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Preface

High-performance computing (HPC) has been a critical enabling technology for
a variety of scientific and engineering applications over the past five decades. As
a result of advances in parallel computing, one is now able to handle large-scale
and large-scope applications in diverse domains such as fluid dynamics, structural
mechanics, fluid–structure interaction, weather forecasting, materials modeling
and design, electromagnetics, and computational biology. As HPC methods have
continued to mature for traditional applications, emerging application domains pose
new challenges for modeling paradigms, numerical techniques, and their parallel
implementations.

The past decade has also witnessed significant advances in our ability to collect
massive datasets from physical, engineered, social, and computational processes.
There has been a concomitant realization of the immense value that can be unlocked
by these datasets through the use of data analytics and machine learning techniques.
The scale of the underlying datasets and computational costs of common analytics
techniques strongly motivate the use of HPC platforms for these applications.
Where a number of core computational techniques such as linear and nonlinear
system solvers, eigenvalue problem solvers, and optimization techniques were
traditionally motivated by scientific and engineering applications, these kernels are
now ubiquitous in data science. However, the structure and scale of data science
applications pose new challenges for parallel formulations of even traditional
compute kernels. Statistical and randomized approaches play important roles in
these applications as well. These approaches present additional opportunities for
parallel execution, in the form of ensemble methods, sampling techniques, and
asynchronous (or loosely synchronous) computations. Finally, the role of data is
central to these approaches, since the overheads associated with accessing massive
datasets (typically from disks or over the network) are significant. The size of these
datasets, which typically do not fit in the main memory, also influences the nature
of the solution methods. For this reason, solution techniques are often designed to
make several passes over the data so as to process a subset that can fit in the main
memory in each pass. All of these characteristics motivate new algorithms even for
traditional compute kernels.

v
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The past two decades have also seen significant changes in computing plat-
forms. Processors have gone from single-core scalar execution units to multicore
superscalar issue units. It is common to have single processors with 16 processing
cores in conventional configurations. These chip multiprocessors typically have
private L1-caches and shared L2- or L3-caches, connected to large DRAMs. This
deep memory hierarchy puts additional pressure on optimizing for locality of data
access. Current data centers have in the range of 105 such processors and beyond,
connected through high-speed interconnects, typically meshes or fat-tree topologies.
At these scales, the energy footprint of computations is an important consideration.
To this end, accelerators such as GPUs and FPGAs have emerged as alternatives
for enabling high-speed computations with lower energy consumption (on a per-
FLOP basis). For this reason, typical supercomputing installations and many data
centers have nodes with one or more accelerators. The I/O subsystems of these
platforms have also evolved significantly over time. The addition of nonvolatile
RAMs (NVRAMs) provides significant opportunities for staging data that may
not fit in memory. The distinct read–write overhead characteristics of NVRAMs
pose additional challenges. Finally, emerging network concepts allow for limited
in-network computations, which allow for much faster aggregate communication
operations.

In addition to science and engineering applications and hardware platforms,
the system software stack has also evolved significantly in recent times. While
traditional APIs such as MPI, pthreads, and OpenMP continue to be used for parallel
software, emerging distributed frameworks such as MapReduce and Spark find
increasing utilization. Higher-level programming models such as parallel Matlab
and Julia hold the promise for significantly higher programmer productivity in
parallel software. In terms of the runtime, cloud systems that support schedulers,
resource managers, and higher-level I/O primitives are increasingly used. Virtual-
ization and containerization technologies have enabled a level of portability and
ease of execution that has transformed many engineering applications.

The evolution of classical applications, emergence of new applications, and
changes to underlying hardware platforms motivate significant innovations in
algorithms and software for scalable high-performance computations. At the single
node level, use of accelerators, managing memory hierarchies for high node
performance, and extracting concurrency to leverage on-chip parallelism are major
challenges. At the data center level, extracting all available parallelism, minimizing
communication and idling, leveraging algorithmic asynchrony, and fundamentally
redesigning algorithms for extreme scalability are major challenges. Finally, at the
level of applications, integrating disparate compute kernels into a single scalable
application, integrating I/O, and analyzing large amounts of data from high-
resolution simulations pose significant challenges. These themes are explored in
various application contexts in this book.

This book covers two major areas in high-performance computing: core algo-
rithms and compute kernels, and high-performance science and engineering appli-
cations. These kernels and applications span the space of conventional scientific and
engineering domains, in addition to emerging data analytics problems.
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Part 1: High-Performance Algorithms

The chapter “State of the Art of Sparse Direct Solvers” by Bollhofer et al.
provides an overview of how parallel sparse direct linear system solvers should
be developed. Specifically, for PARDISO 6.2, the preprocessing stage consists of
combinatorial algorithms (maximum weight matching and multilevel nested dis-
section) that enhance diagonal dominance, reduce fill-in, and improve concurrency.
The effectiveness of PARDISO 6.2 is demonstrated for solving challenging linear
systems that arise in integrated circuit simulation. PARDISO 6.2 proved to be far
superior to the sequential direct solver KLU and the parallel direct sparse solver
in Intel’s Math Kernel Library (MKL). Further, the authors point out two special
features of PARDSO 6.2 that proved to be extremely effective in several situations:
(1) computing only those elements of the solution vector that correspond to the
few nonzero elements of a sparse right-hand side and (2) computing only the
diagonal elements of the inverse of the sparse coefficient matrix. Using these two
features, PARDSO 6.2 realizes remarkable savings compared to the obvious brute-
force procedures. For example, the authors show that for a sparse coefficient matrix
A (that arises in circuit simulation) of order almost 5.6 million, PARDISO 6.2
computes the diagonal elements of the inverse of A in 2.1 s, while computing all
the elements of the inverse of A on the same parallel computing platform consumes
371 h.

Reordering of general sparse matrices plays a crucial role in both direct and
preconditioned iterative sparse linear system solvers. This topic is addressed in the
chapter “The Effect of Various Sparsity Structures on Parallelism and Algorithms
to Reveal those Structures” by Selvitopi et al. This chapter deals with graph and
hypergraph algorithms for reordering general sparse matrices into structured forms.
The focus is on four structures: single-bordered block diagonal, double-bordered
block diagonal, nonempty off-diagonal block minimization, and overlapped diag-
onal blocks. The authors, who produced the well-known sparse matrix reordering
software package “PArtitioning TOol for Hypergraphs” (PATOH), also demonstrate
the advantage of such forms in sparse matrix–vector multiplication as well as the
transpose of a sparse matrix–vector multiplication.

In the chapter “Structure-Exploiting Interior Point Methods” by Kardso et
al., the authors address interior point (IP) methods, which proved to be quite
effective for large-scale nonlinear optimization problems in computational science
and engineering applications. In many of these applications, however, the resulting
optimization problems possess certain structures. This chapter reviews parallel
variants of IP methods that take advantage of such structure. In particular, the
chapter provides efficient parallel algorithms for solving the resulting saddle-point
problems (KKT systems) that consume most of the computing time in handling
these optimization problems. Specifically, it highlights the vital role of the sparse
direct solver PARDISO in solving KKT systems, associated arrowhead systems,
and determining the inertia of symmetric matrices via the LDLT factorization, in
case correction is needed to guarantee that the Hessian matrix projected on the null



viii Preface

space of the constraint Jacobian is positive definite. Exploiting the structure of large-
scale optimization problems that arise in the management of modern power grids,
those parallel variants of IP methods realize significant savings in both memory
requirements and computing time compared to those achieved in IPOPT (the well-
known software library for “Interior Point OPTimizer”).

In the chapter “Parallel Hybrid Sparse Linear System Solvers” by Manguoglu et
al., the authors describe a highly versatile class of parallel algorithms for banded
linear systems and their generalization for solving general sparse linear systems.
A crucial preprocessing stage consists of reordering the coefficient matrix so as
to strengthen the main diagonal and encapsulate as many of the heaviest off-
diagonal elements in a central band. This central band, which may be dense or
sparse, can be used as an effective preconditioner. Based on the bandwidth of the
central band, variations of the SPIKE algorithm are referred to as members of the
PSPIKE solver. The “P” in “PSPIKE” denotes the use of the direct sparse solver
PARDISO as an essential kernel. This chapter describes the banded solver SPIKE
and its generalization, PSPIKE, in detail, outlining various algorithmic choices,
their parallel implementation on shared and distributed memory platforms, and
comparison of their parallel performance with other state-of-the-art solvers. The
chapter also provides a historical context for these hybrid solvers.

Part 2: High-Performance Computational Science and
Engineering Applications

The chapter “Computational Materials Science and Engineering” by Polizzi and
Saad gives a summary of the state of the art in computational materials science and
engineering. It focuses on density functional theory and the novel algorithms devel-
oped for the solution of the underlying symmetric eigenvalue problem, which are
suitable for parallel computing. More specifically, the authors outline algorithmic
advances introduced in the software package NESSIE and the eigensolvers EVSL
and FEAST. This chapter is not only of interest to researchers in nonoelectronics
but also of interest to researchers in parallel numerical linear algebra.

The following three chapters deal with critical applications that involve fluid–
structure Interaction: “Computational Cardiovascular Analysis with the Variational
Multiscale Methods and Isogeometric Discretization,” by Hughes et al., “ALE and
Space-Time Variational Multiscale Isogeometric Analysis of Wind Turbines and
Turbomachinery,” by Bazilevs et al., and “Variational Multiscale Flow Analysis in
Aerospace, Energy, and Transportation Technologies,” by Takizawa et al.

These chapters consider challenging problems in the above applications that
are characterized by: (a) fluid–structure interaction; (b) complex geometries; (c)
moving boundaries and interfaces; (d) contact between moving solid surfaces; and
(e) turbulent and rotational flows. These challenges are addressed by techniques
developed mainly by the authors of these chapters. Such techniques include space-
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time variational multiscale methods, the arbitrary Lagrangian–Eulerian method, and
isogeometric discretization. The simulations presented in these chapters demon-
strate agreements with experiments, thus proving the power and scope of the
methods developed for computational analysis of a variety of applications: (1)
cardiovascular flows, surgical planning, and virtual stent placement; (2) wind
turbines (including two back-to-back wind turbines); and (3) aerodynamics of ram-
air parachutes.

The chapter “Multiscale Crowd Dynamics Modeling and Safety Problems:
Towards Parallel Computing” by Bellomo and Aylaj deals with multiscale crowd
dynamics modeling and safety problems, along with issues concerning implemen-
tation on parallel computing platforms. It specifically deals with the modeling and
simulation of human crowds. This is motivated not only by scientific curiosity but
also by safety of individuals in emergency situations. It proposes three components
of a research strategy: (1) multiscale vision of crowd dynamics varying from motion
of an individual to clusters of individuals; (2) development of a systems approach to
movements across different areas with specific geometries; and (3) development of
modeling and simulation to support crisis managers in evacuation dynamics. In each
of the above three components, the authors describe the use of artificial intelligence
and parallel computing to ensure the effectiveness of rapid evacuation strategies in
crisis situations.

The chapter “HPC for Weather Forecasting” by Michalakes discusses the use
of high-performance computing platforms for weather forecasting. It starts with
a history of weather forecasting based on numerical models that go back from
its roots in the year 1922 to current day petascale models and concludes with
an extrapolation beyond the year 2025. The chapter describes various issues
associated with modeling, complexity of grids laid atop spherical surfaces, and
issues of parallel implementation. The need for spectral models and dynamics
is motivated in this context. The underlying operations are mapped to common
library calls (in LAPACK) and the associated complexities are discussed. The
use of semi-implicit semi-Lagrangian transport for advection is motivated in this
context as well. An important issue in modeling is the development of suitable
meshing techniques. These are discussed in detail, for Cartesian, non-Cartesian,
structured, and unstructured grids. In terms of parallel processing, issues of domain
decomposition and load balancing are considered. Use of suitable finite element
formulations that incorporate appropriate physics models and constraints is then
discussed. The chapter concludes with an outline of the emerging challenges
in weather models on the next generation of HPC platforms. These challenges
include single-node and scale-out considerations, along with issues in algorithm
and software design at extreme scales.

In the chapter “A Simple Study of Pleasing Parallelism on Multicore Computers”
by Gleich et al., the authors present a detailed study of parallel graph computa-
tions with PageRank and personalized PageRank as the canonical representative
computation. This kernel appears in different forms in other graph computations
as well, notably all-pairs type computations. The chapter sets up the problems
of PageRank and personalized PageRank and describes variants that are used in
practice (e.g., those that do not generate the entire O(n2) data associated with
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personalized PageRank). A number of commonly used algorithms are described,
along with considerations of computational cost and memory. Parallel processing
issues of these methods are discussed, both in the context of shared address space
and message passing platforms. The need for graph reordering and partitioning is
discussed, along with scheduling, load balancing, and communication optimiza-
tions. Finally, the chapter presents a comprehensive set of experimental results
evaluating the algorithms discussed. The code (in Julia) is made available to the
readers in order to conduct their own experiments.

The chapter “Parallel Fast Time-Domain Integral-Equation Methods for Tran-
sient Electromagnetic Analysis” by Liu and Michielssen presents a comprehensive
overview of time-domain integral equation methods for analyzing electromagnetic
systems. The chapter starts with an introduction to Marching-On-in-Time (MOT)
based integral equation formulation for modeling radiation and scattering. The
formulation is contrasted with time-domain differential equation models (lack of
need for absorbing boundary conditions, fewer degrees of freedom), along with
challenges presented by time-domain integral equation (TDIE) formulations. It also
presents a concise survey of recent efforts aimed at addressing these challenges and
the need for use of HPC platforms with accelerators. Mathematical formulations for
TDIE solvers in the presence of different scatterers and media are then discussed,
including PEC scatterers, as well as homogeneous and inhomogeneous dielectrics.
This is followed by a discussion of solvers for the underlying mathematics models.
These solvers focus on higher-order methods, time-stability, and conditioning.
Issues of discretization including higher-order spatial basis functions and meshing
are also discussed. The chapter then considers techniques for dealing with high-
frequency, DC, and resonant instabilities. A number of fast solvers are also
considered, along with a discussion of parallel implementation techniques for TDIE
solvers. Issues of partitioning workload (rays) and associated computations are
presented and their computational costs are characterized. Optimizations for load
balancing and communication are described, and experimental results are presented
for several parallel solvers.

The chapter “Parallel Optimization Techniques for Machine Learning” by
Grama et al. deals with the development of parallel optimization techniques for
machine learning problems involving massively large datasets. Such datasets arise
in applications like autonomous vehicles, artificial intelligence, image classification,
and cybersecurity. These applications are modeled as either convex or non-convex
optimization problems. This chapter focuses on parallel algorithms for finite sum
minimization problems in the context of convex and non-convex formulations.

This book is meant to provide a state-of-the-art reference for researchers and
practitioners. The thirteen chapters present a survey of various topics while provid-
ing a comprehensive methodological coverage of algorithms and applications. In
many instances, these chapters reference, or are accompanied by parallel software,
which the readers can download and use to conduct their own experiments.

West Lafayette, IN, USA Ananth Grama
West Lafayette, IN, USA Ahmed H. Sameh
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High Performance Algorithms



State-of-the-Art Sparse Direct Solvers

Matthias Bollhöfer, Olaf Schenk, Radim Janalik, Steve Hamm,
and Kiran Gullapalli

1 Introduction

Solving large sparse linear systems is at the heart of many application problems
arising from computational science and engineering applications. Advances in
combinatorial methods in combination with modern computer architectures have
massively influenced the design of the state-of-the-art direct solvers that are
feasible for solving larger systems efficiently in a computational environment with
rapidly increasing memory resources and cores. Among these advances are novel
combinatorial algorithms for improving diagonal dominance which pave the way to
a static pivoting approach, thus improving the efficiency of the factorization phase
dramatically. Besides, partitioning and reordering the system such that a high level
of concurrency is achieved, the objective is to simultaneously achieve the reduction
of fill-in and the parallel concurrency. While these achievements already signifi-
cantly improve the factorization phase, modern computer architectures require one
to compute as many operations as possible in the cache of the CPU. This in turn
can be achieved when dense subblocks that show up during the factorization can be

M. Bollhöfer
Institute for Numerical Analysis, TU Braunschweig, Braunschweig, Germany
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grouped together into dense submatrices which are handled by multithreaded and
cache-optimized dense matrix kernels using level-3 BLAS and LAPACK [3].

This chapter will review some of the basic technologies together with the latest
developments for sparse direct solution methods that have led to the state-of-the-
art LU decomposition methods. The paper is organized as follows. In Sect. 2 we
will start with maximum weighted matchings which is one of the key tools in
combinatorial optimization to dramatically improve the diagonal dominance of
the underlying system. Next, Sect. 3 will review multilevel nested dissection as
a combinatorial method to reorder a system symmetrically such that fill-in and
parallelization can be improved simultaneously, once pivoting can be more or less
ignored. After that, we will review established graph-theoretical approaches in
Sect. 4, in particular the elimination tree, from which most of the properties of the
LU factorization can be concluded. Among these properties is the prediction of
dense submatrices in the factorization. In this way several subsequent columns of
the factors L and UT are collected in a single dense block. This is the basis for
the use of dense matrix kernels using optimized level-3 BLAS as well to exploit
fast computation using the cache hierarchy which is discussed in Sect. 5. Finally,
we show in Sect. 6 how the ongoing developments in parallel sparse direct solution
methods have advanced integrated circuit simulations. We assume that the reader is
familiar with some elementary knowledge from graph theory, see, e.g., [15, 21] and
some simple computational algorithms based on graphs [1].

2 Maximum Weight Matching

In modern sparse elimination methods the key to success is ability to work with
efficient data structures and their underlying numerical templates. If we can increase
the size of the diagonal entries as much as possible in advance, pivoting during
Gaussian elimination can often be bypassed and we may work with static data
structures and the numerical method will be significantly accelerated. A popular
method to achieve this goal is the maximum weight matching method [16, 37] which
permutes, e.g., the rows of a given nonsingular matrix A ∈ R

n,n by a permutation
matrix � ∈ R

n,n such that �TA has a nonzero diagonal. Moreover, it maximizes
the product of the absolute diagonal values and yields diagonal scaling matrices
Dr,Dc ∈ R

n,n such that Ã = �TDrADc satisfies |ãij | � 1 and |ãii | = 1 for all
i, j = 1, . . . , n. The original idea on which these nonsymmetric permutations and
scalings are based is to find a maximum weighted matching of a bipartite graphs.
Finding a maximum weighted matching is a well known assignment problem in
operation research and combinatorial analysis.

Definition 1 A graph G = (V ,E) with vertices V and edges E ⊂ V 2 is called
bipartite if V can be partitioned into two sets Vr and Vc, such that no edge e =
(v1, v2) ∈ E has both ends v1, v2 in Vr or both ends v1, v2 in Vc. In this case we
denote G by Gb = (Vr , Vc, E).
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Definition 2 Given a matrix A, then we can associate with it a canonical bipartite
graph Gb(A) = (Vr , Vc, E) by assigning the labels of Vr = {r1, . . . , rn} with the
row indices of A and Vc = {c1, . . . , cn} being labeled by the column indices. In this
case E is defined via E = {(ri, cj )| aij �= 0}.
For the bipartite graph Gb(A) we see immediately that if aij �= 0, then we have
that ri ∈ Vr from the row set is connected by an edge (ri, cj ) ∈ E to the column
cj ∈ Vc, but neither rows are connected with each other nor do the columns have
interconnections.

Definition 3 A matching M of a given graph G = (V ,E) is a subset of edges
e ∈ E such that no two of which share the same vertex.

IfM is a matching of a bipartite graph Gb(A), then each edge e = (ri, cj ) ∈ M
corresponds to a row i and a column j and there exists no other edge ê = (rk, cl) ∈
M that has the same vertices, neither rk = ri nor cl = cj .
Definition 4 A matching M of G = (V ,E) is called maximal, if no other edge
from E can be added toM.

If for an n × n matrix A a matching M of Gb(A) with maximum cardinality n
is found, then by definition the edges must be (i1, 1), . . . , (in, n) with i1, . . . , in
being the numbers 1, . . . , n in a suitable order and therefore we obtain ai1,1 �= 0,
. . . ain,n �= 0. In this case we have established that the matrixA is at least structurally
nonsingular and we can use a row permutation matrix �T associated with row
ordering i1, . . . , in to place a nonzero entry on each diagonal location of�TA.

Definition 5 A perfect matching is a maximal matching with cardinality n.

It can be shown that for a structurally nonsingular matrix A there always exists a
perfect matchingM.

Perfect Matching
In Fig. 1, the set of edges M = {(1, 2), (2, 4), (3, 5), (4, 1), (5, 3), (6, 6)}
represents a perfect maximum matching of the bipartite graph Gb(A).

The most efficient combinatorial methods for finding maximum matchings in
bipartite graphs make use of an augmenting path. We will introduce some graph
terminology for the construction of perfect matchings.

Definition 6 If an edge e = (u, v) in a graphG = (V ,E) joins a vertices u, v ∈ V ,
then we denote it as uv. A path then consists of edges u1u2, u2u3, u3u4 . . . , uk−1uk ,
where each (ui, ui+1) ∈ E, i = 1, . . . , k − 1.
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Fig. 1 Perfect matching. Left side: original matrix A. Middle: bipartite representation Gb(A) =
(Vr , Vc, E) of the matrix A and perfect matchingM. Right side: permuted matrix �T A

If Gb = (Vr , Vc, E) is a bipartite graph, then by definition of a path, any path is
alternating between the vertices of Vr and Vc, e.g., paths in Gb could be such as
r1c2, c2r3, r3c4, . . . .

Definition 7 Given a graph G = (V ,E), a vertex is called free if it is not incident
to any other edge in a matchingM of G. An alternating path relative to a matching
M is a path P = u1u2, u2u3, . . . , us−1us where its edges are alternating between
E \M andM. An augmenting path relative to a matchingM is an alternating path
of odd length and both of it vertex endpoints are free.

Augmenting Path
Consider Fig. 1. To better distinguish between row and column vertices

we use 1 , 2 , . . . , 6 for the rows and ©1 ,©2 ,. . . ,©6
for the columns. A non-perfect but maximal matching is given by M =
{( 4 ,©5 ), ( 1 ,©1 ), ( 6 ,©2 ), ( 2 ,©6 ), ( 5 ,©4 )}.
We can easily see that an augmenting path alternating between rows and

columns is given by 3 ©5 , ©5 4 , 4 ©1 , ©1 1 ,

1 ©2 ,©2 6 , 6 ©6 ,©6 2 , 2 ©4 ,©4 5 ,

5 ©3 . Both endpoints 3 and©3 of this augmenting path are free.
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In a bipartite graph Gb = (Vr , Vc, E) one vertex endpoint of any augmenting
path must be in Vr , whereas the other one must be in Vc. The symmetric difference,
A⊕ B of two edge sets A, B, is defined to be (A \ B) ∪ (B \ A).

Using these definitions and notations, the following theorem [5] gives a construc-
tive algorithm for finding perfect matchings in bipartite graphs.

Theorem 1 IfM is non-maximum matching of a bipartite graphGb = (Vr , Vc, E),
then there exists an augmenting path P relative toM such that P = M̃ ⊕M and
M̃ is a matching with cardinality |M| + 1.

According to this theorem, a combinatorial method of finding perfect matching in a
bipartite graph is to seek augmenting paths.

The perfect matching as discussed so far only takes the nonzero structure of
the matrix into account. For their use as static pivoting methods prior to the LU
decomposition one requires in addition to maximize the absolute value of the
product of the diagonal entries. This is referred to as maximum weighted matching.
In this case a permutation π has to be found, which maximizes

n∏

i=1

|aπ(i)i |. (1)

The maximization of this product is transferred into a minimization of a sum as
follows. We define a matrix C = (cij ) via

cij =
{

log ai − log |aij | aij �= 0

∞ otherwise,

where ai = maxj |aij | is the maximum element in row i of matrixA. A permutation
π which minimizes the sum

n∑

i=1

cπ(i)i

also maximizes the product (1). The minimization problem is known as linear-
sum assignment problem or bipartite weighted matching problem in combinatorial
optimization. The problem is solved by a sparse variant of the Hungarian method.
The complexity is O(nτ log n) for sparse matrices with τ entries. For matrices,
whose associated graph fulfill special requirements, this bound can be reduced
further to O(nα(τ + n log n)) with α < 1. All graphs arising from finite-difference
or finite element discretizations meet the conditions [24]. As before, we finally get
a perfect matching which in turn defines a nonsymmetric permutation.

When solving the assignment problem, two dual vectors u = (ui) and v = (vi)
are computed which satisfy
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ui + vj = cij (i, j) ∈M, (2)

ui + vj ≤ cij otherwise. (3)

Using the exponential function these vectors can be used to scale the initial matrix.
To do so define two diagonal matrices Dr and Dc through

Dr = diag(dr1 , d
r
2 , . . . , d

r
n), dri = exp(ui), (4)

Dc = diag(dc1, d
c
2, . . . , d

c
n), dcj = exp(vj )/aj . (5)

Using Eqs. (2) and (3) and the definition of C, it immediately follows that Ã =
�TDrADc satisfies

|ãii | = 1, (6)

|ãij | ≤ 1. (7)

The permuted and scaled system Ã has been observed to have significantly better
numerical properties when being used for direct methods or for preconditioned
iterative methods, cf., e.g., [4, 16]. Olschowka and Neumaier [37] introduced these
scalings and permutation for reducing pivoting in Gaussian elimination of full
matrices. The first implementation for sparse matrix problems was introduced by
Duff and Koster [16]. For symmetric matrices |A|, these nonsymmetric matchings
can be converted to a symmetric permutation P and a symmetric scaling Ds =
(DrDc)

1/2 such that PTDsADsP consists mostly of diagonal blocks of size 1 × 1
and 2 × 2 satisfying a similar condition as (6) and (7), where in practice it rarely
happens that 1 × 1 blocks are identical to 0 [17]. Recently, successful parallel
approaches to compute maximum weighted matchings have been proposed [28, 29].

Example 1: Maximum Weight Matching
To conclude this section we demonstrate the effectiveness of maximum
weight matchings using a simple sample matrix “west0479” from the SuiteS-
parse Matrix Collection. The matrix can also directly be loaded in MATLAB

using load west0479. In Fig. 2 we display the matrix before and after
applying maximum weighted matchings. To illustrate the improved diagonal
dominance we further compute ri = |aii |/∑n

j=1 |aij | for each row of A and

Ã = �TDrADs , i = 1, . . . , n. ri can be read as relative diagonal dominance
of row i and yields a number between 0 and 1. Moreover, whenever ri > 1

2 ,
the row is strictly diagonal dominant, i.e., |aii | > ∑j :j �=i |aij |. In Fig. 3 we
display for both matrices ri by sorting its values in increasing order and taking
1
2 as reference line. We can see the dramatic impact of maximum weighted

(continued)
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Fig. 2 Maximum weight matching. Left side: original matrixA. Right side: permuted and rescaled
matrix Ã = �TDrADc
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Fig. 3 Diagonal dominance. Left side: ri for A. Right side: ri Ã = �TDrADc

matchings in improving the diagonal dominance of the given matrix and thus
paving the way to a static pivoting approach in incomplete or complete LU
decomposition methods.

3 Symbolic Symmetric Reordering Techniques

When dealing with large sparse matrices a crucial factor that determines the
computation time is the amount of fill that is produced during the factorization of
the underlying matrix. To reduce the complexity there exist many mainly symmetric
reordering techniques that attempt to reduce the fill-in heuristically. Here we will
demonstrate only one of these methods, the so-called nested dissection method.
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The main reason for selecting this method is that it can be easily used for parallel
computations.

3.1 Multilevel Nested Dissection

Recursive multilevel nested dissection methods for direct decomposition methods
were first introduced in the context of multiprocessing. If parallel direct methods
are used to solve a sparse system of equations, then a graph partitioning algorithm
can be used to compute a fill-reducing ordering that leads to a high degree of
concurrency in the factorization phase.

Definition 8 For a matrix A ∈ R
n,n we define the associated (directed) graph

Gd(A) = (V ,E), where V = {1, . . . , n} and the set of edges E = {(i, j)| aij �= 0
}
.

The (undirected) graph is given byGd(|A| + |A|T ) and is denoted simply byG(A).

In graph terminology for a sparse matrix A we simply have a directed edge (i, j)
for any nonzero entry aij in Gd(A), whereas the orientation of the edge is ignored
in G(A).

The research on graph partitioning methods in the mid-nineties has resulted in
high-quality software packages, e.g., METIS [25]. These methods often compute
orderings that on the one hand lead to small fill-in for (incomplete) factorization
methods, while on the other hand they provide a high level of concurrency. We
will briefly review the main idea of multilevel nested dissection in terms of graph
partitioning.

Definition 9 Let A ∈ R
n,n and consider its graph G(A) = (V ,E). A k-way graph

partitioning consists of partitioning V into k disjoint subsets V1, V2, . . . , Vk such
that Vi ∩ Vj = ∅ for i �= j ∪iVi = V . The subset Es = E ∩⋃i �=j (Vi × Vj ) is
called edge separator.

Typically we want a k-way partitioning to be balanced, i.e., each Vi should satisfy
|Vi | ≈ n/k. The edge separator Es refers to the edges that have to be taken away
from the graph in order to have k separate subgraphs associated with V1, . . . , Vk and
the number of elements of Es is usually referred to as edge-cut.

Definition 10 Given A ∈ R
n,n, a vertex separator Vs of G(A) = (V ,E) is a set of

vertices such that there exists a k-way partitioning V1, V2, . . . , Vk of V \ Vs having
no edge e ∈ Vi × Vj for i �= j .

A useful vertex separator Vs should not only separate G(A) into k independent
subgraphs associated with V1, . . . , Vk , it is intended that the number of edges
∪ki=1|{eis ∈ Vi, s ∈ Vs}| is also small.

Nested dissection recursively splits a graph G(A) = (V ,E) into almost
equal parts by constructing a vertex separator Vs until the desired number k of
partitionings are obtained. If k is a power of 2, then a natural way of obtaining a
vertex separator is to first obtain a 2-way partitioning of the graph, a so-called graph
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Fig. 4 A 2-way partition with vertex separator Vs = {1, 4} and the associated reordered matrix
placing the two rows and columns associated with Vs to the end

bisection with its associated edge separator Es . After that a vertex separator Vs is
computed fromEs , which gives a 2-way partitioning V1, V2 of V \Vs . This process is
then repeated separately for the subgraphs associated with V1, V2 until eventually a
k = 2l-way partitioning is obtained. For the reordering of the underlying matrix
A, the vertices associated with V1 are taken first followed by V2 and Vs . This
reordering is repeated similarly during repeated bisection of each Vi . In general,
vertex separators of small size result in low fill-in.

Example 2: Vertex Separators
To illustrate vertex separators, we consider the reordered matrix �TA from
Fig. 1 after a matching is applied. In Fig. 4 we display its graph G(�T A)
ignoring the orientation of the edges. A 2-way partitioning is obtained with
V1 = {3, 5}, V2 = {2, 6}, and a vertex separator Vs = {1, 4}. The associated
reordering refers to taking the rows and the columns of �TA in the order
3, 5, 2, 6, 1, 4.

Since a naive approach to compute a recursive graph bisection is typically
computationally expensive, combinatorial multilevel graph bisection has been used
to accelerate the process. The basic structure is simple. The multilevel approach
consists of three phases: at first there is a coarsening phase which compresses the
given graph successively level by level by about half of its size. When the coarsest
graph with about a few hundred vertices is reached, the second phase, namely the
so-called bisection, is applied. This is a high-quality partitioning algorithm. After
that, during the uncoarsening phase, the given bisection is successively refined as it
is prolongated towards the original graph.

3.1.1 Coarsening Phase

The initial graph G0 = (V0, E0) = G(A) of A ∈ R
n,n is transformed during

the coarsening phase into a sequence of graphs G1,G2, . . . ,Gm of decreasing size
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such that |V0| 
 |V1| 
 |V2| 
 · · · 
 |Vm|. Given the graph Gi = (Vi, Ei),
the next coarser graph Gi+1 is obtained from Gi by collapsing adjacent vertices.
This can be done, e.g., by using a maximal matching Mi of Gi (cf. Definitions 3
and 4). UsingMi , the next coarser graph Gi+1 is constructed from Gi collapsing
the vertices being matched into multinodes, i.e., the elements ofMi together with
the unmatched vertices ofGi become the new vertices Vi+1 ofGi+1. The new edges
Ei+1 are the remaining edges from Ei connected with the collapsed vertices. There
are various differences in the construction of maximal matchings [9, 25]. One of the
most popular and efficient methods is heavy edge matching [25].

3.1.2 Partitioning Phase

At the coarsest level m, a 2-way partitioning Vm,1∪̇Vm,2 = Vm of Gm = (Vm,Em)
is computed, each of them containing about half of the vertices of Gm. This
specific partitioning of Gm can be obtained by using various algorithms such as
spectral bisection [19] or combinatorial methods based on Kernighan–Lin variants
[18, 27]. It is demonstrated in [25] that for the coarsest graph, combinatorial methods
typically compute smaller edge-cut separators compared with spectral bisection
methods. However, since the size of the coarsest graph Gm is small (typically
|Vm| < 100), this step is negligible with respect to the total amount of computation
time.

3.1.3 Uncoarsening Phase

Suppose that at the coarsest level m, an edge separator Em,s of Gm associated with
the 2-way partitioning has been computed that has led to a sufficient edge-cut ofGm
with Vm,1, Vm,2 of almost equal size. ThenEm,s is prolongated toGm−1 by reversing
the process of collapsing matched vertices. This leads to an initial edge separator
Em−1,s for Gm−1. But since Gm−1 is finer, Em−1,s is sub-optimal and one usually
decreases the edge-cut of the partitioning by local refinement heuristics such as the
Kernighan–Lin partitioning algorithm [27] or the Fiduccia–Mattheyses method [18].
Repeating this refinement procedure level-by-level we obtain a sequence of edge
separators Em,s, Em−1,s , . . . , E0,s and eventually and edge separator Es = E0,s of
the initial graph G(A) is obtained. If one is seeking for a vertex separator Vs of
G(A), then one usually computes Vs from Es at the end.

There have been a number of methods that are used for graph partitioning, e.g.,
METIS [25], a parallel MPI version PARMETIS [26], or a recent multithreaded
approach MT-METIS [30]. Another example for a parallel partitioning algorithm
is SCOTCH [9].
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Fig. 5 Application of multilevel nested dissection after the matrix is already rescaled and
permuted using maximum weight matching

Multilevel Nested Dissection
We will continue Example 1 using the matrix Ã = �TDrADs that has
been rescaled and permuted using maximum weight matching. We illustrate
in Fig. 5 how multilevel nested dissection changes the pattern Â = PT ÃP ,
where P refers to the permutation matrix associated with the partitioning of
G(Ã).

3.2 Other Reordering Methods

One of the first methods to reorder the system was the reverse Cuthill–McKee
(RCM) methods [10, 34] which attempts to reduce the bandwidth of a given matrix.
Though this algorithm is still attractive for sequential methods and incomplete
factorization methods, its use for direct solvers is considered as obsolete. An attrac-
tive alternative to nested dissection as reordering method for direct factorization
methods is the minimum degree algorithm (MMD) [20, 40] and its recent variants,
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in particular the approximate minimum degree algorithm (AMD) [2, 12] with or
without constraints. The main objective of the minimum degree algorithm is to
simulate the Gaussian elimination process symbolically by investigating the update
process aij → aij − aika−1

kk akj by means of graph theory, at least in the case
of the undirected graph. The name-giving degree refers to the number of edges
connected to a vertex and how the graph and therefore the degrees of its vertices
change during the factorization process. Over the years this has led to an evolution
of the underlying minimum degree algorithm using the so-called external degree for
selecting vertices as pivots and further techniques like incomplete degree update,
element absorption, and multiple elimination as well as data structures based on
cliques. For an overview see [20]. One of the most costly parts in the minimum
degree algorithm is to update of the degrees. Instead of computing the exact external
degree, in the approximate minimum degree algorithm [2], an approximate external
degree is computed that significantly saves time while producing comparable fill-in
for the LU decomposition.

We like to conclude this section by mentioning that if nested dissection is
computed to produce a vertex separator Vs and a related k-way partitioning
V1, . . . , V − k for the remaining vertices of V \ Vs of G(A) = (V ,E) which
allow for parallel computations, then the entries of each Vi , i, . . . , k could be
taken in any order. Certainly, inside Vi one could use nested dissection as well,
which is the default choice in multilevel nested dissection methods. However, as
soon as the coarsest graph Gm is small enough (typically about 100 vertices), not
only the separator is computed, but in addition the remaining entries of Gm are
reordered to lead to a fill-reducing ordering. In both cases, for Gm as well as
V1, . . . , Vk one could alternatively use different reordering methods such as variants
of the minimum degree algorithm. Indeed, for Gm this is what the METIS software
is doing. Furthermore, a reordering method such as the constrained approximate
minimum degree algorithm is also suitable as local reordering for V1, . . . , Vk as
alternative to nested dissection, taking into account the edges connected with Vs
(also referred to as HALO structure), see, e.g., [38].

4 Sparse LU Decomposition

In this section we will assume that the given matrix A ∈ R
n,n is nonsingular and

that it can be factorized as A = LU , where L is a lower triangular matrix with unit
diagonal and U is an upper triangular matrix. It is well-known [21], if A = LU ,
where L and U� are lower triangular matrices, then in the generic case we will
have Gd(L + U) ⊃ Gd(A), i.e., we will only get additional edges unless some
entries cancel by “accident” during the elimination. In the sequel we will ignore
cancellations. Throughout this section we will always assume that the diagonal
entries of A are nonzero as well. We also assume that Gd(A) is connected.

In the preceding sections we have argued that maximum weight matching
often leads to a rescaled and reordered matrix such that static pivoting is likely
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Fig. 6 Fill-in with respect to
L+ U is denoted by ×

to be enough, i.e., pivoting is restricted to some dense blocks inside the LU
factorization. Furthermore, reordering strategies such as multilevel nested dissection
have further symmetrically permuted the system such that the fill-in that occurs
during Gaussian elimination is acceptable and even parallel approaches could be
drawn from this reordering. Thus assuming that A does not need further reordering
and a factorization A = LU exists is a realistic scenario in what follows.

4.1 The Elimination Tree

The basis of determining the fill-in in the triangular factorsL andU as by-product of
the Gaussian elimination can be characterized as follows (see [23] and the references
therein).

Theorem 2 Given A = LU with the aforementioned assumptions, there exists an
edge (i, j) in Gd(L+ U) if and only if there exists a path

ix1, x2x3, . . . , xkj

in Gd(A) such that x1, . . . , xk < min(i, j).

In other words, during Gaussian elimination we obtain a fill edge (i, j) for every
path from i to j through vertices less than min(i, j).

Fill-in
We will use the matrix �TA from Example 2 and sketch the fill-in obtained
during Gaussian elimination in Fig. 6.

The fastest known method for predicting the filled graphGd(L+U) is Gaussian
elimination. The situation is simplified if the graph is undirected. In the sequel we
ignore the orientation of the edges and simply consider the undirected graph G(A)
and G(L+ U), respectively.
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Fig. 7 Entries of G(A) are
denoted by filled circle, fill-in
is denoted by times

Definition 11 The undirected graph G(L+ U) that is derived from the undirected
graph G(A) by applying Theorem 2 is called the filled graph and it will be denoted
by Gf (A).

Fill-in with Respect to the Undirected Graph
When we consider the undirected graph G(A) in Example 4.1, the pattern of
|�TA|+|�TA|T and its filled graphGf (A) now equalsG(A) up to positions
(5, 4) and (4, 5) (cf. Fig. 7).

The key tool to predict the fill-in easily for the undirected graph is the elimination
tree [33].

Recall that an undirected and connected graph is called a tree, if it does not
contain any cycle. Furthermore, one vertex is identified as root. As usual we call a
vertex j parent of i, if there exists an edge (i, j) in the tree such that j is closer to the
root. In this case i is called child of j . The subtree rooted at vertex j is denoted by
T (j) and the vertices of this subtree are called descendants of j , whereas j is called
their ancestor. Initially we will define the elimination tree algorithmically using the
depth-first-search algorithm [1]. Later we will state a much simplified algorithm.

Definition 12 Given the filled graph Gf (A) the elimination tree T (A) is defined
by the following algorithm.

Perform a depth-first-search in Gf (A) starting from vertex n.
When vertexm is visited, choose from its unvisited neighbors i1, . . . , ik the index

j with the largest number j = max{i1, . . . , ik} and continue the search with j .
A leaf of the tree is reached, when all neighbors have already been visited.

We like to point out that the application of the depth-first-search toGf (A) starting at
vertex n behaves significantly different from other graphs. By Theorem 2 it follows
that as soon as we visit a vertex m, all its neighbors j > m must have been visited
prior to vertex m. Thus the labels of the vertices are strictly decreasing until we
reach a leaf node.



State-of-the-Art Sparse Direct Solvers 17

Depth-First-Search
We illustrate the depth-first-search using the (filled) graph in Fig. 8 and the
pattern from Example 4.1. The extra fill edge is marked by a bold line.

The ongoing depth-first-search visits the vertices in the order 6 → 5 →
4 → 3. Since at vertex 3, all neighbors of 3 are visited (and indeed have
a larger number), the algorithm backtracks to 4 and to 5 and continues the
search in the order 5 → 2. Again all neighbors of vertex 2 are visited (and
have larger number), thus the algorithm backtracks to 5 and to 6 and continues
by 6 → 1. Then the algorithm terminates.

3

4

5

6 1

2

6

1 5

24

3

Fig. 8 Filled graph (left) and elimination tree (right)

Remark 1 It follows immediately from the construction of T (A) and Theorem 2
that additional edges of Gf (A) which are not covered by the elimination tree can
only show up between a vertex and some of its ancestors (referred to as “back-
edges”). In contrast to that, “cross-edges” between unrelated vertices do not exist.

Remark 2 One immediate consequence of Remark 1 is that triangular factors can be
computed independently starting from the leaves until the vertices meet a common
parent, i.e., column j of L and UT only depend on those columns s of L and UT

such that s is a descendant of j in the elimination tree T (A).

Elimination Tree
We use the matrix “west0479” from Example 3.1.3, after maximum weight
matching and multilevel nested dissection have been applied. We use
MATLAB’s etreeplot to display its elimination tree (see Fig. 9). The

(continued)
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Fig. 9 Elimination tree of “west0479” after maximum weight matching and nested dissection are
applied

elimination tree displays the high level of concurrency that is induced by
nested dissection, since by Remark 2 the computations can be executed
independently at each leaf node towards the root until a common parent vertex
is reached.

Further conclusions can be easily derived from the elimination tree, in particular
Remark 2 in conjunction with Theorem 2.

Remark 3 Consider some k ∈ {1, . . . , n}. Then there exists a (fill) edge (j, k) with
j < k if and only if there exists a common descendant i of k, j in T (A) such
that aik �= 0. This follows from the fact that once aik �= 0, by Theorem 2 this
induces (fill) edges (j, k) in the filled graph Gf (A) for all nodes j between i and
k in the elimination tree T (A), i.e., for all ancestors of i that are also descendants
of k. This way, i propagates fill-edges along the branch from i to k in T (A) and the
information aik �= 0 can be used as path compression to advance from i towards k
along the elimination tree.

Path Compression
Consider the graph and the elimination tree from Fig. 8. Since there exists the
edge (3, 5) in G(A), therefore another (fill) edge (4, 5) must exist. Similarly,
the same conclusion can be drawn from the existence of the edge (4, 6) (here
not a fill edge, but a regular edge).

The elimination tree itself can be easily described by a vector p of length n such
that for any i < n, pi denotes the parent node, while pn = 0 corresponds to the
root. Consider some step k with aik �= 0, for some i < k. By Remark 3, i must
be a descendant of k and there could be further ancestors j of i which are also
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descendants of k. Possibly not all ancestors of i have been assigned a parent node
so far. Thus we can replace i by j = pi until we end up with pj = 0 or pj � k.
This way we traverse T (A) from i towards to k until we have found the child node
j of k. If the parent of j has not been assigned to j yet, then pj = 0 and k must be
the parent of j . If some l < k were the parent of j , then we would have assigned
l as parent of j in an earlier step l < k. In this case we set pj ← k. Otherwise, if
pj � k, then we have already assigned j ’s parent in an earlier step l < k.

Computation of Parent Nodes
Consider the elimination tree T (A) from Fig. 8. Unless k = 4, no parents have
been assigned, i.e., pi = 0 for all i.

Now for k = 4 we have a34 �= 0 and using the fact that p3 = 0 implies
that we have to set a3 = p3 ← 4.

For k = 5, a25 �= 0 and again p2 = 0 requires to set a2 = p2 ← 5. Next,
a35 �= 0, path compression enables a3 ← 5 and after another loop we obtain
a4 = p4 ← 5.

Finally, if k = 6, we have a16 �= 0 and immediately obtain a1 = p1 ← 6.
Since a46 �= 0, a path compression is applied which yields a4 ← 6 and in
the next step we set a5 = p5 ← 6. At last a56 �= 0 does not cause further
changes.

In total we have p = [6, 5, 4, 5, 6, 0] which perfectly reveals the parent
properties of the elimination trees in Fig. 8.

By Remark 3 (cf. [12, 43]), we can also make use of path compression. Since our
goal is to traverse the branch of the elimination tree from i to k as fast as possible,
any ancestor j = ai of i would be sufficient. With the same argument as before, an
ancestor aj = 0 would refer to a vertex that does not have a parent yet. In this case
we can again set pj ← k. Moreover, k is always an ancestor of ai .

The algorithm including path compression can be summarized as follows (see
also [12, 33]).

Computation of the Elimination Tree
Input: A ∈ R

n,n such that A has the same pattern as |A| + |A|T .
Output: vector p ∈ R

n such that pi is the parent of i, i = 1, . . . , n − 1,
except pn = 0.

1: let a ∈ R
n be an auxiliary vector used for path compression.

2: p← 0, a← 0
3: for k = 2, . . . , n do
4: for all i < k such that aik �= 0 do

(continued)
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5: while i �= 0 and i < k do
6: j ← ai
7: ai ← k

8: if j = 0 then
9: pi ← k

10: end if
11: i ← j

12: end while
13: end for
14: end for

4.2 The Supernodal Approach

We have already seen that the elimination tree reveals information about concur-
rency. It is further useful to determine the fill-in L and UT . This information can
be computed from the elimination tree T (A) together with G(A). The basis for
determining the fill-in in each column is again Remark 3. Suppose we are interested
in the nonzero entries of column j of L and UT . Then for all descendants of j ,
i.e., the nodes of the subtree T (j) rooted at vertex j , a nonzero entry aik �= 0 also
implies lkj �= 0. Thus, starting at any leaf i, we obtain its fill by all aik �= 0 such
that k > i and when we move forward from i to its parent j , vertex j will inherit
the fill from node i for all k > j plus the nonzero entries given by ajk �= 0 such that
k > j . When we reach a common parent node k with multiple children, the same
argument applies using the union of fill-in greater than k from its children together
with the nonzero entries akl �= 0 such that l > k. We summarize this result in a very
simple algorithm

Computation of Fill-in

Input: A ∈ R
n,n such that A has the same pattern as |A| + |A|T .

Output: sparse strict lower triangular pattern P ∈ R
n,n with same pattern as

L, UT .
1: compute parent array p of the elimination tree T (A)
2: for j = 1, . . . , n do
3: supplement nonzeros of column j of P with all i > j such that aij �= 0
4: k = pj
5: if k > 0 then

(continued)
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6: supplement nonzeros of column k of P with nonzeros of column j
of P greater than k

7: end if
8: end for

Algorithm 4.2 only deals with the fill pattern. One additional aspect that allows to
raise efficiency and to speed up the numerical factorization significantly is to detect
dense submatrices in the factorization. Block structures allow to collect parts of the
matrix in dense blocks and to treat them commonly using dense matrix kernels such
as level-3 BLAS and LAPACK [13, 14].

Dense blocks can be read off from the elimination tree employing Algorithm 4.2.

Definition 13 Denote by Pj the nonzero indices of column j of P as computed by
Algorithm 4.2. A sequence k, k + 1, . . . , k + s − 1 is called supernode of size s if
the columns of Pj = Pj+1 ∪ {j + 1} for all j = k, . . . , k + s − 2.

In simple words, Definition 13 states that for a supernode s subsequent columns can
be grouped together in one dense block with a triangular diagonal block and a dense
subdiagonal block since they perfectly match the associated trapezoidal shape. We
can thus easily supplement Algorithm 4.2 with a supernode detection.

Computation of Fill-in and Supernodes

Input: A ∈ R
n,n such that A has the same pattern as |A| + |A|T .

Output: sparse strict lower triangular pattern P ∈ R
n,n with same pattern as

L, UT as well as column size s ∈ R
m of each supernode.

1: compute parent array p of the elimination tree T (A)
2: m← 0
3: for j = 1, . . . , n do
4: supplement nonzeros of column j of P with all i > j such that aij �= 0
5: denote by r the number of entries in column j of P
6: if j > 1 and j = pj−1 and sm + r = l then
7: sm← sm + 1 � continue current supernode
8: else
9: m← m+ 1, sm← 1, l← r � start new supernode

10: end if
11: k = pj

(continued)
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Fig. 10 Supernodes in the
triangular factor

12: if k > 0 then
13: supplement nonzeros of column k of P with nonzeros of column j

of P greater than k
14: end if
15: end for

Supernode Computation
To illustrate the use of supernodes, we consider the matrix pattern from Fig. 7
and illustrate the underlying dense block structure in Fig. 10. Supernodes are
the columns 1, 2, 3 as scalar columns as well as columns 4–6 as one single
supernode.

Supernodes form the basis of several improvements, e.g., a supernode can be
stored as one or two dense matrices. Beside the storage scheme as dense matrices,
the nonzero row indices for these blocks need only be stored once. Next the use
of dense submatrices allows the usage of dense matrix kernels using level-3 BLAS
[13, 14].

Supernodes
We use the matrix “west0479” from Example 3.1.3, after maximum weight
matching and multilevel nested dissection have been applied. We use its undi-
rected graph to compute the supernodal structure. Certainly, since the matrix
is nonsymmetric, the block structure is only sub-optimal. We display the
supernodal structure for the associated Cholesky factor, i.e., for the Cholesky
factor of a symmetric positive definite matrix with same undirected graph as
our matrix (see left part of Fig. 11). Furthermore, we display the supernodal
structure for the factors L and U computed from the nonsymmetric matrix
without pivoting (see right part of Fig. 11).
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Fig. 11 Supernodal structure. Left: vertical lines display the blocking of the supernodes with
respect to the associated Cholesky factor. Right: vertical and horizontal lines display the blocking
of the supernodes applied to L and U

While the construction of supernodes is fairly easy in the symmetric case, its
generalization for the nonsymmetric case is significantly harder, since one has to
deal with pivoting in each step of Gaussian elimination. In this case one uses the
column elimination tree [22].

5 Sparse Direct Solvers—Supernodal Data Structures

High-performance sparse solver libraries have been a very important part of scien-
tific and engineering computing for years, and their importance continues to grow as
microprocessor architectures become more complex and software libraries become
better designed to integrate easily within applications. Despite the fact that there are
various science and engineering applications, the underlying algorithms typically
have remarkable similarities, especially those algorithms that are most challenging
to implement well in parallel. It is not too strong a statement to say that these
software libraries are essential to the broad success of scalable high-performance
computing in computational sciences. In this section we demonstrate the benefit of
supernodal data structures within the sparse solver package PARDISO [42]. We
illustrate it by using the triangular solution process. The forward and backward
substitution is performed column wise with respect to the columns of L, starting
with the first column, as depicted in Fig. 12. The data dependencies here allow to
store vectors y, z, b, and x in only one vector r . When column j is reached, rj
contains the solution for yj . All other elements of L in this column, i. e. Lij with
i = j + 1, . . . , N , are used to update the remaining entries in r by
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j

j+1

j-1

L r

iteration direction

1: procedure
2: for j = 0; j < n; j++ do
3: for i = xl[j]; i < xl[j+1]; i++ do
4: row = id[i]

5: r[row] -= r[j] * l[i] indexed DAXPY

6: end for
7: end for
8: end procedure

j

j+1

j-1

L r

LT

iteration direction

1: procedure
2: for j = n; j > 0; j - - do
3: for i = xl[j]; i < xl[j+1]; i++ do
4: row = id[i]

5: r[j] -= r[row] * l[i] indexed DDOT

6: end for
7: end for
8: end procedure

Fig. 12 Sparse triangular substitution in CSC format based on indexed DAXPY/DDOT kernel
operations

ri = ri − rjLij . (8)

The backward substitution with LT will take place row wise, since we use L and
perform the substitution column wise with respect toL, as shown in the lower part of
Fig. 12. In contrast to the forward substitution the iteration over columns starts at the
last column N and proceeds to the first one. If column j is reached, then rj , which
contains the j -component of the solution vector xj , is computed by subtracting the
dot-product of the remaining elements in the column Lij and the corresponding
elements of ri with i = j + 1, . . . , N from it:

rj = rj − riLij . (9)

After all columns have been processed r contains the required solution x. It is
important to note that line 5 represents in both substitutions an indexed DAXPY
and indexed DDOT kernel operations that has to be computed during the streaming
operations of the vector r and the column j of the numerical factor L. As we are
dealing with sparse matrices it makes no sense to store the lower triangular matrix L
as a dense matrix. Hence, PARDISO uses its own data structure to store L, as shown
in Fig. 13.

Adjacent columns exhibiting the same row sparsity structure form a panel, also
known as supernode. A panel’s column count is called the panel size np. The
columns of a panel are stored consecutively in memory excluding the zero entries.
Note that columns of panels are padded in the front with zeros so they get the same
length as the first column inside their panel. The padding is of utmost performance
for the PARDISO solver to use Level-3 BLAS and LAPACK functionalities [41].
Furthermore panels are stored consecutively in the l array. Row and column
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Fig. 13 Sparse matrix data
structures in PARDISO.
Adjacent columns of L
exhibiting the same structure
form panels also known as
supernodes. Groups of panels
which touch independent
elements of the right-hand
side r are parts. The last part
in the lower triangular matrix
L is called separator

panels

parts separator

r tL

information is now stored in accompanying arrays. The xsuper array stores for
each panel the index of its first column. Also note that here column indices are the
running count of nonzero columns. Column indices are used as indices into xl array
to lookup the start of the column in the l array which contains the numerical values
of the factorL. To determine the row index of a column’s element an additional array
id is used, which holds for each panel the row indices. The start of a panel inside id
is found via xid array. The first row index of panel p is id[xid[p]]. For serial
execution this information is enough. However, during parallel forward/backward
substitution concurrent updates to the same entry of r must be avoided. The parts
structure contains the start (and end) indices of the panels which can be updated
independently as they do not touch the same entries of r . Two parts, colored blue and
orange, are shown in Fig. 13. The last part in the bottom right corner of L is special
and is called the separator and is colored green. Parts which would touch entries of r
in the range of the separator perform their updates into separate temporary arrays t.
Before the separator is then serially updated, the results of the temporary arrays are
gathered back into r. The backward substitution works the same, just reversed and
only updates to different temporary arrays are not required. The complete forward
substitution and backward substitution is listed in Algorithms 1 and 2.

6 Application—Circuit Simulation

In this section we demonstrate how these developments in sparse direct linear
solvers have advanced integrated circuit simulations. Integrated circuits are com-
posed of interconnected transistors. The interconnects are modeled primarily with
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Algorithm 1 Forward substitution in PARDISO. Note that in case of serial execution
separated updates to temporary arrays in Lines 10–13 are not necessary and can be
handled via the loop in Lines 6–9
1: procedure FORWARD

2: for part o in parts do � parallel execution
3: for panel p in part p do
4: for column j in panel do � unroll
5: i = xid[p] + offset
6: for k = xl[j] + offset; k < sep; ++k do
7: row = id[i++]
8: r[row] - = r[j] l[k] � indexed DAXPY
9: end for

10: for k = sep + 1; k < xl[j+1]; ++k do
11: row = id[i++]
12: t[row,p] -= r[j] l[k] � indexed DAXPY
13: end for
14: end for
15: end for
16: end for
17: r[i] = r[i] - sum(t[i,:]) � gather temporary arrays
18: for panel p in separator do � serial execution
19: for column j in panel do � unroll
20: i = xid[p] + offset
21: for k = xl[j] + offset; k < xl[j+1]; ++k do
22: row = id[i++]
23: r[row] -= r[j] l[k] � indexed DAXPY
24: end for
25: end for
26: end for
27: end procedure

resistors, capacitors, and inductors. The interconnects route signals through the
circuit, and also deliver power. Circuit equations arise out of Kirchhoff’s current law,
applied at each node, and are generally nonlinear differential-algebraic equations. In
transient simulation of the circuit, the differential portion is handled by discretizing
the time derivative of the node charge by an implicit integration formula. The
associated set of nonlinear equations is handled through use of quasi-Newton
methods or continuation methods, which change the nonlinear problem into a series
of linear algebraic solutions. Each component in the circuit contributes only to a few
equations. Hence, the resulting systems of linear algebraic equations are extremely
sparse, and most reliably solved by using direct sparse matrix techniques. Circuit
simulation matrices are peculiar in the universe of matrices, having the following
characteristics [11]:

• they are nonsymmetric, although often nearly structurally symmetric;
• they have a few dense rows and columns (e.g., power and ground connections);
• they are very sparse and the straightforward usage of BLAS routines (as in

SuperLU[32]) may be ineffective;
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Algorithm 2 Backward substitution in PARDISO. Separator (sep.), parts, and
panels are iterated over in reversed (rev.) order
1: procedure BACKWARD

2: for panel p in sep. rev. do � serial execution
3: for col. j in panel p rev. do � unroll
4: i = xid[p] + offset
5: for k = xl[j] + offset; k < xl[j+1]; ++k do
6: row = id[i++]
7: r[j] -= r[row] l[k] � indexed DDOT
8: end for
9: offset = offset - 1

10: end for
11: end for
12: for part in parts do � parallel execution
13: for panel p in part rev. do
14: for col. j in panel p rev. do � unroll
15: i = xid[p] + offset
16: for k = xl[j] + offset; k < xl[j+1]; ++k do
17: row = id[i++]
18: r[j] -= r[row] l[k] � indexed DDOT
19: end for
20: offset = offset - 1
21: end for
22: end for
23: end for
24: end procedure

• their LU factors remain sparse if well-ordered;
• they can have high fill-in if ordered with typical strategies;
• and being unstructured, the highly irregular memory access causes factorization

to proceed only at a few percent of the peak flop-rate.

Circuit simulation matrices also vary from being positive definite to being
extremely ill-conditioned, making pivoting for stability important also. As circuit
size increases, and depending on how much of the interconnect is modeled, sparse
matrix factorization is the dominant cost in the transient analysis.

To overcome the complexity of matrix factorization a new class of simulators
arose in the 1990s, called fast-SPICE [39]. These simulators partition the circuit
into subcircuits and use a variety of techniques, including model order reduction
and multirate integration, to overcome the matrix bottleneck. However, the resulting
simulation methods generally incur unacceptable errors for analog and tightly
coupled circuits. As accuracy demands increase, these techniques become much
slower than traditional SPICE methods. Even so, since much of the research effort
was directed at fast-SPICE simulators, it brought some relief from impossibly slow
simulations when some accuracy trade-off was acceptable. Because these simulators
partitioned the circuit, and did not require the simultaneous solution of the entire
system of linear equations at any given time, they did not push the state of the art in
sparse matrix solvers.
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Starting in the mid-2000s, increasing demands on accuracy, due to advancing
semiconductor technology, brought attention back to traditional SPICE techniques.
This was aided by the proliferation of multicore CPUs. Parallel circuit simulation,
an area of much research focus in the 1980s and 1990s, but not particularly
in practice, received renewed interest as a way to speed up simulation without
sacrificing accuracy. Along with improved implementations to avoid cache misses,
rearchitecture of code for parallel computing, and better techniques for exploitation
of circuit latency, improved sparse matrix solvers, most notably the release of KLU
[11], played a crucial role in expanding the utility of SPICE.

Along with the ability to simulate ever larger circuits with full SPICE accuracy
came the opportunity to further improve sparse matrix techniques. A sparse matrix
package for transient simulation needs to have the following features:

• must be parallel;
• fast matrix reordering;
• incremental update of the L and U factors when only a few nonzeros change;
• fast computation of the diagonal entries of the inverse matrix;
• fast computation of Schur-complements for a submatrix;
• allow for multiple LU factors of the same structure to be stored;
• use the best-in-class method across the spectrum of sparsity;
• use iterative solvers with fast construction of sparse preconditioners;
• run on various hardware platforms (e.g., GPU acceleration).

Some of these features must be available in a single package. Others, such as
iterative solvers and construction of preconditioners, can be implemented with a
combination of different packages. The PARDISO solver1 stands out as a package
that does most of these very well. Here we touch on a few of these features.

When applied in the simulation of very large circuits, the difference between a
“good” and a “bad” matrix ordering can be the difference between seconds and days.
PARDISO offers AMD and nested dissection methods for matrix ordering, as well
as permitting user-defined ordering. Because the matrix reordering method which
has been used most often in circuit simulation is due to Markowitz [35], and because
modern sparse matrix packages do not include this ordering method, we briefly
describe it here. The Markowitz method is quite well-adapted for circuit simulation.
Some desirable aspects of the typical implementation of the Markowitz method,
as opposed to the MD variants, are that it works for nonsymmetric matrices and
combines pivot choice with numerical decomposition, such that a pivot choice is a
numerically “good” pivot which generates in a local sense the least fill-in at that step
of the decomposition. Choosing pivots based on the Markowitz score often produces
very good results: near-minimal fill-in, unfortunately at the cost of an O(n3)

algorithm (for dense blocks). Even though the Markowitz algorithm has some good
properties when applied to circuit matrices, the complexity of the algorithm has
become quite burdensome. When SPICE [36] was originally conceived, a hundred-

1The PARDISO solver is available from http://www.pardiso-project.org.

http://www.pardiso-project.org
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Fig. 14 Performance improvements of PARDISO 6.2 against Intel MKL PARDISO (one thread)
for various circuit simulation matrices

node circuit was huge and the Markowitz algorithm was not a problem. Now we
routinely see netlists with hundreds of thousands of nodes and post-layout netlists
with millions of elements. As matrix order and element counts increase, Markowitz
reordering time can become an obstruction. Even as improved implementations of
the Markowitz method have extended its reach, AMD and nested dissection have
become the mainstay of simulation of large denser-than-usual matrices.

Next we turn our attention to parallel performance. While KLU remains a
benchmark for serial solvers, for parallel solvers, MKL-PARDISO is often cited
as the benchmark [6, 8]. To give the reader a sense of the progress in parallel sparse
matrix methods, in Fig. 14 we compare KLU, PARDISO (Version 6.2) to MKL-
PARDISO on up to 16 cores on an Intel Xeon E7-4880 architecture with 2.5 GHz
processors.

Some of the matrices here can be obtained from the SuiteSparse Matrix
Collection, and arise in transistor level full-chip and memory array simulations. It is
clear that implementation of sparse matrix solvers has improved significantly over
the years.

Exploiting latency in all parts of the SPICE algorithm is very important in
enabling accurate circuit simulation, especially as the circuit size increases. By
latency, we mean that only a few entries in the matrix change from one Newton
iteration to the next, and from one timepoint to the next. As the matrix depends
on the time-step, some simulators hold the time-steps constant as much as feasible
to allow increased reuse of matrix factorizations. The nonzero entries of a matrix
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Fig. 15 Regression analysis on the rank-k update LU factorization in PARDISO

change only when the transistors and other nonlinear devices change their operation
point. In most circuits, very few devices change state from one iteration to the
next and from one time-step to the next. Nonzeros contributed by entirely linear
components do not change value during the simulation. This makes incremental LU
factorization a very useful feature of any matrix solver used in circuit simulation.
As of April 2019 the version PARDISO 6.2 has a very efficient exploitation of
incremental LU factorization, both serial and parallel. In Fig. 15 we show that
PARDISO scales linearly with number of updated columns, and also scales well
with number of cores. Here, the series of matrices were obtained from a full
simulation of a post-layout circuit that includes all interconnects, power and ground
networks. The factorization time is plotted against the number of columns that
changed compared to the previous factorization. The scatter plot shows the number
of rank-k update and the corresponding factorization time in milliseconds. The
regression analysis clearly demonstrates a linear trend both for the single and the
multiple core versions. The dashed line shows the time for the full factorization.

Another recent useful feature in PARDISO is parallel selective inverse matrix
computation as demonstrated in Table 1. In circuit simulation, the diagonal of the
inverse matrix is the driving point impedance. It is often required to flag nodes
in the circuit with very high driving point impedance. Such nodes would indicate
failed interfaces between different subcircuits, leading to undefined state and high
current leakage and power dissipation. A naive approach to this is to solve for the
driving point impedance, the diagonal of the inverse matrix, by N triangular solves.
This is sometimes unacceptably expensive even with exploiting the sparsity of the
right-hand side, and minimizing the number of entries needed in the diagonal of
the inverse. To bypass this complexity, heuristics to compute the impedance of
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Table 1 Details of the benchmark matrices

Matrix N nnz(A) nnz( L+U
A
) A−1 Selected A−1

circuit5M_DC 3,523,317 19,194,193 2.87 82.3 h 1.3 s

circuit5M 5,558,326 59,524,291 1.04 371.1 h 2.1 s

Freescale 3,428,755 18,920,347 2.94 89.8 h 1.0 s

Freescale2 2,999,349 23,042,677 2.92 8.5 h 1.2 s

FullChip 2,987,012 26,621,990 7.41 162.9 h 11.9 s

memchip 2,707,524 14,810,202 4.40 62.5 h 0.9 s

“N” is the number of matrix rows and “nnz” is the number of nonzeros
The table shows the fill-in factor related to the number of nonzeros in L+U

A
, the time for computing

all diagonal elements of the inverse A−1 using N multiple forward/backward substitution in
hours, and using the selected inverse method in PARDISO for computing all diagonal elements
of the inverse A−1 in seconds

connected components are used. But this is error prone with many false positives
and also false negatives. In the circuit Freescale, PARDISO, e.g., finished the
required impedance calculations in 11.9 s compared to the traditional computation
that consumed 162.9 h.

The productivity gap in simulation continues to grow, and challenges remain.
Signoff simulations demand 10× speedup in sparse matrix factorization. Simply
using more cores does not help unless the matrices are very large and complex. For
a majority of simulations, scaling beyond eight cores is difficult. As a result, some
of these simulations can take a few months to complete, making them essentially
impossible. Some of the problems in parallelizing sparse matrix operations for
circuit simulation are fundamental. Others may be related to implementation.
Research on sparse matrix factorization for circuit simulation continues to draw
attention, especially in the area of acceleration with Intel’s many integrated core
(MIC) architecture [6] and GPUs [7, 31]. Other techniques for acceleration include
improved preconditioners for iterative solvers [44]. We are presently addressing the
need for runtime selection of optimal strategies for factorization, and also GPU
acceleration. Given that circuits present a wide spectrum of matrices, no matter how
we categorize them, it is possible to obtain a solver that is 2–10× better on a given
problem. Improvements in parallel sparse matrix factorization targeted at circuit
simulation is more necessary today than ever and will continue to drive applicability
of traditional SPICE simulation methods. Availability of sparse matrix packages
such as PARDISO that completely satisfy the needs of various circuit simulation
methods is necessary for continued performance gains.
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The Effect of Various Sparsity Structures
on Parallelism and Algorithms to Reveal
Those Structures

Oguz Selvitopi, Seher Acer, Murat Manguoğlu, and Cevdet Aykanat

1 Introduction

Various parallel numerical methods can greatly benefit from a structured matrix in
order to enhance parallel performance and convergence. Examples of these methods
include, but certainly not constrained to, QR factorization for solving linear least
squares problems and linear systems, the direct methods such as LU or Cholesky
factorizations for solving sparse linear systems of equations, or direct-iterative
hybrid solvers. Our goal in this work is to present combinatorial algorithms to
obtain certain sparse matrix forms that are beneficial for a wide variety of parallel
numerical methods.

We do not follow a comprehensive approach for obtaining structured sparse
matrices and limit ourselves to combinatorial graph and hypergraph models for that
purpose. An effective way of attaining the desired form of a sparse matrix is to
represent it with a graph/hypergraph, and then partition this graph/hypergraph with
a relevant objective and constraint in mind that correlates to the metrics pertaining
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to parallel performance or convergence. The duality between matrices and graphs
is successfully used to translate the computations on graphs into the language of
linear algebra [34], where there exist several decades of effort in optimizing them.
The hypergraphs generalize graphs where an edge may connect more than two
vertices and they are better compared to graphs in representing multiway relations.
However, the nature of the problem dictates whether it is better to utilize a graph or
a hypergraph model. Although this is usually the case, another important issue is the
availability of certain features in partitioners that may be necessitated by the model
(such as support for fixed vertices, multiple constraints, multiple objectives, etc.).

We consider four different sparse matrix structures or forms: (1) singly-bordered
block-diagonal form (SB form), (2) doubly-bordered block-diagonal form (DB
form), (3) nonempty off-diagonal block minimization, and (4) block diagonal with
overlap form (BDO form). The SB form is made up of a number of diagonal blocks
and a single row or column border stripe, where the former is referred to as the
rowwise SB form (Fig. 1a) and the latter is referred to as the columnwise SB form
(Fig. 1b). The goals in the SB form are to obtain balanced-size diagonal blocks and
minimize the border size. The DB form is similar to the SB form but it consists
of both a row and a column border stripe (Fig. 1c). The goals in the DB form are
also similar to the goals in the SB form. Another problem we investigate is the
minimization of number of nonempty off-diagonal blocks for a given sparse matrix
(Fig. 1d). This is not really a structured sparse matrix form in the strictest sense.
Nonetheless, it enables optimizations important for parallel performance. The BDO
form consists of a number of diagonal blocks where only the successive diagonal
blocks overlap with each other (Fig. 1e). The two goals of this form are to minimize
the overlaps between blocks and to obtain balanced-size diagonal blocks.

We give the background related to graph/hypergraph partitioning and the nota-
tions used for matrices in Sect. 2. We investigate each form on its own section. Each
of these sections consists of: (1) describing the target form and the goals sought in
the form, (2) the graph/hypergraph method(s) for obtaining the form, and (3) how
this form is utilized for different applications and how it benefits these applications
by enhancing parallel performance and/or convergence. The four forms are covered
between Sects. 3–6. We give our concluding remarks in Sect. 7.

(a) (b) (c) (d) (e)

Fig. 1 The sparse matrix forms examined in this work. (a) Rowwise SB form. (b) Columnwise
SB form. (c) DB form. (d) Nonempty off-diagonal block minimization. (e) BDO form
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2 Preliminaries

In this section we introduce the terminology used in the rest of the paper. We
first describe the graph and hypergraph partitioning problems, which are central
to obtaining the matrix forms described in the paper. Then we give some basic
definitions related to matrices.

2.1 Graph Partitioning by Vertex Separator (GPVS)

An undirected graph G = (V,E) is defined by a set V of vertices and a set E of
edges, where each edge ei,j ∈ E connects a pair of distinct vertices vi, vj ∈ V. The
vertices adjacent to vi in G are denoted by AdjG(vi). We appropriately extend this
notation to a subsetV′ ⊆ V of vertices. Each vertex vi is associated with a weight,
which we denote by w(vi). A vertex subset VS is a K-way vertex separator if the
subgraph induced by the vertices inV−VS has at least K connected components.
VS is called wide if a strict subset of it also forms a separator, and narrow
otherwise.
�VS = {V1, . . . ,VK ;VS} is a K-way vertex partition of G by vertex separator

VS if (1) the union of the vertices in all parts give V, (2) each part except the
separator is nonempty, (3) the parts are pairwise disjoint, and (4) the K parts are
pairwise nonadjacent. An edge is internal if the pair of vertices connected by it
are in the same part, and external, otherwise. A vertex is a boundary vertex if it is
connected by one or more external edges. The goal in the GPVS problem is to find a
K-way vertex separator with the objective of minimizing the separator size, which
is usually defined as

cost (�VS) = |VS |, (1)

under the constraint of maintaining the balance criterion (usually provided as a
parameter) on the weights of the K parts V1, . . . ,VK . The weight W(Vk) of
Vk is usually defined as the summation of the weights of the vertices in it, i.e.,
W(Vk) =∑vi∈Vk w(vi), for 1 ≤ k ≤ K .

A relevant problem is the graph partitioning by edge separator (GPES), which
is similar to the GPVS problem except that its goal is to find an edge separator
with minimum size instead of a vertex separator with minimum size. The multilevel
approaches for GPES [9, 21] led to successful tools [20, 28, 41]. There are also
tools that solve the GPVS problem directly [22, 28]. The GPVS problem can
also be solved indirectly by first solving the GPES problem and forming a wide
separator with all the vertices that are incident to the edges in the edge separator, and
then narrowing down this separator using various algorithms based on refinement
heuristics or vertex cover [43]. It is shown that the direct approaches [22] are better
for the GPVS problem. The deficiency of GPVS-based approaches in multilevel
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frameworks is pointed out [11, 29]. Note both the GPES and GPVS problems are
NP-hard [8].

A variant of the GPVS problem is the ordered GPVS problem [2]. �oVS =
{V1, . . . ,VK ;VS1 , . . . ,VSK−1} is a K-way ordered partition of G by the K − 1
vertex separators {VS1 , . . . ,VSK−1} if (1) the union of the parts and the separators
give V, (2) each separator is nonempty, (3) all parts and separators are pairwise
disjoint, (4) the K parts are pairwise nonadjacent, and (5) VSk is only adjacent to
separators VSk−1 and VSk+1 , and the parts Vk and Vk+1. The first four conditions
are similar to those in the GPVS problem. The fifth condition imposes an order on
the vertices of the parts and the separators, in which VSk is the vertex separator
of the parts Vk and Vk+1. The goal in the ordered GPVS problem is to find a K-
way partition of G by an ordered set of K − 1 vertex separators such that the total
separator size

cost (�oV S) =
K−1∑

k=1

|VSk |, (2)

is minimized and the balance criterion on the weights of the K parts is satisfied.

2.2 Hypergraph Partitioning (HP)

A hypergraph H = (U,N) is defined by a set U of nodes and a set N of nets,
where each net ni ∈ N connects a subset of nodes, denoted with P ins(ni) ⊆ U.
We refer to the vertices of a hypergraph as nodes in order to separate them from
the vertices of a graph. This notation is extended to the subset of nodes P ins(N ′)
connected by a subset of nets N ′ ⊆ N . The set of nets that connect a node vi is
denoted by Nets(vi) ⊆ N . This notation is similarly extended to the subset of nets
Nets(U′) that connect a subset of nodesU′ ⊆ U. Each node vi is associated with
a weight w(vi).
�HP = {U1, . . . ,UK} is aK-way node partition ofH if (1) the union of nodes

in all parts giveU, (2) each part is nonempty, and (3) the parts are pairwise disjoint.
In�HP , a net is said to connect a part if it has at least one pin in it. The connectivity
set �(ni) denotes the set of parts connected by ni and the connectivity λ(ni) =
|�(ni)| of ni denotes the number of parts connected by ni . A net is said to be
external if it connects more than one part, and internal otherwise. AK-way partition
�HP on the nodes of the hypergraph induces a (K + 1)-way partition on N as
well. If we denote the nets internal to part Uk with Nk and the external nets with
NS , we can interpret this partition also as �HP = {N1, . . . ,NK ;NS}. The goal in
the hypergraph partitioning problem is to find a K-way partition with objective of
minimizing the cutsize, which is defined either as
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cost (�HP ) =
∑

ni∈NS
λ(ni)− 1 or as (3)

cost (�HP ) = |NS |. (4)

These two are commonly referred to as the connectivity and the cutsize metrics,
respectively, and they are widely adopted in the scientific computing [10] and
VLSI communities [32]. We are interested in two variants of constraints in the HP
problem. The first variant is to maintain a balance on part weights similar to the one
in the GPVS problem. The second variant is to maintain a balance on the number of
internal nets.

The HP problem is NP-hard [32]. The most successful tools [12, 27] for solving
the HP problem rely on the multilevel schemes.

2.3 Matrix Definitions

We give the notation related to matrices. The row i and column j of matrix A are,
respectively, denoted by ai,∗ and a∗,j , and the nonzero at the intersection of these
two is denoted by ai,j . We use the functions nnz(·), nr(·), and nc(·) to, respectively,
denote the number of nonzeros, rows, and columns in a (sub)matrix, which we may
apply to a row, column, block, stripe, or the entire matrix.

Them×n sparse matrix A will often appear in blocked form withK×L blocks,
in which the block at the intersection of kth row stripe and �th column stripe is
of size mk × n�. We use the capital letters B,C,D to denote the blocks and use
two subscripts to denote a block. When clear from the context, we utilize a single
subscript. The kth row stripe contains the blocks Bk,1, . . . , Bk,L and the �th column
stripe contains the blocks B1,�, . . . , BK,�. A block Bk,� is said to be diagonal if k =
�, and off-diagonal, otherwise. A row (column) is called a coupling row (coupling
column) if it has nonzeros in at least two blocks. In our discussions there exist both
symmetric and nonsymmetric matrices. Figure 2 illustrates a nonsymmetric matrix
that is used for reordering purposes throughout the paper.

3 Singly-Bordered Block-Diagonal Form

Target Form The singly-bordered block-diagonal form of an m× n sparse matrix
A consists of K diagonal blocks and a border stripe. In the rowwise SB form, A is
permuted into ArSB as
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Fig. 2 A 16× 18 sparse
matrix used for reordering
purposes throughout the
paper
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PAQ =

⎡

⎢⎢⎢⎣

B1
. . .

BK

R1 · · · RK

⎤

⎥⎥⎥⎦ = ArSB, (5)

where P andQ denote the row and column permutation matrices, respectively. The
row border stripe R = [R1 · · ·RK ] consists of coupling rows, each of which has
nonzeros in the columns of at least two diagonal blocks. In the columnwise SB
form, A is permuted into AcSB as

PAQ =
⎡

⎢⎣
B1 C1
. . .

...

BK CK

⎤

⎥⎦ = AcSB. (6)

The column border stripe C = [CT1 · · ·CTK ]T consists of coupling columns, each
of which has nonzeros in the rows of at least two diagonal blocks. The rowwise
and columnwise SB forms are also referred to as primal and dual SB forms,
respectively [5]. For the SB form, we do not impose a symmetric permutation on
the rows and columns of the matrix, i.e., we do not enforce that PT = Q.

The two goals in permuting a matrix into SB form are to reduce the border size
and satisfy a balance criterion on the sizes of the blocks. The border size is given by
the number of rows in R, nr(R), for the rowwise SB form and number of columns
in C, nc(C), for the columnwise SB form. The block size is usually defined in terms
of its dimensions or the number of nonzeros in it.
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Methods The SB form of a given sparse matrix can be attained via different
approaches [5, 15, 42]. Here, we focus on the hypergraph models, which are shown
to be more effective [5]. In addition, we only describe the rowwise SB form. The
columnwise SB form can be obtained using the dual of the discussed method. The
reordering process can be summarized in three successive steps: (1) the modeling
of the given matrix with the row-net hypergraph model, (2) partitioning of the
hypergraph, and (3) interpretation of this partition to reorder the matrix. We describe
each of these steps next.

The row-net hypergraphHRN = (U,N) used to model sparse matrix A consists
of n nodes and m nets. InHRN , there exists a node uj ∈ U for each column a∗,j of
A and there exists a net ni ∈ N for each row ai,∗ of A. The net ni connects uj if and
only if ai,j �= 0. Hence, P ins(ni) is given by the nodes that represent the columns
which have a nonzero in ai,∗. In a dual manner, Nets(ui) is given by the nets that
represent the rows which have a nonzero in a∗,j . The vertices can be assigned either
unit weights or the number of nonzeros of the columns they represent depending on
the application’s need. Figure 3a displays the row-net hypergraph that models the
sparse matrix in Fig. 2.

We can use a K-way partition �HP (HRN) = {U1, . . . ,UK } = {N1, . . . ,NK ;
NS} of this hypergraph to obtain ArSB . To permute A into the SB form, we order
the rows associated with the internal nets inNk+1 after the rows associated with the
internal nets in Nk for 1 ≤ k ≤ K − 1, and we order the rows associated with the
external nets NS all to the end. We obtain the column permutation by ordering the
columns associated with the nodes in Uk+1 after the columns associated with the
nodes in Uk . Figure 3b illustrates the reordered matrix induced by the partition in
Fig. 3a. Observe that the external nets with ids 1, 11, 14, 15 correspond to the rows
in the border in ArSB .

ObtainingK-way partition with the aim of minimizing the cutsize (4) minimizes
the border size as the external nets in the partition corresponds to the rows in the
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Fig. 3 Obtaining the SB form via partitioning the row-net hypergraph model. (a) Row-net
hypergraph model of the matrix in Fig. 2 and a 3-way partition of it. (b) Reordered matrix in
the rowwise SB form
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Fig. 4 A linear programming problem matrix karted with 47K rows, 133K columns, 1.8M
nonzeros (top) and a least squares problem matrix Maragal_8 with 33K rows, 75K columns,
1.3M nonzeros (bottom). The SB forms are obtained through the described method. (a) Linear
programming problem matrix. (b) Rowwise SB form of the matrix in left for 16 processes. (c)
Least squares problem matrix. (d) Columnwise SB form of the matrix in left for 16 processes

border. Maintaining a balance on part weights in�HP (HRN) infers balance among
the diagonal blocks. A dual methodology can be adopted by using the column-net
hypergraph model [5] to obtain AcSB . Figure 4 displays two matrices reordered
using the described methodology.

