves, they are sparse
and the methods are easy to implement on parallel computers. However, even
on sequential machines, real-space methods can be faster than methods based on
traditional approaches.

Comparing finite difference with finite element discretization methods, one can
state that finite element methods yield a smaller number of variables but are more
difficult to implement.

3.5 Computing the Electron Density

Within the SCF-DFT procedure, solving the linear and symmetric eigenvalue
problem at each given iteration step becomes a very challenging part of the
calculations.

The most challenging aspect of electronic structure calculations is the high
computational cost of calculating the electron density (7) at each step of the
DFT/Kohn—Sham self-consistent iterations (see Fig.1). The electron density is
traditionally calculated using all the wave functions (eigenvectors) solution of
the Kohn—Sham eigenvalue problem over all occupied energy states. In order to
characterize complex systems and nanostructures of current technological interests,
many thousands of eigenpairs may indeed be needed. Indeed, all valence electrons
(and core electrons if applicable) need to be included in the calculation.

An alternative approach to the wave function formalism consists of performing
a contour integration of the Green’s function matrix G(z) = (zB — A)~! over the
complex energy space [71, 76]. We note that A is the Hamiltonian matrix, and B
represents the basis function overlap matrix (i.e., or mass matrix) which is obtained
after discretization (S = I when using FDM). At zero temperature, the resulting
expression for the electron density in real space is

occup

1
o0 = —— [ ding Gz =2 Y 16F (14)

j=1

where the clockwise complex contour C includes all the occupied eigenvalues. The
contour integration technique represents apriori an attractive alternative approach
to the traditional eigenvalue problem since the number of Green’s function to be
calculated (typically of order ~O (10) using Gaussian quadrature) is independent
of the size of the system. In addition, only the diagonal elements of the Green’s
function need to be computed (independently) along the integration points. This
problem has motivated the development of new algorithms that are able to directly
and economically obtain the diagonal elements of the inverse of sparse matrices.
For 1D physical structures such as long nanowires which give rise to banded
matrices after discretization, it is possible to perform efficient O (N) calculations for
obtaining the diagonal elements of the Green’s function [10, 47, 77]. For arbitrary
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3D systems (i.e., beyond nanowire structures), however, the numerical complexity
of a direct solver such as PEXSI is O(N?) [7].

The Green’s function-based alternative to the wave function formalism for
computing electron density gives rise to difficulties in algorithmic complexity,
parallel scalability, and accuracy. In that regard, it is difficult to bypass the wave
function formalism, and progress in large-scale electronic structure calculations
are dependent on advances in numerical algorithms for addressing the eigenvalue
problem. This is discussed in the next section.

4 Solution of the Eigenvalue Problem

One significant characteristic of the eigenvalue problem that arises from the Kohn—
Sham equation is that the number of required eigenvectors is proportional to the
number of atoms in the system, and can grow up to thousands or possibly many
more depending on the compound being studied. This means that we will have to
store an eigenbasis consisting of a large number of vectors. In addition, the vectors
of this basis need to be orthogonal. In fact, the biggest part of the cost of existing
eigenvalue codes is related to orthogonalization.

In this Section, we will briefly review various diagonalization methods ranging
from Lanczos and Davidson to polynomial and rational filtering, and introduce the
notion of “slicing.” One of the main motivations of filtering is to allow “slices” of
the spectrum to be computed independently of one another and orthogonalization
between eigenvectors in different slices is no longer necessary.

4.1 Traditional Methods: Subspace Iteration, Lanczos, and
Davidson

Large computations based on DFT approaches started in the 1970s after the
breakthrough results of Kohn, Hohenberg, and Sham. The use of plane wave bases
dominated the arena of electronic structure from that period onward—starting with
the trend-setting Car and Parrinello [15] article which was the catalyst in the
development of computational codes using plane waves and pseudopotentials. Most
computations in the mid-1980s to the 1990s, and still today, rely on plane wave
bases. Since the matrices involved were dense and memory was expensive, this was
amajor limiting factor at the beginning. However, it was soon realized that it was not
necessary to store the dense matrix if a code that accesses the matrix only to perform
matrix-vector products (“matvecs” thereafter) is employed [50], see also [51]. This
is achieved by working in Fourier space and using FFT to go back and forth from
real to Fourier space to perform the operations needed for the matvec. An early
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code based on subspace iteration for eigenvalue problems and called Ritzit, initially
written by Rutishauser in Algol [60], became a de facto standard.

The Lanczos algorithm [38] discovered in 1950 re-emerged in the early 1980s in
the linear algebra community as a contender to subspace iteration due mainly to its
superior effectiveness when computing a small number of eigenvalues at one end of
the spectrum. In exact arithmetic, the Lanczos algorithm generates an orthonormal
basis vy, va, ..., V;, of the Krylov subspace Span{v, Av, A%y, ... A"~ 1y} viaan
inexpensive 3-term recurrence of the form :

Bi+1Vj+1 = AVj —a;v; — Bjvj_|

In the above sequence, aj = V;—I.AVJ' and ,BjJ.rl = ||Av; —a;v; — Bjv;_1l2. So
the jth step of the algorithm starts by computing «; and then proceeds to form the
vector Vi1 = Av; — ajvj = /3jVj—A1 and then v 1 = V;11/Bj+1. Note that for
Jj = 1, the formula for v, changes to v, = Avy — apvs.

Suppose that m steps of the recurrence are carried out and consider the tridiagonal
matrix,

ar B
B2 oz B3
m = ° . N . * .
Bm ot
Further, denote by V,, the n x m matrix V,, = [vy,..., V] and by e, the mth

column of the m x m identity matrix. After m steps of the algorithm, the following
relation holds:

It is observed, and can be theoretically shown, that some of the eigenvalues of
the tridiagonal matrix 7, will start approximating corresponding eigenvalues of A
when m becomes large enough. An eigenvalue A of 7,, is called a Ritz value, and if
y is an associated eigenvector, then the vector V,,y is, by definition, the Ritz vector,
i.e., the approximate eigenvector of A associated with A. If m is large enough, the
process may yield good approximations to the desired eigenvalues Ap, ..., As; of A,
corresponding to the occupied states, i.e., all occupied eigenstates.

In practice, orthogonality of the Lanczos vectors, which is guaranteed in theory,
is lost and this phenomenon takes place as soon as one of the eigenvectors starts to
converge [55, 56]. Orthogonality can be reinstated in a number of ways, see [39, 40,
66, 67, 75].

The Davidson [52] method is a sort of preconditioned version of the Lanczos
algorithm, in which the preconditioner is the diagonal of A. We refer to the
generalized Davidson algorithm as a Davidson approach in which the preconditioner
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is not restricted to being a diagonal matrix (A detailed description can be found
in [62].)

The Davidson algorithm differs from the Lanczos method in the way in which
it defines new vectors to add to the projection subspace. Instead of adding just
Av;, it preconditions a given residual vector r; = (A — w;Z)u; and adds it to
the subspace (after orthogonalizing it against current basis vectors). The algorithm
consists of an “eigenvalue loop” which computes the desired eigenvalues one by
one (or a few at a time), and a “basis” loop which gradually computes the subspace
on which to perform the projection. Consider the eigenvalue loop which computes
the i’" eigenvalue and eigenvector of A. If M is the current preconditioner, and

V = [vy,--,Vg] is the current basis, the main steps of the main loop are as
follows:

1. Compute the ith eigenpair (g, yx) of Cx = V,(TAVk

2. Compute the residual vector ry = (A — uxZ2)Viyk

3. Precondition ry, i.e., compute t; = My

4. Orthonormalize t; against vp,---, vy and call viy; the resulting vector, so

Vi1 = W, Vit 1]
5. Compute last column-row of Cy41 = VkT +1AVk+1

The original Davidson approach used the diagonal of the matrix as a precondi-
tioner but this works only for limited cases. For plane wave bases, it is possible to
construct fairly effective preconditioners by exploiting the lower order bases. By this
we mean that if Hj is the matrix representation obtained by using k plane waves,
we can construct a good approximation to Hy from H,, with m < k, by completing
it with a diagonal matrix representing the larger (undesirable) modes. Note that
these matrices are not explicitly computed as they are dense. This possibility of
building lower dimensional approximations to the Hamiltonian which can be used
to precondition the original matrix constitutes an advantage of plane wave-based
methods.

4.2 Nonlinear Chebyshey Filtered Subspace Iteration

A big disadvantage of the Lanczos and Davidson iterations is that they do not allow
to exploit previous bases that have been calculated from earlier SCF iterations. A
look at Fig. 1 indicates that what matters for convergence is how well the procedure
is approximating the basis of the subspace corresponding to the n occupied states.
At the next SCF iteration, the Lanczos algorithm starts with one vector only. This
means that we cannot fully take advantage of the basis that has been computed
previously. In contrast, the subspace iteration algorithm is ideal in this context. All
we need to do at the next SCF iteration is update the Hamiltonian—and use whatever
subspace we had from the previous SCF iteration. This constitutes a major attraction
of subspace iteration. Another attraction is clearly its added parallelism.
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Algorithm 1: [Y] = Chebyshev filter(X, m, a, b, g)

le=0b-—a)2; c=(@+Db)/2; c=¢/(c—g); T1T=2/0;
2Y=AUxX—-cxX)x*x(o/e);
3 for i =2tomdo

(= B N

Opew = 1/(1 —0);
Yi=(A*xY —c*Y)* 2*0new/e) — (0 % Opew) * X;
X = Y; Y = Yt; 0 = Opews

The main ingredient of a subspace iteration procedure is the Chebyshev filtering.
Given a basis [vy, ..., vy,], each vector is “filtered” as v; = Pr(A)v;, where py is
a low degree polynomial whose goal is to enhance the wanted components of these
vectors in the desired eigenvectors of A. The most common filters used are shifted
and scaled Chebyshev polynomials. If [a, b] is the interval containing unwanted
eigenvalues, those that must be dampened, then we use the polynomial

_Gay l(t):2t—b—a

PO =ty “h-a

where Cy is the Chebyshev polynomial of degree k of the first kind and g is some
approximation of the eigenvalue that is farthest from the center (a + b)/2 of the
interval—which is used for scaling. One such polynomial of degree 7 is shown
in Fig. 4. The 3-term recurrence of Chebyshev polynomial is exploited to compute
pr(A)v. If B =1(A), then Cy4+1(t) = 2tCr(t) — Cx—1(t) = wik+1 = 2Bwi —wi—1.
Algorithm 1 provides an illustration of Chebyshev filtering.

