
Is Solidity Solid Enough?

Silvia Crafa1(B), Matteo Di Pirro1, and Elena Zucca2

1 University of Padova, Padua, Italy
crafa@math.unipd.it

2 DIBRIS, University of Genova, Genoa, Italy
elena.zucca@unige.it

Abstract. We introduce Featherweight Solidity, a calculus formalizing
the core features of the Solidity language, thus providing a fundamental
step to reason about safety properties of smart contracts’ source code.
The formalization includes a static type system that represents the foun-
dation of the Solidity compiler. We show that it prevents some errors
whereas many others, such as accesses to a non existing function or state
variable, are only detected at runtime and cause interruption and rolling-
back of transactions. We then propose a refinement of the type system
that is retro-compatible with original Solidity code, and statically cap-
tures more errors, such as unsafe casts and unsafe call-back expressions.

Keywords: Type soundness · Operational semantics · Smart contracts

1 Introduction

Smart contracts and their decentralized algorithmic validation are emerging as
a successful technology to implement agreements between mutually untrusted
parties without relying on a centralized third authority. They are currently used
in many critical domains, such as infrastructural systems and financial applica-
tions, therefore it is of paramount importance to study their correctness. In this
work, we address this problem at the programming language abstraction level,
so to statically rule out harmful patterns appearing in smart contracts code and
support a safer programming discipline. More precisely, we focus on Solidity, the
most widely used programming language in Ethereum’s ecosystem, and its type
system, that is integrated in the language so to let the compiler statically enforce
basic safety properties of smart contracts.

Our first contribution is the formalization of the semantics of the core of the
Solidity language, that we call Featherweight Solidity (FS). The FS calculus
focuses on contract instantiation, typed interaction among deployed contracts
and money transfers. Even if important features like gas fees are omitted, the
calculus provides a rather compact and clean model of key aspects of smart con-
tract programming. Such a formalization indeed allows one to precisely define
the behavior of many Solidity programs, so to describe undesired behaviors and
investigate on a way to prevent them. This is a fundamental step for the devel-
opment of analysis techniques that take advantage of formal methods to verify
c© International Financial Cryptography Association 2020
A. Bracciali et al. (Eds.): FC 2019 Workshops, LNCS 11599, pp. 138–153, 2020.
https://doi.org/10.1007/978-3-030-43725-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43725-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-43725-1_11


Is Solidity Solid Enough? 139

and reason about the safety properties of smart contracts’ source code, rather
than acting at the level of EVM bytecode. Moreover, the formalization style of
FS intentionally highlights the connection between objects and smart contracts,
opening the way to adapt the rich theory of OOLs in the context of Solidity.

As a second contribution, we study the type system of FS, in order to clarify,
precisely state and, most importantly, prove, Solidity’s claim to be a type-safe
language. In particular, we show that the Solidity static type system only detects
a class of errors, whereas others are detected at runtime, such as accesses to a non
existing function or state variable, or transfers to contracts that cannot accept
money. That is, well-typed FS programs, hence also compiled Solidity contracts,
may reach specific exceptional states that cause the current transaction to be
interrupted and rolled-back, possibly leading to Ether indefinitely locked into a
contract’s balance. Reverting an unsafe transaction guarantees the consistency
of the blockchain, but the account that issued the transaction is not reimbursed
for the money it paid to the miner node. Thus, it is of interest of anyone to issue
a transaction only when there is a static guarantee that such a transaction will
not evolve to a revert.

The main reason for the weakness of Solidity’s type safety lies in the fact that
the code of contract functions can refer to contract instances through their public
addresses, but the Solidity address type is essentially an untyped pointer, which
is notoriously a very flexible but subtle feature. The newly released Solidity 5.0
version splits the address type so to distinguish contracts that can safely accept
money transfers from those that would raise an exception. However, the new
compiler is not able to statically prevent subtle workarounds, thus it is not type-
safer than its previous version.

Our third contribution is a proposal for a safer refinement of the Solidity type
system. We show that the enriched type system enjoys a stronger soundness
property, so that the only possible runtime errors in FS remain those due to
a negative account balance. In particular, cast expressions or money transfers
that would lead to unsafe usage of contract members or calls to an undefined
fallback function are now ruled out at compile-time. Moreover, we show that
such a refinement can be actually made retro-compatible with original Solidity
code, both 5.0 and previous versions. Hence, it is possible for contracts written in
the extended safer language to interact with already deployed smart contracts.