Application Areas and Parallelism Enhancement Various decomposition tech-
niques [15, 31, 36] for the parallel solution of linear programs (LPs) exploit the
coarse-grain parallelism inherent in the block-angular form [14]. These techniques
solve K independent LP subproblems corresponding to the block constraints
followed by a coordination phase, usually performed serially and referred to as the
master problem. Such a decomposition is useful since solving a small independent
subset of problems is more efficient compared to the aggregate problem due to
the quadratic or cubic complexity. In terms of parallel efficiency, it is crucial to
keep the sizes of the independent problems close and reduce the master problem
size [15, 35], which affects the convergence and the amount of communicated data
in each iteration. Hence, for efficient parallel solution of the LP problems, one
would like to order the constraints and variables of the problem, which, respectively,
correspond to the rows and columns of the matrix, in such a way to ensure these
goals. The rowwise SB form captures these goals effectively by minimizing the
row border size, which relates to minimizing the size of the master problem, and
by attaining balanced blocks, which translates into attaining balance in the sizes of
independent LP subproblems.
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Another application is the QR factorization which is a common method for
solving the linear least squares problems and linear systems. The QR factorization
decomposes a givenm×n coefficient matrixA into a product of anm×m orthogonal
matrixQ and an n×n upper triangular matrixR, wherem ≥ n. The columnwise SB
form leads to efficient parallelization of the sparse QR factorization, where AcSB is
utilized by enabling each process factoring its row stripe independently as the first
step, for example for the last row block,

[
Bk Ck

] = Qk
[
Rk Sk

0 C′k

]
. (7)

Finally, C′ = [C′1 · · ·C′K ]T [6] is factored to obtain the QR factorization of the
original matrix. A small-sized column border leads to less overhead in factoring
C′ and attaining balanced blocks leads to load balance in factoring those blocks.
Furthermore, the same reordering could be also used for the incomplete QR
factorization.

Finally, the rowwise and columnwise SB forms are recently exploited to paral-
lelize sparse matrix-vector and matrix-transpose-vector multiplication (SpMMTV)
on shared memory environments [26]. The range of algorithms covered is quite
wide as these two operations frequently occur in many application areas. These
include interior-point methods for solving LP problems [25, 37], Krylov subspace
methods for nonsymmetric systems such as the Biconjugate Gradient method or
the Conjugate Gradient on the Normal Equations [44], the LSQR method [40] for
solving the least squares problem, the Surrogate Constraints method [51, 52] for
solving the linear feasibility problem, and many more. The SB form is exploited
for a number of optimizations that are important for multi-threaded programs.
The objective in the SB form used for the parallelization of SpMMTV is the
minimization of the connectivity metric (3), which is different from minimizing
the border size. Figure 5 illustrates how the SB form is used to perform z = ATrSBx
followed by y = Az with four threads. The matrix blocks or subvectors stored
by a thread are indicated with the same color, whereas the subvectors that require
some sort of coordination among the threads are indicated with green color. The
SB form enables four benefits for the threads: (1) the reduction of cache misses in
reading the elements of xS and updating the elements of yS , both of which have
to be performed by multiple threads, (2) the reduction of concurrent writes to yS ,
(3) the reuse of A-matrix nonzeros together with their indices, and (4) balancing of
computational loads of the threads, which are proportional to nnz(Bk) + nnz(Rk)
for the kth thread.
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Fig. 5 Exploiting the rowwise SB form on shared memory systems (image due to [26])

4 Doubly-Bordered Block-Diagonal Form

Target Form The doubly-bordered block-diagonal form of anm×n sparse matrix
A consists of K diagonal blocks and two border stripes. In the DB form, A is
permuted into ADB as

PAQ =

⎡

⎢⎢⎢⎣

B1 C1
. . .

BK CK

R1 · · · RK D

⎤

⎥⎥⎥⎦ = ADB, (8)

where P and Q denote the row and column permutation matrices, respectively.
The row border stripe R = [R1 · · ·RKD] and the column border stripe C =
[CT1 · · ·CTKDT ]T consists of coupling rows and columns, respectively. For the DB
form, we consider both symmetric permutation and nonsymmetric permutation of
A in our discussions, respectively, referred to as the symmetric DB form and the
nonsymmetric DB form. The former is occasionally used for the symmetric matrices
and the latter for the nonsymmetric matrices.

The two main goals in permuting a matrix into DB form are to reduce the
summation of sizes of the two borders, nr(R)+nc(C), and satisfy a balance criterion
on the block sizes.

Methods A common way of permuting a matrix into the symmetric DB form is
to first represent the matrix with the standard graph model and then use a GPVS-
based multilevel partitioner for reordering. The standard graph model G = (V,E)
simply contains a vertex vi for each row/column i of A, and there exists an edge
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ei,j ∈ E for each nonzero of A. The deficiency of this graph model when used
within a multilevel framework is that a narrow vertex separator at any level of the
multilevel partitioning does not usually form a narrow separator in the finer levels.
This causes overestimation of the separator size and degrades the partition quality. A
remedy has been proposed based on hypergraph partitioning [11]. In order to obtain
the symmetric DB form we focus on this model, which we refer to HP-based GPVS,
and for the nonsymmetric DB form we focus on a bipartite graph model [5].

The HP-based GPVS for permuting a given symmetric matrix A into the
symmetric DB form consists of six steps. A sample symmetric matrix used for
reordering purposes is illustrated in Fig. 6a.

1. The matrixA is first represented with the standard graph model G = (V,E). The
graph G that represents the matrix in Fig. 6a is displayed in Fig. 6b.

2. In the second step of the HP-based GPVS, an edge-clique cover [30] C =
{C1, . . .Cm} of G is computed. A set of cliques cover G if the pair of vertices
vi and vj for each edge ei,j ∈ E are contained in at least one clique.

3. Using this set of cliques, a clique-node hypergraph (CNH) HCNH = (U,N) is
formed. In HCNH , there exists a node ui ∈ U for each clique Ci ∈ C and there
exists a net nj ∈ N for each vertex in vj ∈ V. nj connects ui if and only if

Fig. 6 Obtaining the symmetric DB form through HP-based GPVS. The example is reproduced
from [11]. (a) A symmetric matrix A. (b) Standard graph representation G. (c) The clique-node
hypergraphHCNH formed from the cliques in G and 3-way partition�HP (HCNH ). (d) Obtaining
�VS(G) from �HP (HCNH ). (e) The symmetric DB form obtained using �VS(G)
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Ci contains vj . Figure 6c shows the CNH formed from a 12-clique edge-clique
cover of G in Fig. 6b. One can see which cliques are used to form HCNH by
Nets(ui) of a node ui . For example, Nets(u5) = {n2, n3, n5, n10} indicates that
the clique containing vertices v2, v3, v5, v10 in G exists as node u5 inHCNH .

4. HCNH is partitioned to obtain �HP (HCNH ) = {N1, . . . ,NK ;NS}. In HP, the
cutsize objective (4) and the balancing constraint of internal nets are utilized.
Figure 6c illustrates a 3-way partition of the CNH described in the previous step.

5. The partition �VS(G) = {V1, . . . ,VK ;VS} is obtained using �HP (HCNH ).
This is done by using the net intersection graph (NIG) [3, 7, 13] representation
of HCNH . Simply put, there exists a vertex in the NIG representation of a
hypergraph for each net and two vertices vi and vj in the graph have an edge if
the respective nets in the hypergraph share at least one common node. Hence, the
internal net sets of �HP (HCNH ) correspond to the vertex sets of �VS(G) and
the external net set of�HP (HCNH ) become the separator in�VS(G). Figure 6d
shows the �VS(G) obtained using the �HP (HCNH ) in Fig. 6c.

6. In the last step, the partition found on the previous step is used to permute
A into the symmetric DB form. To permute A into the target form, we order
the rows/columns associated with the vertices in Vk+1 after the rows/columns
associated with the vertices in Vk for 1 ≤ k ≤ K − 1, and we order the
rows/columns associated with the vertices in the separator VS all to the end.
Figure 6e illustrates the ordered matrix induced by the partition in Fig. 6d.

Minimizing the cutsize in �HP (HCNH ) in the fourth step corresponds to
minimizing the number of vertices in the separator in �VS(G), which in turn
corresponds to minimizing the border size in the DB form. Maintaining a balance
on the number of internal nets in �HP (HCNH ) in the fourth step corresponds to
maintaining a balance on the number of vertices in parts of �VS(G), which in turn
infers a balance among the block sizes.

The method for permuting A into the nonsymmetric DB form is less involved
and achieved by formulating this problem as a GPVS problem on the bipartite graph
representation of A. In the bipartite graph B = (V = Vr ∪Vc,E), there exists a
vertex vi ∈ Vr for each row i of A and there exists a vertex vj ∈ Vc for each
column j of A. There is an edge ei,j ∈ E for each nonzero of A and it connects
the vertices ri and cj . Adj (ri) and Adj (cj ) are, respectively, given by the vertices
corresponding to the columns and rows that have nonzeros in row i and column j .
Figure 7a shows the bipartite graph the represents the matrix in Fig. 2.

We can use aK-way partition�VS(B) = {Vr1 ∪Vc1, . . . ,VrK ∪VcK ;VrS ∪VcS}
of this bipartite graph to obtain the nonsymmetric DB form. In order to do so, for the
permutation of the rows we use {Vr1, . . . ,VrK ;VrS} and order the rows associated
with the vertices in Vrk+1 after the rows associated with the vertices in Vrk for 1 ≤
k ≤ K−1, and we order the rows associated with the vertices inVrS all to the end. In
a similar manner, for the permutation of the columns we use {Vc1, . . . ,VcK ;VcS} and
order the columns associated with the vertices inVck+1 after the columns associated
with the vertices inVck for 1 ≤ k ≤ K−1, and we order the columns associated with
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Fig. 7 Obtaining the nonsymmetric DB form via bipartite graph model. (a) Bipartite graph model
of the matrix in Fig. 2 and a 3-way GPVS partition of it. (b) Reordered matrix in the DB form

the vertices inVcS all to the end. Figure 7b illustrates the ordered matrix induced by
partition in Fig. 7a. In Fig. 7, the vertices that represent the row border are displayed
in green and the vertices that represent the column border are displayed in blue.

Minimizing the separator size in �VS(B) with respect to (1) minimizes the
summation of the sizes of the row and column borders in A as the vertices in the
separator correspond to the rows and columns in the border. Maintaining a balance
on part weights in�VS(B) infers balance among the diagonal blocks.

Application Areas and Parallelism Enhancement One of the most common
areas that the DB form finds its application is the solution of sparse linear systems
of equations using direct methods such as LU or Cholesky factorizations. For
most problems a reordering is required in order to reduce the fill-in and enhance
parallelism. The fill-in of a matrix is the set of nonzeros that are introduced in the
factors. Some of the most widely used fill-in reducing reordering schemes are [4,
17, 18, 33, 47]. Furthermore, these reordering techniques are used not only for direct
solvers but also for preconditioners in iterative solvers, for computing incomplete
factorization based preconditioners such as incomplete LU and Cholesky.

In order to show how obtaining the DB form through the described methodology
benefits the direct methods, we consider the coarse-grain parallelization of LU
factorization. Given a reordered matrix ADB in the DB form, first the diagonal
blocks can effectively be factored independently in parallel by each process to
get Bk = LkUk . In the following stage, the unfactored rows/columns and the
rows/columns in the border are factored. One of the two main goals in obtaining
ADB , satisfying a balance criterion on the block sizes, relates balancing the
computational load of the processes in the former stage in factoring diagonal blocks.
The other goal, minimizing the border size, relates to reducing the work done in the
latter stage, which is usually less amenable for parallelization. Hence, minimizing
the border size in ADB enhances parallelism in the LU factorization.
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5 Nonempty Off-Diagonal Block Minimization

Target Form Consider an m× n sparse matrix A in blocked into K ×K grid:

PAQ =
⎡

⎢⎣
B1,1 · · · B1,K
...
. . .

...

BK,1 · · · BK,K

⎤

⎥⎦ = ABL, (9)

where P and Q denote the row and column permutation matrices, respectively. An
off-diagonal block Bk,� is nonempty if it contains at least one nonzero element,
i.e., ∃ai,j ∈ Bk,�. Note that we actually do not require A to be permuted into
some specific prior form, i.e., P and Q can be identity matrices. The requirement,
however, is that there is some sort of blocking in which the rows and columns of A
are grouped and these groupings may be arbitrary. It is also possible that K = m or
K = n. An example of a 4 × 4 blocked matrix is given in Fig. 8a and it has seven
nonempty off-diagonal blocks. Note that this matrix is a permutation of the sparse
matrix in Fig. 2.

The first of the two goals in this section is to minimize the number of nonempty
off-diagonal blocks, which is given by

|{Bk,� : ∃ai,j ∈ Bk,� and k �= �}|, (10)

by permuting either rows or columns ofABL. The second goal is to satisfy a balance
criterion on the coupling row or column sizes in K row or column stripes. The
size of a coupling row/column can be defined as unit or the number of nonempty
off-diagonal blocks that this row/column is contained in (referred to as the degree
weighting). In our discussions for describing the methodology, we only focus on
the row permutation. Therefore, we are looking for a row permutation matrix P ′
to obtain P ′ABL = ANOD in which there exists as few nonempty off-diagonal
blocks as possible and the coupling rows in each row stripe are balanced. A dual
methodology holds for the column permutation where ABLQ′ = ANOD .

Methods We focus on a hypergraph model called the communication hypergraph
model [46, 49, 50] in order to minimize the nonempty off-diagonal blocks. Given
a K ×K blocked sparse matrix ABL, the reordering process consists of four steps:
(1) the formation of the communication matrix from ABL, (2) modeling of the
communication matrix with the communication hypergraph, (3) partitioning of the
communication hypergraph, and (4) interpretation of this partition to reorder the
matrix. We describe each of these steps next.

The communication matrix ACM corresponding to ABL contains only the
coupling rows of ABL and there exists a column in ACM for each column stripe
in ABL. Hence, if there are mc coupling rows in ABL, then ACM is an mc × K
matrix. There exists a nonzero ai,j ∈ ACM if the coupling row ai,∗ in ABL has
a nonzero in the j th column stripe. ACM is called communication matrix as it is
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Fig. 8 Nonempty off-diagonal block minimization via communication hypergraph model. (a) The
matrix in Fig. 2 blocked into 4× 4 ABL with 7 nonempty off-diagonal blocks. (b) Communication
matrix ACM of ABL. (c) Communication hypergraph HCM and a 4-way partition of it. (d)
Reordered matrix ANOD with 5 nonempty off-diagonal blocks

originally proposed for encapsulating the communication requirements of sparse
matrix-vector multiplication on distributed memory systems. Figure 8b displays the
8× 4 communication matrix ACM of the blocked sparse matrix in Fig. 8a.

Using the communication matrix ACM , we form the communication hypergraph
HCM = {U,N} with mc nodes and K nets. There exists a node ui ∈ U
for each row ai,∗ of the communication matrix and there exists a net nj ∈ N
for each column a∗,j of the communication matrix. Net nj connects ui if and
only if ai,j is nonzero. In ABL, this connection corresponds to column stripe j
having at least one nonzero in the ith coupling row. We use unit weights for the
nodes, although other variants also exist [50]. The hypergraph used to model the
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communication matrix is also known as the column-net hypergraph model [10].
Figure 8c displays the communication hypergraph with 8 nodes and 4 nets formed
using the communication matrix in Fig. 8b.

Next, we partition HCM into K parts to obtain �HP (HCM) = {U1, . . . ,UK }.
The partitioning of communication hypergraph also includes K fixed nodes (indi-
cated in Fig. 8 with the triangle nodes) to express the ownership of the K nets,
i.e., column stripes. We use �HP (HCM) to reorder the coupling rows of ABL and
obtain ANOD . To do so, we order the internal rows in the (k + 1)th row stripe of
ABL and the coupling rows associated with the nodes in Uk+1 after the internal
rows in the kth row stripe of ABL and the coupling rows associated with the nodes
in Uk for 1 ≤ k ≤ K − 1. In other words, we only reorder the coupling rows by
using �HP (HCM) as the nodes in the communication hypergraph, which are used
for ordering purposes, represent the coupling rows. Figure 8d displays the reordered
matrix using the node partition in Fig. 8c.

We use the connectivity metric (3) in partitioning HCM . Minimizing the
connectivity of a net nj ∈ N , i.e., λ(nj ), corresponds to minimizing the number
of nonempty off-diagonal blocks in j th column stripe as the parts connected by nj
correspond to the nonempty off-diagonal blocks in j th column stripe in ANOD . For
example, in Fig. 8a, the fourth column stripe has two nonempty off-diagonal blocks
and with the reordering of the coupling rows, it has a single nonempty off-diagonal
block in Fig. 8d. In other words, net C4 in Fig. 8c connects two parts, one of which
contains nodes {3, 11} and the other one contains nodes {6, 10}. The former part
corresponds to the nonempty off-diagonal block at the intersection of the first row
stripe and the fourth column stripe. The latter part is by default assumed to be in
the connectivity set of this net due to the fixed node connected by the net (i.e., it
captures the diagonal block information). Maintaining a balance on the part weights
in partitioning HCM corresponds to maintaining a balance on the sizes of coupling
rows. In the reordered matrixANOD in Fig. 8d, there are five nonempty off-diagonal
blocks. Figure 9 illustrates a matrix reordered using the described methodology.

Application Areas and Parallelism Enhancement Permuting a given matrix A
into ANOD has been utilized within the context of parallelization of conjugate
gradient normal equation error and residual [44] and the standard quasi-minimal
residual methods [16] for solving nonsymmetric linear systems, the linear least
squares method [40] for solving the least squares problem, the Lanczos method
for computing the singular value decomposition [40] and the surrogate constraint
method for solving the linear feasibility problem [52]. The common theme in all
of these methods is the existence of repeated sparse matrix-vector (SpMV) and
sparse matrix transpose-vector multiplication (SpMTV) [50] in a distributed setting.
A nonsymmetric matrix utilized in these methods allows for the adoption of a non-
symmetric permutation of it. This fact is exploited for addressing communication
cost metrics which are important for parallel performance: total message count and
maximum communication volume.

A columnwise partitioning of A induces a rowwise partitioning of AT . Assume
that A is permuted to ANOD using the methodology described in the previous
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Fig. 9 An example matrix poisson3Db with 86K rows/columns and 2.4M nonzeros reordered
using the described method for minimizing the number off-diagonal blocks for 32 processes. (a)
A nonsymmetric matrix. (b) Reordered matrix with column-net hypergraph model. There are 345
off-diagonal blocks. (c) Reordered matrix with off-diagonal block minimization. There are 228
off-diagonal blocks

section and each process in the parallel system is responsible one of the K column
stripes of ANOD . In parallel SpMV, which is performed with the column-parallel
algorithm, each nonempty off-diagonal block Bk,� signifies a message from kth
process to �th process and the contents of this message include the output vector
elements that correspond to the nonzeros in Bk,�. The number of messages sent by
the kth process is given by the number of nonempty off-diagonal blocks in the kth
column stripe of ANOD . Therefore, minimizing the nonempty off-diagonal blocks
corresponds to minimizing the number of messages between processes. A dual logic
applies to row-parallel SpMTV.

Using degree weighting for the nodes in the communication hypergraph and then
satisfying a balance constraint on the part weights relates to balancing the receive
volume loads of the processes. In other words, it minimizes the maximum receive
volume. One can also utilize unit weights for the nodes in order to approximate
the send volume loads [50]. In SpMTV, the utilization of degree weighting enables
the minimization of maximum send volume. By reducing communication costs in
these two multiplication operations through minimizing the nonempty off-diagonal
blocks and satisfying a balance constraint on the sizes of coupling rows/columns,
we can improve the parallel performance of the methods mentioned at the beginning
of this section.

Note that the communication hypergraph model is also utilized for two-
dimensional partitioning of the sparse matrices [46].

6 Block-Diagonal Form with Overlap

In block diagonal with overlap form, the successive blocks overlap with each other.
We consider two variants of this form. In the first variant, called the general BDO
form (or simply the BDO form), the diagonal blocks may overlap in both row and
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column dimensions. In the second variant, the diagonal blocks may overlap only
along the row or column dimensions. The second variant is more restricted in the
sense that the diagonal blocks are allowed to be overlap in a single dimension.
For the second variant, we only consider the overlaps along the column dimension,
hence the name block diagonal with column overlap form (BDCO form).

6.1 BDO Form

Target Form The block diagonal with overlap form of an n× n symmetric sparse
matrix A consists of K diagonal blocks, where each diagonal block except the first
and the last one overlaps with two other diagonal blocks, and the first and the last
diagonal block overlaps with one diagonal block. In the BDO form, A is permuted
into ABDO as

PAPT =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1,1 B1,2

BT1,2 C1,1 B2,1 C1,2

BT2,1 B2,2 B2,3

CT1,2 B
T
2,3 C2,2 · · ·

...
. . .

CK−1,K−1 BK,K−1

BTK,K−1 BK,K

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ABDO, (11)

where P denotes the permutation matrix. We indicate the kth diagonal block with
Dk . Each diagonal block D1<k<K consists of nine subblocks, and D1 and DK
consist of four subblocks:

D1 =
[
B1,1 B1,2

BT1,2 C1,1

]
,D1<k<K =

⎡

⎢⎣
Ck−1,k−1 Bk,k−1 Ck−1,k

BTk,k−1 Bk,k Bk,k+1

CTk−1,k BTk,k+1 Ck,k

⎤

⎥⎦ ,

DK =
[
CK−1,K−1 BK,K−1

BTK,K−1 BK,K

]
. (12)

The overlapping regions between diagonal blocks are referred to as coupling
diagonal blocks. For two diagonal blocks Dk and Dk+1, where 1 ≤ k < K ,
the subblock Ck,k couples these two blocks. Note that we consider a symmetric
permutation of the given matrix, hence, ABDO is also symmetric.

The first goal in permuting a sparse matrix into the BDO form is to minimize
the summation of the number of rows/columns of the coupling diagonal blocks, i.e.,
to minimize

∑K−1
k=1 nr(Ck,k) =

∑K−1
k=1 nc(Ck,k). The second goal is to satisfy a

balance criterion on the number of nonzero entries in diagonal blocks.
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Methods Among the methods to obtain the BDO form [2, 23], we focus on the
method that relies on recursive bipartitioning (RB) [2]. This method starts with
representing the given sparse matrix A with the standard graph model G (for the
standard graph model, see Methods in Sect. 4). In each bipartitioning, it makes use
of a two-way GPVS with fixed vertices. To permute A into ABDO with K diagonal
blocks, this approach relies on the condition that G has a diameter of at least K − 2.
We first describe the general RB framework and then review some of the issues
related to fixed vertices and vertex weights.

Prior to any two-way GPVS on G′ in the RB process to obtain �VS =
{VL,VR;VS}, we fix two subsets of vertices FL and FR , FL into VL, and FR
intoVR , using two sets of boundary vertices BL and BR . The function of the fixed
vertices will be clear shortly. The boundary vertices are formed from the vertices
that are boundary to the separator in the parent bipartitioning. In the case of the first
bipartitioning in which there is no separator yet (since we are in the root level), in
order to set BL and BR , we find a pair of vertices vi and vj with the greatest shortest
path and let BL = {vi} and BR = {vj }. The bipartitioning of G′ is then carried out
with the fixed vertex sets FL and FR to obtain�VS = {FL ⊆ VL,FR ⊆ VR;VS}.
For the child bipartitionings, the separator VS is removed and the new vertex-
induced subgraphs G′L and G′R are, respectively, formed from the vertices in VL
andVR . In the left bipartitioning of the two spawned child bipartitionings from G′,
the boundary vertex sets are formed as BLL = BL and BLR = Adj (VS) ∩VL. In
the right bipartitioning they are formed as BRR = BR and BRL = Adj (VS)∩VR .
Then we recursively bipartition G′L using the boundary vertex sets BLL and BLR ,
and G′R using the boundary vertex sets BRL and BRR .

The bipartitionings in the final level of the RB tree slightly differ from those in the
former levels in terms vertex fixing. In these bipartitionings, we have the flexibility
of assigning the boundary vertices to the respective separators as opposed to the
bipartitionings in the former levels. For that purpose, two auxiliary fixed vertices
are introduced, and the boundary vertices are set free. The adjacency list of the first
fixed vertex contains the vertices in the left boundary and the adjacency list of the
other vertex contains the vertices in the right boundary. These fixed vertices are then
removed after obtaining the final bipartitions.

The fixed vertices are central to obtaining the BDO form in the described
methodology. First of all, if GL and GR are two graphs in the intermediate levels
of the RB process, then the vertices in the right boundary set BR of GL need to be
assigned to the right part in�VS(GL), and the vertices in the left boundary setBL of
GR need to be assigned to the left part in�VS(GR). If GL and GR are two graphs in
the final level, then we have the additional flexibility of assigning the vertices in BR
of GL and BL of GR to the respective separators in their bipartitionings in addition
to the described parts. In addition to the fixed vertices in the boundary vertex sets,
for a given value of K ′, we fix all the vertices whose distances from the left and
right boundaries smaller than K ′/2 − 1 to the left and right parts, respectively. K ′
is K at the initial bipartitioning and it is halved at each level. This is the vertex
fixing scheme used to obtain the fixed vertex sets FL and FR mentioned earlier.
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This scheme ensures the existence of a valid separator in the bipartitioning, and
consequently in the K-way partitioning.

At the end of this RB process, we obtain the partition �oVS(G) =
{V1, . . . ,VK ;VS1 , . . . ,VSk−1}. �oVS(G) is used to reorder A into ABDO
by ordering the rows/columns corresponding to the vertices in Vk+1 after the
rows/columns corresponding to the vertices in Vk , for 1 ≤ k ≤ K , and the
rows/columns corresponding to the vertices in separator VSk in between the
rows/columns corresponding to the vertices in Vk and Vk+1, for 1 ≤ k ≤ K − 1.
Figure 10 illustrates reordering of a given symmetric sparse matrix using�oVS(G).
The initial matrix is illustrated in Fig. 10a and its graph representation and a 4-way
ordered GPVS of this graph are illustrated in Fig. 10b. The reordered matrix ABDO
is illustrated in Fig. 10c. The vertex colors in parts and separators match the color
of the respective diagonal matrices and the overlapped regions.

To clarify how parts/separators relate to elements in the matrix, we present
Fig. 11. Consider a part Vk , the separators VSk−1 , VSk , and the diagonal matrix
Dk (12). The internal edges ofVSk−1 ,Vk , andVSk , respectively, correspond to the
nonzeros in diagonal subblocks Ck−1,k−1, Bk,k , and Ck,k and

Fig. 10 Obtaining the BDO form through ordered GPVS. (a) A symmetric matrix A. (b)
Reordered matrix ABDO . (c) �oVS of standard graph representation of A
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Fig. 11 The correspondence
between the subblocks of the
diagonal block and the edges
in/between two separators
and a part

• the edges betweenVSk−1 andVk correspond to the subblocks Bk−1,k and BTk−1,k ,
• the edges between VSk−1 and VSk correspond to the subblocks Ck−1,k and
CTk−1,k , and

• the edges betweenVk andVSk correspond to the subblocks Bk,k+1 and BTk,k+1.

Minimizing the sizes of the K − 1 separators throughout the RB process
corresponds to minimizing the overlap sizes of diagonal blocks in ABDO as
the vertices in the separators correspond to the rows/columns in the overlapped
regions. Assigning each vertex a weight of number of nonzeros in the row/column
representing that vertex does not correctly encapsulate the balancing the sizes of
the diagonal blocks. One can exploit the flexibility of the RB framework to achieve
better load balance. In the light of this direction, a weighting heuristic based on
introducing two isolated fixed vertices in each bipartitioning is adopted [2]. In this
way, maintaining a balance on the vertex weights of parts in �oVS(G) relates to
maintaining a balance on the number of elements in diagonal blocks. Figure 12
displays a matrix reordered using the described methodology.

Application Areas and Parallelism Enhancement The BDO form is utilized in
the parallelization of the explicit formulation of Multiplicative Schwarz precondi-
tioner [24] and in direct-iterative hybrid solvers [38, 39]. In these methods, typically,
the kth diagonal block of the ABDO is assigned to the kth process, where the
computations related to this block may contain operations such as sparse matrix-
vector multiplication and LU (or incomplete LU) factorization. Hence, having
balanced diagonal blocks in terms of the number of nonzero elements they contain
helps in balancing the computational loads. In general, minimizing the overlap
size in these methods minimizes the communication overhead. A smaller overlap
size means a smaller balance system [38, 39]. It also helps in speeding up the
convergence [24].
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Fig. 12 An example problem matrix copter2 with 56K rows/columns and 760K nonzeros. The
BDO form of this matrix is obtained through the described method. (a) A computational fluid
dynamics problem matrix. (b) The BDO form of the matrix in left for 8 processes

6.2 BDCO Form

Target Form The block-diagonal column-overlapped (BDCO) form of an m × n
sparse matrix A consists of K diagonal blocks, where successive diagonal blocks
may overlap along their columns. In the BDCO form, A is permuted into ABDCO as

PAQ =

⎡

⎢⎢⎢⎢⎢⎣

B1 C1

E2 B2 C2

E3 B3 C3
. . .

EK BK

⎤

⎥⎥⎥⎥⎥⎦
= ABDCO, (13)

where P and Q denote row and column permutation matrices, respectively. We
indicate the kth diagonal block with Dk . Each diagonal block D1<k<K consists of
three subblocks, and D1 and DK consist of two subblocks:

D1 =
[
B1 C1

]
,D1<k<K =

[
Ek Bk Ck

]
,DK =

[
EK BK

]
. (14)

The columns of the overlapping subblocks are referred to as coupling columns. Two
diagonal blocks Dk and Dk+1, where 1 ≤ k < K , overlap along the columns of
subblocks Ck and Ek+1.

The first goal in permuting a sparse matrix into the BDCO form is to minimize
the total overlap size, i.e., the number of coupling columns. The second goal is to
satisfy a balance criterion on the number of nonzero entries in diagonal blocks.
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Methods Similar to the approach described in Sect. 6.1, the method [1] for
obtaining the BDCO form is based on recursive bipartitioning (RB) and utilizes
fixed nodes in each bipartitioning step. Here, we describe this method by comparing
and contrasting it against the method described in Sect. 6.1.

The major difference of the method that obtains the BDCO form from the method
that obtains the BDO form is that instead of using the standard graph representation
of the given sparse matrix A, this method uses the column-net hypergraph model of
A. In the column-net hypergraphHCN = (U,N) of A, there exists a node ui ∈ U
for each row ai,∗ of A and a net nj ∈ N for each column a∗,j of A [10]. Net nj
connects ui if and only if ai,j is nonzero. Nets in HCN are assigned unit cost as
well as the nets in all hypergraphs formed during the RB process. Nodes in HCN
are assigned weights equal to the number of nonzeros in the corresponding rows.
During the RB process, node weights are kept intact.

To permute A into ABDCO form with K diagonal blocks, the diameter of HCN
should be at leastK−1. Here, the graph terminology for path, distance, and diameter
are extended to hypergraphs. This extension relies on the consideration of two nodes
as adjacent if and only if there exists at least one net connecting both of those nodes.

Similar to the vertex-fixation approach described in Sect. 6.1, each hypergraph in
the RB tree has left and right boundary node sets and some nodes are fixed to the
left and right parts depending on their distances to the boundary vertices. Likewise,
the boundary nodes in the original hypergraph, i.e., the top-most hypergraph in the
RB tree, are determined as the pseudo-peripheral nodes. However, the definition of
the boundary nodes that are introduced during the RB process is different. Here,
each node that is connected by at least one cut (external) net is said to be a boundary
node. Instead of fixing the nodes whose distances to the boundary nodes are smaller
than K ′/2 − 1, this method fixes the nodes whose distances to the boundary nodes
are smaller thanK ′/2. Furthermore, in this method, node fixing method used in each
level of the RB tree is the same as opposed to the method described in Sect. 6.1.

In each RB step, after some nodes of the current hypergraph, say H , are fixed
as described above, H is bipartitioned and �2 = {UL,UR} is obtained. Recall
that in the method that obtains the BDO form, the separator vertices represent
the rows/columns of the coupling subblocks in the reordered ABDO matrix. Here
in this method, cut nets represent the coupling columns of the reordered ABDCO
matrix. Since the overall objective here is to minimize the total number of coupling
columns in ABDCO , the target problem in each RB step is to minimize cost (�HP )
of bipartition �2. Note that cost (�HP ) definition in (3) becomes equal to that
in (4) for a bipartition with unit net costs, hence, both objectives can be used for
bipartitionings performed in this method.

After the current hypergraph H is bipartitioned to obtain �2 = {UL,UR}, two
new hypergraphsHL andHR are formed out ofH using�2. Node setsUL andUR
of�2 correspond to the node sets of the new hypergraphsHL andHR , respectively.
Note that, in contrast to the method in Sect. 6.1, none of the nodes is removed while
forming the new hypergraphs. This implies that for each level of the RB tree, the
union of the node sets of the hypergraphs in that level corresponds to the node set
of the original hypergraph HCN . There are two commonly-used techniques in the
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literature to form the net sets of HL and HR: cut-net splitting and cut-net removal.
Both can be used in this method since the existence of the split nets has no effect
on the further bipartitionings. This is because they always connect boundary nodes,
which are always fixed.

Recursive bipartitionings are performed on new hypergraphs HL and HR of
each RB step until the RB tree has K leaf hypergraphs. The K-way node partition
induced by the leaf hypergraphs is used to reorder the rows of A. Net sets of these
hypergraphs and the external net sets in between them induce a (2K − 1)-way net
partition of the net set of the original hypergraphHCN , which is then used to reorder
the columns of A.

Figure 13 illustrates reordering of a given 10 × 12 sparse matrix into a 4-way
BDCO form. The initial matrix A is given in Fig. 13a. A 4-way partition of the
column-net hypergraph HCN of A obtained by the above-mentioned procedure is
given in Fig. 13b. The matrix ABDCO , which is reordered using the node and net
partitions given in Fig. 13b, is given in Fig. 10c.

Figure 14 displays a real-world matrix reordered using the described methodol-
ogy.

Application Areas and Parallelism Enhancement The BCDO form is directly
applicable in solution of sparse linear systems and sparse linear least squares
problems. The balance scheme was first proposed as a parallel direct solver for

Fig. 13 Obtaining the BDCO form. (a) A matrix A. (b) Reordered matrix ABDCO . (c) A 4-way
partition of the column-net hypergraph of A
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Fig. 14 An example problem matrix mri1 with 66K rows, 115K columns, and 590K nonzeros.
The BDCO form of this matrix is obtained through the described method. (a) A computer graphics
problem matrix. (b) The BDCO form of the matrix in left for 8 processes

banded [19] and sparse [45] linear system of equations. Later it was extended for
obtaining the minimum 2-norm solution of underdetermined linear least squares
problems [48]. In this parallel algorithm, each diagonal block could be assigned
to a different process and they solve independent linear systems or least squares
problems using their respective diagonal blocks. This step is performed in parallel
without any communication, hence, maintaining balance on the number of nonzero
entries in diagonal blocks corresponds to maintaining balance on the computation
loads of the processors in this step. Then a small reduced system is formed and
solved either sequentially or in parallel to ensure the unique global solution vector
with the same values on the overlapping parts of the vector across processes are
obtained. The size of the reduced system as well as the communication amounts are
determined by the total number of coupling columns. Hence, obtaining the BDCO
form is a curicial step in enhancing the parallel scalability of these algorithms.

7 Conclusions

We presented a number of sparse matrix forms that are especially useful in
enhancing parallel performance and/or convergence of a wide range of parallel
numerical methods. We described the goals that are sought within these forms and
presented partitioning-based combinatorial graph and hypergraph models to attain
these goals. The partitionings obtained by the models are used to reorder the given
sparse matrix into the desired form. We then described some applications that can
benefit from these forms and how they benefit from them.
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Structure-Exploiting Interior Point
Methods

Juraj Kardoš, Drosos Kourounis, and Olaf Schenk

1 Introduction

Interior point (IP) methods have became a successful tool for solving the nonlinearly
constrained optimal control problems. Their origin can be traced back to 1984 when
Karmarkar [10] announced a polynomial time linear program that was considerably
faster than the most popular simplex method to date. Furthermore, IP methods
can also be applied to quadratic and other nonlinear programs, unlike the simplex
method which can be applied only to linear programming. The main advantages of
the IP methods lie in the convenience they offer for handling nonlinear inequality
constraints using logarithmic barrier functions, so that a strictly feasible initial point
is unnecessary. Another advantage of IP methods is that they are applicable to
large-scale problems and allow for a variety of different direct sparse or iterative
solution methods for the underlying linear systems solved at each iteration until
convergence. Since different sparse system solvers can be plugged in with ease,
large-scale structured problems can be solved by exploiting parallel computing
infrastructures.

An example of successful application of the IP methods is the class of problems
known as the optimal power flow (OPF). OPF is a nonlinear, nonconvex, large-scale
optimization problem with the objective of minimizing the electricity generation
cost while satisfying the physical constraints of the electric grid. The security
constrained OPF (SCOPF) is an extension of the OPF problem that additionally
ensures the system security with respect to a set of postulated contingencies. The
SCOPF has become an essential tool for many transmission system operators for
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the planning, operational planning, and real time operation of the power system.
An increase of the number of considered contingencies requires the introduction of
additional variables and constraints, which in turn results in a significant problem
size growth, rendering the solution computationally intractable for standard general
purpose optimization tools. The structure of the SCOPF problems is appropriate for
the parallel structure-exploiting IP methods, where each contingency corresponds
to a separate partition on the linear level. The nonlinear IP framework leverages the
bordered block-diagonal sparse structure specific to these optimal control problems
by applying a Schur complement elimination on a block-per-block basis in order
to exploit parallelism intrinsic to sparse block-diagonal structures by distributing
the block contributions to the global Schur complement. In this way, the solution
of the large-scale optimization problems can be approached more efficiently, as
demonstrated in [19]. Similar structures arise also in the multistage stochastic opti-
mal control problems [3, 16], multiperiod OPF problems (MPOPF) [11], dynamic
simulations of the power grid [6], or problems such as natural gas dispatch [3].

This overview summarizes the algorithmic improvements in the recent years that
have significantly advanced IP methods. The focus is on parallel implementations
demonstrated on problems arising from the optimal control of the power grid. The
presented primal-dual IP method is based on the IPOPT algorithm [21, 23].

1.1 Notation

Throughout we adopt the following notation. Scalar values are denoted by lowercase
letters x in normal font, while vector objects are represented by bold lowercase
letters x. The vector e is a vector of ones with an appropriate dimension. If not
specified otherwise, column vectors are assumed. Similarly, scalar functions are
represented by a lowercase letter f , while vector functions are shown in bold
lowercase f . Concatenation of column vectors (xᵀ

1 , x
ᵀ
2 , . . .)

ᵀ will be denoted by
(x1, x2, . . .). The elementwise product of two vectors x, y will be denoted by xy,
while x

ᵀ
y stands for the inner product of the two vectors. Matrices are represented

by uppercase letters; for general (sparse) matrices we use bold fonts X while we
will use normal font to distinguish diagonal matrices X. Sets will be represented by
a calligraphic font X or uppercase Greek letters.

2 IP Algorithm

Definition 1 A general nonlinear programming (NLP) problem is formulated as a
minimization problem

minimize
x

f (x) (1a)
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subject to cε(x) = 0, (1b)

cI(x) ≥ 0, (1c)

x ≥ 0, (1d)

where x ∈ R
Nx , the objective function f is a mapping f : RNx → R, the constraints

cε : RNx → R
Nε and cI : RNx → R

NI are assumed to be sufficiently smooth,
with continuous second-order derivatives, and Nx > Nε,NI, where Nε,NI are the
number of equality and inequality constraints, respectively.

Definition 2 The feasible set 
 is a set of points x that satisfy the constraints of the
NLP problem (1); that is


 = {x ∈ R
Nx | cε(x) = 0, cI(x) ≥ 0, x ≥ 0}. (2)

Definition 3 The active set at any feasible point x is a set of inequality constraints
indices, for which the equality constraint holds; that is,A(x) = {i | ciI(x) = 0}.
Definition 4 Given the solution of the NLP problem x∗ and the active set A(x∗),
the linear independence constraint qualification (LICQ) holds if the set of active
constraint gradients {∇ciε(x

∗), i = 1 . . . Nε; ∇c
j

I(x
∗), j ∈ A(x∗)} is linearly

independent.

The NLP problem (1) can be transformed into the equivalent problem formulation
where the inequality constraints are converted to equality constraints by introducing
the slack variables s ∈ R

NI with additional nonnegativity bounds s ≥ 0. The NLP
problem can be written as

minimize
x

f (x) (3a)

subject to cε(x) = 0, (3b)

cI(x)− s = 0, (3c)

(x, s) ≥ 0. (3d)

Definition 5 The Lagrangian for the NLP problem (3) is defined as

L(x, s,λε,λI,λx,λs) = f (x)+ λ
ᵀ
ε cε(x)+ λ

ᵀ
I(cI(x)− s)− λ

ᵀ
xx − λ

ᵀ
s s. (4)

The vectors λε,λI,λx , and λs are the Lagrange multipliers associated with the
equality, original inequality, and the bound constraints on the primal and slack
variables. This allows us to state the Karush–Kuhn–Tucker (KKT) first-order
necessary conditions for the NLP problem (3) which characterize the solution.

Theorem 1 Suppose that x∗ is a local solution of the NLP problem (3) and that
the LICQ holds at x∗. Then there exist Lagrange multiplier vectors λ∗ε ∈ R

Nε ,λ∗I ∈
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R
NI ,λ∗x ∈ R

n and λ∗s ∈ R
NI , (λ∗x,λ∗s ) ≥ 0, such that the following conditions are

satisfied at (x∗, s∗,λ∗ε ,λ∗I,λ
∗
x,λ

∗
s ):

∇xf (x∗)+ ∇xcε(x∗)ᵀλ∗ε + ∇xcI(x∗)ᵀλ∗I − λ∗x = 0, (5a)

−λ∗I − λ∗s = 0, (5b)

cε(x
∗) = 0, (5c)

cI(x
∗)− s∗ = 0, (5d)

λ∗xx∗ = 0, (5e)

λ∗s s∗ = 0, (5f)

(x∗, s∗) ≥ 0. (5g)

The conditions (5a) and (5b) are referred to as dual feasibility, (5c), (5d) as primal
feasibility, and (5f), (5e) as complementarity conditions. The point x∗ satisfying the
KKT conditions is called a stationary, or critical, point. In order to ensure that any
stationary point x∗ is indeed an optimal (local) solution of the NLP problem (3), the
second-order sufficient conditions are needed.

Theorem 2 Let x∗ be a point at which LICQ holds, the KKT conditions are
satisfied, and strict complementarity holds for the active inequality constraints.
Then, the point x∗ satisfies the second-order sufficient conditions for the NLP
problem (3) if the Hessian of the Lagrangian∇2

xxL(x∗, s∗,λ∗ε ,λ∗I,λ
∗
x,λ

∗
s ) projected

onto the null space of the constraint Jacobian is positive definite.

In practice, the second-order conditions are guaranteed by monitoring the inertia of
the iteration matrix, which is further elaborated in Sect. 2.3. Proofs of Theorems 1
and 2 can be found in classic optimization textbooks, e.g., [15, 25]. If the active set at
the solution of the NLP problem was known, we could apply a Newton-class method
directly to the linearization of the KKT conditions. However, the identification of the
active set is known to be an NP-hard combinatorial problem for which, in the worst
case, the computation time increases exponentially with the size of the problem.
Therefore, many solution strategies adopt an IP approach, introducing a barrier
subproblem where the nonnegativity bounds on the variables and slacks (x, s) ≥ 0
are handled by the standard logarithmic barrier function, which is, in fact, a penalty
term penalizing the iterates that approach the boundary of the feasible region.

Definition 6 The barrier subproblem (BSP) reads:

minimize
x,s

f (x)− μ
n∑

i=1

log(xi)− μ
NI∑

i=1

log(si) (6a)

subject to cε(x) = 0, (6b)

cI(x)− s = 0. (6c)
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Under certain conditions the solution x∗ of the BSP (6) converges to the solution
of the original NLP problem (1) as μj ↓ 0. Consequently, a strategy to solve the
original NLP problem is to solve a sequence of the BSPs decreasing the barrier
parameter μj . The solution of each iterate is not relevant for the solution of the
original problem, so it can be relaxed to a certain accuracy and such an approximate
solution is used as a starting point for the next BSP. The strategy for updating the μ
parameter and thus switching to the next BSP is discussed later in Sect. 2.4.

The solutions of the barrier problem (6) are critical points of the Lagrangian
function

L(x, s,λε,λI) =f (x)− μj
Nx∑

i=1

log(xi)− μj
NI∑

i=1

log(si) (7)

+ λ
ᵀ
ε cε(x)+ λ

ᵀ
I(cI(x)− s).

Formulating and solving the optimality conditions of (7) directly would lead to
singularities, since the derivatives of the barrier terms involve the fractions μ

xi
and

μ
si

, which are not defined at the solution x∗, s∗ of the NLP problem (1) when active
bounds x∗i = 0 or s∗i = 0 are attained. Primal-dual IP methods [5, 9] define the dual
variables z and y as

zi = μ

xi
, i = 1, 2, . . . , Nx, (8a)

yi = μ
si
, i = 1, 2, . . . , NI. (8b)

From the definition of the dual variables it follows that zi = μ
xi
> 0; therefore,

zixi = μ ∀i = 1, . . . , Nx . Similarly, yisi = μ, yi > 0 ∀i = 1, . . . , NI. The
optimality conditions of the BSP (6), considering also the dual variables (8), are
written

∇xf (x∗)+∇xcε(x∗)ᵀλ∗ε +∇xcI(x∗)ᵀλ∗I − z∗ = 0, (9a)

−λ∗I − y∗ = 0, (9b)

cε(x
∗) = 0, (9c)

cI(x
∗)− s∗ = 0, (9d)

z∗x∗ = μe, (9e)

y∗s∗ = μe, (9f)

(x∗, s∗) ≥ 0. (9g)

Note that the dual variables z, y correspond to the Lagrange multipliers λx and λs
for the bound constraints. The KKT conditions of the BSP (9) are equivalent to
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the perturbed conditions (5) of the original NLP problem (3), except for the strict
positivity of the dual variables (z, y) > 0. The primal-dual equations then become

la := ∇xf (x)+ J
ᵀ
ε λε + J

ᵀ
IλI − z = 0, (10a)

lb := − λI − y = 0, (10b)

lc := cε(x) = 0, (10c)

ld := cI(x)− s = 0, (10d)

le := Zx − μe = 0, (10e)

lf := Y s − μe = 0, (10f)

where the Jacobian of constraints is written as J ε = ∇xcε(x) and JI = ∇xcI(x).
The diagonal matrices X, S,Z, Y are defined as X = diag(x), S = diag(s), Z =
diag(z), and Y = diag(y).

Linearizing the primal-dual equations and solving them by applying Newton’s
method starting from an arbitrary value of the barrier parameter μ may result in
slow convergence or poor conditioning of the associated KKT systems. Following
the central path ensures that certain favorable conditions for the KKT systems
and primal-dual variables are satisfied and descent directions can be obtained with
reasonable accuracy.

Definition 7 The central path C is an arc of strictly feasible points of the BSP prob-
lem (6), C = {(xμ, sμ,λμε ,λμI, zμ, yμ) |μ > 0}, such that (xμ, sμ,λμε ,λ

μ

I, z
μ, yμ)

is a solution of the BSP problem for every value of μ > 0. Points on the central path
are characterized by the first-order KKT conditions (10).

Definition 8 The duality measure τ is an average pairwise complementarity value
xizi and siyi ,

τ = x
ᵀ
z+ s

ᵀ
y

Nx +NI . (11)

The barrier parameter μ is usually chosen proportionally to the duality measure
and the centering parameter σ ∈ [0, 1], such that μ = τσ . By choosing σ = 1
the algorithm moves toward the central path C. Such a step is biased toward the
interior of the feasible region defined by the constraints (z, x) > 0, (y, s) > 0. At
the other extreme, the value σ = 0 results in the standard Newton step aiming to
satisy the KKT conditions (5). Many algorithms use intermediate values of σ from
the open interval (0, 1) to trade off between the two objectives of reducing duality
measure and improving centrality. A strategy for selecting the centering parameter
is discussed later in Sects. 2.4.2 and 2.4.3.

Remark 1 The treatment for general box constraints xmin ≤ x ≤ xmax and general
upper and lower bounds on the nonlinear constraints cmin

I ≤ s ≤ cmax
I requires the

addition of modified logarithmic barrier terms
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B(x, xmin, xmax) = −μj
Nx∑

i=1

log(xi − xmin
i )− μj

Nx∑

i=1

log(xmax
i − xi), (12)

B(s, cmin
I , cmax

I ) = −μj
NI∑

i=1

log(si − cmin
Ii )− μj

NI∑

i=1

log(cmax
Ii − si). (13)

The dual variables for i = 1, 2, . . . , Nx are defined by

zLi =
μ

xi − xmin
i

, zUi =
μ

xmax
i − xi , (14)

while for the constraints the dual variables are defined by

yLi =
μ

si − cmin
Ii
, yUi =

μ

cmax
Ii − si

. (15)

2.1 Search Direction Computation

Since the solution of the barrier problem (6) satisfies the perturbed KKT condi-
tions (10), Newton’s method may be applied to solve the system of nonlinear equa-
tions. The search direction (�xk,�sk,�λkε,�λkI,�zk,�yk) at the kth iteration
can be obtained from the linearization of (10) at the iterate (xk, sk,λkε,λ

k
I, z

k, yk),
resulting in a system of linear equations

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

H 0 J
ᵀ
ε J

ᵀ
I −I 0

0 0 0 −I 0 −I
J ε 0 0 0 0 0
JI −I 0 0 0 0
Z 0 0 0 X 0
0 Y 0 0 0 S

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

k ⎡

⎢⎢⎢⎢⎢⎢⎢⎣

�x

�s

�λε

�λI
�z

�y

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

k

= −

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

la

lb

lc

ld

le

lf

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

k

, (16)

where H = ∇2
xxL. The system (16) is clearly unsymmetric. A symmetric system

can be obtained after eliminating the last two block rows:

⎡

⎢⎢⎣

H̃ 0 J
ᵀ
ε J

ᵀ
I

0 Ls 0 −I
J ε 0 0 0
JI −I 0 0

⎤

⎥⎥⎦

k ⎡

⎢⎢⎣

�x

�s

�λε

�λI

⎤

⎥⎥⎦

k

= −

⎡

⎢⎢⎣

la +X−1le

lb + S−1lf

lc

ld

⎤

⎥⎥⎦

k

, (17)
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where H̃ = H +X−1Z and Ls = S−1Y . The directions �zk and �yk can then be
recovered from the equations

�zk = −X−1(le + Z�xk), (18)

�yk = −S−1(lf + Y�sk). (19)

For a robust algorithm it is crucial to obtain highly accurate search directions.
Most of the burden is shifted to the sparse linear solver, where techniques such as
fill-in minimization reordering, symmetric scaling vectors, matching, and pivoting
can provide substantial improvement to the solution accuracy. Additional improve-
ment can be achieved by performing iterative refinement using the unsymmetrical
version KKT linear system of form (16). It is possible to further reduce the KKT
system by eliminating the slack variables s. The system (17) can be permuted to the
structure with the diagonal block Ls in the lower right corner,

⎡

⎢⎢⎣

H̃ J
ᵀ
ε J

ᵀ
I 0

J ε 0 0 0
JI 0 0 −I
0 0 −I Ls

⎤

⎥⎥⎦

k ⎡

⎢⎢⎣

�x

�λε

�λI
�s

⎤

⎥⎥⎦

k

= −

⎡

⎢⎢⎣

la +X−1le

lc

ld

lb + S−1lf

⎤

⎥⎥⎦

k

. (20)

Since the block Ls is a diagonal matrix, the reordered system (20) can be trivially
reduced by computing the Schur complement with respect to the 3× 3 block in the
upper left corner, as illustrated in Fig. 1,

⎡

⎣
H̃ J

ᵀ
ε J

ᵀ
I

J ε 0 0
JI 0 0

⎤

⎦
k

− [0 0 −I ]ᵀ (Lks )−1 [
0 0 −I ] . (21)
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Fig. 1 Structure of the KKT system (17), reordered according to (20), and the structure of the
reduced KKT with the slacks removed (22)
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The additional elimination, compared to [16, 17], further reduces the memory
requirements and computation time due to the smaller amount of factorization fill-
in. Such an elimination, however, can be performed only for the nonzero elements of
Lks sufficiently away from zero in order to avoid the ill-conditioning of the reduced
system. The reduced linear system that needs to be solved now has the structure

⎡

⎣
H̃ J

ᵀ
ε J

ᵀ
I

J ε 0 0
JI 0 −L−1

s

⎤

⎦
k ⎡

⎣
�x

�λε

�λI

⎤

⎦
k

= −
⎡

⎣
la +X−1le

lc

ld + L−1
s (lb + S−1lf )

⎤

⎦
k

(22)

and the eliminated slack variables can be recovered by solving

Lks�sk = −lkb − S−1
k lkf +�λkI. (23)

2.2 Backtracking Line-Search Filter Method

After the successful computation of the search direction from (17) and (18) the step
sizes αk, α

z
k ∈ (0, 1] need to be determined in order to obtain the next iterate:

xk+1 = xk + αk�xk, (24)

sk+1 = sk + αk�sk, (25)

λk+1
ε = λkε + αk�λkε, (26)

λk+1
I = λkI + αk�λkI, (27)

zk+1 = zk + αzk�zk, (28)

yk+1 = yk + αzk�yk. (29)

Different step sizes for the primal and dual variables is commonly employed to
prevent unnecessarily small steps in either variables and delay the convergence to
the optimal. A first candidate step length is chosen such that the strict positivity of
x, s, and z is preserved, since it needs to hold both in the solution of the barrier
problem (6) and also in every iteration, which is necessary in order to evaluate the
barrier function. This is accomplished by the fraction-to-the-boundary rule, which
identifies the maximum step size αk, α

z
k ∈ (0, 1], such that

αmax
k = max

(
α ∈ (0, 1] : xk + α�xk ≥ (1− τ)xk

)
, (30)

αzk = max
(
α ∈ (0, 1] : zk + α�zk ≥ (1− τ)zk

)
, (31)
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where τ ∈ (0, 1) is a function of the current barrier parameter μj . The step size for
the dual variables αzk is used directly, but in order to ensure global convergence
the step size αk ∈ (0, αmax

k ) for the remaining variables is determined by a
backtracking line-search procedure, exploring a decreasing sequence of trial step
sizes αik = 2−iαmax

k for i = 0, 1, 2, . . ..
The variant of the backtracking line-search filter method [8] used in IPOPT is

based on the idea of a biobjective optimization problem with the two goals (i)
minimizing the objective function

ϕμj (x, s) := f (x)− μj
n∑

i=1

log(xi)− μj
NI∑

i=1

log(si) (32)

and (ii) minimizing the constraint violation

θ(x, s) := ‖ (cε(x), cI(x)− s) ‖1. (33)

A trial point xk(αik) := xk + αik�xk and sk(αik) := sk + αik�sk during the
backtracking line search is considered to be acceptable, if it leads to sufficient
progress toward either goal compared to the current iterate. The emphasis is put on
the latter goal, until the constraint violations satisfy a certain threshold. Afterwards,
the former goal is emphasized and reduction in the barrier function is required,
accepting only iterates satisfying the Armijo condition.

Definition 9 The filter F is a set of ordered pairs containing a constraint violation
value θ and the objective function value ϕ, such that

F ⊆ {(θ, ϕ) ∈ R
2 : θ > 0}. (34)

The algorithm also maintains a filter Fj for each BSP j for which the μj is
fixed. The filter Fj contains those combinations that are prohibited for a successful
trial point in all iterations within the j th BSP. The filter is initialized so that the
algorithm will never allow trial points to be accepted that have a constraint violation
larger than θmax. During the line search, a trial point xk(αik), sk(αik) is rejected
if (θ(xk(αik), s

k(αik)), ϕμj (x
k(αik), s

k(αik))) ∈ Fj . After every iteration, in which
the accepted trial step size does not satisfy the two objectives of the backtracking
line search, the filter is augmented. This ensures that the iterates cannot return to
the neighborhood of the unsatisfactory iterates. Overall, this procedure ensures that
the algorithm cannot cycle, for example, between two points that alternate between
decrease of the constraint violation and the barrier objective function.

In cases when it is not possible to identify a satisfactory trial step size, the
algorithm reverts to a feasibility restoration phase. Here, the algorithm tries to find
a new iterate which is acceptable to the current filter, by reducing the constraint
violation with some iterative method. Note that the restoration phase algorithm
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might not be able to produce a new iterate for the filter line-search method, for
example, when the problem is infeasible.

2.3 Inertia Correction and Curvature Detection

Definition 10 The inertia of a square matrix is defined as the ordered triplet
(n+, n−, n0) ∈ {N ∪ 0}3, where the terms denote the number of positive, negative,
and zero eigenvalues, respectively.

In order to guarantee descent properties for the line-search procedure, it is
necessary to ensure that the Hessian matrix projected on the null space of the
constraint Jacobian is positive definite (see Theorem 2). Also, if the constraint
Jacobian does not have full rank, the iteration matrix in (17) is singular, and the
solution might not exist. These conditions are satisfied if the iteration matrix has the
inertia (Nx+NI, Nε+NI, 0). The sizes correspond to the size of the Hessian block
(with respect to both primal variables x and the slack variables s) and the Jacobians
of the equality and inequality constraints. If the inertia is not correct, the iteration
matrix needs to be modified. In IPOPT implementation, the diagonal perturbations
δw, δc ≥ 0 are added to the Hessian (17), such that

⎡

⎢⎢⎣

H̃ + δwI 0 J
ᵀ
ε J

ᵀ
I

0 Ls + δwI 0 −I
J ε 0 −δcI 0
JI −I 0 −δcI

⎤

⎥⎥⎦ . (35)

The system is refactorized with different trial values of δw, δc until the inertia is
correct. The inertia of the iteration matrix is readily available from several sparse
indefinite linear solvers, such as PARDISO [20]. In case the correct inertia cannot
be achieved, the current search direction computation is aborted and the algorithm
uses a different objective function that does try to solely minimize the feasibility
violation (e.g., minimizing the constraints violation), ignoring the original objective
function, in the hope that the matrix has better properties close to the feasible points.

The inertia detection strategy focuses on the properties of the augmented iteration
matrix (17) alone and can discard search directions that are of descent but for which
the inertia of the augmented matrix is not correct. Furthermore, the inertia detection
strategy might require multiple factorizations of the iteration matrix and, because the
factorization is the most expensive step in the algorithm, computational performance
can be greatly affected. Furthermore, the inertia estimates might vary, depending on
which linear solver is used or not be available at all. To bypass the need for the
inertia information, several authors suggest using the curvature test, e.g., [3, 4]:

d
ᵀ
kW k(δ) dk ≥ κdᵀ

k dk, κ > 0, δ ≥ 0, (36)
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W k(δ) =
[
H̃ 0
0 Ls

]k
+ δI, dk =

(
�xk, �sk

)
.

If the test is satisfied, the search direction is accepted; if it is not satisfied, the
regularization parameter δ is increased and a new search direction is computed using
the new regularized matrix.

Remark 2 While the curvature detection strategy usually requires more IP iterations
until convergence compared with the inertia detection, it may require fewer extra
factorizations. Overall, the solution time is less than that of the inertia detection
because significantly fewer regularizations are needed.

2.4 Barrier Parameter Update Strategy

The strategy of the barrier parameter update is an important factor influencing the
convergence properties, especially for difficult nonconvex problems. When solving
nonlinear nonconvex programming problems, it is of great importance to prevent the
iteration from failing. Different barrier parameter update strategies are discussed
here, including the monotone Fiacco–McCormick strategy [1] and an adaptive
strategy based on minimization of a quality function [14].

2.4.1 Monotone and Adaptive Strategies

Using the default monotone Fiacco–McCormick strategy, an approximate solution
to the barrier problem (6) for a fixed value of μ is computed, possibly iterating over
multiple primal-dual steps. Subsequently, the barrier parameter is updated and the
computation continues by solution of the next barrier problem, starting from the
approximate solution of the previous one. The approximate solution for the barrier
problem (6), for a given value of μj , is required to satisfy the tolerance

Eμ(x
j+1, sj+1,λj+1

ε ,λ
j+1
I , zj+1, yj+1) < κεμj (37)

for a constant κε > 0 before the algorithm continues with the solution of the
next barrier problem. The optimality error for the barrier problem is defined
by considering the individual parts of the primal-dual equations (10), that is,
the dual feasibility (optimality), primal feasibility (constraint violations), and the
complementarity conditions,

Eμ(x, s,λε,λI, z, y) = max
(‖la‖∞, ‖lb‖∞, ‖lc‖∞, ‖ld‖∞, ‖le‖∞, ‖lf ‖∞

)
.

(38)
In the monotone barrier update strategy, the new barrier parameter is obtained

from
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μj+1 = max
(εtol

10
, min

(
κμμj , μ

θμ
j

))
(39)

with constants κμ ∈ (0, 1) and θμ ∈ (1, 2). In this way, the barrier parameter is
eventually decreased at a superlinear rate. On the other hand, the update rule (39)
does not allow μ to become smaller than necessary given the desired tolerance
εtol, thus avoiding numerical difficulties at the end of the optimization procedure.
The monotone Fiacco–McCormick strategy can be very sensitive to the choice of
the initial point, the initial value of the barrier parameter, and the scaling of the
problem. Furthermore, different problems might favor strategies for selecting the
barrier parameter at every iteration of an IP method, that is, for every primal-dual
step computation. Adaptive strategies commonly choose μk+1 proportionally to the
duality measure for the kth iterate,

μk+1 = στk, (40)

where σ > 0 is a centering parameter and τ denotes the duality measure (11). The
adaptive strategies vary in how the centering parameter is determined. Two adaptive
strategies implemented in IPOPT are discussed next.

2.4.2 Mehrotra’s Predictor-Corrector

Mehrotra’s proposed a predictor-corrector principle [12] for computing the search
direction. The centering parameter is computed as the ratio between the duality
measure (11) in the current iterate and the iterate updated by the predictor step,
considering the longest possible step sizes that retain the nonnegativity of the
variables in the barrier problem. If good progress in the duality measure is made in
the predictor step, the centering parameter obtained in this way is small, σ < 1;
therefore, the μ will be small in the next iteration. In other cases σ may be
chosen to be greater than 1. This heuristic is based on experimentation with
linear programming problems, and has proved to be effective for convex quadratic
programming.

2.4.3 Quality Function

The adaptive barrier update strategy based on the quality function, as suggested
in [14], is trying to determine the centering parameter by minimizing a linear
approximation of the quality function. The quality function is a measure defined by
the infeasibility norms in the current iterate updated by the probing search direction,
which is expressed as a function of the sought parameter σ . The minimization
problem is solved by a golden bisection procedure on the specified (σmin, σmax)

interval with a maximum of 12 bisections. The evaluation of the barrier update
strategies on both linear and nonlinear problems revealed superior performance of
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Fig. 2 Barrier parameter update strategies (left: monotone μ0 = 100; right: adaptive)

the adaptive methods over the monotone strategy, both in terms of CPU time and
number of IP iterations. Although the results were more pronounced on the linear
benchmarks, significant improvements can be expected by using adaptive strategies,
particularly in applications where the function evaluation has the dominant cost [14].
Figure 2 depicts the convergence with different barrier parameter update strategies.
The value of the barrier parameter μ over the iterations of the IP is shown for the
two update strategies. Feasibility, optimality, and the objective function are shown
as well. The convergence tolerance for both benchmarks was set to tol = 0.01.

2.5 Problem Scaling and Convergence Criteria

Optimal control of realistic industrial and engineering problems, such as mod-
ern power networks, multienergy carrier systems, the variables and constraints
encountered, commonly involve different scales that usually differ by several
orders of magnitude. Sophisticated scaling is necessary to remedy problems related
to establishing accurate stopping criteria, improving convergence deteriorated by
unbalanced direction vectors, and dealing with loss of accuracy of the descent
direction computation due to bad conditioning of the associated KKT systems. In
the ideal case, not only the variables but also the functions should be scaled so that
changing a variable by a given amount has a comparable effect on any function
which depends on these variables or, in other words, so that the nonzero elements of
the function gradients are of the same order of magnitude. For this purpose, gradient-
based scaling is commonly employed so that at the starting point the gradients are
scaled close to one. The scaling factors for the gradients are defined as

sf = min(1, gmax/‖∇xf (x0)‖∞), (41)

s
(j)
g = min(1, gmax/‖∇xc(j)ε (x0)‖∞), j = 1 . . . Nε, (42)

s
(j)
h = min(1, gmax/‖∇xc(j)I (x0)‖∞), j = 1 . . . NI, (43)
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for a given gmax > 0. If the maximum gradient is above this value, then gradient-
based scaling will be performed. Note that all gradient components in the scaled
problem are at most of size gmax at the starting point. The scaling factors are
computed only at the beginning of the optimization using the starting point and
kept constant throughout the whole optimization process.

Even if the original problem is well scaled, the multipliers λε,λI, z might
become very large, for example, when the gradients of the active constraints are
(nearly) linearly dependent at a solution of (1). In this case, the algorithm might
encounter numerical difficulties satisfying the unscaled primal-dual equations (17)
to a tight tolerance. The convergence criteria in (38), therefore, need to be scaled
accordingly. The scaled optimality error used to determine the convergence criteria
is defined as

E0(x, s,λε,λI, z) = max

(‖la‖∞
s1

,
‖lb‖∞
s1

, ‖lc‖∞, ‖ld‖∞, ‖le‖∞
s2

,
‖lf ‖∞
s2

)
,

(44)
where the scaling factors s1, s2 are defined as

s1 =
max

(
smax,

‖λε‖1+‖λI‖1+‖z‖1+‖y‖1
Nε+NI+Nx+NI

)

smax
, s2 =

max
(
smax,

‖z‖1+‖y‖1
Nx+NI

)

smax
.

(45)
The overall IPOPT algorithm terminates successfully, if the NLP error for the

current iterate with μ = 0 in (44),

E0(x, s,λε,λI, z, y) ≤ εtol, (46)

becomes smaller than the user provided value εtol > 0, and if the individual criteria
according to dual, primal, and complementarity conditions in (44) are met. Each
criterion uses a separate, user provided tolerance value.

3 IP Methods for OPF Problems

Recent developments in modern power grids involve widespread deployment of
intermittent renewable generation, embrace installation of a wide variety of energy
storage devices, as well as an increasing and widespread usage of electric vehicles.
These developments will motivate fundamental changes in methods and tools for
the optimal daily operation and planning of modern power grids. Operational
decisions taken by power system operators on a daily basis are commonly assisted
by repeatedly solving OPF problems, aiming to determine optimal operating
levels for electric power plants, so that the overall electricity generation cost is
minimized, while at the same time it satisfies load demands imposed throughout
the transmission grid and meets safe operating limits. In actual industrial operations
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the entire distribution network needs to be optimized in real time, approximately
every 5 min according to several independent system operators to ensure variations
in load demand, renewable generation, and real-time electricity market responses to
electricity prices are accurately met.

3.1 Optimal Power Flow

The OPF problem seeks a solution that minimizes the cost of the electricity
generation f , while satisfying the power flow balance, maximum power flow over
the transmission lines, and the bounds of the bus voltages and the generator limits.
Consider a power network withNB buses,NG generators, andNL transmission lines.
The bus voltage vector v ∈ C

NB is defined in polar notation as v = vejθ , where
v, θ ∈ R

NB specify the magnitude and phase of the complex voltage. The complex
voltages v determine the entire network power flow that can be computed using
the Kirchhoff equations, network configuration, and properties of its components.
The magnitude of the voltage components is bounded by the limits (47d), while
the phase is determined relative to a single reference bus. The current injections,
I ∈ C

NB , are defined as I = YBv, where YB ∈ C
NB×NB is the bus admittance

matrix. The complex power at each bus of the network, S = vI∗, S ∈ C
NB , and

the power demand consumption SD ∈ C
NB are to be balanced by the net power

injections from the generators SG ∈ C
NG. Thus, the AC nodal power flow balance

Eqs. (47b) are expressed as a function of the complex bus voltages and generator
injections as cε := S + SD − CGSG = 0, where CG ∈ R

NB×NG is the generator
connectivity matrix.

Generator power injections SG = p + jq are expressed in terms of real and
reactive power components p,q ∈ R

NG , respectively. The output of the generators
is limited by the lower and upper bounds (47e) and (47f). Each bus has an associated
complex power demand SD , which is assumed to be known at all of the buses and
is modeled by a static polynomial (ZIP) model [26]. If there are no loads connected
to the bus i, then {SD}i = 0. Real-world transmission lines are limited by the
instantaneous amount of power that can flow through the lines due to the thermal
limits (47c). The apparent power flow in the transmission lines, Sf ∈ C

NL and
St ∈ C

NL , are therefore limited by the power injections at both ends of the lines,
which cannot exceed a prescribed upper bound Fmax

L . The “from” and “to” ends of
the line, denoted as f and t , respectively, specify the buses that are connected to
the corresponding ends of the line. Squared values of the apparent power magnitude
are usually used in practice, such that cI := Sf (Sf )∗ ≤ (Fmax

L )2. Overall, the OPF
problem is formulated as

minimize
θ ,v,p,q

NG∑

l=1

fl(pl ) (47a)
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subject to cε(θ , v,p,q) = 0, (47b)

cI(θ, v) ≤ Fmax
L , (47c)

vmin ≤ v ≤ vmax, θ ref = 0, (47d)

pmin ≤ p ≤ pmax, (47e)

qmin ≤ q ≤ qmax. (47f)

The presented AC steady-state power grid model is following MATPOWER [27].

3.2 Structure-Exploiting IP Methods—Security Constrained
and Multiperiod OPF

Real-world real-time implementation of OPF problems for energy systems still
remains computationally intractable. This is mainly for two reasons. The real-world
OPF problem is time coupled, owing to the presence of smart loads and energy
storage devices such as batteries for demand shaping and deferral. Additional time
couplings of the OPF problem at each time period are introduced by generator ramp
rate limits. The higher the number of time periods considered, the larger the resulting
optimal control problem becomes. For a significantly large number of time periods
(each of 5 min length) the problem becomes notoriously difficult to solve and for
this purpose several approximations and simplifications are currently employed by
the industry in order to meet real-time responses. Furthermore, the system operators
have to foresee possible contingency events and operate the grid in such a way that
its operation will remain secure in the event of any contingencies.

Grid security is the focus of the SCOPF problem [13, 18], which seeks an optimal
solution that remains feasible under any postulated contingency event, thus making
the grid operation secure. It supplements the standard OPF problem with constraints
for the nodal power flow balance (48a), the branch flow limits (48b), and other
operational limits (48c), (48e), which have to be honored not only for the nominal
case c0, but also for every contingency event c ∈ C,Nc = |C|, such as a generator or
a transmission line failure. An increase of the number of considered contingencies
requires the introduction of additional variables and constraints that in turn result
in a significant problem size growth, rendering it computationally intractable for
standard general purpose optimization tools. The contingencies are modeled by
the admittance matrices YB

c , which are updated accordingly for each scenario. The
values of the control variables are coupled in all system scenarios, as expressed by
the two nonanticipatory constraints (48g) and (48h). These declare that the voltage
magnitude and real power generation at the PV buses BPV should remain the same
as in the nominal scenario c0, regardless of which contingency they are associated
with. The only generator that is allowed to change its output is the generator at the
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Fig. 3 SCOPF (left) and MPOPF (right) problem formulations

singleton reference bus Bref , as its real power generation can be modified to refill
the power transmission losses occurring in each contingency c (Fig. 3).

Time-coupled formulations, such as storage scheduling, or storage placement,
are collectively known as MPOPF problems (49). Similar to the SCOPF, addition
of a large number of time periods results in problem size growth, rendering it
computationally intractable [11]. The OPF constraints must hold in each time
period, and the inter-temporal coupling is introduced by energy storage devices
and generator ramp limits. For a practical MPOPF application, consider NS energy
storage units. Each storage unit in the network is modeled by two network power
injections for each time period n. A positive active power injection pSd,i

n ∈ R,
pSd,i
n ≥ 0 models the discharging of storage unit i. A negative active power injection

pSc,i
n ∈ R, pSc,i

n ≤ 0 models the charging of storage unit i. The vector of active
storage power injections pS

n ∈ R
2NS is defined as

pS
n = (pSd,1

n , · · · ,pSd,NS
n ,pSc,1

n , · · · ,pSc,NS
n ) (50)

and bounded by pS,min ≤ pS
n ≤ pS,max. Identical definitions apply for the reactive

storage power injections qSd,i
n , qSc,i

n , qS
n with bounds qS,min and qS,max. Together,

they yield the complex storage power injections SS
n = pS

n + jqS
n. Similarly, SG

n =
pG
n + jqG

n is a vector of generator power injections. The complex power at each bus
must be balanced by the power demand SDn and the vector of free complex power
injections

Sn =
(

SG
n

SS
n

)
=
(

pG
n

pS
n

)

︸ ︷︷ ︸
pn

+j
(

qG
n

qS
n

)

︸ ︷︷ ︸
qn

(51)
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in each time period, as specified by the constraint (49a). The evolution of the vector
of storage levels εn ∈ R

NS follows the update equation

εn+1 = εn + BS pS
n n = 0, 1, . . . , N − 1, (52)

and introduces a coupling between the individual time periods. The energy level
in each period needs to honor the storage capacity, as expressed by the constraint
(49 g). The initial storage level is denoted ε0 and the constant matrix BS ∈ R

NS×2NS

models discharging and charging efficiencies of the storage devices.

3.3 Impact of Slack Variables Elimination

Figure 4 illustrates the symmetric KKT structure of the SCOPF problem for a
simple power grid, together with the reduced variant, where the slack variables are
eliminated. Realistic power grids are significantly larger and contain proportionally
more nonzero entries, but the structure remains very similar. The expected benefits
of solving the reduced KKT system compared to the original system are savings
both in terms of memory requirements for storing the sparse L factor of the LDL

ᵀ

factorization of the symmetric indefinite system, and possibly faster factorization
and solution times due to a smaller number of required floating point operations. The
numerical evaluation of the benefits of solving the reduced system are summarized
in Fig. 5. The elimination of the slack variables from the KKT system reduces its
dimension by approximately 30% with 13% fewer nonzeros in the KKT system and
up to 12% fewer nonzeros in the L factor, resulting in up to 28% memory savings,
with similar reduction in solution time. Since in the neighborhood of the optimal
solution some of the diagonal terms in Ls approach zero, the associated slacks
variables whose coefficients in Ls are close to machine epsilon are not eliminated
and are left to be treated by the direct sparse solver. This prevents the excessive
ill-conditioning of the reduced system.
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Fig. 4 Structure of the SCOPF KKT system (17) with two contingencies, reordered according
to (20), and, finally, the reduced KKT with the slacks removed (22)
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Fig. 5 Improvement rate
considering elimination of the
slack variables
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4 Structure-Exploiting Solution Strategies for IP
Optimization

Computers have evolved significantly over the past decade, at an even faster
pace than modern power grids. Multicore and many-core computer architectures
and distributed compute clusters are ubiquitous today, while at the same time no
significant performance gains are expected for sequential codes due to faster clock
frequencies of modern processors. Significant performance gains, however, may be
achieved by algorithmic redesign tailored to the particular application that is also
able to utilize multicore and many-core architectures with deep memory hierarchies.
More importantly, the practical efficiency of the IP algorithms highly depends
on the linear algebra kernels used. For large-scale optimal control problems, the
computation of the search direction (17) determines the overall runtime. Hence, any
attempt at accelerating the solution should be focused on the efficient solution of the
KKT linear system. In Fig. 6 we demonstrate how various IP method components
contribute to the overall time for various OPF benchmarks. The number of IP
iterations was fixed to five. Note that the solution of the linear system represents
the majority of the overall time.

4.1 Revealing the Structure of SCOPF and MPOPF Problems

A widespread approach for solving KKT systems consists of employing black-box
techniques such as direct sparse solvers, due to their accuracy and robustness. The
direct sparse solvers obtain the solution of the linear system by factorization and
subsequent forward-backward substitutions. The factorization is a computationally
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Fig. 6 Computational
complexity of the IP method
components
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expensive operation commonly introducing significant fill-in, which may quickly
exhaust available memory on shared memory machines for large-scale linear
systems. Furthermore, these solvers are not aware of the underlying structural
properties of the KKT systems arising from many engineering problems which
make it possible to significantly decrease time to solution by employing structure-
exploiting algorithms and distributed memory computers.

The appropriate structure emerges from the fact that each of the variables in
the SCOPF optimization vector (x,λε,λI) or the MPOPF optimization vector
(x,λε,λI,λA) correspond to some contingency scenario c = 0, 1, . . . , Nc, or the
time period n = 1, 2, . . . , N :

x = (x0, . . . , xNc, xg), (53)

λε = (λε0, . . . ,λεNc ), (54)

λI = (λI0, . . . ,λINc), (55)

x = (x0, . . . , xN), (56)

λε = (λε0, . . . ,λεN ), (57)

λI = (λI0, . . . ,λIN). (58)

In order to reveal the scenario-local structure of the Hessian (22), the variables
corresponding to the same contingency are grouped together, i.e.,

uc = (xc, λεc, λIc), (59)

un = (xn, λεn, λIn), (60)
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and, thus, the global ordering will be

u = (u0, . . . ,uNc,ug), (61)

u = (u0, . . . ,uN,ug), (62)

where the coupling variables ug are placed at the end of the new optimization
vector u. Coupling in the SCOPF problem, ug = xg , is introduced by the two
nonanticipatory constraints (48g) and (48h). The coupling in a case of the MPOPF
problem, ug = λA, is introduced by the linear energy constraints (49g). Under
the new orderings (61) and (62), the Hessian matrix of the system (22) obtains the
arrowhead structure (also described as bordered block-diagonal [7] or dual block-
angular [16]) structure, as illustrated in Figs. 7 and 8,

⎛

⎜⎜⎜⎜⎜⎜⎝

A0 B
ᵀ
0

A1 B
ᵀ
1

. . .
...

ANc B
ᵀ
Nc

B0 B1 . . . BNc C

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

�u0

�u1
...

�un

�ug

⎞

⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎝

b0

b1
...

bn

bC

⎞

⎟⎟⎟⎟⎟⎠
, (63)

where the block matrices Ai ,

Ai =
⎛

⎜⎝
H̃ xi ,xi J

ᵀ
εi ,xi

J
ᵀ
Ii ,xi

J εi ,xi 0 0
JIi ,xi 0 −L−1

si

⎞

⎟⎠ , (64)
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Fig. 7 Symmetrized SCOPF system (22) permuted to the arrowhead structure (63)
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Fig. 8 Symmetrized MPOPF system (22) permuted to the arrowhead structure (63)

Ai =

⎛

⎜⎜⎜⎝

H̃ xi ,xi J
ᵀ
εi ,xi

J
ᵀ
Ii ,xi 0

J εi ,xi 0 0 0
JIi ,xi 0 −L−1

si
0

0 0 0 LAi

⎞

⎟⎟⎟⎠ , (65)

incorporate the Hessian of the Lagrangian with respect to the scenario-local
variables H̃ xi ,xi = ∇2

xixi
L + X−1

i Zi and the Jacobians of the constraints for the
ith scenario with respect to the local variables J εi ,xi = ∇xi cεi and J

ᵀ
Ii ,xi = ∇xi cIi ,

as well as the diagonal entries corresponding to the eliminated slack variables. In
the case of the SCOPF problem, the block C = ∇2

xgxg
L+X−1

g Zg contains Hessian
of the Lagrangian with respect to the coupling variables xg , while in the case of the
MPOPF problem it is a block of zeros. The off-diagonal blocks in the arrowhead
SCOPF system are

Bi =
⎛

⎜⎝
H̃ xg,xi

J
ᵀ
εi ,xg

J
ᵀ
Ii ,xg

⎞

⎟⎠

ᵀ

, B
ᵀ
i =

⎛

⎜⎝
H̃ xi ,xg

J εi ,xg
JIi ,xg

⎞

⎟⎠ , (66)

where H̃ xi ,xg = ∇2
xixg
L represents the off-diagonal blocks of the Hessian of

Lagrangian with respect to the local and coupling variables and J εi ,xg = ∇xgcεi and
JIi ,xg = ∇xgcIi are the Jacobians of the ith scenario with respect to the coupling

variables. The MPOPF coupling matrices B1,B2, . . . ,BN ∈ R
NNS×NA , where NA

is the size of the diagonal blocks in (63), contain the constant subblocks, which arise
from the particular form of the linear constraints (49g)
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B1 =

⎛

⎜⎜⎜⎜⎜⎝

C1

C0

C0
...

C0

⎞

⎟⎟⎟⎟⎟⎠
,B2 =

⎛

⎜⎜⎜⎜⎜⎝

0
C1

C0
...

C0

⎞

⎟⎟⎟⎟⎟⎠
, . . . ,BN =

⎛

⎜⎜⎜⎜⎜⎝

0
0
...

