
Proof-of-Work Sidechains

Aggelos Kiayias1,3 and Dionysis Zindros2,3(B)

1 University of Edinburgh, Edinburgh, UK
akiayias@inf.ed.ac.uk

2 National and Kapodistrian University of Athens, Athens, Greece
dionyziz@di.uoa.gr

3 IOHK, Hong Kong, China

Abstract. During the last decade, the blockchain space has exploded
with a plethora of new cryptocurrencies, covering a wide array of dif-
ferent features, performance and security characteristics. Nevertheless,
each of these coins functions in a stand-alone manner, independently.
Sidechains have been envisioned as a mechanism to allow blockchains to
communicate with one another and, among other applications, allow the
transfer of value from one chain to another, but so far there have been
no decentralized constructions. In this paper, we put forth the first side
chains construction that allows communication between proof-of-work
blockchains without trusted intermediaries. Our construction is generic
in that it allows the passing of any information between blockchains.
Using this construction, two blockchains can be connected in a “two-way
peg” in which an asset can be transferred from one chain to another and
back. We pinpoint the features needed for two chains to communicate:
On the source side, a proof-of-work blockchain that has been interlinked,
potentially with a velvet fork; on the destination side, a blockchain with
smart contract support. We put forth the smart contracts needed to
implement these sidechains and explain them in detail. In the heart of
our construction, we use a recently introduced cryptographic primitive,
Non-Interactive Proofs of Proof-of-Work (NIPoPoWs).

1 Introduction

Bitcoin [13] is the most successful cryptocurrency to date. It introduced block-
chains, a of cryptographic consensus protocol in which transactions are organized
into blocks which are put in a mutually agreed sequence despite the presence of
adversaries. Consensus is achieved via proof-of-work [4] which is the precondi-
tion for block validity. Transactions moving value within blockchains have been
proven to be secure and that consensus is eventually achieved, cf. [5,6,14].

Ethereum [3] extends Bitcoin’s functionality introducing Turing-complete
smart contracts programmed in languages like Solidity which run on top of
the Ethereum Virtual Machine [18]. These contracts execute autonomously. The
smart contracts are confined to access data only within the blockchain itself, such
as previous transactions and blocks. Access to external data requires a trusted
third party or group thereof to vouch for the data validity [23].

Research partially supported by H2020 project PRIVILEDGE # 780477.

c© International Financial Cryptography Association 2020
A. Bracciali et al. (Eds.): FC 2019 Workshops, LNCS 11599, pp. 21–34, 2020.
https://doi.org/10.1007/978-3-030-43725-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43725-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-43725-1_3


22 A. Kiayias and D. Zindros

Sidechains [1] are a mechanism for cross-chain communication in blockchains.
They allow smart contracts on one blockchain to receive and react to events
taking place on another blockchain without the need of trusted parties. Despite
their widely agreed usefulness there exist no constructions that are decentralised
and efficient at the same time.

Our Contributions. In this paper, we introduce the first trustless construction
for proof-of-work sidechains. We describe how to build generic communication
between blockchains. As one application, we give the construction of a two-way
pegged asset which can be moved from one blockchain to another while retaining
its nature. We provide a high-level construction in Solidity. Our construction
works across a broad range of blockchains requiring only two underlying proper-
ties. First, that the source blockchain is a proof-of-work blockchain supporting
Non-Interactive Proofs of Proof-of-Work (NIPoPoWs), a cryptographic primi-
tive which allows constructing succinct proofs about events which occur in a
proof-of-work blockchain and which was recently introduced in [12]. Support for
NIPoPoWs can be introduced to practically any work-based cryptocurrency such
as Bitcoin and Ethereum without a hard or soft fork. Second, that the target
blockchain is able to validate such proofs through smart contracts such as, e.g.,
Ethereum or Ethereum Classic. To our knowledge, we are the first to provide
such a construction in full.