What was discussed above is what might be termed a standard SCF approach
in which a filtered subspace iteration is used to compute the eigenvalues at each

glig- 4 Degree 8 Chebyshev Deg. 7 Cheb. polynom., damped interv=[0.2, 2]
ter 12— : : : ——

1t

0.8+

0.6+

0.4+
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Fig. 5 The self-consistent field iteration with a nonlinear subspace iteration approach

SCF iteration. The subspace iteration can also be used in a nonlinear way. In the
nonlinear subspace iteration, the filtering step is not used to compute eigenvectors
accurately. Instead, the basis is filtered and the Hamiltonian is updated immediately
using these vectors. In essence the process amounts to removing one loop from
the algorithm in that the SCF and the diagonalization loops merged. The new SCF
iteration is illustrated in Fig.5. Experiments reported in [78] reported that this
procedure can yield a factor of 10 speed-up over the more traditional one in which
the inner eigenvalue loop is kept

4.3 EVSL: Filtering and Spectrum Slicing

As mentioned earlier, a big part of the cost of computing a large number of
eigenvectors is related to the process of maintaining orthogonality between these
vectors. The number of vectors to orthogonalize is typically of the order of the
number of states which is itself proportional to the number of particles, and so the
cost increases quadratically with the number of particles. This was observed early
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on and a number of articles sought inexpensive alternatives. One of the main ideas
proposed was one based on filtering, i.e., transforming the Hamiltonian so as to
enhance or magnify the desired part of the spectrum by a polynomial of rational
transformation to enable a projection method like subspace iteration, to extract the
desired eigenvalues easily. An early contribution along these lines is the article by
Zunger [73] which discusses a scheme, whereby the Hamiltonian H is replaced by
B = (H — o I)?. Extracting the smallest eigenpairs of B will yield the eigenvectors
associated with the eigenvalues closest to the shift . A similarly simple technique
is one that is based on shift-and-invert [56] which uses a rational filter.

The essence of a filtering technique is to replace the original matrix A by
B = ¢(A), where the filter ¢ is either a polynomial or rational function. The main
advantage of filtering is that it allows to compute different parts of the spectrum
independently. A spectrum slicing method refers to a technique that computes
the desired spectrum by sub-intervals or “slices.” The recently developed package
named EVSL (for Eigenvalues Slicing Library) relies entirely on this strategy
[1, 44, 45]. Figure 6 illustrates the main motivation for this strategy, namely that
eigenvectors belonging to slices that are far apart need not be orthogonalized against
each other.

The gain in computational cost that comes from avoiding limiting or orthog-
onalization can be significant both in terms of computational time and in terms
of memory. For example, Fig.7 illustrates a calculation with EVSL in which all
eigenvalues in the interval [0, 1] of a Laplacian discretized on a 49 x 49 x 49
centered finite difference grid. A spectrum slicing strategy is exploited and the total
cost is shown as the number of intervals varies from 1 to 6. Note that in EVSL
the degree of the polynomial filter is computed automatically. One can observe
that orthogonalization costs are drastically reduced along with costs related to the
projection process. At the same time the cost of matvecs increases but it remains
insignificant relative to the rest. This calculation is performed without fully taking
advantage of parallelism. If a fully parallel computation was to be implemented,
each of the total times would have been divided by the number of intervals used.

Fig. 6 Two filters to compute two slices of the spectrum that are far apart. Note that eigenvectors
associated with two distinct slices need not be orthogonalized against each other
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Fig. 8 A filter polynomial of degree 23 (left) and a zoom of the same polynomial near the interval
of interest (right)

To illustrate how polynomial filtering is combined with a non-restarted version
of the Lanczos algorithm we show in Fig.8 a polynomial filter of the type used
in EVSL. In the figure, an eigenvalue A; located inside the interval of desired
eigenvalues is transformed to ¢ (%;). The filter is designed so that any eigenvalue A;
located inside the interval of desired eigenvalues is transformed into an eigenvalue
¢(X;) that is larger than or equal to a certain value (called the “bar”) which
is B = 0.8 in the figure. This makes it easy to distinguish between wanted
eigenvalues (¢(A; > p) and unwanted ones (¢(A; < p). Figure 9 shows the
filtered eigenvalues for the same problem. As is highlighted in the figure, all
wanted eigenvalues of the original problem are now eigenvalues that are not smaller
than 8 = 0.8 for the filtered matrix. It is therefore possible to devise a strategy,
whereby these eigenvalues are all computed from a Lanczos algorithm with full
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Fig. 9 Eigenvalues of the filtered matrix with the filter of Fig. 8

reorthogonalization and no restarts. If the degree of the polynomial is well selected
and the sub-interval contains a reasonable number of eigenvalues, this strategy
works quite well in practice.

EVSL solves large sparse real symmetric standard and generalized eigenvalue
problems. In order to enable a spectrum slicing strategy, the methods in EVSL
rely on a quick calculation of the spectral density of a given matrix, or a matrix
pair. Once this is done the driver will then cut the interval into slices so that each
slice will have approximately the same number of eigenvalues. What distinguishes
EVSL from other currently available packages is that EVSL relies entirely on
filtering techniques. While much effort has been devoted to develop effective
polynomial filtering the package also implements rational filters. The projection
methods developed in the package are the Lanczos methods without restart, or
with thick restart, as well as the subspace iteration method. Various interfaces are
available for various scenarios, including matrix-free modes, whereby the user can
supply his/her own functions to perform matrix-vector operations or to solve sparse
linear systems. A fully parallel version is currently being developed.

4.4 FEAST: Rational Filtering and Spectrum Slicing

Equation (14) indicates that the contour integration technique does not provide
a natural route for obtaining the individual occupied wave functions but rather
the summation of their amplitudes square. The FEAST algorithm was originally
proposed to reconcile both wave function and Green’s function formalism and
provide an efficient and scalable new approach for solving the eigenvalue problem
[58]. FEAST can be applied for solving both standard and generalized form of
the Hermitian or non-Hermitian problem, and it belongs to the family of contour
integration eigensolvers along with the Sakurai and Sugiura (SS) method [63, 64]. In
contrast to the Krylov-based SS method, FEAST is a subspace iteration method that
uses the Rayleigh—Ritz projection and an approximate spectral projector as a filter
[57]. Given a Hermitian generalized eigenvalue problem AX = BXA of size n, the
algorithm in Fig. 10 outlines the main steps of a generic Rayleigh-Ritz subspace
iteration procedure for computing m eigenpairs.At convergence, the algorithm
yields the B-orthonormal eigensubspace YV, = X, = {x1,x2,..., Xm}lnxm and
associated eigenvalues Ag, = A,. Taking p(B~'A) = B7'A yields the bare-
bone subspace iteration (generalization of the power method) which converges
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0. Start: Select random subspace Yy, = {¥1, Y2, - - - Ymg frxmo (0 >> Mg > m)
1. Repeat until convergence
2. Compute Q,,, = p(B71A)Y,,,
Orthogonalize @y,
Compute Ag = QI AQp, and Bg = QI BQ,,,
Solve AgW = BoW Ag with WHBoW = I, s,
Compute Y,,,, = QW
Check convergence of Yy,,, and Ag, ~for the m wanted eigenvalues
End

®© NN kW

Fig. 10 Subspace iteration method with Rayleigh—Ritz projection

towards the m dominant eigenvectors with the linear rate [Apg4+1/Aili=1,...,
61]. This standard approach is never used in practice. Instead, it is combined with
filtering using the function p which aims at improving the convergence rate (i.e.,
[0 (Amg+1)/p(Xi)li=1,..,m) by increasing the gap between wanted and unwanted
eigenvalues. An ideal filter for the interior eigenvalue problem which maps all m
wanted eigenvalues to one and all unwanted ones to zero can be derived from the
Cauchy (or Dunford) integral formula:

o) = f dz(z — 1)~ (15)
2m1 Je

where the wanted eigenvalues are located inside a complex contour C. The filter
then becomes a spectral projector, with p(B~'A) = X,, X HPp. for the eigenvector
subspace X, (i.e., p(B~'A)X,, = X,,») and can be written as:

o(B7'A) = 1 f dz(zB — A)"'B. (16)
2m Je

FEAST uses a numerical quadrature to approximately compute the action of this
filter onto a set of mq vectors along the subspace iterations. The resulting rational
function p, that approximates the filter (15) is given by

Ne

)= (17)

7Zj—2

j=1

where {7, w;}1<j<n, are the nodes and related weights of the quadrature. We obtain
for the subspace Q) in step 2 of the algorithm in Fig. 10:

Re
Qo = Pa(B ™ MYy = 3" 0,2 B — A)" BYyy = Xpu(W)X" BY,5, (18)
j=1
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Fig. 11 Variations of the rational functions pg(1) (n, = 8 contour points) associated with Gauss,
Trapezoidal, and Zolotarev quadrature rules. While Trapezoidal presents a more regular decay
than Gauss, the latter produces smaller values for the rational function just outside the edges of the
search interval |z| > 1. From the caption, we note that Zolotarev presents a dramatic drop in the
rational function at z = 1 (i.e., fastest possible decay), but this value quickly saturates

In practice, O, can be computed by solving a small number of (independent)
shifted linear systems over a complex contour.

Ne
Omy =Y ;0.  with Qj) solution of  (z;B — A)Qf#) = BY,,  (19)
j=1

As shown in Fig. 11, a relatively small number of quadrature nodes (using Gauss,
Trapezoidal, or Zolotarev [26] rules) on a circular contour suffices to produce a
rapid decay of the function p, from &1 within the search contour to ~0 outside. In
comparison with more standard polynomial filtering [61, 69], the rational filter (17)
can lead to a very fast convergence of the subspace iteration procedure. In addition,
all the m desired eigenvalues are expected to converge at the same rate (since
pa(Ai) =~ 1 if A; is located within the search interval). The convergence rate of
FEAST does not only depend upon the decay properties of the rational function
Pa» but also on the size of the search subspace my which must not be chosen smaller
than the number of eigenvalues inside the search contour (i.e., mo > m). Users of the
FEAST eigensolver[2] are then responsible for specifying an interval to search for
the eigenvalues and a subspace size m that overestimate the number of the wanted
eigenvalues. Once these conditions are satisfied, FEAST offers the following set of
appealing features:

(1) high robustness with well-defined convergence rate | pg (Amg+1)/0a (Ai)li=1,....m}



Computational Materials Science and Engineering 145

(i1) all multiplicities naturally captured;

(ii1) no explicit orthogonalization procedure on long vectors required in practice
(i.e., step-3 in Fig. 10 is unnecessary as long as By is positive definite). We
note in (18) that Q,,, is naturally spanned by the eigenvector subspace;

(iv) reusable subspace capable of generating suitable initial guess when solving
a series of eigenvalue problems such as the ones that appear in DFT-SCF
iterations;

(v) can exploit natural parallelism at three different levels: search intervals can
be treated separately (no overlap) while maintaining orthogonality—linear
systems can be solved independently across the quadrature nodes of the
complex contour—each complex linear system with my multiple right-hand
sides can be solved in parallel. Consequently, in a parallel environment, the
algorithm complexity depends on solving a single linear system using a direct
or an iterative method.