0
C1

⎞

⎟⎟⎟⎟⎟⎠
. (67)

4.2 Schur Complement Decomposition

The direct factorization of the full KKT system is not feasible for large-scale SCOPF
problems due to their growing size with the number of contingencies and associated
factorization fill-in that quickly exhausts the available memory. Instead, the solution
is obtained by a sequence of partial block elimination steps, which are decoupled,
aiming to form the Schur complement of the system. This way, we detour the
factorization of the full KKT system, by factorizing only the smaller diagonal blocks
as described in the Algorithm 1. At the first step, the Schur complement S is formed,

S = C −
Nc∑

i=0

BiA
−1
i B

ᵀ
i , (68)

which in the general case becomes a dense matrix. Because the size of the coupling
stays constant, independently of the number of contingency scenarios, the size of the
Schur complement does not increase with an increasing number of contingencies.
It can therefore be solved using dense LDL

ᵀ factorization and back substitution
algorithms. The solution of the dense Schur system,

S�ug = bC −
Nc∑

i=0

BiA
−1
i bi , (69)

yields a part of the solution corresponding to the coupling variables �ug , which is
used to obtain all the local solutions �ui by solving

Ai�ui = bi − B
ᵀ
i �ug. (70)

Since the block contributions to the Schur BiA
−1
i B

ᵀ
i complement are independent,

they can be evaluated in parallel, as well as the residuals BiA
−1
i bi and the solution

�ui can be computed independently at each process. Interprocess communication
occurs because the local Schur complement contributions and Schur complement
residuals need to be assembled by the master process, and during the broadcast of
the Schur complement solution to the remaining processes.

In the description of Algorithm 1, sequential steps such as reduction and
broadcast are performed only by the master process.



Structure-Exploiting Interior Point Methods 87

Algorithm 1 Parallel procedure for solving the linear systems based on the Schur
complement decomposition (68)–(70)
Input: KKT system with arrowhead structure (63), right-hand side b

Output: �u

1: Distribute blocks from the KKT system (63) evenly across P processes, where Np is the set
of diagonal blocks assigned to process p ∈ P

2: Factorize Ai = LiDiL
ᵀ
i for each i ∈ Np

3: Compute Si = B iA
−1
i B

ᵀ
i for each i ∈ Np

4: Accumulate Cp =∑i∈Np Si

5: if master then
6: Reduce S = C −∑p∈P Cp
7: end if
8: Compute r i = B iA

−1
i bi for each i ∈ Np

9: Accumulate rp =∑p∈P r i
10: if master then
11: Reduce r =∑p∈P rp

12: Factorize S = LsDsLᵀ
s

13: Solve S�ug = bC − r

14: Broadcast solution ug to all p ∈ P
15: end if
16: Solve Ai�ui = Biug − bi for each i ∈ Np

Remark 3 One should bear in mind that the computational efficiency obtained by
exploiting the block-diagonal structure, such as (63), is determined by the number
of the coupling variables |ug|. If coupling is large, then the Schur decomposition
will not be efficiently compared to the direct factorization techniques because of the
cubic complexity of dense factorizations (69).

The most expensive step of the presented computational scheme is evaluation of
the local contributions to the Schur complement BiA

−1
i B

ᵀ
i in (68). The standard

approach uses a direct sparse solver, such as PARDISO [16], to factorize the sym-
metric matrix Ai = LiDiL

ᵀ
i and perform multiple forward-backward substitutions

with all right-hand side (RHS) vectors in B
ᵀ
i , followed by multiplication from the

left by Bi . This approach, however, does not exploit sparsity of the problem in B
ᵀ
i

blocks, since the linear solver treats the RHS vectors as being dense.
An alternative approach, implemented in PARDISO [17], addresses these limita-

tions by performing an incomplete factorization of the augmented matrix M i :

M i =
(

Ai B
ᵀ
i

Bi 0

)
, (71)

exploiting also the sparsity of B
ᵀ
i . The factorization of M i is stopped after pivoting

reaches the last diagonal entry of Ai . At this point, the term −BiA
−1
i B

ᵀ
i is

computed and resides in the (2, 2) block of M i . By exploiting the sparsity not only
in Ai , but also in Bi it is possible to reduce memory traffic by using in-memory
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Fig. 10 Scaling of the parallel approach using the PEGASE1354-4096 benchmark and the
speedup with respect to the direct sparse solver

sparse matrix compression techniques, which render this approach quite favorable
for multicore parallelization.

In Fig. 9 we compare the standard, so-called backsolve, technique and the
multicore incomplete factorization with increasing number of cores is shown for
various benchmarks. This demonstrates that the incomplete factorization approach
is orders of magnitude faster, especially for the large problems. Due to the extensive
memory requirements for storing the RHS vectors in the “backsolve” approach, only
its single-core execution is demonstrated.

We evaluated the strong scaling efficiency of the distributed solver on the
“Piz Daint” supercomputer, using an increasing number of compute cores on the
distributed compute nodes. The instance of the solved problem contained up to
1.1 · 107 variables and 2.7 · 107 constraints and the size of the KKT system
is 5.48 · 107. Figure 10 shows the average wall time of the individual phases
of Algorithm 1, indicating also the ideal strong scaling of the overall time. The
algorithmic phases presented are the initialization phase, assembly of the Schur
complement using the incomplete factorization of the augmented matrix in steps 2–
6, RHS vector assembly and Schur complement solution in steps 12–13, and
solutions of the local parts of the system in steps 14–16. Figure 10 also demonstrates
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the speedups of the distributed solver compared to the serial direct factorization. The
benchmarks were run with a single MPI process per node and 16 threads per process.

The distributed approach using a single process outperforms the sequential direct
factorization by a factor of up to 40×. With an increasing number of distributed
nodes the observed speedup was up to 500×. The distributed solution time scales
reasonably up to 512 cores at 32 compute nodes, which in terms of workload
translates to 128 scenarios per node of PEGASE1354 benchmark. At this point,
the most expensive part of the algorithm, the computation of the local contributions
to the Schur complement, requires approximately the same time as the initialization
phase, where the KKT system is distributed to all available compute nodes. The
acceleration and efficiency of the structure-exploiting algorithm stems from the
reduced complexity associated with the factorization of the smaller sparse diagonal
blocks when applying the Schur decomposition scheme to the permuted KKT
system with the arrowhead structure (63), as opposed to factorizing the original
SCOPF KKT system (17) or its reduced variant (22). For sufficiently large power
grids, however, the dense Schur complement (SC) system might become very large,
and dominate the overall processing time in steps 12 and 13. Hardware accelerators
such as GPUSs might be deployed to address the computational complexity of
the dense linear algebra. Otherwise, the dimensions of the dense systems remain
feasible for the majority of power grids, since the dimensions depend only on the
power grid properties, not on the number of contingency scenarios.

4.3 Structure-Exploiting Algorithms for MPOPF

For the MPOPF problems, the size of the dense SC grows very quickly, not only with
the size of the network but also proportionally to the number of installed storage
devices and the number of time periods NNS. As the number of time periods N or
storage devices NS increases, the solution approach based on Algorithm 1 results in
a less efficient algorithm than the direct sparse approach employing PARDISO on
the original KKT system (16), both with respect to computational time and memory
consumption despite the benefits of the Schur decomposition. However, the MPOPF
problem, unlike the SCOPF problem, can be optimized even further by exploiting
the particular structure of the off-diagonal blocks Bn.

Inspecting the particular structure of the blocks Bn (67), one can see that the SC
matrix computed by (71) for the nth block Sn = −BnA

−1
n B

ᵀ
n has the structure

Sn =

⎛

⎜⎜⎜⎜⎜⎜⎝

On 0ᵀn 0ᵀn · · · 0ᵀn
0n S11,n S

ᵀ
10,n · · · Sᵀ

10,n
0n S10,n S00,n · · · Sᵀ

00,n
...

...
...
. . .

...

0n S10,n S00,n · · · S00,n

⎞

⎟⎟⎟⎟⎟⎟⎠
, (72)
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where the 0n ∈ R
NS×(n−1)NS , On ∈ R

(n−1)NS×(n−1)NS , and Sij,n = −CiA
−1
n C

ᵀ
j ,

i, j ∈ {0, 1}. The only blocks in Sn that are distinct are colored in blue and form the
entries of the 2 by 2 block matrix

S̄n =
(

S11,n S
ᵀ
10,n

S10,n S00,n

)
, (73)

where the rest of the rows and columns of Sn are direct replicates of the entries of
the last row and column of S̄n.

Since each one of the blocks of S̄n has size NS × NS, the computation of Sn
becomes independent of the number of time periods N and only depends on the
number of storage devices NS. It is easily verified that the global SC Sc obtains the
form

Sc =

⎛

⎜⎜⎜⎜⎜⎝

S11 S
ᵀ
12 S

ᵀ
12 · · · S

ᵀ
12

S12 S22 S
ᵀ
23 · · · S

ᵀ
23

S12 S23 S33 · · · S
ᵀ
34

...
...

...
. . .

...

S12 S23 S34 · · · SNN

⎞

⎟⎟⎟⎟⎟⎠
, (74)

where each block of Sc ∈ R
NNS×NNS has dimensions NS × NS. Storing Sc due

to its special structure requires only two block vectors: one for all diagonal blocks
Sd = [S11,S22, · · · ,SNN ] of size NS × NNS, and one for the off-diagonal blocks
So = [S12,S23, · · · ,SN−1N ] of size NS × (N − 1)NS, significantly reducing
this way the storage requirements for Sc. Furthermore, exploiting the fact that the
blocks below the main diagonal of each column of Sc in (74) are identical, we
can perform the factorization in O(n2) operations instead of O(n3), which is the
case for standard dense LDL

ᵀ factorization of Sc with n = NNS. Similarly, the
back substitution can be performed in O(n) instead of O(n2). The reduction in the
computational complexity and storage requirements of the SC system renders the
overall approach significantly more economical in terms of overall running time
and memory footprint, as demonstrated in Fig. 11.

For comparison, we also consider three alternative optimization algorithms that
also adopt an IP strategy, namely IPOPT [22, 23], MIPS [24], and KNITRO [2].
The structure exploiting IP algorithm introduced in this section is referred to as
BELTISTOS. The average time per iteration for N = 3600 up to N = 8760
corresponding to 1 year with a time step size corresponding to one hour is shown in
Fig. 11a. For this set of benchmarks KNITRO needed more than 1 TB of memory for
N ≥ 5760 and it terminated with a related error message. For N = 8760 PARDISO

failed due to overflow of the number of nonzero entries in the L,D factors. It is
worth noting that BELTISTOSmem (the memory saving approach of BELTISTOS that
implements Algorithm 1 without storing the factors of the blocks Ai and computing
them on the fly in steps 2, 8, and 16), although it is slightly slower than the normal
mode of BELTISTOS, it is still almost four orders of magnitude faster than IPOPT and
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MIPS. It also needs approximately two orders of magnitude less memory than IPOPT

as it is shown in Fig. 11b, where we plot the memory (in MB) allocated by each
algorithm for the solution of the KKT system. The MIPS and KNITRO solvers do not
report the memory allocated and it could only be estimated for the case of KNITRO.

5 Results and Discussion

This study demonstrates that significant performance gains are possible, for specific
classes of optimal control problems, not by exploiting supercomputers and parallel
distributed or multithreaded programming, but through deeper understanding of the
problem structure and the design of algorithms adapted to the problem structure.
Orders of magnitude of faster execution time and orders of magnitude of memory
savings were achieved rendering the solution of very-large-scale problems, previ-
ously intractable without a supercomputer, possible on a common laptop [11].

The Schur decomposition enables low memory SC assembly on a per-block
basis, whenever a problem can be reordered to an arrowhead structure, which is
the case for many real life problems composed of enumerated subproblems, such as
contingency scenarios for SCOPF problems or time periods for MPOPF problems,
while at the same time promoting parallel processing. Even on single-core execution
for SCOPF problems, speedups from 40–270-fold were observed while further
exploitation of distributed multicore and many-core computing environments for
the solution of the structured KKT system drastically reduces the execution times
and demonstrates significant progress towards the solution of large-scale SCOPF
problems.
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In contrast to SCOPF and although MPOPF problems can be reordered into an
arrowhead structure, the reordering results in a dense SC that grows in size with the
number of time periods and does not necessarily lead to a more efficient solution
strategy. However, owing to the intrinsic structure of the linear constraints, the Schur
decomposition algorithm supplemented with elimination strategies exploiting data
compression, resulted in an overall solution strategy of unprecedented performance.
Memory was reduced by approximately two orders of magnitude, while runtime
performance still remains about three orders of magnitude higher than competitors,
even on a single core.

Our findings strongly motivate further structural inspection and analysis of the
present and similar problems of the same family, anticipating that adopting and
extending the presented structure-exploiting techniques for other problems would
result in significant acceleration of other OPF problems of interest paving the way
for the next generation of OPF algorithms.
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Parallel Hybrid Sparse Linear System
Solvers

Murat Manguoğlu, Eric Polizzi, and Ahmed H. Sameh

1 Introduction

Some science and engineering applications give rise to large banded linear systems
in which the bandwidth is a very small percentage of the system size. Often, these
systems arise in the inner-most computational loop of these applications which
indicates that these systems need to be solved efficiently as fast as possible on
parallel computing platforms. This motivated the development of the earliest version
of the SPIKE tridiagonal linear systems in the late 1970s, e.g. see [27] followed by
an investigation of the communication complexity of this solver in [12] in 1984.
In both of these studies this solver was not named “SPIKE” until it was further
developed in [23, 24] in 2006. In this chapter, we also present an extension of
this algorithm for solving sparse linear systems. This is done through reordering
schemes that bring as many of the heaviest off-diagonal elements as closer to the
main diagonal, followed by extracting effective preconditioners (that encapsulate as
many of these heaviest elements as possible) for outer Krylov subspace methods for
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solving these sparse systems. In each outer iteration variants of the SPIKE algorithm
are used for solving linear systems involving these preconditioners. An extensive
survey of the SPIKE algorithm and its extensions are given in [10].

2 The SPIKE for Banded Linear Systems (Dense Within the
Band)

Consider the nonsingular banded linear system

Ax = f (1)

shown in Fig. 1 with A ∈ R
N×N being of bandwidth β = 2m + 1. Let N be an

integer multiple of p (the number of partitions). In Fig. 1, p is chosen as 4. The
off-diagonal blocks are given by

B̄j =
(

0 0
Bj 0

)
and C̄j =

(
0 Cj
0 0

)
(2)

for j = 1, 2, . . . , p − 1, where Bj ,Cj ∈ R
m×m.

In what follows, we first describe “Spike” as a direct banded solver when A is
diagonally dominant followed by the general case for which “Spike” becomes a
hybrid (direct-iterative) banded solver for the linear system (1).

⎛

⎜⎜⎝

A1 B̄1

C̄2 A2 B̄2

C̄3 A3 B̄3

C̄4 A4

⎞
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A

⎛

⎜⎜⎝

x1
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x3

x4

⎞

⎟⎟⎠

︸ ︷︷ ︸
x

=

⎛

⎜⎜⎝

f1

f2

f3

f4

⎞

⎟⎟⎠

︸ ︷︷ ︸
f

First, let A be a diagonally dominant matrix. Thus, each Aj is also diagonally
dominant, j = 1, 2, . . . , p, with the block diagonal matrix

Fig. 1 A ∈ R
N×N ; bandwidth: β = 2m + 1; number of partitions: p = 4, Aj ∈ R

n×n, j =
1, 2, . . . , p; B̄j , C̄j+1 ∈ R

n×n, j = 1, 2, . . . , p − 1; N = 4n; n = 3m
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Fig. 2 p = 4, n = 3m,
N = 4n

D =

⎛

⎜⎜⎜⎝

A1

A2
. . .

Ap

⎞

⎟⎟⎟⎠ (3)

nonsingular. Premultiplying both sides of (1) by D−1, we obtain the modified
system

Sx = g, (4)

where the matrix S = D−1A, and the updated right-hand side is given in which the
bandwidth is very small percentage of the system size. Often, these updated right-
hand side are given in Fig. 2. Here, the off-diagonal blocks, V̄j and W̄j , are given
by

V̄j =
(
Vj , 0

)
and W̄j+1 =

(
0,Wj+1

)
, j = 1, 2, . . . , p − 1. (5)
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The spikes,
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3
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are obtained by solving the linear systems

A−1
j [Ĉj , Aj , B̂j ] = [Wj, In, Vj ] (7)

and

gj = A−1
j fj , j = 1, 2, . . . , p (8)
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in which

B̂j =
(

0
Im

)
Bj ; Ĉj =

(
Im

0

)
Cj (9)

with Vj ,Wj ∈ R
n×m. Solving the linear system in (4), involving the “Spike matrix”

S, reduces to solving a much smaller block-tridiagonal system of order 2m(p − 1)
of the form (See Fig. 2),
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(10)

in which x(t)i = (Im, 0)xi , and x(b)i = (0, Im)xi , and similarly for g(t)i and g(b)i . We
refer to (10) as the reduced system,

Ry = h, (11)

where R results from the symmetric permutation

PSPT =
(
Iν G

0 R

)
(12)

in which ν = pn − 2m(p − 1). Note that since A is nonsingular, so is S as well
as R. Solving the reduced system (10) for x(b)i and x(t)i+1, i = 1, 2, . . . , p − 1, the
solution x of system (4) is retrieved directly via

x1 = g1 − V1x
(t)
2

xi = gi −Wix(b)i−1 − Vix(t)i+1, i = 2, 3, . . . , p − 1

xp = gp −Wpx(b)p−1.

(13)

In summary, the SPIKE algorithm for solving the diagonally dominant banded
system Ax = f consist of the D-S factorization scheme in which D is block
diagonal and S is the corresponding spike matrix. Consequently, solving system (1)
consists of two phases:

(i) solve Dg = f followed by
(ii) solve Sx = g via the reduced system approach.
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In (i) each system Ajgj = fj is solved via the classical LU-factorization as
implemented in Lapack [2].

Observe that if we assign one processor (or one multicore node) to each partition,
then solving Dg = f realizes maximum parallelism with no interprocessor
communications. Solving the reduced system (10), however, requires interprocessor
communications which increases as the number of partitions p increases. The
retrieval process (13) again achieves almost perfect parallelism.

Variations of this basic form of the SPIKE algorithm are given in [24]. Also
note that this SPIKE algorithm requires a larger number of arithmetic operations
than those required by the classical banded LU-factorization scheme. In spite of
this higher arithmetic operation count, this direct form of the SPIKE algorithm
realizes higher parallel performance than ScaLapack on an 8-core Intel processor,
see Fig. 3 [17], due to enhanced data locality.

The reason for the superior performance of Spike is illustrated in Fig. 4 showing
that the total number of off-chip data accessed (in bytes) for Spike (red color) is less
than that required by ScaLapack. Also, Fig. 5 shows that the number of instructions
executed by Spike is almost half that required by ScaLapack. For more details about
the measurements shown in Figs. 4 and 5, see Liu et al. [13].

Second, if the banded linear system (1) is not diagonally dominant, there is
no guarantee that any of the diagonal blocks Aj , j = 1, 2, . . . , p, see Fig. 1, is
nonsingular. In this case, the banded linear system (1) is solved via a preconditioned
Krylov subspace method such as GMRES or BiCGStab, e.g. see Saad [25]. Here the
preconditioner M is chosen as M = D̂Ŝ where D̂ = diag(Â1, Â2, . . . , Âp) with

Fig. 3 Speedup of SPIKE and ScaLapack compared to the sequential Lapack for solving a linear
system of size 960,000 with a bandwidth of 201
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Fig. 4 Off-chip data being accessed for Spike (red) and ScaLapack (blue), using 4 cores

Fig. 5 Number of instructions executed by Spike (red) and ScaLapack (blue), using 4 cores

Âj = L̂j Ûj , in which the factors L̂j and Ûj are obtained via the LU=factorization
of each Aj using diagonal pivoting with a “boosting” strategy. In other words, if
a diagonal element α during the factorization satisfies |α| ≤ ε||A||1 where ε is a
multiple of the unit roundoff, then α is modified as follows:

α := α + θ ||Aj ||1 if α ≥ 0

α := α − θ ||Aj ||1 if α < 0,
(14)
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where θ ∼ √ε. Ŝ is then of a form identical to that of S , see Fig. 2, except that the
spikes Vj andWj are obtained as follows:

(L̂j Ûj )
−1[Ĉj , B̂j ] = [Vj ,Wj ], j = 1, 2, . . . , p (15)

which entails a block forward sweep followed by a block backsweep. In each
iteration of GMRES, for example, one needs to solve a system of the formMv = r .
This is accomplished in two steps: (1) solve D̂u = r , and (2) solve Ŝv = u. As
outlined above, the first system is solved via two triangular solvers: L̂j u̇j = rj ,
and Ûjuj = u̇j , j = 1, 2, . . . , p. The second system, Ŝv = u, is solved via the
reduced system approach, see (10), with retrieving the rest of the solution vector v
via (13).

Since the elements of the inverse of a banded matrix decay as they move away
from the main diagonal, the elements of the spikes V,W decay as they move away
from the main diagonal as well. Such decay becomes more pronounced as the degree
of diagonal dominance increases. We define the degree of diagonal dominance of A
by

τ = min
1≤k≤N[|akk|/

∑

k �=j
|akj |]. (16)

Even for system (1) for which τ ≥ 0.25 , one can take advantage of the decay in
the spikes Vj , (||V (j)q || ! ||V (j)1 ||), andWj , (||W(j)

q || ! ||W(j)

1 ||) (In our example

above q = 3). Taking advantage from such a property by replacing V (j)q and W(j)
q

by zero, the reduced system (10) becomes a block diagonal system that requires only
obtaining V (j)1 andW(j)

1 , j = 1, 2, . . . , p. In other words, we need only to obtain the
bottom (m×m) tip of each right spike Vj , and the top (m×m) tip of each left spike
Wj , 1 ≤ j ≤ p. Consequently, if we assign enough processors to obtain the LU-
factorization of slightly perturbed A1, A2, . . . , Ap−1 using the diagonal boosting
strategy, and the UL-factorization of similarly perturbed A2, A3, . . . , Ap, we need
not obtain the whole spikes Vj andWj . The LU-factorizations will obtain the bottom
tips of Vj , while the UL-factorizations will enable obtaining the top tips of Wj
resulting in significant savings for computing the coefficient matrixR of the reduced
system. Further, since R in this case is block diagonal, solving the reduced system
achieves maximum parallelism. This “truncated” version of the SPIKE algorithm
was compared with Lapack and MKL-ScaLapack (i.e., Intel’s Math Kernel Library)
on an Intel multicore processor for solving 8 banded linear systems with coefficient
matrices obtained from Matrix-Market (see Table 1). Table 2 shows the ratios:

Average time(MKL-2 cores∗)
Average time (MKL-1 core)

, (17)

and
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Table 1 A Matrix-Market
collection of banded systems
(n > 10,000) where kl,ku, N ,
∼Cond are the lower, upper
bandwidths, matrix size, and
the condition number
estimate, respectively

Matrix name kl ku N ∼Cond

s3dkq4m2 614 614 90,449 N/A

s3dkt3m2 614 614 90,449 N/A

fidap035 244 247 19,716 4.3× 1012

e40r0000 451 451 17,281 2.2× 108

e40r5000 451 451 17,281 2.2× 1010

bcsstk25 292 292 15,439 1.3× 1013

bcsstk18 1243 1243 11,948 6.5× 1011

bcsstk17 521 521 10,974 2.0× 1010

Table 2 Time ratios for Spike and MKL-ScaLapack

MKL 1-core MKL 2-cores Spike 2-cores

Avg. time (ratio) 1.0 8.5 0.4

Rel. res. (norm) O(10−1)−O(10−10) O(10−2)−O(10−10) O(10−5)−O(10−11)

Average time(Spike-2 cores∗)
Average time (MKL-1 core)

, (18)

together with the lowest and highest relative residual for each solver for the 8
benchmarks. *Note that for the 2-core entries each core belongs to a different node.

2.1 Multithreaded SPIKE

In shared memory systems, the parallelism in LAPACK LU algorithms can directly
benefit from the threaded implementation of the low-level BLAS routines. In order
to achieve further scalability improvement, however, it is necessary to move to a
higher level of parallelism based on divide-and-conquer techniques. As a result,
the OpenMP implementation of SPIKE on multithreaded systems [19, 31], is
inherently better suited for parallelism than the traditional LAPACK banded LU
solver. A recent stand-alone SPIKE-OpenMP solver (v1.0) [1] has been developed
and released to the community.

Among the large number of variants available for SPIKE, the OpenMP solver
was implemented using the recursive SPIKE algorithm [23, 24]. The latter consists
of solving the reduced system (10) using SPIKE again but where the number of
partitions had been divided by two. This process is repeated recursively until only
two partitions are left (making the problem straightforward to solve). The SPIKE
algorithm applied to two partitions is actually the kernel of recursive SPIKE, and
from Fig. 3, we note the efficiency of 2 × 2 SPIKE which reaches a speedup
of two using two partitions with two processors. The recursive SPIKE technique
demonstrates parallel efficiency and is applicable to both diagonally and non-
diagonally dominant systems. However, it was originally known for its lack of
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flexibility on distributed architectures since its application was essentially limited
to a power of two number of processors. The scheme was then prone to potential
waste of parallel resources when applied to shared memory systems using OpenMP
[19]; for instance, if 63 cores were available, then only 32 would be effectively
used by recursive SPIKE (i.e., the lowest nearest power of two). This limitation
was overcome in [31] with the introduction of a new flexible threading scheme
that can consider any number of threads. If the number of threads is not a power
of two, some partitions are given two threads which, in turn, would benefit from
the 2 × 2 SPIKE kernel. Load balancing is achieved by changing the size of each
partition so that the computational costs of the large matrix operations on each
partition are matched. This multithreaded SPIKE approach is then ideally suited
for shared memory systems since optimized ratios between partition sizes can be
tuned for a given system matrix and architecture, independently from user input
[1]. Figure 6 demonstrates the efficiency of the scheme. The results show that the
speedup performance of the new threaded recursive SPIKE is not limited to a power
of two number of threads since the scalability keeps increasing with the number
of threads. For example, at 30 threads the overall speed improvement increases
from roughly ×6 to roughly ×9, as a result of the increased overall utilization of
resources. The results also show that the SPIKE computation time is significantly
superior to LAPACK Intel-MKL. We note that the two solvers’ scaling performance
are similar until 10 threads are reached, at which point SPIKE begins pulling
away. Unlike SPIKE, parallelism performance of the inherently recursive serial LU
approach used by MKL mainly relies on parallelism available via the BLAS which
is rather poor for this matrix.

The SPIKE-openMP solver has been designed as an easy to use, “black-box”
replacement to the standard LAPACK banded solver. In order to achieve near
feature-parity with the standard LAPACK banded matrix solver, we add to SPIKE
the feature known as transpose option, i.e. solve AT x = f . Transpose solve

Fig. 6 SPIKE scalability and computation time compared to MKL-LAPACK for a system matrix
of size N=1M, bandwidth 321, and with 160 right-hand sides
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operation allows improved algorithmic flexibility and efficiency by eliminating the
need for an explicit factorization of the matrix transpose when solving:

AT x = f. (19)

As a result, if the factorization A = DS is already available, it can now be used to
address the new SPIKE solve stages, which are now swapped:

1. solve ST y = f via the transposed reduced system approach, followed by
2. solve DT x = y.

A transpose version of the recursive reduced system solver which has been proposed
in [31] achieves near performance parity with the non-transpose solver.

3 Hybrid Methods for General Sparse Linear Systems

In large-scale computational science and engineering application one is often faced
with solving large general sparse linear systems that cannot be reordered into a
narrow banded form. Therefore, we use nonsymmetric and symmetric reorderings
to maximize the magnitude of the product of the diagonal elements, move as many
of the largest off-diagonal elements as possible close to the main diagonal, and
extract a generalized banded preconditioner. In the next subsection we describe such
a reordering process after which an effective preconditioner can be extracted where
linear systems involving the such a preconditioner is solved using a variant of the
SPIKE algorithm.

3.1 Weighted Nonsymmetric and Symmetric Reorderings for
Sparse Matrices

As the first step of the reordering scheme we apply a nonsymmetric permutation and
scaling (if needed) to make the diagonal of the coefficient matrix as large as possible.
Such nonsymmetric permutation and scaling techniques are already available in the
Harwell Subroutine Library (HSL) and is called MC64 [8] which (without scaling)
creates permutations �1 and �2 such that the magnitude of the product of the
diagonal elements of B = �1A�2 is maximize, where A is the original coefficient
matrix. This is followed by obtaining a symmetric permutation of B, C = PBPT ,
where P is determined by the Fiedler vector [9] derived from B. The Fiedler vector
is the eigenvector corresponding to the second smallest eigenvalue of the “weighted
Laplacian” matrix based on B. This eigenvalue is sometimes called the algebraic
connectivity of the graph. Note that the smallest eigenvalue is zero. As a result, many
of the heaviest off-diagonal elements of C are much closer to the main diagonal.
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Fig. 7 The effect of the weighted spectral reordering using the Fiedler vector on F2 matrix (colors
indicate the magnitude of the absolute value of the elements. Red, green, and blue are the largest,
intermediate, and smallest elements, respectively. (a) Original matrix. (b) Reordered matrix

Here, PSPIKE refers to a solver that is a hybrid of the sparse direct solver Pardiso
[29] and the SPIKE algorithm. In Fig. 7, we illustrate the effect of such reordering
on a symmetric stiffness matrix with 71,505 rows and columns, obtained from the
SuiteSparse Matrix Collection [6].

From the original sparse linear system Ax = f , we obtain By = g, where
y = �T2 x, and g = �1f . If B is symmetric, one can form the “weighted Laplacian”
matrix, Lwij = −|bij |, and

Lwjj =
∑

k

|bkj | (20)

as follows: Note that one can obtain the unweighted Laplacian by simply replacing
each nonzero element of the matrix B by 1. In this subsection, we consider the
weighted case as a preprocessing tool for the PSPIKE algorithm given in Sect. 3.3.

We assume that the corresponding graph is connected since the disconnected
components can be easily identified and the Fiedler vector can be computed
independently for each if the graph is disconnected. The eigenvalues of Lw are
0 = λ1 < λ2 ≤ λ3 ≤ . . . ≤ λn. The Fiedler vector, xF , is the eigenvector
corresponding to smallest nontrivial eigenvalue, λ2. Since we assume a connected
graph, the trivial eigenvector x1 is a vector of all ones. If the coefficient matrix, B,
is nonsymmetric, we simply construct Lw using the elements of (|B| + |BT |)/2,
instead of those of |B|.

A Trace Minimization [26, 28] based parallel algorithm for computing the Fiedler
vector, TRACEMIN-Fiedler, has been proposed in [16]. We consider the standard
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symmetric eigenvalue problem,

Lwx = λx. (21)

The trace minimization eigensolver is based on the observation,

min
X∈Xp

tr(XT LwX) =
p∑

i=1

λi, (22)

where Xp is the set of all n × p matrices, X for which XTX = I . The equality
holds if and only if the columns of the matrix X span the eigenspace corresponding
to the smallest p eigenvalues. At each iteration of the trace minimization algorithm
an approximation Xk ∈ Xp which satisfies XTk L

wXk = �k for some diagonal �k
is obtained. The approximation Xk is corrected with �k obtained by

minimizing tr[(Xk −�k)T Lw(Xk −�k)]
subject to XTk �k = 0.

. (23)

The solution of the (23) can be obtained by solving the following saddle point
problem:

(
Lw Xk

XTk 0

)(
�k

Lk

)
=
(
LwXk

0

)
. (24)

Once �k is known, Xk+1 is obtained by computing (Xk − �k) which forms
the section XTk+1L

wXk+1 = �k+1, XTk+1Xk+1 = I . In [16], we solve those
saddle point systems by computing the block LU-factorization of the coefficient
matrix in (24), i.e. by forming the Schur complement matrix explicitly since
we are only interested in the second smallest eigenvector and hence p is small.
Then, the main computational cost is solving sparse linear systems of equations
with a few right-hand side vectors where the coefficient matrix, Lw, is a large
sparse and symmetric positive semi-definite matrix. The details of the TRACEMIN-
Fiedler algorithm are given in [16]. This algorithm proved (see Fig. 8) to be more
suitable for implementation on parallel architectures compared to the eigensolver
used in HSL for (21). Table 3 shows the dimension, number of nonzeros, and
symmetry properties of four large matrices obtained from the SuiteSparse Matrix
Collection [7].

Table 3 Properties of
matrices from the SuiteSparse
matrix collection

Matrix group/name n nnz Symmetry

Rajat/rajat31 4,690,002 20,316,253 No

Schenk/nlpkkt120 3,542,400 95,117,792 Yes

Freescale/freescale1 3,428,755 17,052,626 No

Zaoui/kkt_power 2,063,494 12,771,361 Yes
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Fig. 8 Seedup of TRACEMIN-Fiedler reordering (using 8 cores per node) compared to the
sequential HSL_MC73

After these two reordering steps, the resulting sparse linear system is of the form
Cz = h, where C = PBPT , z = Py, and h = Pg, with C having its heaviest
off-diagonal elements as close to the main diagonal as possible. Choosing a central
“band” of bandwidth (2β + 1) as a preconditionerM of a Krylov subspace method
with β chosen such that

||M||F " (1− ε)||C||F . (25)

Here || · ||F denotes the Frobenius norm, and ε chosen in the interval [0.001, 0.05].
Assuming C is of sufficiently large order n, say n = 106, then if β ≤ 10,
we call M a Narrow banded Preconditioner (NBP). If β > 10, we choose M
as a block-tridiagonal preconditioner in which the diagonal blocks are sparse
with relatively large “bandwidth,” and the interconnecting off-diagonal blocks
are dense square matrices of small dimensions. We call such M as Medium
banded Preconditioner (MBP). When β becomes much larger than 10 in order to
encapsulate as many off-diagonal as possible, we construct the preconditionerM as
overlapped block diagonal sparse matrices. In this case, M is referred to as Wide
banded Preconditoner (WBP). In each outer Krylov subspace iteration, one needs to
solve linear systems involvingM . For the cases of “MBP” and “WBP,” one needs to
use a sparse linear system solver. In Fig. 9 we show the classical computational loop
that arises in many science and engineering applications. Solving linear systems
occurs in the inner-most loop where the solution of such systems is needed to yield
only modest relative residuals. For this purpose, we created a family of solvers
that generalizes SPIKE for solving sparse linear systems Ax = f using hybrid
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Fig. 9 Target computational
loop

Loop: Integration

Loop: Nonlinear iteration

Loop: Linear system solvers
Implemented on parallel computing platforms;

End
End

End

schemes, i.e. a combination of the direct sparse linear system solver Pardiso [29] and
SPIKE. Even though SPIKE, rather than Pardiso is used for the case M being narrow
banded, we refer to our family of hybrid solvers as PSpike_NBP, PSpike_MBP,
and PSpike_WBP, respectively. In Fig. 10, we illustrate the structure of each of
those preconditioners obtained from the reordered matrix C. Next, we describe
and present some results illustrating the performance of each of Narrow Banded,
Medium Banded, and Wide Banded preconditioners.

3.2 PSPIKE_NBP

Certain sparse linear systems Ax = f yield, after the reordering procedures
described in Sect. 3.1, effective narrow banded preconditioners to Krylov subspace
methods like GMRES or BiCGStab.

Example 1
The first system A1x1 = f1 considered here has the sparse coefficient matrix
A1 := “Rajat31” from the SuiteSparse Matrix Collection[6] of order "4.7M, see
Fig. 11, which is in the form of an arrowhead. After reordering, and choosing
ε = 0.05, we extract a banded preconditioner M of bandwidth 2β + 1 = 11,
i.e. β = 5. Using an outer Krylov solver (BiCGStab) with a stopping criterion
of relative residual = 10−5, Fig. 12 shows that PSPIKE_NBP consumes ∼2.8 s
on an Intel cluster of 32 nodes (8 cores/node). Here, solving linear systems of
the form Mz = r in each BiCGStab iteration is achieved by using the truncated
version of the SPIKE algorithm outlined in Sect. 2. We compare the performance of
PSPIKE_NBP with IBM’s direct sparse linear system solver WSMP (implemented
on the same Intel cluster). Figure 12 shows that while the factorization stage of
WSMP is quite scalable, solving A1x1 = f1 using WSMP on 16 nodes of this Intel
cluster consumes ∼27 s (approximately 9.6 times slower than PSPIKE_NBP). This
is due to solving the sparse triangular systems resulting from the LU-factorization
of A1. Note, however, that solving A1x1 = f1 via WSMP yields a relative residual
of order 10−10.

Example 2
Here, we consider the sparse linear system A2x2 = f2, where A2 results from
a Microelectromechanical System (MEMS) simulation—a mix of structural and
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Fig. 10 Three forms of preconditioners based on the band structure and bandwidth, illustrated
on F2 matrix after reordering. Yellow and Black colors indicate the preconditioners. (a) Narrow
banded preconditioner. (b) Medium banded preconditioner. (c) Wide banded preconditioner

electromagnetic—with A2 banded (sparse within the band) of order 11.0M and
bandwidth of 0.3M, see Fig. 13. On an Intel cluster of 64 nodes (8 cores/node)
PSPIKE_NBP with a preconditioner of bandwidth 11 consumes ∼2.4 s to obtain an
approximation of x2 with the required relative residual of 10−2, see Fig. 14. WSMP
could not be implemented on more than 32 nodes and requiring 86 s (∼21.5 times
slower than PSPIKE_NBP) to obtain a solution with relative residual of order 10−10.

Example 3
Using the same linear system A2x2 = f2, we compare the performance of
PSPIKE_NBP and the algebraic multigrid preconditioned Krylov subspace solver
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Fig. 11 Sparsity plot of
Rajat31 (the figure is
obtained from [6])

1

10

100

4 8 16 32 64 128 256 512 1024

Ti
m

e 
(S

ec
on

ds
)

Cores

SPIKE-NBP

WSMP Total

WSMP Factor

~25.0

~ 17.0

~27.0

~ 4.5

~2.8

~27.0
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Fig. 15 Speed improvement: time (Trilinos-ML)/time (PSPIKE)

in Trilinos-ML developed at Sandia National Lab. on an Intel cluster of 64 nodes
(8 cores/node). Using the Chebyshev smoother for Trilinos-ML, Fig. 15 shows the
speed improvement realized by PSPIKE_NBP once we use more than 4 nodes. In
PSPIKE we use a hybrid programming paradigm, OpenMP within each node (k
threads per MPI process) and one node per MPI process with k depending on the
number of nodes used to obtain a solution with relative residual of order 10−10.
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3.3 SPIKE_MBP

Here, we note how a system of the form Mz = r is solved in each iteration of a
Krylov subspace method, where M ∈ R

n×n is of the form of a block-tridiagonal
matrix

M =

⎛

⎜⎜⎜⎜⎜⎝

M1 B̃1

C̃2 M2 B̃2
. . .

. . .
. . .

C̃k−1 Mk−1 B̃k−1

C̃k Mk

⎞

⎟⎟⎟⎟⎟⎠
, (26)

where k is the number of partitions (often chosen as the number of nodes), where
eachMj is a large sparse matrix of order m = #n/k$, and

B̃j =
(

0 0
Bj 0

)
, C̃j =

(
0 Cj
0 0

)
(27)

in which Bj and Cj are dense matrices of order ν << m. Now, Mz = r is solved
using the SPIKE algorithm by forming only the reduced system by solving

Mj

⎛

⎜⎜⎜⎜⎜⎜⎝

Vj Wj

∗ ∗
...
...

∗ ∗
V
′
j W

′
j

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎝

Cj 0
0 0
...
...

0 0
0 Bj

⎞

⎟⎟⎟⎟⎟⎠
(28)

only for the tips of the spikes Vj , V
′
j and Wj,W

′
j via an interesting feature of the

sparse direct solver Pardiso. Using the spike tips only, the reduced system is formed
and solved via ScaLapack. Once this is achieved, the solution ofMz = r is realized
by employing the factors of eachMj obtained by Pardiso.

The description of PSPIKE_MBP is given in more detail with parallel scalability
results for large-scale problems in [18] and its application to a PDE-constrained
optimization problem in [30]. While Pardiso is primarily suitable for single node
platforms, PSPIKE is scalable across multiple nodes. Furthermore, we would
like to mention that PSPIKE is capable of using message passing-multithreaded
hybrid parallelism. In Fig. 16, we present the required solution time of PSPIKE
compared to Pardiso (on one node) for a medium size and large 3D PDE-constrained
optimization problems with 75×75×75 and 150×150×150 meshes, respectively,
using hybrid parallelism with 8 threads (cores) per node. Note that for the larger
problem Pardiso runs out of memory due to fill-in. Further details of these problems
and the results are given in [30].
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Fig. 16 SPIKE_MBP and Pardiso solution times for the optimization problem

3.4 SPIKE_WBP

For some applications it is not possible to obtain, after reordering, a narrow banded
preconditioner, or a block-tridiagonal preconditioner in which the interconnecting
off-diagonal blocks are of much smaller size than the diagonal blocks. An example
of that is illustrated in Fig. 17. Note that, after reordering, the “heavy” off-diagonal
elements (black color) cannot be contained in either of the two previous forms of
the preconditioner M ∈ R

n×n. As an alternative, one way to encapsulate as many
of the heavy elements inM is to create a preconditioner that consists of overlapped
diagonal blocks, see Fig. 17, for M consisting of two overlapped blocks. In each
outer Krylov subspace iteration we solve systems of the form Mz = r via the
algorithm given in [22]. Using the two overlapped blocks, Mz = r becomes of
the form

M11 M12

M21 M22 M23

M32 M33

⎛

⎜⎜⎝

⎞

⎟⎟⎠

(29)
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Fig. 17 WBP highlighted after reordering, see [21] for the tearing based parallel hybrid sparse
solver

which can be “torn” into two linear systems

(
M11 M12

M21 M
(1)
22

)(
z1(y)

z
(1)
2 (y)

)
=
(

r1

αr2 + y
)

(30)

(
M
(2)
22 M23

M32 M
(1)
33

)(
z
(2)
2 (y)

z
(3)
2 (y)

)
=
(
(1− α)r2 − y

αr3

)
, (31)

where the overlap matrixM22 = M(1)
22 +M(2)

22 , and 0 < α < 1. Clearly, we need to

choose y so that z(1)2 = z(2)2 . Enforcing z(1)2 (y) = z(2)2 (y) results in a linear system
Gy = g of size equal to that of overlap matrixM22, ν << n. In solvingGy = g for
the unknown y, using a Krylov subspace method, it is shown in [22] that one needs
not generate either G or g explicitly, in fact the residual r(p) = g −G ∗ p is given
by [z(2)2 (p)−z(1)2 (p)], r(0) = g = [z(2)2 (0)−z(1)2 (0)], and the matrix-vector product
G ∗ g = r(0)− r(g). The case of more than two overlapped blocks is considered in
detail in [22].

3.5 The General SPIKE

Now we describe the general case where the coefficient matrix has not been sub-
jected to the reordering process described earlier. In other words it is a general sparse
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matrix and also there are multiple right-hand side vectors. Given a nonsingular linear
system of equations,

AX = F, (32)

where A ∈ R
n×n is a general sparse matrix and assume we have m right-hand side

vectors F , we can still apply the General SPIKE algorithm as follows. As in the
banded case, let us assume A, X, and F are partitioned conformably into k block
rows and A is also partitioned into k block columns. The Spike factorization can be
described as the factorization of the coefficient matrix [14],

A = DS, (33)

where D is the block diagonal of A and S is the “spike” matrix. Let A = D + R
where R is a matrix that contains elements except diagonal blocks. Assuming D is
invertible and using (33) we obtain the spike matrix,

S = I + S̄, (34)

where S̄ = D−1R. Note that the diagonal of S consists of ones and the off-diagonals
are the spikes (S̄). Going back to the original linear system in (32), if we multiply
both sides of the equality with D−1 from left, we have the modified system

SX = G, (35)

where G = D−1F . The modified system in (35) has the same solution vector, X,
as the original system in (32). Furthermore, let idx be the nonzero column indices
of R which also correspond to nonzero column indices of D−1R. Then, there is an
independent subsystem corresponding to the unknowns with row indices idx, i.e.
X(idx, :) in (35) such that,

ŜX̂ = Ĝ, (36)

where Ŝ = S(idx, idx), X̂ = X(idx, :), and Ĝ = G(idx, :). Dimensions of the
reduced system in (36) are r × r where r = length(idx) with r ≤ n. After solving
the reduced system we can retrieve the remaining unknowns in parallel,

X = G− S̄X. (37)

Note that we only need a subset of unknowns, X̂, to evaluate the right-hand side
of the equality since the other columns in S̄ are zeros. This approach requires S̄
to be computed explicitly. Alternatively, one can obtain the solution by solving the
following system in parallel,

DX = F − RX. (38)
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Again, the right-hand side can be evaluated once we obtain X̂. In contrast to (37),
(38) does not require the computation of S̄ completely, even though it still requires
the solution of the reduced system involving Ŝ which may be explicitly formed via
partially computing S̄. Alternatively, the reduced system can be solved iteratively
without forming Ŝ explicitly. Some of these alternatives might be preferred in
practice, depending on the current availability of efficient software tools to perform
those operations.

In any case, the size of the reduced system depends on r . A smaller r not only
enhances parallelism by enabling a smaller reduced system and less communication
requirements, but also reduces the arithmetic complexity in computing Ŝ and S̄ (if
needed) as well as the complexity of (37) and (38).

In practice, we assume r << n. Ideally, r = 0 and some matrices can be
reordered into a block diagonal form. In this case, there is no reduced system and
the block diagonal systems are solved independently in parallel. Most applications,
however, give rise to sparse linear system of equations that does not contain
independent blocks, then the objective is to reorder and partition those matrices
in such a way that the number of the nonzero columns in R̄ is minimized [15].

The main difference between the sparse and the banded SPIKE algorithms is
the dependence of the reduced system size (r) on the sparsity structure of the
matrix (and hence on the corresponding graph or hypergraph representation of the
sparse matrix). Therefore, sparse graph/hypergraph partitioning methods are key
ingredients for the algorithm to be scalable and to perform efficiently. METIS [11]
and PaToH [4], are suitable for graph and hypergraph partitioning, respectively, and
they fit well to the objective of minimizing the reduced system dimension.

To illustrate the algorithm, we give a small (9 × 9) coefficient matrix, A, in
Fig. 18a for simplicity we ignore the numerical values. Given k = 3, the coefficient
matrix and right-hand side are comformably partitioned,

A =
⎛

⎝
D11 R12 R13

R21 D22 R23

R31 R32 D33

⎞

⎠ and F =
⎛

⎝
F1

F2

F3

⎞

⎠ . (39)

The set of indices of nonzero columns of R̄ are idx = {1, 5, 8}. After partitioning,
S and G can be computed as follows:

S =
⎛

⎝
I D−1

11 R12 D
−1
11 R13

D−1
22 R21 I D−1

22 R23

D−1
33 R31 D

−1
33 R32 I

⎞

⎠ and G =
⎛

⎝
D−1

11 F1

D−1
22 F2

D−1
33 F3

⎞

⎠ . (40)

If the right-hand side vector is available immediately, the computation involved is
the solution of independent linear systems with multiple right-hand sides,

D11[S12, S13,G1] = [R12, R13, F1], (41)
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Fig. 18 A, S, and Ŝ for the small example. (a) Coefficient matrix (A). (b) Spike matrix (S). (c)
Reduced system coefficient matrix (Ŝ)

D22[S21, S23,G2] = [R21, R23, F2], (42)

D33[S31, S32,G3] = [R31, R32, F3]. (43)

Note that in (41),(42), and (43) only a few columns of Rij,i �=j are nonzero and the
rest are zeros. We do not store or perform operations with zero columns since the
corresponding solution vector is already zero. The resulting S matrix is shown in
Fig. 18b. Light green elements are fill-ins and some of them can be negligible as in
the banded case [20, 24] if A is diagonally dominant or near diagonally dominant.

Further savings can be obtained, if a sparse solver with sparse right-hand side
vectors is available and if it is capable of solving only for a few unknowns, one
can compute only those components of vectors in Sij that is required for forming
the reduced system (defined by idx). One of the implementation of the General
SPIKE algorithm in [3] performs partial solves via the sparse right-hand side feature
of PARDISO [29]. Next, we can form the reduced system explicitly by selecting
Ŝ = S(idx, idx) and Ĝ = G(idx, :) and solve the reduced system, ( 36), to obtain
X̂ = X(idx, :). Ŝ for the small example is shown in Fig. 18c. The complete solution
is obtained in parallel via either:

X = G− S̄X (44)
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Algorithm 1: General spike algorithm
1: procedure GENERALSPIKE(A,X,F, k) � to solve AX = F with k partitions
2: D + R← A

3: Identify nonzero columns of R and store their indices in idx
4: D[S(:,idx),G] = [R(:,idx), F ], solve for:

• [S(:,idx),G] (full solve) or
• [S(idx,idx),G(idx,:)] (partial solve)

5: S(idx,idx)X(idx,:) = G(idx,:) (Solve for X(idx,:))
6: Retrieve the solution vector (X):

• X← G− S(:,idx)X(idx) if S(:,idx)] is available
• DX = [F − R(:,idx)x(idx)] (Solve for X), otherwise

7: end procedure

or

DX = F − RX. (45)

The former is preferred if the spikes are formed explicitly since the multiplication
S̄X can be implemented using dense matrix-vector (BLAS Level 2) or matrix-
matrix (BLAS Level 3) operations, for m = 1 and m > 1, respectively. The latter
requires sparse matrix-dense matrix multiplications (RX), followed by the solution
of independent sparse linear systems. It is preferred if the spikes are not explicitly
available. The pseudocode of the algorithm is summarized in Algorithm 1.

Numerical results and the performance of this scheme are given in [14] in the
context of a parallel solver for the preconditioned linear system and in [3] as a
direct multithreaded recursive parallel sparse solver. Furthermore, a multithreaded
general sparse triangular solver is proposed in [5].

4 Conclusions

The SPIKE algorithm for banded linear systems that are dense withing the band
has been shown to be competitive in parallel scalability with the parallel banded
solver in ScaLapack on a variety of parallel architectures. Also, the hybrid PSPIKE
(Pardiso-SPIKE) algorithm for large sparse linear systems has proven to be equally
competitive with: (1) direct sparse solvers such as Pardiso and WSMP if one requires
only approximate solutions that correspond to modest relative residuals, and (2)
black-box preconditioned Krylov subspace methods including algebraic multigrid
preconditioners.

Acknowledgments The authors would like to thank Drs. Maxim Naumov and Faisal Saied for
performing many of the numerical experiments reported in this chapter.
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Eric Polizzi and Yousef Saad

1 Introduction

Among the many jobs running at any given time on a high-performance computing
facility today, it is likely that those related to quantum mechanical calculations
will figure prominently. The numerical simulations that arise from the modeling
of matter are very demanding both in terms of memory and computational power.
These simulations combine ideas and techniques from a variety of disciplines
including physics, chemistry, applied mathematics, numerical linear algebra, and
computer science.

Determining matter’s electronic structure can be a major challenge: The number
of particles is large [a macroscopic amount contains ≈1023 electrons and nuclei]
and the physical problem is intrinsically complex.

The most significant change in computational methods used in materials in the
past two decades has undoubtedly been the systematic use of parallel processing.
This revolution in methodology has taken some time to unravel and then mature. For
example, it was not clear in the early 1990s whether massively parallel computing
could be achieved with vector processors or if a message passing interface would
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be best. There were phases in which programming models and languages took
different directions. As architectures changed over the years, the software and
techniques have been in constant flux. At the same time algorithms have also
evolved considerably, in part to cope with the new computing environments and
the enormous power afforded by new hardware.

Most of the gains in speed combine advances from three areas: simplifications or
improvements from physical models, effective numerical algorithms, and powerful
hardware and software tools.

In terms of physical models, the biggest advances in nanotechnology were made
in the sixties with the emergence of Density Functional Theory (DFT) which made
it possible to approximate the initial problem by one which involves unknowns that
are functions of only one space variables instead ofN space variables, forN -particle
systems in the original Schrödinger equation. Thus instead of dealing with functions
in R

3N we only need to handle functions in R
3. DFT provides (in principle) an exact

method for calculating the ground state energy and electron density of a system of
interacting electrons using exchange-correlation density functionals, and a set of
single electron wavefunctions solution of an eigenvalue equation.

The number of atoms contained in nanostructures of technological interests
usually range from few hundreds to many thousands posing a unique challenge
for DFT electronic structure modeling and computation. Many modeling advances
were made in designing various discretization techniques to accommodate atomistic
systems with high level of accuracy. In addition, since both system size and
number of needed eigenpairs to compute the electron density depend linearly on
the number of atoms, progress in electronic structure calculations are tied together
with advances in eigenvalue algorithm and their scalability on parallel architectures.

The goal of this paper is not to provide another exhaustive review of the state of
the art in materials but rather to discuss the impact that parallel processing has had
on the design of algorithms. From physics to algorithms, we will begin with a review
of the basics, and then discuss the recent advances made in electronic structure
calculations using appropriate discretization schemes and new parallel algorithms
that can fully capitalize on modern HPC computing platforms.

2 Quantum Descriptions of Matter

Consider N nucleons of charge Zn at positions {Rn} for n = 1, · · · , N and M
electrons at positions {ri} in space, for i = 1, · · · ,M . The non-relativistic, time-
independent Schrödinger equation that describes the physical state of the system
can be written as:

H � = E � (1)

where the many-body wave function � is of the form
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� ≡ �(R1,R2,R3, · · · ; r1, r2, r3, · · · ) (2)

and E is the total electronic energy. The Hamiltonian H in its simplest form can be
written as:

H(R1,R2,R3, · · · ; r1, r2, r3, · · · ) =
N∑

n=1

−h̄2∇2
n

2Mn
+ 1

2

N∑

n,n′=1,
n�=n′

ZnZn′e2

|Rn − Rn′ |

+
M∑

i=1

−h̄2∇2
i

2m
−

N∑

n=1

M∑

i=1

Zne
2

|Rn − ri | +
1

2

M∑

i,j=1
i �=j

e2

|ri − rj | (3)

Here,Mn is the mass of the nucleon, h̄ is Planck’s constant divided by 2π , m is the
mass of the electron, and e is the charge of the electron.

The above Hamiltonian includes the kinetic energies for each nucleon (first sum
in H), and each electron (3rd sum), the inter-nuclei repulsion energies (2nd sum),
the nuclei-electronic (Coulomb) attraction energies (4th sum), and the electron-
electron repulsion energies (5th sum). Each Laplacian ∇2

n involves differentiation
with respect to the coordinates of the nth nucleon. Similarly the term ∇2

i involves
differentiation with respect to the coordinates of the ith electron.

In principle, the electronic structure of any system is completely determined
by (1) by finding the wave function � that minimizes the energy < �|H|� > over
all normalized wavefunctions �. The function � has a probabilistic interpretation:
for the minimizing wave function �,

|�(R1, · · · ,RN ; r1, · · · , rM)|2d3R1 · · · d3RNd3r1 · · · d3rM

represents the probability of finding nucleon 1 in volume |R1+ d3R1|, nucleon 2 in
volume |R2+d3R2|, etc. However, solving (1) is not practically feasible for systems
that include more than just a few atoms.

The main computational difficulty stems from the nature of the wavefunction
which depends on all coordinates of all particles (nuclei and electrons) simulta-
neously. To give an illustration of this, imagine we have 10 atoms each with 14
electrons [e.g., Silicon]. This represents a total of 15∗10 = 150 particles. The wave
function in its form without spin is �(R1, · · · , R10, r1, · · · , r140) and it must be
discretized. A simple scheme would be some finite difference method. If we use 100
points for each of the 150 coordinates, we would get a huge number of unknowns:

# Unknowns = 100︸︷︷︸
part.1

× 100︸︷︷︸
part.2

× · · · × 100︸︷︷︸
part.150

= 100150

The original Schrödinger equation (1) can be viewed as an eigenvalue problem:
we need to compute the smallest eigenvalue and associated eigenvector of the
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Hamiltonian. It can also be viewed from the point of view of optimization since
finding the smallest eigenpair is known to be equivalent to finding the wavefunction
� that minimizes the Rayleigh quotient:

E =< �|H|� >≡
∫
�∗H� d3R1 d

3R2 d
3R3 · · · . d3r1 d

3r2 d
3r3 · · ·∫

�∗� d3R1 d3R2 d3R3 · · · . d3r1 d3r2 d3r3 · · · (4)

The symbols bra (for< |) and ket (for | >) are common in chemistry and physics.
When applying the Hamiltonian to a state function � the result is another state
function: � = |H|� >. The inner product of this function with another function �
is < �|� > which is a scalar.

The first, and basic, approximation made to reduce complexity is the Born-
Oppenheimer or adiabatic approximation. This approximation separates the nuclear
and electronic degrees of freedom: exploiting the fact that the nuclei have a
much bigger mass than the electrons, it can be assumed that the electrons will
respond “instantaneously” to the nuclear coordinates. This allows one to treat the
nuclear coordinates as classical parameters. For most condensed matter systems,
this assumption is highly accurate [29, 79]. Under this approximation the first term
in (3) vanishes and the second becomes a constant, so we end up with the simplified
Hamiltonian:

H(r1, r2, r3, · · · ) =
M∑

i=1

−h̄2∇2
i

2m
−

N∑

n=1

M∑

i=1

Zne
2

|Rn − ri | +
1

2

M∑

i,j=1
i �=j

e2

|ri − rj | (5)

This simplified Hamiltonian is often taken as a practical replacement of the original
problem.

Its eigenfunctions determine the states. There are infinitely many states, labeled
1, 2, · · · by increasing eigenvalue. Each eigenvalue represents an “energy” level of
the state. The state with lowest energy (smallest eigenvalue) is the ground state.
It determines stable structures, mechanical deformations, phase transitions, and
phonons. States above the ground state are known as “excited states.” They are used
to study many body effects, quasi-particles, electronic band gaps, optical properties,
etc.

A direct numerical treatment of the Schrödinger equation using the simplified
many-body Hamiltonian (5) leads to a deceptively simple linear eigenvalue problem
which is still intractable because of its exponential growing dimension with the
number of electrons. This limitation has historically motivated the need for lower
levels of sophistication in the description of the electronic structure using a single
electron picture approximation where the size of the Hamiltonian operator scales
linearly with the number of electrons. It is within the single electron picture that
first-principle electronic structure calculations are usually performed [49] using
either (post) Hartree–Fock type methods widely used in quantum chemistry, or as an
alternative to wave function based methods, the Density Functional Theory (DFT)
associated with the Kohn–Sham equations [31, 36].
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3 Density Functional Theory and the Kohn–Sham Equation

A breakthrough in the solution of the Schrödinger equation came with the discovery
of Density Functional Theory. In a series of papers, Hohenberg, Kohn, and Sham
established a theory in which the many-body wave function was replaced by one-
electron orbitals [31, 36, 48]. The basic idea is that the state of the system will
now be expressed in terms of the the charge density ρ, which is a distribution
of probability, i.e., ρ(r1)d

3r1 represents—in a probabilistic sense—the number of
electrons (all electrons) in the infinitesimal volume d3r1. It is easy to calculate the
charge density from a given wavefunction. The fundamental theorem which these
authors were able to state is that this mapping is one-to-one, i.e., given the charge
density it should be possible to obtain the ground state wavefunction. In essence
there is a certain Hamiltonian—as defined by a certain potential (that depends on ρ)
whose minimum energy is reached for the ground state �. Kohn and Sham wrote
this Hamiltonian as

HKS = h̄2

2m
∇2 + VN(ρ)+ VH (ρ)+ Vxc(ρ) (6)

where VN(ρ) is the external potential, VH (ρ) is the Hartree potential, and Vxc(ρ)
is the exchange-correlation potential. Note the dependence on the charge density
ρ which is itself implicitly defined from the set of occupied eigenstates φi, i =
1, · · · , N of (6) by:

ρ(r) = 2
occup∑

j=1

|φj (r )|2, (7)

where N is the number of occupied states (i.e., number of electrons) and the factor
2 accounts for the electron spin.

3.1 The Kohn–Sham Equation

We can now write the Kohn–Sham equation [36] for the electronic structure of
matter as

(
−h̄2∇2

2m
+ VN(r)+ VH (r)+ Vxc[ρ(r)]

)
φi(r) = Eiφi(r) (8)

As stated above the charge density is defined in terms of the orbitals φi given by (7).
Given a charge density ρ the Hartree potential VH is the solution of Poisson

equation:
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∇2VH = −4πρ(r) (9)

The exchange and correlation potential Vxc is unknown in theory but it is approx-
imated by a potential in different ways, the simplest of which is the Local Density
Approximation (LDA).

Therefore, this equation is usually solved “self-consistently” in the sense that
if a given ρin, as obtained from a set of occupied states φi(r), i = 1, · · · , N
is utilized to compute new occupied states from (6), and a new charge density
ρout is then computed according to (7) then ρ and ρout should be the same. The
SCF procedure takes some initial approximate charge to estimate the exchange-
correlation potential and this charge is used to determine the Hartree potential
from (9). These approximate potentials are inserted in the Kohn–Sham equation
and the total charge density determined as in (7). The “output” charge density is
used to construct new exchange-correlation and Hartree potentials. The process is
repeated until the input and output charge densities (or potentials) are close enough.
This process is illustrated in Fig. 1.

DFT has been widely used in computational material science and quantum
chemistry over the past few decades, since it provides (in principle) an exact method
for calculating the ground state density and energy of a system of interacting
electrons using a nonlinear single electron equation associated with exchange-
correlation (XC) functionals. In practice, the reliability of DFT depends on the

Fig. 1 The self-consistent field iteration
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numerical approximations used for the XC terms that range from the simplest local
density approximation (LDA) to more advanced schemes which are still the subject
of active research efforts [14, 65, 70]. Solutions of the DFT/Kohn–Sham problem
are routinely used in the calculations of many ground state properties including:
total energy and ionization potential and, via perturbation: crystal-atomic structure,
ionic forces, vibrational frequencies, and phonon bandstructure.

3.2 Pseudopotentials

When discretizing the KS equation, we run into a major difficulty which arises from
the different scales of the lengths involved. The inner (core) electrons are highly
localized and tightly bound compared to the outer (valence electrons). Another
major advance in the solid-state physics field was the advent of pseudopotential
techniques which remove the core states from the problem and replacing the all
electron potential by one that replicates only the chemically active, valence electron
states[16]. This is possible because the physical properties of solids depend much
more on the valence electrons than on the core electrons. The whole art is then to
construct pseudopotentials that reproduce the valence state properties such as the
eigenvalue spectrum and the charge density outside the ion core.

3.3 Discretization

One can identify three main discretization techniques that have been widely used
over the past four decades by both the quantum chemistry and the solid-state physics
communities [49]: (1) the plane wave expansion scheme, (2) the linear combination
of atomic orbitals (LCAO) (along with the dominant use of Gaussian local basis
sets), and (3) the real-space mesh techniques (also loosely called “numerical
grids”) based on the finite difference method (FDM), finite element method (FEM),
spectral element, or wavelets methods. Each of these approaches has advantages and
disadvantages.

3.3.1 Plane waves

Plane wave bases have been very popular in materials science and solid-state
physics for performing bandstructure calculations. For example, in the context of
pseudopotentials methods, plane wave bases can be quite effective in representing
the orbitals for crystalline periodic matter, requiring a small number of plane waves.
This leads to a compact representation of the Schrödinger operator. The resulting
matrix is dense in Fourier (plane wave) space, but it is not formed explicitly.
Instead, matrix-vector product operations are performed with the help of fast Fourier
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transforms. This plane wave approach is akin to spectral techniques used in solving
certain types of partial differential equations [24]. The plane wave basis used is of
the form:

ψk(r) =
∑

G

α(k,G) exp (i(k+G) · r) (10)

where k is the wave vector, G is a reciprocal lattice vector, and α(k,G) represent the
coefficients of the basis. Thus, each plane wave is labeled by a wave vector which is
a triplet of 3 integers, i.e., k = (k1,k2,k3). The vector parameter G translates the
periodicity of the wave function with respect to a lattice which attempts to describe
a crystalline structure of the atoms.

3.3.2 Linear Combination of Atomic Orbitals (LCAO)

An appealing approach uses a basis set of orbitals localized around the atoms. This
is the approach, for example, taken in the SIESTA code [68] where with each atom
a is associated with a basis set of functions which combine radial functions around
a with spherical harmonics:

φalmn(r) = φaln(ra)Ylm(r̂a)

where ra = r− Ra .
In contrast to plane wave methods, LCAO techniques cannot be universally and

systematically improved towards convergence. On the positive side, LCAO benefits
from a large collection of local basis sets that has been refined over the years by
the quantum chemistry community to obtain high level of accuracy in simulations.
Atomic orbital basis also yields much smaller matrices and requires less memory
than plane wave methods. The sparsity of the matrices depends on how many
neighboring atoms are accounted for in the linear combination.

A popular basis employed with pseudopotentials is that of Gaussian orbitals[13,
17, 32, 33]. Gaussian bases have the advantage of yielding analytical matrix
elements provided the potentials are also expanded in Gaussians. However, the
implementation of a Gaussian basis is not as straightforward as with plane waves.
For example, numerous indices must be employed to label the state, the atomic site,
and the Gaussian orbitals used.

3.3.3 Real-Space Methods

When applied to electronic structure calculations, real-space mesh techniques
exhibit the following significant advantages: (1) they avoid deriving global basis
sets for a specific problem by employing universal mathematical approximations
at local regions in the physical space; (2) they can easily handle the treatment of
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various boundary conditions such as Dirichlet, Neumann, or mixed (such as self-
energy functions useful in transport problems [59]); (3) they produce very sparse
matrices and are cast as linear scaling electronic structure discretization methods;
(4) they allow solving the Poisson equation for electrostatics using the same
numerical grid; (5) they can benefit from the recent advances made in mathematical
modeling techniques and numerical algorithm design including multigrids, domain
decomposition, or direct and Krylov-subspace iterative techniques. All of these
properties motivated the development of real-space mesh software packages for
electronic structure calculations such as Octopus [5, 8], MIKA [3], PARSEC [6, 37],
and NESSIE [4].

Finite Differences An appealing discretization alternative is to avoid traditional
explicit bases altogether and work instead in real space, by discretizing the space
variable. This can be achieved with Finite Difference Methods (FDM), see, e.g.,
[9, 22, 27, 30, 37, 41, 53, 72]. FDM is the simplest real-space method which
utilizes finite difference discretization on a cubic grid. One of the most popular
schemes is to use regular grids with high-order discretizations [25] for the Laplacian
which represents the kinetic energy operator. Such high order schemes significantly
improve convergence of the eigenvalue problem when compared with standard, low
order, finite difference methods. With a uniform grid where the points are described

in a finite domain by (xi, yj , zk),
∂2ψ

∂x2 at (xi, yj , zk) is approximated by

∂2ψ

∂x2 =
M∑

n=−M
Cnψ(xi + nh, yj , zk)+O(h2M) (11)

where h is the grid spacing. Thus using a total of 2M + 1 points in each direction
yields an error of order O(h2M ). Algorithms are available to compute the coefficients
Cn for arbitrary order in h [25].

With the kinetic energy operator expanded as in (11), one can set up a one-
electron Schrödinger equation over a grid. One may assume a uniform grid, but
this is not a necessary requirement. Once the Kohn–Sham equation is discretized
using high order finite differences, we obtain a standard matrix eigenvalue problem
of the form:

Aψ = λψ (12)

in which A is a real sparse symmetric matrix. Note that the discretization (11) for
the kinetic energy term will lead to 2M nonzero entries for each of the 3 directions,
plus the diagonal entry, so we end up with a total of 6M + 1 nonzero entries, to
which we need to add the nonzero entries that correspond to the other terms of the
Hamiltonian. The Hartree and exchange correlation terms usually lead to a diagonal
matrix, while the external potential is non-local and leads to a sort of low-rank
matrix centered around each atom. An example of such a matrix is shown in Fig. 2.
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Fig. 2 Matrix resulting from
a 12-th order (M = 6) FD
discretization of the
Kohn–Sham equation. The
matrix is obtained from a
Parsec simulation of a small
silicon cluster passivated by
hydrogen atoms (Si10H16).
A spherical domain is used
which explains the curved
diagonals
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A grid based on points uniformly spaced in a three- dimensional cube is typically
used. Many points in the cube are far from any atoms in the system and the wave
function on these points may be replaced by zero. Special data structures may be
used to discard these points and keep only those having a nonzero value for the
wave function. The size of the Hamiltonian matrix is usually reduced by a factor
between two and three with this strategy, which is quite important considering the
large number of eigenvectors which must be saved. Further, since the Laplacian can
be represented by a simple stencil, and since all local potentials sum up to a simple
diagonal matrix, the Hamiltonian need not be stored explicitly as a sparse matrix.
Handling the ionic pseudopotential is complex as it consists of a local and a non-
local term. In the discrete form, the non-local term becomes a sum over all atoms,
a, and quantum numbers, (l, m) of rank-one updates:

Vion =
∑

a

Vloc,a +
∑

a,l,m

ca,l,mUa,l,mUTa,l,m (13)

where Ua,l,m are sparse vectors which are only nonzero in a localized region around
each atom, and ca,l,m are normalization coefficients.

Finite Elements One of the main advantages of the finite element method (FEM)
is its flexibility to be used with non-uniform meshes and include local refinement
by adding more nodes in various regions of interests. In electronic structure calcula-
tions, local refinement is important to capture the strong variations of potential and
electron density in the vicinity of the atom center regions. Consequently, FEM has
been employed in some electronic structure codes [42, 43] as a way to bypass the
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Fig. 3 The figures represent a 2D cross-section of 3D finite element mesh using a coarser
interstitial mesh (left) connecting all of the atoms of a benzene molecule, and a much finer mesh
(right) for the atom-centered regions suitable to capture the highly localized core states around the
nuclei

pseudopotential approach and consider the full core potential. These calculations are
called all-electron calculations since both core and valence electrons are included.

As illustrated in Fig. 3 with the example of a benzene molecule, the 3D finite-
element mesh can be built in two steps: (1) a 3D atom-centered mesh which is highly
refined around the nucleus to capture the core states and (2) a much coarser 3D
interstitial mesh that connects all the atom-centered regions. For the atom-centered
mesh, successive layers of polyhedra as proposed in [42], along with cubic finite
element, do provide high level of accuracy for solving single atom systems. Not
only, the distance between layers can be systematically refined while approaching
the nucleus, the outer-layer is consistently providing the same (relatively small)
number of connectivity nodes that will be used by the coarser interstitial mesh at
the surface with the atoms. This approach, used in the NESSIE code [4], is ideally
suited for domain-decomposition techniques and parallel computing [34].

3.4 Comparison of Discretization Approaches

Real-space approaches have a number of advantages and have become popular
in recent years, see [11, 12, 18–20, 23, 24, 27, 35, 41, 54, 74, 80]. It is worth
mentioning that the Gordon Prize in 2011 was awarded to a team that relied on
finite difference discretization [28] a testimony of the capability of this approach.
One of the attractions of space approaches relative to plane waves is that they
bypass many of the difficulties involved with non-periodic systems. Although the
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resulting matrices are usually (much) larger than with plane waves, they are sparse
and the methods are easy to implement on parallel computers. However, even
on sequential machines, real-space methods can be faster than methods based on
traditional approaches.

Comparing finite difference with finite element discretization methods, one can
state that finite element methods yield a smaller number of variables but are more
difficult to implement.

3.5 Computing the Electron Density

Within the SCF-DFT procedure, solving the linear and symmetric eigenvalue
problem at each given iteration step becomes a very challenging part of the
calculations.

The most challenging aspect of electronic structure calculations is the high
computational cost of calculating the electron density (7) at each step of the
DFT/Kohn–Sham self-consistent iterations (see Fig. 1). The electron density is
traditionally calculated using all the wave functions (eigenvectors) solution of
the Kohn–Sham eigenvalue problem over all occupied energy states. In order to
characterize complex systems and nanostructures of current technological interests,
many thousands of eigenpairs may indeed be needed. Indeed, all valence electrons
(and core electrons if applicable) need to be included in the calculation.

An alternative approach to the wave function formalism consists of performing
a contour integration of the Green’s function matrix G(z) = (zB − A)−1 over the
complex energy space [71, 76]. We note that A is the Hamiltonian matrix, and B
represents the basis function overlap matrix (i.e., or mass matrix) which is obtained
after discretization (S = I when using FDM). At zero temperature, the resulting
expression for the electron density in real space is

ρ(r) = − 1

πı

∫

C
diag(G(z))dz = 2

occup∑

j=1

|φj |2 (14)

where the clockwise complex contour C includes all the occupied eigenvalues. The
contour integration technique represents apriori an attractive alternative approach
to the traditional eigenvalue problem since the number of Green’s function to be
calculated (typically of order ∼O(10) using Gaussian quadrature) is independent
of the size of the system. In addition, only the diagonal elements of the Green’s
function need to be computed (independently) along the integration points. This
problem has motivated the development of new algorithms that are able to directly
and economically obtain the diagonal elements of the inverse of sparse matrices.
For 1D physical structures such as long nanowires which give rise to banded
matrices after discretization, it is possible to perform efficientO(N) calculations for
obtaining the diagonal elements of the Green’s function [10, 47, 77]. For arbitrary
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3D systems (i.e., beyond nanowire structures), however, the numerical complexity
of a direct solver such as PEXSI is O(N2) [7].

The Green’s function-based alternative to the wave function formalism for
computing electron density gives rise to difficulties in algorithmic complexity,
parallel scalability, and accuracy. In that regard, it is difficult to bypass the wave
function formalism, and progress in large-scale electronic structure calculations
are dependent on advances in numerical algorithms for addressing the eigenvalue
problem. This is discussed in the next section.

4 Solution of the Eigenvalue Problem

One significant characteristic of the eigenvalue problem that arises from the Kohn–
Sham equation is that the number of required eigenvectors is proportional to the
number of atoms in the system, and can grow up to thousands or possibly many
more depending on the compound being studied. This means that we will have to
store an eigenbasis consisting of a large number of vectors. In addition, the vectors
of this basis need to be orthogonal. In fact, the biggest part of the cost of existing
eigenvalue codes is related to orthogonalization.

In this Section, we will briefly review various diagonalization methods ranging
from Lanczos and Davidson to polynomial and rational filtering, and introduce the
notion of “slicing.” One of the main motivations of filtering is to allow “slices” of
the spectrum to be computed independently of one another and orthogonalization
between eigenvectors in different slices is no longer necessary.

4.1 Traditional Methods: Subspace Iteration, Lanczos, and
Davidson

Large computations based on DFT approaches started in the 1970s after the
breakthrough results of Kohn, Hohenberg, and Sham. The use of plane wave bases
dominated the arena of electronic structure from that period onward—starting with
the trend-setting Car and Parrinello [15] article which was the catalyst in the
development of computational codes using plane waves and pseudopotentials. Most
computations in the mid-1980s to the 1990s, and still today, rely on plane wave
bases. Since the matrices involved were dense and memory was expensive, this was
a major limiting factor at the beginning. However, it was soon realized that it was not
necessary to store the dense matrix if a code that accesses the matrix only to perform
matrix-vector products (“matvecs” thereafter) is employed [50], see also [51]. This
is achieved by working in Fourier space and using FFT to go back and forth from
real to Fourier space to perform the operations needed for the matvec. An early
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code based on subspace iteration for eigenvalue problems and called Ritzit, initially
written by Rutishauser in Algol [60], became a de facto standard.

The Lanczos algorithm [38] discovered in 1950 re-emerged in the early 1980s in
the linear algebra community as a contender to subspace iteration due mainly to its
superior effectiveness when computing a small number of eigenvalues at one end of
the spectrum. In exact arithmetic, the Lanczos algorithm generates an orthonormal
basis v1, v2, . . . , vm, of the Krylov subspace Span{v,Av,A2v, · · · ,Am−1v} via an
inexpensive 3-term recurrence of the form :

βj+1vj+1 = Avj − αjvj − βjvj−1

In the above sequence, αj = vHj Avj and βj+1 = ‖Avj − αjvj − βjvj−1‖2. So
the j th step of the algorithm starts by computing αj and then proceeds to form the
vector v̂j+1 = Avj − αjvj − βjvj−1 and then vj+1 = v̂j+1/βj+1. Note that for
j = 1, the formula for v̂2 changes to v̂2 = Av2 − α2v2.

Suppose thatm steps of the recurrence are carried out and consider the tridiagonal
matrix,

Tm =

⎛

⎜⎜⎜⎝

α1 β2

β2 α2 β3
. . .
. . .
. . .

βm αm

⎞

⎟⎟⎟⎠

Further, denote by Vm the n × m matrix Vm = [v1, . . . , vm] and by em the mth
column of the m×m identity matrix. After m steps of the algorithm, the following
relation holds:

AVm = VmTm + βm+1vm+1eTm

It is observed, and can be theoretically shown, that some of the eigenvalues of
the tridiagonal matrix Tm will start approximating corresponding eigenvalues of A
when m becomes large enough. An eigenvalue λ̃ of Tm is called a Ritz value, and if
y is an associated eigenvector, then the vector Vmy is, by definition, the Ritz vector,
i.e., the approximate eigenvector of A associated with λ̃. If m is large enough, the
process may yield good approximations to the desired eigenvalues λ1, . . . , λs of A,
corresponding to the occupied states, i.e., all occupied eigenstates.

In practice, orthogonality of the Lanczos vectors, which is guaranteed in theory,
is lost and this phenomenon takes place as soon as one of the eigenvectors starts to
converge [55, 56]. Orthogonality can be reinstated in a number of ways, see [39, 40,
66, 67, 75].

The Davidson [52] method is a sort of preconditioned version of the Lanczos
algorithm, in which the preconditioner is the diagonal of A. We refer to the
generalized Davidson algorithm as a Davidson approach in which the preconditioner
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is not restricted to being a diagonal matrix (A detailed description can be found
in [62].)

The Davidson algorithm differs from the Lanczos method in the way in which
it defines new vectors to add to the projection subspace. Instead of adding just
Avj , it preconditions a given residual vector ri = (A − μiI)ui and adds it to
the subspace (after orthogonalizing it against current basis vectors). The algorithm
consists of an “eigenvalue loop” which computes the desired eigenvalues one by
one (or a few at a time), and a “basis” loop which gradually computes the subspace
on which to perform the projection. Consider the eigenvalue loop which computes
the ith eigenvalue and eigenvector of A. If M is the current preconditioner, and
V = [v1, · · · , vk] is the current basis, the main steps of the main loop are as
follows:

1. Compute the ith eigenpair (μk, yk) of Ck = VTk AVk
2. Compute the residual vector rk = (A− μkI)Vkyk
3. Precondition rk , i.e., compute tk =M−1rk
4. Orthonormalize tk against v1, · · · , vk and call vk+1 the resulting vector, so

Vk+1 = [Vk, vk+1]
5. Compute last column-row of Ck+1 = VTk+1AVk+1

The original Davidson approach used the diagonal of the matrix as a precondi-
tioner but this works only for limited cases. For plane wave bases, it is possible to
construct fairly effective preconditioners by exploiting the lower order bases. By this
we mean that if Hk is the matrix representation obtained by using k plane waves,
we can construct a good approximation to Hk from Hm withm! k, by completing
it with a diagonal matrix representing the larger (undesirable) modes. Note that
these matrices are not explicitly computed as they are dense. This possibility of
building lower dimensional approximations to the Hamiltonian which can be used
to precondition the original matrix constitutes an advantage of plane wave-based
methods.

4.2 Nonlinear Chebyshev Filtered Subspace Iteration

A big disadvantage of the Lanczos and Davidson iterations is that they do not allow
to exploit previous bases that have been calculated from earlier SCF iterations. A
look at Fig. 1 indicates that what matters for convergence is how well the procedure
is approximating the basis of the subspace corresponding to the n occupied states.
At the next SCF iteration, the Lanczos algorithm starts with one vector only. This
means that we cannot fully take advantage of the basis that has been computed
previously. In contrast, the subspace iteration algorithm is ideal in this context. All
we need to do at the next SCF iteration is update the Hamiltonian—and use whatever
subspace we had from the previous SCF iteration. This constitutes a major attraction
of subspace iteration. Another attraction is clearly its added parallelism.
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Algorithm 1: [Y ] = Chebyshev_filter(X, m, a, b, g)

1 e = (b − a)/2; c = (a + b)/2; σ = e/(c − g); τ = 2/σ ;
2 Y = (A ∗X − c ∗X) ∗ (σ/e);
3 for i = 2 to m do
4 σnew = 1/(τ − σ);
5 Yt = (A ∗ Y − c ∗ Y ) ∗ (2 ∗ σnew/e)− (σ ∗ σnew) ∗X;
6 X = Y ; Y = Yt ; σ = σnew;

The main ingredient of a subspace iteration procedure is the Chebyshev filtering.
Given a basis [v1, . . . , vm], each vector is “filtered” as v̂i = Pk(A)vi , where pk is
a low degree polynomial whose goal is to enhance the wanted components of these
vectors in the desired eigenvectors of A. The most common filters used are shifted
and scaled Chebyshev polynomials. If [a, b] is the interval containing unwanted
eigenvalues, those that must be dampened, then we use the polynomial

pk(t) = Ck(l(t))

Ck(l(g))
; with l(t) = 2t − b − a

b − a
where Ck is the Chebyshev polynomial of degree k of the first kind and g is some
approximation of the eigenvalue that is farthest from the center (a + b)/2 of the
interval—which is used for scaling. One such polynomial of degree 7 is shown
in Fig. 4. The 3-term recurrence of Chebyshev polynomial is exploited to compute
pk(A)v. If B = l(A), then Ck+1(t) = 2tCk(t)−Ck−1(t)→wk+1 = 2Bwk−wk−1.
Algorithm 1 provides an illustration of Chebyshev filtering.