The key idea is twofold: first, we refine the address type with type informa-
tion about the contract it refers to. Secondly, we enrich the functions’ signatures
so to allow functions to be called only by contracts whose address has an expected
(super-)type. This additional information is particularly useful within contracts
code to typecheck the implicit sender parameter, therefore, besides statically pre-
venting runtime errors, the refined compiler statically prevents unsafe callback
expressions, that are notoriously vulnerable Solidity programming patterns. To
take advantage of the full power of the refined typing, the major effort required to
Solidity programmers is to explicitly express the type constraint they require on
contracts callers. However, this requirement actually supports a safer program-
ming discipline, and we put forward a number of convenient function modifiers,
in line with Solidity language style, so to enhance the use of its compiler as a
convenient building tool.



140 S. Crafa et al.

Fig. 1. A simple Bank contract in Solidity

2 Background

Ethereum [5] is a decentralized platform that runs programs called smart con-
tracts. Contract instances deployed on the Etherum blockchain are autonomous
agents reminiscent of class-based objects in distributed OOLs. They are iden-
tified by a unique public address, hold an amount of virtual coins called Ether
(balance), are given a persistent area in the blockchain where their state is stored,
and are associated with their immutable executable code. Besides contracts, the
blockchain also hosts Externally Owned Accounts (EOAs), that correspond to
human agents registered to the Ethereum platform. Analogously to smart con-
tracts, EOAs are identified by a unique address and hold an amount of Ether as
their balance, but they have no associated code. EOAs start programs by issuing
a transaction, which either deploys a new contract instance, or invokes a function
by sending a message to a contract stored at a given address. Typically, trans-
actions include input data for the invocation, the address of the sender EOA, an
amount of virtual money to be transferred to the contract as a sort of payment,
and a fee (gas) to reward the miner node that executes the transaction.

While EOA’s initial transactions are written using one of the many API
available in Ethereum ecosystem, smart contracts code is commonly written
using the Solidity programming language [1], and it is compiled into bytecode
running on the Ethereum Virtual Machine (EVM) [14]. As in OOLs, Solidity
contracts contain state variables and functions that, as objects methods, can
refer to the currently executing contract instance through the variable this.
Contract functions can send messages to other (or to the current) contracts,
possibly also specifying an amount of virtual money and the gas fee to be paid.
Therefore, besides this, in Solidity the contract functions have access to the
implicit variable msg, which stores various information about the current call,
such as the address of the caller (msg.sender) and the amount of money sent
along with the call (msg.value).

As an example, Fig. 1 shows a Solidity smart contract that implements a very
simple bank. The amounts state variable is a mapping that records the amounts
of money deposited by clients, either EOAs or smart contracts, indexed by their



Is Solidity Solid Enough? 141

Ethereum addresses. To withdraw money from a Bank instance b, the invocation
of the corresponding function should have the standard shape b.withdraw(n).
The function body first of all checks whether the caller’s bank account contains
enough money. If not, an exception (revert) is thrown by the runtime and
the current transaction is rolled-back, leaving the blockchain as if it had never
run. If the caller has enough money, then its bank account is decremented by
n, and, moreover, n Wei’s (Ether’s smallest sub-currency) are transferred from
the balance of b to the balance of the caller by explicitly using the transfer
primitive. Whenever the caller is a contract, the EVM requires that contract
to contain a definition for the so-called fallback function, otherwise a revert is
thrown and the transaction is reverted. The typical purpose of such function is
either to track the reception of Ether or to refuse it by throwing an exception. On
the contrary, when the recipient of the transfer is an EOA, no fallback function
is needed.

The invocation of the deposit function, instead, can have the special shape
b.deposit.value(n)(), binding n to the implicit parameter msg.value. If not
specified, n is assumed to be 0. As a consequence, n Wei’s are transferred from
the balance of the caller (msg.sender) to the balance of the Bank instance; in this
case, no explicit invocation of transfer is needed. The state variable amounts is
updated accordingly. Analogously to the case above, the caller must hold enough
money in its balance. The additional value argument can only be specified for a
function with the payable modifier, meaning that it is allowed to receive Ether
as part of the invocation, otherwise a revert would be thrown at invocation
time.