Using FEAST, the total number of processes 7, can be distributed over three
levels of parallelism: (i) eigenvalue level parallelism using i filters (i.e., i slices);
(ii) block level parallelism where all the k linear systems are solved independently;
(iii) domain level parallelism which handles the system matrices and the multiple
right-hand sides using the remaining p processes available since np, =i x k x p.
Achieving a good balance in suitable distribution of the parallel resources among
all slices would require that the number of eigenvalues in each slice be roughly the
same. Obviously, it can be quite challenging for a user to perform a customized
slicing by first guessing the distribution of the eigenvalue spectrum. Recent work on
stochastic estimates can be helpful in this regard [21, 46]. One possible estimate on
the eigenvalue count in an interval consists of approximating the trace of the spectral
projector by exploiting the rational function expansion (19), i.e.,

k ny
N 1
tr(P) ~ . ,Z—l: wj ?—1: v/ (0;B — A)"'By; (20)

The cost of this estimation can remain relatively small since the linear systems can
be solved with low accuracy and with a very small number of right-hand sides n,,.
Furthermore, if the factorizations can already be computed at each complex shift o,
they can be reused in the subsequent subspace iteration.

5 Conclusion

Atom-by-atom large-scale first-principle calculations have become critical for
supplementing the experimental investigations and obtaining detailed electronic
structure properties and reliable characterization of emerging nanostructures. First-
principle calculations most often rely on a succession of modeling trade-offs
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between accuracy and performances, which can be broadly divided into four major
steps: (1) physical, (2) mathematical, (3) discretization, and (4) computing. These
modeling steps contain different layers of numerical approximations which are most
often tightly tied together. In order to improve on current software implementation
by fully capitalizing on modern HPC computing platforms, it is essential to revisit
not one, but all the various stages of the electronic structure modeling process which
have been summarized in this chapter.

Solutions of the DFT/Kohn—Sham problem are routinely used in the calculations
of many ground state properties of small molecular systems or crystal unit-cells
containing a handful of atoms. In order to characterize large-scale complex systems
and nanostructures of current technological interest, the SCF-DFT procedure would
require repeated computations of many tens of thousands of eigenvectors, for
eigenvalue systems that can have sizes in the tens of millions. In this case, a
divide-and-conquer approach that can compute wanted eigenpairs by parts, becomes
mandatory, since windows or slices of the spectrum can be computed independently
of one another and orthogonalization between eigenvectors in different slices is no
longer necessary. All these issues have originally motivated the development of the
EVSL and FEAST approaches that were discussed here.
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and Isogeometric Discretization

Thomas J. R. Hughes, Kenji Takizawa, Yuri Bazilevs, Tayfun E. Tezduyar,
and Ming-Chen Hsu

1 Introduction

In this article we review general computational fluid dynamics (CFD) methods
that we have developed and used over an almost five-decade period on a vari-
ety of applications in science, engineering, and medicine. However, our focal
application area herein is computational medicine and in particular computational
cardiovascular analysis. This area has a long history, in fact the senior author
(TJRH) did his PhD thesis in it in 1974, and there was even earlier work than
this, but the area took on a new direction in the mid-1990s when the first patient-
specific calculations were performed with models created from medical imaging
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data, such as MRI and CT. The archival journal paper that began this trend was
[1]. Up to that time computational cardiovascular analysis was focused on very
simple two-dimensional geometries such as straight and circular channels, and thus
had almost no clinical significance. After [1], the subject began to dramatically
transform to where it is today, in which detailed analyses of a wide variety of
patient-specific configurations are routinely analyzed to diagnose disease, plan
surgeries, and interventions, such as stenting and bypass grafting, and to virtually
evaluate medical devices, such as left ventricular assist devices (LVADs), implanted
in individual patients. Our purpose here is not to describe the array of medical
applications of computational cardiovascular analysis (for these we would refer in
particular to the works of Charles A. Taylor, Alison Marsden, and Alberto Figueroa,
among others), but rather to describe the main technologies that support these
applications. This started with the seminal work of the senior author [2] and the
algorithm which has become known by the acronym SUPG, which was extracted
from the name given by the authors, the “Streamline-Upwind Petrov-Galerkin”
method. Reference [2] was the first archival journal publication of the basic ideas,
but earlier, starting in 1979, there were several now obscure, conference proceedings
papers that preceded it. We have to acknowledge that the name is not great. However,
the ideas embodied therein were important and have had significant subsequent
impact. The basic problem of computational fluid dynamics (CFD) at the time was
achieving a combination of good stability and high accuracy in one algorithm. Many
investigators viewed stability and accuracy as competing attributes. Reference [2]
proved otherwise computationally, and mathematical analyses justified what was
observed subsequently, the first being [3]. The fundamental concept employed was
“residual-based stabilization,” which added weighted residuals of the numerical
solution to basic Galerkin formulations. Residual-based methods are a priori con-
sistent and thus capable of preserving the underlying accuracy of Galerkin methods,
while at the same time appropriate weighting enhanced their stability. Numerous
“Stabilized Methods,” as they have been commonly referred to subsequently, were
then developed over the years based on this paradigm. The success of Stabilized
Methods, another somewhat unfortunate name in our opinion, cannot be over-
estimated. The number of citations these works have garnered is staggering, e.g.,
[2] alone has received approximately 6000 citations. Although the mathematical
analysis of Stabilized Methods developed as a field in its own right shortly after the
initial publications, the creation of new Stabilized Methods technologies, such as,
for example, residual-based discontinuity-capturing operators, was essentially based
largely on intuition. The breakthrough concept that derived Stabilized Methods from
the fundamental governing equations was the Variational Multiscale Method [4-7].
This provided an approach to derive consistent Stabilized Methods directly from
any system of linear or nonlinear equations in fluid dynamics, or any scientific
discipline, and it has been perhaps the most powerful development tool in the arsenal
of CFD technologies.

Stabilized Methods and the Variational Multiscale Method are fundamental to all
our works in computational cardiovascular analysis. Many other technologies have
been developed that further extend these basic building blocks to specific classes
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of problems and phenomena. This article describes the use of these methods in
computational cardiovascular analysis, with a focus on two specific areas, namely,
aortic flow phenomena [8] and patient-specific and bioprosthetic heart-valve fluid—
structure interaction [9, 10]. We wish to also emphasize that these applications
are only a small sample of activity in this rapidly growing field. There are many
formidable challenges posed by problems of these types, including highly unsteady
flows, complex diseased geometries, moving boundaries and interfaces (e.g., motion
of heart valve leaflets), contact between moving solid surfaces within a flow (e.g.,
contact between heart valve leaflets), and the fluid—structure interaction of blood
flow with cardiovascular structures, such as arteries, heart valves, etc. Many of
these challenges have been or are being addressed by the Space-Time Variational
Multiscale (ST-VMS) method [11], Arbitrary Lagrangian—Eulerian VMS (ALE-
VMS) method [12], and the VMS-based immersogeometric analysis (IMGA-VMS)
[9], which serve as the core computational methods. The special methods used
in combination with the ST-VMS include the Space-Time Slip Interface (ST-SI)
method [13], Space-Time Topology Change (ST-TC) [14] method, Space-Time
Isogeometric Analysis (ST-IGA) [15, 16], integration of these methods, and a
general-purpose NURBS mesh generation method for complex geometries [17]. The
special methods used in combination with ALE-VMS include weak enforcement of
no-slip boundary conditions [18], “sliding interfaces” [19] (the acronym “SI” will
also indicate that), and backflow stabilization [20].

Despite the focus of this article on problems of computational cardiovascular
analysis, the methods described herein are general CFD and fluid—structure interac-
tion technologies that have wide applicability to diverse scientific and engineering
applications, and therefore we also take the opportunity to draw attention to many
such applications that the authors of this chapter have been actively involved with.

1.1 Space-Time Stabilized and VMS Methods

The Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST) method [21]
was introduced for computation of flows with moving boundaries and inter-
faces (MBI), including fluid—structure interaction (FSI). In MBI computations
the DSD/SST functions as a moving-mesh method. Moving the fluid mechan-
ics mesh to follow an interface enables mesh-resolution control near the inter-
face and, consequently, high-resolution boundary-layer representation near fluid—
solid interfaces. The stabilization components of the original DSD/SST are the
Streamline-Upwind/Petrov-Galerkin (SUPG) [2] and Pressure-Stabilizing/Petrov-
Galerkin (PSPG) [21] stabilizations, which are used widely. Because of the SUPG
and PSPG components, the original DSD/SST is now called “ST-SUPS.” The ST-
VMS is the VMS version of the DSD/SST. The VMS components of the ST-VMS
are from the residual-based VMS (RBVMS) method [4, 7]. The ST-VMS has two
more stabilization terms beyond those in the ST-SUPS, and the additional terms
give the method better turbulence modeling features. The ST-SUPS and ST-VMS,
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because of the higher-order accuracy of the Space-Time (ST) framework (see [11]),
are desirable also in computations without MBI.