What was discussed above is what might be termed a standard SCF approach
in which a filtered subspace iteration is used to compute the eigenvalues at each

Fig. 4 Degree 8 Chebyshev
filter
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Fig. 5 The self-consistent field iteration with a nonlinear subspace iteration approach

SCF iteration. The subspace iteration can also be used in a nonlinear way. In the
nonlinear subspace iteration, the filtering step is not used to compute eigenvectors
accurately. Instead, the basis is filtered and the Hamiltonian is updated immediately
using these vectors. In essence the process amounts to removing one loop from
the algorithm in that the SCF and the diagonalization loops merged. The new SCF
iteration is illustrated in Fig. 5. Experiments reported in [78] reported that this
procedure can yield a factor of 10 speed-up over the more traditional one in which
the inner eigenvalue loop is kept

4.3 EVSL: Filtering and Spectrum Slicing

As mentioned earlier, a big part of the cost of computing a large number of
eigenvectors is related to the process of maintaining orthogonality between these
vectors. The number of vectors to orthogonalize is typically of the order of the
number of states which is itself proportional to the number of particles, and so the
cost increases quadratically with the number of particles. This was observed early
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on and a number of articles sought inexpensive alternatives. One of the main ideas
proposed was one based on filtering, i.e., transforming the Hamiltonian so as to
enhance or magnify the desired part of the spectrum by a polynomial of rational
transformation to enable a projection method like subspace iteration, to extract the
desired eigenvalues easily. An early contribution along these lines is the article by
Zunger [73] which discusses a scheme, whereby the Hamiltonian H is replaced by
B = (H− σI)2. Extracting the smallest eigenpairs of B will yield the eigenvectors
associated with the eigenvalues closest to the shift σ . A similarly simple technique
is one that is based on shift-and-invert [56] which uses a rational filter.

The essence of a filtering technique is to replace the original matrix A by
B = φ(A), where the filter φ is either a polynomial or rational function. The main
advantage of filtering is that it allows to compute different parts of the spectrum
independently. A spectrum slicing method refers to a technique that computes
the desired spectrum by sub-intervals or “slices.” The recently developed package
named EVSL (for Eigenvalues Slicing Library) relies entirely on this strategy
[1, 44, 45]. Figure 6 illustrates the main motivation for this strategy, namely that
eigenvectors belonging to slices that are far apart need not be orthogonalized against
each other.

The gain in computational cost that comes from avoiding limiting or orthog-
onalization can be significant both in terms of computational time and in terms
of memory. For example, Fig. 7 illustrates a calculation with EVSL in which all
eigenvalues in the interval [0, 1] of a Laplacian discretized on a 49 × 49 × 49
centered finite difference grid. A spectrum slicing strategy is exploited and the total
cost is shown as the number of intervals varies from 1 to 6. Note that in EVSL
the degree of the polynomial filter is computed automatically. One can observe
that orthogonalization costs are drastically reduced along with costs related to the
projection process. At the same time the cost of matvecs increases but it remains
insignificant relative to the rest. This calculation is performed without fully taking
advantage of parallelism. If a fully parallel computation was to be implemented,
each of the total times would have been divided by the number of intervals used.

Fig. 6 Two filters to compute two slices of the spectrum that are far apart. Note that eigenvectors
associated with two distinct slices need not be orthogonalized against each other
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Fig. 7 Cost of calculating all
eigenvalues of a Laplacian
matrix in the interval [0, 1] by
a polynomial filtered
non-restart Lanczos method.
There are 1971 eigenvalues in
the interval and they are
computed by slicing the
spectrum into 1, 2, · · · , 6
sub-intervals
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Fig. 8 A filter polynomial of degree 23 (left) and a zoom of the same polynomial near the interval
of interest (right)

To illustrate how polynomial filtering is combined with a non-restarted version
of the Lanczos algorithm we show in Fig. 8 a polynomial filter of the type used
in EVSL. In the figure, an eigenvalue λi located inside the interval of desired
eigenvalues is transformed to φ(λi). The filter is designed so that any eigenvalue λi
located inside the interval of desired eigenvalues is transformed into an eigenvalue
φ(λi) that is larger than or equal to a certain value (called the “bar”) which
is β = 0.8 in the figure. This makes it easy to distinguish between wanted
eigenvalues (φ(λi ≥ β) and unwanted ones (φ(λi < β). Figure 9 shows the
filtered eigenvalues for the same problem. As is highlighted in the figure, all
wanted eigenvalues of the original problem are now eigenvalues that are not smaller
than β = 0.8 for the filtered matrix. It is therefore possible to devise a strategy,
whereby these eigenvalues are all computed from a Lanczos algorithm with full
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Fig. 9 Eigenvalues of the filtered matrix with the filter of Fig. 8

reorthogonalization and no restarts. If the degree of the polynomial is well selected
and the sub-interval contains a reasonable number of eigenvalues, this strategy
works quite well in practice.

EVSL solves large sparse real symmetric standard and generalized eigenvalue
problems. In order to enable a spectrum slicing strategy, the methods in EVSL
rely on a quick calculation of the spectral density of a given matrix, or a matrix
pair. Once this is done the driver will then cut the interval into slices so that each
slice will have approximately the same number of eigenvalues. What distinguishes
EVSL from other currently available packages is that EVSL relies entirely on
filtering techniques. While much effort has been devoted to develop effective
polynomial filtering the package also implements rational filters. The projection
methods developed in the package are the Lanczos methods without restart, or
with thick restart, as well as the subspace iteration method. Various interfaces are
available for various scenarios, including matrix-free modes, whereby the user can
supply his/her own functions to perform matrix-vector operations or to solve sparse
linear systems. A fully parallel version is currently being developed.

4.4 FEAST: Rational Filtering and Spectrum Slicing

Equation (14) indicates that the contour integration technique does not provide
a natural route for obtaining the individual occupied wave functions but rather
the summation of their amplitudes square. The FEAST algorithm was originally
proposed to reconcile both wave function and Green’s function formalism and
provide an efficient and scalable new approach for solving the eigenvalue problem
[58]. FEAST can be applied for solving both standard and generalized form of
the Hermitian or non-Hermitian problem, and it belongs to the family of contour
integration eigensolvers along with the Sakurai and Sugiura (SS) method [63, 64]. In
contrast to the Krylov-based SS method, FEAST is a subspace iteration method that
uses the Rayleigh–Ritz projection and an approximate spectral projector as a filter
[57]. Given a Hermitian generalized eigenvalue problem AX = BX� of size n, the
algorithm in Fig. 10 outlines the main steps of a generic Rayleigh-Ritz subspace
iteration procedure for computing m eigenpairs.At convergence, the algorithm
yields the B-orthonormal eigensubspace Ym ≡ Xm = {x1, x2, . . . , xm}n×m and
associated eigenvalues �Qm ≡ �m. Taking ρ(B−1A) = B−1A yields the bare-
bone subspace iteration (generalization of the power method) which converges
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Fig. 10 Subspace iteration method with Rayleigh–Ritz projection

towards the m dominant eigenvectors with the linear rate |λm0+1/λi |i=1,...,m [56,
61]. This standard approach is never used in practice. Instead, it is combined with
filtering using the function ρ which aims at improving the convergence rate (i.e.,
|ρ(λm0+1)/ρ(λi)|i=1,...,m) by increasing the gap between wanted and unwanted
eigenvalues. An ideal filter for the interior eigenvalue problem which maps all m
wanted eigenvalues to one and all unwanted ones to zero can be derived from the
Cauchy (or Dunford) integral formula:

ρ(λ) = 1

2πı

∮

C
dz(z− λ)−1 (15)

where the wanted eigenvalues are located inside a complex contour C. The filter
then becomes a spectral projector, with ρ(B−1A) = XmXHmB, for the eigenvector
subspace Xm (i.e., ρ(B−1A)Xm = Xm) and can be written as:

ρ(B−1A) = 1

2πı

∮

C
dz(zB − A)−1B. (16)

FEAST uses a numerical quadrature to approximately compute the action of this
filter onto a set of m0 vectors along the subspace iterations. The resulting rational
function ρa that approximates the filter (15) is given by

ρa(z) =
ne∑

j=1

ωj

zj − z (17)

where {zj , ωj }1≤j≤ne are the nodes and related weights of the quadrature. We obtain
for the subspaceQm0 in step 2 of the algorithm in Fig. 10:

Qm0 = ρa(B−1A)Ym0 =
ne∑

j=1

ωj (zjB − A)−1BYm0 ≡ Xρa(�)XHBYm0 (18)



144 E. Polizzi and Y. Saad

-8 -6 -4 -2 0 2 4 6 8
z

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

lo
g

1
0
ρ 8

(z
)|

Gauss
Trapezoid
Zolotarev

0.9 0.95 1 1.05 1.110-3

10-2

10-1

100

Fig. 11 Variations of the rational functions ρ8(λ) (ne = 8 contour points) associated with Gauss,
Trapezoidal, and Zolotarev quadrature rules. While Trapezoidal presents a more regular decay
than Gauss, the latter produces smaller values for the rational function just outside the edges of the
search interval |z| > 1. From the caption, we note that Zolotarev presents a dramatic drop in the
rational function at z = 1 (i.e., fastest possible decay), but this value quickly saturates

In practice, Qm0 can be computed by solving a small number of (independent)
shifted linear systems over a complex contour.

Qm0 =
ne∑

j=1

ωjQ
(j)
m0 , withQ(j)m0 solution of (zjB − A)Q(j)m0 = BYm0 (19)

As shown in Fig. 11, a relatively small number of quadrature nodes (using Gauss,
Trapezoidal, or Zolotarev [26] rules) on a circular contour suffices to produce a
rapid decay of the function ρa from ≈1 within the search contour to ≈0 outside. In
comparison with more standard polynomial filtering [61, 69], the rational filter (17)
can lead to a very fast convergence of the subspace iteration procedure. In addition,
all the m desired eigenvalues are expected to converge at the same rate (since
ρa(λi) " 1 if λi is located within the search interval). The convergence rate of
FEAST does not only depend upon the decay properties of the rational function
ρa , but also on the size of the search subspacem0 which must not be chosen smaller
than the number of eigenvalues inside the search contour (i.e.,m0 ≥ m). Users of the
FEAST eigensolver[2] are then responsible for specifying an interval to search for
the eigenvalues and a subspace size m0 that overestimate the number of the wanted
eigenvalues. Once these conditions are satisfied, FEAST offers the following set of
appealing features:

(i) high robustness with well-defined convergence rate |ρa(λm0+1)/ρa(λi)|i=1,...,m;
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(ii) all multiplicities naturally captured;
(iii) no explicit orthogonalization procedure on long vectors required in practice

(i.e., step-3 in Fig. 10 is unnecessary as long as BQ is positive definite). We
note in (18) thatQm0 is naturally spanned by the eigenvector subspace;

(iv) reusable subspace capable of generating suitable initial guess when solving
a series of eigenvalue problems such as the ones that appear in DFT-SCF
iterations;

(v) can exploit natural parallelism at three different levels: search intervals can
be treated separately (no overlap) while maintaining orthogonality—linear
systems can be solved independently across the quadrature nodes of the
complex contour—each complex linear system with m0 multiple right-hand
sides can be solved in parallel. Consequently, in a parallel environment, the
algorithm complexity depends on solving a single linear system using a direct
or an iterative method.

Using FEAST, the total number of processes npp can be distributed over three
levels of parallelism: (i) eigenvalue level parallelism using i filters (i.e., i slices);
(ii) block level parallelism where all the k linear systems are solved independently;
(iii) domain level parallelism which handles the system matrices and the multiple
right-hand sides using the remaining p processes available since npp = i × k × p.
Achieving a good balance in suitable distribution of the parallel resources among
all slices would require that the number of eigenvalues in each slice be roughly the
same. Obviously, it can be quite challenging for a user to perform a customized
slicing by first guessing the distribution of the eigenvalue spectrum. Recent work on
stochastic estimates can be helpful in this regard [21, 46]. One possible estimate on
the eigenvalue count in an interval consists of approximating the trace of the spectral
projector by exploiting the rational function expansion (19), i.e.,

tr(P̃ ) ≈ n

nv

k∑

j=1

ωj

nv∑

i=1

vTi (σjB − A)−1Bvi (20)

The cost of this estimation can remain relatively small since the linear systems can
be solved with low accuracy and with a very small number of right-hand sides nv .
Furthermore, if the factorizations can already be computed at each complex shift σj ,
they can be reused in the subsequent subspace iteration.

5 Conclusion

Atom-by-atom large-scale first-principle calculations have become critical for
supplementing the experimental investigations and obtaining detailed electronic
structure properties and reliable characterization of emerging nanostructures. First-
principle calculations most often rely on a succession of modeling trade-offs
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between accuracy and performances, which can be broadly divided into four major
steps: (1) physical, (2) mathematical, (3) discretization, and (4) computing. These
modeling steps contain different layers of numerical approximations which are most
often tightly tied together. In order to improve on current software implementation
by fully capitalizing on modern HPC computing platforms, it is essential to revisit
not one, but all the various stages of the electronic structure modeling process which
have been summarized in this chapter.

Solutions of the DFT/Kohn–Sham problem are routinely used in the calculations
of many ground state properties of small molecular systems or crystal unit-cells
containing a handful of atoms. In order to characterize large-scale complex systems
and nanostructures of current technological interest, the SCF-DFT procedure would
require repeated computations of many tens of thousands of eigenvectors, for
eigenvalue systems that can have sizes in the tens of millions. In this case, a
divide-and-conquer approach that can compute wanted eigenpairs by parts, becomes
mandatory, since windows or slices of the spectrum can be computed independently
of one another and orthogonalization between eigenvectors in different slices is no
longer necessary. All these issues have originally motivated the development of the
EVSL and FEAST approaches that were discussed here.
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Computational Cardiovascular Analysis
with the Variational Multiscale Methods
and Isogeometric Discretization

Thomas J. R. Hughes, Kenji Takizawa, Yuri Bazilevs, Tayfun E. Tezduyar,
and Ming-Chen Hsu

1 Introduction

In this article we review general computational fluid dynamics (CFD) methods
that we have developed and used over an almost five-decade period on a vari-
ety of applications in science, engineering, and medicine. However, our focal
application area herein is computational medicine and in particular computational
cardiovascular analysis. This area has a long history, in fact the senior author
(TJRH) did his PhD thesis in it in 1974, and there was even earlier work than
this, but the area took on a new direction in the mid-1990s when the first patient-
specific calculations were performed with models created from medical imaging

T. J. R. Hughes (�)
Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin,
TX, USA
e-mail: hughes@ices.utexas.edu

K. Takizawa
Department of Modern Mechanical Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
e-mail: Kenji.Takizawa@tafsm.org

Y. Bazilevs
School of Engineering, Brown University, Providence, RI, USA
e-mail: yuri_bazilevs@brown.edu

T. E. Tezduyar
Mechanical Engineering, Rice University, Houston, TX, USA

Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
e-mail: tezduyar@tafsm.org

M.-C. Hsu
Department of Mechanical Engineering, Iowa State University, Ames, IA, USA
e-mail: jmchsu@iastate.edu

© Springer Nature Switzerland AG 2020
A. Grama, A. H. Sameh (eds.), Parallel Algorithms in Computational Science and
Engineering, Modeling and Simulation in Science, Engineering and Technology,
https://doi.org/10.1007/978-3-030-43736-7_6

151

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43736-7_6&domain=pdf
mailto:hughes@ices.utexas.edu
mailto:Kenji.Takizawa@tafsm.org
mailto:yuri_bazilevs@brown.edu
mailto:tezduyar@tafsm.org
mailto:jmchsu@iastate.edu
https://doi.org/10.1007/978-3-030-43736-7_6


152 T. J. R. Hughes et al.

data, such as MRI and CT. The archival journal paper that began this trend was
[1]. Up to that time computational cardiovascular analysis was focused on very
simple two-dimensional geometries such as straight and circular channels, and thus
had almost no clinical significance. After [1], the subject began to dramatically
transform to where it is today, in which detailed analyses of a wide variety of
patient-specific configurations are routinely analyzed to diagnose disease, plan
surgeries, and interventions, such as stenting and bypass grafting, and to virtually
evaluate medical devices, such as left ventricular assist devices (LVADs), implanted
in individual patients. Our purpose here is not to describe the array of medical
applications of computational cardiovascular analysis (for these we would refer in
particular to the works of Charles A. Taylor, Alison Marsden, and Alberto Figueroa,
among others), but rather to describe the main technologies that support these
applications. This started with the seminal work of the senior author [2] and the
algorithm which has become known by the acronym SUPG, which was extracted
from the name given by the authors, the “Streamline-Upwind Petrov-Galerkin”
method. Reference [2] was the first archival journal publication of the basic ideas,
but earlier, starting in 1979, there were several now obscure, conference proceedings
papers that preceded it. We have to acknowledge that the name is not great. However,
the ideas embodied therein were important and have had significant subsequent
impact. The basic problem of computational fluid dynamics (CFD) at the time was
achieving a combination of good stability and high accuracy in one algorithm. Many
investigators viewed stability and accuracy as competing attributes. Reference [2]
proved otherwise computationally, and mathematical analyses justified what was
observed subsequently, the first being [3]. The fundamental concept employed was
“residual-based stabilization,” which added weighted residuals of the numerical
solution to basic Galerkin formulations. Residual-based methods are a priori con-
sistent and thus capable of preserving the underlying accuracy of Galerkin methods,
while at the same time appropriate weighting enhanced their stability. Numerous
“Stabilized Methods,” as they have been commonly referred to subsequently, were
then developed over the years based on this paradigm. The success of Stabilized
Methods, another somewhat unfortunate name in our opinion, cannot be over-
estimated. The number of citations these works have garnered is staggering, e.g.,
[2] alone has received approximately 6000 citations. Although the mathematical
analysis of Stabilized Methods developed as a field in its own right shortly after the
initial publications, the creation of new Stabilized Methods technologies, such as,
for example, residual-based discontinuity-capturing operators, was essentially based
largely on intuition. The breakthrough concept that derived Stabilized Methods from
the fundamental governing equations was the Variational Multiscale Method [4–7].
This provided an approach to derive consistent Stabilized Methods directly from
any system of linear or nonlinear equations in fluid dynamics, or any scientific
discipline, and it has been perhaps the most powerful development tool in the arsenal
of CFD technologies.

Stabilized Methods and the Variational Multiscale Method are fundamental to all
our works in computational cardiovascular analysis. Many other technologies have
been developed that further extend these basic building blocks to specific classes
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of problems and phenomena. This article describes the use of these methods in
computational cardiovascular analysis, with a focus on two specific areas, namely,
aortic flow phenomena [8] and patient-specific and bioprosthetic heart-valve fluid–
structure interaction [9, 10]. We wish to also emphasize that these applications
are only a small sample of activity in this rapidly growing field. There are many
formidable challenges posed by problems of these types, including highly unsteady
flows, complex diseased geometries, moving boundaries and interfaces (e.g., motion
of heart valve leaflets), contact between moving solid surfaces within a flow (e.g.,
contact between heart valve leaflets), and the fluid–structure interaction of blood
flow with cardiovascular structures, such as arteries, heart valves, etc. Many of
these challenges have been or are being addressed by the Space–Time Variational
Multiscale (ST-VMS) method [11], Arbitrary Lagrangian–Eulerian VMS (ALE-
VMS) method [12], and the VMS-based immersogeometric analysis (IMGA-VMS)
[9], which serve as the core computational methods. The special methods used
in combination with the ST-VMS include the Space–Time Slip Interface (ST-SI)
method [13], Space–Time Topology Change (ST-TC) [14] method, Space–Time
Isogeometric Analysis (ST-IGA) [15, 16], integration of these methods, and a
general-purpose NURBS mesh generation method for complex geometries [17]. The
special methods used in combination with ALE-VMS include weak enforcement of
no-slip boundary conditions [18], “sliding interfaces” [19] (the acronym “SI” will
also indicate that), and backflow stabilization [20].

Despite the focus of this article on problems of computational cardiovascular
analysis, the methods described herein are general CFD and fluid–structure interac-
tion technologies that have wide applicability to diverse scientific and engineering
applications, and therefore we also take the opportunity to draw attention to many
such applications that the authors of this chapter have been actively involved with.

1.1 Space–Time Stabilized and VMS Methods

The Deforming-Spatial-Domain/Stabilized Space–Time (DSD/SST) method [21]
was introduced for computation of flows with moving boundaries and inter-
faces (MBI), including fluid–structure interaction (FSI). In MBI computations
the DSD/SST functions as a moving-mesh method. Moving the fluid mechan-
ics mesh to follow an interface enables mesh-resolution control near the inter-
face and, consequently, high-resolution boundary-layer representation near fluid–
solid interfaces. The stabilization components of the original DSD/SST are the
Streamline-Upwind/Petrov-Galerkin (SUPG) [2] and Pressure-Stabilizing/Petrov-
Galerkin (PSPG) [21] stabilizations, which are used widely. Because of the SUPG
and PSPG components, the original DSD/SST is now called “ST-SUPS.” The ST-
VMS is the VMS version of the DSD/SST. The VMS components of the ST-VMS
are from the residual-based VMS (RBVMS) method [4, 7]. The ST-VMS has two
more stabilization terms beyond those in the ST-SUPS, and the additional terms
give the method better turbulence modeling features. The ST-SUPS and ST-VMS,
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because of the higher-order accuracy of the Space–Time (ST) framework (see [11]),
are desirable also in computations without MBI.

The ST-SUPS and ST-VMS have been applied to many classes of FSI, MBI,
and fluid mechanics problems (see [22] for a comprehensive summary). The classes
of problems include spacecraft parachute analysis for the landing-stage parachutes
[23], cover-separation parachutes [24] and drogue parachutes [25], wind-turbine
aerodynamics for horizontal-axis wind-turbine rotors [26], full horizontal-axis wind
turbines [27] and vertical-axis wind turbines [13], flapping-wing aerodynamics for
an actual locust [28], bioinspired MAVs [29] and wing-clapping [30], blood flow
analysis of cerebral aneurysms [31], stent-treated aneurysms [32], aortas [8] and
heart valves [10], spacecraft aerodynamics [24], thermo-fluid analysis of ground
vehicles and their tires [33], thermo-fluid analysis of disk brakes [34], flow-driven
filament dynamics in turbomachinery [35], flow analysis of turbocharger turbines
[36], flow around tires with road contact and deformation [37], fluid films [38], ram-
air parachutes [39], and compressible-flow spacecraft parachute aerodynamics [40].

The space–time computational methods have a relatively long track record in
arterial FSI analysis, starting with computations reported in [41, 42]. These were
among the earliest arterial FSI computations, and the core method was the ST-
SUPS. Many space–time computations were also reported in the last 15 years. In
the first 8 years of that period the space–time computations were performed for FSI
of the abdominal aorta [43], carotid artery [43], and cerebral aneurysms [44]. In
the last 7 years, the space–time computations focused on even more challenging
aspects of cardiovascular fluid mechanics and FSI, including comparative studies
of cerebral aneurysms [31], stent treatment of cerebral aneurysms [45], heart valve
flow computation [10], aortic flow analysis [8], and coronary arterial dynamics [46].

In the flow analyses presented here, the space–time framework provides higher-
order accuracy. The VMS feature of the ST-VMS addresses the computational
challenges associated with the multiscale nature of the unsteady flow. The moving-
mesh feature of the space–time framework enables high-resolution computation
near the moving heart valve leaflets.

1.2 ALE Stabilized and VMS Methods

The ALE-VMS method [12] is the VMS version of ALE [47]. It succeeded
the ST-SUPS [21] and ALE-SUPS [48] and preceded the ST-VMS. The VMS
components are from the RBVMS [4, 7]. The ALE-VMS originated from the
RBVMS formulation of incompressible turbulent flows proposed in [7] for non-
moving meshes, and may be thought of as an extension of the RBVMS to moving
meshes. As such, it was presented for the first time in [12] in the context of
FSI. To increase their scope and accuracy, the ALE-VMS and RBVMS are often
supplemented with special methods, such as those for weakly enforced no-slip
boundary conditions [18], “sliding interfaces” [19] and backflow stabilization [20].
The ALE-SUPS, RBVMS, and ALE-VMS have been applied to many classes of
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FSI, MBI, and fluid mechanics problems including ram-air parachute FSI [48],
wind-turbine aerodynamics and FSI [49, 50], vertical-axis wind turbines [50],
floating wind turbines [51], wind turbines in atmospheric boundary layers [50],
fatigue damage in wind-turbine blades [52], patient-specific cardiovascular fluid
mechanics and FSI [53, 54], biomedical-device FSI [55, 56], ship hydrodynamics
with free-surface flow and fluid–object interaction [57], hydrodynamics and FSI
of hydraulic arresting gear [58], hydrodynamics of tidal-stream turbines with free-
surface flow [59], passive-morphing FSI in turbomachinery [60], bioinspired FSI for
marine propulsion [61], and bridge aerodynamics and fluid–object interaction [62].
Recent advances in stabilized and multiscale methods may be found for stratified
incompressible flows [63], divergence-conforming discretizations of incompressible
flows [64], and compressible flows with emphasis on gas-turbine modeling [65].

In the flow analyses presented here, the VMS feature of ALE-VMS addresses
the computational challenges associated with the multiscale nature of the unsteady
flow. The moving-mesh feature of the ALE framework enables high-resolution
computation near the moving wall of a thoracic aorta.

1.3 Slip Interface Space–Time Method

The Space–Time version of the slip interface (ST-SI) method was introduced in
[13] in the context of incompressible-flow equations to retain the desirable moving-
mesh features of the ST-VMS and ST-SUPS when there are spinning solid surfaces,
such as for a turbine rotor. The mesh covering the spinning surface spins with it,
retaining the high-resolution representation of boundary layers. The starting point
in the development of ST-SI was the version of ALE-VMS for computations with
sliding interfaces [19]. Interface terms similar to those in the ALE-VMS version
are added to ST-VMS to account for the compatibility conditions for velocity and
stress at the slip interface. That accurately connects the two sides of the solution.
An ST-SI version where the slip interface is between fluid and solid domains was
also presented in [13]. The slip interface in this case is a “fluid–solid” interface
rather than a standard “fluid–fluid” interface, and enables weak enforcement of
the Dirichlet boundary conditions for the fluid. The ST-SI introduced in [34] for
the coupled incompressible-flow and thermal-transport equations retains the high-
resolution representation of the thermo-fluid boundary layers near spinning solid
surfaces. These ST-SI methods have been applied to aerodynamic analysis of
vertical-axis wind turbines [13], thermo-fluid analysis of disk brakes [34], flow-
driven filament dynamics in turbomachinery [35], flow analysis of turbocharger
turbines [36], flow around tires with road contact and deformation [37], fluid films
[38], aerodynamic analysis of ram-air parachutes [39], and flow analysis of heart
valves [10].

In the ST-SI version presented in [13] the slip interface is between a thin porous
structure and the fluid on its two sides. This enables dealing with the porosity
in a fashion consistent with how the standard fluid–fluid slip interfaces are dealt
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with and how the Dirichlet conditions are enforced weakly with fluid–solid slip
interfaces. This version also enables handling thin structures that have T-junctions.
This method has been applied to incompressible-flow aerodynamic analysis of ram-
air parachutes with fabric porosity [39]. The compressible-flow ST-SI methods were
introduced in [40], including the version where the slip interface is between a thin
porous structure and the fluid on both its sides. Compressible-flow porosity models
were also introduced in [40]. These, together with the compressible-flow space–
time SUPG method [66], extended the space–time computational analysis range to
compressible-flow aerodynamics of parachutes with fabric and geometric porosities.
That enabled space–time computational flow analysis of the Orion spacecraft drogue
parachute in the compressible-flow regime [67].

1.4 Immersogeometric VMS Analysis

The immersogeometric analysis (IMGA) was introduced in [56] as a geometrically
flexible technique for solving FSI problems involving large, complex structural
deformations and change of fluid-domain topology (e.g., structural contact). The
motivating application is the simulation of heart valve function over a complete
cardiac cycle. The method directly analyzes a spline representation of a thin
structure by immersing it into a non-body-fitted discretization of the background
fluid domain, and focuses on accurately capturing the immersed design geometry
within non-body-fitted analysis meshes. A new semi-implicit numerical method,
which we now refer to as the Dynamic Augmented Lagrangian (DAL) approach
[68], was introduced in [56] for weakly enforcing constraints in time-dependent
immersogeometric FSI problems. A mixed ALE-VMS/IMGA-VMS (ALE-IMGA-
VMS) method was developed in [9] in the framework of the Fluid–Solid Interface-
Tracking/Interface-Capturing Technique [69]; a single computation combines a
body-fitted, moving-mesh treatment of some fluid–structure interfaces, with a
non-body-fitted treatment of others. This approach enables us to simulate the
FSI of a bioprosthetic heart valve (BHV) in a deforming artery over the entire
cardiac cycle under physiological conditions, and study the effect of arterial-
wall elasticity on valve dynamics [9]. The DAL-based ALE-IMGA-VMS was
integrated with Computer-Aided Design (CAD) for heart valve analysis in [55] with
a thorough comparison between pressure-driven only and full FSI computations. An
anisotropic constitutive modeling of BHV leaflets for immersogeometric FSI, based
on the Kirchhoff–Love shell formulation for general hyperelastic materials [70],
is proposed in [71]. A divergence-conforming formulation of incompressible flow,
which gives a pointwise divergence-free velocity field everywhere in the domain,
completely eliminates mass loss error across the valve interface in [72]. Stable
coupling strategies and suitable definition of Lagrange multipliers for the DAL
numerical approach were proposed and analyzed in [73]. The FSI framework of
ALE-IMGA-VMS was employed in patient-specific valve design in [74]. The DAL-
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based IMGA has also been combined with surrogate modeling in [58] for an efficient
and effective use of FSI to optimize the design of a hydraulic arresting gear.

1.5 Stabilization Parameters

The methods discussed in this chapter all have some embedded stabilization
parameters that play a significant role (see [13, 75]). There are many ways of
defining these stabilization parameters (for examples, see [33, 37, 76–80]). The
stabilization-parameter definitions used in the computations reported in this article
can be found from the references cited in the sections where those computations are
described.

1.6 Topology Change Space–Time Method

The Topology Change Space–Time method (ST-TC) [14] was introduced for
moving-mesh computation of flow problems with topology change, such as contact
between solid surfaces. Even before the ST-TC, the ST-SUPS and ST-VMS, when
used with robust mesh update methods, have proven effective in flow computations
where the solid surfaces are in near contact or create other near topology change.
Many classes of problems can be solved that way with sufficient accuracy by
approximating actual contact with a small gap between the solid surfaces. For exam-
ples of such computations, see the references mentioned in [14]. The ST-TC made
moving-mesh computations possible even when there is an actual contact between
solid surfaces or other topology change. By collapsing elements as needed, without
changing the connectivity of the “parent” mesh, the ST-TC can handle an actual
topology change while maintaining high-resolution boundary layer representation
near solid surfaces. This enabled successful moving-mesh computation of heart
valve flows [10], wing clapping [30], and flow around a rotating tire with road
contact and prescribed deformation [37].

For more on the ST-TC, see [14]. In the computational analyses here, the ST-TC
enables moving-mesh computation even with the topology change created by the
actual contact between the valve leaflets. It deals with the contact while maintaining
high-resolution flow representation near the leaflet.

1.7 Topology Change Slip Interface Space–Time Method

The Topology Change Slip Interface Space–Time Method (ST-SI-TC) is the inte-
gration of the ST-SI and ST-TC. A fluid–fluid slip interface requires elements on
both sides of the interface. When part of a slip interface needs to coincide with a
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solid surface, which happens, for example, when the solid surfaces on two sides
of the interface come into contact or when the interface reaches a solid surface,
the elements between the coinciding slip interface part and the solid surface need
to collapse with the ST-TC mechanism. The collapse switches the slip interface
from the fluid–fluid type to the fluid–solid type. With that, a slip interface can be
a mixture of the fluid–fluid and fluid–solid types. With the ST-SI-TC, the elements
collapse and are reborn independent of the nodes representing a solid surface. The
ST-SI-TC enables high-resolution flow representation even when parts of the slip
interface are coinciding with a solid surface. It also enables dealing with contact
location change and contact sliding. This was applied to heart valve flow analysis
[10] and tire aerodynamics with road contact and deformation [37].

For more on the ST-SI-TC, see [81]. In the computational analyses presented
here, the ST-SI-TC enables high-resolution representation of the boundary layers
even when the contact is between leaflets that are in mesh sectors connected by
slip interfaces. It enables contact location change and contact sliding between the
leaflets.

1.8 Space–Time IGA

The ST-IGA, introduced in [11], is the integration of the space–time framework with
isogeometric discretization, motivated by the success of NURBS meshes in spatial
discretization [12, 19, 53, 82]. Computations with the ST-VMS and ST-IGA were
first reported in [11] in a 2D context, with IGA basis functions in space for flow past
an airfoil, and in both space and time for the advection equation. Using higher-order
basis functions in time enables getting full benefit out of using higher-order basis
functions in space. This was demonstrated with the stability and accuracy analysis
given in [11] for the advection equation.

The ST-IGA with IGA basis functions in time enables a more accurate represen-
tation of the motion of the solid surfaces and a mesh motion consistent with that.
This was pointed out in [11] and demonstrated in [15]. It also enables more efficient
temporal representation of the motion and deformation of the volume meshes, and
more efficient remeshing. These motivated the development of the ST/NURBS
Mesh Update Method (STNMUM) [15, 79]. The STNMUM has a wide scope that
includes spinning solid surfaces. With the spinning motion represented by quadratic
NURBS in time, and with sufficient number of temporal patches for a full rotation,
the circular paths are represented exactly. A “secondary mapping” [11] enables
also specifying a constant angular velocity for invariant speeds along the circular
paths. The space–time framework and NURBS in time also enable, with the “ST-
C” method, extracting a continuous representation from the computed data and, in
large-scale computations, efficient data compression [83]. The STNMUM and the
ST-IGA with IGA basis functions in time have been used in many 3D computations.
The classes of problems solved are flapping-wing aerodynamics for an actual locust
[28], bioinspired MAVs [29] and wing-clapping [30], separation aerodynamics of
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spacecraft [24], aerodynamics of horizontal-axis [31] and vertical-axis [13] wind
turbines, thermo-fluid analysis of ground vehicles and their tires [33], thermo-fluid
analysis of disk brakes [34], flow-driven string dynamics in turbomachinery [35],
and flow analysis of turbocharger turbines [36].

The ST-IGA with IGA basis functions in space enables more accurate represen-
tation of the geometry and increased accuracy in the flow solution. It accomplishes
that with fewer control points, and consequently with larger effective element sizes.
That in turn enables using larger time-step sizes while keeping the Courant number
at a desirable level for good accuracy. It has been used in space–time computational
flow analysis of turbocharger turbines [36], flow-driven string dynamics in turboma-
chinery [35], ram-air parachutes [39], spacecraft parachutes [67], aortas [8], heart
valves [10], tires with road contact and deformation [37], and fluid films [38]. Using
IGA basis functions in space is now a key part of some of the newest Zero Stress
State (ZSS) estimation methods [84] and related shell analysis [85].

For more on the ST-IGA, see [16]. In the computational flow analyses presented
here, the ST-IGA enables more accurate representation of the cardiovascular
geometries, increased accuracy in the flow solution, and using larger time-step sizes.

1.9 Space–Time IGA with Slip Interface and Topology Change

The turbocharger turbine analysis [36] and flow-driven string dynamics in turboma-
chinery [35] were based on the integration of the ST-SI and ST-IGA. The IGA basis
functions were used in the spatial discretization of the fluid mechanics equations
and also in the temporal representation of the rotor and spinning-mesh motion.
That enabled accurate representation of the turbine geometry and rotor motion and
increased accuracy in the flow solution. The IGA basis functions were used also in
the spatial discretization of the string structural dynamics equations. That enabled
increased accuracy in the structural dynamics solution, as well as smoothness in the
string shape and fluid dynamics forces computed on the string.

The ram-air parachute analysis [39] and spacecraft parachute compressible-flow
analysis [67] were based on the integration of the ST-IGA, the ST-SI version that
weakly enforces the Dirichlet conditions, and the ST-SI version that accounts for the
porosity of a thin structure. The ST-IGA with IGA basis functions in space enabled,
with relatively few number of unknowns, accurate representation of the parafoil
and parachute geometries and increased accuracy in the flow solution. The volume
mesh needed to be generated both inside and outside the parafoil. Mesh generation
inside was challenging near the trailing edge because of the narrowing space. The
spacecraft parachute has a very complex geometry, including gores and gaps. Using
IGA basis functions addressed those challenges and still kept the element density
near the trailing edge of the parafoil and around the spacecraft parachute at a
reasonable level.

The heart valve analysis [10] was based on the integration of the ST-SI, ST-
TC, and ST-IGA, which we refer to as ST-SI-TC-IGA. The ST-SI-TC-IGA, beyond
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enabling a more accurate representation of the geometry and increased accuracy in
the flow solution, kept the element density in the narrow spaces near the contact
areas at a reasonable level. When solid surfaces come into contact, the elements
between the surface and the slip interface collapse. Before the elements collapse,
the boundaries could be curved and rather complex, and the narrow spaces might
have high-aspect-ratio elements. With NURBS elements, it was possible to deal
with such adverse conditions rather effectively.

In computational analysis of flow around tires with road contact and deformation
[37], the ST-SI-TC-IGA enables a more accurate representation of the geometry
and motion of the tire surfaces, a mesh motion consistent with that, and increased
accuracy in the flow solution. It also keeps the element density in the tire grooves
and in the narrow spaces near the contact areas at a reasonable level. In addition, we
benefit from the mesh generation flexibility provided by using SIs.

An SI provides mesh generation flexibility in a general context by accurately
connecting the two sides of the solution computed over nonmatching meshes. This
type of mesh generation flexibility is especially valuable in complex-geometry flow
computations with isogeometric discretization, removing the matching requirement
between the NURBS patches without loss of accuracy. This feature was used in
the flow analysis of heart valves [10], turbocharger turbines [36], and spacecraft
parachute compressible-flow analysis [67].

For more on the ST-SI-TC-IGA, see [10]. In the computations presented here,
the ST-SI-TC-IGA is used in the heart valve flow analysis, for the reasons given and
as described in an earlier paragraph of this section.

1.10 General-Purpose NURBS Mesh Generation Method

To make the ST-IGA use, and in a wider context the IGA use, even more practical
in computational flow analysis with complex geometries, NURBS volume mesh
generation needs to be easier and more automated. To that end, a general-purpose
NURBS mesh generation method was introduced in [17]. The method is based
on multi-block-structured mesh generation with existing techniques, projection of
that mesh to a NURBS mesh made of patches that correspond to the blocks, and
recovery of the original model surfaces. The method is expected to retain the
refinement distribution and element quality of the multi-block-structured mesh that
we start with. Because there are ample good techniques and software for generating
multi-block-structured meshes, the method makes general-purpose mesh generation
relatively easy.

Mesh-quality performance studies for 2D and 3D meshes, including those for
complex models, were presented in [86]. A test computation for a turbocharger
turbine and exhaust manifold was also presented in [86], with a more detailed
computation in [36]. The mesh generation method was used also in the pump-
flow analysis part of the flow-driven string dynamics presented in [35] and in the
aorta flow analysis presented in [8]. The performance studies, test computations,
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and actual computations demonstrated that the general-purpose NURBS mesh
generation method makes the IGA use in fluid mechanics computations even more
practical.

For more on the general-purpose NURBS mesh generation method, see [17, 86].
In the computations presented here, the method used in the aorta flow analysis.

1.11 Outline of the Remaining Sections

We provide the governing equations in Sect. 2. The ST-VMS and ST-SI are
described in Sect. 3, and the ALE-VMS and IMGA-VMS in Sect. 4. In Sect. 5 we
provide some brief comments on the parallel computations. In Sects. 6 and 7, as
examples of space–time computations, we present an aortic-valve flow analysis
and a patient-specific aorta flow analysis. In Sect. 8, as an example of IMGA
computations, we present a patient-specific heart valve design and analysis. The
concluding remarks are given in Sect. 9.

2 Governing Equations

2.1 Incompressible Flow

LetΩt ⊂ R
nsd be the spatial domain with boundary Γt at time t ∈ (0, T ), where nsd

is the number of space dimensions. The subscript t indicates the time-dependence
of the domain. The Navier–Stokes equations of incompressible flows are written on
Ωt and ∀t ∈ (0, T ) as

ρ

(
∂u
∂t
+ u ·∇u− f

)
−∇ · σ = 0, (1)

∇ · u = 0, (2)

where ρ, u, and f are the density, velocity, and body force. The stress tensor
σ (u, p) = −pI + 2με(u), where p is the pressure, I is the identity tensor,
μ = ρν is the viscosity, ν is the kinematic viscosity, and the strain rate ε(u) =(∇u+ (∇u)T

)
/2. The essential and natural boundary conditions for Eq. (1) are

represented as u = g on (Γt )g and n · σ = h on (Γt )h, where n is the unit normal
vector and g and h are given functions. A divergence-free velocity field u0(x) is
specified as the initial condition.
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2.2 Structural Mechanics

In this article we will not provide any of our formulations requiring fluid and
structure definitions simultaneously; we will instead give reference to earlier journal
articles where the formulations were presented. Therefore, for notation simplicity,
we will reuse many of the symbols used in the fluid mechanics equations to
represent their counterparts in the structural mechanics equations. To begin with,
Ωt ⊂ R

nsd and Γt will represent the structure domain and its boundary. The
structural mechanics equations are then written, on Ωt and ∀t ∈ (0, T ), as

ρ

(
d2y
dt2

− f
)
−∇ · σ = 0, (3)

where y and σ are the displacement and Cauchy stress tensor. The essential and
natural boundary conditions for Eq. (3) are represented as y = g on (Γt )g and n ·σ =
h on (Γt )h. The Cauchy stress tensor can be obtained from

σ = J−1FSFT , (4)

where F and J are the deformation gradient tensor and its determinant, and S is the
second Piola–Kirchhoff stress tensor. It is obtained from the strain-energy density
function ϕ as follows:

S ≡ ∂ϕ

∂E
, (5)

where E is the Green–Lagrange strain tensor:

E = 1

2
(C− I) , (6)

and C is the Cauchy–Green deformation tensor:

C ≡ FT · F. (7)

From Eqs. (5) and (6),

S = 2
∂ϕ

∂C
. (8)

2.3 Fluid–Structure Interface

In an FSI problem, at the fluid–structure interface, we will have the velocity and
stress compatibility conditions between the fluid and structure parts. The details on
those conditions can be found in Section 5.1 of [75].
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3 ST-VMS and ST-SI

We include from [13, 81] the ST-VMS and ST-SI methods.
The ST-VMS is given as

∫

Qn

wh · ρ
(
∂uh

∂t
+ uh ·∇uh − fh

)
dQ+

∫

Qn

ε(wh) : σ (uh, ph)dQ

−
∫

(Pn)h

wh · hhdP +
∫

Qn

qh∇ · uhdQ+
∫

Ωn

(wh)+n · ρ
(
(uh)+n − (uh)−n

)
dΩ

+
(nel)n∑

e=1

∫

Qen

τSUPS

ρ

[
ρ

(
∂wh

∂t
+ uh ·∇wh

)
+∇qh

]
· rM(uh, ph)dQ

+
(nel)n∑

e=1

∫

Qen

νLSIC∇ · whρrC(uh)dQ

−
(nel)n∑

e=1

∫

Qen

τSUPSwh ·
(

rM(uh, ph) ·∇uh
)

dQ

−
(nel)n∑

e=1

∫

Qen

τ 2
SUPS

ρ
rM(uh, ph) ·

(
∇wh

)
· rM(uh, ph)dQ = 0, (9)

where

rM(uh, ph) = ρ
(
∂uh

∂t
+ uh ·∇uh − fh

)
−∇ · σ (uh, ph), (10)

rC(uh) = ∇ · uh (11)

are the residuals of the momentum equation and incompressibility constraint. The
test functions associated with the velocity and pressure are w and q. A superscript
“h” indicates that the function is coming from a finite-dimensional space. The
symbolQn represents the ST slice between time levels n and n+1, (Pn)h is the part
of the lateral boundary of that slice associated with the traction boundary condition
h, andΩn is the spatial domain at time level n. The superscript “e” is the ST element
counter, and nel is the number of ST elements. The functions are discontinuous in
time at each time level, and the superscripts “−” and “+” indicate the values of
the functions just below and just above the time level. See [13, 33, 76, 77, 79] for
the definitions used here for the stabilization parameters τSUPS and νLSIC. For more
ways of calculating the stabilization parameters in finite element computation of
flow problems, see [37, 78, 80]).
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Remark 1 The ST-SUPS method can be obtained from the ST-VMS method by
dropping the eighth and ninth integrations.

In the ST-SI, labels “Side A” and “Side B” represent the two sides of the SI. We
add boundary terms to Eq. (9). The boundary terms are first added separately for the
two sides, using test functions whA and qhA and whB and qhB. Putting them together, the
complete set of terms added becomes

−
∫

(Pn)SI

(
qhBnB − qhAnA

)
· 1

2

(
uhB − uhA

)
dP

−
∫

(Pn)SI

ρwhB ·
1

2

((
F hB −

∣∣∣F hB
∣∣∣
)

uhB −
(
F hB −

∣∣∣F hB
∣∣∣
)

uhA
)

dP

−
∫

(Pn)SI

ρwhA ·
1

2

((
F hA −

∣∣∣F hA
∣∣∣
)

uhA −
(
F hA −

∣∣∣F hA
∣∣∣
)

uhB
)

dP

+
∫

(Pn)SI

(
nB · whB + nA · whA

) 1

2

(
phB + phA

)
dP

−
∫

(Pn)SI

(
whB − whA

)
·
(

n̂B · μ
(
ε(uhB)+ ε(uhA)

))
dP

− γACI

∫

(Pn)SI

n̂B · μ
(
ε
(

whB
)
+ ε

(
whA
))
·
(

uhB − uhA
)

dP

+
∫

(Pn)SI

μC

h

(
whB − whA

)
·
(

uhB − uhA
)

dP, (12)

where

F hB = nB ·
(

uhB − vhB
)
, (13)

F hA = nA ·
(

uhA − vhA
)
, (14)

h = hB + hA

2
, (15)

hB = 2

(
nent∑

α=1

nens∑

a=1

∣∣nB ·∇Nαa
∣∣
)−1

(for Side B), (16)

hA = 2

(
nent∑

α=1

nens∑

a=1

∣∣nA ·∇Nαa
∣∣
)−1

(for Side A), (17)

n̂B = nB − nA

‖nB − nA‖ . (18)
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Here, (Pn)SI is the SI in the ST domain, v is the mesh velocity, nens and nent are the
number of spatial and temporal element nodes, Nαa is the basis function associated
with spatial and temporal nodes a and α, γACI = 1, and C is a nondimensional
constant. For our element length definition, we typically set C = 1.

A number of remarks were provided in [13] to explain the added terms and to
comment on related interpretations. We refer the reader interested in those details to
[13].

Remark 2 A coefficient γACI was added in [81] to the sixth integration so that
we have the option of using γACI = −1. This option was added, in [40], also in
the context of compressible flows. Using γACI = 1 in a discontinuous Galerkin
method was introduced in the symmetric interior penalty Galerkin method [87], and
using γACI = −1 was introduced in the nonsymmetric interior penalty Galerkin
method [88]. Stabilized methods based on both γACI = 1 and −1 were reported
in [18] in the context of the advection–diffusion equation. In the computations
reported in this article, we set γACI = 1.

4 ALE-VMS and ALE-IMGA-VMS

The ALE-VMS formulation is posed on a spatial domain Ω that is discretized into
elements Ωe. While {Ωe}, Ω , and its boundary Γ are time-dependent, when there
is no risk of confusion, we drop the subscript t to simplify notation. The superscript
h indicates association with discrete function spaces defined over Ω , which moves
with the velocity ûh, which is the same as the mesh velocity vh in Sect. 3. The semi-
discrete formulation is given as

∫

Ω

wh · ρ
(
∂uh

∂t

∣∣∣∣
x̂
+ (uh − ûh) · ∇uh − fh

)
dΩ +

∫

Ω

ε(wh) : σ (uh, ph) dΩ

−
∫

Γ

wh · hhdΓ +
∫

Ω

qh∇ · uh dΩ

− β
∫

Γ

wh · ρ
{(

uh − ûh
)
· n
}

− uhdΓ

+
∑

e

∫

Ωe
τSUPS

(
(uh − ûh) · ∇wh + 1

ρ
∇qh

)
· rM(uh, ph) dΩ

+
∑

e

∫

Ωe
νLSIC∇ · whρrC(uh) dΩ

−
∑

e

∫

Ωe
τSUPSwh ·

(
rM(uh, ph) ·∇uh

)
dΩ
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−
∑

e

∫

Ωe

τ 2
SUPS

ρ
rM(uh, ph) ·

(
∇wh

)
· rM(uh, ph) dΩ

+
∑

e

∫

Ωe

(
τSUPSrM(uh, ph) · ∇wh

)
τ ·
(
τSUPSrM(uh, ph) · ∇uh

)
dΩ = 0 ,

(19)

where ∂(·)
∂t

∣∣∣
x̂

is the time derivative taken with respect to the fixed reference

coordinates x̂ of the spatial configuration, β (≥ 0) is associated with the backflow
stabilization (see Remark 4), and {·}_ isolates the negative part of its argument. The
additional stabilization parameter τ is defined as

τ =
(
τSUPSrM(uh, ph) · (G) · τSUPSrM(uh, ph)

)−1/2
, (20)

where G generalizes element size to physical elements mapped through x(ξ) from
a parametric parent element: Gij = ξk,iξk,j .
The ALE-VMS formulation can be combined with the immersogeometric analysis
(IMGA) [56], which we refer to as the ALE-IMGA-VMS method [9, 55, 74]. In the
IMGA problem, the kinematic and traction compatibility conditions at the immersed
fluid–structure interface are imposed weakly using the DAL. The details of this
method can be found in [56, 68].

Remark 3 To improve mass conservation of the ALE-IMGA-VMS technique near
immersed boundaries, the following modification to τSUPS is introduced in [56]:

τSUPS =
(
s

(
4

Δt2
+ (uh − ûh) ·G(uh − ûh)+ CI

(
μ

ρ

)2

G : G

))−1/2

.

(21)

Almost everywhere in Ω we set s = 1, which yields a traditional definition of
τSUPS. However, in an O(h) neighborhood of the immersed fluid–structure interface
we set s ≥ 1, which effectively reduces the size of τSUPS in that region. A theoretical
motivation for this scaling is given in [72], and a numerical investigation of its effect
is given in [73].

Remark 4 Unsteady flow computations may sometimes diverge due to significant
inflow through the Neumann boundary Γ h

f ; this is known as backflow divergence
and is frequently encountered in cardiovascular simulations. In order to preclude
backflow divergence, a backflow stabilization method (the β term in Eq. (19))
originally proposed in [89] and further studied in [90] is employed in our ALE-
VMS and ALE-IMGA-VMS formulations.

Remark 5 The τ term of Eq. (19) is not derived from VMS analysis; it is an
additional residual-based stabilization term that is included to provided extra
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stabilizing dissipation near steep solution gradients while maintaining consistency
with the exact solution. It was introduced in [1] and bears resemblance to the DCDD
[76] and YZβ [91, 92] discontinuity-capturing methods.

5 Parallel Computations

Parallel computations with space–time methods go as far back as 1992 [93], with
the 3D computations reported as early as 1993 [94]. All computations reported in
this chapter were carried out on parallel computing platforms. The number of cores
used in a typical computation ranges from 96 to 576. Because the computations were
mostly for the purpose of testing a new computational method, parallel efficiency
was not a high priority. Still the efficiencies we see are high enough to justify the
use of the maximum number of cores available in the computer resources we have.

6 ST Computation: Aortic-Valve Flow Analysis

This section is from [10].

6.1 Geometry and Leaflet Motion

We have a typical aortic-valve model, such as the one in [30]. The model, shown in
Fig. 1, has three leaflets and one main outlet, corresponding to the beginning of the
aorta. The leaflet motion is prescribed. They move in an asymmetric fashion. We
identify the individual leaflets as shown in Fig. 2. The leaflet positions are defined
by means of a pseudo-time parameter θ , with the values 0 and 1 corresponding to
the fully open and fully closed positions. The prescribed motion is given through θ
as shown in Fig. 3.

6.2 Mesh, Flow Conditions and Computational Conditions

We create the mesh with five SIs, with three of them connecting the mesh sectors
containing the leaflets in the valve region of the aorta (see Fig. 4). The other two SIs,
which are the top and bottom circular planes in Fig. 4, connect the meshes in the
inlet and outlet regions to the valve region. They are for independent meshing in the
inlet and outlet regions. The volume mesh is made of quadratic NURBS elements.
The number of control points is 84,534, and the number of elements is 54,000.
We prescribe the motion of the interior control points, and specify in each domain
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Fig. 1 Aortic-valve flow
analysis. Model geometry.
Aorta, leaflets, and sinuses.
The left picture shows the
entire computational domain,
and the right picture is the
zoomed view of the valve

Fig. 2 Aortic-valve flow
analysis. Leaflet
identification. Leaflet 1 (red),
2 (green), and 3 (blue)

Fig. 3 Aortic-valve flow
analysis. Leaflet motion.
Pseudo-time parameter θ as a
function of time for each of
the three leaflets

0.000 0.712 1.424
0.0

0.5

1.0

Time (s)

θ
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Fig. 4 Aortic-valve flow
analysis. Aortic valve and the
five SIs

Fig. 5 Aortic-valve flow analysis. A set of selected NURBS elements, from when the valve is
fully open (top-left) to when it is fully closed (bottom-right). The corresponding θ values are 0.0,
0.42, 0.97, and 1.0. The right pictures are the zoomed views around the leaflet

the master–slave mapping for all leaflet positions. Figure 5 shows a set of selected
NURBS elements to illustrate how elements collapse.

The density and kinematic viscosity of the blood are 1050 kg/m3 and
4.2×10−6 m2/s. The boundary conditions are no-slip on the arterial walls and
the leaflets, traction-free at the outflow boundary, and uniform velocity at the inflow
boundary, with a temporal profile as shown in Fig. 6. The cycle period is 0.712 s.
The no-slip condition on the arterial walls is enforced weakly.
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Fig. 6 Aortic-valve flow
analysis. Inflow velocity (two
cycles)
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We use the ST-SUPS method. The time-step size is 4.00×10−3 s. There are
three nonlinear iterations at each time step. The number of GMRES iterations per
nonlinear iteration is 300.

6.3 Results

Figure 7 shows the isosurfaces corresponding to a positive value of the second
invariant of the velocity gradient tensor, colored by the velocity magnitude. The
viewing angle is as we see the leaflets in Fig. 2. We have a biased flow jet due to the
asymmetric leaflet closing. This can be seen from the third, fourth, and fifth pair of
pictures in Fig. 7. We also report the wall shear stress (WSS) on the leaflet surfaces.
The viewing angle is as we see the leaflets in Fig. 8. Figure 9 shows the magnitude
of the WSS on the upper and lower surfaces of the leaflets.

7 ST Computation: Patient-Specific Aorta Flow Analysis

This section is from [8].
We start with a geometry obtained from medical images and then use cubic T-

splines to represent the surface. The density and kinematic viscosity of the blood
are 1050 kg/m3 and 4.2×10−6 m2/s.

7.1 Conditions

The computational domain and boundary conditions are shown in Fig. 10. The
diameters are given in Table 1. The inflow flow rate, plug flow, is in Fig. 11. The
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Fig. 7 Aortic-valve flow analysis. Isosurfaces corresponding to a positive value of the second
invariant of the velocity gradient tensor, colored by the velocity magnitude (m/s). The frames are
for t = 0.804, 0.984, 1.028, 1.072, 1.080, and 1.252 s

Fig. 8 Aortic-valve flow
analysis. Viewing angle for
reporting the WSS. The
leaflet identification is same
as in Fig. 2

peak value of the average inflow velocity is 0.709 m/s. We estimate the outflows as
distributed by Murray’s law [95]:

Qo ∝ D3
o, (22)
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Fig. 9 Aortic-valve flow analysis. Magnitude of the WSS (Pa). Upper surface (left) and lower
surface (right). The frames are for t = 0.804, 0.984, 1.028, 1.072, 1.080, and 1.252 s

Fig. 10 Patient-specific aorta
flow analysis. Geometry and
boundary conditions
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Table 1 Patient-specific aorta flow analysis

Inlet Outlet 1 Outlet 2 Outlet 3 Outlet 4 Outlet 5

Diameter 25.6 5.81 3.90 4.41 6.43 19.9

Diameter (mm) of the inlet and outlets. The outlets are listed in the order of closeness to the inlet

Fig. 11 Patient-specific aorta
flow analysis. Volumetric
flow rate at the inlet
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whereQo is the volumetric outflow rate, and the outlet diameterDo is defined based
on the outlet area Ao:

Do = 2

√
Ao

π
. (23)

We form a plug flow profile at the smaller outlets, and the main outlet is set to
traction free.

7.2 Mesh

We create a quadratic NURBS mesh from the T-spline surface, using the technique
introduced in [17, 86]. Figure 12 shows one of the NURBS patches and five of the
patches together to illustrate the block-structured nature of the NURBS mesh. The
function space has only C0 continuity between the patches. Figure 13 shows the
base mesh. Figure 14 shows the base and refined meshes at the inlet. The meshes
are refined by knot insertion, therefore the geometry is unchanged, and the basis
functions for the coarser meshes are subsets of the basis functions for the finer
meshes. The refinement is in the normal direction, and at each refinement, the
element thickness is halved in half of the most refined layers. For the base mesh,
the element thickness in the normal direction is approximately 1% of the local
diameter. There is no refinement in the tangential directions. During the refinement,
the original plug flow profiles of the base mesh are retained. Table 2 shows the
number of elements and control points.
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Fig. 12 Patient-specific aorta flow analysis. NURBS control mesh. One of the patches (top) and
five of the patches together (bottom)

Fig. 13 Patient-specific aorta
flow analysis. Base mesh.
Control mesh and surface
(green). Red points are
control points
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Fig. 14 Patient-specific aorta flow analysis. Control mesh at the inlet. Base Mesh, Refinement
Mesh 1, Refinement Mesh 2, Refinement Mesh 3, and Refinement Mesh 4

Table 2 Patient-specific
aorta flow analysis

nc ne

Base Mesh 202,497 151,513

Refinement Mesh 1 266,437 205,733

Refinement Mesh 2 330,377 259,953

Refinement Mesh 3 394,317 314,173

Refinement Mesh 4 458,257 368,393

Number of control points (nc) and ele-
ment (ne) for the quadratic NURBS meshes
used in the computations

7.3 Mesh Refinement Study

We compute with the 5 meshes in Table 2. The time-step sizes are �t = 0.0025 s
for Base Mesh and Refinement Mesh 1 and 2, and �t = 0.00125 s for Refinement
Mesh 3 and 4. The number of nonlinear iterations per time step is 3, and the number
of GMRES iterations per nonlinear iteration is 800 for Base Mesh and Refinement
Mesh 1, and 1200, 1400, and 1600 for Refinement Mesh 2, 3, and 4, respectively.
The ST-SUPS method is used and the stabilization parameters are those given by
Eqs. (2.4)–(2.6), (2.8), and (2.10) in [13].

We first compute 9 cycles with Base Mesh, and the initial condition for the refined
meshes is obtained by knot insertion. The solution reported here is for the 10th cycle.
Figure 15 shows the solution computed with Refinement Mesh 4. At the peak flow
rate a complex flow pattern is formed, and the vortex structure breaks down into
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Fig. 15 Patient-specific aorta flow analysis. Mesh refinement study. Computed with Refinement
Mesh 4. Isosurfaces corresponding to a positive value of the second invariant of the velocity
gradient tensor, colored by the velocity magnitude (m/s) (top). The time instants are shown with
circles (bottom)

smaller structures during the deceleration. The magnitude of the WSS (hv) at the
peak flow rate is shown for each mesh in Fig. 16. Qualitatively, all results are in
good agreement, and the convergence can be seen with refinement. To quantify the
mesh refinement level, we calculate the y+ value for the first-element thickness h as

y+ = u
∗h
ν
, (24)

where the friction velocity u∗ is based on the computed value of the WSS as follows:

u∗ =
√∥∥hhv

∥∥
ρ
. (25)
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0.0 80.0

Fig. 16 Patient-specific aorta flow analysis. Mesh refinement study. WSS (dyn/cm2) at the peak
flow rate
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Refinement

Mesh 1
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Mesh 2
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Mesh 3
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Mesh 4

0.1 1 10

Fig. 17 Patient-specific aorta flow analysis. Mesh refinement study. y+ value for the first-element
thickness, based on the WSS computed at the peak flow rate

Figure 17 shows the spatial distribution of y+ at the peak flow rate. It shows that
for the meshes used here, y+ range is from approximate maximum 10 to less than
1. Comparing Figs. 16 and 17, we see that the WSS values computed over different
meshes are in agreement where y+ ≤ 1.
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Fig. 18 Patient-specific aorta flow analysis. Mesh refinement study. TAWSS (dyn/cm2)

Fig. 19 Patient-specific aorta
flow analysis. Mesh
refinement study. Spatially
averaged WSS during a cycle
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The time-averaged WSS magnitude (TAWSS) is shown in Figs. 18, and 19 shows
the spatially averaged WSS magnitude in a cycle. Figure 20 shows the oscillatory
shear index (OSI), defined as

OSI = 1

2

⎛

⎝1−
∥∥∥
∫ T

0 hhvdt
∥∥∥

∫ T
0

∥∥hhv
∥∥ dt

⎞

⎠ . (26)

Overall for OSI, even Base Mesh is in a good agreement with others. However, if
we compare details such as branches, we see some difference even where y+ value
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Fig. 20 Patient-specific aorta flow analysis. Mesh refinement study. OSI

is small. To see the flow differences, using the solution from Refinement Mesh 4
as the reference solution, we inspect the velocity difference

∥∥uhk − uh4
∥∥, where the

subscripts indicate Base Mesh and Refinement Mesh k.

Remark 6 To calculate the velocity difference, all meshes and corresponding
solutions are refined by using the knot-insertion technique, and the control variables
are obtained based on Refinement Mesh 4. The visualization is done after taking
the difference between the control variables, interpolating the vector, and taking its
magnitude.

The spatial average of the difference is maximum at around 0.5 s. This indicates
that the vortex breakdown, due to the small-scale flow behavior that needs to be
dealt with, would not be easy to resolve. Figure 21 shows the velocity difference at
0.5 s.

In summary, good accuracy in the WSS magnitude can be obtained with locally
good representation, and the OSI requires a good flow representation overall,
including the vortex breakdown.

8 IMGA Computation: Patient-Specific Heart Valve Design
and Analysis

This section is from [74], where more details can be found.
Here we present a novel framework for designing personalized prosthetic heart

valves using IMGA-VMS. We parameterize the leaflet geometry using several key
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Base Mesh
Refinement

Mesh 1
Refinement

Mesh 2
Refinement

Mesh 3
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Fig. 21 Patient-specific aorta flow analysis. Mesh refinement study. Velocity difference∥∥uhk − uh4
∥∥ (m/s) at 0.5 s, where the subscripts indicate Base Mesh and Refinement Mesh k

design parameters. This allows for generating various perturbations of the leaflet
design for the patient-specific aortic root reconstructed from the medical image data.
Each design is analyzed using the IMGA-VMS FSI methodology, which allows us
to efficiently simulate the coupling of the deforming aortic root, the parametrically
designed prosthetic valves, and the surrounding blood flow under physiological
conditions. A parametric study is carried out to investigate the influence of the
geometry on heart valve performance, indicated by the effective orifice area (EOA)
and the coaptation area (CA). Finally, the FSI simulation results of a design that
reasonably well balances the EOA and CA are presented.

8.1 Trivariate NURBS Parameterization of the Ascending
Aorta

To obtain a volumetric parameterization of the artery and lumen, we first construct a
trivariate multi-patch NURBS in a regular shape, e.g., a tubular domain, then solve a
linear elastostatic, mesh moving problem [94] for the displacement from this regular
domain to a deformed configuration that represents the artery and lumen. However,
solving a linear elastostatic problem to obtain the deformed interior mesh is only
effective for relatively mild, translation-dominant deformations. For scenarios that
involve large deformations, such as the deformation of a straight tubular domain
into a curved shape of a patient-specific ascending aorta, the interior elements can
become severely distorted. To avoid this, we first obtain a centerline along the axial
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(a) (b) (c) (d) (e) (f )

Fig. 22 The construction of the volumetric NURBS discretization of the blood and the artery
wall domains. (a) Cross sections of the artery wall surface. (b) Circular cross sections. (c) NURBS
tubular surface and corresponding control points. (d) Primitive volume mesh. (e) Deformed volume
mesh. (f) h-refined volume mesh

direction of a patient-specific artery wall surface. Along this centerline, we define a
number of cross sections corresponding to the control points of the NURBS artery
wall surface in the axial direction. (These cross sections are shown as blue curves
in Fig. 22a.) At each cross section, we calculate its unit normal vector nc and the
effective radius rc, which is determined such that the area of a circle calculated
using this radius matches the area of the cross section. (A circle corresponding to
one of the cross sections is shown in the red curve in Fig. 22a.) Finally, using this
information, we construct a tubular NURBS surface that has the same control-point
and knot-vector topology as the target patient-specific artery wall surface, as shown
in Fig. 22b, c. Another tubular surface corresponding to the lumenal surface is also
constructed, using the same cross sections but smaller effective radii coming from
the lumenal NURBS surface.

These two tubular NURBS surfaces are used to construct a primitive trivariate
multi-patch NURBS that includes the solid and fluid subdomains, shown in gray
and red, respectively, in Fig. 22d. Basis functions are made C0-continuous at the
fluid–solid interface, so that velocity functions defined using the resulting spline
space conform to standard fluid–structure kinematic constraints while retaining the
ability to represent non-smooth behavior across the material interface. The resulting
volumetric NURBS can then be morphed to match the patient-specific geometry
with minimal rotation, so an elastostatic problem can provide an analysis-suitable
parameterization. Displacements at the ends of the tube are constrained to remain
within their respective cross sections. Finally, we refine the deformed trivariate
NURBS for analysis purposes, by inserting knots at desired locations, such as
around the sinuses and the flow boundary layers. The final volumetric NURBS
discretization of the patient-specific ascending aorta is shown in Fig. 22f.
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8.2 Parametric BHV Design

To design effective prosthetic valves for specific patients, we focus specifically on
the leaflet geometry and assume that non-leaflet components of stentless valves
move with the aortic root and do not affect aortic deformation or flow. Starting
from the NURBS surface of a patient-specific root, valve leaflets are parametrically
designed as follows. We first pick nine “key points” located on the ends of
commissure lines and the bottom of the sinuses. The positions of these points are
indicated by blue spheres in Fig. 23. These define how the leaflets attach to the
sinuses. The key points solely depend on the geometry of the patient-specific aortic
root and will remain unchanged for different valve designs. We then parameterize
families of univariate B-splines defining the free edges and radial “belly curves”
of the leaflets. These curves are shown in red and green in Fig. 23. The attachment
edges, free edges, and belly curves are then interpolated to obtain smooth bivariate
B-spline representations of the leaflets.

Figure 24 shows the details of parameterizing the free-edge curve (red) and the
belly-region curve (green). In Fig. 24, p1, p2, and p3 are the key points on the top
of the commissure lines and p4 is the key point on the sinus bottom, as labeled in
Fig. 23. Points p1-p3 define a triangle Δp1–3, with pc being its geometric center.
The unit vector pointing from pc to pn is denoted by tp, and the unit normal vector
of Δp1–3 pointing downwards is np. We first construct the free edge curve as a
univariate quadratic B-spline curve determined by three control points, p1, pf, and
p2. The location of pf is defined by pf = pc + x1tp + x2np. By changing x1 and
x2 to control the location of pf, the curvature and the height of the free edge can
be parametrically changed. We then take pm as the midpoint of the free edge, the
point pb, and the key point p4 to construct a univariate quadratic B-spline curve
(green). The point pb is defined by pb = po + x3np, where po is the projection
of pm onto Δp1–3 along the direction of np. Finally, the fixed attachment edges
and the parametrically controlled free edge and belly curve are used to construct a

p1

p2

p3

p4

Fig. 23 The key geometric features used to parametrically control the valve designs. The blue key
points define the attachment of the valve to the root. The red and green curves are parametrically
controlled for valve design



Computational Cardiovascular Analysis with the Variational Multiscale. . . 183

Fig. 24 The parametric
control of the valve designs.
The key points (blue spheres)
are identical to those in the
right plot of Fig. 23. x1, x2,
and x3 control the location of
Pf and Pb and thus control
the curvature and height of
the red free edge, and the
curvature of the green belly
curve

p1

p3

pc

pm
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cubic B-spline surface with desired parameterization. By choosing x1, x2, and x3 as
design variables, we can parametrically change the free edge and belly curve, and
therefore change the valve design. This procedure is implemented in an interactive
geometry modeling and parametric design platform [96].

8.3 Application to BHV Design

To determine an effective BHV design, we first need to identify quantitative
measures of its performance. We focus on two quantities of clinical interest: to
measure the systolic performance, we evaluate the EOA, which indicates how well
the valve permits flow in the forward direction. For a quantitative evaluation of the
diastolic performance, we measure the CA, which indicates how well the valve seals
and prevents flow in the reverse direction. In this section, we study the impact of the
design variables x1, x2, and x3 on our two quantities of interest.

Constitutive parameters in the governing equations are held constant over the
design space. Fluid, solid, and shell structure mass densities are set to 1.0 g/cm3. The
parameters of the Fung-type material model for the shell structure are c0 = 2.0×106

dyn/cm2, c1 = 2.0×105 dyn/cm2, and c2 = 100. The thickness of the leaflet is set
to 0.0386 cm. The bulk and shear moduli for the arterial wall are selected to give
a Young’s modulus of 107 dyn/cm2 and Poisson’s ratio of 0.45 in the small strain
limit. The inlet and outlet cross sections are free to slide in their tangential planes
and deform radially, but constrained not to move in the orthogonal directions [97].
Mass-proportional damping with constant Cdamp = 104 Hz is used to model the
interaction of the artery with the surrounding tissue. The dynamic viscosity of the
blood is set to μf = 3×10−2 g/(cm s).

We apply a physiologically realistic left ventricular pressure time history as a
traction boundary condition at the inflow. The applied pressure signal is periodic,
with a period of 0.86 s for one cardiac cycle. The traction −(p0 + RQ)nf is
applied at the outflow for the resistance boundary condition, where p0 is a constant
physiological pressure level, R > 0 is a resistance coefficient, and Q is the



184 T. J. R. Hughes et al.

volumetric flow rate through the outflow. In the present computation, we set p0 =
80 mmHg and R = 200 (dyn s)/cm5. These values ensure a realistic transvalvular
pressure difference of 80 mmHg across a closed valve when Q = 0, while
permitting a flow rate within the normal physiological range and consistent with the
flow rate estimated from the medical data (about 310 ml/s) during systole. A time-
step size of Δt = 10−4 s is used in all simulations. To obtain the artery wall tissue
prestress, we apply the highest left ventricular pressure during systole (127 mmHg
at t = 0.25 s) on the inlet and a resistance boundary condition (p0 = 80 mmHg and
R = 200 (dyn s)/cm5) on the outlet for the calculation of h̃f in the prestress problem
[54].

We perform FSI simulations of each of (x1, x2, x3) ∈ ({0.05, 0.25, 0.45} cm,
{0.1, 0.3, 0.5} cm, {0.5, 0.8, 1.1, 1.4} cm), then calculate the EOA at peak systole
and the maximum CA occurring during ventricular diastole. The simulation results
and quantities of interest for each case are reported in [74]. An ideal valve would
have both a large EOA and a large CA. However, these two quantities tend to
compete with each other: valves that close easily can be more difficult to open and
vice versa. In general, the results show that increasing x1, which corresponds to
decreasing the length of the free edge, decreases EOA and CA at the same time.
Increasing x2, which decreases the height of the free edge, may increase EOA
slightly but reduces CA significantly. The reduction of CA due to increasing x2
reduces CA and causes many designs cannot seal completely. Increasing x3, which
increases the surface curvature in the leaflet belly region, improves CA but decreases
EOA. Finally, the combination of x1 = 0.05 cm, x2 = 0.1 or 0.3 cm, and x3 = 0.5 or
0.8 cm reliably yields a high EOA between 3.92 and 4.05 cm2, near the upper end of
the physiological range of 3.0–4.0 cm2 in healthy adults, and a CA between 3.49 and
4.54 cm2. Among these four cases, x∗ = (x1, x2, x3) = (0.05 cm, 0.1 cm, 0.8 cm),
which has a CA of 4.54 cm2 and EOA of 3.92 cm2, strikes the best compromise
between EOA and CA. The valve geometry of this best-performing design and its
EOA and CA from the FSI simulation are shown in Fig. 25.

Figure 26 shows several snapshots of the valve deformation and the details
of the flow field at several points during the cardiac cycle. The color indicates
the fluid velocity magnitude. The visualizations clearly show the instantaneous
valve response to the left ventricular pressure. The valve opens with the rising left
ventricular pressure in early systole (0.0–0.20 s), and then stays fully open near
peak systole (0.25–0.27 s), allowing sufficient blood flow to enter the ascending
aorta. A quick valve closure is then observed in early diastole (0.32–0.38 s). This

Fig. 25 The best-performing
prosthetic valve design and its
EOA and CA from the FSI
simulation

EOA = 3.92 cm2 CA = 4.54 cm2
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Fig. 26 Volume rendering visualization of the velocity field from our FSI simulation at several
points during a cardiac cycle

quick closure of the valve minimizes the reverse flow into the left ventricle, as the
left ventricular pressure drops rapidly in this period. After that, the valve properly
seals, and the flow reaches a near-hydrostatic state (0.65 s). These features observed
during the cardiac cycle characterize a well-functioning valve within the objectives
considered in this study: a large EOA during systole and a proper CA during
diastole. In Fig. 27, the models are superposed in the configurations corresponding
to the fully open and fully closed phases for better visualization of the leaflet–wall
coupling results. The deformation of the attachment edges can be clearly seen.
The expansion and contraction of the arterial wall, as well as its sliding motion
between systole and diastole can also be observed. The maximum in-plane principal
Green–Lagrange strain (MIPE) evaluated on the aortic side of the leaflet is shown in
Fig. 28. The figure shows that during opening the strain is concentrated in the belly
region of the leaflet, while during closing the highest strain happens near the valve
commissure.

9 Concluding Remarks

In this chapter we have reviewed various technologies that have been developed by
us and our colleagues and used to solve general classes of problems in computational
cardiovascular analysis, with focus herein on aortic flows and patient-specific and
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Fig. 27 Relative displacement between fully open (red) and fully closed (blue) configurations,
showing the effect of leaflet–wall coupling. The deformation of the attachment edges can be clearly
seen. The expansion and contraction of the arterial wall as well as its sliding motion between
systole (red) and diastole (blue) can also be observed

Fig. 28 Deformed valve configuration, colored by the maximum in-plane principal Green–
Lagrange strain (MIPE) evaluated on the aortic side of the leaflet. Note the different scale for
each time instant

bioprosthetic heart-valve FSI. Our work on these problems, and in other more
general areas of engineering, science, and medicine, is based on Stabilized Methods
and the Variational Multiscale Method (VMS), which have enjoyed enormous
attention in the research literature and are used widely in industry and national
laboratories. Stabilized Methods and the Variational Multiscale Method are at the
center of development of core technologies such as Space–Time VMS, Arbitrary
Lagrangian–Eulerian VMS, and Immersogeometric VMS, which we emphasized
herein. They are in turn enhanced by many other special technologies that are used
to deal with specific features of the applications, many of which we also described.

Computational cardiovascular analysis is now used routinely in medical device
design, diagnosis of cardiovascular disease, surgical planning, virtual stent place-
ment, and numerous other areas. It is only part of the more general field of
Computational Medicine, which is rapidly growing. Just as the capacity of the
underlying computational methods described in this article depend on the growing
power of computers, Computational Medicine depends upon the increasing fidelity
of medical imaging technologies and devices. Like computers, these are also
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advancing rapidly, which portends a bright future for the further development of
Computational Medicine and its enormous potential impact on health and the human
condition.
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1 Introduction

Sophistication level of computational analysis of wind turbines and turbomachinery
defines the practical value of the computations. The Arbitrary Lagrangian–Eulerian
(ALE) and Space–Time (ST) Variational Multiscale (VMS) methods and isogeomet-
ric discretization are now enabling sophisticated wind turbine and turbomachinery
computational analysis (see, for example, [1–4]). The computational challenges
encountered in this class of problems include turbulent rotational flows, complex
geometries, moving boundaries and interfaces, such as the rotor motion, and the
fluid–structure interaction (FSI), such as the FSI between the wind turbine blade
and the air. As examples of the challenging computations performed, we present
computational analysis of horizontal- and vertical-axis wind turbines (HAWTs and
VAWTs) and flow-driven string dynamics in pumps.
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Our core methods in addressing the computational challenges are the ALE-VMS
[5] and ST-VMS [6]. We have a number special methods used in combination
with them. The special methods used in combination with the ST-VMS include the
ST Slip Interface (ST-SI) method [1], ST Isogeometric Analysis (ST-IGA) [7, 8],
ST/NURBS Mesh Update Method (STNMUM) [7], a general-purpose NURBS
mesh generation method for complex geometries [9], and a one-way-dependence
model for the string dynamics [10]. The special methods used in combination with
the ALE-VMS include weak enforcement of no-slip boundary conditions [11] and
“sliding interfaces” [12] (the acronym “SI” will also indicate that).

1.1 ST-VMS and ST-SUPS

The ST-VMS and ST-SUPS are versions of the Deforming-Spatial-Domain/Stabilized
ST (DSD/SST) method [13], which was introduced for computation of flows
with moving boundaries and interfaces (MBI), including FSI. The ST-SUPS is a
new name for the original version of the DSD/SST, with “SUPS” reflecting its
stabilization components, the Streamline-Upwind/Petrov-Galerkin (SUPG ) [14]
and Pressure-Stabilizing/Petrov-Galerkin (PSPG) [13] stabilizations. The ST-VMS
is the VMS version of the DSD/SST. The VMS components of the ST-VMS are
from the residual-based VMS (RBVMS) method [15, 16]. The five stabilization
terms of the ST-VMS include the three that the ST-SUPS has, and therefore the
ST-VMS subsumes the ST-SUPS. In MBI computations the ST-VMS and ST-SUPS
function as a moving-mesh methods. Moving the fluid mechanics mesh to follow
an interface enables mesh-resolution control near the interface and, consequently,
high-resolution boundary-layer representation near fluid–solid interfaces. Because
of the higher-order accuracy of the ST framework (see [6]), the ST-SUPS and
ST-VMS are desirable also in computations without MBI.

The ST-SUPS and ST-VMS have been applied to many classes of challenging
FSI, MBI, and fluid mechanics problems (see [17] for a comprehensive summary
of the computations prior to July 2018). The classes of problems include space-
craft parachute analysis for the landing-stage parachutes [10], cover-separation
parachutes [18] and the drogue parachutes [19], wind-turbine aerodynamics for
HAWT rotors [20], full HAWTs [21] and VAWTs [1], flapping-wing aerodynamics
for an actual locust [22], bioinspired MAVs [23] and wing-clapping [24], blood flow
analysis of cerebral aneurysms [25], stent-treated aneurysms [26], aortas [27] and
heart valves [28], spacecraft aerodynamics [18], thermo-fluid analysis of ground
vehicles and their tires [29], thermo-fluid analysis of disk brakes [30], flow-driven
string dynamics in turbomachinery [3], flow analysis of turbocharger turbines [31],
flow around tires with road contact and deformation [32], fluid films [33], ram-air
parachutes [34], and compressible-flow spacecraft parachute aerodynamics [35].

In the flow analyses presented here, the ST framework provides higher-order
accuracy in a general context. The VMS feature of the ST-VMS addresses the
computational challenges associated with the multiscale nature of the unsteady flow.
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The moving-mesh feature of the ST framework enables high-resolution computation
near the rotor surface. The advection equation involved in the residence time
computation associated with flow-driven string dynamics in pumps is solved with
the ST-SUPG method.