3 The Featherweight Solidity Calculus

In this section we introduce Featherweight Solidity (FS), a calculus formalizing
the core of the Solidity programming language. Many features are omitted, like
low level calls (using the primitives send, call, delegatecall), expressive
value types like mappings and first-class function values, function modifiers and
multiple inheritance. Furthermore, FS models single transactions, thus it does
not deal with the concepts of blocks, distributed block validation, and roll-back
of the changes to the blockchain caused by a reverted transaction. We also do
not model the concept of gas fees, which is a mechanism Ethereum uses to make
sure that every transaction eventually terminates and to prevent denial of service
attacks.

In such way, we can focus on key aspects of smart contract programming, such
as contract instantiation, interactions among deployed contracts, and money
transfers, providing a rather compact and clean model of such features. In par-
ticular, the definition of FS is inspired by Featherweight Java (FJ) [9], the refer-
ence calculus for Java-like languages, exploiting the similarities and highlighting
the differences between the notions of object and smart contract. Therefore it
opens the way to reuse and adapt the rich and well-known theory of OOLs in
the context of smart contracts.



142 S. Crafa et al.

Fig. 2. FS: syntax

Syntax and types are given in Fig. 2. We assume sets of variables x , y , contract
names C , D , state variable names s, function names f , addresses a. We assume
three special variables this, msg.value, msg.sender, a special contract name
Top, and a special function name fb, all explained below. We let a metavariable
ending by s to be implicitly defined as a (possibly empty) sequence, for example
cds is defined by cds ::= ε | cd cds, where ε denotes the empty sequence.

A contract table is a sequence of contract declarations, consisting of con-
tract name, parent contract’s name, a sequence of state variable declarations
and a sequence of function declarations. We only model single inheritance and
assume a distinguished contract name Top with no state variable and function
declarations. A function declaration consists of a return type, a function name,
a list of typed parameters, and a body which is an expression. Since FS does not
model Solidity’s function modifiers, every function is implicitly marked payable
and external, that is, can receive Wei and can be invoked by EOAs’ transac-
tions. We assume a special function name fb, which models the fallback function,
implicitly invoked whenever money is transferred by means of a transfer call.
Therefore, if present in a contract definition, the function fb must be necessar-
ily declared as unit fb (){return e;}. As in FJ, we assume for each contract
declaration a canonical constructor.

Expressions includes variables, the only constant u of type unit, natural con-
stants n of type uint, addresses, used to refer to EOAs and contracts already
deployed in the blockchain, access and assignment to a state variable, and block
consisting of a local variable declaration and a body. We use e;e ′ as an abbre-
viation for {T x=e;e ′} with x not free in e ′.

The expression e.f .value(ev).sender(es)(es) invokes the function
f on the contract instance denoted by e, specifying the address es of
the contract instance (or the EOA) that invoked the function, and the
amount ev of Wei sent along with the call. In the instantiation expression
new C.value(ev).sender(es)(es), the two additional arguments have an anal-
ogous meaning.

Assuming that e evaluates to a contract instance, address(e) returns its
address, while, assuming that e evaluates to an address, balance(e) returns
its current balance, and the cast expression C (e) returns the corresponding



Is Solidity Solid Enough? 143

Fig. 3. A simple Bank contract in FS

contract instance. The expression e.transfer(ev).sender(es), assuming that
e evaluates to an address, transfers the amount of Wei denoted by ev from the
balance of es to its balance. Finally, the revert expression aborts the current
transaction. For the aims of our formalization, we add a label λ describing the
specific error (neg when a money transfer would make an account’s balance
negative, rte for a runtime type error), omitted when not significant.

For simplicity, FS expressions model both Solidity code, that is, smart con-
tracts code, and external code issuing the initial transactions. However, only the
latter requires an explicit sender argument in function calls, contract instantia-
tion and money transfer, whereas, in contracts code (that is, in function bodies
rather than at top level), the (implicit) sender is always the currently executing
contract instance. Formally, we assume that function calls occurring in function
bodies have shape e.f .value(ev).sender(address(this))(es), abbreviated
e.f .value(ev)(es), and analogously for constructor invocations and transfer.

The syntax of types includes contract names, the unit type, the type
uint of unsigned integers, and the type of addresses. In the definition
of FS we privileged uniformity, therefore a FS program is not an exe-
cutable Solidity program, for instance, Solidity has no unit type. How-
ever, the correspondence is very close. In Fig. 3 we show1 the FS code
corresponding to the Solidity smart contract in Fig. 1. As an example,
Bank(’0x84b’).deposit.value(500).sender(’0xu7e’)() denotes a transac-
tion issued by the EOA with address ’0xu7e’ to interact with an instance of
the Bank contract stored at address ’0x84b’.