The ST-SUPS and ST-VMS have been applied to many classes of FSI, MBI,
and fluid mechanics problems (see [22] for a comprehensive summary). The classes
of problems include spacecraft parachute analysis for the landing-stage parachutes
[23], cover-separation parachutes [24] and drogue parachutes [25], wind-turbine
aerodynamics for horizontal-axis wind-turbine rotors [26], full horizontal-axis wind
turbines [27] and vertical-axis wind turbines [13], flapping-wing aerodynamics for
an actual locust [28], bioinspired MAVs [29] and wing-clapping [30], blood flow
analysis of cerebral aneurysms [31], stent-treated aneurysms [32], aortas [8] and
heart valves [10], spacecraft aerodynamics [24], thermo-fluid analysis of ground
vehicles and their tires [33], thermo-fluid analysis of disk brakes [34], flow-driven
filament dynamics in turbomachinery [35], flow analysis of turbocharger turbines
[36], flow around tires with road contact and deformation [37], fluid films [38], ram-
air parachutes [39], and compressible-flow spacecraft parachute aerodynamics [40].

The space—time computational methods have a relatively long track record in
arterial FSI analysis, starting with computations reported in [41, 42]. These were
among the earliest arterial FSI computations, and the core method was the ST-
SUPS. Many space—time computations were also reported in the last 15 years. In
the first 8 years of that period the space—time computations were performed for FSI
of the abdominal aorta [43], carotid artery [43], and cerebral aneurysms [44]. In
the last 7 years, the space—time computations focused on even more challenging
aspects of cardiovascular fluid mechanics and FSI, including comparative studies
of cerebral aneurysms [31], stent treatment of cerebral aneurysms [45], heart valve
flow computation [10], aortic flow analysis [8], and coronary arterial dynamics [46].

In the flow analyses presented here, the space—time framework provides higher-
order accuracy. The VMS feature of the ST-VMS addresses the computational
challenges associated with the multiscale nature of the unsteady flow. The moving-
mesh feature of the space—time framework enables high-resolution computation
near the moving heart valve leaflets.

1.2 ALE Stabilized and VMS Methods

The ALE-VMS method [12] is the VMS version of ALE [47]. It succeeded
the ST-SUPS [21] and ALE-SUPS [48] and preceded the ST-VMS. The VMS
components are from the RBVMS [4, 7]. The ALE-VMS originated from the
RBVMS formulation of incompressible turbulent flows proposed in [7] for non-
moving meshes, and may be thought of as an extension of the RBVMS to moving
meshes. As such, it was presented for the first time in [12] in the context of
FSI. To increase their scope and accuracy, the ALE-VMS and RBVMS are often
supplemented with special methods, such as those for weakly enforced no-slip
boundary conditions [18], “sliding interfaces” [19] and backflow stabilization [20].
The ALE-SUPS, RBVMS, and ALE-VMS have been applied to many classes of
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FSI, MBI, and fluid mechanics problems including ram-air parachute FSI [48],
wind-turbine aerodynamics and FSI [49, 50], vertical-axis wind turbines [50],
floating wind turbines [51], wind turbines in atmospheric boundary layers [50],
fatigue damage in wind-turbine blades [52], patient-specific cardiovascular fluid
mechanics and FSI [53, 54], biomedical-device FSI [55, 56], ship hydrodynamics
with free-surface flow and fluid—object interaction [57], hydrodynamics and FSI
of hydraulic arresting gear [58], hydrodynamics of tidal-stream turbines with free-
surface flow [59], passive-morphing FSI in turbomachinery [60], bioinspired FSI for
marine propulsion [61], and bridge aerodynamics and fluid—object interaction [62].
Recent advances in stabilized and multiscale methods may be found for stratified
incompressible flows [63], divergence-conforming discretizations of incompressible
flows [64], and compressible flows with emphasis on gas-turbine modeling [65].

In the flow analyses presented here, the VMS feature of ALE-VMS addresses
the computational challenges associated with the multiscale nature of the unsteady
flow. The moving-mesh feature of the ALE framework enables high-resolution
computation near the moving wall of a thoracic aorta.

1.3 Slip Interface Space-Time Method

The Space-Time version of the slip interface (ST-SI) method was introduced in
[13] in the context of incompressible-flow equations to retain the desirable moving-
mesh features of the ST-VMS and ST-SUPS when there are spinning solid surfaces,
such as for a turbine rotor. The mesh covering the spinning surface spins with it,
retaining the high-resolution representation of boundary layers. The starting point
in the development of ST-SI was the version of ALE-VMS for computations with
sliding interfaces [19]. Interface terms similar to those in the ALE-VMS version
are added to ST-VMS to account for the compatibility conditions for velocity and
stress at the slip interface. That accurately connects the two sides of the solution.
An ST-SI version where the slip interface is between fluid and solid domains was
also presented in [13]. The slip interface in this case is a “fluid—solid” interface
rather than a standard “fluid—fluid” interface, and enables weak enforcement of
the Dirichlet boundary conditions for the fluid. The ST-SI introduced in [34] for
the coupled incompressible-flow and thermal-transport equations retains the high-
resolution representation of the thermo-fluid boundary layers near spinning solid
surfaces. These ST-SI methods have been applied to aerodynamic analysis of
vertical-axis wind turbines [13], thermo-fluid analysis of disk brakes [34], flow-
driven filament dynamics in turbomachinery [35], flow analysis of turbocharger
turbines [36], flow around tires with road contact and deformation [37], fluid films
[38], aerodynamic analysis of ram-air parachutes [39], and flow analysis of heart
valves [10].

In the ST-SI version presented in [13] the slip interface is between a thin porous
structure and the fluid on its two sides. This enables dealing with the porosity
in a fashion consistent with how the standard fluid—fluid slip interfaces are dealt
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with and how the Dirichlet conditions are enforced weakly with fluid—solid slip
interfaces. This version also enables handling thin structures that have T-junctions.
This method has been applied to incompressible-flow aerodynamic analysis of ram-
air parachutes with fabric porosity [39]. The compressible-flow ST-SI methods were
introduced in [40], including the version where the slip interface is between a thin
porous structure and the fluid on both its sides. Compressible-flow porosity models
were also introduced in [40]. These, together with the compressible-flow space—
time SUPG method [66], extended the space—time computational analysis range to
compressible-flow aerodynamics of parachutes with fabric and geometric porosities.
That enabled space—time computational flow analysis of the Orion spacecraft drogue
parachute in the compressible-flow regime [67].

1.4 Immersogeometric VMS Analysis

The immersogeometric analysis (IMGA) was introduced in [56] as a geometrically
flexible technique for solving FSI problems involving large, complex structural
deformations and change of fluid-domain topology (e.g., structural contact). The
motivating application is the simulation of heart valve function over a complete
cardiac cycle. The method directly analyzes a spline representation of a thin
structure by immersing it into a non-body-fitted discretization of the background
fluid domain, and focuses on accurately capturing the immersed design geometry
within non-body-fitted analysis meshes. A new semi-implicit numerical method,
which we now refer to as the Dynamic Augmented Lagrangian (DAL) approach
[68], was introduced in [56] for weakly enforcing constraints in time-dependent
immersogeometric FSI problems. A mixed ALE-VMS/IMGA-VMS (ALE-IMGA-
VMS) method was developed in [9] in the framework of the Fluid—Solid Interface-
Tracking/Interface-Capturing Technique [69]; a single computation combines a
body-fitted, moving-mesh treatment of some fluid—structure interfaces, with a
non-body-fitted treatment of others. This approach enables us to simulate the
FSI of a bioprosthetic heart valve (BHV) in a deforming artery over the entire
cardiac cycle under physiological conditions, and study the effect of arterial-
wall elasticity on valve dynamics [9]. The DAL-based ALE-IMGA-VMS was
integrated with Computer-Aided Design (CAD) for heart valve analysis in [55] with
a thorough comparison between pressure-driven only and full FSI computations. An
anisotropic constitutive modeling of BHV leaflets for immersogeometric FSI, based
on the Kirchhoff-Love shell formulation for general hyperelastic materials [70],
is proposed in [71]. A divergence-conforming formulation of incompressible flow,
which gives a pointwise divergence-free velocity field everywhere in the domain,
completely eliminates mass loss error across the valve interface in [72]. Stable
coupling strategies and suitable definition of Lagrange multipliers for the DAL
numerical approach were proposed and analyzed in [73]. The FSI framework of
ALE-IMGA-VMS was employed in patient-specific valve design in [74]. The DAL-
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based IMGA has also been combined with surrogate modeling in [58] for an efficient
and effective use of FSI to optimize the design of a hydraulic arresting gear.

1.5 Stabilization Parameters

The methods discussed in this chapter all have some embedded stabilization
parameters that play a significant role (see [13, 75]). There are many ways of
defining these stabilization parameters (for examples, see [33, 37, 76-80]). The
stabilization-parameter definitions used in the computations reported in this article
can be found from the references cited in the sections where those computations are
described.

1.6 Topology Change Space-Time Method

The Topology Change Space-Time method (ST-TC) [14] was introduced for
moving-mesh computation of flow problems with topology change, such as contact
between solid surfaces. Even before the ST-TC, the ST-SUPS and ST-VMS, when
used with robust mesh update methods, have proven effective in flow computations
where the solid surfaces are in near contact or create other near topology change.
Many classes of problems can be solved that way with sufficient accuracy by
approximating actual contact with a small gap between the solid surfaces. For exam-
ples of such computations, see the references mentioned in [14]. The ST-TC made
moving-mesh computations possible even when there is an actual contact between
solid surfaces or other topology change. By collapsing elements as needed, without
changing the connectivity of the “parent” mesh, the ST-TC can handle an actual
topology change while maintaining high-resolution boundary layer representation
near solid surfaces. This enabled successful moving-mesh computation of heart
valve flows [10], wing clapping [30], and flow around a rotating tire with road
contact and prescribed deformation [37].

For more on the ST-TC, see [14]. In the computational analyses here, the ST-TC
enables moving-mesh computation even with the topology change created by the
actual contact between the valve leaflets. It deals with the contact while maintaining
high-resolution flow representation near the leaflet.

1.7 Topology Change Slip Interface Space-Time Method

The Topology Change Slip Interface Space—Time Method (ST-SI-TC) is the inte-
gration of the ST-SI and ST-TC. A fluid—fluid slip interface requires elements on
both sides of the interface. When part of a slip interface needs to coincide with a
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solid surface, which happens, for example, when the solid surfaces on two sides
of the interface come into contact or when the interface reaches a solid surface,
the elements between the coinciding slip interface part and the solid surface need
to collapse with the ST-TC mechanism. The collapse switches the slip interface
from the fluid—fluid type to the fluid—solid type. With that, a slip interface can be
a mixture of the fluid—fluid and fluid—solid types. With the ST-SI-TC, the elements
collapse and are reborn independent of the nodes representing a solid surface. The
ST-SI-TC enables high-resolution flow representation even when parts of the slip
interface are coinciding with a solid surface. It also enables dealing with contact
location change and contact sliding. This was applied to heart valve flow analysis
[10] and tire aerodynamics with road contact and deformation [37].