1.2 ALE-VMS, RBVMS, and ALE-SUPS

The ALE-VMS [5] is the VMS version of the ALE [36]. It succeeded the ST-
SUPS [13] and ALE-SUPS [37] and preceded the ST-VMS. The VMS components
are from the RBVMS [15, 16]. It is the moving-mesh extension of the RBVMS
formulation of incompressible turbulent flows proposed in [16], and as such, it
was first presented in [5] in the FSI context. The ALE-SUPS, RBVMS, and
ALE-VMS have also been applied to many classes of challenging FSI, MBI, and
fluid mechanics problems. The classes of problems include ram-air parachute FSI
[37], wind-turbine aerodynamics and FSI [4, 38], more specifically, VAWTs [4],
floating wind turbines [39], wind turbines in atmospheric boundary layers [4],
and fatigue damage in wind-turbine blades [2], patient-specific cardiovascular fluid
mechanics and FSI [40, 41], biomedical-device FSI [42, 43], ship hydrodynamics
with free-surface flow and fluid–object interaction [44], hydrodynamics and FSI of
a hydraulic arresting gear [45], hydrodynamics of tidal-stream turbines with free-
surface flow [46], passive-morphing FSI in turbomachinery [47], bioinspired FSI
for marine propulsion [48], bridge aerodynamics and fluid–object interaction [49],
stratified incompressible flows [50], and compressible-flow gas-turbine analysis
[51]. Recent advances in stabilized and multiscale methods may be found for
stratified incompressible flows in [50], for divergence-conforming discretizations
of incompressible flows in [52], and for compressible flows with emphasis on gas-
turbine modeling in [51].

In the flow analyses presented here, the VMS feature of the ALE-VMS addresses
the computational challenges associated with the multiscale nature of the unsteady
flow. The moving-mesh feature of the ALE framework enables high-resolution
computation near the rotor surface.

1.3 ALE-SI and ST-SI

The ALE-SI was introduced in [12] to retain the desirable moving-mesh features
of the ALE-VMS in computations with spinning solid surfaces, such as a turbine
rotor. The mesh covering the spinning surface spins with it, retaining the high-
resolution representation of the boundary layers. The method was in the context of
incompressible-flow equations. Interface terms added to the ALE-VMS to account
for the compatibility conditions for the velocity and stress at the SI accurately
connect the two sides of the solution. The ST-SI was introduced in [1], also in
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the context of incompressible-flow equations, to retain the desirable moving-mesh
features of the ST-VMS and ST-SUPS in computations with spinning solid surfaces.
The starting point in its development was the ALE-SI. Interface terms similar to
those in the ALE-SI are added to the ST-VMS to accurately connect the two sides of
the solution. An ST-SI version where the SI is between fluid and solid domains was
also presented in [1]. The SI in this case is a “fluid–solid SI” rather than a standard
“fluid–fluid SI” and enables weak enforcement of the Dirichlet boundary conditions
for the fluid. The ST-SI introduced in [30] for the coupled incompressible-flow
and thermal-transport equations retains the high-resolution representation of the
thermo-fluid boundary layers near spinning solid surfaces. These ST-SI methods
have been applied to aerodynamic analysis of VAWTs [1], thermo-fluid analysis of
disk brakes [30], flow-driven string dynamics in turbomachinery [3], flow analysis
of turbocharger turbines [31], flow around tires with road contact and deformation
[32], fluid films [33], aerodynamic analysis of ram-air parachutes [34], and flow
analysis of heart valves [28].

In the computations here, with the ALE-SI and ST-SI the mesh covering the rotor
spins with it and we retain the high-resolution representation of the boundary layers.

1.4 Stabilization Parameters

The ST-SUPS, ALE-SUPS, RBVMS, ALE-VMS, ST-VMS, ALE-SI, and ST-SI
all have some embedded stabilization parameters that play a significant role (see
[1, 53]). There are many ways of defining these stabilization parameters (for
examples, see [29, 32, 54–58]). The stabilization-parameter definitions used in the
computations reported in this article can be found from the references cited in the
sections where those computations are described.

1.5 ST-IGA

The ST-IGA is the integration of the ST framework with isogeometric discretization,
motivated by the success of NURBS meshes in spatial discretization [5, 12, 40, 59].
It was introduced in [6]. Computations with the ST-VMS and ST-IGA were first
reported in [6] in a 2D context, with IGA basis functions in space for flow past
an airfoil, and in both space and time for the advection equation. Using higher-
order basis functions in time enables getting full benefit out of using higher-order
basis functions in space (see the stability and accuracy analysis given in [6] for the
advection equation).

The ST-IGA with IGA basis functions in time enables, as pointed out and
demonstrated in [6, 7], a more accurate representation of the motion of the solid
surfaces and a mesh motion consistent with that. It also enables more efficient
temporal representation of the motion and deformation of the volume meshes,
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and more efficient remeshing. These motivated the development of the STNMUM
[7, 57]. The STNMUM has a wide scope that includes spinning solid surfaces.
With the spinning motion represented by quadratic NURBS in time, and with
sufficient number of temporal patches for a full rotation, the circular paths are
represented exactly. A “secondary mapping” [6] enables also specifying a constant
angular velocity for invariant speeds along the circular paths. The ST framework
and NURBS in time also enable, with the “ST-C” method, extracting a continuous
representation from the computed data and, in large-scale computations, efficient
data compression [60]. The STNMUM and the ST-IGA with IGA basis functions
in time have been used in many 3D computations. The classes of problems solved
are flapping-wing aerodynamics for an actual locust [22], bioinspired MAVs [23]
and wing-clapping [24], separation aerodynamics of spacecraft [18], aerodynamics
of HAWTs [25] and VAWTs [1], thermo-fluid analysis of ground vehicles and their
tires [29], thermo-fluid analysis of disk brakes [30], flow-driven string dynamics in
turbomachinery [3], and flow analysis of turbocharger turbines [31].

The ST-IGA with IGA basis functions in space enables more accurate represen-
tation of the geometry and increased accuracy in the flow solution. It accomplishes
that with fewer control points, and consequently with larger effective element sizes.
That in turn enables using larger time-step sizes while keeping the Courant number
at a desirable level for good accuracy. It has been used in ST computational flow
analysis of turbocharger turbines [31], flow-driven string dynamics in turbomachin-
ery [3], ram-air parachutes [34], spacecraft parachutes [61], aortas [27], heart valves
[28], tires with road contact and deformation [32], and fluid films [33]. Using IGA
basis functions in space is now also a key part of some of the newest ZSS estimation
methods [62] and related shell analysis [63].

For more on the ST-IGA, see [8]. In the computational flow analyses presented
here, the ST-IGA enables more accurate representation of the turbine and turbo-
machinery geometries, increased accuracy in the flow solution, and using larger
time-step sizes. Integration of the ST-SI with the ST-IGA enables a more accurate
representation of the rotor motion and a mesh motion consistent with that, and we
will describe the ST-SI-IGA in Sect. 1.6.

1.6 ST-SI-IGA

The turbocharger turbine analysis [31] and flow-driven string dynamics in turboma-
chinery [3] were based on the integration of the ST-SI and ST-IGA. The IGA basis
functions were used in the spatial discretization of the fluid mechanics equations
and also in the temporal representation of the rotor and spinning-mesh motion.
That enabled accurate representation of the turbine geometry and rotor motion and
increased accuracy in the flow solution. The IGA basis functions were used also in
the spatial discretization of the string structural dynamics equations. That enabled
increased accuracy in the structural dynamics solution, as well as smoothness in the
string shape and fluid dynamics forces computed on the string.



200 Y. Bazilevs et al.

The ram-air parachute analysis [34] and spacecraft parachute compressible-flow
analysis [61] were based on the integration of the ST-IGA, the ST-SI version that
weakly enforces the Dirichlet conditions, and the ST-SI version that accounts for the
porosity of a thin structure. The ST-IGA with IGA basis functions in space enabled,
with relatively few number of unknowns, accurate representation of the parafoil
and parachute geometries and increased accuracy in the flow solution. The volume
mesh needed to be generated both inside and outside the parafoil. Mesh generation
inside was challenging near the trailing edge because of the narrowing space. The
spacecraft parachute has a very complex geometry, including gores and gaps. Using
IGA basis functions addressed those challenges and still kept the element density
near the trailing edge of the parafoil and around the spacecraft parachute at a
reasonable level. In the heart valve analysis [28], the ST-SI-IGA, beyond enabling a
more accurate representation of the geometry and increased accuracy in the flow
solution, kept the element density in the narrow spaces near the leaflet contact
areas at a reasonable level. In computational analysis of flow around tires with road
contact and deformation [32], the ST-SI-IGA enables a more accurate representation
of the geometry and motion of the tire surfaces, a mesh motion consistent with that,
and increased accuracy in the flow solution. It also keeps the element density in the
tire grooves and in the narrow spaces near the contact areas at a reasonable level. In
addition, we benefit from the mesh generation flexibility provided by using SIs.

An SI provides mesh generation flexibility by accurately connecting the two
sides of the solution computed over nonmatching meshes. This type of mesh
generation flexibility is especially valuable in complex-geometry flow computations
with isogeometric discretization, removing the matching requirement between the
NURBS patches without loss of accuracy. This feature was used in the flow
analysis of heart valves [28], turbocharger turbines [31], and spacecraft parachute
compressible-flow analysis [61].

For more on the ST-SI-IGA, see [34]. In the computations presented here, the
ST-SI-IGA is used for the reasons given and as described in the first paragraph of
this section.

1.7 General-Purpose NURBS Mesh Generation Method

While the IGA provides superior accuracy and high-fidelity solutions, to make its
use even more practical in computational flow analysis with complex geometries,
NURBS volume mesh generation needs to be easier and more automated. The
general-purpose NURBS mesh generation method introduced in [9] serves that
purpose. The method is based on multi-block-structured mesh generation with
established techniques, projection of that mesh to a NURBS mesh made of patches
that correspond to the blocks, and recovery of the original model surfaces. The
recovery of the original surfaces is to the extent they are suitable for accurate and
robust computations. The method targets retaining the refinement distribution and
element quality of the multi-block-structured mesh that we start with. Because good
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techniques and software for generating multi-block-structured meshes are easy to
find, the method makes general-purpose NURBS mesh generation relatively easy.

Mesh-quality performance studies for 2D and 3D meshes, including those for
complex models, were presented in [64]. A test computation for a turbocharger
turbine and exhaust manifold was also presented in [64], with a more detailed
computation in [31]. The mesh generation method was used also in the pump-
flow analysis part of the flow-driven string dynamics presented in [3] and in the
aorta flow analysis presented in [27]. The performance studies, test computations,
and actual computations demonstrated that the general-purpose NURBS mesh
generation method makes the IGA use in fluid mechanics computations even more
practical.

For more on the general-purpose NURBS mesh generation method, see [9, 64].
In the computations presented here, the method is used for the vertical-axis wind
turbine and for the pump-flow part of the flow-driven string dynamics.

1.8 Outline of the Remaining Sections

We provide the governing equations in Sect. 2. The ST-VMS and ST-SI are
described in Sect. 3, and the ALE-VMS in Sect. 4. Some of the other computational
methods used are described in Sect. 5. In Sect. 6 we provide some brief comments
on the parallel computations. In Sects. 7 and 8, as examples of the ST computations,
we present flow-driven string dynamics in a pump and aerodynamics of a VAWT. In
Sect. 9, as an example of the ALE computations, we present FSI of a HAWT with
rotor–tower coupling. The concluding remarks are given in Sect. 10.

2 Governing Equations

2.1 Incompressible Flow

LetΩt ⊂ R
nsd be the spatial domain with boundary Γt at time t ∈ (0, T ), where nsd

is the number of space dimensions. The subscript t indicates the time-dependence
of the domain. The Navier–Stokes equations of incompressible flows are written on
Ωt and ∀t ∈ (0, T ) as

ρ

(
∂u
∂t
+ u · ∇∇∇u− f

)
−∇∇∇ · σσσ = 0, (1)

∇∇∇ · u = 0, (2)

where ρ, u and f are the density, velocity, and body force. The stress tensor
σσσ(u, p) = −pI + 2μεεε(u), where p is the pressure, I is the identity tensor,
μ = ρν is the viscosity, ν is the kinematic viscosity, and the strain rate εεε(u) =
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(∇∇∇u+ (∇∇∇u)T
)
/2. The essential and natural boundary conditions for Eq. (1) are

represented as u = g on (Γt )g and n · σσσ = h on (Γt )h, where n is the unit normal
vector and g and h are given functions. A divergence-free velocity field u0(x) is
specified as the initial condition.

2.2 Structural Mechanics

In this article we will not provide any of our formulations requiring fluid and
structure definitions simultaneously; we will instead give reference to earlier journal
articles where the formulations were presented. Therefore, for notation simplicity,
we will reuse many of the symbols used in the fluid mechanics equations to
represent their counterparts in the structural mechanics equations. To begin with,
Ωt ⊂ R

nsd and Γt will represent the structure domain and its boundary. The
structural mechanics equations are then written, on Ωt and ∀t ∈ (0, T ), as

ρ

(
d2y
dt2

− f
)
−∇∇∇ · σσσ = 0, (3)

where y and σσσ are the displacement and Cauchy stress tensor. The essential and
natural boundary conditions for Eq. (3) are represented as y = g on (Γt )g and n ·σσσ =
h on (Γt )h. The Cauchy stress tensor can be obtained from

σσσ = J−1FSFT , (4)

where F and J are the deformation gradient tensor and its determinant, and S is the
second Piola–Kirchhoff stress tensor. It is obtained from the strain-energy density
function ϕ as follows:

S ≡ ∂ϕ

∂E
, (5)

where E is the Green–Lagrange strain tensor:

E = 1

2
(C− I) , (6)

and C is the Cauchy–Green deformation tensor:

C ≡ FT · F. (7)

From Eqs. (5) and (6),

S = 2
∂ϕ

∂C
. (8)
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2.3 Fluid–Structure Interface

In an FSI problem, at the fluid–structure interface, we will have the velocity and
stress compatibility conditions between the fluid and structure parts. The details on
those conditions can be found in Section 5.1 of [53].

3 ST-VMS and ST-SI

We include from [1, 65] the ST-VMS and ST-SI methods.
The ST-VMS is given as

∫

Qn

wh · ρ
(
∂uh

∂t
+ uh · ∇∇∇uh − fh

)
dQ+

∫

Qn

εεε(wh) : σσσ(uh, ph)dQ

−
∫

(Pn)h

wh · hhdP +
∫

Qn

qh∇∇∇ · uhdQ+
∫

Ωn

(wh)+n · ρ
(
(uh)+n − (uh)−n

)
dΩ

+
(nel)n∑

e=1

∫

Qen

τSUPS

ρ

[
ρ

(
∂wh

∂t
+ uh · ∇∇∇wh

)
+∇∇∇qh

]
· rM(uh, ph)dQ

+
(nel)n∑

e=1

∫

Qen

νLSIC∇∇∇ · whρrC(uh)dQ

−
(nel)n∑

e=1

∫

Qen

τSUPSwh ·
(

rM(uh, ph) · ∇∇∇uh
)

dQ

−
(nel)n∑

e=1

∫

Qen

τ 2
SUPS

ρ
rM(uh, ph) ·

(
∇∇∇wh

)
· rM(uh, ph)dQ = 0, (9)

where

rM(uh, ph) = ρ
(
∂uh

∂t
+ uh · ∇∇∇uh − fh

)
−∇∇∇ · σσσ(uh, ph), (10)

rC(uh) = ∇∇∇ · uh (11)

are the residuals of the momentum equation and incompressibility constraint. The
test functions associated with the velocity and pressure are w and q. A superscript
“h” indicates that the function is coming from a finite-dimensional space. The
symbolQn represents the ST slice between time levels n and n+1, (Pn)h is the part
of the lateral boundary of that slice associated with the traction boundary condition
h, andΩn is the spatial domain at time level n. The superscript “e” is the ST element
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counter, and nel is the number of ST elements. The functions are discontinuous in
time at each time level, and the superscripts “−” and “+” indicate the values of
the functions just below and just above the time level. See [1, 29, 54, 55, 57] for
the definitions used here for the stabilization parameters τSUPS and νLSIC. For more
ways of calculating the stabilization parameters in finite element computation of
flow problems, see [32, 56, 58].

Remark 1 The ST-SUPS method can be obtained from the ST-VMS method by
dropping the eighth and ninth integrations.

In the ST-SI, labels “Side A” and “Side B” represent the two sides of the SI. We
add boundary terms to Eq. (9). The boundary terms are first added separately for the
two sides, using test functions whA and qhA and whB and qhB. Putting them together, the
complete set of terms added becomes

−
∫

(Pn)SI

(
qhBnB − qhAnA

)
· 1

2

(
uhB − uhA

)
dP

−
∫

(Pn)SI

ρwhB ·
1

2

((
F hB −

∣∣∣F hB
∣∣∣
)

uhB −
(
F hB −

∣∣∣F hB
∣∣∣
)

uhA
)

dP

−
∫

(Pn)SI

ρwhA ·
1

2

((
F hA −

∣∣∣F hA
∣∣∣
)

uhA −
(
F hA −

∣∣∣F hA
∣∣∣
)

uhB
)

dP

+
∫

(Pn)SI

(
nB · whB + nA · whA

) 1

2

(
phB + phA

)
dP

−
∫

(Pn)SI

(
whB − whA

)
·
(

n̂B · μ
(
εεε(uhB)+ εεε(uhA)

))
dP

− γACI

∫

(Pn)SI

n̂B · μ
(
εεε
(

whB
)
+ εεε

(
whA
))
·
(

uhB − uhA
)

dP

+
∫

(Pn)SI

μC

h

(
whB − whA

)
·
(

uhB − uhA
)

dP, (12)

where

F hB = nB ·
(

uhB − vhB
)
, (13)

F hA = nA ·
(

uhA − vhA
)
, (14)

h =
(
h−1

B + h−1
A

2

)−1

, (15)

hB = 2 (nBnB : G)−
1
2 (for Side B), (16)

hA = 2 (nAnA : G)−
1
2 (for Side A), (17)
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n̂B = nB − nA

‖nB − nA‖ . (18)

Here, G is a kind of metric tensor (given in [58]), which is different than the
metric tensor in Sect. 4, (Pn)SI is the SI in the ST domain, v is the mesh velocity,
γACI = 1, andC is a nondimensional constant. We note that the expressions given by
Eqs. (15)–(17) were introduced in published form in [31]. At the same time we note
that the element lengths given by Eqs. (16) and (17) are straightforward extensions
of the one in [58]. For explanation of the added SI terms, see [1].

4 ALE-VMS

The ALE-VMS formulation is posed on a spatial domain Ω that is discretized into
elements Ωe. While {Ωe}, Ω , and its boundary Γ are time-dependent, when there
is no risk of confusion, we drop the subscript t to simplify notation. The superscript
h indicates association with discrete function spaces defined over Ω , which moves
with the velocity ûh, which is the same as the mesh velocity vh in Sect. 3. The semi-
discrete formulation is given as

∫

Ω

wh · ρ
(
∂uh

∂t

∣∣∣∣
x̂
+ (uh − ûh) · ∇uh − fh

)
dΩ +

∫

Ω

εεε(wh) : σσσ(uh, ph) dΩ

−
∫

Γ

wh · hhdΓ +
∫

Ω

qh∇ · uh dΩ

− β
∫

Γ

wh · ρ
{(

uh − ûh
)
· n
}

− uhdΓ

+
∑

e

∫

Ωe
τSUPS

(
(uh − ûh) · ∇wh + 1

ρ
∇qh

)
· rM(uh, ph) dΩ

+
∑

e

∫

Ωe
νLSIC∇∇∇ · whρrC(uh) dΩ

−
∑

e

∫

Ωe
τSUPSwh ·

(
rM(uh, ph) · ∇∇∇uh

)
dΩ

−
∑

e

∫

Ωe

τ 2
SUPS

ρ
rM(uh, ph) ·

(
∇∇∇wh

)
· rM(uh, ph) dΩ

+
∑

e

∫

Ωe

(
τSUPSrM(uh, ph) · ∇wh

)
τ ·
(
τSUPSrM(uh, ph) · ∇uh

)
dΩ = 0,

(19)
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where ∂(·)
∂t

∣∣∣
x̂

is the time derivative taken with respect to the fixed reference

coordinates x̂ of the spatial configuration, β (≥ 0) is associated with the backflow
stabilization (see Remark 2), and {·}_ isolates the negative part of its argument. The
additional stabilization parameter τ is defined as

τ =
(
τSUPSrM(uh, ph) · (G) · τSUPSrM(uh, ph)

)−1/2
, (20)

where G generalizes element size to physical elements mapped through x(ξξξ) from
a parametric parent element: Gij = ξk,iξk,j .
Remark 2 Unsteady flow computations may sometimes diverge due to significant
inflow through the Neumann boundary Γ h

f ; this is known as backflow divergence.
In order to preclude backflow divergence, a backflow stabilization method (the β
term in Eq. (19)) originally proposed in [66] and further studied in [67] is employed
in our ALE-VMS formulation.

Remark 3 The τ term of Eq. (19) is not derived from VMS analysis; it is an
additional residual-based stabilization term that is included to provided extra
stabilizing dissipation near steep solution gradients while maintaining consistency
with the exact solution. It was introduced in [68] and bears resemblance to the
DCDD [54] and YZβ [69, 70] discontinuity-capturing methods.

5 Other Computational Methods

5.1 String Dynamics

The string in the flow-driven string dynamics is modeled with bending-stabilized
cable elements [71], using the IGA with cubic NURBS basis functions. This gives
us a higher-order method, and smoothness in the structure shape. It also gives us
smoothness in the fluid forces acting on the string. Because a string is a very thin
structure, its influence on the flow will be very small. In the one-way-dependence
model, we compute the influence of the flow on the string dynamics, while avoiding
the formidable task of computing the influence of the string on the flow. The fluid
mechanics forces acting on the string are calculated with the method described
in [10] for computing the aerodynamic forces acting on the suspension lines of
spacecraft parachutes. Contact between the string and solid surfaces is handled with
the Surface-Edge-Node Contact Tracking (SENCT-FC) method [72], which is a later
version of the SENCT introduced in [55].
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5.2 Particle Residence Time

In flow-driven string dynamics in pumps, the residence time computations help us
to have a simplified but quick understanding of the string behavior. The residence
time in domain Ωs ⊂ Ω can be written as

dR

dt
= s(x), (21)

where s(x) = 1 on Ωs and s(x) = 0 on Ω \Ωs . The Eulerian form of the equation
is

∂R

∂t
+ u · ∇∇∇R = s, (22)

and we solve that with the ST-SUPG supplemented with the YZβ discontinuity
capturing [69]. Integration of Eq. (22) over Ωs gives

∫

Ωs

(
∂R

∂t
+ u · ∇∇∇R

)
dΩ =

∫

Ωs

sdΩ. (23)

We assume∇∇∇ · u = 0 and obtain

d

dt

(∫

Ωs

RdΩ

)
+
∫

Γs

n · (u− v) RdΓ = V, (24)

where Γs is the boundary of Ωs and

V =
∫

Ωs

dΩ. (25)

We define the flow-rate-averaged residence time as

Rout = 1

Q

∫

(Γs)out

n · uRdΓ, (26)

Q =
∫

(Γs)out

n · udΓ, (27)

where subscript “out” indicates the outlet.
In a typical setting, there is no flow coming back to Ωs , u = v on the part of

Γs corresponding to the rotor, and v = 0 at the inlet and outlet. If we assume that
first term in Eq. (24) is zero, Rout = V/Q. If any part ofΩs is enclosed by a closed
surface with zero normal velocity, the first term cannot be zero.
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Remark 4 More explanation on the residence time computation and related con-
cepts can be found in [73] in the ALE framework. Here we do the computation in
the ST framework.

5.3 Rotation Representation with Constant Angular Velocity

We use quadratic NURBS functions, as described in [7], to represent a circular-arc
trajectory. We discretize time and position as follows:

t =
nent∑

α=1

T α(Θt (θ))t
α, (28)

x =
nent∑

α=1

T α(Θx(θ))xα. (29)

Here nent is the number of temporal element nodes, T α is the basis function, Θt(θ)
and Θx(θ) are the secondary mappings for time and position, and tα and xα are the
time and position values corresponding to the basis function T α . The basis functions
could be finite element or NURBS basis functions. For the circular arc, nent = 3 and
they are quadratic NURBS. The secondary mapping concept above was introduced
in [6], and the velocity can be expressed as follows:

dx
dt
=
(
nent∑

α=1

dT α

dΘx

dΘx
dθ

xα
)(

nent∑

α=1

dT α

dΘt

dΘt
dθ
tα

)−1

, (30)

leading to

dx
dt
=
(
nent∑

α=1

dT α

dΘx
xα
)(

nent∑

α=1

dT α

dΘt
tα

)−1 (
dΘx
dθ

dθ

dΘt

)
. (31)

Thus, the speed along the path can be specified only by modifying the secondary
mapping. For a circular arc, two methods were introduced in [7]; one is modifying
the secondary mapping for position and the other one is modifying both such that dt

dθ
is constant. We note that, in theory, the secondary mapping selections do not make
any difference as long as the relationship dΘx

dΘt
is the same.

In our implementation, to keep the process general, we search for the parametric
coordinate θ by using an iterative solution method [7]. We use the latter set of the
secondary mappings, having constant dt

dθ . We first calculate the time corresponding
to each integration point, and then calculate Θx and Θt to interpolate the position
and velocity from Eqs. (29) and (31).
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6 Parallel Computations

Parallel computations with the ST methods go as far back as 1992 [74], with the
3D computations reported as early as 1993 [75]. All computations reported in this
chapter were carried out on parallel computing platforms. The number of cores used
in a typical computation ranges from 96 to 576. Because the computations were
mostly for the purpose of testing a new computational method, parallel efficiency
was not a high priority. Still the efficiencies we see are high enough to justify the
use of the maximum number of cores available in the computer resources we have.

7 ST Computation: Flow-Driven String Dynamics in a Pump

7.1 Flow Analysis of the Pump

We use a vortex pump with six blades, including two higher-height blades. The
rotor diameter is roughly 150 mm. We are unable to provide more details due to the
industrial-partner restrictions. The quadratic NURBS mesh used in the computation
is shown in Fig. 1. The number of control points and elements are 838,222 and
544,466. The pump is used for water, the density is 998.2 kg/m3, and the kinematic
viscosity 8.7×10−7 m2/s. The rotation speed is 2544 rpm. The boundary conditions
are shown in Fig. 2. At the inlet, Q = 5.46×10−3 m3/s. The time-step size is
9.8×10−5 s. The number of nonlinear iterations per time step is 3, and the number
of GMRES iterations per nonlinear iteration is 100. Stabilization parameters of the
ST-VMS are those given by Eqs. (2.4)–(2.6), (2.8), and (2.10) in [1].

Figure 3 shows the second invariant of the velocity gradient tensor. The turbulent
nature of the flow is well represented. The solution is compared to the experimental
data from Professor Kazuyoshi Miyagawa’s group (Waseda University). The con-
ditions here are close to those corresponding to the best-efficiency operating point,
and the relative error in the efficiency compared to the experimental data is less than
1.5%. The computed flow field from rotations 17 through 21 is stored with the ST-C

Fig. 1 Control mesh. Red circles represent the control points
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Fig. 2 Boundary conditions.
Flow velocity at the inlet
(red), zero-stress at the outlet
(blue), and no-slip on the wall
and rotor (green). The
circular interface (yellow) is
the SI

t = 0.094 s t = 0.119 s

0.0 3.0 6.0

Fig. 3 Isosurfaces of the second invariant value of velocity gradient tensor, colored by the velocity
magnitude (m/s)

[60] as the data compression method and is used repeatedly in the string dynamics
and residence time computations.

7.2 String Dynamics in the Pump

The string has 1.5 mm diameter and circular-shape cross-section. We compute with
three different string lengths, 10, 50, and 70 mm. The Young’s modulus and density
are 5.0 MPa and 960 kg/m3. We use a cubic NURBS mesh, with 19 control points
and 16 elements. There are 17 different initial positions, shown in Fig. 4. The initial
string velocity is 2.0 m/s, in the flow direction. The time-step size is 9.8×10−4 s,
which is ten times smaller than the time-step size used in the flow computation. The
number of nonlinear iterations per time step is 3, with full GMRES (i.e. until no
more Krylov vectors can be found).
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Fig. 4 The initial positions
of the strings at the inlet plane
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Figures 5, 6, and 7 show, for the three different string lengths, the string with the
initial position at A (see Fig. 4). In all three cases the string first hits the top of the
blade, and then moves to the edge of the pump casing.

7.3 Residence Time for the Pump

We set the entire pump domain as Ωs for the residence time. The computation is
carried out with a time-step size of 4.9×10−4 s, which is five times larger than the
time-step size used in the flow computation. The number of nonlinear iterations per
time step is 2, and the number of GMRES iterations per nonlinear iteration is 30.

The flow-rate-averaged residence time over the outlet is shown in Fig. 8. After
1.2 s it reaches the maximum value. Figure 9 shows the spatial distribution of the
residence time at the end of the computation. The residence time under the rotor is
much higher than the residence time at the outlet, which is around 0.4 s. This means
that this region is not connected to the main flow.

7.4 Discussion

We discuss the relationship between the string dynamics and the residence time.
Figure 10 show, for the string with length 70 mm, the time histories of the string
centroid positions in radius and height. We see some strings moving in circles along
the bottom edges of the casing. These strings tend to stay there and cannot rise
up. Therefore they stay in the pump forever. This can be correlated with the high
residence time at the bottom of the pump (Fig. 9).
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Fig. 5 String with length 10 mm and initial position at A

8 ST Computation: Aerodynamics of a VAWT

We present test computations with 2D and 3D models of the aerodynamics of a
VAWT. The wind turbine has four support columns at the periphery. Figure 11
shows the wind turbine. The design is modeled after the wind turbine in [76]. The
rotor diameter is 16 m, and the machine height is 45 m. The three blades are based
on the NACA0015 airfoil, and the cord length and the blade height are 1.5 m and
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Fig. 6 String with length 50 mm and initial position at A. We note that the string leaves the casing
before the sixth picture

18 m, respectively. There are two connecting rods from the hub to each blade, and
the blades are supported without any tilt with respect to the tangent of the rotation
path. The four support columns are cylindrical with circular cross-section, and they
provide enough strength to support the rotor, which is estimated to weigh 3 tons.

We carry out the computations at a constant free-stream velocity U∞ and with
prescribed rotor motion at constant angular velocity. The rotation is clockwise
viewed from the top. The air density and kinematic viscosity are 1.205 kg/m3
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Fig. 7 String with length 70 mm and initial position at A

and 1.511×10−5 m2/s. We extract from the computations the instantaneous power
coefficient CPOW, defined as

CPOW = P

1
2ρU

3∞A
, (32)

where A and P are the projected area of the wind turbine and the power generated.
We report the power coefficient as a function of the blade orientation as represented
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Fig. 8 Flow-rate-averaged
residence time over the outlet.
Computed value

(
Rout

)
and

theoretical value (V/Q)

0.0 0.4 0.8 1.2 1.6
0.0

0.1

0.2

0.3

0.4

0.5

Time (s)

R
(s
)

Theoretical value Computed value

Fig. 9 Residence time (s) on
a cut plane at t = 1.297 s,
end of the computation

by the angle φ seen in Fig. 12. With that orientation, the flow speed seen by a blade
can be calculated as

V = U∞
√

1− 2λ sinφ + λ2, (33)

where λ is the tip-speed ratio (TSR). The symbol T will denote the rotation cycle.
The computational-domain size is 62.5 times the rotor diameter in the wind

direction, with a distance of 18.75 times the rotor diameter between the upstream
boundary and the center of the rotor. In the cross-wind direction, the domain size is
37.5 times the rotor diameter. In the 3D case, the domain height is ten times the rotor
diameter. The mesh position is represented by quadratic NURBS in time. There are
three patches that are 120◦ each, and the secondary mapping introduced in [7] is
used to achieve the constant angular velocity. The free-stream velocity is 12.56 m/s.
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Fig. 10 String with length 70 mm. Time histories of the string centroid positions in radius and
height
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Fig. 11 A VAWT

Fig. 12 Blade orientation as
represented by the angle φ

Fig. 13 2D VAWT. Model
geometry and SI

8.1 2D Computations

We compute with TSR = 4. The model geometry and the SI are shown in Fig. 13.
The boundary conditions are U∞ at the inflow, zero stress at the outflow, slip at
the lateral boundaries, and no-slip on the rotor and support column surfaces. The
prescribed velocity is evaluated at the integration points, with the values extracted
from the NURBS representation of the rotor surface velocity.
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Fig. 14 2D VAWT. Mesh 3 (control mesh)

Table 1 2D VAWT Mesh nc ne

Mesh 1 7510 5756

Mesh 2 26,432 23,024

Mesh 3 98,812 92,096

Number of control points
(nc) and elements (ne)

We use three different meshes. We start with Mesh 1, and obtain the other
two meshes by knot insertion. We halve the knot spacing to get Mesh 2, and
halve it again to get Mesh 3. Figure 14 shows Mesh 3. The number of control
points and elements are shown in Table 1. We compute for ten rotations, with two
different time-step sizes. The two time-step sizes selected translate to �φ = 2◦
and �φ = 1◦ per time step. The number of nonlinear iterations per time step is 5,
and the number of GMRES iterations per nonlinear iteration is 300. The first three
nonlinear iterations are based on the ST-SUPS, and the last two the ST-VMS. The
stabilization parameters are those given by Eqs. (4)–(8), and (10) in [31]. In the
ST-SI (see Eq. (12)), we set C = 2.

Figure 15 shows CPOW, averaged over the three blades in the last three rotations.
The results from different combinations of spatial and temporal resolutions are
mostly in agreement with each other. The cases with the lower spatial resolution
and highest Courant number show some differences in parts of the rotation cycle.
Figures 16 and 17 show, for Mesh 1 with �φ = 1◦ and Mesh 2 with �φ = 2◦,
the velocity magnitude in the wake of the support columns located at φ = 180◦ and
φ = 90◦. Overall, the wakes are captured better with smaller Courant numbers, and
a reasonable level of mesh refinement is needed to obtain good values for CPOW.

8.2 3D Computation

We compute with TSR = 3. The boundary conditions are no-slip on all turbine
surfaces, U∞ at the inflow, zero stress at the outflow, and slip at the lateral
boundaries. We do not try to resolve the boundary layer near the ground since the
blades are positioned relatively high (see Fig. 11). The no-slip condition on the blade
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Fig. 15 2D VAWT. CPOW,
averaged over the three blades
in the last three rotations

and arm surfaces are enforced weakly. All prescribed velocities are evaluated at the
integration points with the values extracted from the NURBS representation of the
prescribed motion.

Figure 18 shows the mesh. There are 1,544,460 control points and 955,477
quadratic NURBS elements. We compute for one rotation, with a single time-step
size. The time-step size selected translates to �φ = 1◦ per time step. The number
of nonlinear iterations per time step is 4, and the number of GMRES iterations per
nonlinear iteration is 300. The first two nonlinear iterations are based on the ST-
SUPS, and the last two the ST-VMS. The stabilization parameters are those given
by Eqs. (2.4)–(2.6), (2.8) and (2.10) in [1]. In the ST-SI (see Eq. (12)), we set C = 4,
and for the weakly enforced no-slip condition, we set C = 2.

Figure 19 shows the second invariant of the velocity gradient tensor near a
blade, at different positions of the blade. Figure 20 shows the instantaneous power
coefficient. The total CPOW averaged over the rotation cycle is about 0.16.

9 ALE Computation: HAWT FSI with Rotor–Tower
Coupling

Dynamic coupling of a spinning rotor with flexible blades to a deformable tower
presents a challenge for standalone structural and coupled FSI simulations. In this
section we address this challenge by using a penalty-based approach that allows load
transfer between the spinning rotor and tower (see Fig. 21). This approach presents
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Fig. 16 2D VAWT. Velocity magnitude for Mesh 1 with �φ = 1◦ in the wake of the support
columns located at φ = 180◦ (left) and φ = 90◦ (right), for t/T ranging from 0.2 to 1
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Fig. 17 2D VAWT. 2D VAWT. Velocity magnitude for Mesh 2 with �φ = 2◦ in the wake of the
support columns located at φ = 180◦ (left) and φ = 90◦ (right), for t/T ranging from 0.2 to 1
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Fig. 18 3D VAWT. Control
mesh

Fig. 19 3D VAWT. Isosurfaces corresponding to a positive value of the second invariant of the
velocity gradient tensor, colored by the velocity magnitude (m/s), at φ = 0◦, 90◦, 180◦, and 270◦

an alternative technique to that proposed in [77], and naturally accommodates
coupling of distinct structural models (e.g., shells and solids) and discretizations
(e.g., finite elements and IGA).
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Fig. 20 3D VAWT. CPOW
for the three blades (red, blue,
green) and the total CPOW, at
instants defined by the
position of the red blade
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Fig. 21 Illustration of rotor
and tower structural domains
ΩR and ΩT and combined
deformation accounting for
the interaction ofΩR andΩT

ΩR

ΩT

9.1 Formulation of the Rotor–Tower Penalty Coupling

In a wind turbine, the rotor hub is connected to the nacelle by the main shaft that
transfers the rotational motion of the rotor hub to the gearbox. Since we do not wish
to model the drivetrain operation directly, a simplified rotor–tower coupling strategy
is required. We develop such a strategy by exploiting a penalty-based technique. For
this, we first define the regions on both the rotor and nacelle surfaces that interact
with one other, and denote them by Γ1 (rotor side) and Γ2 (nacelle side). These
regions, which are assumed to have a circular shape, are highlighted using distinct
colors in Fig. 22. We then design the penalty operator, which precludes all relative
motion between Γ1 and Γ2 except for relative rotation about the rotor axis. This
is achieved, conceptually, by using an overconstrained truss-like system to link the
two interaction surfaces. More specifically, the change of distance between a point
on one surface and every point on the opposing surface, as shown in Fig. 22a, is
penalized. Figure 22b illustrates all penalized distances between the two surfaces.
If the set of current distances (see Fig. 22c) is not the same as the set of reference
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Fig. 22 Key concepts of the penalty-based methodology for rotor–tower coupling. (a) A set of
distances between a point on a surface and points on another surface. (b) A set of distances in the
reference configuration. (c) A set of distances in the current configuration. (d) Total rotation angle

distances (see Fig. 22b), the penalty term will produce forces to keep the current
distances the same as the reference distances. The remaining challenge is to remove
the forces associated with the relative spinning motion. For this, the distances in the
reference configuration are computed from the rotated configuration of the rotor.
The latter requires calculation of the total rotation angle θ (see Fig. 22d).

With these considerations, the potential form of the penalty term becomes

Πp ≡ β
2

∫

Γ1

∫

Γ2

(‖x1 − x2‖ −
∥∥Xr1 − Xr2

∥∥)2 dΓ2dΓ1, (34)
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where β is the penalty constant, x1 and x2 are the current positions of the two
interaction surfaces, and Xr1 and Xr2 are the reference positions of the two interaction
surfaces after taking their relative rotation into account. To arrive at the contribution
of the penalty term to the weak form of the structural mechanics problem, we take
a variation of Πp with respect to x1 and x2 to obtain

δΠp =∂Πp
∂x1

· δx1 + ∂Πp
∂x2

· δx2

=β
∫

Γ1

∫

Γ2

(δx1 − δx2) ·
(‖x1 − x2‖ −

∥∥Xr1 − Xr2
∥∥) x1 − x2

‖x1 − x2‖dΓ2dΓ1.

(35)

In the discrete setting, the above integrals are approximated using numerical quadra-
ture. Because only quadrature-point locations and weights are needed to formulate
the method, it is well suited for coupling of distinct models and discretizations for
the different structural components, which we do in this work.

9.2 Rotor and Tower Models and Meshes

A 3D model of the Hexcrete tower is constructed parametrically using the computer-
aided design (CAD) software Rhinoceros 3D and the Grasshopper algorithmic
modeling plugin for Rhinoceros (see [78] for details of the parametric modeling
methodology). The profile of the tower is hexagonal with smaller hexagonal
columns at each corner (see Fig. 23). The tower is comprised of two prismatic
sections, located at the top and bottom of the structure, and two intermediate sections
with unique rates of taper (see Fig. 23). The cylindrical nacelle is also modeled
as part of the tower and approximated considered as a solid block. The tower is
discretized using 295,332 linear tetrahedral elements. The columns have a Young’s
modulus 51.36 GPa, whereas the panels have a Young’s modulus 47.23 GPa.
The density and Poisson’s ratio of both are assumed to be 2392 kg/m3 and 0.2,
respectively. The nacelle has a Young’s modulus 500 GPa, Poisson’s ratio 0.2, and
density 741 kg/m3 to produce a realistically stiff structure with a mass of 82 metric
tons. Given these design characteristics, the combined tower and nacelle structure
has a mass of approximately 1662 metric tons.

For the NREL 5 MW rotor design, we use the geometry definition provided
in [79] to generate an initial blade model using the Grasshopper algorithmic
modeling plugin for Rhinoceros. We then scale the blade by a factor appropriate
to achieve a 108 m rotor and convert the model to a T-spline geometry description.
Three such blades are then attached to a hub with a precone angle of 2.5◦ to produce
the final rotor model. A simplified blade structural model is considered in this work.
Internal shear webs are not modeled, and an isotropic material with an assumed
thickness distribution is used (more details can be found in [80]). The Young’s
modulus and Poisson’s ratio are set to 55.2 GPa and 0.2, respectively. The density is



226 Y. Bazilevs et al.

Prism 1
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Taper 2
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6.7m

71.3 m

130.0 m

137.3 m

Fig. 23 CAD model of the Hexcrete tower (left) and a section of the tower solid mesh (right)

Fig. 24 T-spline mesh of the rotor surface

set to 2500 kg/m3. Material properties and shell thickness distribution are selected
such that the rotor has a mass of 60,000 kg, and such that the blade undergoes
reasonable deflection and has a natural frequency of 0.705 Hz. This frequency was
calculated using a simple proportional scaling law [81] applied to the original NREL
5 MW blade natural frequency of 0.870 Hz. Figure 24 shows the rotor model, where
the T-spline mesh consists of 23,244 C1-continuous cubic elements and 25,151
control points.
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Fig. 25 Air speed contours at a planar cut (left) and wind-turbine deflected shape (right). The
undeformed structure is shown in gray and the deformed structure is shown in light green

9.3 Results

The FSI simulation is performed at the rated wind speed of 11.4 m/s. Figure 25
shows the flow visualization of the full wind turbine configuration, and the
deflection of the tower and blades. The figure clearly demonstrates that the rotor and
tower displacements are coupled while the rotor is spinning. To assess the penalty-
coupling error Eint we define it as

Eint ≡
∫
Γ1

∫
Γ2

(‖x1 − x2‖ −
∥∥Xr1 − Xr2

∥∥)2 dΓ2dΓ1
∫
Γ1

∫
Γ2

∥∥Xr1 − Xr2
∥∥2 dΓ2dΓ1

, (36)

and plot it a function of time in Fig. 26. The figure clearly shows that the coupling
error, defined as a relative, dimensionless quantity, is very small.
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Fig. 26 Penalty coupling
error as a function of time
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10 Concluding Remarks

We have described how the challenges encountered in computational analysis of
wind turbines and turbomachinery are being addressed by the ALE-VMS and
ST-VMS methods and isogeometric discretization. The computational challenges
include turbulent rotational flows, complex geometries, MBI, such as the rotor
motion, and the FSI, such as the FSI between the wind turbine blade and the air.
The ALE-VMS and ST-VMS serve as the core computational methods. They are
supplemented with special methods like the ST-ALE and ST-SI, weak enforcement
of the no-slip boundary conditions, and ST-IGA with NURBS basis functions
in time. We described the core methods and some of the special methods. We
presented, as examples of challenging computations performed, computational
analysis of a HAWT, a VAWT, and flow-driven string dynamics in pumps. The
examples demonstrate the power and scope of the core and special methods in
computational analysis of wind turbines and turbomachinery.
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Variational Multiscale Flow Analysis in
Aerospace, Energy and Transportation
Technologies

Kenji Takizawa, Yuri Bazilevs, Tayfun E. Tezduyar, and Artem Korobenko

1 Introduction

Computational flow analysis is now a valuable engineering tool in aerospace,
energy and transportation technologies. It is bringing solution in many classes of
challenging problems. Examples are spacecraft parachute analysis for the landing-
stage parachutes [1], cover-separation parachutes [2] and the drogue parachutes [3],
spacecraft aerodynamics [2], ram-air parachutes [4], compressible-flow spacecraft
parachute aerodynamics [5], thermo-fluid analysis of ground vehicles and their
tires [6], flow around tires with road contact and deformation [7], thermo-fluid
analysis of disk brakes [8], flow analysis of turbocharger turbines [9], wind-turbine
aerodynamics and fluid–structure interaction (FSI) [10], more specifically, vertical-
axis wind turbines [11], floating wind turbines [12], wind turbines in atmospheric
boundary layer (ABL) flow [13], and fatigue damage in wind-turbine blades [14].
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The computational challenges encountered in these classes of problems include
complex geometries, moving boundaries and interfaces (MBI), FSI, turbulent flows,
rotational flows, and large problem sizes.

Our core methods in addressing the computational challenges are the Residual-
Based Variational Multiscale (RBVMS) [15, 16], ALE-VMS [17] and Space–Time
VMS (ST-VMS) [18]. methods. We supplement the core methods with a number of
special methods targeting specific classes of problems. The special methods used
in combination with the ST-VMS include the ST Slip Interface (ST-SI) method
[19], ST Isogeometric Analysis (ST-IGA) [20, 21], Multi-Domain Method (MDM)
[22], and the “ST-C” data compression method [23]. The special methods used in
combination with the ALE-VMS include weak enforcement of no-slip boundary
conditions [24] and “sliding interfaces” [25] (the acronym “SI” will also indicate
that).

As examples of the challenging computations performed, we present aerody-
namic analysis of a ram-air parachute, thermo-fluid analysis of a freight truck and
its rear set of tires, and aerodynamic and FSI analysis of two back-to-back wind
turbines in ABL flow.

1.1 ST-VMS and ST-SUPS

The ST-VMS and ST-SUPS are versions of the Deforming-Spatial-Domain/Stabilized
ST (DSD/SST) method [26], which was introduced for computation of flows with
MBI, including FSI. The ST-SUPS is a new name for the original version of the
DSD/SST, with “SUPS” reflecting its stabilization components, the Streamline-
Upwind/Petrov-Galerkin (SUPG) [27] and Pressure-Stabilizing/Petrov-Galerkin
(PSPG) [26] stabilizations. The ST-VMS is the VMS version of the DSD/SST. The
VMS components of the ST-VMS are from the RBVMS. The five stabilization
terms of the ST-VMS include the three that the ST-SUPS has, and therefore the
ST-VMS subsumes the ST-SUPS. In MBI computations the ST-VMS and ST-SUPS
function as moving-mesh methods. Moving the fluid mechanics mesh to follow
an interface enables mesh-resolution control near the interface and, consequently,
high-resolution boundary-layer representation near fluid–solid interfaces. Because
of the higher-order accuracy of the ST framework (see [18]), the ST-SUPS and
ST-VMS are desirable also in computations without MBI.

The ST-SUPS and ST-VMS have been applied to many classes of challenging
FSI, MBI, and fluid mechanics problems (see [28] for a comprehensive summary
of the computations prior to July 2018). The classes of problems include spacecraft
parachute analysis for the landing-stage parachutes [1], cover-separation parachutes
[2] and the drogue parachutes [3], wind-turbine aerodynamics for horizontal-
axis wind turbine (HAWT) rotors [29], full HAWTs [30] and vertical-axis wind
turbines (VAWTs) [19], flapping-wing aerodynamics for an actual locust [31],
bioinspired MAVs [32] and wing-clapping [33], blood flow analysis of cerebral
aneurysms [34], stent-treated aneurysms [35], aortas [36] and heart valves [37],
spacecraft aerodynamics [2], thermo-fluid analysis of ground vehicles and their



Variational Multiscale Flow Analysis in Aerospace, Energy and Transportation. . . 237

tires [6], thermo-fluid analysis of disk brakes [8], flow-driven string dynamics in
turbomachinery [38], flow analysis of turbocharger turbines [9], flow around tires
with road contact and deformation [7], fluid films [39], ram-air parachutes [4], and
compressible-flow spacecraft parachute aerodynamics [5].

In the flow analyses presented here, the ST framework provides higher-order
accuracy in a general context. The VMS feature of the ST-VMS addresses the
computational challenges associated with the multiscale nature of the unsteady flow.
The moving-mesh feature of the ST framework enables high-resolution computation
near the truck body as it undergoes heave motion.

1.2 ALE-VMS, RBVMS, and ALE-SUPS

The ALE-VMS [17] is the VMS version of the ALE [40]. It succeeded the ST-
SUPS [26] and ALE-SUPS [41] and preceded the ST-VMS. The VMS components
are from the RBVMS [15, 16]. It is the moving-mesh extension of the RBVMS
formulation of incompressible turbulent flows proposed in [16], and as such, it
was first presented in [17] in the FSI context. The ALE-SUPS, RBVMS, and
ALE-VMS have also been applied to many classes of challenging FSI, MBI, and
fluid mechanics problems. The classes of problems include ram-air parachute FSI
[41], wind-turbine aerodynamics and FSI [42, 43], more specifically, VAWTs [43],
floating wind turbines [12], wind turbines in atmospheric boundary layers [43], and
fatigue damage in wind-turbine blades [14], patient-specific cardiovascular fluid
mechanics and FSI [44, 45], biomedical-device FSI [46, 47], ship hydrodynamics
with free-surface flow and fluid–object interaction [48], hydrodynamics and FSI of
a hydraulic arresting gear [49], hydrodynamics of tidal-stream turbines with free-
surface flow [50], passive-morphing FSI in turbomachinery [51], bioinspired FSI
for marine propulsion [52], bridge aerodynamics and fluid–object interaction [53],
stratified incompressible flows [54], and compressible-flow gas-turbine analysis
[55]. Recent advances in stabilized and multiscale methods may be found for
stratified incompressible flows in [54], for divergence-conforming discretizations
of incompressible flows in [56], and for compressible flows with emphasis on gas-
turbine modeling in [55].

In the flow analyses presented here, the VMS feature of the ALE-VMS addresses
the computational challenges associated with the multiscale nature of the unsteady
flow. The moving-mesh feature of the ALE framework enables high-resolution
computation near the wind-turbine blades.

1.3 ALE-SI and ST-SI

The ALE-SI was introduced in [25] to retain the desirable moving-mesh features
of the ALE-VMS in computations with spinning solid surfaces, such as a turbine
rotor. The mesh covering the spinning surface spins with it, retaining the high-
resolution representation of the boundary layers. The method was in the context of
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incompressible-flow equations. Interface terms added to the ALE-VMS to account
for the compatibility conditions for the velocity and stress at the SI accurately
connect the two sides of the solution. The ST-SI was introduced in [19], also in
the context of incompressible-flow equations, to retain the desirable moving-mesh
features of the ST-VMS and ST-SUPS in computations with spinning solid surfaces.
The starting point in its development was the ALE-SI. Interface terms similar to
those in the ALE-SI are added to the ST-VMS to accurately connect the two sides of
the solution. An ST-SI version where the SI is between fluid and solid domains was
also presented in [19]. The SI in this case is a “fluid–solid SI” rather than a standard
“fluid–fluid SI” and enables weak enforcement of the Dirichlet boundary conditions
for the fluid. The ST-SI introduced in [8] for the coupled incompressible-flow and
thermal-transport equations retains the high-resolution representation of the thermo-
fluid boundary layers near spinning solid surfaces. These ST-SI methods have been
applied to aerodynamic analysis of vertical-axis wind turbines [19], thermo-fluid
analysis of disk brakes [8], flow-driven string dynamics in turbomachinery [38],
flow analysis of turbocharger turbines [9], flow around tires with road contact and
deformation [7], fluid films [39], aerodynamic analysis of ram-air parachutes [4],
and flow analysis of heart valves [37].

In another ST-SI version presented in [19] the SI is between a thin porous
structure and the fluid on its two sides. This enables dealing with the porosity in
a fashion consistent with how the standard fluid–fluid SIs are dealt with and how
the Dirichlet conditions are enforced weakly with fluid–solid SIs. This version
also enables handling thin structures that have T-junctions. This method has been
applied to incompressible-flow aerodynamic analysis of ram-air parachutes with
fabric porosity [4]. The compressible-flow ST-SI methods were introduced in [5],
including the version where the SI is between a thin porous structure and the fluid
on its two sides. Compressible-flow porosity models were also introduced in [5].
These, together with the compressible-flow ST SUPG method [57], extended the
ST computational analysis range to compressible-flow aerodynamics of parachutes
with fabric and geometric porosities. That enabled ST computational flow analysis
of the Orion spacecraft drogue parachute in the compressible-flow regime [58].

In the computations here, with the ALE-SI we are able to handle the interaction
between the spinning rotor and stationary tower. The ST-SI enables dealing with the
fabric porosity of the ram-air parachute.

1.4 Stabilization Parameters

The ST-SUPS, ALE-SUPS, RBVMS, ALE-VMS, ST-VMS, ALE-SI, and ST-SI all
have some embedded stabilization parameters that play a significant role (see [19,
59]). There are many ways of defining these stabilization parameters (for examples,
see [6, 7, 60–64]). The stabilization-parameter definitions used in the computations
reported in this article can be found from the references cited in the sections where
those computations are described.
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1.5 Discontinuity-Capturing Term

The thermo-fluid analysis methods based on the SUPG/PSPG formulation of the
coupled incompressible-flow and thermal-transport equations were presented in
[61]. The methods were described in the ALE context since the description followed
a section on the ALE formulation with SUPG and PSPG stabilizations and a
reader who sees the methods in the ALE context can easily imagine them in the
ST context. The methods presented in [61] included discontinuity-capturing (DC)
options for both sets of equations as well as stabilization and DC parameters for the
thermal-transport equation. The options for the DC parameters were based on those
introduced with the “DCDD stabilization” [60] and “YZβ shock-capturing” [65].
These thermo-fluid analysis methods were successfully used in [66] in a number
of 2D test computations as well as in a 3D computation with a simplified model
of air circulation and cooling in a small data center. A new element length scale
option applicable to the stabilization parameters for both the incompressible-flow
and thermal-transport equations was introduced in [6]. The new length scale option
is applicable also to the DC parameter for the thermal-transport equation.

In the flow analyses presented here, we use the YZβ shock-capturing in the
thermo-fluid analysis of a freight truck and its rear set of tires. We use it for the
thermal-transport equation. The DC parameter is the one given in [61], which was
based on the DC parameter introduced with the YZβ shock-capturing, with the
element length scale option introduced in [6].

1.6 ST-IGA

The ST-IGA is the integration of the ST framework with isogeometric discretization,
motivated by the success of NURBS meshes in spatial discretization [17, 25, 44, 67].
It was introduced in [18]. Computations with the ST-VMS and ST-IGA were first
reported in [18] in a 2D context, with IGA basis functions in space for flow past
an airfoil, and in both space and time for the advection equation. Using higher-
order basis functions in time enables getting full benefit out of using higher-order
basis functions in space (see the stability and accuracy analysis given in [18] for the
advection equation).

The ST-IGA with IGA basis functions in time enables, as pointed out and
demonstrated in [18, 20], a more accurate representation of the motion of the solid
surfaces and a mesh motion consistent with that. It also enables more efficient
temporal representation of the motion and deformation of the volume meshes, and
more efficient remeshing. These motivated the development of the ST/NURBS
Mesh Update Method (STNMUM) [20, 63]. The STNMUM has a wide scope that
includes spinning solid surfaces. With the spinning motion represented by quadratic
NURBS in time, and with sufficient number of temporal patches for a full rotation,
the circular paths are represented exactly. A “secondary mapping” [18] enables also
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specifying a constant angular velocity for invariant speeds along the circular paths.
The ST framework and NURBS in time also enable, with the ST-C, extracting a
continuous representation from the computed data and, in large-scale computations,
efficient data compression [23]. We will describe that in Sect. 1.9. The STNMUM
and the ST-IGA with IGA basis functions in time have been used in many 3D
computations. The classes of problems solved are flapping-wing aerodynamics for
an actual locust [31], bioinspired MAVs [32] and wing-clapping [33], separation
aerodynamics of spacecraft [2], aerodynamics of HAWTs [34] and VAWTs [19],
thermo-fluid analysis of ground vehicles and their tires [6], thermo-fluid analysis
of disk brakes [8], flow-driven string dynamics in turbomachinery [38], and flow
analysis of turbocharger turbines [9].

The ST-IGA with IGA basis functions in space enables more accurate represen-
tation of the geometry and increased accuracy in the flow solution. It accomplishes
that with fewer control points, and consequently with larger effective element sizes.
That in turn enables using larger time-step sizes while keeping the Courant number
at a desirable level for good accuracy. It has been used in ST computational flow
analysis of turbocharger turbines [9], flow-driven string dynamics in turbomachin-
ery [38], ram-air parachutes [4], spacecraft parachutes [58], aortas [36], heart valves
[37], tires with road contact and deformation [7], and fluid films [39]. Using IGA
basis functions in space is now also a key part of some of the newest ZSS estimation
methods [68] and related shell analysis [69].

For more on the ST-IGA, see [21]. In the computational flow analyses presented
here, the ST-IGA enables more accurate representation of the ram-air parachute
geometry, increased accuracy in the flow solution, and using larger time-step sizes.
Integration of the ST-SI with the ST-IGA enables dealing with the fabric porosity of
the ram-air parachute, and we will describe the ST-SI-IGA in Sect. 1.7.

1.7 ST-SI-IGA

The turbocharger turbine analysis [9] and flow-driven string dynamics in turboma-
chinery [38] were based on the integration of the ST-SI and ST-IGA. The IGA basis
functions were used in the spatial discretization of the fluid mechanics equations
and also in the temporal representation of the rotor and spinning-mesh motion.
That enabled accurate representation of the turbine geometry and rotor motion and
increased accuracy in the flow solution. The IGA basis functions were used also in
the spatial discretization of the string structural dynamics equations. That enabled
increased accuracy in the structural dynamics solution, as well as smoothness in the
string shape and fluid dynamics forces computed on the string.

The ram-air parachute analysis [4] and spacecraft parachute compressible-flow
analysis [58] were based on the integration of the ST-IGA, the ST-SI version that
weakly enforces the Dirichlet conditions, and the ST-SI version that accounts for the
porosity of a thin structure. The ST-IGA with IGA basis functions in space enabled,
with relatively few number of unknowns, accurate representation of the parafoil
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and parachute geometries and increased accuracy in the flow solution. The volume
mesh needed to be generated both inside and outside the parafoil. Mesh generation
inside was challenging near the trailing edge because of the narrowing space. The
spacecraft parachute has a very complex geometry, including gores and gaps. Using
IGA basis functions addressed those challenges and still kept the element density
near the trailing edge of the parafoil and around the spacecraft parachute at a
reasonable level. In the heart valve analysis [37], the ST-SI-IGA, beyond enabling a
more accurate representation of the geometry and increased accuracy in the flow
solution, kept the element density in the narrow spaces near the leaflet contact
areas at a reasonable level. In computational analysis of flow around tires with road
contact and deformation [7], the ST-SI-IGA enables a more accurate representation
of the geometry and motion of the tire surfaces, a mesh motion consistent with that,
and increased accuracy in the flow solution. It also keeps the element density in the
tire grooves and in the narrow spaces near the contact areas at a reasonable level. In
addition, we benefit from the mesh generation flexibility provided by using SIs.

An SI provides mesh generation flexibility by accurately connecting the two
sides of the solution computed over nonmatching meshes. This type of mesh
generation flexibility is especially valuable in complex-geometry flow computations
with isogeometric discretization, removing the matching requirement between the
NURBS patches without loss of accuracy. This feature was used in the flow
analysis of heart valves [37], turbocharger turbines [9], and spacecraft parachute
compressible-flow analysis [58].

For more on the ST-SI-IGA, see [4]. In the computations presented here, the ST-
SI-IGA is used for the reasons given and as described in the first paragraph of this
section.

1.8 MDM

The MDM [22] was introduced for flow computations where the purpose is to
predict the long-wake flow generated by a primary object and, in some cases,
also to determine the influence of this wake flow on a secondary object placed
far downstream. In the MDM, the problem domain is divided into a sequence of
overlapping subdomains. The primary object is placed in the primary subdomain.
The subsequent subdomains are used for computing the long-wake flows and flow
past secondary objects. The inflow-boundary condition for the primary subdomain
is the free-stream velocity. The inflow-boundary condition for each subsequent
subdomain is the velocity extracted from the subdomain preceding it. If the outflow
boundary of a subsequent subdomain is also within the subdomain preceding it,
then the stress condition there is also extracted from the preceding subdomain.
Computations over subdomains with no object can be carried out with special,
structured meshes or special flow solvers that take into account the special nature of
the mesh or with completely different flow solvers.
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The 3D applications of the MDM method included flow around a small wing
placed in the wake of a larger wing [22], flow in the wake of a circular cylinder up
to 300 diameters downstream [70], aerodynamics [71], and FSI [72] of a parachute
crossing the far wake of an aircraft. In the case of the cylinder problem, at Reynolds
number 140, it was shown that with the MDM the computations can be extended
sufficiently downstream, and with sufficient accuracy, to successfully capture the
second phase of the Karman vortex street observed in laboratory experiments. In
the case of the parachute crossing the aircraft wake, the computations were based
on the DSD/SST method, and the subdomain containing the parachute was fully
inside the subdomain preceding it.

In the flow analyses presented here, we use a spatially multiscale version of
the MDM in the thermo-fluid analysis of a freight truck and its rear set of tires.
The full global domain serves as the primary subdomain, and the local domain
containing the set of rear tires serves as the secondary subdomain. In this case
the secondary subdomain is fully inside the primary subdomain. The thermo-fluid
computation over the global domain with a reasonable mesh refinement is followed
by a higher-resolution computation over the local domain, with the boundary and
initial conditions coming from the data computed over the global domain. The large
time-history data from the global computation is stored using the ST-C, which we
will explain in Sect. 1.9. The MDM is also used in the aerodynamic and FSI analysis
of two back-to-back wind turbines in ABL flow.

1.9 ST-C

The ST-C [23], which serves here as a data compression method, is based on
continuous temporal representation of the computed data using NURBS basis
functions, with the letter “C” indicating “continuous.” As we compute the flow
field, we store the computed time-dependent data with the ST-C. With the ST-
C, we can represent the data with fewer temporal control points, resulting in
reduced computer storage cost. In one of the two ST-C versions introduced in [23],
the continuous representation is extracted by projection from a solution already
computed. Because we use a successive-projection technique (SPT), with a small
number of temporal NURBS basis functions at each projection, the extraction can
take place as the original solution is being computed, without the need to first
complete the computation and store all that data. This version was named “ST-C-
SPT” in [23].

In the flow analyses presented here, the ST-C-SPT is used in the thermo-fluid
analysis of a freight truck and its rear set of tires. The large time-history data from
the thermo-fluid computation over the global domain of the MDM is stored using
the ST-C-SPT. The stored data is used in the thermo-fluid computation over the local
domain containing the rear set of tires.
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1.10 Examples of the Challenging Computations Performed

1.10.1 Aerodynamic Analysis of a Ram-Air Parachute

This computation is from [4]. A ram-air parachute is a parafoil inflated by the airflow
through the inlets at the leading edge. The parafoil behaves like a wing and has better
control and gliding capability compared to a round parachute. Its usage is quite
common in sports parachuting and special-purpose parachuting that requires good
gliding control and landing precision. Their usage is less common at larger sizes,
and experience with their design, testing and performance evaluation becomes less
and less as the size increases. Wind tunnel testing is not an option for very large
ram-air parachutes, and drop tests would be very costly. That generated a demand
for computational analysis and motivated the development of methods for reliable
analysis (see, for example, [41]).

Reliable analysis of ram-air parachutes, at any practical size, involves a number
of computational challenges. They include accurate representation of the parafoil
geometry, fabric porosity and the complex, multiscale flow behavior encountered
in this class of problems. The FSI between the parachute and the airflow is another
computational challenge, with the challenge level increasing with the parachute size.
Ram-air parachute computations were the earliest reported 3D, coupled parachute
aerodynamics and parachute dynamics computations [73] with the ST-SUPS, and
among the earliest reported 3D parachute FSI computations [41] with the ST-SUPS.

Here we use the ST-VMS and ST-SI-IGA. We use a special-purpose NURBS
mesh generation techniques for the parachute structure and the flow field inside
and outside the parafoil. The special-purpose mesh generation techniques enable
NURBS representation of the structure and fluid domains with significant geometric
complexity. The test computations we present from [4] are for building a starting
parachute shape and a starting flow field associated with that parachute shape, which
are the first two key steps in FSI analysis.

1.10.2 Thermo-Fluid Analysis of a Freight Truck and Its Rear Set of Tires

This computation is from [6]. Increasing the accuracy in calculating the heat transfer
rates from the tires is the main objective. The multiscale challenges are due to the
turbulent nature of the flow and due to the tires being rather small compared to the
entire truck. The thermo-fluid-structure analysis of a tire is very complex. Here, we
assume that the tire temperature is given. This assumption is justified because the
tire temperature depends on the driving history, which represents a much longer
time scale compared to the time scale of the surrounding air. To make the point, the
truck body is 12 m long, and at a driving speed of 80 km/h, a fluid particle takes only
0.54 s to travel the full length of the truck. With that, we can decouple the problem
into thermo-fluid analysis and tire thermo-structure analysis. Here we focus only on
the thermo-fluid part.
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In our thermo-fluid analysis, the road-surface temperature is higher than the free-
stream temperature, and the tire-surface temperature is even higher. The analysis
includes the heat from the engine and exhaust system. This is done with a reasonably
realistic representation of the rate by which that heat transfer takes place and the
surface geometry of the engine and exhaust system over which the heat transfer takes
place. The analysis also includes the heave motion of the truck body, prescribed as
a periodic motion with a given semi-amplitude and frequency.

1.10.3 Aerodynamic and FSI Analysis of Two Back-to-Back HAWTs in
Turbulent ABL Flow

This computation is from [74]. To obtain high-fidelity predictive simulation results
for wind turbines, 3D modeling is essential. However, simulation of wind turbines
at full scale engenders a number of challenges. The flow is fully turbulent,
requiring highly accurate methods and increased grid resolution. The presence of
boundary layers, where turbulence is created, complicates the situation further.
Wind-turbine blades are long and slender structures, with complex distribution of
material properties, for which the numerical approach must have good efficiency and
approximation power, and avoid locking. Wind-turbine simulations involve moving
and stationary components, and the fluid–structure coupling must be accurate,
efficient, and robust to preclude divergence of the computations.

Additional modeling challenges stem from realistic scenarios of wind turbines
arranged in arrays, and operating in complex turbulent ABL flows with a wide
range of energy-containing scales and in different atmospheric stability regimes.
Wind turbines positioned downstream operate in the wakes generated by upstream
turbines, and have been observed to generate less power compared to the upstream
turbines. In addition, downstream turbines experience higher variations in aerody-
namic loads, which tend to shorten their fatigue life, leading to premature blade
failure. Depending on the atmospheric stability regime, spacing between turbines,
the underlying surface topology, turbulence intensity, and wind direction and speed,
the power-generation deficit for the downstream turbines may be as high as 40%.

We adopt the MDM technique to carry out the aerodynamic and FSI simulations
of two full-scale, back-to-back HAWTs operating in a stably stratified ABL. The
simulations produce novel data for the rotor structural response as it operates in
shear flow induced by thermal stratification. The simulations also clearly show the
evolution of the upstream-turbine wake leading to a velocity deficit responsible for
a 15% drop in the downstream-turbine efficiency.

1.11 Outline of the Remaining Sections

We provide the governing equations in Sect. 2. The thermo-fluid ST-VMS is
described in Sect. 3, the ALE-VMS in Sect. 4, and some of the special methods
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used in the computations in Sect. 5. In Sect. 6 we provide some brief comments on
the parallel computations. In Sects. 7 and 8, as examples of ST computations, we
present aerodynamic analysis of a ram-air parachute and thermo-fluid analysis of a
freight truck and its rear set of tires. In Sect. 9, as an example of ALE computations,
we present the aerodynamic and FSI simulations of two full-scale, back-to-back
HAWTs operating in a stably stratified ABL. The concluding remarks are given in
Sect. 10.

2 Governing Equations

The Navier–Stokes equations of incompressible flows with thermal coupling and
Boussinesq approximation and the thermal-transport (energy) equation can be
written on the spatial domain Ωt as

ρ

(
∂u
∂t
+ u · ∇∇∇u− f

)
−∇∇∇ · σσσ = 0, (1)

∇∇∇ · u = 0, (2)

ρCp

(
∂θ

∂t
+ u · ∇∇∇θ

)
−∇∇∇ · (κ∇∇∇θ) = 0, (3)

where

ρf = ρ (1− βθ (θ − θref)) aGRAV. (4)

In the momentum equation, ρ, u, and f are the density, velocity, and body force. The
stress tensor σσσ(u, p) = −pI + 2μεεε(u), where p is the pressure, I is the identity
tensor, μ = ρν is the viscosity, ν is the kinematic viscosity, and the strain rate
εεε(u) = (∇∇∇u+ (∇∇∇u)T

)
/2. In the energy equation, Cp, θ , and κ are the constant-

pressure specific heat, temperature, and thermal conductivity. In the expression for
the body force, βθ , θref, and aGRAV are the thermal-expansion coefficient, reference
temperature, and gravitational acceleration. In this mathematical model, ρ and Cp
are assumed to be constants.

The essential and natural boundary conditions associated with Eq. (1) are
represented as u = g on (Γt )g and n · σσσ = h on (Γt )h, where (Γt )g and (Γt )h
are complementary subsets of the boundary Γt , n is the unit outward normal vector,
and g and h are given functions. The essential and natural boundary conditions
associated with Eq. (3) are represented as θ = gθ on (Γt )gθ , and κn · ∇∇∇θ = q
on (Γt )hθ , where (Γt )gθ and (Γt )hθ are complementary subsets of the boundary Γt ,
and gθ and q are given functions.
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Remark 1 If the “1” in Eq. (4) is omitted, then p represents the pressure after the
static-fluid part at θref is subtracted.

In deriving the multiscale ST formulation associated with Eqs. (1)–(3), we find
it more convenient to start from the conservation-law form of the momentum and
energy equations:

∂(ρu)
∂t

+∇∇∇ · (uρu)− ρf−∇∇∇ · σσσ = 0, (5)

∂(ρCpθ)

∂t
+∇∇∇ · (uρCpθ

)−∇∇∇ · (κ∇∇∇θ) = 0. (6)

2.1 Structural Mechanics

In this article we will not provide any of our formulations requiring fluid and
structure definitions simultaneously; we will instead give reference to earlier journal
articles where the formulations were presented. Therefore, for notation simplicity,
we will reuse many of the symbols used in the fluid mechanics equations to
represent their counterparts in the structural mechanics equations. To begin with,
Ωt ⊂ R

nsd and Γt will represent the structure domain and its boundary. The
structural mechanics equations are then written, on Ωt and ∀t ∈ (0, T ), as

ρ

(
d2y
dt2

− f
)
−∇∇∇ · σσσ = 0, (7)

where y and σσσ are the displacement and Cauchy stress tensor. The essential and
natural boundary conditions for Eq. (7) are represented as y = g on (Γt )g and n ·σσσ =
h on (Γt )h. The Cauchy stress tensor can be obtained from

σσσ = J−1FSFT , (8)

where F and J are the deformation gradient tensor and its determinant, and S is the
second Piola–Kirchhoff stress tensor. It is obtained from the strain-energy density
function ϕ as follows:

S ≡ ∂ϕ

∂E
, (9)

where E is the Green–Lagrange strain tensor:

E = 1

2
(C− I) , (10)
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and C is the Cauchy–Green deformation tensor:

C ≡ FT · F. (11)

From Eqs. (9) and (10),

S = 2
∂ϕ

∂C
. (12)

3 Thermo-Fluid ST-VMS

The ST-VMS formulation of Eqs. (1)–(3) was derived in [6] starting from
Eqs. (5), (2), and (6). The formulation is written as follows: find uh ∈ (Shu)n,
ph ∈ (Shp)n and θh ∈ (Shθ )n, such that ∀ wh ∈ (Vhu)n, qh ∈ (Vhp)n and

whθ ∈ (Vhθ )n:

∫

Ωn

(wh)+n · ρ
(
(uh)+n − (uh)−n

)
dΩ +

∫

Qn

wh · ρ
(
∂uh

∂t
+ uh · ∇∇∇uh − fh

)
dQ

−
∫

(Pn)h

wh · hhdP +
∫

Qn

∇∇∇wh : σσσ(uh, ph)dQ+
∫

Qn

qh∇∇∇ · uhdQ

+
∫

Ωn

(whθ )
+
n ρCp

(
(θh)+n − (θh)−n

)
dΩ +

∫

Qn

whθ ρCp

(
∂θh

∂t
+ uh · ∇∇∇θh

)
dQ

−
∫

(Pn)hθ

whθ qhdP +
∫

Qn

∇∇∇whθ · κ∇∇∇θhdQ

+
(nel)n∑

e=1

∫

Qen

τSUPS

ρ

(
ρ

(
∂wh

∂t
+ uh · ∇∇∇wh

)
+∇∇∇qh

)
· rM

(
uh, ph, θh

)
dQ

+
(nel)n∑

e=1

∫

Qen

ρνLSIC∇∇∇ · whrC
(

uh
)

dQ

−
(nel)n∑

e=1

∫

Qen

(τSUPG)θ

Cp
wh · βθ (θh)rE

(
uh, θh

)
aGRAVdQ

−
(nel)n∑

e=1

∫

Qen

τSUPSwh ·
(

rM

(
uh, ph, θh

)
· ∇∇∇uh

)
dQ

−
(nel)n∑

e=1

∫

Qen

τ 2
SUPS

ρ
∇∇∇wh : rM

(
uh, ph, θh

)
rM

(
uh, ph, θh

)
dQ
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+
(nel)n∑

e=1

∫

Qen

(τSUPG)θ

(
∂whθ

∂t
+ uh · ∇∇∇whθ

)
rE

(
uh, θh

)
dQ

−
(nel)n∑

e=1

∫

Qen

τSUPSCpw
h
θ

(
rM

(
uh, ph, θh

)
· ∇∇∇θh

)
dQ

−
(nel)n∑

e=1

∫

Qen

τSUPS(τSUPG)θ

ρ
rM

(
uh, ph, θh

)
· ∇∇∇whθ rE

(
uh, θh

)
dQ = 0.

(13)

HereQn is the slice of the ST domain between the time levels n and n+1, Pn is the
lateral boundary of Qn, (Pn)g and (Pn)h are the complementary subsets of Pn for
the momentum equation, (Pn)gθ and (Pn)hθ are the complementary subsets of Pn
for the energy equation, and (Shu)n, (Shp)n, (Shθ )n, (Vhu)n, (Vhp)n, and (Vhθ )n are the
finite-dimensional ST trial and test function spaces. The functions in these spaces
are continuous within a ST slab, but discontinuous from one ST slab to another,
and the subscript n implies that corresponding to different ST slabs we might have
different discretizations. The notation (·)−n and (·)+n denotes the function values at
tn as approached from below and above. EachQn is decomposed into elementsQen,
where e = 1, 2, . . . , (nel)n, and the subscript n used with nel is for the general case
where the number of ST elements may change from one ST slab to another.

The residuals are defined as

rM(u, p, θ) = ρ
(
∂u
∂t
+ u · ∇∇∇u− f

)
−∇∇∇ · σσσ(u, p), (14)

rC(u) = ∇∇∇ · u, (15)

rE(u, θ) = ρCp

(
∂θ

∂t
+ u · ∇∇∇θ

)
−∇∇∇ · (κ∇∇∇θ). (16)

Remark 2 The 10th integration is the SUPG/PSPG stabilization.

Remark 3 The 11th integration is the LSIC stabilization, with the notation “LSIC,”
introduced in [75], denoting the stabilization based on least-squares on incompress-
ibility constraint.

Remark 4 Because βθ is a function of temperature, in general it will have a fine-
scale component in the VMS formulation. The simplified form seen in the 12th
integration in Eq. (13) was reached by dropping that fine-scale component. In our
current computations, we simplify the model even more and just drop that term. For
the more general case, see [6].

Remark 5 The 13th and 14th integrations are for the cross and Reynolds stresses.

Remark 6 The 15th integration is the SUPG stabilization for the energy equation.
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Remark 7 The 16th and 17th integrations represent the interaction between the
energy equation and the fine-scale velocity.

Remark 8 If we exclude the 13th, 14th, 15th, and 17th integrations, the method
reduces to the thermo-fluid ST-SUPS, which is the ST version of the thermo-fluid
ALE-SUPS method given in [61].

There are various ways of defining the stabilization parameters τSUPS, νLSIC, and
(τSUPG)θ . The stabilization-parameter definitions used in the computations reported
in this article are related to those given in [6, 60, 61]. The precise definitions
can be found from the references cited in the sections where those computations
are described. For more ways of calculating the stabilization parameters in finite
element computation of flow problems, see [7, 62, 64]).

4 ALE-VMS

The ALE-VMS formulation of stratified incompressible flows is posed on a spatial
domain Ω that is discretized into elements Ωe. While {Ωe}, Ω , and its boundary
Γ are time-dependent, when there is no risk of confusion, we drop the subscript t
to simplify notation. The superscript h indicates association with discrete function
spaces defined over Ω , which moves with the velocity ûh. The semi-discrete
formulation is given as

∫

Ω

wh · ρ
(
∂uh

∂t

∣∣∣∣
x̂

+
(

uh − ûh
)
· ∇∇∇uh − fh

)
dΩ

−
∫

Ω

wh · bh dΩ +
∫

Ω

εεε
(

wh
)
: σσσ
(

uh, ph
)

dΩ

−
∫

Γ

wh · hh dΓ +
∫

Ω

qh∇∇∇ · uh dΩ

+
∫

Ω

whθ

(
∂θh

∂t

∣∣∣∣
x̂

+
(

uh − ûh
)
· ∇∇∇θh − f h

)
dΩ

−
∫

Ω

∇∇∇whθ · νθ∇∇∇θh dΩ −
∫

Γ

whθ h
h dΓ

+
nel∑

e=1

∫

Ωe
τSUPS

((
uh − ûh

)
· ∇∇∇wh + ∇∇∇q

h

ρ

)
· rM

(
uh, ph, θh

)
dΩ

+
nel∑

e=1

∫

Ωe
ρνLSIC∇∇∇ · whrC(uh) dΩ
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−
nel∑

e=1

∫

Ωe
τSUPSwh ·

(
rM

(
uh, ph, θh

)
· ∇∇∇uh

)
dΩ

−
nel∑

e=1

∫

Ωe

∇∇∇wh

ρ
:
(
τSUPSrM

(
uh, ph, θh

))
⊗
(
τSUPSrM

(
uh, ph, θh

))
dΩ

+
nel∑

e=1

∫

Ωe
τSUPG

(
uh − ûh

)
· ∇∇∇whθ rE

(
uh, θh

)
dΩ = 0. (17)

Here rM, rC, and rE are the residuals of the momentum, continuity, and temperature
equations, given as

rM(u, p, θ) = ρ
(
∂u
∂t

∣∣∣∣
x̂

+ (u− û
) · ∇∇∇u− f

)
− b−∇∇∇ · σσσ (u, p) , (18)

rC(u) = ∇∇∇ · u, (19)

rE(u, θ) = ∂θ

∂t

∣∣∣∣
x̂

+ (u− û
) · ∇∇∇θ −∇∇∇ · (νθ∇∇∇θ)− f, (20)

and ∂(·)
∂t

∣∣∣
x̂

is the time derivative taken with respect to the fixed reference coordinates

x̂ of the spatial configuration.

The Boussinesq forcing term b in the second line of Eq. (17) takes on the form

b = ρg θ − θ̄
θ0

e3, (21)

where θ̄ is a prescribed background temperature field varying only in the x3-
direction (i.e., vertical direction), θ0 is the reference temperature assumed constant
in the Boussinesq approximation, g is the gravitational-acceleration magnitude, and
e3 is the Cartesian basis vector pointing in the vertical direction. The diffusivity νθ
in the fifth line of Eq. (17) is given by

νθ = κ

ρCp
. (22)

Also in Eq. (17), τSUPS, νLSIC, and τSUPG are the stabilization parameters defined
in [17] as

τSUPS =
(

4

Δt2
+
(

uh − ûh
)
·G
(

uh − ûh
)
+ CIν2G : G

)−1/2

, (23)
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νLSIC = (trG τSUPS)
−1 , (24)

τSUPG =
(

4

Δt2
+
(

uh − ûh
)
·G
(

uh − ûh
)
+ CIν2

θG : G
)−1/2

, (25)

where G is the element metric tensor and

trG =
d∑

i=1

Gii, (26)

Δt is the time-step size, and CI is a positive constant, independent of the mesh size,
derived from an appropriate element-wise inverse estimate (see, e.g., [76]).

Remark 9 In ABL simulations, the Earth rotation effects may be important. For
this, the Coriolis force is added to the momentum-balance equation and takes the
form

f = fcεij3uj ei , (27)

where fc is the Coriolis parameter, εijk’s are the Cartesian components of the
alternator tensor, and ei is the ith Cartesian basis vector.