Operational Semantics. Runtime expressions include, besides source-level con-
structs in Fig. 2, contract references ιCD , where C ,D are contract names. We
write ιD as abbreviation for ιDD , and omit both when not relevant. When a con-
tract D is instantiated, a new reference ιD is created with its contract’s name

1 In the examples, we use additional constructs, such as loops, booleans and key-value
mappings (for the standard formalization see [6]).



144 S. Crafa et al.

Fig. 4. FS: operational semantics

built in (as subscript). When a cast to type C occurs at runtime, no type check
is performed by the EVM, but the execution proceeds by recording the target
type (as superscript) in the contract reference. That is, ιCD is a reference to an



Is Solidity Solid Enough? 145

instance of contract D (for “dynamic type”) that has been cast (that is, stati-
cally typed) to type C (for “cast type”). Note that a contract reference keeps
its dynamic type forever, whereas it can be used with different cast types.

Configurations, ranged over by c, are pairs 〈e, β〉, where e is the expression
to be evaluated and β the blockchain, that stores the global state of the system.
Formally, β is finite map from contract instances of shape 〈ι, a〉 to pairs 〈vs, n〉,
where n and vs are the contract’s balance and state, respectively, the latter
being the tuple of the current values of the state variables. Note that, while the
reference records type information, the public address provides an “untyped”
way to access a contract instance. As in Ethereum, we assume a one-to-one
correspondence between references and addresses in the domain of β, so we
can safely use the notations β(ι) and β(a) as abbreviations for β(〈ι, a〉). Since
Ethereum blockchain records also EOAs addresses and balances, in order to let
the map β uniformly deal with both smart contracts and EOAs, we assume that
each EOA has a corresponding reference to an instance of a dummy contract
EOContract whose code only contains a fallback function fb with empty body
(i.e., unit fb {return u;}). Values are contract references and constants of
the other types.

Evaluation contexts formalize standard left-to-right evaluation (for brevity
we do not explicitly list all cases).

The small-step reduction relation over configurations −→CT is parameterized
by a contract table, omitted to lighten the notation. Reduction rules are collected
in Fig. 4, where we use the following notations, whose trivial formal definition is
omitted. Given a blockchain β: in β[ι.i=v ], the value of the i-th state variable of
the contract instance ι has been replaced by v ; in β[〈ι, a〉←vs], a new contract
instance 〈ι, a〉 has been added with state vs and balance 0; in β[a.v

n� a ′.v], an
amount of n Wei has been transferred from the balance of the contract instance
at address a to that at a ′. If β(〈ι, a〉) = 〈v1 . . . vn, n〉, then we write β(ι).i
to denote vi, for i ∈ 1..n, and we write β(a).v to denote n. The expression
e[v/x ] is obtained from e by replacing all occurrences of x by v . The following
auxiliary functions are implicitly parameterized on the contract table: svar(C , s)
and svartype(C , s) return the index and type, respectively, of the state variable s
in C , if any; svars(C ) returns the sequence of all (inherited and directly declared)
state variables of C ; ftype(C , f ) and fbody(C , f ) return the function type, of
shape 〈T ,T1 . . .Tn〉, and the pair parameters-body, respectively, of the function
f in C , if any, looked for in C first, then in its parent contract. Finally, the
subtyping relation C ≤ D is the reflexive and transitive closure of the inheritance
relation. Subtyping is extended to function types as usual: 〈T ,T1 . . .Tn〉 ≤
〈T ′,T ′

1 . . .T ′
n〉 if T ′

i ≤ Ti, for i ∈ 1..n, and T ≤ T ′.
Rules (ctx) and (ctx-revert) are straightforward. In rule (access) the semantics

is as expected, with an additional check that the state variable s exists in both
contracts C and D and that the type obtained at runtime is a subtype of that
statically computed from the cast type. Otherwise, a revert[rte] is raised, see
rule (access-rte), whose side condition is intended to cover also the case where s
is not defined in both contracts. A symmetric check is performed in rules (assign)



146 S. Crafa et al.

and (assign-rte). Indeed, as mentioned above, in Solidity no runtime checks are
performed in a cast, but they are postponed when the reference is actually used.2

This is modeled in rule (cast), where an address is converted to the corresponding
reference. The runtime effect is just to tag the reference with the static type
for future usage checks; in particular no subtyping constraint, like D ≤ C , is
enforced. In rule (dec), local variable declarations have the standard substitution
semantics. Rules (get-addr) and (get-bal) are straightforward. In rule (new), a fresh
instance of C is added in the blockchain, with state and balance initialized to the
tuple of values and amount provided as arguments of the constructor invocation.
Furthermore, the balance of the contract instance at address as is decremented
of the same amount, provided that this would not make the balance negative,
otherwise a revert[neg] is raised, see rule (new-neg).