For more on the ST-SI-TC, see [81]. In the computational analyses presented
here, the ST-SI-TC enables high-resolution representation of the boundary layers
even when the contact is between leaflets that are in mesh sectors connected by
slip interfaces. It enables contact location change and contact sliding between the
leaflets.

1.8 Space-Time IGA

The ST-IGA, introduced in [11], is the integration of the space—time framework with
isogeometric discretization, motivated by the success of NURBS meshes in spatial
discretization [12, 19, 53, 82]. Computations with the ST-VMS and ST-IGA were
first reported in [11] in a 2D context, with IGA basis functions in space for flow past
an airfoil, and in both space and time for the advection equation. Using higher-order
basis functions in time enables getting full benefit out of using higher-order basis
functions in space. This was demonstrated with the stability and accuracy analysis
given in [11] for the advection equation.

The ST-IGA with IGA basis functions in time enables a more accurate represen-
tation of the motion of the solid surfaces and a mesh motion consistent with that.
This was pointed out in [11] and demonstrated in [15]. It also enables more efficient
temporal representation of the motion and deformation of the volume meshes, and
more efficient remeshing. These motivated the development of the ST/NURBS
Mesh Update Method (STNMUM) [15, 79]. The STNMUM has a wide scope that
includes spinning solid surfaces. With the spinning motion represented by quadratic
NURBS in time, and with sufficient number of temporal patches for a full rotation,
the circular paths are represented exactly. A “secondary mapping” [11] enables
also specifying a constant angular velocity for invariant speeds along the circular
paths. The space—-time framework and NURBS in time also enable, with the “ST-
C” method, extracting a continuous representation from the computed data and, in
large-scale computations, efficient data compression [83]. The STNMUM and the
ST-IGA with IGA basis functions in time have been used in many 3D computations.
The classes of problems solved are flapping-wing aerodynamics for an actual locust
[28], bioinspired MAVs [29] and wing-clapping [30], separation aerodynamics of
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spacecraft [24], aerodynamics of horizontal-axis [31] and vertical-axis [13] wind
turbines, thermo-fluid analysis of ground vehicles and their tires [33], thermo-fluid
analysis of disk brakes [34], flow-driven string dynamics in turbomachinery [35],
and flow analysis of turbocharger turbines [36].

The ST-IGA with IGA basis functions in space enables more accurate represen-
tation of the geometry and increased accuracy in the flow solution. It accomplishes
that with fewer control points, and consequently with larger effective element sizes.
That in turn enables using larger time-step sizes while keeping the Courant number
at a desirable level for good accuracy. It has been used in space—time computational
flow analysis of turbocharger turbines [36], flow-driven string dynamics in turboma-
chinery [35], ram-air parachutes [39], spacecraft parachutes [67], aortas [8], heart
valves [10], tires with road contact and deformation [37], and fluid films [38]. Using
IGA basis functions in space is now a key part of some of the newest Zero Stress
State (ZSS) estimation methods [84] and related shell analysis [85].

For more on the ST-IGA, see [16]. In the computational flow analyses presented
here, the ST-IGA enables more accurate representation of the cardiovascular
geometries, increased accuracy in the flow solution, and using larger time-step sizes.

1.9 Space-Time IGA with Slip Interface and Topology Change

The turbocharger turbine analysis [36] and flow-driven string dynamics in turboma-
chinery [35] were based on the integration of the ST-SI and ST-IGA. The IGA basis
functions were used in the spatial discretization of the fluid mechanics equations
and also in the temporal representation of the rotor and spinning-mesh motion.
That enabled accurate representation of the turbine geometry and rotor motion and
increased accuracy in the flow solution. The IGA basis functions were used also in
the spatial discretization of the string structural dynamics equations. That enabled
increased accuracy in the structural dynamics solution, as well as smoothness in the
string shape and fluid dynamics forces computed on the string.

The ram-air parachute analysis [39] and spacecraft parachute compressible-flow
analysis [67] were based on the integration of the ST-IGA, the ST-SI version that
weakly enforces the Dirichlet conditions, and the ST-SI version that accounts for the
porosity of a thin structure. The ST-IGA with IGA basis functions in space enabled,
with relatively few number of unknowns, accurate representation of the parafoil
and parachute geometries and increased accuracy in the flow solution. The volume
mesh needed to be generated both inside and outside the parafoil. Mesh generation
inside was challenging near the trailing edge because of the narrowing space. The
spacecraft parachute has a very complex geometry, including gores and gaps. Using
IGA basis functions addressed those challenges and still kept the element density
near the trailing edge of the parafoil and around the spacecraft parachute at a
reasonable level.

The heart valve analysis [10] was based on the integration of the ST-SI, ST-
TC, and ST-IGA, which we refer to as ST-SI-TC-IGA. The ST-SI-TC-IGA, beyond
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enabling a more accurate representation of the geometry and increased accuracy in
the flow solution, kept the element density in the narrow spaces near the contact
areas at a reasonable level. When solid surfaces come into contact, the elements
between the surface and the slip interface collapse. Before the elements collapse,
the boundaries could be curved and rather complex, and the narrow spaces might
have high-aspect-ratio elements. With NURBS elements, it was possible to deal
with such adverse conditions rather effectively.

In computational analysis of flow around tires with road contact and deformation
[37], the ST-SI-TC-IGA enables a more accurate representation of the geometry
and motion of the tire surfaces, a mesh motion consistent with that, and increased
accuracy in the flow solution. It also keeps the element density in the tire grooves
and in the narrow spaces near the contact areas at a reasonable level. In addition, we
benefit from the mesh generation flexibility provided by using SIs.

An SI provides mesh generation flexibility in a general context by accurately
connecting the two sides of the solution computed over nonmatching meshes. This
type of mesh generation flexibility is especially valuable in complex-geometry flow
computations with isogeometric discretization, removing the matching requirement
between the NURBS patches without loss of accuracy. This feature was used in
the flow analysis of heart valves [10], turbocharger turbines [36], and spacecraft
parachute compressible-flow analysis [67].

For more on the ST-SI-TC-IGA, see [10]. In the computations presented here,
the ST-SI-TC-IGA is used in the heart valve flow analysis, for the reasons given and
as described in an earlier paragraph of this section.

1.10 General-Purpose NURBS Mesh Generation Method

To make the ST-IGA use, and in a wider context the IGA use, even more practical
in computational flow analysis with complex geometries, NURBS volume mesh
generation needs to be easier and more automated. To that end, a general-purpose
NURBS mesh generation method was introduced in [17]. The method is based
on multi-block-structured mesh generation with existing techniques, projection of
that mesh to a NURBS mesh made of patches that correspond to the blocks, and
recovery of the original model surfaces. The method is expected to retain the
refinement distribution and element quality of the multi-block-structured mesh that
we start with. Because there are ample good techniques and software for generating
multi-block-structured meshes, the method makes general-purpose mesh generation
relatively easy.

Mesh-quality performance studies for 2D and 3D meshes, including those for
complex models, were presented in [86]. A test computation for a turbocharger
turbine and exhaust manifold was also presented in [86], with a more detailed
computation in [36]. The mesh generation method was used also in the pump-
flow analysis part of the flow-driven string dynamics presented in [35] and in the
aorta flow analysis presented in [8]. The performance studies, test computations,
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and actual computations demonstrated that the general-purpose NURBS mesh
generation method makes the IGA use in fluid mechanics computations even more
practical.

For more on the general-purpose NURBS mesh generation method, see [17, 86].
In the computations presented here, the method used in the aorta flow analysis.

1.11 Outline of the Remaining Sections

We provide the governing equations in Sect.2. The ST-VMS and ST-SI are
described in Sect. 3, and the ALE-VMS and IMGA-VMS in Sect. 4. In Sect. 5 we
provide some brief comments on the parallel computations. In Sects. 6 and 7, as
examples of space—time computations, we present an aortic-valve flow analysis
and a patient-specific aorta flow analysis. In Sect.8, as an example of IMGA
computations, we present a patient-specific heart valve design and analysis. The
concluding remarks are given in Sect. 9.

2 Governing Equations

2.1 Incompressible Flow

Let £2, C R"s¢ be the spatial domain with boundary I} attime ¢ € (0, T'), where ng
is the number of space dimensions. The subscript ¢ indicates the time-dependence
of the domain. The Navier—Stokes equations of incompressible flows are written on
£2; and Vt € (0, T) as

9
p(a—l;—i—qu—f)—V-a:O, 1)

V.u=0, )

where p, u, and f are the density, velocity, and body force. The stress tensor
o(u,p) = —pl + 2ue(u), where p is the pressure, I is the identity tensor,
uw = pv is the viscosity, v is the kinematic viscosity, and the strain rate e(u) =
(Vu + (Vu)T) /2. The essential and natural boundary conditions for Eq. (1) are
represented as u = g on (I“,)g and n- 0 = h on (I}),, where n is the unit normal
vector and g and h are given functions. A divergence-free velocity field up(x) is
specified as the initial condition.
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2.2 Structural Mechanics

In this article we will not provide any of our formulations requiring fluid and
structure definitions simultaneously; we will instead give reference to earlier journal
articles where the formulations were presented. Therefore, for notation simplicity,
we will reuse many of the symbols used in the fluid mechanics equations to
represent their counterparts in the structural mechanics equations. To begin with,
§£2; C R™ and I} will represent the structure domain and its boundary. The
structural mechanics equations are then written, on £2; and V¢ € (0, T), as

d2y
P\ gz~ -V.o=0, 3)

where y and o are the displacement and Cauchy stress tensor. The essential and
natural boundary conditions for Eq. (3) are represented asy =gon (/7); andn-o =
h on (I7)y. The Cauchy stress tensor can be obtained from

o = J 'FSFT, 4)

where F and J are the deformation gradient tensor and its determinant, and S is the
second Piola—Kirchhoff stress tensor. It is obtained from the strain-energy density
function ¢ as follows:

a
S=—, 5
5E )
where E is the Green—Lagrange strain tensor:
1
E=-(C-D, (6)
2
and C is the Cauchy—Green deformation tensor:
C=FT.F. (7
From Egs. (5) and (6),
dp
5C (®)

2.3 Fluid-Structure Interface

In an FSI problem, at the fluid—structure interface, we will have the velocity and
stress compatibility conditions between the fluid and structure parts. The details on
those conditions can be found in Section 5.1 of [75].
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3 ST-VMS and ST-SI

We include from [13, 81] the ST-VMS and ST-SI methods.
The ST-VMS is given as

h
/wh-p(aalt+uh-Vuh—fh)dQ+/ ew") : o, p")dQ
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are the residuals of the momentum equation and incompressibility constraint. The
test functions associated with the velocity and pressure are w and g. A superscript
“h” indicates that the function is coming from a finite-dimensional space. The
symbol Q,, represents the ST slice between time levels n and n + 1, (Py,)y, is the part
of the lateral boundary of that slice associated with the traction boundary condition
h, and §2,, is the spatial domain at time level n. The superscript “e” is the ST element
counter, and 7 is the number of ST elements. The functions are discontinuous in
time at each time level, and the superscripts “—” and “+” indicate the values of
the functions just below and just above the time level. See [13, 33, 76, 77, 79] for
the definitions used here for the stabilization parameters tsyps and v sic. For more
ways of calculating the stabilization parameters in finite element computation of
flow problems, see [37, 78, 80]).
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Remark 1 The ST-SUPS method can be obtained from the ST-VMS method by
dropping the eighth and ninth integrations.