Remark 10 In the VMS framework, coupling between Navier–Stokes and tem-
perature equations brought about by the Boussinesq approximation gives rise to
additional modeling terms. In particular, it can be shown that the x3-component of
the linear-momentum equation and incompressibility constraint are coupled with
the residual of the advection–diffusion equation, and the following terms are added
to the left-hand side of Eq. (17):

+
nel∑

e=1

∫

Ωe

((
uh − ûh

)
· ∇∇∇wh3 +

1

ρ

∂qh

∂x3

)
τ̄ rE(uh, θh) dΩ. (28)

The stabilization parameter τ̄ may be obtained following the developments in
stabilized methods for advective–diffusive systems presented in [77–79], which
gives the following expression for τ̄ :

τ̄ = − a2

a1
√
a3 + a3

√
a1
, (29)



252 K. Takizawa et al.

where ai’s are given as

a1 = 4

Δt2
+
(

uh − ûh
)
·G
(

uh − ûh
)
+ CIν2G : G,

a2 = 4

Δt

ρg

θ0
,

a3 = 4

Δt2
+
(

uh − ûh
)
·G
(

uh − ûh
)
+ CIν2

θG : G. (30)

Although the numerical examples presented in this article do not make use of these
additional terms, a recent study of stratified turbulent flows [54] showed that these
additional VMS modeling terms can appreciably improve the performance of the
ALE-VMS for this class of problems.

5 Special Computational Methods

5.1 YZβ DC

We add to the formulation given by Eq. (13) the following DC term:

∫

Qn

∇∇∇whθ · κκκDC · ∇∇∇θhdQ, (31)

where

κκκDC = ρCp(νDC)θ I. (32)

The DC parameter is the one given in [61] based on the DC parameter introduced
with the YZβ shock-capturing [65]:

ρCp(νDC)θ = |Z|
Y

Y 2

∥∥∇∇∇θh∥∥2

((
(hRGN)θ

2

)2
∥∥∇∇∇θh∥∥2

Y 2

) β
2

, (33)

where Y is a reference value for θ , and Z = rE
(
uh, θh

)
. To avoid singularity when

‖∇∇∇θh‖ = 0, we modify the expression as

ρCp(νDC)θ = |Z|
Y

Y 2

∥∥∇∇∇θh∥∥2 + εθ 4Y 2

(hRGN)
2
θ

((
(hRGN)θ

2

)2
∥∥∇∇∇θh∥∥2

Y 2

) β
2

, (34)

where εθ is a small nondimensional number. For the definition of the element length
(hRGN)θ , see [6].
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5.2 ST-SI Version for Porosity Modeling

In the ST-SI version where the SI is between a thin porous structure and the fluid on
its two sides (see Sect. 1.3), the porosity velocity is expressed as a function of the
pressure difference between the two sides of the SI:

uhPORO = −P(�ph), (35)

�ph ≡ phA − phB. (36)

The velocity in nB direction is defined as the positive porosity velocity. The
expression P(�ph) can take different forms depending on the nature of the porosity.
Here we use the form

P(�ph) = kPORO�p
h, (37)

where kPORO is the porosity coefficient (see [1]). The normal component of the
velocity is assumed to be continuous, and the tangential component is set to the
tangential component of uhS, where uhS is the structure velocity, and the volume flux
is imposed with the porosity velocity taken into account (see [4] for the complete
set of equations).

5.3 Spatially Multiscale MDM

In the spatially multiscale version of the MDM we have here, the full global domain
serves as the primary subdomain, and the local domain containing the rear set of
tires serves as the secondary subdomain. In this version, the secondary subdomain is
fully inside the primary subdomain. First the thermo-fluid computation is carried out
over the global domain, with a reasonable mesh refinement. The inflow-boundary
conditions are the free-stream velocity and temperature, the outflow-boundary
conditions are zero stress and zero normal heat flux, and the conditions at the top
and side computational boundaries are zero normal velocity, zero tangential stress,
and zero normal heat flux. The large amount of time-history data from the global
computation is stored using the ST-C-SPT.

This is followed by a higher-resolution computation over the local domain.
This gives us increased accuracy in the thermo-fluid analysis, including increased
accuracy in the heat transfer rates from the tires. The boundary conditions at the
inflow and top and side computational boundaries at each time step of the com-
putation are the velocity and temperature extracted from the stored global data at
the corresponding time. The extraction is based on evaluating the temporal NURBS
representation of the velocity at that corresponding time. At the outflow boundary,
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the stress condition is extracted from the stored global data, and the normal heat
flux is set to zero. In general the nodal points of the local-domain boundaries do
not coincide with the nodal points of the global domain. Therefore, spatially, the
data extraction is based on the least-squares projection. If a local-domain boundary
coincides with the global-domain boundary, the boundary condition there is from
the values specified for the global domain.

We note that the MDM gives us the option of using different formulations
in the global and local computations. That includes the option of using different
stabilization and DC parameters, and even different stabilization and DC methods.

5.4 ST-C

As we compute the flow field, the computed data is stored with the ST-C-SPT [23].
This method, which serves as an efficient data compression method in large-scale
computations, is one of the versions of the ST-C method introduced in [23]. In the
ST-C, the ST framework and NURBS in time are used in extracting a continuous
representation from the computed data. With the ST-C, we can represent the data
with fewer temporal control points, resulting in reduced computer storage cost.
In the ST-C-SPT, the continuous representation is extracted by projection from
the solution already computed. Because we use a successive-projection technique,
with a small number of temporal NURBS basis functions at each projection, the
extraction can take place as the original solution is being computed, without the
need to first complete the computation and store all that data.

6 Parallel Computations

Parallel computations with the ST methods go as far back as 1992 [80], with the
3D computations reported as early as 1993 [81]. All computations reported in this
chapter were carried out on parallel computing platforms. The number of cores used
in a typical computation ranges from 96 to 576. Because the computations were
mostly for the purpose of testing a new computational method, parallel efficiency
was not a high priority. Still the efficiencies we see are high enough to justify the
use of the maximum number of cores available in the computer resources we have.

7 ST Computation: Aerodynamic Analysis of a Ram-Air
Parachute

This computation is from [4].
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7.1 Structural Mechanics Computation

A ram-air parachute consists of three parts: canopy, suspension lines, and stabilizers.
Figure 1 shows the parachute. The canopy size is approximately 8 m × 3 m. The
canopy is made of fabric, which is modeled as membrane, with 19 airfoil-shaped
ribs, 17 separating the air cells, and 2 at the ends. Figure 2 shows one of the ribs.
The suspension lines, used by the parachutist to control the parachute, are modeled
as cables. Fabric patches attached to the parachute sides serve as stabilizers.

Figure 3 shows the undeformed configuration, where the membrane parts consist
of mostly flat patches. We note that in the configuration we selected, the suspension
lines have not yet been reeled in.

Figure 4 shows the control mesh in the NURBS representation of the undeformed
configuration. To represent such a complex shape or to add a cable attached to a
surface, some control points coalesce (see Fig. 5). Because of the coalescing, at
some element boundaries we have only C0 continuity. The number of control points
is 3296, with 2250 elements in the membrane parts and 222 elements in the cables.
We use quadratic NURBS.

Fig. 1 Ram-air parachute

Fig. 2 One of the ribs

Fig. 3 Undeformed geometry. Front (left) and side (right) views
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Fig. 4 Undeformed control mesh. Front (left) and side (right) views

Fig. 5 Undeformed control
mesh with red spheres
representing the control
points that coalesced

Table 1 Material properties

Young’s Density Poisson’s Thickness Cross-section
modulus (Pa) (kg/m3) ratio (in) area (mm2)

Membrane 3.8×108 5.0×102 0.3 3×10−3 –

Cable 7.6×1010 1.4×103 – – 8.0

The structural mechanics formulation based on the membrane and cable models
(see [1]) is supplemented with wrinkling and slacking models (see [82]). The
material properties are given in Table 1.

In the computation, we specify the pressure difference between the two sides of
the parafoil surfaces and reel the ends of the suspension lines to the center. Figure 6
shows the pressure difference for the control points of the canopy structure mesh.
We have three different values, and they are, in Pa, 0, 94.1, and 117. The stress vector
is formed based on the control variables, using the surface normal and interpolated
value at each surface location.

The structural mechanics solution is symmetrized with respect to the central
vertical plane by averaging. In addition, we apply an upward body force to keep
the parachute in an upright position. The solution is obtained by computing with a
time-marching algorithm until a steady state is reached.

Figure 7 shows, for the steady-state solution, the control mesh and the surface
represented by that mesh.
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Fig. 6 Pressure difference for the control points of the canopy structure mesh. Surface membranes
have been removed in the right half of the picture to make the ribs visible. The values are, in Pa, 0
(red), 94.1 (green), and 117 (blue)

Fig. 7 Deformed configuration at the steady state. Control mesh and surface represented by that
mesh

7.2 Fluid Mechanics Computations

The density and kinematic viscosity are 1.237 kg/m3 and 1.449×10−5 m2/s. The
glide speed is 12.5 m/s. The computational-domain size is 100 m× 100 m× 100 m.
The parachute is located at 30 m from the inflow boundary.

The surface mesh is the same as the canopy structural mechanics mesh. The
volume mesh needs to be generated both inside and outside the parafoil. Mesh
generation inside is challenging near the trailing edge because of the narrowing
space. Using NURBS meshes for the fluid mechanics computation addresses that
challenge. This keeps the element density near the trailing edge at a reasonable
level. We create the volume mesh in two steps: first we generate a mesh using the
undeformed parafoil shape, which is relatively easier, and then deform that mesh as
the parafoil deforms in the structural mechanics computation. Figure 8 shows the
mesh obtained in these two steps. The number of control points and elements are
149,568 and 233,378. We use quadratic NURBS.

To represent the pressure jump across a parafoil surface, the control variables on
the surfaces have split values. The mesh deformation is computed with the Jacobian-
based stiffening method [81]. Volume meshes for different values of the angle of
attack (α), ranging from −2.0◦ to 12◦, are obtained by deforming the mesh for α =
0◦, and the deformation is driven by the rotation of the parachute canopy from α =
0◦ to the other values of α.

At the inflow boundary we set the velocity, based on the glide speed, to 12.5 m/s,
and at the outflow boundary we set the stress to zero. We use slip conditions at the
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Fig. 8 Fluid mechanics control mesh before (left) and after (right) the structural deformation

0.00.0 20.0

Fig. 9 Vorticity magnitude (s−1) at an instant for α = 0◦ (left) and 12◦ (right)

lateral boundaries, and no-slip condition on the parafoil surfaces. We use the ST-
VMS method. For the stabilization parameters used, see [4]. The time-step size is
5.34×10−3 s, and the number of nonlinear iterations per time step is 3. The number
of GMRES [83] iterations per nonlinear iteration is 300.

Figure 9 shows the vorticity at an instant for α = 0◦ and 12◦. Despite the
coarseness of the meshes, the solutions are smooth and capture well the attached
flow when α = 0◦ and the separated flow when α = 12◦. Figures 10 and 11 show
the pressure coefficient at an instant for α = −2◦, 0◦, 2◦, 4◦, 6◦, 8◦, 10◦, and
12◦. The picture plane is cutting the 9th cell from the right, roughly bisecting it.
The scaling used in computing the pressure coefficient gives a value of 1.0 as
the stagnation (i.e., maximum) pressure. Figure 12 shows the moment coefficient
around the parachutist and the lift/drag ratio. For each α value, the data displayed
was obtained by averaging from the last 2.5 s of the computation.

For α = 0◦, we also compute the flow field with porosity at all parafoil surfaces
except for the top canopy surface. The porosity coefficient is 1.5 CFM. At the
top canopy surface, we enforce the no-slip condition weakly. Figure 13 shows the
vorticity at an instant. Figure 14 shows the normal component of the velocity at an
instant.
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− 1.1 0.0 1.0

Fig. 10 Pressure coefficient at an instant for α = −2◦, 0◦, 2◦, and 4◦

− 1.1 0.0 1.0

Fig. 11 Pressure coefficient at an instant for α = 6◦, 8◦, 10◦, and 12◦
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Fig. 12 Moment coefficient (left) and lift/drag ratio (right)

Fig. 13 Computation with
porosity. Vorticity magnitude
(s−1) at an instant for α = 0◦

0.00.0 20.0

Fig. 14 Computation with
porosity. Normal component
of the velocity (m/s) at an
instant for α = 0◦

0.0 9.7

8 ST Computation: Thermo-Fluid Analysis of a Freight
Truck and Its Rear Set of Tires

This computation is from [6].
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8.1 Problem Setup

The model we use for the freight truck is shown in Fig. 15. The truck is 12.14 m
long, 2.41 m wide, and 3.77 m high. The tire diameter, Dtire, is 1.07 m, and the tire
width is 0.35 m. There are eight rear tires; the inner and outer tires are 0.01 m apart,
and the leading and trailing tires are 0.24 m apart. The truck speed is 80 km/h and
there is no wind, making the free-stream airflow speed relative to the truck, ‖u∞‖
= 80 km/h. This is also the speed of the road relative to the truck. In specifying the
tire rotation, the angular velocity is calculated as ω = 2‖u∞‖/Dtire. The tires are
axisymmetric in the model here, and therefore the tire surface does not need to be
represented by a moving computational boundary. We take into account the heave
motion of the truck body, prescribed as a periodic motion with a semi-amplitude of
10 mm and a frequency of 1.92 Hz.

The free-stream air temperature, θ∞ = 30 ◦C, and the road-surface temperature,
θroad = 50 ◦C. The truck-surface temperature is the same as the free-stream air
temperature, and the tire-surface temperature, θtire = 80 ◦C. The density, based
on θ∞, is 1.205 kg/m3. The viscosity is a function of temperature based on
Sutherland’s formula:

μ = μ0
θ0 + θS

θ + θS

(
θ

θ0

)3/2

, (38)

where μ0 = 1.716×10−5 Pa · s, θ0 = 273 K, and Sutherland’s temperature, θS =
111 K. The thermal conductivity is calculated from the constant-pressure specific
heat, viscosity, and Prandtl number, Pr:

κ = Cp

Pr
μ, (39)

where Cp = 1007 J/(kg · K) and Pr = 0.71. The thermal-expansion coefficient,
βθ = 1/θ , the gravitational acceleration is 9.8 m/s2, and θref = θ∞.

Figure 16 shows the global domain and its dimensions. The inflow boundary is
6.01 m away from the front end of the truck. The conditions at the computational

Fig. 15 Truck model. The
truck is 12.14 m long, 2.41 m
wide, and 3.77 m high
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Fig. 16 Global domain

8.00 m

33.72 m 17.36 m

boundaries are specified as described in Sect. 5.3. On the tire, road, and truck
surfaces, the velocity and temperature are specified. The exception is that, on the
truck surfaces associated with the engine bottom and exhaust pipe, the normal heat
flux is specified based on the heat loss rates given below.

The drag loss for the truck is about 50% of the total loss. Consequently, the
required engine power, P , can be calculated as

P = F · u∞
50%

, (40)

where F is the drag force. From that, we can write

P =
1
2ρCDS‖u∞‖3

50%
, (41)

where CD is the drag coefficient and S is the projected area of the truck. For CD, we
use an approximate value of 1.1, obtained from an earlier computation we carried
out with a somewhat coarser mesh.

Assuming a thermal efficiency of 35%, the total heat generation is P/(35%),
with 65% of that assumed to be lost from the exhaust system and from underneath
the engine. The split between the two is 35% for the exhaust system and 30% for the
engine. This split is based on the experimental data (mass flow rate and temperature
at the engine exit) from a single-cylinder direct-injection diesel engine at Waseda
University. The loss from the exhaust system is split into two: 10% from the exhaust
pipe surface and 25% from the exhaust pipe end. This split is based on a simple heat
transfer model along the pipe. We note that all percentages are based on the total
heat generation. Figure 17 shows the three heat loss locations. These heat losses
are used in specifying the boundary conditions on the engine lower surface, on the
exhaust pipe surface, and at the exhaust pipe end. The boundary conditions are in
terms of the normal heat flux on the engine lower surface and exhaust pipe surface,
and the velocity and temperature at the exhaust pipe end, which are 18.9 m/s and
186 ◦C.

The local domain contains the four rear tires on the left side of the truck, and is
positioned as shown in Fig. 18. Figure 19 shows the dimensions of the local domain.
The boundary conditions are specified consistent with the procedure described in
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Heat loss from the exhaust pipe endHeat loss from the engine

Heat loss from the exhaust pipe surface

Fig. 17 Heat loss locations used in specifying the boundary conditions

Fig. 18 Local domain containing the four rear tires on the left side of the truck

Fig. 19 Dimensions of the
local domain

1.16 m

7.23 m
4.34 m

Sect. 5.3. The inflow boundary is 0.80 m away from the front end of the tires. The
outflow boundary is 4.05 m away from the back end of the tires. The top boundary
is 0.08 m away from the top of the tires. The bottom boundary is the road surface.
The inner side boundary starts at the center plane of the truck and is 0.48 m away
from the inner face of the tires. The outer side boundary is 3.14 m away from
the outer face of the tires, and that leaves a distance of 4.34 m from the global-
domain boundary. We note that according to the procedure described in Sect. 5.3,
the boundary conditions on the tire, road, and truck surfaces are from the values
specified for the global domain.
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8.2 Computations and Results

The meshes are made of all tetrahedral elements. The number of nodes and elements
in the global and local meshes are given in Table 2. We have about 58 million
unknowns in the local-domain computation.

We have layers of refined mesh near the tire surface. The number of layers is
about 5 for the global mesh and 10 for the local mesh. The first-element thickness
in the normal direction near the tire is 10 mm for the global domain and 0.2 mm
for the local domain. In both meshes, for each layer the element thickness in the
normal direction is increasing with a progression ratio of 1.5. The mesh near the
tire is shown in Fig. 20. We note that the mesh in the space between the two closest
faces of the inner and outer tires is treated in a special way. In that narrow space,
there are at least 2 elements in the global computation and 12 elements in the local
computation.

Remark 11 To make the mesh generation simpler, we have a 13-mm gap between
the tire and the road surface.

We use the ST-SUPS in the global computation, and the ST-VMS in the local
computation. For the stabilization parameters used, see [6]. In calculation of the DC
parameter, in the global computation, Y = θtire− θ∞ = 50 ◦C, β = 1, and εθ = 10−20,
In the local computation, Y = 50 ◦C, β = 2, and εθ = 10−20. The time-step size is
4.33×10−3 s in the global computation, and 1.08×10−3 s in the local computation.
The number of nonlinear iterations per time step is 3, and the number of GMRES
iterations per nonlinear iteration is 300. In storing the large amount of time-history
data from the global computation with the ST-C-SPT, we use approximately four
times less points in time, but the data representation is with C2-continuous temporal
basis functions.

Table 2 Number of nodes
(nn) and elements (ne) in the
global and local meshes

nn ne

Global domain 918,753 4,857,973

Local domain 5,809,813 32,986,249

Fig. 20 Mesh resolution in the tangential and normal directions for the global and local domains
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In representing the heave motion, we use cubic B-splines in time, with five
control points for the cycle. There are only three independent control meshes,
corresponding to the up, down, and middle points of the heave motion. The control
meshes corresponding to the up and down points are calculated by solving the
steady-state structural mechanics equations based on the neo-Hookean model with
Jacobian-based stiffening [81]. The mesh corresponding to the middle point of the
heave motion is used as the reference configuration in this nonlinear model.

The global computation is for 1.56 s, and the local computation is from 0.52 s
to 1.56 s. The first 35 time steps of the global computation is used for ramping the
Reynolds number linearly from a value 100 times smaller to its full value. Figures 21
and 22 show the temperature at an instant from the global and local computations.

Fig. 21 Temperature (◦C) at t = 1.04 s from the global computation. Colors from blue to red
indicate temperature values from low to high

Fig. 22 Temperature (◦C) at t = 1.04 s from the local computation. Colors from blue to red
indicate temperature values from low to high
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In reporting the heat transfer rates from the tires, the heat transfer coefficient is
calculated from the expression

α = ĥθ

θtire − θ∞ (42)

and is normalized to the Nusselt number:

Nu = αDtire

κ
, (43)

where ĥθ is the normal heat flux on the tire surface, calculated as ĥθ = κn · ∇∇∇θ .
All tire-specific results are for the outer leading tire. Figure 23 shows the Nusselt
number at an instant from the local computation and the time history of the spatially
averaged Nusselt number from the global and local computations.

Figure 24 shows the time- and circumferentially averaged Nusselt number from
the global and local computations. Because the mesh on the tire surface does
not have axial symmetry, the circumferential averaging is done with a rotating
“averaging mesh.” The data is projected from the actual mesh to the averaging
mesh as it makes a full rotation with 500 equal rotation increments, and the values
collected to each node during the rotation are averaged. In general the averaging
mesh does not have the same construction as the actual mesh; in the averaging we
do here, it does. The time averaging is done over the last heave period.
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Fig. 23 Nusselt number at t = 1.04 s from the local computation and time history of the spatially
averaged Nusselt number from the global and local computations
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Fig. 24 Time- and circumferentially averaged Nusselt number from the global (left) and local
(center) computations and the profiles (right) in the axial direction

9 ALE Computation: Aerodynamic and FSI Analysis of Two
Back-to-Back HAWTs in Turbulent ABL Flow

In this section, the techniques described are applied to the simulation of two back-
to-back NREL 5 MW wind turbines [84] operating in ABL flow. Each turbine has
a rotor with 61 m blades mounted on an 80 m tower and operating at constant,
fixed rotor speed of 9 rpm. This rotor speed gives the optimal tip-speed ratio for
8 m/s wind [84], which is also the geostrophic wind speed used in the present
computations. The material presented in this section is taken from [74].

9.1 Computational Setup and Boundary Conditions

Two wind turbines are positioned one behind the other at a distance of 480 m,
which corresponds to four rotor diameters. The wake generated by the upstream
turbine needs to be accurately computed over a long domain before it impacts
the downstream turbine, which poses a significant computational challenge due
to a very large problem size. To circumvent this difficulty, the MDM is adopted
in the present work to efficiently separate the two turbine domains. In the present
work the MDM is employed as follows. The problem domain is divided into three
subdomains (see Fig. 25 for dimensions and notation). Domains labeled Turbine
1 and Turbine 2 contain the upstream and downstream turbines, respectively, and
domain labeled Box contains the space between the turbines. The three domains are
simulated in a sequential manner. Velocity and temperature boundary conditions at
the inflow boundary of Turbine 1, as well as lateral boundaries of all subdomains, are
obtained from a standalone 3D LES computation of a stratified ABL with a uniform
grid size of 5 m. This stratified flow computational model [85], which can be run
in DNS or LES modes, makes use of a mixed spectral/finite-difference algorithm
and a subgrid model based on dynamic eddy viscosity and diffusivity. Nodal values



268 K. Takizawa et al.
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Fig. 25 The three subdomains in the multi-domain wind-turbine simulation. Dimensions are in m
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Fig. 26 Data flow between the subdomains. Velocity and temperature collected at location 1 are
applied as inlet boundary conditions at location 2. Velocity and temperature collected at location
3 are applied as inlet boundary conditions at location 4. At all lateral boundaries velocity and
temperature boundary conditions come from a standalone spectral/fine-difference LES

of the velocity and temperature boundary conditions are obtained by interpolating
the finite-difference solution from the structured grid of the LES simulation to
the unstructured grids of the wind-turbine simulations. This data transfer strategy,
employing the same dataset as in the present work, was successfully tested for
the rotor-only ABL simulation in [13]. The background temperature θ̄ is set to
260 K up to 100 m with an overlying inversion of strength 0.01 K/m for all
domains. The geostrophic wind speed is set to 8 m/s, and the Coriolis parameter
to fc = 1.39×10−4. Velocity and temperature inflow-boundary conditions for Box
are obtained using a similar data transfer strategy, where, in this case, the data is
obtained by interpolating the solution on a plane positioned 10 m behind the turbine
during pure aerodynamic simulation on Turbine 1. Inflow-boundary conditions for
Turbine 2 are obtained by interpolating the solution on the outflow plane of Box
(see Fig. 26 for details.)
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Fig. 27 Pressure profile used at the outflow boundary of all subdomains

Traction boundary conditions are prescribed at the outlet boundaries of all sub-
domains. To generate the traction values, a simulation in Turbine 1 is performed first
with the wind turbine removed, and with zero outlet traction boundary conditions.
The inlet tractions produced as a result of this computation, shown in Fig. 27, are
then assigned as outlet boundary conditions for all subdomains. A similar strategy
was successfully employed in [13], as well as in [6] to perform a detailed thermo-
fluid analysis of the rear tires of a ground vehicle.

The subdomains are discretized using triangular prisms in the boundary layer
region near the wind-turbine rotors, and tetrahedra elsewhere (see Fig. 28). For
Turbine 1 and Turbine 2 the boundary-layer mesh design is based on that reported
in [10]. For Turbine 1 a total of 7,824,602 elements are used with a 4 m element
length on the outer boundaries. A finer grid resolution with 2 m element length
is used on a plane behind the upstream turbine where inlet data is collected for
the Box simulation. The Box domain, which has a refined inner region to more
accurately represent the wake turbulence, is discretized using 15,436,631 elements.
The Turbine 2, with a total of 9,153,426 elements, also contains a refined inner
region in front of the turbine for better resolution. The time-step size is set to 10−4 s
for the Turbine 1 and Turbine 2 simulations, and to 10−2 s for the Box simulation.

9.2 Aerodynamics Simulation

Pure aerodynamics simulation results, which are also referred as “CFD,” are
reported in this section. During the CFD simulations the wind turbine rotor is
considered as a rigid body. Figure 29 shows the velocity and temperature contours
on the domain center plane. No discernible discontinuity between the subdomains
is observed. A slight growth of the shear layer from the upper edge of the upstream-
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Fig. 28 Meshes used in the
multi-domain wind-turbine
aerodynamics and FSI
simulations. Top-to-bottom:
Turbine 1, Box, Turbine 2

turbine rotor can also be seen in Fig. 29. The bottom shear layer grows much more
rapidly, due to higher turbulent mixing and presence of the tower.

Figure 30 shows the vorticity isosurfaces. Rotor-tip vortices of the upstream
turbine maintain a helical pattern for a distance of about one rotor diameter. They
later break up, and eventually merge with vortices shed from the root and tower
to form larger structures at a distance between two and three rotor diameters (see
Fig. 30). These larger flow structures impact the downstream-turbine rotor and
tower, and break up together with the rotor-tip vortices. The helical pattern of the
rotor-tip vortices for the downstream turbine is only maintained for a short distance
behind the rotor. This enhanced turbulent mixing gives a faster growth of the shear
layer behind the downstream turbine.

Remark 12 When simulating ABL flows, the computational domain should be large
enough to account for the wake drift due to side wind and Coriolis force. Figure 31
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Fig. 29 2D slice of the air speed (top) and temperature (bottom)

Fig. 30 3D view of the vorticity isosurfaces colored by the air speed

shows the front view of the vorticity isosurfaces, where the wake drift is clearly
seen. While in the present simulations wake drift is not as significant, for stronger
side winds the computational domain needs to have a larger spanwise dimension.

Figure 32 shows the air speed, averaged over six rotor revolutions, at different
locations along the centerline as a function of the vertical coordinate. Air speed
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Fig. 31 Front view of the
vorticity isosurfaces colored
by the air speed
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Fig. 32 Air speed averaged over six rotor revolutions and plotted at different locations along the
centerline as a function of the vertical coordinate

profile at the inlet corresponds to that imposed from the LES simulation. A short
distance past Turbine 1 the profile appears distorted, and slowly begins to recover
with increasing distance from the upstream turbine. By the location of Turbine 2
the profile begins to recover up to the hub height and above the upper-blade tip.
However, qualitative differences w.r.t. the inflow profile, e.g., less near-ground shear
and a higher shear above the top of the upper rotor, may be observed. In between
the hub height and upper-blade tip locations, one can clearly see the velocity deficit,
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which is on the order of 1–2 m/s. This velocity deficit leads to the power-production
drop, as discussed in the next section.

9.3 FSI Simulation

In this section we present FSI simulations of the same multi-domain setup.
The wind-turbine geometry, materials, and mesh, which is comprised of 13,273
quadratic NURBS shell elements, are taken from [74]. Figure 33 shows the aero-
dynamic torque acting on each blade of the upstream-turbine rotor, and compares
the pure aerodynamics (labeled “CFD”) and FSI results. The FSI simulation curves
exhibit low frequency modes coming from the blade flapwise bending motions,
as well as high-frequency modes coming from the blade axial torsion motions.
These modes are obviously not present in the CFD curves, which underscore the
importance of including FSI in the wind-turbine modeling, especially if one is
interested in predicting the remaining useful fatigue life of wind-turbine structural
components (see, e.g., [14]).

Figure 34 shows a comparison of the aerodynamic torque acting on the upstream
and downstream turbines. The results confirm power losses for the downstream
turbine of 10–15% relative to the upstream turbine, which are due to the velocity
deficit in the upstream-turbine wake. Also note that the amplitude of high-frequency
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Fig. 33 Time history of the aerodynamic torque for each blade of the upstream turbine. Compar-
ison of pure aerodynamics (labeled “CFD”) and FSI simulation results. See Fig. 25 for the blade
numbering
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Fig. 34 Time history of the
aerodynamic torque from FSI
simulations of the upstream
(T1) and downstream (T2)
turbines. Aerodynamic torque
for uniform wind speed of
8 m/s from [84] is shown for
comparison
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oscillations due to the blade torsional motions is a little higher for the downstream
turbine, which is due to higher turbulence intensity in the upstream-turbine wake
than in the free stream. The nominal aerodynamic torque from the NREL baseline
design for a uniform wind speed of 8 m/s [84] is also plotted for comparison
to underscore the importance of including realistic boundary layer flow in the
aerodynamics and FSI modeling of wind turbines at full scale.

10 Concluding Remarks

We have described how we are addressing the challenges faced in computational
flow analysis in aerospace and transportation technologies, bringing solution in
challenging problems such as aerodynamics of parachutes, thermo-fluid analysis
of ground vehicles and tires, and wind turbines operating in turbulent ABL flows.
The computational challenges include complex geometries, MBI, FSI, turbulent
flows, rotational flows, and large problem sizes. Our core computational methods
in addressing the computational challenges are the RBVMS, ALE-VMS, and ST-
VMS. The special methods used in combination with the core methods include the
ALE-SI, ST-SI, YZβ DC, ST-IGA, ST-SI-IGA, MDM, and ST-C data compression.
We described the core methods and some of the special methods. We presented, as
examples of challenging computations performed with these methods, aerodynamic
analysis of a ram-air parachute, thermo-fluid analysis of a freight truck and its rear
set of tires, and aerodynamic and FSI analysis of two back-to-back wind turbines
operating in thermally stratified ABL flow. The examples show the power and scope
of the core and special methods in computational flow analysis in aerospace, energy
and transportation technologies.
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Multiscale Crowd Dynamics Modeling
and Safety Problems Towards Parallel
Computing

Bouchra Aylaj and Nicola Bellomo

1 Plan of the Chapter

The modeling and simulations of the dynamics of human crowds are challenging
research areas which have stimulated a rapidly growing interest of scientists active
not only in mathematics and numerical analysis, but also in different fields of applied
and natural sciences, for instance, technology, psychology, and safety sciences. This
interest is induced not only by scientific motivations, but also by a collective search
of well-being in our society, specifically of the search for safety strategies in crisis
situations which might appear in high density flow of crowds. Examples of even
tragic crisis situations are well known in very recent events in Europe.

As it is known [3], the modeling approach to crowd dynamics can be developed
at the microscopic, mesoscopic, and macroscopic scales which correspond, respec-
tively, to individual based, kinetic, and hydrodynamical models.

In more detail, the micro-scale corresponds to individual based models which
describe the dynamics of walkers represented by their individual position and
velocity; the meso-scale corresponds to kinetic models which define the dynamics of
a probability distribution function over time, position, and velocity, namely over the
individual microscopic state of each walker; and the macroscopic scale corresponds
to hydrodynamic models, where the dependent variables are the local density and
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the local mean velocity, while the independent variables are the dimensionless time
and position.

This multiscale aspect requires, in most cases, computational tools related to
parallel computing. Important motivations are induced by strategies towards safety
management which generally need a reduction of the computational time to support
crisis managers by visualization of simulations delivered by models in time intervals
possibly shorter than the real ones. This achievement allows crisis managers to take
correct decisions to improve safety conditions.

This brief introduction, given above, is sufficient to define the aims and the plan
of this chapter which presents a tutorial to crowd modeling with the aim of working
out some mathematical tools related to parallel computing. As we shall see, this
objective might appear, at a first naive glance, simply related to technical issues. On
the other hand, it generates some requirements for the structure of models that are
posed to applied mathematicians as challenging research objectives.

Bearing in mind this brief introduction, our chapter is proposed as a contribution
to the following topics:

1. Multiscale vision of crowd dynamics by a unified approach to modeling individ-
ual based, kinetic, and hydrodynamic models corresponding, respectively, to the
microscopic, mesoscopic, and macroscopic scales.

2. Development of a systems approach to crowd dynamics in complex venues,
where walkers move across different areas which present different quality and
geometry.

3. Speculations on the use of modeling and simulations to support crisis managers
in evacuation dynamics as well as on related parallel computing to support
safety problems and develop devices of artificial intelligence.

The aforementioned key problems are treated in the next three sections, respec-
tively, within a general framework, where the study and modeling of complexity
features of all systems where human behavior plays an important role in the overall
dynamics of the systems under considerations [6, 8]. Section 5 closes the chapter by
a critical analysis focused on the research perspectives presented in this chapter.

Bearing all the above in mind, let us now add a few remarks to enlighten the aims
and style of this chapter.

Interacting living entities are called active particles [11]. Propagation of stress
conditions in crowds, which is occasionally called panic, has been recently studied
by various authors [13, 15], while a broad literature has been developed on safety
problems [35, 36, 44] which include elements of artificial intelligence to produce
algorithms to guide the decision process of crisis managers.

The aim of this chapter consists of opening a dialogue involving applied math-
ematicians devoted to modeling complex systems constituted by a large number of
interacting living entities; crisis managers devoted to care about safety conditions of
people who might find themselves in critical situations such as evacuation induced
by incidents, and experts in scientific computing deemed to develop computational
codes to provide simulations in the aforementioned crisis situations.
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The presentation of the chapter takes advantage of concepts rather than of
mathematical formalization so that the interdisciplinary dialogue can follow the
rationale proposed in this paper without being lost in a framework of a complex
mathematical model. However, detailed bibliographic indications are given with the
aim of directing the interested reader to all mathematical details.

2 On a Multiscale Vision of Crowd Dynamics
(Key Problem 1)

Let us consider the first key problem, namely the development of a multiscale vision
of human crowds. The presentation is simply qualitative on the main features of the
approach. Some bibliographic indications, which do not claim to be exhaustive, are
given for each scale with the aim of addressing the interested reader to the pertinent
literature.

Let us now present the specific features of each scale and the mathematical
structures which provide the conceptual frameworks for the derivation of models.

• Individual based models describe the dynamics of each individual based walker
under the action of the other walkers and under the conditioning imposed by
obstacles and walls of the venue, where the dynamics occur. Mathematical
models consist of large systems of ordinary differential equations which describe
the dynamics of position and velocity of each walkers.

The key problem in the derivation of models consists of describing the accel-
eration term, occasionally called force, acting on each individual entity [26]. An
example of the acceleration term is given by the social force model [27]. Additional
literature is reported and critically analyzed in the survey [3] which includes also a
review on vehicular traffic and swarms.

Mathematical Structures at the Microscopic Scale
The description of the system is given, for each i-th walker with i ∈
{1, . . . , N}, by position xi = xi (t) = (xi(t), yi(t)) and velocity vi = vi (t) =
(vxi (t), v

y
i (t)). The specific mathematical structure underlying models is as

follows:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dxi
dt
= vi ,

dvi
dt
= Fi (x1, . . . , xN, v1, . . . , vN ;Σ),

(1)

(continued)
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where Fi is a psycho-mechanical acceleration acting on the i-th walker based
on the action of other walkers zone as well as on walker’s interaction with the
geometrical properties of the venue which are formally expressed by Σ .

• Kinetic models describe the dynamics in time and space of a probability
distribution function over the individual microscopic state of each walker. These
models have been introduced in [9] for the dynamics in unbounded domain and
in [12] for a walls, exists/, and obstacles. The microscopic state is delivered by
position and velocity. Recent studies [13, 15, 42] include an additional variable
modeling the said emotional states. It has been shown that the strategy developed
by walkers in stress conditions is subject to important modifications that might
even induce unsafe situations [13]. The conceptual framework towards modeling
social dynamics is delivered in [2].

The derivation of models, namely of the dynamics of the aforementioned
probability distribution function, is obtained by equating the transport term to the
interaction term suitable to describe the inlet and outlet flows of particles in the
elementary volume of the space of microscopic state. The said flows are determined
by interactions modeled by a stochastic game theory approach. The mathematical
structure of models is delivered by integro-differential equations which present
some analogy with classical kinetic theory [20].

Mathematical Structures at the Mesoscopic Scale
The description of the system is given by the probability distribution function
f = f (t, x, v), while the mathematical structure is as follows:

(∂t + v · ∂x) f (t, x, v) = J [f](t, x, v)

=
∫
η[f ](x, v∗, v∗;Σ)P[f ](v∗→v|v∗, v∗;Σ)f (t, x, v∗)f (t, x, v∗) dv∗ dv∗

−f (t, x, v)
∫
η[f ](x, v, v∗) f (t, x, v∗) dv∗. (2)

Macroscopic quantities are obtained by velocity weighted moments.

• Hydrodynamical models describe the dynamics in time and space of the
dependent variables, namely the local density and the local mean velocity,
while the independent variables are the dimensionless time and position. The
mathematical framework is defined by two partial differential equations corre-
sponding to conservation of mass and linear momentum equilibrium, where the
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acceleration term can be modeled by accounting for the interaction of walkers in
the elementary space volume with the surrounding crowd.

A simplified structure is defined by the equation corresponding to mass conser-
vation only linked to a phenomenological model expressing how the local mean
velocity depends on the local density conditions and on the geometry of the venue.
The literature on the derivation of models at the macroscopic scale is reviewed
in [22].

Mathematical Structures at the Macroscopic Scale
The description of the system is given by the local density ρ = ρ(t, x) and the
mean velocity ξ = ξ(t, x). The general mathematical structure is as follows:

⎧
⎨

⎩

∂tρ +∇x · (ρ ξ) = 0 ,

∂t ξ + ( ξ · ∇x) ξ = A [ρ, ξ ;Σ] ,
(3)

where A [ρ, ξ ;Σ] is a psycho-mechanical acceleration acting on walkers.

The derivation of models requires, at each scale, a deep understanding to be cast
into a mathematical framework of the strategy developed by walkers to move in the
venues, namely trajectories and speed along them. The literature that has been cited
above provides useful approaches for handling this problem which requires mixing
the study of social and emotional behaviors with mechanics.

In more detail, the modeling approach should include some relevant features,
for instance, the ability of individuals to develop a walking strategy and role of
emotional states over such strategy. Models should also show how the specific
features of the venues can modify the said strategy in view of the development
of safety problems. Last, but not least, models should be validated to be effectively
reliable.

Issues that are focused on the modeling approach, at each scale, are listed
below:

1. Strategy: Walkers develop a strategy, which is heterogeneously distributed in
the crowd, by which they continuously modify their direction of motion and
speed due to nonlinearly additive and nonlocal interactions. The quality, the
geometry of the environment as well as the emotional state of the walkers modify
quantitatively and qualitatively the said geometry. The model, proposed in [12],
indicates that the choice of the direction is induced by a continuous selection
between four stimuli, namely trend towards a target, search of less crowded
region, attraction towards the mainstream/, and search of trajectories that avoid
the contact with walls. The selection depends on local density conditions, on
local emotional states/, and on geometrical parameters such as the distance from
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targets and walls. Subsequently, walkers adapt their speed to the new density
conditions perceived in the new direction of the motion.

2. Emotional state: The level of stress in critical situations modifies the strategy
described in Item 1. Referring to the model proposed in [12], high value of
stress induces walkers to be attracted by the mainstream rather than by the
search of less crowded regions. This behavior is basically irrational as it creates
overcrowded areas which in some specific conditions affect the safety. In some
cases, irrational behavior of a few entities can generate large deviations from the
standard dynamics observed in rational situations. This behavioral issue can be
taken into account by introducing a parameter β ∈ [0, 1] to model the intensity of
emotional state, for instance, stress, where β = 0 denotes the lowest level which
indicates not only search for an uncongested area but also low speed, while β = 1
denotes the highest stress conditions which indicate congestion as well as high
speed. Joining these features leads to highly unsafe conditions [12].

3. Role of the venue: The strategy described in Item 1 is quantitatively modified
by the geometry and quality of the venue. In fact, different geometries imply
different trajectories and speed as walkers attempt to avoid high density flows
near walls, while the quality of the venue has a direct influence on the speed
which decreases/increases with decreasing/increasing quality of the area where
walkers move.
The use of the parameter α ∈ [0, 1] has been introduced in [12] to account for this
specific feature, where α = 0 denotes worse conditions which prevent motion,
while α = 1 denotes the best conditions which allow high speed. Simulations
should be developed to understand the interplay between quality and stress.
For instance, stress conditions are not induced only by incidents, but also by
overcrowding which, in turn, might be induced by poor geometries. Indeed, it is
useful to study the dynamics of a crowd in low stress conditions to investigate
the role of the geometry of venues to understand fluidity (opposite to congestion)
of venues.

4. Safety problems: As mentioned, an important aspect of crowd modeling consists
of providing models and simulations to support crisis situations, for example,
forced evacuations due to incidents. In these specific cases simulations should
run at least at the same speed of real flow so that crisis managers can make rapid
decisions to create possibly safer conditions. Actually, these specific problems
have recently received great attention due to studying evacuation dynamics
related to social riots where safety and security problems interact.
The requirement of real time simulations imposes the need for a careful
development of computational problems. The approach deals with deterministic
methods in the case of individual based, hydrodynamical models [14, 25], and
stochastic particle methods in the case of kinetic models [5, 7, 16, 34, 42]. The
multiscale vision suggests that both methodological approaches should coexist,
while a parallel computing vision suggests that different models should be
simultaneously used.

5. Validation of models: The validation of models is a necessary step to lead to their
reliable use in safety problems. A general rationale towards validation has been
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proposed in [12] based on the requirements that models reproduce quantitatively
empirical data for solutions corresponding to steady uniform flow and that
reproduce qualitatively emerging behaviors which are repetitively observed. In
addition, models should include parameters that account for the specific role of
the venue over the dynamics of the crowd. The main difficulty consists of the
fact that quantitative results are available in steady flow (it might be equilibrium)
conditions; however, models are required to provide quantitative results in real
conditions which are generally far from equilibrium. In addition, the behavior
of the crowd is strongly venue dependent and that different results are observed
when the geometry and the quality of the venue change.

It is worth stressing that crisis situations can appear suddenly and unsuspectedly
as they are generated by localized stress induced by incidents or even unusual
behavior of a few individuals. Stress propagates rapidly in the crowd and can
become the main cause of serious incidents.

This very concise overview of the literature allows to enlighten some conceptual
differences of the three model classes. A motivation to develop the proposals
reported in the following is induced by a recurrent dispute which involves scientists
regarding the choice of the most appropriate scale to be used. It is often argued that
only the microscopic scale is the most appropriate for systems with finite number
of degrees, while the macroscopic scale requires unrealistic assumptions on the
continuity of the matter and kills some heterogeneity features of the individual
behaviors. The intermediate kinetic theory approach needs the assumption of
continuity of the said probability over position and velocity of the particles which is
reasonable only when their number is sufficiently large.

A multiscale vision, which has been idealized in Figure 1, consists of developing a bottom-
up derivation of models, where a detailed modeling of individual based interactions, namely
at the microscopic scale, is used to model the acceleration term Fi at the microscopic scale
and subsequently to implement the interaction terms η and P to derive kinetic type models,
namely at the mesoscopic scale. Subsequently asymptotic methods can be developed to
obtain hydrodynamical models from the underlying description at the lower scale.

The micro-macro derivation looks ahead to a unified approach to physical
sciences as inspired by the sixth Hilbert problem [28]. In fluid dynamics, this
problem has been interpreted as the derivation of hydrodynamical models from the
description delivered by the Boltzmann equation Saint-Raymond [37]. The recent
literature on the application of this approach to large systems of active particles can
be found in [17, 18]. The rationale to understand how local interaction dynamics can
be transferred to collective, self-organized, motion is proposed in [29]. Experimental
studies of this challenging objective have been developed in [33]. An overview
of the merits of the kinetic theory approach with respect to individual based and
hydrodynamic models has been proposed in [24].

In addition, let us stress that multiscale vision requires using dimensionless quan-
tities both for dependent, independent/, and microscopic variables. The approach can
be developed by referring the said variables to:
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Asymptotic limits

Individual
based models

The social
force model

Fig. 1 From individual based to kinetics and hydrodynamics

1. � is a characteristic length to be taken as the diameter of the circle containing the
domain Ω containing the overall venue;

2. vM which is the highest individual speed which can be reached by a very fast
walker in a free flow in high quality venues;

3. ξM is the highest mean speed which can be reached by walkers by a free flow in
a high quality venues;

4. T = �/vM is the characteristic time corresponding to the time by which a fast
walker can cover the distance �;

5. ρM denotes the maximal number density (occupancy) of walkers packed in a
square meter.

Accordingly, linear space variables are referred to �, real time to T , speed is
referred to vM . In addition, macroscopic quantities, specifically density and mean
velocity, are divided, respectively, by ρM and vM , while the probability distribution
function f is referred to ρM . This normalization implies that the order of magnitude
of all quantities is of the order of one, but also poses an important constraint to the
solutions of mathematical problems. For instance, the physical meaning of density
and velocity is below one.

An additional feature of the multiscale vision is that models at all scale should
use the same parameters corresponding to interactions at the same scales.
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3 On a Systems Approach to Crowds Modeling (Key
Problem 2)

Let us now consider the second key problem, namely a systems approach to crowd
modeling of dynamics of people in complex venues constituted byK interconnected
areas each of them characterized by different geometrical and qualitative features. If
V denotes the overall venue and Vk each specific walking area with k = 1, . . . , K ,
then V is constituted by all venues Vk and the interconnections among them.

A possible strategy towards a systems approach and some technical remarks are
proposed in the following:

1. Modeling the quality of the venue: A minimal description of the quality of each
walking area Vk can be obtained by introducing, for each area, a parameter αk ∈
[0, 1], where αk = 0 corresponds to very low quality which prevents motion,
while αk = 1 to very high quality allowing fast motion. The speed of walkers is
heterogeneously distributed within a minimal and a maximal value in each Vk ,
where the following simple model v� = αk vM has been proposed [13] to denote
the highest, venue dependent, speed. Namely, the limit velocity of the fastest
walkers is reduced by αk with respect to the maximal speed observed in a high
quality walking area.

2. Emotional state: As mentioned, the development of the walking strategy depends
on the level of stress shared by the crowd which can be taken into account by a
parameter βk ∈ [0, 1], where βk = 0 corresponds to very low stress, while
βk = 1 to very high stress [12]. The level of stress can differ across the walking
areas Vk due not only to localized incidents, but also to the specific features of
each Vk .

3. Further comments on the parameters α and β: For instance, a detailed analysis
of the role of the two aforementioned parameters has been developed by kinetic
type models, but not exhaustively studied in the case of individual based and
hydrodynamical models. The use of a scalar parameter in each venue is a
simplification of physical reality. In fact, different variables can play a role over
the dynamics of crowds, as an example the quality of the venues can be modified
by specific incidents which reduce the visibility of each walker. An additional
example referring to the emotional states appears in crowds where political
contrasts are present so that stress conditions are mixed with the intensity of
political expression.

4. Selection of the modeling scale for each Vk and subsequent modeling and
simulation of the overall dynamics: The selection of the specific model to be
used in each Vk depends on the specific features of the venue and of the flow.
In addition, the selection of the scale out of the three possible ones should also
account for the computational time required by simulations.

5. Safety and related computational problems: The systems approach can be
developed according to the rationale presented in the preceding items. However,
additional requirements are generally imposed by the specific features of the
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application-investigation his need is generally motivated by the specific inves-
tigation object of the modeling and computational approach. According to our
choice and regressed experience, the study is focused on safety problems in
evacuation. Focusing on evacuation dynamics, the term “safety” is here used to
identify local density below a threshold and evacuation time as much reduced as
possible consistently with the former requirement. Then, this application requires
the development of the multiscale vision summarized in Item 4. In addition, real
time simulations are necessary to tackle safety problems. Parallel computing can
contribute to this objective as it will be indicated in the next section.

This strategy can be regarded as a research perspective rather than an achieve-
ment known in the literature as only specific problems have been treated generally
at one scale only, as examples selected among various ones, sparse control problems
have been treated in [4, 30], dynamics with reduced visibility in [21], space
propagation of emotional states in [13, 42], and various others.

However, a systematic study of the systems approach described in the above
issues is still missing, while it would be an interesting research perspective in view
of dealing with support crisis managements by artificial intelligence methods.

4 Parallel Computing and Artificial Intelligence
(Key Problem 3)

This final section presents, out of the survey and critical analysis proposed in the
preceding sections, some practical indications focused on crisis managements and
parallel computing. Hence this section tackles the third key problem proposed in
Sect. 1. Firstly, some perspective ideas to support crisis situations are presented,
subsequently we examine how the implication of the approach on some specific
aspect of parallel computing.

Essentially we can distinguish between two possible supports which can be
delivered by modeling and computing of crowd dynamics, namely the support to
training crisis managers and a direct support to crisis management. In the former
case, the aim of computer modeling consists of providing simulations, where
priority is given to precise description of the flow patterns at variable parameters
of the geometry and quality of the venue, while in the latter case, which includes
evacuations due to incidents, simulations should run at least at the same speed of
real flow so that crisis managers can take rapid decisions to create possibly safe
conditions for the individuals under critical situations.

As mentioned, the dynamics of evacuation can generate a crisis situation when-
ever safe conditions appear to be lost, generally when the onset of stress conditions
generates overcrowding due to the trend of walkers to imitate the behavior of the
others rather than looking for less overcrowded paths. Bearing all above in mind, let
us provide two immediate remarks concerning each of the specific uses of modeling
and simulations that have been mentioned above.



Multiscale Crowd Dynamics Modeling and Safety Problems Towards Parallel. . . 291

Remark 1 Crisis managers can train themselves by developing simulations of well-
defined real cases and subsequently by inserting in the dynamics possible control
action by visual or vocal indications. Therefore, simulations allow a comparison
among a variety of possible actions and identify the most appropriate selection. In
addition, experienced managers can address this training to support the learning
action of less experienced ones. Real time computing is not a strict requirement of
simulation, while a systems approach appears to be necessary.

Remark 2 Crisis managers can use visualization of real flows stored in databases
and refer them to simulations related to the case study under consideration.
Subsequently an artificial intelligence process can lead managers to select the most
appropriate safety action.

Several technical difficulties need to be tackled. For instance, in most cases,
decision-making has to be developed in a very short time, while generally the
information delivered by experiment is not complete. Some aspects of the general
problem can be enlightened accounting for the two aforementioned use of compu-
tational modeling:

• Training crisis managers by big-data database repository of simulations cor-
responding to different venues, crowd features, and specific actions addressed
to safety. Simulations should refer to evacuation dynamics [1, 38], should be
specifically related to support crisis [39, 44], and should include, for each case
study, a variety of actions to support crisis management. In addition, simulations
need to be validated also referring to the specific venue, where the dynamics
occur [31, 35, 41].

• Selection of the most appropriate actions during an evacuation process should
be achieved by the design of a predictive engine to support the aforementioned
selection of safety actions by optimality criteria suitable to minimize the
evacuation time and local overcrowding.

• The design of the predictive engine should account for a large variety of
simulations to be compared with the real case under consideration to achieve
the selection of the most appropriate action.

• Comparisons can take advantage of a distance (metrics) between the main
properties of different dynamical systems. Such a distance can provide the correct
information to decide how far a simulation is close to the real dynamics observed
by the crisis manager.

The various methods to treat these large amounts of data still need to be properly
developed to define an emerging data science [23, 40] which aims at improving the
decision-making process towards cost reductions and reduced risk. As a matter of
fact, crisis management is not yet sufficiently developed up to a commonly shared
theory. Still it can be stated that the development of crowd simulations should
take into account human behaviors within the general framework of behavioral
sciences and specifically social sciences [2] and collective learning [19, 32]. Let
us summarize the sequential steps for the use of crowd modeling in the decision
process to support safety according to [10, 30].
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1. Assessment of the main features of the evacuation venues and of the crowd;
2. Implementation of a number of possible simulations corresponding to both

aforementioned classifications;
3. Implementation of a number of possible actions to make safe the evacuation

process;
4. Scoring for each simulation the output of the dynamics corresponding to different

safety actions;
5. Define a metric to compare a real situation with those stored in the database;
6. Select a number of simulations close to the real situation and choose from among

them the most appropriate action based on a weighted combination of the score
and the said metric distance.

This process succeeds in providing a technical response which goes beyond the
heuristic approach based on personal bias. The reliability of the learning machine
depends on the validity of the simulations stored; hence, it depends on the validity of
models which generate the simulations. This concept imposes a filter on the stored
data not only in the case study under consideration, but as a general rule for the use
of stored data to be used to support human well-being and safety [43].

5 Closure

This chapter has been devoted to a survey and critical analysis of the modeling and
simulation of human crowds in crisis situations induced by evacuation dynamics
somehow forced by a sudden not predictable incident. The contents have been
proposed focusing on three key problems concerning the following topics: a
multiscale vision of the modeling of human crowds; a systems approach to crowd
modeling; support that modeling and simulations can provide to crisis managers.

This chapter has shown that the literature in the field is a valuable resource for the
aforementioned topics; however, several problems are still open and need of further
research activity. Possible perspectives have already been given in the preceding
three sections.

The final closure of the chapter provides some additions that may contribute to
the development of any of the aforementioned perspectives.

1. Understanding human behavior in crowds is a key step in the derivation of
models. This important hint indicates that understanding social and dynamical
behavior of a crowd is the absolutely necessary basis for any decision process
related to safety. We have put in evidence that any approach should consider
the crowd as a living complex system. Hence, understanding the complexity
features of human crowd is very important also in designing computational
models. Knowledge of the emotional behavior of individuals in a crowd should
be reflected in the modeling of the walking strategy of these individuals.

2. A multiscale vision should be developed to derive models at the three different
scales based on the same rationale by which individuals organize their walking
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strategy. Accordingly models at each scale should include analogous parameters
to account for the specific features of the aforementioned strategy.

3. A systems approach to crowd modeling appears necessary to model the dynamics
in complex venues, where walkers move across different areas of the network
of the overall venue. The systems approach should also consider using different
scales in different interconnected areas of venues.

4. A new vision of parallel computing has been introduced where parallelization
corresponds to models derived according to a scale selection which can differ in
each area of the overall venue.
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HPC for Weather Forecasting

John Michalakes

1 Introduction: Weather and HPC

Numerical weather prediction (NWP) and high-performance computing have grown
up together. Even before the computational means existed, L. F. Richardson of
the UK Met Office had published a numerical foundation for forecasting the
weather [33]. The first computer-generated forecast of the atmosphere had to
wait until 1950 and was conducted by Jule Charney’s meteorology group within
John von Neumann’s ENIAC project at Princeton’s Institute for Advanced Study.
By the 1970s, advances in models and computing capability allowed the skill of
numerically generated forecasts to outpace forecasting that relied solely on expert
meteorologists interpreting weather observations [17, 38]. Today the list of major
weather services that develop and run operational weather forecasting systems
includes the European Center for Medium Range Weather Forecasts (ECMWF) and
its member national services, the U.S. National Weather Service within NOAA, the
U.S. Navy’s Fleet Numerical Meteorology and Oceanography Center (FNMOC)
and Naval Research Laboratory (NRL), the U.K. Met Office (UKMO), Meteo
France, the German National Weather Service (DWD), Environment Canada, the
Japan Meteorological Agency, the Korea Meteorological Administration, and the
China Meteorological Administration.

Historically, an exponential rate of increase in supercomputing power has fueled
a linear pace of forecast skill improvement (Fig. 1). Each decade’s 1000-fold
increase in computing power has enabled larger numbers of higher resolution
forecasts, better representations of the physics of the atmosphere, and more
sophisticated assimilation of greater volumes of observational data to provide better
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Fig. 1 Anomaly correlation, a measure of forecast skill (100 = perfect), increases linearly as
computing increases exponentially over successive generations of supercomputer at the U.S.
National Weather Service [20]

initial conditions. The result has been to add 1 day of forecast skill every decade
for the last 40 years [3]. Five-day forecasts today are as accurate as 3-day forecasts
20 years ago. Today, twenty of the fastest 500 supercomputers in the world are
dedicated to weather forecasting, consuming 7% (60 PFLOPs) of the total compute
capacity of the Top500 list in November, 20171. Continuing this trend into the era
of exascale supercomputers is the ongoing challenge for weather forecast centers.

Operational weather forecasting involves running a large suite of applications:
preprocessors, post-processors, and the model itself (Fig. 2). Preprocessors combine
data streaming in from weather stations, aircraft, and satellites with archives of
climatological data and previously generated forecasts to produce initial conditions
for the new forecast. The forecast model takes this initial state of the atmosphere
and computes an approximation of the future state over a succession of many small
time intervals until the desired end time of the forecast is reached—as little as 12 h
or as long as 16 days, depending on the needs of the center (climate predictions
run longer still from seasonal to decadal scales). Periodic output over the course
of the forecast is fed into a myriad of post-processors and downstream models that
produce specialized products with analysis and visualization for use by forecasters

1https://www.top500.org/lists/2017/11/.

https://www.top500.org/lists/2017/11/
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Fig. 2 Production suite at the National Centers for Environmental Prediction (NCEP) in 2014,
presented as part of a NOAA annual review. The model itself, the Global Forecast System (GFS),
appears as the red box in the first column. Illustration by William Lapenta, NOAA/NWS. Used
with permission [44]. The diagram is drawn this way to illustrate the system was becoming too
complex. In fact, the system is actually more complex than shown, since data assimilation and
other model preprocessors are subsumed within the blue area of the small GFS box

and end users. End-to-end forecasting involves both large amounts of data handling
and large amounts of computational horsepower. The focus of this chapter is on the
computational requirements and challenges of the forecast model at the heart of the
operational weather forecast system.

Models vary according to their use. Climate models simulate characteristics of
the atmosphere from seasonal to century time scales at relatively low resolutions.
Models designed for real-time weather forecasting run at higher resolution over time
scales short enough to fit within the limits of predictability for weather forecasting,
from several hours to usually no longer than 2 weeks [43]. The domains for weather
and climate models also vary. Models may forecast the entire global atmosphere or a
specific region. Global models are constrained by available computing to relatively
modest resolutions (currently grid cells no smaller than 9–13 km to a side). Finer
than this and the model will not run fast enough for the forecast to be timely2.
Regional model domains are smaller and can run at higher resolutions but typically
require data generated by global models to provide lateral boundary conditions. As
computers become more powerful a convergence has begun such that global models

2The U.S. National Weather Service requires a forecast rate of 8.5 min per forecast day.
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will soon capture finer-scale turbulent and convective processes important for local
weather, especially severe storm forecasting.

2 History

The history of NWP is tied closely to the steady but occasionally disruptive
evolution of supercomputing over the last half-century. As today’s computational
scientists scratch their heads wondering how to design efficient codes for exascale
systems on the horizon, it is comforting to realize that every previous generation
of supercomputer forced scientific programmers to devise codes and data structures
tortured in some way to run efficiently on the HPC architecture at hand.

Until the 1990s, supercomputers used for NWP were expensive room-size
devices with a single processor. Very fast for their day, speed came from high clock
rates (hundreds of megahertz!) and special vector processing units, hardware that
could perform many floating point operations over successive data elements during
each clock cycle. Today’s architectural analogs are vector or SIMD3 instructions
on conventional CPU cores (e.g. Intel’s AVX instruction set) and fine-grained
parallelism over warps of threads on GPUs. Multi-port memories and high capacity
buses were needed to provide the bandwidth necessary to keep up with the
processors. These high-performance memory systems contributed further to the
already high cost (millions of dollars) of vector supercomputers in the 1970s,
1980s, and 1990s. The impact on software design was also considerable. Weather
calculations most naturally expressed in one dimension of the domain had to be
rewritten to operate over whatever dimension happened to be vectorizable. For
example, subroutines that computed a vertical process such as convection up and
down a single column of grid cells had to be rewritten to run horizontally over
multiple columns because data dependencies in the vertical inhibited vectorization.

Later, faster but similarly architected systems were developed by connecting
several vector processors to the same memory for parallelism over different tasks
(task parallelism) or different sections of the domain (data parallelism). This more
coarse-grained mechanism, called “microtasking” at the time, is analogous to
medium-grain thread parallelism (e.g. OpenMP, pthreads) today. The move to thread
parallelism was not overly disruptive since the codes had already been restructured
for vectors. Then as now, however, contention for memory bandwidth meant that
only a few processors could be added to provide more speed. In other words, the
systems could not scale. Ultimately, the cost of building and operating successively
faster supercomputers using vector/shared-memory designs became prohibitive.

In the 1990s, a new design for constructing supercomputers from many more
less powerful processors pushed past the shared-memory scaling barrier. Processors
were organized as nodes on a network, each accessing data exclusively from its own

3Single-instruction, multiple-data stream.
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memory to avoid the scaling bottleneck. The nodes worked in parallel by exchanging
messages over a network, the carrying capacity of which (bandwidth) increased
with the number of nodes. Distributed memory message passing was the third and
coarsest level of parallelism and could scale to arbitrarily large configurations.

The move to distributed memory supercomputers was unavoidable but deeply
disruptive for the NWP community. Significant effort was expended during the
1990s to update models that had been developed for vector supercomputers. Each
of the major weather services undertook programs to rapidly convert their large
investments in modeling software but struggled with their earlier legacy software
designs. The U.S. Department of Energy founded an entire program to convert
atmospheric and ocean models used for climate prediction to these new systems
[8, 22]. Global address spaces had to be decomposed—that is, broken up—
into distributed memory subdomains to be run as separate processes (tasks) over
many nodes. Data dependencies needed to be analyzed and explicit mechanisms
implemented to buffer and exchange data as messages between separate processes.
Entirely new problems of debugging and profiling parallel programs at scale remain
areas of active computer science research and development today.

Today’s supercomputers are still built as networks of coarse-grain parallel
nodes exchanging messages, but also incorporate the other two earlier forms of
parallelism: fine-grained within each processor core (vectors or GPU threads)
and medium-grained between processors on a node (OpenMP and pthreads).4

There is no longer any limit to scaling other than money, electrical power, and,
more fundamentally, the fraction of parallelism available in the application itself
(Amdahl’s law). And herein lie both the practical and fundamental disruptions for
weather prediction going forward into the exascale era.

The practical disruption is simply that current and next generation supercom-
puting architectures will require so much parallelism (estimates go to millions of
threads) that there is not any level of parallelism that can be ignored: fine-grain
vector parallelism at the loop level all the way out to hitherto underexploited coarse-
grain distributed memory parallelism over the vertical grid dimension, between
different physics subroutines, and between the components (atmosphere, ocean,
land, sea-ice, the ionosphere, and other physical systems) in coupled earth system
models. In many cases this will mean rediscovering and implementing fine-grained
parallelism (discussed in a later section) that was disregarded when microprocessor-
based clusters replaced vector supercomputers.

Mining all available parallelism also means rediscovering and implementing
shared-memory thread programming, which was largely discarded because the first
generations of distributed memory supercomputers had only a single-core processor
on each node. Even as nodes with multiple multicore processors have become
prevalent, hybrid MPI/OpenMP has only recently begun to show better performance

4There is also at least a fourth: instruction level parallelism at the processor core level that exists to
some extent even in otherwise outwardly sequential programs. ILP is limited and generally hidden
from and outside the control of the programmer.
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than parallelizing entirely over single-threaded MPI parallel tasks. This is partly
because of improvements to memory systems on new generations of multicore
processors and nodes. ECMWF reported optimal performance using eight OpenMP
threads per MPI task running the current IFS model on 48 nodes of their Phase-1
Cray XC30 system [46]. But hybrid MPI/OpenMP programming is also taking hold
because it will be unavoidable: scaling to larger problem sizes, models run out of
pure-MPI parallelism. ECMWF also reported that running the IFS at high resolution
was not possible with only MPI parallelism because too much memory was needed
to replicate data over many MPI tasks on each node.

The more fundamental disruption from moving to more powerful generations of
HPC systems is that future increases in supercomputing speed must come solely
from increased parallelism, and that a real-time weather forecast is not weakly
scalable. Weak scaling is the ability of an application to run at the same speed
using more processors as problem size is increased. For a weather model, increasing
problem size means adding grid points and, for a global weather model, the only way
to add grid points is to increase resolution. But increasing spatial resolution requires
increased temporal resolution: many smaller time steps are needed to produce the
same length of forecast. Since time steps must be executed sequentially, complexity
increases with resolution in one more dimension, the temporal, than the available
parallelism. The cost for higher resolution balloons in terms of number of processors
and electricity needed (Fig. 3).

Fig. 3 Projected resources required to scale operational forecasting to higher resolution [3].
Global weather models are not weakly scalable with resolution because the temporal dimension
must also be refined and is inherently sequential. Additional notations are from [23]
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Note, this lack of weak scalability is the result of running the model determinis-
tically: one run from a single set of initial conditions to predict one possible future
state of the atmosphere. There is considerable value to consumers from probabilistic
weather information. For example output from an ensemble of many runs of a
hurricane forecast, each with a perturbed set of initial conditions, is used to generate
a Cone of Uncertainty5 for where the storm will make landfall. Adding members to
the ensemble increases parallelism without constraining the time step, so ensemble
forecasts are weakly scalable, at least computationally. The volume of model output
generated by the ensemble increases with more members too, so the scaling problem
does not disappear but instead shifts to I/O. Moreover, if one also increases the
resolution of each ensemble member, as shown in Fig. 3, weak scaling is again
problematic.

Parallel-in-time algorithms that can exploit scale separation in partial differential
equations to provide parallelism over the time dimension are possible [19] but
application to operational weather forecasting is likely distant.

3 Models, Grids, and Parallelization

The specific approach to parallelizing a weather model depends on the choice
of numerical scheme and how mapping the mesh onto a spherical geometry is
addressed. Various grid geometries and numerical fixes have been developed to
adapt “numerical methods to the spherical geometry of the earth, which presents
unique problems, usually and vaguely referred to collectively as the pole problem”
[48]. For example, in a latitude/longitude grid (Fig. 4) the narrowing of grid cells
approaching the two poles requires a smaller time step or unwanted filtering for
stability. Icosahedral (soccer ball) meshes have 12 pentagons. Cubed-sphere meshes
have corners. The main types of model are grid point, spectral, and finite element
(which includes spectral element).

Grid-point models using finite-difference and finite-volume methods evolve the
model state (wind velocities, temperature, pressure, moisture, and other tracers) in
physical space, directly at each cell of the grid.

Spectral models avoid distortions and singularities by first transforming the
gridded representation of the global state to a series of spherical harmonics. Addi-
tionally, spectrally computed derivatives are higher-order and non-local, providing
more accuracy than finite-difference methods for a given cost. Three dimensional
Helmholtz solvers are expensive in grid-point models but essentially free in spectral
models [40].

A third type, spectral element models are a hybrid formulation: finite-volume
methods between the elements and spectral methods local within each element [29].

5https://www.nhc.noaa.gov/aboutcone.shtml.

https://www.nhc.noaa.gov/aboutcone.shtml
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Fig. 4 Sampling of grids used in weather and climate models [48]

The first weather models prior to the 1970s were grid-point formulations, but
numeric and computational advantages of globally spectral methods ushered in a
heyday that is only now beginning to wane as grid-point methods resurge. Scientific
and numerical factors have been central to the progression, but as noted above and
in the discussion that follows, a key driver has been the disruptive evolution of
HPC architectures. This section derives heavily from [48], an authoritative and to a
significant extent eyewitness account of the evolution and types of models used for
weather and climate modeling.

3.1 Spectral Dynamics

The spectral transform method was first developed in 1970 [9, 30] and became
the dominant dynamical core for global weather and climate modeling for the two
decades that followed. Today, ECMWF’s world-leading IFS model is the premier
example of a spectral model. Other examples include the U.S. National Weather
Service’s Global Forecast System6, the U.S. Navy’s Global Environmental Model
(NAVGEM), and the Japan Meteorological Agency’s Global Spectral Model.

Whereas grid-point models represent fields as values at discrete points, spectral
models use expansions on a series of spherical harmonics. Each vertical layer
of a horizontal field is represented as an M by N array of spectral coefficients.
The M dimension corresponds to increasing wave numbers in the zonal (west-
east) dimension of the domain; N corresponds to increasing wave numbers in the
meridional (equator to pole) dimension. The M and N dimensions of spectral space
extend to infinity but are truncated for computational purposes above a certain wave
number. If the truncation is the same in both M and N dimensions, it is said to be
triangular and has the favorable property of being isotropic and not subject to the

6The spectral dynamics in the U.S. weather service’s Global Forecast System has reached end of
life and has been replaced by FvGFS, a grid point model.
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pole problem: discontinuities and time steps constrained by narrowing grid lines
near the poles in grid-point models. Higher truncation limits correspond to higher
spatial resolution. The spectral dynamics in use in the GFS at the U.S. National
Weather Service truncated M and N at wave number 1534, equivalent to a grid of
slightly over three million grid points covering the earth’s surface at a resolution
of 13 km. ECMWF’s IFS model achieves finer (9 km) spatial resolution for physics
and advection using fewer (1279) waves in M and N through the use of a cubic rather
than linear mapping between grid points and the highest frequency wave in spectral
space, and by using an octahedral adaptation to IFS’s reduced physical-space grid.

Only a portion of a spectral model time step is computed in the spectral
domain. Non-linear terms of the Eulerian dynamics, semi-Lagrangian transport,
and physics—subgrid-scale radiative heating and cooling, convection, turbulence,
surface drag, and other physical processes—are computed on grid points. To move
between spectral and grid-point representations, a forward and inverse spectral
transform is computed every model time step. The grid point to spectral transform
first applies an FFT to each west-east circle of grid values along latitude lines of the
domain, producing vectors of Fourier coefficients that correspond to wave numbers
in the M spectral dimension. Next, a Legendre transform is applied in the equator-to-
pole dimension to construct the N dimension of spectral space. Each resulting m,n
spectral coefficient is the sum of the products of the m element of each Fourier vector
times the Legendre coefficient for the Gaussian latitude from which the Fourier
vector was computed. The Legendre transform is algorithmically equivalent to a
matrix multiply, and can be implemented using calls to DGEMM in LAPACK.

The computational complexity of the combined N Fourier transforms is O(N2 log
N), where N is the truncation number. Overall, the spectral transform is dominated
by the O(N3) complexity of the Legendre transform. ECMWF has been able to
devise a “Fast” Legendre Transform (FLT) that is O(N2 log N3). The FLT exploits
similarities of associated Legendre polynomials at all the Gaussian latitudes but
with different wave number and then precomputes and reuses an approximate
representation of the matrices. The FLT is less efficient than DGEMM at lower
resolutions but breaks even and continues to improve at T2047 and higher [45].

Sensitivity to rounding error requires that Gaussian weights used in the Legendre
transform be computed using double (64 bit) floating point precision, even when
other parts of the model are computed at lower precision [7]. Other operations in the
spectral transform and other parts of the model may be computed using single (32-
bit) floating point precision but weather centers are only now beginning to explore
reducing precision for better computational efficiency [31].

The spectral transform method has advantages for parallel computing and
software engineering because virtually all computations in spectral dynamics are
dependency-free and perfectly parallel, both over wave components in spectral
space and in the two horizontal dimensions of physical grid space. From a software
point of view, the parallelism in a spectral model is highly encapsulated. Code to
implement message passing is compact and isolated to within the subroutines that
transform back and forth between grid and spectral space each model time step.
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Fig. 5 Schematic of the forward and reverse spectral transforms in a time step of a spectral model,
showing the decompositions of the physical, Fourier, and spectral domains over four tasks with
transposes between the decompositions

Parallelizing the spectral transforms involves interprocessor communication that
can be implemented in either of two ways: distribute the FFTs and DGEMMs
themselves or transpose the data between decompositions to allow serial Fourier
and Legendre transforms to be used. The advantage of using distributed FFT and
DGEMM packages is that parallelism is built-in, the routines are portable and are
likely to have been optimized for the computational platform. On the other hand,
transpose implementations of spectral transforms are more flexible and general,
permitting the use of non-power of two serial FFT packages. Transposes also ensure
identical order of operations in the transforms giving results that are bit-for-bit
reproducible on different numbers of MPI tasks. Generally, transpose implemen-
tations are favored because they send less data than distributed implementations, an
advantage on systems where transfer (bandwidth) costs are high relative to message
startup costs [11]. Figure 5 shows parallel transposes and data layouts for one time
step of a typical spectral transform model.

Modern spectral models incorporate semi-implicit semi-Lagrangian transport
(SLT) for advection because SLT is unconditionally stable and allows longer time
steps. As with fully Lagrangian methods, SLT involves calculating the trajectories
of parcels of a fluid over time; the difference being that SLT interpolates forward or
backward trajectories relative to a fixed grid at each time step.

The issue for parallelizing SLT occurs when parcels flow to an area of the domain
on another processor. As with finite-difference and finite-volume methods, these
dependencies and dependencies associated with interpolation stencils are addressed
by communicating with neighboring tasks to update halo- or ghost-regions around
a task’s subdomain. Anisotropy of the domain closer to the poles will require more
data to be sent to update increasingly wide halos. Fortunately, the reduced grid used
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for computational efficiency elsewhere in the model (Fig. 4) also helps address the
communication costs near the poles for SLT.

Spectral models have been extremely successful since the 1970s and are still
deployed in major forecast centers. Nevertheless, the spectral method is approaching
obsolescence on new generations of supercomputers that will require applications
that can exploit 105 to 106 way parallelism without losing efficiency to parallel
overheads such as interprocessor communication. Of course, any model of fluid
flow requires communication between processors, but communication cost for local
methods such as explicit finite-difference and finite-volume remains constant with
increasing domain sizes and numbers of processors. Cost for non-local communica-
tion in spectral models increases as a function of domain size. Communication cost
for high-resolution 5 km and 2.5 km experimental runs of ECMWF’s IFS on up to a
quarter-million processor cores of the TITAN supercomputer at Oak Ridge National
Laboratory reached 75% of the total cost of the spectral transforms [46]. ECMWF
estimates that stopgap improvements such as the Fast Legendre transform, the cubic
grid-to-spectral mapping, and an octahedral grid-reduction geometry can extend the
spectral IFS model’s life for a time, but are exploring grid-point formulations for
scaling to higher resolution [42].

3.2 Grid-Point Dynamics

The first computer models of the atmosphere were grid-point models, which
flourished during a period of active development beginning with the U.S. Joint
Numerical Weather Prediction Unit in the 1950s and lasting until a two-decade
hiatus around the advent of spectral transform models in the 1970s. A key focus was
to address the pole problem inherent in Cartesian latitude-longitude grids, leading
to development of novel and promising quasi-uniform mesh geometries such as
those shown in Fig. 4. These included composite and overset grids, icosahedral
and geodesic grids, reduced latitude-longitude grids, Fibonacci grids (these were
later), and regular polyhedra circumscribed to the sphere, most commonly the
cubed sphere. The new approaches were generally successful at addressing the
pole problem but presented other issues for solution quality: noise and interpolation
error at boundaries of overset meshes, the edges and corners of faces on the cubed
sphere or at the 12 pentagons in hexagonal meshes. Numerous schemes to reduce
or eliminate these issues were developed and the topic remains an active focus of
research and development today.7

Generating grids that are composed of Cartesian grids involves projecting the
component grids onto curvilinear coordinates of the sphere. The cubed-sphere grid
in the U.S. National Weather Service’s next model, FvGFS, is composed of six

7The PDEs on the Sphere workshop series (https://pdes2017.sciencesconf.org) have focused on the
problems of grids and numerical methods for weather, climate, and ocean circulation since 1990.

https://pdes2017.sciencesconf.org
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Cartesian grid faces of a cube inflated out to the surface of an enclosing sphere.
The global version of the NCAR Weather Research and Forecast (WRF) model
[41] is an overset mesh scheme comprised of two Cartesian meshes, one covering
each hemisphere and then projected onto polar stereographic coordinates. In both
cases, and aside from the extra work involved to handle the corners and edges
on the cubed sphere and the overlap regions of the overset mesh, the component
grids themselves are Cartesian and straightforward from a coding point of view.
Traversing the domain and accessing values for neighboring grid cells is done using
array index arithmetic inside multiply nested loops that are easily recognized and
optimized by modern compilers.

Approaches for non-Cartesian grids are more complex and interesting from
numerical, geometric, and computational points of view. The Non-hydrostatic Icosa-
hedral Model (NIM) developed at NOAA uses an icosahedral mesh constructed
mostly of hexagons with 12 pentagons. The Model for Prediction Across Scales
(MPAS) developed by NCAR and Los Alamos National Laboratory uses a cen-
troidal Voronoi tessellation (CVT) of arbitrary polygons that aligns to an icosahedral
hexagonal mesh but that allows further in-place refinement (Fig. 6) to focus higher
resolution over an area of interest: for example, the Gulf of Mexico and western
Atlantic during hurricane season. The CVT in MPAS obeys the additional constraint
that lines connecting neighboring cell centers bisect the neighbor edges and intersect
at right angles. This supports an unstructured generalization of Arakawa C-grid
staggering used to overcome problems with the representation of gravity waves in
collocated grids while addressing problems reproducing geostrophic balance that
stem from the discretization of the Coriolis force [36].

The unstructured horizontal dimensions in the MPAS grid are represented as
arrays of vertical columns of the domain. The relationships between adjacent cell
centers, edges, and vertices are computed when a mesh is generated and stored as
integer arrays for each column. Traversing the grid and accessing neighbor values

Fig. 6 Centroidal Voronoi Tessellation (CVT) of a quasi-uniform (left) and variable resolution
MPAS mesh. The meshes shown contain the same number of grid cells [32]. © American
Meteorological Society. Used with permission
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Fig. 7 Lloyd algorithm for constructing centroidal Voronoi tessellations used in the MPAS model
[35]

for computation require indirect indexing, a computational penalty compared to
iterating over Cartesian meshes. This impact can be offset by ordering grid points in
memory to be stored successively in vertical vectors that can be vector-parallel on
CPUs [25] and thread parallel on GPUs.

Relative to Cartesian meshes, generating unstructured meshes is complicated and
expensive and is typically done offline. The MPAS grid generation program is based
on a method originally developed at Bell Laboratories for signal processing (Lloyd
1982) and applied to generating CVTs on the sphere (Fig. 7). The Lloyd method
is sequential and essentially trial and error, so that creating a global mesh at a new
quasi-uniform resolution or generating a global mesh with new areas of refinement
may require days of computer time to converge8. Fortunately, once generated, the
meshes can be reused, rotating to a different orientation if necessary to expose a
different part of the domain to the area of mesh refinement. Improvements in mesh-
generation speed have been obtained using GPUs and work to improve the quality
and speed of generated CVTs is ongoing [21] (Engwirda 2017 JIGSAW-GEO).

3.2.1 Domain Decomposition

Once generated, decomposing unstructured grids involves finding a partitioning
that assigns approximately equal numbers of grid columns to MPI tasks for load
balance while minimizing the surface area to adjacent partitions to minimize
the volume of data communicated. The MPAS model uses the METIS package
from the University of Minnesota to decompose its domain over tasks (Fig. 8).

8Skamarock, W., personal communication.



310 J. Michalakes

Fig. 8 MPAS unstructured grid decomposition that minimizes the amount of overlap between
subdomain edges, thus minimizing the amount of data that must be communicated. Reproduced
with permission [34]. Used with permission. Partitioning was generated using the METIS package
from U. Minnesota [24]

METIS uses recursive bisection and K-way partitioning to find a decomposition
that minimizes computational imbalance which results from uneven distribution of
work and communication imbalance which results from edge-cuts between vertices
of the mesh.

The icosahedral mesh of the NIM model consists of the ten rhombus-shaped
faces and is decomposed over tasks in two steps. First, each face is assigned to
a separate set of MPI tasks. Then each face is decomposed over its set of tasks
in checkerboard Hex9-board? fashion. The decomposition originally required NIM
to run on multiples of 10 MPI tasks. Subsequent refinements using 20 rhombuses
allowed multiples of 1, 2, or 5 MPI tasks. Ordering the grid columns on each task
in spirals eliminated the need copy cells into buffers to send and receive data to
neighboring tasks through MPI (Fig. 9).

Space filling curves have been used to order and decompose elements in the
HOMME and NEPTUNE spectral element models on cubed-sphere grids [4, 6].

3.2.2 Load Imbalance

Partitioning may also need to account for varying amounts of work for a given
column depending on location in the domain and the time of the simulation. Sources
of load imbalance can be static or can vary over the course of a simulation. An
example of a static imbalance occurs when the number of processors does not
divide the number of grid columns without a remainder. Or with limited-area

9https://www.hexwiki.net.

https://www.hexwiki.net
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Fig. 9 Spiral traversal of icosahedral grid cells for MPI tasks in the NOAA NIM model,
allowing interior data and data stored for interprocessor halo exchanges stored contiguously
in memory. The ordering allows exchange sections of the computational storage to be passed
directly to MPI without additional copies. © American Meteorological Society. Used with
permission [18]

(not global) domains, the computations on the lateral boundaries may involve less
work. Static imbalances can be addressed by assigning different numbers of grid
columns to processors. Dynamic imbalances may be associated with processes
such as cloud physics that require more computation around convective systems
(storms).