Related Work. Sidechains were introduced as a Bitcoin upgrade mechanism
by Back et al. [1]. They proposed introducing a new child blockchain which
implements a new protocol version, with which assets are 2-way pegged. The
firewall property was articulated. No complete construction of the protocol was
given. Their paper hints at the need for “efficient SPV proofs” (Appendix B) in
future work, which we implemented here. We use the term sidechains in a more
general notion than in their work. Our sidechains allow communication between
stand alone blockchains and also convey any information, not just transfers of
value. In our work, a blockchain is a sidechain of another chain if it can react to
events on that chain, and so the relationship can be symmetric.

Polkadot [19], Tendermint, Cosmos [2], Liquid and Interledger [7] also build
cross-chain transfers. Their validation relies on a trusted committees, federations
or is left unspecified. Drivechains and rootstock are sidechain proposals which
require miners of both chains to be aware of both networks. In our scheme,
miners remain agnostic to the existence of other chains and connect only to
one network. BTCRelay is a trustless mechanism relaying information one-way
from Bitcoin to Ethereum, in which miners are connected to their network only.
BTCRelay requires the transmission of the entirety of the source blockchain
headers into the target blockchain. Our proposal only requires data logarithmic
in size of the source blockchain. This stems from the succinctness property of
the NIPoPoW scheme. Other related work includes Plasma [15], XCLAIM [21],
PeaceRelay, COMIT [9], and NOCUST [10] and Dogethereum.



Proof-of-Work Sidechains 23

2 Overview

We wish to transfer assets from one blockchain to another and then back. When
assets can be transferred from one blockchain to another but not back, we call
it a one-way peg. If assets can also be moved back, we call it a two-way peg. In
each individual transfer of an asset, we have a particular source blockchain, from
which the asset is moved, and a particular target blockchain, to which the asset
is moved. In a sidechain setting of two blockchains that are two-way pegged,
both blockchains can function as a source and a target blockchain for different
transfers.

Fig. 1. Basic information transfer between two blockchains

While the motivation for the construction is to be able to move assets from
one blockchain to another, we generalize the notion of sidechains from this strict
setting. In general, we would like the target blockchain to be able to react to any
event that occurs on the source blockchain. Such events can be the fact that a
transaction with a particular txid took place, that a certain account was paid a
certain amount of money, or that a particular smart contract was instantiated.
Our sidechain construction allows the target blockchain to react to events that
took place on the source blockchain. This reaction can be implemented in its
target blockchain smart contracts. We describe our construction in pseudocode
similar to Ethereum’ Solidity. In Solidity, events can be fired arbitrarily from
within a smart contract and do not have a semantic interpretation. In this set-
ting, events are defined by Solidity using the event type and have an event name,
a contract address which fired them, as well as certain parameter values. A con-
tract can elect to fire an event with any name and any parameters of its choice
by invoking the emit command.

A high-level overview of cross-chain event transmission is shown in Fig. 1.
The process is as follows. First, an event is fired in the source blockchain, shown
at the top. This could be any event that can be emitted using Ethereum’s emit
command. This event firing is caused by a certain transaction which is included
at a certain block, indicated in black at the top. This block is then buried under
k1 subsequent blocks within the source blockchain, where the k1 parameter is
a security parameter of the scheme depending on the specific parameters of the



24 A. Kiayias and D. Zindros

source blockchain [5]. As soon as this confirmation occurs, the target blockchain
can react to the event, shown at the bottom. This reaction occurs in a transaction
which is included in a block within the target blockchain, illustrated in white. As
usual, the block needs to be confirmed by waiting for k2 blocks to be mined on
top of it. It is possible that k1 �= k2 because of different blockchain parameters
such as a difference in block generation time or network synchrony.

Using this basic functionality of event information exchange between block-
chains, we can construct two-way pegged sidechains. In such a construction, an
asset that exists on one blockchain will gain the ability to be moved to a different
blockchain and back. We will use the example of moving ether, the native asset
of the Ethereum blockchain, from the Ethereum blockchain into the Ethereum
Classic blockchain and back. Such an action is different from exchanging ether
(ETH), the native token of the Ethereum blockchain, with ether classic (ETC),
the native token of the Ethereum Classic blockchain. Instead, the asset retains
its nature; it maintains its price and its ability to be used for the same purposes,
while being governed by the rules of the new blockchain, such as different per-
formance, fees, features, or security guarantees. Furthermore, no counterparty
or market is required to perform the exchange; the transfer is something a party
can do on its own.