In the ST-SI, labels “Side A” and “Side B” represent the two sides of the SI. We
add boundary terms to Eq. (9). The boundary terms are first added separately for the
two sides, using test functions wg and qz and wﬁ and q{g’. Putting them together, the
complete set of terms added becomes

B /ua,z)m (s — k) - 5 (v — ) 0P
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a=1a=1
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Here, (P,)g; is the SI in the ST domain, v is the mesh velocity, neps and ney are the
number of spatial and temporal element nodes, N7 is the basis function associated
with spatial and temporal nodes a and «, yact = 1, and C is a nondimensional
constant. For our element length definition, we typically set C = 1.

A number of remarks were provided in [13] to explain the added terms and to
comment on related interpretations. We refer the reader interested in those details to
[13].

Remark 2 A coefficient yacr was added in [81] to the sixth integration so that
we have the option of using yacr = —1. This option was added, in [40], also in
the context of compressible flows. Using yact = 1 in a discontinuous Galerkin
method was introduced in the symmetric interior penalty Galerkin method [87], and
using yacr = —1 was introduced in the nonsymmetric interior penalty Galerkin
method [88]. Stabilized methods based on both yac; = 1 and —1 were reported
in [18] in the context of the advection—diffusion equation. In the computations
reported in this article, we set yacy = 1.

4 ALE-VMS and ALE-IMGA-VMS

The ALE-VMS formulation is posed on a spatial domain §2 that is discretized into
elements £2¢. While {£2¢}, £2, and its boundary I" are time-dependent, when there
is no risk of confusion, we drop the subscript ¢ to simplify notation. The superscript
h indicates association with discrete function spaces defined over 2, which moves
with the velocity 6", which is the same as the mesh velocity v in Sect. 3. The semi-
discrete formulation is given as

ah
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coordinates X of the spatial configuration, 8 (> 0) is associated with the backflow
stabilization (see Remark 4), and {-}_ isolates the negative part of its argument. The
additional stabilization parameter T is defined as

is the time derivative taken with respect to the fixed reference

—12
T= (TSUPer(Uh, " - (G) - tsupstm(u”, Ph)> , (20)

where G generalizes element size to physical elements mapped through x(&) from
a parametric parent element: G;; = & ;& .

The ALE-VMS formulation can be combined with the immersogeometric analysis
(IMGA) [56], which we refer to as the ALE-IMGA-VMS method [9, 55, 74]. In the
IMGA problem, the kinematic and traction compatibility conditions at the immersed
fluid—structure interface are imposed weakly using the DAL. The details of this
method can be found in [56, 68].

Remark 3 To improve mass conservation of the ALE-IMGA-VMS technique near
immersed boundaries, the following modification to tsyps is introduced in [56]:

~1/2
4 2

TSUPS = (S (—2+(uh—ﬁh)-G(uh—ﬁh)+C1 (ﬁ> G:G)) .
At Jo

Almost everywhere in §£2 we set s = 1, which yields a traditional definition of
tsups. However, in an O(h) neighborhood of the immersed fluid—structure interface
we set s > 1, which effectively reduces the size of Tgyps in that region. A theoretical
motivation for this scaling is given in [72], and a numerical investigation of its effect
is given in [73].

ey

Remark 4 Unsteady flow computations may sometimes diverge due to significant
inflow through the Neumann boundary I"h; this is known as backflow divergence
and is frequently encountered in cardiovascular simulations. In order to preclude
backflow divergence, a backflow stabilization method (the B term in Eq. (19))
originally proposed in [89] and further studied in [90] is employed in our ALE-
VMS and ALE-IMGA-VMS formulations.

Remark 5 The T term of Eq. (19) is not derived from VMS analysis; it is an
additional residual-based stabilization term that is included to provided extra
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stabilizing dissipation near steep solution gradients while maintaining consistency
with the exact solution. It was introduced in [1] and bears resemblance to the DCDD
[76] and YZp [91, 92] discontinuity-capturing methods.

5 Parallel Computations

Parallel computations with space—time methods go as far back as 1992 [93], with
the 3D computations reported as early as 1993 [94]. All computations reported in
this chapter were carried out on parallel computing platforms. The number of cores
used in a typical computation ranges from 96 to 576. Because the computations were
mostly for the purpose of testing a new computational method, parallel efficiency
was not a high priority. Still the efficiencies we see are high enough to justify the
use of the maximum number of cores available in the computer resources we have.

6 ST Computation: Aortic-Valve Flow Analysis

This section is from [10].

6.1 Geometry and Leaflet Motion

We have a typical aortic-valve model, such as the one in [30]. The model, shown in
Fig. 1, has three leaflets and one main outlet, corresponding to the beginning of the
aorta. The leaflet motion is prescribed. They move in an asymmetric fashion. We
identify the individual leaflets as shown in Fig. 2. The leaflet positions are defined
by means of a pseudo-time parameter 6, with the values 0 and 1 corresponding to
the fully open and fully closed positions. The prescribed motion is given through 6
as shown in Fig. 3.

6.2 Mesh, Flow Conditions and Computational Conditions

We create the mesh with five SIs, with three of them connecting the mesh sectors
containing the leaflets in the valve region of the aorta (see Fig. 4). The other two SIs,
which are the top and bottom circular planes in Fig. 4, connect the meshes in the
inlet and outlet regions to the valve region. They are for independent meshing in the
inlet and outlet regions. The volume mesh is made of quadratic NURBS elements.
The number of control points is 84,534, and the number of elements is 54,000.
We prescribe the motion of the interior control points, and specify in each domain
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Fig. 1 Aortic-valve flow
analysis. Model geometry.
Aorta, leaflets, and sinuses.
The left picture shows the
entire computational domain,
and the right picture is the
zoomed view of the valve

Fig. 2 Aortic-valve flow
analysis. Leaflet
identification. Leaflet 1 (red),
2 (green), and 3 (blue)

Fig. 3 Aortic-valve flow
analysis. Leaflet motion.
Pseudo-time parameter 6 as a
function of time for each of
the three leaflets
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Fig. 4 Aortic-valve flow
analysis. Aortic valve and the
five SIs

Fig. 5 Aortic-valve flow analysis. A set of selected NURBS elements, from when the valve is
fully open (top-left) to when it is fully closed (bottom-right). The corresponding 6 values are 0.0,
0.42, 0.97, and 1.0. The right pictures are the zoomed views around the leaflet

the master—slave mapping for all leaflet positions. Figure 5 shows a set of selected
NURBS elements to illustrate how elements collapse.

The density and kinematic viscosity of the blood are 1050 kg/m? and
4.2x107% m?/s. The boundary conditions are no-slip on the arterial walls and
the leaflets, traction-free at the outflow boundary, and uniform velocity at the inflow
boundary, with a temporal profile as shown in Fig. 6. The cycle period is 0.712 s.
The no-slip condition on the arterial walls is enforced weakly.
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Fig. 6 Aortic-valve flow 0.8

analysis. Inflow velocity (two
0.6
0.4
0.2 /
0.0

cycles)
0.000 0.712 1.424
Time (s)

Velocity (m/ s)

We use the ST-SUPS method. The time-step size is 4.00x 107> s. There are
three nonlinear iterations at each time step. The number of GMRES iterations per
nonlinear iteration is 300.

6.3 Results

Figure 7 shows the isosurfaces corresponding to a positive value of the second
invariant of the velocity gradient tensor, colored by the velocity magnitude. The
viewing angle is as we see the leaflets in Fig. 2. We have a biased flow jet due to the
asymmetric leaflet closing. This can be seen from the third, fourth, and fifth pair of
pictures in Fig. 7. We also report the wall shear stress (WSS) on the leaflet surfaces.
The viewing angle is as we see the leaflets in Fig. 8. Figure 9 shows the magnitude
of the WSS on the upper and lower surfaces of the leaflets.

7 ST Computation: Patient-Specific Aorta Flow Analysis

This section is from [8].

We start with a geometry obtained from medical images and then use cubic T-
splines to represent the surface. The density and kinematic viscosity of the blood
are 1050 kg/m> and 4.2x107% m?/s.

7.1 Conditions

The computational domain and boundary conditions are shown in Fig. 10. The
diameters are given in Table 1. The inflow flow rate, plug flow, is in Fig. 11. The
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05 1.0

Fig. 7 Aortic-valve flow analysis. Isosurfaces corresponding to a positive value of the second
invariant of the velocity gradient tensor, colored by the velocity magnitude (m/s). The frames are
for t = 0.804, 0.984, 1.028, 1.072, 1.080, and 1.252 s

Fig. 8 Aortic-valve flow =il
analysis. Viewing angle for
reporting the WSS. The
leaflet identification is same
as in Fig. 2

peak value of the average inflow velocity is 0.709 m/s. We estimate the outflows as
distributed by Murray’s law [95]:

0, x D3, (22)
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Fig. 9 Aortic-valve flow analysis. Magnitude of the WSS (Pa). Upper surface (left) and lower
surface (right). The frames are for ¢ = 0.804, 0.984, 1.028, 1.072, 1.080, and 1.252 s

Fig. 10 Patient-specific aorta *~N
flow analysis. Geometry and \1
boundary conditions o
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Table 1 Patient-specific aorta flow analysis
Inlet Outlet 1 Outlet 2 Outlet 3 Outlet 4 Outlet 5
Diameter 25.6 5.81 3.90 4.41 6.43 19.9

Diameter (mm) of the inlet and outlets. The outlets are listed in the order of closeness to the inlet

Fig. 11 Patient-specific aorta — 400
flow analysis. Volumetric §
flow rate at the inlet é

o 300

©

o

2 200

ke

o

Q

= 100

)

IS

3

L2 o0

0.0 0.2 0.4 0.6 0.8 1.0

Time (s)

where Q, is the volumetric outflow rate, and the outlet diameter D,, is defined based
on the outlet area A,:

D, =2,/ =2. (23)

We form a plug flow profile at the smaller outlets, and the main outlet is set to
traction free.