Arriving at a perfectly balanced load is usually not possible. A weather model
is multi-phasic, performing different physical or dynamical processes in the course
of a time step and also different mixes of these processes from one time step to
another. Since each phase of computation may have a different load profile, using
an optimal decomposition to balance each phase is impractical. Inefficiency from
load imbalance in the 5–20% range is usually not enough to justify the cost of
redistributing work and data between each phase. An exception is the imbalance
associated with the diurnal cycle in radiation physics that is computed only in
the sunlit half of the domain. Here the imbalance is large and regular enough
for load balancing to provide a benefit, even with the cost for relocating the
data [10, 37].
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3.3 Element-Based Dynamics

Finite element and spectral element methods, used widely in aerospace and other
applications of computational fluid dynamics, are being applied to weather mod-
eling because they are high order local methods that scale well computationally.
Each element computes a local solution to the desired level of accuracy using
an expansion on a set of orthogonal basis functions, not unlike the calculations
done globally in spectral models described above. The element-local solutions are
combined to form a global solution using either a continuous or discontinuous
Galerkin method: the local solution at points along the faces of each element is
summed with the edge solutions of the element’s neighbors in a process called direct
stiffness summation (DSS). DSS requires only nearest neighbor communication and
the amount of data communicated is constant with respect to numerical order. Thus,
element-based methods provide the accuracy and high computational intensity of
globally spectral methods but without domain-wide interprocessor communication
that inhibits scalability. Element-based methods are also well suited to complex
geometries and lend themselves to adaptive mesh refinement [2, 12, 14, 15, 29].
Examples of models using element-based dynamical cores include the NUMA10

dynamical core in the U.S. Navy’s NEPTUNE and the HOMME dynamical core
used in the Community Earth System Model11 and the Department of Energy’s
Energy Exascale Earth System Model (E3SM)12. The UK Met Office is developing
the finite element Gung-Ho13 dynamical core for its new LFRic14 modeling system.

Benchmarking NOAA’s Next Forecast Model
In 2015 the National Weather Service needed to replace its aging Global Spec-
tral Model. Six dynamical cores from development teams in the USA were
evaluated: NOAA/GFDL’s FV3, NOAA/NCEP’s NMM-UJ, NOAA/ESRL’s NIM,
NCAR’s MPAS, and Naval Research Laboratory’s NEPTUNE based on the Naval
Postgraduate School’s NUMA model. FV3, NMM-UJ, and NEPTUNE used a
cubed-sphere grid; NIM and MPAS used icosahedral/unstructured. Numerically,
NMM-UJ used finite-difference; FV3, NIM, and MPAS were finite-volume; and
NEPTUNE/NUMA used spectral elements. ECMWF’s spectral/semi-Lagrangian
IFS was included for comparison.

Computational performance and scaling were benchmarked on Edison, a large
Cray supercomputer at the Department of Energy’s NERSC facility. The first chart
shows performance results for the models running a 13 km resolution workload
(up to 3.5 million cells). The horizontal dotted at 1.0 is the speed threshold for
forecasting. The second chart shows strong scaling efficiency for a higher resolution

10http://faculty.nps.edu/fxgirald/projects/NUMA/Introduction_to_NUMA.html.
11http://www.cesm.ucar.edu.
12https://e3sm.org/.
13https://www.metoffice.gov.uk/research/foundation/dynamics/next-generation.
14https://www.metoffice.gov.uk/research/modelling-systems/lfric.

http://faculty.nps.edu/fxgirald/projects/NUMA/Introduction_to_NUMA.html
http://www.cesm.ucar.edu
https://e3sm.org/
https://www.metoffice.gov.uk/research/foundation/dynamics/next-generation
https://www.metoffice.gov.uk/research/modelling-systems/lfric
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3 km resolution workload (up to 65-million cells) expected to be commonplace
within the next decade.

The fastest models scaled the least well, a not unexpected result. Computationally
heavy models like MPAS and NEPTUNE perform more work per processor
making the overhead from communication proportionately less costly. Non-local
communication in IFS’s spectral transforms hindered its scaling. FV3 ran 1.36
times faster (and scaled less well) at single precision than double precision and
gave acceptable results [27].

The evaluation concluded in 2016 with selection of GFDL’s FV3. The reports
from all phases of testing are available online from the National Weather Service.

(https://www.weather.gov/sti/stimodeling_nggps).

For a given forecast configuration, element-based methods are more costly in
terms of floating point operations than finite-difference and finite-volume based
approaches but provide greater accuracy and scalability to large numbers of parallel
threads on current and next generation HPC architectures. The NUMA spectral
element dynamical core was the first ever to achieve operational forecast speed at
a uniform global resolution of 3 km (1.8 billion cells), scaling with 99% efficiency
to the full 786-thousand cores of the IBM Blue Gene/Q Mira system at Argonne
National Laboratory [28]. In NOAA’s 2015 intercomparison to choose the next
dynamical core for the U.S. National Weather Service, the NUMA/NEPTUNE
dynamical core was the most costly but also the most efficient running up to the
full number of processors available (see “Benchmarking NOAA’s Next Forecast
Model”).

3.4 Physics

The parts of a weather model that provide forcing terms that drive atmospheric
dynamics—radiative heating, evaporation, condensation, convection, chemistry,
turbulence, surface drag, and other physical processes—are collectively known
as physics (the usage may be singular or plural). Physics differentiate weather
and climate models from more general computational fluid dynamics applications.

https://www.weather.gov/sti/stimodeling_nggps
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Physics packages in a model are parameterizations because they are simplified
representations of processes that occur at subgrid scales, too fine to be resolved
by the dynamics. Physics is where much of the predictive skill of a model resides.
Adapting a physics package to a particular forecast application involves tuning—
adjusting parameters within the physics package—to remove forecast error and
biases at a given forecast scale with respect to observations.

Physics usually represents processes that act only in the vertical dimension, and
is perfectly parallel between adjacent columns in the horizontal domain dimensions;
however, physics work-per-column depends on the state of the atmosphere and
is a major source of load imbalance. There are opportunities for parallelism over
different physics packages—for example, running radiative transfer concurrently
with convention and other physics. Parallelism in the vertical dimension is typically
limited or non-existent.

The computational cost of physics is a significant fraction of the overall cost
of a model run, anywhere from 20% to half of a typical forecast depending on
the configuration. Radiative transfer (Fig. 10) and cloud microphysics (Fig. 11) are
typically the most expensive physics components unless chemistry is also employed.
In that case, for air quality and pollution predictions, the cost of simulating chemical
reactions in the atmosphere and for advecting large numbers of chemical tracers

Fig. 10 Heating and cooling from incoming shortwave and outgoing longwave solar radiation as
modeled by the Rapid Radiative Transfer Model. Illustration by AER Corp. Used with permission
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Fig. 11 Cloud microphysics models subgrid-scale moisture processes governing production of
precipitation in multiple forms and thermodynamic feedbacks from evaporation and condensation
in active convection. Illustration by Rob Seigel, Colorado State University. Used with permission

may be several times greater than the cost of the entire rest of the model. Physics
is also state-heavy. While dynamics requires no more than a half-dozen or so
prognostic variables per grid cell, the combined working set for a full-physics
meteorological application is at least an order of magnitude larger (two orders larger
with chemistry). In spite of large working sets, physics makes greater use than
dynamics of exponent, log, square root, power, and other intrinsic operations and
is therefore more computationally intense than the model overall.

From a software point of view, physics code must be updated more frequently
than dynamics and is a source of inconsistency in a model’s software repository. The
physics packages within a given model may have been developed and contributed
by groups of experts outside a model development team using different vertical
coordinates, representations of physical fields, and coding practices.

4 Challenges for Next-Generation HPC

HPC systems are increasingly out of balance. Floating point capability is increasing
but the usable percentage is decreasing because only the number of floating point
units that can be constructed and powered for a given area of silicon and watt of
electricity continues to increase exponentially (and that may end soon). Rates of
increase for memory system, network, and I/O performance have slowed. The 8
billion transistor Knights Landing (KNL) processor, Intel’s most recent (and last)
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generation of Intel’s Many-Integrated Core (MIC) architecture, was rated at up to
three TFLOPs peak performance (2.2 TFLOPs measured). To achieve that, however,
an application would need to perform seven floating point operations for every byte
accessed from KNL’s high-bandwidth (700 GB/s) MCDRAM memory. The number
one ranked system on the Top50015 list at this writing was the 200 PFLOPs Summit
system at Oak Ridge National Laboratory, which comprises 28,000 NVidia Volta
(V100) GPUs. To reach the rated 7 TFLOPs peak performance on the V100 GPU, an
application must perform nine operations for every byte accessed. By contrast, the
highest computational intensity (CI) measured for a full NWP model (non-spectral
transform) is 0.7 operations per byte [28], an order of magnitude gap between
application intensity and realizable floating point performance that is widening with
time.

One may argue that realized percentage of peak performance is an artificial
metric and that time-to-solution is what matters. If a model is scalable, why not
use larger numbers of processors to reach the required simulation speed? In the
first place, as discussed above, real-time deterministic weather forecasting does not
weakly scale with resolution because the sequential temporal dimension must also
be refined. But even within this fundamental scaling limit, there are also sound
practical reasons to worry about efficiency. Although it may be possible to run a
forecast using 15–20 MW of electricity, wasting all but a few percent is difficult to
justify. And application parallelism itself is a limited resource. Scaling to more tasks
and threads without using the resources available to each thread efficiently leaves
performance on the table and limits additional speedup unnecessarily.

Roofline analysis [47] characterizes realizable performance in terms of how
an application maps to the memory system and computational capabilities of a
processor. The idea, illustrated in the roofline plot for a Knights Landing (KNL)
processor (Fig. 13), is that performance (vertical axis) is bound by memory system
performance in the sloping part of the roofline. In that region, the memory system
cannot provide operands fast enough to keep up with the floating point units of
the processor. When CI is high enough and the roofline is flat, the application is
bound only by its ability to saturate the speed of the floating point units. The several
sloping parts of the roofline in the figure correspond to levels of the KNL memory
system from the fastest and smallest level one cache out to the DRAM main-memory
on the KNL device. The memory image of a weather model is too small to fit
entirely within the L1 and L2 caches but does fit within the 16 GB MCDRAM, the
high-bandwidth (nominally 400 GB/s, 387 GB/s measured) on-chip memory of the
KNL. Thus, MCDRAM bandwidth is the limiting factor on KNL for applications
with CI of <7 FLOP/byte. The shaded area shows how little of the KNL’s peak
performance is used by weather models with an overall CI of <1. Optimization
involves restructuring loops and data structures to increase memory locality, moving
CI to the right; and then increasing vector utilization to use as much of the increased
headroom under the roofline as possible.

15June 2018 Top500 list, https://www.top500.org/lists/2018/06/.

https://www.top500.org/lists/2018/06/
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The example in the figure is the roofline plot of an expensive subroutine from
the NEPTUNE model’s profile that diffuses energy cascading to wave numbers too
high to be resolved. The routine already has better than average CI, but additional
improvement was obtained using an AoS to SoA (array of structures to structure
of arrays) transformation. The original version of the code copied from a model
array into local spectral element arrays and back again. Fields in the state array
were stored together for each point (AoS), so that traversing a field required non-
stride-one accesses. In the optimized code, fields for each element were stored in an
element structure (SoA). The element structures were stored as an array (AoSoA)
that replaced the original state array. The diffusion routine was modified to be
called over each element structure in the state array and compute using the field
data in place without copying in and out of the routine. This optimized memory
restructuring moved CI to the right from 1.1 to 1.5 FLOP/byte.

Remaining optimization involved increasing vector and FMA (fused multiply-
add) utilization by reorganizing loops to make it easier for the compiler to generate
vector and FMA instructions, nearly doubling performance. A key benefit of
roofline analysis is signaling when the programmer has more work to do. In this
case, Fig. 12 shows considerable unexploited headroom remained beneath the
700 GFLOPs roofline for MCDRAM, suggesting other sources of inefficiency,
for example, incomplete vector utilization, instruction latency, or load imbalance
between threads.

Figure 13 shows the end result of a several month cycle of AoS to SoA and
other optimizations to improve CI and vectorization in the NEPTUNE model. The
solid bars are performance of the unoptimized code for a workload small enough
for a single node running on generations of Intel Xeon processors and Cavium
Corp’s ARM-based ThunderX2 processor. The hatched bars show the increase in
simulation rate (simulated time over wall clock) after optimization.

4.1 Next Generation HPC and the Programming Challenge

In the absence of increasing clock rates, effort now focuses on-processor fine-
grained parallelism: threads on GPUs and vector instructions on CPU cores. On
GPUs, approaches have ranged from inserting OpenACC or OpenMP directives
to offload computation to the GPU to complete recoding into NVidia’s CUDA
programming language. Because of the difficulty of generating and maintaining a
separate GPU version, the only instance of an entire weather model converted to
CUDA by hand was the Japan Meteorological Agency’s ASUCA model [39]. The
authors showed their code running 80 times faster on the GPU, but with caveats.
The comparison was relative to original Fortran code running on a single CPU core.
Moreover, single-precision GPU performance was compared to performance of the
original code at double precision. Taking this into account, one estimates that a
node-for-node GPU to CPU comparison with equivalent configurations would have
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Fig. 12 Roofline plot for a costly diffusion routine in the NEPTUNE spectral element model.
The plot was generated by running the UC Berkeley’s Empirical Roofline Toolkit on an Intel Xeon
Knights Landing processor, then annotated with computational intensity (CI) and performance that
was measured for the diffusion kernel. Dotted lines show original measurements, solid show after
optimization. The shaded box shows the portion of the KNL’s theoretical peak performance that
can be utilized by weather models having overall CI of <1.0

yielded two- to four-times speedup, a ratio that has remained consistent with other
NWP codes on successive generations of hardware.

Directive-based approaches using OpenACC and OpenMP allow code to be
implemented, maintained, and optimized on both CPU and GPU architectures.
NOAA’s Earth System Research Laboratory developed a single-source implemen-
tation of the NIM model (one of the models described in the box) using OpenACC
directives [18]. The authors showed a two to three times performance benefit for
GPUs compared to conventional multicore CPUs and 1.3 times compared to MIC
on a device-to-device basis. This was without accounting for the additional cost of
moving data between the GPU device and its host processor. The authors showed
up to a 2× GPU to CPU benefit in terms of hardware cost in dollars, after internode
communication and overhead for transferring data between the host and GPU device
were addressed.

Meteo Suisse has deployed a GPU version of the COSMO model that was
implemented using Gridtools (formerly STELLA), a domain specific framework
of C++ templates and libraries developed by the Swiss National Supercomputing
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Fig. 13 Original and optimized performance (as simulation rate) of the NEPTUNE model on
single-node workload over a successive generations of multicore CPUs

Center. Gridtools uses template metaprogramming to embed the DSL within the
C++ host language. At compile time the DSL is translated into an executable with
OpenMP threading on CPU architectures and CUDA for GPUs [13]. Physics in
the COSMO model was adapted to GPU outside of Gridtools using OpenACC.
The authors reported between two and three times faster performance on the GPU
compared to multicore CPU, depending on the amount of work (number of grid
points) per node.

On the MIC architecture, application speedups relative to conventional multicore
CPUs are similar to speedups seen on GPU, but with considerably less programming
effort. This is because vector and parallel programming on the Knights Landing
is fundamentally the same as for conventional multicore Xeon processors. WRF
and other models able to use both MPI for message passing and OpenMP for
threading ported easily to MIC. Programmers can focus attention on exploiting
fine-grain parallelism, usually by helping the compiler recognize and generate
vector instructions and by restructuring code and data to make more efficient use
of cache and memory. The Knights Landing version of the MIC ran a standard
WRF benchmark 1.7 times faster than one node (two sockets) of an Intel Xeon
(Broadwell) processor [16].

Porting and optimizing NWP codes for next generation architectures remain
areas of active effort and research, and are the focus of numerous conference
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and workshop series.16, 17, 18 The European Union’s Energy-efficient Scalable
Algorithms for Weather Prediction at Exascale (ESCAPE) is a 3-year project to
address the problem for weather and climate services in the EC, stated as follows:

Existing extreme-scale application software of weather and climate services is ill-equipped
to adapt to the rapidly evolving hardware. This is exacerbated by other drivers for hardware
development, with processor arrangements not necessarily optimal for weather and climate
simulations.19

A key activity within ESCAPE has been to identify and package kernel benchmarks
called Weather and Climate Dwarfs, after the original Berkeley Dwarfs [1], to focus
co-design efforts between the applications and HPC research and manufacturing
communities. In the USA, the HPC working group of the multi-agency Earth System
Prediction Capability (ESPC) program comprises model developers and users from
NOAA, NASA, DOE, the Dept. of Defense, and the National Science Foundation.
Less far along than the European efforts, at this writing the ESPC group had
defined initial requirements on which to undertake effort along the lines of the EC
program [5].

5 Summary

“Modern weather prediction is perhaps the most cooperative activity of our species”
– Prof. Clifford Mass, Dept. of Atmos. Sciences. U. Washington [26]

Today, the numerically generated weather information available through print,
radio, television, and the internet is public’s most direct experience with high-
performance computing. The half-century history of numerical weather prediction
is a story of massive scientific and technical investment on an international scale;
of steady progress fraught with technological disruption harnessing a billion-fold
increase in computer power; and of the challenges for continuing to add value from
numerically generated forecasts into the exascale era.

Acknowledgements Thank you to Tom Henderson, Kevin Viner, Jim Doyle, John Dennis,
Michael Duda, Jacques Middlecoff, and Jordon Powers for reading the manuscript and providing
their valuable advice.

16NCAR Multicore Workshop series: www2.cisl.ucar.edu/events.
17ECMWF Workshop on HPC in Meteorology: events.ecmwf.int.
18AMS Symposium on HPC for Weather, Water and Climate: ams.confex.com.
19http://www.hpc-escape.eu/.
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A Simple Study of Pleasing Parallelism
on Multicore Computers

Yanfei Ren and David F. Gleich

1 Introduction

Current single-machine computing environments are a mixture of high-power CPUs
and GPUs mixed to large quantities of memory of various speeds. Often these are
subsequently networked together into large distributed computational platforms.
Cloud computing further complicates the scenario as advanced resources can
be purchased for the time needed. These environments present a wide-range of
opportunities to schedule what are often called pleasingly parallel computations,
namely, those that have a large amount of independent computation that can be
scheduled simultaneously.

We wish to investigate how to leverage and utilize such resources in the context
of a large graph computation. While the focus on large graph computation is often
in terms of solving problems on massive graphs with distributed computation,
the downside to such computations is that they often involve nearly linear-time
algorithms [16]. These have runtimes such as O(n log n) and typically involve a
small number of passes over all the edges of the graph, for instance, running a
connected components analysis or computing a PageRank vector. Consequently, the
algorithm performance is largely dominated by how well the computation maps to
the IO and memory system strategies of the platform.

Instead, the computation we investigate is the all-to-all personalized PageRank
computation. Given an n-node graph, this involves computing the personalized
PageRank vector associated with each node. We state the problem formally in
Sect. 2. Consequently, there are n such computations that are all independent and
decoupled. In terms of the scale, we are targeting graphs with up to a 100 million
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edges and with up to 10 million nodes. Real-world instances of such graphs are
the LiveJournal social network crawl with around 4 million vertices and 67 million
edges and the Orkut social network crawl with 3 million vertices and around 220
million edges.

Because the output from the all-to-all problem would be O(n2) data, we seek
to output only summary statistics of the personalized PageRank vectors including
inverse participation ratios for the solutions that serve as a soft-measure of the
number of non-zeros, as well as the largest 1000 entries of the vectors. The large
values are commonly used as latent measures of node similarity [14, 41, 46].
Hence, a simple strategy for this computation is to load the graph into memory
on all computers available, take the fastest single-core algorithm for personalized
PageRank, and run it as many places as possible.

This picture becomes more interesting in light of the heterogeneous nature of
computers. For instance, we can use vector or SIMD instructions to potentially
compute multiple PageRank vectors at once, if the algorithm used is amenable to
it. Second, large shared memory machines may have a large number of computing
cores (over 200 is possible with commercially available systems that cost less than
$250k). However, many of these cores share memory bandwidth resources that can
impede some algorithms. This suggests that sharing access to a single graph may
not scale. Furthermore, GPUs are constantly changing their underlying compute
resources. Fourth, the algorithm performance itself is likely to be sensitive to choices
of data distribution within the graph due to memory locality. Hence, even for this
simple setting there is a rich set of complications to simplistically expecting a
pleasingly parallel algorithm to scale.

Our goal is to investigate these performance differences in the context of the
simple personalized PageRank computation. We chose that computation as it is
representative of a wide swath of related computations on graphs including scalable
methods for all-pairs shortest paths. Moreover, the algorithms to compute it are
simple. They are specializations of well-known matrix computation algorithms
including the power method and Gauss–Seidel method [19]. We can easily inves-
tigate a diverse collection of possible implementations that have different memory
characteristics. Our focus was to keep the investigation simple and reflective of what
might be expected from an informed, but non-expert, user of the algorithms. This is
someone who understand how the algorithms works, where the relevant bottlenecks
might be, but does not want to attempt to re-engineer the algorithm for the absolute
maximum level of parallelism or performance. This individual is optimistic that the
pleasingly parallel nature of the computation will be sufficient to drive performance.
Towards that end, we discounted using GPUs at the moment as the toolkit for graph
computations on GPUs is still evolving.

We have done all of these experiments in the Julia computing environment to
make it easy for others to further investigate our ideas. It is also a high-level
programming language that makes it simple to implement a variety of algorithms
in a consistent fashion. Regarding the idea that high-level languages may be slow,
we initially benchmarked the Julia implementation against a C++ implementation
of a similar algorithm [25] and found the runtimes of the methods to be within 10%
of each other.
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2 The PageRank and AllPageRank Problem

The PageRank problem begins with a graph G, which could be both weighted
and directed. However, in the interest of simplicity, we take G to be unweighted,
directed, and strongly connected. This greatly simplifies the setting and puts the
focus on the relevant pieces of the computation. Let us note that we lose no
generality by doing so: a PageRank computation on a graph with multiple strongly
connected components can be reduced to a sequence of PageRank computations on
the individual strong components, and usually, these additional computations are
much smaller because most real-world networks only have a single large strongly
connected component (see, among others who make this observation, [35]).

Fix an ordering for G’s vertices from 1 to n and identify each vertex with its
index in this order. Let A be the resulting adjacency matrix of G

Aij =
{

1 (i, j) is a directed i → j edge

0 (i, j) is not an edge.

We use the following additional notation:

d = vector of degrees di =∑j Aij

p = vector of inverse degrees pi = 1/di

P = the stochastic transition matrix P = ATDiag(p)

ei = the ith column of the identity, ei has a 1 in the ith row and 0 elsewhere,

where we use the Diag(·) operator to put the argument along the matrix diagonal.
The PageRank problem [14, 28, 39, 40] is to compute the stationary distribution of
a random walk that with probability α follows a standard random walk model on
G and with probability 1− α jumps according a teleportation distribution vector v,
where v encodes the probability of jumping to each node. Typically α is between
0.5 and 0.99. Throughout this paper, we use what became the standard value of
0.85 [28]. The stationary distribution corresponds to a solution of the following
nonsingular linear system:

(I − αP )x = (1− α)v.

Personalized, or seeded, PageRank problems set v to be a single node, or in this
case, a column of the identity matrix ei and the linear system

(I − αP )xi = (1− α)ei . (1)

As an aside, we note that a standard feature of most PageRank constructions [14] is
the dangling correction vector c. In this case, we do not have this correction vector
because we assume that we are given a strongly connected graph.
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Our goal is to compute xi for all i from 1 to n, or more simply, the matrix

X = (1− α)(I − αP )−1.

We wish the entries of X to be of high accuracy, and intend to compute each column
of X such that the 1-norm error is provably less than (1−α)/n. Because the graph is
strongly connected, the matrix X is dense when computed exactly. For a graph with
one million vertices this graph is too large to store even on a large shared memory
machine. We thus define the AllPageRank problem.

Problem 1 (AllPageRank) Fix a graph G, let A be a binary adjacency matrix
indicating the presence of an edge, let P be a column stochastic matrix giving
transition probabilities on the same graph. The AllPageRank problem is to compute
the following entries of (1− α)(I − αP )−1:

• the participation ratio for each column xi , which is a soft measure of the number
of non-zeros in the column

• the non-zero values of X )A and XT )A, and
• the k largest entries in each column, for k = 100 or k = 1000.

Here) is the elementwise, or Hadamard, product. Note that the transition matrix P

need not come from the transition described above and could come from anywhere,
such as the common stochastic transformations in PageRank [14]. Nonetheless, we
will always use P = ATDiag(p) in this manuscript. The results of AllPageRank
could be used to form a nearest neighbor approximation, to form PageRank
affinities [46], or simply as a diffusion approximation of the underlying graph.
Additional applications of such an output involve similar methods that solve protein
function inference problems [23, 31]. Finally, this can be related to some idea of a
“PageRank effective resistance” on an edge.

We stress that there are applications of the output for PageRank, but that our
general goal is to use PageRank as a model computation that is representative of the
challenges faced by more general numerical computing problems on graphs. This
is akin to PageRank’s widespread use to evaluate the performance of distributed
graph computation engines [1, 9, 26, 33, 43, 44]. See additional examples of related
computations in Sect. 5.

3 PageRank Algorithms

There are a few classic algorithms for PageRank computations: the power method,
the Gauss–Seidel method, and the push method in two variations. We briefly explain
these algorithms, give a small pseudocode for the computation, as well as an easy-
to-compute error bound.

For the following set of algorithms, we will describe how to use them to compute
a single vector, although we note that all of them are amenable to computing
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multiple vectors simultaneously as discussed in Sect. 3.6. We will use the notation
x to refer to the solution vector to (I − αP )x = (1 − α)v where v = ei for
some fixed i. Each iterate in a high-level description of the method will be written
x(k); what exactly constitutes an iteration may vary among the discussions. For
instance, for Gauss–Seidel and the Push Methods, it is often helpful to analyze a
single update step within an iteration. We have endeavored to keep the discussion
consistent and try to point to the pseudocode to clarify any ambiguities. Note that,
in the pseudocode and discussions about it, however, we will be more clear about
memory and use x, y, and r to denote vectors of memory associated with an iteration
rather than their interpretations about the solution.

3.1 The Power Method

What is usually called the power method for PageRank is probably better called the
Richardson method for the linear system formulation of PageRank [14] because the
two iterations are exactly identical in the scenario that each iterate is a probability
distribution. The idea underlying both is to unwrap the linear system (1) into the
fixed point iteration

x(0)i = ei x(k+1)
i = αP x(k)i + (1− α)ei .

The main work at each iteration is the matrix vector product P x(k). This can be done
either by computing a sparse matrix P where the non-zero value is the probability
ATDiag(p) or instead, by storing just the graph structure of AT alone without
any values for the non-zero entries along with the vector p. To find a point where
||x(k) − x||1 ≤ τ , this method requires at most 2 log(τ )/ log(α) iterations [7]. As
noted in [14], we can terminate this earlier when ‖x(k+1) − x(k)‖1 ≤ τ(1 − α)
because that guarantees the same error condition. This helpful circumstance arises
due to the relationship between ‖x(k+1) − x(k)‖1 and the residual of the linear
system.

In our implementation, this iteration is implemented using two vectors of
memory for a compressed sparse column representation of the adjacency matrix
A. The pseudocode is in Fig. 1. In this algorithm, we store an iteration in x and use
the memory in y to compute the next iterate x(k+1). After the entire update is done,
we compare the vectors and swap.

3.2 Gauss–Seidel

Gauss–Seidel is a simple variant of the power method where we update the solution
vector immediately after computing the value update in Fig. 1. This requires only



330 Y. Ren and D. F. Gleich

Fig. 1 Pseudocode for the power method to compute the vth column of X = (1−α)(I −αP )−1.
This algorithm takes two vectors of memory and performs random reads from the memory in x
and p, but then linearly ordered writes to the memory y

one vector of memory. Writing this update formally is often annoyingly intricate—it
involves an idea called a regular splitting [45]—but is an extremely simple change
in terms of the code. Thus, we start with the pseudocode in Fig. 2.

There are a few subtle differences from the pseudocode of the power method.
First, we initialize the vector x from zero. This choice will turn out to make tracking
the error in the Gauss–Seidel iteration much easier [8]. Second, the algorithm
actually stores x(k) ) p in the memory x where ) is an elementwise product.
This choice is made so that we can compute the quantities in update on lines
14–17 without looking up the values in p. Note that we could have done the
same transformation for the power method, but we found it slightly decreased
performance. Here, the value of δ tracks the total sum of x(k) = x) d after the loop
13–25. This corresponds to the sum of an iterate x(k) of the Gauss–Seidel method.
As we will see next, for Gauss–Seidel starting from 0, we have that

∑n
i=1[x(k)]i

gives the 1-norm of the error.
The error analysis of the method is fairly straightforward. The iterations we

analyze are the unscaled iterations that would correspond to multiplying x in the
code by d (elementwise) at each step. We call these x(k) as discussed in the previous
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Fig. 2 Pseudocode for the Gauss–Seidel method to compute the vth column of X = (1− α)(I −
αP )−1. This algorithm takes one vector of memory. It maintains x as the Gauss–Seidel iterate
elementwise scaled by p. This performs random reads from the memory in x, and then linearly
ordered writes to the same memory x. This works like the power-method from Fig. 1 where the
updates are immediately applied in the vector x

paragraph. In what follows x is the solution vector. However, let us note that what
constitutes an iteration is not the loop on line 11, but the loop on line 13. This is
because this method is easiest to analyze if we only consider what happens when a
single element of x(k) is changed on Line 23. In our analysis, we will show that each
iterate x(k) is bounded above by the true solution x. Formally, this can be stated as
x(k) ≤ x. We will establish this by showing that iterates only increase the value of
x(k) and they never get too large. If x(k) ≤ x is the case, then the error

‖x− x(k)‖1 =
∑

i

[x− x(k)]i =
∑

i

[x]i −
∑

i

[x(k)]i = 1−
∑

i

[x(k)]i .
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Here, we only used that the sum of the entire PageRank vector
∑
i[x]i = 1 for the

true solution on a strongly connected graph. Note that in line 22, we update δ which
is tracking the sum of the unscaled vector x(k) and after the full loop on 13–24, we
have computed δ =∑i[x(k)]i . Consequently, this termination criteria maps to what
we use in the algorithm.

Now, it remains to show that we indeed have the solution upper bounding each
unscaled iterate. Note that, because x(0) = 0 we immediately have x(0) ≤ x. We will
also strengthen our setup and note that the residual of the linear system (1)

r(0) = (1− α)v− (I − αP )x(0)

is also non-negative. The importance of the relationship with the residual is that the
residual and error satisfy the following system of equations:

(I − αP )(x− x(k)) = r(k).

The matrix (I − αP ) is an M-matrix [27] with a non-negative inverse, so the error
vector x − x(k) ≥ 0 when r(k) ≥ 0. Thus, it suffices to show that r(k+1) ≥ 0
given r(k) ≥ 0. In this case, we know that x(k) and x(k+1) are the same in all but
one coordinate. Let u correspond to the index i that is changed in iteration k. We
compute

x(k+1) = x(k) + μkeu,

where μk is the value of update−eTu x(k). Expanding out the code to get μk gives

μk =
{
α
∑
j→u x

(k)
j /dj − x(k)u u �= v

α
∑
j→u x

(k)
j /dj + (1− α)− x(k)u u = v .

Note that μk is exactly the uth element of the residual of the linear system (1)

r(k) = (1− α)v− (I − αP )x(k) ⇒ μk = eTu r(k). (2)

We have that μk ≥ 0 because r(k) ≥ 0 by assumption. At this point, we still need to
show that r(k+1) ≥ 0, and we have

r(k+1) = (1− α)v− (I − αP )(x(k) + μkeu) = r(k) − μk(I − αP )eu
= (r(k) − μkeu)+ μkαP eu︸ ︷︷ ︸

non−negative

Now, we also have that
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[r(k) − μkeu]i =
{

0 i = u
[r(k)]i i �= u ≥ 0

because μk is the uth component of r(k) (see (2)). Thus we have r(k+1) ≥ 0.
This justifies that the algorithm in Fig. 2, if it terminates, will have the correct

error. To see that it will terminate, note that this same analysis shows that we reduce
the sum of the residual at each step of the algorithm. We can also get convergence
through classical results about the convergence of Gauss–Seidel on M-matrices [45].

Although there is no sub-asymptotic theory about Gauss–Seidel compared with
the power method, ample empirical evidence suggests that, for most graphs, Gauss–
Seidel runs in about half the iterations of PageRank. The asymptotic theory in
Varga [45] shows that Gauss–Seidel is asymptotically faster than the power method.
However, this is in terms of the spectral radius alone. This asymptotic theory,
however, can be misleading for PageRank as an example with a random graph
from [13] shows. To foreshadow our results, Gauss–Seidel will be the method to
beat for computing PageRank with a single thread. This mirrors results found in
other scenarios as well [15, 36].

3.3 The Cyclic Push Method

One challenge with Gauss–Seidel is that it requires in-neighbor access to the
edges of the graph. These are still accessed consecutively, which makes streaming
solutions a possibility. There are nevertheless many graph systems that provide the
most efficient access to the out-neighbors of a directed graph. It turns out that there
is a way to implement the Gauss–Seidel for these systems using something called
the push method for PageRank, the big difference, however, is that we maintain two
vectors of memory. The first variant of the push method we will describe will exactly
map to the Gauss–Seidel computation above. The key difference is that it explicitly
maintains a residual vector.

Suppose we kept a solution vector x(k) along with a residual vector r(k). Then the
single-entry update in Gauss–Seidel corresponds to

x(k+1) = x(k) + eueTu r(k).

(This expression arises from (2) combined with the μk variation on the Gauss–
Seidel update.) This is easy to compute, but then we have to update r(k) to get the
new residual r(k+1). In the push method, this second update dominates the work.

Recall the expression for the residual update that arose in our theory on Gauss–
Seidel

r(k+1) = (r(k) − μkeu)+ μkαP eu.
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Fig. 3 Pseudocode for the cyclic push method to compute the vth column of X = (1 − α)(I −
αP )−1. This algorithm takes two vectors of memory. It maintains x as the Gauss–Seidel iterate
and r as the residual (1−α)ev − (I −αP ). This performs random writes to the memory in r. Note
that this iteration is mathematically identical to Fig. 2, but it uses compressed row storage for A

instead of compressed column storage

To perform this update, all we need to do is set the uth element of r(k) to 0, and then
lookup the values of the uth column of P . Note that the matrix P = ATDiag(p)
and so the uth column is just the uth row of A, which encodes the out-neighbors,
scaled by p[u]. The resulting algorithm is given by the pseudocode in Fig. 3.

This iteration is mathematically identical to Gauss–Seidel. The iteration in this
form was described by McSherry [36] as an alternative way of computing PageRank
that was more amenable to optimization because we can use properties of the
residual to choose when to revisit or skip updating a node. The term “push” comes
from the idea that when you update x[i] you “push” an update out to the neighbors
of i in the residual vector.
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3.4 The Push Method With a Work Queue

The name “push method” actually comes from [2]. That paper utilized the push
method to compute a personalized PageRank vector of an undirected graph in
constant time (where the constant depends on α and the accuracy τ ) for a weaker
notion of error. This weak notion corresponds to finding an iterate with error that
satisfies 0 ≤ x−x(k) ≤ τd. So the error on a node with a large degree could be large.
This enabled a number of clever ideas to show that this can be done in work that
does not depend on the size of the graph. One of the key ideas is that this algorithm
maintains a queue of vertices to process, and hence, avoids storing or working with
vectors that are the size of the graph.

In this case, we adopt similar ideas and add a work queue of vertices that have
not yet satisfied their tolerance. In comparison with the cyclic push method, this
maintains the same amount of memory, in addition, when the residual associated
with a vertex goes above a threshold, we add it to a queue to process in the figure.
Namely, if the residual on a node is ω, then we can show that the maximum change
to the solution vector due to that element is ω(1 − α). There might be as many as
n items in the residual, so if we want a solution that is accurate to 1-norm error τ ,
then we can check if the residual is smaller than (1 − α)τ/n. If it is smaller than
this, we can show it will not impact the solution.

The pseudocode with the queue is in Fig. 4. The algorithm is identical to Fig. 3,
except that we visit vertices in the order that they have been added to the queue.
The only small subtlety is that we can check if a vertex is in the queue in order
to avoid adding it multiple times based on the current value of the residual. In
Line 25, we check if this is the first time that the element increased beyond the
threshold ω. The other small detail is that we keep a running sum of the vector x
in δ, which is incremented based on the value of μ at each step. In a low-precision
implementation, this sum would need to be accumulated at a higher precision as it
involves an extremely large running sum. As such, we can use the previous error
analysis which justifies that when the total sum of the vector x exceeds τ , then we
have converged.

3.5 Related Algorithmic Advances

It was [21] and [36] that realized that the push formulation offered a number
of additional opportunities to accelerate PageRank computation by skipping and
optimizing potential updates in a Gauss–Seidel-like fashion. These were later
improved upon by [6] and [2] with the idea of the workqueue. The connection to
Gauss–Seidel only arose later [8, 11]. The algorithms in our paper do not use the
full flexibility of these methods as they are often specialized techniques that arise
for web-graphs.
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Fig. 4 Pseudocode for the push method with a work queue to compute the vth column of X =
(1 − α)(I − αP )−1. This algorithm takes two vectors of memory. It maintains x as the Gauss–
Seidel iterate and r as the residual (1 − α)ev − (I − αP ). This performs random writes to the
memory in r and picks what amounts to a randomly scattered entry of i to process next

We have ignored here a wide class of methods for PageRank that work via Monte
Carlo approaches [3–5, 32]. These methods all have trouble getting high accuracy
entries, although they tend to get the top-k lists correct and should be considered
for applications that only desire that type of information. Krylov methods are
only competitive for PageRank when α is extremely large [18]. There are have
been numerous attempts to parallelize the computation of a single PageRank
vector [17]—especially on graph processing systems [1, 9, 26, 33, 43, 44]. In
particular, these methods often utilize ideas closely related to the workqueue notion
of the push method. Analysis of these results show that they often fail to be useful
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parallelizations of the underlying problem and have significant overhead compared
to simple implementations [37].

3.6 Multivector Transformations

The algorithms described so far here—and most of the discussions of PageRank
that we are aware of—deal with computing a single PageRank or personalized
PageRank vector. (The biggest exception are a number of techniques to attempt
to approximate all PageRank vectors [4, 21].) With the idea in mind that we are
considering an educated, but non-expert, user of these algorithms we note the
following idea. Modern processors feature vector execution units often called SIMD
(single instruction, multiple data) or simply vector instructions. Because the data
access pattern for the power method, Gauss–Seidel, and the cyclic push method are
entirely independent of both the choice of the right hand side ei and any elements of
the vectors, then we can conceptually execute the same iteration on multiple vectors
simultaneously. This involves few changes to the code assuming that the language
supports some notion of treating a vector of entries like a scalar. Thus, for each of the
methods above, we create a variation that processes multiple vectors simultaneously.
Our technique to do this in the Julia programming language is to replace a one
dimensional array of data with a one dimension array of statically sized vectors.
This enables the compiler to unroll and auto vectorize code that involves multiple
entries at once in a way that is consistent with our informed user persona. The code
is essentially unchanged from the previous cases and we refer interested readers to
our online codes to reproduce these ideas. (See Sect. 6.)

4 Results

We now conduct a set of experiments using these four PageRank algorithms in
the setting of the AllPageRank problem. That is, we run them to compute multiple
columns of the matrix X. The primary performance measure we are considering is
the number of columns computed per unit time. We run the algorithms for one of
two time intervals: 14.4 min and 5 min. Note that 14.4 min is exactly 1/100th of a
day, and so the number of vectors computable in 24 h is exactly 100 times greater.
For 5 min, the factor is roughly 300 times larger. Note that the AllPageRank problem
involves a great deal of computation, and so it is natural to, perhaps, think of running
this for a few days. Months or weeks are less reasonable, though.

We consider two parallelization strategies: threads and processes. In the threaded
implementation, we load the graph information into memory once and use the
high-level language’s threading library to launch a given number of computation
threads. These threads continue to compute single columns, or multiple columns
simultaneously, of the solution until the time limit is exhausted. They all access
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the same shared memory copy. The process scenario is largely the same, except we
launch independent processes that all have their own copy of the graph information.
Note that we do not consider any parallel setup or IO time; but let us state that this
was negligible for our experiments—it might take 1–5 min to set up an execution
which we expect to run for hours. Our code for these experiments is all available
online (see Sect. 6 for the reference).

Also in keeping with our informed user persona, we did not perform any heroic
measures to eliminate all simultaneous usage of the machine. We asked other users
not to use the machines during our tests, which, we believe was respected. There
were a few processes from other users that would appear to be doing intermittent
work. (As an example, we may see someone running the unix “top” command to
see if the machine was being used).

4.1 Data and Machines

We report on two datasets, each of which is a strongly connected component of a
larger graph. These data come from [29, 38].

• Orkut has 2, 997, 355 nodes and 220, 259, 736 directed edges.
• LiveJournal has 3, 828, 682 nodes and 65, 825, 429 directed edges.

The two machines we use are:

• A 64-core (4 × 16-core) shared memory server with Xeon E7-8867 v3
(2.50 GHz) CPUs and 2 TB of RAM; this is configured in a fully connected
topology. Each processor has four memory channels, 45 MB of L3 cache, and
256 KB×16 of L2 cache.

• A 192-core (8 × 24-core) shared memory server with Xeon Platinum 8168
(2.70 GHz) CPUs and 6 TB of RAM; this is configured in a hypercube topology
with three connections per CPU. Each processor has six memory channels,
33 MB L3 Cache, and 24×1 MB of L2 cache.

4.2 Performance on a 64-Core System

We begin our discussion by looking at the results of all the algorithms on the
64-core server as these are the simplest to understand. These are summarized in
Table 1, which shows how performance varies on 1, 32, and 64 threads and processes
when we compute 1, 8, or 16 vectors simultaneously. In principle, using multiple
vectors simultaneously will result in the Julia compiler generating AVX and SIMD
instructions on the platform, which can greatly increase the computational power.
We see that this increases performance by around a factor of 4 or 5. We see only a
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Table 1 Vectors computed on the LiveJournal graph within 14.4 min

(a) Threads

Vectors

1 8 16

Threads

Method 1 32 64 1 32 64 1 32 64

Power 25 399 731 88 1984 2752 96 1584 2784

Gauss–Seidel 46 675 1324 152 3128 5320 176 3248 5680

Cyclic push 41 626 849 104 2240 3192 96 1840 3040

Queue push 12 213 323 56 944 1504 64 1232 2048

(b) Processes

Vectors

1 8 16

Processes

Method 1 32 64 1 32 64 1 32 64

Power 24 438 697 88 1800 2920 96 1696 2912

Gauss–Seidel 28 690 965 144 3064 5704 176 3616 5632

Cyclic push 27 544 723 96 1992 2848 96 1776 2480

Queue push 9 189 302 40 880 1536 48 1296 1872

These results are from a threads (a) and processes (b) implementation on the 64-core server on
the 64-core server. For each method, we vary the number of vectors computed simultaneously
among 1, 8, and 16 along with varying the number of threads from 1, 32, to 64

small change going from 8 to 16 vectors computed simultaneously, and sometimes
this will decrease performance (see the threaded results on the power method and
processes results for Gauss–Seidel). The results with processes are generally, but
not always, faster than the results with the same number of threads.

Note that the power method uses more iterations than either the Gauss–Seidel and
cyclic push methods, and so we expect it to be slower from an algorithm perspective
(although the memory access patterns are more amenable to parallelization). Gauss–
Seidel and the cyclic push methods are mathematically identical and so execute
the same number of iterations. The difference in performance is entirely due to
the memory access patterns. These results show that it is better to have random
reads than random writes as the power method is faster than the cyclic push method.
Although the Queue Push method should do the least work of all, it seems that the
additional cost of maintaining the queue causes the method to run the slowest.

In summary, these results point to challenges in linearly scaling the work
involved in this pleasingly parallel computation. They also highlight the need to
compute multiple vectors simultaneously. Note that running Gauss–Seidel with one
process or thread produces about half the output of the power method with 32
threads computing only one vector at a time.



340 Y. Ren and D. F. Gleich

4.3 Sparse Matrix Ordering

The next experiment we consider is using a sparse matrix ordering scheme to
improve the locality of reference among the operations. This is a standard technique
in sparse matrix computations that is commonly taught in graduate curricula. We
use the METIS algorithm [24] and generate 50 and 100 partitions. We then re-order
the matrix so that each partition is a consecutive block. Since the computations with
multiple vectors all had uniformly higher performance, we only report the results
for the methods that compute eight vectors simultaneously.

Again, these results show a considerable increase in performance for most
methods. The performance of Gauss–Seidel increases by 30%, for instance. Notable
exceptions include the power method and Queue Push methods on Orkut. The
partitions took less than an hour to compute. Since we envision running these
computations for over 10 h, the permuted method would overtake the non-permuted
one after about 4 h. Consequently, it seems this technique is still worth doing even
for these pleasingly parallel computations. In particular, note that the cyclic push
method shows a very large change in performance and largely runs faster than the
power method in all cases. Given the random write nature of this work, this is
perhaps unsurprising, but it is useful to know that this type of algorithm is especially
sensitive to ordering (Table 2).

4.4 Performance on a 192-Core System

Next, we investigate how performance changes on a 192-core system for the
algorithms that run eight vectors simultaneously. Table 3 shows the results for the
threaded and independent process scenarios. This table highlights the problem with
scaling threaded computation on this particular system. As the number of threads

Table 2 The change in the number of vectors computed on LiveJournal and Orkut as we vary the
sparse matrix order shows that a small bit of careful ordering dramatically improves performance

(a) LiveJournal (b) Orkut

Ordering Ordering

Method Native 50 100 Native 50 100

Power 2752 3312 3544 904 896 944

Gauss–Seidel 5320 7128 6864 1744 1920 2120

Cyclic push 3192 4272 4928 696 1104 1176

Queue push 1504 1808 1936 512 424 512

These results are from the 64-core server in a threading environment with the 14.4 min interval.
The ordering varies from the native order of the file as it emerged from the strongly connected
component computation to one computed using 50 and 100 partitions with METIS. The algorithms
all compute eight vectors simultaneously. Performance improves for all algorithms except the
queue push and power methods on Orkut. Note the dramatic increase in the performance of cyclic
push on Orkut
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Table 3 Vectors computed by the 192-core server show problems with scaling the threaded
computation

(a) LiveJournal

Threads or processes

Method 1T 1P 96T 96P 192T 192P

Power 104 120 3232 5960 272 7768

Gauss–Seidel 264 272 10,248 13,920 3592 19,160

Cyclic push 160 168 6432 7728 4752 9920

Queue push 64 64 2752 3256 1808 4496

(b) Orkut

Threads or processes

Method 1T 1P 96T 96P 192T 192P

Power 40 40 1048 1768 0 888

Gauss–Seidel 88 88 2384 4184 0 5800

Cyclic Push 48 48 1584 1864 1040 2016

Queue Push 24 24 680 872 0 920

These results show both the threaded (T) and process (P) environment with the 14.4 min interval.
These results all used the ordering computed with 50 partitions and the algorithms all compute
eight vectors simultaneously. We repeated the experiment with 192 threads and verified a similar
result from another trial; we were unable to determine a cause for why these results showed no
vectors computed

increases, the performance decreases. We investigate this finding in the next section
(Sect. 4.5) as well. In fact, on the Orkut networks, there is no work done when using
192 threads within 14.4 min for most of the trials. We repeated this trial to verify
that the result was consistent—it was.

Overall, these results show challenges when using threads on a machine with a
more complex memory topology, even when using pleasingly parallel computations.

4.5 Performance Scaling

The final experiment we conduct is a performance scaling study for the best
algorithm we found: the SIMD Gauss–Seidel algorithm. We use eight-vectors as
there was only a minor performance difference (if any) for the 16-vector variant.
Here we also use the data that has been reordered with METIS in order to get a sense
of scaling when the computation is performing well. We vary the number of threads
or processes in each system and report the scaling results in Fig. 5. These show that
the threading performance quickly degrades on the machine with 192 cores and the
per-process implementation is needed to get good scaling results. Note also that
neither setup scales particularly well for a pleasingly parallel computation.
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(a) (b)

(c) (d)

Fig. 5 Scaling results for threads and processes implementations. The text annotations give the
raw number of vectors computed by that method within 5 min as well as the speedup ratio over the
1 thread or process result. (a) 64-core, threaded. (b) 192-core, threaded. (c) 64-core, processes. (d)
192-core, processes

5 Related Problems

AllPageRank is just a simple instance of a more general need for this type of
computation. A closely related methodology underlies the network community
profile calculation [12, 22, 30, 34]. This setting involves running a local clustering
algorithm for hundreds or thousands of times—independently—on a shared graph.
These computations often take hours to run on graphs of similar size.
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A related computation is the GHOST technique used for network alignment [42].
This calculation extracts a subset of vertices from a large graph and then computes
an eigenvalue histogram on the induced subgraph. These histograms are used as a
invariant and characteristic feature for network alignment methods. (As an aside, we
note that there are better ways to get a related concept called the network density of
states [10].)

In summary, the style of computation used for the AllPageRank problem occurs
repeatedly and is worth understanding given that the computations often consume
considerable time and informed users.

6 Conclusion

The focus of this manuscript is on a pleasingly parallel computation: the AllPageR-
ank problem we introduce. When we investigated computing the vectors involved
in this problem on two shared memory parallel systems, it showed that expecting
linear speedup on these problems is unrealistic. Even in this simple case, our results
show that two ideas are crucial to get reasonable performance:

• computing multiple vectors simultaneously
• using matrix ordering techniques.

Both of these are easy to incorporate into parallel execution libraries that could be
designed for this class of tasks, which is distinct from the current focus of distributed
graph computation libraries. Our code is available online for others to reproduce our
findings on new and emerging systems: https://github.com/YanfeiRen/pagerank

Back to the problem at hand, we are able to compute around 20,000 columns of
X for the LiveJournal graph in 14.4 min. This shows that it would take around two
days with 192 cores to generate all the information for the AllPageRank problem.
For the Orkut graph, it would take around 5 days. We note that both are reasonable
and acceptable runtimes to generate an interesting derived dataset. Waiting a week
for an experiment is a fairly standard scenario in the physical sciences.

That said, this is still an expensive computation. Making these techniques
commonplace on graphs of this scale would likely require another factor of 10
increase in performance so that the results come in 5 h on 192 cores, or say, 15 h
on 64 cores. Monte Carlo techniques may be one possibly, along with reduced
precision computation. Our experiments all used 64-bit floating point values. The
computation may be possible in 32-bit floating point values although it will require
some care as values such as 1/4, 000, 000 are within a factor of 10 of the unit
roundoff value for 32-bit floats. Finally, we note that there are methods that should
further accelerate Gauss–Seidel, such as successive over-relaxation. While there is
a negative finding about SOR on general PageRank systems [20], there are many
PageRank systems and near relative PageRank systems that would use symmetric
positive definite matrices [34] where SOR, with the optimal choice of ω, might be

https://github.com/YanfeiRen/pagerank
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productive. Preliminary tests show this yields another 2–3 fold improvement for
undirected graphs.

We realize that there are additional strategies that an expert could take to improve
performance such as developing custom routines to control memory placement and
thread locality. We note, however, that these tools are difficult to access from high-
level libraries where our hypothetical informed user resides.
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Parallel Fast Time-Domain
Integral-Equation Methods for Transient
Electromagnetic Analysis

Yang Liu and Eric Michielssen

1 Introduction

Marching-on-in-time (MOT)-based time-domain (TD) integral-equation (IE) meth-
ods provide an appealing avenue for tackling a broad range of transient elec-
tromagnetic problems including radiation and scattering analysis [1, 2], electro-
magnetic interference/compatibility (EMI/EMC) characterization [3–5], electro-
magnetic material discovery [6, 7], etc. TDIE methods relate transient incident
and scattered electromagnetic fields through convolution of the equivalent surface
or volume sources with TD Green’s functions. Upon discretizing the equivalent
sources with space-time localized basis functions and spatially Galerkin testing the
pertinent IEs at discrete times, the spatial-temporal unknowns are solved by time
marching. Compared to TD differential equation (DE) methods, TDIE methods
enjoy several advantages. First, IE methods implicitly impose radiation boundary
conditions, whereas DE methods require that the computational domain be truncated
using an artificial boundary condition. Second, when applied to surface scatterers,
IE methods only require surface unknowns, whereas DE methods use unknowns
throughout a volume enclosing scatterers. Unfortunately, the applicability of these
TDIE solvers to large-scale real-world problems was oftentimes hindered by their
late-time instability and computational inefficiency. Indeed, the computed source
and field densities were oftentimes polluted by spurious and non-decaying solutions
as the number of time steps became large due to the buildup of numerical errors
and the use of unstable IE operators. In addition, the computational and memory
costs of the classical MOT scheme scale as O

(
NtN

2
s

)
and O

(
N2
s

)
due to the
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need to compute Galerkin-tested scattered fields at each time step generated by the
equivalent sources via the use of the TD Green’s functions. Here, Ns is the number
of spatial unknowns and Nt is the total number of time steps. Not surprisingly,
issues pertaining to the accuracy and computational efficiency of TDIE solvers
have received significant attention from the research community. In fact, the last
decade has experienced unprecedented developments in high-order accurate, late-
time stable, rapidly converging, low-complexity, and highly parallel TDIE solvers
capable of solving very large and complex electromagnetic problems. This chapter
summarizes these recent advances with an emphasis on low-complexity and parallel
TDIE solvers.

Many fast algorithms have been developed to accelerate classical MOT-based
TDIE solvers, including the plane-wave time-domain (PWTD) algorithm [8], time-
domain adaptive integral method (TD-AIM) [9], nonuniform-grid time-domain
algorithm (NGTD) [10], accelerated Cartesian expansion method (ACE) [11, 12],
Taylor expansion-based algorithm [13], wavelet-based algorithm [14], envelope
tracking techniques [15], and hybridized algorithms [16–20]. These fast algorithms
can reduce the quadratic computational and memory costs of the classical MOT
scheme from O

(
NtN

2
s

)
and O

(
N2
s

)
to O(NtNs) and O(Ns log Ns), respectively.

Among the family of fast algorithms, the PWTD algorithm, just like its fre-
quency domain (FD) counterpart known as the multilevel fast multipole algorithm
(MLFMA), permits fast evaluation of the fields produced by bandlimited source
constellations through their expansion into homogeneous plane waves. Compared
to other fast algorithms such as the TD-AIM and NGTD, the PWTD requires the
least computational resources. Furthermore, PWTD and its various extensions have
been applied to the analysis of transient electromagnetic phenomena that involve
various types of object materials, surrounding media, and frequency regimes.
Not surprisingly, PWTD-accelerated TDIE solvers have been successfully applied
to a broad class of complex and large-scale transient electromagnetic problems.
Sequential implementations of the PWTD (and other fast algorithms)-accelerated
TDIE solvers have been applied to analyze scattering problems involving Ns ≈ 105

spatial unknowns.
The capabilities of the TDIE solvers can be significantly increased through CPU

and GPU parallelization. Parallel versions of both classical and fast-algorithm-
accelerated TDIE solvers have been developed [21–26]; in this chapter, we focus
on CPU-parallel PWTD algorithms. Parallelizing the multilevel PWTD algorithm
on distributed memory clusters is a challenging task due to the algorithm’s
complex nature and heterogeneous structure. While schemes that use spatial [27]
and hybrid spatial/angular partitioning [28] strategies to parallelize the algorithm
were developed, neither approach scales well on distributed memory clusters with
large processor count since their computational, communication, and memory
requirements per processor are not inversely proportional to the total processor
count. Similar difficulties have been observed in parallelization of the MLFMA-
accelerated frequency domain solvers [29]. Recently, however, provably scalable
parallelization techniques were developed for MLFMA using a hierarchical par-
titioning strategy that simultaneously leverages spatial and angular partitioning at
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each level of the MLFMA tree [30–34]. Their extensions to the PWTD scheme
that account for the need to also partition the temporal dimension while using
global spherical interpolation/filtering schemes (not present in MLFMA) have been
developed [25]. In addition, novel asynchronous communication techniques for
reducing the cost and memory requirements of inter-processor communication in
PWTD and MLFMA have been developed [25, 34]. By combining the hierarchical
partitioning strategy and asynchronous communication technique to achieve CPU
and memory load balancing among processors, these newly developed parallel
PWTD-accelerated TDIE solvers are capable of analyzing transient scattering from
electrically large perfect electrically conducting (PEC) and dielectric objects that
are orders of magnitudes larger than before (e.g., well beyond Ns ≈ 107). Not
surprisingly, these parallel and fast TDIE solvers have been successfully applied to
the analysis of large transient scattering problems, the design of broadband antennas,
the characterization of EMI/EMC phenomena, as well as several biomedical
applications.

2 TDIE Solvers for Different Scatterers and Media

This section provides a review of TDIE solvers applicable to different types
of scatterers and media. Section 2.1 describes the formulation and space-time
discretization of standard TDIEs for solving transient problems involving PEC
objects. Sections 2.2, 2.3, and 2.4 briefly review TDIE solvers for homogeneous
dielectrics residing in lossless and dissipative media and inhomogeneous dielectrics,
respectively.

2.1 PEC Scatterers

Consider a closed PEC surface S that resides in a lossless and unbounded back-
ground medium with permittivity ε0 and permeability μ0 (see Fig. 1). The surface
is illuminated by an incident electromagnetic field {Ei(r, t), Hi(r, t)} that is assumed
temporally bandlimited to maximum frequency fmax and vanishingly small for
t < 0. The incident field induces an electric current density J(r, t) on S that in
turn generates the scattered field {Es(r, t), Hs(r, t)}. Enforcing appropriate boundary
conditions on total electric and magnetic field tangential to S produces time-domain
electric field and magnetic field integral equations (TD-EFIE and TD-MFIE);
linearly combining them yields a time-domain combined field integral equation
(TD-CFIE):

n̂× n̂× ∂tEi (r, t) = −n̂× n̂× ∂tEs (r, t) = Le [J] (r, t) ∀r ∈ S, S+, S−
(1)
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( , )i tE r
( , )i tH r 0� 0	

S S

n̂

( , )i tE r
( , )i tH r 0� 0	

0� 0	

( , )tJ r

PEC

Fig. 1 Transient scattering from a PEC object in a lossless unbounded medium

n̂× ∂tHi (r, t) = −n̂× ∂tHs (r, t) = Lh [J] (r, t) ∀r ∈ S−. (2)

n̂× ∂tHi (r, t)− α/η0n̂× n̂× ∂tEi (r, t) = Lh [J] (r, t)− α/η0Le [J] (r, t)

= Lc [J] (r, t) ∀r ∈ S−.
(3)

Here, n̂ is the outward unit normal to S, η0 is the characteristic impedance of the
background medium, and S− and S+ denote surfaces conformal to but just inside
and outside S, respectively. Note that the TD-EFIE in (1) is also valid for open PEC
surfaces. The TD-EFIE and TD-MFIE operators are

Le [J] (r, t) = n̂× n̂× μ0

4π

∫

S

dS′
(
∂2
t I − c2

0∇∇
)
· J

(
r′, τ

)

R
(4)

Lh [J] (r, t) = 1

4π
n̂×

∫

S

dS′
(
r− r′

)×
[

1

c0R2 ∂
2
t J
(
r′, τ

)+ 1

R3 ∂tJ
(
r′, τ

)]
.

(5)

Here R = � r − r
′
�, c0 is the speed of light in the background medium, and

τ = t − R/c0 represents retarded time. The two operators inside the bracketed factor
in L e in (4) constitute the operator’s singular (vector potential) and hypersingular
(scalar potential) component, respectively.

Since both L e and L h have a null space that allows for the presence of
nonphysical oscillating currents, solutions of the TD-EFIE and TD-MFIE are
oftentimes corrupted by spurious resonance modes. The TD-CFIE with operator
L c in (3) that linearly combines the TD-EFIE and TD-MFIE using a constant α
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is free of these spurious resonance modes. Note that the TD-CFIE reduces to the
TD-EFIE and TD-MFIE when α =∞ and α = 0, respectively.

To numerically solve (3) S is discretized by a planar triangle mesh with minimum
edge length �s chosen to properly resolve both the geometrical details and the
wavelength λ corresponding to the incident field’s maximum frequency fmax, i.e.,
λ = c0/fmax. The current density J(r, t) is expanded using Ns spatial basis functions
and Nt temporal basis functions as

J (r, t) =
Ns∑

n=1

fn(t)Sn (r) =
Nt∑

j=1

Ns∑

n=1

Ij,nTj (t)Sn (r) . (6)

Here fn(t) is the temporal signature associated with spatial basis function Sn(r)
and Ij, n is the current expansion coefficient associated with space-time basis
function Tj(t)Sn(r). Sn(r) is often chosen as the Rao–Wilton–Glisson (RWG) basis
function defined on the nth internal edge of the mesh [35]. Tj(t) = T(t − j�t) is
the time-shifted local Lagrange interpolant with time step size �t = 1/(2χ tfmax)
and χ t > 1 is the temporal oversampling factor [36]. The Lagrange functions Tj(t)
are piecewise smooth for (k − 1)�t ≤ t ≤ k�t, k = 0, . . . , d and are nonzero for
−�t < t < d�t with d denoting the polynomial order.

Upon substituting (6) into (3), spatially testing (3) with spatial basis functions
Sm(r), m = 1, . . . , Ns, and enforcing (3) at discrete times i�t, i = 1, . . . , Nt, the
following set of linear equations is obtained:

Z0Ii = Vi −
min{i−1,kmax }∑

k=1

ZkIi−k. (7)

Here, the entries of the matrices Zk , excitation vectors Vi , and current coefficient
vectors Ii are

{
Zk
}

mn
=< Sm (r) ,Lc [SnT−k]

(
r, t
)
>

∣∣∣
t=0

(8)

{
Vi
}

m
=< Sm (r) , n̂× ∂tHi

(
r, t
)
− α
η0

n̂× n̂× ∂tEi
(

r, t
)
>

∣∣∣∣
t=iΔt

(9)

and
{

Ii
}

n
= Ii,n. The maximum number of nonzero impedance matrices Zk

is approximately kmax = #Dmax/c0�t$, where Dmax denotes the maximum linear
dimension of the scatterer. The above set of linear Eq. (7) can be solved by MOT.
First, I1 is computed by solving (7) for i = 1 using iterative methods such as the
generalized minimal residual (GMRES) algorithm. Then, for i = 2, the summation
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on the right-hand side (RHS) of (7) is computed and the resulting system is solved
for I2. This process is repeated to compute I3 and onward.

2.2 Homogeneous Dielectrics in Lossless Media

Transient scattering from homogeneous or piecewise homogeneous dielectrics
residing in lossless unbounded media can be analyzed by solving a coupled pair
of surface TDIEs involving both equivalent electric and magnetic surface currents
radiating in the interior and exterior regions. Among the many choices of how
the equations are coupled, the most popular ones are the time domain Müller
[37, 38] and Poggio–Miller–Chang–Harrington–Wu–Tsai (PMCHWT) formula-
tions [39–41]. Upon discretizing the electric/magnetic currents using space-time
basis functions and spatially testing the equations at discrete times, MOT systems
similar to (7) can be obtained [38].

2.3 Homogeneous Dielectrics in Dissipative and Dispersive
Media

For dissipative and dispersive media, the computation of scattered fields requires
the convolution of surface currents and a Green’s function (either available in
closed form or numerically constructed) with an infinite temporal tail. TDIE solvers
leveraging convolutional quadrature techniques and Laplace transforms [42, 43]
to facilitate this temporal convolution have been proposed. Similar methods for
modeling electromagnetic interactions with plasmonic structures and graphene
sheets using time-domain PMCHWT solvers and their variants [44–46] have been
developed as well.

2.4 Inhomogeneous Dielectrics

Transient scattering from inhomogeneous dielectrics in lossless unbounded media
can be analyzed using TD volume integral equations (VIE) [47] that are cast in terms
of equivalent volume electric polarization current JP(r, t)

JP (r, t) = ∂tD (r, t)− ε0∂tE (r, t) . (10)

where D(r, t) is the electric flux density, E(r, t) is the total electric field, and ε0 is the
permittivity of the background medium. The flux density and total field are related
by the following formulas:
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• In lossless dielectrics: D(r, t) = ε(r)E(r, t). Here ε(r) denotes the frequency
independent permittivity of the scatterer.

• In lossy dielectrics: ∂ tD(r, t) = σ (r)E(r, t) + ε(r)∂ tE(r, t). Here the flux density
has a conduction current contribution [48] and σ (r) denotes the frequency
independent conductivity of the scatterer.

• In dispersive dielectrics: D(r, t) = ε(r, t) * E(r, t), where ε(r, t) denotes the
permittivity of the dispersive scatterer, and * denotes temporal convolution.

The unknown electric flux density can be solved using MOT schemes similar to
(7). Note that for lossy and dispersive dielectrics, the total field can be updated from
the electric flux density via recursive computation [48, 49].

In addition to the aforementioned generic TDIE solvers, specialized versions
applicable to problems involving nonlinear ferromagnetic materials [50], surface
scatterers embedded in a half-space [51, 52] or layered media [53], resonant cavities
[54], periodic objects [55], 2D scatterers [56], and wire structures [57] have been
developed.

3 Accurate, Stable, and Well-Conditioned TDIE Solvers

Classical TDIE solvers, though widely applicable, oftentimes suffer from accuracy,
stability, and/or convergence issues when applied to real-world problems. In what
follows, we briefly summarize advances in high-order accurate, late-time stable, and
well-conditioned TDIE solvers.

3.1 Accurate Space-Time Discretization

The accuracy of a TDIE solver is affected by several error sources rooted in
the spatial and temporal schemes used, as well as other aspects related to the
computation of the MOT matrix elements in (8).

Accurate Temporal Discretization Local Lagrange temporal basis functions,
though commonly used, oftentimes introduce numerical errors due to their
discontinuous derivatives at integer multiples of�t. Other temporal basis functions,
including first-order continuous cosine square function [58], continuous exponential
[59] and smooth B-spline functions [60–62], have been proposed. In addition,
approximate prolate spheroidal wave functions (APS) [63] that are time limited
and quasi-bandlimited have been shown [64] to yield spectral accuracy but require
carefully designed extrapolation techniques to retrieve the form of MOT equations
[64]. These methods not only have been applied to surface scatterers, but also to
penetrable volumetric bodies. For example, Sayed et al. [65] report on a TD-VIE
using APS functions to model high-contrast scatterers.
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High-Order Spatial Discretization High-order spatial basis function and geometry
modeling are efficient techniques to avoid excessive mesh refinement to achieve
a prescribed solution accuracy. Among the many available choices, divergence
conforming Graglia–Wilton–Peterson (GWP) functions [66], constructed as prod-
ucts of a scalar polynomial of the given order and RWG basis functions, are
the most popular. The authors in [67] developed high-order TD-EFIE/MFIE/CFIE
solvers leveraging GWP functions in conjunction with loop-tree decompositions of
the pertinent function space to enhance not only the method’s accuracy but also
low-frequency stability [68]. Other methods to improve the spatial discretization
accuracy in TDIE solvers include a high-order Nyström method [69] and a
Generalized Method of Moments scheme that uses mixed spatial basis functions
[70]. A high-order space-time discretization scheme has also been developed [65].

Classical TD-MFIE solvers often suffer from inaccuracies due to incorrect
nonsolenoidal current scaling in the low-frequency limit. The inaccuracy can be
corrected by using mixed discretizations [71] that use RWG functions and Buffa–
Christiansen (BC) functions as source and testing bases, respectively.

Accurate Evaluation of MOT Matrix Numerical errors in evaluation of MOT

matrix element
{

Zk
}

mn
representing nearby source and testing functions can affect

the overall accuracy and (more importantly) the stability of the TDIE solvers.
The evaluation of the MOT elements for scatterers residing in nondissipative
backgrounds calls for the computation of two-dimensional source and test spatial
integrals. Accurate evaluation of these four spatial integrals can be very challenging
using standard quadrature rules that do not account for the nonsmooth character of
the temporal basis functions. Recently, semi-analytical methods that analytically
evaluate two [41, 72] or even three [73] out of the four spatial integrals have
been developed. These methods assume the usage of RWG spatial basis functions
and Lagrange temporal basis functions. Methods that allow more flexible choices
of temporal basis functions yielding closed-form expressions of the electric [74],
magnetic [75, 76], and combined fields [77] due to impulse excited RWG spatial
basis functions have been developed as well. Other methods to accurately evaluate
the MOT matrix include polar integration [78], fully numerical integration based
on a separable approximation of the convolution kernel [79], and radial source
integration/smoothed test integration [80].

3.2 Stabilized TDIE Solvers

TDIE solvers oftentimes are plagued by instabilities, viz., the presence of non-
decaying solutions Ii for decaying excitation vectors Vi . TDIE instabilities broadly
speaking fall into three categories: (1) high-frequency instabilities, i.e., wildly
oscillating and exponentially growing solutions, (2) DC instabilities, i.e., constant or
slowly growing solutions, and (3) resonant instabilities, i.e., harmonic solutions with
oscillating frequencies corresponding to those of interior resonant modes. Among
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these three types of instabilities, the high-frequency instabilities are mainly due
to the numerical discretization errors; they can be remedied using the methods
referenced in the previous section in conjunction with techniques discussed below.
In contrast, DC and resonance instabilities are rooted in the spectral properties of
the pertinent TDIE operators and their removal requires more intrusive changes to
the solver.

High-Frequency Instability Traditionally, high-frequency instabilities in TDIE
solvers have been remedied via temporal/spatial averaging [81–86], special
collocation-in-time schemes [87], or implicit time stepping methods [88, 89]. More
recently, these methods have been replaced by techniques that leverage space-time
Galerkin testing [90, 91], Laplace/Z-transforms [42, 43, 92], temporal extrapolation
[64], and the abovementioned accurate MOT element evaluation schemes. The use
of these methods has all but eliminated high-frequency instabilities in MOT solvers.
It is also worth mentioning that recently proposed explicit time stepping methods
that use predictor–corrector schemes exhibit stability properties on par with implicit
schemes [93, 94].

DC Instability DC instabilities occur mostly in TD-EFIE solvers and are caused by
the presence of static (or linear-in-time) solenoidal currents that reside in the null
space of TD-EFIE operator L e (or its differentiated form). Methods that leveraging
loop-tree decomposition [64, 67] or augmented TD-EFIE formulations [95, 96]
can efficiently suppress the nonphysical static or linear-in-time solenoidal current.
More recently, a “Dottrick” scheme that totally eliminates such instability based on
Calderón preconditioned TD-EFIE has been reported [97].

Resonant Instability As mentioned in Sect. 2.1, solutions to both the TD-EFIE and
MFIE can be corrupted by nonphysical resonant currents that reside in the null space
of their respective operators. The TD-CFIE turns out very effective in suppressing
such instabilities [1]. In addition, highly accurate iterative solvers and MOT element
computation can also reduce numerical errors from building up to these spurious
solutions [98].

3.3 Well-Conditioned TDIE Solvers

When solving the matrix Eq. (8) using iterative methods, the number of iterations
for the solution to converge is typically proportional to the condition number (the

ratio between the largest and smallest singular value) of Z0. Unfortunately, standard
TD-EFIE/CFIE solvers suffer from two types of breakdowns, viz., the condition

number of Z0 grows without bound when the time step size �t → 0 (i.e., when the
excitation is a low-frequency pulse) or the mesh size �s → 0 (i.e., when intricate
geometry features call for a dense/multi-scale mesh).
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Low-Frequency Breakdown Low-frequency breakdown occurs in TD-EFIE solvers
for reasons relating to the inconsistent asymptotic behavior of the (RWG basis) dis-
cretized vector potential component and scalar potential component of the TD-EFIE

operator in the low-frequency regime. As a result, the MOT matrix Z0 becomes
ill-conditioned and the MOT system has a null space for the solenoidal current.
This low-frequency breakdown can be avoided by discretizing the current using
scaled solenoidal/nonsolenoidal sub-domain spatial basis functions. Methods that
leverage loop-star/tree basis transformation techniques [67, 95, 99] and hierarchical
nonsolenoidal bases [100–102] have been proposed to cap the condition number of

Z0.

Dense Mesh Breakdown Dense mesh breakdown occurs in TD-EFIE solvers for
reasons relating to the inconsistent asymptotic behaviors of the EFIE operator’s
singular values associated with solenoidal and nonsolenoidal singular functions that
can be supported by a dense mesh. As the mesh size decreases, the singular values
associated with solenoidal currents go to zero, while those associated with non-

solenoidal currents approach infinity. As a result, the condition number of Z0 in the
discretized TD-EFIE system grows without bound. This type of breakdown is cured
by leveraging the self-regularization property of the time-domain Calderón identity
along with BC functions for spatial discretization [97, 103–105]. More recently,
schemes that combine Calderón preconditioners, quasi-Helmholtz projectors, and
accurate discretization schemes have been developed [106]. High-order Calderón
preconditioned TD-EFIEs leveraging GWP functions and high-order BC functions
[107] also have been reported [108]. It is worth noting that the TD-CFIE also suffers
from dense mesh breakdown due to the presence of the EFIE operator. A Calderón
preconditioned TD-CFIE that gives rise to bounded condition number irrespective of
mesh density is proposed in [97]. Finally, a Calderón preconditioned single source
surface TDIE solver for homogeneous dielectrics also has been developed [109].

4 Fast TDIE Solvers

The computationally most demanding operation in the abovementioned TDIE
solvers is the evaluation of the sum on the RHS of (7) during time marching,
which requires the computation of tested fields at Ns observers due to Ns sources
for Nt time steps. The computational cost of this operation, if performed directly, is
prohibitively high and hinders TDIE solvers from simulating transient phenomena
involving electrically large objects. Indeed, when applied to problems that involve
surface or volumetric objects residing in unbounded lossless media, the computa-
tional and memory costs of this operation scale as O

(
NtN

2
s

)
and O

(
N2
s

)
. When

applied to problems involving surface objects embedded in dissipative or structured
environments, these costs increase to O

(
N2
t N

2
s

)
and O

(
NtN

2
s

)
, due to the infinite

temporal tail of the Green’s function in these media.
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Luckily, the computational efficiency of TDIE solvers can be significantly
improved by various fast algorithms. The most popular ones among them, viz.,
the TD-AIM, NGTD, and PWTD, are discussed in this subsection. Other methods
to reduce the computational and/or memory costs of the MOT scheme include
the accelerated Cartesian expansion (ACE)-based algorithm that is well-suited for
accelerating low-frequency integral kernels [11, 12], the wavelet-based adaptive
MOT scheme [14], an envelope tracking technique that permits large time step sizes
in the high-frequency regime [110, 111], and hybridization of TDIE methods with
physical optics (PO) [16–20] and DE methods [112–116]. Finally, Taylor expansion-
based TDIE methods [13, 117] have also been used to reduce the computational cost
associated with classical solvers.

4.1 TD-AIM

Just like its frequency domain counterpart known as the FD-AIM [118], the TD-
AIM permits the fast evaluation of the radiated fields by projecting them onto
auxiliary uniform spatial grids and propagating them using fast Fourier transforms
(FFTs). However, unlike the FD-AIM that leverages space-only FFTs, the TD-
AIM utilizes multilevel/blocked space-time FFTs as the sparse structure of the
MOT matrices needs to be accounted for [9, 119]. When applied to transient
analyses involving quasi-planar surface scatterers residing in unbounded lossless
media under high-frequency excitations, the computational and memory costs of the
TD-AIM scale as O(NtNslog2Ns) and O

(
N1.5
s

)
, respectively [9]; for more general

surfaces, these costs increase to O
(
NtN

1.5
s log2Ns

)
and O

(
N2
s

)
[9]. Moreover, the

TD-AIM can be applied, with minimal modifications, to transient analysis involving
surfaces embedded in lossy or half-space media [51, 52]. In [120], the TD-AIM is
extended to the low-frequency regime through accelerating the computation of both
the RHS and left-hand side (LHS) of (7) by the space-time and space-only FFTs,
respectively. More recently, an envelope tracking-based TD-AIM was proposed to
efficiently handle band-pass transient scattering problems [15]. The computational
costs of these TD-AIM-accelerated TDIE solvers are listed in Table 1. Note that
although TD-AIM is asymptotically inferior to other fast algorithms such as the
PWTD and NGTD schemes, it is very competitive for many practical problems.

4.2 NGTD

The NGTD algorithm accelerates the computation of fields produced by temporally
bandlimited and space-confined sources by representing their delay- and amplitude-
compensated fields on a sparse grid surrounding the observers and evaluating
the true fields through interpolation and delay/amplitude restoration [121]. The
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Table 1 Best available estimates (multiplicative constants omitted) of the computational costs for
computing the RHS sum of (7) using the direct scheme and fast algorithms. “General” refers to
arbitrarily shaped surface scatterers residing in lossless unbounded media in the high-frequency
regime

General Low-freq Quasi-planar Dissipative Volumetric

Direct NtN
2
s NtN

2
s NtN

2
s N2

t N
2
s NtN

2
s

TD-AIM NtN
1.5
s log2Ns NtNs log Ns NtNslog2Ns NtNs log (NtNs) log Nt NtNslog2Ns

NGTD NtNslog2Ns NtNs log Ns NtNslog2Ns – NtNslog2Ns

PWTD NtNslog2Ns NtNs log Ns NtNs NtNs log Nt log Ns NtNs

two-level NGTD algorithm was first developed using the spherical nonuniform
grid [121]. Later, multilevel NGTD schemes that use a Cartesian nonuniform
grid were developed as well [10]. When applied to the computation of fields
due to either surface-bound or volumetrically distributed sources that reside in
unbounded lossless media, the computational costs of multilevel NGTD scale as
O(NtNslogμNs). Here, μ = 2 in the high-frequency regime, μ = 1 in the low-
frequency regime, and 1 < μ < 2 for mixed-scale mesh (Table 1). Moreover,
the NGTD scheme is remarkably simple to implement compared with other fast
algorithms.

4.3 PWTD

This section reviews advances in the PWTD algorithms and their variants for
different types of scatterers, background media, and frequency regimes. The PWTD
algorithm for general PEC scatterers in lossless media will be explained in detail
while its variants are only briefly reviewed.

PEC Object in Lossless Media Consider the transient scattering problem described
in Sect. 2.1. In order to accelerate the computation of the RHS of (7), the multilevel
PWTD algorithm first recursively subdivides a rectangular box enclosing S into
eight boxes until the radius of the smallest boxes is a prescribed fraction of the
wavelength at the maximum frequency λ = 2πc0/ωmax. The resulting NL-level
geometrical octree has Nvg nonempty boxes with radius Rv at level v = 1, . . . , NL.

For nonfractal surface scatterers, N1
g = O (Ns), R1 = O(1), Nv+1

g ≈ Nvg /4, and

Rv = 2(v − 1)R1. Within this PWTD tree, two same-level boxes are labeled a “level-
v far-field pair” if the distance between the box centers exceeds γRv (3 < γ < 6)
and their respective parent boxes do not constitute a far-field pair. Two finest-level
(i.e., v = 1) boxes that do not constitute a far-field pair are labeled a “near-field
pair.” The partial sums in the RHS of (7) that correspond to interactions between
near-field pairs are directly evaluated using (8); those corresponding to interactions
between far-field pairs are handled by PWTD.
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Fig. 2 One far-field box pair in the multilevel PWTD algorithm

Consider a level-v far-field pair (α,α
′
) shown in Fig. 2. Let Rc,αα′ =

∣∣Rc,αα′
∣∣ =∣∣rco − rcs

∣∣ denote the distance between the source and observer box centers rcs and rco.
The far-field pair contains spatial basis functions Sn(r), n ∈ α, and Sm(r), m ∈ α′ ,
respectively. For ∀n ∈ α, the temporal signature fn(t) is split into Nvl consecutive
subsignals using the APS function TAPS(t), which is bandlimited to ωs = χ tωmax

and quasi-time-limited to −pfΔt < t < pfΔt, 5 ≤ pf ≤ 10, as

fn(t) =
Nvl∑

l=1

f ln(t) =
Nvl∑

l=1

lMv∑

j=(l−1)Mv+1

In,j T
APS
j (t), (11)

where T APSj (t) = T APS (t − j�t) and Nvl M
v = Nt ; Mv is chosen such that the

duration of each subsignal, Tv = (Mv + 2pf )Δt, is less than (Rc, αα
′ − 2Rv)/c0. Let

Jlα (r, t) =
∑
n∈αSn (r) f ln(t) denote the current due to the lth subsignal associated

with all source basis functions in box α. The fields tested by any Sm(r) produced by

Jlα (r, t), denoted by
〈
Sm (r) ,Lc

[
Jlα
] (

r, t
)〉

, can be computed in three steps as

G+l,α
(
k̂vqp, t

)
= ∂2

t

16π2c2
0

∑

n∈α
P+n
(

k̂vqp, t, k̂
v
qp

)
∗f ln(t) Construction of outgoing rays

(12)

G−
l,α′
(

k̂vqp, t
)
= T

(
k̂vqp, t

)
∗G+l,α

(
k̂vqp, t

)
Translation (13)

〈
Sm (r) ,Lc

[
Jlα
] (

r, t
)〉
=

Kv∑
q=0

Kv∑
p=−Kv

ωvqp Projection of incoming rays

[
−αP−m

(
k̂vqp, t, k̂

v
qp

)
+ P−m

(
k̂vqp, t, n̂

)]T ∗G−
l,α′
(

k̂vqp, t
)

(14)
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First, a set of outgoing rays G+l,α
(

k̂vqp, t
)

in directions k̂vqp, q = 0, . . . , Kv,

p = − Kv, . . . , Kv, are constructed from f ln(t) via (12); the total number of

directions is Nvk = (Kv + 1) (2Kv + 1). Next, outgoing rays G+l,α
(

k̂vqp, t
)

of box

α are translated into incoming rays G−
l,α′
(

k̂vqp, t
)

of box α
′

via (13). Finally, the

tested fields are computed by projecting incoming rays onto Sm(r) and summing
over all ray directions via (14). In (12)–(14), superscript T denotes transpose,
Kv = ,2χ sωsRv/c0- + 1, and χ s is a spherical oversampling factor. Directions
k̂vqp and weights ωvqp are determined by quadrature rules on the unit sphere. The

projection function P±{m,n}
(

k̂vqp, t, v̂
)

and translation function T
(

k̂vqp, t
)

are

P±{m,n}
(

k̂vqp, t, v̂
)
=
∫

S{m,n}
dS′v̂× S{m,n}

(
r′
)
δ
(
t ± k̂vqp ·

(
r′ − rc{o,s}

)
/c0

)
.