In rule (invk), the parameters and body of the function f defined in the con-
tract of the receiver are retrieved from the contract table, through the auxiliary
function fbody. Analogously to rules (access) and (assign), a check is performed
that the function f exists in both contracts C and D and the function type
obtained at runtime is a subtype of that statically computed from the cast type,
otherwise a revert[rte] is raised, see rule (invk-rte). The invocation is reduced to
the function body where this and formal parameters have been replaced by the
receiver and the arguments vs, as in standard FJ, and, moreover, msg.sender
and msg.value have been replaced by address as and amount n, respectively.
Finally, the balance of the contract instance at address as is decremented of the
same amount, provided that this would not make the balance negative, otherwise
a revert[neg] is raised, see rule (invk-neg). While functions are invoked on con-
tract references, the transfer construct is used with addresses. In rule (transfer),
an amount of n Wei is transferred from the balance of the contract instance at
address as to that at a, provided that this would not make the sender balance
negative, otherwise, a revert[neg] is raised, see rule (transfer-neg). Moreover, the
fallback function is implicitly invoked, if any, otherwise a revert[rte] is raised,
see rule (transfer-fb).

4 Type System

The typing judgment has shape Γ ; I;A � e : T , where Γ is a finite map from
variables to types, I and A are sets of references and addresses, respectively. As
for the reduction relation, it is implicitly parameterized by a contract table.

Typing rules are given in Fig. 5; they are mostly straightforward. Note that
rule (t-ref) assigns the static type of a contract reference by looking at its super-
script. According to the semantics of cast, rule (t-cast) just checks that the expres-
sion to be cast has type address without performing any additional type check.
The typing judgment is extended to configurations in rule (t-conf), requiring that
both the expression to be evaluated and the blockchain are well-typed according

2 In some cases Solidity tries to convert values from the provided to the expected type,
but no documentation about the precise behavior is available.



Is Solidity Solid Enough? 147

Fig. 5. FS: typing rules for expressions and configurations

to the same sets of addresses and contract references. Moreover, the expression
should contain no free variables. The judgment I;A � β holds if:

a ∈A iff a ∈ dom(β), ι ∈I iff ι ∈ dom(β), and β(ιC ) = 〈v1, ..., vn, n〉 implies
svars(C ) = T1 s1...Tn sn and, for all i ∈1..n, ∅; I;A � vi : T ′

i with T ′
i ≤ Ti.

Finally, the judgment I;A � CT means that the contract table is well-
formed w.r.t. existing contract references and addresses. We omit the complete
formal definition, reported in [6], since it is essentially as in FJ. Informally,
it ensures that all used contract names are declared, the inheritance relation
is acyclic, there is no state variable hiding, no function overloading and safe
function overriding. Moreover, each function definition should be well-typed in
the following sense: if ftype(C , f ) = 〈T ,T1 . . .Tn〉 and fbody(C , f ) = 〈x1...xn, e〉
then this:C , msg.sender:address, msg.value:uint, x1 : T1, .., xn : Tn; ∅;A �
e : T ′ with T ′ ≤ T . Notice that the previous judgment assumes an empty set
of references since the code of contract functions can refer to contract instances
and EOAs only by means of (public) addresses.



148 S. Crafa et al.

We write −→� for the reflexive and transitive closure of −→ and c 
→ if there
is no c′ s.t. c −→ c′. In the theorem we implicitly assume that the underlying
class table is well-formed w.r.t. I and A.

Theorem 1 (Soundness). If I;A � c : T, c −→� c′, and c′ 
→, where c′ =
〈e′, β′〉, then either e ′ is a value or e ′ = revert[λ] for some λ.

This soundness theorem states that the Solidity type system prevents stuck
execution, but not runtime type errors. This is quite dangerous and can lead to
Ether indefinitely locked into a contract or to unexpected runtime reverts.