7.2 Mesh

We create a quadratic NURBS mesh from the T-spline surface, using the technique
introduced in [17, 86]. Figure 12 shows one of the NURBS patches and five of the
patches together to illustrate the block-structured nature of the NURBS mesh. The
function space has only C continuity between the patches. Figure 13 shows the
base mesh. Figure 14 shows the base and refined meshes at the inlet. The meshes
are refined by knot insertion, therefore the geometry is unchanged, and the basis
functions for the coarser meshes are subsets of the basis functions for the finer
meshes. The refinement is in the normal direction, and at each refinement, the
element thickness is halved in half of the most refined layers. For the base mesh,
the element thickness in the normal direction is approximately 1% of the local
diameter. There is no refinement in the tangential directions. During the refinement,
the original plug flow profiles of the base mesh are retained. Table 2 shows the
number of elements and control points.
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Fig. 12 Patient-specific aorta flow analysis. NURBS control mesh. One of the patches (top) and
five of the patches together (bottom)

Fig. 13 Patient-specific aorta
flow analysis. Base mesh.
Control mesh and surface
(green). Red points are
control points
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Fig. 14 Patient-specific aorta flow analysis. Control mesh at the inlet. Base Mesh, Refinement
Mesh 1, Refinement Mesh 2, Refinement Mesh 3, and Refinement Mesh 4

Table 2 Patient-specific

; nc ne
aorta flow analysis

Base Mesh 202,497 | 151,513
Refinement Mesh 1 | 266,437 | 205,733
Refinement Mesh 2 | 330,377 | 259,953
Refinement Mesh 3 | 394,317 | 314,173
Refinement Mesh 4 | 458,257 | 368,393
Number of control points (nc) and ele-

ment (ne) for the quadratic NURBS meshes
used in the computations

7.3 Mesh Refinement Study

We compute with the 5 meshes in Table 2. The time-step sizes are At = 0.0025 s
for Base Mesh and Refinement Mesh 1 and 2, and Ar = 0.00125 s for Refinement
Mesh 3 and 4. The number of nonlinear iterations per time step is 3, and the number
of GMRES iterations per nonlinear iteration is 800 for Base Mesh and Refinement
Mesh 1, and 1200, 1400, and 1600 for Refinement Mesh 2, 3, and 4, respectively.
The ST-SUPS method is used and the stabilization parameters are those given by
Egs. (2.4)—(2.6), (2.8), and (2.10) in [13].

We first compute 9 cycles with Base Mesh, and the initial condition for the refined
meshes is obtained by knot insertion. The solution reported here is for the 10th cycle.
Figure 15 shows the solution computed with Refinement Mesh 4. At the peak flow
rate a complex flow pattern is formed, and the vortex structure breaks down into
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Volumetric Flow Rate (m¢/s)

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

Fig. 15 Patient-specific aorta flow analysis. Mesh refinement study. Computed with Refinement
Mesh 4. Isosurfaces corresponding to a positive value of the second invariant of the velocity

gradient tensor, colored by the velocity magnitude (m/s) (fop). The time instants are shown with
circles (bottom)

smaller structures during the deceleration. The magnitude of the WSS (hy) at the
peak flow rate is shown for each mesh in Fig. 16. Qualitatively, all results are in
good agreement, and the convergence can be seen with refinement. To quantify the
mesh refinement level, we calculate the y™ value for the first-element thickness 4 as

yi=— (24)
where the friction velocity u* is based on the computed value of the WSS as follows:

u* = M 25)
0
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Fig. 16 Patient-specific aorta flow analysis. Mesh refinement study. WSS (dyn/cmz) at the peak
flow rate

, l ‘ / !

Refinement Refinement Refinement Refinement

Base Mesh Mesh 1 Mesh 2 Mesh 3 Mesh 4
0.1 1 10

Fig. 17 Patient-specific aorta flow analysis. Mesh refinement study. y* value for the first-element
thickness, based on the WSS computed at the peak flow rate

Figure 17 shows the spatial distribution of y* at the peak flow rate. It shows that
for the meshes used here, y™ range is from approximate maximum 10 to less than
1. Comparing Figs. 16 and 17, we see that the WSS values computed over different
meshes are in agreement where yt<1.
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Fig. 18 Patient-specific aorta flow analysis. Mesh refinement study. TAWSS (dyn/cm?)

Fig. 19 Patient-specific aorta 40
flow analysis. Mesh

refinement study. Spatially o
averaged WSS during a cycle § 30
g
=
20
w0
wn
=
§° 10
g
<
= ]
| | | |
0.0 0.2 0.4 0.6 0.8 1.0
Time (s)
—— Base Mesh —— Refinement Mesh 1 —— Refinement Mesh 2
—— Refinement Mesh 3~ —— Refinement Mesh 4

The time-averaged WSS magnitude (TAWSS) is shown in Figs. 18, and 19 shows
the spatially averaged WSS magnitude in a cycle. Figure 20 shows the oscillatory
shear index (OSI), defined as

osi= |1 HfoThﬁdtH (26)
2 Jo |nfar )

Overall for OSI, even Base Mesh is in a good agreement with others. However, if
we compare details such as branches, we see some difference even where y+ value
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Refinement Refinement Refinement Refinement
Base Mesh Mesh 1 Mesh 2 Mesh 3 Mesh 4
I T e
0.0 0.5

Fig. 20 Patient-specific aorta flow analysis. Mesh refinement study. OSI

is small. To see the flow differences, using the solution from Refinement Mesh 4
as the reference solution, we inspect the velocity difference ||u2 — uZ ||, where the
subscripts indicate Base Mesh and Refinement Mesh k.

Remark 6 To calculate the velocity difference, all meshes and corresponding
solutions are refined by using the knot-insertion technique, and the control variables
are obtained based on Refinement Mesh 4. The visualization is done after taking
the difference between the control variables, interpolating the vector, and taking its
magnitude.

The spatial average of the difference is maximum at around 0.5 s. This indicates
that the vortex breakdown, due to the small-scale flow behavior that needs to be
dealt with, would not be easy to resolve. Figure 21 shows the velocity difference at
0.5s.

In summary, good accuracy in the WSS magnitude can be obtained with locally
good representation, and the OSI requires a good flow representation overall,
including the vortex breakdown.

8 IMGA Computation: Patient-Specific Heart Valve Design
and Analysis

This section is from [74], where more details can be found.
Here we present a novel framework for designing personalized prosthetic heart
valves using IMGA-VMS. We parameterize the leaflet geometry using several key
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Fig. 21 Patient-specific aorta flow analysis. Mesh refinement study. Velocity difference
||u£‘ — uﬁ H (m/s) at 0.5 s, where the subscripts indicate Base Mesh and Refinement Mesh k

design parameters. This allows for generating various perturbations of the leaflet
design for the patient-specific aortic root reconstructed from the medical image data.
Each design is analyzed using the IMGA-VMS FSI methodology, which allows us
to efficiently simulate the coupling of the deforming aortic root, the parametrically
designed prosthetic valves, and the surrounding blood flow under physiological
conditions. A parametric study is carried out to investigate the influence of the
geometry on heart valve performance, indicated by the effective orifice area (EOA)
and the coaptation area (CA). Finally, the FSI simulation results of a design that
reasonably well balances the EOA and CA are presented.

8.1 Trivariate NURBS Parameterization of the Ascending
Aorta

To obtain a volumetric parameterization of the artery and lumen, we first construct a
trivariate multi-patch NURBS in a regular shape, e.g., a tubular domain, then solve a
linear elastostatic, mesh moving problem [94] for the displacement from this regular
domain to a deformed configuration that represents the artery and lumen. However,
solving a linear elastostatic problem to obtain the deformed interior mesh is only
effective for relatively mild, translation-dominant deformations. For scenarios that
involve large deformations, such as the deformation of a straight tubular domain
into a curved shape of a patient-specific ascending aorta, the interior elements can
become severely distorted. To avoid this, we first obtain a centerline along the axial
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(d) (e) ()
Fig. 22 The construction of the volumetric NURBS discretization of the blood and the artery
wall domains. (a) Cross sections of the artery wall surface. (b) Circular cross sections. (c) NURBS

tubular surface and corresponding control points. (d) Primitive volume mesh. (e) Deformed volume
mesh. (f) h-refined volume mesh

direction of a patient-specific artery wall surface. Along this centerline, we define a
number of cross sections corresponding to the control points of the NURBS artery
wall surface in the axial direction. (These cross sections are shown as blue curves
in Fig.22a.) At each cross section, we calculate its unit normal vector nc and the
effective radius rc, which is determined such that the area of a circle calculated
using this radius matches the area of the cross section. (A circle corresponding to
one of the cross sections is shown in the red curve in Fig. 22a.) Finally, using this
information, we construct a tubular NURBS surface that has the same control-point
and knot-vector topology as the target patient-specific artery wall surface, as shown
in Fig. 22b, c. Another tubular surface corresponding to the lumenal surface is also
constructed, using the same cross sections but smaller effective radii coming from
the lumenal NURBS surface.