3 Construction

Cross-Chain Certificates

For our construction, we use a primitive called Non-Interactive Proofs of Proof-
of-Work recently introduced in [12]. Non-Interactive Proofs of Proofs-of-Work are
cryptographic protocols which implement a prover and a verifier. The prover is
a full node on the source blockchain. The verifier does not have access to that
blockchain, but knows the source genesis block G. The prover wants to convince
the verifier that an event took place in the source blockchain; for instance, a
smart contract method was called with certain parameters or that a payment
was made into a particular address. Whether such an event took place can easily
be determined if one inspects the whole blockchain. However, the prover wishes
to convince the verifier by only sending a succinct proof, a short string which
does not grow linearly with the size of the source blockchain, but, rather, polylog-
arithmically. The verifier must not be fooled by adversarial provers who provide
incorrect proofs claiming that an event happened while in fact it didn’t, or that
it didn’t while in fact it did. These adversaries can also mine blocks, but the
honest parties are assumed to control the majority of computational power on
both the source and the target blockchain networks. To withstand such attacks,
the verifier accepts multiple proofs, at least one of which is assumed to have been
honestly generated (this assumption is necessary in standard blockchain proto-
cols in general [8,20]). Comparing these proofs against each other, the verifier
extracts a reliable truth value corresponding to the same value it would deduce
if it were to be running a full node on the blockchain itself. This property is the
security of NIPoPoWs proven in [12].



Proof-of-Work Sidechains 25

The NIPoPoWs construction talks about predicates evaluated on block-
chains, but we are interested in events. We can translate from events to predi-
cates provable with NIPoPoWs. Specifically, given a genesis block G, a smart
contract address addr, an event name Event, and a series of event parame-
ter values (param1, param2, · · · , paramn), the predicate e we wish to check for
truth is the following: Has the event named Event been fired with parameters
(param1, param2, · · · , paramn) by the smart contract residing in address addr on
the blockchain with genesis block G at least k blocks ago? This predicate is (1)
monotonic, meaning that it starts with the value false and, if it ever becomes true,
it cannot ever change its value back as the blockchain grows; (2) infix-sensitive,
meaning that its truth value can be deduced by inspecting a polylogarithmically-
bound number of blocks on the blockchain (in our case one block, within which
the event firing was confirmed); and (3) stable, meaning that, if one party deduces
that its value is true, then soon enough all parties will deduce that its value is
true. This last property stems from the requirement that the event be buried
under k blocks ensuring a blockchain reorganization up to k blocks ago cannot
affect the predicate’s value.

In order to determine whether an event took place, the NIPoPoW verifier
function verifyG,e

k,m(P) accepts the event description in the form of a blockchain
predicate e, which we gave above, the genesis block of the remote chain G, as
well as two security parameters k and m. These security parameters can be
constants specified when the sidechain system is created (concrete values for
these are given in [12]). Subsequently, the NIPoPoW verifier accepts a set of
proofs P = {π1, π2, · · · , πn} which it compares and extracts a truth value for
the predicate: Whether the event has taken place in the remote blockchain or
not. As long as at least one honestly generated proof πi is provided, the verifier’s
security ensures that the output will correspond to whether the event actually
occurred.

Our protocol works as follows. Whenever an event of interest occurs on the
source blockchain, the occurence of this event is observed by a source blockchain
honest node, who generates a NIPoPoW about it. The target blockchain contains
a smart contract with a method to accept and verify the veracity of this proof.
The node can then submit the proof to the smart contract by broadcasting a
transaction on the target blockchain. As soon as the proof is validated by the
smart contract, the target blockchain can elect to react to the event as desired.

Adoption Considerations. Our construction has certain prerequisites for
both the source and the target blockchain before it can be adopted. In the case
of bidirectionally connected blockchains, both of them must satisfy the source
and the target blockchain prerequisites.