For instance, consider a blockchain storing at address aB an instance of the
Bank contract in Fig. 3, and at address aD an instance of a contract D that
does not define a fallback function. Assume that the contract at aD successfully
deposited 100 Wei in the bank, and now wants to withdraw part of them. The
function call Bank(aB).withdraw.value(0).sender(aD)(50) successfully com-
piles, but reduces to aD.transfer(50) that raises a revert[rte] exception since
aD refers to a contract that does not define a valid fallback function. Therefore,
the withdrawal transaction aborts, causing loss of gas fee in the real Ethereum
scenario. Moreover, since deployed contract code cannot be updated, the money
already deposited by aD in the bank aB is indefinitely locked.

The whole problem lies in the way the address type is handled: neither
Solidity nor the EVM provides additional information on the contract stored
at that address. Solidity addresses represent an untyped way to access contract
instances, much as void * pointers in C. Such pointers allow extreme flexibility,
but they are really difficult to deal with, since programmers have to know what
they are doing and how to do so, in order to avoid subtle bugs.

5 Refined Type System

This section refines the type system of FS in order to more safely access con-
tract instances through their address. Indeed, the resulting type system enjoys a
more powerful soundness property, that is, well-typed programs never reduce to
a revert[rte] exception. The key idea is to enrich the address type so to type
information about the contracts the addresses refer to. That is, address〈C 〉
is the type of the addresses of instances of the contract C . This richer type
is mostly useful when typing the implicit msg.sender variable, used in func-
tion bodies to refer to the address of the caller. Indeed, well-typed expressions
such as C (msg.sender).f .value(n)() or msg.sender.transfer(n) reduce to
a revert[rte] exception if msg.sender is bound to the address of a contract that
has not type C or has no fallback function. Moreover, by enriching the contract
functions’ signatures with the address type of the implicit sender parameter, we
can let the compiler check the safety of callbacks expressions similar to the ones
above, that are notoriously vulnerable Solidity programming patterns.

Formally, the refined calculus, called FS+, is obtained by applying the
changes in Fig. 6 to the syntax of FS. In function declarations, the metavari-
able S (for “sender”) ranges over contract names, and the meaning is that the



Is Solidity Solid Enough? 149

function f can be called only by contracts or EOAs whose address has (a sub-
type of) type address〈S 〉. The subtyping relation is extended to address types
in covariant way, that is, address〈C 〉 ≤ address〈D〉 holds if C ≤ D .

Fig. 6. FS+: changes to syntax and typing rules

The typing rules of FS+ are obtained by applying the changes in Fig. 6.
Moreover, in the typing judgement, A is no longer a set, but a map from
addresses to contract names. The judgment I;A � β must additionally require
that if 〈ιC , a〉 ∈ dom(β) then A(a) = C . Finally, function types become
triples, 〈T ,S ,T1 . . .Tn〉 ≤ 〈T ′,S ′,T ′

1 . . .T ′
n〉 additionally requires S ′ ≤ S ,

and the requirement on well-formedness of function bodies becomes the fol-
lowing: if ftype(C , f ) = 〈T ,S ,T1 . . .Tn〉 and fbody(C , f ) = 〈x1...xn, e〉 then
this:C , msg.sender:address〈S 〉, msg.value:uint, x1 : T1, .., xn : Tn; ∅;A � e :
T ′ with T ′ ≤ T . The refined rule (t-cast) now statically checks that the expres-
sion to be cast evaluates to the address of an instance of contract D which is a
subtype of the target of the cast. In rules (t-invk) and (t-transfer), the additional
side condition requires the type of the sender es to be a subtype of the type S
of the expected caller of the function f and fb, respectively, as specified in their
refined signature.

The type system of FS+ enjoys a stronger soundness property: revert[rte]
errors are statically prevented, so the only possible runtime errors remain those
due to a negative account balance. In other terms, cast expressions or money
transfers that would lead to unsafe usage of contract members or calls to an
undefined fallback function are now ruled out at compile-time.

Theorem 2 (Soundness). If I;A � c : T, c −→� c′, and c′ 
→, where c′ =
〈e ′, β′〉, then either e ′ is a value or e ′ = revert[neg].