(15)

T
(

k̂vqp, t
)
= c0∂t

2Rc,αα′

Kv∑

k=0

(2k + 1)Φk

(
c0t

Rc,αα′

)
Φk

(
k̂vqp · Rc,αα′
Rc,αα′

)
, (16)

where �k(·) is the Legendre polynomial of degree k and | t |≤ Rc,αα′/c0.
Note that only outgoing/incoming rays of the finest-level boxes are construct-

ed/projected directly via (12)/(14); those of higher-level boxes are constructed/pro-
jected by an exact global vector spherical interpolation/filtering technique described
in [122]. The computational cost and memory requirements of a PWTD-accelerated
surface TDIE solver generally scale as O(NtNslog2Ns) and O

(
N1.5
s

)
, respectively.

Homogeneous Dielectrics in Lossless Media For (piecewise) homogeneous
dielectrics, the PWTD algorithm accelerates computation of the fields in each
dielectric region due to surface electric and magnetic currents [38]. Furthermore,
due to different wave speeds in each region, multiple PWTD trees need to be
constructed. The computational and memory costs of these PWTD-accelerated
TDIE solvers scale as O(NtNslog2Ns) and O

(
N1.5
s

)
. These cost estimates, though

seemingly similar to those of the abovementioned solvers for analysis scattering
from PEC scatterers, have larger leading constants due to the presence of extra
surface current unknowns and multiple PWTD trees. In [123], a PWTD-accelerated
TDIE solver applicable to composite scatterers that involve piecewise homogeneous
dielectrics and PEC structures was developed.

Inhomogeneous Dielectrics in Lossless Media In the PWTD-accelerated TD-VIE
solvers for analyzing transient scattering from inhomogeneous dielectrics residing
in unbounded lossless media, the PWTD algorithm permits fast computation of the
fields due to both the electric flux density and the total field contributions in the
polarization current JP(r, t) [47–49]. Unlike the above-described PWTD algorithms,
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here the dielectric volume (instead of the surface) of the scatterer is subdivided using
the PWTD tree. The computational and memory costs of the PWTD-accelerated
volume TD-VIE solvers scale as O(NtNs) and O(Ns log Ns), respectively (Table 1).
A scalar-field PWTD-accelerated TD-VIE with explicit time stepping is reported in
[26]. A PWTD-accelerated hybrid surface-volume TDIE solver is also reported in
[124].

Surface Scatterers in Lossy Media As discussed at the beginning of Sect. 4, the
computational cost of the direct TDIE solvers for analyzing scattering from surfaces
embedded in unbounded lossy media scales as O

(
N2
t N

2
s

)
due to the infinite

temporal tail of the lossy-medium Green’s function. Fast PWTD-accelerated TD-
EFIE [125] and TD-CFIE [126] solvers were reported leveraging (a) a scalar-field
lossy-medium PWTD algorithm that permits rapid computation of the far-field
interactions [127] and (b) a Prony series-based scheme that permits fast temporal
convolution of the lossy-medium Green’s function with space-time basis functions
during the evaluation of near-field interactions [128]. The computational costs of
these solvers scale as O(NtNs log Nt log Ns) (Table 1).

Mixed-Scale Scatterers The abovementioned PWTD algorithms will lose their
computational efficiency when directly applied to mixed-scale scatterers (residing
in unbounded lossless media) due to their inefficiency of field computation in the
dense mesh region. An adaptive TDIE solver that leverages the standard PWTD
algorithm in the electrically large region and a low-frequency PWTD algorithm in
the dense mesh region was developed [129, 130]. As the computational cost of the
low-frequency PWTD algorithm scales no worse than O(NtNs log Ns), that of the
overall solver can be efficiently capped by O(NtNslog2Ns).

Quasi-Planar Scatterers For smooth quasi-planar surface scatterers that reside in
unbounded lossless media, the computational and memory costs of the standard
PWTD algorithm can be further improved. When illuminated by short-duration
and high-frequency temporal pulses, the induced surface current and PWTD ray
data often are spatially and temporally localized. Recent work exploits this locality
by leveraging local cosine wavelet bases (LCB) to compress PWTD ray data
and operations [131]. The computational and memory costs of the LCB-enhanced
PWTD algorithm can be reduced to O(NtNs) and O(Ns log Ns), respectively
(Table 1).

In addition to the abovementioned PWTD-accelerated TDIE solvers, those
applicable to transient scattering problems that involve surface scatterers embedded
in half-space or layered media [132], periodic structures [133], 2D objects [56, 134,
135] have been developed. As can be summarized from Table 1, PWTD algorithms
attain the best computational complexities among all existing fast algorithms for
various scatterer shapes, medium types, and frequency regimes.
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5 Parallelization of PWTD-Accelerated TDIE Solvers

The above developments in accurate, stable, well-conditioned, and fast TDIE solvers
significantly improve their reliability and efficacy when applied to the analysis of
many transient and wideband electromagnetic problems. That said, these sequential
implementations remain severely limited in the size of problem they can handle
and cannot be applied to problems involving scatterers discretized using millions of
spatial basis functions that need to be tracked for tens of thousands of time steps. To
address problems of this nature, solvers leveraging distributed-memory paralleliza-
tion and GPU acceleration of classical TDIE solvers, TD-AIM-accelerated solvers,
and PWTD-accelerated solvers have been developed [21–26]. In what follows, we
focus on recent progress in distributed-memory parallel PWTD algorithms.

For sake of simplicity, we describe a highly scalable scheme for parallelizing the
standard PWTD algorithm for surface scatterers that reside in a lossless unbounded
medium. In principle, such parallelization strategy can be easily extended to
any other PWTD variant such as scalar-field algorithms for volumetric scatterers
[26] and LCB-enhanced schemes for quasi-planar surfaces [131]. Specifically, the
parallelization strategy leverages hierarchical partitioning of the multilevel PWTD
tree among processors and an asynchronous scheme for memory and cost efficient
communications between processors.

5.1 Overview of Parallel PWTD

The optimal distribution of the workload of PWTD operations among processors
depends quite heavily on the stage of the algorithm. For example, for near-field
computations, one processor may simply take charge of a chunk of finest-level boxes
and store the corresponding near-field MOT matrix elements. Unfortunately, when
constructing/projecting/translating PWTD ray data, a similarly straightforward
dispatch scheme does not achieve a uniform load distribution among processors
due to PWTD algorithm’s heterogeneous tree structure. Specifically, the PWTD ray

data G±l,α
(

k̂vqp, t
)

has Nvg = O (Ns/4v) spatial samples (each representing rays

in one box), Nvk = O (4v) angular samples, and Tv = O(2v) temporal samples at
each PWTD tree level v. Partitioning among any single dimension results in poor
load balance at certain levels. A more suitable approach is to adaptively partition
ray data among more than one dimension. In other words, more processors are
assigned to the angular/temporal and spatial dimension at higher and lower tree
levels, respectively.

Assuming a total of Np processors, let vb denote the highest possible level at
which Nvg ≥ Np. At level v ≤ vb, each processor stores the ray data for all
angular and temporal samples in approximately Nvg /Np boxes; at level v > vb, each
processor stores Nvk N

v
g /Np angular samples and all temporal samples for one box.
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Fig. 3 Partitioning of boxes
and their ray data in a
five-level PWTD tree among
six processors
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In other words, the ray data of one box at level v > vb is stored on Nvr =
⌈
Np/N

v
g

⌉

processors. As an example, consider the five-level PWTD tree that is partitioned
among six processors shown in Fig. 3; each set of concentric circles represents
one box and its associated ray data. The angular and radial dimensions of the
circles correspond to the angular and temporal samples of the ray data, respectively.
The number shown near the concentric circles and arcs indicates the ID of the
processor in charge of the data marked with a certain color. For this example,
Nvg = 9, 6, 3, 2, 1 for v = 1, . . . , 5, and Np = 6, hence vb = 2. Each processor
stores the complete ray data in one or two boxes at level v = 1, 2, and one-half,
one-third, and one-sixth of the angular samples of the ray data in one box at levels
v = 3, 4, 5, respectively. This parallelization strategy yields excellent computation
and memory load balance and produces scalable communication patterns among
processors at all levels of the PWTD tree.

5.2 Parallelization of PWTD Stages

With the above-described parallelization strategy, the implementation and analysis
of each PWTD stage proceed as follows.

Construction/Projection of Outgoing/Incoming Rays Here only the construction of
outgoing rays is described as the projection of incoming rays can be performed sim-

ilarly. At level v = 1, each process constructs outgoing rays G+l,α
(

k̂vqp, t
)

directly

from basis functions via (12) for Nvg /Np boxes and requires no communication. At
level v > 1, the outgoing rays are constructed using spherical interpolation from
rays belonging to child boxes and may require inter-processor communication.
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Depending on how the ray data is stored (Fig. 4a), the required computation and
communication belongs to one of the three distinct cases: (1) At level v ≤ vb, ray
data is directly interpolated (into more angular samples) and shifted (in the temporal
dimension) from those of the child boxes all by the same processor; clearly this
operation requires no communication. (2) At level v = vb + 1, ray data in child
boxes are stored completely on one processor different from that one that stores ray
data for the parent box; this case requires communication after local interpolation.
(3) At level v > vb + 1, the ray data for the child boxes are stored on more than
one processor. The construction of the outgoing rays (Fig. 4b) is performed in five
steps. Step 1: Ray data of the child boxes stored in Nv−1

r processors is exchanged in
such a way that each processor handlesO

(
T v/Nv−1

r

)
temporal samples of outgoing

rays along all Nv−1
k directions (Fig. 4b). Step 2: Each processor performs its own

spherical interpolation, requiring O
(
T vNvk logKv/Nv−1

r

)
operations. Step 3: The

interpolated ray data of each child box is split along the angular dimension and
the resulting data is exchanged between Nv−1

r processors. Step 4: The interpolated
ray data is sent to the processors in charge of the parent box via non-blocked
MPI communication. Step 5: The transferred ray data is locally shifted to the
center of the parent box. Note that in Steps 1 and 3, redistribution of ray data
from the angular dimension to temporal dimension (and vice versa) requires all-to-
all communications among Nv−1

r processors. However, each processor only sends
partial ray data of size O

(
T vNvk /N

v−1
r

)
to Nv−1

r − 1 other processors and receives

data of size O
(
T vNvk /

(
Nv−1
r

)2)
from each of the other Nv−1

r − 1 processors.

Therefore the communication volume per processor scales inversely proportional

case 1 case 2 case 3

    MPI
non-blocked
    MPI

 shift
    MPI

spherical
    interpolation

step 1 step 2 step 3

step 4

step 5non-blockednon-blocked

(a)

(b)

Fig. 4 (a) Three possible cases encountered during the construction of outgoing rays of boxes in
PWTD tree. Each case requires different communication patterns. (b) The steps to construct the
outgoing rays in case 3
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toNv−1
r . It can be shown [25] that the computational costs CC1 and communication

volume CM1 per processor for construction and projection of ray data scale as

CC1 = O
(
NtNs log2Ns

Np

)
, CM1 = O

(
NsNt logNp

Np

)
. (17)

Translation Translating one outgoing ray G+l,α
(

k̂vqp, t
)

from a source box onto the

incoming ray G−
l,α′
(

k̂vqp, t
)

of an observer box requires the temporal convolution

of the outgoing ray with the translation function in (13). At levels v ≤ vb, each
processor performs translations along Nvk directions for its Nvg /Np observer boxes;
at levels v > vb, each processor performs translations along Nvk /N

v
r directions

for one single observer box. The translation (via convolution) is carried out in
the Fourier domain, i.e., by inverse Fourier transforming the product of the ray’s
and translation function’s Fourier transforms [8], and this operation is not further
parallelized along the temporal (frequency) dimension. Note that the outgoing ray
data of a box residing in a processor is sent to at most O(1) other processors. For
each processor, the amount of ray data sent and received during the translation stage
for one box scales as O

(
Nvk T

v
)

for levels v ≤ vb and O
(
Nvk T

v/Nvr
)

for levels
v > vb. It is easily shown that the computational costs CC2 and communication
volume CM2 per processor for translation scale as

CC2 = O
(
NtNs log2Ns

Np

)
, CM2 = O

(
NtNs logNs

Np

)
. (18)

Near-Field Calculation Near-field calculations include (a) matrix–vector multipli-
cations on the LHS of (7) at each iteration and time step and (b) partial matrix–vector
multiplications on the RHS of (7) at each time step. Each processor is in charge of
approximately N1

g /Np source boxes at the finest level, each contributing to O(1)
near-field pairs. The computational cost and communication volume of the near-
field calculations, CC3 and CM3, scale as

CC3 = O
(
NsNt

Np

)
, CM3 = O

(
NsNt

Np

)
. (19)

The abovementioned computational and communication estimates are listed in
Table 2. Detailed analysis and their extensions to other PWTD variants can be found
in [25, 26, 131].

Table 2 Computational costs and communication volumes for different stages in the highly
scalable parallel PWTD algorithms for general surface scatterers in lossless medium

Ray construction and projection Translation Near-field Overall

Compute NtNslog2Ns/Np NtNslog2Ns/Np NtNs/Np NtNslog2Ns/Np

Volume NtNs log Np/Np NtNs log Ns/Np NtNs/Np NtNs log Ns/Np
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5.3 Asynchronous Task Queue-Based Communication Scheme

Despite the provable scalability of the abovementioned parallelization strategy,
achieving good parallel efficiencies on many processors requires an implementation
that leverages asynchronous communication, exploits computation/communication
overlap, optimally manages memory allocations, etc. The need for carefully tuning
the computations is easily recognized during the translation stage, where the number
of source boxes that is far-field paired with one observer box is large—in practice it
often exceeds 100—and the processor in charge needs to allocate excessively large
temporary memory for receiving all outgoing rays of source boxes at different levels.
A novel, memory-efficient, and asynchronous communication scheme is developed
to overcome this parallelization bottleneck [25]. The scheme is described below for
the translation stage but can also be generalized to other stages.

The workflow of this scheme for one processor can be summarized as follows
(Fig. 5). First, the processor allocates a “receiving” memory pool containing
memory grains of sizeO

(
T vNvk

)
orO

(
T vNvk /N

v
r

)
to receive outgoing rays of one

source box at level v ≤ vb or v > vb, respectively. The memory grains can be marked
by one of the four possible labels: “local,” “empty,” “busy,” and “ready.” Initially,
memory grains containing outgoing rays of one local source box are marked “local,”
all other grains are marked “empty.” In the beginning of the translation stage, the
processor sends out outgoing ray data needed by other processors and enqueues
all “local” memory grains into a working task queue. The processor then iterates
over the following four steps until the translation stage is complete. Step 1: If any
outgoing ray data for a source box arrives and there is a suitable sized “empty”
memory grain, the processor posts non-blocked receiving, enqueues the memory
grain into a receiving task queue, and marks it as “busy.” Step 2: The processor
dequeues any completed task in the receiving queue, marks it as “ready,” and

busy

ready 

local

empty

start receiving

check completion

translate
detach memory

receiving queue

working queue

step 1:

step 2:

step 3:
step 4:

..
.

memory pool

v=4

v=2

v=3

v=2

v=1

v=1

Fig. 5 Task queue-based asynchronous communication for the translation stage
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enqueues it into the working queue. The working queue is a priority queue such that
the “ready” grains (as opposed to “local” grains) and grains corresponding to higher-
level (as opposed to finer-level) source boxes have a higher priority to dequeue.
Step 3: The processor dequeues one grain in the working queue and performs the
translation operation for the corresponding source box. Step 4: The grain in Step
3 is marked “empty” and returned to the memory pool, becoming available again
for Step 1. This queue-based communication scheme ensures that the computation
and communication are performed asynchronously, and the maximum amount of
temporary memory to be allocated is pre-determined before the stage.

5.4 Numerical Validation

The parallelization performance of the PWTD algorithm is demonstrated via the
computation of scattered fields from source points distributed on a square plate
with Ns = 731,247, on a sphere with Ns = 992,766, and in a cube with Ns = 804,
357. All tests were performed on a cluster of Quad-Core 850 MHz PowerPC CPUs
with 4 GB/CPU memory located at the King Abdullah University of Science and
Technology (KAUST) Supercomputing Laboratory. The parallel efficiencies are
computed using κ = Nref TNref /NpTNp , where TNref and TNp are the measured
execution times on Nref and Np processors, respectively. κ is computed for different
PWTD stages with Np = 128 − 2048, Nref = 128 for the plate (Fig. 6a) and
Np = 64 − 1024, Nref = 64 for the cube (Fig. 6b). For the plate and the cube,
efficiencies of over 90% and 80% are observed at Np = 2048 and Np = 1024 for all
PWTD stages, respectively. Figure 7 plots the execution time on each processor for
the plate and sphere when Np = 2048; good computation load balance is observed.

6 Applications

This section highlights applications of parallel fast TDIE solvers to large-scale tran-
sient electromagnetic problems including scattering analysis, broadband antenna
design, EMI/EMC characterization, and biomedical applications.

• Transient Scattering Analysis: Fast TDIE solvers have been widely applied to
transient scattering problems involving large and complex targets. Sequential and
space/hybrid partitioning-based parallel implementations of PWTD-accelerated
TDIE solvers are capable of analyzing scattering from real-world targets (e.g.,
aircraft and vessels) that involve about 5× 105 spatial unknowns [122, 136]. The
above-described scalable parallel PWTD-accelerated TDIE solvers in contrast
can be used to solve both canonical and real-world scattering problems involving
107 spatial unknowns [25, 131]. In addition, parallel TD-AIM and envelope-
tracking-based variants can simulate canonical scattering problems involving



368 Y. Liu and E. Michielssen

128 256 512 1024 2048
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Overall
Translation
Construction of outgoing rays
Projection of incoming rays
Near field calculation

(a)

(b)
pN



64 128 256 512 1024
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Overall
Translation
Construction of outgoing rays
Projection of incoming rays
Near field calculation



pN

XY

Z

p̂

k̂

Fig. 6 Parallel efficiencies ((r = 1, θ = 180◦,φ = 0)) of PWTD stages for the canonical problem
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Fig. 7 Execution time on each processor for the canonical problem involving (a) a square PEC
plate and (b) a PEC sphere when Np = 2048

3 × 106 spatial unknowns [9, 15]. As an example, a scalable parallel PWTD-
accelerated TD-CFIE solver is applied to the analysis of scattering from an
Airbus-A320 model. The Airbus is illuminated by a ŷ-propagating, ẑ-polarized
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electromagnetic plane wave with central frequency of 740 MHz and essential
bandwidth of 245 MHz. The current density is discretized using 4, 086, 129
RWG spatial basis functions and fourth-order temporal basis functions. The
simulation is performed for 1140 time steps with �t = 50 ps. The broadband
RCS along the +z direction is computed using the PWTD-accelerated TD-CFIE
solver and a FD-CFIE solver; good agreement is observed (Fig. 8a). The snapshot
of the current induced on the Airbus at t = 480 �t is plotted in Fig. 8b.

• Broadband Antenna Design: TDIE methods are well-suited to analyze electro-
magnetic scattering and radiation from broadband antennas and arrays. In the
past, classical TDIE solvers were applied to thin wire antennas [57, 137, 138]
and small 3D antennas [139, 140]. In addition, radiation from antennas mounted
on electrically large platforms have been studied using hybrid TDIE-PO solvers
[19, 20]. The fast and reliable TDIE solvers can be used to analyze large and
complex antenna radiation problems. As an example, the PWTD-accelerated TD-
EFIE solver is applied to the analysis of radiation from an ultra-wideband (UWB)
phased antenna array that consists of 8 × 8 antenna elements. The geometric
configuration of each element is similar to that described in [141] (see Fig. 9a).
The antenna array is fed by delta-gap excitations with phase-shifted temporal

signatures G
(
t − rn · k̂/c0

)
, where G(t) is a modulated Gaussian pulse with

Fig. 8 (a) Broadband RCS
and (b) the snapshot of the
current density (in dB) at
t = 480 �t for an
Aribus-A320 model involving
Ns = 4,086,129 spatial
unknowns. The results are
computed by a parallel
PWTD-accelerated TD-CFIE
solver
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Fig. 9 (a) Geometric configuration and (b, c) the snapshots of the current density at t = 440 �t
and t = 740 �t of a UWB phased antenna array involving Ns = 178,787 spatial unknowns. The
results are computed by a parallel PWTD-accelerated TD-EFIE solver

central frequency of 9 GHz and essential bandwidth of 4 GHz, rn is the location
of feed point of the nth element, and k̂ = sin

(
45
◦)

ŷ + cos
(
45
◦)

ẑ. The current
density induced on the antenna array is discretized using 178,787 RWG spatial
basis functions and fourth-order Lagrange basis functions. The simulation is
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performed for 1000 time steps with �t = 4.5 ps. The snapshots of the current
density (in dB) induced on the antenna array at times 440 �t and 740 �t are
plotted in Fig. 9b, c.

• EMI/EMC: Real-life EMC/EMI problems often involve complex and multi-scale
structures, e.g., radiation components, cables, and microwave circuits that reside
in (electrically large) shielding enclosures. TDIE solvers capable of accurately
and efficiently modeling PEC surfaces/wires/junctions, homogeneous/inhomoge-
neous dielectrics, and linear/nonlinear lumped elements are required. In [142], a
PWTD-accelerated TDIE solver was applied to the EMC/EMI analysis involving
PEC surfaces and wires. A parallel implementation of this solver was developed
in [27]. In addition, a PWTD-accelerated hybrid surface-volume TDIE solver
capable of modeling composite structures was developed [143]. More recently,
EMC/EMI problems involving microwave circuits have been analyzed using
a field-circuit simulator that couples PWTD-accelerated TDIE solvers capable
of effectively modeling volumes/surfaces/wires/junctions with a modified nodal
analysis (MNA)-based circuit solver [144]. Moreover, the TD-AIM scheme has
been applied to accelerate a hybrid field-circuit simulator that couples a surface-
volume TDIE solver with the modified nodal analysis (MNA)-based circuit
solver [145]. In addition, a TD-AIM-accelerated multiconductor transmission
line (MTL) simulator that further combines the TDIE solver, a TDIE-based
multiconductor transmission line (MTL) solver, and an MNA-based circuit solver
was developed for electromagnetic characterization of complex structures [4, 5,
146].

• Biomedical Applications: Electromagnetic analysis in support of optical imaging
and biomedical applications as well as nano-device modeling traditionally has
been performed by FDTD and FDIE methods. A distributed-memory TD-VIE
solver was used to model transient scattering from a single red blood cell (RBC)
involving 3 × 106 spatial unknowns [21]. More recently, a parallel PWTD-
accelerated TD-VIE solver became capable of modeling transient scattering
from canonical and real-life objects involving 2.5 × 107 spatial unknowns
[26] and was applied to the analysis of scattering from a collection of RBCs
excited by a plane wave with central frequency of 400 THz and essential
bandwidth of 600 THz. The total electric fields in the cells were discretized with
Ns = 11,746,563 nodal spatial basis functions and the simulation was carried out
for Nt = 700 time steps with step size�t= 0.134 fs and first-order temporal basis
function. The magnitude of the scattered field’s x̂-component at two observer
points is plotted in Fig. 10a. The snapshot of the magnitude of the total electric
field inside the cells at t = 500 �t is plotted in Fig. 10b.
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Fig. 10 (a) Scattered electric fields near and (b) the snapshot of the total fields at t = 500 �t
inside a RBC aggregation involving Ns = 11,746,563 spatial unknowns. The results are computed
by a parallel PWTD-accelerated TD-VIE solver

7 Conclusion

The TDIE solvers have been successfully applied to transient electromagnetic
analyses involving conducting objects, homogeneous/inhomogeneous dielectrics,
wires, and lumped elements residing in lossless, lossy, dispersive, layered media,
cavities, and half-spaces. The recent advances in parallel fast, accurate, stable,
and rapidly converging TDIE solvers have significantly improved their reliability
and capability in modeling real-life electromagnetic phenomena for scattering,
radiation, EMI/EMC, and biomedical applications.
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Increasing processing power of the bare metal hardware has motivated signifi-
cant interest in the development of optimization techniques for machine learning
problems on massively large datasets. Applications such as autonomous vehicles,
artificial intelligence (Google’s GO system [38], IBM’s Deep Blue [34], IBM’s
Project Debator [35]), image classification, and cybersecurity have been enabled
by developments in optimization techniques and their parallel implementations.
Many current applications mentioned above are modeled as either convex or non-
convex optimization problems. These problems have rich theoretical foundations,
as well as algorithmic (both serial and parallel) contributions. In this chapter, we
focus on finite-sum minimization problems in the context of convex and non-convex
formulations. We discuss state-of-the-art optimization methods for these problems
under real-world assumptions on parallel platforms. We also highlight the need for
hardware accelerators, such as GPUs, in significantly accelerating solutions.
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1 Introduction and Motivation

Finite-sum optimization problems can be written in the form:

min
x∈Rd

F (x) �
n∑

i=1

fi(x). (1)

Here, each fi(x) is a smooth convex function, representing a loss (or misfit)
corresponding to the ith observation (or measurement). These problems are well
studied in the machine learning community [7, 27, 66]. In such applications, F in
Eq. (1) corresponds to the empirical risk [65], and the goal of solving Eq. (1) is
to obtain a solution with small generalization error, i.e., high predictive accuracy on
“unseen” data. We consider Eq. (1) at scale, where the values of n and d are large. In
such settings, the mere computation of the first- and second-order statistics (gradient
and the Hessian, respectively) of F increases linearly in n. In large-scale settings,
operations involving these statistics constitute the main computational bottleneck.
In such cases, randomized sub-sampling has been shown to be highly successful in
reducing computational and memory costs of the state-of-the-art optimizers to be
effectively independent of n.

The most commonly used optimization technique in machine learning is gradient
descent and its stochastic version, stochastic gradient descent (SGD). Gradient
descent is a simple iterative procedure that takes steps in the direction of the
negative gradient of the function, evaluated at the current point, using a step-
size that is chosen to satisfy appropriate descent conditions. The stochastic variant
of gradient descent estimates the gradient using mini-batches, as opposed to the
entire training dataset. Algorithms such as gradient descent, that solely rely on
gradient information, are often referred to as first-order methods. In typical problem
settings, gradient descent does not offer good convergence results owing to a
number of limitations: (1) approximating proper learning rate (a.k.a. step-size),
(2) same learning rate schedule is applied to all components of the parameters,
when in most cases some components of parameters change frequently compared to
other components that change slowly, and (3) minimizing highly non-convex error
functions associated with deep learning problems, like neural networks, are known
to be dominated by saddle points surrounded by high error plateaus, which make
it very hard to escape from these regions for methods like SGD [22]. To address
these challenges, several first-order alternatives have been proposed in recent
literature such as SGD with Momentum (henceforth referred to as Momentum) [60],
Adam [42], Adagrad [24], Adadelta [81], and RMSProp [32, 68]. However the
hyper-parameter space for these methods becomes large and the methods become
difficult to tune.

Compared with first-order alternatives, second-order methods use additional
curvature information in the form of the Hessian matrix. As a result of incorporating
such information, in addition to faster convergence rates, second-order methods
offer a variety of, rather more subtle, benefits. For example, unlike first-order
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methods, Newton-type methods have been shown to be highly resilient to increasing
problem ill-conditioning [63, 64, 72]. Furthermore, second-order methods typically
require fewer parameters (e.g., inexactness tolerance for the subproblem solver and
line-search parameters) and are less sensitive to their specific settings [4, 71]. By
using curvature information at each iteration, these methods scale the gradient so
that it is a more suitable direction to follow. Consequently, they typically require
much fewer iterations, as compared to first-order counterparts.

A key challenge in optimization for machine learning problems is the large,
often, distributed nature of the training dataset. It may be infeasible to collect
the entire training set at a single node and process it serially because of resource
constraints (the training set may be too large for a single mode), privacy (data may
be constrained to specific locations), or the need for reducing optimization time.
In each of these cases, there is a need for optimization methods that are suitably
adapted to the parallel and distributed computing environments.

Distributed optimization solvers adopt one of the two strategies: (1) executing
each operation in conventional solvers (e.g., SGD or (quasi) Newton) in a distributed
environment, e.g., [15, 18, 20, 23, 29, 40, 61, 69, 83]; or (2) executing an ensemble
of local optimization procedures that operate on their own data, with a coordinating
procedure that harmonizes the models over iterations, e.g., [74, 75]. The trade-
offs between these two methods are relatively well understood in the context of
existing solvers—namely that the communication overhead of methods in the first
class is higher, whereas the convergence rate of the second class of methods is
compromised. For this reason, methods in the first class are generally preferred in
tightly coupled data-center type environments, whereas methods in the latter class
are preferred for wide area deployments.

A method that occupies the middle ground between first- and second-order
methods relies on the natural gradient [36, 37, 76], proposed by Shun-chin Amari.
This work posits that in fitting probabilistic models, the underlying parametric
distributions can be thought of as belonging to a manifold, whose geometry is
governed by the Fisher information matrix. Under this hypothesis, scaling the
gradient using the Fisher information matrix can result in more effective directions
for navigating the manifold of the parametric probability densities. However, in
high-dimensional settings, using the exact Fisher matrix can be intractable. To
remedy this, Martens et al. [30, 52] proposed a method, called Kronecker Factored
Approximated Curvature (KFAC), to approximate the Fisher information matrix
and its inverse-vector product, and applied it to applications in neural networks and
reinforcement learning. It was shown that KFAC can significantly outperform many
of the first-order alternatives.

Deep learning models such as convolution neural networks, residual neural
networks, and LSTM [33] have millions of parameters for state-of-the-art network
architectures and training such networks is a time-consuming proposition partic-
ularly when massively large datasets are used for training. Higher-order solvers
that use higher-order statistics of the underlying networks are often prohibitively
expensive at scale. In this context more effective solvers which would yield
better, if not similar, results in same number of epochs, as well as speedup in
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processing the mini-batches are critical to the performance of the optimizer. Higher-
order solvers like Newton-type methods and KFAC methods have been shown
to achieve significantly better results compared to first-order solvers for convex
and non-convex optimization problems. GP-GPUs provide powerful platforms for
realizing these results in practice. With thousands of compute cores, associated high
performance memory architecture, single-instruction-multiple-thread (SIMT), and
programming semantics, GPUs are capable of handling large compute intensive
tasks with significant performance gains over traditional CPU cores. In fact without
hardware accelerators, like GPUs, training state-of-the-art deep learning networks
is often not possible in practice.

The rest of this chapter is organized as follows: Section 2 provides an overview
of the existing methods for convex and non-convex problems in machine learning.
Section 4 provides a discussion of higher-order methods for convex optimization;
Sect. 6 extends these results to distributed settings, dealing with massively large
datasets. Finally, in Sect. 5 we provide an in-depth analysis of a hybrid method,
which uses Fisher information matrix of the objective function, in the context
of deep convolution neural networks. These developments have motivated the
development of distributed optimizers for non-convex applications, which involve
deep networks with millions of model parameters and trained on massively large
datasets.

2 Related Research

SGD [6] is the most commonly used first-order method in machine learning,
owing to its simplicity and inexpensive per-iteration cost. Iterations in SGD require
computation of the gradient on a mini-batch scaled by a predetermined learning
schedule and possibly Nesterov-accelerated momentum [55]. It has been argued
that high-dimensional non-convex functions such as those arising in deep learning
are riddled with undesirable saddle points [2, 21, 22, 39]. For instance, convolutional
neural networks, CNNs, display structural symmetry in their parameter space, which
leads to an abundance of saddle points [3, 30, 51]. First-order methods, such as SGD,
are known to “zig-zag” in high curvature areas and “stagnate” in low curvature
regions [3, 22]. In these regions step-size (or learning rate) plays a critical role.
Perturbed gradient based methods [28, 39, 45], where random noise is injected in
the gradient computation have been proposed and shown to converge to second-
order stationary points. However, their computational cost is often worse compared
to second-order methods.

One of the primary reasons for the susceptibility of first-order methods to
getting trapped in saddle points or nearly flat regions is their reliance on gradient
information. Indeed, navigating around saddle points and plateau-like regions can
become a challenge for these methods because the gradient is close to zero in most
directions [22]. To this end, a number of alternate methods have been proposed
in recent times, which using history of gradients aim to approximate curvature
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information, and hence maintaining the simplicity of SGD. Such methods include
Adam [42] and Adagrad [24]. However, such approximations of the Hessian do
not always scale the gradient according to the entire curvature information. Hence,
these methods suffer from similar deficiencies near saddle points and flat regions.
More effective variants of these curvature approximations are those in quasi-Newton
methods such as SR1 [58], DFP [58], and BFGS [48, 58], which use rank-1
and rank-2 updates to iteratively approximate the Hessian. Aided by line-search
methods, typically satisfying Strong-Wolfe [58] conditions, these methods yield
good results compared to first-order methods for convex problems [43]. However,
these methods remain as topics of active investigation in the non-convex regime.

Newton-type optimizers have been developed as alternatives to first-order meth-
ods. These optimizers can effectively navigate the steep and flat regions of the
optimization landscape. By incorporating curvature information in the form of the
Hessian matrix, e.g., negative curvature directions, these methods can escape saddle
points [2, 21, 70, 73, 77, 79, 80]. Nocedal and Wright [58] propose the use of
absolute Hessian matrix, H, to update parameters. Dauphin et al. [21] propose a
saddle-free Newton method that optimizes first-order Taylor series approximation
of the objective function in a trust-region framework constrained by the distance
between successive updates measured by the curvature, |H | of the objective
function. In order to make this computationally tractable, the Lanczos-method is
used to compute the eigenvectors corresponding to few highest eigenvalues as an
approximation to H. Negative curvature descent methods, where the eigenvector
corresponding to the least eigenvalue is used to traverse past the parameter
manifold around saddle points, have been proposed by Yaodong Yu et al. [80].
Negative curvature can be embedded in gradient descent based methods, which upon
encountering saddle points injects random perturbations in the gradient to navigate
past the saddle points (perturbed gradient). Neon [2, 73] and Flash [79] methods also
use negative curvature direction in a novel form in stochastic methods to navigate
past the saddle points. However, such methods need to compute the least eigen-pair
for each iteration, which is computationally expensive. To avoid explicitly forming
the Hessian matrices, Hessian-free methods [14, 50, 54, 82] have been proposed,
which only require Hessian-vector products. Arguably, a highly effective among
these methods is the trust-region based method that comes with attractive theoretical
guarantees and is relatively easy to implement [16, 70, 71, 77].

Several distributed optimization solvers have been developed recently [15, 18,
20, 23, 29, 40, 61, 69, 83]. Among these, [15, 23, 29, 40] are classified as first-
order methods. Although they incur low computational costs, they have higher
communication costs due to a large number of messages exchanged per mini-
batch and high total iteration counts. Second-order variants [18, 20, 61, 69, 83]
are designed to improve convergence rate, as well as to reduce communication
costs (because of more accurate descent direction leading to fewer epochs to reach
convergence). DANE [20] and the accelerated scheme AIDE [61] use SVRG [41]
as the subproblem solver to approximate the Newton direction. These methods
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are often sensitive to the fine-tuning of SVRG. DiSCO [83] uses distributed
preconditioned conjugate gradient (PCG) to approximate the Newton direction. The
number of communications across nodes per PCG call is proportional to the number
of PCG iterations. In contrast to DiSCO, GIANT [69] executes CG at each node and
approximates the Newton direction by averaging the solution from each CG call.
Empirical results have shown that GIANT outperforms DANE, AIDE, and DiSCO.
The solver of Dunner et al. [25] is shown to outperform GIANT; however, it is
restricted to sparse datasets. More recently, DINGO [18] has been developed, which
unlike GIANT can be applied to a class of non-convex functions, namely invex [19],
which includes convexity as a special sub-class. However, in the absence of invexity,
the method can converge to undesirable stationary points.

A popular choice in distributed settings is ADMM [9], which combines dual
ascent method and the method of multipliers. ADMM only requires one round of
communication per iteration. However, ADMM’s performance is affected by the
selection of the penalty parameter [74, 75], as well as the choice of local subproblem
solvers.

Lying on the spectrum between first- and second-order methods is Amari’s
natural gradient method [36, 37]. This method provided a new direction in the
context of high-dimensional optimization of probabilistic models. In this work,
Amari showed that natural gradient descent yields Fisher efficient estimate of
the parameters; he subsequently applied the method to multi-layer perceptrons
for solving blind source detection problems. However, computing Fisher matrix
and its inverse in high-dimensional settings is computationally expensive both in
terms of memory and computational resources. RMSProp [32, 68] methods use
a diagonal approximation of Fisher matrix of the objective function to compute
the descent direction. These methods incur little overhead with regard to diagonal
approximation but nevertheless fail to make progress relative to SGD in some cases.
Martens et al. [30, 51, 52] proposed the KFAC method, which approximates the
natural gradient using Kronecker products of smaller matrices formed during back-
propagation. KFAC method and its distributed counterpart [3] have been shown to
outperform well-tuned SGD in many applications.

For non-convex optimization, we discuss an optimizer that couples the advan-
tages of trust-region and KFAC methods and propose a stochastic optimization
framework involving trust region objective computed on a mini-batch, constrained
to directions that are aligned with those obtained from KFAC. Major computational
tasks in updating the parameters in our method are Hessian-vector products
involving the solution of the trust region subproblem, as well as finding the KFAC
direction. Our Hessian-vector products can be computed at a similar cost as that
of gradient computation using back-propagation. Furthermore, the Fisher matrix
approximation and its inverse are only needed once every few mini-batches, thus
reducing average iteration cost significantly. Invariance to re-parameterization, as
well as immunity to large batch sizes, makes this method a suitable alternative to
first-order methods for practitioners.
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3 Notation and Assumptions

In the rest of this chapter, vectors are denoted by bold lowercase letters, e.g., v,
and matrices or random variables are denoted by bold uppercase letters, e.g., V.
For a vector v and a matrix V, ‖v‖ and ‖V‖ denote the vector �2 norm and matrix
spectral norm, respectively, while ‖V‖F is the matrix Frobenius norm. ∇f (x) and
∇2f (x) are the gradient and the Hessian of f evaluated at x, respectively, and I

denotes the identity matrix. For two symmetric matrices A and B, A . B indicates
that A − B is symmetric positive semi-definite. The superscript, e.g., x(k), denotes
iteration counter and ln(x) is the natural logarithm of x. S denotes a collection
of indices from {1, 2, · · · , n}, with potentially repeated items and its cardinality is
denoted by |S|.

We assume that each fi is twice-differentiable, smooth, and convex, i.e., for some
0 < Ki <∞ and ∀x ∈ R

p

0 / ∇2fi(x) / KiI. (2a)

We also assume that F is smooth and strongly convex, i.e., 0 < γ ≥ K < ∞
and ∀x ∈ R

p

γ I / ∇2F(x) / KI. (2b)

Note that assumption (2b) implies uniqueness of the minimizer, x∗, which is
assumed to be attained. The quantity

κ = K
γ

(3)

is known as the condition number of the problem.
For an integer 1 ≤ q ≤ n, let Q be the set of indices corresponding to q largest

Ki’s and define the “sub-sampling” condition number as

κq = K̂q
γ
, (4)

where

K̂q = 1

q

∑

j∈Q
Kj, (5)

It is easy to see that for any two integers q and r such that 1 ≤ q ≤ r ≤ n, we
have κ ≤ κr ≤ κq . Finally, define
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κ̃ =
{
κ1 : If sample S is drawn with replacement
κ|S| : If sample S is drawn without replacement .

4 Convex Optimization Problems

The standard deterministic or full gradient method, which dates back to
Cauchy [13], for minimizing (1) uses iterates of the form:

x(k+1) = x(k) − αk∇F(x(k)).

Here, αk is the step-size at iteration k. However, when n 
 1, the full gradient
method can be inefficient because its iteration cost scales linearly in n. In addition,
when p 
 1 or when individual functions fi are complicated (e.g., evaluating each
fi may require the solution of a partial differential equation), the mere evaluation of
the gradient can be computationally prohibitive. Consequently, a stochastic variant
of full gradient descent, stochastic gradient descent (SGD) was developed [5, 6, 8,
17, 46, 62]. In such methods a subset S ⊂ {1, 2, · · · , n} is chosen at random and
the update is obtained by

x(k+1) = x(k) − αk
∑

j∈S
∇fj (x(k)).

When |S| ! n (e.g., |S| = 1 for simple SGD), the iteration cost of stochastic
gradient methods is independent of n and can be much cheaper than the full gradient
methods, making them suitable for modern problems with large n. This class of
methods is referred to as first-order methods, since only the gradient information is
used at each iteration. By incorporating curvature information (e.g., Hessian) as a
form of scaling the gradient, i.e.,

x(k+1) = x(k) − αkDk∇F(x(k)),

we can significantly improve convergence rate. This class of methods, which take
curvature information into account, are known as second-order methods. Compared
to first-order methods, they enjoy superior convergence rate in theory, as well as in
real application scenarios. This is because of implicit local scaling of components
at a given x, which is determined by the local curvature of F . This local curvature
determines the condition number of a F at x. Consequently, second-order methods
can rescale the gradient direction so that it is a better direction to traverse. Second-
order methods have long been used in many machine learning applications [6, 11,
12, 47, 50, 78].

The canonical example of second-order methods, Newton’s method [10, 55, 57],
uses a step-size of one and scales the gradient by the inverse of the Hessian, i.e.,
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x(k+1) = x(k) −
[
∇2F(x(k))

]−1 ∇F(x(k)).

It is well known that for a smooth and strongly convex function F , the Newton
direction is always a descent direction and with a suitable step-size, αk , global
convergence is guaranteed. In addition, for cases when F is not strongly convex,
Levenberg–Marquardt type regularization [44, 49] of the Hessian can be used to
obtain a globally convergent algorithm. Newton’s method exhibits scale invariance,
i.e., for some new parameterization x̃ = Ax for invertible matrix A, optimal search
direction in the new coordinate system is p̃ = Ap, where p is the original optimal
search direction. In contrast the search direction produced by gradient descent
methods behaves in an opposite fashion p̃ = A−ᵀp. This scale invariance property
is important for effectively optimizing poorly scaled parameters; see [50] for an
intuitive explanation of this phenomenon. However, when n, p 
 1, the per-
iteration cost of this algorithm is significantly higher than that of first-order methods.

We now discuss a sub-sampling based method that approximates the gradient and
Hessian of the objective function and present analyses of bounds on sample sizes.
We then present results for an accelerated sub-sampled Newton’s method over a
range of real-world datasets and show that such methods can be highly competitive
for machine learning applications.

For the optimization problem Eq. (1), in each iteration, consider selecting
two sample sets of indices from {1, 2, . . . , n}, uniformly at random with or
without replacement. Let Sg and SH denote the sample collections, and define
g and H as

g(x) � n

|Sg|
∑

j∈Sg

∇fj (x), (6a)

H(x) � n

|SH|
∑

j∈SH

∇2fj (x) (6b)

to be the sub-sampled gradient and Hessian, respectively.

Lemma 1 (Uniform Hessian Sub-sampling) Given any 0 < εH < 1, 0 < δ < 1,
x ∈ R

p, and assumption (2a) holds, if

|SH| ≥ 2κ1log(p/δ)

ε2
H

,

then for H(x) defined in (6b), we have

Pr ((1− εH)γ ≤ λmin(H(x))) ≥ 1− δ,

where γ and κ1 are defined in (2b) and (4), respectively.
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Using random matrix concentration inequalities, Roosta et al., [63, 64] derive
lower bounds on the sample sizes for gradient and Hessian computation to proba-
bilistically guarantee their utility in sub-sampled Newton-type methods. Depending
on κ1, the sample size |SH| can be smaller than n. In addition, we can always guar-
antee that the sub-sampled Hessian is uniformly positive definite and, consequently,
the direction given by it, indeed, yields a direction of descent. Note that the sample
size |SH| here grows only linearly in κ1 compared to quadratically as in [63, 64].

Lemma 2 (Uniform Gradient Sub-Sampling) For a given x ∈ R
p, let:

‖∇fi(x)‖ ≤ G(x), i = 1, 2, · · · ,n . (7)

For any 0 < εg < 1 and 0 < δ < 1, if

|Sg| ≥ G(x)
2

ε2
g

(
1+

√
8ln

1

δ

)2

, (8)

then for g(x) defined in (6a), we have

Pr
(‖∇F(x)− g(x)‖ ≤ εg

) ≥ 1− δ.

Lemma 2 assumes that sampling preserves as much first-order information from the
full gradient as possible. Note that in each iteration, G(x) is required to guarantee
the theoretical bounds on the gradient sample size, |Sg|. Fortunately this can be
estimated for most of the well-known objective functions [63].

With the bounds in Lemmas 1 and 2 on the size of the samples, |Sg| and |SH|,
one can, with high probability, ensure that g and H are “suitable” approximations to
the full gradient and Hessian, in an algorithmic sense [63, 64]. For each iterate x(k),
using the corresponding sub-sampled approximations of the full gradient, g(x(k)),
and the full Hessian, H(x(k)), we consider inexact Newton-type iterations of the
form

x(k+1) = x(k) + αkpk, (9a)

where pk is a search direction satisfying

‖H(x(k))pk + g(x(k))‖ ≤ θ‖g(x(k))‖, (9b)

for some inexactness tolerance 0 < θ < 1 and αk is the largest α ≤ 1 such that:

F(x(k) + αpk) ≤ F(x(k))+ αβpTk g(x(k)), (9c)

for some β ∈ (0, 1).
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The requirement in Eq. (9c) is often referred to as Armijo-type line-search [58],
and (9b) is the θ -relative error approximation condition of the exact solution to the
linear system:

H(x(k))pk = −g(x(k)), (10)

which is similar to that arising in classical Newton’s method. Note that in (strictly)
convex settings, where the sub-sampled Hessian matrix is symmetric positive
definite (SPD), conjugate gradient (CG) with early stopping can be used to obtain an
approximate solution to Eq. (10) satisfying Eq. (9b). It has also been shown [63, 64]
that to inherit the convergence properties of the rather expensive algorithm that
employs the exact solution to Eq. (10), the inexactness tolerance, θ , in Eq. (9b) can
be chosen in the order of the inverse of the square root of the problem condition
number. As a result, even for ill-conditioned problems, only a relatively moderate
tolerance for CG ensures that we maintain convergence properties of the exact
update (see also examples in Sect. 4.1). Putting all of these together, we obtain
Algorithm 1, which under specific assumptions has been shown [63, 64] to be
globally linearly convergent1 with problem-independent local convergence rate.2

Algorithm 1: Sub-Sampled Newton Method

Input : Initial iterate, x(0)

Parameters: εg as in Lemma( 2) εH as in Lemma( 1) and σ ≥ 0
1 foreach k = 0, 1, 2, . . . do
2 Form g(x(k)) as in Eq. (6a)
3 Form H(x(k)) as in Eq. (6b)
4 if ‖g(x(k))‖ < σε then

STOP
end

5 Update x(k+1) as in Eq. (9)
end

Theorem 1 (Global Convergence of Algorithm: 1: Inexact Update) Let
Assumptions 2 hold. Also let 0 < θ < 1 be given. For any xk ∈ R

p, using
Algorithm 1 with εH <

1
2 , the “inexact” update direction 6b, and

σ ≥ 8κ̃

(1− θ)(1− β) ,

1It converges linearly to the optimum, starting from any initial guess x(0).
2If the iterates are close enough to the optimum, it converges with a constant linear rate independent
of the problem-related quantities.
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we have the following with probability 1− δ:
1. if “STOP,” then

∥∥∥∇F(x(k))
∥∥∥ < (1+ σ)εg, (11)

2. otherwise, global convergence results for Hessian sample size hold where

(a) if

θ ≤
√
(1− εH)

4κ̃
, (12)

then ρ = 4αkβ/9κ̃ ,
(b) otherwise ρ = 4αkβ(1−θ)(1−εH)/9κ̃2, with κ̃ defined as in (6). Moreover,

for both cases, the step-size is at least

αk ≥ (1− θ)(1− β)(1− εH)

κ
, (13)

where κ is defined as in (3).

Theorem 1 says that, in order to guarantee a faster convergence rate, the linear
system needs to be solved to a “high-enough” accuracy, which is in the order of
O(
√

1/κ̃).

4.1 Experimental Results

We compare our methods to state-of-the-art methods—SGD with momentum
(henceforth referred to as Momentum) [67], Adagrad [24], Adadelta [81], Adam
[42], and RMSProp [68] as implemented in TensorFlow [1].

Table 1 presents the datasets used, along with the Lipschitz continuity constant
of ∇F(x), denoted by L. Recall that, an over-estimate of the condition number of
the problem, as defined in [63], can be obtained by (L + λ)/λ. As it is often done
in practice, we first normalize the datasets such that each column of the data matrix
A ∈ R

n×p has Euclidean norm one. This helps with the conditioning of the problem.
The resulting dataset is, then, split into training and testing sets, as shown in Table 1.

Table 1 Description of the datasets

Dataset Train size (n) Test size Features (p) Classes(C) Lipschitz Const. (L)

Drive diagnostics 50,000 8509 48 11 3.95

MNIST 38,000 38,000 785 10 28.67

CIFAR-10 50,000 10,000 3072 10 534.92

Newsgroups20 10,142 1127 53,975 20 128.79
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We present results for two implementations of second-order methods: (a)
FullNewton, the classical Newton-CG algorithm [58], which uses the exact gradient
and Hessian, and (b) SubsampledNewton-20, |Sg| = 0.2n, and SubsampledNewton-
100, |Sg| = n, are compared against first-order methods using batch sizes 128 and
20%, respectively. These methods use |SH| = 0.05n. CG-tolerance is set to 10−4.
Maximum number of CG iterations is 10 for all datasets except Drive Diagnostics
and Gisette, for which it is 1000. λ is set to 10−3 and we perform 100 iterations
(epochs) for each dataset.

Tables 2 and 3 present the performance results of the proposed Newton-type
methods in comparison with first-order methods for batch sizes 128 and 20%,
respectively. In each of these tables we show the plots for cumulative time vs.
test accuracy in column 1 and cumulative time vs. objective function (training) in
column 2. Please note that x-axis in all the plots is in “log-scale.”

4.1.1 Drive Diagnostics Dataset

Row 2 of Tables 2 and 3 shows the results for the Drive Diagnostics dataset for
batch sizes 128 and 20% (of the dataset), respectively. We notice that all Newton-
type methods achieve lower objective function in the initial few iterations compared
to first-order counterparts. When the batch size is larger, we notice that first-order
methods take longer to achieve the same objective function value compared to
smaller batch sized counterparts. Note that smaller gradient sample size yields
similar results (objective function value and generalization error) throughout the
simulations.

4.1.2 MNIST and CIFAR-10 Datasets

Rows 3 and 4 in Tables 2 and 3 present plots for MNIST and CIFAR-10 datasets,
respectively. Regardless of the batch size, Newton-type methods clearly outperform
first-order methods for these two datasets. When larger batch size is used for first-
order methods, we notice that these methods take more epochs compared to their
smaller batch sized counterparts in reaching same objective function value and
generalization error. This behavior is more prominent in CIFAR-10 dataset, which
represents a relatively ill-conditioned problem. As a result, in terms of lowering
the objective function on CIFAR-10, first-order methods are negatively impacted
by problem ill-conditioning, whereas all Newton-type methods show excellent
robustness. (Note that, for CIFAR-10, our proposed methods are ≈1000× faster
than first-order alternatives irrespective of the mini-batch size.)

4.1.3 Newsgroups20 Dataset

Plots in row 5 of Tables 2 and 3 represent Newsgroups20 dataset, which is a sparse
dataset, and the Hessian is ≈1e6 × 1e6. We clearly notice SubsampledNewton-100
yields superior training accuracy compared to all methods (column 1). However,
SubsampledNewton-20 takes more epochs to achieve the same objective function



Table 2 Performance comparison between first-order and second-order methods (batch size =
128)

Time vs. Accuracy Time vs. Objective Function (training)
First Order Batch Size = 128

Alg. 1 Gradient Sample Size = 100%
Alg. 1 Hessian Sample Size = 5%

Drive Diagnostics

MNIST

CIFAR-10

newsgroups



Table 3 Performance comparison between first-order and second-order methods (batch size =
20%)

Time vs. Accuracy Time vs. Objective Function (training)
First Order Batch Size = 20%

Alg. 1 Gradient Sample Size = 20%
Alg. 1 Hessian Sample Size = 5%

Drive Diagnostics

MNIST

CIFAR-10

newsgroups
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value as its full gradient counterpart, as seen in column 4. This can be attributed to
a smaller gradient sample size and the sparse nature of this dataset.

4.2 Sensitivity to Hyper-Parameter Tuning

A major consideration for first-order methods is that of fine-tuning of various
underlying hyper-parameters, most notably, the step-size [4, 71]. Indeed, the success
of most such methods is strongly determined by many trial-and-error steps to find
proper parameter settings. In contrast, second-order optimization methods involve
much less parameter tuning and are less sensitive to specific choices of their hyper-
parameters [4, 71].

To further highlight these issues, we demonstrate the sensitivity of several
first-order methods with respect to their learning rate. Figure 1 shows the results
of multiple runs of SGD with Momentum, Adagrad, RMSProp and Adam on

(a) (b)

(c) (d)

(e)

Fig. 1 Sensitivity of various first-order methods with respect to the choice of the step-size, i.e.,
learning rate. It is clear that too small a step-size can lead to slow convergence, while larger step-
sizes cause the method to diverge. The range of step-sizes for which some of these methods perform
reasonably can be very narrow. This is in contrast with Newton-type, which comes with a priori
“natural” step-size, i.e., α = 1, and only occasionally requires the line-search to intervene. (a)
SGD with Momentum. (b) Adagrad. (c) RMSProp. (d) Adam. (e) Step-sizes
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Newsgroups20 dataset with several choices of step-size. Each method is run 13
times using step-sizes in the range 10−6/L to 106/L, in increments of 10, where
L is the Lipschitz constant; see Table 1. It is clear that small step-sizes can result
in stagnation, whereas large step-sizes can cause the method to diverge. Only if the
step-size is within a particular and often narrow range, which greatly varies across
various methods, does one see reasonable performance.

Remark 1 For some first-order methods, e.g., momentum based, line-search type
techniques simply cannot be used. For others, the starting step-size for line-search is,
almost always, a priori unknown. This is in sharp contrast with randomized Newton-
type methods considered here, which come with a priori “natural” step-size, i.e.,
α = 1, and furthermore, only occasionally require the line-search to intervene;
see [63, 64] for theoretical guarantees in this regard.

5 Non-convex Optimization

With the goal of avoiding being trapped at saddle points, many first-order alter-
natives such as Adam and Adagrad, and quasi-Newton methods that use low-rank
updates, approximate underlying curvature of the objective function. These methods
either require a large number of iterations for convergence (first-order alternatives)
or are unstable in practice. Natural gradient based methods were proposed in
the early 1960s and have been shown to yield efficient parameter estimates for
non-convex applications, but were computationally expensive because of high-
dimensionality of deep learning problems. Recently, Martens et al. [30, 50–52]
proposed approximation methods to efficiently estimate Fisher matrix (and asso-
ciated natural gradient direction) and proved that natural gradient based learning
methods can yield superior results for non-convex applications. In this section, we
describe a stochastic trust-region based method and validate it using real-world
datasets for learning convolution neural networks (CNNs).

We describe a technique called Fisher Informed Trust-REgion (FITRE ) method,
which is inspired by Martens and Grosse [52], Xu et al. [70], and Yao et al. [77] and
is formalized in Algorithm 2. At the heart of FITRE lies the stochastic trust-region
method using the local quadratic approximation:

min‖s‖≤�t
mt (s) = 〈gt , s〉 + 1

2
〈s,Ht s〉 . (14)

We adopt the approach of [77] and use a stochastic estimate of the gradient gt and
Hessian Ht . [70, 71]. The step-length which is governed by the trust-region radius
�t is automatically adjusted based on the quality of the quadratic approximation and
the amount of descent in the objective function. In practice, (14) is approximated by
restricting the problem to lower dimensional spaces, e.g., Cauchy condition, which
amounts to searching in a one-dimensional space spanned by the gradient. Here,
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we do the same, however by restricting the subproblem to the space spanned by
the direction derived from the Kronecker factorization of the Fisher matrix, or its
combination with the gradient.

Our choice is motivated by the following observation: when the objective func-
tion involves probabilistic models, as is the case in many deep learning applications,
natural gradient direction amounts to the steepest descent direction among all
possible directions inside a ball measured by KL-divergence between the underlying
parametric probability densities. On the contrary, the (standard) gradient represents
the direction of steepest descent among all directions constrained in a ball measured
by the Euclidean metric [30], which is less informative than the former, though
much easier to compute. To alleviate the computational burden of working with the
Fisher information matrix and its inverse, Kronecker-product based approximations
[51, 52] have shown success in simultaneously preserving desirable properties of
the exact Fisher matrix such as invariance to re-parameterization and resilience to
large batch sizes. Indeed, many empirical studies have confirmed that the natural
gradient provides an effective descent direction for optimization of neural networks
[30, 50–52].

5.1 Natural Gradient Computation

We present an overview of the approximations involved in estimating the natural
gradient direction. We refer readers to [30, 52] for a detailed discussion on
estimation of Fisher information matrix and approximations used in deriving the
natural gradient direction.

We define

Dθ := dL(y, f (x, θ))
dθ

= −d logp(y|x, θ)
dθ

,

where Dθ is the gradient of the loss function, which is computed using the
conventional back-propagation algorithm. Since the network defines a conditional
distribution p(y|x, θ), its associated Fisher information matrix is given by

F(θ) = E

[
d logp(y|x, θ)

dθ

(
d logp(y|x, θ)

dθ

)ᵀ]
= E

[
Dθ (Dθ)

ᵀ]
. (15)

Natural gradient is defined as F−1(θ)∇h(θ). It defines the direction in parameter
space that gives the largest change in the objective function per unit change in the
model, as measured by the KL-divergence, which is measured between the model
output distribution and the true label distribution. In the context of this discussion,
for simplicity, we drop the dependence of F and h on θ .
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5.2 Natural Gradient Using Kronecker Factored Approximate
Curvature Matrix:

We define:

E

[
vec
(
W̄l

)
vec
(
W̄l

)ᵀ] ≈ 	 l−1 ⊗ 
l � F̆l , (16)

where 	 l−1 and 
l denote the second moment matrices of the activation and pre-
activation derivatives, respectively.

To invert F̆, we use the fact that: (1) we can invert a block-diagonal matrix by
inverting each of the blocks and (2) the Kronecker product satisfies the identity
(A⊗ B)−1 = A−1 ⊗ B−1:

F̆−1 =
⎡

⎢⎣
	−1

0 ⊗ 
−1
1 0
. . .

0 	−1
�−1 ⊗ 
−1

�−1

⎤

⎥⎦ . (17)

The approximate natural gradient F̆−1∇h can be computed as follows:

F̆−1∇h =

⎡

⎢⎢⎢⎣

vec
(

−1

1

(
∇W̄1

h
)

	−1
0

)

...

vec
(

−1
�

(
∇W̄�

h
)

	−1
�−1

)

⎤

⎥⎥⎥⎦ . (18)

A common multiple of the identity matrix is added to F for two reasons: First, as a
regularization parameter, which corresponds to a penalty of 1

2λθ
ᵀ
θ . This translates

to F + λI to approximate the curvature of the regularized objective function.
The second reason is to use it as a damping parameter to account for multiple
approximations used to derive F̆, which corresponds to adding γ I to the approximate

curvature matrix. Therefore, we aim to compute:
[
F̆+ (λ+ γ ) I

]−1 ∇h.

Since adding the term (λ + γ )I breaks the Kronecker factorization structure, an
approximated version is used for computational purposes, which is as follows:

F̆� + (λ+ γ ) I ≈
(
	�−1 + π�

√
λ+ γ I

)
⊗
(


� + 1

π�

√
λ+ γ I

)
(19)

for some π�.
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Algorithm 2: FITRE
Input :

- Starting point x0
- Initial trust-region radius: 0 < �0 <∞
- KFAC parameters: damping parameter (γ ≥ 0), moving

average (0 < θ < 1)
Result: xt - direction to be used to update model parameters.
foreach t = 0, 1, . . . do

Set the approximate gradient gt and Hessian Ht
/* Compute the approximated Inverse Fisher ×

gradient, a.k.a natural-gradient */
Obtain natural-gradient direction pt , as described in [30, 52]
Case 1: KFAC

ηt = arg min
‖ηpt‖≤�t

m(ηpt ) = ηgᵀt pt + η2

2 pᵀ
t Htpt

st = ηtpt
Case 2: KFAC + Gradient

ηt = arg min
‖ηpt‖≤�t

m(ηpt ) = ηgᵀt pt + η2

2 pᵀ
t Htpt

αt = arg min
‖αgt‖≤�t

m(ηgt ) = αgTt gt + α2

2 gTt Htgt

st = arg min
s∈{ηtpt ,αtgt }

m(s)

Set ρt � ht (θ t )−ht (θ t+st )−m(st ) , (ht (.)
are evaluated on the same mini-batch as gt and Ht ).

if ρt ≥ 0.75 then
wt+1 = wt + st and �t+1 = min{2�t,�max}

end
else if ρt ≥ 0.25 then

wt+1 = wt + st and �t+1 = �t
end
else

wt+1 = wt and �t+1 = �t/2
end

end

Algorithm 2 describes a realization of our proposed method in trust-region
settings. First, the natural gradient direction, pt is computed and used in determining
the step-size using the quadratic approximation of the objective function at pt ,
whose closed-form solution is (�/ ‖Htpt + gt‖) (Htpt + gt ) (note that gradient, gt ,
can also be used to estimate the step-size and may yield a better descent direction
in some cases). Once the step-size, η is determined, ρt is computed over the same
mini-batch to determine the trust-region radius as well as the iterate update. These
steps are repeated until desired generalization is achieved. Note that we can compare
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the efficiency of natural gradient direction with that of the standard gradient and use
the appropriate one at each iteration, this is referred to as “KFAC + gradient” in this
algorithm.

5.3 Updating KFAC Block Matrices

Block matrices, 	 l and 
l , are typically updated using a momentum term to capture
the variance in input samples across successive mini-batches. If sample points across
the dataset are well correlated, with little variance among the sample points, the
inverse block matrices, 	−1

l and 
−1
l , need not be updated for every mini-batch.

“KFAC Update Frequency,” the frequency with which the inverse block matrices
are updated, is typically decided based on the size of the input dataset as well as the
correlatio n among the sample points. For boot strapping the optimizer, we either
use a larger sample of the dataset, like 5 × the mini-batch size, or use the very first
mini-batch itself for computing the block inverses.

5.4 Experimental Results

Tables 4 and 5 present a comparison of our solver, FITRE with other state-of-the-
art methods on the ImageNet dataset using VGG11 convolutional neural networks
(CNNs) and Tables 6 and 7 show the results for VGG16 CNN. In these tables, we
show the generalization errors plotted against wall-clock time and against number of
epochs in Columns 3 and 4, respectively, and negative log-likelihood (NLL) using
softmax cross-entropy loss function against wall-clock time and against number of
epochs in Columns 1 and 2, respectively. KFAC update frequency is set to 5 (mini-
batches) for the first row and for the second row, it is set to 25. Plots in Tables 4 and 6
use default initialization, as defined in pyTorch, which is a uniform distribution.
Corresponding results using Kaiming initialization [31] (this initialization is based
on random Gaussian distribution) are shown in Tables 5 and 7.

The following conclusions can be made from the plots for VGG11 (as shown in
Tables 4 and 5) and VGG16 (as shown in Tables 6 and 7). (1) FITRE minimizes the
likelihood function to a significantly smaller value compared to well-tuned SGD,
and at any given wall-clock instant (FITRE yields better NLL value compared to
SGD), (2) Kaiming initialization yields superior generalization errors compared to
default initialization of the CNNs, (3) contrary to expectations KFAC update fre-
quency of 25 yields better generalization errors relative to more frequent updates, (4)
with increasing network complexity, VGG16 compared to VGG11, FITRE yields
significantly better generalization errors compared to SGD, showcasing its superior
scaling characteristics compared to SGD, and (5) default initialization is relatively
immune to �2 regularization compared to Kaiming initialization.

For VGG16 network with Kaiming initialization and KFAC update frequency of
25 we observe that to attain 50% test accuracy FITRE (with 1e-6 regularization)
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takes ≈6500 s compared to ≈20,500 s for SGD (for all regularizations used);
a speedup of 3.2 over SGD. Furthermore, when regularization is set to 1e−4

FITRE achieves 53.5% test accuracy, whereas SGD fails to obtain similar accuracy.
Similar arguments can be made for the VGG11 network as well. This shows that
even though FITRE is computationally more expensive on a per-iteration basis,
it yields significantly better results in shorter time compared to SGD. This can be
attributed to better descent direction (SGD’s gradient vs. FITRE ’s natural gradient)
and an adaptive second-order approximated learning rate computation within the
trust-region framework used by the FITRE .

Contrary to expectation, we notice that for VGG11 CNN and default ini-
tialization, FITRE’s execution of 50 epochs takes less time compared to SGD
for KFAC update frequency 25. FITRE makes two passes over the network
(one forward and backward pass for gradient computation and another pass for
Hessian-vector product computation used to compute the learning rate in the
trust-region framework). One would expect that SGD is at least twice as fast as
FITRE on the wall-clock time (on a per-iteration basis). We note that SGD’s
pyTorch implementation uses auto-differentiation to compute the gradient of the
given network, whereas our implementation of the FITRE is R-operator based (as
proposed by Perlmutter et al. [59]). We note that GPU memory management in
pyTorch is not efficient [26, 43]. pyTorch allocates and frees memory very often and
tends to persist very little information on the device. Even though FITRE makes
two passes over the network and computes inverses of smaller matrices at each
layer of the network (for computing the inverse of the KFAC block matrices) our
implementation persists relevant information on the GPU memory. Coupled with
our efficient implementation of the R-operator based Hessian-vector product, we
can significantly reduce the computation cost associated with each mini-batch.
In addition, our proposed method is a true stochastic online method in which
there is no dependence on any part of the dataset other than the current mini-
batch during its entire execution, compared to state-of-the-art existing second-order
methods [53, 56].

We also note that default initialization is immune to regularization for both
networks (VGG11 and VGG16) and for both methods (FITRE and SGD). These
two methods show negligible changes in NLL function values (as well as gener-
alization errors) while the FITRE yields superior results compared to SGD for
significant part of the execution. At the end of the execution, SGD tends to achieve
similar generalization errors compared to FITRE but on minimizing the NLL
function FITRE always achieves superior results. However, when using Kaiming
initialization, based on random Gaussian distribution, for both the networks, we
notice that regularization helps in achieving superior generalization errors for
FITRE (with VGG11 network, KFAC update frequency set to 25 and regularization
of 1e−6) compared to SGD. But in all cases, FITRE yields superior results when
the underlying model does not use any regularization. Compared to FITRE , SGD is
relatively invariant to Kaiming initialization as well, as shown in plots in columns 1
and 2 of Tables 5 and 7. Notice that there is very little change in objective function
value throughout the simulations.



Parallel Optimization Techniques for Machine Learning 407

KFAC update frequency is a hyper-parameter used to control the frequency with
which the block matrix inverses are computed at each layer of the network. These
block inverses are used to compute the natural gradient direction eventually for
each mini-batch. Since these blocks approximate the Fisher matrix of the loss
function, they are updated once every few mini-batches. Martens et al. [30, 52]
argue that more frequent updates of these block inverses make them too rigid and
may lead to overfitting. Using larger values for this update frequency has the effect
of a regularizer on the underlying model and helps in avoiding overfitting. As an
added advantage, this dependence of the FITRE reduces its computation cost (note
also that the computation of block inverses can be delegated to slave processing
units, if available, further reducing the computation cost thereby decreasing the
time for processing each mini-batch). This is also one of the reasons why our
proposed method scales well with increasing network complexity. We note that for
VGG16 (with Kaiming initialization), a larger and more complex network compared
to VGG11, FITRE yields superior generalization errors as well as minimizing
objective function compared to SGD.

6 Distributed Higher-Order Methods

Typically, machine learning problems are associated with massively large datasets
during the training phase for learning model parameters. In such scenarios, one must
resort to distributed/parallel methods for training models, due to resource constraints
on individual nodes. Even in stochastic settings, where only a small part of the
dataset is processed at any point in time, time spent in training is a critical parameter
contributing to the use of distributed procedures in deep learning. Furthermore,
it may be infeasible to accumulate the dataset at a single physical location either
due to privacy or resource constraints of the underlying application or system.
In such applications communication-efficient optimizers can significantly reduce
the training time while optimally using the compute resources. The need for such
methods is even more pressing when nodes in distributed systems are connected
through high latency networks.

Several distributed optimization techniques have been developed in the recent
past to address these concerns. Distributed methods, which are direct adaptations of
existing first-order or quasi-Newton methods (i.e., those that parallelize kernel oper-
ations such as matrix–vector and dot products), suffer from high communication
overhead because of the exchange of model parameters at least once in each iteration
among the compute nodes, in addition to inherent communication overhead of the
optimizer itself. Ensemble methods in which local optimization procedures compute
local solutions (using only locally available data) and a coordinating consensus
procedure, which harmonizes local solutions to form a global solution, are more
efficient in high latency environments.

In this section, we discuss a communication-efficient method, called Newton-
ADMM, based on Alternating Direction Methods of Multipliers (ADMM) frame-
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work coupled with sub-sampled Newton-type methods for local optimization as
discussed in Sect. 4, along with results using real-world datasets in the context of
convex optimization problems of the form (1).

Let N denote the number of nodes (compute elements) in the distributed
environment. Assume that the input dataset D is split among the N nodes as
D = D1 ∪D2 . . . ∪DN . Using this notation, (1) can be written as:

min
N∑

i=1

∑

j∈Di
fj (xi )+ g(z) (20)

s.t. xi − z = 0, i = 1, . . . ,N,

where z represents a global variable enforcing consensus among xi’s at all the
nodes. In other words, the constraint enforces a consensus among the nodes so
that all the local variables, xi , agree with global variable z. This formulation (20)
is often referred to as a global consensus problem. ADMM is based on an
augmented Lagrangian framework; it solves the global consensus problem by
alternating iterations on primal/dual variables. In doing so, it inherits the benefits
of decomposability of dual ascent and the superior convergence properties of the
method of multipliers. For a detailed discussion on ADMM method, we refer the
readers to [9].

ADMM methods introduce a penalty parameter ρ, which is the weight on the
measure of disagreement between xi’s and global consensus variable, z. The most
common adaptive penalty parameter selection is Residual Balancing [9], which tries
to balance the dual norm and residual norm of ADMM. Recent empirical results
using Spectral Penalty Selection (SPS) [75], which is based on the estimation of
the local curvature of subproblem at each node, yield significant improvement in
the efficiency of ADMM. Using the SPS strategy for penalty parameter selection,
ADMM iterates can be written as follows:

xk+1
i = arg min

xi
fi(xi )+ ρ

k
i

2
||zk − xi + yki

ρki

||22, (21a)

zk+1 = arg min
z

g(z)+
N∑

i=1

ρki

2
||z− xk+1

i + yki
ρki

||22, (21b)

yk+1
i = yki + ρki (zk+1 − xk+1

i ). (21c)

With �2−regularization, i.e., g(x) = λ‖x‖2/2, (21b) has a closed-form solution
given by

zk+1(λ+
N∑

i=1

ρki ) =
N∑

i=1

[
ρki xk+1

i − yki
]
, (22)

where λ is the regularization parameter.
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Algorithm 3: ADMM method (outer solver)

Input : x(0) (initial iterate), N (no. of nodes)
Parameters: β, λ and θ < 1

1 Initialize z0 to 0
2 Initialize y0

i to 0 on all nodes.
foreach k = 0, 1, 2, . . . do

3 (i) Perform Algorithm 1 with, xki , yki , and zk on all nodes

4 (ii) Collect all local xk+1
i

5 (iii) Evaluate zk+1 and yk+1
i using (21b) and (21c).

6 (iv) Distribute zk+1 and yk+1
i to all nodes.

7 (v) Locally, on each node, compute spectral step-sizes and penalty
parameters as in [75]

end

Algorithm 3 presents a distributed optimization method incorporating the above
formulation of ADMM. Steps 1 and 2 initialize the multipliers, y, and consensus
vectors, z, to zeros. In each iteration, Single Node Newton method, Algorithm 1, is
executed with local xi , yi , and global z vectors. Upon termination of Algorithm 1 at
all nodes, resulting local Newton directions, xki , are gathered at the master node,
which generates the next iterates for vectors y and z using spectral step-sizes
described in [75]. These steps are repeated until convergence.

Remark 2 Note that in each ADMM iteration only one round of communication
is required (a “gather” and a “scatter” operation), which can be executed in
O(log(N)) time. Further, the application of the GPU-accelerated inexact Newton-
CG Algorithm 1 at each node significantly speeds up the local computation per
epoch. The combined effect of these algorithmic choices contributes to the high
overall efficiency of the proposed Newton-ADMM Algorithm 3 when applied to
large datasets.

6.1 ADMM Residuals and Stopping Criteria:

The consensus problem (20) can be solved by iterating ADMM subprob-
lems (21a), (21c), and (21b). To monitor the convergence of ADMM, we can check
the norm of primal and dual residuals, rk and dk , which are defined as follows:

rk =
⎡

⎢⎣
rk1
...

rkN

⎤

⎥⎦ ,dk =
⎡

⎢⎣
dk1
...

dkN

⎤

⎥⎦ , (23)
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where ∀i ∈ {1, 2, . . . ,N},

rki = zk − xki ,d
k
i = −ρki (zk − zk−1). (24)

As k → ∞, zk → z∗ and ∀i, xki → z∗. Therefore, the norm of primal and dual
residuals, ||rk|| and ||dk||, converges to zero. In practice, we do not need the solution
to high precision, thus ADMM can be terminated as ||rki || ≤ εpri and ||dki || ≤ εdual .
Here, εpri and εdual can be chosen as:

εpri = √Nεabs + εrel max{
N∑

i=1

||xki ||2,N ||zk||2} (25)

εdual = √dεabs + εrel max{
N∑

i=1

||yki ||2}. (26)

The choice of absolute tolerance εabs depends on the chosen problem and the
choice of relative tolerance εrel for the stopping criteria is, in practice, set to 10−3

or 10−4.

6.2 Experimental Results

In this section, we evaluate the performance of Newton-ADMM as compared with
several state-of-the-art alternatives. In these experiments, pyTorch is used as the
software platform and nodes are equipped with NVIDIA P100 GPU accelerators.
Table 8 describes the datasets that are used for validation purposes.

6.3 Comparison with Distributed First-Order Methods

While the per-iteration cost of first-order methods (synchronous SGD) is relatively
low, they require larger number of iterations, increasing associated communication
overhead, and CPU–GPU transactions (because of resource constraints on GPUs,
data must be swapped back to the CPU for temporarily releasing global memory

Table 8 Description of the
datasets

Classes Dataset Train size Test size Dims

2 HIGGS 10,000,000 1,000,000 28

10 MNIST 60,000 10,000 784

10 CIFAR-10 50,000 10,000 3072

20 E18 1,300,128 6000 279,998
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on the GPUs, partly because of the pyTorch’s execution model). In this experiment,
we demonstrate that these drawbacks of first-order methods are significant, in the
context of MNIST, CIFAR-10, HIGGS, and E18 datasets using four workers for
Newton-ADMM and synchronous SGD, both with the GPUs enabled and GPUs
disabled. The results are shown in Table 9. We note that GPU-accelerated Newton-
ADMM method with minimal communication overhead yields significantly better
results—over an order of magnitude faster in most cases, when compared to
synchronous SGD.

We present the ratio of CPU time to GPU time for Newton-ADMM and SGD
in Table 10. We observe that for both Newton-ADMM and SGD, the CPU–GPU
time ratio is proportional to the dimension of datasets. For example, on the dataset
with the lowest dimension (HIGGS), the CPU–GPU time ratio is the least for
both Newton-ADMM and SGD, whereas on the dataset with the highest dimension
(E18), the CPU–GPU time ratios are the highest for both Newton-ADMM and SGD.
In all cases, the use of GPUs results in highest speedup for Newton-ADMM. The
gain in GPU utilization is compromised by large number of CPU–GPU memory
transfers for SGD. As a result, SGD shows meaningful GPU acceleration only for
the E18 dataset.

Second, we observe that Newton-ADMM has much lower communication cost,
compared to SGD. This can be observed from Table 9. In all cases, SGD takes longer
than Newton-ADMM with GPUs enabled. This is mainly because SGD requires a
large number of gradient communications across nodes. As a result, we observe that
Newton-ADMM is 4.9x, 6.3x, 22.6x, and 17.8x times faster than SGD on MNIST,
CIFAR-10, HIGGS, and E18 datasets, respectively.

Finally, we observe that Newton-ADMM has superior convergence properties
compared to SGD. This is demonstrated in Table 9 for the HIGGS dataset. We
observe that Newton-ADMM converges to low objective function values in just a
few iterations. On the other hand, the objective function value, even at 100-th epoch
for SGD, is still higher than Newton-ADMM.

6.4 Comparison with Distributed Second-Order Methods

We compare Newton-ADMM against DANE [20], AIDE [61], and GIANT [69],
which have been shown in recent results to perform well. In each iteration,
DANE [20] requires an exact solution of its corresponding subproblem at each node.
This constraint is relaxed in an inexact version of DANE, called InexactDANE [61],
which uses SVRG [41] to approximately solve the subproblems. Another version of
DANE, called Accelerated Inexact DanE (AIDE), uses techniques for accelerating
convergence while still using InexactDANE to solve individual subproblems [61].
However, using SVRG to solve subproblems is computationally inefficient due to
its double loop formulation, with the outer loop requiring full gradient recalculation
and several stochastic gradient calculations in inner loop. Figure 2 shows the
comparison between these methods on the MNIST dataset with λ = 10−5. Although



Table 9 Training objective function and test accuracy as functions of time for Newton-ADMM and
synchronous SGD, both with GPU enabled and GPU disabled, with four workers

Time vs. Test Accuracy Time vs. Objective Function (training)

MNIST

CIFAR-10

HIGGS

E18

Overall, Newton-ADMM favors GPUs, enjoys minimal communication overhead, and enjoys faster
convergence compared to synchronous SGD
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Table 10 GPU speedup for
Newton-ADMM and SGD

CPU/GPU
time ratio Newton-ADMM SGD

MNIST 44.7345904 0.47896507

CIFAR-10 112.670178 0.8212862

HIGGS 11.842679 0.26789652

E18 154.425688 1.54673642

(a) (b)

Fig. 2 Training objective function and test accuracy comparison over time for Newton-ADMM,
GIANT, InexactDANE, and AIDE on MNIST dataset with λ = 10−5. We run both Newton-
ADMM and GIANT for 100 epochs. Since the computation times per epoch for InexactDANE
and AIDE are high, we only run 10 epochs for these methods. (a) Time vs. Test Accuracy. (b)
Time vs. Objective Function (training)

InexactDANE and AIDE start at lower objective function values, the average epoch
time compared to Newton-ADMM and GIANT is orders of magnitude higher (order
of 1000x). For instance, to reach an objective function value less than 0.25 on the
MNIST dataset, Newton-ADMM takes only 2.4 s, whereas InexactDANE consumes
an hour and a half.

7 Concluding Remarks

Optimization techniques for training machine learning models are of significant
current interest. Common machine learning models lead to convex or non-convex
optimization problems defined on very large datasets. This necessitates the develop-
ment of efficient (in terms of optimization time), effective (in terms of generalization
error), and parallelizable methods.

Most current machine learning applications rely on stochastic gradient descent to
solve the underlying optimization problems. In this chapter, we have discussed the
use of higher-order methods that rely on curvature, in addition to gradient informa-
tion for computing the descent direction. We rely on two important concepts: the use
of sampling in dealing with the dense Hessian matrix and the use of natural gradient
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in non-convex optimization. We show that second-order methods are fast (in terms
of iteration counts), can be made efficient (in terms of per-iteration computation
cost), result in solutions that are generalizable (as determined by test accuracy), are
robust to problem ill-conditioning, and do not require extensive hyper-parameter
tuning. Finally, we show how these methods can be parallelized using ADMM and
formulated to efficiently use GPUs to deliver accurate and scalable solvers.
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