– The source blockchain needs to support proofs about it, which requires
augmenting it with an interlink vector, the details of which can be found
in [11]. This interlink vector can be added to a blockchain using a user-
activated velvet fork [12,22], which is performed without miner awareness
and does not require a hard or soft fork. However, only events occuring after
the velvet fork can be proven. New blockchains can adopt this from genesis.



26 A. Kiayias and D. Zindros

– The target blockchain needs to be able to run the above verify function.
This function can be programmed in a Turing-complete language such as
Solidity. If the source blockchain proof-of-work hash function is available as
an opcode or pre-compiled smart contract within the target blockchain’s VM
the way, e.g., Bitcoin’s SHA256 hash function is available in Solidity, the
implementation can be more gas-efficient.

Blockchain Agnosticism. We underline the remarkable property that miners
and full nodes of the target blockchain do not need to be aware of the source
blockchain at all. To them, all information about the source blockchain is simply
a string which is passed as a parameter to a smart contract and can remain
agnostic to its semantics as a proof. Additionally, miners and full nodes of the
source blockchain do not need to be aware of the target blockchain. Only the
parties interested in facilitating cross-chain events must be aware of both. Those
untrusted facilitators need to maintain an SPV node on the source blockchain
about which they generate their NIPoPoW. To broadcast their proof on the
target blockchain, they connect to target blockchain nodes and send the trans-
action containing the NIPoPoW. Blockchain agnosticism allows users to initiate
cross-chain relationships between different blockchains dynamically, as long as
the blockchains in question satisfy the above prerequisites.

Cross-Chain Events

We give our crosschain construction in Algorithm 1. Initially, our communication
will be unidirectional. In the next section, we use two unidirectional channels to
establish bidirectional communication. This smart contract runs on the target
blockchain and informs it about events that took place in the source blockchain.
It is parameterized by three parameters: k and m are the underlying security
parameters of the NIPoPoW protocol. The value z is a collateral parameter,
denominated in ether (or the native currency of the blockchain in which the
execution takes place) and is used to incentivize honest participants to inter-
vene in cases of false claims. The contract utilizes the NIPoPoW verify function
parameterized by the event e, the remote genesis block G and the security param-
eters k and m. We do not give an explicit implementation of verify, as it can be
implemented in a straightforward manner by translating the pseudocode listing
of [12]. For our purposes, it suffices to treat it as a black box which, given a set
of proofs, at least one of which is honestly generated, returns the truth value of
the respective predicate.

The contract allows detecting remote blockchain events and can be inherited
by other contracts that wish to adopt its functionality. It works as follows. First,
the initialize method is called exactly once to configure the contract, passing the
hash of the genesis block of the remote chain which this contract will handle.
This method is internal and can only be called by the contract inheriting from it.



Proof-of-Work Sidechains 27

Users of the contract can check it has been configured with the correct genesis
block prior to using it. We note that, while our algorithm does not reflect this
to keep complexity low, it is possible to have a contract interact with multiple
remote chains by extending it to include multiple geneses.

Algorithm 1. The smart contract skeleton that enables checking cross-chain
proofs about events.
1: contract crosschaink,m,z

2: finalized-events ← ∅; events ← ∅
3: internal function initialize(Gremote)
4: G ← Gremote

5: end function
6: payable function submit-event-proof(π, e)
7: if msg.value < z then � Ensure sufficient collateral
8: return ⊥
9: end if

10: if events[e] = ⊥ ∧ verifye,Gk,m({π}) then
11: events[e] ← {expire: block.number + k, proof: π, author: msg.sender}
12: end if
13: end function
14: function finalize-event(e)
15: if events[e] = ⊥ ∨ block.number < events[e].expire then
16: return ⊥
17: end if
18: finalized-events ← finalized-events ∪ {e}
19: author ← events[e].author
20: events[e] ← ⊥
21: author.send(z) � Return collateral
22: end function
23: function submit-contesting-proof(π∗, e)
24: if events[e] = ⊥ ∨ block.number ≥ events[e].expire then
25: return ⊥
26: end if
27: if ¬verifye,Gk,m({events[e].proof, π∗}) then � Original proof was fraudulent
28: events[e] ← ⊥
29: msg.sender.send(z) � Pay collateral to contester
30: end if
31: end function
32: function event-exists(e)
33: return e ∈ finalized-events
34: end function
35: end contract