150 S. Crafa et al.

By taking advantage of this more powerful typing, the Bank contract in Fig. 3
can be refined into the following safer smart contract:

contract Bank {

mapping(address <Topfb> => uint) amounts;

unit deposit <Topfb >() {...}

unit withdraw <Topfb >(uint n) {...}

}

We assume a contract Topfb which only contains a fb function with empty
body and Top sender parameter. Address types used in the mapping to index
the banks’ clients refer to such contract name. This type is also used in the
refined signature of the two contract functions, so to (statically) ensure that
their caller contract actually provides a fallback function. Therefore, com-
ing back to the example discussed in Sect. 4, if aB : address〈Bank〉 and
aD : address〈D〉 where the contract D has no fallback function, the func-
tion call Bank(aB).withdraw.value(0).sender(aD)(50) does not compile any-
more, since the new rule (t-invk) requires D ≤ Topfb, which is not true. The
runtime error occurring when trying to tranfer money to aD is then statically
prevented. Similarly, the contract stored at aD cannot even call the deposit
function, thus preventing also the deposit of money that cannot be withdrawn
anymore. We remark that the type address〈Topfb〉 has the same meaning of
Solidity 5.0’s new type address payable, that is the (super)type of every con-
tract that can safely accept money transfers. However, in Solidity 5.0 the variable
msg.sender is always assumed to be of type address payable, and no check is
performed at compile time to ensure that the actual sender has a fallback func-
tion. Therefore, differently form FS+, the Solidity compiler 5.0 does not enjoy
a better soundness property that of Sect. 4.

The introduction of the type address〈C 〉 and the corresponding typing
rules, are of course incompatible with the legacy Solidity code, that would not
be accepted anymore by the new compiler. Nonetheless, a direct default map-
ping is easily definable by mapping each occurrence of the type address to
address〈Top〉 and by refining each function signature so to use Top as supertype
of the function’s sender. We shall also provide a flag (--notopcast) in the new
compiler to disable the refined rule (t-cast) when D = Top and use the standard
rule (t-cast) of Sect. 4. Indeed, the refined rule would rule out any cast having
address〈Top〉 as actual type of e, since for all type C, Top 
≤ C. Cleary, by using
such a default mapping, no additional guarantees can be statically checked on
the contracts code, however, retro-compatibility with Solidity contracts already
deployed on the blockchain, whose code cannot be updated, is guaranteed.

To take advantage of the full power of the refined typing, the major effort
required to Solidity programmers is to annotate each function with the required
(super)type of the caller. We then put forward a couple of new convenient anno-
tations, in line with the Solidity programming style, that provides a number
of modifiers to annotate functions, e.g., the payable marker in Fig. 1. Since
it is often the case that type constraints refer to contracts that provide (at
least) a fallback function, the keyword payableaddress can be introduced as a



Is Solidity Solid Enough? 151

syntactic sugar for the type address〈Topfb〉, and the function marker payback
can be used to indicate that the function potentially sends Ether back to its
caller. Therefore, the Solidity Bank contract given in Fig. 1 could be simply
rewritten into the following code, where function bodies are as in Fig. 1:

contract Bank {

mapping (payableaddress => uint) private amounts;

function deposit () payable payback {...}

function withdraw () payback {...}

}

Instead, to enforce type-safe callbacks in functions code, programmers
are required to explicitly express the type constraint they require on con-
tracts callers. However, this requirement actually supports a safer programming
discipline.

6 Conclusions and Related Work

We developed semantic foundations of smart contract programming, by formal-
izing the core of the Solidity language and type system. The FS calculus allows
one to precisely define the behavior of smart contract programs and clarifies the
type soundness of the Solidity compiler, pointing out its limitations. Thus it
represents a fundamental building block to develop automatic program analysis
tools. We then put forward a refined type discipline that statically captures a
larger class of errors, such as unsafe casts, unsafe callbacks and unsafe money
transfers. We discussed how such extension provides a safer programming dis-
cipline that is retrocompatibile with smart contracts already deployed on the
blockchain. Finally, the FS calculus highlights the connection between objects
and smart contracts, thus opening the way to reuse the type theory of OOLs
in the context of Solidity, and dually to adapt the refined typing of FS+ to the
case of distributed objects.