These two tubular NURBS surfaces are used to construct a primitive trivariate
multi-patch NURBS that includes the solid and fluid subdomains, shown in gray
and red, respectively, in Fig. 22d. Basis functions are made C%-continuous at the
fluid—solid interface, so that velocity functions defined using the resulting spline
space conform to standard fluid—structure kinematic constraints while retaining the
ability to represent non-smooth behavior across the material interface. The resulting
volumetric NURBS can then be morphed to match the patient-specific geometry
with minimal rotation, so an elastostatic problem can provide an analysis-suitable
parameterization. Displacements at the ends of the tube are constrained to remain
within their respective cross sections. Finally, we refine the deformed trivariate
NURBS for analysis purposes, by inserting knots at desired locations, such as
around the sinuses and the flow boundary layers. The final volumetric NURBS
discretization of the patient-specific ascending aorta is shown in Fig. 22f.
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8.2 Parametric BHV Design

To design effective prosthetic valves for specific patients, we focus specifically on
the leaflet geometry and assume that non-leaflet components of stentless valves
move with the aortic root and do not affect aortic deformation or flow. Starting
from the NURBS surface of a patient-specific root, valve leaflets are parametrically
designed as follows. We first pick nine “key points” located on the ends of
commissure lines and the bottom of the sinuses. The positions of these points are
indicated by blue spheres in Fig.23. These define how the leaflets attach to the
sinuses. The key points solely depend on the geometry of the patient-specific aortic
root and will remain unchanged for different valve designs. We then parameterize
families of univariate B-splines defining the free edges and radial “belly curves”
of the leaflets. These curves are shown in red and green in Fig. 23. The attachment
edges, free edges, and belly curves are then interpolated to obtain smooth bivariate
B-spline representations of the leaflets.

Figure 24 shows the details of parameterizing the free-edge curve (red) and the
belly-region curve (green). In Fig. 24, p1, p2, and p3 are the key points on the top
of the commissure lines and p4 is the key point on the sinus bottom, as labeled in
Fig.23. Points p;-p3 define a triangle Ap;_3, with pc being its geometric center.
The unit vector pointing from pc to pn is denoted by tp, and the unit normal vector
of Apj_3 pointing downwards is np. We first construct the free edge curve as a
univariate quadratic B-spline curve determined by three control points, p1, pg, and
p2. The location of py is defined by pf = pc + xitp + x2np. By changing x; and
x2 to control the location of pg, the curvature and the height of the free edge can
be parametrically changed. We then take pm as the midpoint of the free edge, the
point py,, and the key point p4 to construct a univariate quadratic B-spline curve
(green). The point py, is defined by py, = po + x3np, where po is the projection
of pm onto Apq_3 along the direction of np. Finally, the fixed attachment edges
and the parametrically controlled free edge and belly curve are used to construct a

Fig. 23 The key geometric features used to parametrically control the valve designs. The blue key
points define the attachment of the valve to the root. The red and green curves are parametrically
controlled for valve design
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Fig. 24 The parametric

control of the valve designs.

The key points (blue spheres)

are identical to those in the
right plot of Fig. 23. x1, x2, o P
and x3 control the location of

P and Py, and thus control

the curvature and height of

the red free edge, and the
curvature of the green belly

curve

cubic B-spline surface with desired parameterization. By choosing x1, x2, and x3 as
design variables, we can parametrically change the free edge and belly curve, and
therefore change the valve design. This procedure is implemented in an interactive
geometry modeling and parametric design platform [96].

8.3 Application to BHV Design

To determine an effective BHV design, we first need to identify quantitative
measures of its performance. We focus on two quantities of clinical interest: to
measure the systolic performance, we evaluate the EOA, which indicates how well
the valve permits flow in the forward direction. For a quantitative evaluation of the
diastolic performance, we measure the CA, which indicates how well the valve seals
and prevents flow in the reverse direction. In this section, we study the impact of the
design variables x1, x2, and x3 on our two quantities of interest.

Constitutive parameters in the governing equations are held constant over the
design space. Fluid, solid, and shell structure mass densities are set to 1.0 g/cm>. The
parameters of the Fung-type material model for the shell structure are ¢y = 2.0x 10°
dyn/cmz, c1 = 2.0x 10° dyn/cmz, and ¢p = 100. The thickness of the leaflet is set
to 0.0386 cm. The bulk and shear moduli for the arterial wall are selected to give
a Young’s modulus of 107 dyn/cm? and Poisson’s ratio of 0.45 in the small strain
limit. The inlet and outlet cross sections are free to slide in their tangential planes
and deform radially, but constrained not to move in the orthogonal directions [97].
Mass-proportional damping with constant Cdamp = 10* Hz is used to model the
interaction of the artery with the surrounding tissue. The dynamic viscosity of the
blood is set to g = 3% 1072 g/(cm s).

We apply a physiologically realistic left ventricular pressure time history as a
traction boundary condition at the inflow. The applied pressure signal is periodic,
with a period of 0.86s for one cardiac cycle. The traction —(po + RQ)ny is
applied at the outflow for the resistance boundary condition, where py is a constant
physiological pressure level, R > 0 is a resistance coefficient, and Q is the
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volumetric flow rate through the outflow. In the present computation, we set pg =
80mmHg and R = 200 (dyn s)/cm’. These values ensure a realistic transvalvular
pressure difference of 80 mmHg across a closed valve when Q9 = 0, while
permitting a flow rate within the normal physiological range and consistent with the
flow rate estimated from the medical data (about 310 ml/s) during systole. A time-
step size of Ar = 10™*s is used in all simulations. To obtain the artery wall tissue
prestress, we apply the highest left ventricular pressure during systole (127 mmHg
at t = 0.25s) on the inlet and a resistance boundary condition (py = 80 mmHg and
R = 200 (dyn s)/cm’) on the outlet for the calculation of ﬁf in the prestress problem
[54].

We perform FSI simulations of each of (x, x2, x3) € ({0.05,0.25, 0.45} cm,
{0.1,0.3,0.5} cm, {0.5,0.8, 1.1, 1.4} cm), then calculate the EOA at peak systole
and the maximum CA occurring during ventricular diastole. The simulation results
and quantities of interest for each case are reported in [74]. An ideal valve would
have both a large EOA and a large CA. However, these two quantities tend to
compete with each other: valves that close easily can be more difficult to open and
vice versa. In general, the results show that increasing xj, which corresponds to
decreasing the length of the free edge, decreases EOA and CA at the same time.
Increasing x», which decreases the height of the free edge, may increase EOA
slightly but reduces CA significantly. The reduction of CA due to increasing x;
reduces CA and causes many designs cannot seal completely. Increasing x3, which
increases the surface curvature in the leaflet belly region, improves CA but decreases
EOA. Finally, the combination of x; = 0.05 cm, x> = 0.1 or 0.3 cm, and x3 = 0.5 or
0.8 cm reliably yields a high EOA between 3.92 and 4.05 cm?, near the upper end of
the physiological range of 3.0-4.0 cm? in healthy adults, and a CA between 3.49 and
4.54 cm?. Among these four cases, x* = (x1, x2, x3) = (0.05 cm, 0.1 cm, 0.8 cm),
which has a CA of 4.54 cm? and EOA of 3.92 cm?, strikes the best compromise
between EOA and CA. The valve geometry of this best-performing design and its
EOA and CA from the FSI simulation are shown in Fig. 25.

Figure 26 shows several snapshots of the valve deformation and the details
of the flow field at several points during the cardiac cycle. The color indicates
the fluid velocity magnitude. The visualizations clearly show the instantaneous
valve response to the left ventricular pressure. The valve opens with the rising left
ventricular pressure in early systole (0.0-0.20 s), and then stays fully open near
peak systole (0.25-0.27 s), allowing sufficient blood flow to enter the ascending
aorta. A quick valve closure is then observed in early diastole (0.32-0.38 s). This

Fig. 25 The best-performing
prosthetic valve design and its
EOA and CA from the FSI
simulation

N

EOA=3.92 cm? CA=4.54 cm?
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Fig. 26 Volume rendering visualization of the velocity field from our FSI simulation at several
points during a cardiac cycle

quick closure of the valve minimizes the reverse flow into the left ventricle, as the
left ventricular pressure drops rapidly in this period. After that, the valve properly
seals, and the flow reaches a near-hydrostatic state (0.65 s). These features observed
during the cardiac cycle characterize a well-functioning valve within the objectives
considered in this study: a large EOA during systole and a proper CA during
diastole. In Fig. 27, the models are superposed in the configurations corresponding
to the fully open and fully closed phases for better visualization of the leaflet-wall
coupling results. The deformation of the attachment edges can be clearly seen.
The expansion and contraction of the arterial wall, as well as its sliding motion
between systole and diastole can also be observed. The maximum in-plane principal
Green—Lagrange strain (MIPE) evaluated on the aortic side of the leaflet is shown in
Fig. 28. The figure shows that during opening the strain is concentrated in the belly
region of the leaflet, while during closing the highest strain happens near the valve
commissure.

9 Concluding Remarks

In this chapter we have reviewed various technologies that have been developed by
us and our colleagues and used to solve general classes of problems in computational
cardiovascular analysis, with focus herein on aortic flows and patient-specific and



186 T. J. R. Hughes et al.

Fig. 27 Relative displacement between fully open (red) and fully closed (blue) configurations,
showing the effect of leaflet-wall coupling. The deformation of the attachment edges can be clearly
seen. The expansion and contraction of the arterial wall as well as its sliding motion between
systole (red) and diastole (blue) can also be observed
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Fig. 28 Deformed valve configuration, colored by the maximum in-plane principal Green—
Lagrange strain (MIPE) evaluated on the aortic side of the leaflet. Note the different scale for
each time instant

bioprosthetic heart-valve FSI. Our work on these problems, and in other more
general areas of engineering, science, and medicine, is based on Stabilized Methods
and the Variational Multiscale Method (VMS), which have enjoyed enormous
attention in the research literature and are used widely in industry and national
laboratories. Stabilized Methods and the Variational Multiscale Method are at the
center of development of core technologies such as Space-Time VMS, Arbitrary
Lagrangian—Eulerian VMS, and Immersogeometric VMS, which we emphasized
herein. They are in turn enhanced by many other special technologies that are used
to deal with specific features of the applications, many of which we also described.

Computational cardiovascular analysis is now used routinely in medical device
design, diagnosis of cardiovascular disease, surgical planning, virtual stent place-
ment, and numerous other areas. It is only part of the more general field of
Computational Medicine, which is rapidly growing. Just as the capacity of the
underlying computational methods described in this article depend on the growing
power of computers, Computational Medicine depends upon the increasing fidelity
of medical imaging technologies and devices. Like computers, these are also
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advancing rapidly, which portends a bright future for the further development of
Computational Medicine and its enormous potential impact on health and the human
condition.
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