28 A. Kiayias and D. Zindros

The lifecycle of an event submission is illustrated in Fig. 2. When an event has
taken place in the source blockchain, any source blockchain SPV node, the author,
can inform the crosschain contract about this fact by generating a NIPoPoW π
claiming that the event took place based on their current view of the source block-
chain. This proof can then be submitted to the target blockchain by calling the
submit-event-proof function and passing it the proof π and the event predicate e.
The submission is accompanied by a collateral payment z. If the author is honest,
this collateral will be returned to her later. The submit-event-proof function runs
the NIPoPoW verify algorithm to check that the proof π is well-formed and that
it claims that the predicate is true. It then stores the proof for later use. It also
stores the address of the author and an expiration block number.

Fig. 2. A sequence diagram showing the actions of the untrusted SPV node when
communicating with both blockchain networks and the lifecycle of an event submission

Upon submission of a proof to the submit-event-proof function, the event is
tentatively accepted for a contestation period of k blocks, during which any other
party, the contester, can provide a counter-proof showing that the original proof
was fraudulent. The contester can call the submit-contesting-proof function pass-
ing it the contesting proof π∗ and the event predicate e. The function runs the
NIPoPoW verify algorithm to compare the original proof events[e].proof against
the contesting proof π∗. If the verification algorithm concludes that the origi-
nal proof was fraudulent, the tentatively accepted event is abandoned and the
collateral is paid to the contester.

Otherwise, when the contestation period has expired without any valid con-
testations, the author can call the finalize-event function. This function changes
the acceptance of the event from tentative to permanent by including it in the
finalized-events set and returns the collateral to the author. Finally, the event-
exists function can be used by the inheriting contract to check if an event has



Proof-of-Work Sidechains 29

been permanently accepted. The target blockchain state during this execution is
shown in Fig. 3. The source blockchain’s event included in the black box, upon
sufficient confirmation by k1 blocks (not shown), is transmitted to the target
blockchain at the bottom. The target blockchain includes the event tentatively
in block 1 until a contestation period of k2 has passed; the event is included per-
manently in block 2; subsequently, permanent inclusion needs to be confirmed
with k2 further blocks.

Fig. 3. The target blockchain state during event submission

Two-Way Pegged Sidechains

Having created the generic crosschain contract, we now build two-way pegged
sidechains on top. For concreteness, we use the example of transferring ether
(ETH), the native currency of the Ethereum blockchain, to the Ethereum Classic
blockchain, and back. We note that this example is arbitrary and for illustration.
Our construction can be used between any work-based blockchains satisfying the
prerequisites detailed above.

When ether is moved to the Ethereum Classic blockchain, it will be repre-
sented as an ERC20 token1 within Ethereum Classic. Let this custom token be
called ETH20. The asset retains its nature as it moves from one blockchain to
another if it is always possible to move ETH into ETH20 and back at a one-
to-one rate. The economic reason is that the price of ETH and ETH20 on the
market will necessarily be the same. If the price of ETH were to ever be sig-
nificantly above the price of ETH20 in the market, then a rational participant
would exchange their ETH20 for ETH using sidechains and sell their ETH on
the market instead, and vice versa. There can be a small discrepancy in the two
prices which stems from two different factors: First, the fees needed for a cross-
chain transfer; and second, the temporary market fluctuations that can occur
during the limited time needed to perform the cross chain transfer (k1 + 2k2).
If we assume the price fluctuation (of ETH20 denominated in ETH) per unit of
time is bounded, then the market price difference between ETH and ETH20 at
any moment in time can be bounded by the sum of these two factors.

1 The ERC20 standard [17] defines an interface implementable by smart contracts
that enables holding and transferring custom fungible tokens such as ICO tokens.