A number of proposals have been developed to improve the security and cor-
rectness of Ethereum smart contracts. A stream of works, e.g., [3,7,8], addresses
the problem at the bytecode level: the semantics of EVM bytecode is formalized
and smart contracts properties are verified by means of static analysis tools oper-
ating on the corresponding bytecode. Among the ones addressing the problem at
the programming language level, Zeus [10] translates Solidity code into LLVM
bytecode [11], leveraging abstract interpretation and symbolic model checking
analysis techniques. SmartCheck [13], instead, attempts to detect vulnerabilities
representing Solidity code as an XML tree, and then running XPath queries on
it. Contracts code is fully covered, but the use of XPath leads to a higher rate
of false positives. However, these tools are based on limited formal foundations
of the language they operate on, and they come into play when a contract is
fully defined. We rather think that by enhancing the Solidity compiler’s ability
to statically rule out harmful code, we support a safer programming discipline,
where programmers can write smart contracts that are (more) correct by con-
struction. The work presented in [2] operates in this direction, and provides



152 S. Crafa et al.

a preliminary compiler extension encoding Solidity code into SMT formulas to
check simple properties, such as the division by zero. Similarly, the tool developed
in [12] encodes a subset of Solidity into SMT formulas and uses symbolic model
checking to verify some properties about smart contracts behaviour, including
temporal ones. The first attempt to formalize Solidity is presented in [4]. In this
work a small subset of Solidity is translated into F*, whose type system is after-
wards used to detect vulnerable patterns, such as reentrancy. Even though the
results are encouraging, the subset of Solidity is too small (neither transfer or
cast expressions are considered), and an external language, F*, is used. To the
best of our knowledge, this paper, together with its preliminary version [6], is the
first work aiming at directly formalizing the semantics and the type soundness
of the Solidity source code, so to enhance the use of its compiler as a convenient
building tool.

References

1. Solidity. https://solidity.readthedocs.io/en/develop/index.html. Release 0.4.25
2. Alt, L., Reitwiessner, C.: SMT-based verification of solidity smart contracts. In:

Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11247, pp. 376–388.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03427-6 28

3. Amani, S., Bégel, M., Bortin, M., Staples, M.: Towards verifying Ethereum smart
contract bytecode in Isabelle/HOL. In: Certified Programs and Proofs, pp. 66–77.
ACM (2018)

4. Bhargavan, K., et al.: Formal verification of smart contracts: short paper. In: ACM
Workshop on Programming Languages and Analysis for Security, pp. 91–96. ACM
(2016)

5. Buterin, V.: A next-generation smart contract and decentralized application plat-
form (white paper). Technical report (2014)

6. Di Pirro, M.: How solid is Solidity? An in-dept study of solidity’s type safety.
Master’s thesis, Università di Padova, September 2018. http://tesi.cab.unipd.it/
61297/

7. Grishchenko, I., Maffei, M., Schneidewind, C.: A semantic framework for the secu-
rity analysis of Ethereum smart contracts. In: Bauer, L., Küsters, R. (eds.) POST
2018. LNCS, vol. 10804, pp. 243–269. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89722-6 10

8. Hildenbrandt, E., et al.: KEVM: a complete formal semantics of the Ethereum
virtual machine. In: Computer Security Foundations Symposium, CSF, pp. 204–
217 (2018)

9. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. ACM TOPLAS 23(3), 396–450 (2001)

10. Kalra, S., Goel, S., Dhawan, M., Sharma, S.: ZEUS: analyzing safety of smart
contracts. In: Network and Distributed System Security Symposium (2018)

11. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analy-
sis & transformation. In: Code generation and optimization: feedback-directed and
runtime optimization, p. 75. IEEE (2004)

12. Shishkin, E.: Debugging smart contract’s business logic using symbolic model-
checking. arXiv preprint arXiv:1812.00619 (2018)

https://solidity.readthedocs.io/en/develop/index.html
https://doi.org/10.1007/978-3-030-03427-6_28
http://tesi.cab.unipd.it/61297/
http://tesi.cab.unipd.it/61297/
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1007/978-3-319-89722-6_10
http://arxiv.org/abs/1812.00619


Is Solidity Solid Enough? 153

13. Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I., Takhaviev, R., Marchenko, E.,
Alexandrov, Y.: SmartCheck: static analysis of Ethereum smart contracts. In:
Workshop on Emerging Trends in Software Engineering for Blockchain, pp. 9–16
(2018)

14. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Proj. Yellow Pap. 151, 1–32 (2014)


	Is Solidity Solid Enough?
	1 Introduction
	2 Background
	3 The Featherweight Solidity Calculus
	4 Type System
	5 Refined Type System
	6 Conclusions and Related Work
	References