30 A. Kiayias and D. Zindros

The sidechain smart contracts are presented in Algorithm 2. These smart
contracts both extend the crosschain smart contract of Algorithm 1. Furthermore,
sidechain2 also inherits basic ERC20 functionality which allows token owners to
transfer the token [16]. The sidechain1 contract will be instantiated on Ethereum,
while the sidechain2 contract will be instantiated on Ethereum Classic. Suppose
the genesis block hash of Ethereum is G1 and of Ethereum Classic is G2. We will
use the genesis block hash of each blockchain as its unique identifier.

The two smart contracts both contain an initialize method which accepts the
hash of the remote blockchain as well as the address of the remote smart contract
it will interface with. Note that, while the two genesis hashes can be hard-coded
into the respective smart contract code itself, the remote contract address cannot
be built-in as a constant into the smart contract, but must be later specified by
calling the initialize function. The reason is that, if sidechain1 were to be created
on G1, it would require the address of sidechain2 to exist prior to its creation,
and vice versa in a circular dependency. Therefore, the two contracts must first
be created on their respective blockchain to obtain addresses, and then their
initialize methods can be called to inform each contract about the address of
the other. Specifically, first the contract sidechain1 is created on G1 to obtain
its instance address which we also denote sidechain1. Then the second contract,
sidechain2, is created on G2 to obtain its address sidechain2. Subsequently, the
initialize function of sidechain1 is called, passing it G2 and the address sidechain2.
Finally, initialize is called on sidechain2, passing it G1 and the address sidechain1.
These initialization parameters are stored by the respective smart contracts for
future use. As the crosschain contract requires, the initialize method can only be
called once. Any user wishing to utilize this sidechain is expected to validate
that the contracts have been set up correctly and that initialize has been called
with the appropriate parameters.

sidechain1 contains a deposit function which is payable in the native asset of
Ethereum, ETH. When a user pays ETH into the deposit function, the funds
are held by the smart contract and can later be used to pay parties who wish
to withdraw, an operation performed by calling the withdraw function. sidechain2
contains similar deposit and withdraw functions which, however, do not pay in the
native currency of Ethereum Classic, but instead maintain a balance mapping
akin to a typical ERC20 implementation. The balance is updated when a user
deposits or withdraws.



Proof-of-Work Sidechains 31

Algorithm 2. An asset transferring contract between G1 and G2

1: contract sidechain1 extends crosschaink,m,z

2: initialized ← false; ctr ← 0
3: function initialize(G2, sidechain2)
4: if ¬initialized then
5: crosschain.initialize(G2) � Initialize with the remote chain genesis block
6: initialized ← true
7: this.sidechain2 ← sidechain2
8: end if
9: end function

10: payable function deposit(target)
11: � Emit an event to be picked up by remote contract
12: ctr += 1
13: emit Deposited1(target, msg.value, ctr)
14: end function
15: function withdraw(amount, target, ctr)
16: � Validate that event took place on remote chain
17: if ¬event-exists((sidechain2,Deposited2, (amount, target, ctr))) then
18: return ⊥
19: end if
20: msg.sender.send(amount)
21: end function
22: end contract
23: contract sidechain2 extends crosschaink,m,z; ERC20
24: mapping(address ⇒ int) balances
25: initialized ← false; ctr ← 0
26: function initialize(G1, sidechain1)
27: if ¬initialized then
28: crosschain.initialize(G1)
29: initialized ← true
30: this.sidechain1 ← sidechain1
31: end if
32: end function
33: function deposit(target, amount)
34: if balances[msg.sender] < amount then
35: return ⊥
36: end if
37: balances[msg.sender] −= amount � Charge account of sender
38: ctr += 1
39: emit Deposited2(target, amount, ctr)
40: end function
41: function withdraw(amount, target, ctr)
42: if ¬event-exists((sidechain1,Deposited1, (amount, target, ctr))) then
43: return ⊥
44: end if
45: balances[target] += amount � Credit target account
46: end function
47: end contract



32 A. Kiayias and D. Zindros

Moving funds from the Ethereum blockchain into the Ethereum Classic block-
chain works as follows. First, the user pays with ETH to call the deposit function
of sidechain1 which resides on G1, passing the target parameter which indicates
their address in the Ethereum Classic blockchain that they wish to receive the
money into. This call emits an event, Deposited1 which contains the necessary
data: the target, the amount paid, as well as a nonce ctr to allow for future pay-
ments of the same amount to the same target. When the event has been emitted
and buried under k1 blocks within the Ethereum blockchain, the user produces
an Ethereum NIPoPoW π1 about the predicate e1 which claims that the event
Deposited1 has been emitted in blockchain G1 with the particular parameters by
the contract residing at address sidechain1.

Subsequently, the user calls the submit-event-proof function of sidechain2
(which is inherited from the crosschain contract), passing the NIPoPoW π1 and
the event predicate e1 and paying collateral z, which registers e1 on sidechain2
as tentative. Because the user is honest, no adversary can produce a π∗

1 which
disproves their claim during the dispute period, and therefore the user waits for
k2 blocks for the contestation period to expire without any successful contes-
tations. She then calls the finalize-event function for e1 and receives back the
collateral z, marking the event permanent. Finally, she calls the function with-
draw of sidechain2, passing it the same parameters that e1 was issued with. The
withdraw function checks that e1 exists using the event-exists method, which will
return true. The user is then credited with amount in their ETH20 balance stored
in balances[target]. This increment in balance creates brand new ETH20 tokens.
The withdraw function also stores the signature of the event parameters that
have been spent to avoid replay attacks, which is not shown here for algorithm
brevity.

The user can then transfer their ETH20 tokens by utilizing the functional-
ity inherited from the ERC20 contract. When some (not necessarily the same)
user is ready to move some (not necessarily the same) amount of ETH20 from
the Ethereum Classic blockchain back into ETH on the Ethereum blockchain,
they follow the reverse procedure: They call the withdraw function of sidechain2
which ensures their ERC20 balance is sufficient, deduces the requested amount,
and fires an event e2 as before. At this point, these particular ETH20 tokens
are destroyed by the balance deduction. Once e2 is confirmed in G2, the user
produces the NIPoPoW π2 about e2 which claims a payment was made within
G2. That proof is then submitted to sidechain1 by calling the submit-event-proof
and finalize-event functions as before. Last, the user calls the withdraw function
of sidechain1, which uses the event-exists function which will return true, finally
paying back the user the respective amount of ETH. Because the only way to
create ETH20 tokens in sidechain2 is by depositing ETH into sidechain1, there
will always exist a sufficient balance of ETH owned by the sidechains1 smart
contract to pay for any requested withdrawals.

Suppose now that an adversarial user makes a false claim that an event e
took place in G1 and posts a relevant NIPoPoW π in G2. If an honest party is
monitoring the chain G2 for the appearance of NIPoPoWs and the chain G1 for



Proof-of-Work Sidechains 33

the firing of events, the fraudulence of π will be immediately obvious to them.
They can subsequently generate a contesting NIPoPoW π∗ providing a counter-
claim that e did not occur. The honest party will broadcast this transaction at
the beginning of the contestation period. Due to the liveness property of G2,
the honest party will manage to include this transaction into G2 within one of
the blocks before the end of the contestation period. The collateral z must be
sufficient to incentivize an honest party to monitor G1 and G2 simultaneously,
pay for transaction fees and ensure the time needed to generate a NIPoPoW π∗

is small as compared to block generation time. The argument for G2 is analogous.

Conclusion. We gave the first trustless Proof-of-Work sidechain construction
based on the NIPoPoWs primitive. We detailed the implementation of the verifier
in the form of a Solidity smart contract. We described how cross-chain events can
be used to give rise to two-way pegging, the original sidechains vision, and argued
for the need of cryptoeconomic collateral to disincentivise dishonest behavior.
Finally, we argued about the feasibility of our proposal and gave the prerequisites
for its adoption.

References

1. Back, A., et al.: Enabling blockchain innovations with pegged sidechains (2014).
http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-
with-pegged-sidechains

2. Buchman, E.: Tendermint: Byzantine fault tolerance in the age of blockchains.
Ph.D. thesis (2016)

3. Buterin, V., et al.: A next-generation smart contract and decentralized application
platform. White paper (2014)

4. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-48071-4 10

5. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10. Updated version at http://eprint.iacr.org/2014/765

6. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains
of variable difficulty. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 291–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 10

7. The Interledger Payments Community Group: Interledger protocol v4. https://
interledger.org/rfcs/0027-interledger-protocol-4/draft-5.html

8. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s
peer-to-peer network. Cryptology ePrint Archive, Report 2015/263 (2015). http://
eprint.iacr.org/2015/263

9. Hosp, J., Hoenisch, T., Kittiwongsunthorn, P.: COMIT: cryptographically-secure
off-chain multi-asset instant transaction network. https://www.comit.network/
doc/COMIT%20white%20paper%20v1.0.2.pdf, 2017

10. Khalil, R., Gervais, A.: Nocust-a non-custodial 2nd-layer financial intermediary.
Technical report, Cryptology ePrint Archive, Report 2018/642 (2018). https://
eprint.iacr.org/2018/642

http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-with-pegged-sidechains
http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-with-pegged-sidechains
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
http://eprint.iacr.org/2014/765
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://interledger.org/rfcs/0027-interledger-protocol-4/draft-5.html
https://interledger.org/rfcs/0027-interledger-protocol-4/draft-5.html
http://eprint.iacr.org/2015/263
http://eprint.iacr.org/2015/263
https://www.comit.network/doc/COMIT%20white%20paper%20v1.0.2.pdf
https://www.comit.network/doc/COMIT%20white%20paper%20v1.0.2.pdf
https://eprint.iacr.org/2018/642
https://eprint.iacr.org/2018/642


34 A. Kiayias and D. Zindros

11. Kiayias, A., Lamprou, N., Stouka, A.-P.: Proofs of proofs of work with sublinear
complexity. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner,
M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 61–78. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53357-4 5

12. Kiayias, A., Miller, A., Zindros, D.: Non-interactive proofs of proof-of-work (2017)
13. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
14. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-

chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 22

15. Poon, J., Buterin, V.: Plasma: scalable autonomous smart contracts. White paper
(2017)

16. Inc Smart Contract Solutions: Openzeppelin crowdsale contract (2017). https://
github.com/OpenZeppelin/openzeppelin-solidity/blob/v2.0.0-rc.1/contracts/
token/ERC20/ERC20.sol

17. Vogelsteller, F., Buterin, V.: Erc 20 token standard (2015). https://github.com/
ethereum/EIPs/blob/master/EIPS/eip-20.md

18. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper 151, 1–32 (2014)

19. Wood, G.: Polkadot: vision for a heterogeneous multi-chain framework (2016)
20. Karl, W., Arthur, G.: Ethereum eclipse attacks. Technical report, ETH Zurich

(2016)
21. Zamyatin, A., Harz, D., Lind, J., Panayiotou, P., Arthur, G., Knottenbelt, W.J.:

Xclaim: interoperability with cryptocurrency-backed tokens
22. Zamyatin, A., Stifter, N., Judmayer, A., Schindler, P., Weippl, E., Knottenbelt,

W.J.: A wild velvet fork appears! Inclusive blockchain protocol changes in prac-
tice. In: Zohar, A., et al. (eds.) FC 2018. LNCS, vol. 10958, pp. 31–42. Springer,
Heidelberg (2019). https://doi.org/10.1007/978-3-662-58820-8 3

23. Zhang, F., Cecchetti, E., Croman, K., Juels, A., Shi, E.: Town crier: an authenti-
cated data feed for smart contracts. In: Edgar, R.W, Stefan, K., Christopher, K.,
Andrew C.M., Shai, H. (eds.) ACM CCS 2016, pp. 270–282. ACM Press (2016)

https://doi.org/10.1007/978-3-662-53357-4_5
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/v2.0.0-rc.1/contracts/token/ERC20/ERC20.sol
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/v2.0.0-rc.1/contracts/token/ERC20/ERC20.sol
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/v2.0.0-rc.1/contracts/token/ERC20/ERC20.sol
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://doi.org/10.1007/978-3-662-58820-8_3

	Proof-of-Work Sidechains
	1 Introduction
	2 Overview
	3 Construction
	References




